SWI N SWINBURMNE

B l I R UNIVERSITY OF
TECHNOLOGY
* N E =

Improving Reporting of Usability Defects in Open Source Software

Projects

by

Nor Shahida Mohamad Yusop

A Thesis Submitted for the Degree of
Doctor of Philosophy

at Faculty of Science, Engineering and Technology

Swinburne University of Technology
John Street, Hawthorn — 3122

Australia

2018

Dedication

I dedicate this thesis to

My late father

Mohamad Yusop Zakaria, who always believing in me and made this entire journey possible.

My mother

Che Su Hashim, whose affection, love, encouragement and prays of day and night make me able to get

such success and honor.

This thesis is for you.

Abstract

Although reporting usability defects seems straightforward, usability defects are more difficult to
validate and report than functional defects. This is because usability aspects involve a user’s feelings
and emotions, and “struggling with the software” are not objectively measurable and solely depend on
human judgment. In the context of open source software (OSS) development, where usability design
and qualitative assessment are handled by both technically savvy and non-savvy users with varying
levels of knowledge and skills, reporting effective and useful usability defect descriptions becomes a
challenge. Furthermore, current defect reporting tools such as Bugzilla that use a generic unstructured
textual form to collect different types of defects make it impractical to produce high quality usability
defect reports. In particular, the information requested in a generic form is often not contextually

relevant and ignores the need for details pertinent to a defect type.

This thesis extends the body of knowledge in software defect reporting with a focus on improving the
reporting of usability defects in OSS projects. The thesis presents (i) a systematic literature review that
highlights a number of limitations in existing defect report formats — mixed data, inconsistency terms
and values of usability defect data, and insufficient attributes to describe usability defects; (ii) factors
that influence the quality of the defect reports and the information needs for reporting usability defects
identified using a set of survey instruments; (iii) a revised usability defect classification model that
only considers information available in the context of OSS development; and (iv) an in-depth
investigation of the structure and content of existing defect report forms and a new design for a

usability defect reporting form that is informed by the survey findings.

The revised open source usability defect classification model allows a better understanding of the trend
of different types of usability defects, the impact of the problem on a user, and the nature of the failure
qualifier of the problem. The new defect reporting forms and associated recommendations capture
content adaptively and integrate better usability/ human-computer interaction principles. In particular,
our findings if implemented can benefit less technical users by allowing the capture of contextualized

usability-related attributes.

it

Acknowledgements

First and foremost I would like to express my hearty thanks to my supervisors — Associate Professor
Jean-Guy Schneider, Professor John Grundy, and Professor Rajesh Vasa for their help, guidance,
encouragement, support, patience, and dedication during the last four years. From them I learned to
stay positive, be confident, believe in myself, be humble, and always appreciate others. You are my

inspiration to become a better academician!

My special thanks go to Professor Denny Meyer and Swinburne Statistics Clinic team for their
valuable time in consulting and advising my statistics matter. Not to forget, Mrs Aruna Vasa for her

time to read and doing some editorial works on several chapters — thank you very much!

A big thank you to all the participants- especially to my colleagues at University Teknologi MARA,
former colleagues at Motorola Malaysia, as well as Swinburne Software Innovation Lab team

members. These studies were only possible because of you.

My highest gratitude to my mother, siblings, and in-laws for all their endless prayers, love, and support
to me to go through the ups and downs of this journey. Especially to my siblings - Kak Peah, Kak Jaah,
Unggai, and Asu - thank you for looking after mum while I'm away completing this studies. I owe you

alot!

Thank you to my loving husband, Abdul Hadi Othman, for all his sacrifices, understanding, love, care,
encouragement and support that always force me to finish this journey. With you, writing a PhD is a
sweet dream rather than a nightmare. I also thank my three beautiful angels for being supportive! —
Aira and Alya you did a very good job taking care of your little sister, Auni. I love you more than

words can say.

I would also like to acknowledge the sponsor of my study — Ministry of Higher Education and
Universiti Teknologi MARA (UiTM) that enabled the research to take place at Swinburne University
of Technology, Melbourne. My appreciation also goes to the Swinburne Software innovation Lab,
Data61, and Deakin Software and Technology Innovation Lab for providing the financial support

necessary to attend international conferences, which were a memorable part of this PhD journey.

Finally I would like thank all my Malaysian friends in Melbourne for their friendship, love and help for

my family throughout our stay in the Australia.

iii

Declaration

I herewith declare that I have produced this thesis with my on work without the prohibited assistance of
third parties. This study has not previously been presented as a thesis. To the best of my knowledge,
this thesis contains no material previously published or written by another person except where due

reference is made in the text of this thesis.

SpAY

Nor Shahida Mohamad Yusop,
May 2018

v

The Author’s Publications

N. S. M. Yusop, “Understanding Usability Defect Reporting in Software Defect
Repositories,” in Proceedings of the ASWEC 2015 24th Australasian Software Engineering
Conference on - ASWEC ’ 15 Vol. II, 2015, pp. 134—137.

N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects : Limitations of Open
Source Defect Repositories and Suggestions for Improvement,” in Proceedings of the ASWEC
2015 24th Australasian Software Engineering Conference, 2015, pp. 38-43.

N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects — Do Reporters Report
What Software Developers Need ?,” in Proceedings of the 20th International Conference on
Evaluation and Assessment in Software Engineering, 2016.

N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa, “What Influences Usability Defect
Reporting ? — A Survey of Software Development Practitioners,” in 2016 23rd Asia-Pasific
Software Engineering Conference (APSEC), 2016.

N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects: A Systematic
Literature Review,” IEEE Trans. Softw. Eng., vol. PP, no. 99, p. 1, 2016.

N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa, “Analysis of the Textual Content of
Mined Open Source Usability Defect Reports”, in 2017 24" Asia-Pasific Software

Engineering Conference (APSEC), 2017.

Contents

DIEAICALION ...ttt ettt sttt b et ettt eb e a e eat e bt et s be et s b et eb s e en et eas i
ADSIIACE ...ttt ettt et sb bbbt et h e et bt et h et b e et b et ebe e bt e bee bt eatenbeeanen it
ACKNOWIEAZEIMENLSeeueiieiiieiieeieeeie ettt ettt et ettt et e stee st esaaeeabeessaeenseessseenseensseentaesssesnseesnseenseensnean iii
DIECIATALIONeiuiiiieieiitet ettt ettt b e et b et b e et b e et bttt e be et sbe et s e e eaeen iv
The Author’s PUDLIICAtIONScc.eiiiiiiiiiiiiiiieie ettt ettt st s \%
COMERIES ...ttt ettt ettt ettt b et b e st eb et ebe e bt eate s ae e st e s bt e st e s bt enb e et e et e eat e bt eatesbeentesbeenbesbeen vi
LISt OF TADIES ...ttt sttt ettt ettt sb e et sb et st e st b saaens xiii
LIST Of FIGUIES ...veentieeiiieiieeit ettt sttt ettt ettt ettt e st et e sab e e sbaeesbeenbeesssaenteesabaenseessseensaannsennse xvii
I TOEPOQUCHION .ottt ettt sb et et st e e bt e e s bt et sbe et sae e 1
L1 BaCKGIOUNG ...oeviiiiieiiieece ettt sttt et et st e et e st eeaeesabe e saeenbe e tbeenbeenneas 1

1.2 Challenges in Reporting Usability Defectscccceeviierieriiiiniienieiiiecieeiee e 4

1.3 Research MOIVATION ...c..cooiiriiriiiiiieriieienitete ettt ettt st et st bbbt 7

1.4 Research SCoOPe and CONTEXL......c.eeruiieriierieriiierieeiteesteeieente et esetesbeesteebeessaeeseessseenseesssesnseas 9

1.5 Summary of Research MethodolOgYccceevvieriiriiiiiiieiierie ettt e 10

1.6 Research Goals, Research Questions, and APproach..........ccceceerieriiieniieeiienieeneenie e 11

1.7 Research CONtITDULIONS ...c..couiriiiiiiiiieniieieeitete ettt ettt sttt ettt 13

1.8 Thesis OrganizZatiOn.........cccuieiieeruieriieeiiieniieeiieseeeieesreeteestteebeesseesateesssessseessseanseesssesnsesssnennne 14

2 REIAtEd WOTK . ..couiiiiiiiiiiiiet ettt ettt ettt et 16
2.1 Software Defect Reporting in General...........coocieiiiiiieniiiiiienieeie e 16

2.2 Usability Defect Reporting in the Context of Open Source Communitiesc...ccccecveveennne 19
2.2.1 Empirical Studies Focusing on Usability Defect Reportingcccoevevcveerienieennnne 21

2.3 SUITINIATY .veiiitieiieettesite et et e et estteebtestteeabeesabeesseenseesaseesaesabeesssesnseessseenseensseenseenssesnseesnsesnseens 23

vi

3 State of the Art in Usability Defect REPOTtingc.eevveviiiiiieriiiiienieciee sttt 24

3.1 MEthOOLOZY .uvieiiieiiieeie ettt ettt ettt sttt e sttt et e s abeenbeesabeenseessseenseensnesnseennnennns 24
3.1.1 Research QUESIONSc..eiiiiiiiiiiiiieeiie ettt ee ettt e et e e etbe e eeateeeetaeeetreeeeaaeeesaseaans 25

312 DAt SOUICES ...euteniieitiieeitinttete sttt sttt sttt sttt eat et eat et e st e sbe et e sbe et sbeebesbeenbeesnenbens 26

3.1.3 SEArCH SHIINES..cutieeiieiieeiieeteece ettt ettt ettt sttt e st e e beesebeesseesaaeenbeennneeane 27

3,14 StUAY SeIECHIONeeiiiiiieiieeiiecie ettt ettt ebe e teesbeebeessbeesbeesaseensaesnneenne 28

3.1.5 Quality Assessment of Selected StUIEScccvververiiieniieiiieie e 29

3.1.6 Datad EXtrACTION ...c.eootiriiiiiriieie ettt ettt ettt s st s 29

3.2 RESUIES coeittit ettt bbb sttt ettt sbe et 31
3.2.1 Classification SCHEMIEcc.covuiiiiriiiiiiiicectee ettt 31

3.2.2 Usability Defect Reporting MechaniSmc.coecveeieerieeieeniienieeeesieenee e eine e 33

3.2.3 Usability Defect Reports Content and FOrmat..........ccceeeeueerieiieenieniienienie e 35

3.2.4 Usability Defect Reporting GUIdelinesceevveeieerieeiieeniiesieeee et sve e 39

3.2.1 Analyzing Usability Defectscccceeviiiiiiiiieiiienieeieere ettt 41

3.2.2 Tssues in Defect REPOTTINGccviervieriiiiieniieeiiesie ettt ste et saeebeesaae e 47

3.2.3 Key RecOMMENAALIONSoecveeriiieiiieniieeiieniieeieesee et esieeeteesteesveeseesebeenseesasesseessnesnne 49

3.3 Threats t0 ValIdifyc.eeeciieiieiiieieecie ettt sttt sttt st e st e etee st e ebeesnaeenseenaneenne 55
3.4 SUIMIMATY .eeeiiiiiieeiieeieeeteestee sttt et e sttt e beesaeeeabeessbeesteeseteanseessseenseessseenseesaseenseessseanseensseenseenssenns 56
4 Information Needs for Reporting Usability Defectscccevvviriiiiriieiieniiiiecieceeseeee e 58
4.1 MEthOAOIOZY ..eoueiieiiieiieeiieite ettt ettt ettt st e st e e beesebeenbeesabeenbeenaaeeabeesnneenseens 58
4.1.1 Online Survey of Software Development Practitionerscccceevcveereencieenieenveennnns 59

4.1.2 Software Defect Repositories MININGcccueeruveeiieniieiiieniienieerieenie e sveeieesveeneens 63

4.2 RESUIS .ottt ettt b ettt sbe et eae 66
4.2.1 Online Survey of Software Development Practitionerscccceeveveereercieenieeniveennnnne 66

vii

4.2.2 Software Defect Repositories MININGcccueeruveervienieeiiieniienieenieesie e sveeieesveeneens 74

4.3 TRHreats t0 ValIditycccceecierieeiienie ettt ettt et et e et e sebeebeesabeesbeessaeenbeesnsesnseens 86
4.3.1 CONSIIUCE VAIIAILY .eeeuvieiieeiieiieiiieite ettt et ettt ste et e st eaeesateesbaesaaeenbeessseenseens 86
4.3.2 INternal VAIIAILY .oveeevieiieeieeie ettt ettt st et enaeennee s 87
4.3.3 EXternal Validityccovoieeciieiiiiiieiie ettt sttt sttt et e saeennee s 87
4.4 Analysis and DISCUSSION....cc.uiirtiiriertierieeitenteerteesteesieeseteeteesteesteessseesseessseeseesssesseessesseens 88
4.4.1 Reporting Usability DefectScccvueriiiirieiiieiieeiieiee ettt 88
4.4.2 Fixing Usability DefectS.......cccviviiriiiiiiieeieeiteeeeee sttt 90

4.43 Mismatch Between Information Provided by Defect Reporters and Information

Needed by Software DEVEIOPETSccuveeruieriiiiierieeiteste ettt 91

4.5 SUITINATY .eeieitieiieeiieite et et e et estte st e s eteeabeestteesbeesseessseesaesabeesssesnseessseenseessseanseenssesnseesssesnseens 93
Factors Influencing Usability Defect REPOTting..........cccveeviieriiieiieiiieiienieeeeeie ettt 94
5.1 MEthOOIOZY ..uveeeiieiiieeie ettt ettt et sttt e st e be e s st e esbeesabeeabeessbeenseessnesnseenanennne 94
5.1.1 Development of SUrvey INStrUMENtS.......cccueerieeiiieiieeiierie et see et eree e eiee e 94

5.1.2 Research QUESTIONScccuviieiiieeeiieeiiieeeiteeeereeeetteeetreeeebeeesbeeeeataeeeeasesenasaeesnreeeeanns 95

5.1.3 SUIVEY DESIGN ..eeeiiiiiiieeiiieiieeieeee sttt ettt ettt et saee st e saaeeabeesaaeesbeesssesnseennnesnne 95

5.1.4 Questions Related to Factors Under Studied.............cccoveieeiiiiiiiiieiiiiceiie e 96

5.1.5 Evaluation of Survey INStrumentscccverieeiiienieeniienieeieesee e ereeseeseeesne e 97

5.1.6 Selection Of PartiCiPants.........cceereeiieerieeiiienieeieesiieeieesieesbee e eteesiaeeaeeseresseesanesnne 97

S5.1.7 Data ANALYSIS veevieiiieriieiiieitieeieeite st esite et stte et e stteebeesteesbeessaeenbeestaeebeentaeebaennaeente 97

5.2 RESUIES coetiiiti ettt bttt ettt e 97
5.2.1 Demographic INfOrmationc.cecuiiiierieiiiienieeieesite ettt e e e sbeeseae e 97

5.2.2 Factors Influencing Usability Defect Reportingcocceeevveerveeiieenieeneenieeieenieenne 98

5.3 Threats t0 ValIAIfYc.eeeueeiiieiiieiiesie ettt ettt ettt sttt st e saaesabe e taesnseenaee s 105

viii

5.3.1 Internal Validityc.eevieriiiiieeiieiie ettt sttt sttt e et e s e e e s 105

5.3.2 EXternal Validitycocveeiieiiiiiiieiie ettt sttt eaee s 105
5.3.3 CoNStIUCE VAIIAILY ...eeveeeiieiieeiieiie ettt ettt ettt st siee st e seaeseveesbaesnbeensee s 105
54 DISCUSSION .eutintiiiiiiieieittete ettt ettt ettt ettt e ettt et e s bt e st e sbeetesbe e bt s bt eaesbtebesbsenbeeanenbeeas 106
5.4.1 The Role 0f the REPOTTETccviiiiiiiiieiieciieteee ettt 106
5.4.2 The Role of Experience and Knowledge in Usability Defect Reporting 107
5.4.3 Use of Automation TOOISc..cocueriiriinieniiniiiineeenteertee e 109
5.4.4 Defect Information Obtained Through Usability Testing.........cccccververcuierrersuennnnenn 109
5.5 SUIMIMATY .eeeiiieiieeiie ettt ettt ettt et et e st e e st eeabeesteeeabeessbeesbeeseesaseenseesnseenssesnseesaesnseenseesn 110
A New Open Source Usability Defect Classification TaXOnOmMYccceccveevveereeriieeneencieenvensneenne 111
6.1 Existing Usability Defect Classification SChemes...........coccueeviieriiiiieniienciieniecieesee e 111
6.2 Rationale for Revising Existing Usability Defect Classification...........ccccceevveevveenveesieennnnn. 114
6.3 Our New Revised Open Source Usability Defect Classification Taxonomy............cccoc...... 116
6.3.1 CaUuSE AIIDULEeoiiiuiiiiiieieetereeee ettt sttt st 118
6.3.2 Effect AtIIDULEcooiiiiiiiiieieeeseceeee ettt 123
6.4 EVAUALION...c.ciiiiiiiiiiiice ettt et ettt nae e 125
6.4.1 Evaluator SEIECTIONcooiiiiriiiiiriiiienieetesteet ettt ettt st 125
6.4.2 Problem SeleCtioncccccoceriiiiiiiiiiiieienieeet ettt 126
6.4.3 PrOtOCOL ..ottt et sttt 126
0.5 RESUILS .ottt ettt sttt sttt ettt eae 127
6.5.1 Evaluator Demographic Informationccecceeeieriiienieniienienie e 127
6.5.2 Reliability ANALYSIS ..ccccuiiciieriieiiieiiieiierie ettt ettt sttt e st et e st e et e sebeeaeesnnes 128
6.5.3 Feedback on Revised OSUDCccccooiiiiiiiiiiiniiiinieeetesteceseee et 132
6.6 Threats t0 Valldifycoocuieiiieiiieiiecie ettt ettt sate st e b e ebe e baesabeeneee s 134

X

6.6.1 EXternal Validityccceiiiiiiieiieiiieieerie ettt ettt st 134

6.6.2 Internal Validitycccooceeiiiiiiiieiieiieeeese ettt ettt st eaee e 135
6.7 DISCUSSION .ottt ettt sttt ettt ettt ettt ettt est e bt et s bt esaesbeeaesbt e besbsenbeeanenbeean 135
6.8 SUIMIMATY ..eevvieniieeiieeiieste et e ste et estee et e s tteesteesatesateesseeasseesseeessaenseesaseenseesnseesssesnseensaesnsesnseesn 138
Improving Usability Defect Reporting in Open Source Project Developmentccccccueveennenne. 139
7 B D <3 ¥4 s FO SO PO UPRRRUSR 139
7.1.1 Usability Form Implementationccccceereerieeerieeiieeiienieeneeete e see e s 145
7.1.2 EXAMPLE OF USALE ..veeiieiiiieiieeiieciie ettt ettt sttt et e sttt e et e sabeeneesnnes 151
7.2 EVAIUALION...c.eiitiiiiiiiie ettt ettt ettt st ettt eae 155
T 2.1 HYPORESES ..evvieiieeiiieiie ettt ettt ettt ettt st e et e s e e bt e sabe e beesnbeenseesnseeseennnas 156
7.2.2 Participation SelECHION.......ccviieiiieiiieiienit ettt ettt ettt ettt sb et aeesenes 156
7.2.3 Problem SeleCtioncccccoceriiiiriiiiiiieieniieeetee ettt 156
7.2.4 Development 0f Case StUAIESccveeriieriiiiiienieeiie ettt 157
T.2.5 PIOOCOL ..ttt sttt 160
T 2.0 ANALYSIS eeeutieeiiieiieciieeie ettt ettt et stt e et e st e ettt e et e st e e bt et e e baeenbeeateesnbeeneennts 162
T3 RESUIES ottt ettt st et sttt st st b et nbe e 163
7.3.1 Repeated Measures ANOV Acooiiiiiiiiiiiienieeite sttt sttt st eteesvesaeesbeenaeesenes 163
7.3.2 Reliability ANALYSIS ..ccccviieiiirieeiiieiiieiierie ettt eite ettt et e s st esebe et e sebeeaeennnas 166
7.4 Threats t0 ValIAifyc.coooueeiiieiiieiiecie ettt ettt ettt et st e s b e eabe e baesnbeeeee s 168
7.4.1 EXternal Validitycoocciiiiiiiiieiieiieeeeee ettt ettt s 168
7.4.2 Internal Validityccceeoiiiiiiiiieciie ettt sttt et st 168
7.4.3 ConStruCt VAIIAILY cuveeeeeeiiieiieeiiecie ettt ettt et e st et esebeeteesabeeneesnnes 169
7.5 DISCUSSION .ottt ettt ettt sttt ettt ettt eat et eat e be e st sbe et s bt enaesbeeaesbeebesbsebeeanenbeean 169
To0 SUIMIMATY ..eevvieniieriieetiesteeteesiteesteestteeteestteesteesstesaseessseasseeseeanseeseesnseenseesnseesssesnseensaesnsesnseens 172

8 COMCIUSIONS .viiiiiiiiiiiee ettt eee e e e e e e e e eeaae e e e e eeeaaeeeeeeenstareseeenasseeeseessaseeeeennseres 174

8.1 Research Summary and COntribULIONScevvierieiiiienieeiierie ettt eiee e sieeene e 174
8.1.1 A Review of Usability Defect Reportingcccceevueeeviieniiroiienieniieniesie e 174
8.1.2 Development of New Usability Defect Report FOrms.........cccoeceevciveniencieninniennnnn. 176
8.1.3 Revising Usability Defect Classification Model...........cccceevevievieniiinieniiienienieeienne 178
8.1.4 Usability Defect Report Form Evaluation..........cccecveeeieeiiiiiienieniienieeicenie e 179
8.2 LesSONS Learned......coccecuiriiiiiriiiiiiiiieiteseeteste ettt ettt 180
8.2.1 Getting Ethics Approval for Conducting Online Surveys........c..coccceveeeveneeriencennenne 180
8.2.2 Recruiting Survey PartiCipantS.........ccceeveriierierieeniienieeieesieeniee st esieesveesieesveeeee s 180
8.2.3 Designing Survey QUESIONNAITESccvervierireriieeriieeieeiiesreesieesreesieesreesseesssesnseens 182
8.2.4 Mining Textual Usability Defect DeSCriptionsccceeveereveeneeriieneenieeniiesieeeens 182
8.2.5 ANAlysis 0T Data......cccuieriiiiieiiiciie ettt sttt sttt et st 183
8.3 LIMIEATIONS .eeiteniieitiiieiteeteet ettt ettt ettt et ettt sae et bt et sbe et st ebesin et e 183
8.3.1 Diverse Respondents Backgroundccoocveeiiiniiiiiiiiniiiiieiecieeeece e 183
8.3.2 Manual Classification of Usability Defect Information............ccoecvevvercieninnniennnnnne 184
8.3.3 Limited Evaluation Aspects of the Proposed Usability Defect Report Forms.......... 184
8.4 FUture RESCAICH...cc.eoiiiiiiiiiiiiiii ettt ettt 184
8.4.1 Replicating the Survey for Different Focus Groups..........ccoccveveeriiienienciieniensienenenn 185
8.4.2 Additional Reliability Studies to Assess Our OSUDC Taxonomycc.ceeeveenneee 185
8.4.3 Automated Text Mining PrOCESS........ccovueriierieriieeriienieeiiesreesite st enite e esieesveeeee s 185
8.4.4 Additional Evaluation of Our Proposed Usability Defect Report Form.................... 186
8.4.5 Defect Reporter Effect in Software Defect Reportingcocceevevvevienciienienniennnnnn. 187
8.4.6 Modeling Defect Prediction Using Textual Defect Information..........cccccevvvveueenen. 187
8.4.7 Multilingual Patterns of Describing Usability Defectscoocevciierierciienienieenenne 188

xi

8.5 FINAl REMATKS ...cvvviiiiiiiiiieiiee ettt e e e e e et e e e e e eeaaae e e e eenaaeeeeeeennnes 188

ADDIEVIATIONS ..cnviiienieiiieteeiteet ettt ettt ettt ettt b et e b et eb e et ebe e bt ebtenae et e sbeenaenbeen 190
APPEIAIX A .ottt ettt ettt ettt bt e et e e bt e st e e tteea bt e bt e enbe e baeenbeenteesnbeeateenbeensaennseente 191
APPENAIX B ..ottt ettt st ettt e bt e et b e e bt e eabeenbaesabeeteesnbeensaennbeente 195
F N 0301530 T 1 OO UUROTURURPRROt 210
APPENAIX D 1ottt sttt ettt ettt e ae e sa bt e tae ettt e baeenbeenbaesnbeeteeenbeensaennbeent 213
APPENAIX Bttt ettt sttt st e et b e e tb e e bt e eab e e teesnbeeaeesnbeensaennbeente 222
APPENAIX F oottt ettt ettt st bt e s bt e st e e e tb e e bt e eabeenteesabeeatesnbeensaeenbeent 234
RETEIEIICES ..ottt ettt et b et ettt e be et ebt e bt ebtesae et e sbeentenbeen 237

xii

List of Tables

Table 1.1. Research goals, questions and steps of the approach mapped to phases..........cccccceerveenueennen. 12
Table 3.1. SUMMAry Of PICOC.cccuiiiiiiiieiiece ettt ettt ettt sttt et e e enseeseaeenseenenas 26
Table 3.2. Systematic literature review SEarch StrNGS.cccueeeveerveeriierieeiienieerieeseeeiee e ereesaeeseeenenes 27
Table 3.3. Inclusion and eXCIUSION CITLEIIA.co.eiiirieriiriiiiriiene ettt 28
Table 3.4. Quality asSESSMENt QUESTIONS. ..eeevierureerrierireerteenteeteesteeteesteeseessseesseesssesseesssesseessseessesssnes 29
Table 3.5. Quality scores of the 57 studies included in the final review.c.cccceeveiieniiniiernienieeeeee. 29
Table 3.6. Common data items extracted from all PAPETS.c.eevveeriieriierierie et 29
Table 3.7. Specific data items extracted from all PAPETS.....c.eerveerreeriierieeiierie et 30
Table 3.8. Summaries of research areas and tOPICS.covereerriieriieeiiierie et 32
Table 3.9. Categories of usability defect attribULes.ceerverriieriiieiierieecere e 36

Table 3.10. Summary of usability defect attributes used in 13 formats. Problem description was the

most used attribute across the thirteen fOrmMats.coovvviiiiiiiiiiiiiiieee e e 37

Table 3.11. Guidelines for writing usability defect TEPOTLS.evcveeciieriieiierii e 40

Table 3.12. List of attributes used across five research areas. Problem description, title, and severity

Were the MOSt USEd AtIITDULES. ..c...ovuiriiiiiiiiceticet ettt ettt s 42
Table 3.13. Categories of assessment criteria to measure quality of usability defect reports................. 42
Table 4.1. Description of research methods and Strategies.cccveevvierireriierieerieenie e eree e eseee e 59
Table 4.2. Software defect repositories research qUESHIONS.........evveevierieerienieerieerie e 63
Table 4.3. Open source usability defect reports Studied.ceeveveeriieiiierienie e 64

Table 4.4. Criteria used to check the presence of usability information in defect reports based on

CaAPTA’S GUIACTINE. ..eeueiieiiieeiieeiee ettt ettt ettt e st e b estt e esbeessteeabeesabeenbeessbeenseenssesnseenssesnseesssesnseens 66
Table 4.5. Distribution of respondents across professional position and year of experience. 67
Table 4.6. Distribution of participants’ knowledge of HCL.cccoociiviiiiiiniiiiiieieeececee e 67

xiii

Table 4.7. Responses on “usefulness” of usability-related training for reporting usability defects........ 67

Table 4.8. Years of experience in SOftWware teStING.cccveeuerriieriieeiiienieeieenieeieeseeeiee e eveesaeesaeeneees 67

Table 4.9. Defect diSCOVErY METhOAS.cccueieiieiiieiieiie et sae e neees 68

Table 4.10. Medium for report usability defects — respondents mostly used defect-reporting tools and

discussed through verbal MEETING.c.cevuieriiiiiiirieeie ettt ettt s e ebeeseaeenneens 69

Table 4.11. Defect reporting tools used by reSpONdents.ceevveerieerieeriienieerieenie et sre e seee s 69

Table 4.12. Defect attributes used to report usability defects — title, actual and expected output are the

mMost provided attribULES DY TEPOTTETS.eeruveriieriieeitieriieerieerteetteste et e steeteeseaeebeesaaesnbeessseenseeseseenseensnes 70

Table 4.13. Detailed explanation included for each attribute............cccevvveeviieriiiinieniicieee e, 71

Table 4.14. Materials used to support usability defect description — the most prevalent material was

SCreenShots With ANNOTAtIONS.eiiiiiiiiiiiic it e et eeeaa e e e eeateeeeeeeetaaeeeeeenaareeeeeenes 72

Table 4.15. Frequency of attributes used to fix usability defects — the most useful attribute was assumed

CAUSE. +eeeeeeuurreeeeeeetreeeeeeeetereeeeeasaaeeeeeeaesaa st eeseastaseeeseasaaeeeeeeeasaresseseaastaseeeeeasasseeeeeanatsseeeeeataeseeeeenaareeeeeanes 73

Table 4.16. Problems with usability defect reports — unclear assumed cause and insufficient
information in steps to reproduce were the most common encountered problems experienced by

SOTIWATE AEVELOPETS. ...evvieiieeiiieiiie ettt ettt et ettt e sttt e bt e sttt esbeesteesabeesabeenseessteenseenssesnsaenseesnseessseenseens 74

Table 4.17. Chi-Square test results to examine the influence of project and the presence of defect

AUITIDULES. ovvvviieeeeieee ettt e e ee et e e e eeta et e e e eeeaaeeeeeeeeaaaeeeeeeeeataseeeeeeaaaeeeeeeaataaeeeeeataateeeeantareeeeeanes 76

Table 4.18. Types of supplementary information provided in usability defect reports.ccccoceeueenee. 76

Table 4.19. The presence of steps to reproduce, impact, software context, expected output, actual
output, assumed cause, solution proposal, and supplementary information on different lengths of defect

AESCTIPLION. .veeereetieeiieette et et te sttt e e sttt et e st e e bt e sateeabeessteesseessseensaessseenteesaseenseeseseensaensseensaessseenseennseenseess 77

Table 4.20. The presentation of solution proposals — textual description is the most common medium to

present solution proposal in the three Open SOUICE PrOJECES.ccveevuierirerieerieeiierieeiee e eiee e eieesare e 78

Table 4.21 Chi-square test result to examine the influence of defect types and the presence of defect

AUITIDULES. .vvvveiieeieiiee et ee et eeeea e e e e eeeaaeeeeeeeeaaaeeeeeeeeatareeeeeeaaaaeeeeeaataeeeeeeataareeeeentaraeeeeanns 79

X1v

Table 4.22. Distribution of failure qualifier aCroSS ProOJECtS. ...c.vevveerrieriieriieriierieeete et eree e 86

Table 4.23. Rank of attributes — while software developers claimed assumed cause was the most

needed information, reporters Mostly provided itle.oocuevvuierieeiiiiiiieiierie e 92
Table 4.24. Agreement level between what reporters provide and what software developers need....... 92
Table 5.1. The second theme of online survey research qUESHIONS.cccuvervierieerieenienieeiee e 95

Table 5.2. Responses to “the level of detail of usability defect reports varies greatly from reporter to

TEPOTLET” ((Q45). ettt ettt ettt ettt ettt et e s e et e e sttt et e e s ate st e e s abeeabeessbeeaseensaeenbeesasesabeessseenseesaseenseesees 98
Table 5.3. Usability-related training received by the participants (Q7)......ccceevveveerveerreeriieerieenreerieeene. 99
Table 5.4. “Usefulness” of usability-related training received (Q8)......c.eeveevierciirririiiienienieerieeieenne 100

Table 5.5. Responses to question “Do you think your defect reporting tool should provide custom

forms for reporting defects depending on reporter’s knowledge?” (Q41). .cccvvvvvveciievieerieenieiieereeene, 100

Table 5.6. Association between usability/ HCI knowledge and frequency of usability defect attributes

10) 0] H <o SO PTPSRRPRP 100

Table 5.7. Association between software testing experience and frequency of usability defect attributes

10) 0] H <o PO SO PSRPRP 102

Table 5.8. Association between the usage of automated tools and frequency of usability defect

ALTTDULES SUPPLICA. 1neieiiieiie ettt ettt st et e st e st e sabeebbeeabeenbaessbeenseesnseeseennses 103

Table 5.9. Association between usability testing and frequency of usability defect attributes supplied.

... 104
Table 6.1. Definition of key defect CatEZOTIES.cccuieriiiriiiiriiiiieie ettt s sae e 121
Table 6.2. Failure Qualifier — sample phrases from usability defect reports [99].......ccceevverciienienienns 122

Table 6.3. Effect on human emotion and quotes for each. Bold indicates emotion that affected human

<1010 510) 1 NP RPN 124

Table 6.4. Effect on task performance and quotes for each. Bold indicates software qualities that

affected task PETTOTMANCE.c..ovviiriiiiii et ettt et e et e et eesbeenaeesnbeenaeesases 125

Table 6.5. Demographic information of the evaluators.ccccocvevciierieeiieerie e 127

XV

Table 6.6. Evaluators’ familiarity with usability defects.ccocveriiiiriiriiierieeeee e 127

Table 6.7. Experience in using defect classification SCheme.c.ccoevveeiiirieeiienie e 128

Table 6.8. Reliability measures for 12 raters in open source usability problem taxonomy evaluation. 129

Table 6.9. Percent agreement across twelve evaluators classifying defect types component................ 129
Table 6.10. Kappa for the attributes of task difficulty and failure qualifier...........ccccocevvinenninnnenne. 131
Table 6.11. Feedback on revised OSUDC and corresponding modifications...........cceceervercreenvennennns 137
Table 6.12. Feedback on revised OSUDC and corresponding modifications. (Continue) 138

Table 7.1. Summary of the three studies translated into desirable features of our open source usability

41 (T (<] 010 4 £ ORI 140
Table 7.2. List of attributes used in new usability defect forms.cccoeceeviiriiiniiiiiinieeeerie e 143
Table 7.3. Experts Who partiCiPated.ccueeiierieriieiie ettt ettt et e saeeteesbeeaeesebeesaaesaseenne 156
Table 7.4. List of questions in the SUrvey evaluation.cceecveerieriienieeiieeie e sreeniee e see e 162
Table 7.5. Mauchly's Test 0f SPRETICILY”ccveiiieiireeiiteieieeet ettt ettt ettt 163
Table 7.6. Tests of Within-Subjects Effects.......ccccciiriiiiiiiiiiieiece e 164
Table 7.7. Post-hoc tests — Multiple comparisons for evaluator.ccceceerieecieenieiiieenienieesie e 164

Table 7.8. Percent agreement across three evaluators evaluated the quality of usability defect reports.

xvi

List of Figures

Figure 1.1. An overview of usability defect discovery and reporting in the usability and software

ENEINEETING FILAS. .eeuviiiiiiiiiieiie ettt et e st e et e st e eabeestbeesseessbesnbeessbesnbeesaseenseenens 2
Figure 1.2. Mozilla Thunderbird usability defect 846414,c.cooiiiiiiiniiiiriiinecececeeeeene 8
Figure 1.3. Summary of research methodology.c.ccooiriiriiiiiniiiiiiiiicccceeee e 10
Figure 3.1. Systematic literature process adapted from [30], [31], [S1], [S52].eeeeereerceeeieeniieerieeiieeieenee. 25
Figure 3.2. Classification SCHEIME.c..cocuiriiriiriiiiiiiie ettt s 31
Figure 4.1. Distribution of usability defects in which each attribute was presented by project.............. 75
Figure 4.2. Distribution of usability defect attributes between usability and performance defects........ 79
Figure 4.3. Distribution of usability defects with categories and subcategories.ccceevveevueerveerueennen. 81
Figure 4.4. Distribution of usability defect impact and SEVETItY.ccccueeviieriierierieeiierie e 84
Figure 5.1. Role of reporter in reporting usability defects (Q33). ..ovvvvviverieriienieeieeeeeee e 98
Figure 5.2. Responses on “knowledge factors” in reporting usability defects (Q46).cccevvveerveerueennen. 99
Figure 5.3. “Influence of defect discovery methods” in reporting usability defects (Q11). 104
Figure 6.1. Our revised usability cause- effect defect classification model [95].ccccocenerincnnnene 117

Figure 6.2. Hierarchical structure of defect types, effect and failure qualifier. The colors indicate the

different sources we adapted in our classification model.cccoecevriiieriieriiienieeiieie e 120
Figure 6.3. Responses on the five satisfaction aspect.coccecvereeviirieiienieiiiniiieeeeeeeneeee e 133
Figure 7.1. Bugzilla defect report form of the Mozilla project.c.cceceveeveniininveninneneicneeenen 141
Figure 7.2. Bugzilla defect report form of the Eclipse project........c.cceevvervieinieeiiienieiieenieeieerieeieenne 141
Figure 7.3. Reporter identification.cc.coeeririiniiiiniiieneiene ettt 145
Figure 7.4. Software information tab for software developer.coceeevieniniinininiineicceeee 146
Figure 7.5. Software information tab for USeT.cccceviiiiniiiiininiinieeeee e 146
Figure 7.6. DeSCription tab.ccc.coiiiiiiiiiiiieiieieeete ettt et 148

Xvii

Figure 7.7. Actual TESUILS TaD. ...cccuiiiiiiiiiiiecit ettt sttt e b eaeesebe e aaesabeenee 149

Figure 7.8. EXpected reSULLS taD.cciiiiiiiieiiieieeteee ettt ettt sttt st e st e e enbe e 150

Figure 7.9. Firefox for 10S Report# 1145602cocooviiriiiiniiiiiieienieeiesecteeee ettt 151

Figure 7.10. Identification of reporter background to identify necessary information to be prompted.

Figure 7.11. Software Information tab to collect details of the problematic application...................... 152

Figure 7.12. Description tab to collect types of usability defects, detailed explanations, steps to

reproduce, and failure QUALITIET.ccoouiiriiiiiieiie et et st e e saeeeabe e 153

Figure 7.13. Actual Results tab to collect actual output, task difficulty, emotions, and supplementary

information to SUPPOTt JUSTITICATIONS. ...eeeveeriiieiierieciie sttt et ettt et e et e e saeesnbeesaeesenes 154

Figure 7.14. Expected Results tab to collect expectation behavior, solution proposals, and

supplementary information to support SOIUtion ProPoSals.cceereerriieriieriiienieeieerieeieenee e 155

Figure 7.15. Five Firefox for iOS case studies that were reproduced from the original defect reports.

Figure 7.16. Mean usability defect report quality scores as rated by three evaluators.cccceeeeeenne 165

Figure 7.17. Case study defect reports content evaluation scores. On average, the three evaluators in

agreement on the presence of Q2 — assumed cause, Q4 — steps to reproduce, Q7 — failure qualifier, and

O8 — USET AIfICULLY .ottt ettt sttt e st e e s e e s bt e s atesabeesstesateesaseenseesaeensaeseen 170
Figure 7.18. Report#1144758 of FirefoxX for 10S......ccviiiiiiiiiiieiecit ettt 172

Xviil

1 Introduction

This chapter provides an overview of the research in this thesis. It presents the background and outlines
the research areas. The research questions are introduced, as well as the problem to be investigated.
The expected contributions of the research are also presented. This chapter ends with an overview of

the thesis structure.

1.1 Background

Software usability is one of the prominent software quality characteristics that determines acceptance
of a software product in today’s competitive market. When software does not perform in a way that is
expected or has an adverse impact on the user, the software is said to have a defect. We define a
usability defect as an unintended behaviour by the software that is noticed by the user and has an effect
on user experience. The presence of usability defects will not only frustrate the user, but will also
increase the project’s costs and timeline. Thus, making an effort to find usability defects and fix the
issues at the earliest point in the software development lifecycle are key steps towards reducing
software development cost while increasing the user’s satisfaction with software. In most common
software development approaches, usability defects originate from two primary sources, as shown in

Figure 1.1.

The first source that uncovers usability defects is from usability evaluations. Examples of usability
evaluations are usability testing, usability inquiry, heuristic evaluation, analytical modelling and
simulation methods [1]. A usability evaluator in such usability studies is referred to as the expert
evaluator who has had formal education, experience and knowledge of usability and/ or human
computer interaction (HCI). During usability evaluation, raw usability data in the form of video and
audio, sometimes supported with images and notes, are collected. Based on this raw data, the usability
evaluator will then write usability defect descriptions to be included in the final usability evaluation

reports, either in the form of written documents or recorded via a digital system.

Research in the field of formative usability evaluation reports concentrates mainly on finding
effective ways of discovering usability defects. To date there has been given relatively little attention to
the description of the discovered usability defects [2]. While there are various formats to describe

software defects, there is no clear guidance on how to describe usability defects. The use of these

formats often depends on the usability evaluator’s preferences and suitability of the usability evaluation
method. It is thus not surprising that usability defect descriptions are often ad hoc and difficult to

understand [3].

Usability defects
Detected through usability Detected through black box

evaluation methods testing/ user reported

____________________ 1 I |

: v | : L4 |

| Usability I Usability |

I —> defect | | defect I — !

description | | description !

| P I

| Usability | Software tester/ |

| evaluator : | end user :

| Included in Record with | : Store in |

|

| P d :

I |

| by] |
i ! Defect I

I Written | efect

I usability report EQOkSApROIL : | repositories I

| |] :

|

| Usability enginee Software engineeringJI

Project Interface Software
manager designer developer

Figure 1.1. An overview of usability defect discovery and reporting in the usability and software

engineering fields.

The second source for discovering usability defects is through black box testing performed by
software testers. In closed source software development, the software tester is referred to as a non-
expert evaluator with often no or limited formal education, training and experience in usability or HCI.
They assess the usability of the software product indirectly while verifying the product functionality. In
this case, the actual users are not involved because the main purpose is not to test the software’s
usability. If a software tester discovers any frustrating or confusing task, they will report it as a defect.
This defect report is usually submitted and managed digitally via common software defect reporting
tools such as Bugzilla, Jira or Trac. In this way, the information can be shared with different
stakeholders (i.e., software developer, interface designer, and project manager) and the defect

correction actions can be synchronously tracked and managed.

Similar to closed source software development, defect reporters in open source software (OSS)
have limited knowledge about usability. The difference is that anyone in OSS development — user or

contributor - can report problems they find when using the software. According to Ko and Chilana [4],

OSS contributors consist of core and active developers, defect reporters and passive users. Their
contributions to the OSS development are varied depending on their skills and experiences. Given the
fact that OSS project development is both very diverse and distributed, usability defect management

can be limited.

There are several reasons as to why usability defect management in OSS projects is often
neglected [5]. First, many of those who volunteer to contribute to software projects are programmers
and many have limited knowledge and skills required for usability evaluation. For passive users who
can be non-technical savvy users, creating technical defect reports for technical people is a challenge to
them [6]. Second, in order to formally conduct formal usability evaluations, extra commitment from
contributors is necessary. However, volunteers may not be able to, or want to spend more time on
doing this. Therefore, to employ a usability methodology and expecting them to follow heavyweight
usability processes is unreasonable if not impossible [6]. Third, the lack of HCI expert involvement

may delay detection of critical factors relating to usability in OSS projects [7].

Regardless of how usability defects are found and who is reporting the usability defects, usability
defect reports should provide abundant information for different roles and responsibilities of
stakeholders, from both managerial and technical aspects. From the managerial aspect, usability defect
reports serve as a source of information for managing project schedules and resource allocation [8],
team members selection, and guides the selection of appropriate techniques and methods. In contrast,
interface designers and software developers use usability defect information for the purpose of defect
correction. They are seeking information that can give them support for the defect correction process,

such as event traces, proposed solutions [9] and steps to reproduce the defect.

Ideally software testers and software developers should be co-located and work as single team to
share responsibility for improving software quality. If defect reports are unclear, they can meet up and
discuss the issue together. However, in the OSS development context where contributors are globally
distributed, face-to-face conversations are almost impossible and even remote one to one
communication is often limited. Therefore, having clear and meaningful usability defect descriptions is
important to avoid information loss and confusion. Furthermore, in the absence of HCI experts in OSS
development to consult on usability issues, the probability of usability defects being fixed is highly
dependent on how well the usability defect descriptions can convince software developers that the

reported defect is worth fixing. However, previous studies have shown that many usability defect

reports contain unclear and incomplete descriptions [10]-[13]. The lack of features in existing defect
reporting tools for capturing usability defect attributes does not help, nor encourage reporters to submit
a high quality and useful usability defect report [10]. These in turn lead to defect reporters often

providing irrelevant, incorrect, and incomplete evidence.

In order to empower and motivate OSS users to proactively submit high quality usability defect
descriptions, we need to consider the needs of different OSS user backgrounds. While previous studies
have demonstrated that even usability practitioners have difficulties in identifying critical usability
defects [14]-[16] and recording important usability data, OSS contributors with different knowledge
and experience may certainly not know what to report. They may also describe usability defects at
different levels of abstraction and in different ways. Since information reported about a defect is a key
element to ensure defects are rectified effectively, designing defect report forms to effectively capture
usability defect data is a very important step in producing quality usability defect reports by OSS users

who often have limited knowledge and experience in less time.

1.2 Challenges in Reporting Usability Defects

Reporting usability defects can be a challenging task, especially in convincing the software developers
that the reported defect actually requires attention. The subjective nature of usability defects that cause
confusion or problems for some people only [10] may require stronger evidence in the form of specific
details. For example, a small clickable area of website hyperlinks on a touch screen device may only
cause problems for those who have large fingers. To convince software developers that this finger

touch problem is indeed a real problem, additional information is often needed.

While it is recognized that usability defects are different to many other kinds of software defects,
little has been done to understand these differences in terms of the way such usability defects should be
reported. In fact, the effectiveness of existing defect reporting tools to support usability defects has
been little explored. Based on our preliminary investigation of open source usability defect reporting
practices [17] and previous studies [7], [10], we identified several challenges of reporting usability

defects, as discussed below.

Challenge 1 — Generic defect report forms used for all types of defects. The universal use of a generic
defect report form for all types of defects does not assist defect reporters to report clear usability defect
descriptions [17]. Research has shown that current open source defect reporting tools are inconvenient
for reporting usability defects [6], [7], [10], [18]. For instance, common open source defect reporting
tools such as Bugzilla only contain general attributes (i.e., component, version, description, attachment)

that do not specifically capture information related to different types of defects.

While some open source defect reporting tools offer fully customizable field lists, such as Bugzilla
and JIRA, the focus of such fields towards software developers does not make them very friendly for
many end users. As claimed by several respondents in our survey, the overwhelming number of fields
to fill out in these defect forms are found to be very troublesome [17]. In fact, many of the fields are

not relevant for usability defect reporting at all [7], [17], [19].

Challenge 2 - Insufficient attributes to capture usability defect information. Every defect reporting
tool contains a number of mandatory attributes to ensure that defect reporters give a complete
description of the defects they encountered. From the perspective of software developers, steps to
reproduce, actual output, and expected output are considered important when fixing software defects in
general [20], [21]. However, in the context of reporting usability defects, we argue that this information
is inadequate to make usability defects stand out as equally important as any other defect. Usability
defect reports need to highlight other important information, such as user and task difficulty, emotion
and feeling of the user, impact, violated heuristics or design principles, and proposed solutions. These
show how the issue is indeed a real problem and that software developers should treat them

appropriately.

Furthermore, the use of a single description field as unstructured text in current open source defect
report forms does not assist defect reporters to provide information that is important for different types
of defects. The unstructured text used to capture defect descriptions results in mixing different kinds of
important information. Furthermore, some usability information that is related to a user’s feeling,
emotions and “struggles” with an interface are difficult to explain textually [6], [17], [22]. This is
because such information is subjective in nature and dependent heavily on human judgment. Without
specific prompts for this usability defect-specific information, it can be challenging for non-technical

users to provide such information in useful ways.

Another drawback of using unstructured textual formats is the uncertain level of detail of the
information. The generic description field causes many defect reporters to be unsure about just what
information they need to report or how the information should be reported. For inexperienced reporters,
for example, they may think that their reports are complete, but in the absence of specific attributes
they may actually be providing irrelevant or inadequate information. Moreover, meaningless defect
information usually leads to lengthy discussions between reporters and developers that effect the defect

resolution time [23].

The limitations of unstructured textual and lack of attributes for describing usability defects
impedes research on finding what information is required to best explain usability defects, and how this

information should be best be captured and presented.

Challenge 3 - Inappropriate terminology to describe usability defects. The lack of vocabulary and
terms specific to different types of defects makes no distinction between usability defects, functional
defects, or miscellaneous tasks. The inappropriate use of terms to describe usability defects, in our
view, is one of the reasons where usability defects often do not get appropriate attention from software
developers [23]. Incomplete descriptions to highlight difficulties faced by the users, violated usability
heuristics or design principles, and the impact of the issues on business goals, user task, and human
emotion, all cause usability defects to get less priority as compared to functional defects. While OSS
projects have reporters with varying level of usability knowledge, it is generally difficult for them to
apply usability terms, HCI principles, and interface design principles when describing usability issues,
especially in the absence of proper guidelines and references. Sometimes defect reporters use very
different terms for the same things to express their issues [24]. This in turn causes many usability
defect reports produced by non-usability reporters to contain a wide range of non-standard usability
terms that complicates usability defect discussion and resolution. Critically, finding and triaging
duplicate issues is likely impossible for usability defects, as the same issue may be expressed in

different terms from person to person.

Furthermore, the existing generic defect reporting tools that are not specifically designed for
usability defects often lead to misunderstandings and disagreement between reporters and software
developers [17]. Often reporters have to provide screenshots and emails or written reports to get the
developers understand the issues and get them fixed. On the other hand, the use of generic defect

classifications such as Orthogonal Defect Classification (ODC) and Root Cause Defect Analysis

(RCA) to identify the relative priorities of software defects in the classic software development
lifecycles does not help to prioritize the importance of usability problems [23]. As a result, usability
defects are often fixed later as compared to other functional code defects. Introducing more usability
terms and options in defect report forms may better facilitate usability-specific defect priority
classifications that can enhance the understanding of usability problems and enable developers to better
prioritize them. It is worth developing strategies for implementing usability or HCI principles so that
they can be applied effectively in the particular context of a software engineering approach. For
example, we can explore the customization of the Usability Taxonomy Problem (UPT) and ODC to

classify usability defects in OSS projects.

Challenge 4 — Diversity of knowledge and experience between defect reporters. Defect reporters are
usually the person that experienced and reported the problem with the software product. They can be a
software developer (who uncovers defects while developing a software) but might also be an end-user
with varying degrees of experience [4]. Often, the defect reporters’ ability to clearly describe and
translate the defect determines the probability of defect resolution. Previous studies argued that the
current defect reporting tools, which are developed under the direction and are primarily for the use of
software developers, are not suitable for certain user groups. Ignoring the mental model of the end
users and requesting too many irrelevant attributes on a generic form ignores the need for details

pertinent to a defect type [7], [17].

1.3 Research Motivation

There are several important reasons to have high quality defect reports in software development. First,
developers use these reports to debug and fix the defects reported by users. Since usability defects are
subjective in nature, explaining the defects in appropriate ways is important so that software developers
can be convinced about the importance and relevance of a reported problem. Furthermore, the early

presence of certain information can speed up the defect correction process.

To get a deeper insight into how defect information can influence defect resolution time, consider
usability defect 846414 in the Mozilla Thunderbird project, as shown in Figure 1.2. This defect was
opened on February 2013, but only responded by Developer A after a year with the reason that the
defect is not high priority and they have a lot of other things to work on. This defect report is very

minimal, containing just a summary of the problem extracted from a blog post and the reporter’s

expectation. Possibly, the unclear description of user difficulty and solution to the problem makes this

issue slip to the bottom of the list of things to fix.

Surprisingly, a patch to the issue was ready by Developer B on the same day Developer A
expressed their idea to solve the issue. This suggests that including all of the relevant information when
a defect is first reported is important to help software developers prioritize the defect, fix the defect and
speed up the defect resolution time. However, the current unstructured free-text defect report form may
not help reporters to report such information at the initial report submission [10], [17], [24].
Furthermore, without specific prompts for this information, it can be challenging for non-technical

users to be aware what kind of information should be provided.

Defect 846414: Hide the “Show All Tabs” button when there are less than 2 tabs
Part of a blog post that we are pushing to redo the TB UL

Point 7: Only show "show all tabs" button when there are multiple tabs.
For more details see:

http://infinite-josiah.blogspot.com/2013/02/thunderbird-ui-concept.html

It is pointless to show the button that lists all your tabs when you only have one open. In
fact, it really is pointless to show them unless you have more tabs than your Window
can hold.

This bug is to remove it/hide it when not being useful.

Figure 1.2. Mozilla Thunderbird usability defect 846414.

A second key reason for better usability defect reports is that in empirical studies researchers use
defect data to analyze and evaluate software development approaches for future improvement [25]-
[28] . For example, defect data such as severity, priority, version, and component are commonly used
for estimating defect resolution time and predicting the number of defects in the next software release.
In the context of usability defects, however, this data (i.e., priority and severity) is not relevant to use
for such studies because usability defects are often biased to receive low priority [23]. Furthermore, the
subjective nature of describing usability defects using various terms for the same issue makes it more

difficult to use them when comparing multiple reported defect similarity.

For these reasons we feel it is necessary to investigate a better way of reporting usability defects,
especially from the perspective of non-technical users, and to find factors that influence the quality of
usability defect reports. We also wanted to revise the existing usability defect classification model to
only consider information available in defect reports and the limitation of usability evaluation
processes in OSS projects development. We then wanted to apply this improved usability defect

classification model to develop a prototype wizard-based, guided usability defect report form.

1.4 Research Scope and Context

The term “usability defects” used in this research refers primarily to graphical user interface (GUI)
related defects (i.e., GUI design and layout, look and feel of the software application, and appearance),
defects that are related to the ease of use of the software, and defects resulting from interaction of
functionality with the user. The usability defects that we studied in this research were based on the
Bugzilla defect reporting tool structure. Other open source defect reporting tools such as GitHub,
Redmine, Mantis BT, and Weblssues that are outside the scope of this research. However, we believe
our results using the Bugzilla repository usability defect reports will generalize to these tools, as well

as commercial defect management tools such as JIRA.

In this research, our focus is to understand the information needs by software developers when
fixing usability defects, and the information that is usually provided by defect reporters when the
usability defect is reported. Based on the findings, we have proposed a set of usability-related attributes
to be included in the prototype of a usability defect report form. This form is targeted at defect
reporters — who can be software developers (who found an issue while coding), testers (who found an
issue while testing a system), end users (who found an issue while using a system), or customer
supports (who logged a defect report on behalf of customers’ complaint) - to report usability defects

found in open source software.

In evaluating the effectiveness of the proposed usability defect report form, we only focus on the
quality of information aspect. Our evaluation is only based on the defect readers’ perspective to assess
the richness of information collected through the proposed forms, rather than the effect of the
information in improving defect resolution time or ease of use of the forms in eliciting usability defect
information. Although longer defect descriptions are considered to speed up defect resolution time
[23], [29], this may not happen when fixing usability defects. In our opinion, longer usability defect
descriptions are useful to assure good understandability and clarity of the usability defects, but not at
providing quick solutions for fixing defects. Therefore, in this work we focus on improving the way
valuable usability defect information can be collected so that usability defects can be better understood

and evaluated even though the usability defect will possibly be assessed and fixed later.

1.5 Summary of Research Methodology

The research method used in this PhD thesis research consisted of three main stages: an initial stage, an
intermediate stage, and a final stage, which were devised to address the key research questions. These

are illustrated in Figure 1.3.

Human Computer Interaction

Usability Engineering source of Software Engineering
source of Y source of
Usability defect reporting state
of the art
l Initial stage
— Issues, reseach gaps and motivations —
- requirements requirements DEf_eCt.
Online Survey < Repositories
Mining
requirements
) y Intermediate stage
Usability defect information Usability defect classification
needs model
A
Refinement Evaluated in

Inform
requirements of

Feedback
Inform

: User evaluation
requirements of

Refinement

Y Evaluated in

» Customized defect report forms

Final stage

Figure 1.3. Summary of research methodology.

In the initial stage, the usability defect reporting state of the art was identified from three main
sources: usability engineering, HCI, and software engineering studies. The reviews of these studies
were used to reveal the issues, similarities, commonalities and differences in the way usability defects
are described by different communities. This information was used to support our research motivations

and highlight research gaps.

In the intermediate stage, we identified current practices, limitations, and needs of usability defect

reporting through (i) an online survey of software development practitioners, and (ii) mining reports

10

from OSS defect repositories. We used this information to extract desirable features of new defect

report forms and develop an OSS usability defect classification model.

The final stage involved the improvement of existing defect classification taxonomies and the
design of new defect reporting forms to better support usability defect reporting. Finally, our proposed
new usability defect report forms and open source usability defect classification taxonomy was

evaluated to identify practical aspects of the forms in reporting usability defects.

Details of the research strategies were described in different studies presented in Chapters 3

through 7 in this thesis.

1.6 Research Goals, Research Questions, and Approach

The main goal of this research was to improve the defect reporting approach for capturing usability
defects in the context of OSS development. This main goal was divided into four sub goals: (1)
investigate the state of the art of research in usability defect reporting; (2) identify the usability defect
information that software development practitioners emphasize in current usability defect reporting; (3)
investigate how open source usability defects can be categorized; and (4) develop a customizable
usability defect reports. These research sub goals were addressed in five research questions, in which
each research question was studied in a small research study with specific methods and research study
objectives. Table 1.1 summarizes these research sub goals, research questions, associated research

studies and methods, and outputs.

11

sw10y 110dax 109)op ANjIqes)) e

uonen[eAg e
su10j 110da1 309Jop udIsdg .

— 1 Apmg woiy sindur Yy uo paseq
suioj J1odar 30950p dojaadg — § ApmsS

(panodar A19A1109)39 210w 2q S193J9p
Anpiqesn 2o1nos uado ued moH - SOU

'sy10da1 199)9p
Anqiqesn 9[qeziwoisnd e dojoadq — $OY

Awouoxe) UonedIIJISSe[)
10950 Aipiqesn) 20inog uadp uy .

uoneNn[eAg e
Awouoxe) e ugIsaq e

SISA[RUY o

Sururur sa1103150da1 J03J9p AIBMYOS o

‘syr0dar 199J9p
Qomos uado ur pauodor uoneunojul
Jlqe[leAe 2y} U0 paseq AwOUOXE)

10959p Auigesn dojoasg - ¢ Apmi§

(panodar A19A11031J9 2q ued Ady) Jey)
0s PalIsse[d aq syodar 3109J0p Ajfiqesn

92In0S +Od

uado prnoys MoOH -

‘Paz11032)ed 2q UL $199Jop AjjIqesn
oimos uado moy 91e3nsAu] — €9y

Suniodoar 10930p AjIqesn
Surouanpjur siojoej jo suonduosaqg e
Sunaodar
199J9p Ajpiqesn jo suonsagsns
pue suopeywi] jo suonduosdg e
s1ouonnoeld juswdojorsp
eyl eep
199Jop AJ[iqesn JO SUONBOLIIUOP] o

SSO 01 juepodwr st

SISA[RUY o
Sururur sa1103150da1 J03J9p AIBMYOS o
AoAIMS QUITUQ)

*$91103150da1 309J0p 901n0S uado JUdLIND
Ul paqLIOSsOp dIe S)09Jp Ajijiqesn Aem
oy} pueisiopun o) Sumupur sa110j1sodax
100JOp OIeM}JOS WO — € ApmS

-Suniodoar 199)30 Kfiqesn
Q0UdN[JUI JRY) SI0JOB] 9)eTNISIAUI 0} PIsh
sem os[e Aoains aures oyJ, ‘s1odojoAdp
arem)jos pue s1ouodar 01 juepodun
S1 ey
oy Jnoqe suoruido JUSIYJIP IOAOISIP

uonewIojul 300Jop AjjIqesn

0y siouonnoeld juowdo[oadp d1emios
Jo AoaIns duruo ue jonpuo)) — g Apni§

(S199J2p Ayiqesn jo uondriosap

oy} oouonpjur S0k} JeyM - €OU

(3uniodax
109J9p Ajigesn juaund ur dziseydwo
s1o110dar pue s19do[Adp QIEMIJOS Op
uorjewLIojul J09Jop Ajiqesn jeym - 7O

‘Sunodar 30959p Apiqesn

juound - ur dziseydwd syouonnoeid
Juowdo[oAp 2IEM}JOS Op UONEBWLIOJUI

10950p Ajjiqesn jeym AJnuopl — zHY

JudwRgeURW
10930p pue Suniodoal 309Jop Ajijiqesn
Suraordwr 10 SUOHEPUOUILIIONDY o
‘Suniodoar

10950p Ajpiqesn ur soSud[eyd A9y e
"JoIeasal [eouidwo

Suucouidus Ajpiqesn /oremijos

ur ejep 109Jop Ajjigesn Jjo 9s)) e
‘saurjoping

pue ‘syeurioy ‘swstueyodwW

1odax 109)Jop ANjIgesn JO SISOYIUAS o

SISA[RUY o
MIIADY 2INJRIANIT ONRWASAS o

Juawadeuew 309Jp Hoddns
0) paipnys Surdq st uonduosap 103Jp
Ajjiqesn JuIxd jeym 0) eINSoAUl 0)
pue Suntodar 109jop Ajjiqesn 0} paje[al
yiom jo Suipuesiopun ue dojoAdp
0} 2IMEINI oY) MIAY — | ApmS

(0182521 SurieauIud

arem)jos pue Ajuigesn Junsixd
Ul pasopIsuod u2dq Junaodar 3o359p

Aupiqesn sey jueixe jeym ol - 1OW

‘Sunaodar 10959p Aifiqesn Ul Yo1easal
JO v 2y fo 21pps Ay EINSIAU] -[DY

(s) ndinQ

(5) POUIdIAl

Apms

uonsang) Yoaeasay

[80D) [2.183sY

‘soseyd 03 paddew yoeordde oy Jo sdoys pue suonsonb ‘sjeo yoreasay '[°1 91qeL

1.7

Research Contributions

The high-level goal of this research is to improve open source usability defect reporting. Specifically,

this research has made several contributions to the field of empirical software engineering, particularly

in the area of software defect management. The main contributions of this research are:

We conducted a comprehensive literature review to understand the state of the art in usability
defect reporting, and most importantly to find gaps in an empirical software defect reporting.
We used a Systematic Literature Review (SLR) approach to systematically review both
software engineering and usability engineering studies. We identified some key areas for
future research to improve the state of the art in usability defect reporting. Through this study,
researchers can find a review of current practices, key open issues and limitations, and
important areas for future research with respect to reporting usability defects. In addition,
evidence from the SLR helps open source communities to understand which information is
important when describing usability defects.

