

Improving Reporting of Usability Defects in Open Source Software

Projects

by

Nor Shahida Mohamad Yusop

A Thesis Submitted for the Degree of

Doctor of Philosophy

at Faculty of Science, Engineering and Technology

Swinburne University of Technology

John Street, Hawthorn – 3122

Australia

2018

Investigation of software tester
responsibilities, personality and

performance

by

Tanjila Kanij

A Thesis Submitted for the Degree of

Doctor of Philosophy

at Faculty of Information and Communication Technologies

Swinburne University of Technology

John Street, Hawthorn- 3122

Australia

 i

Dedication

I dedicate this thesis to

My late father

 Mohamad Yusop Zakaria, who always believing in me and made this entire journey possible.

My mother

 Che Su Hashim, whose affection, love, encouragement and prays of day and night make me able to get

such success and honor.

This thesis is for you.

 ii

Abstract

Although reporting usability defects seems straightforward, usability defects are more difficult to

validate and report than functional defects. This is because usability aspects involve a user’s feelings

and emotions, and “struggling with the software” are not objectively measurable and solely depend on

human judgment. In the context of open source software (OSS) development, where usability design

and qualitative assessment are handled by both technically savvy and non-savvy users with varying

levels of knowledge and skills, reporting effective and useful usability defect descriptions becomes a

challenge. Furthermore, current defect reporting tools such as Bugzilla that use a generic unstructured

textual form to collect different types of defects make it impractical to produce high quality usability

defect reports. In particular, the information requested in a generic form is often not contextually

relevant and ignores the need for details pertinent to a defect type.

This thesis extends the body of knowledge in software defect reporting with a focus on improving the

reporting of usability defects in OSS projects. The thesis presents (i) a systematic literature review that

highlights a number of limitations in existing defect report formats – mixed data, inconsistency terms

and values of usability defect data, and insufficient attributes to describe usability defects; (ii) factors

that influence the quality of the defect reports and the information needs for reporting usability defects

identified using a set of survey instruments; (iii) a revised usability defect classification model that

only considers information available in the context of OSS development; and (iv) an in-depth

investigation of the structure and content of existing defect report forms and a new design for a

usability defect reporting form that is informed by the survey findings.

The revised open source usability defect classification model allows a better understanding of the trend

of different types of usability defects, the impact of the problem on a user, and the nature of the failure

qualifier of the problem. The new defect reporting forms and associated recommendations capture

content adaptively and integrate better usability/ human-computer interaction principles. In particular,

our findings if implemented can benefit less technical users by allowing the capture of contextualized

usability-related attributes.

 iii

Acknowledgements

First and foremost I would like to express my hearty thanks to my supervisors – Associate Professor

Jean-Guy Schneider, Professor John Grundy, and Professor Rajesh Vasa for their help, guidance,

encouragement, support, patience, and dedication during the last four years. From them I learned to

stay positive, be confident, believe in myself, be humble, and always appreciate others. You are my

inspiration to become a better academician!

My special thanks go to Professor Denny Meyer and Swinburne Statistics Clinic team for their

valuable time in consulting and advising my statistics matter. Not to forget, Mrs Aruna Vasa for her

time to read and doing some editorial works on several chapters – thank you very much!

A big thank you to all the participants- especially to my colleagues at University Teknologi MARA,

former colleagues at Motorola Malaysia, as well as Swinburne Software Innovation Lab team

members. These studies were only possible because of you.

My highest gratitude to my mother, siblings, and in-laws for all their endless prayers, love, and support

to me to go through the ups and downs of this journey. Especially to my siblings - Kak Peah, Kak Jaah,

Unggai, and Asu - thank you for looking after mum while I’m away completing this studies. I owe you

a lot!

Thank you to my loving husband, Abdul Hadi Othman, for all his sacrifices, understanding, love, care,

encouragement and support that always force me to finish this journey. With you, writing a PhD is a

sweet dream rather than a nightmare. I also thank my three beautiful angels for being supportive! –

Aira and Alya you did a very good job taking care of your little sister, Auni. I love you more than

words can say.

I would also like to acknowledge the sponsor of my study – Ministry of Higher Education and

Universiti Teknologi MARA (UiTM) that enabled the research to take place at Swinburne University

of Technology, Melbourne. My appreciation also goes to the Swinburne Software innovation Lab,

Data61, and Deakin Software and Technology Innovation Lab for providing the financial support

necessary to attend international conferences, which were a memorable part of this PhD journey.

Finally I would like thank all my Malaysian friends in Melbourne for their friendship, love and help for

my family throughout our stay in the Australia.

 iv

Declaration

I herewith declare that I have produced this thesis with my on work without the prohibited assistance of

third parties. This study has not previously been presented as a thesis. To the best of my knowledge,

this thesis contains no material previously published or written by another person except where due

reference is made in the text of this thesis.

Nor Shahida Mohamad Yusop,

May 2018

 v

The Author’s Publications

1. N. S. M. Yusop, “Understanding Usability Defect Reporting in Software Defect

Repositories,” in Proceedings of the ASWEC 2015 24th Australasian Software Engineering

Conference on - ASWEC ’ 15 Vol. II, 2015, pp. 134–137.

2. N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects!: Limitations of Open

Source Defect Repositories and Suggestions for Improvement,” in Proceedings of the ASWEC

2015 24th Australasian Software Engineering Conference, 2015, pp. 38–43.

3. N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects – Do Reporters Report

What Software Developers Need!?,” in Proceedings of the 20th International Conference on

Evaluation and Assessment in Software Engineering, 2016.

4. N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa, “What Influences Usability Defect

Reporting!? – A Survey of Software Development Practitioners,” in 2016 23rd Asia-Pasific

Software Engineering Conference (APSEC), 2016.

5. N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects: A Systematic

Literature Review,” IEEE Trans. Softw. Eng., vol. PP, no. 99, p. 1, 2016.

6. N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa, “Analysis of the Textual Content of

Mined Open Source Usability Defect Reports”, in 2017 24th Asia-Pasific Software

Engineering Conference (APSEC), 2017.

 vi

Contents

Dedication .. i!

Abstract ... ii!

Acknowledgements .. iii!

Declaration ... iv!

The Author’s Publications ... v!

Contents .. vi!

List of Tables .. xiii!

List of Figures ... xvii!

1! Introduction .. 1!

1.1! Background ... 1!

1.2! Challenges in Reporting Usability Defects ... 4!

1.3! Research Motivation ... 7!

1.4! Research Scope and Context ... 9!

1.5! Summary of Research Methodology ... 10!

1.6! Research Goals, Research Questions, and Approach .. 11!

1.7! Research Contributions ... 13!

1.8! Thesis Organization ... 14!

2! Related Work .. 16!

2.1! Software Defect Reporting in General .. 16!

2.2! Usability Defect Reporting in the Context of Open Source Communities 19!

2.2.1! Empirical Studies Focusing on Usability Defect Reporting 21!

2.3! Summary ... 23!

 vii

3! State of the Art in Usability Defect Reporting ... 24!

3.1! Methodology ... 24!

3.1.1! Research Questions ... 25!

3.1.2! Data Sources .. 26!

3.1.3! Search Strings .. 27!

3.1.4! Study Selection .. 28!

3.1.5! Quality Assessment of Selected Studies ... 29!

3.1.6! Data Extraction .. 29!

3.2! Results ... 31!

3.2.1! Classification Scheme ... 31!

3.2.2! Usability Defect Reporting Mechanism .. 33!

3.2.3! Usability Defect Reports Content and Format .. 35!

3.2.4! Usability Defect Reporting Guidelines ... 39!

3.2.1! Analyzing Usability Defects ... 41!

3.2.2! Issues in Defect Reporting .. 47!

3.2.3! Key Recommendations ... 49!

3.3! Threats to Validity ... 55!

3.4! Summary ... 56!

4! Information Needs for Reporting Usability Defects .. 58!

4.1! Methodology ... 58!

4.1.1! Online Survey of Software Development Practitioners .. 59!

4.1.2! Software Defect Repositories Mining ... 63!

4.2! Results ... 66!

4.2.1! Online Survey of Software Development Practitioners .. 66!

 viii

4.2.2! Software Defect Repositories Mining ... 74!

4.3! Threats to Validity ... 86!

4.3.1! Construct validity .. 86!

4.3.2! Internal validity ... 87!

4.3.3! External Validity ... 87!

4.4! Analysis and Discussion .. 88!

4.4.1! Reporting Usability Defects .. 88!

4.4.2! Fixing Usability Defects .. 90!

4.4.3! Mismatch Between Information Provided by Defect Reporters and Information

Needed by Software Developers .. 91!

4.5! Summary ... 93!

5! Factors Influencing Usability Defect Reporting ... 94!

5.1! Methodology ... 94!

5.1.1! Development of Survey Instruments ... 94!

5.1.2! Research Questions ... 95!

5.1.3! Survey Design ... 95!

5.1.4! Questions Related to Factors Under Studied ... 96!

5.1.5! Evaluation of Survey Instruments ... 97!

5.1.6! Selection of Participants .. 97!

5.1.7! Data Analysis .. 97!

5.2! Results ... 97!

5.2.1! Demographic Information ... 97!

5.2.2! Factors Influencing Usability Defect Reporting ... 98!

5.3! Threats to Validity ... 105!

 ix

5.3.1! Internal Validity .. 105!

5.3.2! External Validity ... 105!

5.3.3! Construct Validity ... 105!

5.4! Discussion ... 106!

5.4.1! The Role of the Reporter ... 106!

5.4.2! The Role of Experience and Knowledge in Usability Defect Reporting 107!

5.4.3! Use of Automation Tools .. 109!

5.4.4! Defect Information Obtained Through Usability Testing ... 109!

5.5! Summary ... 110!

6! A New Open Source Usability Defect Classification Taxonomy .. 111!

6.1! Existing Usability Defect Classification Schemes .. 111!

6.2! Rationale for Revising Existing Usability Defect Classification .. 114!

6.3! Our New Revised Open Source Usability Defect Classification Taxonomy 116!

6.3.1! Cause Attribute .. 118!

6.3.2! Effect Attribute .. 123!

6.4! Evaluation .. 125!

6.4.1! Evaluator Selection ... 125!

6.4.2! Problem Selection ... 126!

6.4.3! Protocol ... 126!

6.5! Results ... 127!

6.5.1! Evaluator Demographic Information .. 127!

6.5.2! Reliability Analysis ... 128!

6.5.3! Feedback on Revised OSUDC .. 132!

6.6! Threats to Validity ... 134!

 x

6.6.1! External Validity ... 134!

6.6.2! Internal Validity .. 135!

6.7! Discussion ... 135!

6.8! Summary ... 138!

7! Improving Usability Defect Reporting in Open Source Project Development 139!

7.1! Design .. 139!

7.1.1! Usability Form Implementation .. 145!

7.1.2! Example of Usage ... 151!

7.2! Evaluation .. 155!

7.2.1! Hypotheses .. 156!

7.2.2! Participation Selection ... 156!

7.2.3! Problem Selection ... 156!

7.2.4! Development of Case Studies ... 157!

7.2.5! Protocol ... 160!

7.2.6! Analysis ... 162!

7.3! Results ... 163!

7.3.1! Repeated Measures ANOVA .. 163!

7.3.2! Reliability Analysis ... 166!

7.4! Threats to Validity ... 168!

7.4.1! External Validity ... 168!

7.4.2! Internal Validity .. 168!

7.4.3! Construct Validity ... 169!

7.5! Discussion ... 169!

7.6! Summary ... 172!

 xi

8! Conclusions .. 174!

8.1! Research Summary and Contributions .. 174!

8.1.1! A Review of Usability Defect Reporting .. 174!

8.1.2! Development of New Usability Defect Report Forms .. 176!

8.1.3! Revising Usability Defect Classification Model ... 178!

8.1.4! Usability Defect Report Form Evaluation ... 179!

8.2! Lessons Learned .. 180!

8.2.1! Getting Ethics Approval for Conducting Online Surveys ... 180!

8.2.2! Recruiting Survey Participants .. 180!

8.2.3! Designing Survey Questionnaires ... 182!

8.2.4! Mining Textual Usability Defect Descriptions ... 182!

8.2.5! Analysis of Data .. 183!

8.3! Limitations .. 183!

8.3.1! Diverse Respondents Background .. 183!

8.3.2! Manual Classification of Usability Defect Information .. 184!

8.3.3! Limited Evaluation Aspects of the Proposed Usability Defect Report Forms 184!

8.4! Future Research ... 184!

8.4.1! Replicating the Survey for Different Focus Groups .. 185!

8.4.2! Additional Reliability Studies to Assess Our OSUDC Taxonomy 185!

8.4.3! Automated Text Mining Process ... 185!

8.4.4! Additional Evaluation of Our Proposed Usability Defect Report Form 186!

8.4.5! Defect Reporter Effect in Software Defect Reporting .. 187!

8.4.6! Modeling Defect Prediction Using Textual Defect Information 187!

8.4.7! Multilingual Patterns of Describing Usability Defects ... 188!

 xii

8.5! Final Remarks ... 188!

Abbreviations .. 190!

Appendix A ... 191!

Appendix B ... 195!

Appendix C ... 210!

Appendix D ... 213!

Appendix E .. 222!

Appendix F .. 234!

References ... 237!

 xiii

List of Tables

Table 1.1. Research goals, questions and steps of the approach mapped to phases. 12!

Table 3.1. Summary of PICOC. .. 26!

Table 3.2. Systematic literature review search strings. ... 27!

Table 3.3. Inclusion and exclusion criteria. .. 28!

Table 3.4. Quality assessment questions. .. 29!

Table 3.5. Quality scores of the 57 studies included in the final review. ... 29!

Table 3.6. Common data items extracted from all papers. .. 29!

Table 3.7. Specific data items extracted from all papers. .. 30!

Table 3.8. Summaries of research areas and topics. ... 32!

Table 3.9. Categories of usability defect attributes. .. 36!

Table 3.10. Summary of usability defect attributes used in 13 formats. Problem description was the

most used attribute across the thirteen formats. .. 37!

Table 3.11. Guidelines for writing usability defect reports. .. 40!

Table 3.12. List of attributes used across five research areas. Problem description, title, and severity

were the most used attributes. ... 42!

Table 3.13. Categories of assessment criteria to measure quality of usability defect reports. 42!

Table 4.1. Description of research methods and strategies. .. 59!

Table 4.2. Software defect repositories research questions. .. 63!

Table 4.3. Open source usability defect reports studied. .. 64!

Table 4.4. Criteria used to check the presence of usability information in defect reports based on

Capra’s guideline. .. 66!

Table 4.5. Distribution of respondents across professional position and year of experience. 67!

Table 4.6. Distribution of participants’ knowledge of HCI. ... 67!

 xiv

Table 4.7. Responses on “usefulness” of usability-related training for reporting usability defects. 67!

Table 4.8. Years of experience in software testing. .. 67!

Table 4.9. Defect discovery methods. ... 68!

Table 4.10. Medium for report usability defects – respondents mostly used defect-reporting tools and

discussed through verbal meeting. .. 69!

Table 4.11. Defect reporting tools used by respondents. .. 69!

Table 4.12. Defect attributes used to report usability defects – title, actual and expected output are the

most provided attributes by reporters. ... 70!

Table 4.13. Detailed explanation included for each attribute. ... 71!

Table 4.14. Materials used to support usability defect description – the most prevalent material was

screenshots with annotations. .. 72!

Table 4.15. Frequency of attributes used to fix usability defects – the most useful attribute was assumed

cause. ... 73!

Table 4.16. Problems with usability defect reports – unclear assumed cause and insufficient

information in steps to reproduce were the most common encountered problems experienced by

software developers. .. 74!

Table 4.17. Chi-Square test results to examine the influence of project and the presence of defect

attributes. ... 76!

Table 4.18. Types of supplementary information provided in usability defect reports. 76!

Table 4.19. The presence of steps to reproduce, impact, software context, expected output, actual

output, assumed cause, solution proposal, and supplementary information on different lengths of defect

description. .. 77!

Table 4.20. The presentation of solution proposals – textual description is the most common medium to

present solution proposal in the three open source projects. ... 78!

Table 4.21 Chi-square test result to examine the influence of defect types and the presence of defect

attributes. ... 79!

 xv

Table 4.22. Distribution of failure qualifier across projects. .. 86!

Table 4.23. Rank of attributes – while software developers claimed assumed cause was the most

needed information, reporters mostly provided title. .. 92!

Table 4.24. Agreement level between what reporters provide and what software developers need. 92!

Table 5.1. The second theme of online survey research questions. .. 95!

Table 5.2. Responses to “the level of detail of usability defect reports varies greatly from reporter to

reporter” (Q45). ... 98!

Table 5.3. Usability-related training received by the participants (Q7). ... 99!

Table 5.4. “Usefulness” of usability-related training received (Q8). .. 100!

Table 5.5. Responses to question “Do you think your defect reporting tool should provide custom

forms for reporting defects depending on reporter’s knowledge?” (Q41). ... 100!

Table 5.6. Association between usability/ HCI knowledge and frequency of usability defect attributes

supplied. .. 100!

Table 5.7. Association between software testing experience and frequency of usability defect attributes

supplied. .. 102!

Table 5.8. Association between the usage of automated tools and frequency of usability defect

attributes supplied. .. 103!

Table 5.9. Association between usability testing and frequency of usability defect attributes supplied.

 ... 104!

Table 6.1. Definition of key defect categories. ... 121!

Table 6.2. Failure Qualifier – sample phrases from usability defect reports [99]. 122!

Table 6.3. Effect on human emotion and quotes for each. Bold indicates emotion that affected human

emotion. ... 124!

Table 6.4. Effect on task performance and quotes for each. Bold indicates software qualities that

affected task performance. .. 125!

Table 6.5. Demographic information of the evaluators. ... 127!

 xvi

Table 6.6. Evaluators’ familiarity with usability defects. ... 127!

Table 6.7. Experience in using defect classification scheme. ... 128!

Table 6.8. Reliability measures for 12 raters in open source usability problem taxonomy evaluation. 129!

Table 6.9. Percent agreement across twelve evaluators classifying defect types component. 129!

Table 6.10. Kappa for the attributes of task difficulty and failure qualifier. ... 131!

Table 6.11. Feedback on revised OSUDC and corresponding modifications. 137!

Table 6.12. Feedback on revised OSUDC and corresponding modifications. (Continue) 138!

Table 7.1. Summary of the three studies translated into desirable features of our open source usability

defect reports. .. 140!

Table 7.2. List of attributes used in new usability defect forms. .. 143!

Table 7.3. Experts who participated. ... 156!

Table 7.4. List of questions in the survey evaluation. ... 162!

Table 7.5. Mauchly's Test of Sphericitya .. 163!

Table 7.6. Tests of Within-Subjects Effects. ... 164!

Table 7.7. Post-hoc tests – Multiple comparisons for evaluator. .. 164!

Table 7.8. Percent agreement across three evaluators evaluated the quality of usability defect reports.

 ... 167!

Table 7.9. Number of scores that disagree with the majority of evaluators’ scores 168!

 xvii

List of Figures

Figure 1.1. An overview of usability defect discovery and reporting in the usability and software

engineering fields. ... 2!

Figure 1.2. Mozilla Thunderbird usability defect 846414. ... 8!

Figure 1.3. Summary of research methodology. ... 10!

Figure 3.1. Systematic literature process adapted from [30], [31], [51], [52]. .. 25!

Figure 3.2. Classification scheme. .. 31!

Figure 4.1. Distribution of usability defects in which each attribute was presented by project. 75!

Figure 4.2. Distribution of usability defect attributes between usability and performance defects. 79!

Figure 4.3. Distribution of usability defects with categories and subcategories. 81!

Figure 4.4. Distribution of usability defect impact and severity. .. 84!

Figure 5.1. Role of reporter in reporting usability defects (Q33). .. 98!

Figure 5.2. Responses on “knowledge factors” in reporting usability defects (Q46). 99!

Figure 5.3. “Influence of defect discovery methods” in reporting usability defects (Q11). 104!

Figure 6.1. Our revised usability cause- effect defect classification model [95]. 117!

Figure 6.2. Hierarchical structure of defect types, effect and failure qualifier. The colors indicate the

different sources we adapted in our classification model. .. 120!

Figure 6.3. Responses on the five satisfaction aspect. .. 133!

Figure 7.1. Bugzilla defect report form of the Mozilla project. .. 141!

Figure 7.2. Bugzilla defect report form of the Eclipse project. ... 141!

Figure 7.3. Reporter identification. ... 145!

Figure 7.4. Software information tab for software developer. .. 146!

Figure 7.5. Software information tab for user. .. 146!

Figure 7.6. Description tab. ... 148!

 xviii

Figure 7.7. Actual results tab. ... 149!

Figure 7.8. Expected results tab. ... 150!

Figure 7.9. Firefox for iOS Report#1145602 .. 151!

Figure 7.10. Identification of reporter background to identify necessary information to be prompted.

 ... 152!

Figure 7.11. Software Information tab to collect details of the problematic application. 152!

Figure 7.12. Description tab to collect types of usability defects, detailed explanations, steps to

reproduce, and failure qualifier. .. 153!

Figure 7.13. Actual Results tab to collect actual output, task difficulty, emotions, and supplementary

information to support justifications. .. 154!

Figure 7.14. Expected Results tab to collect expectation behavior, solution proposals, and

supplementary information to support solution proposals. ... 155!

Figure 7.15. Five Firefox for iOS case studies that were reproduced from the original defect reports.

 ... 160!

Figure 7.16. Mean usability defect report quality scores as rated by three evaluators. 165!

Figure 7.17. Case study defect reports content evaluation scores. On average, the three evaluators in

agreement on the presence of Q2 – assumed cause, Q4 – steps to reproduce, Q7 – failure qualifier, and

Q8 – user difficulty .. 170!

Figure 7.18. Report#1144758 of Firefox for iOS .. 172!

 1

1 Introduction

This chapter provides an overview of the research in this thesis. It presents the background and outlines

the research areas. The research questions are introduced, as well as the problem to be investigated.

The expected contributions of the research are also presented. This chapter ends with an overview of

the thesis structure.

1.1 Background

Software usability is one of the prominent software quality characteristics that determines acceptance

of a software product in today’s competitive market. When software does not perform in a way that is

expected or has an adverse impact on the user, the software is said to have a defect. We define a

usability defect as an unintended behaviour by the software that is noticed by the user and has an effect

on user experience. The presence of usability defects will not only frustrate the user, but will also

increase the project’s costs and timeline. Thus, making an effort to find usability defects and fix the

issues at the earliest point in the software development lifecycle are key steps towards reducing

software development cost while increasing the user’s satisfaction with software. In most common

software development approaches, usability defects originate from two primary sources, as shown in

Figure 1.1.

The first source that uncovers usability defects is from usability evaluations. Examples of usability

evaluations are usability testing, usability inquiry, heuristic evaluation, analytical modelling and

simulation methods [1]. A usability evaluator in such usability studies is referred to as the expert

evaluator who has had formal education, experience and knowledge of usability and/ or human

computer interaction (HCI). During usability evaluation, raw usability data in the form of video and

audio, sometimes supported with images and notes, are collected. Based on this raw data, the usability

evaluator will then write usability defect descriptions to be included in the final usability evaluation

reports, either in the form of written documents or recorded via a digital system.

Research in the field of formative usability evaluation reports concentrates mainly on finding

effective ways of discovering usability defects. To date there has been given relatively little attention to

the description of the discovered usability defects [2]. While there are various formats to describe

software defects, there is no clear guidance on how to describe usability defects. The use of these

 2

formats often depends on the usability evaluator’s preferences and suitability of the usability evaluation

method. It is thus not surprising that usability defect descriptions are often ad hoc and difficult to

understand [3].

Figure 1.1. An overview of usability defect discovery and reporting in the usability and software

engineering fields.

The second source for discovering usability defects is through black box testing performed by

software testers. In closed source software development, the software tester is referred to as a non-

expert evaluator with often no or limited formal education, training and experience in usability or HCI.

They assess the usability of the software product indirectly while verifying the product functionality. In

this case, the actual users are not involved because the main purpose is not to test the software’s

usability. If a software tester discovers any frustrating or confusing task, they will report it as a defect.

This defect report is usually submitted and managed digitally via common software defect reporting

tools such as Bugzilla, Jira or Trac. In this way, the information can be shared with different

stakeholders (i.e., software developer, interface designer, and project manager) and the defect

correction actions can be synchronously tracked and managed.

Similar to closed source software development, defect reporters in open source software (OSS)

have limited knowledge about usability. The difference is that anyone in OSS development – user or

contributor - can report problems they find when using the software. According to Ko and Chilana [4],

 3

OSS contributors consist of core and active developers, defect reporters and passive users. Their

contributions to the OSS development are varied depending on their skills and experiences. Given the

fact that OSS project development is both very diverse and distributed, usability defect management

can be limited.

There are several reasons as to why usability defect management in OSS projects is often

neglected [5]. First, many of those who volunteer to contribute to software projects are programmers

and many have limited knowledge and skills required for usability evaluation. For passive users who

can be non-technical savvy users, creating technical defect reports for technical people is a challenge to

them [6]. Second, in order to formally conduct formal usability evaluations, extra commitment from

contributors is necessary. However, volunteers may not be able to, or want to spend more time on

doing this. Therefore, to employ a usability methodology and expecting them to follow heavyweight

usability processes is unreasonable if not impossible [6]. Third, the lack of HCI expert involvement

may delay detection of critical factors relating to usability in OSS projects [7].

Regardless of how usability defects are found and who is reporting the usability defects, usability

defect reports should provide abundant information for different roles and responsibilities of

stakeholders, from both managerial and technical aspects. From the managerial aspect, usability defect

reports serve as a source of information for managing project schedules and resource allocation [8],

team members selection, and guides the selection of appropriate techniques and methods. In contrast,

interface designers and software developers use usability defect information for the purpose of defect

correction. They are seeking information that can give them support for the defect correction process,

such as event traces, proposed solutions [9] and steps to reproduce the defect.

Ideally software testers and software developers should be co-located and work as single team to

share responsibility for improving software quality. If defect reports are unclear, they can meet up and

discuss the issue together. However, in the OSS development context where contributors are globally

distributed, face-to-face conversations are almost impossible and even remote one to one

communication is often limited. Therefore, having clear and meaningful usability defect descriptions is

important to avoid information loss and confusion. Furthermore, in the absence of HCI experts in OSS

development to consult on usability issues, the probability of usability defects being fixed is highly

dependent on how well the usability defect descriptions can convince software developers that the

reported defect is worth fixing. However, previous studies have shown that many usability defect

 4

reports contain unclear and incomplete descriptions [10]–[13]. The lack of features in existing defect

reporting tools for capturing usability defect attributes does not help, nor encourage reporters to submit

a high quality and useful usability defect report [10]. These in turn lead to defect reporters often

providing irrelevant, incorrect, and incomplete evidence.

In order to empower and motivate OSS users to proactively submit high quality usability defect

descriptions, we need to consider the needs of different OSS user backgrounds. While previous studies

have demonstrated that even usability practitioners have difficulties in identifying critical usability

defects [14]–[16] and recording important usability data, OSS contributors with different knowledge

and experience may certainly not know what to report. They may also describe usability defects at

different levels of abstraction and in different ways. Since information reported about a defect is a key

element to ensure defects are rectified effectively, designing defect report forms to effectively capture

usability defect data is a very important step in producing quality usability defect reports by OSS users

who often have limited knowledge and experience in less time.

1.2 Challenges in Reporting Usability Defects

Reporting usability defects can be a challenging task, especially in convincing the software developers

that the reported defect actually requires attention. The subjective nature of usability defects that cause

confusion or problems for some people only [10] may require stronger evidence in the form of specific

details. For example, a small clickable area of website hyperlinks on a touch screen device may only

cause problems for those who have large fingers. To convince software developers that this finger

touch problem is indeed a real problem, additional information is often needed.

While it is recognized that usability defects are different to many other kinds of software defects,

little has been done to understand these differences in terms of the way such usability defects should be

reported. In fact, the effectiveness of existing defect reporting tools to support usability defects has

been little explored. Based on our preliminary investigation of open source usability defect reporting

practices [17] and previous studies [7], [10], we identified several challenges of reporting usability

defects, as discussed below.

 5

Challenge 1 – Generic defect report forms used for all types of defects. The universal use of a generic

defect report form for all types of defects does not assist defect reporters to report clear usability defect

descriptions [17]. Research has shown that current open source defect reporting tools are inconvenient

for reporting usability defects [6], [7], [10], [18]. For instance, common open source defect reporting

tools such as Bugzilla only contain general attributes (i.e., component, version, description, attachment)

that do not specifically capture information related to different types of defects.

While some open source defect reporting tools offer fully customizable field lists, such as Bugzilla

and JIRA, the focus of such fields towards software developers does not make them very friendly for

many end users. As claimed by several respondents in our survey, the overwhelming number of fields

to fill out in these defect forms are found to be very troublesome [17]. In fact, many of the fields are

not relevant for usability defect reporting at all [7], [17], [19].

Challenge 2 - Insufficient attributes to capture usability defect information. Every defect reporting

tool contains a number of mandatory attributes to ensure that defect reporters give a complete

description of the defects they encountered. From the perspective of software developers, steps to

reproduce, actual output, and expected output are considered important when fixing software defects in

general [20], [21]. However, in the context of reporting usability defects, we argue that this information

is inadequate to make usability defects stand out as equally important as any other defect. Usability

defect reports need to highlight other important information, such as user and task difficulty, emotion

and feeling of the user, impact, violated heuristics or design principles, and proposed solutions. These

show how the issue is indeed a real problem and that software developers should treat them

appropriately.

Furthermore, the use of a single description field as unstructured text in current open source defect

report forms does not assist defect reporters to provide information that is important for different types

of defects. The unstructured text used to capture defect descriptions results in mixing different kinds of

important information. Furthermore, some usability information that is related to a user’s feeling,

emotions and “struggles” with an interface are difficult to explain textually [6], [17], [22]. This is

because such information is subjective in nature and dependent heavily on human judgment. Without

specific prompts for this usability defect-specific information, it can be challenging for non-technical

users to provide such information in useful ways.

 6

Another drawback of using unstructured textual formats is the uncertain level of detail of the

information. The generic description field causes many defect reporters to be unsure about just what

information they need to report or how the information should be reported. For inexperienced reporters,

for example, they may think that their reports are complete, but in the absence of specific attributes

they may actually be providing irrelevant or inadequate information. Moreover, meaningless defect

information usually leads to lengthy discussions between reporters and developers that effect the defect

resolution time [23].

The limitations of unstructured textual and lack of attributes for describing usability defects

impedes research on finding what information is required to best explain usability defects, and how this

information should be best be captured and presented.

Challenge 3 - Inappropriate terminology to describe usability defects. The lack of vocabulary and

terms specific to different types of defects makes no distinction between usability defects, functional

defects, or miscellaneous tasks. The inappropriate use of terms to describe usability defects, in our

view, is one of the reasons where usability defects often do not get appropriate attention from software

developers [23]. Incomplete descriptions to highlight difficulties faced by the users, violated usability

heuristics or design principles, and the impact of the issues on business goals, user task, and human

emotion, all cause usability defects to get less priority as compared to functional defects. While OSS

projects have reporters with varying level of usability knowledge, it is generally difficult for them to

apply usability terms, HCI principles, and interface design principles when describing usability issues,

especially in the absence of proper guidelines and references. Sometimes defect reporters use very

different terms for the same things to express their issues [24]. This in turn causes many usability

defect reports produced by non-usability reporters to contain a wide range of non-standard usability

terms that complicates usability defect discussion and resolution. Critically, finding and triaging

duplicate issues is likely impossible for usability defects, as the same issue may be expressed in

different terms from person to person.

Furthermore, the existing generic defect reporting tools that are not specifically designed for

usability defects often lead to misunderstandings and disagreement between reporters and software

developers [17]. Often reporters have to provide screenshots and emails or written reports to get the

developers understand the issues and get them fixed. On the other hand, the use of generic defect

classifications such as Orthogonal Defect Classification (ODC) and Root Cause Defect Analysis

 7

(RCA) to identify the relative priorities of software defects in the classic software development

lifecycles does not help to prioritize the importance of usability problems [23]. As a result, usability

defects are often fixed later as compared to other functional code defects. Introducing more usability

terms and options in defect report forms may better facilitate usability-specific defect priority

classifications that can enhance the understanding of usability problems and enable developers to better

prioritize them. It is worth developing strategies for implementing usability or HCI principles so that

they can be applied effectively in the particular context of a software engineering approach. For

example, we can explore the customization of the Usability Taxonomy Problem (UPT) and ODC to

classify usability defects in OSS projects.

Challenge 4 – Diversity of knowledge and experience between defect reporters. Defect reporters are

usually the person that experienced and reported the problem with the software product. They can be a

software developer (who uncovers defects while developing a software) but might also be an end-user

with varying degrees of experience [4]. Often, the defect reporters’ ability to clearly describe and

translate the defect determines the probability of defect resolution. Previous studies argued that the

current defect reporting tools, which are developed under the direction and are primarily for the use of

software developers, are not suitable for certain user groups. Ignoring the mental model of the end

users and requesting too many irrelevant attributes on a generic form ignores the need for details

pertinent to a defect type [7], [17].

1.3 Research Motivation

There are several important reasons to have high quality defect reports in software development. First,

developers use these reports to debug and fix the defects reported by users. Since usability defects are

subjective in nature, explaining the defects in appropriate ways is important so that software developers

can be convinced about the importance and relevance of a reported problem. Furthermore, the early

presence of certain information can speed up the defect correction process.

To get a deeper insight into how defect information can influence defect resolution time, consider

usability defect 846414 in the Mozilla Thunderbird project, as shown in Figure 1.2. This defect was

opened on February 2013, but only responded by Developer A after a year with the reason that the

defect is not high priority and they have a lot of other things to work on. This defect report is very

minimal, containing just a summary of the problem extracted from a blog post and the reporter’s

 8

expectation. Possibly, the unclear description of user difficulty and solution to the problem makes this

issue slip to the bottom of the list of things to fix.

Surprisingly, a patch to the issue was ready by Developer B on the same day Developer A

expressed their idea to solve the issue. This suggests that including all of the relevant information when

a defect is first reported is important to help software developers prioritize the defect, fix the defect and

speed up the defect resolution time. However, the current unstructured free-text defect report form may

not help reporters to report such information at the initial report submission [10], [17], [24].

Furthermore, without specific prompts for this information, it can be challenging for non-technical

users to be aware what kind of information should be provided.

 Defect 846414: Hide the “Show All Tabs” button when there are less than 2 tabs
Part of a blog post that we are pushing to redo the TB UI.
Point 7: Only show "show all tabs" button when there are multiple tabs.
For more details see:
http://infinite-josiah.blogspot.com/2013/02/thunderbird-ui-concept.html
========================
It is pointless to show the button that lists all your tabs when you only have one open. In
fact, it really is pointless to show them unless you have more tabs than your Window
can hold.
This bug is to remove it/hide it when not being useful.

Figure 1.2. Mozilla Thunderbird usability defect 846414.

A second key reason for better usability defect reports is that in empirical studies researchers use

defect data to analyze and evaluate software development approaches for future improvement [25]–

[28] . For example, defect data such as severity, priority, version, and component are commonly used

for estimating defect resolution time and predicting the number of defects in the next software release.

In the context of usability defects, however, this data (i.e., priority and severity) is not relevant to use

for such studies because usability defects are often biased to receive low priority [23]. Furthermore, the

subjective nature of describing usability defects using various terms for the same issue makes it more

difficult to use them when comparing multiple reported defect similarity.

For these reasons we feel it is necessary to investigate a better way of reporting usability defects,

especially from the perspective of non-technical users, and to find factors that influence the quality of

usability defect reports. We also wanted to revise the existing usability defect classification model to

only consider information available in defect reports and the limitation of usability evaluation

processes in OSS projects development. We then wanted to apply this improved usability defect

classification model to develop a prototype wizard-based, guided usability defect report form.

 9

1.4 Research Scope and Context

The term “usability defects” used in this research refers primarily to graphical user interface (GUI)

related defects (i.e., GUI design and layout, look and feel of the software application, and appearance),

defects that are related to the ease of use of the software, and defects resulting from interaction of

functionality with the user. The usability defects that we studied in this research were based on the

Bugzilla defect reporting tool structure. Other open source defect reporting tools such as GitHub,

Redmine, Mantis BT, and WebIssues that are outside the scope of this research. However, we believe

our results using the Bugzilla repository usability defect reports will generalize to these tools, as well

as commercial defect management tools such as JIRA.

In this research, our focus is to understand the information needs by software developers when

fixing usability defects, and the information that is usually provided by defect reporters when the

usability defect is reported. Based on the findings, we have proposed a set of usability-related attributes

to be included in the prototype of a usability defect report form. This form is targeted at defect

reporters – who can be software developers (who found an issue while coding), testers (who found an

issue while testing a system), end users (who found an issue while using a system), or customer

supports (who logged a defect report on behalf of customers’ complaint) - to report usability defects

found in open source software.

In evaluating the effectiveness of the proposed usability defect report form, we only focus on the

quality of information aspect. Our evaluation is only based on the defect readers’ perspective to assess

the richness of information collected through the proposed forms, rather than the effect of the

information in improving defect resolution time or ease of use of the forms in eliciting usability defect

information. Although longer defect descriptions are considered to speed up defect resolution time

[23], [29], this may not happen when fixing usability defects. In our opinion, longer usability defect

descriptions are useful to assure good understandability and clarity of the usability defects, but not at

providing quick solutions for fixing defects. Therefore, in this work we focus on improving the way

valuable usability defect information can be collected so that usability defects can be better understood

and evaluated even though the usability defect will possibly be assessed and fixed later.

 10

1.5 Summary of Research Methodology

The research method used in this PhD thesis research consisted of three main stages: an initial stage, an

intermediate stage, and a final stage, which were devised to address the key research questions. These

are illustrated in Figure 1.3.

Figure 1.3. Summary of research methodology.

In the initial stage, the usability defect reporting state of the art was identified from three main

sources: usability engineering, HCI, and software engineering studies. The reviews of these studies

were used to reveal the issues, similarities, commonalities and differences in the way usability defects

are described by different communities. This information was used to support our research motivations

and highlight research gaps.

In the intermediate stage, we identified current practices, limitations, and needs of usability defect

reporting through (i) an online survey of software development practitioners, and (ii) mining reports

 11

from OSS defect repositories. We used this information to extract desirable features of new defect

report forms and develop an OSS usability defect classification model.

The final stage involved the improvement of existing defect classification taxonomies and the

design of new defect reporting forms to better support usability defect reporting. Finally, our proposed

new usability defect report forms and open source usability defect classification taxonomy was

evaluated to identify practical aspects of the forms in reporting usability defects.

Details of the research strategies were described in different studies presented in Chapters 3

through 7 in this thesis.

1.6 Research Goals, Research Questions, and Approach

The main goal of this research was to improve the defect reporting approach for capturing usability

defects in the context of OSS development. This main goal was divided into four sub goals: (1)

investigate the state of the art of research in usability defect reporting; (2) identify the usability defect

information that software development practitioners emphasize in current usability defect reporting; (3)

investigate how open source usability defects can be categorized; and (4) develop a customizable

usability defect reports. These research sub goals were addressed in five research questions, in which

each research question was studied in a small research study with specific methods and research study

objectives. Table 1.1 summarizes these research sub goals, research questions, associated research

studies and methods, and outputs.

12

Ta
bl

e
1.
1.

 R
es

ea
rc

h
go

al
s,

 q
ue

st
io

ns
 a

nd
 s

te
ps

 o
f t

he
 a

pp
ro

ac
h

m
ap

pe
d

to
 p

ha
se

s.

R
es

ea
rc

h
G

oa
l

R
es

ea
rc

h
Q

ue
st

io
n

St
ud

y

M
et

ho
d

(s
)

O
ut

pu
t (

s)

R
G

1-
 I

nv
es

tig
at

e
th

e
st

at
e

of
 th

e
ar

t
of

re

se
ar

ch
 in

 u
sa

bi
lit

y
de

fe
ct

 re
po

rti
ng

.
R

Q
1

-
To

 w
ha

t
ex

te
nt

 h
as

 u
sa

bi
lit

y
de

fe
ct

re

po
rti

ng

be
en

co

ns
id

er
ed

in

ex

is
tin

g
us

ab
ili

ty

an
d

so
ftw

ar
e

en
gi

ne
er

in
g

re
se

ar
ch

?

St
ud

y
1

–
R

ev
ie

w

th
e

lit
er

at
ur

e
to

de

ve
lo

p
an

un

de
rs

ta
nd

in
g

of

w
or

k
re

la
te

d
to

 u
sa

bi
lit

y
de

fe
ct

 r
ep

or
tin

g
an

d
to

 i
nv

es
tig

at
e

to
 w

ha
t

ex
te

nt
 u

sa
bi

lit
y

de
fe

ct
 d

es
cr

ip
tio

n
is

 b
ei

ng
 s

tu
di

ed
 t

o
su

pp
or

t d
ef

ec
t m

an
ag

em
en

t.

•
Sy

st
em

at
ic

 L
ite

ra
tu

re
 R

ev
ie

w

•
A

na
ly

si
s

•
Sy

nt
he

si
s

of
 u

sa
bi

lit
y

de
fe

ct
 r

ep
or

t
m

ec
ha

ni
sm

s,
fo

rm
at

s,
an

d
gu

id
el

in
es

.
•

U
se

of

us

ab
ili

ty

de
fe

ct

da
ta

in

so

ftw
ar

e/

us
ab

ili
ty

en

gi
ne

er
in

g
em

pi
ric

al
 re

se
ar

ch
.

•
K

ey
 c

ha
lle

ng
es

 i
n

us
ab

ili
ty

 d
ef

ec
t

re
po

rti
ng

.
•

R
ec

om
m

en
da

tio
ns

fo

r
im

pr
ov

in
g

us
ab

ili
ty

 d
ef

ec
t r

ep
or

tin
g

an
d

de
fe

ct

m
an

ag
em

en
t.

R
G

2
–

Id
en

tif
y

w
ha

t
us

ab
ili

ty
 d

ef
ec

t
in

fo
rm

at
io

n
do

so

ftw
ar

e
de

ve
lo

pm
en

t
pr

ac
tit

io
ne

rs

em
ph

as
iz

e
in

cu

rr
en

t
us

ab
ili

ty
 d

ef
ec

t r
ep

or
tin

g.

R
Q

2
- W

ha
t u

sa
bi

lit
y

de
fe

ct
 in

fo
rm

at
io

n
do

 s
of

tw
ar

e
de

ve
lo

pe
rs

 a
nd

 r
ep

or
te

rs

em
ph

as
iz

e
in

cu

rr
en

t
us

ab
ili

ty

de
fe

ct

re
po

rti
ng

?

St
ud

y
2

–
C

on
du

ct
 a

n
on

lin
e

su
rv

ey
 o

f
so

ftw
ar

e
de

ve
lo

pm
en

t
pr

ac
tit

io
ne

rs

to

di
sc

ov
er

di

ff
er

en
t

op
in

io
ns

ab

ou
t

th
e

us
ab

ili
ty

de

fe
ct

in

fo
rm

at
io

n
th

at

is

im
po

rta
nt

to

re

po
rte

rs

an
d

so
ftw

ar
e

de
ve

lo
pe

rs
.

Th
e

sa
m

e
su

rv
ey

 a
ls

o
w

as

us
ed

 to
 in

ve
st

ig
at

e
fa

ct
or

s
th

at
 in

flu
en

ce

us
ab

ili
ty

 e
ff

ec
t r

ep
or

tin
g.

St

ud
y

3
–

Pe
rf

or
m

so

ftw
ar

e
de

fe
ct

re

po
si

to
rie

s
m

in
in

g
to

 u
nd

er
st

an
d

th
e

w
ay

 u
sa

bi
lit

y
de

fe
ct

s
ar

e
de

sc
rib

ed
 i

n
cu

rr
en

t o
pe

n
so

ur
ce

 d
ef

ec
t r

ep
os

ito
rie

s.

•
O

nl
in

e
su

rv
ey

•

So
ftw

ar
e

de
fe

ct
 re

po
si

to
rie

s m
in

in
g

•
A

na
ly

si
s

•
Id

en
tif

ic
at

io
ns

of

us

ab
ili

ty

de
fe

ct

da
ta

th

at

is

im
po

rta
nt

to

O

SS

de
ve

lo
pm

en
t p

ra
ct

iti
on

er
s

•
D

es
cr

ip
tio

ns

of

lim
ita

tio
ns

an

d
su

gg
es

tio
ns

of

us

ab
ili

ty

de
fe

ct

re
po

rti
ng

•

D
es

cr
ip

tio
ns

 o
f

fa
ct

or
s

in
flu

en
ci

ng

us
ab

ili
ty

 d
ef

ec
t r

ep
or

tin
g

R

Q
3

-
W

ha
t

fa
ct

or
s

in
flu

en
ce

th

e
de

sc
rip

tio
n

of
 u

sa
bi

lit
y

de
fe

ct
s?

R
G

3
–

In
ve

st
ig

at
e

ho
w

 o
pe

n
so

ur
ce

us

ab
ili

ty
 d

ef
ec

ts
 c

an
 b

e
ca

te
go

riz
ed

.
R

Q
4

-
H

ow

sh
ou

ld

op
en

so

ur
ce

us

ab
ili

ty
 d

ef
ec

t
re

po
rts

 b
e

cl
as

si
fie

d
so

th

at
 th

ey
 c

an
 b

e
ef

fe
ct

iv
el

y
re

po
rte

d?

St
ud

y
4

-
D

ev
el

op

us
ab

ili
ty

de

fe
ct

ta

xo
no

m
y

ba
se

d
on

th

e
av

ai
la

bl
e

in
fo

rm
at

io
n

re
po

rte
d

in

op
en

so

ur
ce

de

fe
ct

 re
po

rts
.

•
So

ftw
ar

e
de

fe
ct

 re
po

si
to

rie
s m

in
in

g
•

A
na

ly
si

s
•

D
es

ig
n

a
ta

xo
no

m
y

•
Ev

al
ua

tio
n

•
A

n
O

pe
n

So
ur

ce
 U

sa
bi

lit
y

D
ef

ec
t

C
la

ss
ifi

ca
tio

n
ta

xo
no

m
y

R
G

4
–

D
ev

el
op

 a
 c

us
to

m
iz

ab
le

 u
sa

bi
lit

y
de

fe
ct

 re
po

rts
.

R
Q

5
-

H
ow

 c
an

 o
pe

n
so

ur
ce

 u
sa

bi
lit

y
de

fe
ct

s b
e

m
or

e
ef

fe
ct

iv
el

y
re

po
rte

d?

St
ud

y
5

–
D

ev
el

op
 d

ef
ec

t
re

po
rt

fo
rm

s
ba

se
d

on
 t

he
 i

np
ut

s
fr

om
 S

tu
dy

 1
 –

St

ud
y

4.

•
D

es
ig

n
de

fe
ct

 re
po

rt
fo

rm
s

•
Ev

al
ua

tio
n

•
U

sa
bi

lit
y

de
fe

ct
 re

po
rt

fo
rm

s

 13

1.7 Research Contributions

The high-level goal of this research is to improve open source usability defect reporting. Specifically,

this research has made several contributions to the field of empirical software engineering, particularly

in the area of software defect management. The main contributions of this research are:

• We conducted a comprehensive literature review to understand the state of the art in usability

defect reporting, and most importantly to find gaps in an empirical software defect reporting.

We used a Systematic Literature Review (SLR) approach to systematically review both

software engineering and usability engineering studies. We identified some key areas for

future research to improve the state of the art in usability defect reporting. Through this study,

researchers can find a review of current practices, key open issues and limitations, and

important areas for future research with respect to reporting usability defects. In addition,

evidence from the SLR helps open source communities to understand which information is

important when describing usability defects.

• The results from the survey of software development practitioners and observation of open

source usability defect reports present empirical evidence on the nature of describing usability

defects. The triangulation studies reveal evidence on the information mismatch between what

defect reporters think they usually provide and what is actually reported, and what information

defect reporters think is important for software developers to fix the defects.

• We revised the usability defect classification taxonomy by incorporating cause-effect

relationship, not previously considered in the usability engineering studies. The proposed

open source usability defect classification (OSUDC) can be used in open source defect

management to track usability defect trends over time for individual categories. In fact, the

usability defect reports that are classified using OSUDC may facilitate the triaging process,

specifically in determining which usability defects have significant effects that require prompt

attention, and the software developer who is suitable to resolve the defects.

• We proposed a list of key textual usability defect attributes that need to be captured to help

software developers get a better understanding of this kind of defects. These attributes are

presented in a structured way, which encourages researchers to explore more empirical studies

 14

in the domain of defect management such as defect prediction models using the textual data,

rather than typically used categorical data.

• We proposed and refined the Bugzilla defect report form for better capturing usability defects.

The form is designed as a guided wizard to support multi-levels of user experience. The

usability defect attributes are prompted based on the technical skills and background of the

defect reporters. This will contribute towards creating a simple and improved platform with

which to report usability defects.

1.8 Thesis Organization

The rest of this thesis is organized as follows:

Chapter 2 describes related work in software defect reporting from both the software engineering and

usability engineering perspectives. This chapter also reports our review of relevant literature

investigating usability defects in OSS development context.

Chapter 3 presents our SLR of usability defect reporting from both usability engineering and software

engineering studies. We employed a process of conducting the SLR as described in the study by

Kitchenham et al. [30] and Petersen et al. [31]. Results of the review were discussed in three

categories: reporting usability defect information, analysing usability defect data and key challenges. In

addition a number of recommendations to improve usability defect reporting and management in

software engineering are discussed.

Addressed research question: RQ1- To what extent has usability defect reporting been considered in

existing usability and software engineering research?

Chapter 4 describes a triangulated research study to identify information needs when reporting

usability defects. The main sources of information include an online survey of software development

practitioners and usability defect reports collected from open source defect repositories. For the multi

part online surveys, this chapter partially describes the findings. The part of the surveys reported in this

chapter focuses mainly on what kind of information is used during reporting and fixing usability

defects. The findings from the online survey and defect repositories mining were compared. We

analyzed the collected data from different sources to reveal commonalities and dissimilarities between

what is claimed by the practitioners with what is actually written in usability defect reports.

 15

Addressed research question: RQ2 - What usability defect information do software developers and

reporters emphasize in current usability defect reporting?

Chapter 5 describes the second part of the survey reported in the Chapter 4. This part of the survey

focuses on factors influencing usability defect reporting. We collected opinions of software

development practitioners about five different factors that they think might influence the quality of

usability defect reporting - role of the reporter, knowledge and experience of reporters, use of

automation tools, and influence of defect discovery methods.

Addressed research question: RQ3 - What factors influence the description of usability defects?

Chapter 6 presents the revised OSUDC taxonomy for open source software projects. The OSUDC was

adapted from UPT and Usability-ODC framework. The OSUDC augments an existing usability

classification framework with the introduction of failure qualifier and user difficulty components. This

chapter also presents the results of the online evaluation to collect feedback on the new OSUDC.

Addressed research question: RQ4 - How should open source usability defect reports be classified so

that they can be effectively reported?

In Chapter 7 a set of defect report forms were designed based on the results of the previous studies. It

details the four criteria used in designing the forms, and the evaluation strategy to assess the quality of

information captured using the proposed forms.

Addressed research question: RQ5- How can open source usability defects be most effectively

reported?

Chapter 8 summarizes the findings of the series of research studies conducted as part of this thesis. In

addition, the lessons learned, limitations and future research directions are outlined.

 16

2 Related Work

Knowing the importance of quality defect reports in determining how quickly a defect will be fixed has

attracted many researchers into exploring how to improve defect reporting tools and to consider what

makes a good defect report [32]. Indeed, the latter research area is more critical as a good defect report

structure and content can support defect reporters in producing more detailed and comprehensive

defect descriptions that are useful for software developers to understand and fix the problem accurately

[9], [20]. In this chapter, we discuss related work that has investigated defect report content in order to

improve their quality. We reviewed studies spanning open and closed source as well as distributed

software development, software engineering, and usability engineering disciplines. A focused

treatment of just usability defects is presented in Chapter 3. In this chapter, we present prior work and

contextualize them within the context of the work presented in this thesis.

2.1 Software Defect Reporting in General

Software defect reporting is an essential function within most software projects. A good defect

reporting tool is required for recording, reporting, and tracking defects with a supporting process for

improving project quality. Within the context of industry and academia, there have been several

studies that focus on software defects. Their contributions are classified into four types according to

their motivation: 1) determining useful defect information, 2) understanding defect report content, 3)

determining defect characteristics, and 4) improving defect reporting tools.

Determining useful defect information in software development – Research in this area investigated

the specific information that is useful for software developers. We found two studies that surveyed

software developers and reporters in order to investigate the most helpful information when reporting

and fixing software defects.

Zimmermann et al. [20] surveyed 466 software developers and reporters from Apache, Eclipse and

Mozilla projects to find what makes a good defect report. They found that the most helpful information

for fixing software defects in OSS projects are steps to reproduce, stack traces, test cases, screenshots,

actual outcome, and expected outcome. Additionally, they discovered that the information provided by

the defect reporters is contrary to the information needed by the software developers to fix software

defects.

 17

Building upon Zimmermann and his team’s study, Laukkanen et al. [21] replicated the

Zimmermann et al. survey in six industrial software organizations. In addition to investigating useful

information for fixing software defects, they extended their survey to investigate missing or incorrect

defect information, and find out which defect information could be collected automatically. They

confirmed that steps to reproduce and actual outcome are the most important information in defect

reports. However, they found that many defect reports lack this technical information and this

information is difficult to collect automatically.

Understanding defect report content – Research in this area has examined defect report content to

reveal the current patterns used when describing software defects. Davies and Roper [33] examined

1600 defect reports from Eclipse, Firefox, Apache, and Facebook API to understand what information

users provided in open source defect reports, how frequently this information is provided, and how the

information provided affects the defect outcome. They focused on ten defect attributes – steps to

reproduce, stack traces, test cases, actual outcome, screenshots, expected output, code examples,

summary, version, and error reports. They found that most of the included information in defect reports

is actual outcome, followed by expected outcome, and steps to reproduce. Nevertheless, their

observations on these defect reports found that many of them are incomplete and do not contain

information expected by the software developers.

In different studies, Bhattacharya et al. [29] analyzed Android defect reports and only studied steps

to reproduce, output details, additional information, and description length. Similar to [33], they found

Android-based app defect reports often contain steps to reproduce and explanation of the difference

between actual and expected outcomes. In fact, they reported that a good quality defect report is one

that has long textual descriptions of the problems.

Determining defect characteristics – Research in this area examined real defect report data to

understand certain defect characteristics. We found that many studies in this area are interested

investigating performance and security defects. For example, Zaman et al. [34] studied defect reports

from the Firefox project to find out the differences in time to fix, developer experience, and defect fix

complexity between security and performance defects. In contrast, Nistor et al. [35] and Zaman et al.

[36], focused on performance and non-performance defects of various open source defect reports.

Nistor et al. studied the performance defects of Eclipse JDT, Eclipse SWT, and Mozilla projects across

three dimensions - risk of introducing new functional defects, defect-fix time and difficulty, and defect

 18

discovery methods and reporting. Zaman et al. on the other hand, studied Mozilla Firefox and Google

Chrome performance defects to understand the impact on the stakeholder, context of the defect, the

defect fix-time, and defect fix validation.

Other studies examined and characterized defect report content for software defects in general. Tan

et al. [37] manually examined 2,060 defects in the Linux Kernel, Mozilla, and Apache projects. They

investigated the defect characteristics in three dimensions - root cause, impacts, and components, and

measured the association between dimensions. They found semantic defects are the dominant root

cause, while the majority of security defects cause severe impacts. Lal et al. [38] investigated the

properties and features of regression, security, crash, performance, usability, polish, and cleanup

defects in the Google Chromium Browser. They compared the characteristics of different defect types

in terms of defect fix time, number of stars, comments, discriminatory and frequent word for each

class, entropy across reporters, entropy across component, opening and closing trend, continuity, and

debugging. In the context of usability defects, they found mean time to repair and release date

(MTTR) of usability defects is fairly high as compared to other types of defects, and milestone change

for usability defects is the highest.

Several studies have investigated linguistic aspects of defect reports. Ko et al. [39] studied the

nouns, verbs, adverbs, and adjectives in defect report titles. They found 95% of the noun phrases

referred to visible software entities, physical devises, or user actions. To solicit more structured defect

report titles, they suggested that defect titles should include descriptions about software entity or

behavior, quality attribute, the problem, execution context, and types of defects. In different work,

Chilana et al. [40] developed a classification scheme for capturing the different types of expectation

violations. They started by analyzing a sample of 50 defect report titles and descriptions and produced

seven classification codes – runtime logic, standards, reporter expectations, community expectations,

genre conventions and prior behavior. They tested this classification model using 1000 defect reports

from the Mozilla project. Their findings show that reporter expectation is the most common violation

expectation in defect reports, but are less likely to get fixed. In the context of usability defects, they

argued that the way defect descriptions are phrased affected the defect resolution status.

Improving defect reporting tools – Research in this area looked at ways to improve defect

reporting tools. According to Zimmermann and Breu [18], current defect reporting tools have too few

features to help reporters to provide important information needed by developers. Their study proposed

 19

four concepts that should be employed in defect reporting tools – (1) tool-centric to automatically

collect information, (2) information –centric to provide real-time feedback in the quality of information

provided, (3) process-centric to focus on administration of activities related to defect fixing, and (4)

user-centric to educate and remind both reporters and developers on what information to provide and

how to collect it. As a proof of concept, they developed a prototype, but no studies on the usefulness of

these concepts in the prototype were presented.

Other studies focused on improving the readability of discussion threads in the comment section of

defect reports. Dit and Marcus [41] proposed a system to recommend to developers a set of comments

associated with their own comment, so that they can keep discussions coherent and easy to understand.

Lotufo [42], as part of his thesis, proposed two complementary features to improve the readability of

defect reports. The first feature is an automated approach for creating defect report summaries that can

help developers to select portions of information that they want to focus on. The second feature is a

nested comment to allow users to post contextual comments specific for each of the different

diagnostics or solution posts. This feature eliminates the problems of mixed information that hinders

users’ ability to locate and understand problem discussions introduced in the current linear sequence of

comments. Moran et al. [43] developed FUSION to assist defect reporters’ auto-complete reproduction

steps in defect reports for mobile apps. Their findings from experimental studies of 14 Android apps

defects showed that FUSION is effective in facilitating defect reporting and reproduction tasks as

compared to the unstructured natural language defect descriptions.

2.2 Usability Defect Reporting in the Context of Open Source Communities

In recent years, usability of open source software has become an important topic for investigation.

Several studies have shown interest in investigating usability practices and have identified some

challenges discovered in open source software development. For example, Terry et al. [44]

investigated the perceptions and practices of usability in the OSS community. Based on interviews of

27 individuals involved in various OSS projects, they found that the OSS communities demonstrated a

fairly good understanding of usability concepts. Common practices for communicating usability

defects are through Internet relay chat (IRC), mailing lists, forums, and defect reports. Their findings

show empirical evidence that rich, high quality, positive feedback from users helps in improving

software design. In fact, the lack of relevant domain expertise in the developed software makes

 20

software developers rely on users feedback. Raza et al. [45] specifically investigated the use of online

forums in addressing usability-related issues. They studied 1753 OSS projects collected from

sourceforge.net. Their study provided empirical evidence that contribution and support of open source

community is significant and active, and voluntary contribution in mailing lists helps to identify and fix

usability defects.

However, communicating usability issues in OSS development is not an easy matter. Past research

has investigated some of the challenges. For example, Zhao et al. [6] conducted a usability evaluation

case study of Ganttproject to understand the usability improvement required in OSS projects. They

found that the defect reporting mechanism of OSS projects is not appropriate for reporting usability

defects. In fact, they observed that most contributing users are amongst the most experienced ones, in

which their request for usability improvement does not reflect the need of non-experienced users. One

key implication of their findings towards improving OSS usability is that the defect reporting of OSS

projects should consider a new way of promoting contribution from non-active or typical users.

Similarly, Cetin et al. [7] has identified the lack of a suitable usability defect reporting tools as a main

obstacle to encourage HCI experts and end users to report usability issues. Similar findings were also

reported in [6]. Nichols and Twidale [22] reported that the use of textual description in current defect

reporting tools is not suitable to describe graphical issues, and some usability issues have a dynamic

aspect that could not be explained using a single screenshot. This is because the explanation about

solution proposals is more relevantly explained using graphical means such as HTML mockups, ASCII

art, or drawing toolkits. Another issue raised by Nichols and Twidale is regarding threaded discussions

in open usability defect reports. The linear sequence of comments in current defect reporting tools

makes it difficult to manage discussion elements, and this issue was addressed in [41], [46]. Their

study brought up two important concerns for attracting more participants to submit usability defects.

First, the defect reporting tools must be easy to use, where users can report with less effort and the

tools do not contain too many technical aspects; and secondly, the defect reporting tools should address

privacy concerns on the automatically collected data.

Raza et al. [47] empirically investigated some of the key factors to improve OSS usability. They

hypothesized that understanding users’ requirement, seeking usability experts’ opinion, incremental

design approach, conducting usability testing, and knowledge of user centered design methods could

 21

improve usability in OSS. Among the five key factors, they found usability experts’ opinion did not

play a significant role in improving OSS usability.

2.2.1 Empirical Studies Focusing on Usability Defect Reporting

We identified three types of studies investigating usability defect reporting: 1) determining useful

defect information in software developments, 2) improving defect report comprehension, and 3)

improving defect reporting tools.

Determining useful defect information in software developments- Research in this area specifically

investigated useful information for fixing usability defects. In contrast to [20], [21], Hornbaek and

Frokjaer [9] used developers’ judgment to assess the quality of defect report descriptions. Their

findings show that developers expect usability defect descriptions that are clear, contain solution

proposals, and justify what posed a problem and why it was a problem.

Improving defect report comprehension – Research in this area concentrated on the different

approaches for improving the quality of usability defect report content. In reporting the results of

usability evaluation, there have been a number of description formats described in the literature, which

vary to different types of usability evaluation methods and end up being documentation heavy. For

example, Theofanos and Quesenbery [2] redefined the form and content of formative test reports based

on the outcome of two usability professionals workshops. However, their test reports contain too much

information and some of them are not pertinent to non-technical users. 88 information elements,

grouped into 15 categories such as business and test goals, methodology, tasks and scenarios, results

and recommendations, screenshots and videos are difficult and complicated for a single reporter to

provide.

