
Data Caching in Edge Computing

By

Xiaoyu Xia

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

Deakin University

August 2021

To my family. . .

ii

Contents

Acknowledgements v

Publication List vi

Abstract x

1 Introduction 1

1.1 Background . 1

1.2 Research Questions . 4

1.3 Significance . 6

1.4 Research Methodology . 8

1.5 Thesis Outline . 9

1.5.1 Chapter 2 Literature Review 9

1.5.2 Chapter 3 Edge Data Placement 10

1.5.3 Chapter 4 Edge Data Replacement 10

1.5.4 Chapter 5 Edge Data Distribution 11

1.5.5 Chapter 6 Conclusions and Future work 12

2 Literature Review 13

2.1 Data Caching in Conventional Networks and Cloud Computing . . . 13

2.2 Data Caching in Edge Computing . 15

2.2.1 Joint Optimization Studies with Data Caching in Edge Com-

puting . 17

2.2.2 Offline Data Caching Studies in Edge Computing 19

iii

2.2.3 Online Data Caching Studies in Edge Computing 21

2.2.4 Summary . 22

3 Edge Data Placement 24

3.1 Individual Data Placement Strategies in Edge Computing 25

3.2 Multi-data Placement Strategies in Constrained Edge Computing . . 38

3.3 Summary . 52

4 Edge Data Replacement 53

4.1 Lyapunov-Based Collaborative Data Replacement Strategies in Edge

Computing . 54

4.2 Effective, Efficient and Cost-effective Data Replacement Strategies in

Edge Computing . 69

4.3 Summary . 82

5 Edge Data Distribution 83

5.1 Cost-effective Data Distribution Strategies in Quasi-static Edge Com-

puting Scenarios . 84

5.2 Cost-effective Data Distribution Strategies in Online Edge Computing

Scenarios . 99

5.3 Summary . 112

6 Conclusions and Future Work 113

6.1 Conclusions . 113

6.2 Future Work . 114

Bibliography 117

iv

Acknowledgements

My deepest and sincere gratitude goes first and foremost to my respected supervisors,

Dr. Feifei Chen, A/Prof. Qiang He, Prof. John Grundy and A/Prof. Mohamed

Abdelrazek, for their constant encouragement, guidance, devotion and constructive

feedback. They guided me through difficulties when I struggled and encouraged me

when I feel depressed. I appreciate all the time they have spent on discussing my

research ideas, listening to my problems, editing my papers, and taking away all my

doubts and worries.

I would like to give special thanks to Feifei and Qiang for giving me the opportunity

to study at Deakin University. I still remember their warm replies when I contacted

them at the PhD application stage. I am also greatly indebted to John for his valuable

career advises and continuing supports.

I also owe a great deal of thanks to my research friends who helped me during

my research and daily life during my PhD study: Guangming Cui, Bo Li, Phu Lai,

Jingwen Zhou, Liang Yuan, Bowen Liu, Ruikun Luo and many others.

I wish to express my heartfelt gratitude to my wife, Baobao Pan, who has stood

by me through all my happy moments, my travails, my absences, my fits of pique

and impatience. Without her continuous support and help in both study and life, I

cannot make this.

Last but not least my thanks go to my beloved parents and parents-in-law for

their loving considerations and great confidence in me all through these years.

Melbourne, Australia

Xiaoyu Xia

August, 2021

v

Publication List

The papers completed in this PhD study are listed below, and the authorship state-

ments for the papers included in this thesis are attached after the publications.

First-author Papers

1. Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John Grundy, Mohamed

Abdelrazek, Athman Bouguettaya, Hai Jin, OL-MEDC: An Online Approach

for Cost-effective Data Caching in Mobile Edge Computing Systems, IEEE

Transactions on Mobile Computing (TMC, CORE A*), accepted in 2021.

DOI:10.1109/TMC.2021.3107918.

2. Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John Grundy, Mohamed

Abdelrazek, Xiaolong Xu, Hai Jin, Data, user and power allocations for caching

in multi-access edge computing, IEEE Transactions on Parallel and Distributed

Systems (TPDS, CORE A*), accepted in 2021. DOI:10.1109/TPDS.2021.310

4241.

3. Xiaoyu Xia, Feifei Chen, John Grundy, Mohamed Abdelrazek, Hai Jin, Qiang

He, Constrained App Data Caching over Edge Server Graphs in Edge Comput-

ing Environment, IEEE Transactions on Services Computing (TSC, CORE

A*), accepted in 2021. DOI:10.1109/TSC.2021.3062017.

4. Xiaoyu Xia, Feifei Chen, Qiang He, John Grundy, Mohamed Abdelrazek, Hai

Jin, Online Collaborative Data Caching in Edge Computing, IEEE Transactions

vi

on Parallel and Distributed Systems (TPDS, CORE A*), Vol. 32(2), pp. 281-

294, 2020.

5. Xiaoyu Xia, Feifei Chen, Qiang He, John Grundy, Mohamed Abdelrazek, Hai

Jin, Cost-Effective App Data Distribution in Edge Computing, IEEE Transac-

tions on Parallel and Distributed Systems (TPDS, CORE A*), Vol. 32(1),

pp. 31-44, 2020.

6. Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, Phu Lai, Mohamed

Abdelrazek, John Grundy, Hai Jin, Graph-based Data Caching Optimization

in Edge Computing, Future Generation Computer Systems (FGCS , CORE

A), Vol. 112, pp. 684-694, 2020.

7. Xiaoyu Xia, Feifei Chen, Guangming Cui, Mohamed Abdelrazek, John Grundy,

Hai Jin, Qiang He, Budgeted Data Caching based on k-Median in Mobile Edge

Computing, 27th IEEE International Conference on Web Services (ICWS2020,

CORE A), pp. 197-206, Beijing, China, 2020.

8. Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, Phu Lai, Mohamed

Abdelrazek, John Grundy, Hai Jin, Graph-based Optimal Data Caching in

Edge Computing, 17th International Conference on Service-Oriented Comput-

ing (ICSOC2019, CORE A), pp. 477-493, Toulouse, France, 2019.

9. Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John Grundy, Mohamed

Abdelrazek, Athman Bouguettaya, Hai Jin, Formulating Cost-Effective Data

Distribution Strategies Online for Edge Cache Systems, IEEE Transactions on

Parallel and Distributed Systems (TPDS, CORE A*), Major Revision.

10. Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John Grundy, Mohamed

Abdelrazek, Formulating Interference-aware Data Delivery Strategies in Edge

Storage Systems, IEEE International Conference on Computer Communica-

tions (INFOCOM2022, CORE A*), Under Review.

vii

11. Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, John Grundy, Mohamed

Abdelrazek, Cache Data Delivery on the Fly in Edge Caching Systems, IEEE

International Conference on Computer Communications (INFOCOM2022,

CORE A*), Under Review.