The results from the survey of software development practitioners and observation of open
source usability defect reports present empirical evidence on the nature of describing usability
defects. The triangulation studies reveal evidence on the information mismatch between what
defect reporters think they usually provide and what is actually reported, and what information
defect reporters think is important for software developers to fix the defects.

We revised the usability defect classification taxonomy by incorporating cause-effect
relationship, not previously considered in the usability engineering studies. The proposed
open source usability defect classification (OSUDC) can be used in open source defect
management to track usability defect trends over time for individual categories. In fact, the
usability defect reports that are classified using OSUDC may facilitate the triaging process,
specifically in determining which usability defects have significant effects that require prompt
attention, and the software developer who is suitable to resolve the defects.

We proposed a list of key textual usability defect attributes that need to be captured to help
software developers get a better understanding of this kind of defects. These attributes are

presented in a structured way, which encourages researchers to explore more empirical studies

13

in the domain of defect management such as defect prediction models using the textual data,
rather than typically used categorical data.

* We proposed and refined the Bugzilla defect report form for better capturing usability defects.
The form is designed as a guided wizard to support multi-levels of user experience. The
usability defect attributes are prompted based on the technical skills and background of the
defect reporters. This will contribute towards creating a simple and improved platform with

which to report usability defects.

1.8 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 describes related work in software defect reporting from both the software engineering and
usability engineering perspectives. This chapter also reports our review of relevant literature

investigating usability defects in OSS development context.

Chapter 3 presents our SLR of usability defect reporting from both usability engineering and software
engineering studies. We employed a process of conducting the SLR as described in the study by
Kitchenham et al. [30] and Petersen et al. [31]. Results of the review were discussed in three
categories: reporting usability defect information, analysing usability defect data and key challenges. In
addition a number of recommendations to improve usability defect reporting and management in

software engineering are discussed.

Addressed research question: RQI1- To what extent has usability defect reporting been considered in

existing usability and software engineering research?

Chapter 4 describes a triangulated research study to identify information needs when reporting
usability defects. The main sources of information include an online survey of software development
practitioners and usability defect reports collected from open source defect repositories. For the multi
part online surveys, this chapter partially describes the findings. The part of the surveys reported in this
chapter focuses mainly on what kind of information is used during reporting and fixing usability
defects. The findings from the online survey and defect repositories mining were compared. We
analyzed the collected data from different sources to reveal commonalities and dissimilarities between

what is claimed by the practitioners with what is actually written in usability defect reports.

14

Addressed research question: RQ2 - What usability defect information do software developers and

reporters emphasize in current usability defect reporting?

Chapter 5 describes the second part of the survey reported in the Chapter 4. This part of the survey
focuses on factors influencing usability defect reporting. We collected opinions of software
development practitioners about five different factors that they think might influence the quality of
usability defect reporting - role of the reporter, knowledge and experience of reporters, use of

automation tools, and influence of defect discovery methods.

Addressed research question: RQ3 - What factors influence the description of usability defects?

Chapter 6 presents the revised OSUDC taxonomy for open source software projects. The OSUDC was
adapted from UPT and Usability-ODC framework. The OSUDC augments an existing usability
classification framework with the introduction of failure qualifier and user difficulty components. This

chapter also presents the results of the online evaluation to collect feedback on the new OSUDC.

Addressed research question: RQ4 - How should open source usability defect reports be classified so

that they can be effectively reported?

In Chapter 7 a set of defect report forms were designed based on the results of the previous studies. It
details the four criteria used in designing the forms, and the evaluation strategy to assess the quality of

information captured using the proposed forms.

Addressed research question: RQ5- How can open source usability defects be most effectively

reported?

Chapter 8 summarizes the findings of the series of research studies conducted as part of this thesis. In

addition, the lessons learned, limitations and future research directions are outlined.

15

2 Related Work

Knowing the importance of quality defect reports in determining how quickly a defect will be fixed has
attracted many researchers into exploring how to improve defect reporting tools and to consider what
makes a good defect report [32]. Indeed, the latter research area is more critical as a good defect report
structure and content can support defect reporters in producing more detailed and comprehensive
defect descriptions that are useful for software developers to understand and fix the problem accurately
[9], [20]. In this chapter, we discuss related work that has investigated defect report content in order to
improve their quality. We reviewed studies spanning open and closed source as well as distributed
software development, software engineering, and usability engineering disciplines. A focused
treatment of just usability defects is presented in Chapter 3. In this chapter, we present prior work and

contextualize them within the context of the work presented in this thesis.

2.1 Software Defect Reporting in General

Software defect reporting is an essential function within most software projects. A good defect
reporting tool is required for recording, reporting, and tracking defects with a supporting process for
improving project quality. Within the context of industry and academia, there have been several
studies that focus on software defects. Their contributions are classified into four types according to
their motivation: 1) determining useful defect information, 2) understanding defect report content, 3)

determining defect characteristics, and 4) improving defect reporting tools.

Determining useful defect information in software development — Research in this area investigated
the specific information that is useful for software developers. We found two studies that surveyed
software developers and reporters in order to investigate the most helpful information when reporting

and fixing software defects.

Zimmermann et al. [20] surveyed 466 software developers and reporters from Apache, Eclipse and
Mozilla projects to find what makes a good defect report. They found that the most helpful information
for fixing software defects in OSS projects are steps to reproduce, stack traces, test cases, screenshots,
actual outcome, and expected outcome. Additionally, they discovered that the information provided by
the defect reporters is contrary to the information needed by the software developers to fix software

defects.

16

Building upon Zimmermann and his team’s study, Laukkanen et al. [21] replicated the
Zimmermann et al. survey in six industrial software organizations. In addition to investigating useful
information for fixing software defects, they extended their survey to investigate missing or incorrect
defect information, and find out which defect information could be collected automatically. They
confirmed that steps to reproduce and actual outcome are the most important information in defect
reports. However, they found that many defect reports lack this technical information and this

information is difficult to collect automatically.

Understanding defect report content — Research in this area has examined defect report content to
reveal the current patterns used when describing software defects. Davies and Roper [33] examined
1600 defect reports from Eclipse, Firefox, Apache, and Facebook API to understand what information
users provided in open source defect reports, how frequently this information is provided, and how the
information provided affects the defect outcome. They focused on ten defect attributes — steps to
reproduce, stack traces, test cases, actual outcome, screenshots, expected output, code examples,
summary, version, and error reports. They found that most of the included information in defect reports
is actual outcome, followed by expected outcome, and steps to reproduce. Nevertheless, their
observations on these defect reports found that many of them are incomplete and do not contain

information expected by the software developers.

In different studies, Bhattacharya et al. [29] analyzed Android defect reports and only studied steps
to reproduce, output details, additional information, and description length. Similar to [33], they found
Android-based app defect reports often contain steps to reproduce and explanation of the difference
between actual and expected outcomes. In fact, they reported that a good quality defect report is one

that has long textual descriptions of the problems.

Determining defect characteristics — Research in this area examined real defect report data to
understand certain defect characteristics. We found that many studies in this area are interested
investigating performance and security defects. For example, Zaman et al. [34] studied defect reports
from the Firefox project to find out the differences in time to fix, developer experience, and defect fix
complexity between security and performance defects. In contrast, Nistor et al. [35] and Zaman et al.
[36], focused on performance and non-performance defects of various open source defect reports.
Nistor et al. studied the performance defects of Eclipse JDT, Eclipse SWT, and Mozilla projects across

three dimensions - risk of introducing new functional defects, defect-fix time and difficulty, and defect

17

discovery methods and reporting. Zaman et al. on the other hand, studied Mozilla Firefox and Google
Chrome performance defects to understand the impact on the stakeholder, context of the defect, the

defect fix-time, and defect fix validation.

Other studies examined and characterized defect report content for software defects in general. Tan
et al. [37] manually examined 2,060 defects in the Linux Kernel, Mozilla, and Apache projects. They
investigated the defect characteristics in three dimensions - root cause, impacts, and components, and
measured the association between dimensions. They found semantic defects are the dominant root
cause, while the majority of security defects cause severe impacts. Lal et al. [38] investigated the
properties and features of regression, security, crash, performance, usability, polish, and cleanup
defects in the Google Chromium Browser. They compared the characteristics of different defect types
in terms of defect fix time, number of stars, comments, discriminatory and frequent word for each
class, entropy across reporters, entropy across component, opening and closing trend, continuity, and
debugging. In the context of usability defects, they found mean time to repair and release date
(MTTR) of usability defects is fairly high as compared to other types of defects, and milestone change

for usability defects is the highest.

Several studies have investigated linguistic aspects of defect reports. Ko et al. [39] studied the
nouns, verbs, adverbs, and adjectives in defect report titles. They found 95% of the noun phrases
referred to visible software entities, physical devises, or user actions. To solicit more structured defect
report titles, they suggested that defect titles should include descriptions about software entity or
behavior, quality attribute, the problem, execution context, and types of defects. In different work,
Chilana et al. [40] developed a classification scheme for capturing the different types of expectation
violations. They started by analyzing a sample of 50 defect report titles and descriptions and produced
seven classification codes — runtime logic, standards, reporter expectations, community expectations,
genre conventions and prior behavior. They tested this classification model using 1000 defect reports
from the Mozilla project. Their findings show that reporter expectation is the most common violation
expectation in defect reports, but are less likely to get fixed. In the context of usability defects, they

argued that the way defect descriptions are phrased affected the defect resolution status.

Improving defect reporting tools — Research in this area looked at ways to improve defect
reporting tools. According to Zimmermann and Breu [18], current defect reporting tools have too few

features to help reporters to provide important information needed by developers. Their study proposed

18

four concepts that should be employed in defect reporting tools — (1) tool-centric to automatically
collect information, (2) information —centric to provide real-time feedback in the quality of information
provided, (3) process-centric to focus on administration of activities related to defect fixing, and (4)
user-centric to educate and remind both reporters and developers on what information to provide and
how to collect it. As a proof of concept, they developed a prototype, but no studies on the usefulness of

these concepts in the prototype were presented.

Other studies focused on improving the readability of discussion threads in the comment section of
defect reports. Dit and Marcus [41] proposed a system to recommend to developers a set of comments
associated with their own comment, so that they can keep discussions coherent and easy to understand.
Lotufo [42], as part of his thesis, proposed two complementary features to improve the readability of
defect reports. The first feature is an automated approach for creating defect report summaries that can
help developers to select portions of information that they want to focus on. The second feature is a
nested comment to allow users to post contextual comments specific for each of the different
diagnostics or solution posts. This feature eliminates the problems of mixed information that hinders
users’ ability to locate and understand problem discussions introduced in the current linear sequence of
comments. Moran et al. [43] developed FUSION to assist defect reporters’ auto-complete reproduction
steps in defect reports for mobile apps. Their findings from experimental studies of 14 Android apps
defects showed that FUSION is effective in facilitating defect reporting and reproduction tasks as

compared to the unstructured natural language defect descriptions.

2.2 Usability Defect Reporting in the Context of Open Source Communities

In recent years, usability of open source software has become an important topic for investigation.
Several studies have shown interest in investigating usability practices and have identified some
challenges discovered in open source software development. For example, Terry et al. [44]
investigated the perceptions and practices of usability in the OSS community. Based on interviews of
27 individuals involved in various OSS projects, they found that the OSS communities demonstrated a
fairly good understanding of usability concepts. Common practices for communicating usability
defects are through Internet relay chat (IRC), mailing lists, forums, and defect reports. Their findings
show empirical evidence that rich, high quality, positive feedback from users helps in improving

software design. In fact, the lack of relevant domain expertise in the developed software makes

19

software developers rely on users feedback. Raza et al. [45] specifically investigated the use of online
forums in addressing usability-related issues. They studied 1753 OSS projects collected from
sourceforge.net. Their study provided empirical evidence that contribution and support of open source
community is significant and active, and voluntary contribution in mailing lists helps to identify and fix

usability defects.

However, communicating usability issues in OSS development is not an easy matter. Past research
has investigated some of the challenges. For example, Zhao et al. [6] conducted a usability evaluation
case study of Ganttproject to understand the usability improvement required in OSS projects. They
found that the defect reporting mechanism of OSS projects is not appropriate for reporting usability
defects. In fact, they observed that most contributing users are amongst the most experienced ones, in
which their request for usability improvement does not reflect the need of non-experienced users. One
key implication of their findings towards improving OSS usability is that the defect reporting of OSS
projects should consider a new way of promoting contribution from non-active or typical users.
Similarly, Cetin et al. [7] has identified the lack of a suitable usability defect reporting tools as a main
obstacle to encourage HCI experts and end users to report usability issues. Similar findings were also
reported in [6]. Nichols and Twidale [22] reported that the use of textual description in current defect
reporting tools is not suitable to describe graphical issues, and some usability issues have a dynamic
aspect that could not be explained using a single screenshot. This is because the explanation about
solution proposals is more relevantly explained using graphical means such as HTML mockups, ASCII
art, or drawing toolkits. Another issue raised by Nichols and Twidale is regarding threaded discussions
in open usability defect reports. The linear sequence of comments in current defect reporting tools
makes it difficult to manage discussion elements, and this issue was addressed in [41], [46]. Their
study brought up two important concerns for attracting more participants to submit usability defects.
First, the defect reporting tools must be easy to use, where users can report with less effort and the
tools do not contain too many technical aspects; and secondly, the defect reporting tools should address

privacy concerns on the automatically collected data.

Raza et al. [47] empirically investigated some of the key factors to improve OSS usability. They
hypothesized that understanding users’ requirement, seeking usability experts’ opinion, incremental

design approach, conducting usability testing, and knowledge of user centered design methods could

20

improve usability in OSS. Among the five key factors, they found usability experts’ opinion did not

play a significant role in improving OSS usability.

2.2.1 Empirical Studies Focusing on Usability Defect Reporting

We identified three types of studies investigating usability defect reporting: 1) determining useful
defect information in software developments, 2) improving defect report comprehension, and 3)

improving defect reporting tools.

Determining useful defect information in software developments- Research in this area specifically
investigated useful information for fixing usability defects. In contrast to [20], [21], Hornbaek and
Frokjaer [9] used developers’ judgment to assess the quality of defect report descriptions. Their
findings show that developers expect usability defect descriptions that are clear, contain solution

proposals, and justify what posed a problem and why it was a problem.

Improving defect report comprehension — Research in this area concentrated on the different
approaches for improving the quality of usability defect report content. In reporting the results of
usability evaluation, there have been a number of description formats described in the literature, which
vary to different types of usability evaluation methods and end up being documentation heavy. For
example, Theofanos and Quesenbery [2] redefined the form and content of formative test reports based
on the outcome of two usability professionals workshops. However, their test reports contain too much
information and some of them are not pertinent to non-technical users. 88 information elements,
grouped into 15 categories such as business and test goals, methodology, tasks and scenarios, results
and recommendations, screenshots and videos are difficult and complicated for a single reporter to

provide.

As an alternative to the heavy-documentation approach, which is often compiled into written
reports and delivered as a PDF or Word document, several studies have developed tools to record
usability defects. Howarth et al. [48] developed the Data Collection, Analysis, and Reporting Tool
(DCART) for collecting usability data from lab-based usability evaluations. In contrast to [2], DCART
contains slightly less textual information to be filled in by usability evaluators - report title, problem
description, problematic user interface object, designer’s knowledge and thoughts, and solutions. The

use of a form-based approach in DACRT provides additional support for novice evaluators to keep

21

appraised of what important data should be provided. Other tools such as Usability Reporting Manager
(URM) [49] offer a structured reporting format for capturing the results of usability evaluations. To
speed up the reporting process, usability evaluators only need to enter results of formative evaluation
into URM and results are exported into UsabML format. Usability defects in UsabML format can be
directly imported into defect reporting tools connected to a source code repository, or can be exported

into other formats such as HTML, XSL, and PDF.

Capra [11] and Dumas et al. [16] on the other hand, focus on guiding reporters to provide
meaningful usability defect descriptions. Capra developed six guidelines for describing usability defect
descriptions based on surveys of usability practitioners — be clear and precise, describe the cause of the
problem, describe observed user actions, support with data, describe the impact, and describe a
solution. These guidelines were tested in a comparison study between usability practitioners and
graduate students. Dumas et al., based on his experience in usability testing, outlined four pieces of
generic advice for communicating usability defects effectively — emphasize the positive, express your
annoyance tactfully, avoid usability jargon, and be as specific as you can. However, these guidelines

did not specify what to include in the descriptions.

Recent work by Simdes [24], however, represents an important step towards building lightweight
documentation for describing usability defects. Simdes, in her thesis, explored the needs of designers in
open source projects, and designed a new defect reporting template to support end users reporting
usability defects. They conducted an interview with four designers who worked on open source
projects and performed content analysis of 547 usability-related defect reports. Based on these findings
and adoption of the semiotic engineering concept, they designed an open text form, in which defect
reporters have to answer several questions depending on the four labels they chose to characterize their
problem. Their contribution shows a positive solution for eliciting the information needed by OSS
designers. However, the use of an unstructured open textual form still produced incomplete,
ambiguous, and irrelevant information. This was because not all questions were relevant for different

types of problems, and such open-ended types of questions may produce non-informative descriptions.

Improving defect reporting tools — Research in this area explored the opportunity to include HCI
and usability principles in current defect reporting tools. Faaborg & Schwartz [50] introduced usability
heuristics concepts into the Bugzilla repositories. They suggested that each usability defect should be

tagged with the specific violated heuristics. In this way, software developers can monitor the different

22

types of issues, and learn about the heuristics. However, this idea is still in the working stage and has

not yet been implemented or evaluated.

2.3 Summary

Writing a good defect report is critical for ensuring quick resolution of defects. In empirical research,
usability defects are discussed in two main disciplines — software engineering studies and usability
studies. In software engineering studies, research on software defect reporting to date has focused
especially on determining useful defect information, discovering defect characteristics, and improving
defect reporting tools for software defects in general. Research on usability defects in usability studies,
on the other hand, more focused on the improvement of usability evaluation methods to effectively
discover usability defects. While it is recognized that usability defects are different to many other kinds
of software defects, little has been done to understand differences in the way the defects are reported.
In order to understand in more detail about similarities, commonalities, and differences in the way
usability defects are reported in these two disciplines, we conducted systematic literature review as

discussed in Chapter 3.

23

3 State of the Art in Usability Defect Reporting

This chapter describes the current state of the art of research in usability defect reporting. The study
was conducted to address our first thesis research question “RQ1 - To what extent has usability defect
reporting been considered in existing usability and software engineering research?”. We carried out a
Systematic Literature Review (SLR) to study the different approaches to describing usability defects in
software development and usability engineering. Both studies in software engineering and the usability
engineering literature were reviewed and the results are classified into three dimensions: 1) reporting
usability defect information - which is related to research on reporting the usability defect; 2) analysing
usability defect data - which is related to researching the use of defect data; and 3) key challenges —
which refers to issues arising in usability defect reporting and management. In addition, some key areas
for future research to improve usability defect reporting and management in software engineering are

outlined. The following subsections explain in detail the SLR process.

3.1 Methodology

In order to conduct the SLR, we used the guidelines of Kitchenham et al. [30] and Petersen et al. [31].
An SLR is defined as a process to identify, assess, and interpret available research studies with the
purpose of answering specific research questions and providing scientific summary of evidence in a

particular area [51], [52]. Our review process consisted of three stages.

In the first stage, we defined a set of research questions and prepared a review protocol. This
review protocol assisted supervision of the researchers conducting the review and guided the
researchers in the data collection. It specifies the research questions, the inclusion and exclusion
criteria, the assessment strategy for study quality, the detailed data that need to be extracted from each
of the selected studies, and the strategy to perform a database search. Once the research supervisors
approved the review protocol, we conducted a pilot study. This pilot study aimed to ensure the research
questions were appropriate to the context of the study and researchable. The outcomes from the pilot

study are used to refine the protocol.

In the second stage, we identified relevant databases and sources, and developed several search
terms corresponding to the database. In the first screening, we only read the title and abstract on the

papers. Any study related to the research topic and within our research boundaries were selected for the

24

second screening. During the second screening, the entire paper was read and we applied the inclusion
and exclusion criteria to choose the final primary studies to be included in the review. Then we re-read
the papers to extract the data according to the extraction form that we had developed earlier. We used
quality assessment criteria to measure the study strength and lack of bias. In the third stage, we
analysed and synthesized the results for reporting. The following subsections discuss in details the SLR

process used, as illustrated in Figure 3.1.

i
! i

1 . 1

. Develop review protocol and define g

i research questions T

|

- I

: I

d 1. Specify inclusion/ exclusion E

. criteria '

E %‘J 2. Dgﬁn‘c quality assessment :

L e criteria i

B 3. Define items to be extracted 4 Refine research

! 4. Develop extraction form : questions and

E E boundaries

- I

1 \ 4 i

- I

I

I .

! Perform pilot study

I

I

I

i . A i i
i 4 i
1 1
1 . .

! Run search First screening E
1 1
1 -~ 1
E 1. Identify relevant databases/ 2| 1. Read title, abstract and i
I sources conclusion E
! 2. Develop search terms !
1 & 1
P8 :
IR 1
P2 i ’
| 5 Extract data Second screening d
2 :
i 1. Read full text fl
i . . 2. Apply inclusion/ exclusion i
) 1. Extract data into extraction form | «@—— pply P
: 2. Assess study quality criteria 1
d 3. Conduct secondary search I
i i
| I
I I
| 1
I I
| I

Analyze and present results

Third
stage

Figure 3.1. Systematic literature process adapted from [30], [31], [51], [52].

3.1.1 Research Questions

The overarching aim of this SLR was to understand “To what extent is usability defect reporting

considered in existing usability and software engineering research?”

In usability engineering, usability defects are often found through usability evaluation methods.

These usability defects are normally described in written evaluation reports. On the other hand,

25

usability defects that are found during system testing or reported by end users are reported in defect
repositories, such as Bugzilla, Google Chromium and JIRA. These usability defects have the same
underlying root cause but were found in different testing stages and were reported by a different
mechanism. This motivated us to review both the usability and software engineering literature to
understand how usability defects are reported in practice. Therefore, the above high-level research
question was further divided into the following sub-questions. These research questions are structured

based on PICOC criteria suggested by Kitchenham et al. [S1] as given in Table 3.1:

1. How are usability defects communicated in the usability and software engineering literature?
a. What mechanisms are used to report and track usability defects?
b. What defect information and formats are used for reporting usability defects?
c. Are there any guidelines available to assist the reporting process?

2. Is there any evidence that usability defects have been studied from the use of data in defect
reports?

3. What are the identified challenges of usability defect reporting in the usability and software

engineering field?

The first question searched the usability, HCI, and software engineering literature to identify
research that focuses specifically on usability defect reporting. These were then analysed and classified
into topics of studies as suggested by Mclnerney [53]. The second question identifies studies that
analysed data from usability defect reports or defect repositories. While the third research question was
aiming to reveal challenges in reporting usability defects from the perspective of usability and software

engineering.

Table 3.1. Summary of PICOC.

Population Usability defects

Intervention | Defect reporting

Comparison | None

Outcome Not concentrated on results

Context Usability engineering and software engineering

3.1.2 Data Sources

Five electronic database resources were primarily used to search usability defect reporting. These
included: IEEE Explore, ACM Digital Library, ScienceDirect, Scopus, and Google Scholar. These

electronic database selections were based on the recommendations in [1] and [54]. To facilitate the

26

search process, an advanced search option was used that allowed multiple keyword searches. Title and

abstract data fields were primarily used to retrieve relevant journal and conference proceeding papers.

In this research, we only reviewed papers published from the year 2000 onwards. This limitation was

set because we identified a few studies that were reported prior to 2000 and were extended in other

studies, which were included in our review.

3.1.3

Search Strings

To ensure a thorough search in both usability and software engineering literature, a set of search strings

was created for each research question. The search strings were formulated based on:

Major terms from the research questions

Relevant terms extracted from relevant papers, journals, and books

Synonyms, alternative terms, and related concepts of research questions

Boolean AND and OR to link all the terms

Three different search strings were derived and executed on different electronic databases. As the

literature search progressed, search terms were refined, discarded, and added. Any changes to the

search strings were rerun on the selected electronic databases to ensure all relevant papers were

retrieved. These strings are listed in Table 3.2.

Table 3.2. Systematic literature review search strings.

Literature String Search String RQ Purpose
Usability 1 ((Usability defect* OR " wusability bug* OR usability 1 To identify mechanisms used to
engineering problem* OR usability issue*) AND (approach OR report and track usability defects
technique OR methodology OR procedure OR mechanism and discover existing defect
OR plan OR pattern OR tool OR track* OR manag*) description formats and
guidelines that relate to usability
defects
Software 2 ("Defect reporting" OR "bug reporting" OR "error reporting" 2 To review the literature for
engineering OR "fault reporting" OR "defect reports" OR "bug reports" usability defect reporting in the
OR "error reports" OR "fault reports" OR "crash reports" software engineering area
OR "defect description" OR "bug description" OR "error
description" OR "fault description") AND ("usability" OR
"user interface" OR "GUI"

3 ("Defect reporting” or "bug reporting" or "problem 3 To review any issues that are
reporting” or "issue reporting" or "defect tracking" or "bug relevant to usability defects and
tracking" or "issue tracking" or "problem tracking" or "bug challenges of existing defect
repository" or "defect repository" or "issue repository" or repositories in handling usability
"problem repository" or "bug tracker" or "defect tracker" or defects
"issue tracker" or "problem tracker" or "bug repositories" or
"defect repositories" or "issue repositories" or "problem
repositories") AND ("usability" OR "user interface" OR
"GUI")

27

3.1.4 Study Selection

The primary search resulted in 609 studies. This set was then filtered based on title and abstract
analysis, which reduced the total to 191. The significant difference from the first and second filtration
was partly due to duplication and irrelevant context of study. For instance, the search on the term
“usability defect” often returned studies that belonged to medical, engineering or telecommunication

topics, which were out of our research context.

We then conducted a secondary search using a reference chaining technique. The reference
chaining is commonly used in other SLRs [55]-[57] as supportive search approach to find any relevant
studies that were not found during the primary search. This resulted in 52 new studies being included in

the second filtration process.

A total of 243 studies were then analysed by reading the full paper text. At this stage, inclusion and
exclusion criteria, as shown in Table 3.3, were applied to evaluate papers. Since this study was
surveying a blend of software engineering, HCI and usability defect reporting literature, a narrow
inclusion criteria was used. We defined our inclusion criteria to be specific to each research question
[58], while the exclusion criteria were common to all research questions. Reasons to include a paper
were: 1) that it belongs to the area of defect reporting in general, and usability defect reporting in
particular, and 2) that the defect reports originated from a defect tracking system and usability

evaluation reports, and not from other means of reporting usability defects.

As discussed in the introduction and background sections, while a range of means of detecting
usability defects exist, we were interested in how they are described, reported, and tracked by software
development teams, and hence papers that focus on these aspects. This review only considered papers
published from January 2000 to March 2016. Finally, 57 studies were included in this review. See

Appendix A for the list of included studies.

Table 3.3. Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

* Studies that focus on usability defect description/ | ®* Exclude if the paper is on SLR or systematic mapping
format/ report/ guideline ¢ Studies not in English

¢ Studies that focus on analysing/ using usability defect | ® Short papers, posters, introduction to special issues,
information tutorials, and mini-tracks

e Studies about a tool or mechanism to report usability | ® Defect reporting studies not focussed on usability defects
defects ¢ Usability defects studies not focussed on defect reporting

* Empirical studies on usability defects

28

3.1.5 Quality Assessment of Selected Studies

All selected papers were assessed for their quality. Each of these papers was also classified as either a
software engineering or a usability study, respectively. Papers were evaluated using two sets of
checklists that were formulated to measure the research credibility and validity. Each question was
rated as: 1 implies “Completely describe”, 0.5 implies “Exists but does not completely describe” and 0
implies “Does not exist”. The total quality score for each paper was computed by summing up all the
scores. This ranged between 0 (very poor) and 5 (very good). The checklist used is shown in Table 3.4.
Table 3.5 shows the quality scores for all the primary studies included in the final review. Most
achieved above average quality: 13 studies (22.8%) and 30 studies (52.6%) were deemed very good

and good quality, respectively.

Table 3.4. Quality assessment questions.

Common questions

1. Are the aims of the research clearly articulated?
2. Have other authors cited the study?
3. Does the study report credible finding with supported data/ evidence?

Usability engineering Software engineering
4. Is the study’s focus on usability defect description? 4. Is the study’s focus on defect reporting in software
5. Was there an in-depth description of communicating development?
usability defects? 5. Does the paper study usability defects?

Table 3.5. Quality scores of the 57 studies included in the final review.

Quality scale Very poor (<1) Poor (1-2) Fair (2.5-3) Good (3.5-4) Very good (>4) Total
Number of studies 0 0 14 30 13 57
Percentage 0% 0% 24.6% 52.6% 22.8% 100%

Table 3.6. Common data items extracted from all papers.

Data items Description

Identifier Unique identification number

Bibliographic Title, author, year

Type of article Journal/ conference/ book chapter/ technical report/ theses

Study aim The aims, goals or objectives of the primary study

Research methodology Case study, survey, experiment, interview, observation, questionnaire, lesson learned
Data analysis Qualitative, quantitative, or mixed

Study findings Results and conclusions from the primary studies

3.1.6 Data Extraction

We created a data extraction form to extract detailed contents for each study. There were two
categories of data extracted for each paper. First, common data such as bibliographic references, type
of study, aim, research methodology and data analysis. Second, the specific data that answered each

research question. Table 3.6 and Table 3.7 show the data that was extracted for both categories.

29

All extracted data was put into shared spreadsheets that were reviewed by a review team consisting

of the main researcher and her supervisors. The main researcher was responsible for reading and

extracting the data. In order to validate the extraction correctness, the research supervisors

independently rated a random sample of papers according to the inclusion and exclusion criteria. All

discrepancies on the data extracted were discussed between review team members with the aim of

reaching a consensus. The reliability of the findings of this review was accomplished by considering

only the quality score of relevant studies that are greater than 2.5 (50% of the percentage score) [57].

We did not measure inter-rater reliability since our review aimed for generalizability of the findings, in

particular, to clearly describe how conclusions have been derived from the data instead of comparing

agreements of the same codes or themes [56], [59].

Table 3.7. Specific data items extracted from all papers.

Search focus

Data item

Description

Quality of defect

Assessment method

Method used to conduct assessment (i.e. experiment, survey, case study)

descriptions Participant Participants involved in assessment (i.e. student, usability expert, software
developer)
Assessment criteria Criteria used to assess the quality of defect description (i.e. clarity, impact, cause)
Approach Description of the assessment process
Outcome Results of assessment
Recommendation Suggestions for future work in related assessment results
Usability defect Format Format used to report usability defects
description Approach Description of the format usage and characteristics of the format
content and Content List of attributes or information used in the usability description
format Limitation Limitations of the format
Benefits Benefits of the format
Evidence The empirical evidence regarding the benefits of using a specified format to
improve the quality of defect description
Reporting Medium Medium used to report and track usability defect reports (i.e. form-based reporting
mechanism and end-user reporting)
Characteristics Description of the reporting mechanism
Benefits Benefits of the reporting mechanism
Limitations Limitations of the reporting mechanism
Evidence The empirical evidence regarding the benefits of the reporting mechanism to
improve reporting process
Reporting Aim The purpose of the guideline
guideline Guideline Description of the guideline
Benefits Benefits of the guideline

Limitations

Limitations of the guideline

Evidence The empirical evidence regarding the benefits of using the guideline to improve the
quality of usability defect reports
Recommendation Suggestions for future work
Analyzing defect Focus The purpose of the study
information Attributes used The data used for analysis purposes
Approach Description of the study that related to the research question
Benefits The benefits of the study

Limitations

Limitation of the study

Evidence The empirical evidence regarding the benefits of the study
Recommendation Suggestions for future work related to analysis results

Issue in defect Challenges The problems in defect repositories related to usability defects

reporting Recommendation Suggestions for future work related to improving usability defect reporting

30

3.2 Results

3.21

A classification scheme was developed to organize the retrieved studies on usability defect reporting.
As shown in Figure 3.2, the classification scheme was structured to map onto our research questions.
We categorized the studies using the process defined by Petersen et al. We started the classification
process by analysing the title, keywords, abstract, and conclusions. We then compiled the keywords
and phrases to build a high-level set of categories for classifying the papers. Finally, we grouped the

phrases, research objectives and research findings of the papers in each category into a coherent set of

themes.

Classification Scheme

Reporting Usability Defect Information

Reporting mechanism Content and format Reporting guideline
Tool-based ‘
Written document Experience
End user reporting ‘
End user reporting Empirical
Modeling based ‘
Analyzing Usability Defect Data
Quality of defect report Classification Duplication
Measuring quality ‘ ‘ Characteristics ‘ Merging
Improving defect ‘ ‘ Cause of problems ‘ Matching

report

Estimation

‘ ‘ Impact of problems

Design discussion

Challenges

The classification scheme is composed of three main categories; 1) reporting usability defect
information - which is related to research on reporting usability defects; 2) analysing usability defect
data - which is related to researching the use of defect data; and 3) challenges — which refer to issues
identified in usability defect reporting and management. Table 3.8 summarizes the distribution of the
studies per topic. Studies that addressed more than one topic were classified repeatedly in each topic.
For example, Norgaard et al. [60] investigated mechanisms of usability defect reporting and challenges

for each mechanism, and their study is counted in both topics.

Figure 3.2. Classification scheme.

Table 3.8. Summaries of research areas and topics.

Research Description Topic Studies Total
areas
Reporting Investigate how usability ¢ Tool-based reporting P7, P10, P15, P17, P34, P41, 13
mechanism defects are collected and P45, P49, P51, P55
reported * End-user reporting P18, P30
* Modeling-based support P28
Content and Investigate what attributes are * Written document format P5, P6, P7, P8, P9, P10, P11, 26
format used to describe usability P12, P13, P14, P15, P16, P17,
defects P18, P24, P25, P29, P30, P32,
P33, P35, P36, P37, P43, P47,
P53
* Learning-oriented format P37
Reporting Studies that assist reporter in ¢ Experience P2, P52 4
guideline reporting usability defects * Empirical PS5, P37
Defect report Studies that analyzed defect * Measuring usability defect ~ P1, P3, P4, PS5, P7, P8, P35, 11
quality reports for quality assessment reports quality P39, P44
¢ Improving usability defect ~ P3, P7, P27, P35, P44, P48
reports
Classification Studies that analyzed ¢ Usability defect P22, P50 5
usability defect data to characteristics
understand the characteristics ¢ Cause of usability defects P42
of usability defects ¢ Impact of software defects
P21, P46
Duplication Studies that use usability * Matching P12, P13, P56 4
defect data for identifying * Merging P36
similar usability problems
Estimation Studies that use defect data to P19 1
estimate defect discovery rate
Design Studies that examined the * Addressing and resolving P21 3
discussion structure and content of usability defects
defect report discussion ¢ Structure and content of
design discussion P26
¢ Online forum
P31
Challenges Studies that discussed the * Developer mindset P1, P9, P37, P53, P54 22

issues of reporting usability
defects

* Subjective bias
¢ Evaluator effect

¢ Defect discovery methods

¢ Complexity management

¢ Lack of appropriate
channel for reporting
usability defects

e Lack of guideline for
specific usability defect
information

P1, P23, P240, P54

P1, PS5, P7, P8, P14, P20, P39,
P53

P3, P20

P26, P29, P40, P53

P6, P10, P20, P23, P38, P40,
P57

P29, P36, P54,

In the following section, we present our answers to the review research questions based on analysis

of the included studies. Each study is identified as Pm, where m represents the study's number (see

Appendix A for the list of studies used in this systematic review).

32

3.2.2 Usability Defect Reporting Mechanism

Three key types of reporting mechanisms were identified in the usability and software engineering
literature. To effectively capture usability defect data, each reporting mechanism uses a variety of input
designs, such as auto-generated data, predefined data, free-text form, and online help. Auto-generated
data such as tester name, timestamp, and problematic user interface can be automatically recorded
when the test is run and the report is submitted. In contrast, predefined data contains a variety of
categorical data that is dependent on the input from the reporter. During a defect report submission, the
reporter will select some values, such as severity, type of defect, and heuristics used. Some of these
values can be changed over the defect life cycle, such as severity. For a free-text form, the reporter is
allowed to write any description — comments, feedback, complaints, feelings or disappointment, steps
to reproduce, expected and actual result — regarding the problems. In summary, the description of three

reporting mechanisms can be described as follows:

Tool-based reporting is the easiest way to record and generate data as compared to a paper-based
approach [61]. Tool-based reporting allows data to be collected instantly, and recorded data can be
measured quantitatively, analysed for trends and used to generate feedback for quality improvement. A
well-designed tool will assist users to provide sufficient data, thus, in turn, reduce missing data issues.
Several tools in the usability evaluation field were developed to assist in usability defect reporting.

Some key examples are outlined below.

* Data Collection, Analysis and Reporting Tool (DCART) [P7] uses auto-generated data and
free-text form input design. The defect form was designed for collecting and organizing
usability defect data in lab-based usability evaluation using a Usability Problem (UP) instance
concept. Each occurrence of a UP found by multiple evaluators or multiple times by one
evaluator is considered as the same UP. However, given multiple instances of UPs, evaluators
must manually review and combine them to determine the main UP experienced by the users.

* Web tool [P10] uses tooltips, predefined data and free-form text input and was designed to
record usability defects found during heuristic evaluation only. By having the tooltips and
examples of usability problems, the evaluators get help on attributes and better guidance to
assign severity and heuristics used to find problems. However, a non-integrated reporting tool
with the software under test may trouble some users in switching between these two systems

and users may bias certain values. In contrast, Usability Reporting Manager [P17] uses

33

predefined data and free-text form input. Using a web interface, reporters can enter, manage,
and export data in into a defect tracking system connected to a source code repository.

* Merging duplicate problem descriptions [P41] helps evaluators to record usability problems
into a database using different usability evaluation methods, to search the database for similar
problems, exchange datasets, and to perform a meta-analysis of the datasets.

* Usability Problem Inspector (UPI) [P15] uses auto-generated data, predefined data and free-
text form input incorporating usability action framework (UAF) content. UPI has two modes;
task-based and free-based exploration. Using the task based-approach, evaluators are
presented with a series of questions from the UAF structure. When a problem is identified, the
evaluator is presented with a defect report form and the inspection path is automatically
recorded. However, for free-exploration mode, no task information is recorded. DESTINE
[P34] uses predefined data input. The tool is limited to evaluate the ergonomic quality of

websites and it can support two types of user profile; expert and designer.

In the software engineering field, defect tracking systems are commonly used to record and track
software defects, including usability defects. Our review only found four tools that explicitly assisted in

usability defect reporting.

* GUI monitoring and automated replaying [P45] uses a generic non-intrusive GUI usage
monitoring mechanism that can be integrated into existing applications. The monitoring of
usage can produce actual usage traces that can be included in the defect reports and used as
an input for replaying purposes. The traces are triggered by user interactions like mouse
clicks or key presses.

* GUI editor tool support [P49] was developed on the Eclipse platform to support exploratory
graphical user interface testing. The tool uses Eclipse logging to record uncaught exceptions
during execution of a test and a cheat sheet viewer for evaluators to describe the observed
failures. The test results are available in the form of a results file and can be automatically
exported into the defect repositories.

* Timeline tool [P51] was developed to visualize monitored interaction traces and application
events preceding failures. Using the tool, software developers may analyse the traces to

derive steps to reproduce by manually replaying the monitored user interactions.

34

* FUSION [P55] was developed to produce more reproducible defect reports than traditional
defect tracking systems. Using the event-driven paradigm of Android application, the tool
aids the reporter in constructing the steps needed to reproduce a defect by making auto-
completion suggestions based on the potential GUI actions, such as click (tap), long click

(touch), type, and swipe.

End-user reporting tools collect information in much simpler forms to address users’ frustration
and complaints, and the users report defects as part of their day-to-day activities. We identified two

approaches of designing end-user reporting.

* One-bit-feedback [P18] uses auto-generated data and a free-text form input. It is a
background process that monitors certain system characteristics and packs them into an
incident report whenever the user clicks on the screen button or punches the hardware button.
The reports are stored locally on the user’s system. Usability defect data is collected using
auto-generated data and user is given the opportunity to provide comments and feedback
through a free-text form. Using this approach, defect incident is automatically recorded and
requires less data entry.

* Two-mouse-click [P30] uses auto-generated data, predefined data and free-text form input
design. The prototype was developed to allow report submission with minimal user click and
supplements user comments with objective program state information. The program only

collects information relating to the user’s interaction. No sensitive information is sent.

Modelling-based reporting provides a standard description with more structured data. The
reporter uses a modelling language with defined notation to represent information. For example,
ErgoPNets [P28] uses a formalism that combines Petri Nets and ergonomic criteria to describe
ergonomic problems and their recommendations. The method uses icons, graphical representation and
text to describe problems. In this way, the complex usability defect descriptions can be unified into a

single model.

3.2.3 Usability Defect Reports Content and Format

13 usability defect description formats were identified from the selected studies. Eleven out of the 13

formats are presented in written documents, while the other two are learning-oriented formats. These

35

formats are associated with a list of attributes for communication and report keeping. Altogether, 33

attributes are identified across 13 formats by a total of 26 studies. As shown in Table 3.9, we classified

these attributes into eight groups based on the objective of defect description content objective, and we

summarize all the formats and attributes in Table 3.10.

Table 3.9. Categories of usability defect attributes.

Group Attribute/ Contents Description
Description Identifier Unique defect identification number
Summary A headline summarizing the problem [P35]

Problem description
Product description
Actual result
Expected result

Concise description of the usability problem

Description of the product and the intended users of the product [P11]
Description of errors made [P32]

Describe what evaluator expected the system to do [P6]

Type of defect Details of the problematic subject (i.e. number, background0 [P32]
Impact Likely difficulties The anticipated difficulties the user will encounter as a consequence of the
problem [P16]
Severity Indicates what effects the usability problem had on the user [P33]
Frequency Number of users/ experts that experienced/predicted a usability problem [P33]
Confidence Indicate how confident evaluator believed that the usability problem
identified was true
Reproducibility Ability to reproduce the problem and make it happen again [P6]
Location Context Describe in what part of the user interface the user was when the usability
problem occurred [P33]
Specific interface component (i.e. logon component, calendar component)
[P32]
The specification of the environment used for the evaluation, including the
location and any hardware (computers, monitors, cameras) [P17]
Discovery resources Evaluator Author of the usability problem description (i.e. a meta data that
and methods automatically captured the evaluator’s name)
Test user Number of users who participated in the evaluation and the criteria by which
they were selected [P11]
Description of the intended user [P32]
Task Specific tasks that the participants were asked to perform during the
evaluation [P11]
Goal of the task The goal of the reported test [P11]

Evaluation method

Usability evaluation method [P33]

Assumed causes

Possible cause
Trigger

Failure qualifier

Describe the cause(s) of the problem based on the evaluator’s judgment [P16]
Describe what a user is doing when she/he discovers usability problems (task
scenario, heuristics) [P33] [P47]

Criteria used to justify the usability problems [P36]

Describes how the user/expert experienced a usability problem (i.e. missing,
incongruent mental model, irrelevant, wrong, better way, overlooked) [P33]

Solution proposal

Redesign description
Redesign argument

A description of how to remedy the problem [P35]
Justification of the redesign proposal [P37]

Supplementary
information

Attachment

User’s response and
feelings

Positive findings
Business goals
Recovery steps
Problem elimination
Usability specification
Conclusion

Logfiles, screenshot, questionnaire [P9]
Narrative description with strong positive or negative connotations,
metaphors or stories (i.e. video of users struggling with an application) [P37]
Include positive comments on the usability of the site [P2]

Justification why business goals were jeopardized by the problem [P35]
Description of how the user recovers from the usability problem [P6]
Justification of why any problem discovered should warrant elimination [P16]
Usability requirement under test

Summary of the report

Timestamp

Time on task
Created date and time

Completion rate (mean time on task [P33]
A meta data when the problems are reported

36

Table 3.10. Summary of usability defect attributes used in 13 formats. Problem description was the
most used attribute across the thirteen formats.

Attributes Contents Written document Learning
oriented
- B
:E 2| 3 2 g .E‘ g o
g2 |8 |83 . |3 Blegm |® g | B2
| g = E = 3 g E 2 3 " 2 i
EEgE&ﬁEEE%'EﬁE BElsE |31
e | £ e |z8|&|8 |5 |28 <] @& 3 z
Description D [¥ v o v
Summary 7 ¥ Yl 4
Problem Description B | L4+ ¥ | S
Product description 2 Y| ¥
Actual result 4 v | v v
Expected result i ¥
Type of defect 2 ¥ V
Impact Likely difficulties 4 AEaN
Severity 15 | 4 AR SESREAK ¥ v
Frequency 2 ¥ ¥
Confidence 1 I
Reproducibility 2 ¥ |
Location Context 15 | « v | ¥ o4 L4 v
Discovery Evaluator 2 v
resources and Test user 5 LR L
methods Task 7 LR v
Goal of the task [A I
Evaluation method] v |4 LA
Assumed cause | Possible cause 4 RS
Trigger 7 v ¥
Failure quali_ﬁer 2 qf o
Solution Redesign description 12 |4 [+ | F] 4 v v v 4
proposal Redesign argument 4 v v
Supplementary | Attachment 8 IBERR v v s
information User's response and | 1 v
feelings
Positive findings 2 v | f
Business goals 1 v
Recovery steps 1 ¥
Problem elimination 1 ¥
Usability specification 1 v
Conclusion 1 v
Timestamp Time on task 3 AR EAR
Created date and time 4 v ¥
Total studies Sl 4f9l9 J1J1]21]1 1 1 2 1 1

Note that the attributes checked for each format does not mean that all these attributes are present
in the format at any one time. Rather, it is a compilation of several studies that mention the use of
certain attributes for a particular format. The most common format used to report usability evaluation
findings were web-based form and report. The use of variety input design techniques such as auto-
generated data [P7, P15, P17, P18, P30], pre-defined data selection [P10, P15, 17, P30], free-form text
[P6, P7, P15, P17, P18, P30, P47] and question-based [P6, P47] can produce more structured and
consistent defect information. Common attributes collected in the web-based form are problem
description, location of the problem in user interface, specific task where the problem was observed,
what triggers the problems, and a severity rating. There are several key features of web-based
reporting that make it easy-to use with little manual effort. Examples include features for reminding

users about key information to report [P7], online help and tooltips for quick reference [P10], support

37

for data transformation into different formats [P17], and automatically recorded system generated
information [P15]. However, users are exposed to erroneous data entry due to the cognitive load and

biased use of default data.

In contrast to web-based forms, conventional reports contain unstructured content and a large
amount of information. The report generally gives a detailed description of usability evaluation
methods that have been conducted so that the content of the report will not only be able to justify the
situation of the problems encountered but to present a good argument to management for requesting
resources allocation [P9]. Other attributes commonly reported in conventional reports are problem
description, severity rating, and attachment. The Problem list, on the other hand, provides lightweight
documentation. Even though the content is briefer and lacks contextual information, it is useful to
support ongoing discussions [P53], and helps to prioritize tasks during the problem merging process
[P37]. In this way, complex problems could be described as multi-faceted without going into a detailed

report [P13]. This format usually requires a problem description and severity rating.

The redesign proposal is more focused on a problem solution. It gives ideas on complex problems
by providing concrete recommendations and arguments. The recommendations are usually supplied
with drawings or code fragments [P53]. While software developers may prefer redesign proposals, it is
difficult to write useful recommendations for major changes, especially problems that involve business

and technical constraints [P29].

The other nine formats are less commonly reported - these include forum and diary [P6],
multimedia [P6, P37], human centred story [P37], screen dump [P37], digital objects [P32], self-
experience [P37], and redesign workshop [P37]. Even though these formats do not use a variety of
attributes, multimedia and redesign workshop format, for example, provide persuasive and well-
balanced defect description [P37]. Two studies were categorized as “other” format as they do not

clearly state the format used but did mention attributes used to extract usability defect data [P33, P36].

In terms of content, we found that problem description, severity, context, and redesign description
were the four attributes most commonly used to describe usability defects across formats. Attributes
that rarely present in usability defect descriptions are product description, expected result, type of

defect, frequency, confidence, reproducibility, evaluator, failure qualifier, user’s response and feelings,

38

positive findings, business goals, recovery steps, problem elimination, usability specification, and

conclusion. These attributes are often captured in report and web-based forms.

23 studies primarily used problem description to report usability defects across ten formats, except
multimedia, self-experience and redesign workshop. However, it is uncertain whether the problem
description is mutually exclusive — that is the attribute has only one value. This is because problem
description has a very vague definition in which the reporter has a probability of mixing it with other
attributes such as possible cause, type of defect, and user’s response and feelings [P7]. Sometimes,
problem description is very brief such as in the problem list format. To support this issue, a redesign
description can additionally persuade the relevance of usability defects. We found twelve studies that
addressed detailed redesign proposals, but only four studies supplied an in-depth justification for why

the proposed solution is necessary.

Fifteen studies emphasized the severity rating in eight formats. However, there is no standard
definition used to indicate severity assessment. Some studies have used seriousness [P3, P13], category
[P15] and impact [P33] to describe the same meaning. Additionally, there are several severity schemes
used for the rating purpose such as 1) minor, serious, critical [P5], 2) major or minor [P8], and 3)
severe, moderate and minor [P10]. In terms of software conmtext, fifteen studies mentioned the
problematic location of elements in the user interface. This information can be either automatically
collected [P15, P18, P30] or manually specified by the reporters [P6, P7, P10, P13, P14, P17, P33,
P37]. Among the 13 formats, only redesign proposal, report, web-based form, multimedia, screen
dump, redesign workshop provided attachments. The attachment can be log files [P8], core dumps

[P9], screen image [P12, P18], webcam picture [P18] and video clip [P37].

3.2.4 Usability Defect Reporting Guidelines

The review uncovered four guidelines that suggest the way that usability defects should be reported, as
shown in Table 3.11. Two studies provide experience-based guidelines that originated from practical
lessons and usability experts’ point of view [P2, P52]. According to Dumas et al., the way the usability
defect is communicated to developers influences the acceptance of the usability defects. Instead of
complaining about the negative aspect of the software product, the usability description should also

address the positive findings in a clear and precise form.

39

Another two guidelines were constructed through empirical studies [P5, P37]. Among the four

guidelines, the Capra et al. [P5] guideline is the most rigorous and complements Dumas’s guideline.

Capra’s guideline was developed based on a survey of usability practitioners. This guideline is widely

used as a criterion to evaluate the quality of a usability description [48], [62], [63]. Besides that, the

guideline may be used in training usability evaluators and as a checklist when writing a usability defect

description. Meanwhile, the Nergaard et al. [P37] guideline is based on Toulmin’s model of

argumentation and Aristotle’s three modes of persuasion.

Table 3.11. Guidelines for writing usability defect reports.

Studies

Guidelines

Dumas et al. [P2]

Emphasize positive

Express your annoyance tactfully
Avoid usability jargon

Be as specific as you can

Capra [P5]

Describe a solution to the problem

Be clear and precise while avoiding wordiness and jargon
Describe the cause of the problem

Support your findings with data

Help the reader sympathize with the user’s problem
Describe the impact and severity of the problem
Describe observed user actions

Be professional and scientific in your description
Consider politics and diplomacy

Describe your methodology and background

Norgaard et al. [P37]

Provide evidences for the observed problems

Describes the underlying assumptions that must be agreed upon before the claim can be accepted
Provide argument’s purpose or position — the difficulty arises from the problems

Provide insightful remarks and conclusions about the system being evaluated

Use log data or statistical data from a user test as backing for a usability problem

Show videos of users struggling with an application or even letting the developers experience the
problem themselves

Avnon et al. [P52]

Log one defect for each problem

Clearly document each defect

Include the visuals — observed problems and the intended design
Include violated usability interface guideline

Include prototype to visualized complex interactions

Prioritize the problems

40

3.2.1 Analyzing Usability Defects

There is a body of research focusing on usability defects for understanding and improving the defect
management lifecycle. Our systematic literature review identified five areas that specifically
investigate usability defects — quality of usability defect reports, classification of usability defects,
duplicate defect report analysis, estimation of usability defects, and discussion of usability defect
reports. In terms of attributes that are commonly used in empirical research (refer Table 3.12), problem
description, impact, and title/ summary are most widely used. Attributes rarely used by researchers are
type of defect, likely difficulty, confidence, priority, software context, reporter, violated heuristic,
business goals, assignee, milestone, time to fix, and defect fixes. Research on classification and defect
duplication favourably used title/summary and description, while research on defect report quality
often used observable user actions, impact, assumed cause, and supplementary information. However,
two studies did not report defect attributes used as they employed other metrics such as ISO/IEC 9126

quality model [P21] and IBM quality measurement model [P46].

3.2.1.1 Quality of usability defect reports

We identified two key topics in this research area. First, studies that measure the quality of usability
defect reports. In general, defect report produced by an expert evaluator had better quality than the
defect reports produced by a non-expert evaluator. In most studies, non-expert evaluators are recruited

among students, while expert evaluators are from industrial practitioners.

Based on the eight studies, we identified numerous criteria used to measure the quality of usability
defect reports (see Table 3.13). We classified these criteria into three categories: report content,
software quality model, and general categories. One study did not mention any assessment criteria that
were used [P39]. Report content was used by six studies to measure the quality of usability defect
reports [P1, P3, P5, P7, P8, P35]. Among the defect attributes, observable user action, impact,
supplementary information, assumed cause and solution proposal were the most assessed information.
Only one study measured the quality of the usability defect report content using test procedure
descriptions, executive summary and report layout [P8] and business goals [P35]. Five studies revealed
that non-expert usability evaluators have difficulty in describing certain usability defect information,
particularly the impact, solution, supplementary information, assumed cause, and recovery steps [P1,

Ps, P8, P39].

41

Table 3.12. List of attributes used across five research areas. Problem description, title, and severity
were the most used attributes.

Attributes

Total
studies

Quality

Classification

Duplication

‘ Prediction |

Discussion

P1

P3

P5 | P7

P8

P35

P22

P42 | P48

P50

P12 | P13

P36

P56

P19

P23

P26

P31

Identifier

2

v

v

Title /
summary

7

v '4

v

v

4

Description

v

Observable
user actions

Type of defect

Likely
difficulty

Impact
(severity)

Confidence

Priority

Software
context

Software
Information

Reporter

Test procedure

Cause of the
problem

Solution
proposal

Violated
heuristics

Merge ID

Supplementary
information

[SE R

Business goals

Assignee

Milestone

State & Status

~

Time to fix

Defect fixes

Comment

[N ST R e

*Software information = product, component, version

Table 3.13. Categories of assessment criteria to measure quality of usability defect reports.

Category Assessment criteria Rank* Study (s)
Report content Impact 2 P1, PS5, P7, P35
Supplementary information 3 P1, P5,P7
Assumed cause 3 P1, P5,P7
Observable user actions 2 P1, P3, PS5, P7
Solution proposal 3 P3, P5, P7
Test procedure description 5 P8
Executive summary 5 P8
Business goals 5 P35
Report layout 5 P8
Software quality model Clarity 1 P1, P3, PS5, P7, P8, P35, P44
Persistent 5 P3
Justified 5 P3
Persuasive 5 P44
Usefulness 4 P35, P44
Data quality 5 P8
General Expert judgement 5 P4, P7

(*) The ranking showed the assessment criteria used the most in measuring quality of usability defect reports (in ascending

order)

42

With regards to the software quality criteria, seven studies used clarity attributes to assess if the
usability defects were described precisely, meaningfully, and contained unambiguous explanation [P1,
P3, P5, P7, P8, P35, P44]. We also observed that even non-expert evaluators failed to fulfil all report
content criteria, but they could describe some information clearly [P1], and provide positive findings
for the evaluation [P39]. However, these studies did not indicate which information non-expert
evaluators could explain precisely. Other studies uniquely defined their quality attributes such as

persistent [P3], justified [P3], persuasive [P44], and usefulness [P35, P44].

The general category comprised of expert judgment. Studies that relied upon expert judgment
measured quality using criteria such as how similar problems were identified and use of appropriate
claims to justify the problems. In order to minimize judges’ bias, measures of association, bias, and
distribution of the judgement were calculated. In our review, two studies employed professional judge

ratings [P4, P7].

The second key topic is emphasizing the ways to improve usability defect descriptions. There are
several aspects of possible improvement. To improve defect report content and structure, Hornbaek and
Frokjaer [P3] recommend four elements for good usability defect reports: 1) include solution proposal,
2) justify why something is a problem by referring to the behavioural consequences of a problem, 3)
present descriptions of problems that are complex and persistent for users, and 4) make the problem
description long enough. In a different work [P35], they proposed the use of business goals in
justifying usability defects, as the information would give higher utility and impact to the company.
Furthermore, they found that business goals help focus the evaluation. Ko et al. [P48] suggested that
the defect report title should consists of software behaviour, relevant quality attribute, problem,

execution context, and if the report is a defect or feature request.

In terms of usability defect report format, software developers highly prefer a multimedia
presentation, screen dump, and redesign proposal for presenting usability defects because they provide
ideas on the problem context [P44]. To improve a usability defect reporting tool, Faaborg and Schwartz
[P27] proposed the adaptation of usability heuristics when labelling usability defects. In fact, a
usability-shared vocabulary (such as consistency, jargon, feedback) can be useful in describing the
cause and impact of user interface problems. However, this approach is highly dependent on the clarity
of each heuristic’s definition and use of good examples, as users of defect reporting tools may have

limited HCI knowledge. To effectively capture usability defects, Howarth et al. [P7] proposed the

43

usability problem instance approach to record usability defects. Using this approach, they found out
that expert judgment provided higher ratings for describing the cause of the problem and solution
proposal description. Hornbaek and Frekjer [P3] found that usability evaluation methods influence the
level of detail of defect description. For instance, problems identified with the metaphor of human

thinking are more justified compared to problems found with testing aloud.

3.2.1.2 Classification of Usability Defects

In existing defect repositories, defects are classified as either a defect (blocker, critical, major, minor,
normal) or an enhancement. However, this labelling scheme does not have sufficient knowledge for
understanding the properties and features of various types of usability defects. This is evidenced by a
number of studies available in the literature [P21, P22, P42, P46, P50]. We group the research into

different goals below.

* Understanding usability defect characteristics - Lal and Sureka [P22] investigated the
differences, similarities, and correlation between terms and usability defect types. They found
that terms present in defect report titles and description are related to usability defect type. For
instance, usability defects frequently use terms such as “window”, “user”, “zoom”, “menu”,
and “click”. In relation to usability defects, they discovered that 1) usability defects are the
largest contributor to regression defects, 2) the median mean time to repair (MMTR) value for
usability defects is fairly high compared to other defect types (cleanup, crash, polish,
performance, regression, and security), and 3) usability defects are the second highest of
duplicated defect reports. Xia et al. [P50] studied the relationship between types of defects and
severity. They discovered that most user interface and usability defects are assigned as block
and critical severity.

* Understanding the cause of usability defects - Li et al. [P42] developed a classification model
for classifying defects to root cause, impact and software component. They found that
graphical software is threatened by graphical user interface (GUI) defects that are mostly
caused by semantic errors, such as missing features and wrong functionality.

* Understanding the impact of software defects— Vetro et al. [P21] conducted an experiment to
classify software defects according to ISO/IEC 9216 quality model (functionality, reliability,

usability, efficiency, maintainability and portability). They found functionality and usability

44

were the most dominant impacted quality attributes. Kreyss et al. [P46] used the IBM quality
measurement to categorize defect report distribution. Across the nine quality attributes
(capability, usability, performance, reliability, installability, maintainability, documentation,
serviceability, and overall usability) was ranked as the second highest problematic quality
attribute. The results from the study gave an overview of where improvements should be

focused.

3.2.1.3 Duplicate Defect Report Analysis

Many previous studies have reported how duplicate defect reports of any sort may slow down the
defect fixing process as more resources and time are needed to identify and close duplicate defects
[64]. However, duplicate defects should not be ignored because they may contain additional
information that may be useful to resolve defects [20]. With regards to the latter concern, we identified
four studies that addressed a way specific usability detects are detected and handled. In the usability
engineering literature, duplicate defect report classification is referred to as matching and merging, and

does not appear to be an area of active research.

* Matching — a process to detect duplicate problems. Vermeerena et al. [P12] analysed the
usability problem’s similarity based on the situation in which the problem occurred, the user’s
observable behaviour at the time the difficulty occurred and how the user thought, felt or
understood certain tasks. Hornbak and Frekjer [P13] studied four matching techniques
(similar changes, practical prioritization, a model of Lavery et al. (1997) and the User Action
Framework). Their experiment showed that similar changes produced more single problems
than the other techniques, and practical prioritization reaches highest level of agreement
among novice evaluators. Hindle et al. [P56] used different contextual features — architecture
words, non-functional requirement words, LDA topic words, and random English words - to
improve the accuracy of defect report deduplication. Their experiments demonstrated that the
effectiveness of domain-specific context could improve the quality of duplicate defect
detection.

* Merging — a process to consolidate similar problems. When similar problems are identified,
they must be linked to the primary report the current duplicate refers. To address this process,

Law and Hvannberg [P36] used a manual merging process, where evaluators recorded every

45

3.2.14

change made to the usability problems in their own consolidated list. The results of their study
found that the merging process is influenced by the evaluator effect, in which the merging rate
and severity increased when evaluators performed merging process in a group. However,
confidence level, which is influenced by personal experience, does not fluctuate with the

merging process.

Estimation of Usability Defects

We only found one study that used usability defect data to determine defect discovery rates. Using

Good-Turing discounting with a normalization procedure, Lewis [P19] revealed that higher levels of

description produce a higher estimate of discovery rate.

3.2.1.5

Design Discussion of Usability Defects

We found only three studies in the software engineering literature that focused on correction discussion

and had goals concerning user interfaces and interaction design.

Addressing and resolving usability defects — Twidale and Nichols [P21] identified two topics
commonly discussed by users: 1) debate about the validity of usability problems; and 2)
critiques and refinement of candidate solutions. They also expressed concerns about usability
defect solutions that may introduce ripple effects.

Understanding structure and content of design discussion — Ko and Chilana [P26] observed
trends in online design discussions including establishing scope, proposing ideas, identifying
design dimension, defending claims with rationale, moderating process, and making decisions.
However, the temporal presentation of discussion comments was inadequate to support
proposals and critiques among a broad range of users.

Supporting online forums — Raza et al. [P31] discovered that the open source community
works in a collaborative environment to identify and find possible solutions to usability
defects. The number of active mailing lists and messages posted on online forums indicated

significant and active support from open source community.

46

3.2.2 Issues in Defect Reporting

Addressing the identified challenges of existing usability defect reporting processes and tools serves as
a basis for any improvement in software defect management practices. We identified these reported
challenges from both software engineering and usability engineering studies. From the software
engineering perspective, these challenges include difficulties faced by reporters to report, track and
manage usability defects in existing defect tracking systems. Most challenges identified in the usability
engineering field are related to human factors and usability evaluation methods, while challenges in
software engineering field are due to limitation of existing defect repositories. Key reported challenges

we found from the previous studies are summarized below.