As an alternative to the heavy-documentation approach, which is often compiled into written

reports and delivered as a PDF or Word document, several studies have developed tools to record

usability defects. Howarth et al. [48] developed the Data Collection, Analysis, and Reporting Tool

(DCART) for collecting usability data from lab-based usability evaluations. In contrast to [2], DCART

contains slightly less textual information to be filled in by usability evaluators - report title, problem

description, problematic user interface object, designer’s knowledge and thoughts, and solutions. The

use of a form-based approach in DACRT provides additional support for novice evaluators to keep

 22

appraised of what important data should be provided. Other tools such as Usability Reporting Manager

(URM) [49] offer a structured reporting format for capturing the results of usability evaluations. To

speed up the reporting process, usability evaluators only need to enter results of formative evaluation

into URM and results are exported into UsabML format. Usability defects in UsabML format can be

directly imported into defect reporting tools connected to a source code repository, or can be exported

into other formats such as HTML, XSL, and PDF.

Capra [11] and Dumas et al. [16] on the other hand, focus on guiding reporters to provide

meaningful usability defect descriptions. Capra developed six guidelines for describing usability defect

descriptions based on surveys of usability practitioners – be clear and precise, describe the cause of the

problem, describe observed user actions, support with data, describe the impact, and describe a

solution. These guidelines were tested in a comparison study between usability practitioners and

graduate students. Dumas et al., based on his experience in usability testing, outlined four pieces of

generic advice for communicating usability defects effectively – emphasize the positive, express your

annoyance tactfully, avoid usability jargon, and be as specific as you can. However, these guidelines

did not specify what to include in the descriptions.

Recent work by Simões [24], however, represents an important step towards building lightweight

documentation for describing usability defects. Simões, in her thesis, explored the needs of designers in

open source projects, and designed a new defect reporting template to support end users reporting

usability defects. They conducted an interview with four designers who worked on open source

projects and performed content analysis of 547 usability-related defect reports. Based on these findings

and adoption of the semiotic engineering concept, they designed an open text form, in which defect

reporters have to answer several questions depending on the four labels they chose to characterize their

problem. Their contribution shows a positive solution for eliciting the information needed by OSS

designers. However, the use of an unstructured open textual form still produced incomplete,

ambiguous, and irrelevant information. This was because not all questions were relevant for different

types of problems, and such open-ended types of questions may produce non-informative descriptions.

Improving defect reporting tools – Research in this area explored the opportunity to include HCI

and usability principles in current defect reporting tools. Faaborg & Schwartz [50] introduced usability

heuristics concepts into the Bugzilla repositories. They suggested that each usability defect should be

tagged with the specific violated heuristics. In this way, software developers can monitor the different

 23

types of issues, and learn about the heuristics. However, this idea is still in the working stage and has

not yet been implemented or evaluated.

2.3 Summary

Writing a good defect report is critical for ensuring quick resolution of defects. In empirical research,

usability defects are discussed in two main disciplines – software engineering studies and usability

studies. In software engineering studies, research on software defect reporting to date has focused

especially on determining useful defect information, discovering defect characteristics, and improving

defect reporting tools for software defects in general. Research on usability defects in usability studies,

on the other hand, more focused on the improvement of usability evaluation methods to effectively

discover usability defects. While it is recognized that usability defects are different to many other kinds

of software defects, little has been done to understand differences in the way the defects are reported.

In order to understand in more detail about similarities, commonalities, and differences in the way

usability defects are reported in these two disciplines, we conducted systematic literature review as

discussed in Chapter 3.

 24

3 State of the Art in Usability Defect Reporting

This chapter describes the current state of the art of research in usability defect reporting. The study

was conducted to address our first thesis research question “RQ1 - To what extent has usability defect

reporting been considered in existing usability and software engineering research?”. We carried out a

Systematic Literature Review (SLR) to study the different approaches to describing usability defects in

software development and usability engineering. Both studies in software engineering and the usability

engineering literature were reviewed and the results are classified into three dimensions: 1) reporting

usability defect information - which is related to research on reporting the usability defect; 2) analysing

usability defect data - which is related to researching the use of defect data; and 3) key challenges –

which refers to issues arising in usability defect reporting and management. In addition, some key areas

for future research to improve usability defect reporting and management in software engineering are

outlined. The following subsections explain in detail the SLR process.

3.1 Methodology

In order to conduct the SLR, we used the guidelines of Kitchenham et al. [30] and Petersen et al. [31].

An SLR is defined as a process to identify, assess, and interpret available research studies with the

purpose of answering specific research questions and providing scientific summary of evidence in a

particular area [51], [52]. Our review process consisted of three stages.

In the first stage, we defined a set of research questions and prepared a review protocol. This

review protocol assisted supervision of the researchers conducting the review and guided the

researchers in the data collection. It specifies the research questions, the inclusion and exclusion

criteria, the assessment strategy for study quality, the detailed data that need to be extracted from each

of the selected studies, and the strategy to perform a database search. Once the research supervisors

approved the review protocol, we conducted a pilot study. This pilot study aimed to ensure the research

questions were appropriate to the context of the study and researchable. The outcomes from the pilot

study are used to refine the protocol.

In the second stage, we identified relevant databases and sources, and developed several search

terms corresponding to the database. In the first screening, we only read the title and abstract on the

papers. Any study related to the research topic and within our research boundaries were selected for the

 25

second screening. During the second screening, the entire paper was read and we applied the inclusion

and exclusion criteria to choose the final primary studies to be included in the review. Then we re-read

the papers to extract the data according to the extraction form that we had developed earlier. We used

quality assessment criteria to measure the study strength and lack of bias. In the third stage, we

analysed and synthesized the results for reporting. The following subsections discuss in details the SLR

process used, as illustrated in Figure 3.1.

Figure 3.1. Systematic literature process adapted from [30], [31], [51], [52].

3.1.1 Research Questions

The overarching aim of this SLR was to understand “To what extent is usability defect reporting

considered in existing usability and software engineering research?”

In usability engineering, usability defects are often found through usability evaluation methods.

These usability defects are normally described in written evaluation reports. On the other hand,

Perform pilot study

Develop review protocol and define
research questions

1.  Specify inclusion/ exclusion
criteria

2.  Define quality assessment
criteria

3.  Define items to be extracted
4.  Develop extraction form

Analyze and present results

Refine research
questions and
boundaries

Run search

1.  Identify relevant databases/
sources

2.  Develop search terms

Extract data

1.  Extract data into extraction form
2.  Assess study quality

First screening

1.  Read title, abstract and
conclusion

Second screening

1.  Read full text
2.  Apply inclusion/ exclusion

criteria
3.  Conduct secondary search

Fi
rs

t s
ta

ge

Se
co

nd
 st

ag
e

Th
ir

d
st

ag
e

 26

usability defects that are found during system testing or reported by end users are reported in defect

repositories, such as Bugzilla, Google Chromium and JIRA. These usability defects have the same

underlying root cause but were found in different testing stages and were reported by a different

mechanism. This motivated us to review both the usability and software engineering literature to

understand how usability defects are reported in practice. Therefore, the above high-level research

question was further divided into the following sub-questions. These research questions are structured

based on PICOC criteria suggested by Kitchenham et al. [51] as given in Table 3.1:

1. How are usability defects communicated in the usability and software engineering literature?

a. What mechanisms are used to report and track usability defects?

b. What defect information and formats are used for reporting usability defects?

c. Are there any guidelines available to assist the reporting process?

2. Is there any evidence that usability defects have been studied from the use of data in defect

reports?

3. What are the identified challenges of usability defect reporting in the usability and software

engineering field?

The first question searched the usability, HCI, and software engineering literature to identify

research that focuses specifically on usability defect reporting. These were then analysed and classified

into topics of studies as suggested by McInerney [53]. The second question identifies studies that

analysed data from usability defect reports or defect repositories. While the third research question was

aiming to reveal challenges in reporting usability defects from the perspective of usability and software

engineering.

Table 3.1. Summary of PICOC.

Population Usability defects
Intervention Defect reporting
Comparison None
Outcome Not concentrated on results
Context Usability engineering and software engineering

3.1.2 Data Sources

Five electronic database resources were primarily used to search usability defect reporting. These

included: IEEE Explore, ACM Digital Library, ScienceDirect, Scopus, and Google Scholar. These

electronic database selections were based on the recommendations in [1] and [54]. To facilitate the

 27

search process, an advanced search option was used that allowed multiple keyword searches. Title and

abstract data fields were primarily used to retrieve relevant journal and conference proceeding papers.

In this research, we only reviewed papers published from the year 2000 onwards. This limitation was

set because we identified a few studies that were reported prior to 2000 and were extended in other

studies, which were included in our review.

3.1.3 Search Strings

To ensure a thorough search in both usability and software engineering literature, a set of search strings

was created for each research question. The search strings were formulated based on:

• Major terms from the research questions

• Relevant terms extracted from relevant papers, journals, and books

• Synonyms, alternative terms, and related concepts of research questions

• Boolean AND and OR to link all the terms

Three different search strings were derived and executed on different electronic databases. As the

literature search progressed, search terms were refined, discarded, and added. Any changes to the

search strings were rerun on the selected electronic databases to ensure all relevant papers were

retrieved. These strings are listed in Table 3.2.

Table 3.2. Systematic literature review search strings.

Literature String Search String RQ Purpose
Usability
engineering

1 ((Usability defect* OR " usability bug* OR usability
problem* OR usability issue*) AND (approach OR
technique OR methodology OR procedure OR mechanism
OR plan OR pattern OR tool OR track* OR manag*)

1 To identify mechanisms used to
report and track usability defects
and discover existing defect
description formats and
guidelines that relate to usability
defects

Software
engineering

2 ("Defect reporting" OR "bug reporting" OR "error reporting"
OR "fault reporting" OR "defect reports" OR "bug reports"
OR "error reports" OR "fault reports" OR "crash reports"
OR "defect description" OR "bug description" OR "error
description" OR "fault description") AND ("usability" OR
"user interface" OR "GUI"

2 To review the literature for
usability defect reporting in the
software engineering area

3 ("Defect reporting" or "bug reporting" or "problem
reporting" or "issue reporting" or "defect tracking" or "bug
tracking" or "issue tracking" or "problem tracking" or "bug
repository" or "defect repository" or "issue repository" or
"problem repository" or "bug tracker" or "defect tracker" or
"issue tracker" or "problem tracker" or "bug repositories" or
"defect repositories" or "issue repositories" or "problem
repositories") AND ("usability" OR "user interface" OR
"GUI")

3 To review any issues that are
relevant to usability defects and
challenges of existing defect
repositories in handling usability
defects

 28

3.1.4 Study Selection

The primary search resulted in 609 studies. This set was then filtered based on title and abstract

analysis, which reduced the total to 191. The significant difference from the first and second filtration

was partly due to duplication and irrelevant context of study. For instance, the search on the term

“usability defect” often returned studies that belonged to medical, engineering or telecommunication

topics, which were out of our research context.

We then conducted a secondary search using a reference chaining technique. The reference

chaining is commonly used in other SLRs [55]–[57] as supportive search approach to find any relevant

studies that were not found during the primary search. This resulted in 52 new studies being included in

the second filtration process.

A total of 243 studies were then analysed by reading the full paper text. At this stage, inclusion and

exclusion criteria, as shown in Table 3.3, were applied to evaluate papers. Since this study was

surveying a blend of software engineering, HCI and usability defect reporting literature, a narrow

inclusion criteria was used. We defined our inclusion criteria to be specific to each research question

[58], while the exclusion criteria were common to all research questions. Reasons to include a paper

were: 1) that it belongs to the area of defect reporting in general, and usability defect reporting in

particular, and 2) that the defect reports originated from a defect tracking system and usability

evaluation reports, and not from other means of reporting usability defects.

As discussed in the introduction and background sections, while a range of means of detecting

usability defects exist, we were interested in how they are described, reported, and tracked by software

development teams, and hence papers that focus on these aspects. This review only considered papers

published from January 2000 to March 2016. Finally, 57 studies were included in this review. See

Appendix A for the list of included studies.

Table 3.3. Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria
• Studies that focus on usability defect description/

format/ report/ guideline
• Studies that focus on analysing/ using usability defect

information
• Studies about a tool or mechanism to report usability

defects
• Empirical studies on usability defects

• Exclude if the paper is on SLR or systematic mapping
• Studies not in English
• Short papers, posters, introduction to special issues,

tutorials, and mini-tracks
• Defect reporting studies not focussed on usability defects
• Usability defects studies not focussed on defect reporting

 29

3.1.5 Quality Assessment of Selected Studies

All selected papers were assessed for their quality. Each of these papers was also classified as either a

software engineering or a usability study, respectively. Papers were evaluated using two sets of

checklists that were formulated to measure the research credibility and validity. Each question was

rated as: 1 implies “Completely describe”, 0.5 implies “Exists but does not completely describe” and 0

implies “Does not exist”. The total quality score for each paper was computed by summing up all the

scores. This ranged between 0 (very poor) and 5 (very good). The checklist used is shown in Table 3.4.

Table 3.5 shows the quality scores for all the primary studies included in the final review. Most

achieved above average quality: 13 studies (22.8%) and 30 studies (52.6%) were deemed very good

and good quality, respectively.

Table 3.4. Quality assessment questions.

Common questions
1. Are the aims of the research clearly articulated?
2. Have other authors cited the study?
3. Does the study report credible finding with supported data/ evidence?

Usability engineering Software engineering
4. Is the study’s focus on usability defect description?
5. Was there an in-depth description of communicating

usability defects?

4. Is the study’s focus on defect reporting in software
development?

5. Does the paper study usability defects?

Table 3.5. Quality scores of the 57 studies included in the final review.

Quality scale Very poor (<1) Poor (1-2) Fair (2.5-3) Good (3.5 - 4) Very good (>4) Total
Number of studies 0 0 14 30 13 57
Percentage 0% 0% 24.6% 52.6% 22.8% 100%

Table 3.6. Common data items extracted from all papers.

Data items Description
Identifier Unique identification number
Bibliographic Title, author, year
Type of article Journal/ conference/ book chapter/ technical report/ theses
Study aim The aims, goals or objectives of the primary study
Research methodology Case study, survey, experiment, interview, observation, questionnaire, lesson learned
Data analysis Qualitative, quantitative, or mixed
Study findings Results and conclusions from the primary studies

3.1.6 Data Extraction

We created a data extraction form to extract detailed contents for each study. There were two

categories of data extracted for each paper. First, common data such as bibliographic references, type

of study, aim, research methodology and data analysis. Second, the specific data that answered each

research question. Table 3.6 and Table 3.7 show the data that was extracted for both categories.

 30

All extracted data was put into shared spreadsheets that were reviewed by a review team consisting

of the main researcher and her supervisors. The main researcher was responsible for reading and

extracting the data. In order to validate the extraction correctness, the research supervisors

independently rated a random sample of papers according to the inclusion and exclusion criteria. All

discrepancies on the data extracted were discussed between review team members with the aim of

reaching a consensus. The reliability of the findings of this review was accomplished by considering

only the quality score of relevant studies that are greater than 2.5 (50% of the percentage score) [57].

We did not measure inter-rater reliability since our review aimed for generalizability of the findings, in

particular, to clearly describe how conclusions have been derived from the data instead of comparing

agreements of the same codes or themes [56], [59].

Table 3.7. Specific data items extracted from all papers.

Search focus Data item Description
Quality of defect
descriptions

Assessment method Method used to conduct assessment (i.e. experiment, survey, case study)
Participant Participants involved in assessment (i.e. student, usability expert, software

developer)
Assessment criteria Criteria used to assess the quality of defect description (i.e. clarity, impact, cause)
Approach Description of the assessment process
Outcome Results of assessment
Recommendation Suggestions for future work in related assessment results

Usability defect
description
content and
format

Format Format used to report usability defects
Approach Description of the format usage and characteristics of the format
Content List of attributes or information used in the usability description
Limitation Limitations of the format
Benefits Benefits of the format
Evidence The empirical evidence regarding the benefits of using a specified format to

improve the quality of defect description
Reporting
mechanism

Medium Medium used to report and track usability defect reports (i.e. form-based reporting
and end-user reporting)

Characteristics Description of the reporting mechanism
Benefits Benefits of the reporting mechanism
Limitations Limitations of the reporting mechanism
Evidence The empirical evidence regarding the benefits of the reporting mechanism to

improve reporting process
Reporting
guideline

Aim The purpose of the guideline
Guideline Description of the guideline
Benefits Benefits of the guideline
Limitations Limitations of the guideline
Evidence The empirical evidence regarding the benefits of using the guideline to improve the

quality of usability defect reports
 Recommendation Suggestions for future work
Analyzing defect
information

Focus The purpose of the study
Attributes used The data used for analysis purposes
Approach Description of the study that related to the research question
Benefits The benefits of the study
Limitations Limitation of the study
Evidence The empirical evidence regarding the benefits of the study
Recommendation Suggestions for future work related to analysis results

Issue in defect
reporting

Challenges The problems in defect repositories related to usability defects
Recommendation Suggestions for future work related to improving usability defect reporting

 31

3.2 Results

3.2.1 Classification Scheme

A classification scheme was developed to organize the retrieved studies on usability defect reporting.

As shown in Figure 3.2, the classification scheme was structured to map onto our research questions.

We categorized the studies using the process defined by Petersen et al. We started the classification

process by analysing the title, keywords, abstract, and conclusions. We then compiled the keywords

and phrases to build a high-level set of categories for classifying the papers. Finally, we grouped the

phrases, research objectives and research findings of the papers in each category into a coherent set of

themes.

Figure 3.2. Classification scheme.

The classification scheme is composed of three main categories; 1) reporting usability defect

information - which is related to research on reporting usability defects; 2) analysing usability defect

data - which is related to researching the use of defect data; and 3) challenges – which refer to issues

identified in usability defect reporting and management. Table 3.8 summarizes the distribution of the

studies per topic. Studies that addressed more than one topic were classified repeatedly in each topic.

For example, Nørgaard et al. [60] investigated mechanisms of usability defect reporting and challenges

for each mechanism, and their study is counted in both topics.

 32

Table 3.8. Summaries of research areas and topics.

Research
areas

Description Topic Studies Total

Reporting
mechanism

Investigate how usability
defects are collected and
reported

• Tool-based reporting P7, P10, P15, P17, P34, P41,
P45, P49, P51, P55

13

• End-user reporting
• Modeling-based support

P18, P30
P28

Content and
format

Investigate what attributes are
used to describe usability
defects

• Written document format P5, P6, P7, P8, P9, P10, P11,
P12, P13, P14, P15, P16, P17,
P18, P24, P25, P29, P30, P32,
P33, P35, P36, P37, P43, P47,
P53

26

• Learning-oriented format P37
Reporting
guideline

Studies that assist reporter in
reporting usability defects

• Experience
• Empirical

P2, P52
P5, P37

4

Defect report
quality

Studies that analyzed defect
reports for quality assessment

• Measuring usability defect
reports quality

• Improving usability defect
reports

P1, P3, P4, P5, P7, P8, P35,
P39, P44
P3, P7, P27, P35, P44, P48

11

Classification Studies that analyzed
usability defect data to
understand the characteristics
of usability defects

• Usability defect
characteristics

• Cause of usability defects
• Impact of software defects

P22, P50

P42

P21, P46

5

Duplication Studies that use usability
defect data for identifying
similar usability problems

• Matching
• Merging

P12, P13, P56
P36

4

Estimation Studies that use defect data to
estimate defect discovery rate

 P19 1

Design
discussion

Studies that examined the
structure and content of
defect report discussion

• Addressing and resolving
usability defects

• Structure and content of
design discussion

• Online forum

P21

P26

P31

3

Challenges Studies that discussed the
issues of reporting usability
defects

• Developer mindset
• Subjective bias
• Evaluator effect

• Defect discovery methods
• Complexity management
• Lack of appropriate

channel for reporting
usability defects

• Lack of guideline for
specific usability defect
information

P1, P9, P37, P53, P54
P1, P23, P240, P54
P1, P5, P7, P8, P14, P20, P39,
P53
P3, P20
P26, P29, P40, P53
P6, P10, P20, P23, P38, P40,
P57

P29, P36, P54,

22

In the following section, we present our answers to the review research questions based on analysis

of the included studies. Each study is identified as Pm, where m represents the study's number (see

Appendix A for the list of studies used in this systematic review).

 33

3.2.2 Usability Defect Reporting Mechanism

Three key types of reporting mechanisms were identified in the usability and software engineering

literature. To effectively capture usability defect data, each reporting mechanism uses a variety of input

designs, such as auto-generated data, predefined data, free-text form, and online help. Auto-generated

data such as tester name, timestamp, and problematic user interface can be automatically recorded

when the test is run and the report is submitted. In contrast, predefined data contains a variety of

categorical data that is dependent on the input from the reporter. During a defect report submission, the

reporter will select some values, such as severity, type of defect, and heuristics used. Some of these

values can be changed over the defect life cycle, such as severity. For a free-text form, the reporter is

allowed to write any description – comments, feedback, complaints, feelings or disappointment, steps

to reproduce, expected and actual result – regarding the problems. In summary, the description of three

reporting mechanisms can be described as follows:

Tool-based reporting is the easiest way to record and generate data as compared to a paper-based

approach [61]. Tool-based reporting allows data to be collected instantly, and recorded data can be

measured quantitatively, analysed for trends and used to generate feedback for quality improvement. A

well-designed tool will assist users to provide sufficient data, thus, in turn, reduce missing data issues.

Several tools in the usability evaluation field were developed to assist in usability defect reporting.

Some key examples are outlined below.

• Data Collection, Analysis and Reporting Tool (DCART) [P7] uses auto-generated data and

free-text form input design. The defect form was designed for collecting and organizing

usability defect data in lab-based usability evaluation using a Usability Problem (UP) instance

concept. Each occurrence of a UP found by multiple evaluators or multiple times by one

evaluator is considered as the same UP. However, given multiple instances of UPs, evaluators

must manually review and combine them to determine the main UP experienced by the users.

• Web tool [P10] uses tooltips, predefined data and free-form text input and was designed to

record usability defects found during heuristic evaluation only. By having the tooltips and

examples of usability problems, the evaluators get help on attributes and better guidance to

assign severity and heuristics used to find problems. However, a non-integrated reporting tool

with the software under test may trouble some users in switching between these two systems

and users may bias certain values. In contrast, Usability Reporting Manager [P17] uses

 34

predefined data and free-text form input. Using a web interface, reporters can enter, manage,

and export data in into a defect tracking system connected to a source code repository.

• Merging duplicate problem descriptions [P41] helps evaluators to record usability problems

into a database using different usability evaluation methods, to search the database for similar

problems, exchange datasets, and to perform a meta-analysis of the datasets.

• Usability Problem Inspector (UPI) [P15] uses auto-generated data, predefined data and free-

text form input incorporating usability action framework (UAF) content. UPI has two modes;

task-based and free-based exploration. Using the task based-approach, evaluators are

presented with a series of questions from the UAF structure. When a problem is identified, the

evaluator is presented with a defect report form and the inspection path is automatically

recorded. However, for free-exploration mode, no task information is recorded. DESTINE

[P34] uses predefined data input. The tool is limited to evaluate the ergonomic quality of

websites and it can support two types of user profile; expert and designer.

In the software engineering field, defect tracking systems are commonly used to record and track

software defects, including usability defects. Our review only found four tools that explicitly assisted in

usability defect reporting.

• GUI monitoring and automated replaying [P45] uses a generic non-intrusive GUI usage

monitoring mechanism that can be integrated into existing applications. The monitoring of

usage can produce actual usage traces that can be included in the defect reports and used as

an input for replaying purposes. The traces are triggered by user interactions like mouse

clicks or key presses.

• GUI editor tool support [P49] was developed on the Eclipse platform to support exploratory

graphical user interface testing. The tool uses Eclipse logging to record uncaught exceptions

during execution of a test and a cheat sheet viewer for evaluators to describe the observed

failures. The test results are available in the form of a results file and can be automatically

exported into the defect repositories.

• Timeline tool [P51] was developed to visualize monitored interaction traces and application

events preceding failures. Using the tool, software developers may analyse the traces to

derive steps to reproduce by manually replaying the monitored user interactions.

 35

• FUSION [P55] was developed to produce more reproducible defect reports than traditional

defect tracking systems. Using the event-driven paradigm of Android application, the tool

aids the reporter in constructing the steps needed to reproduce a defect by making auto-

completion suggestions based on the potential GUI actions, such as click (tap), long click

(touch), type, and swipe.

End-user reporting tools collect information in much simpler forms to address users’ frustration

and complaints, and the users report defects as part of their day-to-day activities. We identified two

approaches of designing end-user reporting.

• One-bit-feedback [P18] uses auto-generated data and a free-text form input. It is a

background process that monitors certain system characteristics and packs them into an

incident report whenever the user clicks on the screen button or punches the hardware button.

The reports are stored locally on the user’s system. Usability defect data is collected using

auto-generated data and user is given the opportunity to provide comments and feedback

through a free-text form. Using this approach, defect incident is automatically recorded and

requires less data entry.

• Two-mouse-click [P30] uses auto-generated data, predefined data and free-text form input

design. The prototype was developed to allow report submission with minimal user click and

supplements user comments with objective program state information. The program only

collects information relating to the user’s interaction. No sensitive information is sent.

Modelling-based reporting provides a standard description with more structured data. The

reporter uses a modelling language with defined notation to represent information. For example,

ErgoPNets [P28] uses a formalism that combines Petri Nets and ergonomic criteria to describe

ergonomic problems and their recommendations. The method uses icons, graphical representation and

text to describe problems. In this way, the complex usability defect descriptions can be unified into a

single model.

3.2.3 Usability Defect Reports Content and Format

13 usability defect description formats were identified from the selected studies. Eleven out of the 13

formats are presented in written documents, while the other two are learning-oriented formats. These

 36

formats are associated with a list of attributes for communication and report keeping. Altogether, 33

attributes are identified across 13 formats by a total of 26 studies. As shown in Table 3.9, we classified

these attributes into eight groups based on the objective of defect description content objective, and we

summarize all the formats and attributes in Table 3.10.

Table 3.9. Categories of usability defect attributes.

Group Attribute/ Contents Description
Description Identifier Unique defect identification number
 Summary A headline summarizing the problem [P35]
 Problem description Concise description of the usability problem
 Product description Description of the product and the intended users of the product [P11]
 Actual result Description of errors made [P32]
 Expected result Describe what evaluator expected the system to do [P6]
 Type of defect Details of the problematic subject (i.e. number, background0 [P32]
Impact Likely difficulties The anticipated difficulties the user will encounter as a consequence of the

problem [P16]
 Severity Indicates what effects the usability problem had on the user [P33]
 Frequency Number of users/ experts that experienced/predicted a usability problem [P33]
 Confidence Indicate how confident evaluator believed that the usability problem

identified was true
 Reproducibility Ability to reproduce the problem and make it happen again [P6]
Location Context Describe in what part of the user interface the user was when the usability

problem occurred [P33]
Specific interface component (i.e. logon component, calendar component)
[P32]
The specification of the environment used for the evaluation, including the
location and any hardware (computers, monitors, cameras) [P17]

Discovery resources
and methods

Evaluator Author of the usability problem description (i.e. a meta data that
automatically captured the evaluator’s name)

Test user Number of users who participated in the evaluation and the criteria by which
they were selected [P11]
Description of the intended user [P32]

Task Specific tasks that the participants were asked to perform during the
evaluation [P11]

Goal of the task The goal of the reported test [P11]
Evaluation method Usability evaluation method [P33]

Assumed causes Possible cause Describe the cause(s) of the problem based on the evaluator’s judgment [P16]
 Trigger Describe what a user is doing when she/he discovers usability problems (task

scenario, heuristics) [P33] [P47]
Criteria used to justify the usability problems [P36]

 Failure qualifier Describes how the user/expert experienced a usability problem (i.e. missing,
incongruent mental model, irrelevant, wrong, better way, overlooked) [P33]

Solution proposal Redesign description A description of how to remedy the problem [P35]
Redesign argument Justification of the redesign proposal [P37]

Supplementary
information

Attachment Logfiles, screenshot, questionnaire [P9]
User’s response and
feelings

Narrative description with strong positive or negative connotations,
metaphors or stories (i.e. video of users struggling with an application) [P37]

Positive findings Include positive comments on the usability of the site [P2]
Business goals Justification why business goals were jeopardized by the problem [P35]
Recovery steps Description of how the user recovers from the usability problem [P6]

 Problem elimination Justification of why any problem discovered should warrant elimination [P16]
 Usability specification Usability requirement under test
 Conclusion Summary of the report
Timestamp Time on task Completion rate (mean time on task [P33]
 Created date and time A meta data when the problems are reported

 37

Table 3.10. Summary of usability defect attributes used in 13 formats. Problem description was the
most used attribute across the thirteen formats.

Note that the attributes checked for each format does not mean that all these attributes are present

in the format at any one time. Rather, it is a compilation of several studies that mention the use of

certain attributes for a particular format. The most common format used to report usability evaluation

findings were web-based form and report. The use of variety input design techniques such as auto-

generated data [P7, P15, P17, P18, P30], pre-defined data selection [P10, P15, 17, P30], free-form text

[P6, P7, P15, P17, P18, P30, P47] and question-based [P6, P47] can produce more structured and

consistent defect information. Common attributes collected in the web-based form are problem

description, location of the problem in user interface, specific task where the problem was observed,

what triggers the problems, and a severity rating. There are several key features of web-based

reporting that make it easy-to use with little manual effort. Examples include features for reminding

users about key information to report [P7], online help and tooltips for quick reference [P10], support

 38

for data transformation into different formats [P17], and automatically recorded system generated

information [P15]. However, users are exposed to erroneous data entry due to the cognitive load and

biased use of default data.

In contrast to web-based forms, conventional reports contain unstructured content and a large

amount of information. The report generally gives a detailed description of usability evaluation

methods that have been conducted so that the content of the report will not only be able to justify the

situation of the problems encountered but to present a good argument to management for requesting

resources allocation [P9]. Other attributes commonly reported in conventional reports are problem

description, severity rating, and attachment. The Problem list, on the other hand, provides lightweight

documentation. Even though the content is briefer and lacks contextual information, it is useful to

support ongoing discussions [P53], and helps to prioritize tasks during the problem merging process

[P37]. In this way, complex problems could be described as multi-faceted without going into a detailed

report [P13]. This format usually requires a problem description and severity rating.

The redesign proposal is more focused on a problem solution. It gives ideas on complex problems

by providing concrete recommendations and arguments. The recommendations are usually supplied

with drawings or code fragments [P53]. While software developers may prefer redesign proposals, it is

difficult to write useful recommendations for major changes, especially problems that involve business

and technical constraints [P29].

The other nine formats are less commonly reported - these include forum and diary [P6],

multimedia [P6, P37], human centred story [P37], screen dump [P37], digital objects [P32], self-

experience [P37], and redesign workshop [P37]. Even though these formats do not use a variety of

attributes, multimedia and redesign workshop format, for example, provide persuasive and well-

balanced defect description [P37]. Two studies were categorized as “other” format as they do not

clearly state the format used but did mention attributes used to extract usability defect data [P33, P36].

In terms of content, we found that problem description, severity, context, and redesign description

were the four attributes most commonly used to describe usability defects across formats. Attributes

that rarely present in usability defect descriptions are product description, expected result, type of

defect, frequency, confidence, reproducibility, evaluator, failure qualifier, user’s response and feelings,

 39

positive findings, business goals, recovery steps, problem elimination, usability specification, and

conclusion. These attributes are often captured in report and web-based forms.

23 studies primarily used problem description to report usability defects across ten formats, except

multimedia, self-experience and redesign workshop. However, it is uncertain whether the problem

description is mutually exclusive – that is the attribute has only one value. This is because problem

description has a very vague definition in which the reporter has a probability of mixing it with other

attributes such as possible cause, type of defect, and user’s response and feelings [P7]. Sometimes,

problem description is very brief such as in the problem list format. To support this issue, a redesign

description can additionally persuade the relevance of usability defects. We found twelve studies that

addressed detailed redesign proposals, but only four studies supplied an in-depth justification for why

the proposed solution is necessary.

Fifteen studies emphasized the severity rating in eight formats. However, there is no standard

definition used to indicate severity assessment. Some studies have used seriousness [P3, P13], category

[P15] and impact [P33] to describe the same meaning. Additionally, there are several severity schemes

used for the rating purpose such as 1) minor, serious, critical [P5], 2) major or minor [P8], and 3)

severe, moderate and minor [P10]. In terms of software context, fifteen studies mentioned the

problematic location of elements in the user interface. This information can be either automatically

collected [P15, P18, P30] or manually specified by the reporters [P6, P7, P10, P13, P14, P17, P33,

P37]. Among the 13 formats, only redesign proposal, report, web-based form, multimedia, screen

dump, redesign workshop provided attachments. The attachment can be log files [P8], core dumps

[P9], screen image [P12, P18], webcam picture [P18] and video clip [P37].

3.2.4 Usability Defect Reporting Guidelines

The review uncovered four guidelines that suggest the way that usability defects should be reported, as

shown in Table 3.11. Two studies provide experience-based guidelines that originated from practical

lessons and usability experts’ point of view [P2, P52]. According to Dumas et al., the way the usability

defect is communicated to developers influences the acceptance of the usability defects. Instead of

complaining about the negative aspect of the software product, the usability description should also

address the positive findings in a clear and precise form.

 40

Another two guidelines were constructed through empirical studies [P5, P37]. Among the four

guidelines, the Capra et al. [P5] guideline is the most rigorous and complements Dumas’s guideline.

Capra’s guideline was developed based on a survey of usability practitioners. This guideline is widely

used as a criterion to evaluate the quality of a usability description [48], [62], [63]. Besides that, the

guideline may be used in training usability evaluators and as a checklist when writing a usability defect

description. Meanwhile, the Nørgaard et al. [P37] guideline is based on Toulmin’s model of

argumentation and Aristotle’s three modes of persuasion.

Table 3.11. Guidelines for writing usability defect reports.

Studies Guidelines
Dumas et al. [P2] 1. Emphasize positive

2. Express your annoyance tactfully
3. Avoid usability jargon
4. Be as specific as you can

Capra [P5] 1. Describe a solution to the problem
2. Be clear and precise while avoiding wordiness and jargon
3. Describe the cause of the problem
4. Support your findings with data
5. Help the reader sympathize with the user’s problem
6. Describe the impact and severity of the problem
7. Describe observed user actions
8. Be professional and scientific in your description
9. Consider politics and diplomacy
10. Describe your methodology and background

Nørgaard et al. [P37] 1. Provide evidences for the observed problems
2. Describes the underlying assumptions that must be agreed upon before the claim can be accepted
3. Provide argument’s purpose or position – the difficulty arises from the problems
4. Provide insightful remarks and conclusions about the system being evaluated
5. Use log data or statistical data from a user test as backing for a usability problem
6. Show videos of users struggling with an application or even letting the developers experience the

problem themselves
Avnon et al. [P52] 1. Log one defect for each problem

2. Clearly document each defect
3. Include the visuals – observed problems and the intended design
4. Include violated usability interface guideline
5. Include prototype to visualized complex interactions
6. Prioritize the problems

 41

3.2.1 Analyzing Usability Defects

There is a body of research focusing on usability defects for understanding and improving the defect

management lifecycle. Our systematic literature review identified five areas that specifically

investigate usability defects – quality of usability defect reports, classification of usability defects,

duplicate defect report analysis, estimation of usability defects, and discussion of usability defect

reports. In terms of attributes that are commonly used in empirical research (refer Table 3.12), problem

description, impact, and title/ summary are most widely used. Attributes rarely used by researchers are

type of defect, likely difficulty, confidence, priority, software context, reporter, violated heuristic,

business goals, assignee, milestone, time to fix, and defect fixes. Research on classification and defect

duplication favourably used title/summary and description, while research on defect report quality

often used observable user actions, impact, assumed cause, and supplementary information. However,

two studies did not report defect attributes used as they employed other metrics such as ISO/IEC 9126

quality model [P21] and IBM quality measurement model [P46].

3.2.1.1 Quality of usability defect reports

We identified two key topics in this research area. First, studies that measure the quality of usability

defect reports. In general, defect report produced by an expert evaluator had better quality than the

defect reports produced by a non-expert evaluator. In most studies, non-expert evaluators are recruited

among students, while expert evaluators are from industrial practitioners.

Based on the eight studies, we identified numerous criteria used to measure the quality of usability

defect reports (see Table 3.13). We classified these criteria into three categories: report content,

software quality model, and general categories. One study did not mention any assessment criteria that

were used [P39]. Report content was used by six studies to measure the quality of usability defect

reports [P1, P3, P5, P7, P8, P35]. Among the defect attributes, observable user action, impact,

supplementary information, assumed cause and solution proposal were the most assessed information.

Only one study measured the quality of the usability defect report content using test procedure

descriptions, executive summary and report layout [P8] and business goals [P35]. Five studies revealed

that non-expert usability evaluators have difficulty in describing certain usability defect information,

particularly the impact, solution, supplementary information, assumed cause, and recovery steps [P1,

P5, P8, P39].

 42

Table 3.12. List of attributes used across five research areas. Problem description, title, and severity
were the most used attributes.

Table 3.13. Categories of assessment criteria to measure quality of usability defect reports.

Category Assessment criteria Rank* Study (s)
Report content Impact 2 P1, P5, P7, P35

Supplementary information 3 P1, P5, P7
Assumed cause 3 P1, P5, P7
Observable user actions 2 P1, P3, P5, P7
Solution proposal 3 P3, P5, P7
Test procedure description 5 P8
Executive summary 5 P8
Business goals 5 P35
Report layout 5 P8

Software quality model Clarity 1 P1, P3, P5, P7, P8, P35, P44
Persistent 5 P3
Justified 5 P3
Persuasive 5 P44
Usefulness 4 P35, P44
Data quality 5 P8

General Expert judgement 5 P4, P7
(*) The ranking showed the assessment criteria used the most in measuring quality of usability defect reports (in ascending
order)

 43

With regards to the software quality criteria, seven studies used clarity attributes to assess if the

usability defects were described precisely, meaningfully, and contained unambiguous explanation [P1,

P3, P5, P7, P8, P35, P44]. We also observed that even non-expert evaluators failed to fulfil all report

content criteria, but they could describe some information clearly [P1], and provide positive findings

for the evaluation [P39]. However, these studies did not indicate which information non-expert

evaluators could explain precisely. Other studies uniquely defined their quality attributes such as

persistent [P3], justified [P3], persuasive [P44], and usefulness [P35, P44].

The general category comprised of expert judgment. Studies that relied upon expert judgment

measured quality using criteria such as how similar problems were identified and use of appropriate

claims to justify the problems. In order to minimize judges’ bias, measures of association, bias, and

distribution of the judgement were calculated. In our review, two studies employed professional judge

ratings [P4, P7].

The second key topic is emphasizing the ways to improve usability defect descriptions. There are

several aspects of possible improvement. To improve defect report content and structure, Hornbaek and

Frøkjær [P3] recommend four elements for good usability defect reports: 1) include solution proposal,

2) justify why something is a problem by referring to the behavioural consequences of a problem, 3)

present descriptions of problems that are complex and persistent for users, and 4) make the problem

description long enough. In a different work [P35], they proposed the use of business goals in

justifying usability defects, as the information would give higher utility and impact to the company.

Furthermore, they found that business goals help focus the evaluation. Ko et al. [P48] suggested that

the defect report title should consists of software behaviour, relevant quality attribute, problem,

execution context, and if the report is a defect or feature request.

In terms of usability defect report format, software developers highly prefer a multimedia

presentation, screen dump, and redesign proposal for presenting usability defects because they provide

ideas on the problem context [P44]. To improve a usability defect reporting tool, Faaborg and Schwartz

[P27] proposed the adaptation of usability heuristics when labelling usability defects. In fact, a

usability-shared vocabulary (such as consistency, jargon, feedback) can be useful in describing the

cause and impact of user interface problems. However, this approach is highly dependent on the clarity

of each heuristic’s definition and use of good examples, as users of defect reporting tools may have

limited HCI knowledge. To effectively capture usability defects, Howarth et al. [P7] proposed the

 44

usability problem instance approach to record usability defects. Using this approach, they found out

that expert judgment provided higher ratings for describing the cause of the problem and solution

proposal description. Hornbaek and Frøkjær [P3] found that usability evaluation methods influence the

level of detail of defect description. For instance, problems identified with the metaphor of human

thinking are more justified compared to problems found with testing aloud.

3.2.1.2 Classification of Usability Defects

In existing defect repositories, defects are classified as either a defect (blocker, critical, major, minor,

normal) or an enhancement. However, this labelling scheme does not have sufficient knowledge for

understanding the properties and features of various types of usability defects. This is evidenced by a

number of studies available in the literature [P21, P22, P42, P46, P50]. We group the research into

different goals below.

• Understanding usability defect characteristics - Lal and Sureka [P22] investigated the

differences, similarities, and correlation between terms and usability defect types. They found

that terms present in defect report titles and description are related to usability defect type. For

instance, usability defects frequently use terms such as “window”, “user”, “zoom”, “menu”,

and “click”. In relation to usability defects, they discovered that 1) usability defects are the

largest contributor to regression defects, 2) the median mean time to repair (MMTR) value for

usability defects is fairly high compared to other defect types (cleanup, crash, polish,

performance, regression, and security), and 3) usability defects are the second highest of

duplicated defect reports. Xia et al. [P50] studied the relationship between types of defects and

severity. They discovered that most user interface and usability defects are assigned as block

and critical severity.

• Understanding the cause of usability defects - Li et al. [P42] developed a classification model

for classifying defects to root cause, impact and software component. They found that

graphical software is threatened by graphical user interface (GUI) defects that are mostly

caused by semantic errors, such as missing features and wrong functionality.

• Understanding the impact of software defects– Vetro et al. [P21] conducted an experiment to

classify software defects according to ISO/IEC 9216 quality model (functionality, reliability,

usability, efficiency, maintainability and portability). They found functionality and usability

 45

were the most dominant impacted quality attributes. Kreyss et al. [P46] used the IBM quality

measurement to categorize defect report distribution. Across the nine quality attributes

(capability, usability, performance, reliability, installability, maintainability, documentation,

serviceability, and overall usability) was ranked as the second highest problematic quality

attribute. The results from the study gave an overview of where improvements should be

focused.

3.2.1.3 Duplicate Defect Report Analysis

Many previous studies have reported how duplicate defect reports of any sort may slow down the

defect fixing process as more resources and time are needed to identify and close duplicate defects

[64]. However, duplicate defects should not be ignored because they may contain additional

information that may be useful to resolve defects [20]. With regards to the latter concern, we identified

four studies that addressed a way specific usability detects are detected and handled. In the usability

engineering literature, duplicate defect report classification is referred to as matching and merging, and

does not appear to be an area of active research.

• Matching – a process to detect duplicate problems. Vermeerena et al. [P12] analysed the

usability problem’s similarity based on the situation in which the problem occurred, the user’s

observable behaviour at the time the difficulty occurred and how the user thought, felt or

understood certain tasks. Hornbæk and Frøkjær [P13] studied four matching techniques

(similar changes, practical prioritization, a model of Lavery et al. (1997) and the User Action

Framework). Their experiment showed that similar changes produced more single problems

than the other techniques, and practical prioritization reaches highest level of agreement

among novice evaluators. Hindle et al. [P56] used different contextual features – architecture

words, non-functional requirement words, LDA topic words, and random English words - to

improve the accuracy of defect report deduplication. Their experiments demonstrated that the

effectiveness of domain-specific context could improve the quality of duplicate defect

detection.

• Merging – a process to consolidate similar problems. When similar problems are identified,

they must be linked to the primary report the current duplicate refers. To address this process,

Law and Hvannberg [P36] used a manual merging process, where evaluators recorded every

 46

change made to the usability problems in their own consolidated list. The results of their study

found that the merging process is influenced by the evaluator effect, in which the merging rate

and severity increased when evaluators performed merging process in a group. However,

confidence level, which is influenced by personal experience, does not fluctuate with the

merging process.

3.2.1.4 Estimation of Usability Defects

We only found one study that used usability defect data to determine defect discovery rates. Using

Good-Turing discounting with a normalization procedure, Lewis [P19] revealed that higher levels of

description produce a higher estimate of discovery rate.

3.2.1.5 Design Discussion of Usability Defects

We found only three studies in the software engineering literature that focused on correction discussion

and had goals concerning user interfaces and interaction design.

• Addressing and resolving usability defects – Twidale and Nichols [P21] identified two topics

commonly discussed by users: 1) debate about the validity of usability problems; and 2)

critiques and refinement of candidate solutions. They also expressed concerns about usability

defect solutions that may introduce ripple effects.

• Understanding structure and content of design discussion – Ko and Chilana [P26] observed

trends in online design discussions including establishing scope, proposing ideas, identifying

design dimension, defending claims with rationale, moderating process, and making decisions.

However, the temporal presentation of discussion comments was inadequate to support

proposals and critiques among a broad range of users.

• Supporting online forums – Raza et al. [P31] discovered that the open source community

works in a collaborative environment to identify and find possible solutions to usability

defects. The number of active mailing lists and messages posted on online forums indicated

significant and active support from open source community.

 47

3.2.2 Issues in Defect Reporting

Addressing the identified challenges of existing usability defect reporting processes and tools serves as

a basis for any improvement in software defect management practices. We identified these reported

challenges from both software engineering and usability engineering studies. From the software

engineering perspective, these challenges include difficulties faced by reporters to report, track and

manage usability defects in existing defect tracking systems. Most challenges identified in the usability

engineering field are related to human factors and usability evaluation methods, while challenges in

software engineering field are due to limitation of existing defect repositories. Key reported challenges

we found from the previous studies are summarized below.

3.2.2.1 Developer mindset

One of the prominent dilemmas among evaluators is when their usability defects reported get a lot less

attention than they think they deserve from software developers. This situation seems to happen when

software developers cannot understand the problems, especially when they do not participate in the

evaluation or witness how users struggle to accomplish certain tasks [P1, P9, P37]. In some cases,

software developers do not always agree with the higher severity ratings of usability defects given by

reporters. In fact, software developers usually assess severity somewhat differently from reporters, and

usability defects often end up with low severity rating and lower priority than functional defects [P37,

P53]. Therefore, comparing usability defects in the context of functional defects is impractical as

usability defects can be overlooked [P54].

3.2.2.2 Subjective bias

Evaluating usability aspects of a system is highly subjective to an individual and thus the reporter [P26,

P40]. That is, one might see one aspect of an interface as problematic, but others may not. It is thus

difficult to persuade software developers or designers that the usability defects raised are indeed real

defects, that they require the same attention as functional defects, and need fixing. In fact, an

agreement/disagreement between severity ratings is also seen as an effect of subjective bias by

software developers or designers evaluating their own designs [P1, P23]. This has raised questions as

to whether usability defects should be reported into a shared defect database or usability defects should

have their own database [P54].

 48

3.2.2.3 Evaluator effect

Our review observed that the way usability defects are described is influenced by skill and experience

levels of the evaluator. From the usability engineering literature, most studies reported that expert

usability evaluators are better at identifying and describing usability problems than the software

developers or novice evaluators [P1, P5, P7, P8, P14]. It should be noted that inexperienced usability

evaluators might feel that not all problems should be reported, and when they find a problem they do

not know what information should be reported. This challenge has led to incomplete usability defect

descriptions, in which a report usually does not contain possible causes of the problems, recovery steps,

possible solutions, and clear reasons why something is a problem [P20, P39, P53].

3.2.2.4 Defect discovery methods

The completeness of usability defect descriptions also depends on the defect discovery methods used.

[P3, P20] reported that certain methods, such as metaphors of human thinking, are more likely to have

more information to justify a problem found compared to think aloud method. In other words, selection

of appropriate testing techniques may help evaluators to identify usability problems effectively and

collect necessary usability defect information to report. However, in open source projects where often

no formal usability testing is conducted, there is still a lack of mechanisms to discover and report

usability defects, especially those encountered by typical or non-experienced users [P20].

3.2.2.5 Complexity management

The process of managing usability defects is a largely human task, especially when discussing design

solutions in defect repositories. There are two aspects of complexity in managing usability defects we

found from literature. First, the linear temporal discussion structure may not be sufficient to enable

users to keep track of all the discussion elements, such as elaboration, confirmation, allocation of

works, proposed fix, and revision [P40]. This makes it difficult for users to compare and critique a

correction proposal, as they have to read through the entire comments. One way to minimize this

challenge is to use nested comments [10], [42], [65] so that the critiques in the design discussion can be

more explicit. Second, the changes to interface design might be risky, as any changes may have

impacts on the other components of the system [P40], cause confusion to existing users [P26], and may

 49

involve major changes to business and technical constraints [P29, P53]. In this case, some usability

defects are difficult to explain and proposing useful and usable recommendations may be hard.

3.2.2.6 Lack of appropriate channels for reporting usability defects

Existing defect repositories, such as Bugzila, Trac and JIRA, were designed as text-centric mediums

for functional defect reporting. This causes some usability defects that relate to user’s feelings,

emotions and “struggling” with an interface to be difficult to explain textually [P20, P40, P57]. To

overcome this limitation, defect repositories, such as Bugzilla could have a mechanism to easily and

interactively record, upload, show, maintain, and comment user submitted videos, images and voice

[P10, P38, P57]. Furthermore, some defect repositories that were developed by and for software

developers have caused usability defect reporters to fill in considerable amount of information, much

of them not relevant for usability defects [P6, P38, P57]. Considering these challenges, several studies

have suggested a mechanism to support non-expert users in terms of automated collection contextual

metadata and cognitive information [P20, P23] and less user registration [P40].

3.2.2.7 Lack of specific guidelines for usability defect information reporting

Although generic defect report templates and evaluation reports are available, most of them do not

clearly define specific information that should be reported for usability defects in general and different

kinds of usability defects [P29, P36, P54, P57]. For example, in assigning usability defect severity,

there are no standard guidelines and rules available. According to [P36], users usually use their

personal experiences as a benchmark to judge problem severity. Similarly, a lack of guidelines and

exemplary recommendations make the quality of fix recommendations highly varied [P29].

3.2.3 Key Recommendations

In this section, we draw from our review findings and the findings of other studies and surveys to

provide a set of key recommendations for further research in usability defect reporting. These provide a

road map for further usability defect reporting research and while many are complimentary, we order

them roughly in our suggested priority order to address.

 50

3.2.3.1 Recommendation R1 - Prioritize usability defect attributes by their level of importance

for software engineers

There are many separate usability defect attributes that we have identified from usability engineering

studies (33 attributes). Many of them do not appear to be important for understanding, replicating or

correcting the usability defect from a software engineering perspective. Since a key aim in our research

was to simplify and improve the defect reporting process, we have to identify which of the attributes

have the greatest influence on defect fixing process. We could focus on capturing the ones that will

have the greatest impact in convincing software developers of a problem and assisting them in

prioritizing, diagnosing cause, and correcting. Related to this, we found little work on how to best

prioritize usability defect reports to provide best value to end users i.e. fix those most seriously

impacting usability first. As above, this requires better ways to characterise usability defects, classify,

determine severity, and convey this to software project managers and developers.

To advance these important research and practice outcomes a detailed survey and interviews with a

large number of software engineers is needed to determine critical attributes for them. Additionally,

understanding better the difference between usability defect reporter and consumer perspectives is

essential. Improved usability attribute terminology and understanding in terms of impact on usability

defect description and diagnosis is also needed. Mining existing defect repositories to understand what

attributes seem to lead to improved correction may also assist this.

We partially addressed this recommendation in Chapter 5.

3.2.3.2 Recommendation R2 – Provision of key usability-related defect attributes

Following on from R1, we observed that many of the usability defect description formats in use do not

define separate attributes to indicate specific key information about a usability defect. This results in

many software developers with little experience reporting “usability” issues finding difficulties in

understanding the reported issue. This means that software developers do not always agree or

understand the usability defects actually reported, even if reported at all. As a result, usability defects

get less attention or are sometimes even closed off as not valid.

One way to overcome this issue is to define and capture usability defect attributes at a fine-grained

level, which can reveal more detailed issues with usability characteristics, such as heuristics, defect

 51

category, location and impact. Additionally, by introducing dedicated fields/ attributes to address likely

interaction difficulties, the end user’s feeling, and how they see an interface as problematic – so that

the usability “struggles” exemplified in the usability defect reported can be better understood and

appreciated by software developers using the usability defect report. This information can be used by

project managers and software developers for defect management purposes, as well as providing

researchers with richer information to conduct empirical analysis of usability defect cause, impact,

tracking, and resolution.

In order to identify critical usability defect attributes to report, research needs to be carried out to

determine both: (1) what reporters are reporting and think they should be reporting, and what

developers require in order to fix usability defects; and (2) what usability defect attributes actually

impact defect understanding and correcting. This could be done via surveys and interviews of reporters

and developers, to get opinions of attributes required, and mining of existing defect repositories, to

understand what is being reported and its impact on resolution.

To minimize unnecessary or irrelevant attributes for a particular usability defect, usability defect

reporting forms could be adjusted using for example, a contextualised question-based design so that a

reporter can select specific attributes that are relevant to them.

We addressed this this recommendation in Chapter 5 and Chapter 7.

3.2.3.3 Recommendation R3– Provide reporters customised usability defect report forms

The static reporting template offered by most functional requirements-oriented software defect

repositories is generally universal. These do not consider the influence of the different types of

reporters, different kind and use of diverse usability evaluation methods, and the phase of development

where the usability defects are found. Almost all research shows that all defect types are reported using

the same generic defect reporting template. In some cases the information requested on the form is

simply not relevant and some is beyond the reporter’s knowledge [7]. Most are text only and do not

support other forms of input collection, or make it difficult to capture and attach.

A number of enhancements to existing reporting tools have been suggested in the literature [P45,

P49, P51, P55], or can be deduced from the related usability defect reporting issues discussed above.

We think that using a guided reporting method where reporters are assisted with predefined attributes

 52

for input selection, online help and question/wizard-based interaction may greatly improve capture and

quality of usability defect reports [66], [67]. In this way, even if the reporter has less knowledge about

usability, they can still be guided to capture reasonable quality defect reports. As a result, the recorded

data will be more structured, fine-grained and uniform for usability defect report management. Users

should be prompted/allowed to capture relevant attributes based on types of usability defects, the

reporter’s profile (e.g. non-technical user, technical user, usability experts, and etc), and usability

defect report attributes be prioritized based on the types of defects and relevancy.

Additionally, usability defect report forms should be simple. Simplicity – the art of minimizing the

amount of requested attributes in a usability defect report – is a necessary quality focus, by including

only what software developers need rather than what reporters think – to make it easier for software

developers to understand, replicate and fix the problems [P55]. Giving a reporter a simple set of

explicitly usability-focused defect reporting forms for different kinds of defects could encourage them

to report more usability defects with better outcomes, rather than imposing on them many complex,

irrelevant attributes.

Another issue in usability defect reporting is that usability engineering tools and techniques are

quite distinct from software engineering defect repository reporting and management tools and

software engineering unit testing methods. This can cause repeated defect reporting when transferring

usability defect information found during formal usability evaluations to project defect repositories, a

waste of time, and possibility of information loss. Having a standard format that can be shared between

the usability and software engineering communities would add value. However, further research to

empirically study the impact of using separate and shared defect repositories would suggest a better

usability defect reporting approach.

A further area for future research is to investigate the key factors influencing quality usability

defect reporting, from the perspective of non-technical reporters. Using this knowledge, how can next

generation usability defect reporting tools be better designed to leverage HCI knowledge, domain

knowledge and end user knowledge?

We addressed this recommendation in Chapter 4 and 7.

 53

3.2.3.4 Recommendation R4 - Develop an improved taxonomy for classifying usability defects

There are currently many usability defect taxonomies, classifications and attributes of usability defects

identified in HCI literature and software engineering literature. We found many studies identifying that

many usability defect reports lack sufficient attributes for classifying usability defects. A key obstacle

of using existing usability defect report data is the widespread use of unstructured textual features in

most current defect tracking systems. Lack of usability knowledge or different usability knowledge

among reporters has produced reports that use a wide range of non-standard usability terms that

complicates usability defect classification and identification. In addition, existing defect report

attributes do not capture usability related information that can be directly used to filter usability

defects. We observed only two studies [P30, P32] that specified the types of defects to describe

usability defects across the 13 formats we identified.

There are several reasons for classifying usability defects: 1) to better identify and disclose the

probable causes of the defect; 2) to highlight the impact of usability defects on the intended user task

outcome; 3) to treat usability defect priorities the same way as for other defects; and 4) to

quantitatively track usability defects, defect impact and defect resolution over time.

We also observed a great deal of inconsistency in the terms used in usability defect reports for

specifying the same usability defect across the 13 formats found. For instance, a “severity” attribute

was used in most of the formats to denote the importance of the defects to be fixed [68]. However,

other than severity, some studies used impact [P12, P16], seriousness [P13, P53] and category [P5] to

refer to severity. This variation of terms for one usability attribute can also be found in use of “minor,

major, enhancement” for a defect’s severity, while others used “severe, critical”, which resulted in

inconsistent data which was not comparable. Many other usability attributes are used inconsistently in

terms of both name and value. This leads to inconsistent reports even within the same project which are

hard to read, understand, track, and prioritize.

To solve these issues, the HCI and software engineering communities need to develop a more

comprehensive and agreed usability defect taxonomy. Much of this work has been established in terms

of HCI usability evaluation terminology and attributes, but has been inconsistently applied or not

applied at all in software engineering practice around usability defect reporting. Along with

 54

comprehensive, agreed usability defect taxonomy, an agreed set of names and meanings for usability

defect attributes are needed.

We addressed this recommendation in Chapter 6.

3.2.3.5 Recommendation R5 – Provide good contextualized guidelines for well-written

usability defect reports

This study identified some research that defined guidelines for characterizing how usability defects

should be reported. However, these lack content-related criteria that would assist reporters in collecting

important and useful information for describing the defect and correcting the defect [P2, P5, P37, P52].

For instance, a good usability defect report should describe the issue precisely, but often the

information that really needs to be reported is not explained clearly or even not captured at all.

Inexperienced reporters in particular may think that their reports are complete, but they may actually be

providing irrelevant or inadequate information.

These issues require further research into what influences the fixing of usability defects. This

might include mining defect repositories for evidence of useful attributes and reports, and surveying

and interviewing both reporters and developers. The findings from these kinds of studies could be used

to produce better contextual guidelines that assist both reporters and software developers. Another

related area for both HCI and software engineering research is studying the “evaluator effect” in terms

of how it impacts the usability defect reporting. A related concept we call the “reader effect” – how

software developers read, interpret and action usability defect reports – appears to be an as yet

unstudied area, that with better knowledge also may improve defect reporting.

3.2.3.6 Recommendation R6 – Develop more automation in usability defect reporting

Much current usability defect reporting in software teams is still highly text-based and manually

captured. Apart from better information capture for usability defect reports, as discussed above, more

automated data capture and richer kinds of information capture are needed. Many usability engineering

tools provide both of these e.g. instrumenting applications to capture traces and user interaction,

recording richer user interaction and mapping to user task, and capture of video, audio, screenshots,

diverse interaction (touch, sketch, gesture, accelerometer, as well as keyboard and mouse). However,

most software engineering defect tracking tools make capture of this highly manual, uni-format

 55

(usually free format text), or make adding and manipulating attachments difficult (or impossible).

There may be entirely novel approaches to make usability defect reporting possible combining HCI

usability engineering methods and tools with software defect reporting and management repositories.

Where possible, supporting automated capture of usability-related defect issues would enhance the

reporting process, but also the replication, solution discussion, and correction processes. Such data

collection should include structured, contextualized reporting forms as above, but also event traces,

interaction traces, screenshots, audio and video, a variety of interaction styles, especially for mobile

applications, and enable software developers to view this in context with the usability defect report

attributes captured. Attachments such as audio, video and interaction recordings should be interactively

manipulable as in some HCI-oriented usability assessment tools.

3.3 Threats to Validity

Even though this systematic review was performed according to a well accepted process [31], [51], we

cannot guarantee that we have covered all studies in this area. Each systematic literature review process

described in section 3 was exposed to some threats. We describe the threats associated with each

process and the mitigation strategies used for this review.

Data source and search strategy. This review is limited to studies that were published from the year

2000 onwards. Thus, it neglects studies that were published before the year 2000. We were aware that a

few studies on usability defect reporting were published in 1997 [69] and 1999 [12], but these studies

were extended in other studies [70], [71], which were included in our review. Other than that, we

cannot guarantee the selection of the search strings covers all terms used in both software engineering

and the usability-engineering field. In this case, we tried to derive a different set of search strings for

different fields of study and these are adjusted accordingly to each search engine (as described in

section 3.2.2). Additionally, we included a reference chaining search as a secondary search to

minimize this threat.

Study selection. The selection of studies was performed by the main researcher, which may have

resulted in missing studies. However, the other supervisors provided detailed feedback during the

review process and monitored the systematic literature review protocol execution closely. We have

used clear inclusion and exclusion criteria to reduce selection bias.

 56

Data extraction and synthesis. We found that some studies do not have clear details about the format

used for reporting usability defects. In this case, we had to make assumptions on the basis of our

judgment. Therefore, there is a possibility that some of the extracted results are partially inaccurate. In

order to mitigate this, the three supervisors randomly picked several studies, refined and verified the

extracted data. The main researcher then rechecked the earlier data extraction. Overall agreement was

very high between the supervisors in terms of classification of studies and agreement on extracted data.

3.4 Summary

This chapter describes the SLR process we carried out. We performed a comprehensive literature

search on five reputable online databases using multiple search strings and a two-phase screening of

papers. As a result, 57 papers were selected. We divided the papers into three main categories; 1)

reporting usability defect information - which is related to research on reporting the usability defect, 2)

analysing usability defect data - which is related to researching the use of defect data, and 3) challenges

– which refer to issues identified in current approaches to usability defect reporting and management.

In usability engineering and HCI studies, evidence showed that various diverse mechanisms are

used to capture and record usability defects. This is supported by numerous defect report content and

formats to present the information. However, most of these mechanisms and formats were used in

isolation. That is, each mechanism and format was designed to the specific usability evaluation method

and does not integrate with the central defect database. Furthermore, existing guidelines to assist

reporters in writing a good usability defect description lack guidance for collecting usability defect

data.

In the software engineering discipline, usability defect reporting has been less frequently

investigated. Existing studies that investigated usability defect reporting have focused especially on

addressing the limitations of open source defect repositories to support usability defects. While most

challenges in the usability engineering field are related to human factors and usability evaluation

methods, challenges in software engineering field are due to limitation of existing defect repositories to

capture usability-related information.

Overall, the results from the SLR showed that usability defect reporting processes suffered from

mixed data, inconsistent terms and values of usability defect data, and insufficient attributes to classify

 57

usability defects. Although mailing lists and online forums have become an alternative interaction hub

for users to discuss usability defects, especially in OSS development communities, the linear sequence

of communication makes it hard to extract the contextual information for developers to fix the

problems.

These limitations and challenges motivated this research to investigate further what constitutes the

ideal content of a usability defect report. In particular, we are interested in identifying important

usability-related attributes, terminologies that best describe usability defect, and critical usability defect

attributes that need to capture. We addressed these investigations in Chapter 4.