Co-author Papers

1. Guangming Cui, Qiang He, Bo Li, Xiaoyu Xia, Feifei Chen, Hai Jin, Yun Yang,

Efficient Verification of Edge Data Integrity in Edge Computing Environment,

IEEE Transactions on Services Computing (TSC, CORE A*), accepted in

2021. DOI:10.1109/TSC.2021.3090173.

2. Phu Lai, Qiang He, Xiaoyu Xia, Feifei Chen, Mohamed Abdelrazek, John

Grundy, John Hosking, Yun Yang, Dynamic User Allocation in Stochastic

Mobile Edge Computing Systems, IEEE Transactions on Services Computing

(TSC, CORE A*), accepted in 2021. DOI:10.1109/TSC.2021.3063148.

3. Ying Liu, Yuzhen Han, Ao Zhang, Xiaoyu Xia, Feifei Chen, Mingwei Zhang,

Qiang He, QoE-aware Data Caching Optimization with Budget in Edge Com-

puting, 28th IEEE International on Web Services (ICWS2021, CORE A),

Virtual, accepted in 2021.

4. Ying Liu, Qiang He, Dequan Zheng, Xiaoyu Xia, Feifei Chen, Bin Zhang, Data

Caching Optimization in the Edge Computing Environment, IEEE Transactions

on Services Computing (TSC, CORE A*), accepted in 2020. DOI:10.1109/TS

C.2020.3032724.

5. Bo Li, Qiang He, Guangming Cui, Xiaoyu Xia, Feifei Chen, Hai Jin, Yun Yang,

READ: Robustness-oriented Edge Application Deployment in Edge Computing

Environment, IEEE Transactions on Services Computing (TSC, CORE A*),

accepted in 2020. DOI:10.1109/TSC.2020.3015316.

viii

6. Guangming Cui, Qiang He, Xiaoyu Xia, Phu Lai, Feifei Chen, Tao Gu and

Yun Yang, Interference-aware SaaS User Allocation Game for Edge Computing,

IEEE Transactions on Cloud Computing (TCC), accepted in 2020, DOI:10.110

9/TCC.2020 .3008448.

7. Phu Lai, Qiang He, Guangming Cui, Xiaoyu Xia, Mohamed Abdelrazek, Feifei

Chen, John Hosking, John Grundy and Yun Yang, QoE-aware User Allocation

in Edge Computing Systems with Dynamic QoS, Future Generation Computer

Systems (FGCS, CORE A), Vol 112, pp. 684-694, 2020.

8. Zhiwei Xu, Guobing Zou, Xiaoyu Xia, Ya Liu, Yanglan Gan, Bofeng Zhang,

Qiang He, Distance-aware Edge User Allocation with QoE Optimization, 27th

IEEE International on Web Services (ICWS2020, CORE A), pp. 66-74,

Beijing, China, 2020.

9. Guangming Cui, Qiang He, Xiaoyu Xia, Feifei Chen, Hai Jin, Yun Yang,

Robustness-oriented k Edge Server Placement, 20th IEEE/ACM International

Symposium on Cluster, Cloud and Internet Computing (CCGrid2020, CORE

A), pp. 81-90, Melbourne, Australia, 2020.

10. Feifei Chen, Jingwen Zhou, Xiaoyu Xia, Hai Jin, Qiang He, 13th IEEE Con-

ference on Cloud Computing (CLOUD2020, CORE B), pp 184-192, Beijing,

China, 2020.

11. Ying Liu, Ao Zhang, Xiaoyu Xia, Feifei Chen, Bin Zhang, Qiang He, Proactive

Data Cache and Replacement in the Edge Computing Environment, 13th IEEE

Conference on Cloud Computing (CLOUD2020, CORE B), pp. 193-200,

Beijing, China, 2020.

12. Phu Lai, Qiang He, Guangming Cui, Xiaoyu Xia, Mohamed Abdelrazek, Feifei

Chen, John Hosking, John Grundy, Yun Yang, Edge User Allocation with Dy-

namic Quality of Service, 17th International Conference on Service-Oriented

Computing (ICSOC2019, CORE A), pp. 86-101, Toulouse, France, 2019.

ix

Abstract

The world is witnessing an exponential growth of mobile and Internet-of-Things de-

vices in recent years. The enormous network traffic often causes network congestion

and increases network latency. To tackle this challenge, edge computing, as an exten-

sion of cloud computing, has emerged as a promising paradigm for powering a variety

of applications demanding low latency, e.g., virtual or augmented reality, interactive

gaming, etc. In an edge computing environment, edge servers are deployed at base

stations geographically to offer highly accessible computing capacities and services

to nearby users. As the number of end-users accessing edge apps increases, it is ex-

pected that a large amount of app data will be transmitted via edge servers between

the remote cloud server and users’ end-devices. Caching app vendors’ data on edge

servers will significantly reduce their users’ data retrieval latency because the users

can retrieve data directly from edge servers within their close geographic proximity.

Data caching in edge computing differs from data caching in the cloud computing

environment as well as other conventional networks with its three unique constraints,

i.e., server capacity constraint, server coverage constraint and server adjacency con-

straint. Thus, the data caching strategies from cloud computing and conventional

networks cannot be directly applied in edge computing. App vendors in edge comput-

ing face three major challenges: 1) How to cache data with limited storage resources

on edge servers to provide low-latency services for their users? 2) How and when to

release or replace cached data by popular ones to ensure the service quality of users

and low cost in the long-term? 3) How to cost-effectively distribute required data to

specific caches on edge servers? In this thesis, we formulate those challenges as three

x

major data caching problems in edge computing, i.e. edge data placement, edge data

replacement and edge data distribution problems.

From an app vendor’s perspective, caching app data on edge servers can ensure low

latency in its users’ data retrieval. To minimize the data caching cost and maximize

the reduction in service latency, we study the individual data placement problem and

propose a heuristic algorithm. Considering constrained cache spaces on edge servers

due to their physical sizes, we further propose an approximation algorithm to place

multiple popular data properly for the app vendor to minimize overall user latency

with its reserved cache spaces on edge servers.

Unlike conventional caching systems where cache data never or seldom move, data

in an edge computing environment often needs to be moved across edge servers in

order to be delivered to users without violating their latency constraints. What com-

plicates the problem further is the temporal dynamics in the real-world edge caching

system. Users join and leave the system randomly, requesting different data over time.

Without complete information about future dynamics, we propose a Lyapunov-based

approach to place and replace data in edge servers’ caches, aiming to minimize the

total system cost while ensuring users’ average data retrieval latency. In addition,

we consider the system benefit produced by the reduction of latency and propose an

online frame to formulate cost-effective edge data replacement strategies for solving

this problem.