3.2.2.1 Developer mindset

One of the prominent dilemmas among evaluators is when their usability defects reported get a lot less
attention than they think they deserve from software developers. This situation seems to happen when
software developers cannot understand the problems, especially when they do not participate in the
evaluation or witness how users struggle to accomplish certain tasks [P1, P9, P37]. In some cases,
software developers do not always agree with the higher severity ratings of usability defects given by
reporters. In fact, software developers usually assess severity somewhat differently from reporters, and
usability defects often end up with low severity rating and lower priority than functional defects [P37,
P53]. Therefore, comparing usability defects in the context of functional defects is impractical as

usability defects can be overlooked [P54].

3.2.2.2 Subjective bias

Evaluating usability aspects of a system is highly subjective to an individual and thus the reporter [P26,
P40]. That is, one might see one aspect of an interface as problematic, but others may not. It is thus
difficult to persuade software developers or designers that the usability defects raised are indeed real
defects, that they require the same attention as functional defects, and need fixing. In fact, an
agreement/disagreement between severity ratings is also seen as an effect of subjective bias by
software developers or designers evaluating their own designs [P1, P23]. This has raised questions as
to whether usability defects should be reported into a shared defect database or usability defects should

have their own database [P54].

47

3.2.23 Evaluator effect

Our review observed that the way usability defects are described is influenced by skill and experience
levels of the evaluator. From the usability engineering literature, most studies reported that expert
usability evaluators are better at identifying and describing usability problems than the software
developers or novice evaluators [P1, P5, P7, P8, P14]. It should be noted that inexperienced usability
evaluators might feel that not all problems should be reported, and when they find a problem they do
not know what information should be reported. This challenge has led to incomplete usability defect
descriptions, in which a report usually does not contain possible causes of the problems, recovery steps,

possible solutions, and clear reasons why something is a problem [P20, P39, P53].

3.2.2.4 Defect discovery methods

The completeness of usability defect descriptions also depends on the defect discovery methods used.
[P3, P20] reported that certain methods, such as metaphors of human thinking, are more likely to have
more information to justify a problem found compared to think aloud method. In other words, selection
of appropriate testing techniques may help evaluators to identify usability problems effectively and
collect necessary usability defect information to report. However, in open source projects where often
no formal usability testing is conducted, there is still a lack of mechanisms to discover and report

usability defects, especially those encountered by typical or non-experienced users [P20].

3.22.5 Complexity management

The process of managing usability defects is a largely human task, especially when discussing design
solutions in defect repositories. There are two aspects of complexity in managing usability defects we
found from literature. First, the linear temporal discussion structure may not be sufficient to enable
users to keep track of all the discussion elements, such as elaboration, confirmation, allocation of
works, proposed fix, and revision [P40]. This makes it difficult for users to compare and critique a
correction proposal, as they have to read through the entire comments. One way to minimize this
challenge is to use nested comments [10], [42], [65] so that the critiques in the design discussion can be
more explicit. Second, the changes to interface design might be risky, as any changes may have

impacts on the other components of the system [P40], cause confusion to existing users [P26], and may

48

involve major changes to business and technical constraints [P29, P53]. In this case, some usability

defects are difficult to explain and proposing useful and usable recommendations may be hard.

3.2.2.6 Lack of appropriate channels for reporting usability defects

Existing defect repositories, such as Bugzila, Trac and JIRA, were designed as text-centric mediums
for functional defect reporting. This causes some usability defects that relate to user’s feelings,
emotions and “struggling” with an interface to be difficult to explain textually [P20, P40, P57]. To
overcome this limitation, defect repositories, such as Bugzilla could have a mechanism to easily and
interactively record, upload, show, maintain, and comment user submitted videos, images and voice
[P10, P38, P57]. Furthermore, some defect repositories that were developed by and for software
developers have caused usability defect reporters to fill in considerable amount of information, much
of them not relevant for usability defects [P6, P38, P57]. Considering these challenges, several studies
have suggested a mechanism to support non-expert users in terms of automated collection contextual

metadata and cognitive information [P20, P23] and less user registration [P40].

3.2.2.7 Lack of specific guidelines for usability defect information reporting

Although generic defect report templates and evaluation reports are available, most of them do not
clearly define specific information that should be reported for usability defects in general and different
kinds of usability defects [P29, P36, P54, P57]. For example, in assigning usability defect severity,
there are no standard guidelines and rules available. According to [P36], users usually use their
personal experiences as a benchmark to judge problem severity. Similarly, a lack of guidelines and

exemplary recommendations make the quality of fix recommendations highly varied [P29].

3.2.3 Key Recommendations

In this section, we draw from our review findings and the findings of other studies and surveys to
provide a set of key recommendations for further research in usability defect reporting. These provide a
road map for further usability defect reporting research and while many are complimentary, we order

them roughly in our suggested priority order to address.

49

3.23.1 Recommendation R1 - Prioritize usability defect attributes by their level of importance

for software engineers

There are many separate usability defect attributes that we have identified from usability engineering
studies (33 attributes). Many of them do not appear to be important for understanding, replicating or
correcting the usability defect from a software engineering perspective. Since a key aim in our research
was to simplify and improve the defect reporting process, we have to identify which of the attributes
have the greatest influence on defect fixing process. We could focus on capturing the ones that will
have the greatest impact in convincing software developers of a problem and assisting them in
prioritizing, diagnosing cause, and correcting. Related to this, we found little work on how to best
prioritize usability defect reports to provide best value to end users i.e. fix those most seriously
impacting usability first. As above, this requires better ways to characterise usability defects, classify,

determine severity, and convey this to software project managers and developers.

To advance these important research and practice outcomes a detailed survey and interviews with a
large number of software engineers is needed to determine critical attributes for them. Additionally,
understanding better the difference between usability defect reporter and consumer perspectives is
essential. Improved usability attribute terminology and understanding in terms of impact on usability
defect description and diagnosis is also needed. Mining existing defect repositories to understand what

attributes seem to lead to improved correction may also assist this.

We partially addressed this recommendation in Chapter 5.

3.23.2 Recommendation R2 — Provision of key usability-related defect attributes

Following on from R1, we observed that many of the usability defect description formats in use do not
define separate attributes to indicate specific key information about a usability defect. This results in
many software developers with little experience reporting “usability” issues finding difficulties in
understanding the reported issue. This means that software developers do not always agree or
understand the usability defects actually reported, even if reported at all. As a result, usability defects

get less attention or are sometimes even closed off as not valid.

One way to overcome this issue is to define and capture usability defect attributes at a fine-grained

level, which can reveal more detailed issues with usability characteristics, such as heuristics, defect

50

category, location and impact. Additionally, by introducing dedicated fields/ attributes to address likely
interaction difficulties, the end user’s feeling, and how they see an interface as problematic — so that
the usability “struggles” exemplified in the usability defect reported can be better understood and
appreciated by software developers using the usability defect report. This information can be used by
project managers and software developers for defect management purposes, as well as providing
researchers with richer information to conduct empirical analysis of usability defect cause, impact,

tracking, and resolution.

In order to identify critical usability defect attributes to report, research needs to be carried out to
determine both: (1) what reporters are reporting and think they should be reporting, and what
developers require in order to fix usability defects; and (2) what usability defect attributes actually
impact defect understanding and correcting. This could be done via surveys and interviews of reporters
and developers, to get opinions of attributes required, and mining of existing defect repositories, to

understand what is being reported and its impact on resolution.

To minimize unnecessary or irrelevant attributes for a particular usability defect, usability defect
reporting forms could be adjusted using for example, a contextualised question-based design so that a

reporter can select specific attributes that are relevant to them.

We addressed this this recommendation in Chapter 5 and Chapter 7.

3.23.3 Recommendation R3- Provide reporters customised usability defect report forms

The static reporting template offered by most functional requirements-oriented software defect
repositories is generally universal. These do not consider the influence of the different types of
reporters, different kind and use of diverse usability evaluation methods, and the phase of development
where the usability defects are found. Almost all research shows that all defect types are reported using
the same generic defect reporting template. In some cases the information requested on the form is
simply not relevant and some is beyond the reporter’s knowledge [7]. Most are text only and do not

support other forms of input collection, or make it difficult to capture and attach.

A number of enhancements to existing reporting tools have been suggested in the literature [P45,
P49, P51, P55], or can be deduced from the related usability defect reporting issues discussed above.

We think that using a guided reporting method where reporters are assisted with predefined attributes

51

for input selection, online help and question/wizard-based interaction may greatly improve capture and
quality of usability defect reports [66], [67]. In this way, even if the reporter has less knowledge about
usability, they can still be guided to capture reasonable quality defect reports. As a result, the recorded
data will be more structured, fine-grained and uniform for usability defect report management. Users
should be prompted/allowed to capture relevant attributes based on types of usability defects, the
reporter’s profile (e.g. non-technical user, technical user, usability experts, and etc), and usability

defect report attributes be prioritized based on the types of defects and relevancy.

Additionally, usability defect report forms should be simple. Simplicity — the art of minimizing the
amount of requested attributes in a usability defect report — is a necessary quality focus, by including
only what software developers need rather than what reporters think — to make it easier for software
developers to understand, replicate and fix the problems [P55]. Giving a reporter a simple set of
explicitly usability-focused defect reporting forms for different kinds of defects could encourage them
to report more usability defects with better outcomes, rather than imposing on them many complex,

irrelevant attributes.

Another issue in usability defect reporting is that usability engineering tools and techniques are
quite distinct from software engineering defect repository reporting and management tools and
software engineering unit testing methods. This can cause repeated defect reporting when transferring
usability defect information found during formal usability evaluations to project defect repositories, a
waste of time, and possibility of information loss. Having a standard format that can be shared between
the usability and software engineering communities would add value. However, further research to
empirically study the impact of using separate and shared defect repositories would suggest a better

usability defect reporting approach.

A further area for future research is to investigate the key factors influencing quality usability
defect reporting, from the perspective of non-technical reporters. Using this knowledge, how can next
generation usability defect reporting tools be better designed to leverage HCI knowledge, domain

knowledge and end user knowledge?

We addressed this recommendation in Chapter 4 and 7.

52

3.2.3.4 Recommendation R4 - Develop an improved taxonomy for classifying usability defects

There are currently many usability defect taxonomies, classifications and attributes of usability defects
identified in HCI literature and software engineering literature. We found many studies identifying that
many usability defect reports lack sufficient attributes for classifying usability defects. A key obstacle
of using existing usability defect report data is the widespread use of unstructured textual features in
most current defect tracking systems. Lack of usability knowledge or different usability knowledge
among reporters has produced reports that use a wide range of non-standard usability terms that
complicates usability defect classification and identification. In addition, existing defect report
attributes do not capture usability related information that can be directly used to filter usability
defects. We observed only two studies [P30, P32] that specified the types of defects to describe

usability defects across the 13 formats we identified.

There are several reasons for classifying usability defects: 1) to better identify and disclose the
probable causes of the defect; 2) to highlight the impact of usability defects on the intended user task
outcome; 3) to treat usability defect priorities the same way as for other defects; and 4) to

quantitatively track usability defects, defect impact and defect resolution over time.

We also observed a great deal of inconsistency in the terms used in usability defect reports for
specifying the same usability defect across the 13 formats found. For instance, a “severity” attribute
was used in most of the formats to denote the importance of the defects to be fixed [68]. However,
other than severity, some studies used impact [P12, P16], seriousness [P13, P53] and category [P5] to
refer to severity. This variation of terms for one usability attribute can also be found in use of “minor,
major, enhancement” for a defect’s severity, while others used “severe, critical”, which resulted in
inconsistent data which was not comparable. Many other usability attributes are used inconsistently in
terms of both name and value. This leads to inconsistent reports even within the same project which are

hard to read, understand, track, and prioritize.

To solve these issues, the HCI and software engineering communities need to develop a more
comprehensive and agreed usability defect taxonomy. Much of this work has been established in terms
of HCI usability evaluation terminology and attributes, but has been inconsistently applied or not

applied at all in software engineering practice around usability defect reporting. Along with

53

comprehensive, agreed usability defect taxonomy, an agreed set of names and meanings for usability

defect attributes are needed.

We addressed this recommendation in Chapter 6.

3.2.3.5 Recommendation RS — Provide good contextualized guidelines for well-written

usability defect reports

This study identified some research that defined guidelines for characterizing how usability defects
should be reported. However, these lack content-related criteria that would assist reporters in collecting
important and useful information for describing the defect and correcting the defect [P2, P5, P37, P52].
For instance, a good usability defect report should describe the issue precisely, but often the
information that really needs to be reported is not explained clearly or even not captured at all.
Inexperienced reporters in particular may think that their reports are complete, but they may actually be

providing irrelevant or inadequate information.

These issues require further research into what influences the fixing of usability defects. This
might include mining defect repositories for evidence of useful attributes and reports, and surveying
and interviewing both reporters and developers. The findings from these kinds of studies could be used
to produce better contextual guidelines that assist both reporters and software developers. Another
related area for both HCI and software engineering research is studying the “evaluator effect” in terms
of how it impacts the usability defect reporting. A related concept we call the “reader effect” — how
software developers read, interpret and action usability defect reports — appears to be an as yet

unstudied area, that with better knowledge also may improve defect reporting.

3.2.3.6 Recommendation R6 — Develop more automation in usability defect reporting

Much current usability defect reporting in software teams is still highly text-based and manually
captured. Apart from better information capture for usability defect reports, as discussed above, more
automated data capture and richer kinds of information capture are needed. Many usability engineering
tools provide both of these e.g. instrumenting applications to capture traces and user interaction,
recording richer user interaction and mapping to user task, and capture of video, audio, screenshots,
diverse interaction (touch, sketch, gesture, accelerometer, as well as keyboard and mouse). However,

most software engineering defect tracking tools make capture of this highly manual, uni-format

54

(usually free format text), or make adding and manipulating attachments difficult (or impossible).
There may be entirely novel approaches to make usability defect reporting possible combining HCI

usability engineering methods and tools with software defect reporting and management repositories.

Where possible, supporting automated capture of usability-related defect issues would enhance the
reporting process, but also the replication, solution discussion, and correction processes. Such data
collection should include structured, contextualized reporting forms as above, but also event traces,
interaction traces, screenshots, audio and video, a variety of interaction styles, especially for mobile
applications, and enable software developers to view this in context with the usability defect report
attributes captured. Attachments such as audio, video and interaction recordings should be interactively

manipulable as in some HCI-oriented usability assessment tools.

3.3 Threats to Validity

Even though this systematic review was performed according to a well accepted process [31], [S1], we
cannot guarantee that we have covered all studies in this area. Each systematic literature review process
described in section 3 was exposed to some threats. We describe the threats associated with each

process and the mitigation strategies used for this review.

Data source and search strategy. This review is limited to studies that were published from the year
2000 onwards. Thus, it neglects studies that were published before the year 2000. We were aware that a
few studies on usability defect reporting were published in 1997 [69] and 1999 [12], but these studies
were extended in other studies [70], [71], which were included in our review. Other than that, we
cannot guarantee the selection of the search strings covers all terms used in both software engineering
and the usability-engineering field. In this case, we tried to derive a different set of search strings for
different fields of study and these are adjusted accordingly to each search engine (as described in
section 3.2.2). Additionally, we included a reference chaining search as a secondary search to

minimize this threat.

Study selection. The selection of studies was performed by the main researcher, which may have
resulted in missing studies. However, the other supervisors provided detailed feedback during the
review process and monitored the systematic literature review protocol execution closely. We have

used clear inclusion and exclusion criteria to reduce selection bias.

55

Data extraction and synthesis. We found that some studies do not have clear details about the format
used for reporting usability defects. In this case, we had to make assumptions on the basis of our
judgment. Therefore, there is a possibility that some of the extracted results are partially inaccurate. In
order to mitigate this, the three supervisors randomly picked several studies, refined and verified the
extracted data. The main researcher then rechecked the earlier data extraction. Overall agreement was

very high between the supervisors in terms of classification of studies and agreement on extracted data.

3.4 Summary

This chapter describes the SLR process we carried out. We performed a comprehensive literature
search on five reputable online databases using multiple search strings and a two-phase screening of
papers. As a result, 57 papers were selected. We divided the papers into three main categories; 1)
reporting usability defect information - which is related to research on reporting the usability defect, 2)
analysing usability defect data - which is related to researching the use of defect data, and 3) challenges

— which refer to issues identified in current approaches to usability defect reporting and management.

In usability engineering and HCI studies, evidence showed that various diverse mechanisms are
used to capture and record usability defects. This is supported by numerous defect report content and
formats to present the information. However, most of these mechanisms and formats were used in
isolation. That is, each mechanism and format was designed to the specific usability evaluation method
and does not integrate with the central defect database. Furthermore, existing guidelines to assist
reporters in writing a good usability defect description lack guidance for collecting usability defect

data.

In the software engineering discipline, usability defect reporting has been less frequently
investigated. Existing studies that investigated usability defect reporting have focused especially on
addressing the limitations of open source defect repositories to support usability defects. While most
challenges in the usability engineering field are related to human factors and usability evaluation
methods, challenges in software engineering field are due to limitation of existing defect repositories to

capture usability-related information.

Overall, the results from the SLR showed that usability defect reporting processes suffered from

mixed data, inconsistent terms and values of usability defect data, and insufficient attributes to classify

56

usability defects. Although mailing lists and online forums have become an alternative interaction hub
for users to discuss usability defects, especially in OSS development communities, the linear sequence
of communication makes it hard to extract the contextual information for developers to fix the

problems.

These limitations and challenges motivated this research to investigate further what constitutes the
ideal content of a usability defect report. In particular, we are interested in identifying important
usability-related attributes, terminologies that best describe usability defect, and critical usability defect

attributes that need to capture. We addressed these investigations in Chapter 4.

57

4 Information Needs for Reporting Usability Defects

Reporting usability defects can be a challenging task, especially in convincing software developers that
a usability defect reported is indeed a real defect. Specifically, the subjective nature of usability defects
that cause confusion for some people require stronger evidence to describe and report the problem.
However, research to date in software defect reporting has not investigated the capturing of different
information based on defect types, such as usability defects. This lack of empirical data on information
needs for different types of usability defect reporting impedes research on finding what information is
best to describe a usability defect. While previous studies have identified steps to reproduce, actual
output, and expected output as an important information to fix software defects in general, however,
these studies do not consider what information should be reported, and how the information should be

presented in the context of specific types of defects.

To fill this gap and to find answers for the second thesis research question “RQ2 - What usability
defect information do software developers and reporters emphasize in current usability defect
reporting? ”, we designed a research study to identify what reporters currently provide when describing
usability defects, what information software developers need to fix usability defects, and how usability
defects are actually described in real software development projects. This chapter presents the details

of this study.

4.1 Methodology

To answer “RQ2 What usability defect information do software developers and reporters emphasize in
current usability defect reporting?”, we designed two studies to identify the types of information
needed to describe usability defects. In the first study, we surveyed software development practitioners
in both open source communities and industrial software organizations about their usability defect
reporting practices to better understand information needs to address usability defect reporting issues.
The second study involved an analysis of usability related defects reported in the Bugzilla software

defect repositories of Mozilla Thunderbird, Firefox for Android and Eclipse Platform projects,

respectively.

Since we used more than one method (survey and defect report mining) to collect data on the same

topic, we chose a triangulation method to answer RQ2. The use of a triangulation method gives an

58

understanding of how usability defects are described from different perspectives, and reveals some

commonalities and dissimilarities between what is claimed by the practitioners with what is written in

their reports. Table 4.1 described the different methods and strategies used in this research along with

the rationale of selecting the method and strategy.

Table 4.1. Description of research methods and strategies.

Method

Strategy

Rationale

Surveying
software
development

practitioners

Questionnaire

Conducting online surveys of practitioners is a useful way of gathering insight into how
participants deal with usability defects. In this method, we are expecting to collect
detailed information on what reporters provide when reporting usability defects and what
information is expected by the software developers to fix usability defects. Unlike face-to-
face survey interviews, online survey caters to privacy needs of the participants in order to
provide open and honest feedback, and gather meaningful opinions.

Analyzing open
source usability
defect reports

Observation

Open source defect repositories offer significant source of empirical data. Analyzing the
text data of defect report could provide confluence evidence of how usability defects are
described in real software projects development. In addition, the use of document analysis
method is useful to support and strengthen research topic, especially in contextualizing
research topics within its subject or field, and provide supplementary data that participants
in the survey have forgotten [72].

4.1.1 Online Survey of Software Development Practitioners

This survey was divided into two themes investigating “important usability defect attributes” and

“factors that influence usability defect report quality”. This chapter only reports the results relating to

the first theme about the information needed for reporting usability defects. The next chapter reports

the finding on the second theme on factors influencing usability defect reporting.

4.1.1.1 Research Questions

The main objective of the first theme of the survey was to identify:

1. What information do reporters use to describe usability defects?

2. What information do developers consider useful for fixing usability defects?

This investigation set out to provide a comprehensive view on the day-to-day practices when

dealing with usability defects and pinpointing challenges. Through this study, researchers can find

characteristics, open issues, and understand the nature of describing usability defects, which can be

valuable for improving defect reporting processes and tools. Software development practitioners, in

turn, will also find technical references for reporting specific types of defects.

59

4.1.1.2 Survey Design

The survey was developed using the Opinio tool. We conducted a self-administered survey, as this kind
of survey approach offers greater flexibility to participants. Participants can answer the survey at their
convenience without intervention of the researchers collecting the data. The survey was open from

June until November 2015.

4.1.1.3 Development of Survey Instruments

We did not find any research on usability defect reporting in the software engineering literature.
However, our review of software defect reporting reveals a number of studies that investigate the key
information to fix software defects in general [20], [21], [29], [33], [73]. As our survey is in the context
of software engineering research, we reused some defect attributes relevant to usability defects studied
in [20], [21] — steps to reproduce, actual and expected results, software context, and screenshots.
Furthermore we added video, audio, assumed cause, Ul event trace, proposed solution and usability
principle to the list of usability defect information. This information is useful when describing usability
defects, especially in addressing usability concerns, indicating the problematic user interface

component, and describing particular specifications of the environment used for evaluation.

4.1.1.4 Questionnaire Design

The survey had a total of 50 questions split into seven sections. Around 14% of the questions on
investigating usability defect attributes were derived from [20], [21]. Questions on the influential
factors of defect reporting practices, like knowledge, experience, tools and methods were based on

[74]. Other questions were formulated based on our literature review.

The survey questionnaire included both closed and open questions. Most of the closed questions
used a Likert scale with five possible responses (“Never”, ‘“Rarely”, “Sometimes”, “Often”, and
“Always”). The questionnaires consisted of two versions: one for usability defects fixer (developers)

and one for reporters. The sections are:

1) Background information: We collected general information about the respondents including

gender, age ranges, employment information, and role in dealing with usability defects.

60

2)

3)

4)

5)

6)

7)

Training/ certification in Human-Computer Interaction: We asked both reporters and
developers if they attended any HCI and/ or usability training and how useful the
training/certification was.

Discovering usability defects: We asked the reporters about their experience in software
testing and methods they used to discover usability defects. The respondents were also asked
if they agreed (on a Likert scale) that the amount of information available for reporting
usability defects varies according to how defects are discovered. Some of the findings are
discussed in Chapter 5.

Reporting usability defects: We asked what information reporters usually provide, evidence
they used to support their claim, and how usability defects are presented. This section also
asked reporters to rank top five most difficult attributes to provide.

Fixing usability defects: We asked what information do software developers usually use when
fixing usability defects and ranked the top five most importance attributes. The software
developers were also asked to indicate the problematic attributes that they have experienced
and their opinions on the quality of defect reports produced by different types of reporters.
Defect reporting and automation tool: We asked both reporters and software developers on
their experience of using defect reporting and automation tools. Questions focused on tools
used and their effectiveness to capture and manage usability defects. Other questions aimed to
get opinions on the influence of experience, and knowledge in designing new defect reporting
form. Some of the findings are discussed in Chapter 5.

Knowledge and experience in usability defect reporting: We asked both reporters and software
developers about their view of experience and knowledge in usability defect reporting. The
questions asked about the influence of level of experience, and whether different types of
knowledge (usability/ software engineering, domain and technical) can affect the level of

detail of defect reports. The findings of this section are discussed in Chapter 5.

See Appendix B for complete survey questions.

4.1.1.5

Evaluation of Survey Instruments

This survey was piloted with Swinburne Software Innovation Lab (SSIL) software engineers and

fifteen software developers were recruited during a developer conference (DDD Melbourne 2014).

61

Based on the written and verbal comments, and the pattern of responses received, the survey

instruments were refined.

This survey study was approved on behalf of Swinburne’s Human Research Committee
(SUHREC) by a delegated SUHREC subcommittee (SHESC2) (Approval number: SHR Project

2014/231). See Appendix F.

4.1.1.6 Selection of Participants

Since our target sector is open source development, which is an increasingly broad group of people
ranging from professionals to end users, we replicated this environment by surveying software
development practitioners with varying experience levels and roles (including developers, testers, and
managers), and non-IT related professionals. We made assumptions that these practitioners and users
have similar characteristics (albeit working in a different environment with different resources) to those
users in an open source context. We used a survey of practitioners to collect their current practices,

challenges, and perspectives of reporting and handling usability defects.

The respondents were recruited from both open source and industrial communities. For open
source respondents, we advertised the survey through community forums, such as Eclipse Community
forums. While industrial respondents were invited through Facebook, LinkedIn, Software Testing
Club' and researchers’ industrial contacts. Participation was voluntary and participants were allowed to
discontinue participation at any time during the research activity. The consent to participate in the
survey was implied by the return of the anonymous questionnaire. However, a precise response rate

cannot be determined, as the total number of the participants who received the invitation is unknown.

4.1.1.7 Data Analysis

This survey collected both qualitative and quantitative data. For quantitative data, we used descriptive
statistics, while qualitative data was analyzed using exploratory analysis [75]. We began by reading the
respondents’ comments, looking for keywords, trends and themes. Next, the results of the analyses
were used as supportive evidence for the quantitative results. Finally, we generated hypotheses for

further study. The responses to the qualitative questions are discussed only briefly in this paper.

! hitp://www.softwaretestingclub.com/forum

62

4.1.2 Software Defect Repositories Mining

In addition to the survey of software development practitioners, we examined a subset of developers-
tagged usability defects reported in Bugzilla defect repositories of the Mozilla Thunderbird, Firefox for
Android, and Eclipse Platform projects. The motivation of this analysis was to examine how usability
defects are described in actual defect repositories, as compared to what is claimed by the participants
through the online surveys. Despite identifying the presence of certain defect information when
describing usability defects, we also studied the characteristics of usability defects in our dataset. The
findings of this analysis were used to validate the findings from our online surveys using triangulation

method.

4.1.2.1 Research Questions

In order to investigate the extent usability defects are described by open source communities, and

reveal common usability defect characteristics, we addressed the following six research questions, as

listed in Table 4.2.
Table 4.2. Software defect repositories research questions.
Research Questions Rationale
RQI What information is commonly provided in open source usability To compare the actual usability defect
defect reports? report content with ~what software
RQ2 How if at all, is a proposed solution to the usability defect described? development practitioners claimed in the
RQ3 Are usability defects described differently from performance-related online survey.
defects?
RQ4 What are the dominant types of usability defects (e.g., interface and To investigate if the existing usability
interaction) in open source projects? classification model can be used for open
source projects, and whether the existing
models need to be revised.
RQ5 What are the impacts of usability defects and what types of usability — To investigate the cause and impact aspect
defects have a severe impact? of reported defects. This information is
RQ6 On what basis, do usability defect reporters justify that the user useful as a ground basis of the open source
difficulty that they experience is an issue? usability defect taxonomy.

4.1.2.2 Defect Sources

We performed an investigation of usability defects gathered from the Bugzilla defect repository of the
Mozilla Thunderbird, Firefox for Android, and Eclipse Platform projects. Our choice of these projects

was based on the following factors:

* These projects represent a variety of different uses and environments;

63

* These projects have significant GUI that use windows, icons and menus, and interaction with
the GUI can be done using a mouse, keyboard or touch screen;

* These projects use standard defect-reporting templates provided by the Bugzilla defect
repository and this maintains the consistency when comparing the type of information
presented when reporting defects;

* These projects make use of keywords to label and classify defect type reducing selection bias;

* These projects are amongst the most successful user-facing applications that engage various

levels of user participation with different levels of knowledge and technical experience.

Across the three projects, only 23,373 defect reports are available to download in CVS format.
However, we only studied 377 FIXED defect reports tagged with predefined Bugzilla usability
keywords as listed in Table 4.3. These usability-related defects were representative of usability defects
in OSS projects from 2001 to 2016. The reason we chose to use FIXED developer-tagged usability
defect reports is to reduce selection bias, as the software developers had already completed the
resolution process and have reached agreement on the actual types of defects reported and corrected.
Furthermore, by analyzing FIXED defect reports rather than the UN-FIXED defect reports, this can be

useful to identify some patterns of information that are important for usability defects to be accepted

and fixed.
Table 4.3. Open source usability defect reports studied.
Projcct Total Other Resolved/ Verified
) resolution | Fixed | Duplicate | Incomplete | Invalid | Wontfix | Worksforme | Expired
Mozilla
Thunderbird 384 185 88 64 4 9 16 17 1
Firefox for
Android 292 62 101 59 3 11 36 20 0
Eclipse 530 78 188 46 - 68 103 47 -
Platform
Total 1206 325 377 169 7 88 155 84 1

Other resolution — New, unconfirmed, assigned, and reopened

Usability-related — ue, uiwanted, useless-Ul, ux-affordance, ux-consistency, ux-control, ux-discovery, ux-efficiency, ux-error-
prevention, ux-error-recovery, ux-implementation, ux-interruption, ux-jargon, ux-minimalism, ux-mode-error, ux-natural-
mapping, ux-tone, ux-trust, ux-undo, ux-userfeddback, ux-visual-hierarchy

We extracted sample defect reports for each project in four common steps: 1) filter defect reports
that were resolved as FIXED; 2) specify columns/ attributes that we wish to appear in the defect list. In
this study, we add Keywords, Opened, Reporter, Number of Comments and Last Resolved attributes; 3)

extract and save the data in CSV format; 4) filter the usability and performance defect reports. Since

64

the usability defects downloaded for all projects only constitute a small percentage of all reported

defects we chose to analyze all of them in this work.

4.1.2.3 Analyzing Defect Report Content

Our analysis of usability defect report content only focused on the initial reporting of a defect, not
investigating the subsequent discussion about the problem and its possible solution in the comments
sections. We used the defect report title, description and attachment fields as our main source of
investigation. We defined eight metrics based on Capra’s guidelines as modified in [48] to assess the
presence of certain information when describing usability defects. Since defect reports presented in
open source defect repositories are in unstructured plain text, we were unable to automatically assess
the presence of these metrics. Even though the Bugzilla defect report template can be customized to
label some of these metrics, such as “Steps to reproduce”, “Expected Output” and “Actual Output”,

many reporters do not explicitly describe these metrics.

As such, we manually analyzed 377 usability defect reports to identify whether the criteria listed in
Table 4.4 were presented in the defect report. The extraction and analysis processes were mainly
performed by main researcher and validated by her supervisors. The presence of steps to reproduce,
impact, software context, expected output, actual output, assumed cause, solution proposal, and
supplementary information were set as 1 implies “information exist”, and 0 implies “information does
not exist”. Since impact, assumed cause and solution proposal do not have separate fields, we

measured the presence of this information based on the following criteria:

1. Assumed cause — criteria used to justify the usability problem identified is true. For example
the defect report number, in which reporter feels the current issue was likely due to the
previous fixed issue.

2. Impact — user difficulty, number of reproducibility, high numbers of users encountered the
same problem, and severity.

3. Solution proposal — justification of the proposed solution or fragmental/ modification of
affected code/ patch description on how to fix the problem.

The procedure we used to analyze the defect reports consisted of going through each report twice.

The first reading focused on understanding the context of usability problems and identifying the main

interface or interaction problems described by the reporter. The second reading was to highlight the

65

keywords and snippets of the defect description describing the problem types, impact, and failure
qualifier based on the previous classification. We used a card-sorting technique to group impact
information into several groups that have similar ground of user difficulty, while problem types and
failure qualifier were reorganized according to UPT and ODC, respectively. The detailed analysis of

usability defect categories, user difficulty and failure qualifier are discussed in Chapter 6.

Table 4.4. Criteria used to check the presence of usability information in defect reports based on
Capra’s guideline.

Quality criteria Related Capra’s Guidelines

1. Does the defect report describe details steps to reproduce the defect? [29] | Describe observed user actions
(Steps to reproduce)

2. Does the defect report indicate the effect of the problems on the user? | Describe the impact and severity of the
(Impact) problem

3. Does the defect report describe the problematic part of the user interface? | Describe the impact and severity of the
(Software context) problem

4. Does the defect report contain details of expected output and actual | Describe observed user actions
output? [29] (Actual and expected output)

5. Does the defect report contain criteria used to justify the usability problem | Describe the cause of the problem

identified is true? (Assumed cause)

6. Does the defect report contain design ideas? (Solution proposal) Describe a solution to the problem

7. Does the defect report contain support information as evidence to the | Support your findings with data

problem? (Supplementary information)

4.1.2.4 Data Analysis

We report results with descriptive statistics. We used Chi-square test of independence to find the
significance relationship between: 1) the types of projects and defects, and the presence of seven
usability defect attributes, and 2) the presence of impact information and defect severity. In addition,
we used point-biserial correlation to determine whether there is association between length of defect
description, measured in words, and the presence of usability defect information (which has two

categories — “present” and “not present”).

4.2 Results

4.2.1 Online Survey of Software Development Practitioners

The data was collected during June — November 2015. A total of 294 respondents attempted the survey.
However, only 147 responses were included in this analysis. The remaining 50% of responses were
excluded due to no response beyond the first parts of the questionnaire. One possible explanation of the
high percentage of invalid responses is due to the out of scope problems, where the respondents are not

in the target population. For example, the software development practitioners who do not have

66

experience in dealing with usability defects would be not interested or they may find the questions are

not relevant and return blank questionnaires.

4.2.1.1 Respondents Background

The majority of the respondents were male (65.3%), with 34.0% female participants, and 0.7% of

participants who did not indicate their gender. About 85% of the respondents were between 25 - 44

years of age. As shown in Table 4.5, majority of the respondents are software developers (40.9%)

followed by software testers (14.8%) and project managers (10.0%). In terms of years of experiences,

63.8% of respondents had one to five years of work experience in their current position, while 25.3%

had more than five years. Among the respondents, only 13.7% had experience on open source projects.

Table 4.5. Distribution of respondents across professional position and year of experience.

Professional Position Less than 1 year Between 1 and 3 Between 3 and 5 More than 5
years years years
Software developer 4.1% 21.8% 7.5% 7.5%
Software tester 2.0% 5.4% 3.3% 4.1%
Quality assurance engineer 0% 0% 2.0% 0.7%
Customer consultant/ support 0% 0.7% 1.4% 0.7%
System engineer 0% 0.7% 0% 0.7%
Test manager 0.7% 0% 0.7% 0.7%
Project manager 0.7% 3.3% 3.3% 2.7%
Usability engineer 0% 0% 0.7% 0.7%
User interface designer 0.7% 0.7% 0.7% 0.7%
Other 2.7% 6.8% 4.8% 6.8%

Table 4.6. Distribution of participants’ knowledge of HCI.

Role in dealing with usability defects | HCI related training | Total
Yes No

Reporting usability defects 17 65 55.8%

Fixing usability defects 8 57 44.2%

Table 4.7. Responses on “usefulness” of usability-related training for reporting usability defects.

Very useful 44.0%
Somewhat useful 40.0%
Neither useful or not useful 4.0%
Not very useful 12.0%
Complete waste of time 0%

Table 4.8. Years of experience in software testing.

No experience 25.6%
Less than 1 year 6.1%

Between 1 and 3 years 22.0%
Between 3 and 5 years 12.2%
More than 5 years 34.1%

67

Table 4.6 shows respondents’ knowledge of HCI. The vast majority of respondents had not
received any usability-related training. However, for those who had acquired the related training, 84%
believed the training was useful for understanding and reporting usability defects (see Table 4.7). Our
survey findings also show that most respondents had experience reporting usability defects (55.8%),
while 44.2% has experience fixing them. Most of them have more than 5 years of experience in

software testing (34.1%) (see Table 4.8).

Table 4.9 summarizes the defect discovery methods used by the respondents to discover usability
defects. Note that respondents could select more than one option. More than 60% of respondents
indicated that they found usability defects when performing exploratory testing, functional testing and
while using a product. A smaller proportion of respondents indicated that they discovered usability
defects through alpha/beta testing (26.8%). From the free-text explanation, some respondents explicitly
mentioned other methods including focus groups, GUI testing, performance testing, heuristics

evaluation and automated testing.

Table 4.9. Defect discovery methods.

Exploratory testing 62.2%
Functional testing 63.4%
Usability testing 58.5%
Beta/ alpha testing 26.8%
Complaints/ reports from customers 53.7%
Using the product 62.2%
Other 7.3%

4.2.1.2 Medium to report software defects

As shown in Table 4.10, nearly half of our respondents used written reports (50%), verbal meetings
(53.7%) and defect reporting tools (53.7%) as a medium for their defect reporting (Q25). Only a few
respondents used edited video for reporting purposes. For those who have used a defect-reporting tool,

we asked respondents to mention their tool (Q36).

As listed in Table 4.11, the most commonly used defect reporting tools reported by our
respondents were JIRA, Bugzilla and Redmine. Mantis, HP Quality Center, Trello, IBM Rational Team
Concert, HP Application Lifecycle Management and Visual Studio TFS were listed multiple times. For
JIRA, Bugzilla and Redmine users - 90% of them agreed to some extent that the tool offers sufficient
flexibility to capture and manage usability defects (Q37), but free-text feedback revealed considerable

negative satisfaction (Q38). The following are representative: “Most of the defect reporting tools do

68

not have exhaustive options for usability defects” and “JIRA more customized by client but no specific

customizations done for usability”.

Some respondents nominated specific recommendations for usability defect reporting tool
improvements (Q50). For example, they argued that video evidence could reduce the amount of time to
reproduce and describe the issues, especially when working with offshore development teams. One

respondent also suggested a questionnaire feature.

Table 4.10. Medium for report usability defects — respondents mostly used defect-reporting tools and
discussed through verbal meeting.

Medium of reporting Never | Rarely | Sometimes | Often | Always | Not answer
Traditional written report 13.4% | 11.0% 12.2% 22.0% | 28.0% 13.4%
Verbally in a meeting with designers/ developers | 3.7% 6.1% 23.2% 42.7% | 11.0% 13.4%
Edited videos 31.7% | 31.7% | 13.4% 8.5% 1.2% 13.4%
Entry in defect reporting tool 7.3% 6.1% 19.5% 15.9% | 37.8% 13.4%

Table 4.11. Defect reporting tools used by respondents.

Defect reporting tool | Reporter | Developer | Defect reporting tool | Reporter | Developer
Bugzilla 15 11 SourceForge 1 0
JIRA 2 5 Mantis 1 0
Github 1 1 Target Process 0 1
Redmine 1 1 Clearcase 0 1
Pivotal Track 0 1 FogBugz 0 1
Web Helpdesk 1 0 Unknown 2 14
Trac 1 0

4.2.1.3 Information Provided by Defect Reporters When Reporting Usability Defects

Question 13 asked respondents to indicate a frequency of supplying attributes listed in Table 4.12 when
reporting usability defects. Based on “Often” and “Always” rating, the reporters mostly provide title/
summary (81.8%), actual output (79.5%) and expected output (76.8%). steps to reproduce (74.4%),
software context (70.7%) and software information (70.7%). In order to understand the content of each
selected attribute, for those who selected option other than “Never”, we further asked questions about
the elements and supportive materials that they used. For these subsequent questions, multiple answers
were allowed and respondents could describe other details in a free text section (Question 14 —

Question 24). Table 4.13 summarizes the responses.

Title/summary is a headline summarizing the problem. When crafting a title, the majority of the
reporters explained the situation that was happening at the time the problem occurred (70.7%). Some of
them (58.8%) preferred to copy and paste an error message. Less than half of the reporters provided

product details (such as build, version and operating system) (47.6%) and clarified what the quality

69

issues that were affected (43.9%). As expected, good quality issues were created mostly by reporters

with at least five years of experience.

Expected output describes reporters’ expectations on how the software should respond. A
majority of reporters used their knowledge and experience to interpret the intended results (72%).
Some reporters mentioned usability requirements (59.8%) and usability design guidelines (40.2%) that

were used to justify their expectations.

Actual output describes the actual results that differ from the reporter’s expectation or violating
specification. As indicated in Table 4.13, the actual output was usually described based on the effect on
a user’s performance (65.9%). In this case, the justification on what was wrong and why it was wrong
(53.7%) were supplied. Others explained the user’s behavior by outlining the issues (50%). To support

the claimed issues, reporters preferred to attach annotated screenshots (64.6%) followed by error

messages (57.3%).

Software context addresses the location of the problem in the interface. As expected, the majority
of the reporters mentioned the name of the defective interface, such as screen title (76.8%) and
problematic user interface object (70.7%). Some respondents (58.5%) described user’s task to indicate
the context of usage. In terms of specifying the components affected, only 41.5% of reporters could
supply the information. This information was often conveyed in annotated screenshots (82.9%)

followed by textual description (64.6%) — as shown in Table 4.14.

Severity indicates the level of effect the usability defects had on the user. In order to rate the
severity level, most reporters considered the impact of the issue (74.4%). Others examined the

frequency of issues occurred during usage (61%) and business impact (48.8%).

Table 4.12. Defect attributes used to report usability defects — title, actual and expected output are the
most provided attributes by reporters.

Items Never | Rarely | Sometimes | Often | Always
Title/ Summary 1.2% 2.4% 14.6% 25.6% | 56.2%
Assumed cause 3.7% 6.1% 23.2% 23.2% | 43.8%
Software context 1.2% 3.7% 24.4% 24.4% | 46.3%
Solution proposal 9.8% 12.2% 32.9% 26.8% | 18.3%
Actual output 1.2% 3.7% 15.9% 20.7% | 58.5%
Expected output 1.2% 7.4% 14.6% 26.8% | 50.0%
Steps to reproduce 2.4% 6.1% 17.1% 31.7% | 42.7%
Severity 1.2% 18.3% 20.7% 22.0% | 37.8%
Software information (product, component, version) 0% 9.8% 19.5% 29.3% | 41.4%
Test environment (Operating system, hardware, browser) 0% 9.8% 26.8% 29.3% | 34.1%

70

Table 4.13. Detailed explanation included for each attribute.

Items | %
Title/ Summary
Explanation on the situation that was happening at the time the problem occurred 70.7%

Build or version of the software or operating system on which the problem occurred | 47.6%

An error message that come up 58.5%
Quality attributes affected 43.9%
Other — Not mentioned 4.9%
Assumed cause

Heuristics that are violated 26.8%
Design fault 51.2%
My knowledge of performing and understanding a task or object interface 61.0%
Other — consequence to the user 3.7%

Software context

Location of the problem in the interface, such as screen title 76.8%
The problematic user interface object, such as button, menu and dialogue box 70.7%
User’s task 58.5%
System components that are affected 41.5%
Other — Not mentioned 2.4%

Solution proposal

Alternate solutions 37.8%
Advantages and disadvantages for alternatives solutions 28.0%
Usability design principles and/ or previous research 26.8%
My knowledge to interpret how design is supposed to work 45.1%
The expected behavior (defects) 46.3%
The behavior desired (enhancements) 56.1%
Other — as suggested by project manager 2.4%

Actual output

The effect on the user’s performance 65.9%
The user’s behavior following the issue 50.0%
What was wrong and why is it wrong 53.7%
Other — user experience 1.2%
Expected output

Usability requirements 59.8%
Knowledge/ experience to interpret the expected result 72.0%
Usability design guideline 40.2%
Other — Not mentioned 3.7%
Steps to reproduce

User’s navigation flow through the system 72.0%
Record the steps 30.5%
Other - logs 3.7%
Severity

Impact of the issue 74.4%
Business effects, such as costs and time loss 48.8%
Frequency of the issue occurs during usage 61.0%
Other — Not mentioned 2.4%

Assumed cause describes the cause(s) of the problem based on the reporter’s judgment. Our
findings indicated that the cause of the problem is normally justified based on the reporter’s knowledge
(61.0%). About half of reporters (51.2%) could explain a design fault, such as how the interaction
architecture may contribute to the problem. Nearly a quarter (26.8%) of the reporters pointed out

violated usability heuristics. Other information, as described in the free text, specified the consequence

71

to the user (3.7%). To support this justification, a screenshot with accompanying text is the most
widely used material other than annotated screenshot and textual description (see Table 4.14). Other

materials used by reporters included Ul event trace (36.6%) and videos with captions (17.1%).

Solution Proposal describes a recommendation to remedy the usability defects. 56.1% (see Table
4.13) of reporters addressed the proposal solutions as a way to improve the desired software behavior,
rather than to correct a defective software behavior (46.3%). Reporters mentioned that these
recommendations originated from their knowledge (45.1%). To support these recommendations, only a
few reporters provided alternate solutions (37.8%), advantages and disadvantages for alternative
solutions (28.0%), and usability design principles (26.8%). Additionally, nearly half of the respondents
(48.8%) preferred to use a textual form to explain the recommendations. Some of them supported these
recommendations with an annotated screenshot (39%), and simple sketches (28%). While 25% of

reporters prefer to demonstrate their recommendations through oral presentations.

In Question 27, we asked respondents to rank the top five attributes in order of difficulty from 1 to
5 where 1 is the most difficult and 5 is least difficult. Among the attributes considered to be most
difficult to provide, respondents ranked assumed cause, usability principle, video recording, UI event

trace and title.

Table 4.14. Materials used to support usability defect description — the most prevalent material was
screenshots with annotations.

Material Assumed cause | Software context | Solution proposal | Actual output
Ul event trace 36.6% - - -
Screenshot and accompanying text 75.6% 1.2% - -
Screenshot with annotations 62.2% 82.9% 39.0% 64.6%
Textual description 61.0% 64.6% 48.8% -
Video with captions 17.1% 18.3% - -
Fix patch - - 12.2% -
Digital mockups - - 11.0% -
Simple sketches - - 28.0% -
ASCII art - - - -
Graphical elements or code - - - -
Error messages - - - 57.3%
Oral presentation - - 25.6% -
Other — audio video 2.4% 1.2% 3.7% 1.2%

4.2.1.4 Information Needed by Software Developers when Fixing Usability Defects

As shown in Table 4.15, question Q28, Q29 and Q30 asked software developers to rate a frequency of
using textual information and supplementary information respectively when fixing usability defects.

Based on the “Often” and “Always” rating, assumed cause (83.1%,), steps to reproduce (81.6%),

72

software context (78.5%), expected output (78.5%) and actual output (73.8%) were the most widely
used textual information. The three least used textual information were: title/ summary (50.8%),

hardware (554%) and severity (56.9%).

About half the developers seldom used title/summary. One possible explanation can be that
title/summary contains limited information for understanding the likely difficulty faced by users.
Meanwhile, severity may only be useful for prioritizing defects to be fixed but it does not provide input
to solve the problem. Supplementary information which was most frequently used for fixing usability
defects were: screenshots (83.1%), Ul event trace (56.9%) and patch (41.5%) (see Table 4.15). Even
graphical elements such as ASCII art (9.3%) and digital mockups (23.1%) provided a rich source of

proposed fix, but software developers rarely used them.

Table 4.15. Frequency of attributes used to fix usability defects — the most useful attribute was assumed

cause.
Items | Never | Rarely | Sometimes | Often | Always
Textual information
Title/ Summary 3.1% 13.8% | 32.3% 15.4% | 35.4%
Assumed cause 3.1% 0% 13.8% 24.6% | 58.5%
Software context 4.6% 4.6% 12.3% 27.7% | 50.8%
Solution proposal 3.1% 10.8% | 26.2% 46.1% | 13.8%
Actual output 3.1% 1.5% 21.5% 32.3% | 41.5%
Expected output 3.1% 4.6% 13.8% 33.8% | 44.7%
Steps to reproduce 1.5% 3.1% 13.8% 27.7% | 53.9%
Severity 3.1% 7.8% 32.3% 21.5% | 35.4%
Product 7.8% 6.2% 20.0% 36.9% | 29.2%
Component 1.5% 10.8% | 26.2% 38.5% | 23.1%
Version 0% 6.2% 29.2% 23.1% | 41.5%
Hardware 0% 18.5% | 26.2% 32.3% | 23.1%
Operating system 0% 12.3% | 29.2% 27.7% | 30.8%
Supplementary information
Usability principle/ violated heuristic | 9.2% 15.4% | 43.1% 20.0% | 12.3%
Video recording 16.9% | 15.4% | 30.8% 24.6% | 12.3%
Audio recording 21.5% | 35.4% | 26.2% 10.8% | 6.2%
Ul event trace 6.2% 0% 36.9% 354% | 21.5%
Screenshots 1.5% 3.1% 12.3% 29.2% | 53.9%
Fix patch 3.1% 13.8% | 41.5% 21.5% | 20.0%
Digital mockups 15.4% | 24.6% | 36.9% 10.8% | 12.3%
ASCII art 30.8% | 33.8% | 26.2% 7.8% 1.5%

For the importance of information (Question 31), assumed cause clearly stands out. This is
followed by screenshot, steps to reproduce, expected output, software context and solution proposal.
Similar to the findings from [20], [21], in order to fix usability defects, mandatory fields such as
hardware, product, component, and severity were thought to be little value. This does not mean the

information is not useful; rather they might be used in a different context for different purposes.

73

In Question 32, we asked software developers to select problematic attributes supplied by
reporters. Note that software developers were able to select more than one option. As shown in Table
4.16, among the problems experienced, unclear assumed cause (76.9%) and insufficient information in
steps to reproduce (72.3%) was the most commonly encountered. Other common problems include
unclear software context (46.2%) and screenshots (46.2%). Apart from lacking technical information,
the software developers also received vague comment (52.3%), unstructured text (55.4%) and duplicate

defect reports (50.8%).

Table 4.16. Problems with usability defect reports — unclear assumed cause and insufficient information
in steps to reproduce were the most common encountered problems experienced by software

developers.
Problems Attributes Frequency | Problems Attributes Frequency
You were given Title/ summary 38.5% There was insufficient | Steps to reproduce 72.3%
unclear Assumed cause 76.9% information in Ul event trace 38.5%
Software context 46.2% The reporter used Bad grammar 27.7%
Usability principle/ | 21.5% Unstructured text/ | 55.4%
heuristic violated format
Solution proposal 29.2% Vague comment 52.3%
Screenshots 46.2% Too long text 32.3%
Audio recording 20.0% Non technical | 35.4%
language
Video recording 16.9% Usability jargon/ | 20.0%
term
You were given Component 16.9% Other Duplicate 50.8%
incorrect Actual output 38.5% Spam 23.1%
Expected output 44.6% Viruses/ worms 15.4%
4.2.2 Software Defect Repositories Mining
4.2.2.1 Usability Defect Report Contents

In this section, we describe our study of the information patterns of usability defect reports in open
source projects. The information patterns that we are interested in including are the following types of
information: (1) steps to reproduce the problem, (2) user difficulty that could affect human task and
emotional reaction, (3) context, or settings, in which the problem occurs, (4) actual and expected
output, (5) assumption of or known cause of the problem, (6) solution proposed to solve the problem,
and (7) supplementary information. We answer the following study research questions: RQI: What
information is commonly provided in open source usability defect reports? when the defect is initially
reported. In addition, we investigate RQ2: How if at all, is a proposed solution to the usability problem

described?

74

4.2.2.1.1 Content Distribution

Figure 4.1 shows that the most widely reported attributes in usability defect reports in the open source
projects studied are actual output, expected output and software context. Attributes rarely presented in
the studied usability defect descriptions are assumed cause and supplementary information. The
assumed cause could only be found in less than 5% of defect reports. While steps to reproduce is
considered as the most important attribute in defect reports [20], [21], our study found that only

between 19% - 46% of defect reports contain this information, depending on project.

Similar to previous findings investigating open source defect reporting in general [33], we also
found the presence of information for usability defects varies between projects. Referring to Table
4.17, the p-value for the Chi-square tests for each attribute except assumed cause, which is less than
0.05, suggesting that there is indeed a relationship between projects and the presence of certain
attributes for usability defects. As shown in Figure 4.1 it is apparent that certain attributes are common
in some projects. From this data, we can draw several observations. First, the actual output is found in
more than 80% of Mozilla Thunderbird and Eclipse Platform. Surprisingly, only about 50% of Firefox
for Android usability defects contain actual outcome even though the defect reporting tool specifically

prompts its users for this information.

Supplementary information

Solution proposal :l

Assumed cause

Actual output

Expected output

Software context

Impact

Steps to reproduce

0.0% 50.0% 100.0% 150.0% 200.0% 250.0%
iy | moan | e | et ncuatou pusmes] oeren ey
B Mozilla Thunderbird 46.6% 35.2% 73.9% 65.9% 83.0% 2.3% 40.9% 13.6%
W Firefox for Android 19.8% 15.8% 47.5% 43.6% 53.5% 2.0% 33.7% 25.7%
EEclipse Platform 33.0% 30.3% 42.6% 56.9% 85.6% 3.2% 31.9% 6.9%

Figure 4.1. Distribution of usability defects in which each attribute was presented by project.

75

Table 4.17. Chi-Square test results to examine the influence of project and the presence of defect

attributes.
Defect attributes p value ¥ (df=2, n=377)
Steps to reproduce 0.000 16.67
Impact 0.006 10.16
Software context 0.000 24.96
Expected output 0.003 11.51
Actual output 0.000 32.78
Assumed cause 0.934 0.137
Solution proposal 0.024 7.45
Supplementary information 0.000 26.68

Table 4.18. Types of supplementary information provided in usability defect reports.

Supplementary information Project
Mozilla Thunderbird (n=88) | Firefox for Android (n=101) | Eclipse Platform (n=188)

Annotated screenshots 1.1% 0.0% 0.0%
Error report 1.1% 0.0% 0.5%
External URL link 6.8% 10.0% 1.1%
Problem occurrence 0.0% 1.0% 1.6%
Screenshots 0.0% 13.9% 1.1%
Stack traces 0.0% 0.0% 1.1%
Task workaround 2.3% 0.0% 0.0%
Usability guidelines 0.0% 0.0% 0.5%
Violated UX-consistency 2.3% 0.0% 0.0%

Second, while Mozilla Thunderbird and Eclipse Platform reporters mainly used textual
descriptions to describe usability defects, Firefox for Android more often provided supplementary
information. As we can see from Table 4.18, screenshots are the most favorable supplementary

material used in Firefox for Android.

Third, across the three projects, Firefox for Android usability defects contained very little
information on steps to reproduce (19%), impact (15.8%), and expected output (43%). Fourth, given
the nature of the open source communities, in which the users have a varying level of technical
knowledge, defect reports in all projects contained virtually no assumed cause. This attribute, however,
is not necessarily appropriate for all types of usability defects. For example, a usability defect that is
not related to technical deficiency is quite difficult to explain even by technical users. The limited
knowledge and experience of open source communities around usability and HCI aspects is one of the
barriers for reporters to technically relate the usability issues and the violated usability principles and
HCT guidelines. In the context of understanding the root cause of usability defects, perhaps assumed

cause could be explained in the form of rationale as a ground for a specific usability issue.

In addition, we also examined the presence of steps to reproduce, impact, software context,

expected output, actual output, assumed cause, solution proposal and supplementary information on

76

different length of defect description. Generally, the amount of information present in a usability defect
report increases with the increase in the length of the defect description. As shown in Table 4.19, the
values in column three to eight represent the percentage in which the steps to reproduce, impact,
software context, expected output, actual output, assumed cause, solution proposal, and supplementary
information is present in the defect descriptions for a set of defect reports within the same range of
length. From the 377 usability defects we studied, only 74 defect reports contain more than 100 words.
Within this length, more than 50% of defect descriptions contain steps to reproduce, impact, software
context, expected output, and actual output. Interestingly, usability defect reports written with more
than 400 words contain almost all the information. However, the presence of steps to reproduce,
assumed cause, solution proposal and supplementary information on the length of defect description

was variable.

Table 4.19. The presence of steps to reproduce, impact, software context, expected output, actual
output, assumed cause, solution proposal, and supplementary information on different lengths of defect

description.
Length of 4Defect Information presence in usability defect description (%)
description Steps to Software | Expected | Actual Assumed Solution | Supplementary
(words) Reports reproduce Impact context output output cause proposal information
0-20 26 0.00 0.00 26.92 34.62 19.23 3.85 0.00 19.23
21-40 74 13.51 9.46 36.49 48.65 67.57 0.00 9.46 14.86
41- 60 71 36.62 14.08 42.25 60.56 77.46 0.00 9.86 7.04
61-80 62 37.10 27.42 54.84 75.81 79.03 1.61 6.45 11.29
81-100 38 31.58 34.21 63.16 57.89 89.47 5.26 5.26 18.42
101-120 18 44.44 55.56 72.22 61.11 88.89 5.56 11.11 11.11
121-140 21 38.10 66.67 57.14 66.67 90.48 0.00 9.52 9.52
141- 160 11 45.45 45.45 63.64 81.82 81.82 9.09 27.27 0.00
161-180 16 56.25 43.75 56.25 75.00 100.00 0.00 43.75 18.75
181-200 9 44.44 22.22 55.56 77.78 88.89 0.00 44.44 0.00
201-220 8 25.00 62.50 50.00 75.00 87.50 0.00 12.50 12.50
221-240 7 85.71 71.43 85.71 85.71 100.00 0.00 28.57 14.29
241- 260 4 25.00 75.00 100.00 75.00 100.00 25.00 25.00 25.00
261-280 3 33.33 33.33 66.67 66.67 100.00 33.33 33.33 0.00
281-300 2 50.00 100.00 100.00 50.00 50.00 0.00 50.00 0.00
301-320 1 100.00 100.00 100.00 100.00 100.00 0.00 0.00 100.00
321-340 1 0.00 0.00 100.00 100.00 100.00 0.00 100.00 0.00
341- 360 1 0.00 100.00 100.00 100.00 100.00 0.00 100.00 0.00
361-380 0 - - - - - - - -
381-400 1 100.00 0.00 0.00 0.00 100.00 100.00 100.00 100.00
401-420 1 100.00 100.00 100.00 100.00 100.00 0.00 100.00 0.00
> 420 2 100.00 50.00 100.00 100.00 100.00 0.00 100.00 100.00

77

4.2.2.1.2 Proposing Solutions and Ideas

For answering RQ2, we observed about one third of the defect descriptions contain solution proposals.
A close inspection of usability defect data as in Table 4.20 shows that about 30% - 40% of solution
proposals were generally described in words. The other means of describing solution proposals were in
a form of ASCII art, graphical elements or code, and Ul-digital mockups, that only account less than

2% of defects in all three projects.

Table 4.20. The presentation of solution proposals — textual description is the most common medium to
present solution proposal in the three open source projects.

Solution proposals presentation Project
Mozilla Thunderbird Firefox for Android Eclipse Platform

(n=88) (n=101) (n=188)
Textual descriptions 39.8% 29.7% 30.3%
ASCII arts 1.1% 1.0% 0.0%
Graphical elements or code that could be 0.0% 2.0% 0.5%
immediately implemented
UI digital mockups 0.0% 1.0% 0.5%

4.2.2.1.3 Differences Between Usability and Performance-related Defect Report Content

In this study, we were also interested to investigate how the different types of defects affect the
presence of information. In answering RQ3: Are usability defects described differently from
performance-related defects?, we chose performance-related defects as a benchmark to compare these
differences. We considered the defect attributes steps to reproduce, impact, software context, expected
output, actual output, assumed cause, solution proposal, and supplementary information as our
dependent variables (nominal data) and defect types as the independent variable (nominal data). We
analyzed the defect descriptions and rated the presence or absence of information as 0= information is

present, and 1 = information is not present.

As shown in Table 4.21, at a significant level p=0.05, we found relationships between software
context and expected output, and defect types in all the three projects. However, no relationships were
found between actual output and solution proposal, and defect types in the three projects. At the same
significance level, the relationship between assumed cause and supplementary information and defect
types was only significant in the Eclipse Platform and Firefox for Android projects, while a
relationship between steps fo reproduce and defect types was only observed in Eclipse Platform. For
impact and defect types, a significant relationship was observed on Mozilla Thunderbird and Eclipse

Platform.

78

Figure 4.2 reveals the trends of information presented in usability and performance defects. As

shown, actual output is found in the vast majority of usability and performance defect reports for all

three projects. On average, more than 70% of usability and performance defects contain explanation

about what happened or what they saw while using the product. While expected output, sofiware

context, impact and solution proposal is more common to be found in usability defect than

performance defect reports, assumed cause least reported in usability defects (only being found in less

than 5% of usability defect reports).

Table 4.21 Chi-square test result to examine the influence of defect types and the presence of defect

attributes.
Attributes Mozilla Thunderbird Firefox for Android Eclipse Platform
p X (@dr=1, o | p 1 (@dr=1, @ | p X (@dr=1, @
n=121) n=177) n=800)
Steps to reproduce 0.06 3.69 0.18 | 0.13 2.30 0.11 | 0.01 7.54 0.10
Impact 0.03 4.54 0.19 | 0.18 1.84 0.10 | 0.00 65.65 0.29
Software context 0.00 12.45 0.32 | 0.03 4.57 0.16 | 0.00 3.52 0.07
Expected output 0.01 6.85 0.23 | 0.00 12.25 0.26 | 0.00 58.21 0.27
Actual output 0.21 1.58 0.11 | 0.21 1.59 0.10 | 0.75 0.10 0.01
Assumed cause 0.38 0.76 0.08 | 0.00 14.26 0.28 | 0.00 32.95 0.20
Solution proposal 0.88 0.02 0.01 | 0.77 0.09 0.02 | 0.05 3.97 0.07
Supplementary 0.83 0.05 0.02 | 0.00 8.06 0.21 | 0.00 11.59 0.12
information
400.0%
350.0%
300.0%
250.0% - [Supplementary information
9 Solution proposal
B Assumed cause
200.0% 1 B Actual output
B Expected output
150.0% 1 B Software context
Bimpact
B Step to reproduce
100.0%
50.0% -
0.0% -
Mozilla Thunderbird Firefox for Android Eclipse Platform Motzilla Thunderbird ~ Firefox for Android Eclipse Platform
Usability Performance

Figure 4.2. Distribution of usability defect attributes between usability and performance defects.

79

From the project perspectives, regardless of defect types, Mozilla Thunderbird reports contain
more information than Firefox for Android and Eclipse Platform. Mozilla Thunderbird is responsible
for a significant proportion of the usability defects with steps fo reproduce, impact, software context,
expected output, actual output, assumed cause, and solution proposal. While supplementary
information is mostly attached to performance defects, this information is rarely presented in Mozilla

Thunderbird usability defects.

