

Adaptable User Interfaces for
Diverse Human-Computer

Interaction Devices

 Wenjing Zou

Adaptable User Interfaces for
Diverse Human-Computer

Interaction Devices

 Wenjing Zou

This thesis is submitted in fulfillment of the requirements for the degree of Master of

Science in Computer Science at The University of Auckland.

January 2002

©2002 Wenjing Zou

Abstract

Many web-based information systems require degrees of adaptation of the system’s

user interfaces to different client devices, users and user tasks.

We describe a new approach to providing adaptable thin client interfaces for web-

based information systems that allow a developer to specify a web-based interface

using a high-level mark-up language. At run-time this single interface description is

used to automatically provide an interface for multiple web devices e.g. desk-top

HTML and mobile WML-based systems, as well as highlight, hide or disable

interface elements depending on the current user or user task.

Our approach allows developers to much more easily construct and maintain web-

based user interfaces than other current approaches. We describe an example

application of our technique, the software architecture of our system, and its

implementation using Java Server Page custom tag libraries. We report our

experiences using the technology to build two web-based information systems.

We finally in this thesis present an evaluation of our Adaptable Approach and our

comments on the potential future directions of this work.

Acknowledgements

First and foremost I want to thank for the guidance and support provided by my supervisor,

John Grundy. He leads me to complete this thesis with such great idea, enthusiasm and

excellent supervisor methods.

I would like to gratefully acknowledge the support of University of Auckland.

Thanks also to the nameless souls that spend time to complete my evaluation survey.

Thanks their great comments they made on the questionnaire.

Heartfelt thanks go to my father who initially encourages me to complete my Master

Degree in computer science. Also I would like to thank my boss on my work who always

encourage and support me on my study.

Finally, special thanks to person who helped me with the final check before submission.

Table of Contents
`

Chapter 1 - Introduction ... 1

1.1 Introduction ... 1
1.2 Motivation ... 1

1.2.1 Fast Growing Use of Wireless Devices ... 1
1.2.2 Speed to Market ... 2
1.2.3 Reduced Number of Web Pages to Implement ... 2

1.3 Goals .. 3
1.4 Approach ... 4
1.5 Thesis Structure Overview .. 5
1.6 Summary .. 6

Chapter 2 - Related Work .. 7
2.1 Introduction ... 7
2.2 Developing Adaptable User Interfaces .. 7

2.2.1 User Interfaces Design for Various Computer Devices 7
2.2.2 Adaptable Systems .. 9
2.2.3 Developing Adaptable User Interface for Various Devices 10

2.3 Previous Work ... 11
2.3.1 Intelligent and Component-based Approach ... 11
2.3.2 Automated Converters ... 12
2.3.3 Synchronized Model-Based Design of Multiple User Interface 13
2.3.4 Palm’s Web Clipping ... 13
2.3.5 XML/XSL Transformation .. 14
2.3.6 Open Custom Tags and Tag Libraries ... 15
2.3.7 Other of Previous Works ... 17

2.4 Summary .. 18
Chapter 3 - Thesis Related Technologies Overview 19

3.1 Introduction ... 19
3.2 Background .. 19

3.2.1 Overview of Diverse Human-Computer Device ... 19
3.2.1.1 Size of Screen and UI element .. 19
3.2.1.2 Input Methods .. 20
3.2.1.3 Memory ... 21
3.2.1.4 Speed ... 21

3.3 Overview of Web and Wireless Technology ... 22
3.3.1 WEB and WAP Architectures ... 22
3.3.2 WML and HTML .. 25
3.3.3 Develop WEB and WAP Applications .. 27

3.4 Summary .. 29

Chapter 4 - Traditional Web Applications For Various Devices 30
4.1 Introduction ... 30
4.2 User Requirement Specification .. 30

4.2.1 Requirement Specifications ... 30
4.2.1.1 Functional User Requirements .. 31
4.2.1.2 Non-Functional User Requirement .. 33

4.2.2 Use Case Diagrams .. 33
4.3 Object-Oriented Design ... 34

4.3.1 Software Architecture Design ... 35
4.3.2 Object-oriented Design .. 37
4.3.3 Interface Design ... 38

4.3.3.1 Design Interfaces for Different Devices .. 38
4.3.3.2 Design User and Task-based Interfaces ... 40

4.4 Implementation .. 42
4.4.1 JSP Basics .. 42
4.4.2 Database Implementation .. 43
4.4.3 Application Logic Implementation .. 44

4.4.3.1 Application Logic Flow ... 45
4.4.3.2 Get Device and User Information .. 47

4.4.4 User Interfaces Implementation ... 48
4.4.4.1 Developing Interfaces for WEB and WAP Enabled Devices 49
4.4.4.2 Examples of User Interfaces .. 50
4.4.4.3 User and Task-based Content Display ... 53

4.5 Running and Deploying the Application ... 56
4.6 Summary .. 57

Chapter 5 - Adaptable User Interface Technology 58
5.1 Introduction ... 58
5.2 Motivation for Developing an Adaptable Approach ... 58

5.2.1 Need to Develop Large Number of Interfaces ... 58
5.2.2 Hard coded for Each JSP ... 59
5.2.3 Fast Growing Devices ... 59
5.2.4 Bad Code Reusable Ability ... 59
5.2.5 Lack of Consistency .. 60

5.3 System Requirements and Specification ... 60
5.3.1 Functional Requirements ... 60

5.3.1.1 Write Once, Run Everywhere .. 60
5.3.1.2 Adaptation to User and User preferences .. 61
5.3.1.3 Adaptation to Tasks that Users Perform .. 62
5.3.1.4 Adaptation to Client Devices ... 62
5.3.1.5 Adaptation on Existing Client-Server Architecture 62
5.3.1.6 Configuration Capability ... 63

5.3.2 Non-functional Requirements .. 63
5.3.2.1 Easy to Use .. 63

5.3.2.2 Easy Read and Maintain .. 64
5.3.2.3 Performance ... 64
5.3.2.4 Programming Productivity .. 65
5.3.2.5 Extensibility ... 65

5.4 System Analysis .. 65
5.4.1 Adaptation Ability to Various Markup Languages 65
5.4.2 Screen Size and Page Content ... 66
5.4.3 Cookie Problems .. 67

5.5 Design and Algorithm ... 67
5.5.1 System Architecture Design .. 68
5.5.2 Designing AUIT Elements .. 69

5.5.2.1 Document Structure Elements ... 69
5.5.2.2 Generic UI Elements ... 70
5.5.2.3 UI Control Elements .. 72

5.5.3 Adaptation to Various Screen Sizes .. 73
5.5.3.1 Approaches .. 73
5.5.3.2 Design Elements to Perform Screen “Splitting” 75
5.5.3.3 Algorithm ... 78

5.6 Summary .. 79
Chapter 6 - Implementation of The AUIT .. 80

6.1 Introduction ... 80
6.2 JSP Custom Tags ... 80

6.2.1 Overview of Tags .. 80
6.2.2 Benefits of JSP Custom Tags .. 81
6.2.3 Defining the Tags .. 82
6.2.4 Build and Describe Tags .. 82
6.2.5 How our JSP custom tag-implemented AUIT page work 85

6.3 Implementation of AUIT tags .. 85
6.3.1 Build Document Structure Tags -Template Tag .. 87

6.3.1.1 Identifying the Client’s Capabilities to Serve Appropriate Content 87
6.3.1.2 Specify AUIT Document Structure ... 88
6.3.1.3 Output the layout ... 89
6.3.1.4 Sequence Diagram and Description .. 90

6.3.2 Build Page Flow Control Elements ... 90
6.3.2.1 Using “Group/Grouptr/Grouptd” to Control Layout 91
6.3.2.2 Showing the Table in a Card. .. 95

6.3.3 Build UI Control Elements .. 96
6.3.3.1 Build User/Task/Device Content Control Tags 96
6.3.3.2 Table Elements .. 100
6.3.3.3 Building Other Functional Tags –“Iteration” .. 101

6.3.4 Building UI Elements .. 102
6.3.4.1 Text and Layout Formatting Elements .. 102
6.3.4.2 Building Form and User Input Elements ... 104

6.3.4.3 Build Navigation Elements .. 106
6.3.5 System Deployment ... 107

6.4 Building Interfaces to Make the System Configurable 107
6.4.1 Introduction ... 107
6.4.2 Preference-based interface configuration .. 108
6.4.3 Examples ... 109
6.4.4 How to use these interfaces ... 111

6.5 Summary .. 111
Chapter 7 - Case Study ... 112

7.1 Introduction ... 112
7.2 Requirement Specification .. 112

7.2.1 User Requirements .. 112
7.2.2 Use Case Diagram ... 113

7.3 Case Analysis and Design ... 114
7.3.1 Object-Oriented Analysis (OOA) .. 114
7.3.2 Software Architecture Design ... 115
7.3.3 Object-Oriented Design (OOD) ... 116
7.3.4 User Interface Design .. 116

7.4 Implementation .. 119
7.4.1 Database Design .. 119
7.4.2 Implementation Steps .. 120
7.4.3 System Environment .. 120
7.4.4 Implementing the Applications Using the AUIT Tags 121

7.4.4.1 Implementing “JoblistInterface” .. 122
7.4.4.2 Implementing “JobdetailInterface” .. 124
7.4.4.3 Implementing Other Pages .. 127

7.5 Summary .. 128
Chapter 8 Evaluation .. 129

8.1 Introduction ... 129
8.2 Evaluation Topic .. 129

8.2.1 Evaluation from developers’ perspective .. 130
8.2.1.1 The Usefulness of Adaptable Approach .. 130
8.2.1.2 About Implementation of the Adaptable Approach 132
8.2.1.3 Ease of use of AUIT tags ... 132
8.2.1.4 Configuration Ability Evaluation .. 134
8.2.1.5 Programming Productivity .. 134
8.2.1.6 Code Maintenance Issues .. 134

8.2.2 Evaluation from End User Point of View .. 135
8.2.2.1 Ease of Use of User Interfaces .. 135
8.2.2.2 Acceptable Navigation Approach .. 135
8.2.2.3 Screen Response .. 135
8.2.2.4 Graphic Layout .. 135

8.3 Survey .. 136

8.4 Evaluation Conclusion ... 137
8.4.1 Evaluation Conclusion From the Developers .. 137

8.4.1.1 Comment about the AUIT tags .. 137
8.4.1.2 Functionalities of the AUIT tags ... 140
8.4.1.3 Comment About Programming Productivities 140
8.4.1.4 Comment about Code Maintenances ... 141

8.4.2 Evaluation Conclusion from End-user Perspective 141
8.4.2.1 Comment about AUIT Interfaces .. 142
8.4.2.2 Comment about the Display Methods on the AUIT Interfaces 142

8.5 Summary .. 143
Chapter 9 - Conclusion and Future Work .. 144

9.1 Introduction ... 144
9.2 Contributions of the Thesis .. 144

9.2.1 Easy to Use .. 144
9.2.2 Creating High-level Languages ... 144
9.2.3 Powerful Adaptability .. 145
9.2.4 Easy Architecture .. 145
9.2.5 Extensibility ... 145
9.2.6 Good Productivity .. 145

9.3 Future Work ... 145
9.3.1 Developing a Tool to Create AUIT Pages ... 146
9.3.2 AUIT Extensions ... 147

9.3.2.1 Add More Functions for the AUIT Tags ... 147
9.3.2.2 Add More Tags .. 148
9.3.2.3 Alternative Implementation Approach .. 148

9.4 General Summary .. 148
Appendix A Bibliography ... A-1
Appendix B Evaluation Tutorial and Survey ... B-1

1. Introduction ... B-1
2. Background .. B-1
3. Evaluation for Group One – Developers Perspective .. B-2

3.1 How to Run the Application .. B-2
3.2 Tutorial .. B-4
3.2 Survey Questions ... B-8

4. Evaluation for Group Two ... B-12
4.1 Tutorial ... B-12
4.2 Survey Questions ... B-14

Appendix C – Tag Library Description .. C-1

List of Figures

Figure 1.1 Example of our Goal for User Interface Adaptation .. 4
Figure 1.2 Thesis Structure .. 6
Figure 2.1 XML/XSL Transformations ... 15
Figure 2.2 Example of “WMLOn” and “WMLOff” Tags ... 16
Figure 2.3 Example of “WMLEscape” and “Escape” Tags .. 16
Figure 3.1 Different Screen Size for Different Device .. 20
Figure 3.2 Input Method of Various Devices .. 20
Figure 3.3 Memory Difference among Various evices ... 21
Figure 3.4 Speed Difference for Various Devices ... 22
Figure 3.5 “Thin” and “Thick” Client Architecture .. 23
Figure 3.6 The WAP Programming Model ... 23
Figure 3.7 Architectures of WEB and WAP ... 24
Figure 3.8 Basic Structures of WML and HTML Document .. 25
Figure 3.9 Language Comparisons of HTML and WML .. 27
Figure 3.10 Browsers for Various Devices ... 28
Figure 4.1 Use Case Diagram of Car Site ... 34
Figure 4.2 Software Architecture for the Car Site ... 36
Figure 4.3 OOD Diagram of Car Site .. 37
Figure 4.4 Presentation of Same WML code on Different Device 39
Figure 4.5 (a) and (b) Example of User-based Content Display 41
Figure 4.6 (a) and (b) Example of Task-based Content Display 42
Figure 4.7 Car Site ER Diagram .. 44
Figure 4.8 Part of Application Logic Flow .. 45
Figure 4. 9 Page dump for Homepage for HTML and WML Enabled Device 46
Figure 4.10 Code Example and Page Dumps for Login page ... 50
Figure 4.11 Search Car Interface on Various Devices .. 51
Figure 4.12 Display Search Result Interface on Various Devices 52
Figure 4.13 Search Dealer Interface on Various Devices ... 52
Figure 4.14 Dealer List Interfaces on Various Devices ... 53
Figure 4.15 Example of Task-based Cntent Dsplay .. 55
Figure 4.16 Code Example .. 55
Figure 4.17 Code Example .. 56
Figure 5.1 The Markup Language and Devices ... 66
Figure 5.2 General Architecture Using AUIT System ... 68
Figure 5.3 Document Structures of WML and HTML ... 70
Figure 5.4 Form and Uer Iput Eements .. 71
Figure 5.5 Text and Txt-format Elements Figure 5.6 Navigation Element 71
Figure 5.7 UI control elements ... 73
Figure 5.8 Example about Screen Splitting .. 74

Figure 5.9 Example of Screen Splitting .. 75
Figure 5.10 Use of “group” Elements .. 76
Figure 5.11 Approach to Perform Screen “splitting” ... 77
Figure 6.1 Part of Code Example for a Simple Custom Tag Class and Explanation 83
Figure 6.2 Part of AUIT.tld and Description ... 84
Figure 6.3 How our JSP Custom tag-implemented AUIT Pages Work 85
Figure 6.4 Examples of AUIT tags and Corresponding HTML,WML Tags. 86
Figure 6.5 AUIT Page Structure ... 88
Figure 6.6 Part of Code in “templateTag” Class .. 88
Figure 6.7 Part of Code in “templateTag” Class .. 89
Figure 6.8 Sequence Diagram of “templateTag” Class .. 90
Figure 6.9 “Group/grouptr/grouptd” Tags and their Properties 91
Figure 6.10 Search Result Interface Displayed on a Standard Browser 92
Figure 6.11 Code Example for “Search Result” Page ... 93
Figure 6.12 Page Dumps for Screen Splitting Performed on Two Devices 93
Figure 6.13 Example to Show Links for Various Devices .. 94
Figure 6.14 Page Dump for Display Table in a Card .. 95
Figure 6.15 Code Example for “ user” Adaptation ... 97
Figure 6.16 “searchresult.jsp” ... 97
Figure 6.17 Code Example for Using <AUIT:task> ... 98
Figure 6.18 Page Dump and Code Example for “device” Adaptation 99
Figure 6.19 Explanation of the Task-based Adaptation .. 100
Figure 6.20 Page Dump and Code Example .. 101
Figure 6.21 Use <AUIT:device> to Control Text Display .. 103
Figure 6.22 Use “allowcut” to Control Text Display .. 103
Figure 6.23 Code Example using Form Elements ... 104
Figure 6.24 Code Example to Display “option/select” Elements 105
Figure 6.25 Code Example to Dpecify <AUIT:form> .. 106
Figure 6.26 Code Example of Navigation Elements ... 106
Figure 6.27 Code in “web.xml” File .. 107
Figure 6.27 E-R Diagram of System Required Data ... 109
Figure 6.28 Sample Interfaces for Input System Data ... 110
Figure 7.1 Example Use Cases of the Job Management System. 113
Figure 7.2 Class Diagram of Job Management System .. 114
Figure 7.3. Our Four-tier Web-based Information System Software Architecture. 115
Figure 7.4 OOD Diagram ... 116
Figure 7.5 Examples of Adaptive Job Management System Screens. 118
Figure 7.6 User base Interface for Job Management System ... 118
Figure 7.7 E-R Diagram (1) .. 119
Figure 7.8 E-R Diagram (2) .. 120
Figure 7.9 System Deployments ... 121
Figure 7.10 Examples of Job Listing Screen Running on Multiple Devices. 122
Figure 7.11 Logical Structure of the AUIT Description for the “job listing” 123
Figure 7.12 Code Example ... 125

Figure 7.13 Implement Job list Interface ... 126
Figure 7.14 Examples of Adapted Job Details and its AUIT Description. 127
Figure 7.15 Task-based Interfaces ... 128
Figure 8.1 Page Shots Using Adaptable Approach and Non-adaptable Approach 136
Figure 8.2 Evaluator and Tasks ... 136
Figure 8.3 Comparison of Usage between HTML and AUIT Tags 138
Figure 8.4 Bar Chart Diagram for Evaluation Result of UI Control Elements 138
Figure 8.5 Comments on the UI Control Elements from Evaluators 139
Figure 8.6 Bar Chart of Evaluation about “Group/Grouptr/Grouptd” Elements 139
Figure 8.7 Evaluarion Result from End-User Perspective .. 142
Figure B.1 System Deployment .. B-3
Figure B.2 “Template” Tag Description ... B-4
Figure B.3 Form and User Input Elements ... B-5
Figure B.4 Text and Text Format Elements ... B-5
Figure B.5 UI Control Elements ... B-6
Figure B.6 Page Shot for “Search_car” .. B-7
Figure B.7 Page Shot for “Search result” ... B-8
Figure B.8 Page Shots Using Traditional Approach .. B-12
Figure B.9 Page Shots Using Adaptable Approach .. B-13
Figure B.10 Page Dump Using Two Approaches .. B-14

Chapter 1 1

Chapter 1 - Introduction

1.1 Introduction

Many web-based information systems require some degree of adaptation of the system’s

user interfaces to different client devices, users and user tasks [Van der Donckt et al

2001;Petrovski and Grundy, 2001]. Adaptable User Interfaces Development for PC was a

popular research topic and has achieved quite good results. However with the fast growth

of human computer devices, this topic now requires expansion to accommodate current

and future requirements.

In this thesis, we aim to explore the development of adaptable user interfaces that allow

software developers to more easily design, build and deploy interfaces for a wide range of

users and user devices. We will focus on dynamic adaptation of User Interfaces for PC and

other human computer devices like PDAs and mobile phones.

Our approach for user interface adaptation is based on the specific device features and

includes the adaptation of the presentation format (e.g. HTML, WML driven browsers) as

well as the contents, the user and the particular task.

In the rest of this chapter, we will introduce the motivation and goal of this thesis and

briefly present the structure on how this thesis is organized.

1.2 Motivation

The main purpose of our research is to aid UI designers who are developing web-based

applications for various devices. The following presents several main motivations for this

research.

1.2.1 Fast Growing Use of Wireless Devices

One of the most important technological evolutions at the beginning of the 21st century is

to combine the mobility offered by human computer devices such as mobile phones and

Chapter 1 2

the enormous amount of information available on the Internet [Nokia Developer]. There is

an increasingly varied range of devices through which humans interact with computers.

These include desktop applications, web-based interfaces, mobile phones, Personal Digital

Assistants (PDAs), pagers and so on.

More and more people are buying wireless handheld devices such as cellular phones and

personal digital assistants (PDAs) and want access to online resources at anytime and

anywhere.

1.2.2 Speed to Market

Each project has certain timelines, especially in today’s fast growing e-commerce climate.

The faster we make use of our information technology, the greater the chance of our

business being successful. So the development time is a key issue for most businesses.

A key advantage of the adaptable approach is that developers can reduce development time

by a “write-once, run-anywhere” interface approach.

1.2.3 Reduced Number of Web Pages to Implement

If a developer requires a web page currently designed for PC to be used by a wireless

device such as a mobile phone, it is likely that he/she will need to redesign and rewrite the

interfaces completely. This is not only because the programming language is different, e.g.

mobile phones support WML, but also because other constraints, such as computing

platform and network, device screen size, have also changed. There is also the need for the

user interface to adapt to different users and user tasks, for example, hiding an “Update”

button from some users such as customers, whilst allowing others, such as staff or

administrator to view and access it.

This means that there is need to write pages for each different combination of user, user

task and device based on device window size or languages that it supports. This approach

has been taken surprisingly often. However, when the content of one's service is changing

Chapter 1 3

frequently, keeping all services up to date and consistent is a demanding and time-

consuming task.

This results in requiring a large number of interfaces to be developed and then maintained.

Moreover, writing specific page code for each device makes a web site difficult to

maintain, with the attendant lack of consistency. The back end access calls are repeated in

each page code.

Therefore, this is a new challenge for user interface design and development: user

interfaces need to accommodate the capabilities of various access devices and be suitable

for different contexts of use, while preserving consistency and usability.

1.3 Goals

We aim to create a new approach that allows a developer to specify a web-based interface

using a high-level mark-up language to develop adaptable thin-client interfaces for web-

based information systems.

At run-time this single interface description is used to automatically provide an interface

for multiple web devices e.g. desktop HTML and mobile WML-based systems, as well as

highlight, hide or disable interface elements depending on the current user or user task.

Our basic goals are to support user interface adaptation across different users, user tasks,

display devices, and networks (local area, high reliability and bandwidth vs. wide-area, low

bandwidth and reliability [Rodden et al, 1998]) means a unified approach to supporting

such adaptability is desired by developers [Van der Donckt et al 2001;Petrovski and

Grundy, 2001].

We intend to develop a UI Adaptable System to fulfill the task of providing services for

different devices with various screen sizes. The system should automatically adapt to the

user's device and the user's preferences and perform the necessary scaling and conversion

to the required contents format (HTML, WML, etc). [Korva 00]

Chapter 1 4

We will use the following example of a “cars-for-sale” website to explain more clearly

about our goal. In this site, if we write a page called “Search Result Page”, we want this

page to perform several adaptations shown in Figure 1.1. If a user uses a non-PC device

with small window size to browse this page, we require the page to be shown in a format

which is legible within the screen limitations and consistent from a process and navigation

perspective with what the user would expect to see on a PC. The result is shown on screen

(1). If a user is a registered dealer, he/she should be able to see screen (2) with the

“Update” link to update this car. If different task like “search a dealer” is performed on this

“Search Result Page”, the screen (3) is shown.

 Figure 1.1 Example of our goal for user interface adaptation

1.4 Approach

We started with the researches on the current approaches and technologies for developing

web-based applications for various human devices. We have summarised previous works

and studied the relevant concepts and technologies. For practice, we have also gained

experience from an example to develop an application using the traditional approach for

various human computer devices.

From reviewing the current literature on these works, we formed our own ideas about the

architecture of an adaptable approach.

Search
Result
Page

(1) (2) (3)

Chapter 1 5

Based on our own ideas, and on those from related work done by others, we have designed

a set of device-independent mark-up language elements describing screen and layout,

along with any required dynamic content (such as Java code) to specify User Interfaces.

Screen element descriptions may include annotations indicating which user(s) and user

task(s) the elements are relevant to.

In this thesis, we mainly focus on the considerations involved in the development of the

adaptation methodology. The architecture of the system is also briefly described.

With adaptable approaches, a compromise is sometimes needed between the need to meet a

limited development deadline and spending a huge amount of time developing a pretty user

interface.

We then found a technology that is JSP custom tags to implement the creation of a set of

such elements. We have also developed two Information Systems using those elements,

namely a car site and a job management system.

The final stage of our work for this thesis is the evaluation of our approach and to get

feedback from the users. We have also discussed how people can extend and improve our

work in future.

1.5 Thesis Structure Overview

This thesis document is organised as follows:

Chapter 1 6

Chap 1. Introduction

Chap 2. Related Work

Chap 3. Thesis Related
Technologies Overview

Chap 4. Traditational
Development Approach for

Diverse Human Devices

Chap 5. The Adaptable
User Interface

Technology(AUIT)

Chap 6. Implementation of
The AUIT Chap 8. System Evaluation

Chap 9. Summary and
Future WorkChap 7. Case Study

Figure 1.2 Thesis Structure

1.6 Summary

In this chapter, we have documented our motivation and established the research objective

of our thesis. We have also briefly introduced the approaches that we have taken to do this

research. The thesis structure is also presented in diagrammatic form.

Chapter 2 7

Chapter 2 - Related Work

2.1 Introduction

In this chapter, I will present some of the previous researches and work with similar goals

to ours. We will start with the introduction of the basic concept about adaptable user

interfaces for various devices, and then demonstrate some of the related works that other

people have done.

2.2 Developing Adaptable User Interfaces

User interface design and development can be a very important and time-consuming part

of the software development lifecycle. Therefore, many web-based information systems

require degrees of adaptation of the system’s user interfaces to different client devices,

users and user tasks [Van der Donckt et al 2001;Petrovski and Grundy, 2001]. More and

more research groups are focusing on approaches and tools to design adaptable user

interfaces, demonstrating it’s importance.

2.2.1 User Interfaces Design for Various Computer Devices

For the purpose of developing an adaptable user interfaces, we would like to overview the

user interface design for various human devices first. User interface design for desktops

has been a critical issue for developers, designers and researchers around the world. The

expansion of human computer devices presents a new task of the interface developers.

Functions that are usually performed easily on a desktop Web browser become awkward

on a smaller device.

The development of the graphical user interface has made computers accessible to a wide

range of users, but good user interfaces are still difficult to develop and there are still many

challenges to be met before all the requirements can be satisfied. No single interface will

satisfy every user. Users always have different needs as they learn to use an interface.

Chapter 2 8

There are a many rules to follow when designing user interfaces for a system. The

following lists three of them. In the real world, interface design can be very complicated

task, depending a lot of factors.

• Consistency

Whenever designing a user interface, make sure layout and interaction are CONSISTENT

across parts of an interface and between interfaces. This is an important aspect among the

issues for designing of user interfaces. It's especially helpful if the user interface of an

application is consistent with other applications on the devices, so users can work with

familiar patterns.

• Simplicity

The layout of application screens needs to be simple so that the user can pick up the

product and use it effectively after a short time. If they become complex or have too many

functions, we can split them up.

• Intuitive

Make the interface behave, as the user would expect it to. This includes using metaphors

appropriate to the problem domain and dialogue that users of the software use. [Tutorial

SA and OOD]

There is no exception when developing user interface for devices with small window size.

Mobile devices demand Web site content that is tailored to provide easy interaction while a

person is on the move. Developers enabling a Web site for wireless devices need to

consider in their design that some content is not suitable for wireless devices; for example

rich multimedia presentations and large documents.

The design of interfaces for small screen devices requires special considerations due to a

few distinct limitations.

Chapter 2 9

• Firstly, handheld devices have a smaller screen size and resolution. A cell phone

may only have a few lines of textual display, with each line containing eight to 12

characters.

• Secondly, cellular phones have a numeric keypad and several additional function

keys. A more sophisticated device may have software-programmable buttons, but

there are no keyboards or mouse in the wireless world.

• Third, handheld devices and cellular phones have limited computational resources.

The low-power CPU and small memory size of these devices are often limited by

power constraints.

2.2.2 Adaptable Systems

To achieve our goal of exploring adaptable approaches to develop user interfaces, we need

to know about the concept of an “Adaptable System”. Adaptation is the process of

responding to physical and mental characteristics of the user and his/her terminal

equipment [Korva 00]. The basic principle of an adaptable user interface is universality of

access irrespective of the specific characteristics of devices (e.g. display size).

Some user interfaces adaptations may require that user interfaces accommodate users with

a wide variety of security levels and types, or terminal equipment with different

characteristics. The concept of this type of adaptation is that when the system detects the

user's level, it can adjust the interface to optimize it for that user. For example, more

functions could be activated or a more compact display could be enabled to show more

information on the display.

Adaptable systems generally retain the full power of the system. [Kules 00], but hide some

of the part of the system based on the certain kind of criteria. They sometimes cannot be

fully visible at anytime if no criteria meet the entire requirement. In other word, few users

are able to use the whole system and other groups are only able to see part of the system.