 58

4 Information Needs for Reporting Usability Defects

Reporting usability defects can be a challenging task, especially in convincing software developers that

a usability defect reported is indeed a real defect. Specifically, the subjective nature of usability defects

that cause confusion for some people require stronger evidence to describe and report the problem.

However, research to date in software defect reporting has not investigated the capturing of different

information based on defect types, such as usability defects. This lack of empirical data on information

needs for different types of usability defect reporting impedes research on finding what information is

best to describe a usability defect. While previous studies have identified steps to reproduce, actual

output, and expected output as an important information to fix software defects in general, however,

these studies do not consider what information should be reported, and how the information should be

presented in the context of specific types of defects.

To fill this gap and to find answers for the second thesis research question“RQ2 - What usability

defect information do software developers and reporters emphasize in current usability defect

reporting?”, we designed a research study to identify what reporters currently provide when describing

usability defects, what information software developers need to fix usability defects, and how usability

defects are actually described in real software development projects. This chapter presents the details

of this study.

4.1 Methodology

To answer “RQ2 What usability defect information do software developers and reporters emphasize in

current usability defect reporting?”, we designed two studies to identify the types of information

needed to describe usability defects. In the first study, we surveyed software development practitioners

in both open source communities and industrial software organizations about their usability defect

reporting practices to better understand information needs to address usability defect reporting issues.

The second study involved an analysis of usability related defects reported in the Bugzilla software

defect repositories of Mozilla Thunderbird, Firefox for Android and Eclipse Platform projects,

respectively.

Since we used more than one method (survey and defect report mining) to collect data on the same

topic, we chose a triangulation method to answer RQ2. The use of a triangulation method gives an

 59

understanding of how usability defects are described from different perspectives, and reveals some

commonalities and dissimilarities between what is claimed by the practitioners with what is written in

their reports. Table 4.1 described the different methods and strategies used in this research along with

the rationale of selecting the method and strategy.

Table 4.1. Description of research methods and strategies.

Method Strategy Rationale

Surveying
software
development
practitioners

Questionnaire Conducting online surveys of practitioners is a useful way of gathering insight into how
participants deal with usability defects. In this method, we are expecting to collect
detailed information on what reporters provide when reporting usability defects and what
information is expected by the software developers to fix usability defects. Unlike face-to-
face survey interviews, online survey caters to privacy needs of the participants in order to
provide open and honest feedback, and gather meaningful opinions.

Analyzing open
source usability
defect reports

Observation Open source defect repositories offer significant source of empirical data. Analyzing the
text data of defect report could provide confluence evidence of how usability defects are
described in real software projects development. In addition, the use of document analysis
method is useful to support and strengthen research topic, especially in contextualizing
research topics within its subject or field, and provide supplementary data that participants
in the survey have forgotten [72].

4.1.1 Online Survey of Software Development Practitioners

This survey was divided into two themes investigating “important usability defect attributes” and

“factors that influence usability defect report quality”. This chapter only reports the results relating to

the first theme about the information needed for reporting usability defects. The next chapter reports

the finding on the second theme on factors influencing usability defect reporting.

4.1.1.1 Research Questions

The main objective of the first theme of the survey was to identify:

1. What information do reporters use to describe usability defects?

2. What information do developers consider useful for fixing usability defects?

This investigation set out to provide a comprehensive view on the day-to-day practices when

dealing with usability defects and pinpointing challenges. Through this study, researchers can find

characteristics, open issues, and understand the nature of describing usability defects, which can be

valuable for improving defect reporting processes and tools. Software development practitioners, in

turn, will also find technical references for reporting specific types of defects.

 60

4.1.1.2 Survey Design

The survey was developed using the Opinio tool. We conducted a self-administered survey, as this kind

of survey approach offers greater flexibility to participants. Participants can answer the survey at their

convenience without intervention of the researchers collecting the data. The survey was open from

June until November 2015.

4.1.1.3 Development of Survey Instruments

We did not find any research on usability defect reporting in the software engineering literature.

However, our review of software defect reporting reveals a number of studies that investigate the key

information to fix software defects in general [20], [21], [29], [33], [73]. As our survey is in the context

of software engineering research, we reused some defect attributes relevant to usability defects studied

in [20], [21] – steps to reproduce, actual and expected results, software context, and screenshots.

Furthermore we added video, audio, assumed cause, UI event trace, proposed solution and usability

principle to the list of usability defect information. This information is useful when describing usability

defects, especially in addressing usability concerns, indicating the problematic user interface

component, and describing particular specifications of the environment used for evaluation.

4.1.1.4 Questionnaire Design

The survey had a total of 50 questions split into seven sections. Around 14% of the questions on

investigating usability defect attributes were derived from [20], [21]. Questions on the influential

factors of defect reporting practices, like knowledge, experience, tools and methods were based on

[74]. Other questions were formulated based on our literature review.

The survey questionnaire included both closed and open questions. Most of the closed questions

used a Likert scale with five possible responses (“Never”, “Rarely”, “Sometimes”, “Often”, and

“Always”). The questionnaires consisted of two versions: one for usability defects fixer (developers)

and one for reporters. The sections are:

1) Background information: We collected general information about the respondents including

gender, age ranges, employment information, and role in dealing with usability defects.

 61

2) Training/ certification in Human-Computer Interaction: We asked both reporters and

developers if they attended any HCI and/ or usability training and how useful the

training/certification was.

3) Discovering usability defects: We asked the reporters about their experience in software

testing and methods they used to discover usability defects. The respondents were also asked

if they agreed (on a Likert scale) that the amount of information available for reporting

usability defects varies according to how defects are discovered. Some of the findings are

discussed in Chapter 5.

4) Reporting usability defects: We asked what information reporters usually provide, evidence

they used to support their claim, and how usability defects are presented. This section also

asked reporters to rank top five most difficult attributes to provide.

5) Fixing usability defects: We asked what information do software developers usually use when

fixing usability defects and ranked the top five most importance attributes. The software

developers were also asked to indicate the problematic attributes that they have experienced

and their opinions on the quality of defect reports produced by different types of reporters.

6) Defect reporting and automation tool: We asked both reporters and software developers on

their experience of using defect reporting and automation tools. Questions focused on tools

used and their effectiveness to capture and manage usability defects. Other questions aimed to

get opinions on the influence of experience, and knowledge in designing new defect reporting

form. Some of the findings are discussed in Chapter 5.

7) Knowledge and experience in usability defect reporting: We asked both reporters and software

developers about their view of experience and knowledge in usability defect reporting. The

questions asked about the influence of level of experience, and whether different types of

knowledge (usability/ software engineering, domain and technical) can affect the level of

detail of defect reports. The findings of this section are discussed in Chapter 5.

See Appendix B for complete survey questions.

4.1.1.5 Evaluation of Survey Instruments

This survey was piloted with Swinburne Software Innovation Lab (SSIL) software engineers and

fifteen software developers were recruited during a developer conference (DDD Melbourne 2014).

 62

Based on the written and verbal comments, and the pattern of responses received, the survey

instruments were refined.

This survey study was approved on behalf of Swinburne’s Human Research Committee

(SUHREC) by a delegated SUHREC subcommittee (SHESC2) (Approval number: SHR Project

2014/231). See Appendix F.

4.1.1.6 Selection of Participants

Since our target sector is open source development, which is an increasingly broad group of people

ranging from professionals to end users, we replicated this environment by surveying software

development practitioners with varying experience levels and roles (including developers, testers, and

managers), and non-IT related professionals. We made assumptions that these practitioners and users

have similar characteristics (albeit working in a different environment with different resources) to those

users in an open source context. We used a survey of practitioners to collect their current practices,

challenges, and perspectives of reporting and handling usability defects.

The respondents were recruited from both open source and industrial communities. For open

source respondents, we advertised the survey through community forums, such as Eclipse Community

forums. While industrial respondents were invited through Facebook, LinkedIn, Software Testing

Club1 and researchers’ industrial contacts. Participation was voluntary and participants were allowed to

discontinue participation at any time during the research activity. The consent to participate in the

survey was implied by the return of the anonymous questionnaire. However, a precise response rate

cannot be determined, as the total number of the participants who received the invitation is unknown.

4.1.1.7 Data Analysis

This survey collected both qualitative and quantitative data. For quantitative data, we used descriptive

statistics, while qualitative data was analyzed using exploratory analysis [75]. We began by reading the

respondents’ comments, looking for keywords, trends and themes. Next, the results of the analyses

were used as supportive evidence for the quantitative results. Finally, we generated hypotheses for

further study. The responses to the qualitative questions are discussed only briefly in this paper.

1 http://www.softwaretestingclub.com/forum

 63

4.1.2 Software Defect Repositories Mining

In addition to the survey of software development practitioners, we examined a subset of developers-

tagged usability defects reported in Bugzilla defect repositories of the Mozilla Thunderbird, Firefox for

Android, and Eclipse Platform projects. The motivation of this analysis was to examine how usability

defects are described in actual defect repositories, as compared to what is claimed by the participants

through the online surveys. Despite identifying the presence of certain defect information when

describing usability defects, we also studied the characteristics of usability defects in our dataset. The

findings of this analysis were used to validate the findings from our online surveys using triangulation

method.

4.1.2.1 Research Questions

In order to investigate the extent usability defects are described by open source communities, and

reveal common usability defect characteristics, we addressed the following six research questions, as

listed in Table 4.2.

Table 4.2. Software defect repositories research questions.

Research Questions Rationale
RQ1 What information is commonly provided in open source usability

defect reports?
To compare the actual usability defect
report content with what software
development practitioners claimed in the
online survey.

RQ2 How if at all, is a proposed solution to the usability defect described?
RQ3 Are usability defects described differently from performance-related

defects?
RQ4 What are the dominant types of usability defects (e.g., interface and

interaction) in open source projects?
To investigate if the existing usability
classification model can be used for open
source projects, and whether the existing
models need to be revised.

RQ5 What are the impacts of usability defects and what types of usability
defects have a severe impact?

To investigate the cause and impact aspect
of reported defects. This information is
useful as a ground basis of the open source
usability defect taxonomy.

RQ6 On what basis, do usability defect reporters justify that the user
difficulty that they experience is an issue?

4.1.2.2 Defect Sources

We performed an investigation of usability defects gathered from the Bugzilla defect repository of the

Mozilla Thunderbird, Firefox for Android, and Eclipse Platform projects. Our choice of these projects

was based on the following factors:

• These projects represent a variety of different uses and environments;

 64

• These projects have significant GUI that use windows, icons and menus, and interaction with

the GUI can be done using a mouse, keyboard or touch screen;

• These projects use standard defect-reporting templates provided by the Bugzilla defect

repository and this maintains the consistency when comparing the type of information

presented when reporting defects;

• These projects make use of keywords to label and classify defect type reducing selection bias;

• These projects are amongst the most successful user-facing applications that engage various

levels of user participation with different levels of knowledge and technical experience.

Across the three projects, only 23,373 defect reports are available to download in CVS format.

However, we only studied 377 FIXED defect reports tagged with predefined Bugzilla usability

keywords as listed in Table 4.3. These usability-related defects were representative of usability defects

in OSS projects from 2001 to 2016. The reason we chose to use FIXED developer-tagged usability

defect reports is to reduce selection bias, as the software developers had already completed the

resolution process and have reached agreement on the actual types of defects reported and corrected.

Furthermore, by analyzing FIXED defect reports rather than the UN-FIXED defect reports, this can be

useful to identify some patterns of information that are important for usability defects to be accepted

and fixed.

Table 4.3. Open source usability defect reports studied.

Project Total Other
resolution

Resolved/ Verified
Fixed Duplicate Incomplete Invalid Wontfix Worksforme Expired

Mozilla
Thunderbird 384 185 88 64 4 9 16 17 1

Firefox for
Android 292 62 101 59 3 11 36 20 0

Eclipse
Platform 530 78 188 46 - 68 103 47 -

Total 1206 325 377 169 7 88 155 84 1
Other resolution – New, unconfirmed, assigned, and reopened

Usability-related – ue, uiwanted, useless-UI, ux-affordance, ux-consistency, ux-control, ux-discovery, ux-efficiency, ux-error-
prevention, ux-error-recovery, ux-implementation, ux-interruption, ux-jargon, ux-minimalism, ux-mode-error, ux-natural-
mapping, ux-tone, ux-trust, ux-undo, ux-userfeddback, ux-visual-hierarchy

We extracted sample defect reports for each project in four common steps: 1) filter defect reports

that were resolved as FIXED; 2) specify columns/ attributes that we wish to appear in the defect list. In

this study, we add Keywords, Opened, Reporter, Number of Comments and Last Resolved attributes; 3)

extract and save the data in CSV format; 4) filter the usability and performance defect reports. Since

 65

the usability defects downloaded for all projects only constitute a small percentage of all reported

defects we chose to analyze all of them in this work.

4.1.2.3 Analyzing Defect Report Content

Our analysis of usability defect report content only focused on the initial reporting of a defect, not

investigating the subsequent discussion about the problem and its possible solution in the comments

sections. We used the defect report title, description and attachment fields as our main source of

investigation. We defined eight metrics based on Capra’s guidelines as modified in [48] to assess the

presence of certain information when describing usability defects. Since defect reports presented in

open source defect repositories are in unstructured plain text, we were unable to automatically assess

the presence of these metrics. Even though the Bugzilla defect report template can be customized to

label some of these metrics, such as “Steps to reproduce”, “Expected Output” and “Actual Output”,

many reporters do not explicitly describe these metrics.

As such, we manually analyzed 377 usability defect reports to identify whether the criteria listed in

Table 4.4 were presented in the defect report. The extraction and analysis processes were mainly

performed by main researcher and validated by her supervisors. The presence of steps to reproduce,

impact, software context, expected output, actual output, assumed cause, solution proposal, and

supplementary information were set as 1 implies “information exist”, and 0 implies “information does

not exist”. Since impact, assumed cause and solution proposal do not have separate fields, we

measured the presence of this information based on the following criteria:

1. Assumed cause – criteria used to justify the usability problem identified is true. For example

the defect report number, in which reporter feels the current issue was likely due to the

previous fixed issue.

2. Impact – user difficulty, number of reproducibility, high numbers of users encountered the

same problem, and severity.

3. Solution proposal – justification of the proposed solution or fragmental/ modification of

affected code/ patch description on how to fix the problem.

The procedure we used to analyze the defect reports consisted of going through each report twice.

The first reading focused on understanding the context of usability problems and identifying the main

interface or interaction problems described by the reporter. The second reading was to highlight the

 66

keywords and snippets of the defect description describing the problem types, impact, and failure

qualifier based on the previous classification. We used a card-sorting technique to group impact

information into several groups that have similar ground of user difficulty, while problem types and

failure qualifier were reorganized according to UPT and ODC, respectively. The detailed analysis of

usability defect categories, user difficulty and failure qualifier are discussed in Chapter 6.

Table 4.4. Criteria used to check the presence of usability information in defect reports based on
Capra’s guideline.

Quality criteria Related Capra’s Guidelines
1. Does the defect report describe details steps to reproduce the defect? [29]

(Steps to reproduce)
Describe observed user actions

2. Does the defect report indicate the effect of the problems on the user?
(Impact)

Describe the impact and severity of the
problem

3. Does the defect report describe the problematic part of the user interface?
(Software context)

Describe the impact and severity of the
problem

4. Does the defect report contain details of expected output and actual
output? [29] (Actual and expected output)

Describe observed user actions

5. Does the defect report contain criteria used to justify the usability problem
identified is true? (Assumed cause)

Describe the cause of the problem

6. Does the defect report contain design ideas? (Solution proposal) Describe a solution to the problem
7. Does the defect report contain support information as evidence to the

problem? (Supplementary information)
Support your findings with data

4.1.2.4 Data Analysis

We report results with descriptive statistics. We used Chi-square test of independence to find the

significance relationship between: 1) the types of projects and defects, and the presence of seven

usability defect attributes, and 2) the presence of impact information and defect severity. In addition,

we used point-biserial correlation to determine whether there is association between length of defect

description, measured in words, and the presence of usability defect information (which has two

categories – “present” and “not present”).

4.2 Results

4.2.1 Online Survey of Software Development Practitioners

The data was collected during June – November 2015. A total of 294 respondents attempted the survey.

However, only 147 responses were included in this analysis. The remaining 50% of responses were

excluded due to no response beyond the first parts of the questionnaire. One possible explanation of the

high percentage of invalid responses is due to the out of scope problems, where the respondents are not

in the target population. For example, the software development practitioners who do not have

 67

experience in dealing with usability defects would be not interested or they may find the questions are

not relevant and return blank questionnaires.

4.2.1.1 Respondents Background

The majority of the respondents were male (65.3%), with 34.0% female participants, and 0.7% of

participants who did not indicate their gender. About 85% of the respondents were between 25 - 44

years of age. As shown in Table 4.5, majority of the respondents are software developers (40.9%)

followed by software testers (14.8%) and project managers (10.0%). In terms of years of experiences,

63.8% of respondents had one to five years of work experience in their current position, while 25.3%

had more than five years. Among the respondents, only 13.7% had experience on open source projects.

Table 4.5. Distribution of respondents across professional position and year of experience.

Professional Position Less than 1 year Between 1 and 3
years

Between 3 and 5
years

More than 5
years

Software developer 4.1% 21.8% 7.5% 7.5%
Software tester 2.0% 5.4% 3.3% 4.1%
Quality assurance engineer 0% 0% 2.0% 0.7%
Customer consultant/ support 0% 0.7% 1.4% 0.7%
System engineer 0% 0.7% 0% 0.7%
Test manager 0.7% 0% 0.7% 0.7%
Project manager 0.7% 3.3% 3.3% 2.7%
Usability engineer 0% 0% 0.7% 0.7%
User interface designer 0.7% 0.7% 0.7% 0.7%
Other 2.7% 6.8% 4.8% 6.8%

Table 4.6. Distribution of participants’ knowledge of HCI.

Role in dealing with usability defects HCI related training Total
Yes No

Reporting usability defects 17 65 55.8%
Fixing usability defects 8 57 44.2%

Table 4.7. Responses on “usefulness” of usability-related training for reporting usability defects.

Very useful 44.0%
Somewhat useful 40.0%
Neither useful or not useful 4.0%
Not very useful 12.0%
Complete waste of time 0%

Table 4.8. Years of experience in software testing.

No experience 25.6%
Less than 1 year 6.1%
Between 1 and 3 years 22.0%
Between 3 and 5 years 12.2%
More than 5 years 34.1%

 68

Table 4.6 shows respondents’ knowledge of HCI. The vast majority of respondents had not

received any usability-related training. However, for those who had acquired the related training, 84%

believed the training was useful for understanding and reporting usability defects (see Table 4.7). Our

survey findings also show that most respondents had experience reporting usability defects (55.8%),

while 44.2% has experience fixing them. Most of them have more than 5 years of experience in

software testing (34.1%) (see Table 4.8).

Table 4.9 summarizes the defect discovery methods used by the respondents to discover usability

defects. Note that respondents could select more than one option. More than 60% of respondents

indicated that they found usability defects when performing exploratory testing, functional testing and

while using a product. A smaller proportion of respondents indicated that they discovered usability

defects through alpha/beta testing (26.8%). From the free-text explanation, some respondents explicitly

mentioned other methods including focus groups, GUI testing, performance testing, heuristics

evaluation and automated testing.

Table 4.9. Defect discovery methods.

Exploratory testing 62.2%
Functional testing 63.4%
Usability testing 58.5%
Beta/ alpha testing 26.8%
Complaints/ reports from customers 53.7%
Using the product 62.2%
Other 7.3%

4.2.1.2 Medium to report software defects

As shown in Table 4.10, nearly half of our respondents used written reports (50%), verbal meetings

(53.7%) and defect reporting tools (53.7%) as a medium for their defect reporting (Q25). Only a few

respondents used edited video for reporting purposes. For those who have used a defect-reporting tool,

we asked respondents to mention their tool (Q36).

As listed in Table 4.11, the most commonly used defect reporting tools reported by our

respondents were JIRA, Bugzilla and Redmine. Mantis, HP Quality Center, Trello, IBM Rational Team

Concert, HP Application Lifecycle Management and Visual Studio TFS were listed multiple times. For

JIRA, Bugzilla and Redmine users - 90% of them agreed to some extent that the tool offers sufficient

flexibility to capture and manage usability defects (Q37), but free-text feedback revealed considerable

negative satisfaction (Q38). The following are representative: “Most of the defect reporting tools do

 69

not have exhaustive options for usability defects” and “JIRA more customized by client but no specific

customizations done for usability”.

Some respondents nominated specific recommendations for usability defect reporting tool

improvements (Q50). For example, they argued that video evidence could reduce the amount of time to

reproduce and describe the issues, especially when working with offshore development teams. One

respondent also suggested a questionnaire feature.

Table 4.10. Medium for report usability defects – respondents mostly used defect-reporting tools and
discussed through verbal meeting.

Medium of reporting Never Rarely Sometimes Often Always Not answer
Traditional written report 13.4% 11.0% 12.2% 22.0% 28.0% 13.4%
Verbally in a meeting with designers/ developers 3.7% 6.1% 23.2% 42.7% 11.0% 13.4%
Edited videos 31.7% 31.7% 13.4% 8.5% 1.2% 13.4%
Entry in defect reporting tool 7.3% 6.1% 19.5% 15.9% 37.8% 13.4%

Table 4.11. Defect reporting tools used by respondents.

Defect reporting tool Reporter Developer Defect reporting tool Reporter Developer
Bugzilla 15 11 SourceForge 1 0
JIRA 2 5 Mantis 1 0
Github 1 1 Target Process 0 1
Redmine 1 1 Clearcase 0 1
Pivotal Track 0 1 FogBugz 0 1
Web Helpdesk 1 0 Unknown 2 14
Trac 1 0

4.2.1.3 Information Provided by Defect Reporters When Reporting Usability Defects

Question 13 asked respondents to indicate a frequency of supplying attributes listed in Table 4.12 when

reporting usability defects. Based on “Often” and “Always” rating, the reporters mostly provide title/

summary (81.8%), actual output (79.5%) and expected output (76.8%). steps to reproduce (74.4%),

software context (70.7%) and software information (70.7%). In order to understand the content of each

selected attribute, for those who selected option other than “Never”, we further asked questions about

the elements and supportive materials that they used. For these subsequent questions, multiple answers

were allowed and respondents could describe other details in a free text section (Question 14 –

Question 24). Table 4.13 summarizes the responses.

Title/summary is a headline summarizing the problem. When crafting a title, the majority of the

reporters explained the situation that was happening at the time the problem occurred (70.7%). Some of

them (58.8%) preferred to copy and paste an error message. Less than half of the reporters provided

product details (such as build, version and operating system) (47.6%) and clarified what the quality

 70

issues that were affected (43.9%). As expected, good quality issues were created mostly by reporters

with at least five years of experience.

Expected output describes reporters’ expectations on how the software should respond. A

majority of reporters used their knowledge and experience to interpret the intended results (72%).

Some reporters mentioned usability requirements (59.8%) and usability design guidelines (40.2%) that

were used to justify their expectations.

Actual output describes the actual results that differ from the reporter’s expectation or violating

specification. As indicated in Table 4.13, the actual output was usually described based on the effect on

a user’s performance (65.9%). In this case, the justification on what was wrong and why it was wrong

(53.7%) were supplied. Others explained the user’s behavior by outlining the issues (50%). To support

the claimed issues, reporters preferred to attach annotated screenshots (64.6%) followed by error

messages (57.3%).

Software context addresses the location of the problem in the interface. As expected, the majority

of the reporters mentioned the name of the defective interface, such as screen title (76.8%) and

problematic user interface object (70.7%). Some respondents (58.5%) described user’s task to indicate

the context of usage. In terms of specifying the components affected, only 41.5% of reporters could

supply the information. This information was often conveyed in annotated screenshots (82.9%)

followed by textual description (64.6%) – as shown in Table 4.14.

Severity indicates the level of effect the usability defects had on the user. In order to rate the

severity level, most reporters considered the impact of the issue (74.4%). Others examined the

frequency of issues occurred during usage (61%) and business impact (48.8%).

Table 4.12. Defect attributes used to report usability defects – title, actual and expected output are the
most provided attributes by reporters.

Items Never Rarely Sometimes Often Always
Title/ Summary 1.2% 2.4% 14.6% 25.6% 56.2%
Assumed cause 3.7% 6.1% 23.2% 23.2% 43.8%
Software context 1.2% 3.7% 24.4% 24.4% 46.3%
Solution proposal 9.8% 12.2% 32.9% 26.8% 18.3%
Actual output 1.2% 3.7% 15.9% 20.7% 58.5%
Expected output 1.2% 7.4% 14.6% 26.8% 50.0%
Steps to reproduce 2.4% 6.1% 17.1% 31.7% 42.7%
Severity 1.2% 18.3% 20.7% 22.0% 37.8%
Software information (product, component, version) 0% 9.8% 19.5% 29.3% 41.4%
Test environment (Operating system, hardware, browser) 0% 9.8% 26.8% 29.3% 34.1%

 71

Table 4.13. Detailed explanation included for each attribute.

Items %
Title/ Summary
Explanation on the situation that was happening at the time the problem occurred 70.7%
Build or version of the software or operating system on which the problem occurred 47.6%
An error message that come up 58.5%
Quality attributes affected 43.9%
Other – Not mentioned 4.9%
Assumed cause
Heuristics that are violated 26.8%
Design fault 51.2%
My knowledge of performing and understanding a task or object interface 61.0%
Other – consequence to the user 3.7%
Software context
Location of the problem in the interface, such as screen title 76.8%
The problematic user interface object, such as button, menu and dialogue box 70.7%
User’s task 58.5%
System components that are affected 41.5%
Other – Not mentioned 2.4%
Solution proposal
Alternate solutions 37.8%
Advantages and disadvantages for alternatives solutions 28.0%
Usability design principles and/ or previous research 26.8%
My knowledge to interpret how design is supposed to work 45.1%
The expected behavior (defects) 46.3%
The behavior desired (enhancements) 56.1%
Other – as suggested by project manager 2.4%
Actual output
The effect on the user’s performance 65.9%
The user’s behavior following the issue 50.0%
What was wrong and why is it wrong 53.7%
Other – user experience 1.2%
Expected output
Usability requirements 59.8%
Knowledge/ experience to interpret the expected result 72.0%
Usability design guideline 40.2%
Other – Not mentioned 3.7%
Steps to reproduce
User’s navigation flow through the system 72.0%
Record the steps 30.5%
Other - logs 3.7%
Severity
Impact of the issue 74.4%
Business effects, such as costs and time loss 48.8%
Frequency of the issue occurs during usage 61.0%
Other – Not mentioned 2.4%

Assumed cause describes the cause(s) of the problem based on the reporter’s judgment. Our

findings indicated that the cause of the problem is normally justified based on the reporter’s knowledge

(61.0%). About half of reporters (51.2%) could explain a design fault, such as how the interaction

architecture may contribute to the problem. Nearly a quarter (26.8%) of the reporters pointed out

violated usability heuristics. Other information, as described in the free text, specified the consequence

 72

to the user (3.7%). To support this justification, a screenshot with accompanying text is the most

widely used material other than annotated screenshot and textual description (see Table 4.14). Other

materials used by reporters included UI event trace (36.6%) and videos with captions (17.1%).

Solution Proposal describes a recommendation to remedy the usability defects. 56.1% (see Table

4.13) of reporters addressed the proposal solutions as a way to improve the desired software behavior,

rather than to correct a defective software behavior (46.3%). Reporters mentioned that these

recommendations originated from their knowledge (45.1%). To support these recommendations, only a

few reporters provided alternate solutions (37.8%), advantages and disadvantages for alternative

solutions (28.0%), and usability design principles (26.8%). Additionally, nearly half of the respondents

(48.8%) preferred to use a textual form to explain the recommendations. Some of them supported these

recommendations with an annotated screenshot (39%), and simple sketches (28%). While 25% of

reporters prefer to demonstrate their recommendations through oral presentations.

In Question 27, we asked respondents to rank the top five attributes in order of difficulty from 1 to

5 where 1 is the most difficult and 5 is least difficult. Among the attributes considered to be most

difficult to provide, respondents ranked assumed cause, usability principle, video recording, UI event

trace and title.

Table 4.14. Materials used to support usability defect description – the most prevalent material was
screenshots with annotations.

Material Assumed cause Software context Solution proposal Actual output
UI event trace 36.6% - - -
Screenshot and accompanying text 75.6% 1.2% - -
Screenshot with annotations 62.2% 82.9% 39.0% 64.6%
Textual description 61.0% 64.6% 48.8% -
Video with captions 17.1% 18.3% - -
Fix patch - - 12.2% -
Digital mockups - - 11.0% -
Simple sketches - - 28.0% -
ASCII art - - - -
Graphical elements or code - - - -
Error messages - - - 57.3%
Oral presentation - - 25.6% -
Other – audio video 2.4% 1.2% 3.7% 1.2%

4.2.1.4 Information Needed by Software Developers when Fixing Usability Defects

As shown in Table 4.15, question Q28, Q29 and Q30 asked software developers to rate a frequency of

using textual information and supplementary information respectively when fixing usability defects.

Based on the “Often” and “Always” rating, assumed cause (83.1%,), steps to reproduce (81.6%),

 73

software context (78.5%), expected output (78.5%) and actual output (73.8%) were the most widely

used textual information. The three least used textual information were: title/ summary (50.8%),

hardware (55.4%) and severity (56.9%).

About half the developers seldom used title/summary. One possible explanation can be that

title/summary contains limited information for understanding the likely difficulty faced by users.

Meanwhile, severity may only be useful for prioritizing defects to be fixed but it does not provide input

to solve the problem. Supplementary information which was most frequently used for fixing usability

defects were: screenshots (83.1%), UI event trace (56.9%) and patch (41.5%) (see Table 4.15). Even

graphical elements such as ASCII art (9.3%) and digital mockups (23.1%) provided a rich source of

proposed fix, but software developers rarely used them.

Table 4.15. Frequency of attributes used to fix usability defects – the most useful attribute was assumed
cause.

Items Never Rarely Sometimes Often Always
Textual information
Title/ Summary 3.1% 13.8% 32.3% 15.4% 35.4%
Assumed cause 3.1% 0% 13.8% 24.6% 58.5%
Software context 4.6% 4.6% 12.3% 27.7% 50.8%
Solution proposal 3.1% 10.8% 26.2% 46.1% 13.8%
Actual output 3.1% 1.5% 21.5% 32.3% 41.5%
Expected output 3.1% 4.6% 13.8% 33.8% 44.7%
Steps to reproduce 1.5% 3.1% 13.8% 27.7% 53.9%
Severity 3.1% 7.8% 32.3% 21.5% 35.4%
Product 7.8% 6.2% 20.0% 36.9% 29.2%
Component 1.5% 10.8% 26.2% 38.5% 23.1%
Version 0% 6.2% 29.2% 23.1% 41.5%
Hardware 0% 18.5% 26.2% 32.3% 23.1%
Operating system 0% 12.3% 29.2% 27.7% 30.8%
Supplementary information
Usability principle/ violated heuristic 9.2% 15.4% 43.1% 20.0% 12.3%
Video recording 16.9% 15.4% 30.8% 24.6% 12.3%
Audio recording 21.5% 35.4% 26.2% 10.8% 6.2%
UI event trace 6.2% 0% 36.9% 35.4% 21.5%
Screenshots 1.5% 3.1% 12.3% 29.2% 53.9%
Fix patch 3.1% 13.8% 41.5% 21.5% 20.0%
Digital mockups 15.4% 24.6% 36.9% 10.8% 12.3%
ASCII art 30.8% 33.8% 26.2% 7.8% 1.5%

For the importance of information (Question 31), assumed cause clearly stands out. This is

followed by screenshot, steps to reproduce, expected output, software context and solution proposal.

Similar to the findings from [20], [21], in order to fix usability defects, mandatory fields such as

hardware, product, component, and severity were thought to be little value. This does not mean the

information is not useful; rather they might be used in a different context for different purposes.

 74

In Question 32, we asked software developers to select problematic attributes supplied by

reporters. Note that software developers were able to select more than one option. As shown in Table

4.16, among the problems experienced, unclear assumed cause (76.9%) and insufficient information in

steps to reproduce (72.3%) was the most commonly encountered. Other common problems include

unclear software context (46.2%) and screenshots (46.2%). Apart from lacking technical information,

the software developers also received vague comment (52.3%), unstructured text (55.4%) and duplicate

defect reports (50.8%).

Table 4.16. Problems with usability defect reports – unclear assumed cause and insufficient information
in steps to reproduce were the most common encountered problems experienced by software

developers.

Problems Attributes Frequency Problems Attributes Frequency
You were given
unclear

Title/ summary 38.5% There was insufficient
information in

Steps to reproduce 72.3%
Assumed cause 76.9% UI event trace 38.5%
Software context 46.2% The reporter used Bad grammar 27.7%
Usability principle/
heuristic violated

21.5% Unstructured text/
format

55.4%

Solution proposal 29.2% Vague comment 52.3%
Screenshots 46.2% Too long text 32.3%
Audio recording 20.0% Non technical

language
35.4%

Video recording 16.9% Usability jargon/
term

20.0%

You were given
incorrect

Component 16.9% Other Duplicate 50.8%
Actual output 38.5% Spam 23.1%
Expected output 44.6% Viruses/ worms 15.4%

4.2.2 Software Defect Repositories Mining

4.2.2.1 Usability Defect Report Contents

In this section, we describe our study of the information patterns of usability defect reports in open

source projects. The information patterns that we are interested in including are the following types of

information: (1) steps to reproduce the problem, (2) user difficulty that could affect human task and

emotional reaction, (3) context, or settings, in which the problem occurs, (4) actual and expected

output, (5) assumption of or known cause of the problem, (6) solution proposed to solve the problem,

and (7) supplementary information. We answer the following study research questions: RQ1: What

information is commonly provided in open source usability defect reports? when the defect is initially

reported. In addition, we investigate RQ2: How if at all, is a proposed solution to the usability problem

described?

 75

4.2.2.1.1 Content Distribution

Figure 4.1 shows that the most widely reported attributes in usability defect reports in the open source

projects studied are actual output, expected output and software context. Attributes rarely presented in

the studied usability defect descriptions are assumed cause and supplementary information. The

assumed cause could only be found in less than 5% of defect reports. While steps to reproduce is

considered as the most important attribute in defect reports [20], [21], our study found that only

between 19% - 46% of defect reports contain this information, depending on project.

Similar to previous findings investigating open source defect reporting in general [33], we also

found the presence of information for usability defects varies between projects. Referring to Table

4.17, the p-value for the Chi-square tests for each attribute except assumed cause, which is less than

0.05, suggesting that there is indeed a relationship between projects and the presence of certain

attributes for usability defects. As shown in Figure 4.1 it is apparent that certain attributes are common

in some projects. From this data, we can draw several observations. First, the actual output is found in

more than 80% of Mozilla Thunderbird and Eclipse Platform. Surprisingly, only about 50% of Firefox

for Android usability defects contain actual outcome even though the defect reporting tool specifically

prompts its users for this information.

Figure 4.1. Distribution of usability defects in which each attribute was presented by project.

0.0%$ 50.0%$ 100.0%$ 150.0%$ 200.0%$ 250.0%$

Stepstoreproduce$

Impact$

So5ware$context$

Expected$output$

Actual$output$

Assumed$cause$

Solu<on$proposal$

Supplementary$informa<on$

Stepsto
reproduce$ Impact$ So5ware$

context$
Expected$
output$ Actual$output$ Assumed$cause$ Solu<on$

proposal$
Supplementary$
informa<on$

Mozilla$Thunderbird$ 46.6%$ 35.2%$ 73.9%$ 65.9%$ 83.0%$ 2.3%$ 40.9%$ 13.6%$

FirefoxforAndroid$ 19.8%$ 15.8%$ 47.5%$ 43.6%$ 53.5%$ 2.0%$ 33.7%$ 25.7%$

Eclipse$PlaMorm$ 33.0%$ 30.3%$ 42.6%$ 56.9%$ 85.6%$ 3.2%$ 31.9%$ 6.9%$

 76

Table 4.17. Chi-Square test results to examine the influence of project and the presence of defect
attributes.

Defect attributes ρ value χ2 (df=2, n=377)
Steps to reproduce 0.000 16.67
Impact 0.006 10.16
Software context 0.000 24.96
Expected output 0.003 11.51
Actual output 0.000 32.78
Assumed cause 0.934 0.137
Solution proposal 0.024 7.45
Supplementary information 0.000 26.68

Table 4.18. Types of supplementary information provided in usability defect reports.

Supplementary information Project
Mozilla Thunderbird (n=88) Firefox for Android (n=101) Eclipse Platform (n=188)

Annotated screenshots 1.1% 0.0% 0.0%
Error report 1.1% 0.0% 0.5%
External URL link 6.8% 10.0% 1.1%
Problem occurrence 0.0% 1.0% 1.6%
Screenshots 0.0% 13.9% 1.1%
Stack traces 0.0% 0.0% 1.1%
Task workaround 2.3% 0.0% 0.0%
Usability guidelines 0.0% 0.0% 0.5%
Violated UX-consistency 2.3% 0.0% 0.0%

Second, while Mozilla Thunderbird and Eclipse Platform reporters mainly used textual

descriptions to describe usability defects, Firefox for Android more often provided supplementary

information. As we can see from Table 4.18, screenshots are the most favorable supplementary

material used in Firefox for Android.

Third, across the three projects, Firefox for Android usability defects contained very little

information on steps to reproduce (19%), impact (15.8%), and expected output (43%). Fourth, given

the nature of the open source communities, in which the users have a varying level of technical

knowledge, defect reports in all projects contained virtually no assumed cause. This attribute, however,

is not necessarily appropriate for all types of usability defects. For example, a usability defect that is

not related to technical deficiency is quite difficult to explain even by technical users. The limited

knowledge and experience of open source communities around usability and HCI aspects is one of the

barriers for reporters to technically relate the usability issues and the violated usability principles and

HCI guidelines. In the context of understanding the root cause of usability defects, perhaps assumed

cause could be explained in the form of rationale as a ground for a specific usability issue.

In addition, we also examined the presence of steps to reproduce, impact, software context,

expected output, actual output, assumed cause, solution proposal and supplementary information on

 77

different length of defect description. Generally, the amount of information present in a usability defect

report increases with the increase in the length of the defect description. As shown in Table 4.19, the

values in column three to eight represent the percentage in which the steps to reproduce, impact,

software context, expected output, actual output, assumed cause, solution proposal, and supplementary

information is present in the defect descriptions for a set of defect reports within the same range of

length. From the 377 usability defects we studied, only 74 defect reports contain more than 100 words.

Within this length, more than 50% of defect descriptions contain steps to reproduce, impact, software

context, expected output, and actual output. Interestingly, usability defect reports written with more

than 400 words contain almost all the information. However, the presence of steps to reproduce,

assumed cause, solution proposal and supplementary information on the length of defect description

was variable.

Table 4.19. The presence of steps to reproduce, impact, software context, expected output, actual
output, assumed cause, solution proposal, and supplementary information on different lengths of defect

description.

Length of
description

(words)

#Defect
Reports

Information presence in usability defect description (%)

Steps to
reproduce

Impact
Software
context

Expected
output

Actual
output

Assumed
cause

Solution
proposal

Supplementary
information

0-20 26 0.00 0.00 26.92 34.62 19.23 3.85 0.00 19.23

21-40 74 13.51 9.46 36.49 48.65 67.57 0.00 9.46 14.86

41- 60 71 36.62 14.08 42.25 60.56 77.46 0.00 9.86 7.04

61-80 62 37.10 27.42 54.84 75.81 79.03 1.61 6.45 11.29

81-100 38 31.58 34.21 63.16 57.89 89.47 5.26 5.26 18.42

101-120 18 44.44 55.56 72.22 61.11 88.89 5.56 11.11 11.11

121-140 21 38.10 66.67 57.14 66.67 90.48 0.00 9.52 9.52

141- 160 11 45.45 45.45 63.64 81.82 81.82 9.09 27.27 0.00

161-180 16 56.25 43.75 56.25 75.00 100.00 0.00 43.75 18.75

181-200 9 44.44 22.22 55.56 77.78 88.89 0.00 44.44 0.00

201-220 8 25.00 62.50 50.00 75.00 87.50 0.00 12.50 12.50

221-240 7 85.71 71.43 85.71 85.71 100.00 0.00 28.57 14.29

241- 260 4 25.00 75.00 100.00 75.00 100.00 25.00 25.00 25.00

261-280 3 33.33 33.33 66.67 66.67 100.00 33.33 33.33 0.00

281-300 2 50.00 100.00 100.00 50.00 50.00 0.00 50.00 0.00

301-320 1 100.00 100.00 100.00 100.00 100.00 0.00 0.00 100.00

321-340 1 0.00 0.00 100.00 100.00 100.00 0.00 100.00 0.00

341- 360 1 0.00 100.00 100.00 100.00 100.00 0.00 100.00 0.00

361-380 0 - - - - - - - -

381-400 1 100.00 0.00 0.00 0.00 100.00 100.00 100.00 100.00

401-420 1 100.00 100.00 100.00 100.00 100.00 0.00 100.00 0.00

> 420 2 100.00 50.00 100.00 100.00 100.00 0.00 100.00 100.00

 78

4.2.2.1.2 Proposing Solutions and Ideas

For answering RQ2, we observed about one third of the defect descriptions contain solution proposals.

A close inspection of usability defect data as in Table 4.20 shows that about 30% - 40% of solution

proposals were generally described in words. The other means of describing solution proposals were in

a form of ASCII art, graphical elements or code, and UI-digital mockups, that only account less than

2% of defects in all three projects.

Table 4.20. The presentation of solution proposals – textual description is the most common medium to
present solution proposal in the three open source projects.

Solution proposals presentation Project
Mozilla Thunderbird

(n=88)
Firefox for Android

(n=101)
Eclipse Platform

(n=188)
Textual descriptions 39.8% 29.7% 30.3%
ASCII arts 1.1% 1.0% 0.0%
Graphical elements or code that could be
immediately implemented

0.0% 2.0% 0.5%

UI digital mockups 0.0% 1.0% 0.5%

4.2.2.1.3 Differences Between Usability and Performance-related Defect Report Content

In this study, we were also interested to investigate how the different types of defects affect the

presence of information. In answering RQ3: Are usability defects described differently from

performance-related defects?, we chose performance-related defects as a benchmark to compare these

differences. We considered the defect attributes steps to reproduce, impact, software context, expected

output, actual output, assumed cause, solution proposal, and supplementary information as our

dependent variables (nominal data) and defect types as the independent variable (nominal data). We

analyzed the defect descriptions and rated the presence or absence of information as 0= information is

present, and 1 = information is not present.

As shown in Table 4.21, at a significant level p=0.05, we found relationships between software

context and expected output, and defect types in all the three projects. However, no relationships were

found between actual output and solution proposal, and defect types in the three projects. At the same

significance level, the relationship between assumed cause and supplementary information and defect

types was only significant in the Eclipse Platform and Firefox for Android projects, while a

relationship between steps to reproduce and defect types was only observed in Eclipse Platform. For

impact and defect types, a significant relationship was observed on Mozilla Thunderbird and Eclipse

Platform.

 79

Figure 4.2 reveals the trends of information presented in usability and performance defects. As

shown, actual output is found in the vast majority of usability and performance defect reports for all

three projects. On average, more than 70% of usability and performance defects contain explanation

about what happened or what they saw while using the product. While expected output, software

context, impact and solution proposal is more common to be found in usability defect than

performance defect reports, assumed cause least reported in usability defects (only being found in less

than 5% of usability defect reports).

Table 4.21 Chi-square test result to examine the influence of defect types and the presence of defect
attributes.

Attributes Mozilla Thunderbird Firefox for Android Eclipse Platform
ρ χ2 (df=1,

n=121)
Φ ρ χ2 (df=1,

n=177)
Φ ρ χ2 (df=1,

n=800)
Φ

Steps to reproduce 0.06 3.69 0.18 0.13 2.30 0.11 0.01 7.54 0.10
Impact 0.03 4.54 0.19 0.18 1.84 0.10 0.00 65.65 0.29
Software context 0.00 12.45 0.32 0.03 4.57 0.16 0.00 3.52 0.07
Expected output 0.01 6.85 0.23 0.00 12.25 0.26 0.00 58.21 0.27
Actual output 0.21 1.58 0.11 0.21 1.59 0.10 0.75 0.10 0.01
Assumed cause 0.38 0.76 0.08 0.00 14.26 0.28 0.00 32.95 0.20
Solution proposal 0.88 0.02 0.01 0.77 0.09 0.02 0.05 3.97 0.07
Supplementary
information

0.83 0.05 0.02 0.00 8.06 0.21 0.00 11.59 0.12

Figure 4.2. Distribution of usability defect attributes between usability and performance defects.

0.0%$

50.0%$

100.0%$

150.0%$

200.0%$

250.0%$

300.0%$

350.0%$

400.0%$

Mozilla$Thunderbird$ FirefoxforAndroid$ Eclipse$PlaAorm$$ Mozilla$Thunderbird$ FirefoxforAndroid$ Eclipse$PlaAorm$$

Usability$ Security$ Performance$

Supplementary$informaGon$

SoluGon$proposal$

Assumed$cause$

Actual$output$

Expected$output$

SoHware$context$

Impact$

Steptoreproduce$

 80

From the project perspectives, regardless of defect types, Mozilla Thunderbird reports contain

more information than Firefox for Android and Eclipse Platform. Mozilla Thunderbird is responsible

for a significant proportion of the usability defects with steps to reproduce, impact, software context,

expected output, actual output, assumed cause, and solution proposal. While supplementary

information is mostly attached to performance defects, this information is rarely presented in Mozilla

Thunderbird usability defects.

There are perhaps surprisingly few steps to reproduce, and impact is found in Firefox for Android

usability and performance defect reports (found in less than 20% of defect reports). Probably, instead

of using steps to reproduce and impact, Firefox for Android contributors much prefer to provide

supplementary information, and as can be seen this attribute is more common in Firefox for Android

than Mozilla Thunderbird and Eclipse Platform. In Eclipse Platform, while steps to reproduce is mostly

found in performance defects, expected output is more common to usability defects. Also, less than

30% of Firefox for Android and Eclipse Platform performance defects described expected output.

In summary, we found Mozilla Thunderbird and Firefox for Android usability defects contain

more information than performance defects. The most common attributes used to describe usability and

performance defects across projects are actual output. Usability defects were favorably described using

impact, expected output, and solution proposal, while performance defects more often used

supplementary information, and assumed cause.

4.2.2.2 Types of Usability Defects

In this section, we describe the distribution of different types of usability defect categories, including

interface and interaction usability defects. We answer RQ4: What are the dominant types of usability

defects (e.g., interface or interaction) in open source projects?. In addition, we study the subcategories

of interface and interaction usability defects, as suggested in [12], [76].

Figure 4.3 summarizes the distribution of usability defects within different categories and

subcategories. Based on using the UPT [12] and fault GUI model [76], we classified interface usability

defects into GUI structure and aesthetics, information presentation and audibleness, while interaction

usability defects are divided into manipulation, task execution and functionality. From Figure 4.3, we

can draw the following findings and implications.

 81

Figure 4.3. Distribution of usability defects with categories and subcategories.

0.0%$ 5.0%$ 10.0%$ 15.0%$ 20.0%$ 25.0%$

Missing$

Inadequate$

Preferenced$

Irrelevant$

Misaligned$

Problema=c$

Technical$deficiency$

%"of"Defects"

Fu
n
c-
o
n
a
li
ty
"s
u
b
ca
te
go
ri
e
s"

Mozilla$Thunderbird$

FirefoxforAndroid$

Eclipse$PlaHorm$

a) Interface vs interaction usability defects

b) Interface and interaction defects subcategories

c) GUI structure and aesthetic subcategories

d) Information presentation subcatgories

e) Audibleness subcategories

f) Manipulation subcategories

g) Functionality subcategories

h) Task execution subcatgories

0.0%$ 50.0%$ 100.0%$ 150.0%$ 200.0%$

Interface$

$Interac0on$

%"of"Defects"

Us
ab

ili
ty
"d
ef
ec
t"t
yp
es
"

Mozilla$Thunderbird$

FirefoxforAndroid$

Eclipse$PlaBorm$

0.0%$ 20.0%$ 40.0%$ 60.0%$ 80.0%$ 100.0%$ 120.0%$

GUI$structure$and$aesthe7cs$

Informa7on$presenta7on$

Audibleness$

Manipula7on$

Task$execu7on$

Func7onality$

Mozilla$Thunderbird$

FirefoxforAndroid$

Eclipse$PlaIorm$

0.0%$ 10.0%$ 20.0%$ 30.0%$ 40.0%$ 50.0%$

Object$appearance$

Object$layout$

Object$state$

%"of"Defects"

G
U
I"s
tr
uc
tu
re
"a
nd

"a
es
th
e3

cs
"

su
bc
at
eg
or
ie
s"

Mozilla$Thunderbird$

FirefoxforAndroid$

Eclipse$PlaEorm$

0.0%$ 2.0%$ 4.0%$ 6.0%$ 8.0%$ 10.0%$ 12.0%$

Data$error$

Object$(screen)$namingandlabeling$

Non>message$feedback$

Error/$noCficaCon$and$feedback$message$

On$screen$textandresults$

Menu$structure$

%"of"Defects"

In
fo
rm

a
/
o
n
"p
re
se
n
ta
/
o
n
"

su
b
ca
te
g
o
ri
e
s"

Mozilla$Thunderbird$

FirefoxforAndroid$

Eclipse$PlaOorm$

0.0%$ 0.2%$ 0.4%$ 0.6%$ 0.8%$ 1.0%$ 1.2%$

Voiceandsounds$

Text/$feedback$in$speech$

%"of"Defects"

A
ud

ib
le
ne

ss
"s
ub

ca
te
go
ri
es
"

Mozilla$Thunderbird$

FirefoxforAndroid$

Eclipse$PlaEorm$

0.0%$ 2.0%$ 4.0%$ 6.0%$ 8.0%$ 10.0%$ 12.0%$ 14.0%$ 16.0%$ 18.0%$

Keyboard$press$

Mouse$click$

Finger$touch$

Voice$control$

Scrolling$mechanism$

Draganddrop$

Zooming$

%"of"Defects"

M
an

ip
u
la
1
o
n
"s
u
b
ca
te
go

ri
es
"

Mozilla$Thunderbird$

FirefoxforAndroid$

Eclipse$PlaKorm$

0.0%$ 5.0%$ 10.0%$ 15.0%$ 20.0%$ 25.0%$ 30.0%$ 35.0%$

Ac+on$

Reversibility$

Feedback$

%"of"Defects"

T
a
sk
"e
x
e
cu
/
o
n
"s
u
b
ca
te
g
o
ri
e
s"

Mozilla$Thunderbird$

FirefoxforAndroid$

Eclipse$PlaForm$

 82

a) Both interface and interaction usability defects are common in all three open source projects.

However, as can be seen in Figure 4.3, GUI structure and aesthetics are the most dominant

types of usability defects, 34.1% in Mozilla Thunderbird, 36.6% in Firefox for Android, and

35.1% in the Eclipse Platform. To this end, the object state problem is responsible for a

significant proportion of the GUI structure and aesthetics categories in Mozilla Thunderbird

and Eclipse Platform (Figure 4.3c). Object state issues account for 15.9% and 14.9% of the

sample usability defects in Mozilla Thunderbird and Eclipse Platform, respectively. Firefox

for Android, on the other hand, contains a much smaller percentage of object state problems

(7.9%) but has the largest percentage of object appearance problems, accounting for 18.8%.

One possible reason is due to the nature of the application, in which Firefox for Android is an

application developed for mobile devices that have several limitations such as small screen,

single window, touchscreen, and screen orientation support. For example, the small screen

size may limit the content displayed and organization of information that substantially affects

the overall look and feel of the application.

b) For the information presentation and audibleness category, all of the three projects only

contain a small percentage of defects, accounting for less than 7% of the usability defects

reported. Interestingly, in the 377 usability defects that we analyzed, none of the reported

problems were related to audibleness. Among the information presentation problems, error

and notification message and menu structure are the highest problems reported for Eclipse

Platform and Mozilla Thunderbird, respectively. One possible reason for the large fraction of

error message problems may be that the Eclipse Platform is targeting technical users, and

therefore the use of syntax error codes or abbreviations in error message such as “an error of

type 2 has occurred” should not be a problem. However, as everyone can contribute to open

source projects, inexplicit and technical messages may sometimes not be understandable by

users with limited “technical-development” knowledge. Perhaps, no matter what kind of

projects and intended users, error message should include explicit, polite, precise, constructive

advice written in human-readable language so that all users can understand it. Surprisingly,

non-message feedback and data error defects are virtually non exist in Firefox for Android,

while these two problems only occur less than 4% of defects in Mozilla Thunderbird and

Eclipse platform.

 83

c) As shown in Figure 4.3b, issues related to functionality are the dominant interaction problem

and our study results indicate that Firefox for Android has the highest missing functionality,

accounting for 14.9% of defects. As Mozilla Thunderbird is a more stable project than

Firefox for Android and Eclipse Platform, technical deficiency is very low in comparison.

d) For the task execution subcategories, incorrect task action has the largest proportion in

Mozilla Thunderbird (17%), followed by the Eclipse Platform (13.3%). In all three projects,

less than 2% of usability defects had reversibility problems.

e) As shown in Figure 4.3f, keyboard press accounts for the largest manipulation problems in

Mozilla Thunderbird (9.1%) and the Eclipse Platform (6.4%). Across the three projects a

voice control problem does not exist. This finding suggests that the voice control category is

not pertinent to the current usability problem taxonomy and could be eliminated.

Unsurprisingly given the nature of the application, Firefox for Android usability defects

contained virtually no mouse click and drag and drop problems, and very few keyboard

problems (1.0%). As Firefox for Android is an application developed for mobile devices,

finger touch is the relevant category in Firefox for Android. Also, likely due to the fact that

direct manipulation using mobile gestures is a much more sensitive interaction, scrolling is a

more common manipulation problem in Firefox for Android than with Mozilla Thunderbird

and Eclipse Platform.

4.2.2.3 The Impact of Usability Defects

In this section, we describe the distribution of effect and the correlation between effects and defect

severity. We answer RQ5: What are the effects of usability defects and what types of usability defects

have a severe effect? In our analysis, we identified two fundamental types of impact: the (1) impact on

human emotion, to which the defect reporter described their feelings when they were experiencing

difficulties using the software due to the usability defect, and the (2) impact on task performance, that

prevented the reporter from completing task execution. Overall, when describing a particular users

difficulty, reporters tended to support a single impact description at a time (rather than discuss both

impact on emotion and task performance) and reporters provided little evidence for their impact claims.

Figure 4.4 summarizes the distribution of different impacts with the corresponding defect severity.

 84

a) Mozilla Thunderbird

b) Firefox for Android

c) Eclipse Platform

Figure 4.4. Distribution of usability defect impact and severity.

 85

As can be seen, accessibility is the dominant task performance impact in Mozilla Thunderbird,

accounting for 11.4% of sampled defects. In terms of impact on human emotion, confusion is the most

addressed in all three projects: 5.6% in Mozilla Thunderbird, 3.0% in Firefox for Android, and 11.1%

in Eclipse Platform. However, these percentages are still considered low suggesting that the open

source usability defect description does not contain sufficient information on describing how the

interface-interaction defects cause user difficulty that confuse and mislead users. Perhaps because of

this, usability defect reporting tools should specifically prompt their users for this information in a

separate field so that users can clearly describe this information.

4.2.2.4 Usability Defect Failure Qualifier

In a formal usability evaluation, a failure qualifier can usually be easily identified by observing how

users experience a usability problem during software testing. However, in the context of open source

projects, where usability defects are normally reported after “black box” usage without a proper

usability evaluation method, it is quite difficult to identify the qualifier of the problems. This section

answers RQ6: On what basis, do usability defect reporters justify that the user difficulty that they

experience is an issue? This information is helpful for software developers to understand the nature of

the problem. In our study, we used qualifier attributes of the ODC [77] and revised some of the

original definitions to suit the context of our analysis, as shown in Table 6.2 in Chapter 6.

As shown in Table 4.22, the most common failure qualifiers across the three projects are

incongruent mental model (27.3% in Mozilla Thunderbird, 20.8% in Firefox for Android, and 15.4% in

Eclipse Platform), better way (25.0% in Mozilla Thunderbird, 10.9% in Firefox for Android, and

22.9% in Eclipse Platform) and wrong (23.9% in Mozilla Thunderbird, 9.9% in Firefox for Android,

and 19.1% in Eclipse Platform). With regards to incongruent mental model, it was common for

reporters to compare two different things that have some similar characteristics in order to justify a

desire for consistency in design. It was also common for reporters to use their previous experiences to

illustrate some point of view on certain issues:

With the menu changes, and the removal of the numbered perspective items, we need another

way of switching between perspectives. We should add a perspective switcher, similar to the

editor and view switchers … [Consistency]

 86

With recent E4 builds I often see unjustified flickering in the workbench window. I haven't

seen this before. [Previous experience]

Only a small fraction of usability defect reports contain missing (3.4% in Mozilla Thunderbird,

1.0% in Firefox for Android, and 1.1% in Eclipse Platform), overlooked (3.4% in Mozilla Thunderbird,

1.9% in Firefox for Android, and 1.1% in Eclipse Platform) and irrelevant (5.7% in Mozilla

Thunderbird, 5.9% in Firefox for Android, and 3.2% in Eclipse Platform) to support the claim of the

usability issues being reported. Overall, we observed that these failure qualifiers are primarily used to

support a claim and defend solution proposals and ideas.

Table 4.22. Distribution of failure qualifier across projects.

Failure Qualifier Project
Mozilla Thunderbird

(n=88)
Firefox for Android

(n=101)
Eclipse Platform (n=188)

Wrong 23.9% 9.9% 19.1%
Missing 3.4% 1.0% 1.1%
Irrelevant 5.7% 5.9% 3.2%
Better way 25.0% 10.9% 22.9%
Overlooked 3.4% 1.9% 1.1%
Incongruent mental model 27.3% 20.8% 15.4%
None 11.4% 49.5% 37.2%

4.3 Threats to Validity

There are several threats that can impact the validity of our findings.

4.3.1 Construct validity

Construct validity is concerned with the appropriateness of the metrics we used to study. For example,

to investigate the presence of certain defect attributes in usability defect descriptions, we have chosen

important usability attributes from human computer interaction studies [11]. One possible threat might

be the reliability of the attributes to be significant for comparing performance-related defects with

usability defects. We minimized this threat by using common defect attributes such as steps to

reproduce, actual output and expected output, and introducing general attributes like supplementary

information.

 87

4.3.2 Internal validity

In conducting an online survey with anonymous participants whose professional background is

unknown, misunderstanding of the survey context by respondents is a main threat to internal validity.

Our goal is to focus on usability defect reporting instead of general software defect reporting. Since

nearly half of the respondents have at least three years of experience in software testing, there is a

possibility that the respondents have answered the questionnaire based on their general defect reporting

knowledge and experience. We addressed this threat by (a) giving three different types of usability

defect examples at the beginning of the survey, (b) highlighting the usability defects (bold and italic)

keyword for every question, so the respondents were always aware of the survey context.

For software defect repositories mining, the information we extracted for this research is highly

dependent on the capabilities of the main researcher to understand and analyze. For each defect in the

sample, the main researcher manually read the textual description. This process required reading the

bundle of text, interpreting the problems, classifying the information into any of the defined attributes

and assigning a score if the information is present. Since this qualitative analysis leads to the subjective

evaluation, incorrect interpretation, classification and scoring may potentially affect our results. To

minimize this threat the research supervisors cross-checked a selection of classifications. We also built

a checklist that consists of guidelines, so that both main researcher and supervisors are consistent when

classifying and giving score for the information presented in the defect reports.

4.3.3 External Validity

External validity is concerned with the generality of our findings. In the survey outcome, one possible

external threat to the validity of the survey outcome is the representativeness of the participants. While

the participants were recruited from a range of software practitioners, there is the possibility that the

software developers and testers responding have not used formal defect reporting processes and tools.

Therefore, there is the possibility of response bias when providing answers and feedback.

In the software defect repositories mining, our study was limited to open source projects and

restricted to Bugzilla defect repository. The collection of defect information for these open source

projects may not guarantee that the same information is present in the other OSS projects as well. Other

types of projects may have different defect report structure and different types of defect attributes. This

 88

is a common threat of this kind of research. To reduce selection bias and for comparison purposes, we

selected two projects from the same defect repository while the other project is from a different defect

repository. We examined three open source projects, with projects spanning diverse product

functionality and environment; this small sample cannot be regarded as representative. This is because

the pattern of information could be different when more samples are included in the analysis and

different OSS projects are used. However, the findings of this research is an early indicator that

existing defect information is not useful to explain usability issues, and hence need to be further

investigated and confirmed with larger sample data with various OSS project backgrounds.

4.4 Analysis and Discussion

4.4.1 Reporting Usability Defects

Our qualitative observations on open source usability defect reports confirmed the online survey results

that actual output, expected output and software context are the most supplied information when

reporting usability defects. We believe that these findings are biased in a way the defect form is

designed. In Bugzilla, for example, by default the defect form contains title/ summary, software

information (i.e. product, component and version), steps to reproduce, actual results, expected results

and attachment. Therefore, the use of this generic defect reporting form will produce mostly the same

content structure for all types of defects. However, it is surprising that steps to reproduce is less

reported in Mozilla Thunderbird, Firefox for Android and Eclipse Platform even software practitioners

claimed that they always provide this information while reporting usability defects. Similar to [33], our

findings suggest that steps to reproduce is not necessarily appropriate for all defect reports, as we

found steps to reproduce is often used to explain issues for performance-related defects than for

usability defects.

Even though most of the reporters can produce a relatively complete defect description, usability-

related information is rarely included. For the three OSS projects studied, we found less than 2% of

usability defect reports contain descriptions of violated usability heuristics. In fact, only about 27% of

our online survey respondents claimed that they used violated usability heuristics to augment the cause

of the problem. In terms of describing proposed solutions and expected results, barely a quarter of the

reporters included usability design principles to justify their idea.

 89

A closer inspection of usability defect reports showed that open source communities favorably

discussed their ideas using narrative text rather than graphical structure such as ASCII arts and UI-

digital mockups. The low amount of this information present in defect reports suggests that existing

generic defect report templates do not emphasize the theoretical background of usability. This could be

a disadvantage as usability defects may be seem insignificant in the absence of usability and HCI

principles as a rationale to justify the problems and defending proposed solutions. Possibly due to the

limited usability and HCI knowledge among open source communities, this information is somewhat

difficult to provide. Perhaps, a defect report form should be designed as a wizard-style guided-

answering form that consists of necessary information for different types of defects. A good example is

the question-based structure form proposed by Simões [24]. The form contains of six questions to

report HCI issues. However, the uses of text form to collect HCI information could be a burden for the

reporter, as they may not know what to explain. To overcome this limitation, a pre-defined set of

usability attributes for input selection can be explored in future work.