There are perhaps surprisingly few steps to reproduce, and impact is found in Firefox for Android
usability and performance defect reports (found in less than 20% of defect reports). Probably, instead
of using steps to reproduce and impact, Firefox for Android contributors much prefer to provide
supplementary information, and as can be seen this attribute is more common in Firefox for Android
than Mozilla Thunderbird and Eclipse Platform. In Eclipse Platform, while steps to reproduce is mostly
found in performance defects, expected output is more common to usability defects. Also, less than

30% of Firefox for Android and Eclipse Platform performance defects described expected output.

In summary, we found Mozilla Thunderbird and Firefox for Android usability defects contain
more information than performance defects. The most common attributes used to describe usability and
performance defects across projects are actual output. Usability defects were favorably described using
impact, expected output, and solution proposal, while performance defects more often used

supplementary information, and assumed cause.

4.2.2.2 Types of Usability Defects

In this section, we describe the distribution of different types of usability defect categories, including
interface and interaction usability defects. We answer RQ4: What are the dominant types of usability
defects (e.g., interface or interaction) in open source projects?. In addition, we study the subcategories

of interface and interaction usability defects, as suggested in [12], [76].

Figure 4.3 summarizes the distribution of usability defects within different categories and
subcategories. Based on using the UPT [12] and fault GUI model [76], we classified interface usability
defects into GUI structure and aesthetics, information presentation and audibleness, while interaction
usability defects are divided into manipulation, task execution and functionality. From Figure 4.3, we

can draw the following findings and implications.

80

Interaction

Usability defect types

Interface

0.0%

ﬁ:

150.0%

50.0% 100.0%

% of Defects

200.0%

B Mozilla Thunderbird
B Firefox for Android

B Eclipse Platform

Functionality

Task execution

Manipulation

Audibleness

Information presentation

GUI structure and aesthetics

il

B Mozilla Thunderbird
B Firefox for Android

D Eclipse Platform

0.0%

20.0% 40.0% 60.0%

80.0% 100.0% 120.0%

a) Interface vs interaction usability defects

b) Interface and interaction defects subcategories

GUI structure and aesthetics
subcategories

Object state

Object layout

Object appearance

]

0.0%

10.0% 20.0% 30.0%

% of Defects

40.0% 50.0%

B Mozilla Thunderbird
B Firefox for Android

D Eclipse Platform

¢) GUI structure and aesthetic subcategories

Menu structure
§
& On screen text and results
2
88
& & Error/ notification and feedback message
4
ag
1]
0 v N
£ 8 lon-message feedback
23
£
)
<
£

Object (screen) naming and labeling

Data error

=

B Mozilla Thunderbird
WFirefox for Android

BEclipse Platform

00% 20% 4.0% 6.0%
% of Defects

80% 10.0% 12.0%

d) Information presentation subcatgories

Audibleness subcategories

Text/ feedback in speech

Voice and sounds

0.6%
% of Defects

Il

0.0% 0.2% 0.4%

0.8%

1.0% 1.2%

B Mozilla Thunderbird
Wrirefox for Android

HEclipse Platform

e) Audibleness subcategories

Zooming

Drag and drop

Scrolling mechanism

Voice control

Finger touch

Manipulation subcategories

Mouse click

Keyboard press

il

B Mozilla Thunderbird
W Firefox for Android

[Eclipse Platform

0.0% 20% 40% 60% 80% 100% 12.0% 14.0% 16.0% 18.0%

% of Defects

Functionality subcategories

Technical deficiency
Problematic
Misaligned
Irrelevant
Preferenced
Inadequate

Missing

1l

B Mozilla Thunderbird
W Firefox for Android

[Eclipse Platform

0.0%

10.0% 15.0%
% of Defects

5.0%

20.0%

25.0%

f) Manipulation subcategories

Feedback

Reversibility

Action

Task execution subcategories

B Mozilla Thunderbird
WFirefox for Android

[Eclipse Platform

0.0% 5.0%

10.0% 15.0% 20.0%
% of Defects

25.0% 30.0%

35.0%

g) Functionality subcategories

h) Task execution subcatgories

Figure 4.3. Distribution of usability defects with categories and subcategories.

81

a)

b)

Both interface and interaction usability defects are common in all three open source projects.
However, as can be seen in Figure 4.3, GUI structure and aesthetics are the most dominant
types of usability defects, 34.1% in Mozilla Thunderbird, 36.6% in Firefox for Android, and
35.1% in the Eclipse Platform. To this end, the object state problem is responsible for a
significant proportion of the GUI structure and aesthetics categories in Mozilla Thunderbird
and Eclipse Platform (Figure 4.3¢c). Object state issues account for 15.9% and 14.9% of the
sample usability defects in Mozilla Thunderbird and Eclipse Platform, respectively. Firefox
for Android, on the other hand, contains a much smaller percentage of object state problems
(7.9%) but has the largest percentage of object appearance problems, accounting for 18.8%.
One possible reason is due to the nature of the application, in which Firefox for Android is an
application developed for mobile devices that have several limitations such as small screen,
single window, touchscreen, and screen orientation support. For example, the small screen
size may limit the content displayed and organization of information that substantially affects
the overall look and feel of the application.

For the information presentation and audibleness category, all of the three projects only
contain a small percentage of defects, accounting for less than 7% of the usability defects
reported. Interestingly, in the 377 usability defects that we analyzed, none of the reported
problems were related to audibleness. Among the information presentation problems, error
and notification message and menu structure are the highest problems reported for Eclipse
Platform and Mozilla Thunderbird, respectively. One possible reason for the large fraction of
error message problems may be that the Eclipse Platform is targeting technical users, and
therefore the use of syntax error codes or abbreviations in error message such as “an error of
type 2 has occurred” should not be a problem. However, as everyone can contribute to open
source projects, inexplicit and technical messages may sometimes not be understandable by
users with limited “technical-development” knowledge. Perhaps, no matter what kind of
projects and intended users, error message should include explicit, polite, precise, constructive
advice written in human-readable language so that all users can understand it. Surprisingly,
non-message feedback and data error defects are virtually non exist in Firefox for Android,
while these two problems only occur less than 4% of defects in Mozilla Thunderbird and

Eclipse platform.

82

¢) As shown in Figure 4.3b, issues related to functionality are the dominant interaction problem
and our study results indicate that Firefox for Android has the highest missing functionality,
accounting for 14.9% of defects. As Mozilla Thunderbird is a more stable project than
Firefox for Android and Eclipse Platform, technical deficiency is very low in comparison.

d) For the task execution subcategories, incorrect task action has the largest proportion in
Mozilla Thunderbird (17%), followed by the Eclipse Platform (13.3%). In all three projects,
less than 2% of usability defects had reversibility problems.

e) As shown in Figure 4.3f, keyboard press accounts for the largest manipulation problems in
Mozilla Thunderbird (9.1%) and the Eclipse Platform (6.4%). Across the three projects a
voice control problem does not exist. This finding suggests that the voice control category is
not pertinent to the current usability problem taxonomy and could be eliminated.
Unsurprisingly given the nature of the application, Firefox for Android usability defects
contained virtually no mouse click and drag and drop problems, and very few keyboard
problems (1.0%). As Firefox for Android is an application developed for mobile devices,
finger touch is the relevant category in Firefox for Android. Also, likely due to the fact that
direct manipulation using mobile gestures is a much more sensitive interaction, scrolling is a
more common manipulation problem in Firefox for Android than with Mozilla Thunderbird

and Eclipse Platform.

4.2.2.3 The Impact of Usability Defects

In this section, we describe the distribution of effect and the correlation between effects and defect
severity. We answer RQS5: What are the effects of usability defects and what types of usability defects
have a severe effect? In our analysis, we identified two fundamental types of impact: the (1) impact on
human emotion, to which the defect reporter described their feelings when they were experiencing
difficulties using the software due to the usability defect, and the (2) impact on task performance, that
prevented the reporter from completing task execution. Overall, when describing a particular users
difficulty, reporters tended to support a single impact description at a time (rather than discuss both
impact on emotion and task performance) and reporters provided little evidence for their impact claims.

Figure 4.4 summarizes the distribution of different impacts with the corresponding defect severity.

83

13

LR

g = hinor
6.0% = Tihuial
L]
L S EnFancement
A = ficcker
B pinor
2.0 B Crrical
B pormal
0.0% -
@aﬁ“ e S S N
.ﬁr -5?# k- L
VFE@ &f f \.-ﬁ'h “fﬂe
E#ect
a) Mozilla Thunderbird
Tir
B
0%
E o " Mirer
" Treal
E 1w
E3 W E nihaeoaimident
% W Blockiar
L% Epipjr
e B Critical

SIS

Effect
b) Firefox for Android
12.0%
10.0%
B.O%
£ ® finar
% 5.0% Trivial
3 o B Epiuan ciemiail
) W piocker
20 = tlajor
= Crirical
Q0% -
" a8 e n a}ﬁ < W fiarmal
@g ,;_F"bﬁgﬁ vsgpﬁf LF-E':Q& f d‘n\:ﬁ' efllf ;.}:'b- ﬁ
& ¢ g
o
Effact
¢) Eclipse Platform

Figure 4.4. Distribution of usability defect impact and severity.

84

As can be seen, accessibility is the dominant task performance impact in Mozilla Thunderbird,
accounting for 11.4% of sampled defects. In terms of impact on human emotion, confusion is the most
addressed in all three projects: 5.6% in Mozilla Thunderbird, 3.0% in Firefox for Android, and 11.1%
in Eclipse Platform. However, these percentages are still considered low suggesting that the open
source usability defect description does not contain sufficient information on describing how the
interface-interaction defects cause user difficulty that confuse and mislead users. Perhaps because of
this, usability defect reporting tools should specifically prompt their users for this information in a

separate field so that users can clearly describe this information.

4.2.2.4 Usability Defect Failure Qualifier

In a formal usability evaluation, a failure qualifier can usually be easily identified by observing how
users experience a usability problem during software testing. However, in the context of open source
projects, where usability defects are normally reported after “black box” usage without a proper
usability evaluation method, it is quite difficult to identify the qualifier of the problems. This section
answers RQ6: On what basis, do usability defect reporters justify that the user difficulty that they
experience is an issue? This information is helpful for software developers to understand the nature of
the problem. In our study, we used qualifier attributes of the ODC [77] and revised some of the

original definitions to suit the context of our analysis, as shown in Table 6.2 in Chapter 6.

As shown in Table 4.22, the most common failure qualifiers across the three projects are
incongruent mental model (27.3% in Mozilla Thunderbird, 20.8% in Firefox for Android, and 15.4% in
Eclipse Platform), better way (25.0% in Mozilla Thunderbird, 10.9% in Firefox for Android, and
22.9% in Eclipse Platform) and wrong (23.9% in Mozilla Thunderbird, 9.9% in Firefox for Android,
and 19.1% in Eclipse Platform). With regards to incongruent mental model, it was common for
reporters to compare two different things that have some similar characteristics in order to justify a
desire for consistency in design. It was also common for reporters to use their previous experiences to

illustrate some point of view on certain issues:

With the menu changes, and the removal of the numbered perspective items, we need another
way of switching between perspectives. We should add a perspective switcher, similar to the

editor and view switchers ... [Consistency]

85

With recent E4 builds I often see unjustified flickering in the workbench window. I haven't

seen this before. [Previous experience]

Only a small fraction of usability defect reports contain missing (3.4% in Mozilla Thunderbird,
1.0% in Firefox for Android, and 1.1% in Eclipse Platform), overlooked (3.4% in Mozilla Thunderbird,
1.9% in Firefox for Android, and 1.1% in Eclipse Platform) and irrelevant (5.7% in Mozilla
Thunderbird, 5.9% in Firefox for Android, and 3.2% in Eclipse Platform) to support the claim of the
usability issues being reported. Overall, we observed that these failure qualifiers are primarily used to

support a claim and defend solution proposals and ideas.

Table 4.22. Distribution of failure qualifier across projects.

Failure Qualifier Project
Mozilla Thunderbird Firefox for Android Eclipse Platform (n=188)

(n=88) (n=101)
Wrong 23.9% 9.9% 19.1%
Missing 3.4% 1.0% 1.1%
Irrelevant 5.7% 5.9% 3.2%
Better way 25.0% 10.9% 22.9%
Overlooked 3.4% 1.9% 1.1%
Incongruent mental model 27.3% 20.8% 15.4%
None 11.4% 49.5% 37.2%

4.3 Threats to Validity

There are several threats that can impact the validity of our findings.

4.3.1 Construct validity

Construct validity is concerned with the appropriateness of the metrics we used to study. For example,
to investigate the presence of certain defect attributes in usability defect descriptions, we have chosen
important usability attributes from human computer interaction studies [11]. One possible threat might
be the reliability of the attributes to be significant for comparing performance-related defects with
usability defects. We minimized this threat by using common defect attributes such as steps fo
reproduce, actual output and expected output, and introducing general attributes like supplementary

information.

86

4.3.2 Internal validity

In conducting an online survey with anonymous participants whose professional background is
unknown, misunderstanding of the survey context by respondents is a main threat to internal validity.
Our goal is to focus on usability defect reporting instead of general software defect reporting. Since
nearly half of the respondents have at least three years of experience in software testing, there is a
possibility that the respondents have answered the questionnaire based on their general defect reporting
knowledge and experience. We addressed this threat by (a) giving three different types of usability
defect examples at the beginning of the survey, (b) highlighting the usability defects (bold and italic)

keyword for every question, so the respondents were always aware of the survey context.

For software defect repositories mining, the information we extracted for this research is highly
dependent on the capabilities of the main researcher to understand and analyze. For each defect in the
sample, the main researcher manually read the textual description. This process required reading the
bundle of text, interpreting the problems, classifying the information into any of the defined attributes
and assigning a score if the information is present. Since this qualitative analysis leads to the subjective
evaluation, incorrect interpretation, classification and scoring may potentially affect our results. To
minimize this threat the research supervisors cross-checked a selection of classifications. We also built
a checklist that consists of guidelines, so that both main researcher and supervisors are consistent when

classifying and giving score for the information presented in the defect reports.

4.3.3 External Validity

External validity is concerned with the generality of our findings. In the survey outcome, one possible
external threat to the validity of the survey outcome is the representativeness of the participants. While
the participants were recruited from a range of software practitioners, there is the possibility that the
software developers and testers responding have not used formal defect reporting processes and tools.

Therefore, there is the possibility of response bias when providing answers and feedback.

In the software defect repositories mining, our study was limited to open source projects and
restricted to Bugzilla defect repository. The collection of defect information for these open source
projects may not guarantee that the same information is present in the other OSS projects as well. Other

types of projects may have different defect report structure and different types of defect attributes. This

87

is a common threat of this kind of research. To reduce selection bias and for comparison purposes, we
selected two projects from the same defect repository while the other project is from a different defect
repository. We examined three open source projects, with projects spanning diverse product
functionality and environment; this small sample cannot be regarded as representative. This is because
the pattern of information could be different when more samples are included in the analysis and
different OSS projects are used. However, the findings of this research is an early indicator that
existing defect information is not useful to explain usability issues, and hence need to be further

investigated and confirmed with larger sample data with various OSS project backgrounds.

4.4 Analysis and Discussion

4.4.1 Reporting Usability Defects

Our qualitative observations on open source usability defect reports confirmed the online survey results
that actual output, expected output and software context are the most supplied information when
reporting usability defects. We believe that these findings are biased in a way the defect form is
designed. In Bugzilla, for example, by default the defect form contains title/ summary, software
information (i.e. product, component and version), steps to reproduce, actual results, expected results
and attachment. Therefore, the use of this generic defect reporting form will produce mostly the same
content structure for all types of defects. However, it is surprising that steps to reproduce is less
reported in Mozilla Thunderbird, Firefox for Android and Eclipse Platform even software practitioners
claimed that they always provide this information while reporting usability defects. Similar to [33], our
findings suggest that steps to reproduce is not necessarily appropriate for all defect reports, as we
found steps to reproduce is often used to explain issues for performance-related defects than for

usability defects.

Even though most of the reporters can produce a relatively complete defect description, usability-
related information is rarely included. For the three OSS projects studied, we found less than 2% of
usability defect reports contain descriptions of violated usability heuristics. In fact, only about 27% of
our online survey respondents claimed that they used violated usability heuristics to augment the cause
of the problem. In terms of describing proposed solutions and expected results, barely a quarter of the

reporters included usability design principles to justify their idea.

88

A closer inspection of usability defect reports showed that open source communities favorably
discussed their ideas using narrative text rather than graphical structure such as ASCII arts and UI-
digital mockups. The low amount of this information present in defect reports suggests that existing
generic defect report templates do not emphasize the theoretical background of usability. This could be
a disadvantage as usability defects may be seem insignificant in the absence of usability and HCI
principles as a rationale to justify the problems and defending proposed solutions. Possibly due to the
limited usability and HCI knowledge among open source communities, this information is somewhat
difficult to provide. Perhaps, a defect report form should be designed as a wizard-style guided-
answering form that consists of necessary information for different types of defects. A good example is
the question-based structure form proposed by Simdes [24]. The form contains of six questions to
report HCI issues. However, the uses of text form to collect HCI information could be a burden for the
reporter, as they may not know what to explain. To overcome this limitation, a pre-defined set of

usability attributes for input selection can be explored in future work.

Many respondents considered assumed cause, usability principles, video recording, Ul event trace
and title/ summary to be the most difficult items to provide. Possibly, the varying level of technical
knowledge of open source communities is one of the reasons why the defect reports in all projects
studied contained virtually no assumed cause. Since Ul event traces, for instance, are not readily
available to end users, reporters may need to take extra steps. In these circumstances, reporters with
deficient programming skills may only report problems in a GUI rather than a sequence of events that
can be mapped into user tasks. This corresponds with Wang et al. [78]’s examination of open defect
reports, which showed that most of the defect reports that contain technical information are often
submitted by highly technical reporters. Moreover, a lack of automated tools and limited data types
supported for recording and attachments in existing defect reporting tools make it challenging to

include video and audio files [17].

As shown in Table 4.10, many reporters mentioned verbal discussions with developers as a
common approach to communicate usability defects. In our opinion, as Andre et al. [3] addressed,
verbal communication alone is not sufficient to resolve usability defects without a written description.
This is because every software defect needs to record formal logs as an evidence to diagnose the
problems. In this case, the use of a formal reporting tool, such as defect reporting tools were considered

particularly useful to track and manage defects in a timely manner. However, as our survey results

89

indicated, defect descriptions suffer from insufficient information for problem correction. One

possibility is due to the text-centric approach used by the defect tracking system.

The unstructured text may contain a mix of data such as assumed cause, proposed solution and
impact. This results in unorganized data and ambiguities that make it difficult to understand the whole
issue as compared to data stored in fielded form. Furthermore, it is important to consider the subjective
nature of the usability defects that may not be easy to explain textually [22]. Therefore, additional
information in the form of attachable files may be required to complement this deficiency. We have
identified four categories of attachable files: (1) screenshots, (2) videos, (3) graphical elements such as
ASCII art, and (4) UI event traces / error messages. In this survey, we found that reporters tend to use
screenshots, rather than videos, Ul event traces and error messages when highlighting the cause of the
problem, software context and actual output. Whereas, to propose a design solution, reporters often
used textual descriptions as compared to graphical elements (i.e. digital mockups, simple sketches and
ASCII art). Possibly, the low rate of use of non-textual media is due to the fact that good drawing tools
may not be readily available [7] and producing graphical representations using a toolkit may require

extra skill and time to learn and use [10].

4.4.2 Fixing Usability Defects

The most widely used textual information mentioned by software developers are assumed cause, steps
to reproduce, software context, expected output and actual output. Similar to previous studies [20],
[21] that focused on general defects, steps to reproduce, expected output and actual output were also
commonly to be used by developers when fixing usability defects. In particular, it indicates that steps
to reproduce, expected output and actual output are fundamental pieces of information for
understanding all types of defects. In contrast to previous studies [20], [21], we added assumed cause,
usability principles and solution proposal to the list of defect information to reflect relevant attributes
for fixing usability defects. Out of these items, assumed cause was selected as the most useful and
important attribute for fixing usability defects. Hence, our research extends the knowledge from the

previous research.

Since our study is solely focused on usability defects that are primarily dealing with graphical
elements, screenshot was rated as the most widely used supplementary information other than video,

ASCII art, digital mockups and patch. When looking at the low frequency use of video, ASCII art,

90

digital mockups and patch, we can explain that this is probably due to the reporters rarely supplying
such information to justify the problems and propose their suggestions. Therefore, in the absence of
this information, it is not surprising that software developers rarely use this information when fixing

usability defects.

In [20], [21], software context was not considered useful, but was rated the third most widely used
attribute in our research context. We think that the difference in these results comes from the different
definition we introduced for software context. In our study, we referred to the software context as the
specific location of problem in the interface where the problem was observed, such as button, menu
and dialogue box. In contrast, [20], [21] defined software context as the operating environment where

the problem occurred, such as web application.

Several problems in the way usability defects are described were identified. Unclear assumed
cause and insufficient information in steps to reproduce was very strongly identified as problematic
defect attributes. This is not surprising because, as noted above, the reporters found it indeed difficult
to clearly explain the cause of the problem. In fact, the inability of reporters to supply Ul event traces
in defect reports will limit the essential information regarding user behavior and task sequences with
respect to the application’s user interface. The absence of this technical information, such as the time to
complete a certain task, number of erroneous action sequences, and usage of certain functions, may
cause software developers to misinterpret the usability problems [79]. Another problem to consider is
“vagueness”, a similar issue raised by Dumas et al. [16]. In our study, about half of the software
developers claimed that they received vague comments. These either did not have precise problem
descriptions or the solutions suggested were too general. According to Dumas et al., when describing
usability problems or giving fix suggestions, reporters should be as specific as they can, and not let
software developers use self- judgment. For instance, instead of suggesting “use a color with better
contrast to the background and increase the font clarity” one could precisely suggest color contrast

theory - black text on a brown background, for example.

4.43 Mismatch Between Information Provided by Defect Reporters and Information Needed

by Software Developers

We compared the responses obtained from reporters and software developers to find out whether

reporters provide sufficient information for a software developer to fix usability defects. In Table 4.23,

91

attributes are ranked based on the mean of response to the questions “ Q13- Do you use the following
items when describing usability defects” and “Q28 - Do you use the following items when fixing
usability defects” that range from 1 (Never) to Always (5). To discover the level of agreement between
what reporters provide and what software developers need, we measured the absolute value of
differences between reporters’ and developers’ mean. The lowest difference indicates more agreement
and vice versa. As shown in Table 4.24, reporters and developers are in agreement on severity,
software context, and expected result. However, more disagreements were observed. The most notable

ones are title/ summary and AC.

Table 4.23. Rank of attributes — while software developers claimed assumed cause was the most
needed information, reporters mostly provided title.

Rank (based on mean) | Reporter Developer
1 Title/ summary Assumed cause
2 Actual output Steps to reproduce
3 Expected output Software context
4 Software context Expected output
5 Steps to reproduce Actual output
6 Software information | Software information
7 Assumed cause Severity
8 Test environment Test environment
9 Severity Title/ summary
10 Solution proposal Solution proposal

Table 4.24. Agreement level between what reporters provide and what software developers need.

Item Mean (X) Differences of mean
Reporter | Developer
Severity 3.77 3.78 0.01
Software context 4.11 4.15 0.04
Expected output 4.17 4.12 0.05
Test environment 3.88 3.68 0.20
Software information 4.02 3.82 0.20
Steps to reproduce 4.06 4.29 0.23
Actual output 4.32 4.08 0.24
Solution proposal 3.32 3.57 0.25
Assumed cause 3.98 4.35 0.37
Title/ summary 4.33 3.66 0.67

*Differences of mean = | X reporter = X developer |

While our study and [21] identified title/summary as the least problematic information,
title/summary is not really needed by software developers to fix usability defects, as it was ranked as
the second lowest. On the contrary, the assumed cause that is expected to be present in usability defect
descriptions is seldom provided by reporters. In summary, our experiments suggest that reporters do

not provide information that is frequently used by software developers.

92

4.5 Summary

The purpose of the research described in this chapter was to identify the most important usability
information for reporting and correcting usability defects. We conducted a survey amongst open
source software communities and industrial practitioners to understand the most valuable information
in reporting and fixing usability defects. We extended previous studies [20], [21] that focused on
software defects in general. We added assumed cause, software context and proposed solution in
context of usability-related defect information. Our study extends the previous findings on software
defect reporting. We discovered that developers need additional defect information when fixing
usability defects. We found that assumed cause is the most useful, but seldom supplied by reporters.
Our software defect repositories mining results confirm that actual output, expected output and steps to
reproduce are also substantially important for software developers. These findings give us good ground

to design a new defect report form for reporting usability defects, which we discussed in Chapter 7.

According to reporters, they usually provided title/ summary, steps to reproduce, actual output,
and expected output. While usability-related information: assumed cause, video recording, Ul event
trace and usability principle are the most difficult to provide. However, our software defect
repositories mining results revealed that actual output, expected output and software context are the
most supplied information for usability defects. When we compared the responses from software
developers and reporters, we found that the information most expected by the software developers was
the least provided by reporters. The most significant ones were found to be title/ summary and assumed
cause. Our statistical analysis shows a mismatch between what reporters reported and software
developers claim that they need to fix usability defects. Our results showed that unclear assumed cause
and insufficient information in steps to reproduce were most commonly experienced by software
developers. This reaffirms with evidence of an anecdotal expectation that the cause of the problem is
difficult to provide. Other problems include vague comments, unstructured text and duplication of

reported usability defects.

To effectively report usability defects, there are several factors that may be influential — with the
key area being skilled people supported by appropriate tools and methods. Through the same survey

used in this chapter, we separately explained these factors in Chapter 5.

93

5 Factors Influencing Usability Defect Reporting

Previous studies have reported that the overall quality of defect reports is far from satisfactory.
Common issues include incomplete information, lack of clarification and focus, mixed data, and
mismatch information in defect descriptions. To obtain a quick defect resolution, a well-written defect
report is important. While the majority of software defect reporting research has been devoted to the
enhancement and improvement of new techniques and tools for capturing software defects, to the best
of our knowledge, there is no study investigating the influence of different factors on the quality of

defect descriptions.

To address this gap, we investigated our third thesis research question: “RQ3 - What factors
influence the description of usability defects?” This research question is the second theme of the online
survey we discussed in Chapter 4. This study aimed to collect opinions of developers and reporters on
the factors influencing usability defect reports quality, including role of the reporter, reporters’
experience and knowledge, defect discovery methods and usefulness of automation tools. The views
are obtained from software development practitioners from industry who had experience in dealing

with usability defects.

In this chapter, we present the results of the second part of our multi part survey that was discussed
in Chapter 4. This second part of the survey examined what factors might influence the description of

usability defects.
5.1 Methodology

5.1.1 Development of Survey Instruments

Before designing this survey, we reviewed relevant literature to avoid duplicate research, and where
similar research existed, we learned and adopted questions and experimental design from these. Since
we did not find any research into factors related to usability defect reporting in the literature, the
relevant research investigating the influence of different factors on software testing practices in general
was helpful. For example [74], [80], [81], explicitly investigate the importance of tester’s knowledge in
performing exploratory software testing. Kettunen et al. [82] also reported domain knowledge as the

most emphasized area of testers’ expertise and point out that the role of technical knowledge is

94

particularly important in the agile development context. In a survey on the effect of experience, Kanij
et al. [83] identified expertise in the problem domain and knowledge of specific testing techniques
were significant factors influencing the performance of software testers. Beer et al. [84] and Poon et al.
[85] reported the impact of the testers’ experience on improving testing strategies - test case design,
regression testing, and test automation. In the context of usability studies, FQlstad [86] reported that
usability defects found by work-domain experts were classified as more severe and received higher
priority by developers than the usability experts. Therefore, in this research we speculate that the role
of reporter, reporters’ knowledge and experience, defect discovery methods and usefulness of

automation tools might have a significant impact on reporting usability defects as well.

5.1.2 Research Questions

The main objective of this second theme of the survey was to investigate the influences of reporters’
experience and knowledge, defect discovery methods and usefulness of automation tools on usability

defect reporting practices. The key research questions to answer is listed in Table 5.1:

Table 5.1. The second theme of online survey research questions.

Research Questions Rationale

RQI Is there a significant difference in the way that usability Knowledge on usability or HCI can help
defects is described by the participants who have received participants to explain the usability issues better.
usability/ HCI training and by those who have not?

RQ2 Is there a significant difference in the way that usability Participants who have experience in usability
defects is described between participants who have testing may know better what kind of information
experiences in usability testing and those who have not? is useful to report usability issues, and what kind

of information is needed by software developers.

RQ3 Is there a significant difference in the way usability defects is ~ Automation tool could speed up the defect
described between the group of participants who used reporting process, especially in collecting
automated tools and those who did not? technical information and evidences.

RQ4 Is there a significant difference in the way usability defects are Different testing approach will collect different
described between participants who conduct usability testing information. For example, during system testing,
and those who do not? the icon on the user interface may be reported as

inappropriate. However, if usability testing is
conducted, user’s difficulties and how user is
struggling to understand the icon can be
understand.

5.1.3 Survey Design

We used self-administered online survey using Opinio survey tool. The respondents could answer this

survey at their convenience. The survey is available at http://bit.ly/UsabilityDefectsReportingSurvey

and can be found in Appendix B.

95

5.1.4 Questions Related to Factors Under Studied

In this section, we summarize the questions relating to the factors studied. The detailed structure of the
survey can be found in Section 4.1.1.4. Each factor consists of several questions as listed below. Most
of the questions used a Likert scale with five levels of agreements (“Completely disagree”, “Somewhat

disagree”, “Neither disagree or agree”, “Somewhat agree”, and “Completely agree™).

1. The role of the reporter: This factor had two closed questions. Q33 listed five statements to
investigate the way technical and non-technical users report usability defects. The software
developers were required to rate the frequency of these statements may be true when they
assess a usability defect. Q45 asked both software developers and reporters whether they think
the level of detail of usability defects may vary between reporters.

2. Knowledge: This factor had four closed questions. Q7 and Q8 asked respondents to indicate
their participation in any usability-related training/ certification and rate the usefulness of the
training respectively. Q41 asked respondents whether they think defect report form should be
customized according to reporters’ knowledge. Q46 listed seven knowledge factors that may
affect the effectiveness of writing a good usability defect description. Respondents were
required to indicate their level of agreement as to whether these were important.

3. Experience: This factor had four closed questions that asked respondents’ opinions on
experience in usability testing (Q26 and Q34), and general software testing (Q48). Q40 asked
respondents whether they think defect report form should be reflected to reporters’ level of
experience.

4. Automation tools: This factor had four questions. Q42 asked if reporters have experience in
using any automation tools to capture usability defect information. In the accompanying open
question (Q43) reporters were requested to name the tools. Q44 asked reporters’ opinions on
the limitation of the manual process to capture usability defect information. Q39 asked
whether respondents think user experience (UX) of using defect reporting tools may influence
the quality of defect reports.

5. Defect discovery methods: This factor had two closed questions. Q11 listed fives statements
on the availability of usability defect information for different defect discovery methods, and

respondents were required to indicate their agreement on these statements. Q12 asked whether

96

respondents think that defect report from should be customized according to how usability

defects are discovered.

5.1.5 Evaluation of Survey Instruments

The survey was piloted with software engineers from the Swinburne Software Innovation Lab (SSIL)
and software developers recruited at a developers conference (described in Chapter 4). Based on the

verbal comments and the pattern of responses received, the survey instruments were refined.

5.1.6 Selection of Participants

The same selection criteria as detailed in Chapter 4 was used.

5.1.7 Data Analysis

Participants indicated their agreement about influences of usability defect reporting using five scale
scores questions measuring the role of reporter, importance of knowledge and experience, influence of
defect discovery methods, and usefulness of tools (1 implies “strongly disagree”, 2 implies “somewhat
disagree”, 3 implies “neither disagree nor agree”, 4 implies “somewhat agree” and 5 implies “strongly
agree”). Since each influence consists of several questions, composite scale scores were used for

analysis by taking a mean of all the questions for each scale.

Chi-Square tests were used for statistical analysis. Since multiple Chi-Square were being
performed simultaneously, we used the Bonferroni correction to avoid influence of spurious positives.
In this case, we lowered the P value by dividing P = 0.05 by the number of tests to get the Bonferroni
critical value. For example, to measure the association of usability defect attributes and usability/ HCI
knowledge for reporters (attributes tested = 10) and software developers (attributes tested = 16) a test

would have P<0.05/ 10 = 0.005 and P<0.05/16 = 3.125x10™ to be significant.

5.2 Results

5.2.1 Demographic Information

The details of respondents’ background were reported in Chapter 4.

97

5.2.2 Factors Influencing Usability Defect Reporting

We postulated five factors (“role of reporter”, “knowledge of specific usability/ software engineering”,
“experience in software/usability testing defect reporting”, “automation tools”, and “defect discovery
methods”) that we believed might influence the way usability defects are described. Each factor has

several questions, where participants indicated their level of agreement that these were influential. The

responses to these factors are reported in the following sections.

5.2.2.1 Role of the Reporter

We obtained developer feedback on the influence of role of reporter when they assessed and dealt with
usability defects (Q33). As shown in Figure 5.1, more than 50% of software developers agreed that
technical users, such as usability experts and developers, provide more informative usability defect
information, which include proposed solutions. Reponses to Q45 suggest significant variability in level

of detail between reporters (see Table 5.2).

Table 5.2. Responses to “the level of detail of usability defect reports varies greatly from reporter to
reporter” (Q45).

Completely disagree 0.7%
Somewhat disagree 4.1%
Neither disagree or agree 18.4%
Somewhat agree 29.9%
Completely agree 29.9%
No response 0.7%

Non technical users rarely provide important
information such as software context, product
information, and reproducibility

F

Developer provides more meaningful usability defect -:

description with proposed fix patch and logs B Completely disagree

General software tester rarely supplies usability- B Somewhat disagree

related information, such as violated heuristics or .
design principles

Usability expert provides better usability defect report .
compared to general software tester

[Neither disagree or agree

B Somewhat agree

B Completely agree

The usability defects reported by potential end-users
with direct experience from the work domain were
given high priority

[

0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

Figure 5.1. Role of reporter in reporting usability defects (Q33).

98

5.2.2.2 Knowledge of Specific Usability/ Software Engineering

We listed seven knowledge factors (“practical knowledge”, “user’s perspective thinking”, “users’
mental model”, “usability principles”, “domain expertise”, “technical knowledge”, and “defect
reporting”) that we postulated might influence the ability of respondents to write good usability defect
reports. More than 50% of respondents agreed that these factors were influential (see Figure 5.2). The

level of agreement was highest for “user’s perspective thinking” and “practical knowledge”.

Defect reporting
Technical knowledge

Domain expertise H Completely disagree
B Somewhat disagree
Usability principles [Neither disagree or agree
B Somewhat agree

Users mental model
E Completely agree

User's perspective thinking

Practical knowledge

0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

Figure 5.2. Responses on “knowledge factors” in reporting usability defects (Q46).

In the related question (Q41), we obtained respondents opinions on the value of a “custom defect report
form” — whether a defect reporting tool should provide a custom form depending on reporter’s
knowledge (non-technical, technical, HCI expert). While 51% agreed that a defect report form should
map to the reporter’s knowledge, 11.5% disagreed and 21.1% neither disagree nor agree (see Table

5.5).

Only a minority (about 17%) indicated that they had received usability-related training/
certification (see Table 5.3). Of those, about 12% of them have experience in reporting usability
defects and the remaining 5% fixing them. For those who had acquired the related training, the

majority of them found the training was useful (see Table 5.3).

Table 5.3. Usability-related training received by the participants (Q7).

Role in dealing with usability defects | Participation in usability-related training
Yes No

Reporting usability defects 17 65

Fixing usability defects 8 57

99

Table 5.4. “Usefulness” of usability-related training received (Q8).

Very useful 44%
Somewhat useful 40%
Neither useful or not useful 4%
Not very useful 12%
Complete waste of time 0%

Table 5.5. Responses to question “Do you think your defect reporting tool should provide custom
forms for reporting defects depending on reporter’s knowledge?” (Q41).

Completely disagree 5.4%
Somewhat disagree 6.1%
Neither disagree or agree 21.1%
Somewhat agree 33.3%
Completely agree 17.7%
No response 16.3%

Table 5.6. Association between usability/ HCI knowledge and frequency of usability defect attributes

supplied.
Usability defect attributes Software developers Reporters
%2 (df=2, N=65) | p-value | x2 (df=2, N=82) | p-value

Title/ summary 1.741 0.419 3.692 0.158
Assumed cause 0.832 0.660 6.820 0.033
Software context 2.589 0.274 5.366 0.068
Actual output 0.884 0.643 6.623 0.036
Expected output 1.541 0.463 0.703 0.703
Steps to reproduce 0.518 0.772 5.732 0.057
Severity 1.783 0.410 13.725 0.001
Solution | Solution proposal 1.520 0.468 2.857 0.240

Fix patch 0.333 0.847

Digital mockups 2.737 0.255

ASCII art 0.928 0.629
SoftInfo | Product 1.332 0.514 4.773 0.092

Component 5.208 0.074

Version 1.435 0.488
TestEnv | Hardware 0.194 0.907 5.814 0.055

Operating System 1.824 0.402

To answer RQ1 of the first theme of the survey, a Chi-Square test was performed to examine the
relationship between participants who received usability (or related) training and usability defect
attributes. As can be seen in Table 5.6, three of the usability attributes are significant (severity,
assumed cause, actual output) for reporters. As we tested 10 usability defect attributes, we expected
one or two attributes to show a significant result purely by chance. By applying the Bonferroni
correction, at significant level 0.005 (P < 0.05/10 = 0.005), only the test for severity (32, (2, N=82) =
13.725, P < 0.005) is significant. However, at significant level P < 0.05/16 = 3.125 x 10-3 (the number
of usability attributes tested are 16 for software developers), there is no significant relationship

between usability knowledge and usability defect attributes for the software developers.

100

5.2.2.3 Experience in Software/ Usability Testing

A majority of respondents agreed that experience in software testing and usability testing has a good
influence on the quality of usability defect report (~ 71% agreed in Q26). This view is supported by
many software developers (~58.4%), that reporters are much better at proposing redesign solutions
when they have usability experience (Q34). Furthermore, around 60% agreed, with minimal
disagreement (less than 6%), that length of experience has a significant influence (Q48). In addition,
nearly 62% of respondents agreed that prior experience in usability defect reporting helps write better
reports (Q49). Since no open-ended questions were asked around these factors, it is difficult to further

clarify these findings.

We asked respondents whether they agreed that a defect reporting tool should provide a “custom
defect report form” — that is defect report form should reflect the reporter’s experience, and their level
of experience in software/ usability testing (Q40). Our findings show considerably more respondents
choosing “somewhat agree (31.3%)” than “completely agree (23.8%)”, and only a small proportion

disagree (12.9%).

To answer RQ2 of the first theme of the survey, the survey included questions about whether
reporters had experience in software testing (no experience, less than 1 year, between 1 and 3 years,
between 3 and 5 years or more than 5 years). The “less than 1 year”, “between 1 and 3 years”,
“between 3 and 5 years” and “more than 5 years” scores were converted to a score of 1 to indicate

13

yes”, and “no experience” scores were converted to a score of 0 to indicate “no”.

A Chi-Square test at significant P=0.05 was performed to examine the relationship between
reporters with software testing experience and usability defect description attributes: there were seven
significant attributes (see Table 5.7). However, by applying Bonferroni critical value, at significant
level P=0.005, only relations between software testing experience and title/summary (2, (2, N=82) =
15.216, p < 0.005), context (y2, (2, N=82) = 24.696, p < 0.005), expected results (y2, (2, N=82) =

11.187, p < 0.005), and severity (2, (2, N=82) = 13.508, p < 0.005) were significantly observed.

101

Table 5.7. Association between software testing experience and frequency of usability defect attributes

supplied.
Usability defect attributes | 2 (df=2, N=82) | P-value
Title/ summary 15.216 0.000
Assumed Cause 4.963 0.084
Software context 24.696 0.000
Solution proposal 2.300 0.317
Actual output 8.005 0.018
Expected output 11.187 0.004
Steps to reproduce 9.058 0.011
Severity 13.508 0.001
SoftInfo 6.828 0.033
TestEnv 6.527 0.038

5.2.2.4 Influence of Defect Reporting and Automation Tools

In response to Q25 and Q35, more than 50% of the reporters and 38.7% of software developers
indicated that they use defect reporting tools to manage usability defects. Common tools (Q36) were
JIRA, Bugzilla and Redmine. Mantis, Trello, IBM Rational Team Concert, and Visual Studio TFS
were also listed multiple times. For JIRA, Bugzilla and Redmine users - 90% agreed to some extent
that the defect reporting tool offers sufficient flexibility to capture and manage usability defects (Q37),
but free-text feedback revealed considerable negative satisfaction (Q38). The following are
representative: “Most of the defect reporting tool do not have exhaustive options for usability defects”

and “JIRA more customized by client but no specific customizations done for usability”.

In response to Q42, only 16% of reporters used tools to capture additional usability defect data,
while 61% had never used any additional tools. For those who used automated tools, we asked them to
name the tool, using an open-ended question (Q43). Among the tools mentioned were CrazyEgg,
Google Analytics, Microsoft Snipping tool, QuickTest Professional (QTP), WinRunner, Snagit,
LICEcap, Screencast, Jing and Selenium. We asked reporters to indicate whether they agreed that the
manual process used to capture usability defect information is a cause of erroneous or incomplete
defect reports (Q44). Our findings reported a mixed response, with roughly 20% of the reporters
agreeing to some extent, but 22% disagreed and 35.4% neither agreed nor disagreed. As no open-ended
question was provided, it is difficult to justify the satisfaction and feedback responses associated with
those tools. It is notable that a high proportion of respondents either indicated a dissatisfied view, or

did not answer the question at all (23.2%).

102

In a related question, we asked respondents’ opinion if the user experience of using defect
reporting tools might influence the quality of defect reports (Q39). Our findings indicate that nearly

56% believed that user experience is one of the key considerations when reporting usability defects.

To answer RQ3 of the first theme of the survey, a Chi-Square test was performed to examine the
relation between reporters that used automated tools to capture usability defects and usability defect
description attributes. At Bonferroni correction significant level P=0.005, a significant association
exists between used of automated tools and context (¥2, (2, N=63) = 11.443, P< 0.005). Table 5.8

summarizes the statistical results.

Table 5.8. Association between the usage of automated tools and frequency of usability defect
attributes supplied.

Usability defect attributes | 2 (df=2, N=63) | P-value
Title/ summary 5.418 0.067
Assumed cause 1.079 0.583
Software context 11.443 0.003
Solution proposal 4.435 0.109
Actual output 4.199 0.123
Expected output 3.311 0.191
Steps to reproduce 3.482 0.175
Severity 1.920 0.383
SoftInfo 0.536 0.765
TestEnv 5.054 0.080

5.2.2.5 Influence of Defect Discovery Methods

The vast majority of respondents agreed that the amount of information available for reporting usability
defects varied according to how the defects were discovered. In this context, defects found during
usability testing revealed more information as compared to other types of testing — approximately 87%
of respondents agreed that using usability testing information about user’s knowledge, likely
difficulties, actual task scenario and realistic redesign solutions can be obtained from the actual user,
and approximately 73% agreed other usability-related information such as violated heuristics or design

principles, and user response and feelings can be collected (see Figure 5.3).

In an accompanying question (Q12), we asked respondents whether a defect reporting tool should
provide “custom defect report forms” (that is, a defect report form should be designed to map to
different types of defects) — the majority of the respondents (~63.9%) agreed and only 7.5% disagreed

with this idea.

103

Describing complaints from customers or end users
may not correctly describe the actual difficulties faced
by them

In usability testing, more usability-related information
can be reported, such as violated heuristics, design
principles, users response, and feelings as compared to

system testing B Completely disagree

B Somewhat disagree
The presence of actual users during usability testing
can reveal user's knowledge, likely difficulties, actual

task scenario, and realistic redesign solutions

[Neither disagree or agree
B Somewhat agree
: . o B Completely agree
In exploratory testing, a usability defect is typically
grounded in general usability knowledge, rather than
in speculations on users task performance and
response

H No response

i

The difficulties the actual user will encounter as a
consequence of the usability problems cannot be
known during functional testing

0.0% 20.0% 40.0% 60.0% 80.0% 100.0% 120.0%

Figure 5.3. “Influence of defect discovery methods” in reporting usability defects (Q11).

Table 5.9. Association between usability testing and frequency of usability defect attributes supplied.

Usability defect attributes | 2 (df=2, N=82) | P-value
Title/ summary 2.045 0.360
Assumed cause 14.530 0.001
Software context 4.361 0.113
Solution proposal 1.146 0.564
Actual output 6.066 0.048
Expected output 3.245 0.197
Steps to reproduce 6.020 0.049
Severity 5.274 0.072
SoftInfo 4.455 0.108
TestEnv 0.270 0.874

To answer RQ4 of the first theme of the survey, the survey asked questions about how reporters
discover usability defects (i.e., exploratory testing, functional testing, usability testing, beta/ alpha
testing, complaints/ reports from customers, using the product, and other). Participants were allowed to
choose multiple answers. Any response that consists of a usability testing option were converted to
“usability testing” response options, while other responses that did not have usability testing option
were converted to “not using usability” response options. A Chi- Square test was performed to examine
the relation between reporters that conducted usability testing and usability defect description
attributes. Table 5.9 shows that at significant level 0.05 three attributes were significant, however by
applying Bonferroni correction a test would have to have P<0.005 to be significant. Therefore, only the

cause is significant (y2, (2, N=82) = 14.530, p < 0.005).

104

5.3 Threats to Validity

We have considered three types of possible threats that can affect the validity of the survey results,

which we discuss below.

5.3.1 Internal Validity

The main threat to this study is a misunderstanding of the survey context by the respondents. Our goal
was to focus on usability defect reporting instead of general software defect reporting. Respondents
may have answered the questionnaire based on their general defect reporting knowledge and
experience. We addressed this threat by (a) giving three different types of usability defect examples at
the beginning of the survey, and (b) highlighting the usability defects (bold and italic) keyword for

every question, so the respondents were always aware of the survey context.

5.3.2 External Validity

One possible external threat to the validity of the survey outcome is the representativeness of the
respondents. Although 147 valid responses to the survey is a good start, the population size is relatively
small to examine the research questions and answer them in appropriate manner. There could have
been some level of confirmation bias among the participants as not all of them were directly working in
HCI projects, reporting usability defects, or even using formal defect reporting processes and tools. For
example, only a small number of people used automation tools (16%) to report usability defects. As
such, we cannot claim our findings about the question on automation tools to be conclusive. Instead,
our survey may be a plausible start for more detailed empirical studies. Furthermore, the use of a self-
rating technique to identify how participants discovered usability defects did not really reveal the

participant’s experience, approach and skill in usability defect discovery.

5.3.3 Construct Validity

One concern is regarding incorrect measures, i.e. not precisely measuring respondents’ practices in
reporting usability defects. To mitigate this concern, we reused previous surveys and added questions
from both usability and software engineering fields. Another possible threat is that our respondent

recommendation does not entirely reflect the true reality of defect reporting practice. Since our survey

105

is anonymous, some responses we received stated that they have never used defect reporting tools. In

fact, some comments were not at all meaningful.

5.4 Discussion

In this section, we present an overall discussion of our findings regarding the five factors that we
postulated to influence the quality of usability defect reporting. This study has presented initial findings

on how respondents see the listed five factors influencing the descriptions of usability defects.

5.4.1 The Role of the Reporter

In earlier research, it was recognized that the evaluator or software tester plays a significant role in the
outcome of software testing [14], [87]. Since communicating defect information is part of software
testing activities, we argue that the presence of evaluator effect will also influence the quality of defect

information submitted.

In this study, most of the respondents agreed that the reporters’ role matters a great deal in getting
a usability defect fixed. There are possibly two aspects in OSS development that support this factor.
The first aspect lies on the different user capabilities to supply meaningful information. In the context
of OSS development, defect reporters can vary between three groups [4], [88]; 1) software developers
with high technical background and in-depth knowledge of the software, 2) user support who may
posses expertise in using the software, but may have very limited knowledge and technical details of
the software, and 3) end users who only used the software as a “black box”. Among these three groups
of users, responses from our survey revealed that technical users often provided more informative
usability defect information, such as redesign solutions, which is important for software developers to
correct software defects [9]. However, the solutions from these technical users may pose a threat to
less-technical users. For example, the subjective nature of usability means that some technical users
(with no usability background) may be able to personally justify the usability problems. However, the
problem might not be an issue for the wider user base, or in fact, could lead to “fixes” or “shortcuts” or

“simplifications” that negatively affect less-technical users.

The second aspect is related to important and trusted reporter. As Zimmermann et al. [20]
claimed, “well known reporters usually get more consideration than unknown reporters, assuming the

reporter has a pretty good history in bug reporting”. This suggests that when software developers have

106

put their trust in a reporter, they are likely to give them a higher priority. We also found that usability
defects reported by customers typically get reviewed and fixed faster. Possibly, defects raised by
customers have higher business value and fixing their defect reports is a key driver in gaining users’

loyalty.

Based on this finding, we suggest that one criterion for effective defect report writing is to
customize the defect report content according to the reporter background. For example, if the reporter
is an end user with limited access to the software, information such as configuration of the application,
hardware information, product information, event traces, and error logs should be automatically
collected rather than manually asking them to fill in the form. This is because such technical
information is very important for software developers to diagnose the problems but they were the most

problematic information as reported in [21].

5.4.2 The Role of Experience and Knowledge in Usability Defect Reporting

Experience and knowledge have been studied in the context of software engineering, especially in
software testing [80], [84], [85], [89]. Often, experienced software testers could find more software
defects. However, in the context of reporting a defect, previous studies have reported that only a small
group of experienced reporters could produce a good quality of report because of their limited
understanding of what constituted a defect [4]. This suggests that while software testing experience
might be useful for test execution and evaluation, it does not guarantee a production of high quality
defect reports. For this reason, we studied three categories of experience that may influence the
effectiveness of writing usability defect descriptions — experience in usability testing, experience in
general software testing, and experience in reporting usability defects. In the opinion of our
respondents, they strongly believed that these experiences were helpful to provide more organized and
detailed usability defect descriptions. Since our survey does not quantitatively measure to what extent
the quality of the usability defect report is due to the influence of these experiences, it would be unwise
to over-interpret their response. However, this finding raises a question on how testing skills and

expertise would be beneficial to an individual’s usability defect report writing effectiveness.

Concerning the influence of defect reporter’s knowledge, “users’ perspective” and “practical
knowledge” were the most agreed type of knowledge that should be acquired by defect reporters in

producing well-written usability defect descriptions. In the context of reporting usability defects, we

107

argue that understanding the user’s perspective and practical knowledge are interrelated knowledge
elements. While understanding the user’s perspective could be much easier to gain, practical
knowledge, on the other hand, may require direct observation and participation in activities [84] and be
increased by the involvement of professional experience [85]. In this case, we see that to be a good
defect reporter, despite understanding the problems from what the user feels, the defect reporter also
needs to have a deep system knowledge of the features, and in most cases, based on personal
experience as a user of the system [74]. As Itkonen and Lassenius [74] reported, a good understanding
of usage procedures and context allows defect reporters to identify actual usability defects by reflecting
on the system’s behavior with realistic usage tasks and context rather than based on personal

speculation.

As well as practical and domain knowledge, some of our respondents agreed that understanding
usability principles and knowledge are desirable. However, only 17% of respondents had received
usability-related training. For respondents with related training, they seem to understand usability
defects, and tend to provide severity ratings. Despite the value of this type of training it does not seem
to be common. We assume usability-related training is normally conducted in the context of learning
about user experience, building skills on UX best practices, and designing user interface’. The training

seems to provide insufficient focus on writing good defect reports.

Knowledge on defect reporting tools was also considered important in writing good usability
defect reports. As Ko and Chilana [4] reported, lack of knowledge of defect reporting tool and process
may influence the quality of defect reports. We argue that current defect report forms offered by most
defect reporting tools are too generic to support different types of defects that may need different kinds
of information reported. A range of enhancements to existing defect reporting tools is suggested in
[43], [90]-[92] but none of them are specifically designed to consider the reporters’ knowledge and
experience. Novice defect reporters in particular struggle to prepare good usability defect reports [93].
Perhaps, defect report forms could be customized to reflect a reporter’s profile (i.e., non- technical

user, usability expert, customer, etc).

2 https://www.nngroup.com/training/

108

5.4.3 Use of Automation Tools

Many usability engineering tools offer automated data capture and richer kinds of information capture
e.g., instrumenting applications to capture traces and user interaction, recording richer user interaction
and mapping to user task, and capture of video, audio, screenshots, diverse interaction (touch, sketch,
gesture, accelerometer, as well as keyboard and mouse). As shown in Section 5.2.2.4, however, not
many reporters used automation tools to capture usability defect information. Among the tools
mentioned by our respondents to record screenshots, video and audio are Snagit, Screencast, Jing,
LICEcap, and Snipping tool. Since these tools are not tightly integrated into defect reporting workflow,
there is friction in creating useful hypermedia attachments, especially in adding and manipulating
attachments. Perhaps, by combining HCI usability engineering methods and tools with software defect

reporting and management repositories will be of greater value.

Concerning usability defects, existing research on usability defect descriptions has shown the
value of capturing additional usability context. Instead of knowing which particular interface element
causes confusion, it is useful to know how and why users get confused [22]. Therefore, in addition to
screenshots of the problematic interfaces, it might be useful to automatically record facial expression,
body language, gestures, and tone of voice of the users conducting usability tests. Perhaps these kinds
of recording tools could be integrated with defect reporting tools to reduce the defect reporting

workload.

Furthermore, software engineering research on collecting logs and traces [90], [91] and
automatically capturing steps to reproduce [43], [92] does not seem to have a big contribution in the
practical usability testing context. Possibly, this preference for commercially available software may be
attributed to the fact that tools developed by research community tend to be concept demonstrators

with ad-hoc support.

5.4.4 Defect Information Obtained Through Usability Testing

In our survey, about 60% of reporters used usability testing to discover usability defects. The majority
believed that usability information such as user’s knowledge, likely difficulties, actual task scenario,
realistic redesign solutions, violated heuristics, and user’s feelings are more easily obtained via

usability tests. In addition, respondents also agreed that reporters who conducted usability tests are able

109

to explain possible causes better other than traditional testing. Possibly, when reporters observed users
performing certain tasks, they gain direct feedback from the users. Quantitative data such as users’

performance (i.e., time on task and error rates) also can be collected.

However, in OSS development, since no formal usability evaluations are conducted such
information heavily relies on the ability of the users who experienced the problems to precisely
describe them. As stated earlier, the diverse backgrounds of OSS communities make it difficult for the
users to identify and provide valuable information. Therefore, we suggest that additional information
such as impact, assumed caused, and violated heuristics should be explicitly prompted to the reporters.
In this way, reporters will be guided to supply meaningful information even if they are not “usability-

savvy”.

5.5 Summary

Our survey responses indicate that, according to software development practitioners, quality of
usability defect descriptions does strongly depend on the experience and knowledge of reporters, use of
automation tools, and defect discovery methods. However, our finding is preliminary and needs to be
extended. Researchers could explore the effect of implicit usability testing activities, and the type of

knowledge and experience applied when reporting usability defects.

The responses indicate that the experience and knowledge of defect reporters has a great influence
on the information presented in the usability defect descriptions. Reporters who have usability and/ or
HCI knowledge and have software testing experience were likely to provide severity ratings, title/
summary, context, and expected results when describing usability defects. We also found that reporters
who used automated tools were likely to capture software context better than those who used manual
processes. Also, reporters who discover usability defects using usability testing were likely to provide
possible causes other than those who used other testing methods. We consider such influence in

designing our new usability defect report form as discussed in Chapter 7.

110

6 A New Open Source Usability Defect Classification
Taxonomy

In open source software usability defect reporting, little research to date has focused on understanding
just what different categories usability defects belong to. Existing defect repositories, such as Bugzilla,
have used keyword functionality to label usability-related defects. For instance, a defect can be labeled
as uiwanted, useless-Ul, ux-affordance, uc-consistency and ux-efficiency. However, such a high-level
classification does not assist developers to identify the underlying flaws or problems. In fact, lack of
descriptions, examples and limited usability terms make it difficult for non-human computer
interaction evaluators to assign such labels for certain usability defects [50]. Moreover, understanding
software engineering classification models, such as ODC and RCA, requires users to understand
usability problems from the context of software development and the perspective of software
developers. Since usability defects are subjective in nature, characterizing usability defects using
predefined attributes does not really reveal the users’ task difficulties [94]. These limitations
encouraged us to revise the existing usability defect classification models. There are several reasons for

categorizing usability defects:

1) to more clearly disclose the probable causes of the defect;
2) to highlight the impact of usability defects on the task outcome;
3) to treat usability defect priority the same as the other defects; and

4) to quantitatively track usability defects over time.

This chapter answers our fourth thesis research question “RQ4 - How should open source usability
defect reports be classified so that they can be effectively reported?” Based on our analysis of open
source usability defect reports, we revised the existing usability defect classification model [12], [76],
[95] to incorporate software engineering and usability engineering needs. We also aimed to collect
feedback on a new proposed open source usability defect classification model by requesting software

development practitioners to classify a sample of usability defects.

6.1 Existing Usability Defect Classification Schemes

In the classification schemes based on a usability engineering perspective, usability defects are often

categorized according to a single perspective. Earlier efforts to classify usability defects were done by

111

Nielsen and Molich [96]. They developed nine heuristics to assist usability evaluators to assess the
usability of a user interface. Since Nielsen’s heuristics only offer a high-level classification, there are

some usability problems that cannot be mapped to any of these heuristics [12].

To overcome this limitation, Keenan et al. [12] developed the UPT that classifies usability defects
into artifact and task components. The artifact component consists of visualness, language, and
manipulation categories, while the task component consists of task mapping and task facilitation
categories. Each category is composed of multi-level subcategories. For example, language consists of
two-level sub-categories; the first level consists of naming/ labeling, and other wording, while in the
second level, other wording if further categorized into feedback messages, error messages, other
system message, on screen text, and user-requested information/ results. The depth of classification
along the components and categories may result in one of three outcomes; full classification, partial

classification, and null classification.

This approach to classification, however, relies on a high quality defect description, which as our
earlier chapters demonstrate, are rarely present in open source usability defect reports. Our
observations are that many open source usability defect reports have defect descriptions that contain a
lack of contextual information, particularly on the user-task. As a result, when using UPT to classify
usability defects, we have to make many assumptions and a self-judgment about the task performed by
the users that lead to the problems. We believe UPT is useful for usability evaluators to assess the
usability defects during usability evaluation with the presence of users, but not to classify defects by

just reviewing the usability defect description.

Andre et al. [3] have expanded the UPT to include other usability engineering support methods and
tools. By adapting and extending Norman’s [97] theory of action model, they developed UAF that used
different interaction styles. For example, the high-level planning and translation phase contains all
cognitive actions for users to understand the user work goals, task and intentions, and how to perform
them with physical actions. The physical action phase is about executing tasks by manipulating user
interface objects, while the assessment phase includes user feedback and the user’s ability to assess the
effectiveness of physical actions outcome. Even if the UAF was viewed as a reliable classification
scheme that supports dissimilarity of defect descriptions for the same underlying design flaw, the
complexity in determining which phase of the interaction the problem occurred is a real challenge for

novice evaluators.

112

Concerning the limitation of single perspective classification schemes, many researchers have
started to explore usability defect classification models from multiple perspectives. One of the most
prominent approaches is the cause-effect model. For example, Khajouei et al. [98] argued that the lack
of information on the effects of usability defects in UAF have caused a long discussion to reshape the
way developers think about usability. They augmented the UAF to include Nielsen’s severity
classification and the potential impact of usability defects on the task outcome, in order to provide

necessary information for software developers to understand and prioritize problems.

Vilbergsdottir et al. [99] have developed a Classification of Usability Problem (CUP) framework
that consists of two-way feedback; Pre-CUP that describes how usability defects are found, and Post-
CUP that describes how usability defects are fixed. In Pre-CUP usability evaluators use nine attributes
(Defect identifier, frequency, trigger, context, description, defect removal activity, impact, failure
qualifier and expected phase) to describe usability defects in details. Once the usability defects have
been fixed, the developers record four attributes (actual phase, types of fault removed, cause and error

prevention technique) in Post-CUP.

Geng et al. [95] claimed that CUP can capture important usability defect information and provide
feedback for usability improvement, but that CUP could not be used to analyze the effect on users and
task performance. Considering the importance of the cause — effect relationship, they have customized
the ODC and UPT. This usability-ODC framework consists of three causal attributes (artifact, task, and

trigger) and four effects attributes (learning, performing, perception, and severity).

In relation to open source defect reporting, we found that some of these attributes are not relevant
for open source communities that have a very low involvement in usability experts. For example,
technical information about defect removal activity, failure qualifier, expected phase, and frequency
are difficult to obtain, particularly for users with limited human-computer interaction knowledge. In
fact, without formal usability evaluation in open source projects, the trigger attribute as suggested in
the usability-ODC framework is not possible to justify. Additionally, the use of pre-defined values for

some of the attributes may introduce selection bias and users are likely to select incorrect values.

Other usability problem classifications use a combination of models to support practical use of
classification in different software development context [94]. This model-based framework consists of

three perspectives, in which each perspective is facilitated by the use of models: artifact-users-tasks-

113

organization-situation model for Context of Use, abstraction hierarchy model for Design Knowledge
and function-behavior-structure model for Design Activities- in which the usability problem needs to
be analyzed through the collective consideration of the three models. The Context of Use perspective is
to understand the cause of the problem, either related to design factors (violated user interface design
guidelines) or non-design factors (user preferences). If a usability problem is judged as “design
factors”, it should be further analyzed from the Design Knowledge and Design Activities perspectives.
Such a reference framework would allow usability evaluators to develop a specific classification
scheme for a particular context. However, a lesser degree of involvement of usability evaluators in
open source projects makes it quite impossible to adopt such a comprehensive framework. In fact,
contributors who participated voluntarily in open source projects prefer to work more on the main

functionality of a certain application rather than focusing on user-centric design [7].

6.2 Rationale for Revising Existing Usability Defect Classification

Generally, software problems are often classified as a defect when software is not behaving to its
expected purpose, or enhancement when a feature is desired but not present. From a software
engineering perspective, cause-effect classifications provide a deeper understanding of a software
problem. To the best of our knowledge, only one usability cause-effect classification currently exists.
Geng’s classification [95], in our view, is not appropriate to classify open source usability defects with
limited information. The trigger component in the causal attributes can be limited because in the
absence of formal usability evaluation in OSS development, it is quite impossible to identify the

usability evaluation methods that trigger the usability defects.