For example, within a job management system of an organization, user input permission

varies by the position, and layout will be different for each user position. The manager

might view all jobs among his/her department, but individual staff of this department may

Chapter 2 10

only see his own jobs. As users move to other positions, they can have different permit of

use of the application. Certain level users will typically view the portion of the system

relevant to their job very well, but not others. So the system has to be flexible enough to

accommodate changes in specific users access.

In traditional UI design, however, the designer needs to specify a single interface for each

criteria at design time, whereas adaptive interfaces yields a set of models and rules for

generating the interface at run time.

Ideally, an adaptable user interface system will provide interfaces that will run on

conventional web browsers as well as wireless PDAs, mobile phones and pagers [Marsic,

2001a; Han et al 2000; Zarikas et al 2001], as well as adapting to different user and user

tasks [Eisenstein and Puerta, 2000], for example hiding an “Update” button if the user is a

customer or a staff member doing an information retrieval task. However, building such

interfaces using current web-based systems implementation technologies is difficult, time-

consuming and results in hard-to-maintain solutions.

2.2.3 Developing Adaptable User Interface for Various Devices

From the goal of our system, we can see that there are several aspects of adaptation are

involved in developing adaptable user interface for various devices. For various reasons,

we want to be able to adapt a single document to suit different conditions and user need:

• Target Platform: a document may need to be adapted to the characteristics of an

execution platform: screen size, supporting format, processing power. [Frank

Rousseau] For example, some devices support HTML, and the others like mobile

phone support WML.

• Accessibility constraints: a document may need to be adapted to different

accessibility constraints: a browser may present alternate content or disable part of

content based on a user level, task performed and etc.

• User Needs: the user may want personalized version of a document, so that we

need to customize the document depending on various constraints.

Chapter 2 11

2.3 Previous Work

After we have introduced the basic concepts of the “user interface design”, “adaptable

system” and “developing adaptable user interfaces”, we will introduce some of the

approaches and researches that people have been studying, and how they have achieved

similar results as us. These researchers might have only achieved one aspect of our

objective areas. For example, much work has been done in the domain of format

adaptation: how to adapt encoding of a given media type.

2.3.1 Intelligent and Component-based Approach

In recent years, there has been an increasing interest in the use of component-based

software architectures. These architectures use the notion of a software component object,

which publishes its methods, properties and events for use by other components, and use

large-scale component composition to build up software applications. [Grundy et al]

Various software architectures have been developed using components, including

JavaBeans, COM/DCOM and OpenDoc. Tools allowing such architectures to be used to

specify components and component-based applications include Jbuilder, Visual Javascript

and Visual Age.

Intelligent and component-based user interfaces often support adaptation to different users

and/or user tasks [Stephanidis, 2001; Grundy and Hosking 2001]. Most existing

approaches only provide thick-client interfaces (i.e. that run in the client device, not the

server), and most provide no device adaptation capabilities.

These have given us some of the ideas on adapting user and task-based content for thin-

client user interfaces, and moreover to provide user preferred interface. But these works all

assumed the use of thick-client applications where client-side components perform

adaptation to users and tasks. They did not take into account different display devices and

networks.

Chapter 2 12

2.3.2 Automated Converters

To achieve content transformation across various Markup languages that different devices

support, a specialized gateway can be used to provide automatic translation of HTML

content to WML content for WAP devices [Fox et al 1998, Palm, 2001].

Various simple automated converters are available in the today’s software market to

support generic transformation from HTML to WML. Web developers can make use of

this software to build their web site and perform conversion automatically to make their

applications support wireless devices.

The main advantages with this approach are:

1) Increasing productivities of developers, so as to improve speed to market.

2) Purchase cost is not too high.

3) This approach is independent from the original web site.

Some of automated converters perform conversion in a fully automated mode. They are

called “non-Configurable automated Converters”. “Phone.com” WAP Gateway is the one

that includes an automated content converter, and “Argo ActiCate” can convert HTML to

WML, and XML.

However they do not normally work well for some applications, mainly because of the

hard-coded logic of conversions that do not provide optimum user interactivity with the

web service in many situations. Moreover this approach suffers from the problem of many

poor user interfaces being provided due to the fully automated nature of the gateway.

These problems were very obvious on some of the “non-configurable automated

converters”.

Some of the configurable converters, such as “Oracle Portal-to Go”, “Spyglass Prism” and

etc, can overcome some of these disadvantages. They rely on developer input and some

extra configuration and template design in order to customize the conversion result [Atlas

Software Technologies].

Chapter 2 13

Overall, these techniques have had only moderate success in trying to convert HTML to

WML for WML browsers, but they do not support user, task adaptation.

2.3.3 Synchronized Model-Based Design of Multiple User Interface

Synchronized Model-Based Design of Multiple User Interfaces, in their work, propose a

set of techniques that will aid UI designers to build UIs across several platforms, while

respecting the unique constraints posed by each platform. [Jean Vanderdonckt]

Our main goal for developing adaptable user interfaces is to have one interface written,

make it work for any size screen intelligently. With similar goals as us, they also attempt to

intelligently transform a given user interface from one context to another one, thus

providing support for the multiple user interfaces simultaneously.

To achieve their goal, they raised a concept called “presentation structure”. The designers

need to predefine a set of “presentation structures” in a presentation model. The

“presentation structures” can be automatically generated based on the constraints specified

for a given device such as screen resolution, size and etc. Their solution to the problem is

to create mappings between each platform and an appropriate presentation structure. They

abstract several “presentation structures” for solving a specific domain of problem.

This research prompted the idea for adapting the content from large screen format to small

screen format by splitting a page into several sub windows.

2.3.4 Palm’s Web Clipping

With Palm’s Web Clipping approach, the translation cuts much of the content of the

HTML document out to produce a simplified WML version. Typically, Web Clippings are

small, dynamically generated Web pages, created by a CGI script in response to a user

query. [Eric Cook]

The goal of Web Clipping is to minimize both display requirements (to fit on the Palm’s

screen), and bandwidth usage. Web clipping is different to the automated converter

Chapter 2 14

introduced previously. It is not dealing with transferring Web pages, but rather “Web

Clippings”.

Palm Computing uses a completely different model for user/server transactions.

Developers need to write a Palm Query Application (PQA) that is basically a mini-Web

site. It’s simply a document written in HTML, and then compiled by Palm’s Query

Application Server. The HTML used to write either the PQA or the Web Clipping is

technically a subset of HTML 3.2, with a few small additions and modifications. [Eric

Cook]

This solution has several restrictions. For example, the user has to minimize the use of

graphics, and keep PQA and Web Clippings as small as possible. Further it would not

support a WML device.

2.3.5 XML/XSL Transformation

This is one option that we can choose to implement our adaptable approach. We can write

one set of pages (JSP/Servlet) to generate XML formatted data instead of generating output

for a specific device. Selecting a particular XSL style sheets depending on the device used

for browsing. The systems take XML-described interface content and transform it into

HTML or WML or other WML formats depending on the requesting device information.

[Marsic, 2001a; Han et al 2000; Zarikas et al 2001]

XSLT is a transformational language standardized in W3C that can be used to transform

XML data to HTML, PDF, or another XML format. For example, we can use XSLT to

convert an XML document from a format used by one company to the format used by

another company. To generate the HTML page using this approach, we need an XSL

stylesheet and a method to apply the stylesheet.

Using this approach, “Altas Software Technologies, Inc.” has done some researches with

similar goals to ours. Because the transformation by embedded code (such as JSP/Servlet)

will always be done in the end, a framework can be developed in such a way that it hides

the calls to the transformation engine from a JSP/Servlet as shown in Figure 2.1. The

Chapter 2 15

benefit of this is the independence of the JSP/Servlet code from a particular transformation

engine -- that is, the code can easily be ported to another wireless framework or server

(such as Oracle Portal to go). [Atlas Software Technologies]

 Figure 2.1 XML/XSL Transformations

This works reasonably well, but doesn’t support user and task adaptation well and requires

complex transformation scripts that have limited ability to produce good user interfaces

across all possible rendering devices. The degree of adaptation supported is generally

limited, however, and each interface type requires often complex, hard-to-maintain XSLT-

based scripting.

Another downside of this approach is that we need to specify a stylesheet for each JSP, and

based on that, perform the transformation. The stylesheet is a new language, with a

complex syntax, and also has some limitations, and while it can fully present the layout

format for each device, the developer needs to learn the new syntax.

2.3.6 Open Custom Tags and Tag Libraries

Developers can use JavaServer Page to develop web base applications. One great benefit of

JSP is that it allows developers to create their own tags called “custom tag” which can

provide more advanced forms of reuse of code by defining their own tag library.

On the following section, we will focus on presenting several such custom tag libraries to

see how other people solve the problems as we faced

HTML

WML

 XML

Transform
Algorithm

 XML JSP

DB

XML XSLT Transform

Chapter 2 16

• WAP/WML Taglib

This is a JSP tags library that has been developed for WAP/WML developers. This library

has two main tags “WmlOn” and “WmlOff” to lets people to combine within one JSP

page different parts of code - for normal browser and for WAP browser. [jsptags[a)]

“WmlOn” tag “WmlOff” tag

With WmlOn tag, we can mark part (parts) of
our JSP code executed when our page is
requested from WAP browser.

With WmlOff tag we can mark part (parts)
of your code executed when your page is
requested from normal browser.

 <%@ taglib uri="taglib.tld" prefix="mobile" %>

<!-- HTML part -->
<mobile:WmlOff>
 <html>
 <%
 out.println("
normal browser");
 %>
 </html>
</mobile:WmlOff>

<!-- WML part -->
<mobile:WmlOn>
 <wml>
 <card id="test">
 <p>You are using WAPbrowser</p>
 </card>
 </wml>
</mobile:WmlOn>

 Figure 2.2 Example of “WMLOn” and “WMLOff” tags

But the functions provided by this library are quite simple and totally insufficient to meet

our requirements.

• Codejava Escape Taglib

This is another JSP tags library that has similar goals as the previous one. It is also useful

for WAP/WML developers to convert on the fly from HTML to WML. This tag library has

got two body tags “Escape” and “WmlEscape”.

“Escape” tag “WmlEscape” tag

Escape tag converts enclosing HTML tags to
codes, so you can view them on WAP
browsers. E.g.:

WmlEscape keeps HTML code as it is for
non-WAP browser and converts it on the fly
to the appropriate WML code otherwise. So it
is a quick way to WML-ize your content. Just
put this tag at the beginning of the each your
page and all pages will be readable from the
mobile phones! E.g.:

<%@ taglib uri="taglib1.tld" prefix="esc"
%>
<esc:Escape>
 <html>
 your HTML code is here ...
 </html>
</esc:Escape>

<%@ taglib uri="taglib1.tld"
prefix="phone" %>
<phone:WmlEscape>
 <html>

 Your HTML code is here ...

 </html>
</phone:WmlEscape>

Figure 2.3 Example of “WMLEscape” and “Escape” tags

Chapter 2 17

Rather than just simply converting the HTML to WML when it is necessary, this library

provides more powerful functions. Because WML files have got restricted size, this tag can

split the content and generate appropriate JSP files “on the fly” (and link them together in

WML cards). [jsptags(b)]

Developers need to set two parameters for WmlEscape tag: “directory” on their server for

generated files (parameter name is dir) and appropriate “URL” for access to this directory

(the parameter name is the url).

For example: let’s assume that the root directory of the web server that we use is

“c:\inetpub”. You can create subdirectory “wmlpages” and use “WmlEscape” tag with

parameters:

<%@ taglib uri="taglib1.tld" prefix="phone" %>

<phone:WmlEscape dir="c:\\inetpub\\wmlpages" url="http://your_host/wmlpages">

 <html>
 Your HTML code is here ...
 </html>

</phone:WmlEscape>

The adaptability that these two libraries can achieve is quite simple, but they give us

indications that it is possible create an adaptable page with partial content specified by JSP

custom tags to generate the proper Markup language for normal browsers and for WAP

browsers.

2.3.7 Other of Previous Works

Other approaches include using a database of screen descriptions and to convert, at run-

time, this information into a suitable mark-up for the rendering device, possibly including

suitable adaptations for the user and their current task [Fox et al 1998; Zarikas et al, 2001].

This approach requires sophisticated tool support to populate the database and is quite

different to most current server-side implementation technologies like JSPs, Servlets, ASPs

and so on.

Chapter 2 18

2.4 Summary

In this chapter, we have covered some of the background material and the previous works

of other researchers.

Through overview of previous works we can see that most of the existing approaches have

successfully achieved part of our goal. However they do have some limitations as follows:

• Some of existing approaches produce poor interfaces.

• The degree of adaptation supported is generally limited.

• Most existing approaches only provide thick-client interfaces (i.e. that run in the

client device, not the server), and provide no device adaptation abilities.

• Some approaches require complex, hard-to-maintain XSLT-based scripting.

In our approach, we will avoid the problems and provide a high level and more powerful

method of adaptation for user interfaces, which has more adaptation capability than any of

the previous work. Our approach will make use some of the ideas from the previous works,

such as using “tag” and user/task based thick client adaptation in conjunction with our own

approach. Developers code an interface description using a set of generic, high-lever and

device independent “tags”, which may also be annotated with information about the

relevant user or user task.

Chapter 3 19

Chapter 3 - Thesis Related Technologies Overview

3.1 Introduction

In chapter two, we introduced the prior related works. In this chapter, I will give a

brief overview of the key technologies that are used in this thesis.

3.2 Background

The target terminal devices of our system are not just PC’s, so we are going to

overview the diverse Human-Computer devices and compare their main features with

PC.

3.2.1 Overview of Diverse Human-Computer Device

Most Internet technologies have been designed for desktop and large computers

running on reliable networks (with relatively high bandwidth). Today, access to the

World Wide Web is not just limited to the desktop. Almost any handheld devices,

including Psion, Palm Pilots, and mobile phones, provide users with a medium for

accessing the Web services available today. [eMobile Part 2]

Excluding general desktop PC’s, there are two main classes of wireless devices in

existence in the market today:

• Pagers and Cell phones enabled for the Wireless Application Protocol (WAP)

• Palm devices, such as PDA, Palm Pilot and PocketPC

Among the devices that are widely in use by today’s human being, we chose three

main types of devices that are in use, (desktop, PDA and Mobile phone device) and

will compare their features.

3.2.1.1 Size of Screen and UI element

Chapter 3 20

Desktop PDA (Palm OS) Mobile Phone Device

15 to 17 inches Monitor,

1024x768 pixels, colour

Typical 160x160 pixels.
PDA devices have a larger

screen than a typical cell phone.

16 characters * 7 lines on

today’s typical cell phones.

About 10 text lines per WAP

"card". Monocolour

 Figure 3.1 Different Screen Size for different device

This is one of the critical differences among various human interface devices. Apart

from this, the size of each UI element rendered on these devices is also different. To

develop our adaptable user interface we need to know relevant information about the

size of the device and the size of each UI element on each device when developing the

user interface.

For example, a standard character on desktop might take 5x5 pixels, and might take

7x7 pixels on PDA. So we can have a table in a database to store the information

about the features of a particular device. This can help us to work out an algorithm

regarding how much information to display on screen of a device. We will discuss the

detailed algorithm in chapter five.

For this reason, developers need to design interfaces carefully with different priorities

and goals from those used for large screens such as a desktop screen.

3.2.1.2 Input Methods

Desktop PDA Mobile phone Device

Keyboard and mouse

A pen to touch screen.

User can either write Graffiti

strokes or use the keyboard

dialog provided on the device.

Limited input capability. There

are number keys, which have

alphanumeric coding & up and

down keys.

 Figure 3.2 Input Method of various devices

While Graffiti strokes and the keyboard dialog for Palm devices are useful ways of

entering data, they are still not as convenient as using the full-sized desktop computer

with its keyboard and mouse. The same applies to mobile phone devices.

Chapter 3 21

With the different type of characters and input methods that each device has, the user

interfaces must be designed differently based on these characteristics. For example, a

PDA allows the use of a pen and touch screen, and desktops allow the use of a mouse,

allowing more links on the interface to a PDA and desktop, but this will be problem

of mobile phone device, because it uses key to direct link. Therefore, when we design

the interface for these devices, we need to consider these aspects.

3.2.1.3 Memory

Desktop PDA Mobile Phone Device

Generally 64 MB + ram.

The Palm OS device has limited

heap space and storage space.

Different versions of the device

have between 512k and 8MB

total of dynamic memory and

storage available. The device

does not have a disk drive or

PCMCIA Support.

Low bandwidth for data access.

Less powerful CPU.

Generally, 16 MB of RAM

memory and 12 MB of ROM

memory.

For example, an Ericsson

product called the Mobile

Companion MC218, the CPU is

a 32 bit ARM710T core which

works at 36.864 MHz

Figure 3.3 Memory Difference among various devices

Because of the limited space and power, optimization is critical to make the

application as fast and efficient as possible. When we design user interfaces, we need

to consider the memory each device can support.

For example, on a “cars-for-sale” website, we allow a user to search cars based on

“Make” criteria. On a desktop PC, we can provide a drop down list to display all

“makes” that the user can choose. There will be more than one hundred car makes

listed. This would be a problem for mobile device with low memory. We have to use

“textfield” instead that allows the user to enter a “car make” they want to select.

3.2.1.4 Speed

Speed is a critical design objective for hand-held devices. The total time to navigate,

select, and execute commands can have a big impact on overall efficiency. For

Chapter 3 22

example, to maximize performance, the user interface can minimize navigation

between windows, opening of dialog boxes, and so on.

Desktop PDA Mobile Phone Device

On a PC, users don't mind

waiting a few seconds while an

application loads because they

plan to use the application for an

extended amount of time.

The average Palm user uses a

Palm application 15 to 20 times

per day for much briefer periods

of time, usually just a few

seconds. So it has to be fast to

handle user requirements.

Like PDA, due to slow

transmission speeds, typically

14.4 to 19.6 Kbps, we need to

keep text and graphics down to

a bare minimum to make mobile

device fast as well.

Figure 3.4 Speed Difference for various devices

3.3 Overview of Web and Wireless Technology

From the comparison over the last section, we know that handheld devices tend to

have less memory, less powerful CPUs, different input methods, and smaller displays.

Moreover, wireless networks have less bandwidth and more latency compared to

wired computer networks. In the following section, we will provide more information

about wireless technologies.

3.3.1 WEB and WAP Architectures

We will start with the introduction of the basic client-server architecture. Client-

server architecture is generally classified into “thick” and “thin” clients.

Chapter 3 23

 Thick Client Thin Client

Concept

Client-side does UI & some data

processing. Server does some

processing.

“Thin” clients are systems where client-side

of the system is very limited e.g. Web

browser rendering HTML, telnet session.

Benefit

Good for lower-volume networking,

high-end clients.

Has the advantage of simple software

installation and management on clients, ease

of maintenance of the server-side programs,

and simplicity.

It suffers from limited user interface

capabilities and performance.

Architecture

Figure 3.5 “Thin” and “Thick” Client Architecture

In our research, we will mainly focus on the “thin” client architecture. To enable the

web site to interact with wireless device, various gateways and protocols (for

example, WAP and Palm VII Clipping proxies) are involved in wireless web access.

Figure 3.6 The WAP Programming Model

As you can see from Figure 3.6, the WAP programming model is based heavily on the

Web programming model [Queay H.Mahmoud]. Some WAP gateways could be made

to convert HTML pages into a format that can be displayed on wireless devices. But

because HTML was not designed for small screens, the WAP protocol defines its own

Markup language (WML). In most cases, the actual application or other content

Simple Client

Processing:server

Data

 Client

Client Side Process

Server Side Process

Data

Chapter 3 24

located on the Web server will be native WAP created with WML or generated

dynamically using some programming language such as Java servlets or JSP. In the

following section, I will introduce the WAP in more detail.

 WEB WAP

Model

A client makes a request through its

web browser to a certain web server

corresponding to the URL précised in

the request.

In the Web server, the request is

processed: Scripts are executed,

HTML pages are fetched, etc, thus

forming the content of the response to

the request.

This response is then sent back to the

web browser of the client.

A client makes a request through the browser

of its Wireless Application Environment

(WAE), to a certain Web server.

The request first travels in the wireless

network to a gateway, which translates the

request into HTTP and forwards it to the

requested web server. In the web server, the

treatment of the request is the same as in the

World-Wide Web model. The content of the

response is then sent back to the Gateway that

translates it into WAP in order to send it back

to the client.

Application
Layer

HTML, Scripting language Wireless Application Environment

Transport
Layer

HTTP,SSL,TCP,UDP WSP,WTP,WTLS and WDP

Network
Layer

IP Bearer

 Figure 3.7 Architectures of WEB and WAP

From the table shown in Figure 3.7, we can see the basic model difference between

two main types of devices.

Wireless Application Protocol (WAP) is the gateway to a new world of mobile data. It

provides a universal open standard for bringing Internet content and advanced

services to mobile phones and other wireless devices [WAP Form Wireless]. It

enables users to easily access Web-based interactive information services and

applications from the screens of their mobile phones.

It has defined several standards such as the Wireless Markup Language (WML),

which we will introduce in more detail in next section. WAP is a suite of

specifications (including WML) that is based on variations of modern, open Web

standards. WML, for example, is based on XML. [WAP Form Wireless]

Chapter 3 25

WAP is the product of the WAP Forum (www.wapforum.org), an association

founded in 1997 by Ericsson, Motorola, Nokia, and Phone.com (formerly Unwired

Planet). [Giles Davies] The WAP Forum, now numbering more than 400 members,

has contributed to the adoption of WAP and Wireless Markup Language (WML) as

de facto standards. You will find WAP and WML in almost every Web-enabled

digital mobile phone in the U.S. today, and all of the major communications service

providers support WAP. You can still find remnants of older proprietary standards

like Handheld Device Markup Language (HDML) supported in existing mobile

phones, but the industry has settled on WAP for now [WAP Form Wireless].

3.3.2 WML and HTML

HTML has been well known by web developers and designers, but not WML.

Wireless Markup Language (WML) is a tag-based display language providing

navigational support, data input, hyperlinks, text and image presentation, and forms.

WML is a browsing language similar to Internet html and became an “open standard”

after WAP forum started. [Queay H.Mahmoud]

A valid WML deck is also a valid XML document, the same as HTML, and therefore

we must design elements that contain an XML declaration and a document type

declaration as follows.

WML HTML

<?xml version="1.0"?> <!-- 1 -->

<!DOCTYPE wml

PUBLIC "-//WAPFORUM//DTD WML 1.1//EN" <!-- 2 -->

"http://www.wapforum.org/DTD/wml_1.1.xml"> <!—3 -->

<wml> <!-- 4 -->

 <card id="First_Card" title="First Card"> <!—5 -->

 <p> <!-- 6 -->

 ...all other elements...

 </p>

 </card>

</wml>

<html>

 <head>

 …head information

 </head>

 <body>

 ...all other elements...

 </body>

</html>

 Figure 3.8 Basic Structures of WML and HTML Document

Chapter 3 26

The following is a line-by-line explanation of the WML file example on the left site

of table

1 The first line specifies the XML version number.

2 The second line specifies the SGML public document identifier.

3 The third line specifies the location of the WML document type definition (DTD).

The DTD can be located in the network, or you can store it locally to make accessing

it faster.

4 The fourth line defines the header of the WML deck. All WML decks must begin

with a <wml> tag and end with a </wml> tag.

5 The following lines define a card containing a start and an end tag and text to be

displayed to the user.

6 The last line is the deck footer. The user agent treats everything between the deck

header and the deck footer as a single WML deck.

When a user agent loads the deck, it is displayed as shown below.

Apart from the basic structure difference between HTML and WML file, the table

shown in Figure 3.9 provides some syntax comparison between HTML and WML as

well.

From the comparison in Figure 3.9, we can see, WML supports text, images, user

input, option lists, hyperlink navigation, and Unicode. WML is very like HTML.

Many of the tags are the same, and familiarity with HTML, but with sufficient

differences to be initially frustrating.

For example, in HTML, there are no functions to check the validity of user input or to

generate messages and dialog boxes locally. To overcome this limitation, JavaScript

was developed. Similarly, to overcome the same restrictions in WML, a new scripting

language known as WMLScript has been developed.

Chapter 3 27

 HTML WML

Basic Unit Page Cards are grouped together into decks.

A deck is the smallest unit of WML that a

web server can send to a user agent.

Event submit Do,ontimer,onenterforward,onenterbackwa

rd,onpick,onevent

Graphic tag to support images.

 Image can be type of “.gif,

.jpg” color image

 tag to support images.

Support only “.wbmp” format, which

stands for wireless bitmaps, and

specifically designed for wireless device

with a small monochrome screen.

Text Formatting Font, and Br,p,pre

Table HTML table model allows to

arrange data-text, preformatted

text, image, links, forms, form

fields, other tables, etc.

Table can contains tr,td tags. Only text and

image are allowed in the cell.

User input textarea, textfield, option,

select and etc.

input, select, option, optgroup, fieldset

Tags HTML permits the mixture of

cases

Less strictly enforced in

HTML

All tags must be in lower case.

All tags must be completed.

 Figure 3.9 Language Comparisons of HTML and WML

3.3.3 Develop WEB and WAP Applications

Most of the devices provide ability to access the information through Internet. Instead

of using Wireless Markup Language (WML), some of devices use a subset of HTML

as the content language, so that it could not fully accept HTML functions, Eg. rich

multimedia presentations and large documents. For example, PalmVII with built-in

wireless modem uses Palm Query Application (PQA, a subset of HTML). PocketPC

uses Microsoft Internet Explorer (PocketPC version) for browsing HTML content.

As most web developers know, web based applications can be implemented by a wide

range of technologies. Each of them is produced by a vendor, each has a certain

Chapter 3 28

amount of market share and each has their own advantages and disadvantages. With

WAP applications, which can also be hosted on normal Web servers, is less known

than web applications. Therefore not many people are familiar with WML application

development.

WAP applications can be written in WML and WMLScript. We can also write them

using existing Web technologies. CGI scripts, servlets, JavaServer Pages, Active

Server Pages, Perl, Tcl, and so forth all can generate dynamic WML documents.

[Queay H.Mahmoud]. In other words, all of these technologies can be used to develop

WAP application.

For example, Java Server Pages allows us to embed Java statements within HTML

documents. When JSP is invoked, it is compiled into a Java servlet and executed by

the server to create a dynamic HTML document [Giles Davies]. In the case of WAP,

it just simply creates a WML document instead. Therefore, developing the WAP

applications using JSP can be done easily once we know the syntax of. In the next

chapter, I am going to demonstrate how WAP applications can be developed in JSP

for a car site.

With a mobile device, user agents handle the interpreting of the content on behalf of

the user. The WML browser is one such user agent. It is very similar to a web browser

except that it handles content formatted in Wireless Markup Language (WML). User

agents also typically have a built-in WMLScript Interpreter for running applications.

A micro browser is usually used by WAP device to render the WML and /or

WMLScript to the user.

Desktop PDA Mobile Device

Can use standard browser for

desktop, such as IE and

Netscape.

1) Can use browser such as AU-

System WAP to access internet.

2) Instead of using WML, PDA

also can support a subset of

HTML as content languages

The Toolkit browser is used for

the Nokia emulator. It can

display URLs from WAP

Gateway as well as local files.

 Figure 3.10 Browsers for Various Devices

Chapter 3 29

3.4 Summary

In this chapter, we have briefly introduced the features of mobile devices,

WAP/WML, and the wireless technologies. Through the comparison of the respective

features of devices, such as screens size, Markup Languages and browsers, we know

the features of several devices and the wireless technologies that most people are not

familiar with. From the issues introduced in this chapter we have built some basic

knowledge in order to develop adaptable user interfaces.

Chapter 4 30

Chapter 4 - Traditional Web Applications For Various
Devices

4.1 Introduction

In this chapter, I will use a cars-for-sale site as an example to demonstrate how to use

traditional technologies and approach to develop a web-based application and enable it for

various human devices, such as desktop, Palm, mobile phone, etc. Some of the user and

task based content display features and approaches are also demonstrated.

To develop this application, the following software development life cycle is involved.

1. Requirement Specifications.

2. Object-oriented Analysis (OOA).

3. Object-oriented Design (OOD).

4. Implementation.

The main purpose of this chapter is to give a motivating example for this thesis by

reviewing current approaches. Solution to building adaptable, web-based information

system user interfaces will be presented in following chapters.

4.2 User Requirement Specification

The Car Site is a commercial web site on which car dealers can advertise the cars they

wish to sell. Web users can browse and search cars for purchase. The following is the

detailed user requirement for this project.