Many respondents considered assumed cause, usability principles, video recording, UI event trace

and title/ summary to be the most difficult items to provide. Possibly, the varying level of technical

knowledge of open source communities is one of the reasons why the defect reports in all projects

studied contained virtually no assumed cause. Since UI event traces, for instance, are not readily

available to end users, reporters may need to take extra steps. In these circumstances, reporters with

deficient programming skills may only report problems in a GUI rather than a sequence of events that

can be mapped into user tasks. This corresponds with Wang et al. [78]’s examination of open defect

reports, which showed that most of the defect reports that contain technical information are often

submitted by highly technical reporters. Moreover, a lack of automated tools and limited data types

supported for recording and attachments in existing defect reporting tools make it challenging to

include video and audio files [17].

As shown in Table 4.10, many reporters mentioned verbal discussions with developers as a

common approach to communicate usability defects. In our opinion, as Andre et al. [3] addressed,

verbal communication alone is not sufficient to resolve usability defects without a written description.

This is because every software defect needs to record formal logs as an evidence to diagnose the

problems. In this case, the use of a formal reporting tool, such as defect reporting tools were considered

particularly useful to track and manage defects in a timely manner. However, as our survey results

 90

indicated, defect descriptions suffer from insufficient information for problem correction. One

possibility is due to the text-centric approach used by the defect tracking system.

The unstructured text may contain a mix of data such as assumed cause, proposed solution and

impact. This results in unorganized data and ambiguities that make it difficult to understand the whole

issue as compared to data stored in fielded form. Furthermore, it is important to consider the subjective

nature of the usability defects that may not be easy to explain textually [22]. Therefore, additional

information in the form of attachable files may be required to complement this deficiency. We have

identified four categories of attachable files: (1) screenshots, (2) videos, (3) graphical elements such as

ASCII art, and (4) UI event traces / error messages. In this survey, we found that reporters tend to use

screenshots, rather than videos, UI event traces and error messages when highlighting the cause of the

problem, software context and actual output. Whereas, to propose a design solution, reporters often

used textual descriptions as compared to graphical elements (i.e. digital mockups, simple sketches and

ASCII art). Possibly, the low rate of use of non-textual media is due to the fact that good drawing tools

may not be readily available [7] and producing graphical representations using a toolkit may require

extra skill and time to learn and use [10].

4.4.2 Fixing Usability Defects

The most widely used textual information mentioned by software developers are assumed cause, steps

to reproduce, software context, expected output and actual output. Similar to previous studies [20],

[21] that focused on general defects, steps to reproduce, expected output and actual output were also

commonly to be used by developers when fixing usability defects. In particular, it indicates that steps

to reproduce, expected output and actual output are fundamental pieces of information for

understanding all types of defects. In contrast to previous studies [20], [21], we added assumed cause,

usability principles and solution proposal to the list of defect information to reflect relevant attributes

for fixing usability defects. Out of these items, assumed cause was selected as the most useful and

important attribute for fixing usability defects. Hence, our research extends the knowledge from the

previous research.

Since our study is solely focused on usability defects that are primarily dealing with graphical

elements, screenshot was rated as the most widely used supplementary information other than video,

ASCII art, digital mockups and patch. When looking at the low frequency use of video, ASCII art,

 91

digital mockups and patch, we can explain that this is probably due to the reporters rarely supplying

such information to justify the problems and propose their suggestions. Therefore, in the absence of

this information, it is not surprising that software developers rarely use this information when fixing

usability defects.

In [20], [21], software context was not considered useful, but was rated the third most widely used

attribute in our research context. We think that the difference in these results comes from the different

definition we introduced for software context. In our study, we referred to the software context as the

specific location of problem in the interface where the problem was observed, such as button, menu

and dialogue box. In contrast, [20], [21] defined software context as the operating environment where

the problem occurred, such as web application.

Several problems in the way usability defects are described were identified. Unclear assumed

cause and insufficient information in steps to reproduce was very strongly identified as problematic

defect attributes. This is not surprising because, as noted above, the reporters found it indeed difficult

to clearly explain the cause of the problem. In fact, the inability of reporters to supply UI event traces

in defect reports will limit the essential information regarding user behavior and task sequences with

respect to the application’s user interface. The absence of this technical information, such as the time to

complete a certain task, number of erroneous action sequences, and usage of certain functions, may

cause software developers to misinterpret the usability problems [79]. Another problem to consider is

“vagueness”, a similar issue raised by Dumas et al. [16]. In our study, about half of the software

developers claimed that they received vague comments. These either did not have precise problem

descriptions or the solutions suggested were too general. According to Dumas et al., when describing

usability problems or giving fix suggestions, reporters should be as specific as they can, and not let

software developers use self- judgment. For instance, instead of suggesting “use a color with better

contrast to the background and increase the font clarity” one could precisely suggest color contrast

theory - black text on a brown background, for example.

4.4.3 Mismatch Between Information Provided by Defect Reporters and Information Needed

by Software Developers

We compared the responses obtained from reporters and software developers to find out whether

reporters provide sufficient information for a software developer to fix usability defects. In Table 4.23,

 92

attributes are ranked based on the mean of response to the questions “ Q13- Do you use the following

items when describing usability defects” and “Q28 - Do you use the following items when fixing

usability defects” that range from 1 (Never) to Always (5). To discover the level of agreement between

what reporters provide and what software developers need, we measured the absolute value of

differences between reporters’ and developers’ mean. The lowest difference indicates more agreement

and vice versa. As shown in Table 4.24, reporters and developers are in agreement on severity,

software context, and expected result. However, more disagreements were observed. The most notable

ones are title/ summary and AC.

Table 4.23. Rank of attributes – while software developers claimed assumed cause was the most
needed information, reporters mostly provided title.

Rank (based on mean) Reporter Developer
1 Title/ summary Assumed cause
2 Actual output Steps to reproduce
3 Expected output Software context
4 Software context Expected output
5 Steps to reproduce Actual output
6 Software information Software information
7 Assumed cause Severity
8 Test environment Test environment
9 Severity Title/ summary

10 Solution proposal Solution proposal

Table 4.24. Agreement level between what reporters provide and what software developers need.

Item Mean (!) Differences of mean
Reporter Developer

Severity 3.77 3.78 0.01
Software context 4.11 4.15 0.04
Expected output 4.17 4.12 0.05
Test environment 3.88 3.68 0.20
Software information 4.02 3.82 0.20
Steps to reproduce 4.06 4.29 0.23
Actual output 4.32 4.08 0.24
Solution proposal 3.32 3.57 0.25
Assumed cause 3.98 4.35 0.37
Title/ summary 4.33 3.66 0.67
*Differences of mean = | !reporter - !developer |

While our study and [21] identified title/summary as the least problematic information,

title/summary is not really needed by software developers to fix usability defects, as it was ranked as

the second lowest. On the contrary, the assumed cause that is expected to be present in usability defect

descriptions is seldom provided by reporters. In summary, our experiments suggest that reporters do

not provide information that is frequently used by software developers.

 93

4.5 Summary

The purpose of the research described in this chapter was to identify the most important usability

information for reporting and correcting usability defects. We conducted a survey amongst open

source software communities and industrial practitioners to understand the most valuable information

in reporting and fixing usability defects. We extended previous studies [20], [21] that focused on

software defects in general. We added assumed cause, software context and proposed solution in

context of usability-related defect information. Our study extends the previous findings on software

defect reporting. We discovered that developers need additional defect information when fixing

usability defects. We found that assumed cause is the most useful, but seldom supplied by reporters.

Our software defect repositories mining results confirm that actual output, expected output and steps to

reproduce are also substantially important for software developers. These findings give us good ground

to design a new defect report form for reporting usability defects, which we discussed in Chapter 7.

According to reporters, they usually provided title/ summary, steps to reproduce, actual output,

and expected output. While usability-related information: assumed cause, video recording, UI event

trace and usability principle are the most difficult to provide. However, our software defect

repositories mining results revealed that actual output, expected output and software context are the

most supplied information for usability defects. When we compared the responses from software

developers and reporters, we found that the information most expected by the software developers was

the least provided by reporters. The most significant ones were found to be title/ summary and assumed

cause. Our statistical analysis shows a mismatch between what reporters reported and software

developers claim that they need to fix usability defects. Our results showed that unclear assumed cause

and insufficient information in steps to reproduce were most commonly experienced by software

developers. This reaffirms with evidence of an anecdotal expectation that the cause of the problem is

difficult to provide. Other problems include vague comments, unstructured text and duplication of

reported usability defects.

To effectively report usability defects, there are several factors that may be influential – with the

key area being skilled people supported by appropriate tools and methods. Through the same survey

used in this chapter, we separately explained these factors in Chapter 5.

 94

5 Factors Influencing Usability Defect Reporting

Previous studies have reported that the overall quality of defect reports is far from satisfactory.

Common issues include incomplete information, lack of clarification and focus, mixed data, and

mismatch information in defect descriptions. To obtain a quick defect resolution, a well-written defect

report is important. While the majority of software defect reporting research has been devoted to the

enhancement and improvement of new techniques and tools for capturing software defects, to the best

of our knowledge, there is no study investigating the influence of different factors on the quality of

defect descriptions.

To address this gap, we investigated our third thesis research question: “RQ3 - What factors

influence the description of usability defects?” This research question is the second theme of the online

survey we discussed in Chapter 4. This study aimed to collect opinions of developers and reporters on

the factors influencing usability defect reports quality, including role of the reporter, reporters’

experience and knowledge, defect discovery methods and usefulness of automation tools. The views

are obtained from software development practitioners from industry who had experience in dealing

with usability defects.

In this chapter, we present the results of the second part of our multi part survey that was discussed

in Chapter 4. This second part of the survey examined what factors might influence the description of

usability defects.

5.1 Methodology

5.1.1 Development of Survey Instruments

Before designing this survey, we reviewed relevant literature to avoid duplicate research, and where

similar research existed, we learned and adopted questions and experimental design from these. Since

we did not find any research into factors related to usability defect reporting in the literature, the

relevant research investigating the influence of different factors on software testing practices in general

was helpful. For example [74], [80], [81], explicitly investigate the importance of tester’s knowledge in

performing exploratory software testing. Kettunen et al. [82] also reported domain knowledge as the

most emphasized area of testers’ expertise and point out that the role of technical knowledge is

 95

particularly important in the agile development context. In a survey on the effect of experience, Kanij

et al. [83] identified expertise in the problem domain and knowledge of specific testing techniques

were significant factors influencing the performance of software testers. Beer et al. [84] and Poon et al.

[85] reported the impact of the testers’ experience on improving testing strategies - test case design,

regression testing, and test automation. In the context of usability studies, F⊘lstad [86] reported that

usability defects found by work-domain experts were classified as more severe and received higher

priority by developers than the usability experts. Therefore, in this research we speculate that the role

of reporter, reporters’ knowledge and experience, defect discovery methods and usefulness of

automation tools might have a significant impact on reporting usability defects as well.

5.1.2 Research Questions

The main objective of this second theme of the survey was to investigate the influences of reporters’

experience and knowledge, defect discovery methods and usefulness of automation tools on usability

defect reporting practices. The key research questions to answer is listed in Table 5.1:

Table 5.1. The second theme of online survey research questions.

Research Questions Rationale
RQ1 Is there a significant difference in the way that usability

defects is described by the participants who have received
usability/ HCI training and by those who have not?

Knowledge on usability or HCI can help
participants to explain the usability issues better.

RQ2 Is there a significant difference in the way that usability
defects is described between participants who have
experiences in usability testing and those who have not?

Participants who have experience in usability
testing may know better what kind of information
is useful to report usability issues, and what kind
of information is needed by software developers.

RQ3 Is there a significant difference in the way usability defects is
described between the group of participants who used
automated tools and those who did not?

Automation tool could speed up the defect
reporting process, especially in collecting
technical information and evidences.

RQ4 Is there a significant difference in the way usability defects are
described between participants who conduct usability testing
and those who do not?

Different testing approach will collect different
information. For example, during system testing,
the icon on the user interface may be reported as
inappropriate. However, if usability testing is
conducted, user’s difficulties and how user is
struggling to understand the icon can be
understand.

5.1.3 Survey Design

We used self-administered online survey using Opinio survey tool. The respondents could answer this

survey at their convenience. The survey is available at http://bit.ly/UsabilityDefectsReportingSurvey

and can be found in Appendix B.

 96

5.1.4 Questions Related to Factors Under Studied

In this section, we summarize the questions relating to the factors studied. The detailed structure of the

survey can be found in Section 4.1.1.4. Each factor consists of several questions as listed below. Most

of the questions used a Likert scale with five levels of agreements (“Completely disagree”, “Somewhat

disagree”, “Neither disagree or agree”, “Somewhat agree”, and “Completely agree”).

1. The role of the reporter: This factor had two closed questions. Q33 listed five statements to

investigate the way technical and non-technical users report usability defects. The software

developers were required to rate the frequency of these statements may be true when they

assess a usability defect. Q45 asked both software developers and reporters whether they think

the level of detail of usability defects may vary between reporters.

2. Knowledge: This factor had four closed questions. Q7 and Q8 asked respondents to indicate

their participation in any usability-related training/ certification and rate the usefulness of the

training respectively. Q41 asked respondents whether they think defect report form should be

customized according to reporters’ knowledge. Q46 listed seven knowledge factors that may

affect the effectiveness of writing a good usability defect description. Respondents were

required to indicate their level of agreement as to whether these were important.

3. Experience: This factor had four closed questions that asked respondents’ opinions on

experience in usability testing (Q26 and Q34), and general software testing (Q48). Q40 asked

respondents whether they think defect report form should be reflected to reporters’ level of

experience.

4. Automation tools: This factor had four questions. Q42 asked if reporters have experience in

using any automation tools to capture usability defect information. In the accompanying open

question (Q43) reporters were requested to name the tools. Q44 asked reporters’ opinions on

the limitation of the manual process to capture usability defect information. Q39 asked

whether respondents think user experience (UX) of using defect reporting tools may influence

the quality of defect reports.

5. Defect discovery methods: This factor had two closed questions. Q11 listed fives statements

on the availability of usability defect information for different defect discovery methods, and

respondents were required to indicate their agreement on these statements. Q12 asked whether

 97

respondents think that defect report from should be customized according to how usability

defects are discovered.

5.1.5 Evaluation of Survey Instruments

The survey was piloted with software engineers from the Swinburne Software Innovation Lab (SSIL)

and software developers recruited at a developers conference (described in Chapter 4). Based on the

verbal comments and the pattern of responses received, the survey instruments were refined.

5.1.6 Selection of Participants

The same selection criteria as detailed in Chapter 4 was used.

5.1.7 Data Analysis

Participants indicated their agreement about influences of usability defect reporting using five scale

scores questions measuring the role of reporter, importance of knowledge and experience, influence of

defect discovery methods, and usefulness of tools (1 implies “strongly disagree”, 2 implies “somewhat

disagree”, 3 implies “neither disagree nor agree”, 4 implies “somewhat agree” and 5 implies “strongly

agree”). Since each influence consists of several questions, composite scale scores were used for

analysis by taking a mean of all the questions for each scale.

Chi-Square tests were used for statistical analysis. Since multiple Chi-Square were being

performed simultaneously, we used the Bonferroni correction to avoid influence of spurious positives.

In this case, we lowered the P value by dividing P = 0.05 by the number of tests to get the Bonferroni

critical value. For example, to measure the association of usability defect attributes and usability/ HCI

knowledge for reporters (attributes tested = 10) and software developers (attributes tested = 16) a test

would have P<0.05/ 10 = 0.005 and P<0.05/16 = 3.125x10-3 to be significant.

5.2 Results

5.2.1 Demographic Information

The details of respondents’ background were reported in Chapter 4.

 98

5.2.2 Factors Influencing Usability Defect Reporting

We postulated five factors (“role of reporter”, “knowledge of specific usability/ software engineering”,

“experience in software/usability testing defect reporting”, “automation tools”, and “defect discovery

methods”) that we believed might influence the way usability defects are described. Each factor has

several questions, where participants indicated their level of agreement that these were influential. The

responses to these factors are reported in the following sections.

5.2.2.1 Role of the Reporter

We obtained developer feedback on the influence of role of reporter when they assessed and dealt with

usability defects (Q33). As shown in Figure 5.1, more than 50% of software developers agreed that

technical users, such as usability experts and developers, provide more informative usability defect

information, which include proposed solutions. Reponses to Q45 suggest significant variability in level

of detail between reporters (see Table 5.2).

Table 5.2. Responses to “the level of detail of usability defect reports varies greatly from reporter to
reporter” (Q45).

Completely disagree 0.7%
Somewhat disagree 4.1%
Neither disagree or agree 18.4%
Somewhat agree 29.9%
Completely agree 29.9%
No response 0.7%

Figure 5.1. Role of reporter in reporting usability defects (Q33).

0.0%$ 20.0%$ 40.0%$ 60.0%$ 80.0%$ 100.0%$ 120.0%$

The$usability$defects$reported$by$poten<al$end=users$
with$direct$experience$from$the$work$domain$were$

given$high$priority$$

Usability$expert$provides$beEer$usability$defect$report$
comparedtogeneral$soFware$tester$

General$soFware$tester$rarely$supplies$usability=
related$informa<on,$suchasviolated$heuris<cs$or$

design$principles$

Developer$provides$more$meaningful$usability$defect$
descrip<on$with$proposedfixpatchandlogs$

Non$technical$users$rarely$provide$important$
informa<on$such$as$soFware$context,$product$

informa<on,andreproducibility$

Completely$disagree$

Somewhat$disagree$

Neither$disagree$or$agree$

Somewhat$agree$

Completely$agree$

 99

5.2.2.2 Knowledge of Specific Usability/ Software Engineering

We listed seven knowledge factors (“practical knowledge”, “user’s perspective thinking”, “users’

mental model”, “usability principles”, “domain expertise”, “technical knowledge”, and “defect

reporting”) that we postulated might influence the ability of respondents to write good usability defect

reports. More than 50% of respondents agreed that these factors were influential (see Figure 5.2). The

level of agreement was highest for “user’s perspective thinking” and “practical knowledge”.

Figure 5.2. Responses on “knowledge factors” in reporting usability defects (Q46).

In the related question (Q41), we obtained respondents opinions on the value of a “custom defect report

form” – whether a defect reporting tool should provide a custom form depending on reporter’s

knowledge (non-technical, technical, HCI expert). While 51% agreed that a defect report form should

map to the reporter’s knowledge, 11.5% disagreed and 21.1% neither disagree nor agree (see Table

5.5).

Only a minority (about 17%) indicated that they had received usability-related training/

certification (see Table 5.3). Of those, about 12% of them have experience in reporting usability

defects and the remaining 5% fixing them. For those who had acquired the related training, the

majority of them found the training was useful (see Table 5.3).

Table 5.3. Usability-related training received by the participants (Q7).

Role in dealing with usability defects Participation in usability-related training
Yes No

Reporting usability defects 17 65
Fixing usability defects 8 57

0.0%$ 20.0%$ 40.0%$ 60.0%$ 80.0%$ 100.0%$ 120.0%$

Prac.cal$knowledge$

User's$perspec.ve$thinking$

Users$mental$model$

Usability$principles$

Domain$exper.se$$

Technical$knowledge$

Defect$repor.ng$

Completely$disagree$

Somewhat$disagree$

Neither$disagree$or$agree$

Somewhat$agree$

Completely$agree$

 100

Table 5.4. “Usefulness” of usability-related training received (Q8).
Very useful 44%
Somewhat useful 40%
Neither useful or not useful 4%
Not very useful 12%
Complete waste of time 0%

Table 5.5. Responses to question “Do you think your defect reporting tool should provide custom
forms for reporting defects depending on reporter’s knowledge?” (Q41).

Completely disagree 5.4%
Somewhat disagree 6.1%
Neither disagree or agree 21.1%
Somewhat agree 33.3%
Completely agree 17.7%
No response 16.3%

Table 5.6. Association between usability/ HCI knowledge and frequency of usability defect attributes
supplied.

Usability defect attributes Software developers Reporters
χ2 (df=2, N=65) p-value χ2 (df=2, N=82) p-value

Title/ summary 1.741 0.419 3.692 0.158
Assumed cause 0.832 0.660 6.820 0.033
Software context 2.589 0.274 5.366 0.068
Actual output 0.884 0.643 6.623 0.036
Expected output 1.541 0.463 0.703 0.703
Steps to reproduce 0.518 0.772 5.732 0.057
Severity 1.783 0.410 13.725 0.001
Solution Solution proposal 1.520 0.468 2.857 0.240

Fix patch 0.333 0.847
Digital mockups 2.737 0.255
ASCII art 0.928 0.629

SoftInfo Product 1.332 0.514 4.773 0.092
Component 5.208 0.074
Version 1.435 0.488

TestEnv Hardware 0.194 0.907 5.814 0.055
Operating System 1.824 0.402

To answer RQ1 of the first theme of the survey, a Chi-Square test was performed to examine the

relationship between participants who received usability (or related) training and usability defect

attributes. As can be seen in Table 5.6, three of the usability attributes are significant (severity,

assumed cause, actual output) for reporters. As we tested 10 usability defect attributes, we expected

one or two attributes to show a significant result purely by chance. By applying the Bonferroni

correction, at significant level 0.005 (P < 0.05/10 = 0.005), only the test for severity (χ2, (2, N=82) =

13.725, P < 0.005) is significant. However, at significant level P < 0.05/16 = 3.125 x 10-3 (the number

of usability attributes tested are 16 for software developers), there is no significant relationship

between usability knowledge and usability defect attributes for the software developers.

 101

5.2.2.3 Experience in Software/ Usability Testing

A majority of respondents agreed that experience in software testing and usability testing has a good

influence on the quality of usability defect report (~ 71% agreed in Q26). This view is supported by

many software developers (~58.4%), that reporters are much better at proposing redesign solutions

when they have usability experience (Q34). Furthermore, around 60% agreed, with minimal

disagreement (less than 6%), that length of experience has a significant influence (Q48). In addition,

nearly 62% of respondents agreed that prior experience in usability defect reporting helps write better

reports (Q49). Since no open-ended questions were asked around these factors, it is difficult to further

clarify these findings.

We asked respondents whether they agreed that a defect reporting tool should provide a “custom

defect report form” – that is defect report form should reflect the reporter’s experience, and their level

of experience in software/ usability testing (Q40). Our findings show considerably more respondents

choosing “somewhat agree (31.3%)” than “completely agree (23.8%)”, and only a small proportion

disagree (12.9%).

To answer RQ2 of the first theme of the survey, the survey included questions about whether

reporters had experience in software testing (no experience, less than 1 year, between 1 and 3 years,

between 3 and 5 years or more than 5 years). The “less than 1 year”, “between 1 and 3 years”,

“between 3 and 5 years” and “more than 5 years” scores were converted to a score of 1 to indicate

“yes”, and “no experience” scores were converted to a score of 0 to indicate “no”.

A Chi-Square test at significant P=0.05 was performed to examine the relationship between

reporters with software testing experience and usability defect description attributes: there were seven

significant attributes (see Table 5.7). However, by applying Bonferroni critical value, at significant

level P=0.005, only relations between software testing experience and title/summary (χ2, (2, N=82) =

15.216, p < 0.005), context (χ2, (2, N=82) = 24.696, p < 0.005), expected results (χ2, (2, N=82) =

11.187, p < 0.005), and severity (χ2, (2, N=82) = 13.508, p < 0.005) were significantly observed.

 102

Table 5.7. Association between software testing experience and frequency of usability defect attributes
supplied.

Usability defect attributes χ2 (df=2, N=82) P-value
Title/ summary 15.216 0.000
Assumed Cause 4.963 0.084
Software context 24.696 0.000
Solution proposal 2.300 0.317
Actual output 8.005 0.018
Expected output 11.187 0.004
Steps to reproduce 9.058 0.011
Severity 13.508 0.001
SoftInfo 6.828 0.033
TestEnv 6.527 0.038

5.2.2.4 Influence of Defect Reporting and Automation Tools

In response to Q25 and Q35, more than 50% of the reporters and 38.7% of software developers

indicated that they use defect reporting tools to manage usability defects. Common tools (Q36) were

JIRA, Bugzilla and Redmine. Mantis, Trello, IBM Rational Team Concert, and Visual Studio TFS

were also listed multiple times. For JIRA, Bugzilla and Redmine users - 90% agreed to some extent

that the defect reporting tool offers sufficient flexibility to capture and manage usability defects (Q37),

but free-text feedback revealed considerable negative satisfaction (Q38). The following are

representative: “Most of the defect reporting tool do not have exhaustive options for usability defects”

and “JIRA more customized by client but no specific customizations done for usability”.

In response to Q42, only 16% of reporters used tools to capture additional usability defect data,

while 61% had never used any additional tools. For those who used automated tools, we asked them to

name the tool, using an open-ended question (Q43). Among the tools mentioned were CrazyEgg,

Google Analytics, Microsoft Snipping tool, QuickTest Professional (QTP), WinRunner, Snagit,

LICEcap, Screencast, Jing and Selenium. We asked reporters to indicate whether they agreed that the

manual process used to capture usability defect information is a cause of erroneous or incomplete

defect reports (Q44). Our findings reported a mixed response, with roughly 20% of the reporters

agreeing to some extent, but 22% disagreed and 35.4% neither agreed nor disagreed. As no open-ended

question was provided, it is difficult to justify the satisfaction and feedback responses associated with

those tools. It is notable that a high proportion of respondents either indicated a dissatisfied view, or

did not answer the question at all (23.2%).

 103

In a related question, we asked respondents’ opinion if the user experience of using defect

reporting tools might influence the quality of defect reports (Q39). Our findings indicate that nearly

56% believed that user experience is one of the key considerations when reporting usability defects.

To answer RQ3 of the first theme of the survey, a Chi-Square test was performed to examine the

relation between reporters that used automated tools to capture usability defects and usability defect

description attributes. At Bonferroni correction significant level P=0.005, a significant association

exists between used of automated tools and context (χ2, (2, N=63) = 11.443, P< 0.005). Table 5.8

summarizes the statistical results.

Table 5.8. Association between the usage of automated tools and frequency of usability defect
attributes supplied.

Usability defect attributes χ2 (df=2, N=63) P-value
Title/ summary 5.418 0.067
Assumed cause 1.079 0.583
Software context 11.443 0.003
Solution proposal 4.435 0.109
Actual output 4.199 0.123
Expected output 3.311 0.191
Steps to reproduce 3.482 0.175
Severity 1.920 0.383
SoftInfo 0.536 0.765
TestEnv 5.054 0.080

5.2.2.5 Influence of Defect Discovery Methods

The vast majority of respondents agreed that the amount of information available for reporting usability

defects varied according to how the defects were discovered. In this context, defects found during

usability testing revealed more information as compared to other types of testing – approximately 87%

of respondents agreed that using usability testing information about user’s knowledge, likely

difficulties, actual task scenario and realistic redesign solutions can be obtained from the actual user,

and approximately 73% agreed other usability-related information such as violated heuristics or design

principles, and user response and feelings can be collected (see Figure 5.3).

In an accompanying question (Q12), we asked respondents whether a defect reporting tool should

provide “custom defect report forms” (that is, a defect report form should be designed to map to

different types of defects) – the majority of the respondents (~63.9%) agreed and only 7.5% disagreed

with this idea.

 104

Figure 5.3. “Influence of defect discovery methods” in reporting usability defects (Q11).

Table 5.9. Association between usability testing and frequency of usability defect attributes supplied.

Usability defect attributes χ2 (df=2, N=82) P-value
Title/ summary 2.045 0.360
Assumed cause 14.530 0.001
Software context 4.361 0.113
Solution proposal 1.146 0.564
Actual output 6.066 0.048
Expected output 3.245 0.197
Steps to reproduce 6.020 0.049
Severity 5.274 0.072
SoftInfo 4.455 0.108
TestEnv 0.270 0.874

To answer RQ4 of the first theme of the survey, the survey asked questions about how reporters

discover usability defects (i.e., exploratory testing, functional testing, usability testing, beta/ alpha

testing, complaints/ reports from customers, using the product, and other). Participants were allowed to

choose multiple answers. Any response that consists of a usability testing option were converted to

“usability testing” response options, while other responses that did not have usability testing option

were converted to “not using usability” response options. A Chi- Square test was performed to examine

the relation between reporters that conducted usability testing and usability defect description

attributes. Table 5.9 shows that at significant level 0.05 three attributes were significant, however by

applying Bonferroni correction a test would have to have P<0.005 to be significant. Therefore, only the

cause is significant (χ2, (2, N=82) = 14.530, p < 0.005).

0.0%$ 20.0%$ 40.0%$ 60.0%$ 80.0%$ 100.0%$ 120.0%$

The$difficul3es$the$actual$user$will$encounterasa$

consequenceofthe$usability$problems$cannot$be$

known$during$func3onal$tes3ng$$

In$exploratory$tes3ng,ausability$defect$is$typically$

groundedingeneral$usability$knowledge,$rather$than$

in$specula3ons$on$users$task$performance$and$

response$

The$presence$of$actual$users$during$usability$tes3ng$

can$reveal$user's$knowledge,$likely$difficul3es,$actual$

task$scenario,$and$realis3c$redesign$solu3ons$

In$usability$tes3ng,$more$usabilityHrelated$informa3on$

canbereported,$such$as$violated$heuris3cs,$design$

principles,$users$response,andfeelingsascomparedto

system$tes3ng$

Describing$complaints$from$customers$orendusers$

maynotcorrectly$describe$the$actual$difficul3es$faced$

by$them$

Completely$disagree$

Somewhat$disagree$

Neither$disagree$or$agree$

Somewhat$agree$

Completely$agree$

No$response$

 105

5.3 Threats to Validity

We have considered three types of possible threats that can affect the validity of the survey results,

which we discuss below.

5.3.1 Internal Validity

The main threat to this study is a misunderstanding of the survey context by the respondents. Our goal

was to focus on usability defect reporting instead of general software defect reporting. Respondents

may have answered the questionnaire based on their general defect reporting knowledge and

experience. We addressed this threat by (a) giving three different types of usability defect examples at

the beginning of the survey, and (b) highlighting the usability defects (bold and italic) keyword for

every question, so the respondents were always aware of the survey context.

5.3.2 External Validity

One possible external threat to the validity of the survey outcome is the representativeness of the

respondents. Although 147 valid responses to the survey is a good start, the population size is relatively

small to examine the research questions and answer them in appropriate manner. There could have

been some level of confirmation bias among the participants as not all of them were directly working in

HCI projects, reporting usability defects, or even using formal defect reporting processes and tools. For

example, only a small number of people used automation tools (16%) to report usability defects. As

such, we cannot claim our findings about the question on automation tools to be conclusive. Instead,

our survey may be a plausible start for more detailed empirical studies. Furthermore, the use of a self-

rating technique to identify how participants discovered usability defects did not really reveal the

participant’s experience, approach and skill in usability defect discovery.

5.3.3 Construct Validity

One concern is regarding incorrect measures, i.e. not precisely measuring respondents’ practices in

reporting usability defects. To mitigate this concern, we reused previous surveys and added questions

from both usability and software engineering fields. Another possible threat is that our respondent

recommendation does not entirely reflect the true reality of defect reporting practice. Since our survey

 106

is anonymous, some responses we received stated that they have never used defect reporting tools. In

fact, some comments were not at all meaningful.

5.4 Discussion

In this section, we present an overall discussion of our findings regarding the five factors that we

postulated to influence the quality of usability defect reporting. This study has presented initial findings

on how respondents see the listed five factors influencing the descriptions of usability defects.

5.4.1 The Role of the Reporter

In earlier research, it was recognized that the evaluator or software tester plays a significant role in the

outcome of software testing [14], [87]. Since communicating defect information is part of software

testing activities, we argue that the presence of evaluator effect will also influence the quality of defect

information submitted.

In this study, most of the respondents agreed that the reporters’ role matters a great deal in getting

a usability defect fixed. There are possibly two aspects in OSS development that support this factor.

The first aspect lies on the different user capabilities to supply meaningful information. In the context

of OSS development, defect reporters can vary between three groups [4], [88]; 1) software developers

with high technical background and in-depth knowledge of the software, 2) user support who may

posses expertise in using the software, but may have very limited knowledge and technical details of

the software, and 3) end users who only used the software as a “black box”. Among these three groups

of users, responses from our survey revealed that technical users often provided more informative

usability defect information, such as redesign solutions, which is important for software developers to

correct software defects [9]. However, the solutions from these technical users may pose a threat to

less-technical users. For example, the subjective nature of usability means that some technical users

(with no usability background) may be able to personally justify the usability problems. However, the

problem might not be an issue for the wider user base, or in fact, could lead to “fixes” or “shortcuts” or

“simplifications” that negatively affect less-technical users.

The second aspect is related to important and trusted reporter. As Zimmermann et al. [20]

claimed, “well known reporters usually get more consideration than unknown reporters, assuming the

reporter has a pretty good history in bug reporting”. This suggests that when software developers have

 107

put their trust in a reporter, they are likely to give them a higher priority. We also found that usability

defects reported by customers typically get reviewed and fixed faster. Possibly, defects raised by

customers have higher business value and fixing their defect reports is a key driver in gaining users’

loyalty.

Based on this finding, we suggest that one criterion for effective defect report writing is to

customize the defect report content according to the reporter background. For example, if the reporter

is an end user with limited access to the software, information such as configuration of the application,

hardware information, product information, event traces, and error logs should be automatically

collected rather than manually asking them to fill in the form. This is because such technical

information is very important for software developers to diagnose the problems but they were the most

problematic information as reported in [21].

5.4.2 The Role of Experience and Knowledge in Usability Defect Reporting

Experience and knowledge have been studied in the context of software engineering, especially in

software testing [80], [84], [85], [89]. Often, experienced software testers could find more software

defects. However, in the context of reporting a defect, previous studies have reported that only a small

group of experienced reporters could produce a good quality of report because of their limited

understanding of what constituted a defect [4]. This suggests that while software testing experience

might be useful for test execution and evaluation, it does not guarantee a production of high quality

defect reports. For this reason, we studied three categories of experience that may influence the

effectiveness of writing usability defect descriptions – experience in usability testing, experience in

general software testing, and experience in reporting usability defects. In the opinion of our

respondents, they strongly believed that these experiences were helpful to provide more organized and

detailed usability defect descriptions. Since our survey does not quantitatively measure to what extent

the quality of the usability defect report is due to the influence of these experiences, it would be unwise

to over-interpret their response. However, this finding raises a question on how testing skills and

expertise would be beneficial to an individual’s usability defect report writing effectiveness.

Concerning the influence of defect reporter’s knowledge, “users’ perspective” and “practical

knowledge” were the most agreed type of knowledge that should be acquired by defect reporters in

producing well-written usability defect descriptions. In the context of reporting usability defects, we

 108

argue that understanding the user’s perspective and practical knowledge are interrelated knowledge

elements. While understanding the user’s perspective could be much easier to gain, practical

knowledge, on the other hand, may require direct observation and participation in activities [84] and be

increased by the involvement of professional experience [85]. In this case, we see that to be a good

defect reporter, despite understanding the problems from what the user feels, the defect reporter also

needs to have a deep system knowledge of the features, and in most cases, based on personal

experience as a user of the system [74]. As Itkonen and Lassenius [74] reported, a good understanding

of usage procedures and context allows defect reporters to identify actual usability defects by reflecting

on the system’s behavior with realistic usage tasks and context rather than based on personal

speculation.

As well as practical and domain knowledge, some of our respondents agreed that understanding

usability principles and knowledge are desirable. However, only 17% of respondents had received

usability-related training. For respondents with related training, they seem to understand usability

defects, and tend to provide severity ratings. Despite the value of this type of training it does not seem

to be common. We assume usability-related training is normally conducted in the context of learning

about user experience, building skills on UX best practices, and designing user interface2. The training

seems to provide insufficient focus on writing good defect reports.

Knowledge on defect reporting tools was also considered important in writing good usability

defect reports. As Ko and Chilana [4] reported, lack of knowledge of defect reporting tool and process

may influence the quality of defect reports. We argue that current defect report forms offered by most

defect reporting tools are too generic to support different types of defects that may need different kinds

of information reported. A range of enhancements to existing defect reporting tools is suggested in

[43], [90]–[92] but none of them are specifically designed to consider the reporters’ knowledge and

experience. Novice defect reporters in particular struggle to prepare good usability defect reports [93].

Perhaps, defect report forms could be customized to reflect a reporter’s profile (i.e., non- technical

user, usability expert, customer, etc).

2 https://www.nngroup.com/training/

 109

5.4.3 Use of Automation Tools

Many usability engineering tools offer automated data capture and richer kinds of information capture

e.g., instrumenting applications to capture traces and user interaction, recording richer user interaction

and mapping to user task, and capture of video, audio, screenshots, diverse interaction (touch, sketch,

gesture, accelerometer, as well as keyboard and mouse). As shown in Section 5.2.2.4, however, not

many reporters used automation tools to capture usability defect information. Among the tools

mentioned by our respondents to record screenshots, video and audio are Snagit, Screencast, Jing,

LICEcap, and Snipping tool. Since these tools are not tightly integrated into defect reporting workflow,

there is friction in creating useful hypermedia attachments, especially in adding and manipulating

attachments. Perhaps, by combining HCI usability engineering methods and tools with software defect

reporting and management repositories will be of greater value.

Concerning usability defects, existing research on usability defect descriptions has shown the

value of capturing additional usability context. Instead of knowing which particular interface element

causes confusion, it is useful to know how and why users get confused [22]. Therefore, in addition to

screenshots of the problematic interfaces, it might be useful to automatically record facial expression,

body language, gestures, and tone of voice of the users conducting usability tests. Perhaps these kinds

of recording tools could be integrated with defect reporting tools to reduce the defect reporting

workload.

Furthermore, software engineering research on collecting logs and traces [90], [91] and

automatically capturing steps to reproduce [43], [92] does not seem to have a big contribution in the

practical usability testing context. Possibly, this preference for commercially available software may be

attributed to the fact that tools developed by research community tend to be concept demonstrators

with ad-hoc support.

5.4.4 Defect Information Obtained Through Usability Testing

In our survey, about 60% of reporters used usability testing to discover usability defects. The majority

believed that usability information such as user’s knowledge, likely difficulties, actual task scenario,

realistic redesign solutions, violated heuristics, and user’s feelings are more easily obtained via

usability tests. In addition, respondents also agreed that reporters who conducted usability tests are able

 110

to explain possible causes better other than traditional testing. Possibly, when reporters observed users

performing certain tasks, they gain direct feedback from the users. Quantitative data such as users’

performance (i.e., time on task and error rates) also can be collected.

However, in OSS development, since no formal usability evaluations are conducted such

information heavily relies on the ability of the users who experienced the problems to precisely

describe them. As stated earlier, the diverse backgrounds of OSS communities make it difficult for the

users to identify and provide valuable information. Therefore, we suggest that additional information

such as impact, assumed caused, and violated heuristics should be explicitly prompted to the reporters.

In this way, reporters will be guided to supply meaningful information even if they are not “usability-

savvy”.

5.5 Summary

Our survey responses indicate that, according to software development practitioners, quality of

usability defect descriptions does strongly depend on the experience and knowledge of reporters, use of

automation tools, and defect discovery methods. However, our finding is preliminary and needs to be

extended. Researchers could explore the effect of implicit usability testing activities, and the type of

knowledge and experience applied when reporting usability defects.

The responses indicate that the experience and knowledge of defect reporters has a great influence

on the information presented in the usability defect descriptions. Reporters who have usability and/ or

HCI knowledge and have software testing experience were likely to provide severity ratings, title/

summary, context, and expected results when describing usability defects. We also found that reporters

who used automated tools were likely to capture software context better than those who used manual

processes. Also, reporters who discover usability defects using usability testing were likely to provide

possible causes other than those who used other testing methods. We consider such influence in

designing our new usability defect report form as discussed in Chapter 7.

 111

6 A New Open Source Usability Defect Classification
Taxonomy

In open source software usability defect reporting, little research to date has focused on understanding

just what different categories usability defects belong to. Existing defect repositories, such as Bugzilla,

have used keyword functionality to label usability-related defects. For instance, a defect can be labeled

as uiwanted, useless-UI, ux-affordance, uc-consistency and ux-efficiency. However, such a high-level

classification does not assist developers to identify the underlying flaws or problems. In fact, lack of

descriptions, examples and limited usability terms make it difficult for non-human computer

interaction evaluators to assign such labels for certain usability defects [50]. Moreover, understanding

software engineering classification models, such as ODC and RCA, requires users to understand

usability problems from the context of software development and the perspective of software

developers. Since usability defects are subjective in nature, characterizing usability defects using

predefined attributes does not really reveal the users’ task difficulties [94]. These limitations

encouraged us to revise the existing usability defect classification models. There are several reasons for

categorizing usability defects:

1) to more clearly disclose the probable causes of the defect;

2) to highlight the impact of usability defects on the task outcome;

3) to treat usability defect priority the same as the other defects; and

4) to quantitatively track usability defects over time.

This chapter answers our fourth thesis research question “RQ4 - How should open source usability

defect reports be classified so that they can be effectively reported?” Based on our analysis of open

source usability defect reports, we revised the existing usability defect classification model [12], [76],

[95] to incorporate software engineering and usability engineering needs. We also aimed to collect

feedback on a new proposed open source usability defect classification model by requesting software

development practitioners to classify a sample of usability defects.

6.1 Existing Usability Defect Classification Schemes

In the classification schemes based on a usability engineering perspective, usability defects are often

categorized according to a single perspective. Earlier efforts to classify usability defects were done by

 112

Nielsen and Molich [96]. They developed nine heuristics to assist usability evaluators to assess the

usability of a user interface. Since Nielsen’s heuristics only offer a high-level classification, there are

some usability problems that cannot be mapped to any of these heuristics [12].

To overcome this limitation, Keenan et al. [12] developed the UPT that classifies usability defects

into artifact and task components. The artifact component consists of visualness, language, and

manipulation categories, while the task component consists of task mapping and task facilitation

categories. Each category is composed of multi-level subcategories. For example, language consists of

two-level sub-categories; the first level consists of naming/ labeling, and other wording, while in the

second level, other wording if further categorized into feedback messages, error messages, other

system message, on screen text, and user-requested information/ results. The depth of classification

along the components and categories may result in one of three outcomes; full classification, partial

classification, and null classification.

This approach to classification, however, relies on a high quality defect description, which as our

earlier chapters demonstrate, are rarely present in open source usability defect reports. Our

observations are that many open source usability defect reports have defect descriptions that contain a

lack of contextual information, particularly on the user-task. As a result, when using UPT to classify

usability defects, we have to make many assumptions and a self-judgment about the task performed by

the users that lead to the problems. We believe UPT is useful for usability evaluators to assess the

usability defects during usability evaluation with the presence of users, but not to classify defects by

just reviewing the usability defect description.

Andre et al. [3] have expanded the UPT to include other usability engineering support methods and

tools. By adapting and extending Norman’s [97] theory of action model, they developed UAF that used

different interaction styles. For example, the high-level planning and translation phase contains all

cognitive actions for users to understand the user work goals, task and intentions, and how to perform

them with physical actions. The physical action phase is about executing tasks by manipulating user

interface objects, while the assessment phase includes user feedback and the user’s ability to assess the

effectiveness of physical actions outcome. Even if the UAF was viewed as a reliable classification

scheme that supports dissimilarity of defect descriptions for the same underlying design flaw, the

complexity in determining which phase of the interaction the problem occurred is a real challenge for

novice evaluators.

 113

Concerning the limitation of single perspective classification schemes, many researchers have

started to explore usability defect classification models from multiple perspectives. One of the most

prominent approaches is the cause-effect model. For example, Khajouei et al. [98] argued that the lack

of information on the effects of usability defects in UAF have caused a long discussion to reshape the

way developers think about usability. They augmented the UAF to include Nielsen’s severity

classification and the potential impact of usability defects on the task outcome, in order to provide

necessary information for software developers to understand and prioritize problems.

Vilbergsdottir et al. [99] have developed a Classification of Usability Problem (CUP) framework

that consists of two-way feedback; Pre-CUP that describes how usability defects are found, and Post-

CUP that describes how usability defects are fixed. In Pre-CUP usability evaluators use nine attributes

(Defect identifier, frequency, trigger, context, description, defect removal activity, impact, failure

qualifier and expected phase) to describe usability defects in details. Once the usability defects have

been fixed, the developers record four attributes (actual phase, types of fault removed, cause and error

prevention technique) in Post-CUP.

Geng et al. [95] claimed that CUP can capture important usability defect information and provide

feedback for usability improvement, but that CUP could not be used to analyze the effect on users and

task performance. Considering the importance of the cause – effect relationship, they have customized

the ODC and UPT. This usability-ODC framework consists of three causal attributes (artifact, task, and

trigger) and four effects attributes (learning, performing, perception, and severity).

In relation to open source defect reporting, we found that some of these attributes are not relevant

for open source communities that have a very low involvement in usability experts. For example,

technical information about defect removal activity, failure qualifier, expected phase, and frequency

are difficult to obtain, particularly for users with limited human-computer interaction knowledge. In

fact, without formal usability evaluation in open source projects, the trigger attribute as suggested in

the usability-ODC framework is not possible to justify. Additionally, the use of pre-defined values for

some of the attributes may introduce selection bias and users are likely to select incorrect values.

Other usability problem classifications use a combination of models to support practical use of

classification in different software development context [94]. This model-based framework consists of

three perspectives, in which each perspective is facilitated by the use of models: artifact-users-tasks-

 114

organization-situation model for Context of Use, abstraction hierarchy model for Design Knowledge

and function-behavior-structure model for Design Activities- in which the usability problem needs to

be analyzed through the collective consideration of the three models. The Context of Use perspective is

to understand the cause of the problem, either related to design factors (violated user interface design

guidelines) or non-design factors (user preferences). If a usability problem is judged as “design

factors”, it should be further analyzed from the Design Knowledge and Design Activities perspectives.

Such a reference framework would allow usability evaluators to develop a specific classification

scheme for a particular context. However, a lesser degree of involvement of usability evaluators in

open source projects makes it quite impossible to adopt such a comprehensive framework. In fact,

contributors who participated voluntarily in open source projects prefer to work more on the main

functionality of a certain application rather than focusing on user-centric design [7].

6.2 Rationale for Revising Existing Usability Defect Classification

Generally, software problems are often classified as a defect when software is not behaving to its

expected purpose, or enhancement when a feature is desired but not present. From a software

engineering perspective, cause-effect classifications provide a deeper understanding of a software

problem. To the best of our knowledge, only one usability cause-effect classification currently exists.

Geng’s classification [95], in our view, is not appropriate to classify open source usability defects with

limited information. The trigger component in the causal attributes can be limited because in the

absence of formal usability evaluation in OSS development, it is quite impossible to identify the

usability evaluation methods that trigger the usability defects.

Even if usability evaluations were to be conducted, OSS projects would still lack the effective

mechanism to formally conduct the evaluations, for two reasons. First, many of the volunteers who

contribute to OSS development are developers, who might have limited knowledge and skills required

for usability evaluation. Second, in order to formally conduct usability evaluations, extra commitment

from contributors is necessary, but volunteers may not be able to spend more time on this. Considering

these limitations, we revised Geng’s classification [95] to better suit an OSS environment. The

following paragraph summarizes the rationale for our revision.

Defect category - In software development, quantitative measurements such as the amount of

memory used, the time to load application or response time is very crucial and often gets immediate

 115

attention from software developers, as opposed to subjective usability issues that cannot be

scientifically quantified and measured. To address this issue, common open source defect repositories

such as Bugzilla have implemented keyword functionality to address usability heuristics terms, such as

consistency, jargon, and feedback so that the concept of user interface and the underlying

implementation could be described effectively. Each usability issue is tagged with the specific usability

heuristic being violated. In this way, software developers with limited usability and interface design

knowledge could learn about the heuristics and understand how the same types of defects could be

resolved.

However, current UX principles being used by Bugzilla’s keyword functionality are too broad

[100]. Software developers may be able to know the violated usability principles but they might not be

able to relate the common characteristics for the set of problems to reveal the root cause and resolution.

For example, using the term POSTDATA in a dialog is ux-jargon. This high-level classification is

unable to facilitate the identification of specific problems on specific software context and provide

quick summaries of the problematic interface components or defective task execution. Thus, by

adopting a usability classification scheme such as UPT, software developers will be enabled to analyze

usability defects more easily. Managers will be enabled to monitor the trends, patterns, and occurrence

of certain types of usability defects for tracking improvements.

Effect – Previous studies reported that usability defects are treated at a lower priority compared to

functional defects [23]. In the existing ODC classification, severity is used to measure the degree of the

defect impact. However, due to unclear usability category definitions, many usability defects end up

with low severity ratings [23]. From our analysis of open source defect reports discussed in Chapter 4,

we think unclear and missing descriptions about user difficulty caused by the usability defect is one of

the reasons why software developers do not prioritize the importance of fixing many reported usability

defects. The fact that only a small fraction of usability defect reports contain impact information

reveals the lack of contextual information to convey information to software developers about the user

difficulty and how it impacts user emotion from the perspective of usability engineering. However, the

use of only textual descriptions to capture user difficulty could be a disadvantage as users are likely to

provide lengthy explanations that may be unhelpful to many software developers. One way to reduce

this limitation is to create a set of predefined impact attributes so that the impact can be objectively

 116

measured. For example, we can use rating scale to measure emotion, while task difficulty could be

selected from a predefined set of attributes.

Causal – Since no formal usability evaluation is usually conducted in OSS projects, usability

problem triggers cannot be identified. In OSS projects, usability defects are most often reported from

online user feedback facilities and results of developer black box testing. Considering this limitation,

instead of looking at trigger attributes we study the failure qualifier of the problem. This information

could help software developers to understand the reason why a user considers the problem as a valid

usability defect.

6.3 Our New Revised Open Source Usability Defect Classification Taxonomy

We began to construct our new usability classification model by reviewing usability defect

classification models in the literature, in particular UPT [12], ODC [77], and usability-ODC framework

[95]. While we wanted our usability defect classification to be in line with software engineering

principles, we also wanted to develop a model that is simple and easy to use by users (the users can be,

for example, software developers, testers, customer support, or end users) with limited usability

knowledge.

In contrast to the previous classifications [12], [95], our usability defect classification model is

designed to address usability defects reported in open source defects without a formal usability

evaluation method being used. Thus, observable data such as time-on-task, number and types of help

sought, frequency of expressed frustration cannot be obtained from the reporters’ self-reporting defects.

In fact, in open source usability defect reports, we could not identify testing techniques employed by

the users that triggered the usability defect. For these reasons, we revised the previous classification

models to only consider information normally available in the open source defect reports.

We adapted the original ODC framework to better understand usability defect causes and effects,

and integrated it with usability practices. Figure 6.1 illustrates the high-level cause-effect usability

defect classification model. We collected 377 usability defects from Mozilla Thunderbird, Firefox for

Android, and Eclipse Platform project. We began by randomly reading a few samples of defect reports

in detail, trying to understand the defect content structure, and to construct a list of potential metrics to

be used for ODC attributes (cause and effect attributes). Most of the defect descriptions that we read

 117

contained significant information about defect reproduction, actual results (i.e., what is wrong with the

usability defects), expected results (i.e., what should be fixed) and user difficulty expressions.

Figure 6.1. Our revised usability cause- effect defect classification model [95].

Based on this common information, we included usability defect categories and failure qualifier as

ODC-cause attributes and user difficulty as ODC-effect attribute to our first draft of classification

model. The rationale of using failure qualifier and user difficulty is to help developers understand the

validity of the problem and help them to prioritize defect fix accordingly.

We started to classify one project at a time. We used user-written statement criteria to signal

usability defect categories, failure qualifier, and user difficulty attributes. To analyze the defect

descriptions into the three attributes, we conducted a card sort. Card sorting is a method to generate

information grouping of specific data items [101]. In our case, we applied both closed and open card

sorts. In a closed card sort a set of pre-defined categories were used to organize and map the defect

descriptions into usability defect categories [12], [95], and failure qualifier attributes [102]. While in an

open card sort no predefined groups were used, instead the groups were emerged and evolved to

identify common themes for user difficulty attributes.

Once we had identified more global definitions of categories and subcategories, we then proceeded

to more rigorously classify the other two projects, and iteratively refined these categories and their

definitions. Finally, when the model was established, the other three supervisors read half of the sample

Usability Defect Classification Model

Failure Qualifier

Wrong Missing

Incongruent mental
model Irrelevant

Better way Overlooked

Interface

Interaction

Usability Defect Categories

Emotion

Task

User Difficulty

Cause Attributes

Effect Attributes

 118

independently, applying the final classification model, and consulted the category definitions, and

terminology until a consensus was reached. We assessed agreement informally throughout.

The remainder of this section provides an overview of the three attributes, including the changes

and addition to the original UPT.

6.3.1 Cause Attribute

This attribute is derived from ODC. In the original ODC, cause attributes are measured using defect

types and trigger. Defect type gives information about type of defects uncovered by different testing

techniques, while trigger is a condition that allows a defect to be discovered. However, in our research

we used defect types to group usability defects that share common characteristics, and trigger was used

to understand the underlying usability design flaws. The detailed description of defect types and trigger

are given below.

Usability Defect Categories

To classify usability defect categories, we used closed card sort. We began by classifying the written

usability defect description to a set of predefined usability defect categories as in [12], [95]. Since we

experienced some difficulties – lack of specificity and insufficient definition when using [12], [95], and

lack of information in defect reports during our preliminary analysis, we revised the original UPT by

only categorizing the defect types into two categories – interface related defects and interaction related

defects [76]. Interface defects refer to defects affecting the structure and behavior of graphical user

interface (GUI) aspects that affect the overall look and feel of the application. Interaction defects refer

to defects affecting the interaction process when a user interacts with a GUI. To reflect these two

categories, we reconstructed the original UPT’s primary and subcategories as follow:

- The original UPT category “visualness” is replaced by “GUI structure and aesthetics” as the

primary category, the “language” category is removed and all the subcategories are assigned

to new category “information presentation”, and the “manipulation” category is moved to

interaction defects.

- We extracted three primary categories of interface defects - GUI structure and aesthetics,

information presentation, and audibleness. GUI structure and aesthetics are about feel and

display given by interface, such as colors harmonious, object affordance and layout

 119

coherence. We only retained two subcategories of the original UPT (object appearance and

object layout), replaced “object movement” subcategories with “object (screen) state”, and

moved two subcategories “presentation of information/ results” and “non-message feedback”

to “information presentation” primary category.

- The primary category “information presentation” is about information relevancy and

credibility of data, feedback message, on screen text, and results presented in the user

interface. It is divided hierarchically into six subcategories. We adapted “data presentation”

subcategories in [76], reused “non-message feedback”, “error, notification and feedback

message” in UPT, and added two subcategories “on screen text” and “menu structure”.

- The primary category “audibleness” was adapted from [95] to accommodate the audio, speech

and voice capability. We replaced the subcategories “prompt” with “audio cues”.

- For interaction defects, we extracted three primary categories – manipulation, task execution,

and functionality. In contrast to the original UPT, the primary category “task mapping” and

“task facilitation” are refined.

- Manipulation is concerned with the user’s ability to understand and manipulate user interface

objects [12]. We adapted four subcategories as in ODC-usability framework – keyboard press,

mouse click, finger touch, and voice control. We added three subcategories; scrolling

mechanism, drag and drop, and zooming.

- Task execution focuses on the outcome of certain tasks. We adapted three subcategories as in

the fault model [76] – action, reversibility, and feedback. Referring to the original UPT, we

considered the subcategories “interaction”, “navigation”, and “task/function automation” as

“action” subcategories. The subcategory “alternatives” was replaced by “reversibility”, and

the two subcategories “user error tolerance” and “keeping the user on track” were combined in

“system task feedback” subcategory.

- Functionality refers to any problem due to the capabilities provided by the product. We reused

functionality definitions from [103].

The resulting model is illustrated in detail in Figure 6.2, and a definition of each category is listed

in Table 6.1. The detail categories, subcategories, and example defects can be found in Appendix C.

 120

Figure 6.2. Hierarchical structure of defect types, effect and failure qualifier. The colors indicate the

different sources we adapted in our classification model.

!

!

User Difficulty

Failure Qualifier

Human emotion

Overlooked

Better way

Irrelevant

Incongruent
mental model

Missing

Wrong

Task

Adapted from Lelli et al., 2015

Adapted from Keenan, 1999

Adapted from Geng et al., 2014

Adapted from Harkke et al., 2015

Classification adaptation:

Adapted from Vilbergsdóttir et al., 2006

Our proposed categories

Interface

Interaction

Functionality

Manipulation

Audibleness

Information
presentation

Visualness

Object (screen) appearance

Object (screen) layout

Object (screen) state

Data presentation

Object (screen) naming and
labeling

Non-message feedback

Error, notification and
feedback message

Voice and sound

Audio cues

Text and feedback in speech

Keyboard press

Mouse click

Finger touch

Voice control

Scrolling mechanism

Defect

Task execution

Action

Reversibility

System Task Feedback

Drag and drop

On screen text and results

Zooming

Menu structure

 121

Table 6.1. Definition of key defect categories.

Defect Definition
Interface Any unpleasant graphical user interface aspects that affect the overall look and feel of the application.
Visualness Any difficulty encountered by the user when they view objects (icon, menu item, scroll bar, button,

favicon), symbols, and images present in (or missing) the user interface.
Object (screen) appearance Refers to how individual objects look, sound, or appear to other senses. These problems involve

object affordance such as the use of colors, size, and animation.
Object (screen) layout Refers to layout coherence and how user interface objects are laid out on the screen. These problems

involve spatial organization, such as the use of balance and symmetry, the alignment and spacing of
elements, the grouping of related elements, the placement of screen objects, and consistent use of the
GUI elements across applications.

Object (screen) state Any difficulty encountered by the user when they cannot recognize or are unclear about the effect of
object state change, including the change to its behavior and appearance.

Information presentation Any difficulty encountered by the user when they view, read, and interpret the information or data
presented in the user interface.

Data presentation Refers to how data is presented, structured, and controlled.
Object (screen) naming and
labeling

Any difficulty in language such as words/ terminology used as names on objects (such as buttons,
title bars, field labels) and screens [12]. These problems also include inconsistencies of naming and
labeling standard.

Non-message feedback Any difficulty that is due to distracting, annoying, and confusing feedback [12], and insignificant use
of visual cues that appears while using user interface.

Error, notification and
feedback message

Any difficulty in language such as words used in phrases and sentences in error, notification, and
feedback message. These problems also include the ability of users to understand and interpret the
meaning of information presented in the message.

On screen text and results Refers to completeness, accuracy and credibility of information in on screen text/ instructions, online
help and tutorials, and results of user queries.

Menu structure Refers to organization of menu, and grouping of related options.
Audibleness Any unpleasant audio like sound management and sound alerts.
Voice and sound Refers to any problem related to audio cues at the interface like giving distracting, disturbing, and

annoying sounds, or missing sound alerts when the message comes to the screen.
Text and feedback in speech Refers to any problem when there is difficulty in understanding speech signs and translating these to

text.
Interaction Any difficulty encountered by the user when they interact with the application
Manipulation Any defects that occur when the user has trouble with some aspects of manipulating objects on the

user interface
Keyboard press Any difficulty encountered by the users when they use keyboard to interact with the user interface.

These problems include the problematic use of access keys as a shortcut to issue menu commands.
Mouse click Any difficulty that involves the user’s ability to use mouse and its buttons to directly manipulate

objects (speed of cursor tracking triple clicking, depressing multiple mouse buttons simultaneously)
[12]

Finger touch Any difficulty encountered by the users when they touch areas of the screen to move the pointer,
press button, and manipulate image.

Voice control Any difficulty encountered by the users when they use voice signals to activate user interface or
invoke certain tasks.

Scrolling mechanism Any difficulty encountered by the users when they use vertical scrollbars to move data up and down,
and horizontal scrollbars to move the data left and right within the view.

Drag and drop Any difficulty encountered by the users when they select and drag an object, and drop it into another
location in the interface.

Zooming Any difficulty to change gradual image scaling operation.
Task execution Any defects encountered by the users that inhibit a user from completing an intended action.
Action Any defects that occur as a result of executing a task.
Reversibility Refers to the ability of the application to allow user to explore the interface and make mistake, and

roll back the action such as multi-level undo operation, and the ability to cancel long-running actions.
System Task Feedback Refers to the ability of the application to always keep users informed about what is going on for

every user event, such as prompt a warning, status, and error message.
Functionality Any problem that is due to the facilities provided by the product to user.

 122

Trigger

Another aspect of cause attributes is to help software developers understand the root causes that trigger

dissatisfaction of the software product from the viewpoint of the users. Since in OSS projects, usability

is not formally evaluated with the presence of actual users, it is quite difficult to explain to software

developers why certain aspects of the software product become an issue for some users. With this in

mind, we believe an effective classification model is the one that may explain why users are

experiencing problems. In the ODC model [77], trigger measures the nature of testing being conducted

in order to highlight the kind of testing techniques necessary to discover defects. However, in open

source projects, such information is not available. Therefore, when analyzing trigger attributes from

defect description we used failure qualifier from ODC as a set of predefined metric.

In the usability evaluation context, the failure qualifier attribute is used to capture more

information about usability defects through verbal communication with the test participant or recording

user test session [99]. For instance, the usability evaluator can ask the test participants why they did not

notice the presence of menu or some elements on the user interface (missing). On the contrary, we

interpret one failure qualifier just based on a statement written in the defect report. As such, we have

refined the definitions of the failure qualifier attributes to suit our case as listed in Table 6.2. We

assume that this ODC failure qualifier would be a good ground on which to base users’ justification on

how they discover the usability defects.

Table 6.2. Failure Qualifier – sample phrases from usability defect reports [99].

Qualifier Definition Representative quotes from sample
Wrong When the reporter notices that something

has gone wrong while performing a task or
some elements on the user interface are
violating usability principles and
standards.

1. The New project wizard has an icon based on the closed
project icon, which is not how it would appear to the user.

2. On reload, the lock icon should immediately disappear
when the old document has finally gone away, not when
reload has just been tapped upon

Missing When the reporter fails to find something
in the user interface that he/ she expected
to be present, or the results of performing
certain task did not meet his/ her
expectations.

1. When initiating a WebRTC call, Firefox for Android
currently doesn't pop up a permission request to use the
camera/microphone. We need this to pref on.

Irrelevant When the user interface contains
information objects, steps to accomplish
task or functionality that do not contribute
to system services and are unnecessary

1. This is needless functionality and annoying….)
2. It is pointless to show the button that lists all your tabs

when you only have one open. In fact, it really is pointless
to show them unless you have more tabs than your Window
can hold.