Even if usability evaluations were to be conducted, OSS projects would still lack the effective
mechanism to formally conduct the evaluations, for two reasons. First, many of the volunteers who
contribute to OSS development are developers, who might have limited knowledge and skills required
for usability evaluation. Second, in order to formally conduct usability evaluations, extra commitment
from contributors is necessary, but volunteers may not be able to spend more time on this. Considering
these limitations, we revised Geng’s classification [95] to better suit an OSS environment. The

following paragraph summarizes the rationale for our revision.

Defect category - In software development, quantitative measurements such as the amount of

memory used, the time to load application or response time is very crucial and often gets immediate

114

attention from software developers, as opposed to subjective usability issues that cannot be
scientifically quantified and measured. To address this issue, common open source defect repositories
such as Bugzilla have implemented keyword functionality to address usability heuristics terms, such as
consistency, jargon, and feedback so that the concept of user interface and the underlying
implementation could be described effectively. Each usability issue is tagged with the specific usability
heuristic being violated. In this way, software developers with limited usability and interface design
knowledge could learn about the heuristics and understand how the same types of defects could be

resolved.

However, current UX principles being used by Bugzilla’s keyword functionality are too broad
[100]. Software developers may be able to know the violated usability principles but they might not be
able to relate the common characteristics for the set of problems to reveal the root cause and resolution.
For example, using the term POSTDATA in a dialog is ux-jargon. This high-level classification is
unable to facilitate the identification of specific problems on specific software context and provide
quick summaries of the problematic interface components or defective task execution. Thus, by
adopting a usability classification scheme such as UPT, software developers will be enabled to analyze
usability defects more easily. Managers will be enabled to monitor the trends, patterns, and occurrence

of certain types of usability defects for tracking improvements.

Effect — Previous studies reported that usability defects are treated at a lower priority compared to
functional defects [23]. In the existing ODC classification, severity is used to measure the degree of the
defect impact. However, due to unclear usability category definitions, many usability defects end up
with low severity ratings [23]. From our analysis of open source defect reports discussed in Chapter 4,
we think unclear and missing descriptions about user difficulty caused by the usability defect is one of
the reasons why software developers do not prioritize the importance of fixing many reported usability
defects. The fact that only a small fraction of usability defect reports contain impact information
reveals the lack of contextual information to convey information to software developers about the user
difficulty and how it impacts user emotion from the perspective of usability engineering. However, the
use of only textual descriptions to capture user difficulty could be a disadvantage as users are likely to
provide lengthy explanations that may be unhelpful to many software developers. One way to reduce

this limitation is to create a set of predefined impact attributes so that the impact can be objectively

115

measured. For example, we can use rating scale to measure emotion, while task difficulty could be

selected from a predefined set of attributes.

Causal — Since no formal usability evaluation is usually conducted in OSS projects, usability
problem triggers cannot be identified. In OSS projects, usability defects are most often reported from
online user feedback facilities and results of developer black box testing. Considering this limitation,
instead of looking at trigger attributes we study the failure qualifier of the problem. This information
could help software developers to understand the reason why a user considers the problem as a valid

usability defect.

6.3 Our New Revised Open Source Usability Defect Classification Taxonomy

We began to construct our new usability classification model by reviewing usability defect
classification models in the literature, in particular UPT [12], ODC [77], and usability-ODC framework
[95]. While we wanted our usability defect classification to be in line with software engineering
principles, we also wanted to develop a model that is simple and easy to use by users (the users can be,
for example, software developers, testers, customer support, or end users) with limited usability

knowledge.

In contrast to the previous classifications [12], [95], our usability defect classification model is
designed to address usability defects reported in open source defects without a formal usability
evaluation method being used. Thus, observable data such as time-on-task, number and types of help
sought, frequency of expressed frustration cannot be obtained from the reporters’ self-reporting defects.
In fact, in open source usability defect reports, we could not identify testing techniques employed by
the users that triggered the usability defect. For these reasons, we revised the previous classification

models to only consider information normally available in the open source defect reports.

We adapted the original ODC framework to better understand usability defect causes and effects,
and integrated it with usability practices. Figure 6.1 illustrates the high-level cause-effect usability
defect classification model. We collected 377 usability defects from Mozilla Thunderbird, Firefox for
Android, and Eclipse Platform project. We began by randomly reading a few samples of defect reports
in detail, trying to understand the defect content structure, and to construct a list of potential metrics to

be used for ODC attributes (cause and effect attributes). Most of the defect descriptions that we read

116

contained significant information about defect reproduction, actual results (i.e., what is wrong with the

usability defects), expected results (i.e., what should be fixed) and user difficulty expressions.

Usability Defect Classification Model

Cause Attributes
Usability Defect Categories Failure Qualifier
’ Interface ‘ ’ Wrong ‘ ’ Missing ‘
. Incongruent mental Irrel "
Interaction model rEelevan
’ Better way ‘ ’ Overlooked ‘

fff

Effect Attributes

User Difficulty

’ Emotion ‘

w]

Figure 6.1. Our revised usability cause- effect defect classification model [95].

Based on this common information, we included usability defect categories and failure qualifier as
ODC-cause attributes and user difficulty as ODC-effect attribute to our first draft of classification
model. The rationale of using failure qualifier and user difficulty is to help developers understand the

validity of the problem and help them to prioritize defect fix accordingly.

We started to classify one project at a time. We used user-written statement criteria to signal
usability defect categories, failure qualifier, and user difficulty attributes. To analyze the defect
descriptions into the three attributes, we conducted a card sort. Card sorting is a method to generate
information grouping of specific data items [101]. In our case, we applied both closed and open card
sorts. In a closed card sort a set of pre-defined categories were used to organize and map the defect
descriptions into usability defect categories [12], [95], and failure qualifier attributes [102]. While in an
open card sort no predefined groups were used, instead the groups were emerged and evolved to

identify common themes for user difficulty attributes.

Once we had identified more global definitions of categories and subcategories, we then proceeded
to more rigorously classify the other two projects, and iteratively refined these categories and their

definitions. Finally, when the model was established, the other three supervisors read half of the sample

117

independently, applying the final classification model, and consulted the category definitions, and

terminology until a consensus was reached. We assessed agreement informally throughout.

The remainder of this section provides an overview of the three attributes, including the changes

and addition to the original UPT.

6.3.1 Cause Attribute

This attribute is derived from ODC. In the original ODC, cause attributes are measured using defect
types and trigger. Defect type gives information about type of defects uncovered by different testing
techniques, while trigger is a condition that allows a defect to be discovered. However, in our research
we used defect types to group usability defects that share common characteristics, and trigger was used
to understand the underlying usability design flaws. The detailed description of defect types and trigger

are given below.

Usability Defect Categories

To classify usability defect categories, we used closed card sort. We began by classifying the written
usability defect description to a set of predefined usability defect categories as in [12], [95]. Since we
experienced some difficulties — lack of specificity and insufficient definition when using [12], [95], and
lack of information in defect reports during our preliminary analysis, we revised the original UPT by
only categorizing the defect types into two categories — interface related defects and interaction related
defects [76]. Interface defects refer to defects affecting the structure and behavior of graphical user
interface (GUI) aspects that affect the overall look and feel of the application. Interaction defects refer
to defects affecting the interaction process when a user interacts with a GUI. To reflect these two

categories, we reconstructed the original UPT’s primary and subcategories as follow:

- The original UPT category “visualness” is replaced by “GUI structure and aesthetics” as the
primary category, the “language” category is removed and all the subcategories are assigned
to new category “information presentation”, and the “manipulation” category is moved to
interaction defects.

- We extracted three primary categories of interface defects - GUI structure and aesthetics,
information presentation, and audibleness. GUI structure and aesthetics are about feel and

display given by interface, such as colors harmonious, object affordance and layout

118

coherence. We only retained two subcategories of the original UPT (object appearance and
object layout), replaced “object movement” subcategories with “object (screen) state”, and
moved two subcategories “presentation of information/ results” and “non-message feedback”
to “information presentation” primary category.

- The primary category “information presentation” is about information relevancy and
credibility of data, feedback message, on screen text, and results presented in the user
interface. It is divided hierarchically into six subcategories. We adapted “data presentation”
subcategories in [76], reused ‘“non-message feedback”, “error, notification and feedback
message” in UPT, and added two subcategories “on screen text” and “menu structure”.

- The primary category “audibleness” was adapted from [95] to accommodate the audio, speech
and voice capability. We replaced the subcategories “prompt” with “audio cues”.

- For interaction defects, we extracted three primary categories — manipulation, task execution,
and functionality. In contrast to the original UPT, the primary category “task mapping” and
“task facilitation” are refined.

- Manipulation is concerned with the user’s ability to understand and manipulate user interface
objects [12]. We adapted four subcategories as in ODC-usability framework — keyboard press,
mouse click, finger touch, and voice control. We added three subcategories; scrolling
mechanism, drag and drop, and zooming.

- Task execution focuses on the outcome of certain tasks. We adapted three subcategories as in
the fault model [76] — action, reversibility, and feedback. Referring to the original UPT, we
considered the subcategories “interaction”, “navigation”, and “task/function automation” as
“action” subcategories. The subcategory “alternatives” was replaced by “reversibility”, and
the two subcategories “user error tolerance” and “keeping the user on track” were combined in
“system task feedback” subcategory.

- Functionality refers to any problem due to the capabilities provided by the product. We reused

functionality definitions from [103].

The resulting model is illustrated in detail in Figure 6.2, and a definition of each category is listed

in Table 6.1. The detail categories, subcategories, and example defects can be found in Appendix C.

119

H' Object (screen) appearance |

>I Object (screen) layout |

—>| Object (screen) state |
—>| Data presentation |

Object (screen) naming and
labeling

Information H' Non-message feedback |
presentation

A4
=

v

Error, notification and
feedback message

H' On screen text and results
_>| Menu structure

|
|
—>| Voice and sound |
|
|

Interface

\ 4

v

Audibleness >i Audio cues

_>| Text and feedback in speech

Defect H' Keyboard press

|

H' Mouse click |

H' Finger touch |

g it —>| Voice control |
|

|

|

Hi Scrolling mechanism
H' Drag and drop
H' Zooming

—>| Action |
——>{ Task executi F——>{ Reversibility |
H' System Task Feedback |

Interaction

5 F v l":y
Human emotion
User Difficulty
L
“| Task
> Wrong
>| Missing
Classification adaptation:
. . Incongruent .
Failure Qualifier 2| mental model |:| Adapted from Lelli et al., 2015
|:| Adapted from Keenan, 1999
>| Irrelevant
|:| Adapted from Geng et al., 2014
~ |:| Adapted from Harkke et al., 2015
2| Better way
[[] Adapted from Vilbergsdottir et al., 2006
>| Overlooked |:| Our proposed categories

Figure 6.2. Hierarchical structure of defect types, effect and failure qualifier. The colors indicate the

different sources we adapted in our classification model.

120

Table 6.1. Definition of key defect categories.

Defect Definition
Interface Any unpleasant graphical user interface aspects that affect the overall look and feel of the application.
Visualness Any difficulty encountered by the user when they view objects (icon, menu item, scroll bar, button,

favicon), symbols, and images present in (or missing) the user interface.

Object (screen) appearance

Refers to how individual objects look, sound, or appear to other senses. These problems involve
object affordance such as the use of colors, size, and animation.

Object (screen) layout

Refers to layout coherence and how user interface objects are laid out on the screen. These problems
involve spatial organization, such as the use of balance and symmetry, the alignment and spacing of
elements, the grouping of related elements, the placement of screen objects, and consistent use of the
GUI elements across applications.

Object (screen) state

Any difficulty encountered by the user when they cannot recognize or are unclear about the effect of
object state change, including the change to its behavior and appearance.

Information presentation

Any difficulty encountered by the user when they view, read, and interpret the information or data
presented in the user interface.

Data presentation

Refers to how data is presented, structured, and controlled.

Object (screen) naming and
labeling

Any difficulty in language such as words/ terminology used as names on objects (such as buttons,
title bars, field labels) and screens [12]. These problems also include inconsistencies of naming and
labeling standard.

Non-message feedback

Any difficulty that is due to distracting, annoying, and confusing feedback [12], and insignificant use
of visual cues that appears while using user interface.

Error, notification and

feedback message

Any difficulty in language such as words used in phrases and sentences in error, notification, and
feedback message. These problems also include the ability of users to understand and interpret the

meaning of information presented in the message.

On screen text and results

Refers to completeness, accuracy and credibility of information in on screen text/ instructions, online

help and tutorials, and results of user queries.

Menu structure

Refers to organization of menu, and grouping of related options.

Audibleness

Any unpleasant audio like sound management and sound alerts.

Voice and sound

Refers to any problem related to audio cues at the interface like giving distracting, disturbing, and
annoying sounds, or missing sound alerts when the message comes to the screen.

Text and feedback in speech

Refers to any problem when there is difficulty in understanding speech signs and translating these to
text.

Interaction

Any difficulty encountered by the user when they interact with the application

Manipulation Any defects that occur when the user has trouble with some aspects of manipulating objects on the
user interface
Keyboard press Any difficulty encountered by the users when they use keyboard to interact with the user interface.

These problems include the problematic use of access keys as a shortcut to issue menu commands.

Mouse click

Any difficulty that involves the user’s ability to use mouse and its buttons to directly manipulate
objects (speed of cursor tracking triple clicking, depressing multiple mouse buttons simultaneously)
[12]

Finger touch

Any difficulty encountered by the users when they touch areas of the screen to move the pointer,
press button, and manipulate image.

Voice control

Any difficulty encountered by the users when they use voice signals to activate user interface or
invoke certain tasks.

Scrolling mechanism

Any difficulty encountered by the users when they use vertical scrollbars to move data up and down,
and horizontal scrollbars to move the data left and right within the view.

Drag and drop Any difficulty encountered by the users when they select and drag an object, and drop it into another
location in the interface.
Zooming Any difficulty to change gradual image scaling operation.

Task execution

Any defects encountered by the users that inhibit a user from completing an intended action.

Action

Any defects that occur as a result of executing a task.

Reversibility

Refers to the ability of the application to allow user to explore the interface and make mistake, and
roll back the action such as multi-level undo operation, and the ability to cancel long-running actions.

System Task Feedback

Refers to the ability of the application to always keep users informed about what is going on for
every user event, such as prompt a warning, status, and error message.

Functionality

Any problem that is due to the facilities provided by the product to user.

121

Trigger

Another aspect of cause attributes is to help software developers understand the root causes that trigger
dissatisfaction of the software product from the viewpoint of the users. Since in OSS projects, usability
is not formally evaluated with the presence of actual users, it is quite difficult to explain to software
developers why certain aspects of the software product become an issue for some users. With this in
mind, we believe an effective classification model is the one that may explain why users are
experiencing problems. In the ODC model [77], trigger measures the nature of testing being conducted
in order to highlight the kind of testing techniques necessary to discover defects. However, in open
source projects, such information is not available. Therefore, when analyzing trigger attributes from

defect description we used failure qualifier from ODC as a set of predefined metric.

In the usability evaluation context, the failure qualifier attribute is used to capture more
information about usability defects through verbal communication with the test participant or recording
user test session [99]. For instance, the usability evaluator can ask the test participants why they did not
notice the presence of menu or some elements on the user interface (missing). On the contrary, we
interpret one failure qualifier just based on a statement written in the defect report. As such, we have
refined the definitions of the failure qualifier attributes to suit our case as listed in Table 6.2. We
assume that this ODC failure qualifier would be a good ground on which to base users’ justification on

how they discover the usability defects.

Table 6.2. Failure Qualifier — sample phrases from usability defect reports [99].

Qualifier Definition Representative quotes from sample

Wrong When the reporter notices that something | 1. The New project wizard has an icon based on the closed
has gone wrong while performing a task or project icon, which is not how it would appear to the user.
some elements on the user interface are | 2. On reload, the lock icon should immediately disappear
violating usability principles and when the old document has finally gone away, not when
standards. reload has just been tapped upon

Missing When the reporter fails to find something | 1. When initiating a WebRTC call, Firefox for Android
in the user interface that he/ she expected currently doesn't pop up a permission request to use the
to be present, or the results of performing camera/microphone. We need this to pref on.

certain task did not meet his/ her

expectations.

Irrelevant When the wuser interface contains | 1. This is needless functionality and annoying....)
information objects, steps to accomplish | 2. It is pointless to show the button that lists all your tabs
task or functionality that do not contribute when you only have one open. In fact, it really is pointless
to system services and are unnecessary to show them unless you have more tabs than your Window

can hold.

Better way When the reporter suggests that something | 1. It’s nice to change the dialog resizable and scrollable in the

in the user interface could have been done tabs' contents for temporarily (The Account Settings is so).

differently, or suggests a different way of | 2. I would prefer that if someone wants to re-populate the
doing a certain task dialog text from selected text, they simply type *F again.

122

Table 6.2. Failure Qualifier — Sample phrases from usability defect reports [103] (Continue)

Overlooked When the reporter overlooks an entity in | 1. It happened to me a couple of times that I thought that I

the user interface, or does not know how closed all editors by mistake
to perform a certain task 2. Didn’t know how to change it back or that it's even
possible
Incongruent When the user interface is unclear because | 1. I haven't found a official DL link for Royale but the one I
mental model | it does not match the reporter's mental now used looks most "official".
model, previous experiences, or they | 2. I expected to be able to enter my username and my
notice inconsistencies with other similar password as usual, not having the keyboard overlapping
applications text input fields.

6.3.2 Effect Attribute

In many defect classification models [77], [95], [102] severity rating is commonly used as a metric to
measure the potential effect of usability defects on the intended user. Since usability defects severity
tend to be unfairly treated by software developers [23], we argue that defect severity is not a reliable

metric for analyzing usability defects for software quality improvement.

In Geng’s classification [95], the effect attribute is studied from three components — problem in
learning, problem in performing given tasks, and user perception. Each of these components constitutes
more specific values such as that problem in learning has three values - learnability, memorability, and
retention over time, and performing has two values - effectiveness and efficiency. These values are
measured by examining time, effort, success rate and level of happiness showed by users when
performing assigned tasks during usability testing. Since usability defects in OSS projects are not
directly observable from usability test data, such metrics cannot be used in our model. In fact, in
software development we recognize that the impact the defect has on the user and likelihood of
occurrence is important to prioritize defect fixes, but such information is rarely present in defect
reports, or if it is reported, the information is not clear. For this reason, we examined the effect of

usability defects as the user difficulty, in terms of human emotion and task performance.

In this research, we examined statements and phrases of defect reports to decide which statements
constitute impact on human emotion and impact on task performance. Using open card sort, the main
researcher reviewed statements and generated labels of the emotion and task difficulty, then merged
and sorted the lists into meaningful descriptive labels, and finally, created a set of codes. From our
analysis, we interpreted impact of task performance based of the software quality attributes, such as
accessibility, understandability, noticeability, loss of data, complexity, and visibility. For human

emotion such as confusion, frustration, and annoyance, our interpretation was based on the terms such

123

as “distract

CLINNT3

phrases such as [104]:

¢ “Iam confused about ...”

* “I’mnotsure...”

e “Idon’tknow ...

il

* “Ican’tfigure out...”

* “Tam having a problem ...”

e “Tassume...”

e “Howdol...”

, “annoy”, “frustrate”. If such terms are not presented in the defect reports, we analyzed the

We started the examination with the Mozilla Thunderbird dataset. Once the Mozilla Thunderbird

dataset had been classified, the process was repeated with Firefox for Android and Eclipse Platform

datasets. If there were inconsistencies, the draft codes were modified and refined again. Finally, the

main researcher and supervisors reviewed and discussed the appropriateness of the resulting codes and

definitions. Overall, when reporting a particular usability defect, reporters tended to address a single

difficulty at a time, and reporters provided little evidence to substantiate their difficulties claim. Table

6.3 and Table 6.4 define each of these user difficulty attributes, and lists sample phrases from open

source defect reports.

Table 6.3. Effect on human emotion and quotes for each. Bold indicates emotion that affected human

emotion.
Emotion Definition Representative quotes from sample
Distraction | Anything that draws a user’s attention away | 1. The user is confronted with too many coolitems and their
from their current focus or desired focus of "grab bars". It is distracting, and it is unlikely that this
the user interface or doing a certain task granularity of repositioning is required.
2. The lock animation that I'm currently seeing is distracting.
It makes me take a second look at the screen to find out why
something has just moved.
Confusion | The feeling of being unclear about the | 1. This leaves the novice user in an unexpected state.
software function 2. I find the navigation arrows in the toolbar confusing.
Annoyance | Frustration or hardship induced by using the | 1. I find it frustrating to navigate to the file when I know the
user interface or software functionality that name and just want it opened.
leads to irritation, frustration and anger 2. Some people (me) find vibrate on every single click to be

quite a nuisance.

124

Table 6.4. Effect on task performance and quotes for each. Bold indicates software qualities that
affected task performance.

Task Definition Representative quotes from sample

Complexity The difficulties about understanding and using | 1. I was able to copy the file on to my windows
the software product and its components, in machine, edit it using Thunderbird on that
which the user has to perform irrelevant actions machine, and then re-copy it to the EeePC, but
or needs to perform extra steps to accomplish a that should not be necessary.
task 2. It generally takes about 2-4 taps to figure out

where the checkbox tap target is at ...

Visibility The poor capability of user interface or product | 1. The cvs and resource icons are hard to
components to keep users informed about what is distinguish as well.
going on, through appropriate feedback, obvious | 2. active editor (tab) hard to detect (see
prompts and cues within reasonable time screenshot)

Performance The effect on task execution such as peed | 1. Clicking on the 'Plug-in Details' or 'Configuration
efficiency, availability, accuracy, throughput, Details' buttons in the About dialog are time-
response time, recovery time, resource usage consuming operations when the product in

question has a large number of plug-ins

2. When a file type is selected the dialog is frozen
for a very long time and no busy cursor is
shown.

Accessibility The difficulties the user has to access, use and | 1. Therefore, I can't do any searches
benefit from certain functions in the user | 2. . thus a new user will not be able to click
interface. The degree to which a product, device, anything on that page at all.
service, or environment is available to as many
people as possible

Loss of data An unexpected error made by the user when | 1. No thanks for making me lose everything, my
performing a task, in which information is tabs, bookmarks etc by adding an extra search
destroyed by failures, or neglect in storage, app, which I do not need.
transmission, or processing. 2. This will cause data loss and perceived

instability in the IDE

Understandability | The difficulties about understanding the user | 1. If you close all the views in the perspective, it
interface metaphors and product functionality remains open, but looks very bare, and it's not

clear what the user can do next.
2. ... The new user has no idea what a perspective

is.

6.4 Evaluation

We wanted to evaluate our new usability defect classification taxonomy with reporters and developers.

We used a web-based survey as a tool to evaluate our proposed revision of usability defect

classification. The following subsections describe evaluator selection, problem selection, and protocol

in conducting our evaluation.

6.4.1

Evaluator Selection

Our evaluators were recruited from the researchers’ industrial contacts. The evaluators had varying

levels of experience in industry and academic software development environments. The evaluators do

not necessarily require HCI expertise, since the aim of the OSUDC taxonomy evaluation targets the

understandability of the model rather than the utility of the classification. Participation was voluntary

125

and evaluators were allowed to discontinue participation at any time during the research activity. The
consent to participate in the survey was implied by the return of the anonymous questionnaire.
However, a precise response rate cannot be determined, as the total number of the evaluators who

received the invitation is unknown.

We obtained approval from the Swinburne University of Technology Human Research Ethics
Committee (SUHREC) prior conducting this survey (Approval number: SHR Project 2016/325). The

details instruments used for the evaluation can be found in Appendix F.

6.4.2 Problem Selection

We randomly selected ten usability defects from the 377 usability defects that had been examined

during the analysis phase prior to building the revised open source usability defect classification.

6.4.3 Protocol

We evaluated the classification model using web-based survey, Opinio tool. We conducted self-
administered evaluation survey, as this kind of survey approach offers greater flexibility to evaluators.
Evaluators can participate at locations and times of their choosing. The survey was opened from

February until May 2017. Each evaluator was given the following material:

* OSUDC taxonomy document — to understand how the taxonomy works, sample problem
classifications, and glossary of terms.

* Link to the survey — the survey has three sections. In the first section, evaluators are required
to fill out a small survey questionnaire about personal background. The pre-questionnaire
contains a total of six questions. In the second section, evaluators are given ten usability
defects to be analyzed according to the OSUDC taxonomy. Each usability defect contains a
total of four to six questions depending on a evaluator’s answer (s). In the third section, the
evaluator was asked to give feedback based on their experience of using the proposed
taxonomy.

* Consent Information Statement — to indicate evaluator consent to participate in the study.

126

The evaluators were not monitored and were allowed to classify the problems in any order,
revisiting any problems they wished. There was no time limit imposed on the evaluators. See Appendix

D for complete evaluation questions.

6.5 Results

In our survey, we only focused on the inter-rater agreement between evaluators when classifying
usability defects. Since our target users are from OSS communities that have varying level of
knowledge in HCI and usability-related matter, this research is aims to produce a simple taxonomy that
could be understood by both technical and non-technical users when they first read the OSUDC
documents. Based on our small-scale evaluation strategy, the findings discussed in the next section
established principles of classifying usability in OSS projects and subsequently portrayed an early

design element of the required OSS defect reports.

6.5.1 Evaluator Demographic Information

A total of twelve evaluators from 26 to 55 years of age, participated in the evaluation of OSUDC
taxonomy. The majority of the evaluators were female (66.7%). As shown in Table 6.5, most of the
evaluators are academic researchers and software developers, accounting for 41.7% to 50%. Almost
92% of evaluators had not received any training or certification related to usability evaluation/ HCI/
UX. As Table 6.6 indicates, the majority of evaluators had limited familiarity in handling usability
defects. In terms of experience in using a defect classification scheme, RCA was the most commonly

used classification scheme among the evaluators (see Table 6.7).

Table 6.5. Demographic information of the evaluators.

Job responsibility Evaluators
Academic researcher 50.0%
Software developer with experience in both user interface and software development 41.7%
End user with HCI/ UX/ usability knowledge 8.3%

Table 6.6. Evaluators’ familiarity with usability defects.

Extremely familiar 0.0%
Moderately familiar 8.3%
Somewhat familiar 41.7%
Slightly familiar 41.7%
Not at all familiar 8.3%

127

Table 6.7. Experience in using defect classification scheme.

Orthogonal Defect Classification (ODC) 8.3%
Root Cause Analysis (RCA) 25.0%
Hewlett Packard Defect Classification Scheme (HP-DCS) | 0.0%
Classification of Usability Problems (CUP) 0.0%
Usability Problem Taxonomy (UPT) 0.0%
Usability Action Framework (UAF) 16.7%
Other 8.3%

6.5.2 Reliability Analysis

To measure the reliability of evaluators’ agreement to classify usability defect reports using our revised
usability problem taxonomy, we used Fleiss’ kappa as reference [105]. The Fleiss’ kappa is an
extension of Cohen’s kappa to measure inter-rater agreement between three or more evaluators. We
used the Real Statistics Data Analysis Tool® installed in an Excel spreadsheet to calculate the Fleiss’

kappa values.

For the classification of the defect category component, kappa was computed at the primary
category level only. Since the number of observations within each primary category was varied,
analysis at the subcategory level would have invalidated the kappa values. The Fleiss’ kappa results for
each OSUDC component are reported in Table 6.8. According to [106], Cohen suggested the Kappa
result could be interpreted as follows: values <= 0 indicating no agreement and 0.01-0.20 as none to
slight, 0.21-0.40 as fair, 0.41 — 0.60 as moderate, 0.61-0.80 as substantial, and 0.81 — 1.00 as almost

perfect agreement.

As we can see in Table 6.8, the evaluators’ agreement for the defect category component is the
highest, and it is the lowest for the failure qualifier component. Possibly, too many values defined for
failure qualifier and task difficulty have influenced our results, as addressed in [102]. Since we only
measured the agreement of defect types at the primary category, which has only three possible nominal
values (interface, interaction, and both), it is much easier for the evaluators to understand and learn the
defect types component rather than the eight and seven nominal values of the task difficulty and failure

qualifier, respectively.

To assess the level of agreement between evaluators classifying defect types at the subcategory level,
percent agreement was used instead of kappa statistics. The percent agreement for each usability defect
report studied was computed using cell matrix computation [107]. As shown in

3 http://www.real-statistics.com/reliability/fleiss-kappa/

128

Table 6.9, the twelve evaluators were labeled with E1 until E12, and the six usability defect

subcategories were labeled as G - GUI structure and aesthetics, I — information presentation, A —

audibleness, M — manipulation, T — task execution, and F- functionality. The cells in the matrix is set to

1 if the evaluator assesses the usability defect is belongs to that particular defect types; otherwise it is

set to 0. Then, the percent agreement for each usability defect report was computed by calculating the

percentage agreement for each row and average the rows. In Table 6.9, it can be seen 7 out of 10

usability defect reports received high inter-rater reliability of more than 80%.

Table 6.8. Reliability measures for 12 raters in open source usability problem taxonomy evaluation.

Reliability measure

Defect category

User difficulty

Failure qualifier

Fleiss’ kappa

0.240

0.130

0.114

Table 6.9. Percent agreement across twelve evaluators classifying defect types component.

Evaluators
Report Defect %
El E2 E3 E4 E5 E6 E7 E8 E9 EI0O EII EI2
subcategories Agreement
1 G 1 1 1 1 1 1 1 1 0 1 1 1 0.92
I 0 0 0 0 0 0 0 0 1 0 0 0 0.92
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 1 0 0 0 0 0 0 0 1 0 0 0 0.83
T 0 0 0 0 0 0 0 1 0 1 0 0 0.83
F 0 0 0 0 0 0 0 0 0 0 0 0 1.00
Inter-rater Reliability 0.92
2 G 1 1 1 0 0 0 0 1 1 0 0 1 0.50
I 0 0 0 0 1 0 0 0 0 1 1 0 0.75
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 0 0 0 1 0 1 0 0 0 1 1 1 0.58
T 0 0 0 0 0 0 1 0 1 0 0 0 0.83
F 0 0 0 0 0 0 0 0 0 0 0 0 1.00
Inter-rater Reliability 0.78
3 G 1 0 1 1 0 0 0 0 0 0 0 1 0.67
1 0 0 0 0 1 1 1 1 1 1 0 0 0.50
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 0 0 0 0 0 0 0 0 0 0 0 0 1.00
T 0 1 0 0 0 1 1 0 0 0 0 0 0.75
F 0 0 0 1 0 0 0 0 0 1 1 0 0.75
Inter-rater Reliability 0.78
4 G 0 0 0 0 0 1 0 0 1 0 0 1 0.75
1 0 0 0 1 1 0 0 0 0 1 0 0 0.75
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 1 1 0 0 1 0 0 1 0 0 1 0 0.58
T 0 0 1 1 0 0 1 0 1 0 0 0 0.67
0 0 0 0 0 0 0 0 0 1 0 0 0.92
Inter-rater Reliability 0.78
5 G 1 1 1 1 0 0 1 1 1 1 0 1 0.75
I 0 0 0 0 1 0 0 0 0 0 1 0 0.83
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 0 0 0 0 0 1 0 0 0 0 0 0 0.92
T 0 0 0 0 0 0 0 0 0 0 0 0 1.00
F 0 0 0 0 0 0 0 0 0 0 0 0 1.00
Inter-rater Reliability 0.92

129

Table 6.9. Percent agreement across twelve evaluators classifying defect types component (Continue)

Report Defect Evaluators %
subcategories El E2 E3 E4 E5 E6 E7 E8 E9 EI0 EIl EI2 Agreement

6 G 0 0 0 0 0 0 0 0 0 0 0 0 1.00
1 0 0 0 0 1 1 0 0 1 1 0 1 0.50

A 0 0 0 0 0 0 0 0 0 0 0 0 1.00

M 0 0 0 0 0 0 0 0 0 0 0 0 1.00

T 1 1 1 1 0 0 1 1 0 0 1 0 0.58

F 0 0 0 0 0 0 0 0 0 0 0 0 0.92

Inter-rater Reliability 0.83

7 G 1 1 0 1 1 1 1 0 0 1 1 1 0.75
I 0 0 0 0 0 0 0 1 1 0 0 0 0.83

A 0 0 0 0 0 0 0 0 0 0 0 0 1.00

M 0 0 0 0 0 0 0 0 0 0 0 0 1.00

T 0 0 0 0 0 0 0 0 0 0 0 0 1.00

F 0 0 0 0 0 1 0 0 0 0 0 0 0.92

Inter-rater Reliability 0.92

8 G 0 0 0 0 0 0 0 0 0 0 0 0 1.00
1 0 0 1 0 1 1 1 0 1 1 0 0 0.50

A 0 0 0 0 0 0 0 0 0 0 0 0 1.00

M 0 0 0 0 1 0 0 0 0 0 0 0 0.92

T 1 1 1 1 0 1 1 1 0 0 0 1 0.67

F 0 0 0 0 0 0 0 0 0 0 1 0 0.92

Inter-rater Reliability 0.84

9 G 0 0 0 0 0 0 0 0 0 0 0 0 1.00
1 0 0 0 1 1 0 0 0 0 1 0 0 0.75

A 0 0 0 0 0 0 0 0 0 0 0 0 1.00

M 0 0 0 0 0 0 1 0 0 0 0 0 0.92

T 1 1 0 1 0 1 0 0 1 1 1 1 0.67

F 0 0 1 0 0 0 0 1 0 0 0 0 0.67

Inter-rater Reliability 0.84

10 G 0 0 0 0 0 0 0 0 0 0 0 0 1.00
1 0 0 0 0 1 0 0 0 0 1 0 0 0.83

A 0 0 0 0 0 0 0 0 0 0 0 0 1.00

M 0 1 0 1 0 0 0 1 0 0 1 1 0.58

T 1 0 1 0 0 0 1 0 1 0 0 0 0.67

F 0 0 0 0 0 1 0 0 0 1 0 0 0.83

Inter-rater Reliability 0.82

Notes:

G — GUI structure and aesthetics, I — Information presentation, A — Audibleness, M — Manipulation, T — Task execution, F -

Functionality

According to [107], percent agreement less than 61% can be seen as problematic, and many texts
recommend 80% agreement as the minimum acceptable inter-rater agreement. Using this standard, we
found that most evaluators were in disagreement when classifying usability defects into the task
execution subcategory. Possibly, the ambiguity around definition and unclear separation of
manipulation, task execution, and functionality subcategories caused them to struggle to classify a

number of usability defects, as addressed by a few evaluators in post-questionnaires:

“I wasn't too sure about the distinction between Task Execution - Action and Functionality

but it didn't come up in the evaluation.”

130

“Some of the items appear to overlap, 'Any difficulty encountered by the user when they
interact with the application or while performing a task.' - The interaction with the
application could be a mouse click. Why do we have both a generic 'difficulty’ and a specific

>

action? The definitions could be clarified by exclusions. "items like.. are listed under ...’

“Some of the terms have to recheck the meaning and the taxonomy can be justified using more

than one term.”

Table 6.10. Kappa for the attributes of task difficulty and failure qualifier.

OSUDC component Category Kappa

Task difficulty Complexity 0.030
Visibility 0.297
Performance 0.109
Accessibility 0.061
Loss of data -0.008
Understandability 0.215
None 0.003
Other -0.017

Failure qualifier Missing 0.144
Wrong -0.016
Incongruent mental model 0.020
Irrelevant 0.050
Overlooked 0.026
Better way 0.307
None 0.037

As shown in Table 6.10, in ratings for the task difficulty and failure qualifier component, the
agreement among evaluators is slightly poor. As can be seen, there is fair level of agreement for
visibility, understandability, and better way category (k > 0.3). The non-significant result obtained for
this classification is likely due to the nature of open source defect report descriptions that were vague,
incomplete, and contained irrelevant information [12]. Some of our evaluators also addressed this

concern:

“The identification of human emotion was a bit hard and more clarity in this area would be
helpful. E.g. how do you identify annoyance from simple text? Not all the statements have

'emotion' words such as 'l find it a distraction' etc”

s

“Some of the defects are rather 'vague' and it is not easy to fully classify them...’

Another explanation on the low level of agreement in task difficulty component could be due to the
limited choices of task difficulty values provided in our OSUDC taxonomy. The introduction of these

difficulties — complexity, visibility, performance, loss of data, and understandability is highly

131

influenced by our sampling approach: these difficulties could be varied between different usability

defect context and the projects we studied.

With regard to the failure qualifier component, the value “better way” was the most common value
used by the evaluators. Unsurprisingly, given the nature of usability defects that constitute subjective
users satisfactions and opinions, we observed many defect reporters preferred to use words or phrases
such as “it’s nice to...”, “I would prefer...”, or “I suggest to...” to express their expectations. Obviously,
this kind of phrase is much easier to classify as compared to other qualifiers that could be
misinterpreted. For example, consider the snippet of Bug#70513 of Eclipse Platform below. If we read
the first sentence, one may consider that the reporter found something went wrong when he closed the
parent window. However, the following sentence shows that the action result is not wrong, but his

concerns were that some people might find it useful if some other options were presented.

wrong

...... Seems like closing the parent window doesn't close the lightweight windows
opened by it. Maybe somebody finds that useful, but you have to put at least some kind of

closing option to the lightweight window ™ ¥ [Bug#70513 of Eclipse Platform]

6.5.3 Feedback on Revised OSUDC

This section presents and discusses the results from the post-evaluation questionnaire filled out by the
evaluators at the end of the survey. The post-evaluation questionnaire had four questions consisting of

one closed question and three open-ended questions.

The closed question was measured on a 5-point Likert scale using the satisfaction-based statements

as follows:

* Learnability — the degree to which an evaluator is satisfied that the revised OSUDC is easy to
be learned with no training or demonstration;

* Easy to use — the degree to which an evaluator is satisfied that the revised OSUDC is simple,
user friendly, and flexible to be used;

¢ Completeness — the degree to which an evaluator is satisfied that the revised OSUDC contains
all required categories and components to be able to classify usability defects;

* Clarity — the degree to which an evaluator is satisfied that the definitions and examples of

revised OSUDC are clearly written so that it is easily understandable;

132

* Practicality — the degree to which an evaluator is satisfied that the revised OSUDC is

convenient to use;

The responses are depicted in Figure 6.3. Based on the “Strongly satisfied” and “satisfied” rating,
we see that more than 50% of the evaluators were satisfied with the revised OSUDC. One evaluator did

not fully complete feedback on the revised OSUDC.

14

12

e
£ Mo response
B oa
= Strongly satisfiad
i
l§ & sansfed
-
= Meithar
=
= | B

2 -

a — [E——

Learnability Easy to use Complateness Clarity Practicality

Satisfaction Aspect

Figure 6.3. Responses on the five satisfaction aspect.

Among the five satisfaction aspects, only one evaluator was dissatisfied with the completeness of
OSUDC, and two evaluators were dissatisfied on the clarity of OSUDC. These evaluators expressed
their dissatisfaction comments in the accompanying open-ended questions. Unfortunately, these
comments were too vague for us to consider for future improvement. For example, the evaluator who

was not satisfied with the completeness of OSUDC only stated the following comment:

1

“It sometimes feels 'incomplete’...’

Concerning the ease-to-use aspect, four evaluators rated neutral in satisfaction. Possibly, the use of
Opinio tool as a medium of evaluation can have a negative effect on the evaluator’s experience.
Switching back and forth between the Opinio tool and the OSUDC reference document can decrease
the sense of annoyance because the numerous defect categories are unintuitive, making the
understanding and selection of appropriate category can be difficult. If using a self-developed tool, a

pop up window could be used to display the definitions and examples when a category is selected. This

133

could possibly increase the flexibility of using the OSUDC. One evaluator addressed this concern as

follows:

“Rather than opening the guidelines in a different tab, it could list them at the side (and

appear all the time) for ease of reference.”

Overall, the evaluators’ feedback provides a positive indicator on the effectiveness of OSUDC in
classifying usability defects and have important implications for further research. While the evaluators
conveyed a great understanding on the OSUDC, we are uncertain if different types of users will have
the same understanding. For example, this new classification would be useful for helping experienced
evaluators analyzing usability defects but may not be helpful for less experienced evaluators, because
the information required in this new classification may not be relevant to them. Thus, we may need a
comparison study with a larger number of respondents so that we can confirm the effectiveness of
OSUDC on all users.

“Easy to understand the components and the descriptions.”
“It uses normal terms and easy to understand”

“It has a wide range of classifications and the definitions of each classification are clear”

“Differentiating between interface problem and interaction problem with interface is a

good feature”

“Seems to be complete. I think it is beneficial to have single taxonomy for that captures

usability defect, failure qualifier and user difficulty”

6.6 Threats to Validity

We have considered two types of possible threats that can affect the validity of our revised OSUDC,

which we discuss below.

6.6.1 External Validity

One possible threat to the external validity of this evaluation survey is generalization of the findings.
There are three factors to consider. First, the small number of participations in this survey did not

represent the varying level of expertise of software development practitioners. We found that six out of

134

twelve evaluators are academic researchers with low familiarity of usability defects. Second, since our
research design strategy included recruiting evaluators through researcher’s industrial contacts, there
could have been evaluators who volunteered to take part in this survey with a specific purpose (e.g
personal reasons), which may influence how they responded to the survey. Third, the evaluators have
limited usability knowledge, as we found 11 out of 12 evaluators had not received any usability-related
training. This might affect their understanding on some of the usability-technical terms used in the
OSUDC definitions. However, the sample classification we provided in the reference document may

have helped the evaluators to understand the classification process.

Whilst these factors will inevitably result in selection bias, it is therefore difficult for us to argue
that the results we obtained can be generalized to the wider population, especially in the context of

OSS development.

6.6.2 Internal Validity

In our study we analyzed 377 usability defect reports from Bugzilla for Mozilla Thunderbird, Firefox
for Android, and Eclipse Platform projects that were tagged with usability-related keywords. We did
not consider defect reports that were not tagged with usability-related keywords although in our
observation they were related to usability issues. We expect that our findings also apply to other OSS
projects, even this limitation may not be fully representative of other OSS projects. However, the
categories identified in OSUDC cover vast spectrum of categories from both usability (adaptation of
UPT) and software (adaptation of ODC) engineering domains. We can hence expect that our findings

are generalizable and reflective of the OSS projects.

6.7 Discussion

The level of agreement between the twelve evaluators was overall best for the defect types component,
while agreement on task difficulty and failure qualifier component is slightly poor. We considered
three possible factors that affected the non-significant results obtained for this evaluation process. First,
as pointed out by Keenan’s [12], poor quality of defect descriptions could potentially affect
classification results. From our observation of 377 usability defect reports being studied, most of these
reports are composed of simple text. While [20], [29] suggested that a high quality defect report should

contain long textual descriptions, our findings show that the median length of usability defect

135

descriptions studied only have 65 words. With regard to task difficulty, our results in Section 4.2.2.1 of
Chapter 4 indicated that within the 65 words length of description, less than 30% of defect reports
explained the impact of the problems on human emotion and task. Therefore, the lack of contextual
information in the usability defect descriptions possibly makes it difficult for evaluators to interpret and

classify task difficulty and failure qualifier components.

The second factor that produces insignificant evaluation results was likely due to the absence of
training and a demo prior to conducting the evaluation. Previous studies have demonstrated the
necessity of initial training to increase user’s familiarity and understanding of certain tools, aspects,
and concepts [12], [102], [62] We also acknowledge the need for brief training, especially for novice
usability evaluators, to help them better identify and rate usability defects. However, training was
intentionally not provided in the experimental design of this research. This is because we wanted to
know if the material and documentation of the proposed taxonomy is complete and understandable to
guide users in classifying usability defects without training. In our future work (discussed in Section
8.4.2), we will ensure that the evaluators receive more training in the use of the OSUDC and we will be
more selective in recruiting evaluators that have sufficient knowledge of the software, domain, and

usability-related context.

The third factor may be caused by the effect of novice usability evaluators. As described in Section
6.5.1, almost all evaluators in this evaluation were novice usability evaluators. More than 90% of them
never received any usability-related training, and less than 25% of them have used ODC, RCA and
UAF. The lack of knowledge in usability/ HCI terms and concepts is one of the obstacles for the

evaluators to produce more accurate analysis.

The feedback we obtained from the post-questionnaires provides a good insight into the needs of
non-technical users when analyzing and understanding usability defects. Especially in OSS projects
development, where usability experts are not always available, the classification scheme to be
introduced must be simple to cater the needs of open source communities that are not “usability-
savvy”. To address the abundance of technical words and make a clear OSUDC attribute definition, for
example, we could supply some snippets from existing usability defect descriptions. In this way, we
could minimize the risk of misunderstanding the OSUDC attributes that lead to incorrect classification.
Furthermore, the results of our evaluation reveal potential deficiencies in the current open source defect

report content as it relates to usability defects. For the purpose of practical usability defect reporting in

136

conjunction with the proposed OSUDC, we recommend four characteristics for capturing usability

defects:

1. State the type of usability problem encountered

2. Justify the impact of the usability defects on user and task, possibly by relating to human

emotion and software quality attributes. Perhaps the human emotions could use scale rating so

that it could be objectively quantified.

3. State how the problem is identified

4. Use predefined attributes with accompanying open text; so that non-technical reporters can

have ideas what information should be included, and further explanation can be supplied in

open text input.

Overall, we found that the majority of the evaluators considered our revised OSUDC as

appropriate for OSS development. The classification components and categories in the revised OSUDC

were also considered generally sufficient. Based on the evaluators’ feedback, we refined our revised

OSUDC as summarized in Table 6.11. The modified version of the revised OSUDC was reflected in

the proposed prototype discussed in Chapter 7.

Table 6.11. Feedback on revised OSUDC and corresponding modifications.

Feedback

Modification to be carried out

Response to Feedback

Justify the taxonomy using
more than one term

No modification

The comment is too general. The evaluator did not point out
which component or term needed to be justified using
multiple terms. We leave the OSUDC taxonomy as it is until
the formal industry evaluation is conducted.

Too many classification terms

No modification

We agree that the revised OSUDC contains a wide range of
categories. Under each component there is a list of categories
that represent situations that may occur. Such classifications
would be useful for separating usability defects to one and
only one category that will uniquely describe each defect.
The use of simple categories will result in overlapping
defects for different situations.

Overlap definitions in for

Interaction

Refined definition

One evaluator addressed that one value of the Failure
Qualifier component “’Any difficulty encountered by the user
when they interact with the application or while performing
a task.' is overlapped. The phrases “interact with
application” addresses a generic interaction context, while
“performing a task” is specific action. We revised the
definition as it appears in Table 6.1.

Definitions of human emotion
should be clarified in the
context of defect reports that
have simple text

No modification

We agree that human emotion is difficult to be identified
from simple text. To address this concern, we plan to
conduct a linguistic analysis to study how defect reporters
describe their emotions when experiencing usability defects,
similar to [39]. The findings can later be used to develop
glossary of terms as a reference for defect reporters and
software developers.

137

Table 6.12. Feedback on revised OSUDC and corresponding modifications. (Continue)

Feedback Modification to be carried Response to Feedback

out
Separate the items ‘structure’ and Change category name Suggested by one evaluator. The word “structure” to
‘aesthetics’? represent the interface design layout may cause confusion to

people with limited usability or HCI background. We
changed the “GUI structure and aesthetics” category to
“Visualness” as it reflected in Figure 6.2 and Table 6.1.

Unclear distinction between Task Refined definition We revised the functionality definitions as shown in Table
Execution — Action and 6.1.
Functionality

6.8 Summary

This study presented an OSUDC to classify and analyze usability defects. In an absence of formal
usability evaluation in OSS development and limited information available in usability defect
descriptions, we revised the existing defect classification schemes to accommodate these limitations.
We integrated the traditional UPT from usability engineering practices with the original ODC. In our
revised OSUDC, we introduced cause-effect classification model that contains three main classification

attributes, namely (1) usability defect categories, (2) failure qualifier, and (3) user difficulty.

The revised OSUDC was evaluated through an online survey. Overall, we obtained good feedback
on our revised OSUDC and we refined this based on the feedback. Although we received a small
number of evaluators and the majority of them had very limited usability knowledge, their feedback
was important for us to understand the needs of those people who are not “usability-technically”
knowledgeable to classify usability defects. We found some categories and values of the revised
OSUDC were unclear and overlap to our evaluators and so we refined the definitions of those
categories to make it more understandable. Nevertheless, vagueness, incompletion, and lack of
contextual information in the usability defect description are identified as reasons for evaluators being
unable to use OSUDC effectively. We believe the new refined OSUDC can help software developers to
better understand usability defects and prioritize them accordingly. For the researchers, the revised
OSUDC will be helpful when investigating the trend of usability defect types and understanding the
root cause of usability defect problems. However, further deployment and evaluation of the OSUDC by

open source users is required to verify this.

The revised OSUDC was used in designing our new usability defect report forms. We explained

the utilization of this OSUDC in Chapter 7.

138

7 Improving Usability Defect Reporting in Open Source
Project Development

In common software development practice, software defects are normally reported, tracked, and
managed using centralized defect tracking tools. While defect reporting tools are used to collect
information from reporters, current defect report forms such as in Bugzilla are too simple to report all
types of defects well, particularly usability defects. Moreover, the brief form does not help open source
communities that have varying levels of technical knowledge to create informative usability defect
reports, thus making it challenging to get an idea on what kind of information should be reported and
what kind of information is important to software developers. This generic approach to capturing all
information about the defects also limits the empirical research of defect data. Researchers are not able
to process the data directly, as they have to extract and partition the information to be able to use it for
further research. These limitations motivated us to find an answer for the fifth thesis research question

“RQ5 - How can open source usability defects be most effectively reported?”

Based on our review of the literature and analysis of different requirements gathered from our
survey of practitioners and open source software defect repositories mining, we designed a guided
defect report form for reporting usability defects. We tried to maximize the alignment between the
information needed by the OSS developers and the information that could be provided by OSS users.
We also aimed to assess the quality of usability defect descriptions generated using our proposed defect

report form.

7.1 Design

The form was designed to be like existing open source defect reporting form structures. This was to
both make the approach more feasible to adopt into practice but also to enable it to be built on top of
existing defect reporting tools. Common open source defect repositories, such as Bugzilla typically use
unstructured textual forms to report all software defects. As discussed previously, this kind of defect
report form is not helpful for different types of users, with varying technical knowledge. Specifically,
we are motivated by the knowledge that OSS software developers often receive incomplete and
uninformative defect information to fix usability defects [12]. Based on the analysis of the findings

from the three different studies discussed in Chapter 3 until Chapter 6, we argue it is essential to

139

anticipate usability and software engineering principles to optimize usability defect reporting

processes.

We used the Bugzilla defect report form layout as a point of reference, a well-known open source
defect reporting tool. As far as possible, we tried to maintain our proposed usability defect forms as
similar as the original Bugzilla defect form layout to maximize users’ familiarity while minimizing
their confusion. Our strategy for designing the usability defect report forms consisted of the following
four criteria, based on the findings of the three studies that we have conducted earlier. Table 7.1

summarizes the main findings that have been extracted as an input to the proposed defect report form.

Table 7.1. Summary of the three studies translated into desirable features of our open source usability

defect reports.
Studies Main findings
Systematic Literature ~ Problem description, severity, context, and redesign description were the four attributes most
Review commonly used to describe usability defects
Online survey * The desirable usability defect report form based on survey responses — simple, reasonable

predefined values, and introduce usability keywords, options and descriptors

* Reporters often provide actual output, expected output, and steps to reproduce when describing
usability defects

* Reporters ranked assumed cause as the most difficult information to provide. But this information
was considered to be the most helpful information by software developers

* The top five most important attributes used by software developers are assumed cause, screenshots,
steps to reproduce, excepted output, and software context

* Among the problems experienced, unclear assumed cause and insufficient information in steps to
reproduce was the most commonly encountered. Other common problems include unclear software

context and screenshots

Software defect Supplementary information could improve defect resolution time

repositories mining

Mutually exclusive defect description — the attributes only capture one value. As shown in Figure 7.1
and Figure 7.2, the existing Bugzilla defect report form used in the Mozilla and Eclipse projects is
designed as unstructured textual forms. While Bugzilla supports custom fields to capture defect data
that is unique to each project and organization, it still uses a plain textual defect description to collect
information to reproduce the defect. The vague definition of this general description field in Eclipse,
for example, is likely to cause the reporter to report mixed information. This is because the reporter
may not have a sufficient appreciation of what is supposed to be written in the description field. They
will write whatever comes to mind and in many cases the information reported is not important or

useful to the software developer to use in order to correct the defects.

140

Bugzilla@Mozilla
Home New Browse Search m [he!p] Reports My Dashboard
Enter A Bug
= Please fill out this form clearly, precisely and in as much detail as you can manage.
= Please report only a single problem at a time.
® These guidelines explain how to write effective bug reports.
Summary: usability L
Product: Core {Change) Version: E (=]
Component: Untriaged E -
G For newly filed bugs that need some help finding the right place to go.
What did you do? {steps to reproduce) L=l
=
What happ d? (actual) L2
e
What should have happ d? (exp 4 Its) =)
>
Attach a file: | Choose File | no file selected =4
i . Many users could be harmed by this security problem: it should be kept hidden
e from the public until it is resolved.
Figure 7.1. Bugzilla defect report form of the Mozilla project.
- eC Ipse DOWNLOAD GETTING STARTED ~ MEMBERS PROJECTS
Bugzilla - Enter Bug: JDT
Home | New | Browse | Search | Search | [?] | Reports | My Requests | Preferences | Help | Log out mail.com | Terms of Use |

Copyright Agent

Due to SPAM if you are a *NEW* user and wish to file bugs you will need to contact webmaster at eclipse dot org to be granted permission. All other users should be una|
this change.

Before reporting a bug, please read the bug_ writing_guidelines, please look at the list of most frequently reported bugs, and please search for the bug.
Show Advanced (* = Required Field)

Fields
* Product: 10T Reporter: nor.shahida@hotmail.com
* [APT Component Description———————————
Component: g::zg Select a component to read its description.
Doc
Text
ul
* Version: Severity: | nomal l
Hardware: pg E
0S: | macos X B
We've made a guess at your operating system and platform. Please
check them and make any corrections if necessary.
* Summary:
Description:
2

Attachment: = add an attachment

Submit Bug

Figure 7.2. Bugzilla defect report form of the Eclipse project.

141

To this end, including reusing existing defect attributes — software information (e.g., product,
version, component), steps to reproduce, actual results, and expected results, we added new specific
attributes to capture usability defect information: solution proposal, impact, failure qualifier, assumed
cause, and usability defect category into the new usability defect report forms. For example, by
introducing dedicated attributes to address problem impact, we can help software developers to

understand and appreciate how users struggle with the usability issues.

Contextualized attributes with multiple instances — a defect attribute is explained with multiple
instances. Single attributes in the existing Bugzilla defect report form are considered inadequate for
reporting usability defects. For example, while defect report forms in the Mozilla project were
explicitly defined as three separate attributes to capture steps to reproduce, actual results, and expected
results, often the information that really needed to be reported was not explained clearly or even not
reported at all. In fact, some reporters may think that their reports are well explained, but they may

provide irrelevant or inadequate information.

For this reason, we propose several usability defect attribute instances to assist reporters in
supplying the most useful information in their usability defect reports. Even breaking up an attribute
into multiple instances does not always provide a better user experience and produce high quality
defect information, but this kind of form design may provide specific hints and examples about the
information the user should enter. These attribute instances depend on the context of information to be
described. For example, to explain the impact of the problem, we introduced three instances — How
does this problem affect your task? Explain your challenges, and How annoying is this problem to you?

Table 7.2 lists usability defect attributes and its corresponding instances.

Guided wizard defect report form — this provides defect attributes relevant to the reporter’s
information needs. From a technical user’s standpoint, plain forms are sufficient to report software
defects as they know what to write and which information is necessary to report, but not for less
technical users. For an optimum usability defect reporting process, we considered a guided wizard
form solution to guide novice reporters or less technical users through the reporting process, to hint at
what is expected from them at each step, and to present relevant options. Since we introduced more
usability attribute instances to collect important information, a plain form is not the best way to collect

this kind of data. We designed our usability defect report form as follows:

142

Table 7.2. List of attributes used in new usability defect forms.

Attribute

Attribute instances

Input types

General descriptive information

Summary / title

Free form text

Usability defect type

Predefined data

Problem summary

Free form text

Steps to reproduce

Free form text

Actual results

Observation results

Free form text

Support evidence Attachment
Impact User difficulty type Predefined data
User difficulty summary Free form text
Annoyance level Predefined data
Reproducibility Predefined data
Failure qualifier Failure qualifier Predefined data
Expected results User expectation Free form text
Support evidence Attachment

Solution proposal

Solution proposal

Free form text

Solution attachment Attachment
Software context Product Predefined data

Component Predefined data

Version Predefined data

Operating system Auto-generated data

Platform Auto-generated data

We broke up the attributes into smaller sections presented one at a time. We used form tabs
with a random navigation approach to make it easy for reporters to navigate between data-
entry fields. As recommended in interaction design best practices, this approach makes
providing input much more manageable, even though it is the same amount of information.
This is a significant consideration to reduce the seeming complexity of reports by hiding long
lists of attributes. However, there are some attributes that are set as mandatory fields (i.e.,
product, version, component) — these attributes must be filled out before navigating or
submitting the form.

Typically, early data entered influences later data. We used hide/show logic at the attribute
and page level, so that pages and attributes themselves may appear or disappear based on the
choices the reporter makes. For example, choosing between interface and interaction defect
will change defect category options. For these situations, wizard forms create the right pace by
preventing unnecessary information and ensuring that the reporter is presented with a guided
experience, rather than confusing attributes.

We set predefined values for certain attributes to keep the content clear and concise. In this

way, we can avoid long defect descriptions with uninformative information.

143

Provide specific hints about the information the reporter must enter. We used a question-based
approach so that users have a better idea on what should be written in the textual form. For
example, in explaining the problem, we listed a few questions such as “what you saw when
you manipulated the object?”, “how well the user tasks are mapped to the system?”, or “how
well the system assists task completion? ”.

Defect attributes are different between software developers and users. Due to the limited
technical knowledge of many reporters, we used different attributes for understanding the
validity of the problem. While software developers were interested in knowing the technical
causes of the problem, we believe it is impossible for less technical users to supply such
information. Therefore, we used the failure qualifier attribute to know how users experienced
a usability problem, and assumed cause attribute for software developers to point out

programming code error or technical explanation.

Objective assessment of user difficulty — to measure the ability of impaired tasks (users’ feelings

and difficulty). An inspection of existing Bugzilla defect reports revealed its limitation for eliciting

information about user difficulty, seeming to miss a coherent expression of users’ feelings and

struggling to accomplish certain tasks. Moreover, the subjective nature of usability defects made some

people think the issue was invalid. Reeder and Maxion [104] defined the user difficulty effect as ‘“when

the ability to achieved a goal is impaired’. We designed two user difficulty dimensions for instances

when users are experiencing usability problems according to [104]. The subjectivity in determining

user difficulty was measured by using scale rating and predefined value.

Dimension 1 — Human emotion. This dimension helps to assess the internal cognitive state
such as confusion, frustration, annoyance, and uncertainty. We used a five rating scale to rate
this dimension towards the usability problems, which are not addressed by existing defect
report forms.

Dimension 2 — Task difficulty. This dimension determines the likely consequence of usability
defects that caused each instance of difficulty. We used software quality metric attributes to
denote the task difficulty options— complexity, understandability, visibility, performance, and
accessibility. These attributes were extracted based on the most difficulties apparent in the
open source usability defect reports (discussed in Chapter 4). However, reporters have the use

of an “other” option if their difficulties do not match any of the options listed.

144

7.1.1 Usability Form Implementation

The prototype of guided usability defect report forms was designed using Jotform*, an online
application to create custom online forms using intuitive drag-and-drop user interface. We used form
tab feature to group a set of usability defect attribute instances. The detail descriptions of the tab and

associated attributes are described below.

Reporter Identification: Similar to the Bugzilla defect report form, upon submission of a new defect
report a reporter has to select their role. The selection of this role depends on whether the defect
reporter finds the defects while using an OSS product, or when they contribute to OSS development.
The selection of this role will determine the relevant defect attributes that will be prompted in the next

display.

Guided Wizard Defect Report Form

DESCRIPTION

SOFTWARE INFORMATION

REPORTER

EXPECTED RESULTS

ACTUAL RESULTS

Report an issue with a product that I've developed
Report an issue with a product that I've used

Figure 7.3. Reporter identification.

Software Information: The requested information about the open source software used will vary
between software developer and user. In Figure 7.4, when a software developer reports a usability
defect, the information about product, version, and component is compulsory to fill in. On the contrary,
for a user, such component information is not compulsory (see Figure 7.5). The compulsory
information is denoted by a red asterisk (*), and the defect reporter cannot go to the next page if this

compulsory information is left blank.

1. Product — The name of the OSS application.

* https://www.jotform.com/form-templates/

145

2. Version — The version of OSS application in which user discovered the usability problems. If
user can reproduce the problem in more than one version, select the earliest.

3. Component — The sub-part of the software in which the problem exists.

Guided Wizard Defect Report Form

REPORTER SOFTWARE INFORMATION DESCRIPTION

ACTUAL RESULTS EXPECTED RESULTS

o Please fill out this form clearly, precisely and in as much detail as you can manage.
e Please report only a single problem at a time.

Product: *
Version: *

Component: *

s—1)
s—2)
o—3)

Back

Figure 7.4. Software information tab for software developer.

Guided Wizard Defect Report Form

REPORTER SOFTWARE INFORMATION DESCRIPTION

ACTUAL RESULTS EXPECTED RESULTS

e Please fill out this form clearly, precisely and in as much detail as you can manage.
e Please report only a single problem at a time.

Product: *

Version: *

~
w

Figure 7.5. Software information tab for user.

146

Description: The reporter must describe the details of the problem to be reported. Rather than an

unstructured text form as in traditional reporting tools, the information is captured in multiple attribute

instances as listed below:

4.

10.

Title — A headline summarizing the usability issues. As suggested in [39], the defect report
title should consists of descriptions about (1) a software entity or an entity behavior, (2) a
relevant quality attribute, (3) the problem, (4) the execution context, and (5) whether the
report is a defect or feature request.

Usability defect main category — There are four options for specifying the usability defect
types based on the revised OSUDC taxonomy. The selection of the main usability defect
category will determine the associated usability defect subcategories that will be prompted in
(6).

Usability defect subcategories — The value of defect subcategories are dependent on the
selection of the main usability defect category in (5). Upon selection of usability defect
subcategories, examples of defects associated with the selected category will be listed. If the
experienced problem is not in the list, the defect reporter may choose “Other” option and
describe in detail in the following text input (7).

Explanation of the problem — A detailed explanation of the problem.

Steps to reproduce — Step by step instructions to allow the usability defect to be reproduced on
another machine. It is recommended that the instructions be explicitly given as a numbered
sequence of instructions.