4.2.1 Requirement Specifications

Determining the requirements for a project is usually the first step in the design phase

within the software development lifecycle. This is also a very important aspect for system

developers to consider.

Chapter 4 31

4.2.1.1 Functional User Requirements

This section will address what the system should provide, such as interactivities and

functionalities.

The main feature of the car site system is to provide user interfaces and functionalities

based on the type of user, tasks the user performs and the devices the user needs to use. For

instance, a dealer might wish to use a mobile phone to update their stock information. This

will create a degree of complexity within the system development because different

devices have different features and are good at certain functionalities.

In this system, I will assume that user might use three main types of devices to utilize this

system; they are desktop PC, , Personal Digital Assistant (PDA) or mobile phone. From the

chapter three, we have learned about the main features relating to each of those devices.

This system has three main types of users, who can perform different tasks within the

system. All users are able to use the same type of devices to view the system.

Actor One: General Web User

General web users are free to view the web site by entering the URL. Within the site they

can access a variety of functions:

1) Search for cars based on preferences

Users can retrieve a list of cars that match the requirements specified by the user. The

system can provide several levels of search.

• By Region: (Auckland, or a variety of other regions).

This is the first level of the search. The user can select any region the system provides,

such as Auckland region, or Nationwide to conduct a search. This will narrow the number

of results instead of give the whole list of cars within the database.

Chapter 4 32

• By Make, Model, Year, Price of cars.

The system should provide a form with some fields for user to enter the criteria such as

drop down list with car make or model information and car price range fields that a user

wants to search. For example user can select “BMW” make from the “make” drop down

list, and enter the price from $10,000 to $15,000. The search result will show a list of cars

that match these criteria.

2) Search dealers.

User can retrieve a list of matching dealers. Web user can search all dealers within a

particular region. The relevant dealer information, such as address, contact phones, etc,

will be displayed on the site. Users can also search a particular dealer by entering a clue of

a dealer via a keyword search field, such as dealer company name or address.

3) View all stock of particular dealer.

The user can view all the stock of a selected dealer.

4) Select a list of cars for comparison and buy a car

From a list of cars either from search results, or from a dealer’s stock list, the web users are

able to select a shortlist of cars to view.

Actor Two: Car Dealers

Dealers can maintain their own stock listings, editing, updating and inserting & deleting

cars.

Actor Three: Web Sales Staff

1) Update featured cars or banners displaying on home and other pages.

2) Load and Update dealers’ information, such as subscription information and so on.

Chapter 4 33

4.2.1.2 Non-Functional User Requirement

1) User Interface requirement

Most of the web users will use desktop to view the web site, so that all the interfaces for

those users need to be very attractive. Attractiveness of graphic layout is one of the

important elements for successful web site. Because of the restriction of the screen size, the

user interfaces displayed on the mobile device will not have to be very attractive.

2) Security requirement

These need to be considered in this system due to the different having varying levels of

access to functions. For example, only the registered dealers can update own stock, but

they can’t have access to other people’s listings or to the reporting systems. The sales reps

of the site owner will be able to modify customer data and view the hits of the stock for the

dealers they are in charge.

3) Easy to use, robustness.

The web sites should be easy to use, and search engine needs to be powerful and fast

enough to deliver accurate results in reasonable time. The functionality of web site should

suit any type of the end users, either dealers or general web users without the need for

training. This is especially true regarding the user interfaces for mobile devices - they

should provide logical, easy to use & follow functions for users.

4) Response time and Performance.

Whenever the user wants to search for cars by entering certain criteria, such as make and

model, they expect the search results to display as soon as possible. This is most common

requirement in most of the application development.

4.2.2 Use Case Diagrams

Chapter 4 34

Use case diagrams are used to represent the interactions of the different entities in the

application. It uses actors and use cases graphically to represent the main components in

the application. The use case diagrams in Figure 4.1 show how three main actors who are

general web users, dealers and web sales staff, could interact the system.

Search cars

Search dealers

View dealer stock

View featured cars

General Web user

Update Own Stock
Car Dealers

Update Featured Cars Display
Update Dealers Info

Web Sales Staff

Figure 4.1 Use Case Diagram of Car Site

4.3 Object-Oriented Design

Design is an important phase within the whole stages of software development lifecycle.

Design decisions will affect a lot of aspects such as how the system meets the

requirements, how reusable the code is, performance, and so on. Bad design will cause the

system several problems such as hard to maintenance difficulties as the size of the system

grows, poor speed or performance, etc.

The main difference between the system we are going to develop with other normal web

applications is that our client devices will be not just a general PC. We will enable this

system to work with some wireless devices such as PDA’s and mobile phones. These

devices require a language other than HTML, and have special screen size constraints sizes

and diverse display related requirements. Our design must consider these factors.

Moreover, our system needs to consider the approaches to displaying task and user based

content that will be explained in more detail in “section 4.4.3”.

In this section, we will present our design proposal in three aspects: software architecture

design, OO Design, page flow and interface design. The main feature of the design using a

Chapter 4 35

“standard” approach is that we will need to have several versions of the interfaces

developed for combinations of each device, end user type and tasks.

4.3.1 Software Architecture Design

Typically, when developers have a software development project in hand, a set of system

architectures need to be determined. First of all, developers need to decide on the general

architecture the application will adopt based on the features and requirements of the

project.

In chapter three, we introduced the “thin” and “thick” general client and server

architecture. From the requirement specification, we can see that our system will use the

“thin” client architecture - that is, almost all data processing is on server side. The client

side will be browsers.

This car site will adopt a 3-tiered architecture as shown in Figure 4.2 for flexibility and

scalability reasons. The separation of the user interface, business logic, and data access

allows clean code and easy maintenance capabilities at each tier without disturbing the

others. The decoupling between the tiers allows us to add more capability to each tier at the

system scales.

Another benefit of using this architecture to develop our car site is that we can easily add

another presentation tier for the layout formatting (that will be introduced in the next

chapter) without too much modification of system architecture.

Moreover, because most software developers are not good at the graphic design, web page

development tools like “Dreamweaver” can assist the graphic designers to design graphic

pages then pass the static pages to the web developer to fill in the code needed to make the

page dynamic. With this architecture, web designers can work in parallel with the

programmers, and make the development more efficient.

We chose JavaServer pages as the technology to develop this system. Therefore, in the

architecture, we use “JavaBeans” to hold and process data. It will perform retrieving or

Chapter 4 36

putting data into a data source object, and a number of JSPs to present the data. The JSPs

are merely views of data exposed by middleware components. They will not directly

access the system data objects.

The following diagram shows the architecture that we are going to use to develop this

system.

Clients Tier One

Web Sever Tier Two

Data Sources Tier Three

 Figure 4.2 Software Architecture for the car site

This diagram in Figure 4.2 illustrates the application in three-tiers. Tier 1 is composed of

multiple clients, which request services from the middle-tier server in tier 2. The middle

tier server accesses data from the data source in tier 3, applies business rules to the data,

and return the results to the clients in tier 1. When a user types a URL on the browser of a

device, “index.jsp” is first retrieved, and functions will detect the type of a device that will

retrieve the page. Thus, the relevant page will be sent to the browser. For example, if a

mobile phone is retrieving a page, the JSPs that are developed for mobile phone device will

be processed, and sent to the client.

 Data

HTMLJSPs WMLJSPs

JavaBeans

 Index.jsp Servlet

Chapter 4 37

The user interfaces handles user’s interaction with the application; this can be a web

browser such as IE or Netscape running through a firewall, a heavier desktop application

or a wireless device, mobile phone or palm. The middle tier needs to support a variety of

clients, such as Web browsers, and hand held devices. The client tier handles interfaces

display, and do not query database, execute complex business rules.

4.3.2 Object-oriented Design

The next important step for design is to identify the application objects. The OOD diagram

is a more detailed representation of the programs that are going to be used in the

application. It shows the attributes and operations that each class provides, and

relationships between classes. Let us to take a look how the OOD diagrams look with this

thin, 3-tiered application.

Middlewares

Data Manager
Car Data Dealer Data

Car Manager

Car Site Server

Dealer Manager0..n

0..n

WMLMobileJSPs HTMLJSPs WMLPalmJSPs

Palm Browsers

0..n

cars

0..n

dealers

0..n

Desktop BrowsersMobile Browsers

 Figure 4.3 OOD Diagram of Car Site

A user goes to the JSP page, which runs on the server (Tier 2), by supplying the JSPs URL

to the browsers on Tier 1. The JSP communicates directly with the database. This uses

“Data Manager” objects that in turn access a relational database.

 Tier 1

 Tier 2

 Tier 3

Chapter 4 38

The “Data Manager” is a service object that basically corresponds to APIs to provide some

basic functions to support the “Car Manager” and “Dealer Manager” objects. The “Car

Data” and “Dealer Data” objects are collection classes for collecting records for car and

dealer.

4.3.3 Interface Design

In this step of the design phase, the developer needs to work out the page flow using

detailed screenshots or diagrammatical representations of each page based on the specified

user requirement. Because the client devices are not just PCs, we need to design separate

sets of interfaces for each device based on its specific features. Because we have more than

one type of user and each of them can perform different tasks, we will give an example of

how to build interfaces based on user and task.

The interface design for this application can be very time consuming task.

4.3.3.1 Design Interfaces for Different Devices

Designing web pages for desktop with standard window size using HTML can be easy. A

lot of visual tools like “DreamWeaver” can also assist the interface developer to design the

interface easily.

Small screen and pen-based user interaction require a different UI paradigm than a desktop

computer. For example, the palm OS device’s screen is only 160x160, so the amount of

information it can display at one time is limited [Palm OS]. Based on different screen sizes

on different devices, developers need to design interfaces carefully with different priorities

and goals than are used for large screens such as desktop.

The interface displayed on the mobile device or PDA can be completely different to an

HTML page, even the font and layout of the components (such as buttons) may vary

depending on the browser of the individual device. Developer need to have the knowledge

of the markup languages such as WML that are used for rendering the interface of that

device, and what the layout of each component will look like in a particular device. The

Chapter 4 39

developer needs to design and manage the layout of the interface for those devices as well,

but this can be very time-consuming job.

One reason is because we are currently short of tools to assist with design for each

interface. Another reason is because the size of WML UI component displayed on the

screen is different to the HTML UI component that we are familiar with. For example, the

size of a button displayed using HTML on desktop browser can be very different with one

using WML displayed on a PDA or a mobile phone.

Even though the developers need to spend so much time on developing each version of the

interface, the advantage is that each interface can be designed differently therefore have

more flexibility. For example, the same component in Markup language can have different

behaviors (for example in IE and Netscape). That is why some of the sophisticated web

sites have several different versions to handle the problem. The various interfaces will be

shown based on the type of the browser. This is a known problem to most web developers,

but fewer people know that the WML markup language has the same problems with the

different types of devices.

For example, the Phone.com browser supports cookies whereas others don’t. The Nokia

WAP Toolkits browser will render the same WML with different layout as shown in

Figure 4.4.
<select name="menu">
 <option onpick="AcctList">Account List</option>
 <option onpick="TransferFundsHome">Transfer Funds</option>
 <option onpick="BillPaymentHome">Bill Payment</option>
 <option onpick="SignOff">Sign-Off</option>
 </select>

The code displayed on Phone.com
WML browser.

This same code also works on other browsers (like
Nokia), but in two stages.

Figure 4.4 Presentation of same WML code on different device

Chapter 4 40

What some of the currently successful web sites are doing to resolve this is writing three

different versions of pages for these browsers. They use the same methods as we illustrated

in previous sections to verify the browser header to get information about that browser so

as to display the correct content. This is very time consuming, but can produce quite a

good result.

Apart from the graphics using general html or other markup languages, we also need to

have correct presentation of the back end data retrieved from database. This could be a

problem for a wireless device with less memory. For example, we can have drop down list

of car makes for user to choose their favorites cars, but can not use the same system have

them for mobile phones, because the list could be a number of hundreds making the mobile

short of memory. For this sample application, the full amount of data can be displayed on

desktop using HTML with fully supported image display, but the same data cannot be fully

displayed on the mobile device. An alternative solution needs to be found.

The web developers should have rule in mind that is to make embedded code as less as

possible. That way, the resulting dynamic pages contain a minimum of logic, so that they

will be intelligible to page designers required making any changes to the rendering of the

data without making too much mess of the embedded code.

So that the developer needs to know the features that all the intended receiving devices

have and design an appropriate set of interfaces to support each of them.

4.3.3.2 Design User and Task-based Interfaces

A user interface may show different layout or parts of interface to a user, due to the user’s

level of expertise, the task and/ or role being performed, the users’ personal preferences.

The concept of the user-based content display is using the same layout with some parts

hidden based on the user. Now we will give some examples from our car site.

• User based content display

Chapter 4 41

In the car site, we have the following situation: these two web pages discriminate content

based on a user's role. The page (a) and (b) in Figure 4.5 are both showing a list of cars.

The difference between these two pages is that page (a) has an extra column with an

“Update” link on it. The page (a) in Figure 4.5 is only shown if the user is a registered

“dealer” who will use this link to update the information about these cars for their stock.

Page (b) will be shown when a general web user retrieves a list of cars that match the

requirements specified by the user, such as color, make, model, and year.

Figure 4.5(a) and (b) Example of User based content display

Web applications often display content based on a user’s role. Another example on our car

site is an interface that displays a list of matching dealers retrieved by a user. General web

users only see the general information, such as address and contact information. Web sales

representatives can see additional information for each dealer such as the hit statistics and

subscription information relating to that dealer. Dealers themselves have access to a button

to update their own information such as address, phone number and so on.

• Task-based content display

We can also have the following situation, these two web pages discriminate content based

on a task that a user can perform.

(a) (b)

Chapter 4 42

 Figure 4.6(a) and (b) Example of Task based content display

The two page shots in Figure 4.6 show depending on the task the user wishes to perform.

When a user wants to update a dealer information, the page (a) is shown. In the case to

insert the information of a “New Dealer” into system, the page (b) will be shown.

The traditional design for the interfaces shown above is to have different versions of files,

and just simply copy and paste the part with the same content. This will result the hips of

amount of files developed with similar content for similar interfaces.

4.4 Implementation

After design phase, we will start implementing our car site application. We will focus on

creating appropriate user interfaces for various devices. The business logic code with data

transaction between database and front data presentation will be put in separate tier.

4.4.1 JSP Basics

As described in chapter three chapter three, dynamic HTML and WML document can be

generated by CGI scripts, servlets, JavaServer Pages, Active Server Pages, Perl, Tcl, and

so forth. We can build dedicated server-side web pages for each different combination of

user, user task and device, using Java Server Pages, Active Server Pages, Servlets, PhPs,

CGIs, ColdFusion and other technologies and tools [Marsic, 2001a; Han et al 2000;

Zarikas et al 2001].This is currently the “standard” approach.

To implement our car site, we will use JavaServer Page to generate interfaces for each

device that might be Web and WAP enabled, and for each type of users and tasks.

Chapter 4 43

JSPs are basically files that combine standard HTML (or XML) and new scripting tags.

They provide server-side “scripting” language that contains presentation mark-up, with

embedded dynamic processing logic expressed in the Java Programming language. JSPs

therefore look somewhat like HTML, but they get translated into Java servlets the first

time they are invoked by a client [J2EE Edition].

We have chosen JSPs as our implementation platform for several reasons:

• The main difference between JSP and other technologies to enable rapid

development of web-based applications is that JSP is platform-independent.

• JSPs provide a good distributed object-based platform form.

• It can simplify the creation and management of dynamic web pages, by separating

content and presentation [Joseph L Weber]. JSPs have feature to separate user

interfaces from content generation, enabling designers to change the overall page

layout without altering the underlying dynamic content.

JSP technology needs a web server container. We chose the Tomcat in this sample

application as web server.

4.4.2 Database Implementation

There are a wide range of data management strategies for us to choose when implementing

object-oriented design. They include relational database (RDBMS), object-oriented

database (OODBMS), files (text or binary), XML database. The selection of the data

management tools is dependent on the particular application.

Because the intended users of the car site will be internet users and our application is

“thin” client, the database needs to be powerful enough to handle high volume data

transactions as it might potentially grow to be large in the future as the site becoming more

popular. In most cases, the server where the database resides is separate from the web

server.

Chapter 4 44

For example, we can choose Interbase as the database server. Interbase has full

functionality, similar to MS SQL Server. We can make use of some of the internal data

management tools that Interbase provides, such as “triggers”, stored procedures and

indices process the data in the data server as fast as possible. This can reduce the data

transaction along the network, so as to get better performance.

The database involved in the car site is fairly simple. The following ER diagram shows the

part of tables and fields of relational database. The name of the field in tables have special

meaning, for example, “slogin” in “dealer” table means the type of this field is “String”,

the “sicaryear” in “car” table means the type of this field is “Small Int”.

Figure 4.7 Car Site ER diagram

4.4.3 Application Logic Implementation

The backend business logic is provided via Java Beans hosted in the Tomcat server, for

access to the database and data transactions. Tomcat is a servlet container with a JSP

environment. A servlet container is a runtime shell that manages and invokes servlets on

behalf of users [J2EE Edition].

Chapter 4 45

This application consists of a combination of Java Beans that provide the application logic

to handle transactions by accessing the database containing the dealer catalog and

inventory.

4.4.3.1 Application Logic Flow

The diagram in Figure 4.8 shows the logic flow regarding how our application starts. When

a user uses a device to browse the application, the web server will all require “index.jsp” as

first page no matter which device is used. A function bean will check the header

information of the device and verify the next page it should be should directed to. It then

allows the device client to access a correct version of the JSP document that best fits the

user requirement specified in the request header, as several versions exist on the server in

our application.

For example, if the device used for browsing this application supports WML, the

“WMLHome.jsp” is shown as the first page for the Mobile device. After login, if they are

of type “user1”, we will show them the JSP pages that are enabled for WML and “user1”.

The “index.jsp” page does not contain any layout code. It is just used to direct the correct

version of code for a particular device. The detailed code example will be shown in the

next section.

 Figure 4.8 Part of Application Logic Flow

 “ index.jsp “
Function
Bean

“WMLHome.jsp” “HTMLHome.jsp”

JSP Pages for
User1,WML

Function
Bean

 Use Use

If wml device If html device

If user2 If user1

JSP Pages for
User2,WML

JSP Pages for
User1,HTML

JSP Pages for
User1,HTML

If user2 If user1

Chapter 4 46

All the data is stored in the back-end database. A bean program is written to fetch all the

required data from the database and make all the data ready to the front client to fetch. For

example, in this application, I have created the “DBConnection” bean as a “data manager”

object to handle all the data transaction between the database and front client. And another

bean called “Function Bean” will handle all other functions, including the interaction

between that client and the system.

When the user browses information from the different device for specific purpose, the data

is fetched from database to web server, and properly displayed on the screen by using the

appropriate HTML/WML language.

The “FunctionBean” provides a model of the application logic, and is used throughout the

process of dealing with device information verification. It is reused in all JSPs to provide

user interaction with the business logic. The “DBConnection” Bean encapsulates the

necessary database access code.

HTMLHome.jsp WMLHome.jsp

 Figure 4. 9 Page dump for homepage for HTML and WML enabled device

On the home page for desktop PC’s, people can perform several tasks, including a search

for cars through “click a region”, “view featured cars” and they can search a dealer’s

stocklist by clicking the oval image.

The home page for desktop has a standard screen size and supports rich HTML markup

language. We have several areas on the top of a page to show featured cars, but we cannot

have the same functions on a mobile device such as mobile phone.

Chapter 4 47

4.4.3.2 Get Device and User Information

• Obtain Device Value

The content dynamically generated by the JSP must be in a format supported by the

requesting client. For example, for the “Tomcat” server to serve the mobile phone that only

supports WML Markup language, the server needs to know what device is browsing the

pages, so it can send a WML version rather than HTML.

To identify the client device, the following approach can be used. According to the

convention, the value of the User-Agent header field lists the most significant products

first. The first product tokens may identify the client category. The categories of a client

will either be a product name, like Mozilla and Nokia Development Toolkit, or a product

name and its version, such as Mozilla/4.51.

For example, when issuing a request from IE 5.0 and Nokia Toolkit on Windows 2000, the

User-Agent field is respectively:

UserAgent: Mozilla/4.0(compatible; MSIE 5.01; Windows NT 5.0)

UserAgent: Nokia-MIT-Browser/3.0

Those tokens can be used as keys to map to the corresponding MIME types. The values of

User-Agent header fields can be retrieved by the tag class using the

“HTTPServletRequest” class and its “getHeader()” method as follows. Based on the type

of user agent from the head information, the code will assign the page parameter device

value and decide what Markup Language need to be used.

 HttpServletRequest sr=(HttpServletRequest)pageContext.getRequest();

 String useragent=sr.getHeader(“User-Agent”);

Chapter 4 48

After we know the value user agent, we should be able to know what device is bowering.

And the type of Markup language that device support will be known as well.

if(device== “html”)

 Redirect(“/HTMLHome.jsp”);
Else

 Redirect(“/WMLHome.jsp”);

• Obtain User Value

The user information can be tracked down through “cookies”. After login, if the user can

be verified correctly through looking up from back end pre-registered user information

from our database, the correct user information can be returned and a session or cookie will

be stored in the client.

Cookies are a mechanism for storing data in the remote browser and thus tracking or

identifying return users. We can set cookies using the “setCookie()” function. Cookies are

part of the HTTP header, once it’s value has been set, we can get this value from every

page of the site by using getCookie() functions.

The cookie setting is just one approach, but there is limitation with the cookie setting

approach. For example, Palm VII does not support cookie-based sessions. So that the

cookie issue needs to be addressed for each device, as some devices support cookies while

others do not.

4.4.4 User Interfaces Implementation

We assume you are familiar with JSP, so that we will not spend more time on how to use

JSP.

Chapter 4 49

4.4.4.1 Developing Interfaces for WEB and WAP Enabled Devices

Dynamic WML documents for wireless devices can be easily developed using JSP.

Once we know the WML syntax, building WAP applications using JSP can be an easy

task.

As we mentioned in chapter three, the basic unit of WML is the card that specifies a single

interaction between the user and the user agent. Multiple cards are grouped together in

decks. A deck is the topmost element of a WML document. When the user agent receives a

deck, it activates only the first card in the deck.[Queay H.Mahmoud]. Therefore, a deck

has to be a valid XML document, which implies that a WML documents should start with

the standard XML header and the reference to the WML DTD.

Java Server Pages let us embed Java statements within HTML documents, and also WML

documents, and create dynamic WML documents. Most of the preceding code uses pure

WML tags, with the exception of the line:

 Response.setContentType(“text/vnd.wap.wml”);

This line ensures that the correct MIME type is set for the WML document, and makes

sure that the WML enabled browser is able to parse the content.

Since we are using JSP technology, we are primarily concerned with JSP here. The sample

application for WML enabled devices will be a combination of pages with WML decks

and dynamic JSP pages that will enable all functions on those devices to work the same as

on a desktop.

Let's start by creating the WML deck with only one card, which will serve as the main

“index” page. If someone browses the web site from a mobile phone, the “index.jsp” page

is first invoked, and after detecting the type of device, the following page can be called.

“wmllogin.jsp” is displayed, which would display the following screen.

Chapter 4 50

The code shown in Figure 4.10 has ignored the embedded function code such as login id

and password verification and only shows the presentation part of the code. Window (a)

and (b) are two page shots for the mobile device. After entering the correct the login id and

password, user then presses the relevant key on the device. The window (b) will then show.

The “Submit” button is functionally identical to the “Login” button shown on the window

(b).

The login information will be passed to a bean that will execute the JDBC connection to

the database Server for verifying whether the login id and password are correct.

 HTMLlogin.jsp WMLlogin.jsp
<html>

<head></head>

<body>

<form method="post" action=” “>
 Enter Your Login ID and Password
 Login ID:

<input name="userid" type=”text”
value="">

Password:
<input name="password"
type=”password” value="” >

</Form>
</boty>
</html>

<% response.setContentType("text/vnd.wap.wml");
%>

<?xml version="1.0"?>

<!DOCTYPE wml PUBLIC "-//WAPFORUM//DTD WML
1.1//EN""http://www.wapforum.org/DTD/wml_1.1.xml>

<card id="card1" title="Log" newcontext="true">
<p>
 Login ID:
<input name="userid" type=”text” value=""/>

Password:
<input name="password" type=”password” value="”/>

</card>

</wml>

 Figure 4.10 Code Example and page dumps for login page

4.4.4.2 Examples of User Interfaces

In this section, we will present the user interfaces that we have developed for different

devices. We assume that users will use one of three type of devices. For each device, we

need to write three customized interfaces to suit onto the screen of these devices.

(a) (b)

Chapter 4 51

Example One – “Search Car” Interface

The following interface provides a form that allows the user to specify the search criteria.

For example, a user might want to search all cars with “Toyota” make and “Camry” model.

The interfaces capture the information that user has specified, pass to a “FunctionBean” for

processing, and the function in “DBConnection” bean will connect to backend database

and retrieve the car information, then send it to the browser for display.

When designing the search criteria input for the mobile device, we decided to “chop off”

one or more criteria to provide better layout. And we did not display the information that

the user has selected previously, for example, “NATIONWIDE Search”. The information

that the user has selected from a previous page is shown on the desktop browser, but not on

other devices.

Palm Emulator with
160x160

Mobile with
90x100

Desktop with 800x600

 Figure 4.11 Search Car Interface on Various devices

Example Two – “Search Result” Interfaces

Now let us look at the search result interfaces shown in Figure 4.12. After a user specifies

certain criteria by selecting or entering values into above interfaces through different

devices, the interfaces in Figure 4.12 display the result list of cars. Each window only can

display certain number of cars with respect of window size, so the user then needs to use

the “next” button to get the next list of results.

Chapter 4 52

We have only shown the interface on three devices with known window size. If there is a

need to display our interface on a window 400x300, we need to write a new version of

interface and determine how many cars can fit onto that interface.

Palm Emulator with 160x160
can display three cars per
screen

Mobile with 90x100
can display one car per
screen

Desktop with 800x600 can display
15 cars per screen

 Figure 4.12 Display Search Result Interface on Various Devices

Example Three – “Search Dealer” Interfaces

Figure 4.13 provides three interfaces allowing user to select a particular dealer. In the

desktop interface, we can see some of the graphic designs, such as a “gif” formatted image

on the top of the window with the word “Dealers”, and a “search” button for users to press

to proceed with a search. We would not have the similar elements on the mobile device.

Palm Emulator with
160x160

Mobile with 90x100 Desktop with 800x600

 Figure 4.13 Search Dealer Interface on various devices

Chapter 4 53

Example Four – “Dealer List” Interface

The dealer list interfaces display a list of dealers based on the region and key word the user

has selected from the interfaces shown in Figure 4.13.

Palm Emulator with

160x160
Mobile with

90x100
Desktop with 800x600

 Figure 4.14 Dealer List Interfaces on various devices

From the above examples, we can see the different interfaces need to be designed based on

the screen size limitation of various devices.

• Mobile devices can’t display the graphic dealer logo as seen on the desktop web

browser.

• Mobile devices can’t display information for too many dealers on each window, not

just because the user has to view the information by using the key to scroll the

window, but also due to their memory limitation.

• On a desktop browser, we can see that a website address is displayed for each

dealer. Mobile devices have no problem displaying them, but can’t have links to

related dealer web site. Because those web site servers may not have “WML”

version to support mobile device.

4.4.4.3 User and Task-based Content Display

In this section, we will explore the user and task content display using the traditional

approach. Traditionally, a number of interfaces will need to be developed for each

combination of user and task. Most parts of similar interfaces will need to be copied and

pasted in each file, then modified as needed. We will end up with a lot of files with similar

content.

Chapter 4 54

Apart from the approach we mentioned above, we can improve a little by adding

conditional constructs to the screens for user and to some degree user task adaptations,

somewhat reducing the total number of screens to build.

For user-based content display, we need to identify the user. Based on identification of the

user, the page will determine what content needs to be shown and what to hide.

A most common approach adopted by developers is to get the value of the user using the

approach explained in section 4.3.3.2 for a particular page, then use several “if/else”

statements to perform differently based on the value, in other words, to generate different

layouts.

 Code example
if(user== “dealer”){

 showDealerContent();

}else{

 showUserContent();

}

The content shown or hidden from displaying can also be determined by a particular task

that the user performs. For example, the screen (1) in Figure 4.15 shows after a sales

representative logs from login page successfully. This page displays a list of dealers with

several link entries on it for the user to perform tasks.

After the user clicks the links that indicates the id of a dealer on the left side of screen (1),

the screen (2) shows, and the screen (3) will show if the user clicks the “Register new

dealer” button.