As an app vendor, app data needs to be transferred from the remote cloud server

to specific edge servers in an area to serve the app users in the area. However,

according to the pay-as-you-go business model, distributing a large amount of data

from the cloud to edge servers can be expensive. Thus, app the vendor must minimize

the cost incurred, while the data distribution must not take too long. To solve this

problem, we first propose a two-phase algorithm based on Steiner Tree to solve this

problem effectively and efficiently in quasi-static scenarios. Then we design an online

approach based on Lyapunov Theory to solve this problem in each time slot without

future information.

xi

In summary, this thesis studies the data caching problems in edge computing,

including edge data placement, edge data replacement and edge data distribution

problems, from the app vendor’s perspective. It makes a substantial contribution

to the edge computing community and provides a new perspective to solve a huge

number of problems in the edge computing environment.

Keywords: edge computing, data caching, data distribution, data placement,

data replacement, optimization.

xii

Chapter 1

Introduction

1.1 Background

The world is witnessing exponentially growing mobile traffic, which is predicted to

increase at an average annual rate of 46%, and will achieve 77 exabytes per month

by 2022 [19]. This produces an enormous load on networks, as considerable net-

work resources are required to manipulate and transmit this massive data. Possible

consequences include increased network latency and network congestion, which can

significantly impact end-users’ quality of experience. To address this issue, edge

computing has emerged as a new distributed computing paradigm that allows cloud

computing capacities to be distributed to edge servers [28]. These edge servers, each

powered by one or many physical machines, are deployed at base stations that are

geographically close to end-users. Vendors of Mobile and IoT application (referred to

as apps together hereafter) can hire computing and storage resources on edge servers

for hosting their apps to serve near-by app users with low latency and high through-

put [48]. App users can offload computation tasks from their resource-constrained

devices to nearby edge servers [9, 10, 50, 61]. It is a key technology that facilitates

1

the 5G mobile network [26].

As edge servers become most mobile devices’ entry points to the Internet, a large

proportion of the rapidly increasing mobile traffic data will be transmitted through

those edge servers. Those edge servers provide the infrastructure for caching popular

data requested by app users, which often accounts for a significant percentage of the

mobile traffic, for example, a viral short video. If the requested data is available on a

nearby edge server, an app user does not have to retrieve it from the app server in the

cloud. Caching popular data on edge servers can thus considerably reduce the latency

in app users’ data retrieval. From an app vendor’s perspective, it can also largely

reduce the volume of data transferred from the cloud, which may incur substantial

data transmission cost [42].

Data caching techniques have been widely employed in many domains, from hard-

ware cache, e.g., CPU [46], GPU [38], disks [44], to software cache, e.g., web [39],

database [17], etc. In the network domain, data caching has also been intensively

studied for its advantages in saving bandwidth consumption, reducing network la-

tency and so forth. In the last few years, many researchers have investigated net-

work cache from different perspectives, e.g., cache allocation and replacement strate-

gies [12], coded caching [27, 36], routing and caching [13], and information theoretic

caching [35, 51]. As a new distributed computing paradigm, edge computing offers

new opportunities and raises critical challenges for data caching. The fundamental

mechanism is to cache popular data on edge servers so that nearby app users can

retrieve it with low latency. This is particularly important and useful for latency-

sensitive applications, e.g., video streaming, gaming, navigation, augmented reality,

etc. It is predicted that mobile traffic can be reduced by 35% through caching data

2

on edge servers [18].

Edge computing is significantly different from cloud computing which facilitates

content-centric network and content delivery network. In the edge computing envi-

ronment, adjacent edge servers deployed at different base stations and access points

can communicate with their neighbor edge servers and share their storage resources

via high-speed links [22, 9]. App users’ workloads in a particular area can be trans-

ferred and balanced across the edge servers covering that area [9]. Thus, the edge

servers in a particular area constitute an edge server network, which can be modeled

as a graph where a node represents an edge server and an edge represents the link

between two edge servers. Data caching in an edge server network differs from data

caching in the cloud computing environment as well as other conventional network

environments with its three unique constraints, i.e.,server capacity constraint, server

coverage constraint and server adjacency constraint.

Server Capacity Constraint: Unlike cloud servers that have access to virtually

unlimited storage capacities in the cloud, storage capacities of edge servers are limited

due to the physical size limit [9, 15, 40, 52, 66]. The competition between app vendors

makes it impossible for an app vendor to cache all app data on every edge server.

Thus, the common practice is for app vendors to reserve certain cache spaces on edge

servers for caching popular app data.

Server Coverage Constraint: An edge server covers a specific geographical

area so that app users within its coverage can connect to this edge server [26]. In a

particular area, a number of edge servers are usually deployed in a distributed manner

so that they can cover different geographical areas. Normally, the coverage areas of

adjacent edge servers partially overlap to avoid blank areas not covered by any edge

3

servers. An app user in the overlapping area can connect to any one of the edge

servers covering the app user.

Server Adjacency Constraint: An app user can retrieve a piece of app data

from its nearby edge servers (referred to as local edge servers hereafter) that cover

the app user if the app data is cached on one of these edge servers. If the app data

is not cached on any of those local edge servers, the app user can retrieve it from

its neighbor edge servers within acceptable latency [9]. Either way, it is faster than

retrieving the app data from a server in the remote cloud [22].

Recently, research has started in earnest to investigate data caching problems in

the edge computing environment from the infrastructure provider’s perspective with

different offline optimization objectives, e.g., minimum response latency [56], mini-

mum delay cost [47], maximum data sharing efficiency [32]. However, these studies

have not systematically considered the requirements and concerns of app vendors like

Facebook or Uber who posses storage resources on edge servers to cache their data.

To the best of our knowledge, this thesis takes the first attempt to investigate data

caching problems in edge computing from an app vendor’s perspective.

1.2 Research Questions

Due to those unique constraints mentioned in Section 1.1, the data caching strategies

from conventional networks and cloud computing cannot be directly applied in edge

computing. To solve the data caching problems in edge computing, app vendors

who are important stakeholders in the edge computing environment face three major

challenges represented as three research questions:

4

• RQ1: How should we place data into caches with limited storage

resources on edge servers to provide low-latency services for their

users? For an app vendor, caching app data on edge servers can ensure low

latency in its users’ data retrieval. A straightforward solution for this problem is

to cache all requested data on all the edge servers in a particular area for nearby

app users to access. This way, the latency in all app users’ data retrieval can be

minimized. However, based on the pay-as-you-go pricing model, the app vendor

will need to hire substantial resources on edge servers for caching the data. This

incurs excessive caching cost and is impractical for most, if not all, app vendors.

This question can be formulated as an edge data placement problem, aiming

to select suitable edge servers to cache app vendor’s data in different scenarios.

Thus, we should investigate the effective and efficient data place strategies with

available caches to answer this question.