Better way When the reporter suggests that something
in the user interface could have been done
differently, or suggests a different way of
doing a certain task

1. It’s nice to change the dialog resizable and scrollable in the
tabs' contents for temporarily (The Account Settings is so).

2. I would prefer that if someone wants to re-populate the
dialog text from selected text, they simply type ^F again.

 123

Table 6.2. Failure Qualifier – Sample phrases from usability defect reports [103] (Continue)
Overlooked When the reporter overlooks an entity in

the user interface, or does not know how
to perform a certain task

1. It happened to me a couple of times that I thought that I
closed all editors by mistake

2. Didn’t know how to change it back or that it's even
possible

Incongruent
mental model

When the user interface is unclear because
it does not match the reporter's mental
model, previous experiences, or they
notice inconsistencies with other similar
applications

1. I haven't found a official DL link for Royale but the one I
now used looks most "official".

2. I expected to be able to enter my username and my
password as usual, not having the keyboard overlapping
text input fields.

6.3.2 Effect Attribute

In many defect classification models [77], [95], [102] severity rating is commonly used as a metric to

measure the potential effect of usability defects on the intended user. Since usability defects severity

tend to be unfairly treated by software developers [23], we argue that defect severity is not a reliable

metric for analyzing usability defects for software quality improvement.

In Geng’s classification [95], the effect attribute is studied from three components – problem in

learning, problem in performing given tasks, and user perception. Each of these components constitutes

more specific values such as that problem in learning has three values - learnability, memorability, and

retention over time, and performing has two values - effectiveness and efficiency. These values are

measured by examining time, effort, success rate and level of happiness showed by users when

performing assigned tasks during usability testing. Since usability defects in OSS projects are not

directly observable from usability test data, such metrics cannot be used in our model. In fact, in

software development we recognize that the impact the defect has on the user and likelihood of

occurrence is important to prioritize defect fixes, but such information is rarely present in defect

reports, or if it is reported, the information is not clear. For this reason, we examined the effect of

usability defects as the user difficulty, in terms of human emotion and task performance.

In this research, we examined statements and phrases of defect reports to decide which statements

constitute impact on human emotion and impact on task performance. Using open card sort, the main

researcher reviewed statements and generated labels of the emotion and task difficulty, then merged

and sorted the lists into meaningful descriptive labels, and finally, created a set of codes. From our

analysis, we interpreted impact of task performance based of the software quality attributes, such as

accessibility, understandability, noticeability, loss of data, complexity, and visibility. For human

emotion such as confusion, frustration, and annoyance, our interpretation was based on the terms such

 124

as “distract”, “annoy”, “frustrate”. If such terms are not presented in the defect reports, we analyzed the

phrases such as [104]:

• “I am confused about …”

• “I’m not sure …”

• “I don’t know …”

• “I can’t figure out …”

• “I am having a problem …”

• “I assume …”

• “How do I …”

We started the examination with the Mozilla Thunderbird dataset. Once the Mozilla Thunderbird

dataset had been classified, the process was repeated with Firefox for Android and Eclipse Platform

datasets. If there were inconsistencies, the draft codes were modified and refined again. Finally, the

main researcher and supervisors reviewed and discussed the appropriateness of the resulting codes and

definitions. Overall, when reporting a particular usability defect, reporters tended to address a single

difficulty at a time, and reporters provided little evidence to substantiate their difficulties claim. Table

6.3 and Table 6.4 define each of these user difficulty attributes, and lists sample phrases from open

source defect reports.

Table 6.3. Effect on human emotion and quotes for each. Bold indicates emotion that affected human
emotion.

Emotion Definition Representative quotes from sample
Distraction Anything that draws a user’s attention away

from their current focus or desired focus of
the user interface or doing a certain task

1. The user is confronted with too many coolitems and their
"grab bars". It is distracting, and it is unlikely that this
granularity of repositioning is required.

2. The lock animation that I'm currently seeing is distracting.
It makes me take a second look at the screen to find out why
something has just moved.

Confusion The feeling of being unclear about the
software function

1. This leaves the novice user in an unexpected state.
2. I find the navigation arrows in the toolbar confusing.

Annoyance Frustration or hardship induced by using the
user interface or software functionality that
leads to irritation, frustration and anger

1. I find it frustrating to navigate to the file when I know the
name and just want it opened.

2. Some people (me) find vibrate on every single click to be
quite a nuisance.

 125

Table 6.4. Effect on task performance and quotes for each. Bold indicates software qualities that
affected task performance.

Task Definition Representative quotes from sample
Complexity The difficulties about understanding and using

the software product and its components, in
which the user has to perform irrelevant actions
or needs to perform extra steps to accomplish a
task

1. I was able to copy the file on to my windows
machine, edit it using Thunderbird on that
machine, and then re-copy it to the EeePC, but
that should not be necessary.

2. It generally takes about 2-4 taps to figure out
where the checkbox tap target is at …

Visibility The poor capability of user interface or product
components to keep users informed about what is
going on, through appropriate feedback, obvious
prompts and cues within reasonable time

1. The cvs and resource icons are hard to
distinguish as well.

2. … active editor (tab) hard to detect (see
screenshot)

Performance The effect on task execution such as peed
efficiency, availability, accuracy, throughput,
response time, recovery time, resource usage

1. Clicking on the 'Plug-in Details' or 'Configuration
Details' buttons in the About dialog are time-
consuming operations when the product in
question has a large number of plug-ins

2. When a file type is selected the dialog is frozen
for a very long time and no busy cursor is
shown.

Accessibility The difficulties the user has to access, use and
benefit from certain functions in the user
interface. The degree to which a product, device,
service, or environment is available to as many
people as possible

1. Therefore, I can't do any searches
2. … thus a new user will not be able to click

anything on that page at all.

Loss of data An unexpected error made by the user when
performing a task, in which information is
destroyed by failures, or neglect in storage,
transmission, or processing.

1. No thanks for making me lose everything, my
tabs, bookmarks etc by adding an extra search
app, which I do not need.

2. This will cause data loss and perceived
instability in the IDE

Understandability The difficulties about understanding the user
interface metaphors and product functionality

1. If you close all the views in the perspective, it
remains open, but looks very bare, and it's not
clear what the user can do next.

2. … The new user has no idea what a perspective
is.

6.4 Evaluation

We wanted to evaluate our new usability defect classification taxonomy with reporters and developers.

We used a web-based survey as a tool to evaluate our proposed revision of usability defect

classification. The following subsections describe evaluator selection, problem selection, and protocol

in conducting our evaluation.

6.4.1 Evaluator Selection

Our evaluators were recruited from the researchers’ industrial contacts. The evaluators had varying

levels of experience in industry and academic software development environments. The evaluators do

not necessarily require HCI expertise, since the aim of the OSUDC taxonomy evaluation targets the

understandability of the model rather than the utility of the classification. Participation was voluntary

 126

and evaluators were allowed to discontinue participation at any time during the research activity. The

consent to participate in the survey was implied by the return of the anonymous questionnaire.

However, a precise response rate cannot be determined, as the total number of the evaluators who

received the invitation is unknown.

We obtained approval from the Swinburne University of Technology Human Research Ethics

Committee (SUHREC) prior conducting this survey (Approval number: SHR Project 2016/325). The

details instruments used for the evaluation can be found in Appendix F.

6.4.2 Problem Selection

We randomly selected ten usability defects from the 377 usability defects that had been examined

during the analysis phase prior to building the revised open source usability defect classification.

6.4.3 Protocol

We evaluated the classification model using web-based survey, Opinio tool. We conducted self-

administered evaluation survey, as this kind of survey approach offers greater flexibility to evaluators.

Evaluators can participate at locations and times of their choosing. The survey was opened from

February until May 2017. Each evaluator was given the following material:

• OSUDC taxonomy document – to understand how the taxonomy works, sample problem

classifications, and glossary of terms.

• Link to the survey – the survey has three sections. In the first section, evaluators are required

to fill out a small survey questionnaire about personal background. The pre-questionnaire

contains a total of six questions. In the second section, evaluators are given ten usability

defects to be analyzed according to the OSUDC taxonomy. Each usability defect contains a

total of four to six questions depending on a evaluator’s answer (s). In the third section, the

evaluator was asked to give feedback based on their experience of using the proposed

taxonomy.

• Consent Information Statement – to indicate evaluator consent to participate in the study.

 127

The evaluators were not monitored and were allowed to classify the problems in any order,

revisiting any problems they wished. There was no time limit imposed on the evaluators. See Appendix

D for complete evaluation questions.

6.5 Results

In our survey, we only focused on the inter-rater agreement between evaluators when classifying

usability defects. Since our target users are from OSS communities that have varying level of

knowledge in HCI and usability-related matter, this research is aims to produce a simple taxonomy that

could be understood by both technical and non-technical users when they first read the OSUDC

documents. Based on our small-scale evaluation strategy, the findings discussed in the next section

established principles of classifying usability in OSS projects and subsequently portrayed an early

design element of the required OSS defect reports.

6.5.1 Evaluator Demographic Information

A total of twelve evaluators from 26 to 55 years of age, participated in the evaluation of OSUDC

taxonomy. The majority of the evaluators were female (66.7%). As shown in Table 6.5, most of the

evaluators are academic researchers and software developers, accounting for 41.7% to 50%. Almost

92% of evaluators had not received any training or certification related to usability evaluation/ HCI/

UX. As Table 6.6 indicates, the majority of evaluators had limited familiarity in handling usability

defects. In terms of experience in using a defect classification scheme, RCA was the most commonly

used classification scheme among the evaluators (see Table 6.7).

Table 6.5. Demographic information of the evaluators.

Job responsibility Evaluators
Academic researcher 50.0%
Software developer with experience in both user interface and software development 41.7%
End user with HCI/ UX/ usability knowledge 8.3%

Table 6.6. Evaluators’ familiarity with usability defects.

Extremely familiar 0.0%
Moderately familiar 8.3%
Somewhat familiar 41.7%
Slightly familiar 41.7%
Not at all familiar 8.3%

 128

Table 6.7. Experience in using defect classification scheme.

Orthogonal Defect Classification (ODC) 8.3%
Root Cause Analysis (RCA) 25.0%
Hewlett Packard Defect Classification Scheme (HP-DCS) 0.0%
Classification of Usability Problems (CUP) 0.0%
Usability Problem Taxonomy (UPT) 0.0%
Usability Action Framework (UAF) 16.7%
Other 8.3%

6.5.2 Reliability Analysis

To measure the reliability of evaluators’ agreement to classify usability defect reports using our revised

usability problem taxonomy, we used Fleiss’ kappa as reference [105]. The Fleiss’ kappa is an

extension of Cohen’s kappa to measure inter-rater agreement between three or more evaluators. We

used the Real Statistics Data Analysis Tool3 installed in an Excel spreadsheet to calculate the Fleiss’

kappa values.

For the classification of the defect category component, kappa was computed at the primary

category level only. Since the number of observations within each primary category was varied,

analysis at the subcategory level would have invalidated the kappa values. The Fleiss’ kappa results for

each OSUDC component are reported in Table 6.8. According to [106], Cohen suggested the Kappa

result could be interpreted as follows: values <= 0 indicating no agreement and 0.01-0.20 as none to

slight, 0.21-0.40 as fair, 0.41 – 0.60 as moderate, 0.61-0.80 as substantial, and 0.81 – 1.00 as almost

perfect agreement.

As we can see in Table 6.8, the evaluators’ agreement for the defect category component is the

highest, and it is the lowest for the failure qualifier component. Possibly, too many values defined for

failure qualifier and task difficulty have influenced our results, as addressed in [102]. Since we only

measured the agreement of defect types at the primary category, which has only three possible nominal

values (interface, interaction, and both), it is much easier for the evaluators to understand and learn the

defect types component rather than the eight and seven nominal values of the task difficulty and failure

qualifier, respectively.

To assess the level of agreement between evaluators classifying defect types at the subcategory level,
percent agreement was used instead of kappa statistics. The percent agreement for each usability defect
report studied was computed using cell matrix computation [107]. As shown in

3 http://www.real-statistics.com/reliability/fleiss-kappa/

 129

Table 6.9, the twelve evaluators were labeled with E1 until E12, and the six usability defect

subcategories were labeled as G - GUI structure and aesthetics, I – information presentation, A –

audibleness, M – manipulation, T – task execution, and F- functionality. The cells in the matrix is set to

1 if the evaluator assesses the usability defect is belongs to that particular defect types; otherwise it is

set to 0. Then, the percent agreement for each usability defect report was computed by calculating the

percentage agreement for each row and average the rows. In Table 6.9, it can be seen 7 out of 10

usability defect reports received high inter-rater reliability of more than 80%.

Table 6.8. Reliability measures for 12 raters in open source usability problem taxonomy evaluation.

Reliability measure Defect category User difficulty Failure qualifier
Fleiss’ kappa 0.240 0.130 0.114

Table 6.9. Percent agreement across twelve evaluators classifying defect types component.

Report Defect
subcategories

Evaluators
%

Agreement
E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

1 G 1 1 1 1 1 1 1 1 0 1 1 1 0.92
I 0 0 0 0 0 0 0 0 1 0 0 0 0.92
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 1 0 0 0 0 0 0 0 1 0 0 0 0.83
T 0 0 0 0 0 0 0 1 0 1 0 0 0.83
F 0 0 0 0 0 0 0 0 0 0 0 0 1.00

Inter-rater Reliability 0.92
2 G 1 1 1 0 0 0 0 1 1 0 0 1 0.50

I 0 0 0 0 1 0 0 0 0 1 1 0 0.75
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 0 0 0 1 0 1 0 0 0 1 1 1 0.58
T 0 0 0 0 0 0 1 0 1 0 0 0 0.83
F 0 0 0 0 0 0 0 0 0 0 0 0 1.00

Inter-rater Reliability 0.78
3 G 1 0 1 1 0 0 0 0 0 0 0 1 0.67

I 0 0 0 0 1 1 1 1 1 1 0 0 0.50
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 0 0 0 0 0 0 0 0 0 0 0 0 1.00
T 0 1 0 0 0 1 1 0 0 0 0 0 0.75
F 0 0 0 1 0 0 0 0 0 1 1 0 0.75

Inter-rater Reliability 0.78
4 G 0 0 0 0 0 1 0 0 1 0 0 1 0.75

I 0 0 0 1 1 0 0 0 0 1 0 0 0.75
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 1 1 0 0 1 0 0 1 0 0 1 0 0.58
T 0 0 1 1 0 0 1 0 1 0 0 0 0.67
F 0 0 0 0 0 0 0 0 0 1 0 0 0.92

Inter-rater Reliability 0.78
5 G 1 1 1 1 0 0 1 1 1 1 0 1 0.75

I 0 0 0 0 1 0 0 0 0 0 1 0 0.83
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 0 0 0 0 0 1 0 0 0 0 0 0 0.92
T 0 0 0 0 0 0 0 0 0 0 0 0 1.00
F 0 0 0 0 0 0 0 0 0 0 0 0 1.00

Inter-rater Reliability 0.92

 130

Table 6.9. Percent agreement across twelve evaluators classifying defect types component (Continue)

Report Defect
subcategories

Evaluators %
Agreement E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12

6 G 0 0 0 0 0 0 0 0 0 0 0 0 1.00
I 0 0 0 0 1 1 0 0 1 1 0 1 0.50
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 0 0 0 0 0 0 0 0 0 0 0 0 1.00
T 1 1 1 1 0 0 1 1 0 0 1 0 0.58
F 0 0 0 0 0 0 0 0 0 0 0 0 0.92

Inter-rater Reliability 0.83
7 G 1 1 0 1 1 1 1 0 0 1 1 1 0.75

I 0 0 0 0 0 0 0 1 1 0 0 0 0.83
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 0 0 0 0 0 0 0 0 0 0 0 0 1.00
T 0 0 0 0 0 0 0 0 0 0 0 0 1.00
F 0 0 0 0 0 1 0 0 0 0 0 0 0.92

Inter-rater Reliability 0.92
8 G 0 0 0 0 0 0 0 0 0 0 0 0 1.00

I 0 0 1 0 1 1 1 0 1 1 0 0 0.50
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 0 0 0 0 1 0 0 0 0 0 0 0 0.92
T 1 1 1 1 0 1 1 1 0 0 0 1 0.67
F 0 0 0 0 0 0 0 0 0 0 1 0 0.92

Inter-rater Reliability 0.84
9 G 0 0 0 0 0 0 0 0 0 0 0 0 1.00

I 0 0 0 1 1 0 0 0 0 1 0 0 0.75
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 0 0 0 0 0 0 1 0 0 0 0 0 0.92
T 1 1 0 1 0 1 0 0 1 1 1 1 0.67
F 0 0 1 0 0 0 0 1 0 0 0 0 0.67

Inter-rater Reliability 0.84
10 G 0 0 0 0 0 0 0 0 0 0 0 0 1.00

I 0 0 0 0 1 0 0 0 0 1 0 0 0.83
A 0 0 0 0 0 0 0 0 0 0 0 0 1.00
M 0 1 0 1 0 0 0 1 0 0 1 1 0.58
T 1 0 1 0 0 0 1 0 1 0 0 0 0.67
F 0 0 0 0 0 1 0 0 0 1 0 0 0.83

Inter-rater Reliability 0.82
Notes:
G – GUI structure and aesthetics, I – Information presentation, A – Audibleness, M – Manipulation, T – Task execution, F -
Functionality

According to [107], percent agreement less than 61% can be seen as problematic, and many texts

recommend 80% agreement as the minimum acceptable inter-rater agreement. Using this standard, we

found that most evaluators were in disagreement when classifying usability defects into the task

execution subcategory. Possibly, the ambiguity around definition and unclear separation of

manipulation, task execution, and functionality subcategories caused them to struggle to classify a

number of usability defects, as addressed by a few evaluators in post-questionnaires:

 “I wasn't too sure about the distinction between Task Execution - Action and Functionality

but it didn't come up in the evaluation.”

 131

“Some of the items appear to overlap; 'Any difficulty encountered by the user when they

interact with the application or while performing a task.' - The interaction with the

application could be a mouse click. Why do we have both a generic 'difficulty' and a specific

action? The definitions could be clarified by exclusions: 'items like.. are listed under ...”

“Some of the terms have to recheck the meaning and the taxonomy can be justified using more

than one term.”

Table 6.10. Kappa for the attributes of task difficulty and failure qualifier.

OSUDC component Category Kappa
Task difficulty Complexity 0.030

Visibility 0.297
Performance 0.109
Accessibility 0.061
Loss of data -0.008
Understandability 0.215
None 0.003
Other -0.017

Failure qualifier Missing 0.144
Wrong -0.016
Incongruent mental model 0.020
Irrelevant 0.050
Overlooked 0.026
Better way 0.307
None 0.037

As shown in Table 6.10, in ratings for the task difficulty and failure qualifier component, the

agreement among evaluators is slightly poor. As can be seen, there is fair level of agreement for

visibility, understandability, and better way category (κ > 0.3). The non-significant result obtained for

this classification is likely due to the nature of open source defect report descriptions that were vague,

incomplete, and contained irrelevant information [12]. Some of our evaluators also addressed this

concern:

“The identification of human emotion was a bit hard and more clarity in this area would be

helpful. E.g. how do you identify annoyance from simple text? Not all the statements have

'emotion' words such as 'I find it a distraction' etc”

“Some of the defects are rather 'vague' and it is not easy to fully classify them...”

Another explanation on the low level of agreement in task difficulty component could be due to the

limited choices of task difficulty values provided in our OSUDC taxonomy. The introduction of these

difficulties – complexity, visibility, performance, loss of data, and understandability is highly

 132

influenced by our sampling approach: these difficulties could be varied between different usability

defect context and the projects we studied.

With regard to the failure qualifier component, the value “better way” was the most common value

used by the evaluators. Unsurprisingly, given the nature of usability defects that constitute subjective

users satisfactions and opinions, we observed many defect reporters preferred to use words or phrases

such as “it’s nice to...”, “I would prefer...”, or “I suggest to...” to express their expectations. Obviously,

this kind of phrase is much easier to classify as compared to other qualifiers that could be

misinterpreted. For example, consider the snippet of Bug#70513 of Eclipse Platform below. If we read

the first sentence, one may consider that the reporter found something went wrong when he closed the

parent window. However, the following sentence shows that the action result is not wrong, but his

concerns were that some people might find it useful if some other options were presented.

“…… Seems like closing the parent window doesn't close the lightweight windows wrong

opened by it. Maybe somebody finds that useful, but you have to put at least some kind of

closing option to the lightweight window Better way” [Bug#70513 of Eclipse Platform]

6.5.3 Feedback on Revised OSUDC

This section presents and discusses the results from the post-evaluation questionnaire filled out by the

evaluators at the end of the survey. The post-evaluation questionnaire had four questions consisting of

one closed question and three open-ended questions.

The closed question was measured on a 5-point Likert scale using the satisfaction-based statements

as follows:

• Learnability – the degree to which an evaluator is satisfied that the revised OSUDC is easy to

be learned with no training or demonstration;

• Easy to use – the degree to which an evaluator is satisfied that the revised OSUDC is simple,

user friendly, and flexible to be used;

• Completeness – the degree to which an evaluator is satisfied that the revised OSUDC contains

all required categories and components to be able to classify usability defects;

• Clarity – the degree to which an evaluator is satisfied that the definitions and examples of

revised OSUDC are clearly written so that it is easily understandable;

 133

• Practicality – the degree to which an evaluator is satisfied that the revised OSUDC is

convenient to use;

The responses are depicted in Figure 6.3. Based on the “Strongly satisfied” and “satisfied” rating,

we see that more than 50% of the evaluators were satisfied with the revised OSUDC. One evaluator did

not fully complete feedback on the revised OSUDC.

Figure 6.3. Responses on the five satisfaction aspect.

Among the five satisfaction aspects, only one evaluator was dissatisfied with the completeness of

OSUDC, and two evaluators were dissatisfied on the clarity of OSUDC. These evaluators expressed

their dissatisfaction comments in the accompanying open-ended questions. Unfortunately, these

comments were too vague for us to consider for future improvement. For example, the evaluator who

was not satisfied with the completeness of OSUDC only stated the following comment:

“It sometimes feels 'incomplete'...”

Concerning the ease-to-use aspect, four evaluators rated neutral in satisfaction. Possibly, the use of

Opinio tool as a medium of evaluation can have a negative effect on the evaluator’s experience.

Switching back and forth between the Opinio tool and the OSUDC reference document can decrease

the sense of annoyance because the numerous defect categories are unintuitive, making the

understanding and selection of appropriate category can be difficult. If using a self-developed tool, a

pop up window could be used to display the definitions and examples when a category is selected. This

 134

could possibly increase the flexibility of using the OSUDC. One evaluator addressed this concern as

follows:

“Rather than opening the guidelines in a different tab, it could list them at the side (and

appear all the time) for ease of reference.”

Overall, the evaluators’ feedback provides a positive indicator on the effectiveness of OSUDC in

classifying usability defects and have important implications for further research. While the evaluators

conveyed a great understanding on the OSUDC, we are uncertain if different types of users will have

the same understanding. For example, this new classification would be useful for helping experienced

evaluators analyzing usability defects but may not be helpful for less experienced evaluators, because

the information required in this new classification may not be relevant to them. Thus, we may need a

comparison study with a larger number of respondents so that we can confirm the effectiveness of

OSUDC on all users.

“Easy to understand the components and the descriptions.”

“It uses normal terms and easy to understand”

 “It has a wide range of classifications and the definitions of each classification are clear”

“Differentiating between interface problem and interaction problem with interface is a

good feature”

“Seems to be complete. I think it is beneficial to have single taxonomy for that captures

usability defect, failure qualifier and user difficulty”

6.6 Threats to Validity

We have considered two types of possible threats that can affect the validity of our revised OSUDC,

which we discuss below.

6.6.1 External Validity

One possible threat to the external validity of this evaluation survey is generalization of the findings.

There are three factors to consider. First, the small number of participations in this survey did not

represent the varying level of expertise of software development practitioners. We found that six out of

 135

twelve evaluators are academic researchers with low familiarity of usability defects. Second, since our

research design strategy included recruiting evaluators through researcher’s industrial contacts, there

could have been evaluators who volunteered to take part in this survey with a specific purpose (e.g

personal reasons), which may influence how they responded to the survey. Third, the evaluators have

limited usability knowledge, as we found 11 out of 12 evaluators had not received any usability-related

training. This might affect their understanding on some of the usability-technical terms used in the

OSUDC definitions. However, the sample classification we provided in the reference document may

have helped the evaluators to understand the classification process.

Whilst these factors will inevitably result in selection bias, it is therefore difficult for us to argue

that the results we obtained can be generalized to the wider population, especially in the context of

OSS development.

6.6.2 Internal Validity

In our study we analyzed 377 usability defect reports from Bugzilla for Mozilla Thunderbird, Firefox

for Android, and Eclipse Platform projects that were tagged with usability-related keywords. We did

not consider defect reports that were not tagged with usability-related keywords although in our

observation they were related to usability issues. We expect that our findings also apply to other OSS

projects, even this limitation may not be fully representative of other OSS projects. However, the

categories identified in OSUDC cover vast spectrum of categories from both usability (adaptation of

UPT) and software (adaptation of ODC) engineering domains. We can hence expect that our findings

are generalizable and reflective of the OSS projects.

6.7 Discussion

The level of agreement between the twelve evaluators was overall best for the defect types component,

while agreement on task difficulty and failure qualifier component is slightly poor. We considered

three possible factors that affected the non-significant results obtained for this evaluation process. First,

as pointed out by Keenan’s [12], poor quality of defect descriptions could potentially affect

classification results. From our observation of 377 usability defect reports being studied, most of these

reports are composed of simple text. While [20], [29] suggested that a high quality defect report should

contain long textual descriptions, our findings show that the median length of usability defect

 136

descriptions studied only have 65 words. With regard to task difficulty, our results in Section 4.2.2.1 of

Chapter 4 indicated that within the 65 words length of description, less than 30% of defect reports

explained the impact of the problems on human emotion and task. Therefore, the lack of contextual

information in the usability defect descriptions possibly makes it difficult for evaluators to interpret and

classify task difficulty and failure qualifier components.

The second factor that produces insignificant evaluation results was likely due to the absence of

training and a demo prior to conducting the evaluation. Previous studies have demonstrated the

necessity of initial training to increase user’s familiarity and understanding of certain tools, aspects,

and concepts [12], [102], [62] We also acknowledge the need for brief training, especially for novice

usability evaluators, to help them better identify and rate usability defects. However, training was

intentionally not provided in the experimental design of this research. This is because we wanted to

know if the material and documentation of the proposed taxonomy is complete and understandable to

guide users in classifying usability defects without training. In our future work (discussed in Section

8.4.2), we will ensure that the evaluators receive more training in the use of the OSUDC and we will be

more selective in recruiting evaluators that have sufficient knowledge of the software, domain, and

usability-related context.

The third factor may be caused by the effect of novice usability evaluators. As described in Section

6.5.1, almost all evaluators in this evaluation were novice usability evaluators. More than 90% of them

never received any usability-related training, and less than 25% of them have used ODC, RCA and

UAF. The lack of knowledge in usability/ HCI terms and concepts is one of the obstacles for the

evaluators to produce more accurate analysis.

The feedback we obtained from the post-questionnaires provides a good insight into the needs of

non-technical users when analyzing and understanding usability defects. Especially in OSS projects

development, where usability experts are not always available, the classification scheme to be

introduced must be simple to cater the needs of open source communities that are not “usability-

savvy”. To address the abundance of technical words and make a clear OSUDC attribute definition, for

example, we could supply some snippets from existing usability defect descriptions. In this way, we

could minimize the risk of misunderstanding the OSUDC attributes that lead to incorrect classification.

Furthermore, the results of our evaluation reveal potential deficiencies in the current open source defect

report content as it relates to usability defects. For the purpose of practical usability defect reporting in

 137

conjunction with the proposed OSUDC, we recommend four characteristics for capturing usability

defects:

1. State the type of usability problem encountered

2. Justify the impact of the usability defects on user and task, possibly by relating to human

emotion and software quality attributes. Perhaps the human emotions could use scale rating so

that it could be objectively quantified.

3. State how the problem is identified

4. Use predefined attributes with accompanying open text; so that non-technical reporters can

have ideas what information should be included, and further explanation can be supplied in

open text input.

Overall, we found that the majority of the evaluators considered our revised OSUDC as

appropriate for OSS development. The classification components and categories in the revised OSUDC

were also considered generally sufficient. Based on the evaluators’ feedback, we refined our revised

OSUDC as summarized in Table 6.11. The modified version of the revised OSUDC was reflected in

the proposed prototype discussed in Chapter 7.

Table 6.11. Feedback on revised OSUDC and corresponding modifications.

Feedback Modification to be carried out Response to Feedback
Justify the taxonomy using
more than one term

No modification The comment is too general. The evaluator did not point out
which component or term needed to be justified using
multiple terms. We leave the OSUDC taxonomy as it is until
the formal industry evaluation is conducted.

Too many classification terms No modification We agree that the revised OSUDC contains a wide range of
categories. Under each component there is a list of categories
that represent situations that may occur. Such classifications
would be useful for separating usability defects to one and
only one category that will uniquely describe each defect.
The use of simple categories will result in overlapping
defects for different situations.

Overlap definitions in for
Interaction

Refined definition One evaluator addressed that one value of the Failure
Qualifier component “'Any difficulty encountered by the user
when they interact with the application or while performing
a task.' is overlapped. The phrases “interact with
application” addresses a generic interaction context, while
“performing a task” is specific action. We revised the
definition as it appears in Table 6.1.

Definitions of human emotion
should be clarified in the
context of defect reports that
have simple text

No modification We agree that human emotion is difficult to be identified
from simple text. To address this concern, we plan to
conduct a linguistic analysis to study how defect reporters
describe their emotions when experiencing usability defects,
similar to [39]. The findings can later be used to develop
glossary of terms as a reference for defect reporters and
software developers.

 138

Table 6.12. Feedback on revised OSUDC and corresponding modifications. (Continue)

Feedback Modification to be carried
out

Response to Feedback

Separate the items ‘structure’ and
‘aesthetics’?

Change category name Suggested by one evaluator. The word “structure” to
represent the interface design layout may cause confusion to
people with limited usability or HCI background. We
changed the “GUI structure and aesthetics” category to
“Visualness” as it reflected in Figure 6.2 and Table 6.1.

Unclear distinction between Task
Execution – Action and
Functionality

Refined definition We revised the functionality definitions as shown in Table
6.1.

6.8 Summary

This study presented an OSUDC to classify and analyze usability defects. In an absence of formal

usability evaluation in OSS development and limited information available in usability defect

descriptions, we revised the existing defect classification schemes to accommodate these limitations.

We integrated the traditional UPT from usability engineering practices with the original ODC. In our

revised OSUDC, we introduced cause-effect classification model that contains three main classification

attributes, namely (1) usability defect categories, (2) failure qualifier, and (3) user difficulty.

The revised OSUDC was evaluated through an online survey. Overall, we obtained good feedback

on our revised OSUDC and we refined this based on the feedback. Although we received a small

number of evaluators and the majority of them had very limited usability knowledge, their feedback

was important for us to understand the needs of those people who are not “usability-technically”

knowledgeable to classify usability defects. We found some categories and values of the revised

OSUDC were unclear and overlap to our evaluators and so we refined the definitions of those

categories to make it more understandable. Nevertheless, vagueness, incompletion, and lack of

contextual information in the usability defect description are identified as reasons for evaluators being

unable to use OSUDC effectively. We believe the new refined OSUDC can help software developers to

better understand usability defects and prioritize them accordingly. For the researchers, the revised

OSUDC will be helpful when investigating the trend of usability defect types and understanding the

root cause of usability defect problems. However, further deployment and evaluation of the OSUDC by

open source users is required to verify this.

The revised OSUDC was used in designing our new usability defect report forms. We explained

the utilization of this OSUDC in Chapter 7.

 139

7 Improving Usability Defect Reporting in Open Source
Project Development

In common software development practice, software defects are normally reported, tracked, and

managed using centralized defect tracking tools. While defect reporting tools are used to collect

information from reporters, current defect report forms such as in Bugzilla are too simple to report all

types of defects well, particularly usability defects. Moreover, the brief form does not help open source

communities that have varying levels of technical knowledge to create informative usability defect

reports, thus making it challenging to get an idea on what kind of information should be reported and

what kind of information is important to software developers. This generic approach to capturing all

information about the defects also limits the empirical research of defect data. Researchers are not able

to process the data directly, as they have to extract and partition the information to be able to use it for

further research. These limitations motivated us to find an answer for the fifth thesis research question

“RQ5 - How can open source usability defects be most effectively reported?”

Based on our review of the literature and analysis of different requirements gathered from our

survey of practitioners and open source software defect repositories mining, we designed a guided

defect report form for reporting usability defects. We tried to maximize the alignment between the

information needed by the OSS developers and the information that could be provided by OSS users.

We also aimed to assess the quality of usability defect descriptions generated using our proposed defect

report form.

7.1 Design

The form was designed to be like existing open source defect reporting form structures. This was to

both make the approach more feasible to adopt into practice but also to enable it to be built on top of

existing defect reporting tools. Common open source defect repositories, such as Bugzilla typically use

unstructured textual forms to report all software defects. As discussed previously, this kind of defect

report form is not helpful for different types of users, with varying technical knowledge. Specifically,

we are motivated by the knowledge that OSS software developers often receive incomplete and

uninformative defect information to fix usability defects [12]. Based on the analysis of the findings

from the three different studies discussed in Chapter 3 until Chapter 6, we argue it is essential to

 140

anticipate usability and software engineering principles to optimize usability defect reporting

processes.

We used the Bugzilla defect report form layout as a point of reference, a well-known open source

defect reporting tool. As far as possible, we tried to maintain our proposed usability defect forms as

similar as the original Bugzilla defect form layout to maximize users’ familiarity while minimizing

their confusion. Our strategy for designing the usability defect report forms consisted of the following

four criteria, based on the findings of the three studies that we have conducted earlier. Table 7.1

summarizes the main findings that have been extracted as an input to the proposed defect report form.

Table 7.1. Summary of the three studies translated into desirable features of our open source usability
defect reports.

Studies Main findings
Systematic Literature
Review

Problem description, severity, context, and redesign description were the four attributes most
commonly used to describe usability defects

Online survey • The desirable usability defect report form based on survey responses – simple, reasonable
predefined values, and introduce usability keywords, options and descriptors

• Reporters often provide actual output, expected output, and steps to reproduce when describing
usability defects

• Reporters ranked assumed cause as the most difficult information to provide. But this information
was considered to be the most helpful information by software developers

• The top five most important attributes used by software developers are assumed cause, screenshots,
steps to reproduce, excepted output, and software context

• Among the problems experienced, unclear assumed cause and insufficient information in steps to
reproduce was the most commonly encountered. Other common problems include unclear software
context and screenshots

Software defect
repositories mining

Supplementary information could improve defect resolution time

Mutually exclusive defect description – the attributes only capture one value. As shown in Figure 7.1

and Figure 7.2, the existing Bugzilla defect report form used in the Mozilla and Eclipse projects is

designed as unstructured textual forms. While Bugzilla supports custom fields to capture defect data

that is unique to each project and organization, it still uses a plain textual defect description to collect

information to reproduce the defect. The vague definition of this general description field in Eclipse,

for example, is likely to cause the reporter to report mixed information. This is because the reporter

may not have a sufficient appreciation of what is supposed to be written in the description field. They

will write whatever comes to mind and in many cases the information reported is not important or

useful to the software developer to use in order to correct the defects.

 141

Figure 7.1. Bugzilla defect report form of the Mozilla project.

Figure 7.2. Bugzilla defect report form of the Eclipse project.

 142

To this end, including reusing existing defect attributes – software information (e.g., product,

version, component), steps to reproduce, actual results, and expected results, we added new specific

attributes to capture usability defect information: solution proposal, impact, failure qualifier, assumed

cause, and usability defect category into the new usability defect report forms. For example, by

introducing dedicated attributes to address problem impact, we can help software developers to

understand and appreciate how users struggle with the usability issues.

Contextualized attributes with multiple instances – a defect attribute is explained with multiple

instances. Single attributes in the existing Bugzilla defect report form are considered inadequate for

reporting usability defects. For example, while defect report forms in the Mozilla project were

explicitly defined as three separate attributes to capture steps to reproduce, actual results, and expected

results, often the information that really needed to be reported was not explained clearly or even not

reported at all. In fact, some reporters may think that their reports are well explained, but they may

provide irrelevant or inadequate information.

For this reason, we propose several usability defect attribute instances to assist reporters in

supplying the most useful information in their usability defect reports. Even breaking up an attribute

into multiple instances does not always provide a better user experience and produce high quality

defect information, but this kind of form design may provide specific hints and examples about the

information the user should enter. These attribute instances depend on the context of information to be

described. For example, to explain the impact of the problem, we introduced three instances – How

does this problem affect your task? Explain your challenges, and How annoying is this problem to you?

Table 7.2 lists usability defect attributes and its corresponding instances.

Guided wizard defect report form – this provides defect attributes relevant to the reporter’s

information needs. From a technical user’s standpoint, plain forms are sufficient to report software

defects as they know what to write and which information is necessary to report, but not for less

technical users. For an optimum usability defect reporting process, we considered a guided wizard

form solution to guide novice reporters or less technical users through the reporting process, to hint at

what is expected from them at each step, and to present relevant options. Since we introduced more

usability attribute instances to collect important information, a plain form is not the best way to collect

this kind of data. We designed our usability defect report form as follows:

 143

Table 7.2. List of attributes used in new usability defect forms.

Attribute Attribute instances Input types

General descriptive information Summary / title Free form text
Usability defect type Predefined data
Problem summary Free form text
Steps to reproduce Free form text

Actual results Observation results Free form text
Support evidence Attachment

Impact User difficulty type Predefined data
User difficulty summary Free form text
Annoyance level Predefined data
Reproducibility Predefined data

Failure qualifier Failure qualifier Predefined data
Expected results User expectation Free form text

Support evidence Attachment
Solution proposal Solution proposal Free form text

Solution attachment Attachment
Software context Product Predefined data

Component Predefined data
Version Predefined data
Operating system Auto-generated data
Platform Auto-generated data

• We broke up the attributes into smaller sections presented one at a time. We used form tabs

with a random navigation approach to make it easy for reporters to navigate between data-

entry fields. As recommended in interaction design best practices, this approach makes

providing input much more manageable, even though it is the same amount of information.

This is a significant consideration to reduce the seeming complexity of reports by hiding long

lists of attributes. However, there are some attributes that are set as mandatory fields (i.e.,

product, version, component) – these attributes must be filled out before navigating or

submitting the form.

• Typically, early data entered influences later data. We used hide/show logic at the attribute

and page level, so that pages and attributes themselves may appear or disappear based on the

choices the reporter makes. For example, choosing between interface and interaction defect

will change defect category options. For these situations, wizard forms create the right pace by

preventing unnecessary information and ensuring that the reporter is presented with a guided

experience, rather than confusing attributes.

• We set predefined values for certain attributes to keep the content clear and concise. In this

way, we can avoid long defect descriptions with uninformative information.

 144

• Provide specific hints about the information the reporter must enter. We used a question-based

approach so that users have a better idea on what should be written in the textual form. For

example, in explaining the problem, we listed a few questions such as “what you saw when

you manipulated the object?”, “how well the user tasks are mapped to the system?”, or “how

well the system assists task completion?”.

• Defect attributes are different between software developers and users. Due to the limited

technical knowledge of many reporters, we used different attributes for understanding the

validity of the problem. While software developers were interested in knowing the technical

causes of the problem, we believe it is impossible for less technical users to supply such

information. Therefore, we used the failure qualifier attribute to know how users experienced

a usability problem, and assumed cause attribute for software developers to point out

programming code error or technical explanation.

Objective assessment of user difficulty – to measure the ability of impaired tasks (users’ feelings

and difficulty). An inspection of existing Bugzilla defect reports revealed its limitation for eliciting

information about user difficulty, seeming to miss a coherent expression of users’ feelings and

struggling to accomplish certain tasks. Moreover, the subjective nature of usability defects made some

people think the issue was invalid. Reeder and Maxion [104] defined the user difficulty effect as ‘when

the ability to achieved a goal is impaired’. We designed two user difficulty dimensions for instances

when users are experiencing usability problems according to [104]. The subjectivity in determining

user difficulty was measured by using scale rating and predefined value.

• Dimension 1 – Human emotion. This dimension helps to assess the internal cognitive state

such as confusion, frustration, annoyance, and uncertainty. We used a five rating scale to rate

this dimension towards the usability problems, which are not addressed by existing defect

report forms.

• Dimension 2 – Task difficulty. This dimension determines the likely consequence of usability

defects that caused each instance of difficulty. We used software quality metric attributes to

denote the task difficulty options– complexity, understandability, visibility, performance, and

accessibility. These attributes were extracted based on the most difficulties apparent in the

open source usability defect reports (discussed in Chapter 4). However, reporters have the use

of an “other” option if their difficulties do not match any of the options listed.

 145

7.1.1 Usability Form Implementation

The prototype of guided usability defect report forms was designed using Jotform4, an online

application to create custom online forms using intuitive drag-and-drop user interface. We used form

tab feature to group a set of usability defect attribute instances. The detail descriptions of the tab and

associated attributes are described below.

Reporter Identification: Similar to the Bugzilla defect report form, upon submission of a new defect

report a reporter has to select their role. The selection of this role depends on whether the defect

reporter finds the defects while using an OSS product, or when they contribute to OSS development.

The selection of this role will determine the relevant defect attributes that will be prompted in the next

display.

Figure 7.3. Reporter identification.

Software Information: The requested information about the open source software used will vary

between software developer and user. In Figure 7.4, when a software developer reports a usability

defect, the information about product, version, and component is compulsory to fill in. On the contrary,

for a user, such component information is not compulsory (see Figure 7.5). The compulsory

information is denoted by a red asterisk (*), and the defect reporter cannot go to the next page if this

compulsory information is left blank.

1. Product – The name of the OSS application.

4 https://www.jotform.com/form-templates/

 146

2. Version – The version of OSS application in which user discovered the usability problems. If

user can reproduce the problem in more than one version, select the earliest.

3. Component – The sub-part of the software in which the problem exists.

Figure 7.4. Software information tab for software developer.

Figure 7.5. Software information tab for user.

1"

2"

3"

 147

Description: The reporter must describe the details of the problem to be reported. Rather than an

unstructured text form as in traditional reporting tools, the information is captured in multiple attribute

instances as listed below:

4. Title – A headline summarizing the usability issues. As suggested in [39], the defect report

title should consists of descriptions about (1) a software entity or an entity behavior, (2) a

relevant quality attribute, (3) the problem, (4) the execution context, and (5) whether the

report is a defect or feature request.

5. Usability defect main category – There are four options for specifying the usability defect

types based on the revised OSUDC taxonomy. The selection of the main usability defect

category will determine the associated usability defect subcategories that will be prompted in

(6).

6. Usability defect subcategories – The value of defect subcategories are dependent on the

selection of the main usability defect category in (5). Upon selection of usability defect

subcategories, examples of defects associated with the selected category will be listed. If the

experienced problem is not in the list, the defect reporter may choose “Other” option and

describe in detail in the following text input (7).

7. Explanation of the problem – A detailed explanation of the problem.

8. Steps to reproduce – Step by step instructions to allow the usability defect to be reproduced on

another machine. It is recommended that the instructions be explicitly given as a numbered

sequence of instructions.

9. Failure qualifier –There are six failure qualifier values to understand how usability defect

reporters experienced the usability problems. Only one value can be selected at one time.

10. Pop up callouts - A hint on what kind of information should be supplied on the textual text

input. The callouts will pop out when a cursor is moved to that particular text box.

 148

Figure 7.6. Description tab.

Figure 7.6. Description tab (cont).

4"

5"

6"

7"

8"

9"

10"

 149

Actual Results: Describe what currently happens when the usability defect is present.

11. Actual results – Describe what was wrong, why is it wrong, or, if an error was thrown, what

was the error.

12. Task difficulty – The anticipated difficulties/ challenges the user encountered as a

consequence of the problem. Additional information about how you did a workaround for the

usability defect to continue using the software could be explained here.

13. Mood indicator – A scale to rate the user’s annoyance when the problem happens.

14. File attachment – Supplementary material such as image, audio, video, stack traces, or crash

log that can help others to reproduce the problem.

Figure 7.7. Actual results tab.

11"

12"

13"

14"

 150

Expected Results: Describe what should happen if the defect was fixed.

15. Expected results - What behavior you expected when the problem occurred, or what would

you like to change the way the software works or to improve some other aspects.

16. Solution proposal – A description of how to remedy the problem and justification of the

redesign proposal.

17. File attachment – Supplementary material to support the idea of proposal such as photoshop

sketches, ASCII art, screenshots, or code patch.

Figure 7.8. Expected results tab.

15#

16#

17#

 151

7.1.2 Example of Usage

We demonstrate our usability defect report form prototype, which captures usability issues related to

visualness. We reproduced the Firefox for iOS#1145602 issue in Figure 7.9 on our iPhone and wrote

the detailed defect descriptions based on our reproduction steps.

Figure 7.9. Firefox for iOS Report#1145602

This issue was found by OSS contributor, named jchaulk. Jchauk was not satisfied with the

About:Home tabs in Firefox browser apps, in which he could not directly find the newly opened tabs.

Since jchaulk did not contribute to the Firefox for iOS project, upon submission of a new usability

issue, he selected the second option (see Figure 7.10). Then he filled up the product and version

information in Software Information tab (see Figure 7.11). In the following Description tab, he wrote

the report title and selected a relevant usability issue he had experienced (see Figure 7.12). In this case,

the usability issue encountered by jchaulk is related to visualness – the difficulty to view newly opened

tab on the user interface, in particular, the visibility behavior of the tabs was problematic. To support

this issue, he explained his situation when he experienced the problem and supplied a step by step

explanation of how to reproduce the problems. He also indicated that he raised this issue was because

he felt that the new implemented tab feature was confusing (see Figure 7.12).

In the Actual Results tab, he highlighted the software context in which the problem occurred, and

explained the challenges and difficulties encountered by the problem. He also provided workaround

 152

solutions to overcome the problem. Then he indicated the annoyance level of the problem and attached

the screenshots to support his explanations (see Figure 7.13).

Lastly, in the Expected Result tab, jchaulk expressed his expectations on how the About:Home tab

should behave instead. He also provided suggestions to improve the visibility of the newly open tabs

(see Figure 7.14).

Figure 7.10. Identification of reporter background to identify necessary information to be prompted.

Figure 7.11. Software Information tab to collect details of the problematic application.

 153

Figure 7.12. Description tab to collect types of usability defects, detailed explanations, steps to
reproduce, and failure qualifier.

 154

Figure 7.13. Actual Results tab to collect actual output, task difficulty, emotions, and supplementary
information to support justifications.

 155

Figure 7.14. Expected Results tab to collect expectation behavior, solution proposals, and
supplementary information to support solution proposals.

7.2 Evaluation

This section describes the study conducted in order to evaluate the quality of usability defect

information collected using our proposed forms from the defect report reader’s perspective. We used

an expert judgment approach to evaluate the presence of specific usability defect information. The

form’s effectiveness in eliciting the usability defect information is beyond the scope of this research,

and therefore the aspect of usability, ease of use, or other aspects of our proposed reports were not

evaluated. This aspect will be evaluated in a follow-up experiment as discussed in Section 8.4.4. The

 156

following subsections describe participant selection, problem selection, and protocol in conducting our

evaluation.

7.2.1 Hypotheses

We hypothesized that the use of proposed usability defect report forms would increase the quality of

the usability defect descriptions as rated by expert judges.

7.2.2 Participation Selection

In this study, three very experienced software development experts evaluated the information presented

in the Bugzilla defect report form and the proposed form. The evaluators had significant levels of

experience in industrial and academic development environments. In particular, all experts have more

than 10 years of experience in software development industries. At the outset of the study, two

evaluators had substantial experience with Bugzilla, and one had limited exposure to the Bugzilla

defect reporting tool. Table 7.3 summarizes the participated expert details.

Table 7.3. Experts who participated.

Evaluator Academic and Industrial Background
Evaluator 1 (E1) He has been an academic for approximately 25 years and has worked in the IT industry as a

programmer/ analyst and consultant. His research expertise includes software tools and techniques,
software architecture, model-driven software engineering, visual languages, software security
engineering, service-based and component-based systems, and user interfaces.

Evaluator 2 (E2) He is a senior IT professional with over 20 years experience. He specializes in software engineering
with a special emphasis on component technology and user-centered approaches.

Evaluator 3 (E3) He is an information technology expert with over 15 years of experience. He specializes in solution
architecture, mobile technology, and analysis of large data sets. He has extensive experience on open
source projects in relation to software testing, which will be very relevant to this study.

7.2.3 Problem Selection

We studied Firefox, Firefox for Android, and Eclipse Platform projects to understand the contextual

content of usability defect reports and the findings were used to design our new usability defect report

forms. To explore the generalizability of our usability defect report design for other open source

products, we decided to use the Firefox for iOS project. Firefox for iOS is a mobile web browser from

Mozilla for the iPhone, iPad, and iPod touch.

We selected ten usability defects from the Firefox for iOS project as case studies. These case

studies were then used for our evaluation. The ten usability defects were chosen in the following way:

 157

• The usability problems were selected randomly from the 861 New defects (as of 21st March

2017). The decision to use defects with New status guaranteed that the defects had not been

examined by the software developers, and we have the possibility of reproducing the defects

and reporting them in our proposed form.

• The defects are tagged with Bugzilla usability keywords - ue, uiwanted, useless-UI, ux-

affordance, ux-consistency, ux-control, ux-discovery, ux-efficiency, ux-error-prevention, ux-

error-recovery, ux-implementation, ux-interruption, ux-jargon, ux-minimalism, ux-mode-

error, ux-natural-mapping, ux-tone, ux-trust, ux-undo, ux-userfeedback, ux-visual-hierarchy.

The rationale for using these developer-tagged keywords was to reduce selection bias, as the

software developers already assessed the validity of the defects and accepted the need for

fixing.

• The defects are reproducible in our iOS mobile device. This is because we wanted to rewrite

the usability defect descriptions using our defect report form and not bias them based on the

original descriptions submitted by the reporters.

7.2.4 Development of Case Studies

We chose five usability defect reports from Firefox for iOS projects. We considered two approaches to

select the report to reproduce: sampling randomly, or sampling only reports with GUI-related usability

defects. We chose the latter, since our goal was to reproduce the issue and rewrite the usability defect

descriptions, in which we found GUI-related usability defects are more objective and much easier to

reproduce in our iPhone. We read the defect report, understanding the problem context, and reproduced

the problem on our own until we found the reported problem. Then, we used our proposed usability

defect report forms to write the usability defect descriptions. For the purpose of the evaluation, only

plain text is displayed for both the original and reproduced defects according to the current Bugzilla

defect report template. The questions prompted in our new forms were not made available on the

reproduced defect reports. Figure 7.15 shows the five case studies we reproduced.

 158

Bugzilla Report#1237631

Report Title:
Do not exit private mode on browser re-launch even if there are no private tabs to
restore

Description:
I am not satisfied with the existing Private Tab browsing feature. Currently, Firefox
browser only opens browser in normal mode, even though the last opened browser was in
Private mode.

Steps to Reproduce:

1. Press on Firefox browser icon.
2. Press the middle menu at the bottom of the Tab manager page – then press on

New Private Tab.
3. Repeat step 2 to open several private tabs.
4. Press on the Tab button (tiny purple box) on the right side of the URL bar.
5. Press the middle menu at the bottom of the Tab manager page – then press on

Close All Tabs.
6. Re-launch Firefox

Actual Results:
Firefox has opened in normal browsing. I am confused because normally I browse using
Private mode. Even though this feature design is not affecting my task, it is actually
affecting my browsing privacy.

Expected Results:
Firefox will open in private mode, similar to Safari browser.

Bugzilla Report#1231815

Report Title:
Irrelevant steps to add new tab

Description:
I am not satisfied with the steps to open a new Tab. The current steps are irrelevant
to speed up the process to add new Tab.

Steps to Reproduce:

1. Click on Firefox browser icon.
2. Go to any webpage. For example open http://ebay.com.au
3. When a webpage is open, open a new tab. Press the Tab button on the right side

of the URL bar.
4. Press the “+” button at the bottom of the Tab manager to add a new tab. On the

newly open page, open a new page, for example – http://gumtree.com.au

Actual Results:
To open new tab, user requires two steps (step 3 and step 4 above). Even though this
issue is not affecting my task, this is really annoying when I have to use only one
hand to hold the phone and use several tabs to look for something.

Expected Results:
Long-press the tab button to add new Tab. Using long-press button could provide an
easy way to interact with the web browser, especially when the user is moving.

 159

Bugzilla Report#1145602

Report Title:
New About:Home tabs experience is confusing

Description:
I can’t directly find tabs that have been opened. The newly added tabs are represented
as multiple blank/empty spots, which are hidden in multilayer page. User can create
multiple new tabs without realizing they are doing so. Intention to create a new tab
isn’t clear.

Steps to reproduce:

1. Click on Firefox browser icon.
2. Go to any webpage. For example open http://ebay.com.au
3. Press the middle menu at the bottom of the Tab manager page – then press on

New Tab

Actual results:
There is no obvious indicator that shows new tab is created. If you are notice
carefully, only the number on the tab icon (square box on the right side of URL bar)
is updated/ increased whenever you add a new tab. However, if you were not aware of
the existing number of tabs open, you might not have known that a new tab had been
added. It took me some time to figure out if new tabs were successfully added or not,
and I did not know where to find the existing open tabs. The only way you can know if
the tab was created is by pressing tab icon on the right side of the URL bar. The Tab
Manager experience is really confusing.

Expected results:
There is an informative indicator other than the updated number of open tabs. At least
a message to indicate that new tab is added.

Bugzilla Report#1199983

Report Title:
Unable to scroll long page using scroll indicator

Description:
I have difficulty in manipulating object (scroll indicator) in the user interface.
When I open a really large page, like a Wikipedia page, it appears that I can only
scroll further down with the swipe gesture. The scroll indicator on the right page is
not able to grab.

Steps to reproduce:

1. Go to Wikipedia page and search for information, which may have long
information.

2. Touch the screen. You will see the scroll indicator on the right side.
3. Try to grab the scroll indicator and scroll down.

Actual results:
You are unable to scroll using the scroll indicator. Instead, you are scrolling using
swipe gesture. It took so much time for me to scroll to the middle of the page. I
spent literally 5 mins just with the swiping restore to get to the middle of the page,
because it seems that I can’t grab the scroll indicator on the right and move it down
with my finger to scroll faster like in other iOS apps.

Expected results:
The scroll indicator works as desktop webpage. User can grab the scroll indicator and
fast scroll to the up/ bottom of the page.

 160

Bugzilla Report#1146389

Report Title:
Unclear how to access Reader View

Description:
I have difficulty in finding out Reader view icon. The reader View icon is not
persistently displayed when user scrolls down the page. In addition, the very small
Reader view icon and its color are not intuitive for user to discover.

Steps to reproduce:

1. Click on Firefox browser icon.
2. Go to google search and find some articles – for example search on “software

engineering”.
3. Select on one of the search results, and wait for the information page to be

loaded.
4. While the information is loading, scroll down the page.
5. Observe the “Reader View” icon and try to access Reader View.

Actual results:
When the information is loading and I scroll down the page, I couldn’t find any sign
to access Reader View. The “Reader View” icon is not immediately shown at the end of
the URL bar and the icon is not discoverable when you scroll down the page. I have to
scroll up to the very top of the page to find Reader View icon. This can be time
consuming if I have a very long page. Furthermore, the “Reader View” icon is very
small and the grey icon on the black background (in private browsing) is not
discoverable enough.

Expected results:
The “Reader View” icon should be triggered while you are in any part of the page. So
that user can access Reader View icon instantly without scrolling up to the top of the
page.

Figure 7.15. Five Firefox for iOS case studies that were reproduced from the original defect reports.

7.2.5 Protocol

In order to compare the quality of usability defect descriptions produced by current and proposed

defect report forms, we reproduced a set of usability defects and rewrote the defect descriptions using

our proposed form. For this purpose, we selected five usability defects (as described in section 7.2.4),

reproduced the usability defects in her own iPhone device, and wrote the defect description using the

proposed guided usability defect report form. Although both original and proposed defect report forms

contain specific contextual information (i.e., status, people, tracking, software information), the defect

descriptions given to evaluators contained minimal information. We only provided contextual

information about reproduction steps, actual and expected results, and explanation of the usability

defects. We limited the amount of detail provided to evaluators to ensure the evaluators were not

 161

biased with a specific defect report format. The final copy of defect reports that were presented to the

evaluators was modified to prevent the identification of specific formats.

We used an independent judgment approach, in which the evaluators performed the evaluation at

locations and time (s) of their choosing. Each evaluator was given the following material (also included

in Appendix E).

• Five original usability defect reports of Firefox for iOS product

• Five usability defect reports of Firefox for iOS developed as case studies

The evaluators were required to read ten defect reports (five original Firefox for iOS defect reports

and five developed case studies) and evaluated the contextual information of each report on four

aspects. For each aspect, we evaluated whether the report provided or failed to provide a description

containing the aspect under consideration. Problems were evaluated in random order and it was not

made known as to which report format was used to record the usability defects. The four aspects we

used for the evaluation were adopted from [9], [63], and are described below:

Informative – According to Capra’s guidelines [11], informative usability defect descriptions

should describe the solution to the problem, the cause of the problem, and the usability issue involved

in the problem. Describing this information has been suggested as important to better understand and

fix the problem [11],[108]. This information should be supported with screen snapshots, pictures, video

and audio, usability design principles and/ or previous research.

Accuracy – Accuracy is measured in terms of how closely the problem can be reproduced by the

evaluators. Good defect descriptions should consist of a clear set of instructions that other readers can

use to reproduce the defect on their own machine.

Claim and rationale - In the absence of usability specialists to observe and verify usability defects

in open source projects, justification about why it was a problem [9] is very important to help software

developers understand the nature of the problem. The claim about the problem should justify the failure

qualifier criteria that violates user expectations, including missing, incongruent mental model,

irrelevant, wrong, better way, and overlooked. When arguing for a particular claim, support for

rationale and evidence is valuable in confirming the validity of the problems.

 162

Impact – The defect description should contain something valuable that highlights the priority of

defects that need to be fixed. For this purpose, defect reports should describe the impact of the problem

on business goals (i.e., costs, time loss), user task, and human emotion [4]. Impact on the user’s task

explains about interruptions of task performance, unnecessary steps to workaround the problems, or the

user struggling with task completion, while human emotion places emphasis on confusion, frustration,

annoyance, and uncertainty [104].

For each of these aspects, the evaluators were given eleven questions as listed in Table 7.4. Each

evaluation aspect was given a score of 1 if the evaluators thought that the usability defect report

“completely described”, 0.5 if the usability defect report “partially described”, and 0 if the usability

defect report “do not describe” the evaluation aspects. The total quality score was calculated by

summing up the scores, which ranged between 0 (low quality) and 11 (high quality).

Table 7.4. List of questions in the survey evaluation.

Aspect Questions Answer
Informative 1. Does the defect report offer proposals for solutions? For example, the

descriptions provide alternatives and tradeoffs, and supplied rationale for
the recommendations [9].

2. Does the defect report describe the cause of the problem, including a
justification of what posed a problem, including system components that
are affected or involved?

3. Does the defect report describe the main usability issue involved in the
problem? For example, a description about what is wrong with the
interaction architecture, interface and user task design.

Yes/ No/ partially

Accuracy 4. Has the defect report explained in detail step by step how to reproduce the
problem, including user’s navigation flow through the system?

5. Are you able to reproduce the problem on your own device and
environment?

6. Were the actual results you observed similar to the one in the defect
description?

Yes/ No/ partially

Justified 7. Does the defect report offer a justification for why the reporter thinks that it
was a problem?

Yes/ No/ partially

Impact 8. Does the defect report explicitly mention what poses a problem to the user?
9. Does the defect report describe the impact of the problem on business

effect, impact on the user’s task, and importance of the task?
10. Does the defect report describe reporters’ emotion, feeling, or reactions

with regards to the issues?
11. Does the defect report mention how often the problem occurred or if other

users experienced the same problem?

Yes/ No/ partially

7.2.6 Analysis

We hypothesized that using our proposed usability defect report forms would increase the quality of

the usability defect reports as rated by evaluators – in terms of capturing more information. To test this

hypothesis, we conducted a two-way 3 (evaluator: evaluator 1, evaluator 2, and evaluator 3) x 2 (type

 163

of report: original, and case study) mixed ANOVA with repeated measures on the type of report

variable. Additionally, we also measured inter-rater reliability among evaluators. We used SPSS

(version 23) to conduct the repeated measures ANOVA analysis, and Microsoft Excel 2011 to calculate

the Fleiss Kappa inter-rater reliability.

7.3 Results

7.3.1 Repeated Measures ANOVA

Means are based on individual ratings given by each evaluator, rather than the sums of the three

ratings. Evaluators are required to rate five original Firefox for iOS usability defect reports, and five

Firefox for iOS usability defect reports that have been rewritten using the proposed content, called as

case study.

Prior to conducting repeated measures ANOVA, Mauchly’s sphericity test was conducted to

measure the variances of the differences between all combinations of related groups. As shown in

Table 7.5, the main effect of evaluator does not significantly violate the sphericity assumption because

the significance value is greater than 0.05, W= 0.247, X2 (2) = 4.20, p > 0.05. Therefore, the F-value for

the main effect of evaluator (and its interaction with the between-group variable defect type) does not

need to be corrected for violations of sphericity. Since type of report has only two categories, no

significance test is needed, W=1.

Table 7.5. Mauchly's Test of Sphericitya

Within Subjects Effect Mauchly's W Approx. Chi-Square df Sig.

Epsilonb

Greenhouse-
Geisser

Huynh-
Feldt

Lower-
bound

Evaluator .247 4.201 2 .122 .570 .648 .500
Report 1.000 .000 0 . 1.000 1.000 1.000
Evaluator * Report .886 .364 2 .833 .897 1.000 .500
Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed dependent variables is proportional
to an identity matrix.
a. Design: Intercept
 Within Subjects Design: Evaluator + Report + Evaluator * Report
b. May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests are displayed in the Tests
of Within-Subjects Effects table.

 164

Table 7.6. Tests of Within-Subjects Effects.

Source

Type III
Sum of
Squares df

Mean
Square F Sig.