Screen (2) and (3) have similar interfaces. Screen (2) allows the user to update the

information about a dealer. It displays the current information we stored in database about

that dealer.

Chapter 4 55

 Figure 4.15 Example of task based content display

In this case, the page discriminates by verifying different parameters passed to this page.

For example, the value of parameter “task” passed to screen (2) and (3) in Figure 4.15 from

different source is different. Passing different parameters to the same page, will lead to

different layouts allowing different tasks to be shown or performed by users.

<?String task=request.getParameter(“task”)?>

<% if(task== “update”){ %>

 <!—Content -- >

<%}%>
<% else if(task== “insert”){ %>

 <!—Content -- >

 <% } %>

 Figure 4.16 Code Example

The code example in Figure 4.16 shows the general approach that people normally use to

solve user or task based content process. In the real world, things are not just as the above

Task=”insert
”

Task=”update”

(1) (2) (3)

Chapter 4 56

example. We could have a much more complicated situation which would end up with a lot

of “if/else” statements embedded in the middle of a page. If the static code between if and

else is very large, this will make the page very hard to maintain.

There is another situation when we might display the similar content in a page. If we show

a list of cars, normally we would use the following loop statement.

<%for (i=0;i<num;i++){%>

 …html content

<%}%>

Figure 4.17 Code Example

The embedded code will become more complicated if we mix the above two cases. This

kind of code is not easily moved to the logic tier, and normally stays in the page.

However, for even small numbers of different users and user tasks the number of

adaptations required for this approach makes screen implementation logic very complex

and hard to maintain [van der Donckt, 2001; Grundy and Hosking 2001]. Each different

device that may use the same screen still needs a dedicated server-side implementation

[Fox et al, 1998; Marsic, 2001a] due to different mark-up, size, colour etc characteristics.

So there is a need to find an approach to solve above problems and make the code clearer

and more maintainable. We will discuss this further in the next chapter.

4.5 Running and Deploying the Application

To assist in developing WAP applications, I have used “Nokia Mobile Internet Toolkit” as

development tools to do testing. The major advantage with this tool is that it has a “device

setting” function to allow the various screen sizes to be set. Nokia Mobile Internet Toolkit

is available from www.forum.nokia.com. This is free of charge, but requires registration.

To install a Web Server such as “Tomcat”, the steps are

• Download the file from http://jakarta.apache.org/downloads/binindex.html

Chapter 4 57

• Unzip the file into a directory and create new subdirectory named “tomcat”

• Put all JSPs into the jsp directory and other Java Classes into classes directory.

4.6 Summary

In this chapter, I have provided a demonstration of how to develop Web and WAP

applications in Java JSP using a traditional approach by modelling an online car sale web

site. The uncommon part of this application is that the client types are not just desktop

computers, they include other devices like mobile phone and PDA.

To resolve the requirements of these different devices, we have specified a standard

approach to solve the problem. We have also noticed some other problems, such as the

need to develop a large number of single interfaces for each device and user or task.

In the next chapter, we will discuss in more detail the main problems the standard approach

presents and provide the motivation behind the need to develop improved approaches to

user interface adaptation which arose from experience developing the car site using

traditional approaches.

Chapter 5 58

Chapter 5 - Adaptable User Interface Technology

5.1 Introduction

In this chapter, we present

• The motivation for exploring adaptable user interface approaches.

• The objectives that we wish to achieve

• The approaches to developing adaptable interfaces for various human devices.

• Some sample applications to access real-word data.

We will introduce the Adaptable User Interface Technology (AUIT), a new approach to

building adaptable, thin-client user interface solutions for web-based information systems.

We present the key design features of AUIT in this chapter, a prototype and

implementation in the following chapters.

5.2 Motivation for Developing an Adaptable Approach

In chapter four, we reviewed how to develop WEB/WAP-based application for various

devices using a traditional approach. The main advantage with the traditional approach is

that it is very flexible. The developer can write specific programs or pages for particular

devices. This methodology is good for writing specific applications based on the particular

features of a device.

Let us discuss the main disadvantages of the traditional approach to understand the need

for an adaptable approach to developing user interfaces in more detail.

5.2.1 Need to Develop Large Number of Interfaces

From the experience of building user interfaces for our car site using traditional approach,

we can see that the number of interfaces required to satisfy our multi-platform & user-task

requirements is very large. This presents major problems both in development time and

Chapter 5 59

ongoing maintenance. - for M different information system screens and N different user,

user task and device combinations, we have to build and then maintain M*N screens [van

der Donckt et al, 2001].

5.2.2 Hard coded for Each JSP

Developers will need to spend more development time. They have more chance to

write a lot of mindless coding that is more suitable for a machine than a human

being. In such situations, developers might just need to simply cut and paste of the

existing code for other devices and modify small part of code, and reuse them.

5.2.3 Fast Growing Devices

As new devices and display technologies emerge, developers will need to add new

code for each new device. This will increase a workload for developers.

From the analysis of the traditional approach, we can see that although traditional approach

could be the easier option in some cases, such as some small Web sites, it will require

additional code for a page (in our case, JSP or servlet) every time a new device has to be

supported. This is because wireless devices vary widely in a lot of ways.

5.2.4 Bad Code Reusable Ability

The back end access calls are repeated in each JSP. The code for display the user

interface will be duplicated with each device. It makes a web site difficult to read

and maintain. The code is also less maintainable.

A lot of embedded code is needed for user and task based user interface. For

example, the following JSP code will handle the content generation in terms of the

different users in traditional approach.

<%if(user==”manager”) {%>
 <!-- Content for manager -- >
<%}else if(user== “staff”){%>
 <!-- Content for staff -- >
<%}%>

Chapter 5 60

However, a mass of conditionals can make a JSP verbose and hard to maintain. Even the

simple “if/else” example above already requires a few seconds to comprehend. If lengthy

blocks of HTML code break up the conditional statements, or if there was a longer chain of

“if-else” statements, it could quickly become unreadable.

Therefore we can see that to create user and task based content, the code often

consists of a mish-mash of program code in scriptlets and HTML/WML markup.

5.2.5 Lack of Consistency

Because the interfaces developed for each device are completely different, this

might lead to the interface among devices being inconsistent.

5.3 System Requirements and Specification

Using an adaptable approach offers significant development time and workload reductions

because the developer needs only to create a single system which will suit any device.

With these goals in mind, we need to determine the requirements of our system. These

requirements depend mainly on the web developer’s perspective and demand. Using this

approach, we will build a package that can be adopted by developers as tools, or as a basic

concept of approach to provide an alternative to the traditional approach which resolves

it’s inherent problems.

5.3.1 Functional Requirements

In this section, we will describe the functional requirements that the system will be

providing for developers. The following specifies the detailed functional requirements that

the system should meet.

5.3.1.1 Write Once, Run Everywhere

Chapter 5 61

The system should allow developers to create applications that have a “write-once, display

on any device” capability, simplifying the process of differences between devices, such as

Markup Language and different screen sizes.

• Dynamic Markup Language Generation

This is one of the main requirements. Because different devices may support different

Markup languages, the system should provide ability to generate markup language

dynamically to serve any predicted device that a user may used to browse the application.

Adaptation is performed when the client device requests service and the adaptation system

will detect the device, decide the markup languages and present the layout.

• Adaptation to various screen sizes

There are many human-computer devices existing in today’s market and more will come to

market soon. They all have different screen sizes to display the information. In a non-

adaptable approach, to make a web application support wireless devices, we need to

rewrite another set of code to make to content fit well on the screen. Our Adaptable

approach will do this job on the run time automatically, generating appropriate content for

each specific device.

5.3.1.2 Adaptation to User and User preferences

Some user interfaces and/or elements suit some users but not others, based on the

particular user’s role or subtask being performed. Most of the adaptable systems set the

user and user preference adaptation ability as their goal. Individual users' needs and

preferences may change as they use a software system. [Kules 00] The adaptable system

monitors the user's activity pattern and automatically adjusts the interface or content

provided by the system to accommodate user differences as well as changes in preferences.

Users may specify preferences about which elements or alternative interfaces they want to

use, default values and constants. . For example, in this particular adaptable system, the

user can prefer to use a special window size to view the interface instead of using the

Chapter 5 62

system default window size. For instance, they might like to use window size with

600x200 pixels to view the content using normal desktop browsers like IE or Netscape.

User and user preference based adaptable techniques provide a way to optimize a user

interface for individual users.

5.3.1.3 Adaptation to Tasks that Users Perform

This is also common target of adaptable user interfaces. The user can easily control the

layout of the task performed. This is similar with the user-based requirement.

Within the traditional approach outlined in chapter 4, we used simple “if/else” statements

to control the content that needs to be displayed. With the adaptable approach, we can

eliminate that messy embedded code in the page and achieve the task based user interface

adaptation more easily.

5.3.1.4 Adaptation to Client Devices

With a potentially unlimited amount of RAM and hard disk space available on today’s

desktop machines, developers are less constrained in the software they design. Of course,

they don’t have that luxury with mobile applications. Developers have to remember that

mobile phones have small screens with low resolution, limited memory and processing

power and less bandwidth than desktop systems. Some content is not suitable display on

the some wireless devices; for example, large image files.

The adaptable interface should control what elements are displayed on a given device

based on window size or memory availability. These parameters are set in the first instance

by the developer.

5.3.1.5 Adaptation on Existing Client-Server Architecture

Web developers are familiar with the existing Client-Server Architecture during

development of web application. Our system should make use as much as of the existing

architectures that developers are familiar with.

Chapter 5 63

The developer can make use of their original web development knowledge (such as

architecture) to develop the new web site without having to learn any new knowledge.

5.3.1.6 Configuration Capability

The system should provide a set of interfaces that can be used to catch information about

that device, such as user-agent information about the device.

• Each device has its own specific characteristics, such as width and height of screen.

• The size of elements displayed on a specific device, compared with the default

elements size, such as the catch radio value of default text size on a PDA over the

default text size on PC browser.

If a web site has more than one type of user, and requires different layouts for different

users, the related user information also needs to be captured through the configuration

interface.

Therefore, configuration capability of a system is important. This provides a flexible way

for developers to cater for many devices and users.

5.3.2 Non-functional Requirements

In this section, we will explore non-functional requirements that our system should

provide.

5.3.2.1 Easy to Use

The system that we are going to develop should provide “easy to use” features for

developers. This requirement comprises of two parts based on two groups of end users who

might use our adaptable approach, developer and application end-users.

From a developer perspective, their role is to develop the application for the end user,

using our adaptable approach. It should be easy to use by developers. When they use our

Chapter 5 64

package for implementing our adaptable approach to develop a web site, they should not

spend too much time learning the system.

From end user point of view, their concern will be whether the application is easy to use,

no matter what approach or technology was used to develop this application. The interface

and the functionalities of application developed using adaptable approach should make no

difference from their perspective.

5.3.2.2 Easy Read and Maintain

Normal standard technologies, like Javaserver Pages, ASP, PHP, etc, have an ability to

separate code from content. All embedded code can be split from the page and placed in a

class module. This allows graphic designers to make the site look nice, while the

programmers can take care of the coding.

Some of the adaptable approaches can provide good results superficially, but with very

bad, illegible and hard to maintain code. To avoid this, our page should look like an HTML

page as much as possible with minimal dynamic content, rather than a program with

embedded markup or even a balance of scriptlets and markup.

Graphic designers normally only have knowledge of HTML so if our page looks like

HTML, they will be able to contribute their skill to maintain and enhance presentation on a

site. The user interface on today’s web sites can be very complex. Unless the page

generation approach in use is understandable by page graphic designers, it will be

impossible for them to take part in graphic design on a web site.

5.3.2.3 Performance

When people use a web-based application, the main expectation is a low response time

required to display each interface. Good performance is a very important aspect of the

overall web application.

The application should provide satisfactory performance when developers develop a web

application using our adaptable approach.

Chapter 5 65

5.3.2.4 Programming Productivity

The main advantage of using an adaptable approach is increasing programming

productivity. This is one motivation for us to use an adaptable approach to develop a web

based application for various human devices. The ability to develop and then deploy

applications as effectively and as quickly as possible is important.

5.3.2.5 Extensibility

Because the holistic environment is not static there is a requirement for most projects to

have some degree of extensibility designed in. The ability to have a project or a system

extensible is key to the success of developing for today’s system.

Our system should be able to be extended by other developers. It needs to be easy for them

to use our idea by extending our system.

5.4 System Analysis

Achieving these requirements can be complicated, because of the variety of technologies

and standards that have been developed over the years, requiring highly developed skill

sets. The acquiring of which and “keeping up” of those skill sets is a problem in itself.

Moreover, the rapid pace of change in ‘standards’ themselves poses significant challenges

to ensuring efficient meshing of technologies. [J2EE Edition]

With the above-specified system requirements, we need to do an analysis for the system

first. Because the requirements might be far more than we could do in reality, we will start

by making some reasonable assumptions, and then develop system within this simplified

world. Then we can then progressively add to our basic system to meet more complicated

requirement.

5.4.1 Adaptation Ability to Various Markup Languages

Chapter 5 66

The following table lists some of Markup languages that diverse devices can support.

Client

Markup Language

PC-based browser HTML, DHTML, XHTML

PDA WML, XHTML

Mobile phone WML, XHTML

Landline phone VoiceXML

Server application-specific XML languages

Figure 5.1 The Markup Language and Devices

For our system, we will assume that various devices could use two main languages, HTML

and WML. Even though devices in todays market could support a wider range of

languages and standards, we can always allow our system to adopt more markup languages

later. Once it can support two markup languages, it should be no problem to add up more.

We can even develop some tools for developers to add any syntax for new markup

languages to make the system support them.

5.4.2 Screen Size and Page Content

Most of time, existing user interfaces are developed by UI designers with one context of

screen size in their mind. For example, most of web developers design pages for a web site

with the constraint of screen display size 800x600.

With our approach, we propose to have functions to identify the users and devices that are

pre-stored within our database using a configuration engine. For example, if a user wants

to use IE to browse the content of a web site using a window size of 400x200 pixels as

his/her preferred screen size, the content will be displayed on the window with that

window size constraint.

Therefore, we will assume that the designer has design the interface based on the content

of a page and not the constraint of the window size. In other words, they do not design

their interface based on a particular screen size. For example, a web page can display

unlimited content on each page and users can view the content normally by scrolling the

screen right and down. To make users with restricted screen size feel more comfortable, we

Chapter 5 67

can create an internal algorithm which separates the content into several windows without

interrupting the flow or overall display of the content. We will explain the detailed

algorithm and the result in a later chapter.

5.4.3 Cookie Problems

Cookies are useful for maintaining state and keeping track of users’ sessions. Although

cookies are part of the WAP specification, they are not yet implemented by all WAP

browsers. The Nokia 7110 does not yet support cookies. Phone.com’s “UPSimulator”

however, does support them.

To allow our system to work on any device and retain the capability to vary the content for

different users, we will assume that all the devices that will use our system support

cookies.

With these assumptions in mind, I decided to focus on activities that required the mininum

amount of input, complexity and logic flow. I also made the decision to first develop a

simple system with only partial functionality requirements fulfilled; then expand it with

more functions.

5.5 Design and Algorithm

From our practical experience of developing a car site using the traditional approach, as

specified in chapter four, the above analysis of the adaptable system and with the system

requirements and objectives in mind, we now move into the design phase. This is one of

the most challenging and creative parts of system development.

We will develop a new approach to building adaptive, multi-device, thin-client user

interfaces for web-based information systems to meet our requirements. We intend to

design and create a set of elements to make up adaptable user interfaces. These elements

are tags that are specified using a device-independent mark-up language describing screen

elements and layout along with any required dynamic content. Screen element descriptions

Chapter 5 68

may include annotations indicating which user(s) and user task(s) the elements are relevant

to.

We call this Adaptive User Interface Technology (AUIT). The interfaces developed using

AUIT elements are called AUIT pages.

5.5.1 System Architecture Design

Software architecture is used to determine the overall design of the system. In designing

the architecture, we need to consider the following issues.

• Which programs we are going to use.

• The environments and machines these programs will run on.

• How these machines are going to be networked.

In order to develop a new approach to building adaptive, multi-device user interfaces for

web-based information systems, we need to look at the kinds of architecture that can be

applied. We have described a general 3-tier architecture used to develop the thin-client

information system in chapter four.

Figure 5.2 General Architecture Using AUIT System

Our AUIT system adopts the above four-tier software architecture illustrated in Figure 5.2.

This is based on the architecture used for the traditional approach with some modification.

Clients can be desktop and laptop PCs running a standard HTML based web-browser;

PDA

Mobile

Desktop

 Client Web Layer Data Source

Database AUIT
Pages

Business
Logic

Chapter 5 69

mobiles or PDAs using WML-based browser, or mobile devices like pagers and WAP

phones, providing very small screen WML-based displays.

AUIT pages sit between “client” and “business logic”. The web layer retrieves the data and

formats it for display. This separation of business logic from the AUIT presentation pages

adds flexibility to the design of the application. Multiple-user interfaces can be built and

deployed without ever changing the business logic provided the business logic presents a

clearly defined interface to the presentation layer.

Compare this architecture with the one we have specified in the traditional approach.

Excepting the new tier (AUIT pages), the other tiers should perform the same

functionalities as we described in the traditional approach. This architecture has the

advantage of only needing to use the new approach to develop the interface. We can make

use of any previous knowledge with developing dynamic code for handling business logic

(such as data transaction between interface and the database) without needing to reengineer

the business logic.

5.5.2 Designing AUIT Elements

With the architecture designed, we need to consider how we will create the AUIT pages.

Our adaptable application should be made up of AUIT pages to serve the client device. An

AUIT page should consist of AUIT elements. Therefore we need to extract the common

elements from the two different languages and create a list of high-level elements to

achieve our purposes. These elements are not HTML tags, nor WML tags, but a high level

language that used to write our AUIT page.

5.5.2.1 Document Structure Elements

From Figure 5.3, we can see that each document, such as WML or HTML used to render

use interface for thin-client applications have a basic document structure. Thus we need to

have one or more elements to specify the basic structure of our AUIT page.

Chapter 5 70

A valid WML deck is also a valid XML document, the same as HTML. Its basic structure

is shown on the left of the following table. An HTML document is composed of three parts

and a WML document is composed of two.

WML document HTML document

<?xml version="1.0"?>

<!DOCTYPE wml

PUBLIC "-//WAPFORUM//DTD WML 1.1//EN"

"http://www.wapforum.org/DTD/wml_1.1.xml">

<wml>
 <card id="First_Card" title="First Card">
 <p>
 ...all other elements...
 </p>
 </card>
</wml>

<!DOCTYPE HTML PUBLIC "-//W3C//DTD

HTML 4.01//EN"

 "http://www.w3.org/TR/html4/strict.dtd">

<html>
 <head>
 …head information
 </head>
 <body>
 ...all other elements...
 </body>
</html>

 Figure 5.3 Document Structures of WML and HTML

We will use an element called “Template” to specify the basic structure of our AUIT page.

The document structure element should provide the main structure required by both an

HTML and a WML document. An AUIT page should start with <template> elements, end

with </template> elements and has a set of other type of elements in between.

5.5.2.2 Generic UI Elements

Each interface is made up of a set of UI elements. Now we need to design a set of UI

elements that can make up the user interface specified on an AUIT page. First of all, we

should create a list of UI elements that can be used to generate proper markup language for

a given device to render the content on the page. From the standard DTD of HTML and

WML, we can extract some common elements.

In the following diagram, we have designed a set of UI elements such as user input

elements to provide a mechanism for capturing user input, regardless of the markup

language that the device supports. For example, a “Label” element can display text and a

“Layout” element formats the text.

Chapter 5 71

We can see that the elements and their attributes have similar names as used in HTML. We

have followed the basic methodology established for HTML for the purpose of easy

adoption by developers.

Form
name
action
method

Button
name
value
type(radio|check|button|img

Image
alt
align
src
height
width

TextField
size
name
type

Param
name
value

Select
name

Option
name
value

 Figure 5.4 Form and user input elements

Layout
face
color
size
align
bold
text

Label
text

 Link
direct
*param(true|false)

Param
name
value

Label
text

Figure 5.5 Text and text format elements Figure 5.6 Navigation element

The following provides detailed explanations.

• Generic form elements:

The form elements in HTML and WML are very different, as is the way they pass the

parameters described in chapter two. We have designed a form element that generates

different formats for different devices.

Some AUIT form elements such as the “textfield”, “button”, “checkbox” and so on, are

also designed for generating relevant UI elements for both markup languages.

Chapter 5 72

• Generic label and layout element

These elements are used for describing the layout for the text display. The HTML provides

much more elements and attributes that may be used for visual formatting than WML, such

as <H1>,, <DIV> , stylesheet, etc; which WML does not provide. We use a

<Layout> element to combine the common parts of HTML and WML to format the text

displayed on a device.

• Generic navigation elements:

The navigation through a web site is achieved by a link that is a connection from one Web

resource to another. Both WML and HTML provide navigation tags, but they have some

differences. The generic elements integrated these differences; provide a “link” element to

achieve this purpose.

5.5.2.3 UI Control Elements

We assume that on each device, the designer will want to accomplish the same amount of

tasks (or subsets of the tasks) for each page. For example, a page has ten UI elements on it

and the amount of tasks that user can perform is three. So any device that used to browse

this page should have as a maximum, those ten UI elements and those three tasks.

We have used three elements, user, task and device, to achieve different type of UI control.

The basic idea of how these elements work is that they will hide part of an AUIT page

layout based on the type of user, the type of device. etc.

The UI control elements shown in Figure 5.7 are responsible for control of the UI

elements. They decide if the UI elements will be displayed (such as “Task”, “Device” and

“User”) and how they will be displayed (such as “Iterator” and “Table”). The following

diagram shows the elements and their attributes which are used for different occasions.

Chapter 5 73

 Iterator
collection

Device
device
value

User
user
value

Task
task
value

Table
width
height
align
bgcolor

Td
align
width

Tr

 Figure 5.7 UI control elements

From Figure 5.7, we can see that Task, Device and User elements have a similar structure

and application, but control the layout by showing or hiding through checking different

conditions. For example, Task elements controlling content between a start tag and end tag

will be shown if a user performs a certain task. Otherwise, it will not be shown.

There are also some other elements provided within this project, like an “Iterator”, which is

used to loop the same content.

5.5.3 Adaptation to Various Screen Sizes

So far, we have designed a set of basic elements for our AUIT page to create an adaptable

user interface. We have achieved a number of tasks specified in our requirement

specification. Now we need to design an approach to have our AUIT page adapt to any size

of screen.

5.5.3.1 Approaches

In typical web based application, the interface designer normally designs an interface

based on the window size of a desktop PC. For example, a web page should be produced

for an 800x600 display. Our approach however, will allow the AUIT page to display

appropriate content on any screen, irrespective of size.

Based on our specified requirements, we will need to intelligently transform a given user

interface from one context to another one; thus, if needed, multiple user interfaces can be

generated simultaneously. Our approach to achieve this is to have an internal

Chapter 5 74

transformation that will perform “splitting” of screens into multiple screens when all items

in a form cannot be sensibly displayed in one go on the display device.

For example, when text will over-fill the display device screen, text to the right and bottom

over-filling the screen is moved to separate screens, linked by hypertext links. This means

the user does not need to scroll either horizontally or vertically to reach over-flowing

information, producing a more easy to use interface across all devices.

Mobile devices that have small window size can move the overflow content to the next

card. The user can choose to view the content on the other card by clicking on the relevant

link.

Desktop(window 800x600) PDA(window 160x160)

(b)

Figure 5.8 Example about screen splitting

For example, when a AUIT page shown in Figure 5.8 is running at server, it will generate

the page (a) if a user uses a desktop browser with window size 800x600 pixels to view. It

will generate the screen (1) if the user is on a PDA with a window size 160x160 pixels and

the user can click the right arrow link on screen (1) to view content on screen (2).

AUIT
page

(a)

(3)

(2) (1)

(4)

Chapter 5 75

Therefore the entire content can be viewed by using the navigation arrow link. For a PDA

device, after an AUIT tag is processed, it generates output with four parts, but only

displays the first part, caching the rest in a buffer instead of outputting them all at once.

We designed a built-in algorithm to generate navigation links automatically if there is need

to separate the content of a page into several pages. These links are not specified by the

users, but exist in the generated HTML or WML code to direct the web user to view the

entire content of a page. The direction of the link is also generated automatically.

Another example of this process is outlined in Figure 5.9. Here a PDA requests a screen

that is too big for it to display, so the AUIT tag output is grouped into multiple screens.

The PDA gets the first screen to display and the user can click on the Right and Down

links to get the other data. Some fields can be repeated in following screens (e.g. the first

column of the table in this example) if the user needs to see them on each screen.

PDA
Screen

Size

AUIT Page
<auit:form>
 <auit:label>Hello</auit:label>
 <auit:paragraph/>
 <auit:label>Name:</auit:label>
 <auit:editfield id=customer field=name />
 <auit:table>
 ….
</auit:form>

Label 1 Edit 1

Table
Col1 Col2 Col3
Row2 R2 C2 R2 C3
Row3 R3 C2 R3 C3
Row4 R4 C2 R4 C3

Full Screen Size

Label 1

Edit 1

R1 C1 R1 C2
R2 C2 R2 C2

D

R

First screen

R3 C1 R3 C2
R4 C1 R3 C2

R5 C1 R5 C2

Col3
R2 C3
R3 C3
R4 C3

R1 C1
R2 C2
R3 C1
R4 C2

“Down” screen
“Right” screen

PDA requests screen

PDA gets first screen
then right/down on

user request…

Tags generate
output

Output grouped
into multiple
screen buffers

UL

Figure 5.9 Example of screen splitting

5.5.3.2 Design Elements to Perform Screen “Splitting”

So far we have defined some AUIT elements that can be adapted to generate Markup

language for various devices. No matter what programming language is supported to

render a user interface, we can see that each interface is actually composed of some UI

elements, such as textfields, buttons, labels and so on.

Chapter 5 76

For the purpose of adaptation to various screen sizes, we need to design some elements so

that AUIT specified screens can enable users to use those elements to group all the UI

elements on an AUIT page to form a wide variety of layouts, perform “splitting” of screens

into multiple screens when all items in a form can not be sensibly displayed in one go on

the display device.

We designed the system to use a “Group” element to achieve our goal. They are

responsible for controlling the display of UI elements on the screen and decide if the

content needs to be moved to another screen or card. For the purpose of ease to use by end

users, we have designed our elements as in the column two of the following table of Figure

5.10. The new elements are designed using the principles behind “Table” elements in

HTML, but with different usage.

On HTML, the script is like On Adaptable Approach

<table>

 <tr>
 <td>….</td>
 <td>…</td>
 </tr>
 <tr>
 <td>….</td>
 <td>…</td>
 </tr>

</table>

<group>

 <grouptr >
 <grouptd > content</grouptd>
 <grouptd > content </grouptd>
 </grouptr>
 <grouptr >
 <grouptd > content </grouptd>
 <grouptd > content </grouptd>
 </grouptr>

</group>

 Figure 5.10 Use of “group” elements

We need to fit all UI elements in the “content” place of above table. The reason is that we

can have “width” or “height” values specified as properties of the “group” elements is to

perform some algorithm functions within the “group/grouptr/grouptd” elements, such as

splitting content to display on multiple windows. We will explain this in more detail in

next section.

Based on this idea, we can create an algorithm to control page layout to display a group of

elements in the one window of a device and other groups of elements in other window with

links if there is not enough space to display everything in one screen. For example, the

simple web page shown in Figure 5.11 contains a form used to search a list of vehicles that

meet the criteria that user inputs. The whole form is composed of many UI elements and

Chapter 5 77

would not be able to fit a mobile device screen which has only 16 characters in a line and

maximum eight lines to display.

An approach to solve this problem is that we can specify the “minimum dividable cells”,

and use an internal algorithm to divide the content of a page and display them on several

screens as shown in Figure 5.11.

 Window Size(200*200)

<group>
 <grouptr height=”20”><grouptd width=”200”> -----Cell 1----- </grouptd></grouptr>
 <grouptr height=”20”><grouptd width=”200” > -----Cell 2----- </grouptd></grouptr>
 <grouptr height=”20”><grouptd width=”200”> -----Cell 3----- </grouptd></grouptr>
 <grouptr height=”20”><grouptd width=”200”> -----Cell 4----- </grouptd></grouptr>
 <grouptr height=”20”><grouptd width=”200”> -----Cell 5----- </grouptd></grouptr>
 <grouptr height=”20”><grouptd width=”200”> -----Cell 6----- </grouptd></grouptr>
</group>

Window 1 (200*60)

Window 2 (200*40)

 Figure 5.11 Approach to perform screen “splitting”

Figure 5.11 shows that the “Search Form” page can actually be divided into six main cells

as we show on the right side, with one or more UI elements in each of them.