• RQ2: How and when should we release or replace cached data by

popular ones to ensure the service quality of users and low cost in

the long-term? In real-world scenarios, the status of a dynamic edge com-

puting system changes over time. For example, users may leave the system and

new popular data may be requested by new users. Except remaining optimal,

those dynamics must be taken into account. However, those information is not

available prior to their occurrences. Thus, the answer of RQ1 cannot solve this

question. In this thesis, we formulate this research question as an edge data re-

placement problem. To solve this problem, we should design the approaches to

update cached data over time in an online manner without the need for knowing

future data dynamics in the real-world edge computing system.

5

• RQ3: How can we cost-effectively distribute required data to spe-

cific caches on edge servers? Once the edge data placement or replacement

strategies are decided, how to distribute the requested data is another impor-

tant problem for app vendors. Unlike data transmission in cloud computing and

wireless sensor networks, app data distribution in the edge computing environ-

ment consists of two major components: 1) data transmission from the cloud to

edge servers; 2) and data transmission between edge servers. Both components

must be considered in a systematic manner to formulate cost-effective data dis-

tribution strategies for app vendors. Similar to RQ2, the dynamics should

also be considered in formulating data distribution strategies. To answer this

question, we should propose the cost-effective data distribution strategies with

consideration of the unique constraints and dynamics of edge computing.

1.3 Significance

First proposed by Cisco in 2012 [5], edge computing facilitates a new distributed com-

puting paradigm. In terms of the network topology and infrastructure deployment,

edge computing extends cloud computing by distributing computing resources and

services from the central cloud servers or hosts to the geographically distributed edge

servers in the network. The users of a variety of apps can benefit from the advantages

provided by edge computing, including video streaming, real-time navigation, gaming

as well as many IoT applications [60]. Edge computing is also a key technology of

the 5G mobile network [59].

Being a new technology, researchers and practitioners are working on standard-

ization to ensure the technology is robust, open, and secure, which is critical to large

6

scale deployments of edge systems. One of the first cities, Barcelona in Spain, has

implemented edge computing with more than 3,000 edge servers deployed across the

city serving thousands of IoT devices [60]. With edge servers deployed within an area,

many issues of computation offloading and data caching have been raised in the edge

computing environment.

Edge computing inherits the pay-as-you-go pricing model from cloud computing,

which allows app vendors to hire storage resources on edge servers from edge infras-

tructure providers to cache app data for their own users. Thus, both the benefit

produced and the cost incurred by data caching for app vendors is critical to the

success of edge computing because, after all, app vendors are the main customers

in the edge computing environment. Unfortunately, all the existing work on data

caching in the edge computing environment tackles the data caching problem from

either the users’ or the edge infrastructure providers’ perspectives, none from the app

vendors’ perspective as to how to cost-effectively cache data in the edge computing

environment.

Our research aims at providing data placement, data replacement and data distri-

bution strategies in edge computing for app vendors that can save them a significant

amount of costs while guaranteeing high quality of services with low latency. The

major contributions of this thesis are as follows:

1. The first attempt to investigate the edge data placement problem

from an app vendor’s perspective and to propose effective and efficient

approaches to solve those problems.

2. The first attempt to solve the edge data replacement problem by

7

designing online approaches for app vendors in dynamic edge computing envi-

ronments.

3. The first attempt to help app vendors save their data transmission

costs by solving the edge data distribution problem in both quasi-static and

dynamic edge computing scenarios.

1.4 Research Methodology

Our research is systematically conducted from the ground up. Several key steps have

been and will be adopted in our research:

• Literature review: The purpose of a literature review is to discover what

is known and what is unknown. We have been conducting a comprehensive

literature review in the areas of data caching in conventional networks, cloud

computing and edge computing. Firstly, we try to identify (1) what research

problems in cloud computing also exist in edge computing but have not been

addressed, or poorly addressed; (2) new research problems in edge computing;

and (3) existing approaches of solving relevant problems. To the best of our

knowledge, our work is the first to tackle the data caching problem in edge

computing scenarios from app vendor’s perspective with multiple edge servers,

end-users and different constraints.

• Solution design: As most tasks in our research problems are optimization

problem, we use a variety of optimization techniques to solve ours research prob-

lems, including Integer Programming, Lyapunov Optimization, Game Theory

8

and Prime Dual approach. Furthermore, after a thorough review of the liter-

ature in relevant areas, we gained big picture of the latest state-of-the-art ap-

proaches that are being adopted. Then we analyzed the pros and cons of those

approaches, selected the most suitable approaches, and improved on them if

necessary.

• Experimental and Simulation methods: We conducted a series of experi-

ments with real-world dataset to simulate the network and verify the effective-

ness and efficiency of our approaches. Our experiments are extensive and cover

many different scenarios that might exist in a real-world setup, namely differ-

ent numbers of edge servers, different numbers of users, varying edge densities,

differentiated budgets and storage reservations.

1.5 Thesis Outline

This section presents the structural organization of this thesis. According to three

research problems addressed in this thesis, i.e., edge data placement, edge data re-

placement and edge data distribution, the chapters are organized as follows.

1.5.1 Chapter 2 Literature Review

This chapter provides an overview of prior studies on data caching problems in the

fields of conventional networks, cloud computing and edge computing. Due to the

unique constraints of edge computing, including server capacity, coverage and ad-

jacency constraints, data caching strategies from conventional networks and cloud

9

computing are not suitable to solve data caching problems in edge computing. More-

over, existing studies on data caching problems in edge computing are from the user’s

or edge infrastructure provider’s perspective. According to the literature review, this

thesis makes first attempt to tackle the data caching problems in edge computing for

app vendors.

1.5.2 Chapter 3 Edge Data Placement

This chapter makes the first attempt to investigate the edge data placement prob-

lems from an app vendor’s perspective. This chapter answers RQ1. Chapter 3.1

investigates the individual data placement problem in edge computing and has been

published on Future Generation Computer Systems. In Chapter 3.1, we first for-

mulate this problem as a constrained optimization problem with the aim to serving

all users with the minimum caching cost. We solve this problem by Integer Program-

ming and a greedy algorithm. Considering that app vendors usually have multiple

data to be place and cache spaces on edge servers are usually limited, we further

formulate the edge multi-data placement problem in Chapter 3.2, aiming to make

the maximum latency reduction by placing data onto reserved cache spaces. To solve

this NP-hard problem, we design an approximation algorithm based on the weighted

k-set packing problem. Chapter 3.2 has been published on IEEE Transactions on

Services Computing.