Partial Eta
Squared

Evaluator Sphericity Assumed 40.617 2 20.308 14.272 .002 .781

Greenhouse-Geisser 40.617 1.141 35.610 14.272 .014 .781

Huynh-Feldt 40.617 1.295 31.364 14.272 .010 .781

Lower-bound 40.617 1.000 40.617 14.272 .019 .781
Error(Evaluator) Sphericity Assumed 11.383 8 1.423

Greenhouse-Geisser 11.383 4.562 2.495
Huynh-Feldt 11.383 5.180 2.198
Lower-bound 11.383 4.000 2.846

Report Sphericity Assumed 70.533 1 70.533 59.816 .002 .937
Greenhouse-Geisser 70.533 1.000 70.533 59.816 .002 .937
Huynh-Feldt 70.533 1.000 70.533 59.816 .002 .937
Lower-bound 70.533 1.000 70.533 59.816 .002 .937

Error(Report) Sphericity Assumed 4.717 4 1.179
Greenhouse-Geisser 4.717 4.000 1.179
Huynh-Feldt 4.717 4.000 1.179
Lower-bound 4.717 4.000 1.179

Evaluator *
Report

Sphericity Assumed 40.417 2 20.208 9.194 .008 .697
Greenhouse-Geisser 40.417 1.795 22.520 9.194 .011 .697
Huynh-Feldt 40.417 2.000 20.208 9.194 .008 .697
Lower-bound 40.417 1.000 40.417 9.194 .039 .697

Error(Evaluator*
Report)

Sphericity Assumed 17.583 8 2.198

Greenhouse-Geisser 17.583 7.179 2.449

Huynh-Feldt 17.583 8.000 2.198

Lower-bound 17.583 4.000 4.396

Table 7.7. Post-hoc tests – Multiple comparisons for evaluator.

(I) Evaluator (J) Evaluator Mean Difference (I-J) Std. Error Sig.

95% Confidence Interval

Lower Bound Upper Bound
E1 E2 -1.4500 .66958 .122 -3.1733 .2733

E3 -2.8500* .66958 .001 -4.5733 -1.1267
E2 E1 1.4500 .66958 .122 -.2733 3.1733

E3 -1.4000 .66958 .142 -3.1233 .3233
E3 E1 2.8500* .66958 .001 1.1267 4.5733

E2 1.4000 .66958 .142 -.3233 3.1233
Based on observed means.
 The error term is Mean Square(Error) = 2.242.
*. The mean difference is significant at the

As shown in Table 7.6, there was an evaluator main effect, F(2,5) = 14.27, p < 0.001, and a report

type main effect, F(1,5) = 59.82, p<0.01, and there was also an evaluator � report type interaction,

F(2,5) = 20.21, p < 0.01. For evaluator effects, the results suggested that if type of defect report is

ignored, some evaluators still rated significantly differently to others.

To find the nature of this effect, we performed post hoc tests. The multiple comparisons for the

main effect of evaluator corrected using Bonferroni adjustments are shown in Table 7.7. As can be

 165

seen, the significant main effect reflects a significant difference (p<0.01) between E1 and E3 (evaluator

1 and evaluator 3) but not between E1 and E2 (evaluator 1 and evaluator 2) and E2 and E3 (evaluator 2

and evaluator 3). This indicates that the quality scores given by E1 and E3 had an effect on ratings of

both original and case study defect report quality.

In terms of report type effects, the results suggested that if all other variables are ignored, case

study defect report quality ratings were significantly different as compared to the original defect report.

As depicted in Figure 7.16, quality of case study defect reports is rated higher than original defect

report, regardless of who the evaluators are. Also, as we can see, the relationship between mean quality

scores and evaluator is different for original and case study defect reports. For original defect reports,

mean quality scores increase from evaluator 1 to evaluator 3. While the original defect reports show a

slightly large variation in mean quality scores for different evaluators, case study defect reports had

much less variation. However, mean quality scores rated by evaluator 3 is higher for both original and

case study defect reports. For case study defect reports, mean quality scores increased from evaluator 1

to evaluator 2, and decreased from evaluator 2 to evaluator 3. Overall, the mean quality scores for the

case study defect reports, M = 8.77, SD = 1.58, were significantly higher than for the original defect

reports, M= 5.70, SD = 2.67, which supported our hypothesis.

In summary, even though the quality of usability defect descriptions is significantly influenced by

evaluator effect, overall assessment showed that usability defect descriptions written using our

proposed forms can capture more information than the usability defect descriptions in the three OSS

projects studied.

Figure 7.16. Mean usability defect report quality scores as rated by three evaluators.

 166

7.3.2 Reliability Analysis

Based on the previous analysis, since the evaluator has statistically proven to have significant effect on

the scores of usability defect report quality, we further investigated the level of agreement among the

three evaluators. This is because of the diverse experience among evaluators and the different

interpretation of usability defect report content could affect the confidence of the study results [107]. In

this study, we used percent agreement to measure the degree of agreement among evaluators, which is

called inter-rater reliability.

Table 7.8 summarizes the inter-rater reliability results. For each usability defect report, we

measured the percent agreement of each evaluation aspect (Q1 – Q11). We calculated the percent

agreement for each column and calculated averages of the rows. To understand this procedure, consider

Report 1 in Table 7.7. Since in this analysis we only have three evaluators and the scores are limited to

three values, to obtain percent agreement we only need to count the number of evaluators that have the

same score and divide by the number of evaluators. For Report 1, as an example, the three evaluators

scored 0.5 for Q1 and therefore, the percent agreement was computed as 3 divided by 3, which is 1.00

– perfect agreement. For Q5, two evaluators scored 1, and this given the percent agreement of 0.67 for

Q2 (2 divided by 3). The inter-rater reliability for Report 1 was computed by summing up the percent

agreement of Q1 until Q11 and divided by the number of questions, which is 11. This resulted in an

inter-rater reliability of Report 1 of 0.79.

In Table 7.8, it can be seen that, on average, the agreement of case study usability defect report

score is higher than the original usability defect report. The highest agreement was observed in case

study usability defect Report#2 and Report#9, which exhibits overall inter-rater reliability of 88% each,

and the lowest inter-rater reliability of 48% for Report#6. The case study agreement, which is more

than 80%, means that only about 20% of the scores rated by the evaluators were erroneous because

only one of the evaluators can be corrected when there is disagreement. On the contrary, about 20%-

50% of the scores in original defect reports disagreed.

The highest agreement of evaluation aspects was observed in Q6. Two and four of original and

case study usability defect reports, respectively had inter-rater reliability of 100%. Interestingly, the

three evaluators were in perfect agreement, inter-rater reliability of 100% when scoring Q8 –

 167

justification of impact in the five-case study usability defect reports. The percent agreement statistics

can also be of benefit in identifying evaluation aspects (Q1 – Q11) that may be problematic.

Note that Table 7.9 shows that the three evaluators were most in disagreement when scoring Q2

and Q7. The evaluators achieved 0% agreement for Q2 and Q7 in three out of the five original

usability defect reports. These evaluation aspects that are related to justification of cause of the

problems and failure qualifier may warrant scrutiny to identify the cause of such low agreement in its

scoring.

Table 7.8. Percent agreement across three evaluators evaluated the quality of usability defect reports.

Report Evaluators
Evaluation Aspects

IRR
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

O
rig

in
al

1 E1 0.5 1 1 0.5 0 0 0 0.5 0 0.5 0
0.79

E2 0.5 1 1 0.5 1 0.5 0 1 0.5 0.5 0
E3 0.5 1 1 1 1 0.5 1 1 0 1 0
% Agreement 1.00 1.00 1.00 0.67 0.67 0.67 0.67 0.67 0.67 0.67 1.00

4 E1 0.5 0 1 0.5 0 0 0 0.5 0 0 0.5
0.55

E2 0.5 0.5 1 0.5 0 0 0.5 1 0.5 0 0
E3 1 1 1 1 1 1 1 1 0 0 1
% Agreement 0.67 0.00 1.00 0.67 0.67 0.67 0.00 0.67 0.67 1.00 0.00

6 E1 0 0 0 1 0 0 0 0 0 0 0
0.48

E2 0.5 0.5 0.5 1 0 0.5 0.5 0.5 0.5 0.5 0
E3 1 1 1 1 0 0 1 0.5 0 0 1
% Agreement 0.00 0.00 0.00 1.00 1.00 0.67 0.00 0.67 0.67 0.67 0.67

8 E1 0.5 0.5 0.5 0.5 0.5 1 0 0 0 0 0
0.61

E2 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0 0 0
E3 0.5 1 1 1 1 1 1 1 0 0.5 1
% Agreement 1.00 0.67 0.67 0.67 0.67 0.67 0.00 0.00 1.00 0.67 0.67

10 E1 0 0 0.5 0.5 1 1 0.5 0.5 0 0 0
0.55

E2 1 0.5 1 0.5 0.5 0.5 0.5 1 0.5 0 0
E3 1 1 1 1 1 1 1 1 1 1 1
% Agreement 0.67 0.00 0.67 0.67 0.67 0.67 0.67 0.67 0.00 0.67 0.67

C
as

e
St

ud
y

2 E1 0.5 1 1 1 1 1 1 1 0.5 1 0
0.88

E2 0.5 0.5 1 1 1 1 1 1 1 1 0
E3 1 1 1 1 1 1 1 1 0.5 1 0.5
% Agreement 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 0.67 1.00 0.67

3 E1 1 0.5 1 0.5 1 1 0.5 1 0 0.5 0
0.73

E2 1 0.5 1 1 1 1 1 1 1 1 0
E3 1 1 1 0.5 0 0 0 1 0 1 0
% Agreement 1.00 0.67 1.00 0.67 0.67 0.67 0.00 1.00 0.67 0.67 1.00

5 E1 1 1 1 1 1 1 1 1 0 0.5 1
0.73

E2 1 0.5 1 1 1 1 0.5 1 0.5 1 0.5
E3 1 1 1 1 0 0 1 1 0 0 1
% Agreement 1.00 0.67 1.00 1.00 0.67 0.67 0.67 1.00 0.67 0.00 0.67

7 E1 0 1 1 1 0 0 0.5 1 0 1 1
0.70

E2 1 0.5 1 1 1 1 1 1 0.5 0 0.5
E3 1 1 1 1 1 1 1 1 1 1 1
% Agreement 0.67 0.67 1.00 1.00 0.67 0.67 0.67 1.00 0.00 0.67 0.67

9 E1 1 0.5 1 1 1 1 1 1 1 1 1
0.88

E2 1 0.5 1 1 1 1 1 1 1 1 0.5
E3 1 1 0 1 1 1 1 1 0.5 1 1
% Agreement 1.00 0.67 0.67 1.00 1.00 1.00 1.00 1.00 0.67 1.00 0.67

 * IRR – Inter Rater Reliability

 168

Table 7.9. Number of scores that disagree with the majority of evaluators’ scores

Is an evaluator an Outlier? Report 1 Report 2 Report 3 Report 4 Report 5
E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3

#of unlike responses: 3 1 3 0 2 2 1 2 3 1 1 4 0 4 2

Table 7.9. Number of scores that disagree with the majority of evaluators’ scores (Continue)

Is an evaluator an Outlier? Report 6 Report 7 Report 8 Report 9 Report 10
E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3 E1 E2 E3

#of unlike responses: 1 3 1 4 3 0 1 1 5 0 1 3 3 2 4

As the post-hoc test in section 7.3.1 revealed, evaluator E1 and E3 had a significant effect on the

quality scores. As Table 7.9 shows, E1 and E3 had an excessive number of outlier scores, in which they

frequently gave scores different from the other evaluators. For example, E3 disagreed with the other

two evaluators’ scores five times when assessing Report#8.

In summary, the high level of agreement between evaluators who assessed the case study usability

defect descriptions suggests that our proposed usability defect report forms is able to improve the

clarity of contextual information. The low level agreement for original usability defect descriptions is

an indicator that the defect information presented in the current open source usability defect reports is

unclear, which leads to different interpretation and assessment between evaluators.

7.4 Threats to Validity

7.4.1 External Validity

One possible threat to the external validity is regarding the choice of evaluators and number of

evaluators that can affect the outcome of the evaluation. Previous studies have reported that evaluators’

background can play a significant roles on the outcome of software testing [14], [87], and we have seen

this potentially affect the quality of the assessment defect report as well. We plan to conduct different

evaluation methods in future to test the outcome of this study. For example, we plan to replicate the

study conducted by Capra [63] with different settings.

7.4.2 Internal Validity

Subject selection bias represents one possible threat to internal validity. In our evaluation, we only used

ten Firefox for iOS usability defect reports. OSS projects may have different report content and

 169

structure, and the same evaluations on different OSS projects may yield different results. Additionally,

the evaluation was performed on a smaller number of case studies (5 self-constructed case studies

described in Chapter 7.2.4), which further reduce the generality of our results.

7.4.3 Construct Validity

For the evaluation of our proposed usability defect reporting forms, we developed the instruments

ourselves. We have rewritten the original five usability defect descriptions using our proposed forms as

case study defect reports. One possible threat might be the reliability of the evaluation. However,

instead of copying the original information and adding dummy information to the new form, we

reproduced the defects on our machine and wrote the usability defect description using our own

experience and interpretation. This reproduction process may affect the amount of information reported

as specific information was requested. The original defect reports were used as the guidelines to

reproduce the problems. Hence, we consider the instruments as a reliable instrument for evaluating the

quality of information between original and case study defect reports.

Furthermore, the appropriateness of the assessment metrics used to rate the quality of information

threatens the construct validity. To mitigate this threat, we adopted Capra’s well-accepted guidelines

[11] as grounds for quality assessment metrics used for evaluation.

7.5 Discussion

The results from ANOVA statistics and reliability analysis supported our hypothesis. The expert

judgment approach (discussed in Section 7.3.1 and 7.3.2) has demonstrated an improvement in the

quality of information when usability defects are reported using the proposed usability defect report

forms. There are two benefits that we identified from the proposed form. As shown in Figure 7.17,

usability defect descriptions rewritten using our forms received full score (score =1) for Q8 – user

difficulty. Other attributes, such as Q3 - description of usability issues, Q4 - steps to reproduce, Q5 -

reproducibility, Q6 actual output, Q7 - failure qualifier, and Q10 – human emotions were also received

high scores than those original usability defect reports written on generic report templates. This finding

shows that by separating attributes into multiple instances, giving hints and examples could provide

competence assistance for non-technical reporters to construct more meaningful usability defect

descriptions.

 170

From a defect report readers’ perspective, the structured contextualized attributes help software

developers, for example, to easily identify the presence of key defect information. From Figure 7.17

below, the high scores given for each evaluation criteria of case study defect reports suggested that the

key information could be easily identified when a defect is described in a contextualized context. This

is necessarily important in OSS development, where most software developers are “non usability-

savvy” and work for limited time to read concise defect description in order to understand the usability

issues so that they can directly point the solution to fix the issues.

Figure 7.17. Case study defect reports content evaluation scores. On average, the three evaluators in
agreement on the presence of Q2 – assumed cause, Q4 – steps to reproduce, Q7 – failure qualifier, and

Q8 – user difficulty

Through our analysis, we also observed that Q2- assumed cause and Q7 – failure qualifier was

difficult to identify in usability defect descriptions and received different interpretation between

evaluators. As we discussed in Chapter 4, the cause of the problem is rarely found in the usability

defect descriptions. Indeed, information such as stack traces, UI event traces, and error logs, which are

useful for software developers to identify the root cause of the problem, are the most difficult type of

information to be provided by non-technical reporters.

Many other works have been devoted to capture stack traces, UI event traces, error logs, and

monitoring user interactions [90], [91], [109]–[112], [110]–[112], but most of them are complicated for

non-technical reporters. Furthermore, given the nature of the OSS projects, where users are involved on

!

!

Evaluator)1)
Evaluator)2)
Evaluator)3)

 171

a voluntary basis, it would be tedious and time-consuming to manually collect this kind of information.

As a solution to this, when designing new defect report forms, attributes that are related to Q2 and Q7

might need to be rephrased or redefined to include other ways of capturing and presenting this

information.

In relation to Q7, however, in the five-case study usability defect reports that we developed for

evaluation purposes, we demonstrated the presence of Q7 – failure qualifier using plain text, instead of

using the predefined values (missing, wrong, incongruent mental model, irrelevant, better way, and

overlooked) as suggested in our prototype design. Therefore, we could not justify if the predefined

values that we suggested in the new usability defect report forms could help the reporters to describe

the failure qualifier that triggered them to report the usability defects. Future evaluation on reporting

usability defects using our forms could provide suggestions on a suitable input format to capture this

information. This is because the correct choice of input format could help to narrow down the

information needed by software developers. In some cases, using plain text to express a reporter's

feelings and difficulties on usability issues may not be convincing. As such, using a rating scale to rate

a user’s difficulties, feelings, and emotions, for example, could be more objective for software

developers to assess the priority/ severity of the problem to be fixed. Nevertheless, the use of plain text

input cannot be disregarded – especially in allowing reporters to write their concerns about usability,

which may not be relevant from a software developer perspective, but can be useful resources for

future references.

The results of this research also suggest that the interpretation of usability defect descriptions is

subject to an evaluator effect, similar to other research investigating evaluator effect when finding

software defects [48], [87], [113]. There are two explanations regarding the evaluator effect in

assessing usability defect report quality. First, as different evaluators may understand the problems

from different perspectives, the assessment scores tend to vary. If evaluators were more reliable,

involving more evaluators would not result in a substantial difference of defect report quality scores

because the evaluators would rate roughly the same scores.

Secondly, the evaluators’ personal experiences and their familiarity with the system under test may

introduce subjective interpretation [113]. This is because even though the evaluators read the same

usability defect descriptions and used the same assessment guidelines, the quality scores were still

significantly different. Consider Report#1144758 used in our evaluation study (see Figure 7.18). For

 172

this quality assessment, E1 had score of 1, while E2 and E3 had 5 and 6.5 scores, respectively. The

obvious difference was observed in rating the three aspects Q1- solution proposal, Q2 – assumed

cause, and Q3 – description of usability issues. While E1 considered Report#1144758 did not contain

this information, E2 and E3 agreed that this information is present although the level of detail of this

information is variedly rated by E2 and E3. Research on evaluator effects could be extended to

understand specific skills, competencies, and abilities of reporters to write a good usability defect

description.

Bugzilla Defect#1144758

Report Title:
Setting icon not easily discoverable

Description:
Settings icon is not easily discoverable since it is ‘buried’ down a level in the
Tabs screen.

Steps to Reproduce:

1. Press on Firefox browser icon.
2. Find Setting icon in the About: Home page.
3. Press the middle menu at the bottom of the Tab manager page.
4. Find Setting icon.

Actual Results:
The Setting icon cannot be found on the About: Home page. The Setting icon is
exist in the Tabs screen and user have to swipe to the next screen. In this case,
I have to perform unnecessary steps to find the icon, and it is wasting my time.

Expected Results:
The Setting icon should be easily discoverable without too many steps to find the
icon.

Figure 7.18. Report#1144758 of Firefox for iOS

7.6 Summary

Through a series of studies, we have investigated challenges and limitations experienced by reporters

in reporting usability defects (Chapter 1), information needs by software developers when fixing

usability defects (Chapter 4), and factors influencing usability defect reporting (Chapter 5). Results

from these studies were extracted as desirable features of new open source usability defect report forms

to facilitate open source communities, especially non-technical reporters to identify, understand, and

report usability defects. We then evaluated the proposed usability effect report forms in the context of

quality of information using an expert judgment approach. The results from the evaluation suggest that

 173

by using multiple attribute instances to capture only one value per attribute could improve the quality

of information presented in the usability defect descriptions.

This research represents a first step in investigating a guided wizard reporting form approach for

better capturing usability defect descriptions. Further research is necessary to understand if such guided

forms could benefit experienced reporters as well as novice reporters, in terms of ease of use, and the

nature of the problems reported. Additionally, further research is also necessary to understand if the

information captured is in accordance to the information needs of software developers and whether the

information is useful for software developers in prioritizing and fixing usability defects.

 174

8 Conclusions

This chapter concludes this thesis by presenting a summary of the work carried out answering the

thesis key research questions. It discusses the contributions of this research in the context of academic

and industrial practice, reports the lessons that we have learned from our experience, and addresses

some general limitations in the design of the usability defect classification taxonomy and new usability

defect report form. The chapter ends with discussing directions for possible future work.

8.1 Research Summary and Contributions

A goal of this thesis was to develop a structured usability defect report form by introducing a set of

attributes adapted from usability engineering studies, so that it can assist open source communities with

limited usability knowledge to better report meaningful usability defect descriptions. The research also

addressed the challenges identified in Section 1.2 about the inappropriateness of current defect report

forms to report usability defects, and the insufficient attributes and terminology to describe usability

defects.

The research was carried out in three stages. The first was a review of the literature on usability

defect reporting. Secondly, surveys of software development practitioners and software defect

repositories mining were conducted, which identified the desirable features to the new usability defect

report forms. Finally, a new usability defect taxonomy and new usability defect report forms were

designed and evaluated. A summary of the research, key findings and contributions found at each stage

has been provided in the following sections.

8.1.1 A Review of Usability Defect Reporting

The aim of the literature review was to understand the state of the art in usability defect reporting from

both software engineering and usability engineering studies. The review consisted of three parts. The

first part reviewed the mechanisms to track and manage usability defects, format and content, and

guidelines to assist usability defect reporting process. The second part investigated the use of usability

defect data for improving software defect quality and management. The third part analyzed challenges

in existing usability defect reporting processes and tools.

 175

In managing usability defects, we identified three types of mechanisms used to report these

defects, namely tool-based reporting, end-user reporting, and modeling-based reporting. Tool-based

reporting is the most widely stated mechanism in the literatures due to its features that can facilitate

data collection and process feedback instantly. Typically, usability defect reports are presented in

written documents with a wide variety of attributes. Among the thirteen written document formats we

identified, structured web-based forms are the most discussed type of defect report format in the

literature. However, reporting a usability defect using this format can be impacted by information

overload, lack of checking of input, and bias due to form content. Conventional reports, on the other

hand, offer richer data but often provide heavy-weight documentation. Regardless of the format used,

the problem description, severity, context, and redesign description were the top four attributes

commonly used to describe usability defects. While a few guidelines were available to assist reporters

to better describe usability defects, Capra’s guideline is the most common guideline used by

researchers to write usability defect descriptions and to measure usability defect report quality.

In previous empirical studies, many have shown significant interest in using data from defect

reports to improve software quality. Based on the commonalities of these studies, we identified five

areas that studied usability defect data: (1) measuring usability defect report quality, (2) understanding

usability defect characteristics, (3) identifying duplicate usability defect report, (4) estimating effort,

and (5) discussing usability defect resolution. The most commonly used defect attributes across these

research areas were problem description, impact, and title/ summary. Attributes rarely used were type

of defect, likely difficulty, confidence, priority, software context, reporter, violated heuristic, business

goals, assignee, milestone, time to fix, and defect fixes. Research on classification and defect

duplication favourably used title/summary and description, while research on defect report quality

often used observable user actions, impact, cause of the problem, and supplementary information.

The literature review also revealed some challenges in reporting usability defects. Most of the

challenges were due to limited support of current defect reporting tools to report, track, and manage

usability defects. A generic defect report form, on the other hand, caused confusion to some defect

reporters in reporting the information needed by the software developers. In fact, the differences

between defect reporter and software developer points of view have resulted in information mismatch

and impacted the prioritization of usability defect severity. Other challenges were related to limited

skill and experience of reporters in completely describing usability defects, inappropriate testing

 176

techniques to collect necessary usability defect information, and lack of specific guidelines to define

specific information that should be reported.

This SLR study contributes in two ways. First, it highlights current practices, key open issues and

limitations with respect to usability defect reporting and serves as a guide to future research. Second,

evidence from the review helps open source communities to understand which information is important

when describing usability defects.

The detailed findings of this SLR - “Reporting Usability Defects: A Systematic Literature

Review,” have been published in IEEE Transactions of Software Engineering [114].

8.1.2 Development of New Usability Defect Report Forms

The development of new usability defect report forms was divided into two steps. Step one focused on

collecting desirable features of the usability defect forms through web surveys and software defect

repositories mining. Step two involved the development of open source usability defect classification

taxonomy adapted from UPT. The following subsections summarize the approach taken during each

step, present the findings, and outline their contributions.

8.1.2.1 Collecting Inputs for Designing New Usability Defect Report Forms

To assist in developing new usability defect report forms, two studies were conducted. In the first

study, we surveyed software development practitioners in both open source communities and industrial

software organizations. The aim of the survey was twofold. First, the survey was conducted to identify

information frequently supplied by defect reporters to report usability defects, and information needed

by defect reporters to fix usability defects.

Our analysis of 147 responses showed a substantial gap between the information provided by

defect reporters and the information needed by software developers to fix usability defects. When

describing usability defects, defect reporters often supplied actual output, expected output, and steps to

reproduce, while usability-related information such as violated heuristics, design principles, and impact

were rarely provided. While software developers considered cause of the problem as the most helpful

information for them to fix usability defects, defect reporters ranked cause of the problem as the most

 177

difficult information to provide followed by usability principle, video recording, UI event trace, and

title.

Secondly, the survey also investigated the five factors that we speculated have influence on the

quality of usability defect reports – the role of the reports, reporters’ knowledge and experience, defect

discovery methods, and usefulness of automation tools. We found usability defects reported by

customers typically got reviewed and fixed faster. The detailed findings of this survey were published

in three separate papers:

• “Reporting Usability Defects: Limitations of Open Source Defect Repositories and

Suggestions for Improvement” published in the Proceedings of the 24th Australasian Software

Engineering Conference (ASWEC 2015) [17];

• “Reporting Usability Defects – Do Reporters Report What Software Developers Need?”

published in the Proceedings of the 20th International Conference on Evaluation and

Assessment in Software Engineering (EASE 2016) [115];

• “What Influences Usability Defect Reporting? – A Survey of Software of Development

Practitioners” published in the Proceedings of the 23rd Asia Pacific Software Engineering

Conference (APSEC 2016) [116].

The second study focused on software defect repositories mining. In this study, we mined 377

developer-tagged usability defect reports from Mozilla Thunderbird, Firefox for Android, and Eclipse

Platform to confirm the findings of previous survey on the information provided by software

development practitioners when reporting usability defects.

Our findings demonstrate a mismatch between what software development practitioners claimed to

provide when reporting usability defects, and the information that appears in the defect reports. For

steps to reproduce, for example, while we found this information less reported in Mozilla Thunderbird,

Firefox for Android, and Eclipse Platform, software practitioners in our previous survey claimed that

they always provided this information while reporting usability defects. A paper describing this work

was published:

• “Analysis of the Textual Content of Mined Open Source Usability Defect Reports” published

in the Proceedings of the 24th Asia Pacific Software Engineering Conference (APSEC 2017)

[117].

 178

The findings from these two studies have important implications for future research and practice of

OSS development. Through these studies, researchers can find characteristics, open issues, and

understand the nature of describing usability defects, which can be valuable for improving defect

reporting processes and tools. For practitioners, especially software testers, it provides a general guide

about the important defect attributes that should be described when reporting usability defects in order

to receive faster defect resolution time.

8.1.3 Revising Usability Defect Classification Model

Based on the review of existing usability defect classification models and our experience of analyzing

377 open source usability defects, we found some limitations in these models. First, the lack of

contextual information in open source usability defect descriptions lead to misinterpretation of the

problem, in which the defect report readers had made assumptions and self-judgment. Second, the

absence of formal usability evaluation methods in OSS development makes it difficult to understand

the problematic user tasks, particularly in assessing the defect severity and impact to the users. In fact,

it is quite impossible to justify what triggered the problem as suggested in the usability-ODC

framework [95]. Third, well-known usability classification models such as UPT [12], UAF [3] and

model-based framework [94] are too complex for open source communities with limited usability

knowledge. Low involvement of usability experts in OSS development makes it impossible to adopt

such a comprehensive model.

Considering these limitations, we revised the UPT [12], GUI fault model [76], and usability-ODC

framework [95] to suit the needs of the OSS development environment. The aim of our new OSUDC

model is to understand and classify usability defects based on the content of defect reports submitted

by open source communities, which do not formally conduct usability evaluations. A total of 377

developer-tagged usability defect descriptions were analyzed from Mozilla Thunderbird, Firefox for

Android, and Eclipse Platform projects. The analysis did not impact OSUDC development directly,

however it was used to construct the subcategories of the primary categories adapted from [12], [76],

[95]. The defect descriptions were read and organized according to the primary categories, and were

then re-examined and grouped according to commonalities to form a set of subcategories. Two primary

categories and five subcategories were added in our revised OSUDC, as the usability defect

descriptions could not be classified according to the original classification. The resulted hierarchical

 179

structure of OSUDC contains three components (defect, user difficulty, and failure qualifier), 10

primary categories, and 28 subcategories, respectively.

A web based survey evaluation was conducted to assess the reliability of the revised OSUDC to

classify usability defects. Twelve evaluators from industry and academia with varying degrees of

experience in software development and usability participated in the study by classifying 10 usability

defects that were randomly selected from the group of 377 usability defects. Kappa statistics was used

to assess the level of agreement among evaluators. The findings of the OSUDC reliability study

showed that the evaluators’ agreement for the defect category component was the highest, and the

lowest was for the failure qualifier component.

The primary contribution of our revised OSUDC is to enable software developers and defect

reporters to understand, describe, and analyze usability defects. Each category in the revised OSUDC

contains explanations and sample defects from real-world OSS projects. Usability defects that are

classified using OSUDC could improve open source defect management, particularly to facilitate

triaging processes identifying similar solutions for the same problems, suitable resources to fix the

problems, and prioritizing defect correction. From the research perspective, this work contributes to the

body of knowledge by incorporating a cause-effect relationship, which was not previously considered

in the usability engineering studies.

8.1.4 Usability Defect Report Form Evaluation

Our proposed usability defect report forms contain four main criteria based on the findings of literature

reviews, online surveys, and software defect repositories mining: 1) each attribute captures only one

value, 2) one attribute is explained with multiple instances, 3) attributes are prompted when relevant to

the reporter’s information needs, and 4) user difficulties are measured using objective scales. These

criteria were prototyped using Jotform, based on the current Bugzilla defect report layout.

The practical use of the proposed forms to capture meaningful usability defect descriptions was

evaluated using an expert judgment approach. Our evaluation focused on comparing the quality of

information between the original usability defect reports and the case study defect reports reproduced

on our proposed forms. Using the guided defect report forms, reproduction of usability defects were

constructed systematically and the multiple attribute instances were found sufficient to capture

 180

important information and giving hint to defect reporter; although not all attributes requested in the

forms could be provided. The case studies also provide useful information on the usage of predefined

usability defect categories in identifying usability defects that have common characteristics. The

results from the evaluation suggest that by using multiple attribute instances to capture only one value

per attribute could improve the quality of information presented in the usability defect descriptions.

8.2 Lessons Learned

In this section, we discuss practical challenges, experiences, and selected lessons we learnt in the five

research studies that we conducted during this PhD.

8.2.1 Getting Ethics Approval for Conducting Online Surveys

In accordance to Swinburne research integrity, ethics approval must be sought for any research that

involved human participants. During this PhD, we have applied two ethics approvals for two different

studies. Getting the right strategy to write a good ethics application could speed up the approval

process. For example, it is helpful to review a completed application that secured ethical approval from

the Swinburne’s Human Research Ethics Committee (SUHREC). In our experience, a well-planned

execution of the surveys is a key determinant of a successful ethics application. Every method and

instrument to be used must be specific, such as in selecting target population, recruitment strategy,

location of study, and data privacy. Furthermore, it is important that every part of the document is

aligned (e.g., aims, methods, instruments, etc) to make the document coherent.

8.2.2 Recruiting Survey Participants

In the first survey investigating information needs for reporting and fixing usability defects, we used

coarse target population strategy to recruit potential participants. We posted requests for participation

on the open source community forums, Facebook, LinkedIn, and Software Testing Club website.

However, in our experience of using the coarse target population recruitment strategy, it produced a

high percentage of invalid responses and therefore should be avoided in the future. In our first and

second survey, more than around 50% of responses were excluded for no response beyond the first

parts of the questionnaire.

 181

One possible explanation of this problem was due to the out of scope factor, where the respondents

are not in the target population. For example, the software development practitioners who do not have

experience in dealing with usability defects may be reluctant to proceed with the surveys. As a lesson

learnt, when investigating usability defect reporting practices by specific professional groups, such as

open source communities, we should only use community-specific mailing lists and focus on the UX

team, rather than approach the whole OSS community, some of whom might not be familiar with

usability.

In the second survey evaluating our new OSUDC taxonomy, instead of focusing on a coarse target

population, we used the researcher’s referral contacts to recruit participants. We selected participants

with a known software development background and sent specific invitation emails to them. In our

experience, we found that industrial participation was low as compared to that of academic researchers.

One potential reason behind this low participation could be that industrial professionals were too busy

with their essential task and participating in the survey would add extra work. On the other hand, we

believe academic researchers are more highly motivated to participate in the surveys because of their

understanding of the pressure and intensity of other researchers to investigate and publish findings

promptly.

During both surveys, we noticed three significant factors as a useful means to gain more

participation. The first was sending reminder messages within a certain period of time. In our survey,

we only sent a one time reminder because sending too many reminders may annoy some potential

participants, thereby making them less likely to respond. The second significant factor was forwarding

invitations from researchers’ industrial contacts. Even though this method is likely to get participation

beyond the target population [118], in our case we only asked our industrial colleagues to extend the

invitations to individuals that they felt were suitable for this research context rather than forwarding to

the company mailing list. The third useful factor to gain more participation was to offer incentives.

Other empirical studies have shown that incentives have a great influence on response rate and quality,

especially for a lengthy survey like our surveys [119]–[121]. However, with limited funding, we could

only conduct a voluntary survey. In future work, we might consider offering rewards either in the form

of raffles, payments, or sharing results to motivate less motivated participants.

 182

8.2.3 Designing Survey Questionnaires

One of the crucial parts of conducting a survey is to get the right questions to measure the constructs

that are investigated through the survey. We found the systematic literature review that has been

conducted earlier was helpful in constructing simple questions that referred to facts and in choosing the

appropriate words for the survey. Apart from that, a pilot study, in our opinion, is a good practice to

obtain early feedback before the survey goes live. In the first survey, we obtained feedback and

suggestions from fifteen software developers that was very helpful to improve the content and structure

of the survey. The identified irrelevant, duplicate, and unclear questions were modified to ensure the

consistency of the survey sections.

However, we believe that the lengthy survey is one possible reason for a high invalid participation

in both of our surveys. In the first survey, for example, a closer inspection of data showed that about

17% of participants left the survey after answering the first section. Possibly the use of a survey

progress bar indicator was not helpful to motivate participants to finish the survey. Since the survey

had a total of 50 questions, in the beginning of first section the progress bar indicator certainly still

showed significant remaining percentage to be completed, though this percentage changed

progressively as not all questions needed to be answered.

In the second survey, even though the questions were straightforward, it required significant effort

from participants to read the usability defect descriptions before they could answer the questions. We

believe that participants were tending to avoid such a survey that would take too much effort from their

daily work, and if they were willing to participate, the validity of their answers to some extent is

dubious. One way to deal with this problem is via technical mechanisms to monitor the time taken by

the participants to answer each question, or at least the time spent on each page.

8.2.4 Mining Textual Usability Defect Descriptions

Most usability defect reports in OSS defect repositories are semi-structured text. While text mining

researchers have developed a wide range of algorithms and tools to deal with natural language texts,

the algorithms rely somewhat on the quality of the documents itself, which we have found is often very

variable in open source usability defect reports. For this reason, we conducted a fully qualitative

analysis of the natural language data to create a full human interpretation. We created a simple coding

 183

of the textual data, and attached the code to a piece of the text that can be either single word, or a

sentence. In our experience, the best way to create the codes to classify utterances in the defect

descriptions is to find anchor studies that had similar research aims, and brainstorm some potential

codes that could be relevant to the research context. Since the process of tagging part of text, and

grouping of words and phrases requires a global understanding of defect report concepts and structures,

we iteratively refined a set of codes that have been defined earlier until these codes established.

8.2.5 Analysis of Data

Our surveys include both quantitative and qualitative analysis. For quantitative analysis, in our

experience we found it was useful to clearly define survey research questions, which we then mapped

with survey questions and identified potential statistical tests to analyze the collected data. In this way,

we could avoid unnecessary questions, and select the most suitable response format for the data

analysis. This is because questions with inappropriate response formats may hinder the application of

relevant statistical tests, or the response cannot be analyzed and interpreted in a meaningful manner.

Qualitative analysis was mainly used as support evidence for the quantitative results.

Further, it is important to seek advice from professional statisticians. In our experience, even

though we used correct statistical tests, the use of some statistic values was inappropriate. For example,

when the Chi-Square test is performed simultaneously for multiple variables, Bonferroni correction

must be used to avoid the influence of a spurious positive. Additionally, it is necessary to explain the

statistical findings in simple terms to non-technical readers. Reporting p-value, and F-value, for

example, while convenient for statisticians, is less important when presenting findings to other non-

statistician readers. Therefore, it is better to explain easy-to-understand results than statistically valid,

yet complex, results.

8.3 Limitations

8.3.1 Diverse Respondents Background

Our investigations on the nature of reporting and fixing usability defects were based on input from

respondents that had varying levels of usability background and commitment. For example, software

developers and software testers working on closed proprietary software may have better exposure to

 184

writing effective usability defect reports than open source contributors who work on a voluntary basis,

and may report usability-related defects without formal training [122]. This may have introduced some

bias to our findings.

8.3.2 Manual Classification of Usability Defect Information

Even though some computational programs and tools were available to automatically analyze textual

data in a much shorter time, we manually read through all the 377 usability defect descriptions to

examine the presence of certain pieces of information. We realized that within a limited research

timeframe, to understand and develop the text mining algorithms that were suitable to our research

context was quite impossible. Indeed, applying analytical algorithms would require a significant effort

to understand the usage of each algorithm and the combination of selected techniques for handling text.

Furthermore, the text mining process to automatically classify usability defects was not really in the

scope of this work.

8.3.3 Limited Evaluation Aspects of the Proposed Usability Defect Report Forms

In this work, we only evaluated the quality of the information aspect produced by the proposed

usability defect report forms. Our evaluation compared the level of details of usability defect report

content written using our proposed forms with original reports that used default Bugzilla templates.

However, outcomes were only based on the judgment of experts that were not directly using this report

in their daily work. Other aspects, such as ease of use of the forms to assist software reporters to report

useful usability defect descriptions, and the usefulness of the information produced by the proposed

forms to help software developers to understand and fix the problems, are still to be investigated

further in our future work.

8.4 Future Research

Several possible directions for future investigation have been identified as a consequence of our study.

Some of these are to overcome the current limitations of this study, and to integrate with current trends

in OSS development and usability studies; these are discussed in the following sections. Sections 8.4.1

to 8.4.4 present the short-term future work, while sections 8.4.5 to 8.4.7 discuss long-term future work.

 185

8.4.1 Replicating the Survey for Different Focus Groups

In software engineering research, replication and reproduction experiments, case studies, and surveys

have been recognized for creating and extending scientific knowledge [123]–[126]. Since the main

target population of our previous surveys were individuals who have experience in reporting or fixing

usability defects, we were interested in replicating and extending the surveys to the organizational

level. For example, we could compare the usability defect reporting practices in organizations with

usability teams, organizations without usability teams, and OSS development communities. We believe

that different organizations may have different strategies and policies to enforce the implementation of

HCI activities, which would eventually influence the information needs of usability designers, software

development practitioners, and development management. This also raises the following new research

question: How do different organizational backgrounds influence usability defect reporting practices?

8.4.2 Additional Reliability Studies to Assess Our OSUDC Taxonomy

An additional reliability study is planned to assess the level of agreement achieved in OSUDC

categories, especially on the subcategories level. Since the reliability study reported in Section 6.5.2

mainly involved non-usability expert respondents, a different target population is needed to gain

feedback from various respondents with different levels of expertise. This is because our aim of

revising existing usability classification [12], [76], [95] was to produce a simple and easy-to-use model

that can be used by OSS users with different technical backgrounds. Possible approaches include

enlarging the number of respondents with different backgrounds, the number of usability defects, or

both.

8.4.3 Automated Text Mining Process

Text mining is a useful method for extracting key trends, such as word usage, or vocabulary in a textual

document. Using appropriate analytical algorithms, many text documents can be automatically

converted into a structured and numerical format that can reveal more meaningful information.

Although this thesis has demonstrated the classification of the usability defect descriptions to a set of

predefined categories, such classification processes were carried out manually. A potential drawback of

dealing with manual classification is that the analysis and interpretation of defect descriptions is greatly

dependent on the research team involved. Therefore, further research is needed to understand different

 186

text mining practices areas – possibly in the area of concept extraction to group certain words and

phrases into semantically similar groups. By using machine-learning tools like the Weka5 tool and

RapidMiner, it is hoped that the glossary of terms for each category can be generated successfully.

In addition, using the text-mining method, it would be interesting to explore how usability defects

were understood in the comments section of reports, which is outside the scope of this study. In this

way, clarification on how the usability defects should have been reported, and contrasting this with the

way in which it was reported can be made. The results from this kind of study can be used to improve

the OSUDC taxonomy proposed. For example a “how not to report defects” model can be developed

with the associated terms for specific kind of usability issues.

8.4.4 Additional Evaluation of Our Proposed Usability Defect Report Form

As described in this thesis, the usability defect forms we are proposing have so far only been evaluated

in terms of the quality of information, which has been assessed by software engineering experts. Other

aspects such as the ease of use of the forms in reporting usability defects, workload imposed on

reporters, and the usefulness of the information on software developers, are still open for investigation.

In future work, we plan to assess to what extent the proposed forms were successful in eliciting the

information needed by software developers. In this study, we would like to compare the usability

defect descriptions produced by practitioners and students (represented for non-technical users), and

the workload imposed on them when reporting the usability defects. Once the proposed forms are in a

stable stage, we also plan to validate our proposed forms by requesting IT organizations to use the

forms to report usability defects. The reported defects will then go to the defect management lifecycle,

and we will monitor the defect resolution status. In this way, we could confirm the effectiveness of our

proposed forms to speed up usability defect resolution.

While feedback on the proposed usability defect report forms was generally positive, this study

primarily consulted software engineering experts who were not directly involved with software

development. Other stakeholders in the software development process, such as software developers,

managers, usability designers, and customer support, may have different feedback about the

5 http://www.cs.waikato.ac.nz/ml/weka/downloading.html

 187

information that is important to them. Thus, further evaluation may need to be carried out for different

stakeholders as well.

8.4.5 Defect Reporter Effect in Software Defect Reporting

From our survey of software development practitioners and review of previous literature, we found that

the defect reporters play a significant role in determining which usability defects get fixed. We also

found that relationships and trust built between software developers and known-defect reporters

influence the defect resolution. This shows some indication that defect reporter effect might be

influential to the quality of defect report descriptions. Therefore, we plan to investigate the effect of

defect reporter expertise, knowledge of the application domain, and familiarity with the defect

reporting tools on software defect reporting, which we believe has not been investigated by any other

researchers, with more specific research study. In the proposed research study, groups of defect

reporters with different backgrounds will be asked to watch a video of representative users performing

certain tasks. Then the defect reporters will be required to report each usability defect they discovered

in the video using our proposed forms. The quality of defect descriptions of each group will be

assessed and compared.

In addition, we will collect the personality profile (big five personality traits) of the defect

reporters [127], and will analyze the personality profiles and quality of defect descriptions to find

association, if there is any.

8.4.6 Modeling Defect Prediction Using Textual Defect Information

We found that textual content of usability defect descriptions can provide an early insight into the

defect resolution time. Compared with other types of defects, usability defects require detailed

explanations to clarify the validity of issues. Typically, the nature and complexity of the issues is often

described in the defect description. For instance, the likely difficulty, emotion, and feelings can only be

expressed in the text-form. However, most of the existing research in predicting defect resolution time

is involved with using categorical data such as severity, priority, version, component, and attachment

supplied [128]–[132]. This is because textual analysis is more complex to analyze, especially as the

number of defect reports grows, more time is required. Therefore, research challenges following from

our results are: “How can textual content of defect descriptions automatically be classified into certain

 188

components?” and “Which textual components should be used to predict usability defect resolution

time?”

8.4.7 Multilingual Patterns of Describing Usability Defects

In global software development, language is challenging in many software development activities,

including software defect reporting. Besides the different use of vocabulary to explain technical

subject, interpretation and meaning of defect descriptions written in various languages can be different.

For example, in Malaysia code switching between Malay and English has become common practice in

requirements elicitation [133], and it is also possible when expressing software defects. Motivated by

this problem, we plan to investigate the nature of how usability defects are described in non-English

based IT companies. Through this kind of research, we could develop a Malay-usability glossary of

terms for better understanding of usability defects.

8.5 Final Remarks

This research progressed from the need to have an appropriate defect report form for capturing

different types of defects; in this study, we focused on usability defects. The importance of capturing

complete and meaningful defect information for fixing software defects was evident in both the

software engineering and usability engineering domains. However, most research in usability defect

reporting was conducted in usability engineering studies where the main concern was to find the most

effective methods of presenting usability evaluation results. This left a gap in finding the right defect

report content for reporting usability defects that were found outside of formal usability evaluations,

especially for users with limited usability knowledge.

While a variety of usability defect classification models exist in usability engineering that are

widely accepted by industry and academia, these classification models were not appropriate for use in

OSS development, in which the defect reports contained limited information and the development stage

often ignored the usability aspects [134]. However, some features in these classification models could

be extended to overcome these drawbacks. This was one of the focuses of this research: to revise the

usability problem taxonomy for classifying OSS usability defects using a ‘lightweight’ classification

mechanism. This research has not only filled the existing gap but has also contributed to an increased

 189

understanding of how open source defect classification models can be designed using software

engineering and usability engineering literatures and concepts, respectively.

To this end, this thesis extends current open source defect report forms to capture information

specific to usability defects. Our proposed usability defect report forms can be adopted by

organizations with specific usability teams, in which the process of handing over findings from

usability evaluations to software development teams could be simplified. Usability evaluation findings

written in our proposed forms provide “just enough” documentation and do not require the

summarization of comprehensive documents to be used directly by the software developers. This is an

important issue in software development as fast feedback cycles are essential.

 190

Abbreviations

ANOVA Analysis of Variance

CUP Classification of Usability Problem

DCART Data Collection, Analysis, and Reporting Tool

GUI Graphical User Interface

HCI Human Computer Interaction

HP-DCS Hewlett Packard Defect Classification Scheme

IRC Internet Relay Chat

ODC Orthogonal defect Classification

OSS Open Source Software

OSUDC Open Source Usability Defect Classification

RCA Root Cause Analysis

SLR Systematic Literature Review

UAF Usability Action Framework

UPT Usability Problem Taxonomy

URM Usability Reporting Manager

UX User Experience

 191

Appendix A

List of Included Paper in the Systematic Literature Review

 192

The references listed below correspond to these prefaced with the letter “P” throughout the Chapter 3:

[1] Bruun, A., & Stage, J. (2014). Barefoot usability evaluations. Behaviour & Information Technology, 33(11), 1148–1167.
Doi:10.1080/0144929X.2014.883552

[2] Dumas, B. J. S., Molich, B. R., & Jeffries, B. R. (2004). Describing usability problems: Are we sending the right
message? Interactions, 0–4.

[3] Hornbaek, K., & Frokjaer, E. (2006). What Kinds of Usability-Problem Description are Useful to Developers? In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 50, pp. 2523–2527).
Doi:10.1177/154193120605002402

[4] Howarth, J., & Hall, M. (2006). Identifying Immediate Intention during Usability Evaluation. In Proceedings of the 44th
Annual Southeast regional conference (pp. 274–279).

[5] Capra, M. G. (2007). Comparing Usability Problem Identification and Description by Practitioners and Students. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting (pp. 474–477).

[6] Bruun, A., Gull, P., Hofmeister, L., & Stage, J. (2009). Let Your Users Do the Testing!: A Comparison of Three Remote
Asynchronous Usability Testing Methods. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 1619–1628).

[7] Howarth, J., Smith-jackson, T., & Hartson, R. (2009). Supporting novice usability practitioners with usability
engineering tools. International Journal Human-Computer Studies, 67(6), 533–549. Doi:10.1016/j.ijhcs.2009.02.003

[8] Skov, M. B., & Stage, J. (2009). Training software developers and designers to conduct usability evaluations. Behaviour
& Information Technology, 31(4), 425–435. Doi:10.1080/01449290903398208

[9] Høegh, R. T., & Stage, J. (2006). The Impact of Usability Reports and User Test Observations on Developers ’
Understanding of Usability Data!: An Exploratory Study. INTERNATIONAL JOURNAL OF HUMAN–COMPUTER
INTERACTION, 21(2), 173–196.

[10] Hvannberg, E. T., Law, E. L.-C., & Lárusdóttir, M. K. (2007). Heuristic evaluation: Comparing ways of finding and
reporting usability problems. Interacting with Computers, 19(2), 225–240. Doi:10.1016/j.intcom.2006.10.001

[11] Morse, E. L. (2000). The IUSR project and the common industry reporting format. In Proceedings on the 2000
conference on Universal Usability – CUU ’00 (pp. 155–156). New York, New York, USA: ACM Press.
Doi:10.1145/355460.355556

[12] Vermeerena, A. P. O. S., Attemaa, J., PhDa, E. A., Riddera, H. de, Doorna, A. J. von, Erbuğb, Ç., … Maguirec, M. C.
(2008). Usability problem reports for comparative studies!: consistency and inspectability. Human–Computer
Interaction, 23(4), 329–380.

[13] Hornbæk, K., & Frøkjær, E. (2008a). Comparison of techniques for matching of usability problem descriptions.
Interacting with Computers, 20(6), 505–514. Doi:10.1016/j.intcom.2008.08.005

[14] Skov, M. B., & Stage, J. (2005). Supporting problem identification in usability evaluations. In Proceedings of
OZCHI’05, the CHISIG Annual Conference on Human-Computer Interaction (pp. 1–9). Retrieved from
http://portal.acm.org/citation.cfm?id=1108368.1108410

[15] Andre, T. S., Hartson, H. R., & Williges, R. C. (2003). Determining the Effectiveness of the Usability Problem
Inspector: A Theory-Based Model and Tool for Finding Usability Problems. Human Factors!: The Journal of the
Human Factors and Ergonomics Society, 45(3), 455–482. Doi:10.1518/hfes.45.3.455.27255

[16] Cockton, G., Woolrych, A., Hall, L., & Hindmarch, M. (2003). Changing analysts’ tunes: The surprising impact of a
new instrument for usability inspection method assessment. Proceedings of HCI 2003 on People and Computers XVII,
145–162. Retrieved from http://www.cet.sunderland.ac.uk/~cs0awo/hci 2003 full.pdf

[17] Feiner, J., & Andrews, K. (2012). Usability Reporting with UsabML. Proceedings of the 4th International Conference
on Human-Centered Software Engineering, 7623, 342–351.

[18] Heller, F. (2011). Me Hates This!: Exploring Different Levels of User Feedback for (Usability) Bug Reporting. In
Extended Abstracts on Human Factors in Computing Systems (pp. 1357–1362).

[19] Lewis, J. R. (2006). Effect of Level of Problem Description on Problem Discovery Rates: Two Case Studies. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting (pp. 2567–2571)

[20] Zhao, L., & Deek, F. P. (2005). Improving Open Source Software Usability. In Proceeedings of the Eleventh Americas
Conference on Information Systems (pp. 923–928).

 193

[21] Vetro, A., Zazworka, N., Seaman, C., & Shull, F. (2012). Using the ISO/IEC 9126 product quality model to classify
defects: a Controlled Experiment. In International Conferenece on Evaluation and Assessment in Software Engineering
(pp. 87–96).

[22] Lal, S., & Sureka, A. (2012). Comparison of Seven Bug Report Types: A Case-Study of Google Chrome Browser
Project. In 2012 19th Asia-Pacific Software Engineering Conference (pp. 517–526). Ieee. Doi:10.1109/APSEC.2012.54

[23] Twidale, M. B., & Nichols, D. M. (2005). Exploring Usability Discussions in Open Source Development. In
Proceedings of the 38th Annual Hawaii Internatioal Conference on System Sciences (pp. 1–10).

[24] Martin, S. (2007). Enhancing the Downstream Utility of Usability Evaluations with Pattern-based Recommendations. In
COST294-MAUSE Workshop on Downstream Utility (pp. 1–4).

[25] Botella, F., & Peñalver, A. (2013). A new proposal for improving heuristic evaluation reports performed by novice
evaluators. In Proceedings of the 2013 Chilean Conference on Human – Computer Interaction (pp. 72–75).

[26] Ko, A. J., & Chilana, P. K. (2011). Design, Discussion, and Dissent in Open Bug Reports. In Proceedings of the 2011
iConference (pp. 106–113). Doi:10.1145/1940761.1940776

[27] Faaborg, A., & Schwartz, D. (2010). Using a Distributed Heuristic Evaluation to Improve the Usability of Open Source
Software. In CHI Conference on Human Factors in Computing Systems (pp. 4–5).

[28] Bernonville, S., Kolski, C., & Leroy, N. (2010). First Experimentation of the ErgoPNets Method Using Dynamic
Modeling to Communicate Usability Evaluation Results. Human Error, Safety and Systems Development, 5962, 81–95.

[29] Molich, R., Jeffries, R., & Dumas, J. S. (2007). Making Usability Recommendations Useful and Usable. Journal of
Usability Studies, 2(4), 162–179.

[30] Nichols, D. M., Mckay, D., & Twidale, M. B. (2003). Participatory Usability!: supporting proactive users. In
Proceedings of the 4th Annual Conference of the ACM Special Interest Group on Computer-Human Interaction (pp. 63–
68).

[31] Raza, a., Capretz, L. F., & Ahmed, F. (2012). Usability bugs in open-source software and online forums. IET Software,
6(November 2011), 226. Doi:10.1049/iet-sen.2011.0105

[32] Douglas, I. (2006). Collaborative International Usability Testing!: Moving from Document-based Reporting to
Information Object Sharing. In IEEE International Conference on Global Software Engineering (pp. 0–4).

[33] Vilbergsdottir, S. G., Hvannberg, E. T., & Law, E. L. C. (2014). Assessing the reliability, validity and acceptance of a
classification scheme of usability problems (CUP). Journal of Systems and Software, 87, 18–37.
Doi:10.1016/j.jss.2013.08.014

[34] Beirekdar, A., Keita, M., Noirhomme, M., & Randolet, F. (2005). Flexible Reporting for Automated Usability and
Accessibility Evaluation of Web Sites. Human-Computer Interaction, 3585, 281–294.

[35] Hornbæk, K., & Frøkjær, E. (2008b). Making Use of Business Goals in Usability Evaluation!: An Experiment with
Novice Evaluators. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 903–912).

[36] Law, E. L., & Hvannberg, E. T. (2008). Consolidating Usability Problems with Novice Evaluators. In Proceedings of
the 5th Nordic conference on Human-computer interaction: building bridges (pp. 495–498).

[37] Nørgaard, M., & Høegh, R. T. (2008). Evaluating Usability – Using Models of Argumentation to Improve
Persuasiveness of Usability Feedback. In Proceedings of the 7th ACM conference on Designing interactive systems (pp.
212–221).

[38] Çetin, G., Verzulli, D., & Frings, S. (2007). An Analysis of Involvement of HCI Experts in Distributed Software
Development: Practical Issues. Online Communities and Social Computing, 4564, 32–40. Doi:10.1007/978-3-540-
73257-0

[39] Äijö, R., & Mantere, J. (2001). Are non-expert usability evaluations valuable!? In International Symposium on Human
factors in Telecommunications (pp. 1–5).

[40] Nichols, D. M., & Twidale, M. B. (2006). Usability processes in open source projects. Software Process: Improvement
and Practice, 11(2), 149–162. Doi:10.1002/spip.256

[41] Jonasson, G. F., & Hvannberg, E. T. (2009). Sharing Usability Problem Sets within and between Groups. Human-
Computer Interaction, 5727, 596–599.

[42] Li, Z., Tan, L., Wang, X., Lu, S., Zhou, Y., & Zhai, C. (2006). Have Things Changed Now!? – An Empirical Study of
Bug Characteristics in Modern Open Source Software. In Proceedings of the 1st workshop on Architectural and system

 194

support for improving software dependability (pp. 25–33).

[43] Zhao, L., Deek, F. P., & Mchugh, J. A. (2010). Exploratory inspection — a user-based learning method for improving
open source software usability. Journal of Software Maintenance and Evolution: Research and Practice, 22(8), 653–
675. Doi:10.1002/smr

[44] N⊘rgaard, M., & Hornbæk, K. (2009). Exploring the Value of Usability Feedback Formats. International Journal of
Human-Computer Interaction. Doi:10.1080/10447310802546708

[45] S. Herbold, J. Grabowski, S. Waack, and U. Bünting, “Improved Bug Reporting and Reproduction through Non-
intrusive GUI Usage Monitoring and Automated Replaying,” in 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops, 2011, pp. 232–241.

[46] Kreyss, J., White, M., Selvaggio, S., & Zakharian, Z. (2003). Text Mining for a Clear Picture of Defect Reports!: A
Praxis Report. In Third IEEE International Conference on Data Mining (pp. 3–6).

[47] F. P. Simões, “Supporting End User Reporting of HCI Issues in Open Source Software,”. PhD Thesis. Pontificia
Universidade Catolica, Do Rio De Janeiro, 2013.

[48] Ko, A. J., Myers, B. A., & Chau, D. H. (2006). A Linguistic Analysis of How People Describe Software Problems. In
Visual Languages and Human-Centric Computing (VL/HCC’06) (pp. 127–134). Ieee. Doi:10.1109/VLHCC.2006.3

[49] Pichler, J., & Ramler, R. (2008). How to test the intangible properties of graphical user interfaces? In Proceedings of the
1st International Conference on Software Testing, Verification and Validation, ICST 2008 (pp. 494–497).
Doi:10.1109/ICST.2008.52

[50] Xia, X., Zhou, X., Lo, D., & Zhao, X. (2013). An Empirical Study of Bugs in Software Build Systems. In 13th
International Conference on Quality Software (pp. 200–203). Ieee. Doi:10.1109/QSIC.2013.60

[51] T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, and W. Maalej, “Monitoring user interactions for supporting failure
reproduction,” in 2013 21st International Conference on Program Comprehension (ICPC), 2013, pp. 73–82.

[52] Avnon, Y., & Boggan, S. L. (2010). Fit and Finish using a bug tracking system: challenges and recommendations. In
Proceedings of the 28th of the international conference extended abstracts on Human factors in computing systems (pp.
4717–4720). Doi:10.1145/1753846.1754219

[53] K. Hornbæk and E. Frokjær, “Comparing usability problems and redesign proposals as input to practical systems
development,” CHI 2005 Technol. Safety, Community Conf. Proc. – Conf. Hum. Factors Comput. Syst., pp. 391–400,
2005.

[54] C. Wilson and K. P. Coyne, “The whiteboard: Tracking usability issues: to bug or not to bug?,” Interactions, pp. 15–19,
2001.

[55] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshyvanyk, “Auto-completing Bug Reports for Android
Applications,” Proc. 2015 10th Jt. Meet. Found. Softw. Eng., pp. 673–686, 2015.

[56] A. Hindle, A. Alipour, and E. Stroulia, “A contextual approach towards more accurate duplicate bug report detection
and ranking,” Empir. Softw. Eng., pp. 368–409, 2015.

[57] N. Shahida, M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects!: Limitations of Open Source Defect
Repositories and Suggestions for Improvement,” in Proceedings of the ASWEC 2015 24th Australasian Software
Engineering Conference, 2015, pp. 38–43.

 195

Appendix B

Survey Questionnaire

 196

Background Information

1. What is your gender?

 Male Female

2. What is your age?

 Less than 24 years old 25 - 34 years old 35 - 44 years old

 45 - 54 years old 55 years old and above

3. What is your professional position?

 Software developer Software tester Quality assurance engineer

 Customer consultant/ support System engineer Test manager

 Project manager Usability engineer User interface designer

 Other

If you have chosen “other”, please specify:

4. How long have you been in your current position?

 Less than 1 year Between 1 and 3 years

 Between 3 and 5 years More than 5 years

5. Do you contribute to open source project such as Firefox, Google Chrome, GNOME?

 Yes No

6. How do you describe your role in dealing with usability defects?

 I am fixing usability defects I am reporting usability defects

Training or Certification on Human-Computer Interaction

7. Have you received any training/ certification related to usability evaluation/ Human Computer

Interaction (HCI)

 Yes No

Note: If you have answered/ chosen item [2] in question 7, skip the following question

8. How useful was the training/ certification for reporting and/ or understanding usability defects?

 Very useful Somewhat useful Neither useful or not useful

 Not very useful Complete waste of time

 197

Discovering Usability Defects

Note: If you have answered/ chosen item [1] in question 6, skip the following question

9. Do you have experience in software testing (no matter what is your current position)?

 No experience Less than 1 year Between 1 and 3 years

 Between 3 and 5 years More than 5 years

10. How do you discover the usability defects?

 Exploratory testing Functional testing Usability testing

 Beta/ alpha testing Complaints/ reports from customers Using the product

 Other

If you have chosen “other”, please specify:

11. The amount of information available for reporting usability defects varies according to how the

defects are discovered. For instance, usability defects found during usability testing have more

information to report in comparison to functional testing. Would you agree or disagree on the

following statement in relation to the availability of usability defect information for different

defect discovery methods?

Statement Completely

disagree

Somewhat

disagree

Neither

disagree

or agree

Somewhat

agree

Completely

agree

The difficulties the actual

user will encounter as a

consequence of the

usability problems

cannot be known during

functional testing

In exploratory testing, a

usability defect is

typically grounded in

general usability

knowledge, rather than in

speculation on users task

performance and

response

 198

The presence of actual

users during usability

testing can reveal user’s

knowledge, likely

difficulties, actual task

scenario and realistic

redesign solutions

In usability testing, more

usability-related

information can be

reported, such as violated

heuristics, design

principles, users response

and feelings as compared

to system testing

Describing complaints

from customers or end

users may not correctly

describe the actual

difficulties faced by them

12. Do you think defect reporting tool should provide custom forms for reporting defects depending

on how usability defects are discovered?