Cell1 (height=20)--Label

Cell 2(height=20)--Label, Options

Cell 3(height=20)--Label, Options

Cell 4(height=20)--Label, Options, Label, Options

Cell 5(height=20)--Label, Options, Label, Options

Cell 6(height=20)--Image

Cell 1
Cell 2 Screen 1
Cell 3

Cell 5
Cell 6 Screen 2
Cell 7

Cell 1
Cell 2 Screen 1

Cell 3
Cell 4 Screen 2

Cell 5
Cell 6 Screen 3

Chapter 5 78

The purpose of specifying a minimum dividable cell is that, after we apply our algorithm,

several or all “minimum dividable cells” can be grouped and placed in one screen, the

others can be grouped in other screen depending on the window size of a device.

The minimum dividable cell is a group with one or more UI elements inside. It can not be

divided further. The approach to specify the cell is very flexible. For example, in Figure

5.11 we should not separate “cell 2” to be two cells. “Make label” and “Make options”

have to be in one screen, otherwise after performing the algorithm, these two elements

could be put in two different screens which will be meaningless. So the rule to specify and

group the elements is to make sure not to split elements that could make the interface

meaningless. The page designer needs to specify the minimum dividable cells. In Figure

5.11, the minimum dividable cell has been specified so that each cell contains mix of text

labels, textfields or dropdown lists.

For the example shown above, we have set window 1 with size of 200x60 and window 2

with size of 200x40 to view the layout of the AUIT page. In window 1 we will see Cells

1,2,3 in screen 1 and in window 2 we will see Cells 1 & 2. The arrow signs on the window

are links that can link to the other pages or cells.

5.5.3.3 Algorithm

We need to apply some kind of algorithm and functions to make the system display the

content properly on the device as we designed above. Our AUIT system has a database of

device characteristics (screen size, colour support and default font sizes etc), that are used

by our screen splitting algorithm. End users can also specify their own preferences for

these different display devices characteristics, allowing for some user-specific adaptation

support.

With the cell specified as shown in Figure 5.11, the algorithm is chosen to render the

information showing on each page or card.

For example, we can use the above approach with rows and columns to control the layout

with specified content in each cell within that table:

Chapter 5 79

• Calculate the total column number and total row number for the table.

• Based on specified group column “width” and row “height” for each cell as a

property of the “group/grouptr/grouptd” tag, calculate the maximum height for each

row and max width for each column.

• Allocate the content for each page or card based on the specified screen size. For

example, put the content of the table with total column width and total row height

less than the windows width and height together, and move the rest content to next

window, and so forth.

5.6 Summary

In this chapter we have introduced an adaptable approach for developing Internet

applications for various devices. With some assumptions specified when doing analysis,

we have created a special mark-up language which is independent of device rendering

markups like HTML and WML that contains descriptions of form elements, layout and

user/task relevance, unlike typical data XML encodings. We focused on analysis and

design of our adaptable approach, based on the requirements that we have specified in this

chapter.

In the next chapter we will use JSP technology to create a set of custom tags to implement

our design ideas.

Chapter 6 80

Chapter 6 - Implementation of The AUIT

6.1 Introduction

In chapter five, we have issued the system requirements, analysis and design for our

Adaptable User Interface Technology (AUIT).

In this chapter we will implement AUIT (Adaptable User Interface Technology) in the

form of a set of custom tags in a tag library (AUIT.tld). We have chosen JSPs as our

primary implementation technology to implement our adaptable approach and to

complete several aspects of adaptation, such as generation of HTML or other mark up

languages and etc. We will use JavaBeans to complete the business logic.

An AUIT tag library has been designed as a package as one possible implementation

option. There exist many potential paths that we can take to actually implement this

approach.

6.2 JSP Custom Tags

Java Server Pages are the Java 2 Enterprise Edition (J2EE) solution for building thin-

client web applications, typically used for HTML-based interfaces but also usable for

building WML-based interfaces for mobile display devices.

Java Server Pages (JSP) is the mechanism for delivering dynamic Web-based content.

Although JSP provides a set of predefined tags, we can also define our own tag

extensions that encapsulate common functionality.

6.2.1 Overview of Tags

From experience with HTML, we already know the types of tags that can be used.

There are basically two types of tags and both have different attributes.

Chapter 6 81

Bodyless tag: is a tag that has a start tag but does not have a matching end tag. They

are used to represent certain functions, such as presenting an input field or displaying

an image.

Tags with a Body: A tag with a body has a start tag and a matching end tag. They are

used to perform operations on the body content, such as formatting.

Our knowledge of tags types provides the chance to create tags based on features. The

tag with a body allows us to perform content related functions between the start tag

and body tag, because a set of API such as “BodyTagSupport” class allow us to get

the body part of a tag and perform an algorithm and other functions to control the

content.

6.2.2 Benefits of JSP Custom Tags

Tag libraries, or taglibs are a feature of JSP that enables us to build libraries of

reusable JSP tags. That means user can encapsulate common behaviour in their own

JSP tag and use it across the JSP pages in web applications. The ability to extract

common functionality from a JSP page and easily reuse it in other pages and Web

applications can be very powerful.

Typical uses of tag extensions are:

• To handle iteration over collection data structures without the need for

scriptlets

• To filter or transform tag content, or even interpret it as another language.

• To introduce new scripting variables into the page.

In the following sections, we describe how to use the custom tags as the main

technology to implement our approach. Custom tags look the same as the HTML tags,

excepting a prefix at the beginning, so that they are easy to be used by developers

who are familiar with HTML tags. The name of the custom tags should also be close

to typical HTML tag names because most web designers are at least familiar with

HTML.

Chapter 6 82

6.2.3 Defining the Tags

Defining a custom tag is quite simple. We will describe our AUIT tags using the

following steps.

• Give Name

First of all, we should give a proper name to each tag. The rule for this is that the

name should be as close as possible to the related HTML or WML tag name for

convenience.

• Choose Attributes.

Each tag has a set of attributes. This should follow the same rule as above. Because

we will need to merge the WML and HTML, the attributes will not be exactly the

same as HTML or WML, but should be close to them.

6.2.4 Build and Describe Tags

Once we have described the tags and their attributes, we can start to write the tag

classes that will provide functionalities. All the custom tags in JSP are required to

implement the “javax.servlet.jsp.tagext.Tag” Interface.

In this section, we will specify how to create a simple tag using the following

example. We will create a simple tag called <AUIT:image> that can display images

on the browser. This AUIT tag is a device independent tag and different from HTML

 and WML tags.

In chapter three, we have introduced the features of tags in HTML and WML.

To implement this tag, we will create a tag called <AUIT:image> for displaying

images on the browser.

Chapter 6 83

<AUIT:image> tag has alternate text values and a range of source files (typically .gif,

.jpg and wireless bit map .wbmp formats). The following example shows how to

create the <AUIT:imgae> tag.

Code Example Description
package tagext;

import java.io.IOException;
import javax.servlet.jsp.*;
import javax.servlet.jsp.tagext.*;

A tag is a Java class that implements a

specialized interface. To define a simple

bodyless tag, our class must implement the Tag

interface. TagSupport abstract class is a

convenience class that provides default

implementations for all the methods in the Tag

interface. Our ImageTag is to extend the

TagSupport class.

Set methods can be used to handle tags that

have attributes. We have set five attributes for

ImageTag.

public class ImageTag extends TagSupport{

 private String alt,src,align,writealign,device;
 private int height,width;
 private StringBuffer output=new StringBuffer();

 public void setAlt(String n){this.alt=n;}
 public void setAlign(String n){this.align=n;}
 public void setSrc(String n){this.src=n;}
 public void setHeight(int n){this.height=n;}
 public void setwidth(int n){this.width=n;}

public int doStartTag() throws JspException{

 return SKIP_BODY;
}

The doStartTag method is invoked where the

start tag is encountered. In this example, this

method returns SKIP_BODY because this is a

simple tag with no body, otherwise it should

return EVAL_BODY_TAG if we need to

evaluate the body of this tag
public int doEndTag() throws JspTagException{

 if(device== “html”)
 ouput.append(“ image tag syntax for HTML ”);
 else
 output.append(“image tag systax for WML ");

 return EVAL_BODY_TAG;

 }

}

The doEndTag method is invoked when the

end tag is encountered. In this example, this

method returns EVAL_BODY_TAG because

we do not want to evaluate the rest of the page;

otherwise it will return EVAL_PAGE

 Figure 6.1 Part of code example for a simple custom tag class and explanation

Like HTML, WML has an tag to support images. However, there are a couple

of points about the tag in WML that we need to be aware of. First, the “alt”

attribute of the <AUIT:image> is mandatory. Secondly, it is one of the few tags in

WML that does not have a closing tag. Therefore, it needs to have its own closing

mark (/) in the tag. The new “wbmp” image format stands for wireless bitmaps, which

is specifically designed for wireless devices with a small monochrome screen.

Chapter 6 84

For example

WML:

HTML:

Part of AUIT.tld Description

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE taglib PUBLIC "-//Sun Microsystems,
Inc.//DTD JSP Tag Library 1.1//EN"
"http://java.sun.com/j2ee/dtds/web-
jsptaglibrary_1_1.dtd">

<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>examples</shortname>
 <info>Simple example</info>
 <tag>

 <name>image</name>

 <tagclass>tagext.ImageTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>

 <attribute>
 <name>alt</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>src</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>width</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 ….
 </tag>

The tag library descriptor, which we’ll

name AUIT.tld, is required to map the

tag to the tag handler class and defines

the way JSPs may interact with the

ImageTag class. The tag library

descriptor is an XML document

conforming to a DTD specified by Sun

Microsystems:

The “alt” attribute of the

<AUIT:image> is mandatory. So

that the body for <required> tag

should be true.

Figure 6.2 Part of AUIT.tld and Description

This tag library can include any number of tags, so we’ll add all AUIT tags to this tag

library descriptor for the remaining implementation.

Code Example

 <AUIT:image src=”imagename” alt=”description” width=”100” height=”50”>

Because WML has different properties to HTML, we can ignore the properties that

WML does not support. We need to specify the mandatory properties such as “src”

and “alt” for each <AUIT:image> tag.

Chapter 6 85

Because HTML allows either JPG or GIF graphic formats, we can write the image

names the same as HTML. For WML, we need only to delete the extension of the

name, and add “.wbmp” because that is the only image format that WML supports.

6.2.5 How our JSP custom tag-implemented AUIT page work

A developer writes an AUIT-encoded screen specification which makes use of

JavaBeans (basically Java classes) to process form input data and to access Enterprise

JavaBeans, databases and legacy systems. At run-time the AUIT tags are processed by

the JSPs using the custom tag library classes we have written. When the JSP

encounters an AUIT tag, it looks for a corresponding custom tag library class that it

invokes with tag properties. This custom tag class performs suitable adaptations and

generates appropriate output text to be sent to the user’s display device. Link and

submit tags produce HTML or WML markups directing the display device to other

pages or to perform a POST of input data to the web server as appropriate. Figure 6.3

outlines the way processing of AUIT tags is done. Note that dynamic content scriplet

code can be interspersed with AUIT tags (not illustrated here).

Display Device

Web Server

AUIT Page
<auit:form>
 <auit:label>Hello</auit:label>
 <auit:paragraph/>
 <auit:label>Name:</auit:label>
 <auit:editfield id=customer field=name />
 <auit:table>
 ….
</auit:form>

Form tag
Label tag

Edit field tag

Java Beans
EJBs,

Databases,
legacy

systems

1. GET/POST
to AUIT JSP

2. Java scriptlet
code to JSPs

3. JavaBeans to
app server4. Get tag text

5. Return text

6. Closing form
tag assembles
output text &

returns to device

 Figure 6.3 How our JSP custom tag-implemented AUIT pages work

6.3 Implementation of AUIT tags

Chapter 6 86

In section 6.2, we introduced JSP custom tags to implement our designs. The

objective is to develop a set of device-independent screen element tags that allow

developers to specify their screens, independent of user, task and display device.

We have outlined some of these tags in Figure 6.4 along with typical mappings to

HTML and WML mark-up tags.

Screen Element Tag Description HTML WML
<AUIT:template> Encloses contents of whole screen <html> <wml>

<AUIT:form> Indicates an input form to process <form> < do type=accept>

<AUIT:group>
<AUIT:grouptr>
<AUIT:grouptd>

Used for group one or more UI elements in

screen, and performs screen “splitting” for

adaptation of various screen sizes.

-

-

<AUIT:table>
<AUIT:tr>
<AUIT:td>

Displays UI elements in a group cell in a table

format.

<table> <table>

<AUIT:iterator> Iterates over data structure elements - -

<AUIT:break> Line break

<AUIT:label> Label on form Plain text Plain text

<AUIT:layout> Describe the display format for label

<AUIT:textfield> Edit field description <input type=text> <input type=text>

<AUIT:radio> Radio button <input type=radio> <input type=radio>

<AUIT:select> Popup menu item list <select …> <select …>

<AUIT:image> Image placeholder

<AUIT:link> Hypertext link <go href=…>

<auit:submit> Submit button (for POST) <input type=submit <do><go href=…>

<% … %> Embedded Java scriptlet code - -

 Figure 6.4 Examples of AUIT tags and corresponding HTML,WML tags.

Each kind of AUIT tag has various properties the developer can specify, some

mandatory and some optional. Tags generally either layout control (form, group,

table, row, paragraph etc), page content (edit field, label, line, image etc), or control

inter-page navigation (submit, link).

Therefore, our task becomes to create a set of custom tags to make up our AUIT page.

Our AUIT pages are actually Java Server Pages (JSPs) that contain a number of JSP

custom tags. In the following sections, we will describe some of the AUIT custom

tags in further detail.

Chapter 6 87

6.3.1 Build Document Structure Tags -Template Tag

The Template tag is a most important tag. It appears on the top of each AUIT page

and performs three main functions, which are:

• Identifying the device

• Providing AUIT page structure

• Output the layout at close tag of </AUIT:template>.

6.3.1.1 Identifying the Client’s Capabilities to Serve Appropriate Content

In section 4.4.3.2 of chapter four, we explained how we ascertain user device

information. In the traditional approach, because we have different version of “JSPs”

for different devices, we only need to detect the device information once in the

“index” page. But using AUIT, we have one AUIT page for all devices, so we need to

detect the device information in each AUIT page. Because we need to use that device

information in almost all AUIT tags within an AUIT page, we need to detect the

device information at the very beginning of each AUIT page and store the data as

page variable that can be used by any other AUIT tags.

The content dynamically generated by an AUIT page must be in a format supported

by the requesting device. The identification of the capabilities of a requesting client

means, in our case, specifically identifying the proper format in which to respond. For

example, if a mobile device requests service, we need to provide data in WML

format.

Again we need to use the same approach to get device information as we described in

chapter four. Based on the type of user agent from the header information, we have a

“page variable” to store the device information so that it can be fetched by any AUIT

tags. However, we have put all these functions in a “templateTag” class, instead of an

“index” page as specified in Chapter four.

Chapter 6 88

Almost all the custom tags in the AUIT page need the device information, so that after

identify the device type, the device information can be stored as an attribute using

setAttribute() method. It can be accessed and retrieved by all of the elements using

getAttribute() method.

Code Example:
 pageContext.getRequest().setAttribute("device", useragent)

6.3.1.2 Specify AUIT Document Structure

Another function that <AUIT:template> provides is to describe our AUIT page

structure. From the design for the basic structure of an AUIT page specified in

Chapter five, each AUIT page implemented by JSP custom tag should have the

following basic page structure.

<AUIT:template>
 <AUIT:group>
 <AUIT:grouptr height=”…”>
 <AUIT:grouptd width=”…”>
 …
 </AUIT:grouptd>

 <AUIT:grouptd width=”…”>
 …
 </AUIT:grouptd>
 </AUIT:group>
</AUTI:template>

 Figure 6.5 AUIT page structure

The code shown in Figure 6.6 is part of the “templateTag” class. This generates the

WML or HTML document structure respectively appropriate for the requesting device

detected previously.

 if(device=="html")
 output.append("<html><head><title>"+name+"</title></head><body>")
 else{
 output.append("<?xml version='1.0'?>");
 pageContext.getResponse().setContentType("text/vnd.wap.wml");
 output.append("<!DOCTYPE wml PUBLIC '-//WAPFORUM//DTD WML 1.1//EN'
 'http://www.wapforum.org/DTD/wml_1.1.xml'><wml>");
 }

Figure 6.6 Part of code in “templateTag” class

Chapter 6 89

6.3.1.3 Output the layout

To output the layout we need to create a “StringBuffer” object called “output” in

“doStartTag” method of “templateTag” class and have assigned it as a value of

“output” attribute. This “output” variable can be retrieved by any custom tags

specified between <AUIT:templage> and </AUIT:template>.

Figure 6.7 shows the code example of “templateTag” class that processes the

“output”.

public int doStartTag() throws JspTagException{

 StringBuffer output=new StringBuffer();
 pageContext.getRequest().setAttribute("output",output);

 …..
 return EVAL_BODY_TAG;
}
public int doEndTag() throws JspTagException{

 output=(StringBuffer)pageContext.getRequest().getAttribute("output");
 …
 bodyContent.getEnclosingWriter().write(output.toString());

}

 Figure 6.7 Part of code in templateTag class

There is a difference between our approach and a normal JSP page that contains

several custom tags. Our approach will write out the “StringBuffer” output at the

very end of the JSP page in “doEndTag” method of “templateClass” and send it to the

requesting client by server. The output needs to be in the language format that the

device supports. But a normal JSP page will usually write output at the end of each

custom tag.

The benefit of our approach is that we can pass the content in StringBuffer - “output”

for further processing, such as dropping off or adding content at any stage.

For example lets say we need to pass all the elements enclosed in “group” elements

into a function bean for “splitting screen” using the algorithm as discussed previously.

The algorithm will decide if there is need to split the screen and what to display on the

Chapter 6 90

first screen. When the end tag of the template tag is reached, we will write output to

the first screen, which might be just one quarter of the entire content of the AUIT

page.

6.3.1.4 Sequence Diagram and Description

The sequence diagram shown in Figure 6.8 can help us to understand the whole

process.

 page.jsp

get the name
of this file

TemplateTag PageContext PageParameter DBConnection BodyTag
Support

doStartTag getPageName()

setAttribute()

getDeviceInfo(header)

For different
devices

setDeviceInfo

setPageInfo()

getHeader()

connectDB()

getDeviceInfo()

appendheadinfotobuffer()
EVAL_BODY_TAG

doEndTag()

getBodyContent()

EVAL_PAGE
writeoutput()

 Figure 6.8 Sequence Diagram of “templateTag” class

6.3.2 Build Page Flow Control Elements

From the design that we introduced in chapter five we have seen the description of

<group>,<grouptr> and <grouptd> tags. Now we need to implement these three tags

using JSP custom tags.

Chapter 6 91

6.3.2.1 Using “Group/Grouptr/Grouptd” to Control Layout

<AUIT:group> ,<AUIT:grouptr> and <AUIT:grouptr> tags are used when auto-

laying out AUIT elements enclosed in group cells. These tags are designed for

completing several adaptation tasks.

One or more AUIT UI elements can be included in the <AUIT:grouptd> as cells just

as “table/tr/tr” tags are used in HTML. Each of these AUIT tags has various

properties which are listed in the following table.

Tag Properties

<AUIT:group>

width (mandatory): indicates the entire width of the device screen

weight (mandatory):indicates the entire height of the device screen

align(optional) : indicates the content alignment among the device screen(for

html)

bgcolor(optional) : indicates the background colour (for html)

<AUIT:grouptr> Height(optional) : indicates the width pixels of the cell takes

<AUIT:grouptd>

width: indicates the height of the cell takes

colspan: shows the number of columns the cell will take.

align: the cell alignment

 Figure 6.9 “Group/grouptr/grouptd” tags and their properties

In chapter five we introduced the most important functions that these elements

provide; being to control page layout and perform “splitting” of screens into multiple

screens when all items in a form cannot be sensibly displayed in one go. We have

also introduced the algorithm needed to complete these tasks.

For example, the following screen dump was developed using AUIT tags and

rendered by an IE5.0 browser on standard desktop window with size 800x600 pixels.

Chapter 6 92

Figure 6.10 Search Result Interface displayed on a standard browser

This is a JSP page comprised of AUIT tags. Some of the tags we will introduce later;

for now we will focus on how <AUIT:group>, <AUIT:grouptr> and <AUIT:grouptd>

control the screen splitting. All the transformations will be done automatically by

backend code. Figure 6.11 shows the code for the page in Figure 6.10.

<%@ taglib uri="/AUIT" prefix="AUIT" %>
<jsp:useBean id="testBeanId" scope="page" class="beans.FunctionBean" />
<%testBeanId.connectDB();%>
<AUIT:template>

 <AUIT:group width="800" height="800" >

 <AUIT:grouptr cellheight="100" >
 <AUIT:grouptd cellwidth="100" colspan="5">
 <AUIT:layout size="+3" bold="b" color="#101077">
 <AUIT:label text="Search Result"></AUIT:label>
 </AUIT:layout>
 </AUIT:grouptd>
 </AUIT:grouptr>
 <AUIT:grouptr cellheight="100" >
 <AUIT:grouptd cellwidth="100">
 <AUIT:layout size="3" color="#101077" bold="b">
 <AUIT:label text="Status"></AUIT:label></AUIT:layout>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="100">
 <AUIT:layout size="3" color="#101077" bold="b">
 <AUIT:label text="Year"></AUIT:label></AUIT:layout>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="100">
 <AUIT:layout size="3" color="#101077" bold="b">
 <AUIT:label text="Vehicle"></AUIT:label></AUIT:layout>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="100">
 <AUIT:layout size="3" color="#101077" bold="b">
 <AUIT:label text="Kms"></AUIT:label></AUIT:layout>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="100">
 <AUIT:layout size="3" color="#101077" bold="b">
 <AUIT:label text="Price "></AUIT:label></AUIT:layout>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="100">
 <AUIT:layout size="3" color="#101077" bold="b">
 <AUIT:label text="Condition"></AUIT:label></AUIT:layout>
 </AUIT:grouptd>
 </AUIT:grouptr>
 <% java.util.List carlist=(java.util.List)testBeanId.getCarList();%>
 <%java.util.Hashtable car=(java.util.Hashtable)carlist.get(index.intValue());%>

 <AUIT:iterator collection="<%=carlist%>" >

Chapter 6 93

 <AUIT:grouptr cellheight="100" >
 <AUIT:grouptd cellwidth="100">
 <AUIT:label text='<%=(String)car.get("status")%>'></AUIT:label>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="100">
 <AUIT:label text='<%=(String)car.get("year")%>'></AUIT:label>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="100">
 <AUIT:label text='<%=(String)car.get("vehicle")%>'></AUIT:label>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="100">
 <AUIT:label text='<%=(String)car.get("kilos")%>'></AUIT:label>

 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="100">
 <AUIT:label text='<%="$"+(String)car.get("price")%>'></AUIT:label>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="100">
 <AUIT:label text='<%=(String)car.get("condition")%>'></AUIT:label>
 </AUIT:grouptd>
 </AUIT:grouptr>

 </AUIT:iterator>

 </AUIT:group>

</AUIT:template>

 Figure 6.11 Code Example for “Search Result” page

Apart from the general desktop browser with a standard window size of 800x600, we

have used another two devices to browse this page which are shown in Figure 6.10.

Window 1: 160x160

Window 2: 16characters*5lines

 Figure 6.12 Page dumps for screen splitting performed on two devices

1

2

1

2

1

2

1

2

Chapter 6 94

The “Down”, “Right”, “Up” and “Left” links shown on window 1 of Figure 6.12 are

generated automatically. In window 2, we see “D”, “R”, “U” and “L” links which

fulfil the same purpose. The content that can be displayed in one screen of a desktop

browser has been spit into four.

Saved information is stored in four “StringBuffer”s instead of one and only content in

the first “StringBuffer” has been output. To view the data on the other three pages the

user can click on the links.

The links are generated using this approach shown in Figure 6.13 for HTML and

WML enabled files.

For devices support HTML For devices support WML

<html>
 <body>

Right (link to10)

 Screen 00

Down (link to 01)

Left (link to 00)

 Screen 01

Down (link to 11)

Up (link to 00)

 Screen 10

Right (link=11)

Up (link to 01)

 Screen 11

Left (link to10)

 </body>
</html>

<WML>

 <Card id=”00”>

 R(link to10)

 Card 00

 D(link to10)

</Card>

<Card id=”01”>

 L(link to 00)

 Card 01

 D(link to 11)

</Card>

<Card id=”10”>

 U(link to 00)

 Card 10

 R(link to11)

</Card>

<Card id=”11”>

 U(link to 01)

 Card 11

 L(link to 10)

</Card>

</WML>

 Figure 6.13 Example to show links for various devices

Figure 6.13 shows the generated files and the page content links of a “search results”

page which has been split into four parts. To generate relevant links for HTML and

WML enabled devices, we need to process them separately in terms the device’s

specific requirements for this page.

When a WML enabled mobile device receives this deck (jsp file), it loads the first

card automatically, and the user can navigate using the soft key on the device.

Chapter 6 95

6.3.2.2 Showing the Table in a Card.

There is limitation on “table” tag in WML markup language that are different to the

HTML equivalents. Wml will only allow text and image type elements within the cell.

Getting the same table layout as shown in Window 1 of Figure 6.12 using wml is not

as easy as in HTML.

One approach is to specify the alignment for each cell manually, deleting non-

essential characters. To implement this approach, we need to count the number of

characters that need to be displayed on each cell.

For example, lets say we allocate “100” pixels as “width” for a cell on which we need

to display a line of characters. In the database, we have pre-stored some data such as

the number of pixels that a character will take for each device. If a character will take

5 pixels on a PDA, the number of characters that our device can display per line will

be 100/5=20. This example is shown in Figure 6.14.

Figure 6.14 Page dump for display table in a card

With the above value, we can calculate the maximum number of the characters that

each cell could contain. We will then delete the rest of characters and only display the

first five characters for each cell.

Due to the full automation cutting of the characters, the limitation with this approach

is that some characters with important information might be cut as well, such as price

of a car.

Chapter 6 96

6.3.3 Build UI Control Elements

UI control elements are a set of elements to control the layout of UI elements. They

will not affect the layout of each UI element itself, but the way they display on the

screen.

They decide if a group of UI elements will be displayed and/or the way that they will

appear in the window.

These elements include:

1.User/Task/Device controlling which elements will be shown

2.Table,tr and td will display a group of elements in table format

3.Iterator will iterate a group of elements on the window

6.3.3.1 Build User/Task/Device Content Control Tags

As we have shown in previous chapter, a page can show or hide the content based on

the particular user, task and device value. In a traditional approach, we used the

“if/else” statement to switch off part of the content of a page to be displayed. In

AUIT, we have design three elements <AUIT:user>,<AUIT:task>,<AUIT:device> to

perform these tasks.

• Use of these AUIT tags

The following are examples of how we use these tags and how they work. These are

demonstrated on pages we have developed in our car site, using AUIT.

Example One: Use <AUIT:user> tag

This code is part of the AUIT page for “search results”, being a list of cars. From the

login page, we have created a “cookie” so that we can identify the user. For this

example, if the user is a registered dealer, page (1) in Figure 6.15 will show an extra

Chapter 6 97

column with an “Update” link on it that allows the dealer to update their information.

Otherwise page (2) will show.

<AUIT:user user="dealer" value="dealer">
 <AUIT:grouptd cellwidth="100">
 <AUIT:link direct="" param="false">
 <AUIT:label text='Update' allowcut='false'></AUIT:label>
 </AUIT:link>
 </AUIT:grouptd>
<AUIT:user>

 Figure 6.15 Code example for “ user” adaptation

Example Two: Use <AUIT:task> tag

The two pages shown in Figure 6.16 are from same AUIT page called

“searchresult.jsp”. The first one is shown when a user searches a list of cars and the

second page is shown when a user searches a list of dealers. The different layout is

generated from the different task value passed into this page. The task value has to be

passed and identified on this page.