1.5.3 Chapter 4 Edge Data Replacement

Over time, new users may arrive and existing users may depart in the edge com-

puting environment. Data popularity may also dynamically change. However, the

10

approaches proposed in Chapter 3 cannot handle such events. To fill this gap and

answer RQ2, Chapter 4 studies the edge data replacement problem, considering

the dynamics in edge computing. In Chapter 4.1, we formulate this edge data re-

placement as a dynamic system in long-term, aiming to minimize the system cost of

app vendors, while ensuring the low latency of users. To achieve this, we propose an

online algorithm based on Lyapunov optimization. This work has been published on

IEEE Transactions on Parallel and Distributed Systems. However, except the cost,

the benefit produced by placing and replacing data is also important to the success of

app vendors. Thus, Chapter 4.2 further studies this edge data replacement problem

with consideration of cost-effectiveness. We propose an online frame based on two

heuristic algorithms to solve this cost-effective edge data replacement problem, with

higher effectiveness and efficiency compared with the approach proposed in Chapter

4.1. This work has been published on IEEE Transactions on Mobile Computing.

1.5.4 Chapter 5 Edge Data Distribution

Once app vendors make decisions for placing or replacing data on the distributed edge

servers, each data should be transmitted to the destination edge servers, i.e. the edge

servers to cache this data, from either the remote cloud server or a source edge server

that has already cached this data. According to the pay-as-you-go pricing model,

app vendors must pay for the transmission cost incurred in this process. Chapter

5 studies the edge data distribution problem in both quasi-static and dynamic edge

computing scenarios to answer RQ3. In Chapter 5.1, we study this edge data

distribution problem from the app vendor’s perspective, with the aim to minimize

the data transmission cost while ensuring the low latency incurred during the data

11

distribution process. To solve this problem, we design a two-step approximation

algorithm based on the Steiner tree problem. The work presented in Chapter 5.1 has

been published on IEEE Transactions on Parallel and Distributed Systems. Similar

to the issue in Chapter 3, the dynamics is not considered in Chapter 5.1. Thus, we

study the online edge data distribution problem in Chapter 5.2 by using Lyapunov

optimization to deal with the dynamics in the EC environment. This work currently

is under major revision for IEEE Transactions on Parallel and Distributed Systems.

1.5.5 Chapter 6 Conclusions and Future work

In this chapter, we first summarize the contributions of this thesis, including the

problems studied and the approaches proposed in Chapters 3 - 5. After that, we

discuss the potential research problems based on this thesis, as the future work.

12

Chapter 2

Literature Review

Data caching have been extensively investigated in the fields of conventional networks

and cloud computing. With the popularity of edge computing, data caching in the

edge computing environment is obtaining a lot of attentions from researchers in the

last few years.

2.1 Data Caching in Conventional Networks and

Cloud Computing

Many Data caching issues in the conventional network environment has been ex-

tensively investigated in the last few decades, e.g., web caching [39], content-centric

networking [55], publish-subscribe systems [45], content delivery network [4], etc. To

name a few representative pieces of work, Banerjee et al. [3] developed a content

placement strategy for information-centric network based on data popularity, namely

Greedy Caching. With popular contents cached in the network, the Greedy Caching

approach determined whether the contents should be cached in the core server based

on the cache miss rate at the edge of the network. In [49], the authors formulated

13

two caching strategies for data publish-subscribe systems, including eviction-based

caching and time-to-live-based caching to address the space and time issues respec-

tively. The authors of [30] focused on balancing the trade-off between latency and

cost in the content-centric network. They addressed this issue with a holistic model

for provisioning the storage capability based on the network performance and the

provisioning cost. Shafiq et. al[43] studied the characteristics of caching workload in

content delivery network. They designed the measurement and analysis methods for

evaluating data caching replacement algorithms based on the network workload logs.

In the cloud computing environment, a critical data caching problem is how to

utilize cache space efficiently on cloud hosts and mobile devices. Arteaga et al. [1]

proposed an on-demand cache management method, namely CloudCache, to fulfill

the caching requirement of the workload and minimize cache wear-out. They also

presented a dynamic cache migration solution to cache capacity balance across cloud

hosts by live cached data migration. In [33], the authors presented how to use segment

access-aware dynamic semantic cache for relational databases in the cloud environ-

ment. A cache access algorithm was introduced that considers cache exact hit, cache

extended hit, cache partial hit and cache miss. In [21], the authors leveraged the

ability of collaborative edge servers for minimizing app vendors’ data caching cost.

They proposed an online algorithm to determine how data should be retrieved, placed

and replaced to fulfill users’ data requests. The authors of [2] explored the cache de-

sign space for embedded processors with evolutionary techniques for mobile and thin

client processors in the cloud computing environment. A heuristic and evolutionary

method was presented to generate a near-optimal cache space design for enhancing

service quality. In [24], the authors formulated a benefit maximization problem and

14

created a cache replacement approach based on spatio-temporal traffic requirements.

They also introduced a content clustering method for collecting popular data and

clustering similar contents. Halalai et al. [23] proposed Agar, a caching system, by

implementing erasure-code into data caching techniques. Considering the data popu-

larity and network latency, Agar could find the optimal solution to cache data chunk

by dynamic programming.

However, the data caching strategies from conventional networks and cloud com-

puting cannot be directly applied in edge computing, due to the unique constraints

including server capacity constraint, server coverage constraint and server adjacency

constraint.

2.2 Data Caching in Edge Computing

From the perspectives of network topology and infrastructure deployment, edge com-

puting is an extension of cloud computing with distributed computing capacities and

services at the edge of the network. App users in various domains can benefit from

the advantages of edge computing, e.g., interactive gaming, real-time navigation,

augmented reality [60]. Offering many unique advantages, edge computing also raises

various new research challenges from the service provider’s perspective, e.g., edge user

allocation [25, 28], edge computation offloading [11], etc.

Recently, some researchers have begun to tackle the challenges of data caching in

the edge computing environment. As mentioned in Section 1, there are three unique

constraints in the edge computing environment, which are not considered by both

cloud computing and conventional networks. In this case, conventional approaches

15

Table 2.1: Summary of Data Caching Studies in Edge Computing

P
ro
p
os
al
s

[5
8]

[6
]
[2
9
]
[6
5
]
[4
0
]
[5
3
]
[3
4
]
[6
4
]
[8
]
[5
7
]
[1
6
]
[6
2
]
[6
7
]
[1
4
]
[4
7
]
[3
7
]
T
h
is

th
es
is

In
d
ep

en
d
en
t
R
es
ea
rc
h

X
X

X
X

X
X

X
X

X
X

S
ce
n
ar
io
s

Q
u
as
i-
st
at
ic

X
X

X
X

X
X

X
X

X
X

X

D
y
n
am

ic
X

X
X

X
X

X
X

O
b
je
ct
iv
es

L
at
en
cy

X
X

X
X

X
X

X
X

X
X

X

C
os
t

X
X

X
X

X
X

W
or
k
lo
ad

X
X

X
X

X

E
n
er
gy

C
on

su
m
p
ti
on

X

T
ec
h
n
iq
u
es

In
te
ge
r
P
ro
gr
am

m
in
g

X
X

X

P
ri
m
al
-D

u
al

X

H
eu
ri
st
ic

X
X

X
X

X
X

X
X

X
X

X
X

G
am

e
T
h
eo
ry

X
X

X

L
ya
p
u
n
ov

T
h
eo
ry

X
X

X
X

16

for data caching are not suitable in edge computing and cannot be applied directly.