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

Reporting Usability Defects

Note: If you have answered/ chosen item [1] in question 6, skip the following question

13. Do you use the following items when describing usability defects?

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

Items Never Rarely Sometimes Often Always

Title/ Summary

Cause of the problem

Software context (part of

the user interface,

 199

Reporting Usability Defects

Note: If you have answered/ chosen at least one of the following items: [(2,2)] in question 13, skip the

following question

Note: If you have answered/ chosen item [1] in question 6, skip the following question

14. When specifying the defect report title/ summary, I do include

 explanation on the situation that was happening at the time the problem occured

 build or version of the software or OS on which the problem occured

 an error message that come up by copying and pasting the whole thing in

 quality attributes affected (i.e., usability, performance, reliability)

 Other

 If you have chosen “other”, please specify:

Note: If you have answered/ chosen at least one of the following items: [(2,3)] in question 13, skip the

following question

Note: If you have answered/ chosen item [1] in question 6, skip the following question

15. When describing causes of usability defects, I

 include heuristics that are violated

 describe a design fault, such as how the interaction architecture contributed to the problem

 describe my knowledge of performing and understanding a task or object interface

interface component)

Proposed solution

Observed result

Expected result

Steps to reproduce

Severity

Software information

(product, component,

and/ or version)

Test environment

(Operating system,

hardware, browser

details)

 200

 Other

 If you have chosen “other”, please specify:

16. I support the description of usability defect causes with

 UI event trace Screenshot with annotations Screenshot and accompanying text

 Video with captions Textual description Other

If you have chosen “other”, please specify:

Note: If you have answered/ chosen at least one of the following items: [(2,4)] in question 13, skip the

following question

Note: If you have answered/ chosen item [1] in question 6, skip the following question

17. To indicate the context of the usability defects, I

 describe the location of the problem in the interface, such as screen title

 mention the problematic user interface object, such as button, menu and dialogue box

 describe the user’s task

 describe exactly which system components are affected

 Other

 If you have chosen “other”, please specify:

18. I show the location of usability defects in the interface using

 screenshot with annotations video with captions textual description

 Other

If you have chosen “other”, please specify:

Note: If you have answered/ chosen at least one of the following items: [(2,5)] in question 13, skip the

following question

Note: If you have answered/ chosen item [1] in question 6, skip the following question

19. In describing a proposed solution to a usability defect, I

 include several alternate solutions

 describe advantages and disadvantages for alternative solutions

 mention usability design principles and/ or previous research

 use my knowledge to interpret how design is supposed to work

 propose the expected behavior (defects)

 propose the behavior desired (enhancements)

 201

 Other

 If you have chosen “other”, please specify:

20. I support the description of the proposed solutions with

 fix patch digital mock-ups annotated screenshots

 simple sketches ASCII art textual description only

 oral presentation Other

If you have chosen “other”, please specify:

Note: If you have answered/ chosen at least one of the following items: [(2,7)] in question 13, skip the

following question

Note: If you have answered/ chosen item [1] in question 6, skip the following question

21. To describe the expected result, I

 refer to usability requirements

 use my knowledge and experience to interpret the expected result

 refer to usability design guideline

 Other

 If you have chosen “other”, please specify:

Note: If you have answered/ chosen at least one of the following items: [(2,6)] in question 13, skip the

following question

Note: If you have answered/ chosen item [1] in question 6, skip the following question

22. To describe the observed usability defects, I

 describe the effect of the user’s performance describe the user’s behavior following the issues

 justify what was wrong and why is it wrong attach screenshot with annotations to the issue

 attach error message Other

If you have chosen “other”, please specify:

Note: If you have answered/ chosen at least one of the following items: [(2,8)] in question 13, skip the

following question

 202

Note: If you have answered/ chosen item [1] in question 6, skip the following question

23. To describe the steps to reproduce usability defects, I

 write a textual description on the user’s navigation flow through the system

 record the steps that I follow and attach or paste a link to the video

 Other

 If you have chosen “other”, please specify:

24. To rate the severity of usability defects, I justify

 impact of the issue business effects, such as costs and time loss

 how often the issue will occur during usage Other

If you have chosen “other”, please specify:

Reporting Usability Defects

Note: If you have answered/ chosen item [1] in question 6, skip the following question

25. How do you report information about usability defects?

Medium of reporting Never Rarely Sometimes Often Always

Traditional written report

Verbally in meeting with

designers/ developers

Edited videos

Entry in a defect

reporting tool

26. Do you think that experience in usability testing will help you create a better usability defect

report?

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

27. Which five items were the most difficult to provide? Please rank the items in order of difficulty

from 1 to 5 where 1 is most difficult to you and 5 is least difficult to you.

Items 1 2 3 4 5

Title/ Summary

 203

Cause of the problem

Software context (part of

the user interface,

interface component)

Usability principle/

heuristic violated

Proposed solution

Video recording

Audio recording

Product

Component

Version

Severity

Hardware

Operating system

UI event trace

Observed result

Expected result

Steps to reproduce

Screenshots

Fixing usability Defects

Note: If you have answered/ chosen item [2] in question 6, skip the following question

28. Do you use the following items when fixing usability defects?

Items Never Rarely Sometimes Often Always

Title/ Summary

Cause of the problem

Software context (part of

the user interface,

interface component)

Usability principle/

heuristic violated

Observed result

Expected result

Steps to reproduce

 204

29. Does the following attachments helps you in fixing usability defects?

Items Never Rarely Sometimes Often Always

Video recording

Audio recording

UI event trace

Proposed solution

Screenshots

Proposed fix patch

Digital mockups

ASCII art

30. Do you request the following general information to assist with defect management and

reproduction?

Items Never Rarely Sometimes Often Always

Product

Component

Version

Hardware

Operating system

Severity

31. Which five items help you the most? Please rank the items in order of importance from 1 to 5

where 1 is most important to you and 5 is least important to you.

Items 1 2 3 4 5

Title/ Summary

Cause of the problem

Software context (part of

the user interface,

interface component)

Usability principle/

heuristic violated

Proposed solution

Video recording

 205

Audio recording

Product

Component

Version

Severity

Hardware

Operating system

UI event trace

Observed result

Expected result

Steps to reproduce

Screenshots

32. Which of the following problems have you encountered when fixing usability defects? (Please

select ALL that apply)

You were given unclear:
 Title/ summary
 Cause of the problem
 Software context (the location of problem in the interface)
 Usability principle/ heuristic violated
 Proposed solution
 Screenshots
 Audio recording
 Video recording

You were given incorrect:
 Component
 Observe result
 Expected result
 Product
 Version
 Severity
 Hardware
 Operating system

There was insufficient information in:
 Steps to reproduce
 UI event trace

The reported used:
 Bas grammar
 Unstructured text/ format
 Vague comment
 Too long text
 Non-technical language
 Usability jargon/ term

Others:
 Duplicate
 Spam
 Viruses/ worms

 206

33. When assessing usability defects, I found

Statement Never Rarely Sometimes Often Always

The usability defects reported by potential

end-users with direct experience from the

work domain were given higher priority

Usability expert provides better usability

defect report compared to general software

tester

General software tester rarely supplies

usability-related information, such as violated

heuristics or design principles

Developer provides more meaningful

usability defect description with proposed fix

patch and logs

Non technical users rarely provide important

information such as software context, product

information and reproducibility

34. Do you think a defect reporter propose better solutions when they have usability experience (UX),

rather than relying on individual speculations?

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

Defect Reporting Tool

Note: If you have answered/ chosen at least one of the following items: [(2,5)] in question 25, skip the

following question

Note: If you have answered/ chosen at least one of the following items: [(3,5), (4,5), (6,5)] in question

25, skip the following question

Note: If you have answered/ chosen item [1] in question 6, skip the following question

35. Does your organization use defect reporting tool to manage usability defects?

 Yes No

 207

Defect Reporting Tool

Note: If you have answered/ chosen at least one of the following items: [(2,5)] in question 25, skip the

following question

Note: If you have answered/ chosen item [2] in question 35, skip the following question

36. Name your defect reporting tool:

37. Does your defect reporting tool offer sufficient flexibility to capture and manage usability defects?

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

38. Do you have any positive/ negative feedback about your defect reporting tool for supporting

usability issues? Please specify here:

39. Do you think the user experience (UX) of the defect reporting tool influences the quality of defect

reports?

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

40. Do you think your defect reporting tool should provide a custom forms for reporting defects

depending on reporter’s experience)new – intermediate – experienced reporter)?

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

41. Do you think your defect reporting tool should provide custom forms for reporting defects

depending on reporter’s knowledge (non-technical, technical, Human-Computer Interaction

expert)?

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

Note: If you have answered/ chosen item [1] in question 6, skip the following question

42. Do you use an automated tool to capture information for reporting usability defects?

 Yes No

Automation Tool

Note: If you have answered/ chosen item [2] in question 42, skip the following question

 208

Note: If you have answered/ chosen item [1] in question 6, skip the following question

43. Name the automated tools that you have used:

44. Do you think the manual process used to capture usability defect information causes erroneous or

incomplete reports?

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

Knowledge and Experience in Usability Defect Reporting

45. “ The level of detail of usability defect reports varies greatly from reporter to reporter” – Do you

agree with this statement?

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

46. Please indicate how much you agree with the following factors about their influence in reporting

usability defects.

Factors Completely

disagree

Somewhat

disagree

Neither

disagree

or agree

Somewhat

agree

Completely

agree

Practical knowledge of

the usability of software

systems

Ability of thinking from

the user’s perspective

Knowledge of users’

mental model

Knowledge of usability

principles

Domain expertise

Knowledge of technical

aspects

Knowledge of defect

reporting

47. “Level of experience of software tester cannot guarantee the completeness of usability defect

reports” – Do you agree with this statement?

 209

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

48. “Long experience in software testing helps reporters to build their knowledge, particularly in

describing usability defects” – Do you agree with this statement?

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

49. Do you think previous experience in reporting usability defects helps in increasing the

completeness of usability defect information reported?

 1 (Strongly disagree) 2 3 3 5 (Strongly agree)

Comments

50. Please use the space provided below to share any ideas or experiences you have that might

improve the quality of usability defect reporting:

 210

Appendix C

The Revised Usability Defect Classification Model – Categories,

Subcategories, and Example Defects

 211

Categories Sub-
categories

Defects Example defects

Interface GUI structure
and aesthetics

Object appearance
(icon, menu item,
scroll bar, button,
favicon etc)

Object (screen) keeps blinking/ flashing/ flickering
 Unnecessary animation on object (screen)
 Incorrect/ unnecessary use of object icon

Incorrect/ inconsistent object design
Inappropriate use of object size
Missing object
Unwanted object
Incorrect/ inconsistent use of object color
Inappropriate use of color contrast between object and background
Inappropriate object (screen) resolution
Object (screen) is truncated/ chopped/ overlapped/ blocked/ cropped
Object (screen) not persistently display
Object (screen) looks very bare
Words/ name on object are not completely visible

 Object (screen)
layout

Improper use of screen width and length

 Object (screen)

state
Incorrect object (screen) activation and deactivation behavior
Indistinguishable between active and inactive object (screen)
Incorrect object (screen) select / deselect behavior
Incorrect object (screen) visibility behavior
Incorrect/ unclear current object (screen) state
Slow object state change
Slow screen refresh
Screen does not automatically load content/ refresh
Cursor loss focus
Incorrect object (screen) focus
No visual cue to screen (object) existence
Object action is not properly set
Inappropriate/ incorrect screen navigational

 Information
presentation

Data presentation Missing default data
Data not selected
Object does not remember last selection
Data is not populated in the object (screen)
Incorrect data type and format

 Object (screen)
naming and
labeling

Misspelled/ mislabeled label
Label name is not intuitive
Incorrect use of labeling standard
Inconsistent menu labeling format

 Non-message
feedback

Missing visual cues
Misunderstanding of visual cues
Irritating/ unnecessary animation on the progress bar
Incorrect/ missing/ non-informative indicator
No warning indicator in the screen
Inappropriate use of dialog feedback

 Error/ notification
and feedback
message

Inconsistent message
Inappropriate/ irrelevant message
Incorrect/ misleading/ insufficient message
Message is too verbose/ non -informative

 On screen text and
results

Missing/ incomplete/ misleading information
Content is not updated
Unsupported format to display content

 Menu structure Incorrect connection of main options to sub-options
Inappropriate menu option
Unorganized menu organization/ structure
Obsolete menu option
Missing relevant menu option
Misplaced menu option

 212

 Audibleness Voice and sounds Inappropriate video/ audio behavior
 Audio cue NS
 Text/ feedback in

speech
NS

Interaction Manipulation Keyboard press Cursor losses focus when typing
Duplicate access keys
Inappropriate use of access keys
Inconsistent access keys
Missing/ not working access keys
Unable to navigate from one field to another using keyboard
Unable to type
Unsupported keyboard function

 Mouse click Mouse click not working
Mouse hover does not give focus
Inconsistent mouse click behavior
Too many clicks to perform task

 Finger touch Inappropriate vibrating behavior
Incorrect click event action
Tap did not invoke action bar

 Voice control NS
 Scrolling

mechanism
Scrolling not working
Inappropriate scrolling behavior
Unable to scroll
No purpose vertical/ horizontal scroll
Unbreakable scrolling axis lock

 Drag and drop Unable to drag screen (object)
 Zooming Incorrect/ inappropriate zooming behavior

Unclear visual cues that an editor is zoomed
 Functionality Missing
 Inadequate

Preference
Irrelevant
Misaligned
Problematic
Technical deficiency

 Task
execution

Action Incorrect action results
No action executed
Incorrect action executed
Too many steps to task completion
Unnecessary action to execute task
Limited accessibility to execute action

 Reversibility Unable to undo action
Unclear to perform action reversal
Reverting the current action works incorrectly

 Feedback Missing notification/ warning/ feedback message
No summary of task in progress/ completed
Unnecessary confirmation dialogue box/ indicator/ feedback
Missing permission request to access other device
No indication about the current state of an action in progress
No indication about what will happen when clicking on certain button/
menu/option
No feedback when performing critical action

* NS – No sample defects from the 377 open source usability defects we studied

 213

Appendix D

Open Source Usability Defect Classification Taxonomy Evaluation

 214

Background Information

1. What is your age?

 Less than 24 years old 25 - 34 years old 35 - 44 years old

 45 - 54 years old 55 years old and above

2. What is your gender?

 Male Female

3. What best describes you?

 HCI/ UX/ usability expert

 Industry researcher

 Academic researcher

 Software developer with experience in both user interface and software development

 Software developer with experience in software development only

 Software tester with HCI knowledge

 Software tester without HCI knowledge

 End user with HCI/ UX/ usability knowledge

 End user without HCI/ UX/ usability knowledge

4. Have you received any training/ certification related to usability evaluation/ Human Computer

Interaction (HCI)

 Yes No

5. How familiar are you with usability defects?

 Not at all familiar Slightly familiar Somewhat familiar

 Moderately familiar Extremely familiar

6. Have you used any of the following defect classification scheme?

 Orthogonal Defect Classification (ODC)

 Root Cause Analysis (RCA)

 Hewlett Packard Defect Classification Scheme (HP-DCS)

 Classification of Usability Problems (CUP)

 Usability Problem Taxonomy (UPT)

 Usability Action Framework (UAF)

 Other, please specify:

 215

Defect 1: Eclipse Platform defect #6656

7. Study Eclipse Platform Defect #6656 above. What kind of usability defect is reported? View

OSUDC taxonomy here.

 Interface Interaction Both

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

8. What kind of interface defect is reported? View OSUDC taxonomy here.

 GUI structure and aesthetics – Object (screen) appearance

 GUI structure and aesthetics – Object (screen) layout

 GUI structure and aesthetics – Object (screen) state

 Information presentation – Data presentation

 Information presentation – Object (screen) naming & labeling

 Information presentation –Non message feedback

 Information presentation – Error, notification and feedback message

 Information presentation – On screen text and results

 Information presentation – Menu structure

 Audibleness – Voice and sound

 Audibleness – Text and feedback in speech

 Other interface problems not listed above, please specify:

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

 216

9. Does the user seem to express any of the following emotions in the defect descriptions? View

OSUDC taxonomy here.

Emotion Yes No

Annoyance

Distraction

Frustration

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

10. Does the user mention anything about how the issue affects the task execution? View OSUDC

taxonomy here.

 Complexity Visibility Performance Accessibility

 Loss of data Understandability Does not mention Other, please specify:

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

11. Based on the above defect descriptions, on what basis has the user reported this issue? View

OSUDC taxonomy here.

 Missing Wrong Incongruent mental model

 Irrelevant Overlooked Better way

 I can’t tell

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [1] in question 7, skip the following question

12. What kind of interaction defect is reported? View OSUDC taxonomy here.

 Manipulation- Keyboard press

 Manipulation- Mouse click

 Manipulation- Finger touch

 Manipulation-Voice control

 Manipulation-Scrolling mechanisms

 Manipulation- Drag and drop

 Manipulation-Zooming

 217

 Task execution - Action

 Task execution - Reversibility

 Task execution - Feedback

 Functionality

 Other interface problems not listed above, please specify:

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [1] in question 7, skip the following question

13. Does the user seem to express any of the following emotions in the defect descriptions? View

OSUDC taxonomy here.

Emotion Yes No

Annoyance

Distraction

Frustration

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [1] in question 7, skip the following question

14. Does the user mention anything about how the issue affects the task execution? View OSUDC

taxonomy here.

 Complexity Visibility Performance Accessibility

 Loss of data Understandability Does not mention Other, please specify:

Note: if you have answered/ chosen item [3] in question 7, skip the following question

Note: if you have answered/ chosen item [1] in question 7, skip the following question

15. Based on the above defect descriptions, on what basis has the user reported this issue? View

OSUDC taxonomy here.

 Missing Wrong Incongruent mental model

 Irrelevant Overlooked Better way

 I can’t tell

Note: if you have answered/ chosen item [1] in question 7, skip the following question

 218

Note: if you have answered/ chosen item [2] in question 7, skip the following question

16. What kind of interface defect is reported? View OSUDC taxonomy here.

 GUI structure and aesthetics – Object (screen) appearance

 GUI structure and aesthetics – Object (screen) layout

 GUI structure and aesthetics – Object (screen) state

 Information presentation – Data presentation

 Information presentation – Object (screen) naming & labeling

 Information presentation –Non message feedback

 Information presentation – Error, notification and feedback message

 Information presentation – On screen text and results

 Information presentation – Menu structure

 Audibleness – Voice and sound

 Audibleness – Text and feedback in speech

 Other interface problems not listed above, please specify:

Note: if you have answered/ chosen item [1] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

17. What kind of interaction defect is reported? View OSUDC taxonomy here.

 Manipulation- Keyboard press

 Manipulation- Mouse click

 Manipulation- Finger touch

 Manipulation-Voice control

 Manipulation-Scrolling mechanisms

 Manipulation- Drag and drop

 Manipulation-Zooming

 Task execution - Action

 Task execution - Reversibility

 Task execution - Feedback

 Functionality

 Other interface problems not listed above, please specify:

Note: if you have answered/ chosen item [1] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

18. Does the user seem to express any of the following emotions in the defect descriptions? View

OSUDC taxonomy here.

Emotion Yes No

Annoyance

 219

Distraction

Frustration

Note: if you have answered/ chosen item [1] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

19. Does the user mention anything about how the issue affects the task execution? View OSUDC

taxonomy here.

 Complexity Visibility Performance Accessibility

 Loss of data Understandability Does not mention Other, please specify:

Note: if you have answered/ chosen item [1] in question 7, skip the following question

Note: if you have answered/ chosen item [2] in question 7, skip the following question

20. Based on the above defect descriptions, on what basis has the user reported this issue? View

OSUDC taxonomy here.

 Missing Wrong Incongruent mental model

 Irrelevant Overlooked Better way

 I can’t tell

** The same questions were used for classifying the other 9 usability defect reports below:

Defect 2: Eclipse Platform Defect#31823

 220

Defect 3: Thunderbird Defect #697413

Defect 4: Eclipse Platform Defect #2587

Defect 5: Thunderbird Defect #729027

Defect 6: Firefox for Android Defect #755221

 221

Defect 7: Firefox for Android Defect#705212

Defect 8: Eclipse Platform Defect #2730

Defect 9: Eclipse Platform Defect #75317

Defect 10: Thunderbird Defect #697125

 222

Appendix E

Prototype Evaluation Form

22

3

U
sa

bi
lit

y
D

ef
ec

t D
es

cr
ip

tio
n

Q
ua

lit
ie

s

In
st

ru
ct

io
ns

:

•
R

ea
d

ea
ch

 u
sa

bi
lit

y
de

fe
ct

 d
es

cr
ip

tio
n

•
R

at
e

yo
ur

 i
m

pr
es

si
on

 o
f

th
e

qu
al

ity
 f

or
 e

ac
h

of
 t

he
 i

nf
or

m
at

io
n

w
rit

te
n

in
 t

he
 u

sa
bi

lit
y

de
fe

ct

de
sc

rip
tio

n
by

 a
ns

w
er

in
g

th
e

gi
ve

n
qu

es
tio

ns

•
Fo

r s
om

e
qu

es
tio

ns
, y

ou
 n

ee
d

to
 re

pr
od

uc
e

th
e

pr
ob

le
m

 in
 y

ou
r o

w
n

m
ob

ile
 d

ev
ic

e

22

4

D
ef

ec
t R

ep
or

t
A

ss
es

sm
en

t Q
ue

st
io

ns

A
ns

w
er

B

ug
zi

lla
 d

ef
ec

t#
11

45
59

0
 R

ep
or

t T
itl

e:

M
ea

ni
ng

 o
f i

co
n

is
 n

ot
 in

tu
iti

ve

 D
es

cr
ip

tio
n:

M

ea
ni

ng
 o

f i
co

ns
 is

 n
ot

 in
tu

iti
ve

.
U

se
rs

 u
na

w
ar

e
th

e
‘b

oo
k’

 is
 fo

r R
ea

de
r V

ie
w

.

U
se

rs
 c

on
fu

se
d

w
ha

t t
he

 ‘H
at

’ i
s f

or
.

 St
ep

s
to

 R
ep

ro
du

ce
:

1.

La
un

ch
 F

ire
fo

x
br

ow
se

r.
2.

Lo

ok
 fo

r R
ea

de
r V

ie
w

 ic
on

.

A
ct

ua
l R

es
ul

ts
:

U
se

r d
id

 n
ot

 n
ot

ic
e

th
at

 th
e

“b
oo

k”
 ic

on
 is

 fo
r R

ea
de

r V
ie

w
.

 E
xp

ec
te

d
R

es
ul

ts
:

M
ak

e
th

e
R

ea
de

r V
ie

w
 ic

on
 is

 m
or

e
in

tu
iti

ve
.

1.

W
as

 t
he

 d
ef

ec
t

re
po

rt
ex

pl
ai

ne
d

ab
ou

t
pr

op
os

al
s

fo
r

so
lu

tio
ns

?
Fo

r
ex

am
pl

e,
 t

he
 d

es
cr

ip
tio

ns

pr
ov

id
e

al
te

rn
at

iv
es

 a
nd

 tr
ad

eo
ff

s,
an

d
su

pp
lie

d
ra

tio
na

le
 fo

r t
he

 re
co

m
m

en
da

tio
ns

 [9
].

 Y
es

 N

o
 P

ar
tia

lly

2.

W
as

 th
e

de
fe

ct
 r

ep
or

t d
es

cr
ib

ed
 c

au
se

 o
f

th
e

pr
ob

le
m

, i
nc

lu
di

ng
 th

e
ju

st
ifi

ca
tio

n
w

ha
t p

os
ed

 a

pr
ob

le
m

, i
nc

lu
di

ng
 sy

st
em

 c
om

po
ne

nt
s t

ha
t a

re
 a

ff
ec

te
d

or
 in

vo
lv

ed
?

 Y
es

 N

o
 P

ar
tia

lly

3.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 th
e

m
ai

n
us

ab
ili

ty
 is

su
e

in
vo

lv
ed

 in
 th

e
pr

ob
le

m
?

Fo
r e

xa
m

pl
e,

th

e
de

sc
rip

tio
n

ab
ou

t
w

ha
t

is
 w

ro
ng

 w
ith

 t
he

 i
nt

er
ac

tio
n

ar
ch

ite
ct

ur
e,

 i
nt

er
fa

ce
 a

nd
 u

se
r

ta
sk

de

si
gn

.

 Y
es

 N

o
 P

ar
tia

lly

4.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ai
ne

d
in

 d
et

ai
l s

te
ps

 b
y

st
ep

s
ho

w
 to

 re
pr

od
uc

e
th

e
pr

ob
le

m
, i

nc
lu

di
ng

us

er
’s

 n
av

ig
at

io
n

flo
w

 th
ro

ug
h

th
e

sy
st

em
?

 Y
es

 N

o
 P

ar
tia

lly

5.

A
re

 y
ou

 a
bl

e
to

 re
pr

od
uc

e
th

e
pr

ob
le

m
 o

n
yo

ur
 o

w
n

de
vi

ce
 a

nd
 e

nv
iro

nm
en

t?

 Y

es

 N
o

 P
ar

tia
lly

6.

W
er

e
th

e
ac

tu
al

 re
su

lts
 y

ou
 o

bs
er

ve
d

si
m

ila
r w

ith
 th

e
on

e
in

 th
e

de
fe

ct
 d

es
cr

ip
tio

ns
?

 Y

es

 N
o

 P
ar

tia
lly

7.

W
as

 th
e

de
fe

ct
 re

po
rt

ju
st

ifi
ed

 w
hy

 th
e

re
po

rte
r t

hi
nk

s t
ha

t i
t w

as
 a

 p
ro

bl
em

?

 Y
es

 N

o
 P

ar
tia

lly

8.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ic
itl

y
m

en
tio

ne
d

ab
ou

t w
ha

t p
os

es
 a

 p
ro

bl
em

 to
 th

e
us

er
?

 Y

es

 N
o

 P
ar

tia
lly

9.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 t

he
 i

m
pa

ct
 o

f
th

e
pr

ob
le

m
 o

n
bu

si
ne

ss
 e

ff
ec

t,
im

pa
ct

 o
n

th
e

us
er

’s
 ta

sk
 a

nd
 im

po
rta

nc
e

of
 th

e
ta

sk
?

 Y
es

 N

o
 P

ar
tia

lly

10
.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 re
po

rte
rs

 e
m

ot
io

n,
 fe

el
in

g
or

 re
ac

tio
ns

 u
po

n
th

e
is

su
es

?

 Y
es

 N

o
 P

ar
tia

lly

11
.

W
as

 th
e

de
fe

ct
 re

po
rt

m
en

tio
ne

d
ab

ou
t h

ow
 o

fte
n

th
e

pr
ob

le
m

 o
cc

ur
re

d?

 Y
es

 N

o
 P

ar
tia

lly

22

5

D
ef

ec
t R

ep
or

t
A

ss
es

sm
en

t Q
ue

st
io

ns

A
ns

w
er

B

ug
zi

lla
 d

ef
ec

t#
11

46
38

9
 R

ep
or

t T
itl

e:

U
nc

le
ar

 h
ow

 to
 a

cc
es

s R
ea

de
r V

ie
w

 D

es
cr

ip
tio

n:

I h
av

e
di

ff
ic

ul
ty

 to
 fi

nd
 o

ut
 R

ea
de

r v
ie

w
 ic

on
. T

he
 re

ad
er

 V
ie

w
 ic

on
 is

 n
ot

 p
er

si
st

en
tly

 d
is

pl
ay

ed
 w

he
n

us
er

sc

ro
ll

do
w

n
th

e
pa

ge
. I

n
ad

di
tio

n,
 th

e
ve

ry
 s

m
al

l R
ea

de
r v

ie
w

 ic
on

 a
nd

 it
s

co
lo

r a
re

 n
ot

 in
tu

iti
ve

 fo
r u

se
r t

o
di

sc
ov

er
.

In
 a

dd
iti

on
,

se
ve

ra
l

us
er

s
al

so
 a

dd
re

ss
ed

 t
he

ir
ne

ga
tiv

e
fe

ed
ba

ck
 o

n
bu

ild
 #

3
an

d
#4

 a
bo

ut
 t

he

un
in

tu
iti

ve
 m

ea
ni

ng
 o

f “
bo

ok
”

ic
on

 fo
r R

ea
de

r V
ie

w
 ic

on
.

 St
ep

s
to

 r
ep

ro
du

ce
:

6.

C
lic

k
on

 F
ire

fo
x

br
ow

se
r i

co
n.

7.

G

o
to

 g
oo

gl
e

se
ar

ch
 a

nd
 fi

nd
 so

m
e

ar
tic

le
s –

 fo
r e

xa
m

pl
e

se
ar

ch
 o

n
“s

of
tw

ar
e

en
gi

ne
er

in
g”

.
8.

Se

le
ct

 o
n

on
e

of
 th

e
se

ar
ch

 re
su

lts
, a

nd
 w

ai
t f

or
 th

e
in

fo
rm

at
io

n
pa

ge
 to

 b
e

lo
ad

ed
.

9.

W
hi

le
 th

e
in

fo
rm

at
io

n
is

 lo
ad

in
g,

 sc
ro

ll
do

w
n

th
e

pa
ge

.
10

.
O

bs
er

ve
 th

e
“R

ea
de

r V
ie

w
”

ic
on

 a
nd

 tr
y

to
 a

cc
es

s R
ea

de
r V

ie
w

.
 A

ct
ua

l r
es

ul
ts

:
W

he
n

th
e

in
fo

rm
at

io
n

is
 lo

ad
in

g
an

d
I s

cr
ol

l d
ow

n
th

e
pa

ge
, I

 c
ou

ld
n’

t f
in

d
an

y
si

gn
 to

 a
cc

es
s

R
ea

de
r V

ie
w

.
Th

e
“R

ea
de

r V
ie

w
”

ic
on

 is
 n

ot
 im

m
ed

ia
te

ly
 sh

ow
n

at
 th

e
en

d
of

 th
e

U
R

L
ba

r a
nd

 th
e

ic
on

 is
 n

ot
 d

is
co

ve
ra

bl
e

w
he

n
yo

u
sc

ro
ll

do
w

n
th

e
pa

ge
. I

t i
s v

er
y

fr
us

tra
tin

g
w

he
n

yo
u

ha
ve

 to
 sc

ro
ll

up
 to

 th
e

ve
ry

 to
p

of
 th

e
pa

ge
 to

fin

d
R

ea
de

r V
ie

w
 ic

on
. T

hi
s

ca
n

be
 ti

m
e

co
ns

um
in

g
if

yo
u

ha
d

a
ve

ry
 lo

ng
 p

ag
e.

 F
ur

th
er

m
or

e,
 th

e
“R

ea
de

r
V

ie
w

”
ic

on
 is

 v
er

y
sm

al
l a

nd
 th

e
gr

ey
 ic

on
 o

n
th

e
bl

ac
k

ba
ck

gr
ou

nd
 (i

n
pr

iv
at

e
br

ow
si

ng
) i

s n
ot

 d
is

co
ve

ra
bl

e
en

ou
gh

.
 E

xp
ec

te
d

re
su

lts
:

I w
ou

ld
 e

xp
ec

t t
ha

t t
he

 “
R

ea
de

r V
ie

w
”

ic
on

 b
e

tri
gg

er
ed

 w
hi

le
 y

ou
 a

re
 in

 a
ny

 p
ar

t o
f t

he
 p

ag
e.

 S
o

th
at

 u
se

r
ca

n
ac

ce
ss

 R
ea

de
r V

ie
w

 ic
on

 in
st

an
tly

 w
ith

ou
t s

cr
ol

lin
g

up
 to

 th
e

to
p

of
 th

e
pa

ge
.

1.

1.
W

as
 t

he
 d

ef
ec

t
re

po
rt

ex
pl

ai
ne

d
ab

ou
t

pr
op

os
al

s
fo

r
so

lu
tio

ns
?

Fo
r

ex
am

pl
e,

 t
he

de

sc
rip

tio
ns

pr

ov
id

e
al

te
rn

at
iv

es

an
d

tra
de

of
fs

,
an

d
su

pp
lie

d
ra

tio
na

le

fo
r

th
e

re
co

m
m

en
da

tio
ns

 [9
].

 Y
es

 N

o
 P

ar
tia

lly

2.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 c

au
se

 o
f

th
e

pr
ob

le
m

,
in

cl
ud

in
g

th
e

te
ch

ni
ca

l
ju

st
ifi

ca
tio

n
of

 w
ha

t
po

se
d

a
pr

ob
le

m
 (

i.e
.,

sy
st

em
 c

om
po

ne
nt

s
th

at
 a

re
 a

ff
ec

te
d

or

in
vo

lv
ed

) o
r v

io
la

tio
ns

 o
f a

ny
 u

sa
bi

lit
y

de
si

gn
 a

nd
 p

rin
ci

pl
es

?

 Y
es

 N

o
 P

ar
tia

lly

3.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 th
e

m
ai

n
us

ab
ili

ty
 is

su
e

in
vo

lv
ed

 in
 th

e
pr

ob
le

m
?

Fo
r

ex
am

pl
e,

 th
e

de
sc

rip
tio

n
ab

ou
t w

ha
t i

s
w

ro
ng

 w
ith

 th
e

in
te

ra
ct

io
n,

 in
te

rf
ac

e
an

d
us

er

ta
sk

 d
es

ig
n.

 Y
es

 N

o
 P

ar
tia

lly

4.

W
as

 t
he

 d
ef

ec
t

re
po

rt
ex

pl
ai

ne
d

in
 d

et
ai

l
st

ep
s

by
 s

te
ps

 h
ow

 t
o

re
pr

od
uc

e
th

e
pr

ob
le

m
, i

nc
lu

di
ng

 u
se

r’
s n

av
ig

at
io

n
flo

w
 th

ro
ug

h
th

e
sy

st
em

?

 Y
es

 N

o
 P

ar
tia

lly

5.

A
re

 y
ou

 a
bl

e
to

 re
pr

od
uc

e
th

e
pr

ob
le

m
 o

n
yo

ur
 o

w
n

de
vi

ce
 a

nd
 e

nv
iro

nm
en

t?

 Y

es

 N
o

 P
ar

tia
lly

6.

W
er

e
th

e
ac

tu
al

 re
su

lts
 y

ou
 o

bs
er

ve
d

si
m

ila
r w

ith
 th

e
on

e
in

 th
e

de
fe

ct
 d

es
cr

ip
tio

ns
?

 Y

es

 N
o

 P
ar

tia
lly

7.

W
as

 th
e

de
fe

ct
 re

po
rt

ju
st

ifi
ed

 w
hy

 th
e

re
po

rte
r t

hi
nk

s t
ha

t i
t w

as
 a

 p
ro

bl
em

?

 Y
es

 N

o
 P

ar
tia

lly

8.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ic
itl

y
m

en
tio

ne
d

ab
ou

t w
ha

t p
os

es
 a

 p
ro

bl
em

 to
 th

e
us

er
?

 Y

es

 N
o

 P
ar

tia
lly

9.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 th

e
im

pa
ct

 o
f

th
e

pr
ob

le
m

 o
n

bu
si

ne
ss

, u
se

r’
s

ta
sk

an

d
im

po
rta

nc
e

of
 th

e
ta

sk
?

 Y
es

 N

o
 P

ar
tia

lly

10
.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 r

ep
or

te
rs

 e
m

ot
io

n,
 f

ee
lin

g
or

 r
ea

ct
io

ns
 u

po
n

th
e

is
su

es
 (i

.e
, a

nn
oy

an
ce

, c
on

fu
si

on
 a

nd
 d

is
tra

ct
io

n)
?

 Y
es

 N

o
 P

ar
tia

lly

11
.

W
as

 t
he

 d
ef

ec
t

re
po

rt
m

en
tio

ne
d

ab
ou

t
ho

w
 o

fte
n

th
e

pr
ob

le
m

 o
cc

ur
re

d
or

 i
f

ot
he

r
us

er
 h

ad
 e

xp
er

ie
nc

es
 th

e
sa

m
e

pr
ob

le
m

?
 Y

es

 N
o

 P
ar

tia
lly

22

6

D
ef

ec
t R

ep
or

t
A

ss
es

sm
en

t Q
ue

st
io

ns

A
ns

w
er

B

ug
zi

lla
 d

ef
ec

t#
11

45
60

2
 R

ep
or

t T
itl

e:

N
ew

 A
bo

ut
:H

om
e

ta
bs

 e
xp

er
ie

nc
e

is
 c

on
fu

si
ng

 D

es
cr

ip
tio

n:

I
ca

n’
t

di
re

ct
ly

 f
in

d
ta

bs
 t

ha
t

ha
ve

 b
ee

n
op

en
ed

.
Th

e
ne

w
ly

 a
dd

ed
 t

ab
s

ar
e

re
pr

es
en

te
d

as
 m

ul
tip

le

bl
an

k/
em

pt
y

sp
ot

s,
w

hi
ch

 a
re

 h
id

de
n

in
 m

ul
til

ay
er

 p
ag

e.
 U

se
r c

an
 c

re
at

e
m

ul
tip

le
 n

ew
 ta

bs
 w

ith
ou

t r
ea

liz
in

g
th

ey
 a

re
 d

oi
ng

 so
.

In
te

nt
io

n
to

 c
re

at
e

a
ne

w
 ta

b
is

n’
t c

le
ar

.
 St

ep
s

to
 r

ep
ro

du
ce

:
1.

C

lic
k

on
 F

ire
fo

x
br

ow
se

r i
co

n.

2.

G
o

to
 a

ny
 w

eb
pa

ge
. F

or
 e

xa
m

pl
e

op
en

 h
ttp

://
eb

ay
.c

om
.a

u
3.

Pr

es
s t

he
 m

id
dl

e
m

en
u

at
 th

e
bo

tto
m

 o
f t

he
 T

ab
 m

an
ag

er
 p

ag
e

–
th

en
 p

re
ss

 o
n

N
ew

 T
ab

 A

ct
ua

l r
es

ul
ts

:
Th

er
e

is
 n

o
ob

vi
ou

s
in

di
ca

to
r t

ha
t s

ho
w

s
ne

w
 ta

b
is

 c
re

at
ed

. I
f y

ou
 a

re
 w

el
l n

ot
ic

ed
, o

nl
y

nu
m

be
r o

n
th

e
ta

b
ic

on
 (s

qu
ar

e
bo

x
on

 th
e

rig
ht

 s
id

e
of

 U
R

L
ba

r)
 is

 u
pd

at
ed

/ i
nc

re
as

ed
 w

he
ne

ve
r y

ou
 a

dd
 a

 n
ew

 ta
b.

 H
ow

ev
er

,
if

yo
u

di
d

no
t a

w
ar

e
th

e
ex

is
tin

g
nu

m
be

r o
f t

ab
s

op
en

, y
ou

 m
ay

 n
ot

 k
ne

w
 th

at
 a

 n
ew

 ta
b

ha
s

be
en

 a
dd

ed
. I

t
to

ok
 m

e
so

m
et

im
e

to
 fi

gu
re

 o
ut

 if
 n

ew
 ta

bs
 w

er
e

su
cc

es
sf

ul
ly

 a
dd

ed
 o

r n
ot

, a
nd

 I
do

 n
ot

 k
no

w
 w

he
re

 to
 fi

nd

th
e

ex
is

tin
g

op
en

 ta
bs

. T
he

 o
nl

y
w

ay
 y

ou
 c

an
 k

no
w

 if
 th

e
ta

b
w

as
 c

re
at

ed
 is

 b
y

pr
es

si
ng

 ta
b

ic
on

 o
n

th
e

rig
ht

si

de
 o

f t
he

 U
R

L
ba

r.
Th

e
Ta

b
M

an
ag

er
 e

xp
er

ie
nc

e
is

 re
al

ly
 c

on
fu

si
ng

.

 E
xp

ec
te

d
re

su
lts

:
It

w
ou

ld
 b

e
go

od
 if

 th
er

e
w

er
e

an
 in

fo
rm

at
iv

e
in

di
ca

to
r o

th
er

 th
an

 th
e

up
da

te
d

nu
m

be
r o

f o
pe

n
ta

bs
 to

 in
fo

rm

us
er

 th
at

 n
ew

 ta
b

w
as

 a
dd

ed
. F

or
 e

xa
m

pl
e,

 a
 to

as
t m

es
sa

ge
 th

at
 in

di
ca

te
:

 “N
ew

 ta
b

is
 su

cc
es

sf
ul

ly
 a

dd
ed

”

1.

1.
W

as
 t

he
 d

ef
ec

t
re

po
rt

ex
pl

ai
ne

d
ab

ou
t

pr
op

os
al

s
fo

r
so

lu
tio

ns
?

Fo
r

ex
am

pl
e,

 t
he

de

sc
rip

tio
ns

pr

ov
id

e
al

te
rn

at
iv

es

an
d

tra
de

of
fs

,
an

d
su

pp
lie

d
ra

tio
na

le

fo
r

th
e

re
co

m
m

en
da

tio
ns

 [9
].

 Y
es

 N

o
 P

ar
tia

lly

2.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 c

au
se

 o
f

th
e

pr
ob

le
m

,
in

cl
ud

in
g

th
e

te
ch

ni
ca

l
ju

st
ifi

ca
tio

n
of

 w
ha

t
po

se
d

a
pr

ob
le

m
 (

i.e
.,

sy
st

em
 c

om
po

ne
nt

s
th

at
 a

re
 a

ff
ec

te
d

or

in
vo

lv
ed

) o
r v

io
la

tio
ns

 o
f a

ny
 u

sa
bi

lit
y

de
si

gn
 a

nd
 p

rin
ci

pl
es

?

 Y
es

 N

o
 P

ar
tia

lly

3.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 th
e

m
ai

n
us

ab
ili

ty
 is

su
e

in
vo

lv
ed

 in
 th

e
pr

ob
le

m
?

Fo
r

ex
am

pl
e,

 th
e

de
sc

rip
tio

n
ab

ou
t w

ha
t i

s
w

ro
ng

 w
ith

 th
e

in
te

ra
ct

io
n,

 in
te

rf
ac

e
an

d
us

er

ta
sk

 d
es

ig
n.

 Y
es

 N

o
 P

ar
tia

lly

4.

W
as

 t
he

 d
ef

ec
t

re
po

rt
ex

pl
ai

ne
d

in
 d

et
ai

l
st

ep
s

by
 s

te
ps

 h
ow

 t
o

re
pr

od
uc

e
th

e
pr

ob
le

m
, i

nc
lu

di
ng

 u
se

r’
s n

av
ig

at
io

n
flo

w
 th

ro
ug

h
th

e
sy

st
em

?

 Y
es

 N

o
 P

ar
tia

lly

5.

A
re

 y
ou

 a
bl

e
to

 re
pr

od
uc

e
th

e
pr

ob
le

m
 o

n
yo

ur
 o

w
n

de
vi

ce
 a

nd
 e

nv
iro

nm
en

t?

 Y

es

 N
o

 P
ar

tia
lly

6.

W
er

e
th

e
ac

tu
al

 re
su

lts
 y

ou
 o

bs
er

ve
d

si
m

ila
r w

ith
 th

e
on

e
in

 th
e

de
fe

ct
 d

es
cr

ip
tio

ns
?

 Y

es

 N
o

 P
ar

tia
lly

7.

W
as

 th
e

de
fe

ct
 re

po
rt

ju
st

ifi
ed

 w
hy

 th
e

re
po

rte
r t

hi
nk

s t
ha

t i
t w

as
 a

 p
ro

bl
em

?

 Y
es

 N

o
 P

ar
tia

lly

8.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ic
itl

y
m

en
tio

ne
d

ab
ou

t w
ha

t p
os

es
 a

 p
ro

bl
em

 to
 th

e
us

er
?

 Y

es

 N
o

 P
ar

tia
lly

9.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 t

he
 i

m
pa

ct
 o

f
th

e
pr

ob
le

m
 o

n
bu

si
ne

ss
, u

se
r’

s
ta

sk

an
d

im
po

rta
nc

e
of

 th
e

ta
sk

?

 Y
es

 N

o
 P

ar
tia

lly

10
.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 r

ep
or

te
rs

 e
m

ot
io

n,
 f

ee
lin

g
or

 r
ea

ct
io

ns
 u

po
n

th
e

is
su

es
 (i

.e
, a

nn
oy

an
ce

, c
on

fu
si

on
 a

nd
 d

is
tra

ct
io

n)
?

 Y
es

 N

o
 P

ar
tia

lly

11
.

W
as

 t
he

 d
ef

ec
t

re
po

rt
m

en
tio

ne
d

ab
ou

t
ho

w
 o

fte
n

th
e

pr
ob

le
m

 o
cc

ur
re

d
or

 i
f

ot
he

r
us

er
 h

ad
 e

xp
er

ie
nc

es
 th

e
sa

m
e

pr
ob

le
m

?
 Y

es

 N
o

 P
ar

tia
lly

22

7

D
ef

ec
t R

ep
or

t
A

ss
es

sm
en

t Q
ue

st
io

ns

A
ns

w
er

B

ug
zi

lla
 d

ef
ec

t#
11

91
37

6
 R

ep
or

t T
itl

e:

A
lw

ay
s s

ho
w

 to
ol

ba
r w

he
n

re
st

or
in

g
ap

p
 D

es
cr

ip
tio

n:

M
y

m
os

t f
re

qu
en

t u
se

 c
as

e
fo

r F
ire

fo
x

is
 la

un
ch

in
g

it
qu

ic
kl

y
to

 se
ar

ch
 fo

r s
om

et
hi

ng
 o

r l
oa

d
a

sp
ec

ifi
c

pa
ge

 b
y

U
R

L
(e

ith
er

 in
 th

e
cl

ip
bo

ar
d,

 in
 m

y
m

em
or

y,
 o

r l
es

s f
re

qu
en

tly
, f

ro
m

 m
y

hi
st

or
y)

.
 I t

en
d

to
 so

m
et

im
es

 k
ee

p
ta

bs
 o

pe
n

to
 re

fe
r t

o
la

te
r,

bu
t m

os
t o

f t
he

 ti
m

es
 I

la
un

ch
 th

e
ap

p
I d

on
't

w
an

t
to

 d
ea

l w
ith

 th
em

 a
nd

 ju
st

 w
an

t a
 b

la
nk

 sl
at

e.

 St
ep

s
to

 R
ep

ro
du

ce
:

1.

La
un

ch
 F

ire
fo

x
br

ow
se

r.

A
ct

ua
l R

es
ul

ts
:

W
he

n
Fi

re
fo

x
la

un
ch

es
, d

ep
en

di
ng

 o
n

w
ha

t I
 w

as
 d

oi
ng

 la
st

, s
om

et
im

es
 th

e
to

p
to

ol
ba

r
is

 c
ol

la
ps

ed
.

So
 I

 n
ee

d
to

 d
o

a
bi

t o
f

a
"w

ig
gl

e"
 (

sc
ro

ll
th

e
pa

ge
 s

lig
ht

ly
)

to
 g

et
 it

 to
 a

pp
ea

r,
th

en
 ta

p
th

e
lo

ca
tio

n
ba

r,
th

en
 st

ar
t t

yp
in

g.

 E
xp

ec
te

d
R

es
ul

ts
:

Id
ea

lly
, I

 w
ou

ld
 n

ev
er

 h
av

e
to

 d
o

th
at

 w
ig

gl
e.

 I
f

th
e

to
ol

ba
r

al
w

ay
s

ap
pe

ar
ed

 a
fte

r
a

re
st

or
e

th
en

 I

w
ou

ld
n'

t h
av

e
to

.

1.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ai
ne

d
ab

ou
t p

ro
po

sa
ls

 fo
r s

ol
ut

io
ns

?
Fo

r e
xa

m
pl

e,
 th

e
de

sc
rip

tio
ns

pr

ov
id

e
al

te
rn

at
iv

es
 a

nd
 tr

ad
eo

ff
s,

an
d

su
pp

lie
d

ra
tio

na
le

 fo
r t

he
 re

co
m

m
en

da
tio

ns
 [9

].

 Y
es

 N

o
 P

ar
tia

lly

2.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 c
au

se
 o

f t
he

 p
ro

bl
em

, i
nc

lu
di

ng
 th

e
ju

st
ifi

ca
tio

n
w

ha
t p

os
ed

a

pr
ob

le
m

, i
nc

lu
di

ng
 sy

st
em

 c
om

po
ne

nt
s t

ha
t a

re
 a

ff
ec

te
d

or
 in

vo
lv

ed
?

 Y
es

 N

o
 P

ar
tia

lly

3.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 t

he
 m

ai
n

us
ab

ili
ty

 i
ss

ue
 i

nv
ol

ve
d

in
 t

he
 p

ro
bl

em
?

Fo
r

ex
am

pl
e,

 th
e

de
sc

rip
tio

n
ab

ou
t w

ha
t i

s
w

ro
ng

 w
ith

 th
e

in
te

ra
ct

io
n

ar
ch

ite
ct

ur
e,

 in
te

rf
ac

e
an

d
us

er
 ta

sk
 d

es
ig

n.

 Y
es

 N

o
 P

ar
tia

lly

4.

W
as

 t
he

 d
ef

ec
t

re
po

rt
ex

pl
ai

ne
d

in
 d

et
ai

l
st

ep
s

by
 s

te
ps

 h
ow

 t
o

re
pr

od
uc

e
th

e
pr

ob
le

m
,

in
cl

ud
in

g
us

er
’s

 n
av

ig
at

io
n

flo
w

 th
ro

ug
h

th
e

sy
st

em
?

 Y
es

 N

o
 P

ar
tia

lly

5.

A
re

 y
ou

 a
bl

e
to

 re
pr

od
uc

e
th

e
pr

ob
le

m
 o

n
yo

ur
 o

w
n

de
vi

ce
 a

nd
 e

nv
iro

nm
en

t?

 Y

es

 N
o

 P
ar

tia
lly

6.

W
er

e
th

e
ac

tu
al

 re
su

lts
 y

ou
 o

bs
er

ve
d

si
m

ila
r w

ith
 th

e
on

e
in

 th
e

de
fe

ct
 d

es
cr

ip
tio

ns
?

 Y

es

 N
o

 P
ar

tia
lly

7.

W
as

 th
e

de
fe

ct
 re

po
rt

ju
st

ifi
ed

 w
hy

 th
e

re
po

rte
r t

hi
nk

s t
ha

t i
t w

as
 a

 p
ro

bl
em

?

 Y
es

 N

o
 P

ar
tia

lly

8.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ic
itl

y
m

en
tio

ne
d

ab
ou

t w
ha

t p
os

es
 a

 p
ro

bl
em

 to
 th

e
us

er
?

 Y

es

 N
o

 P
ar

tia
lly

9.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 th
e

im
pa

ct
 o

f t
he

 p
ro

bl
em

 o
n

bu
si

ne
ss

 e
ff

ec
t,

im
pa

ct
 o

n
th

e
us

er
’s

 ta
sk

 a
nd

 im
po

rta
nc

e
of

 th
e

ta
sk

?

 Y
es

 N

o
 P

ar
tia

lly

10
.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 re
po

rte
rs

 e
m

ot
io

n,
 fe

el
in

g
or

 re
ac

tio
ns

 u
po

n
th

e
is

su
es

?

 Y
es

 N

o
 P

ar
tia

lly

11
.

W
as

 th
e

de
fe

ct
 re

po
rt

m
en

tio
ne

d
ab

ou
t h

ow
 o

fte
n

th
e

pr
ob

le
m

 o
cc

ur
re

d?

 Y
es

 N

o
 P

ar
tia

lly

22

8

D
ef

ec
t R

ep
or

t
A

ss
es

sm
en

t Q
ue

st
io

ns

A
ns

w
er

B

ug
zi

lla
 d

ef
ec

t#
12

31
81

5
 R

ep
or

t T
itl

e:

Ir
re

le
va

nt
 st

ep
s t

o
ad

d
ne

w
 ta

b
 D

es
cr

ip
tio

n:

I
am

 n
ot

 s
at

is
fie

d
w

ith
 th

e
st

ep
s

to
 o

pe
n

a
ne

w
 T

ab
. T

he
 c

ur
re

nt
 s

te
ps

 a
re

 ir
re

le
va

nt
 to

 s
pe

ed
 u

p
th

e
pr

oc
es

s t
o

ad
d

ne
w

 T
ab

.
 St

ep
s

to
 R

ep
ro

du
ce

:
5.

C

lic
k

on
 F

ire
fo

x
br

ow
se

r i
co

n.

6.

G
o

to
 a

ny
 w

eb
pa

ge
. F

or
 e

xa
m

pl
e

op
en

 h
ttp

://
eb

ay
.c

om
.a

u
7.

W

he
n

a
w

eb
pa

ge
 is

 o
pe

n,
 o

pe
n

a
ne

w
 ta

b.
 P

re
ss

 th
e

Ta
b

bu
tto

n
on

 th
e

rig
ht

 s
id

e
of

 th
e

U
R

L
ba

r.

8.

Pr
es

s t
he

 “
+”

 b
ut

to
n

at
 th

e
bo

tto
m

 o
f t

he
 T

ab
 m

an
ag

er
 to

 a
dd

 a
 n

ew
 ta

b.
 O

n
th

e
ne

w
ly

 o
pe

n
pa

ge
, o

pe
n

a
ne

w
 p

ag
e,

 fo
r e

xa
m

pl
e

–
ht

tp
://

gu
m

tre
e.

co
m

.a
u

 A
ct

ua
l R

es
ul

ts
:

To
 o

pe
n

ne
w

 ta
b,

 u
se

r r
eq

ui
re

s
tw

o
st

ep
s

(s
te

p
3

an
d

st
ep

 4
 a

bo
ve

).
Ev

en
 th

is
 is

su
e

is
 n

ot
 a

ff
ec

tin
g

m
y

ta
sk

, b
ut

 th
is

 is
 r

ea
lly

 a
nn

oy
in

g
w

he
n

I
ha

ve
 to

 u
se

 o
nl

y
on

e
ha

nd
 to

 h
ol

d
th

e
ph

on
e

an
d

us
e

se
ve

ra
l

ta
bs

 to
 lo

ok
 fo

r s
om

et
hi

ng
.

 E
xp

ec
te

d
R

es
ul

ts
:

Lo
ng

-p
re

ss
 t

he
 t

ab
 b

ut
to

n
to

 a
dd

 n
ew

 T
ab

.
U

si
ng

 l
on

g-
pr

es
s

bu
tto

n
co

ul
d

pr
ov

id
e

an
 e

as
y

w
ay

 t
o

in
te

ra
ct

 w
ith

 th
e

w
eb

 b
ro

w
se

r,
es

pe
ci

al
ly

 w
he

n
th

e
us

er
 is

 m
ov

in
g.

1.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ai
ne

d
ab

ou
t p

ro
po

sa
ls

 fo
r s

ol
ut

io
ns

?
Fo

r e
xa

m
pl

e,
 th

e
de

sc
rip

tio
ns

pr

ov
id

e
al

te
rn

at
iv

es
 a

nd
 tr

ad
eo

ff
s,

an
d

su
pp

lie
d

ra
tio

na
le

 fo
r t

he
 re

co
m

m
en

da
tio

ns
 [9

].
 Y

es

 N
o

 P
ar

tia
lly

2.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 c
au

se
 o

f t
he

 p
ro

bl
em

, i
nc

lu
di

ng
 th

e
te

ch
ni

ca
l j

us
tif

ic
at

io
n

of

w
ha

t p
os

ed
 a

 p
ro

bl
em

 (
i.e

.,
sy

st
em

 c
om

po
ne

nt
s

th
at

 a
re

 a
ff

ec
te

d
or

 in
vo

lv
ed

)
or

 v
io

la
tio

ns

of
 a

ny
 u

sa
bi

lit
y

de
si

gn
 a

nd
 p

rin
ci

pl
es

?

 Y
es

 N

o
 P

ar
tia

lly

3.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 t

he
 m

ai
n

us
ab

ili
ty

 i
ss

ue
 i

nv
ol

ve
d

in
 t

he
 p

ro
bl

em
?

Fo
r

ex
am

pl
e,

 th
e

de
sc

rip
tio

n
ab

ou
t w

ha
t i

s
w

ro
ng

 w
ith

 th
e

in
te

ra
ct

io
n,

 in
te

rf
ac

e
an

d
us

er
 ta

sk

de
si

gn
.

 Y
es

 N

o
 P

ar
tia

lly

4.

W
as

 t
he

 d
ef

ec
t

re
po

rt
ex

pl
ai

ne
d

in
 d

et
ai

l
st

ep
s

by
 s

te
ps

 h
ow

 t
o

re
pr

od
uc

e
th

e
pr

ob
le

m
,

in
cl

ud
in

g
us

er
’s

 n
av

ig
at

io
n

flo
w

 th
ro

ug
h

th
e

sy
st

em
?

 Y
es

 N

o
 P

ar
tia

lly

5.

A
re

 y
ou

 a
bl

e
to

 re
pr

od
uc

e
th

e
pr

ob
le

m
 o

n
yo

ur
 o

w
n

de
vi

ce
 a

nd
 e

nv
iro

nm
en

t?

 Y

es

 N
o

 P
ar

tia
lly

6.

W
er

e
th

e
ac

tu
al

 re
su

lts
 y

ou
 o

bs
er

ve
d

si
m

ila
r w

ith
 th

e
on

e
in

 th
e

de
fe

ct
 d

es
cr

ip
tio

ns
?

 Y

es

 N
o

 P
ar

tia
lly

7.

W
as

 th
e

de
fe

ct
 re

po
rt

ju
st

ifi
ed

 w
hy

 th
e

re
po

rte
r t

hi
nk

s t
ha

t i
t w

as
 a

 p
ro

bl
em

?

 Y
es

 N

o
 P

ar
tia

lly

8.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ic
itl

y
m

en
tio

ne
d

ab
ou

t w
ha

t p
os

es
 a

 p
ro

bl
em

 to
 th

e
us

er
?

 Y

es

 N
o

 P
ar

tia
lly

9.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 t

he
 i

m
pa

ct
 o

f
th

e
pr

ob
le

m
 o

n
bu

si
ne

ss
,

us
er

’s
 t

as
k

an
d

im
po

rta
nc

e
of

 th
e

ta
sk

?

 Y
es

 N

o
 P

ar
tia

lly

10
.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 re
po

rte
rs

 e
m

ot
io

n,
 fe

el
in

g
or

 re
ac

tio
ns

 u
po

n
th

e
is

su
es

 (i
.e

,
an

no
ya

nc
e,

 c
on

fu
si

on
 a

nd
 d

is
tra

ct
io

n)
?

 Y
es

 N

o
 P

ar
tia

lly

11
.

W
as

 th
e

de
fe

ct
 re

po
rt

m
en

tio
ne

d
ab

ou
t h

ow
 o

fte
n

th
e

pr
ob

le
m

 o
cc

ur
re

d
or

 if
 o

th
er

 u
se

r h
ad

ex

pe
rie

nc
es

 th
e

sa
m

e
pr

ob
le

m
?

 Y
es

 N

o
 P

ar
tia

lly

22

9

D
ef

ec
t R

ep
or

t
A

ss
es

sm
en

t Q
ue

st
io

ns

A
ns

w
er

B

ug
zi

lla
 d

ef
ec

t#
11

44
75

8
 R

ep
or

t T
itl

e:

Se
tti

ng
 ic

on
 n

ot
 e

as
ily

 d
is

co
ve

ra
bl

e
 D

es
cr

ip
tio

n:

Se
tti

ng
s i

co
n

is
 n

ot
 e

as
ily

 d
is

co
ve

ra
bl

e
si

nc
e

it
is

 ‘b
ur

ie
d’

 d
ow

n
a

le
ve

l i
n

th
e

Ta
bs

 sc
re

en
.

 St
ep

s
to

 R
ep

ro
du

ce
:

7.

Pr
es

s o
n

Fi
re

fo
x

br
ow

se
r i

co
n.

8.

Fi

nd
 S

et
tin

g
ic

on
 in

 th
e

A
bo

ut
: H

om
e

pa
ge

.
9.

Pr

es
s t

he
 m

id
dl

e
m

en
u

at
 th

e
bo

tto
m

 o
f t

he
 T

ab
 m

an
ag

er
 p

ag
e.

10

.
Fi

nd
 S

et
tin

g
ic

on
.

A

ct
ua

l R
es

ul
ts

:
Th

e
Se

tti
ng

 ic
on

 c
an

no
t b

e
fo

un
d

on
 th

e
A

bo
ut

: H
om

e
pa

ge
. T

he
 S

et
tin

g
ic

on
 is

 e
xi

st
 in

th

e
Ta

bs
 s

cr
ee

n
an

d
us

er
 h

av
e

to
 s

w
ip

e
to

 th
e

ne
xt

 s
cr

ee
n.

 I
n

th
is

 c
as

e,
 I

 h
av

e
to

 p
er

fo
rm

un

ne
ce

ss
ar

y
st

ep
s t

o
fin

d
th

e
ic

on
, a

nd
 it

 w
as

tin
g

m
y

tim
e.

 E

xp
ec

te
d

R
es

ul
ts

:
Th

e
Se

tti
ng

 ic
on

 sh
ou

ld
 b

e
ea

si
ly

 d
is

co
ve

ra
bl

e
w

ith
ou

t t
oo

 m
an

y
st

ep
s t

o
fin

d
th

e
ic

on
.

12
.

W
as

 t
he

 d
ef

ec
t

re
po

rt
ex

pl
ai

ne
d

ab
ou

t
pr

op
os

al
s

fo
r

so
lu

tio
n?

 F
or

 e
xa

m
pl

e,
 t

he
 d

es
cr

ip
tio

ns

pr
ov

id
e

al
te

rn
at

iv
es

 a
nd

 tr
ad

eo
ff

s,
an

d
su

pp
lie

d
ra

tio
na

le
 fo

r t
he

 re
co

m
m

en
da

tio
ns

 [9
].

 Y
es

 N

o
 P

ar
tia

lly

13
.

W
as

 th
e

de
fe

ct
 r

ep
or

t d
es

cr
ib

ed
 c

au
se

 o
f

th
e

pr
ob

le
m

, i
nc

lu
di

ng
 th

e
ju

st
ifi

ca
tio

n
w

ha
t p

os
ed

 a

pr
ob

le
m

, i
nc

lu
di

ng
 sy

st
em

 c
om

po
ne

nt
s t

ha
t a

re
 a

ff
ec

te
d

or
 in

vo
lv

ed
?

 Y
es

 N

o
 P

ar
tia

lly

14
.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 th
e

m
ai

n
us

ab
ili

ty
 is

su
e

in
vo

lv
ed

 in
 th

e
pr

ob
le

m
?

Fo
r e

xa
m

pl
e,

th

e
de

sc
rip

tio
n

ab
ou

t
w

ha
t

is
 w

ro
ng

 w
ith

 t
he

 i
nt

er
ac

tio
n

ar
ch

ite
ct

ur
e,

 i
nt

er
fa

ce
 a

nd
 u

se
r

ta
sk

de

si
gn

.

 Y
es

 N

o
 P

ar
tia

lly

15
.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ai
ne

d
in

 d
et

ai
l s

te
ps

 b
y

st
ep

s
ho

w
 to

 re
pr

od
uc

e
th

e
pr

ob
le

m
, i

nc
lu

di
ng

us

er
’s

 n
av

ig
at

io
n

flo
w

 th
ro

ug
h

th
e

sy
st

em
?

 Y
es

 N

o
 P

ar
tia

lly

16
.

A
re

 y
ou

 a
bl

e
to

 re
pr

od
uc

e
th

e
pr

ob
le

m
 o

n
yo

ur
 o

w
n

de
vi

ce
 a

nd
 e

nv
iro

nm
en

t?