Failure qualifier —There are six failure qualifier values to understand how usability defect
reporters experienced the usability problems. Only one value can be selected at one time.

Pop up callouts - A hint on what kind of information should be supplied on the textual text

input. The callouts will pop out when a cursor is moved to that particular text box.

147

Guided Wizard Defect Report Form

REPORTER SOFTWARE INFORMATION DESCRIPTION

ACTUAL RESULTS EXPECTED RESULTS

Title/, Summary:

< 4
(& sentence which summarise the problem, context and behaviour)
What is the problem? < 5
—| Difficulty to view and read
—| Difficulty to manipulate object in the user interface
—| Difficulty to execute a task
—) Satisfaction of product functionality
Figure 7.6. Description tab.
This interface problem is related to:
Leyout H <€ 6

Improper use of screan widith and kenath —

Explain the problem: Pleasa be

specific as
possible about:
1. What youw saw

when
L manipulating the
abject?
2. How weell the
) user tasks are
Steps to reproduce: mapped to the
system?

3. How well the
sysbam assists
task comp\letion?

Why do you Ch o -
consider it as a mose Lne 10

problem? I don't like the way something works

I cant figure out how to do something
Something is confusing. unclear or incomsistent
Something is missing

Something has gone wrong

Something is unnecessary

Other

Figure 7.6. Description tab (cont).

148

Actual Results: Describe what currently happens when the usability defect is present.

11. Actual results — Describe what was wrong, why is it wrong, or, if an error was thrown, what
was the error.

12. Task difficulty — The anticipated difficulties/ challenges the user encountered as a
consequence of the problem. Additional information about how you did a workaround for the
usability defect to continue using the software could be explained here.

13. Mood indicator — A scale to rate the user’s annoyance when the problem happens.

14. File attachment — Supplementary material such as image, audio, video, stack traces, or crash

log that can help others to reproduce the problem.

Guided Wizard Defect Report Form

SOFTWARE INFORMATION
EXPECTED RESULTS

Actual Results:

What happened

after you
performed the
steps-to-
reproduce?
o
Explain your challenges:
o

How annoying this problem to youw?
1 2 3 45

Mot at all WVary much

Attach a file(s)k
craces Fie | 10 file 2alected

[Flease attach supplementary information such as a screenshots, video and
audio)

O =

Figure 7.7. Actual results tab.

149

Expected Results: Describe what should happen if the defect was fixed.

15. Expected results - What behavior you expected when the problem occurred, or what would
you like to change the way the software works or to improve some other aspects.

16. Solution proposal — A description of how to remedy the problem and justification of the
redesign proposal.

17. File attachment — Supplementary material to support the idea of proposal such as photoshop

sketches, ASCII art, screenshots, or code patch.

Guided Wizard Defect Report Form

REFORTER SOFTWARE INFORMATION DESCRIPTION

ACTUAL RESULTS EXPECTED RESULTS

Expected Results:

How do you think this feature is supposed to work? Please explain

the redesign
Justification,
advantages and
include any

- relevant URLs

Attach supporting material(s):
cracas g | 12 file selected
[Flease attach supporting information such as sketch, ASCI art, code, patch)

Figure 7.8. Expected results tab.

150

7.1.2 Example of Usage

We demonstrate our usability defect report form prototype, which captures usability issues related to
visualness. We reproduced the Firefox for i0OS#1145602 issue in Figure 7.9 on our iPhone and wrote

the detailed defect descriptions based on our reproduction steps.

Bug 1145602
New About:Home tabs experience is confusing

Get help with this page
RESOLVED INVALID

Status (bug RESOLVED as INVALID)
Product: » Firefox for i0S Reported: 3 years ago
Component: » Browser Modified: 4 months ago
Status: RESOLVED INVALID
People (Reporter: jchaulk, Unassigned)
Assignee: Unassigned Reporter: Jenn Chaulk (;jchaulk)
Triage Owner: Stefan Arentz [:st3fan]
CC: 3 people
Tracking ({ux-userfeedback])

Version: unspecified
Target: ---

Platform: x86_6& 0S8

Keywords: ux-userfeedback

Firefox Tracking Flags (Not tracked)
Details (Whiteboard: feedbacksurvey)
Whiteboard: feedbacksurvey
Bottom L Tags = View =
Jenn Chaulk (sjchaulk) (Reporter)
Description = 3 years ago

New About:Home tabs experience is confusing. User can create multiple new tabs without realizing they are doing so. Intention
to create a new tab isn't clear. New tabs are represented as multiple blank/empty spots.

Figure 7.9. Firefox for iOS Report#1145602

This issue was found by OSS contributor, named jchaulk. Jchauk was not satisfied with the
About:Home tabs in Firefox browser apps, in which he could not directly find the newly opened tabs.
Since jchaulk did not contribute to the Firefox for iOS project, upon submission of a new usability
issue, he selected the second option (see Figure 7.10). Then he filled up the product and version
information in Software Information tab (see Figure 7.11). In the following Description tab, he wrote
the report title and selected a relevant usability issue he had experienced (see Figure 7.12). In this case,
the usability issue encountered by jchaulk is related to visualness — the difficulty to view newly opened
tab on the user interface, in particular, the visibility behavior of the tabs was problematic. To support
this issue, he explained his situation when he experienced the problem and supplied a step by step
explanation of how to reproduce the problems. He also indicated that he raised this issue was because

he felt that the new implemented tab feature was confusing (see Figure 7.12).

In the Actual Results tab, he highlighted the software context in which the problem occurred, and

explained the challenges and difficulties encountered by the problem. He also provided workaround

151

solutions to overcome the problem. Then he indicated the annoyance level of the problem and attached

the screenshots to support his explanations (see Figure 7.13).

Lastly, in the Expected Result tab, jchaulk expressed his expectations on how the About:Home tab
should behave instead. He also provided suggestions to improve the visibility of the newly open tabs

(see Figure 7.14).

Guided Wizard Defect Report Form

REPORTER SOFTWARE INFORMATION

ACTUAL RESULTS EXPECTED RESULTS

Report an issue with a product that I've developed
© Report an issue with a product that I've used

Figure 7.10. Identification of reporter background to identify necessary information to be prompted.

Guided Wizard Defect Report Form

SOFTWARE INFORMATION

EXPECTED RESULTS

e Please fill out this form clearly, precisely and in as much detail as you can manage.
Please report only a single problem at a time.

Product: *

Firefox for IS B

Version: *

Unspecified B

Figure 7.11. Software Information tab to collect details of the problematic application.

152

REFORTER SOFTWARE INFORMATION DESCRIFTION

ACTUAL RESULTS EXPECTED RESULTS

Title/ Summary:

New About: Home tabs experience is confusing

[A sentence which summarise the problem, context and behaviour)

What is the problem?

Difficulty to view and read

7 Difficulty to manipulate ohject in the user interface
7 Difficulty to execute a task

7] Satisfaction of product functionality

This interface problem is related to:

Object State =

Incorrect object (screen) visibility behaviour

ar

Explain the problem:

| can't directly find tabs that have been opened.
The newlg added tabs are represented as
multiple blank/empty spots, which are hidden in
multilayer page. User can create multiple new
tabs without realizing they are doin? 50.
Intention to create a new tab isn't clear

Steps to reproduce:

1. Click on Firefox browser icon.

2. Go to any wehpage. For example open
http://ebay.com.au

3. Press the middle menu at the bottom of the
Tab manager page - then press on New Tab

A

Why do you
consider it as a
problem?

Something is confusing, unclear or inconsistent hd

Figure 7.12. Description tab to collect types of usability defects, detailed explanations, steps to
reproduce, and failure qualifier.

153

Guided Wizard Defect Report Form

REPORTER SOFTWARE INFORMATION DESCRIFTION

ACTUAL RESULTS EXPECTED RESULTS

Actual Results:

There is no obvious indicator that shows new tab is
created. If you are notice carefully, only the number on
the tab icon (square box on the right side of URL bar) is
updated/ increased whenever you add a new tab.

However, if you were not aware of the existing number

of tabs open, you might not have known that a new tab
had been added.

Explain your challenges:

It took me some time to figure out if new tabs were
successfully added or not, and | did not know where to
find the existing open tabs. The only way you can know
if the tab was created is b¥_ pressing tab icon on the

right side of the URL bar. The Tab Manager experience
is really confusing.

How annoying this problem to you?

1 2 3 4 5
Motatall ™ ™) o Very much
Attach a file(s):

Choose File | & IMG_3567.JPG

(Please attach supplementary information such as a screenshots, video and audio)

Figure 7.13. Actual Results tab to collect actual output, task difficulty, emotions, and supplementary
information to support justifications.

154

Guided Wizard Defect Report Form

REPORTER SOFTWARE INFORMATION DESCRIPTION

ACTUAL RESULTS EXPECTED RESULTS

Expected Results:

There is an informative indicator other than the
updated number of open tabs.

How do you think this feature is supposed to work?

At least a message to indicate that new tab is
added.

Attach supporting material(s):

Choose File | no file selected

(Please attach supporting information such as sketch, ASCIl art, code, patch)

Figure 7.14. Expected Results tab to collect expectation behavior, solution proposals, and
supplementary information to support solution proposals.

7.2 Evaluation

This section describes the study conducted in order to evaluate the quality of usability defect
information collected using our proposed forms from the defect report reader’s perspective. We used
an expert judgment approach to evaluate the presence of specific usability defect information. The
form’s effectiveness in eliciting the usability defect information is beyond the scope of this research,
and therefore the aspect of usability, ease of use, or other aspects of our proposed reports were not

evaluated. This aspect will be evaluated in a follow-up experiment as discussed in Section 8.4.4. The

155

following subsections describe participant selection, problem selection, and protocol in conducting our

evaluation.

7.2.1 Hypotheses

We hypothesized that the use of proposed usability defect report forms would increase the quality of

the usability defect descriptions as rated by expert judges.

7.2.2 Participation Selection

In this study, three very experienced software development experts evaluated the information presented
in the Bugzilla defect report form and the proposed form. The evaluators had significant levels of
experience in industrial and academic development environments. In particular, all experts have more
than 10 years of experience in software development industries. At the outset of the study, two
evaluators had substantial experience with Bugzilla, and one had limited exposure to the Bugzilla

defect reporting tool. Table 7.3 summarizes the participated expert details.

Table 7.3. Experts who participated.

Evaluator Academic and Industrial Background

Evaluator 1 (E1) He has been an academic for approximately 25 years and has worked in the IT industry as a
programmer/ analyst and consultant. His research expertise includes software tools and techniques,
software architecture, model-driven software engineering, visual languages, software security
engineering, service-based and component-based systems, and user interfaces.

Evaluator 2 (E2) He is a senior IT professional with over 20 years experience. He specializes in software engineering
with a special emphasis on component technology and user-centered approaches.

Evaluator 3 (E3) He is an information technology expert with over 15 years of experience. He specializes in solution
architecture, mobile technology, and analysis of large data sets. He has extensive experience on open

source projects in relation to software testing, which will be very relevant to this study.

7.2.3 Problem Selection

We studied Firefox, Firefox for Android, and Eclipse Platform projects to understand the contextual
content of usability defect reports and the findings were used to design our new usability defect report
forms. To explore the generalizability of our usability defect report design for other open source
products, we decided to use the Firefox for iOS project. Firefox for iOS is a mobile web browser from

Mozilla for the iPhone, iPad, and iPod touch.

We selected ten usability defects from the Firefox for iOS project as case studies. These case

studies were then used for our evaluation. The ten usability defects were chosen in the following way:

156

* The usability problems were selected randomly from the 861 New defects (as of 21* March
2017). The decision to use defects with New status guaranteed that the defects had not been
examined by the software developers, and we have the possibility of reproducing the defects
and reporting them in our proposed form.

¢ The defects are tagged with Bugzilla usability keywords - ue, uiwanted, useless-UI, ux-
affordance, ux-consistency, ux-control, ux-discovery, ux-efficiency, ux-error-prevention, ux-
error-recovery, ux-implementation, ux-interruption, ux-jargon, ux-minimalism, ux-mode-
error, ux-natural-mapping, ux-tone, ux-trust, ux-undo, ux-userfeedback, ux-visual-hierarchy.
The rationale for using these developer-tagged keywords was to reduce selection bias, as the
software developers already assessed the validity of the defects and accepted the need for
fixing.

* The defects are reproducible in our iOS mobile device. This is because we wanted to rewrite
the usability defect descriptions using our defect report form and not bias them based on the

original descriptions submitted by the reporters.

7.2.4 Development of Case Studies

We chose five usability defect reports from Firefox for iOS projects. We considered two approaches to
select the report to reproduce: sampling randomly, or sampling only reports with GUI-related usability
defects. We chose the latter, since our goal was to reproduce the issue and rewrite the usability defect
descriptions, in which we found GUI-related usability defects are more objective and much easier to
reproduce in our iPhone. We read the defect report, understanding the problem context, and reproduced
the problem on our own until we found the reported problem. Then, we used our proposed usability
defect report forms to write the usability defect descriptions. For the purpose of the evaluation, only
plain text is displayed for both the original and reproduced defects according to the current Bugzilla
defect report template. The questions prompted in our new forms were not made available on the

reproduced defect reports. Figure 7.15 shows the five case studies we reproduced.

157

Bugzilla Report#1237631

Report Title:
Do not exit private mode on browser re-launch even if there are no private tabs to
restore

Description:
I am not satisfied with the existing Private Tab browsing feature. Currently, Firefox
browser only opens browser in normal mode, even though the last opened browser was in
Private mode.

Steps to Reproduce:
1. Press on Firefox browser icon.
2. Press the middle menu at the bottom of the Tab manager page — then press on
New Private Tab.
3. Repeat step 2 to open several private tabs.
Press on the Tab button (tiny purple box) on the right side of the URL bar.
5. Press the middle menu at the bottom of the Tab manager page — then press on
Close All Tabs.
6. Re-launch Firefox

N

Actual Results:

Firefox has opened in normal browsing. I am confused because normally I browse using
Private mode. Even though this feature design is not affecting my task, it is actually
affecting my browsing privacy.

Expected Results:
Firefox will open in private mode, similar to Safari browser.

Bugzilla Report#1231815

Report Title:
Irrelevant steps to add new tab

Description:
I am not satisfied with the steps to open a new Tab. The current steps are irrelevant
to speed up the process to add new Tab.

Steps to Reproduce:
1. Click on Firefox browser icon.
2. Go to any webpage. For example open http://ebay.com.au
3. When a webpage is open, open a new tab. Press the Tab button on the right side
of the URL bar.
4, Press the “+” button at the bottom of the Tab manager to add a new tab. On the
newly open page, open a new page, for example — http://gumtree.com.au

Actual Results:

To open new tab, user requires two steps (step 3 and step 4 above). Even though this
issue is not affecting my task, this is really annoying when I have to use only one
hand to hold the phone and use several tabs to look for something.

Expected Results:
Long-press the tab button to add new Tab. Using long-press button could provide an
easy way to interact with the web browser, especially when the user is moving.

158

Bugzilla Report#1145602

Report Title:
New About:Home tabs experience is confusing

Description:

I can't directly find tabs that have been opened. The newly added tabs are represented
as multiple blank/empty spots, which are hidden in multilayer page. User can create
multiple new tabs without realizing they are doing so. Intention to create a new tab
isn’'t clear.

Steps to reproduce:
1. Click on Firefox browser icon.
2. Go to any webpage. For example open http://ebay.com.au
3. Press the middle menu at the bottom of the Tab manager page — then press on
New Tab

Actual results:

There is no obvious indicator that shows new tab is created. If you are notice
carefully, only the number on the tab icon (square box on the right side of URL bar)
is updated/ increased whenever you add a new tab. However, if you were not aware of
the existing number of tabs open, you might not have known that a new tab had been
added. It took me some time to figure out if new tabs were successfully added or not,
and I did not know where to find the existing open tabs. The only way you can know if
the tab was created is by pressing tab icon on the right side of the URL bar. The Tab
Manager experience is really confusing.

Expected results:
There is an informative indicator other than the updated number of open tabs. At least
a message to indicate that new tab is added.

Bugzilla Report#1199983

Report Title:
Unable to scroll long page using scroll indicator

Description:

I have difficulty in manipulating object (scroll indicator) in the user interface.
When I open a really large page, like a Wikipedia page, it appears that I can only
scroll further down with the swipe gesture. The scroll indicator on the right page is
not able to grab.

Steps to reproduce:
1. Go to Wikipedia page and search for information, which may have long
information.
2. Touch the screen. You will see the scroll indicator on the right side.
3. Try to grab the scroll indicator and scroll down.

Actual results:

You are unable to scroll using the scroll indicator. Instead, you are scrolling using
swipe gesture. It took so much time for me to scroll to the middle of the page. I
spent literally 5 mins just with the swiping restore to get to the middle of the page,
because it seems that I can’t grab the scroll indicator on the right and move it down
with my finger to scroll faster like in other i0S apps.

Expected results:
The scroll indicator works as desktop webpage. User can grab the scroll indicator and
fast scroll to the up/ bottom of the page.

159

Bugzilla Report#1146389

Report Title:
Unclear how to access Reader View

Description:

I have difficulty in finding out Reader view icon. The reader View icon is not
persistently displayed when user scrolls down the page. In addition, the very small
Reader view icon and its color are not intuitive for user to discover.

Steps to reproduce:

1. Click on Firefox browser icon.

2. Go to google search and find some articles — for example search on “software
engineering”.

3. Select on one of the search results, and wait for the information page to be
loaded.

4. While the information is loading, scroll down the page.

5. Observe the “Reader View” icon and try to access Reader View.

Actual results:

When the information is loading and I scroll down the page, I couldn’t find any sign
to access Reader View. The “Reader View” icon is not immediately shown at the end of
the URL bar and the icon is not discoverable when you scroll down the page. I have to
scroll up to the very top of the page to find Reader View icon. This can be time
consuming if I have a very long page. Furthermore, the “Reader View” icon is very
small and the grey icon on the black background (in private browsing) is not
discoverable enough.

Expected results:

The “Reader View” icon should be triggered while you are in any part of the page. So
that user can access Reader View icon instantly without scrolling up to the top of the
page.

Figure 7.15. Five Firefox for iOS case studies that were reproduced from the original defect reports.

7.2.5 Protocol

In order to compare the quality of usability defect descriptions produced by current and proposed
defect report forms, we reproduced a set of usability defects and rewrote the defect descriptions using
our proposed form. For this purpose, we selected five usability defects (as described in section 7.2.4),
reproduced the usability defects in her own iPhone device, and wrote the defect description using the
proposed guided usability defect report form. Although both original and proposed defect report forms
contain specific contextual information (i.e., status, people, tracking, software information), the defect
descriptions given to evaluators contained minimal information. We only provided contextual
information about reproduction steps, actual and expected results, and explanation of the usability

defects. We limited the amount of detail provided to evaluators to ensure the evaluators were not

160

biased with a specific defect report format. The final copy of defect reports that were presented to the

evaluators was modified to prevent the identification of specific formats.

We used an independent judgment approach, in which the evaluators performed the evaluation at
locations and time (s) of their choosing. Each evaluator was given the following material (also included

in Appendix E).

* Five original usability defect reports of Firefox for iOS product

* Five usability defect reports of Firefox for iOS developed as case studies

The evaluators were required to read ten defect reports (five original Firefox for iOS defect reports
and five developed case studies) and evaluated the contextual information of each report on four
aspects. For each aspect, we evaluated whether the report provided or failed to provide a description
containing the aspect under consideration. Problems were evaluated in random order and it was not
made known as to which report format was used to record the usability defects. The four aspects we

used for the evaluation were adopted from [9], [63], and are described below:

Informative — According to Capra’s guidelines [11], informative usability defect descriptions
should describe the solution to the problem, the cause of the problem, and the usability issue involved
in the problem. Describing this information has been suggested as important to better understand and
fix the problem [11],[108]. This information should be supported with screen snapshots, pictures, video

and audio, usability design principles and/ or previous research.

Accuracy — Accuracy is measured in terms of how closely the problem can be reproduced by the
evaluators. Good defect descriptions should consist of a clear set of instructions that other readers can

use to reproduce the defect on their own machine.

Claim and rationale - In the absence of usability specialists to observe and verify usability defects
in open source projects, justification about why it was a problem [9] is very important to help software
developers understand the nature of the problem. The claim about the problem should justify the failure
qualifier criteria that violates user expectations, including missing, incongruent mental model,
irrelevant, wrong, better way, and overlooked. When arguing for a particular claim, support for

rationale and evidence is valuable in confirming the validity of the problems.

161

Impact — The defect description should contain something valuable that highlights the priority of
defects that need to be fixed. For this purpose, defect reports should describe the impact of the problem
on business goals (i.e., costs, time loss), user task, and human emotion [4]. Impact on the user’s task
explains about interruptions of task performance, unnecessary steps to workaround the problems, or the
user struggling with task completion, while human emotion places emphasis on confusion, frustration,

annoyance, and uncertainty [104].

For each of these aspects, the evaluators were given eleven questions as listed in Table 7.4. Each
evaluation aspect was given a score of 1 if the evaluators thought that the usability defect report
“completely described”, 0.5 if the usability defect report “partially described”, and O if the usability
defect report “do not describe” the evaluation aspects. The total quality score was calculated by

summing up the scores, which ranged between 0 (low quality) and 11 (high quality).

Table 7.4. List of questions in the survey evaluation.

Aspect Questions Answer

Informative 1. Does the defect report offer proposals for solutions? For example, the | Yes/ No/ partially
descriptions provide alternatives and tradeoffs, and supplied rationale for
the recommendations [9].

2. Does the defect report describe the cause of the problem, including a
justification of what posed a problem, including system components that
are affected or involved?

3. Does the defect report describe the main usability issue involved in the
problem? For example, a description about what is wrong with the
interaction architecture, interface and user task design.

Accuracy 4. Has the defect report explained in detail step by step how to reproduce the | Yes/ No/ partially
problem, including user’s navigation flow through the system?

5. Are you able to reproduce the problem on your own device and
environment?

6. Were the actual results you observed similar to the one in the defect
description?

Justified 7. Does the defect report offer a justification for why the reporter thinks that it | Yes/ No/ partially
was a problem?

Impact 8. Does the defect report explicitly mention what poses a problem to the user? | Yes/ No/ partially

9. Does the defect report describe the impact of the problem on business
effect, impact on the user’s task, and importance of the task?

10. Does the defect report describe reporters’ emotion, feeling, or reactions
with regards to the issues?

11. Does the defect report mention how often the problem occurred or if other

users experienced the same problem?

7.2.6 Analysis

We hypothesized that using our proposed usability defect report forms would increase the quality of
the usability defect reports as rated by evaluators — in terms of capturing more information. To test this

hypothesis, we conducted a two-way 3 (evaluator: evaluator 1, evaluator 2, and evaluator 3) x 2 (type

162

of report: original, and case study) mixed ANOVA with repeated measures on the type of report
variable. Additionally, we also measured inter-rater reliability among evaluators. We used SPSS
(version 23) to conduct the repeated measures ANOVA analysis, and Microsoft Excel 2011 to calculate

the Fleiss Kappa inter-rater reliability.

7.3 Results

7.3.1 Repeated Measures ANOVA

Means are based on individual ratings given by each evaluator, rather than the sums of the three
ratings. Evaluators are required to rate five original Firefox for iOS usability defect reports, and five
Firefox for iOS usability defect reports that have been rewritten using the proposed content, called as

case study.

Prior to conducting repeated measures ANOVA, Mauchly’s sphericity test was conducted to
measure the variances of the differences between all combinations of related groups. As shown in
Table 7.5, the main effect of evaluator does not significantly violate the sphericity assumption because
the significance value is greater than 0.05, W= 0.247, X (2) =4.20, p > 0.05. Therefore, the F-value for
the main effect of evaluator (and its interaction with the between-group variable defect type) does not
need to be corrected for violations of sphericity. Since type of report has only two categories, no

significance test is needed, W=1.

Table 7.5. Mauchly's Test of Sphericity®

Epsilon®

Greenhouse-[Huynh-[Lower-
(Within Subjects Effect [Mauchly's W [Approx. Chi-Square df Sig. |Geisser Feldt [bound
[Evaluator .247 4.201 2 122 1570 .648 [.500
Report 1.000 .000 0 . 1.000 1.000 |1.000
[Evaluator * Report .886 .364 2 .833 [.897 1.000].500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional
to an identity matrix.

a. Design: Intercept

Within Subjects Design: Evaluator + Report + Evaluator * Report

b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests
of Within-Subjects Effects table.

163

Table 7.6. Tests of Within-Subjects Effects.

Type 111
Sum of Mean Partial Eta
Source Squares df Square F Sig. Squared
Evaluator Sphericity Assumed 40.617 2 20.308 14.272 .002 781
Greenhouse-Geisser 40.617 1.141 35.610 14.272 .014 781
Huynh-Feldt 40.617 1.295 31.364 14.272 .010 181
Lower-bound 40.617 1.000 40.617 14.272 .019 781
Error(Evaluator) Sphericity Assumed 11.383 8 1.423
Greenhouse-Geisser 11.383 4.562 2.495
Huynh-Feldt 11.383 5.180 2.198
Lower-bound 11.383 4.000 2.846
Report Sphericity Assumed 70.533 1 70.533 59.816 .002 937
Greenhouse-Geisser 70.533 1.000 70.533 59.816 .002 937
Huynh-Feldt 70.533 1.000 70.533 59.816 .002 937
Lower-bound 70.533 1.000 70.533 59.816 .002 937
Error(Report) Sphericity Assumed 4.717 4 1.179
Greenhouse-Geisser 4.717 4.000 1.179
Huynh-Feldt 4717 4.000 1.179
Lower-bound 4.717 4.000 1.179
Evaluator * Sphericity Assumed 40.417 2 20.208 9.194 .008 697
Report Greenhouse-Geisser 40.417 1.795 22.520 9.194 .011 697
Huynh-Feldt 40.417 2.000 20.208 9.194 .008 697
Lower-bound 40.417 1.000 40.417 9.194 .039 .697
Error(Evaluator* Sphericity Assumed 17.583 8 2.198
Report) Greenhouse-Geisser 17.583 7.179 2.449
Huynh-Feldt 17.583 8.000 2.198
Lower-bound 17.583 4.000 4.396

Table 7.7. Post-hoc tests — Multiple comparisons for evaluator.

95% Confidence Interval
(I) Evaluator (J) Evaluator | Mean Difference (I-J) | Std. Error | Sig. | Lower Bound | Upper Bound
El E2 -1.4500 66958 | .122 -3.1733 2733
E3 -2.8500" .66958 | .001 -4.5733 -1.1267
E2 El 1.4500 66958 | .122 -2733 3.1733
E3 -1.4000 .66958 | .142 -3.1233 3233
E3 E1l 2.8500" .66958 | .001 1.1267 4.5733
E2 1.4000 .66958 | .142 -.3233 3.1233

Based on observed means.

The error term is Mean Square(Error) = 2.242.

*. The mean difference is significant at the

As shown in Table 7.6, there was an evaluator main effect, F(2,5) = 14.27, p < 0.001, and a report
type main effect, F(1,5) = 59.82, p<0.01, and there was also an evaluator X report type interaction,

F(2,5) = 20.21, p < 0.01. For evaluator effects, the results suggested that if type of defect report is

ignored, some evaluators still rated significantly differently to others.

To find the nature of this effect, we performed post hoc tests. The multiple comparisons for the

main effect of evaluator corrected using Bonferroni adjustments are shown in Table 7.7. As can be

164

seen, the significant main effect reflects a significant difference (p<0.01) between E1 and E3 (evaluator
1 and evaluator 3) but not between E1 and E2 (evaluator 1 and evaluator 2) and E2 and E3 (evaluator 2
and evaluator 3). This indicates that the quality scores given by E1 and E3 had an effect on ratings of

both original and case study defect report quality.

In terms of report type effects, the results suggested that if all other variables are ignored, case
study defect report quality ratings were significantly different as compared to the original defect report.
As depicted in Figure 7.16, quality of case study defect reports is rated higher than original defect
report, regardless of who the evaluators are. Also, as we can see, the relationship between mean quality
scores and evaluator is different for original and case study defect reports. For original defect reports,
mean quality scores increase from evaluator 1 to evaluator 3. While the original defect reports show a
slightly large variation in mean quality scores for different evaluators, case study defect reports had
much less variation. However, mean quality scores rated by evaluator 3 is higher for both original and
case study defect reports. For case study defect reports, mean quality scores increased from evaluator 1
to evaluator 2, and decreased from evaluator 2 to evaluator 3. Overall, the mean quality scores for the
case study defect reports, M = 8.77, SD = 1.58, were significantly higher than for the original defect

reports, M= 5.70, SD = 2.67, which supported our hypothesis.

In summary, even though the quality of usability defect descriptions is significantly influenced by
evaluator effect, overall assessment showed that usability defect descriptions written using our
proposed forms can capture more information than the usability defect descriptions in the three OSS

projects studied.

10.00 Report Type
— Qriginal
w Case Study
g
=]
o -
c‘% .00) /S
/
b=
2 S/
&
P rd
] y4
Y5 6.00
Q s
z /
=
o
W
=
g
2 4.00+
= ’
T T T
1 2 3
Evaluator

Figure 7.16. Mean usability defect report quality scores as rated by three evaluators.

165

7.3.2 Reliability Analysis

Based on the previous analysis, since the evaluator has statistically proven to have significant effect on
the scores of usability defect report quality, we further investigated the level of agreement among the
three evaluators. This is because of the diverse experience among evaluators and the different
interpretation of usability defect report content could affect the confidence of the study results [107]. In
this study, we used percent agreement to measure the degree of agreement among evaluators, which is

called inter-rater reliability.

Table 7.8 summarizes the inter-rater reliability results. For each usability defect report, we
measured the percent agreement of each evaluation aspect (Q1 — Q11). We calculated the percent
agreement for each column and calculated averages of the rows. To understand this procedure, consider
Report 1 in Table 7.7. Since in this analysis we only have three evaluators and the scores are limited to
three values, to obtain percent agreement we only need to count the number of evaluators that have the
same score and divide by the number of evaluators. For Report 1, as an example, the three evaluators
scored 0.5 for Q1 and therefore, the percent agreement was computed as 3 divided by 3, which is 1.00
— perfect agreement. For QS5, two evaluators scored 1, and this given the percent agreement of 0.67 for
Q2 (2 divided by 3). The inter-rater reliability for Report 1 was computed by summing up the percent
agreement of Q1 until Q11 and divided by the number of questions, which is 11. This resulted in an

inter-rater reliability of Report 1 of 0.79.

In Table 7.8, it can be seen that, on average, the agreement of case study usability defect report
score is higher than the original usability defect report. The highest agreement was observed in case
study usability defect Report#2 and Report#9, which exhibits overall inter-rater reliability of 88% each,
and the lowest inter-rater reliability of 48% for Report#6. The case study agreement, which is more
than 80%, means that only about 20% of the scores rated by the evaluators were erroneous because
only one of the evaluators can be corrected when there is disagreement. On the contrary, about 20%-

50% of the scores in original defect reports disagreed.

The highest agreement of evaluation aspects was observed in Q6. Two and four of original and
case study usability defect reports, respectively had inter-rater reliability of 100%. Interestingly, the

three evaluators were in perfect agreement, inter-rater reliability of 100% when scoring Q8 —

166

justification of impact in the five-case study usability defect reports. The percent agreement statistics

can also be of benefit in identifying evaluation aspects (Q1 — Q11) that may be problematic.

Note that Table 7.9 shows that the three evaluators were most in disagreement when scoring Q2
and Q7. The evaluators achieved 0% agreement for Q2 and Q7 in three out of the five original
usability defect reports. These evaluation aspects that are related to justification of cause of the
problems and failure qualifier may warrant scrutiny to identify the cause of such low agreement in its

scoring.

Table 7.8. Percent agreement across three evaluators evaluated the quality of usability defect reports.

Evaluation Aspects

Report Evaluators IRR
01 02 03 04 05 06 07 08 09 010 011
1 EI 0.5 1 1 0.5 0 0 0 0.5 0 0.5 0
E2 0.5 1 1 0.5 1 0.5 0 1 0.5 0.5 0 0.79
E3 0.5 1 1 1 1 0.5 1 1 0 1 0
% Agreement 1.00 1.00 1.00 0.67 0.67 0.67 0.67 0.67 0.67 0.67 1.00
4 EI 0.5 0 1 0.5 0 0 0 0.5 0 0 0.5 0.55
E2 0.5 0.5 1 0.5 0 0 0.5 1 0.5 0 0
E3 1 1 1 1 1 1 1 1 0 0
% Agreement 0.67 0.00 1.00 0.67 0.67 0.67 0.00 0.67 0.67 1.00 0.00
6 El 0 0 0 1 0 0 0 0 0 0 0
= 0.48
.gﬂ E2 0.5 0.5 0.5 1 0 0.5 0.5 0.5 0.5 0.5 0
'5 E3 1 1 1 1 0 0 1 0.5 0 0
% Agreement 0.00 0.00 0.00 1.00 1.00 0.67 0.00 0.67 0.67 0.67 0.67
8 EI 0.5 0.5 0.5 0.5 0.5 1 0 0 0 0 0.61
E2 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0 0 0
E3 0.5 1 1 1 1 1 1 1 0 0.5
% Agreement 1.00 0.67 0.67 0.67 0.67 0.67 0.00 0.00 1.00 0.67 0.67
10 El 0 0 0.5 0.5 1 1 0.5 0.5 0 0 0.55
E2 1 0.5 1 0.5 0.5 0.5 0.5 1 0.5 0 0

E3 1 1 1 1 1 1 1 1 1 1
% Agreement 0.67 0.00 0.67 0.67 067 0.67 0.67 0.67 000 0.67 0.67

2 El 0.5 1 1 1 1 1 1 1 0.5 1 0
E2 0.5 0.5 1 1 1 1 1 1 1 1 0 088
E3 1 1 1 1 1 1 1 1 0.5 1 0.5
% Agreement 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 0.67
3 El 1 0.5 1 0.5 1 1 0.5 1 0 0.5 0
E2 1 0.5 1 1 1 1 1 1 1 1 0 0.73
E3 1 1 1 0.5 0 0 0 1 0 1 0
% Agreement 1.00 0.67 1.00 0.67 0.67 0.67 0.00 1.00 0.67 0.67 1.00
> 5 El 1 1 1 1 1 1 1 1 0 0.5 1
=] 0.73
& E2 1 0.5 1 1 1 1 0.5 1 0.5 1 0.5
% E3 1 1 1 1 0 0 1 1 0 0 1
© % Agreement 1.00 0.67 1.00 1.00 0.67 0.67 0.67 1.00 0.67 0.00 0.67
7 El 0 1 1 1 0 0 0.5 1 0 1 1
E2 1 0.5 1 1 1 1 1 1 0.5 0 0.5 070
E3 1 1 1 1 1 1 1 1 1 1 1
% Agreement 0.67 0.67 1.00 1.00 0.67 0.67 0.67 1.00 0.00 0.67 0.67
9 EI 1 0.5 1 1 1 1 1 1 1 1 1
E2 1 0.5 1 1 1 1 1 1 1 1 0.5 088
E3 1 1 0 1 1 1 1 1 0.5 1 1

% Agreement 1.00 0.67 0.67 1.00 1.00 1.00 1.00 1.00 0.67 1.00 0.67
* IRR — Inter Rater Reliability

167

Table 7.9. Number of scores that disagree with the majority of evaluators’ scores

Is an evaluator an Outlier? Report 1 Report 2 Report 3 Report 4 Report 5
El | E2 | E3 | El | E2 | E3 | ElI | E2 | E3 | El | E2 | E3 | El1 | E2 | E3
#of unlike responses: 3 1 3 0 2 2 1 2 3 1 1 4 0 4 2

Table 7.9. Number of scores that disagree with the majority of evaluators’ scores (Continue)

Is an evaluator an Outlier? Report 6 Report 7 Report 8 Report 9 Report 10
El | E2 | E3 | ElI | E2 | E3 | ElI | E2 | E3 | El | E2 | E3 | El1 | E2 | E3
#of unlike responses: 1 3 1 4 3 0 1 1 5 0 1 3 3 2 4

As the post-hoc test in section 7.3.1 revealed, evaluator E1 and E3 had a significant effect on the
quality scores. As Table 7.9 shows, E1 and E3 had an excessive number of outlier scores, in which they
frequently gave scores different from the other evaluators. For example, E3 disagreed with the other

two evaluators’ scores five times when assessing Report#8.

In summary, the high level of agreement between evaluators who assessed the case study usability
defect descriptions suggests that our proposed usability defect report forms is able to improve the
clarity of contextual information. The low level agreement for original usability defect descriptions is
an indicator that the defect information presented in the current open source usability defect reports is

unclear, which leads to different interpretation and assessment between evaluators.

7.4 Threats to Validity

7.4.1 External Validity

One possible threat to the external validity is regarding the choice of evaluators and number of
evaluators that can affect the outcome of the evaluation. Previous studies have reported that evaluators’
background can play a significant roles on the outcome of software testing [14], [87], and we have seen
this potentially affect the quality of the assessment defect report as well. We plan to conduct different
evaluation methods in future to test the outcome of this study. For example, we plan to replicate the

study conducted by Capra [63] with different settings.

7.4.2 Internal Validity

Subject selection bias represents one possible threat to internal validity. In our evaluation, we only used

ten Firefox for iOS usability defect reports. OSS projects may have different report content and

168

structure, and the same evaluations on different OSS projects may yield different results. Additionally,
the evaluation was performed on a smaller number of case studies (5 self-constructed case studies

described in Chapter 7.2.4), which further reduce the generality of our results.

7.4.3 Construct Validity

For the evaluation of our proposed usability defect reporting forms, we developed the instruments
ourselves. We have rewritten the original five usability defect descriptions using our proposed forms as
case study defect reports. One possible threat might be the reliability of the evaluation. However,
instead of copying the original information and adding dummy information to the new form, we
reproduced the defects on our machine and wrote the usability defect description using our own
experience and interpretation. This reproduction process may affect the amount of information reported
as specific information was requested. The original defect reports were used as the guidelines to
reproduce the problems. Hence, we consider the instruments as a reliable instrument for evaluating the

quality of information between original and case study defect reports.

Furthermore, the appropriateness of the assessment metrics used to rate the quality of information
threatens the construct validity. To mitigate this threat, we adopted Capra’s well-accepted guidelines

[11] as grounds for quality assessment metrics used for evaluation.

7.5 Discussion

The results from ANOVA statistics and reliability analysis supported our hypothesis. The expert
judgment approach (discussed in Section 7.3.1 and 7.3.2) has demonstrated an improvement in the
quality of information when usability defects are reported using the proposed usability defect report
forms. There are two benefits that we identified from the proposed form. As shown in Figure 7.17,
usability defect descriptions rewritten using our forms received full score (score =1) for Q8 — user
difficulty. Other attributes, such as Q3 - description of usability issues, Q4 - steps to reproduce, Q5 -
reproducibility, Q6 actual output, Q7 - failure qualifier, and Q10 — human emotions were also received
high scores than those original usability defect reports written on generic report templates. This finding
shows that by separating attributes into multiple instances, giving hints and examples could provide
competence assistance for non-technical reporters to construct more meaningful usability defect

descriptions.

169

From a defect report readers’ perspective, the structured contextualized attributes help software
developers, for example, to easily identify the presence of key defect information. From Figure 7.17
below, the high scores given for each evaluation criteria of case study defect reports suggested that the
key information could be easily identified when a defect is described in a contextualized context. This
is necessarily important in OSS development, where most software developers are “non usability-
savvy” and work for limited time to read concise defect description in order to understand the usability

issues so that they can directly point the solution to fix the issues.

ReportID

reporr2 | Il NS I IS NS B B .
wors I D B e L m L m
resoirs [D B D s L
reporr7 | . J . |
rerorro [DA N Il BNl BB BB ==
0 1 2 30 1 2 0 1 2 3 40 1 2 30 1 2 3 40 1 2 3
Q Q2 Q3 Q4 Q5 Q6
Report 1D
reporT2 [N INEE IS e
reporT3 | B Bl I Il
erorrs I BN o m I e
o7 [NI 2 [e I e
reporT:s [D D DN
0 1 2 30 1 2 3 40 1 2 0 1 2 30 1 2
Q7 Q8 Q9 Q10 o

- Evaluator 1
- Evaluator 2
- Evaluator 3

Figure 7.17. Case study defect reports content evaluation scores. On average, the three evaluators in
agreement on the presence of Q2 — assumed cause, Q4 — steps to reproduce, Q7 — failure qualifier, and

Q8 — user difficulty

Through our analysis, we also observed that Q2- assumed cause and Q7 — failure qualifier was
difficult to identify in usability defect descriptions and received different interpretation between
evaluators. As we discussed in Chapter 4, the cause of the problem is rarely found in the usability
defect descriptions. Indeed, information such as stack traces, Ul event traces, and error logs, which are
useful for software developers to identify the root cause of the problem, are the most difficult type of

information to be provided by non-technical reporters.

Many other works have been devoted to capture stack traces, Ul event traces, error logs, and
monitoring user interactions [90], [91], [109]-[112], [110]-[112], but most of them are complicated for

non-technical reporters. Furthermore, given the nature of the OSS projects, where users are involved on

170

a voluntary basis, it would be tedious and time-consuming to manually collect this kind of information.
As a solution to this, when designing new defect report forms, attributes that are related to Q2 and Q7
might need to be rephrased or redefined to include other ways of capturing and presenting this

information.

In relation to Q7, however, in the five-case study usability defect reports that we developed for
evaluation purposes, we demonstrated the presence of Q7 — failure qualifier using plain text, instead of
using the predefined values (missing, wrong, incongruent mental model, irrelevant, better way, and
overlooked) as suggested in our prototype design. Therefore, we could not justify if the predefined
values that we suggested in the new usability defect report forms could help the reporters to describe
the failure qualifier that triggered them to report the usability defects. Future evaluation on reporting
usability defects using our forms could provide suggestions on a suitable input format to capture this
information. This is because the correct choice of input format could help to narrow down the
information needed by software developers. In some cases, using plain text to express a reporter's
feelings and difficulties on usability issues may not be convincing. As such, using a rating scale to rate
a user’s difficulties, feelings, and emotions, for example, could be more objective for software
developers to assess the priority/ severity of the problem to be fixed. Nevertheless, the use of plain text
input cannot be disregarded — especially in allowing reporters to write their concerns about usability,
which may not be relevant from a software developer perspective, but can be useful resources for

future references.

The results of this research also suggest that the interpretation of usability defect descriptions is
subject to an evaluator effect, similar to other research investigating evaluator effect when finding
software defects [48], [87], [113]. There are two explanations regarding the evaluator effect in
assessing usability defect report quality. First, as different evaluators may understand the problems
from different perspectives, the assessment scores tend to vary. If evaluators were more reliable,
involving more evaluators would not result in a substantial difference of defect report quality scores

because the evaluators would rate roughly the same scores.

Secondly, the evaluators’ personal experiences and their familiarity with the system under test may
introduce subjective interpretation [113]. This is because even though the evaluators read the same
usability defect descriptions and used the same assessment guidelines, the quality scores were still

significantly different. Consider Report#1144758 used in our evaluation study (see Figure 7.18). For

171

this quality assessment, E1 had score of 1, while E2 and E3 had 5 and 6.5 scores, respectively. The
obvious difference was observed in rating the three aspects QI- solution proposal, Q2 — assumed
cause, and Q3 — description of usability issues. While E1 considered Report#1144758 did not contain
this information, E2 and E3 agreed that this information is present although the level of detail of this
information is variedly rated by E2 and E3. Research on evaluator effects could be extended to
understand specific skills, competencies, and abilities of reporters to write a good usability defect

description.

Bugzilla Defect#1144758

Report Title:
Setting icon not easily discoverable

Description:
Settings icon is not easily discoverable since it is ‘buried’ down a level in the
Tabs screen.

Steps to Reproduce:
1. Press on Firefox browser icon.
2. Find Setting icon in the About: Home page.
3. Press the middle menu at the bottom of the Tab manager page.
4. Find Setting icon.

Actual Results:

The Setting icon cannot be found on the About: Home page. The Setting icon is
exist in the Tabs screen and user have to swipe to the next screen. In this case,
I have to perform unnecessary steps to find the icon, and it is wasting my time.

Expected Results:
The Setting icon should be easily discoverable without too many steps to find the
icon.

Figure 7.18. Report#1144758 of Firefox for i0S

7.6 Summary

Through a series of studies, we have investigated challenges and limitations experienced by reporters
in reporting usability defects (Chapter 1), information needs by software developers when fixing
usability defects (Chapter 4), and factors influencing usability defect reporting (Chapter 5). Results
from these studies were extracted as desirable features of new open source usability defect report forms
to facilitate open source communities, especially non-technical reporters to identify, understand, and
report usability defects. We then evaluated the proposed usability effect report forms in the context of

quality of information using an expert judgment approach. The results from the evaluation suggest that

172

by using multiple attribute instances to capture only one value per attribute could improve the quality

of information presented in the usability defect descriptions.

This research represents a first step in investigating a guided wizard reporting form approach for
better capturing usability defect descriptions. Further research is necessary to understand if such guided
forms could benefit experienced reporters as well as novice reporters, in terms of ease of use, and the
nature of the problems reported. Additionally, further research is also necessary to understand if the
information captured is in accordance to the information needs of software developers and whether the

information is useful for software developers in prioritizing and fixing usability defects.

173

8 Conclusions

This chapter concludes this thesis by presenting a summary of the work carried out answering the
thesis key research questions. It discusses the contributions of this research in the context of academic
and industrial practice, reports the lessons that we have learned from our experience, and addresses
some general limitations in the design of the usability defect classification taxonomy and new usability

defect report form. The chapter ends with discussing directions for possible future work.

8.1 Research Summary and Contributions

A goal of this thesis was to develop a structured usability defect report form by introducing a set of
attributes adapted from usability engineering studies, so that it can assist open source communities with
limited usability knowledge to better report meaningful usability defect descriptions. The research also
addressed the challenges identified in Section 1.2 about the inappropriateness of current defect report
forms to report usability defects, and the insufficient attributes and terminology to describe usability

defects.

The research was carried out in three stages. The first was a review of the literature on usability
defect reporting. Secondly, surveys of software development practitioners and software defect
repositories mining were conducted, which identified the desirable features to the new usability defect
report forms. Finally, a new usability defect taxonomy and new usability defect report forms were
designed and evaluated. A summary of the research, key findings and contributions found at each stage

has been provided in the following sections.

8.1.1 A Review of Usability Defect Reporting

The aim of the literature review was to understand the state of the art in usability defect reporting from
both software engineering and usability engineering studies. The review consisted of three parts. The
first part reviewed the mechanisms to track and manage usability defects, format and content, and
guidelines to assist usability defect reporting process. The second part investigated the use of usability
defect data for improving software defect quality and management. The third part analyzed challenges

in existing usability defect reporting processes and tools.

174

In managing usability defects, we identified three types of mechanisms used to report these
defects, namely tool-based reporting, end-user reporting, and modeling-based reporting. Tool-based
reporting is the most widely stated mechanism in the literatures due to its features that can facilitate
data collection and process feedback instantly. Typically, usability defect reports are presented in
written documents with a wide variety of attributes. Among the thirteen written document formats we
identified, structured web-based forms are the most discussed type of defect report format in the
literature. However, reporting a usability defect using this format can be impacted by information
overload, lack of checking of input, and bias due to form content. Conventional reports, on the other
hand, offer richer data but often provide heavy-weight documentation. Regardless of the format used,
the problem description, severity, context, and redesign description were the top four attributes
commonly used to describe usability defects. While a few guidelines were available to assist reporters
to better describe usability defects, Capra’s guideline is the most common guideline used by

researchers to write usability defect descriptions and to measure usability defect report quality.

In previous empirical studies, many have shown significant interest in using data from defect
reports to improve software quality. Based on the commonalities of these studies, we identified five
areas that studied usability defect data: (1) measuring usability defect report quality, (2) understanding
usability defect characteristics, (3) identifying duplicate usability defect report, (4) estimating effort,
and (5) discussing usability defect resolution. The most commonly used defect attributes across these
research areas were problem description, impact, and title/ summary. Attributes rarely used were type
of defect, likely difficulty, confidence, priority, software context, reporter, violated heuristic, business
goals, assignee, milestone, time to fix, and defect fixes. Research on classification and defect
duplication favourably used title/summary and description, while research on defect report quality

often used observable user actions, impact, cause of the problem, and supplementary information.

The literature review also revealed some challenges in reporting usability defects. Most of the
challenges were due to limited support of current defect reporting tools to report, track, and manage
usability defects. A generic defect report form, on the other hand, caused confusion to some defect
reporters in reporting the information needed by the software developers. In fact, the differences
between defect reporter and software developer points of view have resulted in information mismatch
and impacted the prioritization of usability defect severity. Other challenges were related to limited

skill and experience of reporters in completely describing usability defects, inappropriate testing

175

techniques to collect necessary usability defect information, and lack of specific guidelines to define

specific information that should be reported.

This SLR study contributes in two ways. First, it highlights current practices, key open issues and
limitations with respect to usability defect reporting and serves as a guide to future research. Second,
evidence from the review helps open source communities to understand which information is important

when describing usability defects.

The detailed findings of this SLR - “Reporting Usability Defects: A Systematic Literature

Review,” have been published in IEEE Transactions of Software Engineering [114].

8.1.2 Development of New Usability Defect Report Forms

The development of new usability defect report forms was divided into two steps. Step one focused on
collecting desirable features of the usability defect forms through web surveys and software defect
repositories mining. Step two involved the development of open source usability defect classification
taxonomy adapted from UPT. The following subsections summarize the approach taken during each

step, present the findings, and outline their contributions.

8.1.2.1 Collecting Inputs for Designing New Usability Defect Report Forms

To assist in developing new usability defect report forms, two studies were conducted. In the first
study, we surveyed software development practitioners in both open source communities and industrial
software organizations. The aim of the survey was twofold. First, the survey was conducted to identify
information frequently supplied by defect reporters to report usability defects, and information needed

by defect reporters to fix usability defects.

Our analysis of 147 responses showed a substantial gap between the information provided by
defect reporters and the information needed by software developers to fix usability defects. When
describing usability defects, defect reporters often supplied actual output, expected output, and steps to
reproduce, while usability-related information such as violated heuristics, design principles, and impact
were rarely provided. While software developers considered cause of the problem as the most helpful

information for them to fix usability defects, defect reporters ranked cause of the problem as the most

176

difficult information to provide followed by usability principle, video recording, Ul event trace, and

title.

Secondly, the survey also investigated the five factors that we speculated have influence on the
quality of usability defect reports — the role of the reports, reporters’ knowledge and experience, defect
discovery methods, and usefulness of automation tools. We found usability defects reported by
customers typically got reviewed and fixed faster. The detailed findings of this survey were published

in three separate papers:

* “Reporting Usability Defects: Limitations of Open Source Defect Repositories and
Suggestions for Improvement” published in the Proceedings of the 24™ Australasian Software
Engineering Conference (ASWEC 2015) [17];

* “Reporting Usability Defects — Do Reporters Report What Sofitware Developers Need?”
published in the Proceedings of the 20™ International Conference on Evaluation and
Assessment in Software Engineering (EASE 2016) [115];

* “What Influences Usability Defect Reporting? — A Survey of Software of Development
Practitioners” published in the Proceedings of the 23™ Asia Pacific Software Engineering

Conference (APSEC 2016) [116].

The second study focused on software defect repositories mining. In this study, we mined 377
developer-tagged usability defect reports from Mozilla Thunderbird, Firefox for Android, and Eclipse
Platform to confirm the findings of previous survey on the information provided by software

development practitioners when reporting usability defects.

Our findings demonstrate a mismatch between what software development practitioners claimed to
provide when reporting usability defects, and the information that appears in the defect reports. For
steps to reproduce, for example, while we found this information less reported in Mozilla Thunderbird,
Firefox for Android, and Eclipse Platform, software practitioners in our previous survey claimed that
they always provided this information while reporting usability defects. A paper describing this work

was published:

* “Analysis of the Textual Content of Mined Open Source Usability Defect Reports” published
in the Proceedings of the 24™ Asia Pacific Software Engineering Conference (APSEC 2017)

[117].

177

The findings from these two studies have important implications for future research and practice of
OSS development. Through these studies, researchers can find characteristics, open issues, and
understand the nature of describing usability defects, which can be valuable for improving defect
reporting processes and tools. For practitioners, especially software testers, it provides a general guide
about the important defect attributes that should be described when reporting usability defects in order

to receive faster defect resolution time.

8.1.3 Revising Usability Defect Classification Model

Based on the review of existing usability defect classification models and our experience of analyzing
377 open source usability defects, we found some limitations in these models. First, the lack of
contextual information in open source usability defect descriptions lead to misinterpretation of the
problem, in which the defect report readers had made assumptions and self-judgment. Second, the
absence of formal usability evaluation methods in OSS development makes it difficult to understand
the problematic user tasks, particularly in assessing the defect severity and impact to the users. In fact,
it is quite impossible to justify what triggered the problem as suggested in the usability-ODC
framework [95]. Third, well-known usability classification models such as UPT [12], UAF [3] and
model-based framework [94] are too complex for open source communities with limited usability
knowledge. Low involvement of usability experts in OSS development makes it impossible to adopt

such a comprehensive model.

Considering these limitations, we revised the UPT [12], GUI fault model [76], and usability-ODC
framework [95] to suit the needs of the OSS development environment. The aim of our new OSUDC
model is to understand and classify usability defects based on the content of defect reports submitted
by open source communities, which do not formally conduct usability evaluations. A total of 377
developer-tagged usability defect descriptions were analyzed from Mozilla Thunderbird, Firefox for
Android, and Eclipse Platform projects. The analysis did not impact OSUDC development directly,
however it was used to construct the subcategories of the primary categories adapted from [12], [76],
[95]. The defect descriptions were read and organized according to the primary categories, and were
then re-examined and grouped according to commonalities to form a set of subcategories. Two primary
categories and five subcategories were added in our revised OSUDC, as the usability defect

descriptions could not be classified according to the original classification. The resulted hierarchical

178

structure of OSUDC contains three components (defect, user difficulty, and failure qualifier), 10

primary categories, and 28 subcategories, respectively.

A web based survey evaluation was conducted to assess the reliability of the revised OSUDC to
classify usability defects. Twelve evaluators from industry and academia with varying degrees of
experience in software development and usability participated in the study by classifying 10 usability
defects that were randomly selected from the group of 377 usability defects. Kappa statistics was used
to assess the level of agreement among evaluators. The findings of the OSUDC reliability study
showed that the evaluators’ agreement for the defect category component was the highest, and the

lowest was for the failure qualifier component.

The primary contribution of our revised OSUDC is to enable software developers and defect
reporters to understand, describe, and analyze usability defects. Each category in the revised OSUDC
contains explanations and sample defects from real-world OSS projects. Usability defects that are
classified using OSUDC could improve open source defect management, particularly to facilitate
triaging processes identifying similar solutions for the same problems, suitable resources to fix the
problems, and prioritizing defect correction. From the research perspective, this work contributes to the
body of knowledge by incorporating a cause-effect relationship, which was not previously considered

in the usability engineering studies.

8.1.4 Usability Defect Report Form Evaluation

Our proposed usability defect report forms contain four main criteria based on the findings of literature
reviews, online surveys, and software defect repositories mining: 1) each attribute captures only one
value, 2) one attribute is explained with multiple instances, 3) attributes are prompted when relevant to
the reporter’s information needs, and 4) user difficulties are measured using objective scales. These

criteria were prototyped using Jotform, based on the current Bugzilla defect report layout.

The practical use of the proposed forms to capture meaningful usability defect descriptions was
evaluated using an expert judgment approach. Our evaluation focused on comparing the quality of
information between the original usability defect reports and the case study defect reports reproduced
on our proposed forms. Using the guided defect report forms, reproduction of usability defects were

constructed systematically and the multiple attribute instances were found sufficient to capture

179

important information and giving hint to defect reporter; although not all attributes requested in the
forms could be provided. The case studies also provide useful information on the usage of predefined
usability defect categories in identifying usability defects that have common characteristics. The
results from the evaluation suggest that by using multiple attribute instances to capture only one value

per attribute could improve the quality of information presented in the usability defect descriptions.

8.2 Lessons Learned

In this section, we discuss practical challenges, experiences, and selected lessons we learnt in the five

research studies that we conducted during this PhD.

8.2.1 Getting Ethics Approval for Conducting Online Surveys

In accordance to Swinburne research integrity, ethics approval must be sought for any research that
involved human participants. During this PhD, we have applied two ethics approvals for two different
studies. Getting the right strategy to write a good ethics application could speed up the approval
process. For example, it is helpful to review a completed application that secured ethical approval from
the Swinburne’s Human Research Ethics Committee (SUHREC). In our experience, a well-planned
execution of the surveys is a key determinant of a successful ethics application. Every method and
instrument to be used must be specific, such as in selecting target population, recruitment strategy,
location of study, and data privacy. Furthermore, it is important that every part of the document is

aligned (e.g., aims, methods, instruments, etc) to make the document coherent.

8.2.2 Recruiting Survey Participants

In the first survey investigating information needs for reporting and fixing usability defects, we used
coarse target population strategy to recruit potential participants. We posted requests for participation
on the open source community forums, Facebook, LinkedIn, and Software Testing Club website.
However, in our experience of using the coarse target population recruitment strategy, it produced a
high percentage of invalid responses and therefore should be avoided in the future. In our first and
second survey, more than around 50% of responses were excluded for no response beyond the first

parts of the questionnaire.

180

One possible explanation of this problem was due to the out of scope factor, where the respondents
are not in the target population. For example, the software development practitioners who do not have
experience in dealing with usability defects may be reluctant to proceed with the surveys. As a lesson
learnt, when investigating usability defect reporting practices by specific professional groups, such as
open source communities, we should only use community-specific mailing lists and focus on the UX
team, rather than approach the whole OSS community, some of whom might not be familiar with

usability.

In the second survey evaluating our new OSUDC taxonomy, instead of focusing on a coarse target
population, we used the researcher’s referral contacts to recruit participants. We selected participants
with a known software development background and sent specific invitation emails to them. In our
experience, we found that industrial participation was low as compared to that of academic researchers.
One potential reason behind this low participation could be that industrial professionals were too busy
with their essential task and participating in the survey would add extra work. On the other hand, we
believe academic researchers are more highly motivated to participate in the surveys because of their
understanding of the pressure and intensity of other researchers to investigate and publish findings

promptly.

During both surveys, we noticed three significant factors as a useful means to gain more
participation. The first was sending reminder messages within a certain period of time. In our survey,
we only sent a one time reminder because sending too many reminders may annoy some potential
participants, thereby making them less likely to respond. The second significant factor was forwarding
invitations from researchers’ industrial contacts. Even though this method is likely to get participation
beyond the target population [118], in our case we only asked our industrial colleagues to extend the
invitations to individuals that they felt were suitable for this research context rather than forwarding to
the company mailing list. The third useful factor to gain more participation was to offer incentives.
Other empirical studies have shown that incentives have a great influence on response rate and quality,
especially for a lengthy survey like our surveys [119]-[121]. However, with limited funding, we could
only conduct a voluntary survey. In future work, we might consider offering rewards either in the form

of raffles, payments, or sharing results to motivate less motivated participants.

181

8.2.3 Designing Survey Questionnaires

One of the crucial parts of conducting a survey is to get the right questions to measure the constructs
that are investigated through the survey. We found the systematic literature review that has been
conducted earlier was helpful in constructing simple questions that referred to facts and in choosing the
appropriate words for the survey. Apart from that, a pilot study, in our opinion, is a good practice to
obtain early feedback before the survey goes live. In the first survey, we obtained feedback and
suggestions from fifteen software developers that was very helpful to improve the content and structure
of the survey. The identified irrelevant, duplicate, and unclear questions were modified to ensure the

consistency of the survey sections.

However, we believe that the lengthy survey is one possible reason for a high invalid participation
in both of our surveys. In the first survey, for example, a closer inspection of data showed that about
17% of participants left the survey after answering the first section. Possibly the use of a survey
progress bar indicator was not helpful to motivate participants to finish the survey. Since the survey
had a total of 50 questions, in the beginning of first section the progress bar indicator certainly still
showed significant remaining percentage to be completed, though this percentage changed

progressively as not all questions needed to be answered.

In the second survey, even though the questions were straightforward, it required significant effort
from participants to read the usability defect descriptions before they could answer the questions. We
believe that participants were tending to avoid such a survey that would take too much effort from their
daily work, and if they were willing to participate, the validity of their answers to some extent is
dubious. One way to deal with this problem is via technical mechanisms to monitor the time taken by

the participants to answer each question, or at least the time spent on each page.

8.2.4 Mining Textual Usability Defect Descriptions

Most usability defect reports in OSS defect repositories are semi-structured text. While text mining
researchers have developed a wide range of algorithms and tools to deal with natural language texts,
the algorithms rely somewhat on the quality of the documents itself, which we have found is often very
variable in open source usability defect reports. For this reason, we conducted a fully qualitative

analysis of the natural language data to create a full human interpretation. We created a simple coding

182

of the textual data, and attached the code to a piece of the text that can be either single word, or a
sentence. In our experience, the best way to create the codes to classify utterances in the defect
descriptions is to find anchor studies that had similar research aims, and brainstorm some potential
codes that could be relevant to the research context. Since the process of tagging part of text, and
grouping of words and phrases requires a global understanding of defect report concepts and structures,

we iteratively refined a set of codes that have been defined earlier until these codes established.

8.2.5 Analysis of Data

Our surveys include both quantitative and qualitative analysis. For quantitative analysis, in our
experience we found it was useful to clearly define survey research questions, which we then mapped
with survey questions and identified potential statistical tests to analyze the collected data. In this way,
we could avoid unnecessary questions, and select the most suitable response format for the data
analysis. This is because questions with inappropriate response formats may hinder the application of
relevant statistical tests, or the response cannot be analyzed and interpreted in a meaningful manner.

Qualitative analysis was mainly used as support evidence for the quantitative results.

Further, it is important to seek advice from professional statisticians. In our experience, even
though we used correct statistical tests, the use of some statistic values was inappropriate. For example,
when the Chi-Square test is performed simultaneously for multiple variables, Bonferroni correction
must be used to avoid the influence of a spurious positive. Additionally, it is necessary to explain the
statistical findings in simple terms to non-technical readers. Reporting p-value, and F-value, for
example, while convenient for statisticians, is less important when presenting findings to other non-
statistician readers. Therefore, it is better to explain easy-to-understand results than statistically valid,

yet complex, results.

8.3 Limitations

8.3.1 Diverse Respondents Background

Our investigations on the nature of reporting and fixing usability defects were based on input from
respondents that had varying levels of usability background and commitment. For example, software

developers and software testers working on closed proprietary software may have better exposure to

183

writing effective usability defect reports than open source contributors who work on a voluntary basis,
and may report usability-related defects without formal training [122]. This may have introduced some

bias to our findings.