Thus, new ideas and techniques are being proposed and investigated. The reviewed

literature are summarized in the table above, including the scenarios, objectives and

techniques in existing related studies as well as this thesis.

2.2.1 Joint Optimization Studies with Data Caching in Edge

Computing

In [58], the authors studied the joint data caching and task offloading problem in

the dense mobile edge computing environment. Considering the dynamics of edge

computing, the authors formulated this problem as a dynamic system, with the aim

to to minimize the total network latency and applies a long-term energy consumption

constraint to stabilize the edge caching system. To solve this problem, they treated

the energy of each device as a queue and proposed an online algorithm, named OREO,

based on Lyapunov optimization technique.

Breitbach et al. [6] considered the joint optimization problem of data caching

and task scheduling for IoT applications in the edge computing environment. In this

paper, the authors proposed a data management system for edge computing envi-

ronments by decoupling data placement for task scheduling, with the consideration

of multiple context dimensions. The proposed system could adjust the data replica

placement cost to achieve the balance between data management overhead and exe-

cution delay.

Li et al. [29] also studied a joint optimization problem of data caching and task

scheduling in edge computing. The authors aimed to minimize the response time

and computational overheads, while improving users’ quality of experience (QoE).

17

To formulate this problem, the authors investigated the task priority, the relevance

between edge servers and tasks and the cost incurred during the transmission process.

They proposed a greedy algorithm, embedded an existing Kuhn–Munkres algorithm,

to solve this problem efficiently.

The authors of [65] integrated in-network caching and edge caching to guarantee

the quality of time-sensitive multimedia transmissions over the 5G wireless network.

They provided three hierarchical edge caching mechanisms, including a random hi-

erarchical caching approach, a proactive hierarchical caching approach and a game-

theory-based hierarchical caching approach.

Poularakis et al. [40] studied the joint optimization of data placement and request

routing in the edge computing environment, aiming to minimize the load of the cloud.

The authors first formulated this joint problem as a constrained optimization problem

and studied several cases of this problem. After that, they proposed a randomized

rounding algorithm to find a close-to-optimal solution to this problem and proved the

approximation ratio of the proposed algorithm.

In [53], the authors integrated the cloud radio access network with the edge com-

puting technology to schedule resources including caches and computational resources

dynamically. To achieve a balance between computation resource usage and network

resource usage, they formulated this problem as a stochastic problem. With consider-

ation of variable task request lengths, the authors proposed the VariedLen algorithm,

based on Lyapunov optimization, to maximize the mobile network provider’s profit

in the edge computing environment.

The authors of [34] investigated the joint data caching and workload scheduling

problem in the mobile edge computing environment. They aimed to minimize the

18

transmission delay and the data traffic to cloud based on the collaborations among

edge servers when making edge data placement decisions. They first formulated this

problem as a mixed integer nonlinear problem. Then they proposed a two-phases

heuristic approach, named ICE, based on Gibbs sampling to solve this problem within

a reasonable time.

However, the above studies investigate edge data caching only to complement

computing offloading and task offloading, and fail to give data caching sufficient

attention as a unique technology with advantages in reducing data retrieval latency

and improving the quality of services and users’ experiences.

2.2.2 Offline Data Caching Studies in Edge Computing

In the recent years, some researches have started to investigate the edge data place-

ment problem itself, rather than a complement of computing offloading and task of-

floading. The authors of [64] proposed a hierarchical caching mechanism in the edge

computing environment with consideration of wireless communication. They aimed

to maximize the hitting rate by placing data in different layers including routers, base

stations and mobile devices, while ensuring the data transmission latency in a low

level. To solve this problem, the authors introduced a simple but effective heuristic

approach with theoretical guarantee.

In [8], the authors studied a content-aware data placement problem in mobile

edge computing, from the mobile network operator’s perspective. They introduced

an optimal auction mechanism, considering the based on cache allocation and content

priority from user valuation reports. To find the optimal solution to this problem, the

19

authors proposed computationally-efficient approaches to apply the auction mecha-

nism based on data retrieval and delivery costs for calculating the optimal decisions

of data placement.

Xie et al. [57] investigated the data placement problem in the edge computing

environment, with consideration of data retrieval process. They aimed to reduce both

data retrieval latency and implementation overhead while balancing the loads of edge

servers. To achieve those aims, GRED, an efficient edge data placement algorithm, is

proposed to balance the data retrieval workloads across the edge computing system

and shorten the path for delivering data to users.

In [16], Drolia et al. provided Cachier, a caching system to minimize the latency of

data retrieval by data placement for latency-sensitive image recognition applications

in the edge computing environment. Cachier considered the locality, cache size, cache

replacement policy and request estimation. In addition, a coordinating mechanism

was applied in Cachier for balancing the work loads between edge servers and the

remote cloud server.

Zhang et al. [62] proposed a cooperative edge caching architecture for enhancing

edge data placement with the computation resources on edge servers. In this mobility-

aware architecture, the authors implemented vehicles to delivery caching contents into

the caches on edge servers. In addition, those vehicles were used as edge servers to

provide external caches. The authors used a game theoretic approach to achieve a

Nash equilibrium for finding a feasible solution.

However, the above studies only investigate the edge data caching problem in an

offline manner without considering the user mobility and temporal data dynamics in

real-world edge cache systems - users’ demands on data vary at different locations

20

over time.

2.2.3 Online Data Caching Studies in Edge Computing

Instead of solving the edge data placement problem optimally in an offline manner,

some researchers are investigating online approaches for solving the dynamic edge

data placement problems, i.e. edge data replacement problem.

In [67], the authors studied the budgeted data replacement problem in the edge

computing environment. Considering the limited resources on edge servers, the au-

thors aimed to minimize the long-term overall latency of all users under a budget

consisting of the cache cost, computation cost and traffic cost. The authors proposed

an online algorithm based on Lyapunov optimization to solve this problem in each

time slot.

Deng et al. [14] also investigated the data replacement problem in the edge com-

puting environment but tried to minimize the overall cost rather than latency. They

involved the request life cycle and billing model in this problem. They provided an

online primal-dual algorithm named IDA4ReE to solve this problem under a resource

constraint and performance requirement.

Tran et al. [47] targeted edge video update strategies specifically in the edge

computing environment. Based on video request scheduling, they aimed to achieve

the minimum access delay cost with consideration of capacity constraints of edge

servers. They first formulated this problem as an Integer Programming problem, and

then proposed an heuristics-based approach for video data placement to optimize

users’ quality of experience by placing and replacing different bitrate versions of a

video on edge servers.