 Figure 6.16 “ searchresult.jsp”

The code shown in Figure 6.17 is the part of the code for showing the above two page

dumps.

task= “car” task= “dealer”
(1) (2) (1) (2)

Chapter 6 98

<AUIT:grouptr cellheight="100" >

<AUIT:task task="task" value="car">
<% java.util.List
dealerfields=(java.util.List)testBeanId.g
etCarFields();%>
<AUIT:iterator
collection="<%=carfields%>">

 <AUIT:grouptd cellwidth="100">

 <AUIT:label text="
<%=(String)carfields.get(index.intValue()
)%>">
</AUIT:label>
</AUIT:layout>

</AUIT:grouptd>
 </AUIT:iterator>

 </AUIT:task>

<AUIT:task task="task" value="dealer">

<% java.util.List
dealerfields=(java.util.List)testBeanId.ge
tDealerFields();%>

<AUIT:iterator
collection="<%=dealerfields%>">

 <AUIT:grouptd cellwidth="100">

 <AUIT:label text="
<%=(String)dealerfields.get(index.intValue
())%>">
</AUIT:label>
</AUIT:layout>

</AUIT:grouptd>
 </AUIT:iterator>
</AUIT:task>

</AUIT:grouptr>

Figure 6.17 Code example for using <AUIT:task>

Example Three: Use <AUIT:device> tag

The two pages shown in Figure 6.18 are from same AUIT page called

“HomePage.jsp” but it displays different content on different devices. The first page

shows three featured cars when the user is viewing the page using a browser on a

desktop PC. The second page would not show on a mobile device with small window

size.

Chapter 6 99

<AUIT:device device="IE" value=”html”>

 <AUIT:grouptr cellheight="100">

 <AUIT:grouptd cellwidth="100">
 <AUIT:image src=”Images/car1.jpg”
 alt="Ovalphotos" width="200" height="150">
 </AUIT:image>
 </AUIT:grouptd>

 <AUIT:grouptd cellwidth="100">
 …
 </AUIT:grouptd>

 <AUIT:grouptd cellwidth="100">
 …
 </AUIT:grouptd>
 </AUIT:grouptr>

</AUIT:device>

 Figure 6.18 Page dump and Code example for “device” adaptation

• How the tags work

Whenever we use these UI control tags, we need to get the proper value of user, task

and device in a page as a parameter or attribute. The device identifying information is

detected in <AUIT:template> through the header information .

The user information is stored in a cookie. After a cookie is defined successfully, the

value of the cookie can be fetched anywhere on a web site. We stored our user

information in a cookie after a user registered and logged in for the first time. For

example, in Figure 6.15, the “update” link is shown only when the detected user value

is “dealer”, not for others. For a page to detect the user information, the user needs to

login and we will save the user value throughout the cookie until that user logs off.

All the content displayed will be user-specific. Obtaining & storing the “user” values

is easily achieved provided that the users system supports cookies. Of course, some of

the devices just don’t support cookies, so the user information cannot be received or

set properly. However, for the purpose of this exercise we have assumed that all

devices we are writing for do support cookies, so we are not going to focus on solving

this problem in this thesis.

Chapter 6 100

Task information is usually acquired as it is passed between pages by a variable either

via a “form” or a “link”. The data can be captured through either a form or a link

using the “getParameter()”method that is provided by JSP.

After we have received these values, we can compare them with the one specified as

an attribute in the AUIT tag.

For example, if we have the value “car” as a task variable from the above method, the

following code shows the “content” in between the start tag and end tag will be

displayed.

Code Example for how to use “task” in AUIT page

<AUIT:task task="task" value="car">
 …content..
</AUIT>

Code Example of “TaskTag”

public int doStartTag() throws JspTagException{
 supertask=(String)pageContext.getRequest().getParameter("task");
 if(!supertask.equals(value)){
 return SKIP_BODY;
 }
 return EVAL_BODY_TAG;
 }

Figure 6.19 Explanation of the task based adaptation

6.3.3.2 Table Elements

Figure 6.20 shows how to use the “table/tr/td” AUIT tags to create the aligned UI

layout.

Chapter 6 101

 HTML

 WML

<AUIT:table>
 <AUIT:tr>
 <AUIT:td>
 <AUIT:label text="Login"></AUIT:label>
 </AUIT:td>
 </AUIT:tr>
 <AUIT:tr>
 <AUIT:td>
 <AUIT:label text="User Name:"></AUIT:label>
 </AUIT:td>
 <AUIT:td>
 <AUIT:textfield type="text" name="login" size="12" value="wendy">
 </AUIT:textfield>
 </AUIT:td>
 </AUIT:tr>
 <AUIT:tr>
 <AUIT:td>
 <AUIT:layout color="green">
 <AUIT:label text="Password:"></AUIT:label>
 </AUIT:layout>
 </AUIT:td>
 <AUIT:td>
 <AUIT:textfield type="password" name="pw" value=" ">
 </AUIT:textfield>
 </AUIT:td>
 </AUIT:tr>
 <AUIT:tr>
 <AUIT:td>
 <AUIT:button name="submit" type="submit" value="Submit">
 </AUIT:button>
 </AUIT:td>
 </AUIT:tr>
 </AUIT:table>

Figure 6.20 Page dump and Code example

Both WML and HTML provide “table” elements which combine with the “tr” and

“td” elements to create sets of aligned UI layout. The “table” elements determine the

structure of the columns and rows.

WML will only allow the “text” and “images” to be displayed within the cells of a

table. In AUIT, we have used a generalized way to solve this problem. That is to leave

the “table” elements and its attributes when adapting the device to display HTML.

Then check the type of element displayed in each cell when the device uses WML. If

any element type is neither text, nor image then AUIT will switch to use a

<AUIT:break> tag when starting a new row rather than using “table/tr/td” tags.

6.3.3.3 Building Other Functional Tags –“Iteration”

Iteration is an example for handling some of the functions using custom tags. In a web

page, we often need to iterate data as we can see in Figure 6.16.

Chapter 6 102

• AUIT: Define a custom tag that will handle the iteration, as in the following

example. The tag handler will then perform the processing logic with each

iteration, before processing its body content.

<AUIT::iteration collection="<%=dealerlist%>">

…

</AUIT:iteration>

• Traditional: It is acceptable to use scriptlets to do this. Embed some of the

Java code in the content of the pages.
 <%

 int num=dealerlist.size();

 for(int i=0;i< num;;i++){

 %>

 …

 <%}%>

Compare the AUIT and traditional approach examples. The AUIT one is obviously

neat and more readable. Control flow is handled more cleanly.

6.3.4 Building UI Elements

In chapter five, we have designed a set of UI elements. Now we will explain how we

implement them.

6.3.4.1 Text and Layout Formatting Elements

The <AUIT:label> and <AUIT:layout> tag are two of the fairly simple tags.

<AUIT:label> can display normal text on the device, and <AUIT:layout> can be used

to format the text, eg: such as set the size or colour.

Because some devices such as the mobile phone cannot display full text we can pass

the text of the <AUIT:label> element to the server side for processing. This is the

main reason we design a tag to have the text information specified as the text attribute

of the <AUIT:label> instead of writing them as text straightforward in the AUIT

page.

Chapter 6 103

If we have a long text string that cannot fit on a small screen, we can use the

following approaches. We provide three options to handle the text-display problem on

different screens.

• Use <AUIT:device> tag

Display different text for different devices as shown on the following code.

<AUIT:device name=”IE” value=”html”>
 <AUIT:label text=”Search Result”/>
</AUIT:device>
<AUIT:device name=”Nokia” value=”wml”>
 <AUIT:label text=”Result”/>
</AUIT:device>

Figure 6.21 Use <AUIT:device> to control text display

• Use “allowcut” attribute.

If there is no content control element specified, the text displayed can be also

processed. Long text can be cut out automatically to fit into the window.

 <AUIT:layout face="Arial, Helvetica, sans-serif" size="+3" bold="b" color="#101077">
 <AUIT:label text="Search Result" allowcut=”true”></AUIT:label>
 </AUIT:layout>

Figure 6.22 Use “allowcut” to control text display

For displaying a table on a mobile phone as we described in section 6.3.2.2, we need

to cut off some part of a word in order to fit it. But some of the words should not be

cut without altering the meaning, such as the odometer reading or price of a car, so we

need to have some attribute in the code to specify what “not to cut”. If we look at the

above code carefully, we can see that there is an attribute in the “label” tag called

“allowcut” to specify this function. The value “true” of this element means that part of

the text can be cut as necessary.

Chapter 6 104

6.3.4.2 Building Form and User Input Elements

The form and user input elements provide a mechanism for capturing user input.

Unlike the user input paradigm in HTML where a user enters content in fields and

finally clicks a Submit button to send the input off to the server, WML does not have

a specific Submit button input element. Rather, WML input is sent to the server when

the user selects the soft-key label associated with the <do> element.

• Elements in the form.

Form tags in AUIT pages let the designer write code just as they can for HTML. More

than that, form tags are designed on top of an object-oriented programming model,

enabling code reuse and separation of the application code from page content. We can

draw the controls on a form, then implement the event procedures underneath.

HTML WML
<FORM name="form " method="post"
action="login.jsp">
 User Name:
<Input type=”text” name="login”>
 Password:
<input type="password" name="password">
<input type=”submit” name=”submit”
value="Submit">
</FORM>

User Name:
<input name="login" title="login" />
Password:
<input name="password"title="password" />

<do type='accept' name='submit'
label='Submit'>
 <go href='#login’ method='post'>
 <postfield name='login' value='$(login)'/>
 <postfield name='password'
value='$(password)'/>
 </go>
</do>

 Figure 6.23 Code example using form elements

<AUIT:form action='login' method='post' name=’form’>
 <AUIT:grouptr cellheight=”..”>
 <AUIT:grouptd cellwidth=”..”>
 < AUIT:label text="User Name:"></AUIT:label>
 < AUIT:textfield type="text" name="login”> </AUIT:textfield>
 <AUIT:label text="Password:"></wendy:label>
 < AUIT:textfield type="password" name="password"></AUIT:textfield>
 <AUIT:button name="submit" type="submit" value="Submit"></AUIT:button>
 </AUIT:grouptd>
 </AUIT:grouptr>
</AUIT:form>

Chapter 6 105

The form of other input elements are basically the same as HTML; even simpler. We

can find them from the diagram shown in Figure 6.23.

The code on the left generated is HTML. It performs a standard form post that sends

the user input back to the same file. The second is WML, where a WML enabled

device is used.

Other form input elements developed include “select/option”, button, etc. Note one

point, both HTML and WML allow “select” and “options” and they have similar

syntax. Normally “options” are generated from the database. For example, in the car

site we allow people to choose the make and model. In HTML we normally provide a

“select/option” dropdown list allowing hundreds of choices, but for other mobile

device, because of the memory and screen size limitations, we could not display that

many choices. One way to solve this problem is to write the following code.

<AUIT:device device="html" >
 < AUIT:select name="to">
 < AUIT:option value="Wendy"></ AUIT:option>
 < AUIT:option value="James"></ AUIT:option>
 < AUIT:option value="Ming"></ AUIT:option>
 </ AUIT:select>
 </AUIT:device>
 <AUIT:device device="wml">
 < AUIT:textfield name="to" type="text" size="8"></ AUIT:textfield>
 </AUIT:device>

Figure 6.24 Code example to display “option/select” elements

This replaces the drop-down menu with a text input field.

• Structure to specify a form

To specify a form we should use the structure specified in Figure 6.25. <AUIT:form>

tag is used between the <AUIT:group> and <AUIT:grouptr>.

Chapter 6 106

<AUIT:group>

 <AUIT:form …>
 <AUIT:grouptr> <AUIT:grouptd>
 <AUIT:grouptr> <AUIT:grouptd>
 </AUIT:form>
 <AUIT:grouptr> <AUIT:grouptd>

</AUIT:group>

Figure 6.25 Code Example to specify <AUIT:form>

6.3.4.3 Build Navigation Elements

WML uses anchors (<anchor>) which are the WML counterpart of <A> tags in

HTML. An anchor can be defined as:

Code example

<anchor>follow me

<go href="destination">

</anchor>

is identical semantically to the following markup
follow me

We have created an <AUIT:link> tag to allow the user to specify pages to go to and

actions for the target JSP to perform. But there are also some system-generated links

we have introduced previously, such as the “right” link.

 HTML WML

link
to

<anchor>
 <go href= “#jobdetai.jsp”>
 <setvar name= “task” value= “new”/>
 </go>
</anchor>

 Figure 6.26 Code Example of Navigation Elements

<wendy:link direct=”jobdetail” param=”true”>
 <wendy:label text=”link to”></wendy:label>
 <wendy:param name=”task”value=”new”></wendy:param>
</wendy:link>

Chapter 6 107

6.3.5 System Deployment

Now that we have defined our AUIT tags and written their supporting class, we now

need to tell the web application where to find the tags by registering the “taglib” with

it. The Web application configuration file (web.xml) is stored under the “web-inf”

directory. Open up the “web.xml” file and insert the following XML fragment.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2_2.dtd">
<web-app>
 <display-name>tagext</display-name>
 <description>Tag extensions</description>
 <session-config>
 <session-timeout>0</session-timeout>
 </session-config>
 <taglib>
 <taglib-uri>
 /AUIT
 </taglib-uri>
 <taglib-location>
 /WEB-INF/tlds/AUIT.tld
 </taglib-location>
 </taglib>
</web-app>

Figure 6.27 Code in “web.xml” file

6.4 Building Interfaces to Make the System Configurable

In this section, I will introduce some methods for developers to use in order to store

the system-required data. Regardless of the application related data, like “car” and

“dealer” information in the car site, the device and user information also needs to be

considered. For example, what type of client device and user will use this application.

User preferences as well as device type may vary. For example, user may want to use

a non-standard window size to view the application. Extensibility needs to be built in

to allow new user preferences and new devices to be added to the system in the future.

6.4.1 Introduction

So far we have specified how to use AUIT tags to create an AUIT page and display

interfaces on the screen of a device. To be able to let an AUIT page work properly for

a device, there are several variables that an AUIT page has to know.

Chapter 6 108

• User type if more than one type of user can access the system.

• Tasks that people perform if various tasks can be performed.

• Device types used to browse an AUIT page.

We have demonstrated how to handle the first two variables previously. Now we need

to discuss how to let the system know the users preferred screen size and some other

information about that device, such as the text size, etc.

The most efficient approach to solve this problem is to have related data stored in

database. That information needs to be stored before the application is used. Therefore

a configurable interface needs to be designed before developer starts writing the

application.

As mentioned previously, the <AUIT:template> tag has functionalities to detect user

and device information when a user uses a device to browse an AUIT page. Once we

know those values, the built-in function provided by <AUIT:user> and

<AUIT:device> custom tags will decide whether to display the content between the

start and end tags. We will illustrate how this information is stored into database in

the following section:

6.4.2 Preference-based interface configuration

Adaptation may also be required due to particular user preferences. The reason may

be to add new category of devices, users or tasks; information that is unknown at

development time.

We achieve this purpose by providing a programmatic interface to access and modify

them. Additionally, a user preferences component can be used which allows the user

to specify the user interface related to preference information.

Chapter 6 109

Some preferences may be system default, such as device MIME or maximum window

size. Others can be obtained from the user interface aspect information input by user.

Which preferences are variable & which are default is set by the developer or user.

There are usually some set requirements when web developers build an application.

We could use the following mechanism to capture end user and device information.

6.4.3 Examples

In our car site, if we allow for three accessing devices, then we need to enter the

relevant information about those three devices. The following E-R diagram is an

example for storing device and user preference data in a database.

We will describe the process if a user uses one of the devices intended to browse our

application.

• If user logs in successfully, we are able to identify the user. Then we check if

this user has preference in the “UserPrefs” table. If there is a “preference”

record related to this user, then use the values, such as preferred screen size, to

display the interface.

• If the identified user has no “preference” record in “UserPrefs” table, the

browser will use the default information stored for the specified device to

output the result.

DeviceInfo
deviceid

devicename
useragent
width
height
encoding
texthr
textwr

User
userid

username
userpword

UserPrefs
userprefsid
prefwidth
prefheight
deviceid
userid

Figure 6.27 E-R Diagram of system required data

For example, using IE 5.0, PDA and Nokia browsers to open the interface page: After

entering the data and clicking submit button, the following rows can be inserted into

database.

Chapter 6 110

Table 1 : DeviceInfo
deviceid devicename useragent width height encoding textr
1 IE5.0 Mozilla/4.0 1024 800 text/html 1.0

2 Nokia Nokia-WAP-

Toolkit/2.1

80 60 text/vnd.wap.wml 0.8

3 PalmOS PalmVII 160 160 text/vnd.wap.wml 1.5

Table 2 : User
userid username userpassword …(other info)

1 wendy 1234 …

Table 3 : UserPrefs

userprefsid prefwidth prefheight userid deviceid

1 800 600 1 1

By using the following interfaces, the user can input the device information, and the

back end program will capture the relevant user agent data using web application

functions. This data is inserted into the “useragent” field of the “DeviceInfo” table.

Other fields have to be specified by the user.

 Figure 6.28 Sample interfaces for input system data

Chapter 6 111

The above interfaces are using IE5. 0 and “Nokia WAP Toolkit” browsers. When the

user hits the submit button, the corresponding browser user agent information along

with the input information are inserted into the database. So whenever the specific

user accesses the site, the related device information can be fetched from the database

by comparing the user agent data “fetched” with the user agent in the database.

6.4.4 How to use these interfaces

Before we start to use these interfaces, developers need to create several tables in

database as we have shown in last section.

These tables are very general. In most of cases it is adequate for capturing the

information that the system needs. But developers could have various tables

depending on the system they are developing. After those tables have been developed,

the developer can use the relevant devices they want their application to work on to

browse these configuration interface pages and enter device-specific information they

want their application to use.

6.5 Summary

In this chapter, we have explained how to implement the adaptable approach (AUIT).

To achieve this we have created a set of JSP custom tags called AUIT tags. We have

also reviewed some of the examples provided for developing car site in chapter three,

this time using AUIT tags.

Chapter 8 112

Chapter 7 - Case Study

7.1 Introduction

In this chapter, we will use the adaptable approach and the AUIT tags that we created

in chapter six to develop a job management system. This system requires a variety of

thin-client UIs, mostly for task, user and device adaptation.

7.2 Requirement Specification

A big company typically has an Information System that provides functions to

manage the jobs that are assigned between staff. An organization intends to build a

job management system to co-ordinate staff work. This needs to provide a variety of

functions allowing staff to create, assign, track and manage jobs within an

organization. Users of the system include employees, managers and executive

management. Key employee tasks include login, job creation, status checking and

assignment. In addition, managers and executives maintain departmental information,

employee records and associated data. All of these user interfaces need to be accessed

over an intranet using multi-device, thin-client interfaces i.e. web-based and mobile

user interfaces.

7.2.1 User Requirements

This approach makes the system platform location-independent and enables staff to

effectively co-ordinate their work no matter where they are. For example, a manager

might like to view their required tasks and check on their employees work schedules

using either a PC or a mobile device while they are outside the company. Authorised

managers can also add new staff or users to the system whilst outside the office. In the

following, we provide the detailed requirements:

Office Manager

Chapter 8 113

1. Add a new department to the system or edit existing departmental data

2. Add a new management position or edit existing data

Departmental Manager

1 Add/update/edit Employees

2 View all jobs within his department

3 Authorised managers can view all employee information and organization

data.

All Employees

1. Employees can set up their own login name and password, but their

information needs to be preloaded, input by the manager in the first instance.

2. All employees can view all jobs assigned to him/her.

3. Employees can assign jobs to down-line employees or post a task to all or any

other employees.

4. Anyone can reassign jobs to others if that job not within his job scope

5. Users can view all jobs related to them by accessing the system via a mobile

phone

7.2.2 Use Case Diagram

These interactions that we have described are outlined in the use case diagram

.
Setup login Assign to others

View all jobs of his department Add/Modify departments

Office Manager

Add/Modify positions

View all jobs assigned to them

Manager

Add/Modify employees

Delete jobs initiated by him

Employee

View all initiated job status

 Figure 7.1 Example use cases of the job Management System.

Chapter 8 114

7.3 Case Analysis and Design
In this section, we present the analysis and design of our application.

7.3.1 Object-Oriented Analysis (OOA)

The first important technical design decision is to identify the application objects. We

will need data sources objects, business logic objects and number of JSPs to present

the data.

We will use the tag library introduced in Chapter 4 to enable use of the adaptable

approach where possible.

1

1..*

JobComments
id
comment
timestamp

1..*

JobAssignment
id
from
to
timestamp

1
1..*1..*1

1

Positions
id
position

addPosition()
deletePosition()
updatePosition()

1..*
1

OfficeManager

1..*
1

Department
id
department

addDept()
deleteDept()
updateDept()

1..*

11

1..*

Jobs
jobTitle
initiator
status
lastupdate

1

1..*

1..*
1..*1

Version
id
timeStamp
jobdetail1..*1

Employees
name
position
email
phone
...

setLogin()
updateInfo()
viewJobs()
addEmp()
deleteEmp()
updateEmp()

1

1..*1

1..*

1

Manager

viewAllJobs()

Figure 7.2 Class diagram of Job Management System

Figure 7.2 show class diagram presents an object-oriented analysis. The OOA

diagram represents the conceptual view of the main system/application. From Figure

7.2, you can see the static structures of the system and inter-related objects that our

system is comprised of. The relationships between objects are generalization and

association. For example, “Manager” object generalizes to “Employees” object – the

Chapter 8 115

manager can do all the tasks that general employee can do. “Employee” object and

“Job” object are associated with “JobAssignment” object.

7.3.2 Software Architecture Design

In order to develop a new approach to build adaptive, multi-device user interfaces for

web-based information systems, we need to consider the most suitable architecture.

Our Job Management System adopts the following four-tier software architecture

illustrated in Figure7.3. Clients can be desktop and laptop PCs running a standard

web-browser, mobile PDAs running an HTML-based browser or WML-based

browser, or mobile devices like pagers and WAP phones, providing very small screen

WML-based displays. All of these devices connect to one or more web servers (the

wireless ones via a wireless gateway) accessing a set of AUIT-implemented screens,

or web pages. The AUIT pages detect the client device type, recalls the user

associated with the web session and tracks the user’s current task; typically by

analysing which page(s) the current page has been accessed from.

Legacy
Application(s)

Web Server(s)

AUIT
Pages

Java
Beans

Application Server(s)

Enterprise Java
Beans

Database
Server(s)

WAP
devices

WML & HTML
PDAs

Laptop/desktop
HTML browsers

HTTP, HTTPS and
WAP procols

Java RMI
protocol

CORBA and
XML

protocols

SQL/JDBC
protocol

Figure 7.3. Our Four-tier web-based information system software architecture.

This information is used by the AUIT system to generate an appropriately adapted

thin-client user interface, their current task context and their display device

characteristics. AUIT pages contain Java code scriptlets that can access JavaBeans

holding data and performing form-processing logic [Fields and Kolb, 2000]. This web

Chapter 8 116

server-hosted JavaBeans communicate with Enterprise JavaBeans which encapsulate

business logic and data processing [Vogal, 1998]. The Enterprise JavaBeans make use

of databases and provide an interface to legacy systems via CORBA and XML.

7.3.3 Object-Oriented Design (OOD)

We now need to determine how the specification described in OOA will be translated

into OOD designs after determining the software architecture for our system. Figure

7.4 shows the OOD diagram in which we can see that OOA objects are split into

appropriate OOD classes that make up our programs and comprise the architecture we

have designed.

We are going to use the Tag library are discussed in detail in Chapter four. The

following discussion assumes familiarity with their use, so please refer back to

chapter five and six if necessary.

Position Data Department Data Employee Data Job data Jobassignment Data JobComment Data

Job ManagerEmployee ManagerDepartment ManagerPosition Manager Jobassignment Manager

Data Manager

connect()
close()
write()
delete()
update()
find()
insert()

uses

JobComment Manager

Login Interfaces

use

Joblist InterfaceEmp Mag Interface

WendyTags

use useuse

 Figure 7.4 OOD Diagram

7.3.4 User Interface Design

In some of the key job management screens users are required to interact with the

system to achieve tasks such as creating jobs, viewing job details, viewing summaries

Chapter 8 117

of all assigned jobs and assigning jobs to others. These interactions are outlined in the

use case diagram in Figure 7.1.

JoblistInterface and JobdetailInterface

The JoblistInterface shows a list of the jobs related to a particular user based on the

login information. All the information listed on this page came from the “Jobs” table

in the database. Three types of tasks in JoblistInterface that the user can perform all

lead the user to JobdetailInterface. The JobdetailInterface will display different

layouts based on the link that the user accessed the page from.

1) When the user clicks the link on the “Job Title” column, the next window will be

shown displaying the detailed job description. The user can leave comments after they

have done the job.

2) After they click “Assign New Job”, the second window will be shown. The user

should be able to assign a new job to any other person.

3) If the user thinks that job is not for them, user can click the “Reassign To” link

column to assign this job another person.

For example, in Figure 7.5, the job listing screens (1) for managers and employees are

very similar, but management staff can see additional buttons and information fields.

Sometimes the job details screen (2) has buttons for modifying a job (when the

initiator is doing job maintenance) but at other times not (when the initiator is doing

job searches or analysis, or the user is not the initiator). Sometimes interfaces are

accessed via desktop PC web browsers (1 and 2) and at other times the same interface

is accessed via a WAP mobile phone, pager or wireless PDA browser (3 and 4) when

the employee wants access job information whilst away from their desktop or unable

to use their laptop.

Chapter 8 118

(1)
(2)

(3) (4)

Figure 7.5 Examples of adaptive Job Management System screens.

The JobdetailInterface is a task-based interface. The page will have different layouts

based on the task that user has performed and the page it came from.

AddnewInterface

 Figure 7.6 User base Interface for job manage system

Figure 7.6 shows a typical user-based interface. The four screens will serve different

users, but with the same page.

 user

1)All Employee

3)Office Mng

2)All Manager

4)Office Mng

Chapter 8 119

1) All Employees can set up their own login information.

2) All Managers can add new employees within their departments.

3) The Office Manager can add New Departments to the system.

4) The Office Manager can add New Positions to the system

7.4 Implementation

Based on our design, we will implement our application by creating a set of AUIT

pages using AUIT tags. Some of the thin-client, web-based user interfaces that our job

management information system needs to provide are illustrated in Figure 7.5. Many

of these interfaces need to “adapt” to different users, user tasks and input/output web

browser devices.

7.4.1 Database Design

Before proceeding with our implementation we should prepare the database table

storing the application-required data.

Employee

idStaff
Name
Department
Position
OfficePhone
HomePhone
MobilePhone
OfficeEmail
OtherEmail
Hobby

Department

idDepartment
Manager
Desc
ParentDept

PersonPosition

idPosition
Desc
Department

Jobs

idJob
DequestDate
LastUpdate
JobTitle
JobDetail
Initiator
Status

JobComments

idComments
sComment
TimeStamp
Jobid

JobAssignment

idJobAssigm
jobFrom
jobTo
Jobid

AssignTime

DeptPosition

Department
Position

Figure 7.7 E-R Diagram (1)

Chapter 8 120

DeviceInfo
deviceid

devicename
useragent
width
height
encoding
texthr
textwr

User
userid

username
userpword

UserPrefs
userprefsid
prefwidth
prefheight
deviceid
userid

Figure 7.8 E-R Diagram (2)

The ER diagram in Figure 7.7 illustrates the application oriented data requirements.

Figure 7.8 below indicates stored user-device data, user preferences, etc.

In order for the application to be used by a variety of devices, we need several other

system-required tables as illustrated in chapter six. In chapter six, we introduced

“Device”, “User” and UserPref” tables to solve the problem of different applications

sometimes having different requirements. Because all our users are employees within

the company our “Employee” table can replace the “User” table in Figure 7.8. We

have specified the devices that employees can use, so we have the relevant device

information inserted into the “Device” table by using specific interfaces such as those

introduced in Chapter six.

7.4.2 Implementation Steps

The steps that developers should take to implement this application are as follows

• Set system environment and deploy AUIT package

• Prototype the applications using the AUIT tags and do business logic

programming

• Test the result.

7.4.3 System Environment

The first step for applying AUIT tags is to check the specification on the tag library.

We have provided a specification for the tag library and the AUIT custom tags have

been specified with fairly straightforward explanation of the tag names and related

attributes. Some of the attributes are mandatory so the user should be careful. The

Chapter 8 121

users need to read the specification carefully to fully understand the functionalities

that the tags provide.

As with the traditional approach we can start by installing the web and database

servers. We can use Tomcat as our web application server again in order for our

application to make use of the AUIT packages and approaches that we developed

previously.

The last remaining file required to implement this application is the WAR’s web.xml

file. This has two important jobs: it must let the JSP engine know where to locate the

tag library descriptor needed to describe the tag library and it must set the

application’s index page to “index.jsp”.

Figure 7.9 shows the system development structure and part of code that we need to

specified on “server.xml”.