8.3.2 Manual Classification of Usability Defect Information

Even though some computational programs and tools were available to automatically analyze textual
data in a much shorter time, we manually read through all the 377 usability defect descriptions to
examine the presence of certain pieces of information. We realized that within a limited research
timeframe, to understand and develop the text mining algorithms that were suitable to our research
context was quite impossible. Indeed, applying analytical algorithms would require a significant effort
to understand the usage of each algorithm and the combination of selected techniques for handling text.
Furthermore, the text mining process to automatically classify usability defects was not really in the

scope of this work.

8.3.3 Limited Evaluation Aspects of the Proposed Usability Defect Report Forms

In this work, we only evaluated the quality of the information aspect produced by the proposed
usability defect report forms. Our evaluation compared the level of details of usability defect report
content written using our proposed forms with original reports that used default Bugzilla templates.
However, outcomes were only based on the judgment of experts that were not directly using this report
in their daily work. Other aspects, such as ease of use of the forms to assist software reporters to report
useful usability defect descriptions, and the usefulness of the information produced by the proposed
forms to help software developers to understand and fix the problems, are still to be investigated

further in our future work.

8.4 Future Research

Several possible directions for future investigation have been identified as a consequence of our study.
Some of these are to overcome the current limitations of this study, and to integrate with current trends
in OSS development and usability studies; these are discussed in the following sections. Sections 8.4.1

to 8.4.4 present the short-term future work, while sections 8.4.5 to 8.4.7 discuss long-term future work.

184

8.4.1 Replicating the Survey for Different Focus Groups

In software engineering research, replication and reproduction experiments, case studies, and surveys
have been recognized for creating and extending scientific knowledge [123]-[126]. Since the main
target population of our previous surveys were individuals who have experience in reporting or fixing
usability defects, we were interested in replicating and extending the surveys to the organizational
level. For example, we could compare the usability defect reporting practices in organizations with
usability teams, organizations without usability teams, and OSS development communities. We believe
that different organizations may have different strategies and policies to enforce the implementation of
HCT activities, which would eventually influence the information needs of usability designers, software
development practitioners, and development management. This also raises the following new research

question: How do different organizational backgrounds influence usability defect reporting practices?

8.4.2 Additional Reliability Studies to Assess Our OSUDC Taxonomy

An additional reliability study is planned to assess the level of agreement achieved in OSUDC
categories, especially on the subcategories level. Since the reliability study reported in Section 6.5.2
mainly involved non-usability expert respondents, a different target population is needed to gain
feedback from various respondents with different levels of expertise. This is because our aim of
revising existing usability classification [12], [76], [95] was to produce a simple and easy-to-use model
that can be used by OSS users with different technical backgrounds. Possible approaches include
enlarging the number of respondents with different backgrounds, the number of usability defects, or

both.

8.4.3 Automated Text Mining Process

Text mining is a useful method for extracting key trends, such as word usage, or vocabulary in a textual
document. Using appropriate analytical algorithms, many text documents can be automatically
converted into a structured and numerical format that can reveal more meaningful information.
Although this thesis has demonstrated the classification of the usability defect descriptions to a set of
predefined categories, such classification processes were carried out manually. A potential drawback of
dealing with manual classification is that the analysis and interpretation of defect descriptions is greatly

dependent on the research team involved. Therefore, further research is needed to understand different

185

text mining practices areas — possibly in the area of concept extraction to group certain words and
phrases into semantically similar groups. By using machine-learning tools like the Weka’ tool and

RapidMiner, it is hoped that the glossary of terms for each category can be generated successfully.

In addition, using the text-mining method, it would be interesting to explore how usability defects
were understood in the comments section of reports, which is outside the scope of this study. In this
way, clarification on how the usability defects should have been reported, and contrasting this with the
way in which it was reported can be made. The results from this kind of study can be used to improve
the OSUDC taxonomy proposed. For example a “how not to report defects” model can be developed

with the associated terms for specific kind of usability issues.

8.4.4 Additional Evaluation of Our Proposed Usability Defect Report Form

As described in this thesis, the usability defect forms we are proposing have so far only been evaluated
in terms of the quality of information, which has been assessed by software engineering experts. Other
aspects such as the ease of use of the forms in reporting usability defects, workload imposed on
reporters, and the usefulness of the information on software developers, are still open for investigation.
In future work, we plan to assess to what extent the proposed forms were successful in eliciting the
information needed by software developers. In this study, we would like to compare the usability
defect descriptions produced by practitioners and students (represented for non-technical users), and
the workload imposed on them when reporting the usability defects. Once the proposed forms are in a
stable stage, we also plan to validate our proposed forms by requesting IT organizations to use the
forms to report usability defects. The reported defects will then go to the defect management lifecycle,
and we will monitor the defect resolution status. In this way, we could confirm the effectiveness of our

proposed forms to speed up usability defect resolution.

While feedback on the proposed usability defect report forms was generally positive, this study
primarily consulted software engineering experts who were not directly involved with software
development. Other stakeholders in the software development process, such as software developers,

managers, usability designers, and customer support, may have different feedback about the

> http://www.cs.waikato.ac.nz/ml/weka/downloading htm]

186

information that is important to them. Thus, further evaluation may need to be carried out for different

stakeholders as well.

8.4.5 Defect Reporter Effect in Software Defect Reporting

From our survey of software development practitioners and review of previous literature, we found that
the defect reporters play a significant role in determining which usability defects get fixed. We also
found that relationships and trust built between software developers and known-defect reporters
influence the defect resolution. This shows some indication that defect reporter effect might be
influential to the quality of defect report descriptions. Therefore, we plan to investigate the effect of
defect reporter expertise, knowledge of the application domain, and familiarity with the defect
reporting tools on software defect reporting, which we believe has not been investigated by any other
researchers, with more specific research study. In the proposed research study, groups of defect
reporters with different backgrounds will be asked to watch a video of representative users performing
certain tasks. Then the defect reporters will be required to report each usability defect they discovered
in the video using our proposed forms. The quality of defect descriptions of each group will be

assessed and compared.

In addition, we will collect the personality profile (big five personality traits) of the defect
reporters [127], and will analyze the personality profiles and quality of defect descriptions to find

association, if there is any.

8.4.6 Modeling Defect Prediction Using Textual Defect Information

We found that textual content of usability defect descriptions can provide an early insight into the
defect resolution time. Compared with other types of defects, usability defects require detailed
explanations to clarify the validity of issues. Typically, the nature and complexity of the issues is often
described in the defect description. For instance, the likely difficulty, emotion, and feelings can only be
expressed in the text-form. However, most of the existing research in predicting defect resolution time
is involved with using categorical data such as severity, priority, version, component, and attachment
supplied [128]-[132]. This is because textual analysis is more complex to analyze, especially as the
number of defect reports grows, more time is required. Therefore, research challenges following from

our results are: “How can textual content of defect descriptions automatically be classified into certain

187

components?” and “Which textual components should be used to predict usability defect resolution

time?”

8.4.7 Multilingual Patterns of Describing Usability Defects

In global software development, language is challenging in many software development activities,
including software defect reporting. Besides the different use of vocabulary to explain technical
subject, interpretation and meaning of defect descriptions written in various languages can be different.
For example, in Malaysia code switching between Malay and English has become common practice in
requirements elicitation [133], and it is also possible when expressing software defects. Motivated by
this problem, we plan to investigate the nature of how usability defects are described in non-English
based IT companies. Through this kind of research, we could develop a Malay-usability glossary of

terms for better understanding of usability defects.

8.5 Final Remarks

This research progressed from the need to have an appropriate defect report form for capturing
different types of defects; in this study, we focused on usability defects. The importance of capturing
complete and meaningful defect information for fixing software defects was evident in both the
software engineering and usability engineering domains. However, most research in usability defect
reporting was conducted in usability engineering studies where the main concern was to find the most
effective methods of presenting usability evaluation results. This left a gap in finding the right defect
report content for reporting usability defects that were found outside of formal usability evaluations,

especially for users with limited usability knowledge.

While a variety of usability defect classification models exist in usability engineering that are
widely accepted by industry and academia, these classification models were not appropriate for use in
OSS development, in which the defect reports contained limited information and the development stage
often ignored the usability aspects [134]. However, some features in these classification models could
be extended to overcome these drawbacks. This was one of the focuses of this research: to revise the
usability problem taxonomy for classifying OSS usability defects using a ‘lightweight’ classification

mechanism. This research has not only filled the existing gap but has also contributed to an increased

188

understanding of how open source defect classification models can be designed using software

engineering and usability engineering literatures and concepts, respectively.

To this end, this thesis extends current open source defect report forms to capture information
specific to usability defects. Our proposed usability defect report forms can be adopted by
organizations with specific usability teams, in which the process of handing over findings from
usability evaluations to software development teams could be simplified. Usability evaluation findings
written in our proposed forms provide “just enough” documentation and do not require the
summarization of comprehensive documents to be used directly by the software developers. This is an

important issue in software development as fast feedback cycles are essential.

189

Abbreviations

ANOVA
Cup
DCART
GUI
HCI
HP-DCS
IRC
oDC
OSS
OSuUDC
RCA
SLR
UAF
UPT
URM

UX

Analysis of Variance

Classification of Usability Problem

Data Collection, Analysis, and Reporting Tool
Graphical User Interface

Human Computer Interaction

Hewlett Packard Defect Classification Scheme
Internet Relay Chat

Orthogonal defect Classification

Open Source Software

Open Source Usability Defect Classification
Root Cause Analysis

Systematic Literature Review

Usability Action Framework

Usability Problem Taxonomy

Usability Reporting Manager

User Experience

190

Appendix A

List of Included Paper in the Systematic Literature Review

191

The references listed below correspond to these prefaced with the letter “P” throughout the Chapter 3:

(1]

(2]

[10]

(1]

[12]

[15]

[16]

[17]

(18]

[19]

[20]

Bruun, A., & Stage, J. (2014). Barefoot usability evaluations. Behaviour & Information Technology, 33(11), 1148—-1167.
Doi:10.1080/0144929X.2014.883552

Dumas, B. J. S., Molich, B. R., & Jeffries, B. R. (2004). Describing usability problems: Are we sending the right
message? Interactions, 0—4.

Hornbaek, K., & Frokjaer, E. (2006). What Kinds of Usability-Problem Description are Useful to Developers? In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 50, pp. 2523-2527).
Doi:10.1177/154193120605002402

Howarth, J., & Hall, M. (2006). Identifying Immediate Intention during Usability Evaluation. In Proceedings of the 44"
Annual Southeast regional conference (pp. 274-279).

Capra, M. G. (2007). Comparing Usability Problem Identification and Description by Practitioners and Students. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting (pp. 474—477).

Bruun, A., Gull, P., Hofmeister, L., & Stage, J. (2009). Let Your Users Do the Testing : A Comparison of Three Remote
Asynchronous Usability Testing Methods. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 1619-1628).

Howarth, J., Smith-jackson, T., & Hartson, R. (2009). Supporting novice usability practitioners with usability
engineering tools. International Journal Human-Computer Studies, 67(6), 533—549. Doi:10.1016/j.ijhcs.2009.02.003

Skov, M. B., & Stage, J. (2009). Training software developers and designers to conduct usability evaluations. Behaviour
& Information Technology, 31(4), 425-435. Doi:10.1080/01449290903398208

Heegh, R. T., & Stage, J. (2006). The Impact of Usability Reports and User Test Observations on Developers ’
Understanding of Usability Data: An Exploratory Study. INTERNATIONAL JOURNAL OF HUMAN-COMPUTER
INTERACTION, 21(2), 173-196.

Hvannberg, E. T., Law, E. L.-C., & Larusdottir, M. K. (2007). Heuristic evaluation: Comparing ways of finding and
reporting usability problems. Interacting with Computers, 19(2), 225-240. Doi:10.1016/j.intcom.2006.10.001

Morse, E. L. (2000). The IUSR project and the common industry reporting format. In Proceedings on the 2000
conference on Universal Usability — CUU ’00 (pp. 155-156). New York, New York, USA: ACM Press.
Doi:10.1145/355460.355556

Vermeerena, A. P. O. S., Attemaa, J., PhDa, E. A., Riddera, H. de, Doorna, A. J. von, Erbugb, C., ... Maguirec, M. C.
(2008). Usability problem reports for comparative studies: consistency and inspectability. Human—Computer
Interaction, 23(4), 329-380.

Hornbzk, K., & Frekjer, E. (2008a). Comparison of techniques for matching of usability problem descriptions.
Interacting with Computers, 20(6), 505-514. Doi:10.1016/j.intcom.2008.08.005

Skov, M. B., & Stage, J. (2005). Supporting problem identification in usability evaluations. In Proceedings of
OZCHI’05, the CHISIG Annual Conference on Human-Computer Interaction (pp. 1-9). Retrieved from
http://portal.acm.org/citation.cfm?id=1108368.1108410

Andre, T. S., Hartson, H. R., & Williges, R. C. (2003). Determining the Effectiveness of the Usability Problem
Inspector: A Theory-Based Model and Tool for Finding Usability Problems. Human Factors : The Journal of the
Human Factors and Ergonomics Society, 45(3), 455-482. Doi:10.1518/hfes.45.3.455.27255

Cockton, G., Woolrych, A., Hall, L., & Hindmarch, M. (2003). Changing analysts’ tunes: The surprising impact of a
new instrument for usability inspection method assessment. Proceedings of HCI 2003 on People and Computers XVII,
145-162. Retrieved from http://www.cet.sunderland.ac.uk/~csOawo/hci 2003 full.pdf

Feiner, J., & Andrews, K. (2012). Usability Reporting with UsabML. Proceedings of the 4" International Conference
on Human-Centered Software Engineering, 7623, 342-351.

Heller, F. (2011). Me Hates This: Exploring Different Levels of User Feedback for (Usability) Bug Reporting. In
Extended Abstracts on Human Factors in Computing Systems (pp. 1357-1362).

Lewis, J. R. (2006). Effect of Level of Problem Description on Problem Discovery Rates: Two Case Studies. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting (pp. 2567-2571)

Zhao, L., & Deek, F. P. (2005). Improving Open Source Software Usability. In Proceeedings of the Eleventh Americas
Conference on Information Systems (pp. 923-928).

192

(21]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Vetro, A., Zazworka, N., Seaman, C., & Shull, F. (2012). Using the ISO/IEC 9126 product quality model to classify
defects: a Controlled Experiment. In International Conferenece on Evaluation and Assessment in Software Engineering
(pp- 87-96).

Lal, S., & Sureka, A. (2012). Comparison of Seven Bug Report Types: A Case-Study of Google Chrome Browser
Project. In 2012 19" Asia-Pacific Software Engineering Conference (pp. 517-526). Ieee. Doi:10.1109/APSEC.2012.54

Twidale, M. B., & Nichols, D. M. (2005). Exploring Usability Discussions in Open Source Development. In

Proceedings of the 38" Annual Hawaii Internatioal Conference on System Sciences (pp. 1-10).

Martin, S. (2007). Enhancing the Downstream Utility of Usability Evaluations with Pattern-based Recommendations. In
COST294-MAUSE Workshop on Downstream Utility (pp. 1-4).

Botella, F., & Pefalver, A. (2013). A new proposal for improving heuristic evaluation reports performed by novice
evaluators. In Proceedings of the 2013 Chilean Conference on Human — Computer Interaction (pp. 72-75).

Ko, A.J., & Chilana, P. K. (2011). Design, Discussion, and Dissent in Open Bug Reports. In Proceedings of the 2011
iConference (pp. 106—113). Doi:10.1145/1940761.1940776

Faaborg, A., & Schwartz, D. (2010). Using a Distributed Heuristic Evaluation to Improve the Usability of Open Source
Software. In CHI Conference on Human Factors in Computing Systems (pp. 4-5).

Bernonville, S., Kolski, C., & Leroy, N. (2010). First Experimentation of the ErgoPNets Method Using Dynamic
Modeling to Communicate Usability Evaluation Results. Human Error, Safety and Systems Development, 5962, 81-95.

Molich, R., Jeffries, R., & Dumas, J. S. (2007). Making Usability Recommendations Useful and Usable. Journal of
Usability Studies, 2(4), 162—179.

Nichols, D. M., Mckay, D., & Twidale, M. B. (2003). Participatory Usability : supporting proactive users. In
Proceedings of the 4" Annual Conference of the ACM Special Interest Group on Computer-Human Interaction (pp. 63—
63).

Raza, a., Capretz, L. F., & Ahmed, F. (2012). Usability bugs in open-source software and online forums. /ET Software,
6(November 2011), 226. Doi:10.1049/iet-sen.2011.0105

Douglas, 1. (2006). Collaborative International Usability Testing: Moving from Document-based Reporting to
Information Object Sharing. In IEEE International Conference on Global Software Engineering (pp. 0-4).

Vilbergsdottir, S. G., Hvannberg, E. T., & Law, E. L. C. (2014). Assessing the reliability, validity and acceptance of a
classification scheme of usability problems (CUP). Journal of Systems and Software, 87, 18-37.
Doi:10.1016/j.jss.2013.08.014

Beirekdar, A., Keita, M., Noithomme, M., & Randolet, F. (2005). Flexible Reporting for Automated Usability and
Accessibility Evaluation of Web Sites. Human-Computer Interaction, 3585, 281-294.

Hornbzk, K., & Frekjer, E. (2008b). Making Use of Business Goals in Usability Evaluation: An Experiment with
Novice Evaluators. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 903-912).

Law, E. L., & Hvannberg, E. T. (2008). Consolidating Usability Problems with Novice Evaluators. In Proceedings of
the 5" Nordic conference on Human-computer interaction: building bridges (pp. 495-498).

Norgaard, M., & Heegh, R. T. (2008). Evaluating Usability — Using Models of Argumentation to Improve
Persuasiveness of Usability Feedback. In Proceedings of the 7" ACM conference on Designing interactive systems (pp.
212-221).

Cetin, G., Verzulli, D., & Frings, S. (2007). An Analysis of Involvement of HCI Experts in Distributed Software
Development: Practical Issues. Online Communities and Social Computing, 4564, 32—40. Doi:10.1007/978-3-540-
73257-0

Aijo, R., & Mantere, J. (2001). Are non-expert usability evaluations valuable ? In International Symposium on Human

factors in Telecommunications (pp. 1-5).

Nichols, D. M., & Twidale, M. B. (2006). Usability processes in open source projects. Sofiware Process: Improvement
and Practice, 11(2), 149-162. Doi:10.1002/spip.256

Jonasson, G. F., & Hvannberg, E. T. (2009). Sharing Usability Problem Sets within and between Groups. Human-
Computer Interaction, 5727, 596-599.

Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., & Zhai, C. (2006). Have Things Changed Now ? — An Empirical Study of
Bug Characteristics in Modern Open Source Software. In Proceedings of the I* workshop on Architectural and system

193

[43]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

support for improving software dependability (pp. 25-33).

Zhao, L., Deek, F. P., & Mchugh, J. A. (2010). Exploratory inspection — a user-based learning method for improving
open source software usability. Journal of Software Maintenance and Evolution: Research and Practice, 22(8), 653—
675. Doi:10.1002/smr

NQ@rgaard, M., & Hornbzk, K. (2009). Exploring the Value of Usability Feedback Formats. International Journal of
Human-Computer Interaction. Doi:10.1080/10447310802546708

S. Herbold, J. Grabowski, S. Waack, and U. Biinting, “Improved Bug Reporting and Reproduction through Non-
intrusive GUI Usage Monitoring and Automated Replaying,” in 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops, 2011, pp. 232-241.

Kreyss, J., White, M., Selvaggio, S., & Zakharian, Z. (2003). Text Mining for a Clear Picture of Defect Reports : A
Praxis Report. In Third IEEE International Conference on Data Mining (pp. 3—6).

F. P. Simdes, “Supporting End User Reporting of HCI Issues in Open Source Software,”. PhD Thesis. Pontificia
Universidade Catolica, Do Rio De Janeiro, 2013.

Ko, A. J., Myers, B. A., & Chau, D. H. (2006). A Linguistic Analysis of How People Describe Software Problems. In
Visual Languages and Human-Centric Computing (VL/HCC’06) (pp. 127-134). Ieee. Doi:10.1109/VLHCC.2006.3

Pichler, J., & Ramler, R. (2008). How to test the intangible properties of graphical user interfaces? In Proceedings of the
I International Conference on Software Testing, Verification and Validation, ICST 2008 (pp. 494-497).
Doi:10.1109/ICST.2008.52

Xia, X., Zhou, X., Lo, D., & Zhao, X. (2013). An Empirical Study of Bugs in Software Build Systems. In 73"
International Conference on Quality Software (pp. 200-203). Ieee. Doi:10.1109/QSIC.2013.60

T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, and W. Maalej, “Monitoring user interactions for supporting failure
reproduction,” in 2013 21st International Conference on Program Comprehension (ICPC), 2013, pp. 73-82.

Avnon, Y., & Boggan, S. L. (2010). Fit and Finish using a bug tracking system: challenges and recommendations. In
Proceedings of the 28" of the international conference extended abstracts on Human factors in computing systems (pp.
4717-4720). Doi:10.1145/1753846.1754219

K. Hornbzk and E. Frokjer, “Comparing usability problems and redesign proposals as input to practical systems
development,” CHI 2005 Technol. Safety, Community Conf. Proc. — Conf. Hum. Factors Comput. Syst., pp. 391-400,
2005.

C. Wilson and K. P. Coyne, “The whiteboard: Tracking usability issues: to bug or not to bug?,” Interactions, pp. 15-19,
2001.

K. Moran, M. Linares-Vasquez, C. Bernal-Cardenas, and D. Poshyvanyk, “Auto-completing Bug Reports for Android
Applications,” Proc. 2015 10th Jt. Meet. Found. Softw. Eng., pp. 673—686, 2015.

A. Hindle, A. Alipour, and E. Stroulia, “A contextual approach towards more accurate duplicate bug report detection
and ranking,” Empir. Softw. Eng., pp. 368—409, 2015.

N. Shahida, M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects : Limitations of Open Source Defect
Repositories and Suggestions for Improvement,” in Proceedings of the ASWEC 2015 24th Australasian Software
Engineering Conference, 2015, pp. 38—43.

194

Appendix B

Survey Questionnaire

195

Background Information

1.

What is your gender?
Male Female

What is your age?

Less than 24 years old 25 - 34 years old 35 - 44 years old
45 - 54 years old 55 years old and above

What is your professional position?

Software developer Software tester Quality assurance engineer
Customer consultant/ support System engineer Test manager

Project manager Usability engineer User interface designer
Other

If you have chosen “other”, please specify:

How long have you been in your current position?

Less than 1 year Between 1 and 3 years
Between 3 and 5 years More than 5 years

Do you contribute to open source project such as Firefox, Google Chrome, GNOME?
Yes No

How do you describe your role in dealing with usability defects?

I am fixing usability defects I am reporting usability defects

Training or Certification on Human-Computer Interaction

7.

8.

Have you received any training/ certification related to usability evaluation/ Human Computer
Interaction (HCI)

Yes No
Note: If you have answered/ chosen item [2] in question 7, skip the following question

How useful was the training/ certification for reporting and/ or understanding usability defects?

Very useful Somewhat useful Neither useful or not useful

Not very useful Complete waste of time

196

Discovering Usability Defects

Note: If you have answered/ chosen item [1] in question 6, skip the following question

9. Do you have experience in software testing (no matter what is your current position)?

No experience Less than 1 year Between 1 and 3 years
Between 3 and 5 years More than 5 years

10. How do you discover the usability defects?

Exploratory testing Functional testing Usability testing
Beta/ alpha testing Complaints/ reports from customers Using the product
Other

If you have chosen “other”, please specify:

11. The amount of information available for reporting usability defects varies according to how the
defects are discovered. For instance, usability defects found during usability testing have more
information to report in comparison to functional testing. Would you agree or disagree on the
following statement in relation to the availability of usability defect information for different

defect discovery methods?

Statement Completely | Somewhat | Neither Somewhat | Completely
disagree disagree disagree agree agree
or agree

The difficulties the actual
user will encounter as a
consequence of the
usability problems
cannot be known during

functional testing

In exploratory testing, a
usability defect is
typically grounded in
general usability
knowledge, rather than in
speculation on users task
performance and

response

197

The presence of actual
users during usability
testing can reveal user’s
knowledge, likely
difficulties, actual task
scenario and realistic

redesign solutions

In usability testing, more
usability-related

information can be
reported, such as violated
heuristics, design
principles, users response
and feelings as compared

to system testing

Describing complaints
from customers or end
users may not correctly
describe the actual

difficulties faced by them

12. Do you think defect reporting tool should provide custom forms for reporting defects depending

on how usability defects are discovered?

1 (Strongly disagree) 2 3 3 5 (Strongly agree)

Reporting Usability Defects

Note: If you have answered/ chosen item [1] in question 6, skip the following question

13. Do you use the following items when describing usability defects?

1 (Strongly disagree) 2 3 3 5 (Strongly agree)

Items Never Rarely Sometimes Often Always

Title/ Summary

Cause of the problem

Software context (part of

the user interface,

198

interface component)

Proposed solution

Observed result

Expected result

Steps to reproduce

Severity
Software information
(product, component,

and/ or version)

Test environment
(Operating system,
hardware, browser
details)

Reporting Usability Defects

Note: If you have answered/ chosen at least one of the following items: [(2,2)] in question 13, skip the

following question
Note: If you have answered/ chosen item [1] in question 6, skip the following question

14. When specifying the defect report title/ summary, I do include

explanation on the situation that was happening at the time the problem occured
build or version of the software or OS on which the problem occured

an error message that come up by copying and pasting the whole thing in
quality attributes affected (i.e., usability, performance, reliability)

Other

If you have chosen “other”, please specify:

Note: If you have answered/ chosen at least one of the following items: [(2,3)] in question 13, skip the

following question
Note: If you have answered/ chosen item [1] in question 6, skip the following question

15. When describing causes of usability defects, I

include heuristics that are violated
describe a design fault, such as how the interaction architecture contributed to the problem

describe my knowledge of performing and understanding a task or object interface

199

Other

If you have chosen “other”, please specify:

16. I support the description of usability defect causes with

Ul event trace Screenshot with annotations Screenshot and accompanying text
Video with captions Textual description Other
If you have chosen “other”, please specify:
Note: If you have answered/ chosen at least one of the following items: [(2,4)] in question 13, skip the

following question
Note: If you have answered/ chosen item [1] in question 6, skip the following question

17. To indicate the context of the usability defects, I

describe the location of the problem in the interface, such as screen title

mention the problematic user interface object, such as button, menu and dialogue box
describe the user’s task

describe exactly which system components are affected

Other

If you have chosen “other”, please specify:

18. I show the location of usability defects in the interface using

screenshot with annotations video with captions textual description
Other

If you have chosen “other”, please specify:

Note: If you have answered/ chosen at least one of the following items: [(2,5)] in question 13, skip the

following question
Note: If you have answered/ chosen item [1] in question 6, skip the following question

19. In describing a proposed solution to a usability defect, I

include several alternate solutions

describe advantages and disadvantages for alternative solutions
mention usability design principles and/ or previous research
use my knowledge to interpret how design is supposed to work
propose the expected behavior (defects)

propose the behavior desired (enhancements)

200

Other

If you have chosen “other”, please specify:

20. I support the description of the proposed solutions with

fix patch digital mock-ups annotated screenshots
simple sketches ASCII art textual description only
oral presentation Other

If you have chosen “other”, please specify:

Note: If you have answered/ chosen at least one of the following items: [(2,7)] in question 13, skip the

following question

Note: If you have answered/ chosen item [1] in question 6, skip the following question

21. To describe the expected result, I

refer to usability requirements

use my knowledge and experience to interpret the expected result
refer to usability design guideline

Other

If you have chosen “other”, please specify:

Note: If you have answered/ chosen at least one of the following items: [(2,6)] in question 13, skip the

following question

Note: If you have answered/ chosen item [1] in question 6, skip the following question

22. To describe the observed usability defects, I

describe the effect of the user’s performance describe the user’s behavior following the issues
justify what was wrong and why is it wrong attach screenshot with annotations to the issue
attach error message Other

If you have chosen “other”, please specify:

Note: If you have answered/ chosen at least one of the following items: [(2,8)] in question 13, skip the

following question

201

Note: If you have answered/ chosen item [1] in question 6, skip the following question

23. To describe the steps to reproduce usability defects, I

write a textual description on the user’s navigation flow through the system
record the steps that I follow and attach or paste a link to the video
Other

If you have chosen “other”, please specify:

24. To rate the severity of usability defects, I justify

impact of the issue business effects, such as costs and time loss

how often the issue will occur during usage Other

If you have chosen “other”, please specify:

Reporting Usability Defects
Note: If you have answered/ chosen item [1] in question 6, skip the following question

25. How do you report information about usability defects?

Medium of reporting Never Rarely Sometimes Often

Always

Traditional written report

Verbally in meeting with

designers/ developers

Edited videos

Entry in a defect

reporting tool

26. Do you think that experience in usability testing will help you create a better usability defect

report?

1 (Strongly disagree) 2 3 3 5 (Strongly agree)

27. Which five items were the most difficult to provide? Please rank the items in order of difficulty

from 1 to 5 where 1 is most difficult to you and 5 is least difficult to you.

Items 1 2 3 4

Title/ Summary

202

Cause of the problem

Software context (part of
the user interface,

interface component)

Usability principle/

heuristic violated

Proposed solution

Video recording

Audio recording

Product

Component

Version

Severity

Hardware

Operating system

UI event trace

Observed result

Expected result

Steps to reproduce

Screenshots

Fixing usability Defects

Note: If you have answered/ chosen item [2] in question 6, skip the following question

28. Do you use the following items when fixing usability defects?

Items Never Rarely Sometimes Often Always

Title/ Summary

Cause of the problem

Software context (part of
the user interface,

interface component)

Usability principle/

heuristic violated

Observed result

Expected result

Steps to reproduce

203

29.

30.

31.

Does the following attachments helps you in fixing usability defects?

Items

Never

Rarely

Sometimes

Often

Always

Video recording

Audio recording

UI event trace

Proposed solution

Screenshots

Proposed fix patch

Digital mockups

ASCII art

Do you request the following general information to assist with defect management and

reproduction?

Items

Never

Rarely

Sometimes

Often

Always

Product

Component

Version

Hardware

Operating system

Severity

Which five items help you the most? Please rank the items in order of importance from 1 to 5

where 1 is most important to you and 5 is least important to you.

Items

1

2

3

Title/ Summary

Cause of the problem

Software context (part of
the user interface,

interface component)

Usability principle/

heuristic violated

Proposed solution

Video recording

204

32.

Audio recording

Product

Component

Version

Severity

Hardware

Operating system

UI event trace

Observed result

Expected result

Steps to reproduce

Screenshots

Which of the following problems have you encountered when fixing usability defects? (Please

select ALL that apply)

You were given unclear:

Title/ summary

Cause of the problem

Software context (the location of problem in the interface)

Usability principle/ heuristic violated

Proposed solution

Screenshots

Audio recording

Video recording

You were given incorrect:

Component

Observe result

Expected result

Product

Version

Severity

Hardware

Operating system

There was insufficient information in:

Steps to reproduce

UI event trace

The reported used:

Bas grammar

Unstructured text/ format

Vague comment

Too long text

Non-technical language

Usability jargon/ term

Others:

Duplicate

Spam

Viruses/ worms

205

33.

34.

When assessing usability defects, I found

Statement

Never

Rarely

Sometimes

Often

Always

The usability defects reported by potential
end-users with direct experience from the

work domain were given higher priority

Usability expert provides better usability
defect report compared to general software

tester

General software tester rarely supplies
usability-related information, such as violated

heuristics or design principles

Developer provides more meaningful
usability defect description with proposed fix

patch and logs

Non technical users rarely provide important
information such as software context, product

information and reproducibility

Do you think a defect reporter propose better solutions when they have usability experience (UX),

rather than relying on individual speculations?

1 (Strongly disagree) 2 3

Defect Reporting Tool

5 (Strongly agree)

Note: If you have answered/ chosen at least one of the following items: [(2,5)] in question 25, skip the

following question

Note: If you have answered/ chosen at least one of the following items: [(3,5), (4,5), (6,5)] in question

25, skip the following question

Note: If you have answered/ chosen item [1] in question 6, skip the following question

35. Does your organization use defect reporting tool to manage usability defects?

Yes No

206

Defect Reporting Tool

Note: If you have answered/ chosen at least one of the following items: [(2,5)] in question 25, skip the

following question
Note: If you have answered/ chosen item [2] in question 35, skip the following question
36. Name your defect reporting tool:

37. Does your defect reporting tool offer sufficient flexibility to capture and manage usability defects?

1 (Strongly disagree) 2 3 3 5 (Strongly agree)
38. Do you have any positive/ negative feedback about your defect reporting tool for supporting
usability issues? Please specify here:
39. Do you think the user experience (UX) of the defect reporting tool influences the quality of defect

reports?

1 (Strongly disagree) 2 3 3 5 (Strongly agree)
40. Do you think your defect reporting tool should provide a custom forms for reporting defects

depending on reporter’s experience)new — intermediate — experienced reporter)?

1 (Strongly disagree) 2 3 3 5 (Strongly agree)
41. Do you think your defect reporting tool should provide custom forms for reporting defects
depending on reporter’s knowledge (non-technical, technical, Human-Computer Interaction

expert)?

1 (Strongly disagree) 2 3 3 5 (Strongly agree)

Note: If you have answered/ chosen item [1] in question 6, skip the following question

42. Do you use an automated tool to capture information for reporting usability defects?

Yes No

Automation Tool

Note: If you have answered/ chosen item [2] in question 42, skip the following question

207

Note: If you have answered/ chosen item [1] in question 6, skip the following question

43. Name the automated tools that you have used:
44. Do you think the manual process used to capture usability defect information causes erroneous or

incomplete reports?

1 (Strongly disagree) 2 3 3 5 (Strongly agree)

Knowledge and Experience in Usability Defect Reporting

45. “ The level of detail of usability defect reports varies greatly from reporter to reporter” — Do you

agree with this statement?

1 (Strongly disagree) 2 3 3 5 (Strongly agree)
46. Please indicate how much you agree with the following factors about their influence in reporting

usability defects.

Factors Completely | Somewhat | Neither Somewhat | Completely
disagree disagree disagree agree agree
or agree

Practical knowledge of
the usability of software

systems

Ability of thinking from

the user’s perspective

Knowledge of wusers’

mental model

Knowledge of usability

principles

Domain expertise

Knowledge of technical

aspects

Knowledge of defect

reporting

47. “Level of experience of software tester cannot guarantee the completeness of usability defect

reports” — Do you agree with this statement?

208

1 (Strongly disagree) 2 3 3 5 (Strongly agree)
48. “Long experience in software testing helps reporters to build their knowledge, particularly in

describing usability defects” — Do you agree with this statement?

1 (Strongly disagree) 2 3 3 5 (Strongly agree)
49. Do you think previous experience in reporting usability defects helps in increasing the

completeness of usability defect information reported?

1 (Strongly disagree) 2 3 3 5 (Strongly agree)

Comments

50. Please use the space provided below to share any ideas or experiences you have that might

improve the quality of usability defect reporting:

209

Appendix C

The Revised Usability Defect Classification Model — Categories,

Subcategories, and Example Defects

210

Categories

Sub-
categories

Defects

Example defects

Interface

GUI structure
and aesthetics

Object appearance
(icon, menu item,
scroll bar, button,
favicon etc)

Object (screen) keeps blinking/ flashing/ flickering
Unnecessary animation on object (screen)
Incorrect/ unnecessary use of object icon
Incorrect/ inconsistent object design

Inappropriate use of object size

Missing object

Unwanted object

Incorrect/ inconsistent use of object color

Inappropriate use of color contrast between object and background

Inappropriate object (screen) resolution

Object (screen) is truncated/ chopped/ overlapped/ blocked/ cropped

Object (screen) not persistently display
Object (screen) looks very bare
Words/ name on object are not completely visible

Object (screen)
layout

Improper use of screen width and length

Object (screen)
state

Incorrect object (screen) activation and deactivation behavior
Indistinguishable between active and inactive object (screen)

Incorrect object (screen) select / deselect behavior
Incorrect object (screen) visibility behavior
Incorrect/ unclear current object (screen) state
Slow object state change

Slow screen refresh

Screen does not automatically load content/ refresh
Cursor loss focus

Incorrect object (screen) focus

No visual cue to screen (object) existence

Object action is not properly set

Inappropriate/ incorrect screen navigational

Information

presentation

Data presentation

Missing default data

Data not selected

Object does not remember last selection
Data is not populated in the object (screen)
Incorrect data type and format

Object (screen)
naming and
labeling

Misspelled/ mislabeled label
Label name is not intuitive
Incorrect use of labeling standard

Inconsistent menu labeling format

Non-message
feedback

Missing visual cues

Misunderstanding of visual cues

Irritating/ unnecessary animation on the progress bar
Incorrect/ missing/ non-informative indicator

No warning indicator in the screen

Inappropriate use of dialog feedback

Error/ notification
and feedback

message

Inconsistent message

Inappropriate/ irrelevant message
Incorrect/ misleading/ insufficient message
Message is too verbose/ non -informative

On screen text and
results

Missing/ incomplete/ misleading information
Content is not updated
Unsupported format to display content

Menu structure

Incorrect connection of main options to sub-options
Inappropriate menu option

Unorganized menu organization/ structure
Obsolete menu option

Missing relevant menu option

Misplaced menu option

211

Audibleness Voice and sounds

Inappropriate video/ audio behavior

Audio cue NS
Text/ feedback in NS
speech
Interaction Manipulation ~ Keyboard press Cursor losses focus when typing

Duplicate access keys

Inappropriate use of access keys

Inconsistent access keys

Missing/ not working access keys

Unable to navigate from one field to another using keyboard
Unable to type

Unsupported keyboard function

Mouse click

Mouse click not working

Mouse hover does not give focus
Inconsistent mouse click behavior
Too many clicks to perform task

Finger touch

Inappropriate vibrating behavior
Incorrect click event action
Tap did not invoke action bar

Voice control

NS

Scrolling Scrolling not working
mechanism Inappropriate scrolling behavior
Unable to scroll
No purpose vertical/ horizontal scroll
Unbreakable scrolling axis lock
Drag and drop Unable to drag screen (object)
Zooming Incorrect/ inappropriate zooming behavior
Unclear visual cues that an editor is zoomed
Functionality Missing
Inadequate
Preference
Irrelevant
Misaligned
Problematic
Technical deficiency
Task Action Incorrect action results
execution No action executed
Incorrect action executed
Too many steps to task completion
Unnecessary action to execute task
Limited accessibility to execute action
Reversibility Unable to undo action
Unclear to perform action reversal
Reverting the current action works incorrectly
Feedback Missing notification/ warning/ feedback message

No summary of task in progress/ completed

Unnecessary confirmation dialogue box/ indicator/ feedback
Missing permission request to access other device

No indication about the current state of an action in progress

No indication about what will happen when clicking on certain button/

menu/option

No feedback when performing critical action

* NS — No sample defects from the 377 open source usability defects we studied

212

Appendix D

Open Source Usability Defect Classification Taxonomy Evaluation

213

Background Information

1. Whatis your age?

Less than 24 years old 25 - 34 years old 35 - 44 years old
45 - 54 years old 55 years old and above

2. What is your gender?
Male Female

3. What best describes you?

HCI/ UX/ usability expert

Industry researcher

Academic researcher

Software developer with experience in both user interface and software development
Software developer with experience in software development only

Software tester with HCI knowledge

Software tester without HCI knowledge

End user with HCI/ UX/ usability knowledge

End user without HCI/ UX/ usability knowledge

4. Have you received any training/ certification related to usability evaluation/ Human Computer
Interaction (HCI)
Yes No

5. How familiar are you with usability defects?

Not at all familiar Slightly familiar Somewhat familiar
Moderately familiar Extremely familiar
6. Have you used any of the following defect classification scheme?

Orthogonal Defect Classification (ODC)

Root Cause Analysis (RCA)

Hewlett Packard Defect Classification Scheme (HP-DCS)
Classification of Usability Problems (CUP)

Usability Problem Taxonomy (UPT)

Usability Action Framework (UAF)

Other, please specify:

214

Defect 1: Eclipse Platform defect #6656

Project | BugID | Title Description
Eclipse | 6656 Close button moves down On linux, running build 2001-11-27 (does not happen on build 2001-11-16
Platform when view resized smaller on Nt

2000).

When a view like the Navigator is resized smaller, the tool items move
below the label. However, so does the pulldown menu icon (triangle) and
the close icon (X). These two tool items use to stay on the same line as the
label no matter how small the view got.

In my opinion, this is going to be a usability problem. Users are
accustomed to the close button being on the same line as the label and
located to the far right corner. If it starts moving around, | think users will
get confused.

7. Study Eclipse Platform Defect #6656 above. What kind of usability defect is reported? View

OSUDC taxonomy here.

Interface Interaction Both

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

8. What kind of interface defect is reported? View OSUDC taxonomy here.

GUI structure and aesthetics — Object (screen) appearance
GUI structure and aesthetics — Object (screen) layout

GUI structure and aesthetics — Object (screen) state
Information presentation — Data presentation

Information presentation — Object (screen) naming & labeling
Information presentation —-Non message feedback
Information presentation — Error, notification and feedback message
Information presentation — On screen text and results
Information presentation — Menu structure

Audibleness — Voice and sound

Audibleness — Text and feedback in speech

Other interface problems not listed above, please specify:

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

215

9. Does the user seem to express any of the following emotions in the defect descriptions? View
OSUDC taxonomy here.
Emotion Yes No

Annoyance
Distraction
Frustration

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

10. Does the user mention anything about how the issue affects the task execution? View OSUDC
taxonomy here.

Complexity Visibility Performance Accessibility

Loss of data Understandability Does not mention Other, please specify:

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

11. Based on the above defect descriptions, on what basis has the user reported this issue? View

OSUDC taxonomy here.
Missing Wrong Incongruent mental model
Irrelevant Overlooked Better way
I can’t tell

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [1] in question 7, skip the following question

12. What kind of interaction defect is reported? View OSUDC taxonomy here.

Manipulation- Keyboard press
Manipulation- Mouse click
Manipulation- Finger touch
Manipulation-Voice control
Manipulation-Scrolling mechanisms
Manipulation- Drag and drop

Manipulation-Zooming

216

Task execution - Action

Task execution - Reversibility
Task execution - Feedback
Functionality

Other interface problems not listed above, please specify:

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [1] in question 7, skip the following question

13. Does the user seem to express any of the following emotions in the defect descriptions? View
OSUDC taxonomy here.
Emotion Yes No

Annoyance
Distraction

Frustration

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [1] in question 7, skip the following question

14. Does the user mention anything about how the issue affects the task execution? View OSUDC
taxonomy here.

Complexity Visibility Performance Accessibility

Loss of data Understandability Does not mention Other, please specify:

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [1] in question 7, skip the following question

15. Based on the above defect descriptions, on what basis has the user reported this issue? View

OSUDC taxonomy here.
Missing Wrong Incongruent mental model
Irrelevant Overlooked Better way
I can’t tell

Note: if you have answered/ chosen item [1] in question 7, skip the following question

217

Note: if you have answered/ chosen item [2] in question 7, skip the following question

16. What kind of interface defect is reported? View OSUDC taxonomy here.

GUI structure and aesthetics — Object (screen) appearance
GUI structure and aesthetics — Object (screen) layout

GUI structure and aesthetics — Object (screen) state
Information presentation — Data presentation

Information presentation — Object (screen) naming & labeling
Information presentation —Non message feedback
Information presentation — Error, notification and feedback message
Information presentation — On screen text and results
Information presentation — Menu structure

Audibleness — Voice and sound

Audibleness — Text and feedback in speech

Other interface problems not listed above, please specify:

Note: if you have answered/ chosen item [1] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

17. What kind of interaction defect is reported? View OSUDC taxonomy here.

Manipulation- Keyboard press
Manipulation- Mouse click
Manipulation- Finger touch
Manipulation-Voice control
Manipulation-Scrolling mechanisms
Manipulation- Drag and drop
Manipulation-Zooming

Task execution - Action

Task execution - Reversibility
Task execution - Feedback
Functionality

Other interface problems not listed above, please specify:

Note: if you have answered/ chosen item [1] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

18. Does the user seem to express any of the following emotions in the defect descriptions? View
OSUDC taxonomy here.
Emotion Yes No

Annoyance

218

Distraction

Frustration

Note: if you have answered/ chosen item [1] in question 7, skip the following question
Note: if you have answered/ chosen item [2] in question 7, skip the following question

19. Does the user mention anything about how the issue affects the task execution? View OSUDC
taxonomy here.

Complexity Visibility Performance Accessibility

Loss of data Understandability Does not mention Other, please specify:

Note: if you have answered/ chosen item [1] in question 7, skip the following question
Note: if you have answered/ chosen item [2] in question 7, skip the following question

20. Based on the above defect descriptions, on what basis has the user reported this issue? View

OSUDC taxonomy here.
Missing Wrong Incongruent mental model
Irrelevant Overlooked Better way

I can’t tell

** The same questions were used for classifying the other 9 usability defect reports below:

Defect 2: Eclipse Platform Defect#31823

Project BugID | Title Description
Eclipse 31823 | Clicking on partially build 120030211
Platform obscured tab should scroll
it into view You commonly get the last visible editor tab partially obscured by the scroll

arrows, making the close box inaccessible. You have to use the context
menu to close the editor.

Either the tabs should never get obscured (the preferred solution, but
there was already a PR for this which was marked WONTFIX), or a single
| click on the tab should scroll to reveal it fully.

219

Defect 3: Thunderbird Defect #697413

Project

BugID

Title

Description

Thunderbird

697413

Usage of progress bar for
visualizing imap quota is
irritating - details window
only

Tested under Mac OS X (10.6.8) with v7.0.1
Open an IMAP email account with given quota of 500MB

Actual results:

in the status bar at the bottom of the main window, a progress bar
indicates the amount of the quota that is consumed in the account
already. The amount percent value is correct, but the progress bar's
permanent animation is irritating

Expected results:

since the described issue is not actually a running process but a rather
static value indicator, this should not use a progress bar but another more
appropriate Ul element

Defect 4: Eclipse Platform Defect #2587

Project BugID | Title Description
Eclipse 2587 | DCR: When zooming in on If | have a bunch of editors open and | double click on the tab of one
Platform an editor, zoom in on the editor, that editor becomes maximized but only that editor. It appears as a

whole workbook
(1GKBCKS)

Defect 5: Thunderbird Defect #729027

single tab in a tab folder.

It would be better if ALL the editors in that editor workbook were
maximized for the following reason:

1) If | want to browse the code in several classes in the maximized mode |
have to double click to maximize file A, double click to minimize file A, and
then double click to maximize file B. That is a lot of clicking.

2) The current code actually does a lot of work. It deletes all the tabs
except the active tab when you maximize the file, it remembers the order
of the tabs that were deleted and then when you minimize the editor, it
has to recreate the tabs in the right order. If you implement this DCR you
will actually delete code to get more functionality and it will be faster and
less flashy.

3) There is no saving in real-estate with the current implementation. The
space to show all the tabs is the same space as to show the one tab.

Project

BugID

Title

Description

Thunderbird

729027

Identity Settings dialog is
too large (high) for netbook

The Identity Settings dialog (Click [Manage Identities...], select an item on
the opened dialog and click [Edit...] button, then, you can see it) is too
large (high) for netbooks.

Maybe, it's better to shrink the dialog if we can change the design.

However, if it's nice to change the dialog resizeable and scrollable in the
tabs' contents for temporarily (The Account Settings is so).

Defect 6: Firefox for Android Defect #755221

Project BugID | Title Description
Firefox for 755221 | Cancel' for pending add-on | Fennec native 14.0b1 build 3, Android 4.0.4 (stock), Google Nexus S
Android uninstall should be more

specific

If an add-on requires an application restart to get uninstalled, there will be
a label "Cancel" after clicking the "Uninstall" button. If you ignore the
doorhanger for restart, you will see the "Cancel" button, but not any
indicator that the add-on will get uninstalled and what gets canceled by
tapping the button.

If you need an add-on to test, try https://addons.mozilla.org/en-
US/mobile/addon/extension-test/

220

Defect 7: Firefox for Android Defect#705212

and
ic_awesomebar_search.png

Project BuglID | Title Description
Firefox for 705212 | [ICS] - Dim On ICS: ic_awesomebar_go.png, and ic_awesomebar_search.png are quite
Android ic_awesomebar_go.png dark and hard to see, perhaps they can be brightened?

See attached screenshot.

Samsung Nexus S (Android 2.3.6)
20111124104917
http://hg.mozilla.org/projects/birch/rev/7b649958d99d

Defect 8: Eclipse Platform Defect #2730

\ Project | BuglID \ Title | Description
Eclipse 2730 | Import/Export dialog very When a file type is selected the dialog is frozen for a very long time and no
Platform slow but shows no cursor busy cursor is shown.

Defect 9: Eclipse Platform Defect #75317

(1GILHGO)

protocol / www

Project BuglD | Title Description
Eclipse 75317 | [Browser] Location not Hi,
Platform browsed when URL misses | | am using the Browser widget with a location text field, that calls setUrl()

with the content from the text field after the default selection event
occurs. This is hitting the Enter key.

Entering URLs that miss "http://" and "www." do not seem to work then.
For example, | entered "heise.de" and hit the Enter key. Nothing
happened. Then after entering "http://www.heise.de" and hitting Enter,
the page was loading. | was working on a G5 using current Mac 05 X
version.

Defect 10: Thunderbird Defect #697125

Project

BuglD

Title

Description

Thunderbird

697125

Attachments: single
attachment opens on single
click, multiple attachments
need double click

User Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1;
Trident/4.0; Avant Browser; Avant Browser; .NET CLR 2.0.50727; .NET CLR
3.0.4506.2152; .NET CLR 3.5.30729; .NET CLR 1.1.4322)

Steps to reproduce:
| received a message with either a single or with multiple attachments.

Actual results:

If there is a single attachment then you only click once to open, but if there
are multiple then you need to open the indicator (goes alsc with single
click) and then you must doubleclick on each attachment to open it. If you
doubleclick on a single attachment, 2 instances of the handling application
start (eg. Acrobat Reader) showing the *same* attachment.

Expected results:
| expected to use a doubleclick only also for opening single attachment.
This is consistent with the rest of Windows.

221

Appendix E

Prototype Evaluation Form

222

9OIAJP JIqOW UMO JNOA ur wa[qoid Y3 2onpordar 03 padu nok ‘suonsanb swios 10 «
suonsanb udAI3 oy) Jurmsue Aq uondrrosap
109Jop Aj[Igesn QU} ul UdPLIM UONBWIOFUI dY) JO Yoed J0J Ajenb ayy jo uorssaxdwr Inok ey

uondrrosap 1095op AJIgesn yoed pedy e

:SUONINIISU]

1414

Aqrenteq
ON
SO X ({P21mod0 wa[qoid 2y u2)jo Moy Jnoqe pauonuaw 1odar 109Jop oY) sepy]
Aqrenteq
ON
SO X ($ansst o) uodn suororal 10 Jurag) ‘uonow s10110dal paqrIdsap 31odar 109Jop oyl Sep\ 01
Aqrenteq
ON $se) oy Jo ddueirodurr pue yse) s Iasn
SO X o) uo joedurr 909§J0 ssouisnq uo wojqoid ayy jo joedwr Yy paqudsap 1odar 109Jop AP SeA 6
Aqrenteq
ON
SOA (J9sn ay) 03 wojqoad e sasod jeym noqe pauonuaw APIordxa 310dar 109Jop oy sepy 8
A[renreq
ON
SOA (warqoad e sem 11 1) syury) 10310dax ayy Aym pagnsnl odar 109yop oy sepy L
A[renied *9AT)INJUT QIOW ST UOJT MAIA IOPeay Y} OB
ON
SO X (suondrIdsap 199J9p J) U SUO Y} YPIM IB[IWIS PIAIISQO NOA §J[NSI [BNIOR) AIOA\ 9 SHnsaY papadxy
%:mﬁ%“ “MIIA Jopeay 10 SI UODT 00q,, Y] Jey} 910U JOU PIp I3[
SO (JUSWUOIIAUD PUR JIAIP UMO INOA uo wa[qoid ayy donpordar 0) 9[qe noAary °g SHnsAY [PV
Arenred "UOJT MITA IOpeIY 10J 0O T
ON (WAISAS ay) y3noIy) mo[j uonesiAeu s 1osn
SOA Surpnpour ‘wajqoid ayy 2onpoidar 03 moy sdoys Aq sdays [reap ur paurejdxa 110dar 10950p oy sepy osmoiq xopeRd gouneT - 1
Aenieg wFrop :onpo.aday 03 sdag
ON 3Se) JOSN pue QJBJIAUI ‘QINJOAIYIIR UONIRIAUI) (M Fuoim ST jeym jnoqe uondriosap ayp 10J S 1B, O} 1EUM PASTUOD SIOS()
SOA ‘ordwrexa 104 ;w[qod Yy ur PIAJOAUL dNSSI AJI[IqeSn Urew Ay} PAqLIOSIP 110dal 109Jop oY) Sep\ € “MOIA IOPEAY 10§ ST J00q, SY} AIEMEUN SIAS() .o.>EBE 10U ST SUODI JO SUIUESJY
Ajrenred cuondrsaq
ON {PIAJOAUL 1O P2)03JJe A1k Jey) syuduodwod wsAs Surpnjour ‘wajqord
SOA & pasod jeym uoneosynsnl oy Surpnjour ‘wdqoid ay} Jo asned paquIdsIp 1odal 103 Ay sk T QAIIMIUI JOU ST UOJT JO SUIuBIA
Aqrenieq PPLL Modoy
ON ‘[6] suonepuswiosa ayy 10j oeuones parjddns pue ‘spjoopen; pue saAneuId)[e apiaoid
SO suonduosop oy ‘ojdwexa 104 (suonnjos 10j sjesodoid jnoqe pourejdxs jodor 109Jop Ay sepqy] 06SS¥11#399J9p enzsng
JIMSUY SUOISINC) JUIUISSISS Y 110day 39350

Y44

Aqrenteq
ON (warqord swes ay) sadusLIadxd pey Josn
SOA IOUJ0 JI 10 Parmodo wo[qoid oY) udyo moy noqe pauonuowr jodor j09Jop oyl sepy [
Aqrenteq
ON ¢(uonaENSIp pup BOISNIUOD “0ueLOUUT “3'Y) SaNSS] -a8ed oy Jo doy ayy 03 dn SuI[[010S INOYIIM AJJUR)ISUI UOJT MITA JOPEIY SSAVOE UBD
oA oy uodn suopoear 40 Fuplad) “WoROWd s120dar paqrosap 10dar Jogap Ay SEM 01 1osn jeyy oS -oSed oy Jo yred Aue ur are nok J[Iym pardZSLy 9q UOJT MIIA JOPEIY,, Y} Jey) 10adXa pinom |
Alened :s)[nsax pajdadxy
ON (Yse) oy Jo ooueprodurr pue
SOA 3se) s Josn ‘ssouisnq uo woyqoid oy} jo joeduwr oY) paquosap 11odor J09JOp AYI SeA\ 6 -yBnoud
Ajrenred 9[qeIOA09SIP Jou sI (Suismoiq dearld ur) punoidyoeq yor[q Y} U0 UODI A0I3 O} PUB [[BWS AIOA SI UODI MOIA
ON 10peay,, 9y} ‘arowrdyin, oSed Suo| A19A & pey nok JI SurNSuod W) 9q UBD SIYJ, "UOJI MIIA IOpedy pulj
SOA ¢1osn oy 03 wajqoad e sosod yeym ynoqe pauonuaw Aprordxo podaryoagep ayr sep '8 01 93ed ay) Jo doy 194 93 03 dn [[019S 0) 9ARY NOA USYM Funensniy K194 s3] -o5ed oy} UMOP [[0I0S NOA UdYM
Ajrented 9[QBIOAODSIP JOU ST UODI oY} PUB Jeq T Y} JO Pud Y} J& UMOYS A[OJBIPIWLI J0U ST UOJT MIIA JOPRIY,, QYL
ON "MIIA JOpedY $S909k 0) USIS Aue puly 3, up[nod | ‘oFed oy umop [[0I0S | pue Jurpeo| SI UONBWLIOFUT Y} USY A\
SOA (wajqoad e sem 31 jey syury) 1ou0das oy Aym paygnsnl jodarooyep oy sepy /L 15)[nsa [ENJOY
Aqrenred
ON "MIIA JOPRIY $S9008 0) A1) PUB UOJT MIIA JOPRIY,, OU} 9AIdSqO) "0
SIA ¢suondLIosop 109§0p oy Ul AUO I} YA IBILIS PIAIOSGO NOK S$[NST [ENOE AU} AION 9 *oFed o) uMOP [[010s ‘TUIPLO] SI UOHBUWLIOJUI Y} A[IYM 6
Aqreniedq "papeo] 9q 03 oFed uorRULIOJUI O} JOJ JIEM PUR ‘S)NSII [OILIS O} JO JUO U0 109[9S '8
ON " ULI00UIS UL 91eM)JOS,, UO [IIeds o[dwrexd JoJ — S9[o1Ie JWI0S PUlj Pue yoIess 9[3003 0} 0 °/
SOA (JUSWUOIIAUD PUR JIAdP UMO INOA uo wajqoid ayy donpordar 0) 9[qe nokary °g “UOOT 10SMOIq XOJOIL U0 YOI[) 9
Aqrenzeq :9onpoadau 03 sdag
ON (WAISAS ay) y3noayy mofj uonesiaeu s 1osn urpnjour ‘wajqord
SOA oyy sonpoidar 0y moy sdoys £q sdoys qrerop ur poute[dxo jodor 109Jop oyr sepm f "UOJT MATA JOPEIY 10J UODI)00q,, JO SUIULIW dAINUIUN
Ajrented "ugIsop yse) JY} INOQE H# PUB ¢# P[INQ UO OBqPIJJ 9ANESOU IIOY) PISSIIPPE OS[B SIOSN [BIOAJS ‘UOHIPPE U] “IOAOISIP
ON 1SN PUB 9JBLIOIUI ‘UOLORIAIUL dY) Y3im Suoim SI Jeym jnoqe uonduosop oy ‘ojdwexs 0} JOSN J0J 9AIINIUL JOU dJ& JO[0D S} PUB UOJI MIIA JOPeIY [[ews AIoA 9y ‘uonippe uf oSed oy} umop [[0Ios
SOA 104 (w[qoid oy U POAJOAUL INSST AJI[IQESN UIBW dY) PIQLIOSIP 310dd1 J09JOP Ay} SBA\ "¢ | Iosn uoym pakerdsip A[yuisisiod Jou SI UOIT MOIA JOPLBAI Y], "UOIT MIIA IOPEIY N0 Pulj 0) AJNOIJIP dALY |
Ajrenred ¢sardrounid pue udisap Ajigesn Aue Jo SUONR[OIA IO (PIA[OAUL cuondrLsaq
ON 10 pajodyye are jeyy suduodwod wdisAs “a'1) werqoid e pasod jeym jo uonesynsnl
SOA [edruyod) oy Surpnpoul ‘wojqoid oY) Jo osned paquosop 31odor 109JOp oYl Sep T MIIA JOPEBIY SS9008 0) MOY Jed[U[)
Aqrenred ‘[6] suonepuswodas dp1L 3odoy
ON oy) 10 oreuoner porddns pue ‘sjjospen pue sdapeurdie opraoid suondiosap
SO oy ‘oidwrexa 104 (suonnjos 1oy sjesodoid jnoqe paurejdxd 1odax 109J0p Ay SeM]] 68€9%1 1#399)9p e[zsng
JOMSUY SUONSINC) JUIUWISSISSY 110doy 39950

9¢¢

Aqrenteq
ON (warqord swes ay) sadusLIadxd pey Josn
SO X IOUI0 J1 10 PaLMod0 waqoid 9y usyo Moy jnoqe pouonuawr 310dor Jo9Jop Ay sep [
Aqrenteq
ON ((uonOBNSIP PUL UOISNIUOD ‘QOUBAOUUR ‘3°'T) SINSSI
SOA oy uodn suonoear 1o Suredy ‘uonowd siduodor paqudsap j10dar 309JOp Ayl SeA 01 POPPE A[[1SSI900S ST qE} MONL,
Aqrenteq
ON &1se1 2y 3o ouepodut pue :9)B21pUl JeY) 93eSSou ISeo) & ‘9]duIexa 10, "PIPPE SeM qB) MU JeY]) Iasn
oA ISE} S.19sn “ssautsnq uo wiajqoxd ayy Jo jorduit ay) paqUasap 10dax 1jdp Ay ST 6 wojur 03 sqe) uado Jo Jaquinu pajepdn Y UBY) I9Y)O J0JEIIPUT IARULIOJUI UB 9IdM 1Y) J1 Po0S 99 p[nom |
Afrenieq :s)nsa. pajdadxy
ON
SOA (39sn ay) 0} wejqoid e sasod jeym Inoqe pauonuawr APIordxa 310dar 109Jop oy sepy 8 Suisnyuoo Afjear st 9ouoLadxa 105eUR)y QUL AU Teq TN U JO IPIS
Arenred 1ySu1 oy uo uodr qey Suissaid £q S PaJRAId SEM qB) AU} JI MOUY UBD NOA ABM AJUO 9] "sqe) uado Sunsixs ayp
ON pUIJ 0} 2IOYM MOUY 10U OP | PUB 40U IO PIPPE AJ[NJSSIOINS 2IOM SQB} MAU J1 INO 2INJ1J 0) SWIOUWIOS W Y00}
SOA ¢widjqoad e sem 31 jey syury sonodox oy Aym poynsnl110dor 109Jop O S "L | 31 -poppe usaq SEY qE} MOU € JeU) Maw| J0u Aewi nok “usdo SqE) JO IoqUINU SUNSIXS AU AIBAME JOU PIP NOA J1
Aqrenteq ‘IOAOMOH "qB} MOU B PPE NOA IOAJUSYM PIsearour /pajepdn st (18q T JO 9pIS 1YSLI 9y} uo Xoq arenbs) uodr
ON qe) 9} UO IOqUINU AJUO ‘PIJNIOU [[oM I8 NOA J["PAIRAID ST Q) MIU SMOYS JBY) J0JBIIPUI SNOIAQO OU ST 1Y],
SO X (suondrIdsap 199J9p J) Ul SUO Y} YPIM IB[IWIS PIAIISQO NOA §J[NSI [BNIOR) AIDA\ 9 :S)[NSaa [EN)IY
Aqrenteq
ON qe], moN uo ssaxd uay) — oFed 1oSeuew qeJ, Ay JO WOHOQ AY) 1B NUIW J[PPIW A} $$AIJ °€
SO (JUSWUOIIAUD PUR JIAdP UMO INOA uo wajqoid ayy donpordar 0) 9[qe nokary °g ne'wod Aeqad//:dpy uado ojdwexs 10,4 -ofedqom Aue 0 on ¢
A[renied "UOJT JOSMOIQ XOJAIL] U0 A1) °[
ON (W)SAs oy} y3noayy molj uonediaeu s 1osn Jurpnjour ‘wajqoid :3onpoadaa 0y sdajg
SOA oy oonpoidar 0} moy sdoys Aq sdojs [rejop ur pauredxo jodor jo9Jop Ayl Ssepq b
Ajrented "ug1sop yse) "Je9[0), USI qB) MU B 9)83I0 0) UONUAU] ‘0S Sulop are Aoy
ON Josn pue 908U ‘UOHIRINUL A 1M SuoIm SI Jeym jnoqe uonduosop oy ‘ojdwexd Surziyear ynoyym sqey mau sjdnynu 9jea1d ued 1os() "ofed 1oAe[nnuw ur uappIy are Yorym ‘sjods Kdwa uelq
SOA 104 (wa[qoid oy Ul POAJOAUL INSST AJI[IQRSN UIBW dY) PIQLIOSIP 310ddI J09JOP dY) SBA\ ¢ odpnw se pojuosardor ore sqey pappe A[mou oy, 'pouddo uodq oABY JeY) Sqe) pul A[IOQIIp J.Uued |
Ajrenred ¢sardroutid pue udisap Ajiqesn Aue Jo SUONB[OIA 10 (PIA[OAUL cuondrLsaq
ON 10 pajdayJe 21k jeyy syuduodwod wsAs “a'1) wajqold e pasod jeym jo uonesynsnl
SO X [eoruyo9y oy Jurpnpour ‘wojqoid oy Jo asned paquosdp odar 109Jop Y Sep T uIsnjuod st 20udLIdX? Sqe) SWIOH:IN0QY MAN
Aqrenred ‘[6] suonepuawodas :dp1L 3rodoy
ON oy 1oy oreuoner parddns pue ‘spjospen pue soaneurdye opraoid suondiosap
SO oy ‘ordwexa 104 ¢suonnjos 10y sjesodoid noqe paurejdxd uodar 10950p 2y sem] [209SH11#399)J9p e[zsng
JIMSUY SUOISINC) JUIUISSISS Y 110day 39350