21

In [37], the authors studied the edge data replacement problem from the user’s

perspective. They aimed to provide a personalized data placement management based

on user preference to minimize the overall cost including the data migration cost

and perceived latency cost. To solve this problem, the authors first formulated this

problem as a contextual Multi-armed Bandit problem, and then proposed an online

approach based on Thompson-sampling to detect the dynamics in the edge computing

environment.

Edge computing inherits the pay-as-you-go pricing model from cloud computing,

which allows app vendors to hire storage resources on edge servers from edge infras-

tructure providers to cache app data for their own users. Thus, both the benefit

produced and the cost incurred by data caching for app vendors is critical to the

success of edge computing because, after all, app vendors are the main customers in

the edge computing environment. Unfortunately, all the above existing work on data

caching in the edge computing environment tackles the data caching problem from

either the user’s or the edge infrastructure provider’s perspective, none from the app

vendors’ perspective as to how to cost-effectively cache app data the edge computing

environment. To the best of our knowledge, we make the first attempt in this thesis

to tackle the data caching problems in edge computing scenarios for app vendors.

2.2.4 Summary

This chapter surveys data caching problems in various scenarios, including conven-

tional networks, cloud computing and edge computing. Data caching strategies from

conventional networks and cloud computing are not applicable to solve data caching

problems in edge computing, due to the unique constraints of edge computing, i.e.

22

server capacity constraint, server coverage constraint and server adjacency constraint.

Edge computing inherits the pay-as-you-go pricing model from cloud computing.

Thus, app vendors are critical to the success of edge computing because they are

the main users of the edge servers. However, existing data caching strategies in

edge computing are investigated from either the edge infrastructure provider or the

user’s perspective. To fill this knowledge gap, this thesis defines three major research

problems, including edge data placement, edge data replacement and edge data dis-

tribution problems, and tackles those problems in edge computing scenarios from the

app vendor’s perspective.

23

Chapter 3

Edge Data Placement

Edge computing has emerged as a new computing paradigm that allows computation

and storage resources in the cloud to be distributed to edge servers. Those edge servers

are deployed at base stations to provide nearby users with high-quality services. Thus,

data placement is extremely important in ensuring low latency for service delivery

in the edge computing environment. This chapter is comprised of two published

papers, aiming to solve the individual data and multi-data placement problems for

app vendors in the edge computing environment.

24

3.1 Individual Data Placement Strategies in Edge

Computing

Given a piece of the app vendor’s popular data, a straightforward strategy is to place

this data on each edge server. This way, the latency in all app users’ data retrieval can

be minimized. However, edge computing, as an extension of cloud computing, also

employs the pay-as-you-go pricing model. App vendors need to hire storage resources

on edge servers for placing this data. This solution produces a huge caching cost,

and thus is impractical for most, if not all, app vendors. To minimize the cost and

maximize the latency reduction, we formulate this individual data placement problem

as a constrained optimization problem in this chapter, and prove that this problem

is NP-complete. We first propose an optimal solution named IPEDC to solve this

problem based on Integer Programming, and then provide a greedy algorithm named

AEDC to find near-optimal solutions. We conduct intensive experiments on a real-

world data set and a synthesized data set to evaluate our approaches. Our results

demonstrate that IPEDC and AEDC significantly outperform the four representative

baseline approaches.

This chapter is based on a published paper, entitled: Graph-based Data Caching

Optimization in Edge Computing, Future Generation Computer Systems, Vol. 112,

pp. 684-694, 2020.

25

Future Generation Computer Systems 113 (2020) 228–239

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Graph-based data caching optimization for edge computing
Xiaoyu Xia a, Feifei Chen a, Qiang He b,∗, Guangming Cui b, Phu Lai b,
Mohamed Abdelrazek a, John Grundy c, Hai Jin d

a Deakin University, Geelong, Australia
b Swinburne University of Technology, Hawthorn, Australia
c Monash University, Clayton, Australia
d Huazhong University of Science and Technology, Wuhan, China

a r t i c l e i n f o

Article history:
Received 12 December 2019
Received in revised form 29 May 2020
Accepted 6 July 2020
Available online 13 July 2020

Keywords:
Optimization
Edge computing
Edge data caching

a b s t r a c t

Edge computing has emerged as a new computing paradigm that allows computation and storage
resources in the cloud to be distributed to edge servers. Those edge servers are deployed at base
stations to provide nearby users with high-quality services. Thus, data caching is extremely important
in ensuring low latency for service delivery in the edge computing environment. To minimize the
data caching cost and maximize the reduction in service latency, we formulate this Edge Data Caching
(EDC) problem as a constrained optimization problem in this paper. We prove the NP-completeness
of this EDC problem and provide an optimal solution named IPEDC to solve this problem based on
Integer Programming. Then, we propose an approximation algorithm named AEDC to find approximate
solutions with a limited bound. We conduct intensive experiments on a real-world data set and
a synthesized data set to evaluate our approaches. Our results demonstrate that IPEDC and AEDC
significantly outperform the four representative baseline approaches.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The world has witnessed an exponential growth of mobile
devices including mobile phones, wearable devices, tablets, smart
vehicle, and Internet-of-Things (IoT) devices [1]. These devices
introduce massive traffic that leads to network congestion and
significantly impacts the quality of service, especially service
latency. To address this issue, cloud data caching was introduced
to allow users to access high-demand data, and utilize cloud
computing’s configurable and powerful capacities [2].

However, with the growing demand for high-quality data and
lower latency, the cloud model falls short of those requirements,
due to the usually unpredictable network latency and expensive
bandwidth [3]. As an evident weakness of the cloud computing
paradigm, it is extremely hard to reduce delay at the wide-area
network scale. Edge computing is proposed as a new computing
paradigm to tackle this challenge, where edge servers are attached
to base stations or access points close to users to offer them
computation and storage resources at the edge of the network [4].
This way, mobile and IoT app vendors (together referred to as app

∗ Corresponding author.
E-mail addresses: xiaoyu.xia@deakin.edu.au (X. Xia),

feifei.chen@deakin.edu.au (F. Chen), qhe@swin.edu.au (Q. He),
gcui@swin.edu.au (G. Cui), tlai@swin.edu.au (P. Lai),
mohamed.abdelrazek@deakin.edu.au (M. Abdelrazek), john.grundy@monash.edu
(J. Grundy), hjin@hust.edu.cn (H. Jin).

vendors hereafter) can rent computation and storage resources in
the edge computing environment to host their services and cache
their data on edge servers. This way, their app users can access
those services or data with low latency [5]. Edge computing is
also a key technology in the 5G mobile network [6].