System Deployment Part of “server.xml”

Tomcat
 -bin
 -conf
 -webapps
 -carsite
 -jobmanage
 -jsp
 other jsps
 -interfaces
 -WEB-INF
 -classes
 -tagext
 -beans

 -tlds
 AUIT.tld
 -web.xml
 -…

<Context path="/intranet" >

 docBase="webapps/intranet"

 crossContext="false"

 debug="0"

 reloadable="true" >

 </Context>

 Figure 7.9 System Deployments

7.4.4 Implementing the Applications Using the AUIT Tags

Chapter 8 122

By using the approach and AUIT elements that have been developed, the first step of

implementation is to input the user and device information into the system. Once

completed, the system “knows” the users and devices that the system would provide

to. By using the interface that we have provided in previous chapter, we can enter the

device information.

7.4.4.1 Implementing “JoblistInterface”

 Figure 7.10 Examples of job listing screen running on multiple devices.

Figure 7.10 shows examples of the joblisting screen being displayed for the same user

in a desktop web browser (1), mobile PDA device (2 and 3) and mobile WAP phone

(4 and 5). The web browser can show all jobs (rows) and job details (columns). It can

also use colour to highlight information and hypertext links. The PDA device cannot

show all job detail columns, so additional job details are split across a set of

horizontal screens. The user accesses these additional details by using the hypertext

links added to the sides of the screen. The WAP phone similarly can’t display all

columns and rows. Links are added to access these. In addition, the WAP phone

doesn’t provide the degree of mark-up the PDA and web browser can, so buttons and

links and colour are not used. The user instead accesses other pages via a text-based

menu listing.

(1)

(3)

(2) (4)

(5)

Chapter 8 123

Figure 7.11(a) shows the logical structure of the “joblisting” screen using the AUIT

tags introduced previously. The screen is comprised of a heading and list of jobs. The

first table row displays column headings and subsequent rows are generated by

iterating over a list of job objects returned by a Java Bean.

Figure 7.11(b) shows part of the AUIT Java Server Page that specifies this interface.

The first lines in the JSP indicate the custom tag library (AUIT.tld) available and

“JavaBean” components accessible by the page e.g. FunctionBean provides access to

the database of jobs. The screen tag sets up the current user, user task and device

information obtained from the device and server session context for which the page is

being run. The heading tag shows the user whose job list is being displayed. The

group tag indicates a group and in this example one with a specified maximum width

(in pixels per row) and alignment indication. The iterator tag loops, displaying each

set of enclosed tags (each row) for every job assigned to the page user. The job list is

obtained via the embedded Java code in the <% … %> tags. The column values for

each row include labels (number, jobtitle, initiator, etc) and links.

Job Listing: template

Jobs : group

Jobs: Iterator

Job info : grouptr

ID : grouptd

Job.ID : Text field

Title : grouptd

Job.Title : Text Field

Job Headings : grouptr

ID : grouptd

Job ID : Label

Title : grouptd

Job Title : Label

<%@ taglib uri="/AUIT" prefix="AUIT" %> // page directive to access AUIT tags
<jsp:useBean id="testBeanId" scope="page" class="beans.FunctionBean" /> //
JavaBeans to use
…
<AUIT:template > // sets user/device information…
 <AUIT:group aligh=center>
 <AUIT:grouptr cellheight=5>
 <AUIT:grouptd cellwidth=20>
 <AUIT:label text= “Job Listing +<%=UserName%>” allowcut=”true” / >
 </AUIT:grouptd>
 </AUIT:grouptr>…
 <% java.util.List joblist=(java.util.List)testBeanId.getJobLists();%>
 <AUIT:iterator collection="<%=joblists%>" >
 <AUIT:grouptr cellheight=5>
 <AUIT:grouptd cellwidth=20>
 <AUIT:label text= “<% joblists.getJobNumber() %>” />
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth=20>
 <AUIT:link direct=" " param="false">
 <AUIT:label text= “<% joblists.getJobTitle() %>” allowcut= “true”>
 </AUIT:label>
 </AUIT:link>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth=20>
 <AUIT:label text= “<% joblists.getInitiator() %>” allowcut= “true”/>
 </AUIT:grouptd>
 …
 </AUIT:grouptr>
 </AUIT:iterator>
 </AUIT:group>
</AUIT:templage>

Figure 7.11 Logical Structure of the AUIT Description for the “joblisting”

 (a) (b)

Chapter 8 124

7.4.4.2 Implementing “JobdetailInterface”

From the interface design section, we know that the user can perform three tasks on

“JoblistInterface”. All the links on this page lead to “jobdetailInterface”, therefore we

need to pass three different parameters onto the “jobdetailInterface” to differentiate

the tasks that the user performed.

The interfaces shown in Figure 7.13 is mainly task based. The code are presented in

Figure 7.13 explains the syntax that we used to create layout in terms of the value of

“task”. This can control the task that user has performed and display proper content.

Screens (a), (b) and (c) in Figure 7.13 show examples of the job details screen in use

of desktop device, whereas (d), (e) and (f) are for mobile device.

1) Screen (a) and (d)

User can view detailed job, and make comments for that job when user has queries or

needs to be assigned to another person. From these two interfaces, we can see we

cannot use textarea element in devices other than a PC because of the screen size

constraints, so we will convert “textarea” automatically into textfield type that allow

the user to enter abbreviations.

Because this interface is going to display the job detail that other people assigned to

the user, we need to display the “From” information in order and not display “To”

information.

2) Screen (b) and (e)

People can perform “Assign a new job” task from the “joblist” page. After they click

“Assign New Job”, they will see the view illustrated in Figure 7.13. With a bigger

window size, people have plenty of room to describe the job details, but on a smaller

window such as that on a mobile phone, the user should minimise the detail and use

abbreviations where practical.

3) Screen (c) and (f)

Chapter 8 125

People can reassign jobs to other people if necessary by using these two interfaces on

different devices, Comparing the HTML & WML interfaces of screen (c) and (f) in

Figure 7.13 demonstarates the differences between displaying the Job Detail screen on

a PC screen and that of a Mobile phone. We have hidden the “Title” row on the

mobile device in order to display more other the information in on window. Figure

7.12 shows the code needed to achieve this. The “Assign To” link from the job listing

screen in Figure 7.13 lead user to job details screen in task context “job re-

assignment”

<AUIT:device device="html">
 < AUIT:grouptr cellheight="5" >
 < AUIT:grouptd >
 < AUIT:layout bold="b">

< AUIT:label text="Title"></ AUIT:label>
</ AUIT:layout>

 </ AUIT:grouptd>
 < AUIT:grouptd colspan="2">
 < AUIT:layout bold="b">

< AUIT:label text="Upload"></ AUIT:label></ AUIT:layout>
 </ AUIT:grouptd>
 </ AUIT:grouptr>
</ AUIT:device>

 Figure 7.12 Code Example

Part of the AUIT specification of the job details screen is shown in Figure 7.14. The

screen encloses a form which, when the user fills out values, is posted to the web

server for processing (done by the job_interface, JavaBean component). The heading

is task-dependent – if the user is viewing job details, the heading is different to if they

are assigning or adding a job. The ‘task’ attribute of the heading tags is used to

determine which heading is shown. A table is used to achieve the layout. Some

columns are common to all screens e.g. the left-hand side labels. Some rows are not

shown for some screens e.g. the ‘From’ row is not shown if the user task is assign or

new. Sometimes a different kind of form element is used e.g. if viewing a job, labels

are used but when adding or assigning a job, some fields for the job have editable

elements (text box, pop-up menu etc). If the user of the screen is not the job initiator,

then the delete button is not shown.

Chapter 8 126

<AUIT:task task= “task” value="view">

 < AUIT:label text="Job Detail">

 </AUIT:label>

</AUIT:task>

< AUIT:task task= “task” value="view">

 < AUIT:label text="New Job">

 </ AUIT:label>

</ AUIT:task>

< AUIT:task task= “task” value="view">

 < AUIT:label text="Reassign Job ">

 </ AUIT:label>

</ AUIT:task>

Figure 7.13 Implement Job list interface

view assign reassign

(1)
(a) (b) (c)

(d) (e) (f)

Chapter 8 127

(2)

(1)

(3)

(4)

<%@ taglib uri="/AUIT" prefix="AUIT" %>
<jsp:useBean id=’job_interface’ class=’jobs.JobDetailsInterface />
<jsp:useBean id=’job’ class=’jobs.JobData’ />
…
<% job_interface.processRequest(request, job); %>
<AUIT:template name=’job details’>
 <AUIT:group>
 <AUIT:form name= ‘job details’ action= ‘job_details’>
 <AUIT:grouptr cellheight="5">
 <AUIT:grouptd cellwidth="30">
 ….
 <AUIT:layout bold="b">
 <AUIT:task task="task" value="view">
 <AUIT:label text="From:"></AUIT:label>
 </AUIT:task>
 <AUIT:task task="task" value="assign">
 <AUIT:task task="task" value="reassign">
 <AUIT:label text="To:"></AUIT:label>
 </AUIT:task></AUIT:task>
 </AUIT:layout>
 </AUIT:grouptd>
 <AUIT:grouptd cellwidth="30">
 <AUIT:task task="task" value="view">
 <AUIT:label text="IT Dep"></AUIT:label>
 </AUIT:task>
 <AUIT:task task="task" value="assign">
 <AUIT:device device="html" >
 <AUIT:select name="from"> … </AUIT:select>
 </AUIT:device>
 <AUIT:device device="wml">
 <AUIT:textfield name="from" type="text" ></AUIT:textfield>
 </AUIT:device>
 </AUIT:task>
 …
 </AUIT:group>
 </AUIT:form>
</AUIT:template>

Figure 7.14 Examples of Adapted Job Details and its AUIT Description.

From Figure 7.14, we can see how to use “task/device” tags to control content

display. For instance, we want a UI component seen if the task value is either

“assign” or “reassign”, then we can refer Figure 7.14 to code it.

7.4.4.3 Implementing Other Pages

Users can register on the Login page with a unique User ID and Password. After the

system has verified the login details, the pages required by that specific user will be

displayed.

From the above table, we can see that a page can have a lot of different views,

depending on the tasks the page is required to perform. Creating this page using the

traditional approach requires a vast number of conditional statements which are likely

to complicate the logic of the entire code in the page. Our approach using tags to

control the elements in the page will display relevant results efficiently without the

need for potentially hard to maintain code.

Chapter 8 128

 Figure 7.15 Task based Interfaces

7.5 Summary

In this chapter, we described an example application of the software architecture of

our system and its implementation using the AUIT tags. Use of the Adaptable

approach & AUIT tags to develop applications for multiple devices makes for cleaner

code and reduced development time compared with traditional methodology.

 task= “employee”

 task= “setlogin”

Chapter 8 129

Chapter 8 Evaluation

8.1 Introduction

In the previous chapters, we have developed a new approach to building adaptive,

multi-device thin-client user interfaces for web-based information systems. User

interfaces are specified using a device-independent mark-up language describing

screen elements and layout, along with any required dynamic content (Java code).

Screen element descriptions may include annotations indicating which user(s) and

user task(s) the elements are relevant to. We have also provided a case study in

chapter seven to demonstrate the development of a real world example.

In this chapter, we will evaluate the adaptable approach and the AUIT elements we

implemented. In this evaluation we will discuss the strengths and weaknesses of our

approach and discuss some areas that need to be improved.

8.2 Evaluation Topic

We have developed several systems with our technology, which have been evaluated

by end users and are commercially deployable. We have built two substantial web-

based information systems with AUIT technology: the job management system and an

on-line car sales site. Each of these are commercially-deployable systems that have

over two dozen AUIT screens, JavaBean, EJB application server components and

database tables.

We have also built “hard coded” versions of these systems using conventional JSP

technology - a commercial version of the on-line car retailing system and a

commercial, in-house company job management system. Each of these systems has

JSPs specifically built for different users, user tasks and display devices.

Chapter 8 130

In this section, we will the outline evaluation criteria to be used by our testers. The

main aim of our evaluation is to determine whether an adaptive approach is better

than a non-adaptive approach and the strengths and weaknesses of the adaptable

approach.

The evaluation will be divided into two main aspects:

• Examination of the adaptable approach and implemented elements from

developers’ point of view.

• Test the user interface developed using the adaptable approach from the end

 user perspective.

8.2.1 Evaluation from developers’ perspective

In this part of evaluation, we will choose a group of people with web development

knowledge or experience and ask them to evaluate our adaptable system based on the

following criteria.

8.2.1.1 The Usefulness of Adaptable Approach

Web developers generally have predetermined opinions regarding the need to use an

adaptable approach to develop a web-based application for various devices, based on

their previous web development experience.

In chapter five, we have presented the motivations for using an adaptable approach

and the practical experience of developing applications using “traditional approach”.

We want to know if, in the real world, developers “buy” the proposed benefits and

would be willing to use an adaptable approach or AUIT tools to develop web-based

systems.

1) Strengths of the Traditional approach

The main advantage of the traditional approach is a high degree of flexibility insofar

as writing new code for each new system requirement means that the system’s

specific strengths can be fully utilised.

Chapter 8 131

For example, a PDA has a touch screen for capturing input that is different from

mobile phones and general desktop PC’s, which use buttons or a keyboard. This

feature allows a user interface to have more links on the screen because the user can

use the pen to touch the screen and link to the other pages easily. Mobile devices in

comparison direct users to different page by using softkeys, so that a simple one way

link will be easy for this device. Writing for a specific device allows the developer to

code functions that are unique to the PDA, making full use of the features of the

device.

2) When to use an Adaptable Approach

When determining an approach, many trade-offs have to be made in order to produce

a good system. These compromises will depend on the system & user priorities, such

as development time constraints or specific content requirements. The Traditional

approach favours complex, high quality graphics whereas the Adaptable approach

provides advantages in programming efficient functionalities.

In some cases using the adaptable approach, developers have to compromise between

some versions to improve productivity. A “One code fits all” approach will generally

produce reasonable results but compromises will occur due to incompatibilities

between the platforms, mark-up languages, screen size variations etc.

The layout using an adaptable approach generally cannot utilize all of the

functionalities available on every platform as each interface layout is designed

separately and specifically for it’s respective device. By using the traditional approach

the author can tailor the user interface with different priorities and goals based on the

specific features of the device.

3) Examples

The job management system is a typical intranet application. The system is designed

to improve staff efficiency and would not be seen by outside world. It requires a

Chapter 8 132

functional rather than “pretty” user interface. For that reason the adaptable approach

will be the better choice.

Therefore we want to evaluate the usefulness of Adaptable Approach from the

developers’ perspective.

8.2.1.2 About Implementation of the Adaptable Approach

In chapter five, we illustrated the architecture of our adaptable approach and designed

a high level language to achieve our adaptation requirements. We implemented our

design using JSP custom tags in Chapter Six.

There are alternatives to implement our approach. Developers can implement this

approach using technologies such as XML/XSLT, Microsoft ASP and so on.

We want to determine whether the JSP custom tag technology used to implement the

approach was sufficiently substantial and comprehensive (relative to other

technologies) to justify usage in web-based application development in the real world.

8.2.1.3 Ease of use of AUIT tags

As general requirement of any system, ease of use is most important. In our thesis, we

have described an adaptable approach used to create User Interfaces and implemented

our approach by creating a set of AUIT tags using JSP custom tags.

We are going to evaluate how easy it is to use the AUIT tags from the following

perspectives, considering different adaptation purposes.

1) Adaptability of generic UI tags

In AUITs, we have created a set of generic elements (JSP custom tags) to generate the

markup languages for rendering layout for specific devices. For example, if a device

supports the WML, we will dynamically generate the WML for this device. We are

Chapter 8 133

going to evaluate whether the adaptable approach can generate the Markup languages

for specific devices satisfactorily.

2) UI Layout Adaptation

For the purpose of generating layout for specified screen size, we have created some

algorithms embedded in the elements to make the system more powerful.

For example, as we described previously, we use “group, grouptr, grouptd” to specify

the minimum dividable cell and use those elements with an algorithm to dynamically

separate the content to fit properly on a small screen with links to relate them in

separate windows.

We will evaluate this part by experiment and ask whether the testers are satisfied with

the layout created by the UI layout control elements and embedded algorithm.

3) User and Task-based Interface Adaptation

In the traditional approach, to generate user and task based content developers usually

have to embed a lot of conditional logic scriplets in a page. This makes the code

messy.

We have created some elements like “user”, and “task” in our adaptable approach and

we need to evaluate the functions of those AUIT elements.

4) Device Adaptation

The adaptable approach has also provided ability for the system to generate device-

based content so that the user can use them control the content, allowing suitable data

to be displayed on specific devices.

For example, we can display long text on a desktop PC with an attractive graphics

based layout, but specify short words to fit on small screen devices. We will ask our

testers to evaluate and comment on this feature.

Chapter 8 134

8.2.1.4 Configuration Ability Evaluation

Because the number and variety of devices used for Internet access is increasing

constantly, we have provided a configuration engine allowing easy adaptation of the

system to new devices. This configuration engine provides an easy to use interface

allowing programmers to add relevant specifications for new devices, such as screen

size and text rendering details.

The system also contains a feature which allows users to specify their preferred screen

size.

For example, if the user wants to use a desktop browser with specified screen size

instead of the default size, he or she can. We have provided a configuration interface

for user to specify this detail. There are various ways to design similar configuration

interfaces based on this idea.

We are going to evaluate whether the configuration interfaces that we have developed

can capture enough relevant information.

8.2.1.5 Programming Productivity

The ability to develop and then deploy applications as effectively and as quickly as

possible is also important. So we are going to evaluate productivity using AUIT

compared to a traditional approach.

8.2.1.6 Code Maintenance Issues

The adaptable approach aims to simplify and speed the development process for

developers and page authors alike and also to provide easy maintenance. Once an

application has been developed, we are going to evaluate whether it is easy to

maintain.

Chapter 8 135

8.2.2 Evaluation from End User Point of View

In this part of evaluation, we will evaluate the user interfaces developed using an

adaptable approach from end user point of view. To achieve this we have selected a

second test group. This group are internet users who do not have programming

knowledge. We will show them the two sets of user interfaces developed using

adaptable approach and non-adaptable approach. We will ask them to complete a

qualitative survey questionnaire and draw conclusions based on analysis of their

responses. The evaluation will be based on the following criteria:

8.2.2.1 Ease of Use of User Interfaces

This is a comparative analysis of the interfaces (one developed using AUIT, the other

using the traditional approach) from a perspective of ease of use and relative

functionalities.

8.2.2.2 Acceptable Navigation Approach

The interface constructed using the adaptable approach uses links to relate windows

on a small screen, which would appear as a single screen on a larger monitor. Do

users find this navigation convention acceptable?

8.2.2.3 Screen Response

Speed is always the primary concern for an application for many users. There is no

exception for our adaptable approach, so we are going to evaluate loading speed in

this section.

8.2.2.4 Graphic Layout

Having an attractive graphic layout is one of the targets that many commercial web

sites aim for. The AUIT user interfaces can achieve this in part; but it cannot compare

with interfaces developed using traditional approach. We will provide screen shots

from the two user interfaces and ask users for their comments.

Chapter 8 136

 Figure 8.1 Page shots using adaptable approach and non-adaptable approach

8.3 Survey

In this section we will carry out a survey evaluating our system and summarize the

general comments that the evaluators have made.

We intend to evaluate our approach and the AUIT tags from two perspectives. Firstly

we will evaluate the adaptable approach and usability of AUIT tags from developer’s

perspective and we will measure the degree of satisfaction of the resulting product

from the end user’s point of view.

To achieve this we will use two test groups. One is comprised of web programmers,

the other of web users. They will evaluate the technologies from their relative

perspectives. All evaluators are required to read provided tutorials and complete the

questionnaire that is specifically relevant to their field.

 Group One Group Two

 Number of Evaluators 6 10

 Tasks to Fulfill

1) Read Introduction and
Tutorial and become familiar
with the AUIT tags
2) Install the system for testing
3) We have provided sample
user interfaces comprising of
two page dumps using JSP.
Then we will ask the evaluator
to develop a similar interface
using the AUIT tags.
4) Fill the provided
questionnaire

1) Read Introduction and
Tutorial.
2) Look at the pages displayed
on different devices with
various window sizes developed
using either AUIT approach or
traditional approach.
3) Fill the provided
questionnaire about the AUIT
product interfaces.

Figure 8.2 Evaluator and Tasks

Chapter 8 137

The survey that we ask evaluators to complete comprises of a number of closed and

open-ended questions. The survey questions cover all of the requirements that the

adaptable system is supposed to achieve. The detailed tutorials and surveys for

evaluators in both groups are provided in Appendex B. In the following, we provide

some example questions from the survey.

For example, in order to evaluate the AUIT tags we provided a table with a list of the

AUIT tags and asked questions such as “Do you think it is easy to use the following

JSP custom tags to implement adaptable approach?” The evaluators can tick the most

appropriate answer from a five point likely scale. We have also provided some

subjective questions such as “Comment on how you find the automatic layout

generation of “group, grouptr, grouptd” tags.

8.4 Evaluation Conclusion

We have run two empirical evaluations of our AUIT-based systems, with end users

comparing the AUIT and hard-coded system interfaces and with web-based

information system developers comparing the use of AUIT technology to

conventional JSP technology.

8.4.1 Evaluation Conclusion From the Developers

During the evaluation, we have asked the developers to create several AUIT pages

using the AUIT tags. In terms of their experience with the AUIT tags, they are asked

to fill in our questionnaire. We will draw conclusions by analysing their comments.

8.4.1.1 Comment about the AUIT tags

Most of the developers found AUIT tags to be straightforward to use, much more

powerful and easier than the conventional JSP technology for building adaptable user

interfaces.

1) Comments about Generic AUIT UI Elements

Chapter 8 138

The design of AUIT-based systems is radically different to user interface design of

conventional web-based application interfaces.

The AUIT UI elements include buttons, images, etc. Evaluators found almost all of

them easy to use. For example, firstly they worried that controls like

<AUIT:textfield> represented a completely new set of elements they would have to

master. But they soon found that although the elements are new, they’re not difficult

to learn because they pretty much map onto their HTML equivalents.

Two things that they have noticed are that it is relatively simple to use the tags that we

have designed compared to HTML tags. For example, when they use HTML, they

have to handle the following three types of input type, but our design combines them,

making it easy to master. One simple control can provide the functionality of three,

depending on how it’s used.

HTML tags AUIT tags
<input type=”text” …>

<input type=”password” …>

<textarea …>

<AUIT:textfield type=”text”…>

<AUIT:textfield type=”password”…>

<AUIT:textfield type=”textarea”…>

 Figure 8.3 Comparison of Usage between HTML and AUIT Tags

2) UI Control Elements

0

20

40

60

80

100

User Task Device Table Iterator

Easy
Midium
Hard

Figure 8.4 Bar Chart Diagram for Evaluation Result of UI Control Elements

Chapter 8 139

From the bar chart shown in Figure 8.4, we found that most developers think the UI

Control tags we have created are easy to use. Few of them have some comments about

the usage of these tags. The comments are listed in the table shown in Figure 8.5.

Tags Comment

User Has limitation that cannot work on some of the devices that do not support
cookies.

Task The code looks a little complicated in following occasions where content
is shown on several tasks.
 <AUIT:task name= “task” value= “assign”>
 <AUIT:task name= “task” value= “view”>
 <!—Content->
 </AUIT:task>
 </AUIT:task>
Others think this design is very good, “task” tag is easy to use.

Device No comments returned.

Iterator Some of the evaluators found it is not convenient that the “collection”
attribute requires a value type of “java.util.List”.

Table/tr/td The functions provided by these elements are not powerful enough to
handle complex situations such as “wrapped table”.

 Figure 8.5 Comments on the UI Control Elements from Evaluators

3) “Group/Grouptr/Grouptd” elements

These three elements are designed to control the “screen splitting” if necessary. They

are part of the document structure and have to be specified. Most of people found

these three elements are easy to use, just as easy as table elements of HTML. Some

found they did have difficulty specifying the size of each cell, as we required. Figure

8.6 shows the evaluation result about this feature.

0

0.5

1

1.5

2

2.5

3

Group/grouptr/grouptd

Very Easy
Easy
Midium
Hard
Very Hard

Figure 8.6 Bar Chart of Evaluation of “Group/Grouptr/Grouptd” Elements

Chapter 8 140

AUIT groups provide limited ability to layout forms, which work well for WML and

relatively simple HTML interfaces. Complex HTML layout for desktop browsers is

difficult to achieve with the current AUIT grouping components. Estimating the

amount of room rendered screen elements will take up, used by the screen folding

algorithm to move some information to linked screens is difficult, as users may

configure their device browsers with different default fonts and font sizes.

Evaluators found that it is sometimes hard to measure how much they needed to

allocate for a cell that contains one or several elements. Because our approach

required that the user has to specify the value of width and height of a cell, they

needed to guess those values sometimes and adjust them later if they found it a

problem when they tested the layout on-screen.

8.4.1.2 Functionalities of the AUIT Tags

Generally, they thought the AUIT tags that we have provided are sufficient for

creating a simple adaptable interface. They found limitations with the AUIT tags;

specifically, some of the functionalities that can be used for each technology cannot

be fulfilled using the AUIT tags. For example, they found they cannot use frames for

HTML.

8.4.1.3 Comment About Programming Productivities

The main advantage of the adaptable option is that it is relatively quick to develop an

application for various human devices. The following table shows the steps that

developers need to take for develop an application for various human devices using

both approaches.

Non-adaptable approach Adaptable approach

1.Learn WML markup language

2.Write several versions for each page in

order to serve several devices

1.Learn new AUIT custom tags

2.Write one version for each page, and

work for several devices

Chapter 8 141

From the comparison on the above table, we assume that developers will spend

similar time on the first step. Then for the second step, developers will spend more

time using the non-adaptable approach than the adaptable approach. Overall time

taken using adaptable approach will be significantly less. The greater the number of

devices, the greater the time savings.

The other advantage is that developers write only one program, and work on the

several devices with less worry about some complex aspects such as algorithms. The

adaptable approach saves developers time.

8.4.1.4 Comment about Code Maintenances

The evaluators think the maintainability of code has been improved. There are two

main reasons. Firstly the number of interfaces is reduced, requiring much less code

than using the non-adaptable approach. The other reason is that the backend call to

database and embedded code has been reduced. They observed that the code looks

neater and would be relatively easy to maintain.

All evaluators report that they found our technology much easier to use and more

powerful for building and maintaining simple adaptable web-based user interfaces

than other current approaches. In fact, some found them better as they could change

their device preferences and have the AUIT interfaces change to suit these, which is

not possible with the hard-coded interface implementations.

The AUIT systems all have less than a third of the screen specifications than hard-

coded systems. The screen specifications are much easier to extend and maintain as

new data and functions are added to the systems, as only a single specification needs

modifying rather than up to a half a dozen for some screens in some of these systems.

8.4.2 Evaluation Conclusion from End-user Perspective

Figure 8.7 shows the result evaluated from two criteria’s from end-user perspective.

On the following section, we will summarise the comments that they made on their

questionnaire.

Chapter 8 142

0
0.5

1
1.5

2
2.5

3
3.5

4

User Interface Display Method

Very Good
Good
Midium
Bad
Very Bad

 Figure 8.7 Evaluation Result from End-User Perspective

8.4.2.1 Comment about AUIT Interfaces

Most of end users don’t care too much about the graphic layout as long as the site

gives clear and adequate functionality. But some of them thought the graphic layouts

on the AUIT interfaces are quite simple, not pretty enough and some of the

presentation was considered a little bit “confusing”.

Some content on desktop PC’s cannot be translated to smaller screens, so needs to be

chopped off. The interfaces that are developed using the adaptable approach

sometimes be significantly different from original.

8.4.2.2 Comment about the Display Methods on the AUIT Interfaces

We have shown some extra navigation links on the interface to link to the next page if

the screen is not big enough to display the entire information of an AUIT page. Most

of the evaluators found no problem to accept and won’t get lost. But some of them felt

that there must be a better way to navigate, because the current navigation is

cumbersome.

Overall, they think this approach is better than have a large amount of data displayed

on the same screen, then scrolling the window to view them.

Chapter 8 143

End users in general find the AUIT-implemented user interfaces almost as good from

a usability perspective as the hard-coded ones.

8.5 Summary

In this chapter we have carried out an evaluation of the AUIT by developers and we

have tested the adaptable interfaces that we have developed using the AUIT tags from

the end users perspective.

We have also concluded our evaluation results and have generally discussed the

strengths and weaknesses of our approach based on feedback.

Chapter 9 144

Chapter 9 - Conclusion and Future Work

9.1 Introduction

In this chapter, we will conclude our thesis and present a summary of the main

contributions of the thesis to the research field. An outline of the future work will be

presented as well.

9.2 Contributions of the Thesis

In this thesis, we have developed a new approach for the development of adaptable,

web-based information system user interfaces. Comparing with the previous work

illustrated in “Chapter 2” and based on experience from using the traditional

approach, we feel this thesis makes several contributions to the study of the adaptable

user interfaces.