LTt

Aqrenteq
ON
SO X ({Pa1mod0 wo[qoid 2y u2)Jo MoY| Jnoqe pauonuaw 1odar 109Jop oY) sep\]
Aqrenteq
ON
SO X ($ansst o) uodn suororal 10 Jui[ag) ‘uonowd s10110dal paqrIdsap 31odar 109Jop oY) Sep\ 01
Aqrenteq
ON $se) 2y Jo aoueitodurr pue yse) s 1asn
SOA Ay uo joedur 09339 ssaursnq uo wajqoid ay) Jo 1edwir oY) PIqLIOSIP 10da1 199J3p A Sep\ ‘6
Aqrenteq
ON
SOA (39sn ay) 03 wrjqoid e sasod jeym Inoqe pauonuaw APIordxa 310dor 109Jop oy sepy 8
Aqrenteq
ON
SOA (wioqord e sem 31 jey syury) 1ou0das oy Aym paygnsnl jodarooyop ayy sepy L
Aqrenteq
ON
SO X {SuondLIosap 199J9p 2} UI JUO) YIIM IB[IWIIS PIAIISQO NOA §I[NSI [BNIOR) JIOA\ 9
Aqrenteq
ON
SOA (JUSWIUOIIAUR PUB 3JIAJP UMO INOA uo wa[qoid ayy donpordar 0) 9[qe noAary g
Aqrenteq
ON (WAISAS a3 y3noayy mofj uoreSiAeu s Josn urpnjour
SOA ‘wopqoad ayy sonpoidor 0) moy sdays Aq sdas qreop ur poure[dxs jodar jo9Jop Ay sepq b
Ajrenred ‘ug1sap yse) Josn
ON PuB 90BLIAIUT “QINIIYOIE UONIRIANUI Y} YIIM Fuoim SI jeym jnoqe uondriosap oy ‘ojdurexs
SO X 104 (woqoid oy} Ul PIAJoAUl onssI AJI[Iqesn Urewl oy} paqLosap jiodor 109JOp Ay sepy €
Aqrenteq
ON {PIAJOAUL 10 P2)d3JJe A1k Jey) sjuduodwod wIsAs Surpnjour ‘wajqoid ©
SOA pasod jeym uonesynsnl ayy Surpnjour ‘wd[qoid oy} Jo Isned paquIdsap 110dar 1O Ay SN\ T
Aqrenteq
ON ‘[6] suonepuswiosa ayy 10j oeuones parjddns pue ‘spjoopen; pue saAneuId)e apiaoid
SOA suonduosop ayy ‘ojdwexs 104 jsuonnjos 10y sjesodoid noqe paure[dxa j10dor 3o3Jop oy sepqy [

'0) 9ARY J,Up[NOM
1 uoy} 2103531 & 10k pareadde sKemje 1eq[00) Yy JI 9]ST1m JBY) Op O} 9ARY JOAdU pinom | ‘A[jeap|
:s)[nsay pajdadxy

‘Surd4) 1eys uoy ‘req
uonedo] ayy dey uoy) ‘readde o3 31 105 03 (Apy31ys oSed oy [[010s) ,913T1m,, & JO JIq B OP 0} PAdU | OS
‘pasdeyoo st 1eqjoo) doy oy sowmowos ‘yse] Jurop sem [Jeym uo Surpuodap ‘soyoune| X0JoIr] USYA

:S)[NSAY [PV

"JOSMOIqQ XOJOII] youne] °[
:3onpo.aday 03 sdang

"9)E[S yue[q € JuBM JSn[pue woy) YIm [edp 0}
juem j,uop | dde oy youney | sawr) oY) Jo jsowr Jnq ‘Iaje| 0} 1921 0} uado sqe) doay soWNAWOS 0) Pud) |

‘(10381 Awr wody ‘Appuanbaiy ssaf 10 ‘Arowdw Awr ur ‘preoqdifd ayy ur 10ynR) TYN Aq 95ed d1y10ads

® PeO[10 SuIyjowos 10J yoIeas o) Aanb 31 Suryoune| s1 X011 10J 9sed asn Juanbaiy jsouwr AN
cuondrsaq

dde 3u1101521 USYM 1BQ[00) MOYS SABM]Y
PPLL Jroday

9LETG6T199)9p e[iz3ng

JOMSUY

SuonsIN() JUIWSSISSY

310day 19959

8¢CC

Aqrenteq
ON (warqold awes oy sadudnadxo
SO X PeY 19sN IO J1 JO PALINI00 wo[qoid 3y} ud)jo Moy Jnoqe pauonuaw 31odar Jo9Jap oyl Sepy T
Aqrenteq
ON ¢ (uonoensIp pue uOISNJUOd ‘douekouue
SOA 9'1) sansst oy} uodn suor}oeal 10 Jure9) ‘uonowd s1)10dor paquIdSAP 10dar 199Jop Ay sep\ 01
Aqrenteq
ON $se) oy jo doueyroduur
SO X pue yse} s Josn ‘ssouisnq uo wojqoid ay) jo joedwr o) paquosap j10dar 109J9p oY) SeA 6 ‘SUIAOW 1 1950 Y3 USYM A[[e19adS0 I9SMO1q GOM S YA OBINT
Ajrenred 01 Aem Ased ue apiaold pinoos uoyng ssaxd-3uo| Suisn "qe], mou ppe 0} uopng qe} Ay} ssaid-Juo
ON :$)[NSAY padadxyg
SOA (39sn ay) 03 wrjqoid e sasod jeym Inoqe pauonuaw APIordxa 310dor 109Jop oy sepy 8
Ajrented ‘Suryiowos 10§ J0o[03 sqe)
ON [e19A9s asn pue duoyd Jy3 pjoy 0) puey U0 AJUO asn 0} dAeY | UdYm Sulkouue A[[eal SI SIY} Inq se)
SOA ¢widjqoad e sem 31 jey syury sonodox oy Aym poynsnl110dor109Jop oGk SN "L | £w Sunoagze Jou st ansst sy UsAT (3a0qe doys pue ¢ doys) sdajs omy saxmbal Jesn ‘qe) mou uado o,
Alrenaeg :S)[NSAY [BNPY
ON
SO X {SuondLIosap 199J9p 2} UI JUO) YIIM IB[IWIIS PIAIISQO NOA §I[NSI [BNIOR) JIOA\ 9 T 05000 WS /a7y — ojdwexs 10§ “0fed mou € uado oSed
Aqrenzeq uado A1mau ay) uQ "qe} Mou B ppe 0} JoSeurw qeJ, 9y} JO W00q oy} Je uonnq +,, Yl ssald '8
ON Teq TN
SIA {JUSWUOIIAUS PUE 9IIAIP UMO IN0A U0 urd[qoId 9y 9onpoIdar 03 9[qe NOAdIY °S | oy jo opis JySL oy uo uonnq qel Ay ssaig ‘qer mou e uado ‘uado st oSedqom e uoypy
A[ensed ne'woo'Aeqay/:dpy uado ojdwexs 10,4 -ofedqom Aue o) on 9
ON (WAISAS a3 y3noayy mofj uoreSiAeu s Josn urpnjour "UOOT JOSMOIq XOJOIL] U0 YLD °C
SOA ‘wopqoad oy oonpoidar 03 moy sdays Aq sdoys [rejop ur pauredxs jodor 109J9p oy} sem b :2anpoaday 0) sdajg
Ajrenred ‘ugisap
ON 3Se) 19SN pue d0JINUI ‘UOIORINUI A} PIm Fuoim s jeym jnoqe uondrosap ay ‘ojdwrexd ‘qe] Mau ppe 0} ss3001d
SO Jog ¢(wio[qord ayy ur paAjoAul InsSI AJ[Iqesn urew dy} paquosap 11odar Jodyep Ayl sep\ ¢ | oyy dn poads 03 Juead[om de sdojs JUSLING dY] ‘qel Mdu € uado 03 sdoys oY) Ym paysHes Jou we |
Ajrenred ¢sordrounid pue udisap Ayjigesn Aue jo cuondrLsaq
ON SUOTJR[OIA 10 (PIAJOAUL JO PIJd)Je a1k Jey) sjuouodwiod wsAs “o°1) worqoid e pasod jeym
SO X Jo uoneoynsnl [ed1uyd2) oY) Jurpnpour ‘wid[qoid ay) Jo asned paquIOSap 110da1 P A seA T qe) mau ppe 03 sdojs JueAdoL]
Aqrenieq PPLL Modoy
ON ‘[6] suorrepuswiiosas oy 10y oreuonies parjddns pue ‘spjoopen; pue saAneuId)[e apiaoid
SO suonduosop ayy ‘ojdwexs 104 jsuonnjos 10} sjesodoid noqe paure[dxa j10dor 3o3Jop oy sepqy [SISIETI#II9JIP ez3ng
JIMSUY SUOISINC) JUIUISSISS Y 110day 39350

6CC

Aqrenteq

ON

SO X {P21mo50 wa[qoid oY) U2)Jo MOY| Jnoqe pauonudW J10dor 199Jop oY) Sep\ 7T
Aqrenteq

ON

SOA ¢sansst ay) uodn suonoear 10 3ur29) ‘uonowd s12)10dar paquIdsap 110dar 109JOp Y S\ ‘[T
Aqrenteq

ON $se) oy Jo adueirodunr pue yse) s 1asn

SO X oYy uo joedurr 09§30 ssouisnq uo wojqoid 2y jo joedwr Yy paqudsap 1odar 109Jop AP SeA 0T
Aqrenteq

ON

SOA (39sn ay) 0 wejqoid e sasod jeym Inoqe pauonuawr APIIdxa 310dar 109J3p oy sep 61
Aqrenteq

ON

SOA jwarqold ' sem 31 18y syuryy 1ou0dax oy Aym paygnsnl 11odar1095op ayy sepy ‘81
Aqrenteq

ON

SO X {SuondrIosap 199J9p 2y} UI JUO) Y)IM IB[IUIIS PIAIISQO NOA SINSAI [BNIOR) JIOA 'L
Aqrenteq

ON

SOA (IUSWUOIIAUD PUB IIAIP UMO INOA uo wa[qoid ayy donpoidar 0) 9jqe noA ary ‘9|
Aqrenteq

ON (WAISAS 2y y3noIy) mo[j uonesiAeu s 1osn

SOA Surpnpour ‘wopqoad ay) sonpoidar 0) moy sdays Aq sdoys 1e1op ur paurejdxa j10dor 309Jop Yy sepqy ‘S
Ajrenred ‘ugIsap

ON 3Se) IoSn pue 9JBJIOMUI ‘QINJIIYOIE UOTORIANUI oY) (M SuoIM SI Jeym jnoqe uondLosop 2y

SOA ‘ordwrexs 104 ;w[qoid ay) ur PAAJOAUL INSSI AJI[Iqesn Urew) paqLIOsIp 110dal 109Jop Ay sep\ 1
Aqrenteq

ON ({PIAJOAUL 1O PJoJe A1k Jey) syuduodwod wdsAs urpnjour ‘wajqord

SOA & pasod jeym uoneoynsnl ay) Surpnjour ‘waqoid ay) Jo asned paqLIdsIp Jodar JoJ3p Ay sep\ €]
Aqrenteq

ON ‘[6] suonepuswiosas ayy 103 oreuonies parjddns pue ‘spjoopen; pue saAneuId)[e dpiaoid

SOA suondirosap ayp ‘ojdwexs 104 (uonnjos 10y siesodoid jnoqe paurejdxs jiodar 30959p oy sepq 71

"uoo1 oY) puly 0 sdojs Auewr 00} INOYYIM J[qRIDAOISIP A[ISES 0q P[NOYS UODT TUMAS YL,
:s)nsay pajdadxy

o Awr Sunsem 31 pue ‘uoor oy} puiy 03 sdajs Aressaosuun

wioyiod 0) 9ARY | ‘9SED SIY} U] "USAIOS JXAU 3} 0} 2dImS 0) 9ARY JISN PUB UIAIJS SqR], Y}
ur JSIX9 SI 0ol Suneg oy afed oWOH :INOQY Y} UO PUNOy 9q JouuLd UO0dI Sulyes YL
:S)[NSAY [PV

"uodt SuIneg putg Q1

-o3ed 1o8eueW qe [9Y) JO WONOQ Y} Je NUIW S[PPIW oY} SSAId 6
-o8ed owoy :noqy oy} ur uoor Jurpes pulf ‘8

"UOJI JOSMOIQ XOJOII] UO §SA1d '/

:3onpo.aday 03 sdang

"U90I0S Sqe] Y} Ul [OAJ] B UMOP PaLINg, SI J1 90UIS 9]qeIIA0ISIP A[ISed JOU ST U0dT SUIg
cuondrsaq

9[qBIDA0ISIP A[ISEI JOU UOIT SUIAS
PPLL Jrodoy

8SLPPT1#199J9p elizang

JOMSUY

SuonNsIN() JUIWSSISSY

310day 19959

0¢€¢

Aqrenteq
ON warqold awes ay) sadudnadxo
SO X Pey 19sn 12Y)0 JI 10 Palndoo woalqoid 2y} u2jo Moy noqe pauonudw jiodar jooJop Ay sepy [
Aqrenteq
ON ¢ (uonoensIp pue uoISNUOd ‘douekouue
SOA o°1) sanssi oy} uodn suoroear 10 Fuled) ‘uonowd sioyodar paquasap jodar 199J9p Ayl sepq 01 -106A01 1eFES 0} Te[Is ‘apowt ayeAnd uy usdo (14 XORILg
Alrensed :S)nsaY pajoadxy
ON $se) oy jo doueyroduur
SO X pue st} sJosn ‘ssouisnqg uo wolqoid oY) jo joedwr oyl paquosAp odar 10dJOp oY SeA 6 -foeaud Sursmoiq
Ajrenied Aw Sunosgye Afenyoe 31 Inq “sey Awr Sunddje Jou s USISOp aINJedJ SIY) USAT "OpPOW JeALI]
ON Suisn 9smo1q | A[[EULIOU 9SNEd9q PIsnjuod we | ‘3uismolq [euriou ul pauado SI XOJoIr]
SOA (39sn ay) 0) wejqoid e sasod jeym noqe pauonuawr APIordxa 310dar 109Jop oy sepy 8 ISYNSIY [ENPV
Aqrenteq
ON XOJoll] youne[-oy 9
SOA wajqoad e sem 31 jey syury) 1ou0das oy Aym paygnsnljrodarooyep ayy sepy L “sqe L [V 9801)
Alrenred uo ssaxd uoy) — oFed 1oSeurw qe Sy} JO WOROQ SY) Je NUSW J[PPIW Oy} SSAIJ °C
ON “Jeq TN o} Jo 9p1s Y311 oy uo (xoq 9jdind Aun) uoynq qel Y U0 ssAIJ “§
SIA ¢suondLIosop 109§p oY) Ul AUO I} YILA IBILIIS PIAIOSGO NOK S[NST [ENOE AU} AIOA °9 "sqe) oyearid [e1oass uado 0) 7 days jeadoy ¢
Aqrenzeq Qe BALL MAN
ON uo ssaxd uoy) — oFed 10TeuRW B OY) JO WONOQ dY) J& NUIW J[PPIW Y} SSAId T
SOA (JUSWUOIIAUD PUR JIAIP UMO INOA uo wa[qoid ayy donpordar 0) 9[qe noAary °g “UOOT 10SMOIq XOJOIL] U0 §S31J [
Aqrenzeq :99npoaday 03 sdag
ON (WAISAS ay) y3noIy) mo[j uonesiAeu s 1osn
SOA Surpnpour ‘wajqoid ayy 2onpoidar 03 moy sdoys Aq sdays [reap ur paurejdxa 110dar 10950p oy sepy -apow uado A[sno1adid oy U0 paseq PaYoune[-a1 aq [[IM
Aqrenteq IOSMOIQ UOIYM UI ‘JOSMOIq LIeJeS Yim 0udL1adxd snoradxd Awr yyim jorpenuod si j ‘opowr
ON ‘u31SIp NSk} JOsn pue 20BJIAJUI ‘UONORIANUI AU} YHIM FUoIM ST Jeym Inoqe uondrdsap ayy deALIJ UI SI JosMol1q pauado)Se| 9y} UIAD ‘Opoul [BULIOU Ul 19smolq uddo Kuo BEN (o]
SO dpdwexa 104 jwdqoid dyj ur PIA[OAUL INSSI AJI[IGeSN UlBW Y} PIQLIOSAP 110da1 109JOP dYI SBA\ "€ | xojorr ‘Apuomn)) -oInjedj SUISMOIQ qel 9BALId SUBSIXO oY) UIAM POYSHES JOU wWe |
Ajrenred (so1drournid pue ugisap Ajigqesn cuondrLsaq
ON Aue Jo SUONB[OIA 10 (PIAJOAUL JO PAJodJe 21k Jey) sjuduoduwiod wsAs a°1) wajqoid e pasod jeym
SO X Jo uoneoynsn([eoruyda) oy Jurpnjour ‘wojqold 2y Jo asned paquosap jrodar 1P oY) Sep\ T 910)S21 0} sqe) d)eALId OU 2TB 12 JI UDAD [OUNE[-21 IISMOIq U0 apowr eAlid 11xd Jou o
Aqrenieq PPLL Modoy
ON ‘[6] suonepuswiosa ayy 10j oeuones parjddns pue ‘spjoopen; pue saAneuId)[e apiaoid
SO suondiiosap ayp ‘ojdwexs 104 ;suonnjos 10j sjesodoid jnoqe pauredxs 110dor 30959p oy sem]] 1€9LETT#II9J9p e[zsng
JIMSUY SUOI)SANC) JUAWISSISSY 110day 39350

1€¢

Aqrenteq
ON
SO X ({P21mod0 wa[qoid 2y u2)jo Moy Jnoqe pauonuaw 1odar 109Jop oY) sepy]
Aqrenteq
ON
SO X ({sansst a1y uodn suorjoral 1o Juiag) ‘uonowd s10110dal paquIdsap 3odar 109Jop oyl sep\ 01
Aqrenteq
ON $se) oy Jo adueirodunr pue yse) s 1asn
SO X oy} uo joedurr 909530 ssouisnq uo wojqoid ayy jo joedwr Ay paqudsep 110dar 109Jop AP SBA 6
Aqrenteq
ON
SOA (J9sn ay) 03 wojqoad e sasod jeym noqe pauonuaw APIordxa 310dar 109Jop oy sepy 8
Arenteq "uo1sIoA doyysop 0} JB[IWIS Se Sqe) UoaM]q djeSIALU 0} J0JEDdIPUI UB 9q P[NOYS 1AL,
ON :5)[nsay pajdadxy
SOA (warqord e sem 31 jey syury) 1ou0das oy Aym paygnsnl jodarooyep ayp sepy L
Alrenred "SQE} UOOMIOQ 9}BSIARBU 0} JOJBIIPUI ON
ON :S)[NSAY BNV
SO X (SuondLIosap 199J9p 2} UI JUO) YIIM IB[IWIS PIAIISQO NOA §J[NSI [BNIOR) AIOA\ 9
Arenred 'sqey uado snoradxd oy 0y 0y 7/
ON qel, MON
SA {JUSUWIUOIIAUS PUE IIAIP UMO IN0A U0 rd[qoId 91y 9onpoIdar 01 9qe NOA 21y °S | o ssexd uayy — oFed 1oSeuew qe], oy Jo WONOQ AY) J& NUSW J[PPIWL A} SSAIJ 'Q
Arenred ne'wod Aeqa//:dpy uado ojdwexs 10, -ofedqom Aue o) on g
ON (WAISAS 2y y3noIy) mo[j uonesiAeu s 1osn "UOOL JOSMOIq XOJOIL U0 YOID b
SOA Surpnjour ‘wojqoid ayy 2onpoidar 03 moy sdoys Aq sdays [reap ur paurejdxa j10dar 10950p oy sepy :aanpoaday 0) sdajg
Ajrenred ‘ugisap
ON 3Se) IOSn pue 9JBJIONUI ‘QINJIIYOIE UOTORIAUI o) (IM SuoIM SI Jeym jnoqe uonduosop 2y ‘3urppay SOY/paystjod jou st yoo| pue
SOA dpdwexa 104 jwd[qoid dy) ur PIA[OAUL INSSI AJI[IGESN UBW Y} PIQLIOSAP 110da1 103JOP Yl SBA\ "€ | (10y3050) PuS[q) A[[BNSIA PIULIP [[M JOU I8 SQB] "JUISIFUOD ST $qB) UdIMIOq FuneSiaeN
Ajrenred cuondrsaq
ON ({PIAJOAUL 1O PaJoJe A1k Jey) syuduodwod wIsAs Surpnjour ‘wajqord
SOA & pasod jeym uoneoynsnl oy Surpnjour ‘wdqoid ayy Jo asned paquIdsap Jodar 109J3p Ay sk T SuISnJuod SI sqe) UdaMIdq SunesIABN,
Aqrenieq PPLL Modoy
ON ‘[6] suonrepuswiiosas ayy 10y oeuones parjddns pue ‘spjoopen; pue saAneuId)[e apiaoid
SO suonduosop oy ‘ojdwexa 104 (suonnjos 10j sjesodoid jnoqe pourejdxs jodor 109Jop Ay sepqy] L6SSPH11#399J9p e[zsng
JIMSUY SUOISINC) JUIUISSISS Y 110day 39350

(454

Aqrenteq
ON (wdrqord swes ay) sadusLadxd pey Josn
SO X 190 JI 10 PaLIND90 widjqoid ay) U)o MOy Jnoqe pauonuawr 110dar 109Jop oyl Sepy T
Aqrenteq
ON ((UONOBNSIP PUL UOISNIUOD ‘QOUBAOUUR ‘3°'T) SINSSI
SOA ayy uodn suonoear 10 Juld9) ‘uonowd s1)10dor paquIdSIP 110dar 109Jop AP sep\ 01
Aqrenteq
ON &1se) 2y 3o ouenodut pue -a3ed a3 Jo wonoq /dn oy 03 Ful[[010s JSJ PUE JRQ[[0IdS A} qeIS ued 195 "dde SOI
oA IS8} 5,498 “ssautsnq uo wioqoid ayy jo joeduwit oy paquasap podor 1oo4p Ay seM 6 1oyjo ur pue a3edqom doi{sop ur Ieq[[oI0s IoUl0 AU 0) J[IWIS YI0M 0} UONJUNJ Ieq[[OIds oY) 199dxd pnom |
Alrenied :s)nsax pajoadxy
ON
SOA (Jasn ay) 03 wejqoid e sasod jeym Inoqe pauonuawr APIoIdxa 310dar 1o9Jop oy sepy 8 sdde g1 10430 1 O] 1035w} (0108 0 105uly Aw
Ajrented UM UMOP J1 SAOW Pue JYSLI) U0 IBqQ[[0IOS dY) qeId), ued | JBY) SWIIs)1 asnedaq ‘o3ed ay) Jo S[ppIw 3y} 0}
ON 103 0} 2103591 Surdims oty yym Isnf surw ¢ A[er)n] Juads T -oSed oy) Jo S[ppIu 9y} 03 [[0IOS 0} AU JOJ AUIT} Yonur
SOA ¢widjqoad e sem 31 jey syury sonodar oy Aym poynsnl110dor109Jop O S "L | o5 yooy 3 -armysoS adims Suisn SUI[0IOS SIE NOA PeaISU] “I0JEIIPUI [[0I0S S} SUISN [[0I9S 0F S[QEUN AIOM NO A
Alrenred :$3[NSA [BN)OY
ON (suondiiosap
SIA 109JOp OU) UL QU0 oY} YIM IB[IUIS POAISSqO NOK NSO [EMOE OU) M 9 "UMOP [[010S PUB I1BQ[[0IJS Y} qeI3 01 A1, 9
Aqrenieq *9pIS JYS1I AU} UO JOJBIIPUI [[OIOS Y} 9IS [[IM NO X "UIAIIS Y} YOno], G
ON ‘UONjEWLIOJUI SUOJ dARY ABW UOIYM ‘UOT)BULIOJUT 10J yoIeds pue a3ed eipadijip 0 0
SOA (JUSWUOIIAUD PUR JIAdP UMO INOA uo wajqoid ayy donpordar 0) 9[qe nokary g :2anpo.adau 0y sdoyg
Aqrenred
ON {widsAs oy YSnoay) Mofy uonegiaeu s 1osn Juipnjour ‘wajqoid “SHOM J0U S0P 1 Inq ‘Umop pue dn are SUIMIIA USAIDS d) dAOW 0) Pasn aq 0} pasoddns sI 1eq[[0I0S Y} mouy|
SOA ayy eonpoxdar 03 moy sdeys £q sdeys qrejep ur paurefdxo jroder 109Jop oY) SBAL ¥ | nok uoym oouduadxo Surkouur AI1oA SI SIY] U9A10S AY) UIIM orow 0] sajdioutid Ajjigesn asn Jo osBO pue
A[ensed "uSISap dsey Jasn ANIQIXa[} oy} Sune[oIA IOSMOIQ [IqOW XOJAII] JO WSIUBYIIW JUI[[0IdS JUdLIND Y], ‘qeid 0) o[qe jou si aFed
ON puE 90BJIUI ‘UONIBIDUL Y} Y3 SuoIMm SI JeyM Jnoqe uondiosap oy} djdwexs 104 JYS1I oY) Uo Jeq[[oIos Y], *2In)saS odIms) YIIM UMOP JOyIng [[01ds AJuo ued | ey sreadde i1 ‘oSed erpadyipy
SOA (wa1qoId 2y ur poAJoAUL dNSSI AJ[Iqesn urew oy} paquIosap 1odar jodJop oyl sepy € | e o1 “o8ed o31ey AJTear & uado [USYAN 99BJINUI JOSN JY} Ul (1BqQ[[0IdS) 199[qo dre[ndiuewr 0} A}NOLJIP dALY |
Ajrenred ¢ sordroutid pue ugdisap Ajjiqesn Aue Jo SUOIB[OIA 10 (PIA[OAUL cuondrLsaq
ON 10 pajodyye are jey) spuauodwod wAsAs “a'1) wajqoid e pasod jeym jo uonesynsnl
SOA [eoruyo9) Yy Surpnpour ‘wo[qoid dy) Jo asned paquosop jaodor 109Jop Ay Sep T Ieqqolos Suisn 98ed Suof [[010s 01 d[qeu)
Aqrenred ‘[6] suonepuawodas dp1L 3odoy
ON oy Joy dreuones parddns pue ‘sjjospen pue saaneurdle opraoid suondiosap
SO oy ‘ordwexa 104 (suonnjos 10j sjesodoid noqe pauredxe jodax 3o9Jop ay) sepq | €86661 1# 199J9p e[zdng
JIMSUY SUOISINC) JUIUISSISS Y 110day 39350

1154

Aqrenteq
ON
SO X ({Pa1mod0 wo[qoid 2y u2)Jo MoY| Jnoqe pauonuaw 1odar 109Jop oY) sep\]
Aqrenteq
ON
SO X ($ansst o) uodn suororal 10 Jui[ag) ‘uonowd s10110dal paqrIdsap 31odar 109Jop oY) Sep\ 01
Aqrenteq
ON {3Ise1 2y Jo ddueltoduwr pue yse) s 1asn
SOA Ay uo joedur 09339 ssaursnq uo wajqoid ay) Jo 1edwir oY) PIqLIOSIP 10da1 199J3p A Sep\ ‘6
Aqrenteq
ON
SOA (39sn ay) 03 wrjqoid e sasod jeym Inoqe pauonuaw APIordxa 310dor 109Jop oy sepy 8
Aqrenteq
ON
SOA (wioqord e sem 31 jey syury) 1ou0das oy Aym paygnsnl jodarooyop ayy sepy L -qey aeand pauado
Aqrenteq
oN A|Mau 9y} PAIdA0ISIP AIsed 9q pnod 1asn pue pajendod aq pnoys qeJ, aealld maN uf uadQ ay],
SO X (SuondLIdsap 199J9p JY) U SUO) YIIM IB[IWIIS PIAIISQO NOA §I[NSI [BNIOR) AIOA, 9 :s)[nsay pajradxg
Aqrenteq
ON [10M 3,US90p qe djeAlld MmAN U] uadp
SOA (JUSWUOIIAUD PUR IIAdP UMO INoA uo wa[qoid ayy donpordar 0) 9[qe nokary °g :S)NSAY [ENPIY
Aqrenteq
ON {WSAS oy YSNOIY) MO[J UONESIARU S JOSN FuIpn[oul Sur| oy ssaxd Suo| pue JNsal YoIeas auo 03[9 ¢
SO ‘wopqoad ayy oonpoidar 0) moy sdays Aq sdas qreop ur poure[dxs odar jo9Jop Ay sepq b SuIyoWOS 10] YoIess pue ne'woo9[5008 0 0 g
A[renreq "uSIsap yse) Jasn "UOOI JOSMOIQ XOJOILL UO SOID) T
ON PuB 90BLIAIUT ‘QINIIYOIE UONIRIANUI Y} YIIM Fuoim SI jeym jnoqe uondriosap oy ‘ojdurexs :2onpoaday 0y sdoyg
SO X 10 ¢(wo[qoid 9y} Ul PIAJOAUI onssI A)I[Iqesn Urew oY) paqLIdsap jiodor 109JOp A sepy €
Ajrenred cuondrsaq
ON {PIAJOAUL 10 P)OJJe A1k Jey) syuduodwod wsAs Surpnjour ‘wajqoid ©
SO X pasod jeym uonesynsnl oyy Jurpnjout ‘wajqoid 2y Jo 9sned paqrIdsAP 110daI 109Jop AY) Sep\ T qe) orearrd pouado A|mau oy} puly 0) 99UBPIOJJE UR I9JJO 1,USI0P qe], JeALld MIN U] uadQ
Aqrenieq PPLL Modoy
ON ‘[6] suonepuswiosa ayy 10j oreuones parjddns pue ‘spjoopen; pue saAneuId)[e dpiaoid
SO suonduosop ayy ‘ojdwexs 104 jsuonnjos 10} sjesodoid noqe paure[dxa j10dor 3o3Jop oy sepqy [8€T0STI#I99J9p e[zsng
JIMSUY SUOISINC) JUIUISSISS Y 110day 39350

Appendix F

Ethics Clearance

E.1 SUHREC Project 2014/231 Ethics Clearance
To: Prof John Grundy, FSET/Mrs Nor Shahida Mohamad Yusop
Dear Prof Grundy,

SHR Project 2014/231 What makes a good usability defect report?
Prof John Grundy, FSET/Mrs Nor Shahida Mohamad Yusop
Approved Duration: 21/10/2014 to 31/07/2017 [Adjusted]

I refer to the ethical review of the above project protocol by a Subcommittee (SHESCI1) of
Swinburne’s Human Research Ethics Committee (SUHREC) at a meeting held 19
September 2014. Your responses to the review, as emailed on 1 and 20 October were reviewed by a
SHESCI1 delegate.

I am pleased to advise that, as submitted to date, the project may proceed in line with standard on-
going ethics clearance conditions here outlined.

- All human research activity undertaken under Swinburne auspices must conform to Swinburne and
external regulatory standards, including the current National Statement on Ethical Conduct in
Human Research and with respect to secure data use, retention and disposal.

- The named Swinburne Chief Investigator/Supervisor remains responsible for any personnel
appointed to or associated with the project being made aware of ethics clearance conditions,
including research and consent procedures or instruments approved. Any change in chief
investigator/supervisor requires timely notification and SUHREC endorsement.

- The above project has been approved as submitted for ethical review by or on behalf of SUHREC.
Amendments to approved procedures or instruments ordinarily require prior ethical
appraisal/clearance. SUHREC must be notified immediately or as soon as possible thereafter of (a)
any serious or unexpected adverse effects on participants any redress measures; (b) proposed
changes in protocols; and (c) unforeseen events which might affect continued ethical acceptability
of the project.

- At a minimum, an annual report on the progress of the project is required as well as at the
conclusion (or abandonment) of the project. Information on project monitoring, self-audits and
progress reports can be found at:
http://www.research.swinburne.edu.au/ethics/human/monitoringReportingChanges/

- A duly authorized external or internal audit of the project may be undertaken at any time.

Please contact the Research Ethics Office if you have any queries about on-going ethics clearance. The
SHR project number should be quoted in communication. Researchers should retain a copy of this
email as part of project recordkeeping.

Best wishes for the project.
Yours sincerely,

Kaye Goldenberg

Acting Secretary, SHESC1

Research Ethics Executive Officer (Acting)
Swinburne Research (H68)

Swinburne University of Technology

Level 1, SPS, 24 Wakefield Street

Hawthorn, VIC 3122

Tel: +61 39214 5218

Fax: +61 3 9214 5267

Email: kgoldenberg@swin.edu.au

235

E.2 SUHREC Project 2016/325 Ethics Clearance
To: A/Prof Jean-Guy Schneider, FSET

SHR Project 2016/325 - Evaluation of a New Usability Defect Classification

A/Prof Jean-Guy Schneider, Nor Shahida Mohamad Yusop (Student) — FSET/Prof John Grundy, Prof
Rajesh Vasa — Deakin University

Approved duration: 20-01-2017 to 20-06-2017 [Adjusted]

I refer to the ethical review of the above project by a Subcommittee (SHESC3) of Swinburne's Human
Research Ethics Committee (SUHREC). Your response to the review as e-mailed on 20 January 2017
was put to the Subcommittee delegate for consideration.

I am pleased to advise that, as submitted to date, ethics clearance has been given for the above project
to proceed in line with standard on-going ethics clearance conditions outlined below.

The approved duration is 20-01-2017 to 20-06-2017 unless an extension request is subsequently
approved.

- All human research activity undertaken under Swinburne auspices must conform to Swinburne and
external regulatory standards, including the National Statement on Ethical Conduct in Human
Research and with respect to secure data use, retention and disposal.

- The named Swinburne Chief Investigator/Supervisor remains responsible for any personnel
appointed to or associated with the project being made aware of ethics clearance conditions,
including research and consent procedures or instruments approved. Any change in chief
investigator/supervisor, and addition or removal of other personnel/students from the project,
requires timely notification and SUHREC endorsement.

- The above project has been approved as submitted for ethical review by or on behalf of SUHREC.
Amendments to approved procedures or instruments ordinarily require prior ethical
appraisal/clearance. SUHREC must be notified immediately or as soon as possible thereafter of (a)
any serious or unexpected adverse effects on participants and any redress measures; (b) proposed
changes in protocols; and (c) unforeseen events which might affect continued ethical acceptability
of the project.

- At a minimum, an annual report on the progress of the project is required as well as at the
conclusion (or abandonment) of the project. Information on project monitoring and
variations/additions, self-audits and progress reports can be found on the Research Internet pages.

- A duly authorised external or internal audit of the project may be undertaken at any time.

Please contact the Research Ethics Office if you have any queries about on-going ethics clearance,

citing the Swinburne project number. A copy of this e-mail should be retained as part of project record

keeping.

Best wishes for the project.

Yours sincerely,

Sally Fried

Secretary, SHESC3

236

References

[1]

[2]

[6]

[7]

[10]

A. Fernandez, E. Insfran, and S. Abrahdo, “Usability evaluation methods for the web: A
systematic mapping study,” Information and Software Technology, vol. 53, no. 8, pp. 789-817,

2011.

M. Theofanos and W. Quesenbery, “Towards the Design of Effective Formative Test Reports,”

Journal of Usability Studies, vol. 1, no. 1, pp. 27-45, 2005.

T. S. Andre, H. Rex Hartson, S. M. Belz, and F. a. Mccreary, “The user action framework: a
reliable foundation for usability engineering support tools,” International Journal on Human-

Computer Studies, vol. 54, pp. 107-136, 2001.

A. J. Ko and P. K. Chilana, “How power users help and hinder open bug reporting,” in
Proceedings of the 28th international conference on Human factors in computing systems,

2010, p. 1665.

A. Raza, L. F. Capretz, and F. Ahmed, “Improvement of Open Source Software Usability: An
Empirical Evaluation from Developers’ Perspective,” Advances in Software Enginering, vol.

2010, pp. 1-12, 2010.

L. Zhao and F. P. Deek, “Improving Open Source Software Usability,” in Proceeedings of the

Eleventh Americas Conference on Information Systems, 2005.

G. Cetin, D. Verzulli, and S. Frings, “An Analysis of Involvement of HCI Experts in
Distributed Software Development: Practical Issues,” Online Communities and Social

Computing, vol. 4564, pp. 32—40, 2007.

R. T. Hoegh and J. Stage, “The Impact of Usability Reports and User Test Observations on
Developers > Understanding of Usability Data : An Exploratory Study,” International Journal

of Human-Computer Interaction, vol. 21, no. 2, pp. 173—-196, 2006.

K. Hornbaek and E. Frokjaer, “What Kinds of Usability-Problem Description are Useful to
Developers?,” in Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

2006, vol. 50, no. 24, pp. 2523-2527.

M. B. Twidale and D. M. Nichols, “Exploring Usability Discussions in Open Source

237

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

Development,” in Proceedings of the 38th Annual Hawaii Internatioal Conference on System

Sciences, 2005, pp. 1-10.

M. G. Capra, “Usability Problem Description and the Evaluator Effect in Usability Testing,” .

PhD Thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2006.

S. L. Keenan, H. R. Hartson, D. G. Kafura, and R. S. Schulman, “The Usability Problem
Taxonomy : A Framework for Classification and Analysis,” Empirical Software Engineering,

vol. 4, pp. 71-104, 1999.

T. S. Andre, S. M. Belz, F. A. McCrearys, and H. R. Hartson, “Testing a Framework for
Reliable Classification of Usability Problems,” in Proceedings of the Human Factors and

Ergonomics Society Annual Meeting, 2000, vol. 44, no. 37, pp. 573-576.

M. Hertzum and N. E. Jacobsen, “The Evaluator Effect: A Chilling Fact About Usability
Evaluation Methods,” International Journal of Human-Computer Interaction, vol. 15, pp. 183—

204, 2003.

R. Molich, R. Jeffries, and J. S. Dumas, “Making Usability Recommendations Useful and

Usable,” Journal of Usability Studies, vol. 2, no. 4, pp. 162-179, 2007.

B. J. S. Dumas, B. R. Molich, and B. R. Jeffries, “Describing usability problems: Are we

sending the right message?,” Interactions, pp. 0—4, 2004.

N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects : Limitations of Open
Source Defect Repositories and Suggestions for Improvement,” in Proceedings of the 24th

Australasian Software Engineering Conference, 2015, pp. 38—43.

T. Zimmermann and S. Breu, “Improving Bug Tracking Systems,” in 3/st International

Conference on Software Engineering - Companion Volume, 2009, pp. 247-250.

A. Bruun, P. Gull, L. Hofmeister, and J. Stage, “Let Your Users Do the Testing: A
Comparison of Three Remote Asynchronous Usability Testing Methods,” in Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, 2009, pp. 1619-1628.

T. Zimmermann, R. Premraj, N. Bettenburg, C. Weiss, S. Just, and A. Schro, “What Makes a
Good Bug Report ?,” IEEE Transactions on Sofiware Engineering, vol. 36, no. 5, pp. 618—643,

2010.

238

[21]

[22]

[23]

[24]

[25]

(26]

(27]

(28]

[29]

[30]

[31]

E. I. Laukkanen and M. V. Mantyla, “Survey Reproduction of Defect Reporting in Industrial
Software Development,” in International Symposium on Empirical Software Engineering and

Measurement, 2011, pp. 197-206.

D. M. Nichols and M. B. Twidale, “Usability processes in open source projects,” Software

Process Improvement and Practice, vol. 11, no. 2, pp. 149—-162, 2006.

C. Wilson and K. P. Coyne, “The whiteboard: Tracking usability issues: to bug or not to bug?,”

Interactions, pp. 15-19, 2001.

F. P. Simdes, “Supporting End User Reporting of HCI Issues in Open Source Software,” PhD

Thesis, Pontificia Universidade Catolica, Do Rio De Janeiro, 2013.

C. Sun, D. Lo, X. Wang, J. Jiang, and S. Khoo, “A Discriminative Model Approach for
Accurate Duplicate Bug Report Retrieval,” in Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering, 2010, pp. 45-54.

S. Banerjee, Z. Syed, J. Helmick, and B. Cukic, “A Fusion Approach for Classifying Duplicate
Problem Reports,” in IEEE 24th International Symposium on Software Reliability Engineering,

2013, pp. 208-217

Y. Tian, D. Lo, and C. Sun, “Information Retrieval Based Nearest Neighbor Classification for
Fine-Grained Bug Severity Prediction,” in 19th Working Conference on Reverse Engineering,

2012, pp. 215-224.

J. Xuan, “Developer Prioritization in Bug Repositories,” in 34th International Conference on

Software Engineering, 2012, pp. 25-35.

P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An empirical analysis of bug
reports and bug fixing in open source Android apps,” in Proceedings of the European

Conference on Software Maintenance and Reengineering, 2013, pp. 133—143.

B. a. Kitchenham, P. Brereton, M. Turner, M. K. Niazi, S. Linkman, R. Pretorius, and D.
Budgen, “Refining the systematic literature review process—two participant-observer case

studies,” Empirical Software Engineering, vol. 15, no. 6, pp. 618-653, 2010.

K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic Mapping Studies in Software

Engineering,” in Proceedings of the 12th international conference on Evaluation and

239

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Assessment in Software Engineering, 2008, pp. 68—77.

J. D. Strate and P. a. Laplante, “A Literature Review of Research in Software Defect

Reporting,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 444-454, 2013.

S. Davies and M. Roper, “What’s in a bug report?,” in Proceedings of the 8th ACM/IEEE
International Symposium on Empirical Software Engineering and Measurement, 2014, pp. 1—

10.

S. Zaman, B. Adams, and A. E. Hassan, “Security Versus Performance Bugs : A Case Study on
Firefox,” in Proceedings of the 8th Working Conference on Mining Software Repositories,

2011.

A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing performance bugs,” in /0th

Working Conference on Mining Software Repositories, 2013, pp. 237-246.

S. Zaman, B. Adams, and a. E. Hassan, “A qualitative study on performance bugs,” in 9t

IEEE Working Conference on Mining Software Repositories, 2012, pp. 199-208.

L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteristics in open source

software,” Empirical Software Engineering, pp. 1-41, 2013.

S. Lal and A. Sureka, “Comparison of Seven Bug Report Types: A Case-Study of Google
Chrome Browser Project,” in /9th Asia-Pacific Software Engineering Conference, 2012, pp.

517-526.

A. J. Ko, B. A. Myers, and D. H. Chau, “A Linguistic Analysis of How People Describe

Software Problems,” in Visual Languages and Human-Centric Computing, 2006, pp. 127-134.

P. K. Chilana, A. J. Ko, and J. O. Wobbrock, “Understanding expressions of unwanted
behaviors in open bug reporting,” in IEEE Symposium on Visual Languages and Human-

Centric Computing, 2010, pp. 203-206.

B. Dit and A. Marcus, “Improving the Readability of Defect Reports,” in Proceedings of the
International Workshop on Recommendation System for Software Engineering, 2008, pp. 47—

49.

R. V. Lotufo, “Towards Next Generation Bug Tracking Systems,” PhD Thesis. University of

240

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

Waterloo, Canada, 2013.

K. Moran, M. Linares-Vasquez, C. Bernal-Céardenas, and D. Poshyvanyk, “Auto-completing
Bug Reports for Android Applications,” in Proceedings of the 10th Joint Meeting on

Foundations of Software Engineering, 2015, pp. 673—-686.

M. Terry, M. Kay, and B. Lafreniere, “Perceptions and Practices of Usability in the Free/Open
Source Software (FOSS) Community,” in Proceedings of the 28th international conference on

Human factors in computing systems, 2010, pp. 1-10.

A. Raza, L. F. Capretz, and F. Ahmed, “Usability bugs in open-source software and online

forums,” IET Software, vol. 6, p. 226, 2012.

R. Lotufo and K. Czarnecki, “Improving Bug Report Comprehension,”. Technical Report.

Generative Software Development Laboratory, University of Waterloo, Canada, 2012.

A. Raza, L. F. Capretz, and F. Ahmed, “Improvement of Open Source Software Usability: An
Empirical Evaluation from Developers’ Perspective,” Advances in Software Engineering, vol.

2010, pp. 1-12, 2010.

J. Howarth, T. Smith-jackson, and R. Hartson, “Supporting novice usability practitioners with
usability engineering tools,” International Journal Human-Computer Studies, vol. 67, no. 6,

pp. 533-549, 2009.

J. Feiner and K. Andrews, “Usability Reporting with UsabML,” in Proceedings of the 4th
international conference on Human-Centered Software Engineering, 2012, vol. 7623, pp. 342—

351.

A. Faaborg and D. Schwartz, “Using a Distributed Heuristic Evaluation to Improve the
Usability of Open Source Software,” in 28th ACM Conference on Human Factors in

Computing Systems, 2010.

B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature Reviews in

Software Engineering,”. Technical Report. Keele University, United Kingdom, 2007.

M. Petticrew and H. Roberts, “Systematic Reviews in the Social Sciences: A Practical Guide,”

Blackwell Publishing, pp. 164-214, 2006.

241

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

P. Mclnerney, C. Pantel, and K. Melder, “Managing Usability Defects from Identification to

Closure,” in Extended Abstracts on Human Factors in Computing Systems, 2001, pp. 497-498.

B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,
“Systematic literature reviews in software engineering — A systematic literature review,”

Information and Software Technology, vol. 51, no. 1, pp. 7-15, 2009.

D. Maplesden, E. Tempero, J. Hosking, and J. C. Grundy, “Performance Analysis for Object-
Oriented Software: A Systematic Mapping,” IEEE Transactions on Software Engineering, vol.

41, pp. 691-710, 2015.

N. Salleh, E. Mendes, and J. Grundy, “Empirical Studies of Pair Programming for CS/SE
Teaching in Higher Education: A Systematic Literature Review,” IEEE Trans. Softw. Eng., vol.

37, no. 4, pp. 509-525, Jul. 2011.

P. Achimugu, A. Selamat, R. Ibrahim, and M. Naz, “A systematic literature review of software
requirements prioritization research,” Information and Software Technology, vol. 56, no. 6, pp.

568-585, 2014.

G. S. Walia and J. C. Carver, “A systematic literature review to identify and classify software
requirement errors,” Information and Software Technology, vol. 51, no. 7, pp. 1087-1109, Jul.

2009.

B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus within-company cost
estimation studies: A systematic review,” IEEE Transactions on Software Engineering, vol. 33,

pp. 316-329, 2007.

M. Neorgaard and R. T. Heegh, “Evaluating Usability — Using Models of Argumentation to
Improve Persuasiveness of Usability Feedback,” in Proceedings of the 7th ACM conference on

Designing interactive systems, 2008, pp. 212-221.

E. T. Hvannberg, E. L.-C. Law, and M. K. Larusdottir, “Heuristic evaluation: Comparing ways
of finding and reporting usability problems,” Interacting with Computers, vol. 19, no. 2, pp.

225-240, 2007.

A. Bruun and J. Stage, “Barefoot usability evaluations,” Behaviour & Information Technology,

vol. 33, no. 11, pp. 1148-1167, Feb. 2014.

242

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

M. G. Capra, “Comparing Usability Problem Identification and Description by Practitioners
and Students,” in Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

2007.

Y. C. Cavalcanti, P. A. da Mota Silveira Neto, D. Lucrédio, T. Vale, E. S. de Almeida, and S.
R. de Lemos Meira, “The bug report duplication problem: An exploratory study,” Software

Quality Journal, vol. 21, pp. 39-66, 2013.

F. Botella and A. Pefialver, “A new proposal for improving heuristic evaluation reports
performed by novice evaluators,” in Proceedings of the Chilean Conference on Human -

Computer Interaction, 2013, pp. 72-75.

J. Matejka, T. Grossman, and G. Fitzmaurice, “IP-QAT: In-Product Questions, Answers, &
Tips,” in Proceedings of the 24th annual ACM symposium on User interface software and

technology, 2011, pp. 175-184.

P. K. Chilana, A. J. Ko, and J. O. Wobbrock, “LemonAid : Selection-Based Crowdsourced
Contextual Help for Web Applications,” in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 2012, pp. 1549-1558.

I. Herraiz, D. M. German, M. Jesus, U. Rey, and J. Carlos, “Towards a Simplification of the

Bug Report form in Eclipse,” in Mining Sofiware Repositories, 2008, pp. 145—-148.

D. Lavery, G. Cockton, and M. P. Atkinson, “Comparison of evaluation methods using
structured usability problem reports,” Behaviour & Information Technology, vol. 16. pp. 246—

266, 1997.

T. S. Andre, H. R. Hartson, and R. C. Williges, “Determining the Effectiveness of the Usability
Problem Inspector: A Theory-Based Model and Tool for Finding Usability Problems,” Human

Factors: the Journal of the Human Factors Ergonomics Society, 2003.

G. Cockton, A. Woolrych, and M. Hindmarch, “Reconditioned Merchandise : Extended
Structured Report Formats in Usability Inspection,” in Extended Abstracts on Human Factors

in Computing Systems, 2004, pp. 1433—-1436.

G. A. Bowen, “Document Analysis as a Qualitative Research Method,” Qualitative Research

Journal, vol. 9, no. 2, pp. 27-40, 2009.

243

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

A. Folstad, P. O. Box, E. L. Law, K. Hornbak, and S. Copenhagen, “Analysis in Practical
Usability Evaluation : A Survey Study,” in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 2012, pp. 2127-2136.

J. Ttkonen and C. Lassenius, “The Role of the Tester * s Knowledge in Exploratory Software

Testing,” IEEE Transactions on Software Engineering, vol. 39, no. 5, pp. 707-724, 2013.

G. Guest, K. MacQueen, and E. Namey, Introduction to applied thematic analysis. London,

UK: Sage, 2012.

V. Lelli, A. Blouin, and B. Baudry, “Classifying and qualifying GUI defects,” in IEEE 8th

International Conference on Software Testing, Verification and Validation, 2015.

R. Chillarege, 1. S. Bhandari, J. K. Chaar, M. J. Halliday, B. K. Ray, and D. S. Moebus,
“Orthogonal Defect Classification - A Concept for In-Process Measurements,” [EEE

Transactions on Software Engineering, vol. 18, no. 11, pp. 943-956, 1992.

X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An Approach to Detecting Duplicate Bug
Reports using Natural Language and Execution Information,” in Proceedings of the 30th

international conference on Software engineering, 2008, pp. 461-470.

Y. Tao, “Grammatical analysis of user interface events for task identification,” Lecture Notes
in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 8517 LNCS, pp. 197-205, 2014.

J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple case study,” in /EEE/ACM
International Symposium on Empirical Software Engineering and Measurement, vol. 0, pp.

82-91.

C. R. L. Neto and E. S. de Almeida, “Five years of lessons learned from the Software
Engineering course: Adapting best practices for Distributed Software Development,” in Second
International Workshop on Collaborative Teaching of Globally Distributed Sofiware

Development, 2012, pp. 6—-10.

V. Kettunen, J. Kasurinen, O. Taipale, and K. Smolander, “A study on agility and testing

processes in software organizations,” Human Factors, pp. 231-240, 2010.

T. Kanij, R. Merkel, and J. Grundy, “A preliminary survey of factors affecting software

244

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

1)

testers,” in Proceedings of the Australian Software Engineering Conference, 2014, pp. 180—

189.

A. Beer, A.- Vienna, and R. Ramler, “The Role of Experience in Software Testing Practice,” in
34th Euromicro Conference Software Engineering and Advanced Applications, 2008, pp. 258—

265.

P. L. Poon, T. H. Tse, S. F. Tang, and F. C. Kuo, “Contributions of tester experience and a
checklist guideline to the identification of categories and choices for software testing,”

Software Quality Journal, vol. 19, pp. 141-163, 2011.

A. FQlstad, “Work-Domain Experts as Evaluators: Usability Inspection of Domain-Specific
Work-Support Systems,” International Journal of Human Computer Interaction, vol. 22, pp.

217-245,2007.

T. Kanij, R. Merkel, and J. Grundy, “A Preliminary Study on Factors Affecting Software
Testing Team Performance,” in International Symposium on Empirical Software Engineering

and Measurement, 2011, pp. 359-362.

M. V. Mintyld, J. Itkonen, and J. livonen, “Who tested my software? Testing as an
organizationally cross-cutting activity,” Software Quality Journal, vol. 20, no. 1, pp. 145-172,

2012.

V. Kettunen, J. Kasurinen, O. Taipale, and K. Smolander, “A study on agility and testing

processes in software organizations,” Human Factors, pp. 231-240, 2010.

S. Herbold, J. Grabowski, S. Waack, and U. Biinting, “Improved Bug Reporting and
Reproduction through Non-intrusive GUI Usage Monitoring and Automated Replaying,” in
IEEE Fourth International Conference on Software Testing, Verification and Validation

Workshops, 2011, pp. 232-241.

T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, and W. Maalej, “Monitoring user
interactions for supporting failure reproduction,” in 21st International Conference on Program

Comprehension, 2013, pp. 73-82.

J. Pichler and R. Ramler, “How to test the intangible properties of graphical user interfaces?,”

in Proceedings of the Ist International Conference on Software Testing, Verification and

245

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

Validation, 2008, pp. 494-497.

V. Arnicane, Use of Non-IT Testers in Software Development, vol. 4589. 2007.

D.-H. Ham, “A model-based framework for classifying and diagnosing usability problems,”

Cognition, Technology & Work, vol. 16, pp. 373-388, 2014.

R. Geng, M. Chen, and J. Tian, “In-process Usability Problem Classification, Analysis and

Improvement,” in the [4th International Conference on Quality Software, 2014, pp. 240-245.

J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in Proceedings of the
SIGCHI conference on Human factors in computing systems Empowering people, 1990, pp.

249-256.

D. A. Norman, “Cognitive engineering,” User centered System Design, pp. 31-61, 1986.

R. Khajouei, L. W. P. Peute, a. Hasman, and M. W. M. Jaspers, “Classification and
prioritization of usability problems using an augmented classification scheme,” Journal

Biomedical Informatics, vol. 44, no. 6, pp. 948-957, 2011.

S. G. Vilbergsdéttir and E. L. Law, “Classification of Usability Problems (CUP) Scheme :
Augmentation and Exploitation,” in Proceedings of the 4th Nordic conference on Human-

computer interaction: changing roles, 2006, pp. 14—18.

A. Faaborg and D. Schwartz, “Using a Distributed Heuristic Evaluation to Improve the
Usability of Open Source Software,” in CHI Conference on Human Factors in Computing

Systems, 2010, pp. 4-5.

J. R. Wood and L. E. Wood, “Card Sorting: Current practices and beyond,” Journal of

Usability Studies, vol. 4, no. 1, pp. 1-6, 2008.

S. G. Vilbergsdottir, E. T. Hvannberg, and E. L. C. Law, “Assessing the reliability, validity and
acceptance of a classification scheme of usability problems (CUP),” Journal of System and

Software, vol. 87, pp. 18-37, 2014.

V. Harkke and P. Reijonen, “Are We Testing Utility ? Analysis of Usability Problem Types,”

in Design, User Experience, and Usability: Design Discourse, 2015.

R. W. Reeder and R. A. Maxion, “User interface defect detection by hesitation analysis,” in

246

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

Proceedings of the International Conference on Dependable Systems and Networks, 2006, pp.

61-70.

J. L. Fleiss, “Measuring nominal scale agreement among many raters,” Psychological Bulletin,

vol. 76, no. 5, pp. 378-382, 1971.

J. Cohen, “A coefficient of agreement for nominal scales,” Educational and Psychological

Measurement, vol. 20, pp. 3746, 1960.

M. L. McHugh, “Interrater reliability : the kappa statistic,” Biochemica Medica, vol. 22, no. 3,

pp. 276-282, 2012.

K. Hornbak and E. Frokjer, “Comparing usability problems and redesign proposals as input to
practical systems development,” in CHI 2005: Technology, Safety, Community: Conference

Proceedings - Conference on Human Factors in Computing Systems, 2005, pp. 391-400.

D. M. Hilbert and D. F. Redmiles, “Extracting usability information from user interface

events,” ACM Computing Surveys, vol. 32, pp. 384-421, 2000.

S. Hedegaard and J. G. Simonsen, “Extracting usability and user experience information from
online user reviews,” in Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, 2013, pp. 2089—-2098.

N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Extracting structural information
from bug reports,” in International workshop on Mining Software Repositories, 2008, pp. 27—

30.

R. Souza, C. Chavez, and R. Bittencourt, “Patterns for extracting high level information from
bug reports,” in Ist International Workshop on Data Analysis Patterns in Software

Engineering, 2013, pp. 29-31.

E. L. Law and E. T. Hvannberg, “Consolidating Usability Problems with Novice Evaluators,”
in Proceedings of the 5th Nordic conference on Human-computer interaction: building

bridges, 2008, pp. 495-498.

N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects: A Systematic
Literature Review,” IEEE Transactions on Software Engineering, vol. 43, no. 9, pp. 848-867,

2017.

247

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects — Do Reporters Report
What Software Developers Need ?,” in Proceedings of the 20th International Conference on

Evaluation and Assessment in Software Engineering, 2016.

N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa, “What Influences Usability Defect
Reporting ? — A Survey of Software Development Practitioners,” in 23rd Asia-Pasific Software

Engineering Conference, 2016.

N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa, “Analysis of the Textual Content of
Mined Open Source Usability Defect Reports,” in 24th Asia-Pasific Software Engineering

Conference, 2017.

M. Torchiano, D. M. Fernandez, G. H. Travassos, and R. M. de Mello, “Lessons Learnt in
Conducting Survey Research,”. in Proceedings of the 5" International Workshop on

Conducting Empirical Studies in Industry, 2017.

J. Su, P. Shao, and J. Fang, “Effect of Incentives on Web-Based Surveys,” Tsinghua Science

and Technology, vol. 13, no. 3, pp. 344-347, 2008.

E. Singer and C. Ye, “The Use and Effects of Incentives in Surveys,” The Annals of the

American Academy of Political and Social Science, vol. 645, no. 1, pp. 112—-141, 2013.

J. M. Fang and P. J. Shao, “The effect of material incentives on web survey completion:
Evidence from three meta-analyses,” in 2010 International Conference on Management

Science and Engineering, 2010, pp. 75-81.

H. Hedberg, N. Iivari, M. Rajanen, and L. Harjumaa, “Assuring Quality and Usability in Open
Soruce Software Development,” in First International Workshop on Emerging Trends in

FLOSS Research and Development, 2007, pp. 1-5.

D. I. K. Sjoberg, T. Dyba, M. Jorgensen, D. I. K. Sjeberg, T. Dyb4a, and M. Jergensen, “The
Future of Empirical Methods in Software Engineering Research,” Future of Software

Engineering, vol. SE-13, no. 1325, pp. 358-378, 2007.

B. Kitchenham and S. L. Pfleeger, “Principles of survey research part 4: questionnaire

evaluation,” in ACM SIGSOFT Software Engineering Notes, 2002, vol. 27, no. 3, p. 20.

K. Petersen and C. Wohlin, “Context in industrial software engineering research,” in 3rd

248

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

International Symposium on Empirical Software Engineering and Measurement, 2009, pp.

401-404.

P. Runeson and M. Hést, “Guidelines for conducting and reporting case study research in

software engineering,” Empirical Software Engineering, vol. 14, no. 2, pp. 131-164, 2008.

T. Kanij, R. Merkel, and J. Grundy, “An empirical study of the effects of personality on

bl

software testing,” in 26th International Conference on Software Engineering Education and

Training, 2013, pp. 239-248.

L. Marks, Y. Zou, and A. E. Hassan, “Studying the Fix-Time for Bugs in Large Open Source
Projects Categories and Subject Descriptors,” in Proceedings of the 7th International

Conference on Predictive Models in Software Engineering, 2011.

E. Giger, M. Pinzger, and H. C. Gall, “Predicting the fix time of bugs,” in Proceedings of the
2nd International Workshop on Recommendation Systems for Software Engineering, 2010, pp.

52-56.

L. D. Panjer, “Predicting Eclipse Bug Lifetimes,” in Fourth International Workshop on Mining

Software Repositories, 2007.

P. Bhattacharya and 1. Neamtiu, “Bug-fix Time Prediction Models: Can We Do Better ?,” in

Proceedings of the 8th Working Conference on Mining Software Repositories, 2011, pp. 207—

210.

P. Hooimeijer and W. Weimer, “Modeling Bug Report Quality,” in Proceedings of the 22nd

IEEE/ACM international conference on Automated software engineering, 2007, pp. 34—43.

M. Kamalrudin, J. Grundy, and J. Hosking, “Supporting requirements modelling in the Malay
language using essential use cases,” in Proceedings of IEEE Symposium on Visual Languages

and Human-Centric Computing, 2012, pp. 153—156.

J. Hall, “Usability Themes in Open Source Software,”. PhD Thesis. University of Minnesota,

2014.

249