 Y

es

 N
o

 P
ar

tia
lly

17
.

W
er

e
th

e
ac

tu
al

 re
su

lts
 y

ou
 o

bs
er

ve
d

si
m

ila
r w

ith
 th

e
on

e
in

 th
e

de
fe

ct
 d

es
cr

ip
tio

ns
?

 Y

es

 N
o

 P
ar

tia
lly

18
.

W
as

 th
e

de
fe

ct
 re

po
rt

ju
st

ifi
ed

 w
hy

 th
e

re
po

rte
r t

hi
nk

s t
ha

t i
t w

as
 a

 p
ro

bl
em

?

 Y
es

 N

o
 P

ar
tia

lly

19
.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ic
itl

y
m

en
tio

ne
d

ab
ou

t w
ha

t p
os

es
 a

 p
ro

bl
em

 to
 th

e
us

er
?

 Y

es

 N
o

 P
ar

tia
lly

20
.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 t

he
 i

m
pa

ct
 o

f
th

e
pr

ob
le

m
 o

n
bu

si
ne

ss
 e

ff
ec

t,
im

pa
ct

 o
n

th
e

us
er

’s
 ta

sk
 a

nd
 im

po
rta

nc
e

of
 th

e
ta

sk
?

 Y
es

 N

o
 P

ar
tia

lly

21
.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 re
po

rte
rs

 e
m

ot
io

n,
 fe

el
in

g
or

 re
ac

tio
ns

 u
po

n
th

e
is

su
es

?

 Y
es

 N

o
 P

ar
tia

lly

22
.

W
as

 th
e

de
fe

ct
 re

po
rt

m
en

tio
ne

d
ab

ou
t h

ow
 o

fte
n

th
e

pr
ob

le
m

 o
cc

ur
re

d?

 Y
es

 N

o
 P

ar
tia

lly

23

0

D
ef

ec
t R

ep
or

t
A

ss
es

sm
en

t Q
ue

st
io

ns

A
ns

w
er

B

ug
zi

lla
 d

ef
ec

t#
12

37
63

1
 R

ep
or

t T
itl

e:

D
o

no
t e

xi
t p

riv
at

e
m

od
e

on
 b

ro
w

se
r r

e-
la

un
ch

 e
ve

n
if

th
er

e
ar

e
no

 p
riv

at
e

ta
bs

 to
 re

st
or

e
 D

es
cr

ip
tio

n:

I
am

 n
ot

 s
at

is
fie

d
w

ith
 t

he
 e

xi
st

in
g

Pr
iv

at
e

Ta
b

br
ow

si
ng

 f
ea

tu
re

.
C

ur
re

nt
ly

,
Fi

re
fo

x
br

ow
se

r
on

ly
 o

pe
n

br
ow

se
r

in
 n

or
m

al
 m

od
e,

 e
ve

n
th

e
la

st
 o

pe
ne

d
br

ow
se

r
is

 i
n

Pr
iv

at
e

m
od

e.
 It

 is
 c

on
tra

di
ct

 w
ith

 m
y

pr
ev

io
us

 e
xp

er
ie

nc
e

w
ith

 S
af

ar
i b

ro
w

se
r,

in
 w

hi
ch

 b
ro

w
se

r
w

ill
 b

e
re

-la
un

ch
ed

 b
as

ed
 o

n
th

e
pr

ev
io

us
ly

 o
pe

n
m

od
e.

 St

ep
s

to
 R

ep
ro

du
ce

:
1.

Pr

es
s o

n
Fi

re
fo

x
br

ow
se

r i
co

n.

2.

Pr
es

s
th

e
m

id
dl

e
m

en
u

at
 th

e
bo

tto
m

 o
f t

he
 T

ab
 m

an
ag

er
 p

ag
e

–
th

en
 p

re
ss

 o
n

N
ew

 P
riv

at
e

Ta
b.

3.

R

ep
ea

t s
te

p
2

to
 o

pe
n

se
ve

ra
l p

riv
at

e
ta

bs
.

4.

Pr
es

s o
n

th
e

Ta
b

bu
tto

n
(ti

ny
 p

ur
pl

e
bo

x)
 o

n
th

e
rig

ht
 si

de
 o

f t
he

 U
R

L
ba

r.
5.

Pr

es
s

th
e

m
id

dl
e

m
en

u
at

 th
e

bo
tto

m
 o

f t
he

 T
ab

 m
an

ag
er

 p
ag

e
–

th
en

 p
re

ss
 o

n
C

lo
se

 A
ll

Ta
bs

.
6.

R

e-
la

un
ch

 F
ire

fo
x

 A
ct

ua
l R

es
ul

ts
:

Fi
re

fo
x

is
 o

pe
ne

d
in

 n
or

m
al

 b
ro

w
si

ng
. I

 a
m

 c
on

fu
se

d
be

ca
us

e
no

rm
al

ly
 I

 b
ro

w
se

 u
si

ng

Pr
iv

at
e

m
od

e.
 E

ve
n

th
is

 fe
at

ur
e

de
si

gn
 is

 n
ot

 a
ff

ec
tin

g
m

y
ta

sk
, b

ut
 it

 a
ct

ua
lly

 a
ff

ec
tin

g
m

y
br

ow
si

ng
 p

riv
ac

y.

 E
xp

ec
te

d
R

es
ul

ts
:

Fi
re

fo
x

w
ill

 o
pe

n
in

 p
riv

at
e

m
od

e,
 si

m
ila

r t
o

Sa
fa

ri
br

ow
se

r.

1.

1.
W

as
 th

e
de

fe
ct

 r
ep

or
t e

xp
la

in
ed

 a
bo

ut
 p

ro
po

sa
ls

 f
or

 s
ol

ut
io

ns
?

Fo
r

ex
am

pl
e,

 th
e

de
sc

rip
tio

ns

pr
ov

id
e

al
te

rn
at

iv
es

 a
nd

 tr
ad

eo
ff

s,
an

d
su

pp
lie

d
ra

tio
na

le
 fo

r t
he

 re
co

m
m

en
da

tio
ns

 [9
].

 Y
es

 N

o
 P

ar
tia

lly

2.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 c

au
se

 o
f

th
e

pr
ob

le
m

, i
nc

lu
di

ng
 t

he
 t

ec
hn

ic
al

 j
us

tif
ic

at
io

n
of

w

ha
t p

os
ed

 a
 p

ro
bl

em
 (i

.e
.,

sy
st

em
 c

om
po

ne
nt

s t
ha

t a
re

 a
ff

ec
te

d
or

 in
vo

lv
ed

) o
r v

io
la

tio
ns

 o
f a

ny

us
ab

ili
ty

 d
es

ig
n

an
d

pr
in

ci
pl

es
?

 Y
es

 N

o
 P

ar
tia

lly

3.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 th
e

m
ai

n
us

ab
ili

ty
 is

su
e

in
vo

lv
ed

 in
 th

e
pr

ob
le

m
?

Fo
r e

xa
m

pl
e,

th

e
de

sc
rip

tio
n

ab
ou

t w
ha

t i
s w

ro
ng

 w
ith

 th
e

in
te

ra
ct

io
n,

 in
te

rf
ac

e
an

d
us

er
 ta

sk
 d

es
ig

n.

 Y
es

 N

o
 P

ar
tia

lly

4.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ai
ne

d
in

 d
et

ai
l s

te
ps

 b
y

st
ep

s
ho

w
 to

 re
pr

od
uc

e
th

e
pr

ob
le

m
, i

nc
lu

di
ng

us

er
’s

 n
av

ig
at

io
n

flo
w

 th
ro

ug
h

th
e

sy
st

em
?

 Y
es

 N

o
 P

ar
tia

lly

5.

A
re

 y
ou

 a
bl

e
to

 re
pr

od
uc

e
th

e
pr

ob
le

m
 o

n
yo

ur
 o

w
n

de
vi

ce
 a

nd
 e

nv
iro

nm
en

t?

 Y

es

 N
o

 P
ar

tia
lly

6.

W
er

e
th

e
ac

tu
al

 re
su

lts
 y

ou
 o

bs
er

ve
d

si
m

ila
r w

ith
 th

e
on

e
in

 th
e

de
fe

ct
 d

es
cr

ip
tio

ns
?

 Y

es

 N
o

 P
ar

tia
lly

7.

W
as

 th
e

de
fe

ct
 re

po
rt

ju
st

ifi
ed

 w
hy

 th
e

re
po

rte
r t

hi
nk

s t
ha

t i
t w

as
 a

 p
ro

bl
em

?

 Y
es

 N

o
 P

ar
tia

lly

8.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ic
itl

y
m

en
tio

ne
d

ab
ou

t w
ha

t p
os

es
 a

 p
ro

bl
em

 to
 th

e
us

er
?

 Y

es

 N
o

 P
ar

tia
lly

9.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 t

he
 i

m
pa

ct
 o

f
th

e
pr

ob
le

m
 o

n
bu

si
ne

ss
,

us
er

’s
 t

as
k

an
d

im
po

rta
nc

e
of

 th
e

ta
sk

?

 Y
es

 N

o
 P

ar
tia

lly

10
.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 r

ep
or

te
rs

 e
m

ot
io

n,
 f

ee
lin

g
or

 r
ea

ct
io

ns
 u

po
n

th
e

is
su

es
 (

i.e
,

an
no

ya
nc

e,
 c

on
fu

si
on

 a
nd

 d
is

tra
ct

io
n)

?

 Y
es

 N

o
 P

ar
tia

lly

11
.

W
as

 t
he

 d
ef

ec
t

re
po

rt
m

en
tio

ne
d

ab
ou

t
ho

w
 o

fte
n

th
e

pr
ob

le
m

 o
cc

ur
re

d
or

 i
f

ot
he

r
us

er
 h

ad

ex
pe

rie
nc

es
 th

e
sa

m
e

pr
ob

le
m

?
 Y

es

 N
o

 P
ar

tia
lly

23

1

D
ef

ec
t R

ep
or

t
A

ss
es

sm
en

t Q
ue

st
io

ns

A
ns

w
er

B

ug
zi

lla
 d

ef
ec

t#
11

45
59

7
 R

ep
or

t T
itl

e:

N
av

ig
at

in
g

be
tw

ee
n

ta
bs

 is
 c

on
fu

si
ng

 D

es
cr

ip
tio

n:

N
av

ig
at

in
g

be
tw

ee
n

ta
bs

 is
 c

on
fu

si
ng

.
Ta

bs
 a

re
 n

ot
 w

el
l d

ef
in

ed
 v

is
ua

lly
 (b

le
nd

 to
ge

th
er

)
an

d
lo

ok
 is

 n
ot

 p
ol

is
he

d/
iO

S
fe

el
in

g.

 St
ep

s
to

 R
ep

ro
du

ce
:

4.

C
lic

k
on

 F
ire

fo
x

br
ow

se
r i

co
n.

5.

G

o
to

 a
ny

 w
eb

pa
ge

. F
or

 e
xa

m
pl

e
op

en
 h

ttp
://

eb
ay

.c
om

.a
u

6.

Pr
es

s
th

e
m

id
dl

e
m

en
u

at
 th

e
bo

tto
m

 o
f t

he
 T

ab
 m

an
ag

er
 p

ag
e

–
th

en
 p

re
ss

 o
n

N
ew

 T
ab

7.

G

o
to

 th
e

pr
ev

io
us

 o
pe

n
ta

bs
.

A

ct
ua

l R
es

ul
ts

:
N

o
in

di
ca

to
r t

o
na

vi
ga

te
 b

et
w

ee
n

ta
bs

.
 E

xp
ec

te
d

R
es

ul
ts

:

Th
er

e
sh

ou
ld

 b
e

an
 in

di
ca

to
r t

o
na

vi
ga

te
 b

et
w

ee
n

ta
bs

 a
s s

im
ila

r t
o

de
sk

to
p

ve
rs

io
n.

1.

W
as

 t
he

 d
ef

ec
t

re
po

rt
ex

pl
ai

ne
d

ab
ou

t
pr

op
os

al
s

fo
r

so
lu

tio
ns

?
Fo

r
ex

am
pl

e,
 t

he
 d

es
cr

ip
tio

ns

pr
ov

id
e

al
te

rn
at

iv
es

 a
nd

 tr
ad

eo
ff

s,
an

d
su

pp
lie

d
ra

tio
na

le
 fo

r t
he

 re
co

m
m

en
da

tio
ns

 [9
].

 Y
es

 N

o
 P

ar
tia

lly

2.

W
as

 th
e

de
fe

ct
 r

ep
or

t d
es

cr
ib

ed
 c

au
se

 o
f

th
e

pr
ob

le
m

, i
nc

lu
di

ng
 th

e
ju

st
ifi

ca
tio

n
w

ha
t p

os
ed

 a

pr
ob

le
m

, i
nc

lu
di

ng
 sy

st
em

 c
om

po
ne

nt
s t

ha
t a

re
 a

ff
ec

te
d

or
 in

vo
lv

ed
?

 Y
es

 N

o
 P

ar
tia

lly

3.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 th
e

m
ai

n
us

ab
ili

ty
 is

su
e

in
vo

lv
ed

 in
 th

e
pr

ob
le

m
?

Fo
r e

xa
m

pl
e,

th

e
de

sc
rip

tio
n

ab
ou

t
w

ha
t

is
 w

ro
ng

 w
ith

 t
he

 i
nt

er
ac

tio
n

ar
ch

ite
ct

ur
e,

 i
nt

er
fa

ce
 a

nd
 u

se
r

ta
sk

de

si
gn

.

 Y
es

 N

o
 P

ar
tia

lly

4.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ai
ne

d
in

 d
et

ai
l s

te
ps

 b
y

st
ep

s
ho

w
 to

 re
pr

od
uc

e
th

e
pr

ob
le

m
, i

nc
lu

di
ng

us

er
’s

 n
av

ig
at

io
n

flo
w

 th
ro

ug
h

th
e

sy
st

em
?

 Y
es

 N

o
 P

ar
tia

lly

5.

A
re

 y
ou

 a
bl

e
to

 re
pr

od
uc

e
th

e
pr

ob
le

m
 o

n
yo

ur
 o

w
n

de
vi

ce
 a

nd
 e

nv
iro

nm
en

t?

 Y

es

 N
o

 P
ar

tia
lly

6.

W
er

e
th

e
ac

tu
al

 re
su

lts
 y

ou
 o

bs
er

ve
d

si
m

ila
r w

ith
 th

e
on

e
in

 th
e

de
fe

ct
 d

es
cr

ip
tio

ns
?

 Y

es

 N
o

 P
ar

tia
lly

7.

W
as

 th
e

de
fe

ct
 re

po
rt

ju
st

ifi
ed

 w
hy

 th
e

re
po

rte
r t

hi
nk

s t
ha

t i
t w

as
 a

 p
ro

bl
em

?

 Y
es

 N

o
 P

ar
tia

lly

8.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ic
itl

y
m

en
tio

ne
d

ab
ou

t w
ha

t p
os

es
 a

 p
ro

bl
em

 to
 th

e
us

er
?

 Y

es

 N
o

 P
ar

tia
lly

9.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 t

he
 i

m
pa

ct
 o

f
th

e
pr

ob
le

m
 o

n
bu

si
ne

ss
 e

ff
ec

t,
im

pa
ct

 o
n

th
e

us
er

’s
 ta

sk
 a

nd
 im

po
rta

nc
e

of
 th

e
ta

sk
?

 Y
es

 N

o
 P

ar
tia

lly

10
.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 re
po

rte
rs

 e
m

ot
io

n,
 fe

el
in

g
or

 re
ac

tio
ns

 u
po

n
th

e
is

su
es

?

 Y
es

 N

o
 P

ar
tia

lly

11
.

W
as

 th
e

de
fe

ct
 re

po
rt

m
en

tio
ne

d
ab

ou
t h

ow
 o

fte
n

th
e

pr
ob

le
m

 o
cc

ur
re

d?

 Y
es

 N

o
 P

ar
tia

lly

23

2

D
ef

ec
t R

ep
or

t
A

ss
es

sm
en

t Q
ue

st
io

ns

A
ns

w
er

B

ug
zi

lla
 d

ef
ec

t #
11

99
98

3
 R

ep
or

t T
itl

e:

U
na

bl
e

to
 sc

ro
ll

lo
ng

 p
ag

e
us

in
g

sc
ro

llb
ar

 D

es
cr

ip
tio

n:

I
ha

ve
 d

iff
ic

ul
ty

 to
 m

an
ip

ul
at

e
ob

je
ct

 (
sc

ro
llb

ar
)

in
 th

e
us

er
 in

te
rf

ac
e.

 W
he

n
I

op
en

 a
 r

ea
lly

 la
rg

e
pa

ge
, l

ik
e

a
W

ik
ip

ed
ia

 p
ag

e,
 it

 a
pp

ea
rs

 th
at

 I
ca

n
on

ly
 s

cr
ol

l f
ur

th
er

 d
ow

n
w

ith
 th

e
sw

ip
e

ge
st

ur
e.

 T
he

 s
cr

ol
lb

ar
 o

n
th

e
rig

ht

pa
ge

 is
 n

ot
 a

bl
e

to
 g

ra
b.

 T
he

 c
ur

re
nt

 s
cr

ol
lin

g
m

ec
ha

ni
sm

 o
f

Fi
re

fo
x

m
ob

ile
 b

ro
w

se
r

vi
ol

at
in

g
th

e
fle

xi
bi

lit
y

an
d

ea
se

 o
f

us
e

us
ab

ili
ty

 p
rin

ci
pl

es
 t

o
m

ov
e

w
ith

in
 t

he
 s

cr
ee

n.
 T

hi
s

is
 v

er
y

an
no

yi
ng

 e
xp

er
ie

nc
e

w
he

n
yo

u
kn

ow
 th

e
sc

ro
llb

ar
 is

 su
pp

os
ed

 to
 b

e
us

ed
 to

 m
ov

e
th

e
sc

re
en

 v
ie

w
in

g
ar

ea
 u

p
an

d
do

w
n,

 b
ut

 it
 d

oe
s n

ot
 w

or
k.

 St

ep
s

to
 r

ep
ro

du
ce

:
4.

G

o
to

 W
ik

ip
ed

ia
 p

ag
e

an
d

se
ar

ch
 fo

r i
nf

or
m

at
io

n,
 w

hi
ch

 m
ay

 h
av

e
lo

ng
 in

fo
rm

at
io

n.

5.

To
uc

h
th

e
sc

re
en

. Y
ou

 w
ill

 se
e

th
e

sc
ro

ll
in

di
ca

to
r o

n
th

e
rig

ht
 si

de
.

6.

Tr
y

to
 g

ra
b

th
e

sc
ro

llb
ar

 a
nd

 sc
ro

ll
do

w
n.

 A

ct
ua

l r
es

ul
ts

:
Y

ou
 w

er
e

un
ab

le
 to

 s
cr

ol
l u

si
ng

 th
e

sc
ro

ll
in

di
ca

to
r.

In
st

ea
d,

 y
ou

 a
re

 s
cr

ol
lin

g
us

in
g

sw
ip

e
ge

st
ur

e.
 I

t t
oo

k
so

m

uc
h

tim
e

fo
r m

e
to

 s
cr

ol
l t

o
th

e
m

id
dl

e
of

 th
e

pa
ge

. I
 s

pe
nt

 li
te

ra
lly

 5
 m

in
s

ju
st

 w
ith

 th
e

sw
ip

in
g

re
st

or
e

to
 g

et

to
 th

e
m

id
dl

e
of

 th
e

pa
ge

, b
ec

au
se

 it
 s

ee
m

s
th

at
 I

ca
n’

t g
ra

b
th

e
sc

ro
llb

ar
 o

n
th

e
rig

ht
 a

nd
 m

ov
e

it
do

w
n

w
ith

m

y
fin

ge
r t

o
sc

ro
ll

fa
st

er
 li

ke
 in

 o
th

er
 iO

S
ap

ps
.

 E
xp

ec
te

d
re

su
lts

:
I

w
ou

ld
 e

xp
ec

t t
he

 s
cr

ol
lb

ar
 f

un
ct

io
n

to
 w

or
k

si
m

ila
r

to
 a

ny
 o

th
er

 s
cr

ol
lb

ar
 in

 d
es

kt
op

 w
eb

pa
ge

 a
nd

 in
 o

th
er

iO

S
ap

p.
 U

se
r c

an
 g

ra
b

th
e

sc
ro

llb
ar

 a
nd

 fa
st

 sc
ro

lli
ng

 to
 th

e
up

/ b
ot

to
m

 o
f t

he
 p

ag
e.

1.

W
as

 t
he

 d
ef

ec
t

re
po

rt
ex

pl
ai

ne
d

ab
ou

t
pr

op
os

al
s

fo
r

so
lu

tio
ns

?
Fo

r
ex

am
pl

e,
 t

he

de
sc

rip
tio

ns
 p

ro
vi

de
 a

lte
rn

at
iv

es
 a

nd
 t

ra
de

of
fs

,
an

d
su

pp
lie

d
ra

tio
na

le
 f

or
 t

he

re
co

m
m

en
da

tio
ns

 [9
].

 Y
es

 N

o
 P

ar
tia

lly

2.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 c

au
se

 o
f

th
e

pr
ob

le
m

,
in

cl
ud

in
g

th
e

te
ch

ni
ca

l
ju

st
ifi

ca
tio

n
of

 w
ha

t p
os

ed
 a

 p
ro

bl
em

 (i
.e

.,
sy

st
em

 c
om

po
ne

nt
s

th
at

 a
re

 a
ff

ec
te

d
or

in

vo
lv

ed
) o

r v
io

la
tio

ns
 o

f a
ny

 u
sa

bi
lit

y
de

si
gn

 a
nd

 p
rin

ci
pl

es
?

 Y
es

 N

o
 P

ar
tia

lly

3.

W
as

 th
e

de
fe

ct
 r

ep
or

t d
es

cr
ib

ed
 th

e
m

ai
n

us
ab

ili
ty

 is
su

e
in

vo
lv

ed
 in

 th
e

pr
ob

le
m

?
Fo

r e
xa

m
pl

e,
 th

e
de

sc
rip

tio
n

ab
ou

t w
ha

t i
s w

ro
ng

 w
ith

 th
e

in
te

ra
ct

io
n,

 in
te

rf
ac

e
an

d
us

er
 ta

sk
 d

es
ig

n.

 Y
es

 N

o
 P

ar
tia

lly

4.

W
as

 t
he

 d
ef

ec
t

re
po

rt
ex

pl
ai

ne
d

in
 d

et
ai

l
st

ep
s

by
 s

te
ps

 h
ow

 t
o

re
pr

od
uc

e
th

e
pr

ob
le

m
, i

nc
lu

di
ng

 u
se

r’
s n

av
ig

at
io

n
flo

w
 th

ro
ug

h
th

e
sy

st
em

?

 Y
es

 N

o
 P

ar
tia

lly

5.

A
re

 y
ou

 a
bl

e
to

 re
pr

od
uc

e
th

e
pr

ob
le

m
 o

n
yo

ur
 o

w
n

de
vi

ce
 a

nd
 e

nv
iro

nm
en

t?

 Y

es

 N
o

 P
ar

tia
lly

6.

W
er

e
th

e
ac

tu
al

re

su
lts

yo

u
ob

se
rv

ed

si
m

ila
r

w
ith

th

e
on

e
in

th

e
de

fe
ct

de

sc
rip

tio
ns

?

 Y
es

 N

o
 P

ar
tia

lly

7.

W
as

 th
e

de
fe

ct
 re

po
rt

ju
st

ifi
ed

 w
hy

 th
e

re
po

rte
r t

hi
nk

s t
ha

t i
t w

as
 a

 p
ro

bl
em

?

 Y
es

 N

o
 P

ar
tia

lly

8.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ic
itl

y
m

en
tio

ne
d

ab
ou

t w
ha

t p
os

es
 a

 p
ro

bl
em

 to
 th

e
us

er
?

 Y

es

 N
o

 P
ar

tia
lly

9.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 th
e

im
pa

ct
 o

f t
he

 p
ro

bl
em

 o
n

bu
si

ne
ss

, u
se

r’
s

ta
sk

an

d
im

po
rta

nc
e

of
 th

e
ta

sk
?

 Y
es

 N

o
 P

ar
tia

lly

10
.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 r

ep
or

te
rs

 e
m

ot
io

n,
 f

ee
lin

g
or

 r
ea

ct
io

ns
 u

po
n

th
e

is
su

es
 (i

.e
, a

nn
oy

an
ce

, c
on

fu
si

on
 a

nd
 d

is
tra

ct
io

n)
?

 Y
es

 N

o
 P

ar
tia

lly

11
.

W
as

 th
e

de
fe

ct
 re

po
rt

m
en

tio
ne

d
ab

ou
t h

ow
 o

fte
n

th
e

pr
ob

le
m

 o
cc

ur
re

d
or

 if
 o

th
er

us

er
 h

ad
 e

xp
er

ie
nc

es
 th

e
sa

m
e

pr
ob

le
m

?
 Y

es

 N
o

 P
ar

tia
lly

23

3

D
ef

ec
t R

ep
or

t
A

ss
es

sm
en

t Q
ue

st
io

ns

A
ns

w
er

B

ug
zi

lla
 d

ef
ec

t#
12

50
23

8
 R

ep
or

t T
itl

e:

O
pe

n
In

 N
ew

 P
riv

at
e

Ta
b

do
es

n’
t o

ff
er

 a
n

af
fo

rd
an

ce
 to

 fi
nd

 th
e

ne
w

ly
 o

pe
ne

d
pr

iv
at

e
ta

b
 D

es
cr

ip
tio

n:

 St
ep

s
to

 R
ep

ro
du

ce
:

1.

C
lic

k
on

 F
ire

fo
x

br
ow

se
r i

co
n.

2.

G

o
to

 g
oo

gl
e.

co
m

.a
u

an
d

se
ar

ch
 fo

r s
om

et
hi

ng

3.

Se
le

ct
 o

ne
 se

ar
ch

 re
su

lt
an

d
lo

ng
 p

re
ss

 th
e

lin
k

A

ct
ua

l R
es

ul
ts

:
O

pe
n

In
 N

ew
 P

riv
at

e
Ta

b
do

es
n’

t w
or

k.

 E
xp

ec
te

d
R

es
ul

ts
:

Th
e

O
pe

n
In

 N
ew

 P
riv

at
e

Ta
b

sh
ou

ld
 b

e
po

pu
la

te
d

an
d

us
er

 c
ou

ld
 b

e
ea

si
ly

 d
is

co
ve

re
d

th
e

ne
w

ly

op
en

ed
 p

riv
at

e
ta

b.

1.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ai
ne

d
ab

ou
t p

ro
po

sa
ls

 fo
r s

ol
ut

io
ns

?
Fo

r e
xa

m
pl

e,
 th

e
de

sc
rip

tio
ns

pr

ov
id

e
al

te
rn

at
iv

es
 a

nd
 tr

ad
eo

ff
s,

an
d

su
pp

lie
d

ra
tio

na
le

 fo
r t

he
 re

co
m

m
en

da
tio

ns
 [9

].

 Y
es

 N

o
 P

ar
tia

lly

2.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 c
au

se
 o

f t
he

 p
ro

bl
em

, i
nc

lu
di

ng
 th

e
ju

st
ifi

ca
tio

n
w

ha
t p

os
ed

a

pr
ob

le
m

, i
nc

lu
di

ng
 sy

st
em

 c
om

po
ne

nt
s t

ha
t a

re
 a

ff
ec

te
d

or
 in

vo
lv

ed
?

 Y
es

 N

o
 P

ar
tia

lly

3.

W
as

 t
he

 d
ef

ec
t

re
po

rt
de

sc
rib

ed
 t

he
 m

ai
n

us
ab

ili
ty

 i
ss

ue
 i

nv
ol

ve
d

in
 t

he
 p

ro
bl

em
?

Fo
r

ex
am

pl
e,

 th
e

de
sc

rip
tio

n
ab

ou
t w

ha
t i

s
w

ro
ng

 w
ith

 th
e

in
te

ra
ct

io
n

ar
ch

ite
ct

ur
e,

 in
te

rf
ac

e
an

d
us

er
 ta

sk
 d

es
ig

n.

 Y
es

 N

o
 P

ar
tia

lly

4.

W
as

 t
he

 d
ef

ec
t

re
po

rt
ex

pl
ai

ne
d

in
 d

et
ai

l
st

ep
s

by
 s

te
ps

 h
ow

 t
o

re
pr

od
uc

e
th

e
pr

ob
le

m
,

in
cl

ud
in

g
us

er
’s

 n
av

ig
at

io
n

flo
w

 th
ro

ug
h

th
e

sy
st

em
?

 Y
es

 N

o
 P

ar
tia

lly

5.

A
re

 y
ou

 a
bl

e
to

 re
pr

od
uc

e
th

e
pr

ob
le

m
 o

n
yo

ur
 o

w
n

de
vi

ce
 a

nd
 e

nv
iro

nm
en

t?

 Y

es

 N
o

 P
ar

tia
lly

6.

W
er

e
th

e
ac

tu
al

 re
su

lts
 y

ou
 o

bs
er

ve
d

si
m

ila
r w

ith
 th

e
on

e
in

 th
e

de
fe

ct
 d

es
cr

ip
tio

ns
?

 Y

es

 N
o

 P
ar

tia
lly

7.

W
as

 th
e

de
fe

ct
 re

po
rt

ju
st

ifi
ed

 w
hy

 th
e

re
po

rte
r t

hi
nk

s t
ha

t i
t w

as
 a

 p
ro

bl
em

?

 Y
es

 N

o
 P

ar
tia

lly

8.

W
as

 th
e

de
fe

ct
 re

po
rt

ex
pl

ic
itl

y
m

en
tio

ne
d

ab
ou

t w
ha

t p
os

es
 a

 p
ro

bl
em

 to
 th

e
us

er
?

 Y

es

 N
o

 P
ar

tia
lly

9.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 th
e

im
pa

ct
 o

f t
he

 p
ro

bl
em

 o
n

bu
si

ne
ss

 e
ff

ec
t,

im
pa

ct
 o

n
th

e
us

er
’s

 ta
sk

 a
nd

 im
po

rta
nc

e
of

 th
e

ta
sk

?

 Y
es

 N

o
 P

ar
tia

lly

10
.

W
as

 th
e

de
fe

ct
 re

po
rt

de
sc

rib
ed

 re
po

rte
rs

 e
m

ot
io

n,
 fe

el
in

g
or

 re
ac

tio
ns

 u
po

n
th

e
is

su
es

?

 Y
es

 N

o
 P

ar
tia

lly

11
.

W
as

 th
e

de
fe

ct
 re

po
rt

m
en

tio
ne

d
ab

ou
t h

ow
 o

fte
n

th
e

pr
ob

le
m

 o
cc

ur
re

d?

 Y
es

 N

o
 P

ar
tia

lly

 234

Appendix F

Ethics Clearance

 235

E.1 SUHREC Project 2014/231 Ethics Clearance

To: Prof John Grundy, FSET/Mrs Nor Shahida Mohamad Yusop

Dear Prof Grundy,

SHR Project 2014/231 What makes a good usability defect report?
Prof John Grundy, FSET/Mrs Nor Shahida Mohamad Yusop
Approved Duration: 21/10/2014 to 31/07/2017 [Adjusted]

I refer to the ethical review of the above project protocol by a Subcommittee (SHESC1) of
Swinburne’s Human Research Ethics Committee (SUHREC) at a meeting held 19
September 2014. Your responses to the review, as emailed on 1 and 20 October were reviewed by a
SHESC1 delegate.

I am pleased to advise that, as submitted to date, the project may proceed in line with standard on-
going ethics clearance conditions here outlined.

- All human research activity undertaken under Swinburne auspices must conform to Swinburne and

external regulatory standards, including the current National Statement on Ethical Conduct in
Human Research and with respect to secure data use, retention and disposal.

- The named Swinburne Chief Investigator/Supervisor remains responsible for any personnel

appointed to or associated with the project being made aware of ethics clearance conditions,
including research and consent procedures or instruments approved. Any change in chief
investigator/supervisor requires timely notification and SUHREC endorsement.

- The above project has been approved as submitted for ethical review by or on behalf of SUHREC.

Amendments to approved procedures or instruments ordinarily require prior ethical
appraisal/clearance. SUHREC must be notified immediately or as soon as possible thereafter of (a)
any serious or unexpected adverse effects on participants any redress measures; (b) proposed
changes in protocols; and (c) unforeseen events which might affect continued ethical acceptability
of the project.

- At a minimum, an annual report on the progress of the project is required as well as at the

conclusion (or abandonment) of the project. Information on project monitoring, self-audits and
progress reports can be found at:
http://www.research.swinburne.edu.au/ethics/human/monitoringReportingChanges/

- A duly authorized external or internal audit of the project may be undertaken at any time.

Please contact the Research Ethics Office if you have any queries about on-going ethics clearance. The
SHR project number should be quoted in communication. Researchers should retain a copy of this
email as part of project recordkeeping.

Best wishes for the project.

Yours sincerely,

Kaye Goldenberg
Acting Secretary, SHESC1
Research Ethics Executive Officer (Acting)
Swinburne Research (H68)
Swinburne University of Technology
Level 1, SPS, 24 Wakefield Street
Hawthorn, VIC 3122
Tel: +61 3 9214 5218
Fax: +61 3 9214 5267
Email: kgoldenberg@swin.edu.au

 236

E.2 SUHREC Project 2016/325 Ethics Clearance

To: A/Prof Jean-Guy Schneider, FSET

SHR Project 2016/325 - Evaluation of a New Usability Defect Classification
A/Prof Jean-Guy Schneider, Nor Shahida Mohamad Yusop (Student) – FSET/Prof John Grundy, Prof
Rajesh Vasa – Deakin University
Approved duration: 20-01-2017 to 20-06-2017 [Adjusted]

I refer to the ethical review of the above project by a Subcommittee (SHESC3) of Swinburne's Human
Research Ethics Committee (SUHREC). Your response to the review as e-mailed on 20 January 2017
was put to the Subcommittee delegate for consideration.

I am pleased to advise that, as submitted to date, ethics clearance has been given for the above project
to proceed in line with standard on-going ethics clearance conditions outlined below.

- The approved duration is 20-01-2017 to 20-06-2017 unless an extension request is subsequently

approved.

- All human research activity undertaken under Swinburne auspices must conform to Swinburne and
external regulatory standards, including the National Statement on Ethical Conduct in Human
Research and with respect to secure data use, retention and disposal.

- The named Swinburne Chief Investigator/Supervisor remains responsible for any personnel

appointed to or associated with the project being made aware of ethics clearance conditions,
including research and consent procedures or instruments approved. Any change in chief
investigator/supervisor, and addition or removal of other personnel/students from the project,
requires timely notification and SUHREC endorsement.

- The above project has been approved as submitted for ethical review by or on behalf of SUHREC.

Amendments to approved procedures or instruments ordinarily require prior ethical
appraisal/clearance. SUHREC must be notified immediately or as soon as possible thereafter of (a)
any serious or unexpected adverse effects on participants and any redress measures; (b) proposed
changes in protocols; and (c) unforeseen events which might affect continued ethical acceptability
of the project.

- At a minimum, an annual report on the progress of the project is required as well as at the

conclusion (or abandonment) of the project. Information on project monitoring and
variations/additions, self-audits and progress reports can be found on the Research Internet pages.

- A duly authorised external or internal audit of the project may be undertaken at any time.

Please contact the Research Ethics Office if you have any queries about on-going ethics clearance,
citing the Swinburne project number. A copy of this e-mail should be retained as part of project record
keeping.

Best wishes for the project.

Yours sincerely,

Sally Fried

Secretary, SHESC3

 237

References

[1] A. Fernandez, E. Insfran, and S. Abrahão, “Usability evaluation methods for the web: A

systematic mapping study,” Information and Software Technology, vol. 53, no. 8, pp. 789–817,

2011.

[2] M. Theofanos and W. Quesenbery, “Towards the Design of Effective Formative Test Reports,”

Journal of Usability Studies, vol. 1, no. 1, pp. 27–45, 2005.

[3] T. S. Andre, H. Rex Hartson, S. M. Belz, and F. a. Mccreary, “The user action framework: a

reliable foundation for usability engineering support tools,” International Journal on Human-

Computer Studies, vol. 54, pp. 107–136, 2001.

[4] A. J. Ko and P. K. Chilana, “How power users help and hinder open bug reporting,” in

Proceedings of the 28th international conference on Human factors in computing systems,

2010, p. 1665.

[5] A. Raza, L. F. Capretz, and F. Ahmed, “Improvement of Open Source Software Usability: An

Empirical Evaluation from Developers’ Perspective,” Advances in Software Enginering, vol.

2010, pp. 1–12, 2010.

[6] L. Zhao and F. P. Deek, “Improving Open Source Software Usability,” in Proceeedings of the

Eleventh Americas Conference on Information Systems, 2005.

[7] G. Çetin, D. Verzulli, and S. Frings, “An Analysis of Involvement of HCI Experts in

Distributed Software Development: Practical Issues,” Online Communities and Social

Computing, vol. 4564, pp. 32–40, 2007.

[8] R. T. Høegh and J. Stage, “The Impact of Usability Reports and User Test Observations on

Developers ’ Understanding of Usability Data!: An Exploratory Study,” International Journal

of Human-Computer Interaction, vol. 21, no. 2, pp. 173–196, 2006.

[9] K. Hornbaek and E. Frokjaer, “What Kinds of Usability-Problem Description are Useful to

Developers?,” in Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

2006, vol. 50, no. 24, pp. 2523–2527.

[10] M. B. Twidale and D. M. Nichols, “Exploring Usability Discussions in Open Source

 238

Development,” in Proceedings of the 38th Annual Hawaii Internatioal Conference on System

Sciences, 2005, pp. 1–10.

[11] M. G. Capra, “Usability Problem Description and the Evaluator Effect in Usability Testing,” .

PhD Thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 2006.

[12] S. L. Keenan, H. R. Hartson, D. G. Kafura, and R. S. Schulman, “The Usability Problem

Taxonomy!: A Framework for Classification and Analysis,” Empirical Software Engineering,

vol. 4, pp. 71–104, 1999.

[13] T. S. Andre, S. M. Belz, F. A. McCrearys, and H. R. Hartson, “Testing a Framework for

Reliable Classification of Usability Problems,” in Proceedings of the Human Factors and

Ergonomics Society Annual Meeting, 2000, vol. 44, no. 37, pp. 573–576.

[14] M. Hertzum and N. E. Jacobsen, “The Evaluator Effect: A Chilling Fact About Usability

Evaluation Methods,” International Journal of Human-Computer Interaction, vol. 15, pp. 183–

204, 2003.

[15] R. Molich, R. Jeffries, and J. S. Dumas, “Making Usability Recommendations Useful and

Usable,” Journal of Usability Studies, vol. 2, no. 4, pp. 162–179, 2007.

[16] B. J. S. Dumas, B. R. Molich, and B. R. Jeffries, “Describing usability problems: Are we

sending the right message?,” Interactions, pp. 0–4, 2004.

[17] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects!: Limitations of Open

Source Defect Repositories and Suggestions for Improvement,” in Proceedings of the 24th

Australasian Software Engineering Conference, 2015, pp. 38–43.

[18] T. Zimmermann and S. Breu, “Improving Bug Tracking Systems,” in 31st International

Conference on Software Engineering - Companion Volume, 2009, pp. 247–250.

[19] A. Bruun, P. Gull, L. Hofmeister, and J. Stage, “Let Your Users Do the Testing!: A

Comparison of Three Remote Asynchronous Usability Testing Methods,” in Proceedings of

the SIGCHI Conference on Human Factors in Computing Systems, 2009, pp. 1619–1628.

[20] T. Zimmermann, R. Premraj, N. Bettenburg, C. Weiss, S. Just, and A. Schro, “What Makes a

Good Bug Report!?,” IEEE Transactions on Software Engineering, vol. 36, no. 5, pp. 618–643,

2010.

 239

[21] E. I. Laukkanen and M. V. Mantyla, “Survey Reproduction of Defect Reporting in Industrial

Software Development,” in International Symposium on Empirical Software Engineering and

Measurement, 2011, pp. 197–206.

[22] D. M. Nichols and M. B. Twidale, “Usability processes in open source projects,” Software

Process Improvement and Practice, vol. 11, no. 2, pp. 149–162, 2006.

[23] C. Wilson and K. P. Coyne, “The whiteboard: Tracking usability issues: to bug or not to bug?,”

Interactions, pp. 15–19, 2001.

[24] F. P. Simões, “Supporting End User Reporting of HCI Issues in Open Source Software,” PhD

Thesis, Pontificia Universidade Catolica, Do Rio De Janeiro, 2013.

[25] C. Sun, D. Lo, X. Wang, J. Jiang, and S. Khoo, “A Discriminative Model Approach for

Accurate Duplicate Bug Report Retrieval,” in Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering, 2010, pp. 45–54.

[26] S. Banerjee, Z. Syed, J. Helmick, and B. Cukic, “A Fusion Approach for Classifying Duplicate

Problem Reports,” in IEEE 24th International Symposium on Software Reliability Engineering,

2013, pp. 208–217.

[27] Y. Tian, D. Lo, and C. Sun, “Information Retrieval Based Nearest Neighbor Classification for

Fine-Grained Bug Severity Prediction,” in 19th Working Conference on Reverse Engineering,

2012, pp. 215–224.

[28] J. Xuan, “Developer Prioritization in Bug Repositories,” in 34th International Conference on

Software Engineering, 2012, pp. 25–35.

[29] P. Bhattacharya, L. Ulanova, I. Neamtiu, and S. C. Koduru, “An empirical analysis of bug

reports and bug fixing in open source Android apps,” in Proceedings of the European

Conference on Software Maintenance and Reengineering, 2013, pp. 133–143.

[30] B. a. Kitchenham, P. Brereton, M. Turner, M. K. Niazi, S. Linkman, R. Pretorius, and D.

Budgen, “Refining the systematic literature review process—two participant-observer case

studies,” Empirical Software Engineering, vol. 15, no. 6, pp. 618–653, 2010.

[31] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic Mapping Studies in Software

Engineering,” in Proceedings of the 12th international conference on Evaluation and

 240

Assessment in Software Engineering, 2008, pp. 68–77.

[32] J. D. Strate and P. a. Laplante, “A Literature Review of Research in Software Defect

Reporting,” IEEE Transactions on Reliability, vol. 62, no. 2, pp. 444–454, 2013.

[33] S. Davies and M. Roper, “What’s in a bug report?,” in Proceedings of the 8th ACM/IEEE

International Symposium on Empirical Software Engineering and Measurement, 2014, pp. 1–

10.

[34] S. Zaman, B. Adams, and A. E. Hassan, “Security Versus Performance Bugs!: A Case Study on

Firefox,” in Proceedings of the 8th Working Conference on Mining Software Repositories,

2011.

[35] A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing performance bugs,” in 10th

Working Conference on Mining Software Repositories, 2013, pp. 237–246.

[36] S. Zaman, B. Adams, and a. E. Hassan, “A qualitative study on performance bugs,” in 9th

IEEE Working Conference on Mining Software Repositories, 2012, pp. 199–208.

[37] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteristics in open source

software,” Empirical Software Engineering, pp. 1–41, 2013.

[38] S. Lal and A. Sureka, “Comparison of Seven Bug Report Types: A Case-Study of Google

Chrome Browser Project,” in 19th Asia-Pacific Software Engineering Conference, 2012, pp.

517–526.

[39] A. J. Ko, B. A. Myers, and D. H. Chau, “A Linguistic Analysis of How People Describe

Software Problems,” in Visual Languages and Human-Centric Computing, 2006, pp. 127–134.

[40] P. K. Chilana, A. J. Ko, and J. O. Wobbrock, “Understanding expressions of unwanted

behaviors in open bug reporting,” in IEEE Symposium on Visual Languages and Human-

Centric Computing, 2010, pp. 203–206.

[41] B. Dit and A. Marcus, “Improving the Readability of Defect Reports,” in Proceedings of the

International Workshop on Recommendation System for Software Engineering, 2008, pp. 47–

49.

[42] R. V. Lotufo, “Towards Next Generation Bug Tracking Systems,” PhD Thesis. University of

 241

Waterloo, Canada, 2013.

[43] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshyvanyk, “Auto-completing

Bug Reports for Android Applications,” in Proceedings of the 10th Joint Meeting on

Foundations of Software Engineering, 2015, pp. 673–686.

[44] M. Terry, M. Kay, and B. Lafreniere, “Perceptions and Practices of Usability in the Free/Open

Source Software (FOSS) Community,” in Proceedings of the 28th international conference on

Human factors in computing systems, 2010, pp. 1–10.

[45] A. Raza, L. F. Capretz, and F. Ahmed, “Usability bugs in open-source software and online

forums,” IET Software, vol. 6, p. 226, 2012.

[46] R. Lotufo and K. Czarnecki, “Improving Bug Report Comprehension,”. Technical Report.

Generative Software Development Laboratory, University of Waterloo, Canada, 2012.

[47] A. Raza, L. F. Capretz, and F. Ahmed, “Improvement of Open Source Software Usability: An

Empirical Evaluation from Developers’ Perspective,” Advances in Software Engineering, vol.

2010, pp. 1–12, 2010.

[48] J. Howarth, T. Smith-jackson, and R. Hartson, “Supporting novice usability practitioners with

usability engineering tools,” International Journal Human-Computer Studies, vol. 67, no. 6,

pp. 533–549, 2009.

[49] J. Feiner and K. Andrews, “Usability Reporting with UsabML,” in Proceedings of the 4th

international conference on Human-Centered Software Engineering, 2012, vol. 7623, pp. 342–

351.

[50] A. Faaborg and D. Schwartz, “Using a Distributed Heuristic Evaluation to Improve the

Usability of Open Source Software,” in 28th ACM Conference on Human Factors in

Computing Systems, 2010.

[51] B. Kitchenham and S. Charters, “Guidelines for performing Systematic Literature Reviews in

Software Engineering,”. Technical Report. Keele University, United Kingdom, 2007.

[52] M. Petticrew and H. Roberts, “Systematic Reviews in the Social Sciences: A Practical Guide,”

Blackwell Publishing, pp. 164–214, 2006.

 242

[53] P. Mclnerney, C. Pantel, and K. Melder, “Managing Usability Defects from Identification to

Closure,” in Extended Abstracts on Human Factors in Computing Systems, 2001, pp. 497–498.

[54] B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman,

“Systematic literature reviews in software engineering – A systematic literature review,”

Information and Software Technology, vol. 51, no. 1, pp. 7–15, 2009.

[55] D. Maplesden, E. Tempero, J. Hosking, and J. C. Grundy, “Performance Analysis for Object-

Oriented Software: A Systematic Mapping,” IEEE Transactions on Software Engineering, vol.

41, pp. 691–710, 2015.

[56] N. Salleh, E. Mendes, and J. Grundy, “Empirical Studies of Pair Programming for CS/SE

Teaching in Higher Education: A Systematic Literature Review,” IEEE Trans. Softw. Eng., vol.

37, no. 4, pp. 509–525, Jul. 2011.

[57] P. Achimugu, A. Selamat, R. Ibrahim, and M. Naz, “A systematic literature review of software

requirements prioritization research,” Information and Software Technology, vol. 56, no. 6, pp.

568–585, 2014.

[58] G. S. Walia and J. C. Carver, “A systematic literature review to identify and classify software

requirement errors,” Information and Software Technology, vol. 51, no. 7, pp. 1087–1109, Jul.

2009.

[59] B. A. Kitchenham, E. Mendes, and G. H. Travassos, “Cross versus within-company cost

estimation studies: A systematic review,” IEEE Transactions on Software Engineering, vol. 33,

pp. 316–329, 2007.

[60] M. Nørgaard and R. T. Høegh, “Evaluating Usability – Using Models of Argumentation to

Improve Persuasiveness of Usability Feedback,” in Proceedings of the 7th ACM conference on

Designing interactive systems, 2008, pp. 212–221.

[61] E. T. Hvannberg, E. L.-C. Law, and M. K. Lárusdóttir, “Heuristic evaluation: Comparing ways

of finding and reporting usability problems,” Interacting with Computers, vol. 19, no. 2, pp.

225–240, 2007.

[62] A. Bruun and J. Stage, “Barefoot usability evaluations,” Behaviour & Information Technology,

vol. 33, no. 11, pp. 1148–1167, Feb. 2014.

 243

[63] M. G. Capra, “Comparing Usability Problem Identification and Description by Practitioners

and Students,” in Proceedings of the Human Factors and Ergonomics Society Annual Meeting,

2007.

[64] Y. C. Cavalcanti, P. A. da Mota Silveira Neto, D. Lucrédio, T. Vale, E. S. de Almeida, and S.

R. de Lemos Meira, “The bug report duplication problem: An exploratory study,” Software

Quality Journal, vol. 21, pp. 39–66, 2013.

[65] F. Botella and A. Peñalver, “A new proposal for improving heuristic evaluation reports

performed by novice evaluators,” in Proceedings of the Chilean Conference on Human -

Computer Interaction, 2013, pp. 72–75.

[66] J. Matejka, T. Grossman, and G. Fitzmaurice, “IP-QAT: In-Product Questions, Answers, &

Tips,” in Proceedings of the 24th annual ACM symposium on User interface software and

technology, 2011, pp. 175–184.

[67] P. K. Chilana, A. J. Ko, and J. O. Wobbrock, “LemonAid!: Selection-Based Crowdsourced

Contextual Help for Web Applications,” in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 2012, pp. 1549–1558.

[68] I. Herraiz, D. M. German, M. Jesus, U. Rey, and J. Carlos, “Towards a Simplification of the

Bug Report form in Eclipse,” in Mining Software Repositories, 2008, pp. 145–148.

[69] D. Lavery, G. Cockton, and M. P. Atkinson, “Comparison of evaluation methods using

structured usability problem reports,” Behaviour & Information Technology, vol. 16. pp. 246–

266, 1997.

[70] T. S. Andre, H. R. Hartson, and R. C. Williges, “Determining the Effectiveness of the Usability

Problem Inspector: A Theory-Based Model and Tool for Finding Usability Problems,” Human

Factors: the Journal of the Human Factors Ergonomics Society, 2003.

[71] G. Cockton, A. Woolrych, and M. Hindmarch, “Reconditioned Merchandise!: Extended

Structured Report Formats in Usability Inspection,” in Extended Abstracts on Human Factors

in Computing Systems, 2004, pp. 1433–1436.

[72] G. A. Bowen, “Document Analysis as a Qualitative Research Method,” Qualitative Research

Journal, vol. 9, no. 2, pp. 27–40, 2009.

 244

[73] A. Følstad, P. O. Box, E. L. Law, K. Hornbæk, and S. Copenhagen, “Analysis in Practical

Usability Evaluation!: A Survey Study,” in Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, 2012, pp. 2127–2136.

[74] J. Itkonen and C. Lassenius, “The Role of the Tester ’ s Knowledge in Exploratory Software

Testing,” IEEE Transactions on Software Engineering, vol. 39, no. 5, pp. 707–724, 2013.

[75] G. Guest, K. MacQueen, and E. Namey, Introduction to applied thematic analysis. London,

UK: Sage, 2012.

[76] V. Lelli, A. Blouin, and B. Baudry, “Classifying and qualifying GUI defects,” in IEEE 8th

International Conference on Software Testing, Verification and Validation, 2015.

[77] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, B. K. Ray, and D. S. Moebus,

“Orthogonal Defect Classification - A Concept for In-Process Measurements,” IEEE

Transactions on Software Engineering, vol. 18, no. 11, pp. 943–956, 1992.

[78] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An Approach to Detecting Duplicate Bug

Reports using Natural Language and Execution Information,” in Proceedings of the 30th

international conference on Software engineering, 2008, pp. 461–470.

[79] Y. Tao, “Grammatical analysis of user interface events for task identification,” Lecture Notes

in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics), vol. 8517 LNCS, pp. 197–205, 2014.

[80] J. Itkonen and K. Rautiainen, “Exploratory testing: a multiple case study,” in IEEE/ACM

International Symposium on Empirical Software Engineering and Measurement, vol. 0, pp.

82–91.

[81] C. R. L. Neto and E. S. de Almeida, “Five years of lessons learned from the Software

Engineering course: Adapting best practices for Distributed Software Development,” in Second

International Workshop on Collaborative Teaching of Globally Distributed Software

Development, 2012, pp. 6–10.

[82] V. Kettunen, J. Kasurinen, O. Taipale, and K. Smolander, “A study on agility and testing

processes in software organizations,” Human Factors, pp. 231–240, 2010.

[83] T. Kanij, R. Merkel, and J. Grundy, “A preliminary survey of factors affecting software

 245

testers,” in Proceedings of the Australian Software Engineering Conference, 2014, pp. 180–

189.

[84] A. Beer, A.- Vienna, and R. Ramler, “The Role of Experience in Software Testing Practice,” in

34th Euromicro Conference Software Engineering and Advanced Applications, 2008, pp. 258–

265.

[85] P. L. Poon, T. H. Tse, S. F. Tang, and F. C. Kuo, “Contributions of tester experience and a

checklist guideline to the identification of categories and choices for software testing,”

Software Quality Journal, vol. 19, pp. 141–163, 2011.

[86] A. F⊘lstad, “Work-Domain Experts as Evaluators: Usability Inspection of Domain-Specific

Work-Support Systems,” International Journal of Human Computer Interaction, vol. 22, pp.

217–245, 2007.

[87] T. Kanij, R. Merkel, and J. Grundy, “A Preliminary Study on Factors Affecting Software

Testing Team Performance,” in International Symposium on Empirical Software Engineering

and Measurement, 2011, pp. 359–362.

[88] M. V. Mäntylä, J. Itkonen, and J. Iivonen, “Who tested my software? Testing as an

organizationally cross-cutting activity,” Software Quality Journal, vol. 20, no. 1, pp. 145–172,

2012.

[89] V. Kettunen, J. Kasurinen, O. Taipale, and K. Smolander, “A study on agility and testing

processes in software organizations,” Human Factors, pp. 231–240, 2010.

[90] S. Herbold, J. Grabowski, S. Waack, and U. Bünting, “Improved Bug Reporting and

Reproduction through Non-intrusive GUI Usage Monitoring and Automated Replaying,” in

IEEE Fourth International Conference on Software Testing, Verification and Validation

Workshops, 2011, pp. 232–241.

[91] T. Roehm, N. Gurbanova, B. Bruegge, C. Joubert, and W. Maalej, “Monitoring user

interactions for supporting failure reproduction,” in 21st International Conference on Program

Comprehension, 2013, pp. 73–82.

[92] J. Pichler and R. Ramler, “How to test the intangible properties of graphical user interfaces?,”

in Proceedings of the 1st International Conference on Software Testing, Verification and

 246

Validation, 2008, pp. 494–497.

[93] V. Arnicane, Use of Non-IT Testers in Software Development, vol. 4589. 2007.

[94] D.-H. Ham, “A model-based framework for classifying and diagnosing usability problems,”

Cognition, Technology & Work, vol. 16, pp. 373–388, 2014.

[95] R. Geng, M. Chen, and J. Tian, “In-process Usability Problem Classification, Analysis and

Improvement,” in the 14th International Conference on Quality Software, 2014, pp. 240–245.

[96] J. Nielsen and R. Molich, “Heuristic evaluation of user interfaces,” in Proceedings of the

SIGCHI conference on Human factors in computing systems Empowering people, 1990, pp.

249–256.

[97] D. A. Norman, “Cognitive engineering,” User centered System Design, pp. 31–61, 1986.

[98] R. Khajouei, L. W. P. Peute, a. Hasman, and M. W. M. Jaspers, “Classification and

prioritization of usability problems using an augmented classification scheme,” Journal

Biomedical Informatics, vol. 44, no. 6, pp. 948–957, 2011.

[99] S. G. Vilbergsdóttir and E. L. Law, “Classification of Usability Problems (CUP) Scheme!:

Augmentation and Exploitation,” in Proceedings of the 4th Nordic conference on Human-

computer interaction: changing roles, 2006, pp. 14–18.

[100] A. Faaborg and D. Schwartz, “Using a Distributed Heuristic Evaluation to Improve the

Usability of Open Source Software,” in CHI Conference on Human Factors in Computing

Systems, 2010, pp. 4–5.

[101] J. R. Wood and L. E. Wood, “Card Sorting: Current practices and beyond,” Journal of

Usability Studies, vol. 4, no. 1, pp. 1–6, 2008.

[102] S. G. Vilbergsdottir, E. T. Hvannberg, and E. L. C. Law, “Assessing the reliability, validity and

acceptance of a classification scheme of usability problems (CUP),” Journal of System and

Software, vol. 87, pp. 18–37, 2014.

[103] V. Harkke and P. Reijonen, “Are We Testing Utility!? Analysis of Usability Problem Types,”

in Design, User Experience, and Usability: Design Discourse, 2015.

[104] R. W. Reeder and R. A. Maxion, “User interface defect detection by hesitation analysis,” in

 247

Proceedings of the International Conference on Dependable Systems and Networks, 2006, pp.

61–70.

[105] J. L. Fleiss, “Measuring nominal scale agreement among many raters,” Psychological Bulletin,

vol. 76, no. 5, pp. 378–382, 1971.

[106] J. Cohen, “A coefficient of agreement for nominal scales,” Educational and Psychological

Measurement, vol. 20, pp. 37–46, 1960.

[107] M. L. McHugh, “Interrater reliability!: the kappa statistic,” Biochemica Medica, vol. 22, no. 3,

pp. 276–282, 2012.

[108] K. Hornbæk and E. Frokjær, “Comparing usability problems and redesign proposals as input to

practical systems development,” in CHI 2005: Technology, Safety, Community: Conference

Proceedings - Conference on Human Factors in Computing Systems, 2005, pp. 391–400.

[109] D. M. Hilbert and D. F. Redmiles, “Extracting usability information from user interface

events,” ACM Computing Surveys, vol. 32, pp. 384–421, 2000.

[110] S. Hedegaard and J. G. Simonsen, “Extracting usability and user experience information from

online user reviews,” in Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, 2013, pp. 2089–2098.

[111] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim, “Extracting structural information

from bug reports,” in International workshop on Mining Software Repositories, 2008, pp. 27–

30.

[112] R. Souza, C. Chavez, and R. Bittencourt, “Patterns for extracting high level information from

bug reports,” in 1st International Workshop on Data Analysis Patterns in Software

Engineering, 2013, pp. 29–31.

[113] E. L. Law and E. T. Hvannberg, “Consolidating Usability Problems with Novice Evaluators,”

in Proceedings of the 5th Nordic conference on Human-computer interaction: building

bridges, 2008, pp. 495–498.

[114] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects: A Systematic

Literature Review,” IEEE Transactions on Software Engineering, vol. 43, no. 9, pp. 848–867,

2017.

 248

[115] N. S. M. Yusop, J. Grundy, and R. Vasa, “Reporting Usability Defects – Do Reporters Report

What Software Developers Need!?,” in Proceedings of the 20th International Conference on

Evaluation and Assessment in Software Engineering, 2016.

[116] N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa, “What Influences Usability Defect

Reporting!? – A Survey of Software Development Practitioners,” in 23rd Asia-Pasific Software

Engineering Conference, 2016.

[117] N. S. M. Yusop, J.-G. Schneider, J. Grundy, and R. Vasa, “Analysis of the Textual Content of

Mined Open Source Usability Defect Reports,” in 24th Asia-Pasific Software Engineering

Conference, 2017.

[118] M. Torchiano, D. M. Fernández, G. H. Travassos, and R. M. de Mello, “Lessons Learnt in

Conducting Survey Research,”. in Proceedings of the 5th International Workshop on

Conducting Empirical Studies in Industry, 2017.

[119] J. Su, P. Shao, and J. Fang, “Effect of Incentives on Web-Based Surveys,” Tsinghua Science

and Technology, vol. 13, no. 3, pp. 344–347, 2008.

[120] E. Singer and C. Ye, “The Use and Effects of Incentives in Surveys,” The Annals of the

American Academy of Political and Social Science, vol. 645, no. 1, pp. 112–141, 2013.

[121] J. M. Fang and P. J. Shao, “The effect of material incentives on web survey completion:

Evidence from three meta-analyses,” in 2010 International Conference on Management

Science and Engineering, 2010, pp. 75–81.

[122] H. Hedberg, N. Iivari, M. Rajanen, and L. Harjumaa, “Assuring Quality and Usability in Open

Soruce Software Development,” in First International Workshop on Emerging Trends in

FLOSS Research and Development, 2007, pp. 1–5.

[123] D. I. K. Sjoberg, T. Dyba, M. Jorgensen, D. I. K. Sjøberg, T. Dybå, and M. Jørgensen, “The

Future of Empirical Methods in Software Engineering Research,” Future of Software

Engineering, vol. SE-13, no. 1325, pp. 358–378, 2007.

[124] B. Kitchenham and S. L. Pfleeger, “Principles of survey research part 4: questionnaire

evaluation,” in ACM SIGSOFT Software Engineering Notes, 2002, vol. 27, no. 3, p. 20.

[125] K. Petersen and C. Wohlin, “Context in industrial software engineering research,” in 3rd

 249

International Symposium on Empirical Software Engineering and Measurement, 2009, pp.

401–404.

[126] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research in

software engineering,” Empirical Software Engineering, vol. 14, no. 2, pp. 131–164, 2008.

[127] T. Kanij, R. Merkel, and J. Grundy, “An empirical study of the effects of personality on

software testing,” in 26th International Conference on Software Engineering Education and

Training, 2013, pp. 239–248.

[128] L. Marks, Y. Zou, and A. E. Hassan, “Studying the Fix-Time for Bugs in Large Open Source

Projects Categories and Subject Descriptors,” in Proceedings of the 7th International

Conference on Predictive Models in Software Engineering, 2011.

[129] E. Giger, M. Pinzger, and H. C. Gall, “Predicting the fix time of bugs,” in Proceedings of the

2nd International Workshop on Recommendation Systems for Software Engineering, 2010, pp.

52–56.

[130] L. D. Panjer, “Predicting Eclipse Bug Lifetimes,” in Fourth International Workshop on Mining

Software Repositories, 2007.

[131] P. Bhattacharya and I. Neamtiu, “Bug-fix Time Prediction Models!: Can We Do Better!?,” in

Proceedings of the 8th Working Conference on Mining Software Repositories, 2011, pp. 207–

210.

[132] P. Hooimeijer and W. Weimer, “Modeling Bug Report Quality,” in Proceedings of the 22nd

IEEE/ACM international conference on Automated software engineering, 2007, pp. 34–43.

[133] M. Kamalrudin, J. Grundy, and J. Hosking, “Supporting requirements modelling in the Malay

language using essential use cases,” in Proceedings of IEEE Symposium on Visual Languages

and Human-Centric Computing, 2012, pp. 153–156.

[134] J. Hall, “Usability Themes in Open Source Software,”. PhD Thesis. University of Minnesota,

2014.