9.2.1 Easy to Use

Our approach allows developers to much more easily construct and maintain web-

based user interfaces than other current approaches. The AUIT tags provided are

similar to existing languages such as HTML, so that users don’t have to learn a totally

new language. This provides simpler syntax, because it can be used in an HTML-like

syntax.

9.2.2 Creating High-level Languages

Another innovative feature of our approach is that it provides developers with a set of

device-independent mark-up tags used to specify thin-client screen elements, element

groupings, and user and user task annotations.

Chapter 9 145

9.2.3 Powerful Adaptability

In “chapter 2”, we have examined previous work in this field. None of the previous

studies provided the power as our system. Those systems generally could only

achieve a small proportion of the adaptable functions that we have incorporated in our

approach. For example, we have developed a novel automated approach for splitting

large screens into parts to suit different display devices.

9.2.4 Easy Architecture

We have implemented our approach with Java Server Page custom tag libraries,

making our system fully compatible with current J2EE-based information system

architectures. AUIT technology allows developers to use all of the usual JSP and

Servlet functionality in conjunction with the AUIT adaptable tags, meaning

expressive power for building dynamic web applications is preserved without

considering new architectures.

9.2.5 Extensibility

In this thesis, we have provided developers with a set of device-independent mark-up

tags used to specify thin-client screen elements, element groupings, and user and user

task annotations. Developers can easily extend our AUIT tags with more tags to make

the system more powerful.

9.2.6 Good Productivity

This approach can improve the productivity of non-programmer content developers

by allowing them to perform tasks that cannot be done with HTML. Moreover, by

using those reusable elements, it will save development time for developers.

9.3 Future Work

Chapter 9 146

There is a great deal of potential for future work on this topic. We have highlighted a

number of areas that people are currently researching and the potential for future

research. Our evaluations of AUIT have identified some areas for further research and

development.

9.3.1 Developing a Tool to Create AUIT Pages

A lot of software packages, approaches and tools have been produced in order to save

effort for developers. User Interfaces for applications, for example sun’s forte, or

JBuilder have made great progress, allowing Java developers to develop UI more

easily. But developers usually have to write several lines to code a button on an

interface before these tools start to be of use.

Although Web development tools are rapidly progressing, such as the latest versions

of Interdev from Microsoft Visual Studio, or Dreamweaver from Macromedia Ltd.,

they still lag behind most graphical user interface (GUI) toolkits such as Swing or

Visual Works Smalltalk.

For example, most traditional GUI toolkits provide layout managers in one form or

another that allow layout algorithms to be encapsulated and reused. Window toolkits

typically provide a layout mechanism that positions widgets in a container. For

instance, AWT and Swing have layout managers, and Visual Works Smalltalk has

wrappers. But we could not find any tools that will provide a mechanism that

automatically lays out the web content so that it can fit in any size of screen. There are

a lot of reasons, although the wide range of devices and lack of mature standard could

be major stumbling blocks.

Dreamweaver is good tool for web application graphic designing. The user can

visually design web site easily, without the need for knowledge of markup languages.

But the result only works on one device-desktop PC. Designs made with

Dreamweaver don’t suit non-PC devices.

In our approach we need to hard code the AUIT pages. For example, we need to

manually adjust the size of each cell in a “group”.

Chapter 9 147

A tool can be developed in the future to generate AUIT pages automatically. A

researcher can develop new design methods for adaptable web application user

interfaces, along with a GUI specification tool that will generate AUIT

implementations from these graphical designs.

This tool could generate the basic AUIT page structure automatically and allow

developers to drag some AUIT tags onto a panel and set up the properties of UI

elements visually. During the drag and property setup, the relevant code for the AUIT

page can be created. So that designing an AUIT page can be achieved visually by

using such a tool and saved by the developer in the same places that we code

manually.

Moreover, whenever an element is specified in the tool, some other configuration

windows can ask if this element is displayed only for specific user, task or device.

The tool also can provide designers with the ability to work with logical structures

rather than a fixed-format layout as in conventional user interface design.

9.3.2 AUIT Extensions

The implementation of our Adaptable Approach is just general idea, there is great

potential for implementation with other technologies like ASP, etc.

9.3.2.1 Add More Functions for the AUIT Tags

Each tag that we have developed performs certain functionalities that we have

demonstrated in “Chapter Five”. People can add more functions into each tag to make

it more powerful.

For example, later work can improve the layout control in AUIT grouping constructs

to give developers more control over complex screen layouts across display devices.

Chapter 9 148

Current task adaptation support is quite limited and we are extending this to allow

developers to use workflow-like information to support such adaptations.

Extending user preference control and device characteristics, like network bandwidth,

will allow further detailed specification of interfaces adaptations.

9.3.2.2 Add More Tags

Extending our AUIT tags with more tags to make the system more powerful.

Moreover, the AUIT tags that we have developed are clearly not sufficient for

complex applications, so people could use this idea to develop their own tags for their

own convenience.

9.3.2.3 Alternative Implementation Approach

There exists other possible technologies to implement our approach, (as we have

specified in “Chapter Four”) aside of using JSP customer tags. People could make use

our design idea and implement it with other possible technologies.

Although there’s a lot more to this approach than has been presented in this thesis, we

aimed to give you a good starting point from which to explore further and begin to

develop the adaptable approach concept further.

9.4 General Summary

In this thesis we have investigated the issues involved in building adaptive, multi-

device thin-client user interfaces for web-based information systems. We began with a

comprehensive review of the related research. We then overviewed relevant

background technology. In order to address the strength of our adaptable approach

over the traditional approach, we developed two versions of a car site, one using a

traditional and the other with an adaptable approach; for later comparison.

Chapter 9 149

In the review we examined some of the weaknesses and limitations of previous

projects and drew some great ideas from them, which lead to our key requirements for

developing the AUIT (Adaptable User Interface Technology).

We then proceeded with an analysis of requirements and developed a design to satisfy

those needs. We implemented our design solution using the JSP custom tag

technologies; a number of AUIT custom tags created to fulfill the different adaptation

tasks issued in requirement. After implementation, we examined a case study which

used the AUIT tags as the principal developing tool.

Finally we presented an evaluation of the adaptable approach and the AUIT tags from

both developer and end-users perspectives and concluded the evaluation results. We

have demonstrated the potential of AUIT for further enhancing adaptable user

interface development.

Appendix A A-1

Appendix A Bibliography

[Analyst Information] Analyst Information

“http://java.sun.com/products/consumer- embedded/allanalyst.html”

[Atlas Software Technologies]. Iftikhar Ahmed “Enabling Web Applications for

Wireless Devices” by Atlas Software Technologies, Inc.

“http://www.sun.com/xml/developers/iftwireless/”

[Annika Wærn] Annika Wærn “What is an Intelligent Interface?” (1997)

[Giles Davies] “Building WAP-enabled Applications with Jbuilder and Inprise

Application Server.” by Giles Davies, Inprise/Borland UK

“http://community.borland.com/article/images/26008/buildwap.pdf”

[Carroll, J.M] Carroll, J.M. and Rosson, M.B. "The paradox of the active user." In

J.M. Carroll (Ed.), Interfacing thought: Cognitive aspects of human-computer

interaction. Cambridge: MIT Press/Bradford Books, 1987, pp. 80-111.

[Dewan, P. and Sharma, A] “An experiment in inter-operating, heterogeneous

collaborative systems” In Proceedings of the European Conference on Computer-

Supported Co-operative Work, Kluwer, pp. 371-390.

[Eric Cook] “An Introduction to Web Clipping and PQAs” By Eric Cook

http://www.webreference.com/dev/webclip/index.html

[Eisenstein, J. and Puerta, A. (2000)] Adaptation in automated user-interface

design, InProceedings of the 2000 Conference on Intelligent User Interfaces, New

Orleans, 9-12 January 2000, ACM Press, pp. 74-81.

[eMobile Part 2] : “A Sample End-to-End Application Using the Java TM 2 Platform,

Enterprise Edition - Integrating an Enterprise Application with Various Client

Devices: Using Servlet, XML, and XSLT Technologies” by Thierry Violleau MDE

Appendix A A-2

Enterprise Java Team Sun Microsystems, Inc. (Dec 2000)

“http://java.sun.com/j2ee/white/eMobilePartII.pdf”

[Fields, D., Kolb, M. (2000)]: Web Development with Java Server Pages, Manning.

Fields, D., Kolb, M. (2000);

[Frank Rousseau] Franck Roussear, J. Antonio Garcia-Macias, Jose Valdeni De

Lima, and Andrzei Duda “User Adaptable Multimedia Presentations for the WWW”

(visited at 12-09-2001)

[Fox et al 1998, Palm, 2001] Fox, A., Gribble, S. Chawathe, Y., and Brewer, E.

(1998): Adapting to Network and Client Variation Using Infrastructural Proxies:

lessons and perspectives, IEEE Personal Communications 5 (4), August 1998, 10-19.

[Grundy et al] J.C.Grundy, J.G.Hosking “Developing Adaptable User Interfaces for

Component-based Systems”, Related Research

[J2EE Edition] Professional Java Server Programming J2EE Edition

[Jean Vanderdonckt,] Jean Vanderdonckt, Quentin Limbourg, “Synchronised

Model-Based Design of Multiple User Interfaces. (Visited on 1/11/2001)

http://www.cs.concordia.ca/~faculty/seffah/ihm2001/program.html

[jsptags(a)] http://coldjava.hypermart.net/servlets/wmltags.htm last visited at

Nov,22,2001.

[jsptags(b)] http://coldjava.hypermart.net/servlets/escape.htm last visited at

Nov,22,2001.

[Joseph L. Weber] Joseph L. Weber, “Using Java 2 Platform” Special edition.

[Korva 00] Jari Korva 1 , Johan Plomp 1 , Petri Määttä 1 , Maija Metso 2 “On-line service

adaptation for mobile and fixed terminal devices” (2000)

Appendix A A-3

[Kules 00] Kules. Bill, “User Modeling for Adaptive and Adaptable Software

Systems”, pg , April (2000)

[Queay H.Mahmoud] Queay “WAP for Java Developers: Develop WAP

Applications with Java Servlets and JavaServer Pages” (10/2001 visited)

http://developer.java.sun.com/developer/technicalArticles/wireless/index.html

[Quseay H.Mahmoud Aug. 2001] August 2001 “Web Application Development with

JSP and XML Part III: Developing JSP Custom Tags”

http://developer.java.sun.com/servlet/ (visited on 12/05/2001)

[Marsic, 2001a; Han et al 2000; Zarikas et al 2001], Adaptive Collaboration for

Wired and Wireless Platforms, IEEE Internet Computing July/August 2001, 26-35.

[Nokia User] “Nokia WAP Toolkit User’s Guide”,version 2.1, January 2001

[Nokia Developer] “Nokia WAP Toolkit Developer’s Guide”, version 2.1, (January

2001) “Using the Palm OS Emulator”

[Palm OS] “Programming Palm OS in a Nutshell”

http://www.palmos.com/dev/tech/docs/palmos/Nutshell.html (visited on

10/09/2001)

[WAP Form Wireless] “WAP Form Wireless Application Protocol WAP 2.0

Technical White Paper”. By www.wapforum.org August 2001

[Qusay H. Mahmoud] “WAP for Java developers - Develop WAP applications with

Java servlets and JSP” by Qusay H. Mahmoud (visited on 10/10/2001)

http://www.javaworld.com/javaworld/jw-06-2000/jw-0602-wap.html

[Rodden et al, 1998] Rodden, T., Chervest, K., Davies, N. and Dix, A. (1998):

Exploiting context in HIC Design for Mobile Systems, In Proceedings of the first

Workshop on Human Computer Interaction with Mobile Devices.

Appendix A A-4

[Steve Meloan] Steve Meloan, “The Jakarta Taglibs Project, April 2001”, (visited

11/2001)

http://developer.java.sun.com/developer/technicalArticles/javaserverpages/JakartaTag

libs

[Stephanidis, 2001; Grundy and Hosking 2001] Stephanidis, C. (2001): Concept of

Unified User Interfaces, In User Interfaces for All Concepts, Methods and Tools,

Laurence Erlbaum Associates, pp. 371-388.

[Tutorial SA and OOD] Tutorial #2:Software Architecture & OOD

http://www.cs.auckland.ac.nz/compsci335st/tutorials/Tutorial2/Tutorial2_2up.pd

f

[Van der Donckt et al 2001;Petrovski and Grundy, 2001] Van der Donckt, J.,

Limbourg, Q., Florins, M., Oger, F., and Macq, B. (2001): Synchronised, model-

based design of multiple user interfaces, In Proceedings of the 2001 Workshop on

Multiple User Interfaces over the Internet.

Appendix B B-1

Appendix B Evaluation Tutorial and Survey

1. Introduction

The purpose of this document is an evaluation of using AUIT tags (Adaptable User

Interface Tags) to develop adaptable user interfaces for various human devices.

This document is comprised of three main parts. Firstly, we will introduce the basic

intent and background of the evaluation. Secondly we provide a short tutorial about

the adaptable approach and AUITs (Adaptable User Interface Tags) in the package

that we developed for implementing the adaptable approach. Finally, we ask

evaluators to fill out the questionnaires to issue their comments.

2. Background

This evaluation is part of the fulfillment of a Masters Thesis. In this thesis, we

explore an adaptable approach for developing user interfaces for web based

applications in a variety of human devices and compare it to traditional methods. To

implement the approach we have used JSP custom tags technology to build a set of

elements (AUITs) for web developers to use for developing web-based applications.

We intend to evaluate our approach and the AUITs from two perspectives. Firstly we

will evaluate the adaptable approach and usability of AUITs from developer’s

perspective, and secondly, we will measure the degree of satisfaction of the resulting

product from the end user’s point of view.

To achieve this we will use two test groups. One is comprised of web programmers,

the other of web users. They will evaluate the technologies from their relative

perspectives. Evaluators are required to read tutorials and complete the questionnaire

that is specifically relevant to their field.

Appendix B B-2

3. Evaluation for Group One – Developers Perspective

This part of evaluation needs to be done by group members with software

development knowledge or experience.

3.1 How to run the application

In this section, we provide a tutorial for the evaluation of how to use the AUITs

elements to create user interfaces for various devices. The system environment that

we used is as follows

1) JDK1.3/ Tomcat

Download the tomcat installation ZIP file and upzip this to “C:\tomcat”. Follow the

instructions with it to start up

• Start a DOS command window

• Cd to C:\Tomcat

• Set JAVA_HOME to where you have your JDK1.3 installation

• Click bin\startup

• A new DOS window should open with Tomcat http server messages display.

2) Use Microsoft Access as database tool

The testing program “carsite” use an MS Access database called “carsite.gdb”. To run

them, we first need to set up ODBC DSN name called “carsite” to point to this. To do

this, go:

• Select Start|Settings|Control Pannel on the Windows desktop

• Double-click ODBC Data Sources

• Click on Add

• Select MS Access Drive, then Finish

• Set Data Source Name to “carsite”

• Click Select and choose the “carsite.gdb” file.

Appendix B B-3

3) Deploy the package

Suppose that we still use tomcat as our web server, under the tomcat folder, we can

find the folder structure as in the table of column two,

The following is the deployment for the car site application.

 The deployment for AUIT approach The deployment for traditional approach
carsite
 -jsp
 -carsite
 -800x600html
 -200x100wml
 -100x100wml
 -interfaces
 -system
-WEB-INF
 -classes
 -beans
 -tagext
 -tlds
 wendy.tld
-web.xml

carsite
 -jsp
 -carsite

-WEB-INF
 -classes
 -beans

 Figure B.1 System Deployment

4) Testing Device

• IE 5.0 as browser to test the interface displayed on the General PC using

HTML and with normal window size (800x600).

• Use mobile device emulator-Nokia Toolkit 3.0 to test the interface displayed

on other devices using WML with small window size.

Download the version 3.0 of the Nokia Mobile Internet Toolkit at the Nokia

web site http://www.forum.nokia.com/wapforum/main/toolkit. You can

change the testing window size by setting “width” and “height” of the

simulator display screen (in pixels), enter the desired number of pixels in the

text entry box for “width” between 84 and 384) and “height” (between 96 and

512).

Appendix B B-4

3.2 Tutorial

Firstly, evaluators need to spend some time familiarising themselves with the AUITs

tags in the tag library, so they are able to use them to build an interface.

The following diagram shows the basic tags that we have developed in AUITs. The

tag name is on the top of each box, and the bottom lists the attributes associated with

that tag. The star sign in front of the attribute means that this attribute is required and

must be specified when use this tag.

1) Page Flow Control Elements

The basic Each AUIT page should have the following structure.

<AUIT:tempate>
 < AUIT group >
 <AUIT:grouptr >
 <AUIT:grouptd >
 UI elements
 <AUIT:grouptd >
 <AUIT:grouptd >
 UI elements
 <AUIT:grouptd >

 </AUIT:grouptr>
 …
 </AUIT:group>
</ AUIT:tempate>

 Indication

AUIT:Template This elements is used to construct the basic structure that basic HTML and

WML file require, as illustrated in the above example

Figure B.2 “Template” Tag Description

The following elements are used for controlling the layout of the user interface. They

are:

Appendix B B-5

 Indication

AUIT:Group

AUIT:Grouptr

AUIT:Grouptd

These elements can be used the same way as “table” tag in HTML, and the

attributes are displayed in the above diagram. These are compulsory elements,

each JSP file need to have these tags specified, and should be used as in the

above example.

The diagrams lists in the following show the name and properties of AUIT tags.

2) Form and User Input Elements

Form
name
action
method

Button
name
value
type(radio|check|button|img

Image
alt
align
src
height
width

TextField
size
name
type

Param
name
value

Select
name

Option
name
value

 Figure B.3 Form and user input elements

3) Text and text format elements

Layout
face
color
size
align
bold
text

Label
text

 Link
direct
*param(true|false)

Param
name
value

Label
text

 Figure B.4 Text and text format elements

The following table lists the main UI elements that can be used for building the user

interface:

Appendix B B-6

 Indication

AUIT:Select

AUIT:Option

A select list specifies a list of options that the user can choose from.	
 The usage

of these two tags is exactly same as the tags in HTML.

AUIT:Break This tag is simple as
 in HTML

AUIT:TextField This tag can have three types, text, password and textarea, all of them can be

used by JSP file for generating HMTL. The first two can be used for generating

WML; the last one will be omitted when generate WML.

AUIT:Image Image tag is used to display images on the html and wml file, it can display the

proper format of image by detecting the device type and generate proper markup

language that the device support.

AUIT:Button It has four types (radio,check,button,img). It displays a button for interface.

AUIT:Link Link can direct page to specified url attribute

AUIT:Label It is used for specifying the text in a file, “allowcut” attribute is for specifying if

the page author allow the part of text to be chopped off in order to displaying

nicely on a small size window.

AUIT:Layout This element is similar with the element “font” in HTML, but more powerful.

User can specify the attribute as indicated in above diagram

AUIT:Form The usage of this tag is used handle user input and event.

AUIT:Parameter This tag can be used for pass parameters during pages redirect and refresh.

4) UI control elements

This type of elements are responsible for control the UI elements, decide if the UI

elements will be displayed, and how they will be displayed. The following diagram

shows the elements and the their attributes that I designed for different occasions.

Task and User can be used to control

 Iterator
collection

Device
device
value

User
user
value

Task
task
value

Table
width
height
align
bgcolor

Td
align
width

Tr

 Figure B.5 UI control elements

Appendix B B-7

 Indication

AUIT:User It is used to control the user based content display. Only content that is user-

specific can be displayed. Others will be filtered out.

AUIT:Task It is used to control the task based content display. O nly content that is task-

specific can be displayed. Others will be filtered out.
AUIT:Device It is used to control the device based content display. Only content that is

device-specific can be displayed. Others will be filtered out.
AUIT:Table
AUIT:Tr
AUIT:Td

These elements are used to display the content in table structure, for HTML

enabled devices.

AUIT:Iterator This element is used to iterate the similar content in a page.

• Step two:

We have provided sample user interfaces comprising of two page dumps using JSP.

Then we will ask the evaluator to develop a similar interface using the AUIT tags.

These two pages are part of a web site on which car dealers can advertise their stock

and dealer information and web users can browse information from the site via the

Internet. We have also provided some of the code for the pages and asked the

evaluator to build the rest of the code to complete the page. The sample code relates

to the usage of the tags. The evaluator can also refer to the sample code for other

pages provided.

Page One-Search_car.jsp

 Figure B.6 Page shot for “Search_car”
On home page of car site, we provide a list of region for user to select, and user can

click any of the regions. When people select a region displayed on home page, and the

Appendix B B-8

following page show up on which user can select certain criteria to search cars they

like to browse.

This interface cannot be displayed fully on the mobile device. Therefore, we ask the

evaluator to develop it using adaptable approach. Developers can use the elements we

described on the above tutorial, and build the following interface.

Page Two-Search_result.jsp

The following page displays the car list based on the search criteria that user selected

from the above page, then click search button. Again this interface is also a problem if

we use device with small window size to display it. We ask the evaluators to develop

this page using the adaptable approach.

 Figure B.7 Page shot for “Search result”

• Step three

After the evaluators complete the pages, they can test them using IE and Nokia

environment that we have set for them. They are then required to answer the

following questions based on their experiment.

3.2 Survey Questions

Usefulness of the Adaptable Approach

Appendix B B-9

From your web-based application developing experience, do you think it is

advantageous to use an adaptable approach to develop user interfaces for various

human devices?

1. Very useful 2. Useful 3. No preference 4. Not very useful 5. Not useful

Ease of adapt

• What technologies do you think would be easier to implement using this

approach?

• Do you think it is easy to use the following JSP custom tags to implement

adaptable approach?

 Easy to
use

Not easy
to use

Similar with
traditional
approach

Hard to
use

Very
difficult to
use

Template

Option/Select

Break

TextField

Image

Button

Link

Label

Layout

Iterator

Table/Tr/Td

Form

Parameter

Appendix B B-10

• Provide additional comment

• Please indicate your opinion about the following tags

 Easy to
use

Not easy
to use

Similar with
traditional
approach

Hard to use Very
difficult to
use

Group

Grouptr

Grouptd

• Comment on how you find the automatic layout generation of “group, grouptr,

grouptd” tags.

Appendix B B-11

User, Task and device-based Interface Adaptation

• Do you think it is easy to use our user, device and task control approach to

build user and task base user interface?

 Easy
to use

 Midium Hard to
use

User

Device

Task

Table/td/tr

Iterator

• Comment on whether you think that the elements that we have designed are

sufficient for developing web-based interfaces for various human devices?

Programming Productivity

• Do you think it has more productivity using the adaptable approach comparing

using traditional approach?

1. Much more 2. More 3 Similar 4 Less 5 Much less

Maintenance

• Do you think it would be easy to maintain an application developed using

adaptable approach than using traditional approach?

1. Much easier 2. Easier 3.Similar 4.Harder 5.Much harder

Appendix B B-12

4. Evaluation for Group Two

In this part of evaluation, we will ask users their opinions of the user interfaces

developed using the adaptable approach.

4.1 Tutorial

In this tutorial, we are going to provide user interfaces that are developed using

adaptable approach. Those interfaces are also part of web sites on which car dealers

can advertise their stock and dealer information and web users can browse

information from the site via the Internet.

Car Display

The following shows three sets user interfaces developed using adaptable approach.

This window displays a list of stock information of a car dealer.

The window size is 600*400 pixels on the following window, the complete

information about a list of cars can be displayed on the window with this screen size.

Palm Emulator with 160x160
can display three cars per
screen

Mobile with 90x100
can display one car per
screen

Desktop with 800x600 can display
15 cars per screen

 Figure B.8 Page Shots Using Traditional Approach

Appendix B B-13

 Figure B.9 Page Shots Using Adaptable Approach

Suppose we use the following window with size 160*80 pixels to display the above

page. The above page was spitted to be four pages with several links provided on each

page. User can view rest information by clicking these links. For example, if user

clicks “Right” link shown on the first page, the page on right its side will show up and

display the rest information.

Appendix B B-14

The following interfaces show the car list on mobile device with window size

(50pixels*8lines), and eight pages were generated to display full information, more

links have been generated, user can view all the information by clicking the links

“R”(Right), ”L”(Left), ”U”(Up), ”D”(Down) on each window. The following only

lists four pages.

Car Search

The following page displays a search form using adaptable approach with normal

desktop IE browser. The following set of page dumps show the layout that displayed

using mobile device. The above page was separated to be five windows with links

linking each other.

 Figure B.10 Page Dump Using Two Approaches

4.2 Survey Questions

From the user interfaces developed for the car site, please answer the following

questions:

Do you think the user interfaces developed using an adaptable approach are easy to

use?

1. Very easy. 2.Easy. 3. Medium 4. Hard 5.Very hard

Appendix B B-15

What do you think about the graphic layouts for user interfaces developed using an

adaptable approach?

1. Very good 2. Good 3. Same as others 4. Bad 5. Very bad

Do you think if the user interfaces can provide sufficient functionalities?

Do you think it is easy to find information displayed on the user interfaces?

1. Very easy. 2.Easy. 3. Medium 4. Hard 5.Very hard

Do you think the screens load fast enough?

1.Very fast 2.Fast 3.Average 4. Slow 5.Very slow

For ease of navigation on small screen device, we have presented the information in

small parts which the user works through progressively (see tutorial). Do you think

this approach provides a satisfactory method of presenting data on a small screen

device?

1. Very satisfactory 2. Satisfactory 3. No different to other methods

4. Unsatisfactory 5. Very unsatisfactory

Appendix C C-1

Appendix C – Tag Library Description

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE taglib
 PUBLIC "-//Sun Microsystems, Inc.//DTD JSP Tag Library 1.1//EN"
 "http://java.sun.com/j2ee/dtds/web-jsptaglibrary_1_1.dtd">

<taglib>
 <tlibversion>1.0</tlibversion>
 <jspversion>1.1</jspversion>
 <shortname>examples</shortname>
 <info>Simple example</info>

 <tag>
 <name>template</name>
 <tagclass>tagext.TemplateTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>bgcolor</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>title</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>type</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>group</name>
 <tagclass>tagext.GroupTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>width</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>height</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>align</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>bgcolor</name>

Appendix C C-2

 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

 </tag>

 <tag>
 <name>grouptr</name>
 <tagclass>tagext.GrouptrTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>cellheight</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>grouptd</name>
 <tagclass>tagext.GrouptdTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>cellwidth</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>align</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>colspan</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>table</name>
 <tagclass>tagext.TableTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>colspan</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>tr</name>
 <tagclass>tagext.TrTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>colspan</name>
 <required>false</required>

Appendix C C-3

 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>td</name>
 <tagclass>tagext.TdTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>colspan</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

<!--====================Form Tags========================-->

 <tag>
 <name>form</name>
 <tagclass>tagext.FormTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>name</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>method</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>action</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>textfield</name>
 <tagclass>tagext.TextFieldTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>name</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>size</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>type</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

Appendix C C-4

 <attribute>
 <name>value</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>button</name>

 <tagclass>tagext.ButtonTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>name</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>value</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>type</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>select</name>
 <tagclass>tagext.SelectTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>name</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>option</name>
 <tagclass>tagext.OptionTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>name</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>value</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

<!--================Presentation Tags=======================-->

Appendix C C-5

 <tag>
 <name>image</name>
 <tagclass>tagext.ImageTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>height</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute
 <attribute>
 <name>alt</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>src</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>width</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>align</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>layout</name>
 <tagclass>tagext.LayoutTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>face</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>color</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>size</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>align</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>bold</name>

Appendix C C-6

 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>text</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>break</name>
 <tagclass>tagext.BreakTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 </tag>

 <tag>
 <name>link</name>
 <tagclass>tagext.LinkTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>direct</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>param</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>label</name>
 <tagclass>tagext.LabelTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>text</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>allowcut</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

<!--=================Other Function Tags========================-->
 <tag>
 <name>param</name>
 <tagclass>tagext.ParamTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>name</name>
 <required>true</required>

Appendix C C-7

 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>value</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>device</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>iterator</name>
 <tagclass>tagext.IteratorTag</tagclass>
 <teiclass>tagext.IteratorTagExtraInfo</teiclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>collection</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>user</name>
 <tagclass>tagext.UserTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>user</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>value</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

 <tag>
 <name>device</name>
 <tagclass>tagext.DeviceTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>device</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>value</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

Appendix C C-8

 <tag>
 <name>task</name>
 <tagclass>tagext.TaskTag</tagclass>
 <bodycontent>JSP</bodycontent>
 <info>Simple Example</info>
 <attribute>
 <name>task</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 <attribute>
 <name>value</name>
 <required>true</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>
 </tag>

</taglib>