As edge servers become the entry (first access) point for most
mobile and IoT devices, the rapidly increasing internet traffic
data will be transmitted through those edge servers. Caching
data, especially popular data, on edge servers will significantly
reduce the transmission latency in users’ data retrieval. This is
particularly critical for latency-sensitive applications, e.g., smart
city deployment, real-time traffic navigation systems, augmented
reality applications, etc. As popular data account for a large por-
tion of internet traffic, caching popular data on edge servers can
also reduce the pressure on the backbone network. It is predicted
that mobile traffic will be reduced by 35% through caching data
on edge servers. From an app vendor’s perspective, caching data
on edge servers can decrease the volume of data transferred in
and out of the cloud to save the transfer costs considerably.

Given a piece of popular data, the straightforward solution is
to cache it on every edge server in a specific geographic area. This
way, the latency in all app users’ data retrieval can be minimized.
However, edge computing, as an extension of cloud computing,
also employs the pay-as-you-go pricing model. App vendors need
to hire storage resources on edge servers for caching this data.
This solution produces a huge caching cost, and thus is impractical

https://doi.org/10.1016/j.future.2020.07.016
0167-739X/© 2020 Elsevier B.V. All rights reserved.

26

X. Xia, F. Chen, Q. He et al. / Future Generation Computer Systems 113 (2020) 228–239

for most, if not all, app vendors. Thus, app vendors must find a
data caching strategy to guarantee that all their app users can
access the data from nearby edge servers with low latency while
minimizing the cost of hired cache spaces on those edge servers.
In this paper, this data caching problem in edge computing is
referred to as the edge data caching (EDC) problem. Our previous
work [7] is the first attempt to investigate this EDC problem from
app vendors’ perspective. This paper significantly extends [7]
by providing a more thorough theoretical analysis and a new
approximation algorithm to solve the EDC problem efficiently
within trusted performance bounds.

In this paper, our major contributions are as follows:

• We formulate the EDC problem from the app vendors’ per-
spective, then prove its NP-completeness.
• We develop an optimal approach named IPEDC for find-

ing optimal solutions to EDC problems with the Integer
Programming technique.
• We develop an approximation approach named AEDC for

finding near-optimal solutions to EDC problems in large-
scale scenarios efficiently, and analyze its theoretical ap-
proximation ratio.
• We conduct extensive experiments on both a real-world

data set and a synthesized data set to evaluate the proposed
approaches against four representative approaches.

The rest of the paper is organized as follows. Section 2 presents
an example to illustrate and motivate the EDC problem. Section 3
formulates the EDC problem and proves its NP-completeness.
Section 4 presents and analyzes our optimal approach and ap-
proximation approach for finding solutions to EDC problems.
Section 5 experimentally evaluates the proposed approaches. Sec-
tion 6 reviews the related work. Section 7 concludes this paper
and points out our key future work.

2. Motivating example

Video data is a typical type of data to be cached on edge
servers. According to Cisco’s report, mobile video data currently
accounts for more than half of the world’s mobile data traffic
and it will further increase by 78% by 2021 [8]. Currently, most
app vendors such as YouTube store their videos on cloud servers.
When a video becomes viral over the Internet – which can result
in hundreds of thousands if not millions of requests – very large
numbers of users will send their requests to the cloud server
for this video simultaneously. This creates tremendous traffic
load on the network and increases data retrieval latency. Caching
these videos on selected edge servers can effectively solve these
problems.

However, in edge computing, three unique constraints differ-
entiate the EDC problem from the data caching problems in the
cloud computing environment and conventional networks:

• Server adjacency constraint: In the edge computing environ-
ment, edge servers can communicate their neighbor edge
servers via high-speed links [9]. Thus, connected edge
servers can share their computation and storage resources.
This way, the edge server network can be treated as a graph
where edge servers are represented by nodes and the links
between edge servers are represented by edges.
• Server coverage constraint: To avoid any blank coverage areas

in a specific geographic area, the coverage areas of nearby
edge servers often intersect. Thus, app users in an over-
lapping area can access any of the edge servers covering
them.
• Server capacity constraint: Different from the virtually un-

limited computation and storage resources available in the
cloud, edge servers only have limited computation and stor-
age resources due to their limited sizes [10,11].

Fig. 1. An example EDC scenario.

Caching the data blocks of a data/file on multiple servers or
machines is common in a large-scale cloud data center. This
improves data reliability. However, in the edge computing en-
vironment, edge servers are attached to base stations that are
geographically distributed. Each edge server covers the set of
users within the coverage areas. Although the users within mul-
tiple edge servers’ overlapping coverage area may be able to
access multiple edge servers, it is usually not the case for most
users. In addition, retrieving multiple data blocks from multiple
edge servers and composing these data blocks into a data/file is
too time-consuming in the edge computing environment where
low latency is a top priority. In this paper, we have made the
assumption that edge data are always cached in whole for the
above reasons.

An EDC example is shown in Fig. 1. There are six edge servers
in this area, with each edge server having a specific coverage
area. The number next to an edge server indicates the number
of users covered by that edge server. When a YouTube video
becomes viral, it is predicted that a large number of YouTube
users in this area will request this video. As a large amount of
research effort has been made to predict video popularity [12],
we assume that the number of YouTube users who will request
this popular video can be predicted in this work. From YouTube’s
perspective, a straightforward solution to the EDC problem in this
area is to cache this video on every edge server. This way, all
YouTube users can access this video from edge servers. However,
YouTube will need to pay for the hired resources on edge servers,
such as bandwidth and storage, to cache this video. As even short
videos are large, this solution is not cost-effective. Therefore, the
data caching strategy must achieve the minimum data caching
cost while ensuring that all the app users in this area can retrieve
the video from one of the edge servers. This edge data caching
(EDC) problem is inherently a Constrained Optimization Problem
(COP).

The data retrieval latency and data caching cost can be eval-
uated using a variety of metrics. A user’s data retrieval latency
consists of two components: the latency between the user and
its nearby edge server, and the latency between edge servers.
The first component is not affected by the data caching strategy,
and it is also quite small. Thus, this component is not included
in the formulation of the EDC strategy. To model the COP in a
more generic manner, including constraints and the optimization
objective, we use the number of cached data replicas to measure
the data caching cost, and the number of hops to measure the
data retrieval latency. For example, the data caching cost is 6
if the video is cached on all the edge servers in Fig. 1. The
server adjacency constraint requires that all the users must be
able to retrieve the data from an edge server within one hop. For

27

X. Xia, F. Chen, Q. He et al. / Future Generation Computer Systems 113 (2020) 228–239

Table 1
Summary of notations.
Notation Description

bu Maximum benefit for user u
bu,j Benefit of caching replica on server vj for app user u
CU Set of users covered by the selected edge server set S
cui Set of users covered by edge server vi
di,j Distance from server vi to server vj
dT Threshold of distance
du Minimum distance from app user u to retrieve replica
E = {e1, e2, . . . , em} Finite set of links between edge servers
G Graph presenting a particular area
R = {r1, r2, . . . , rn} Set of binary variables indicating cache replicas on edge servers
S Set of selected servers to cache data replica
U = {u1, u2, . . . , uk} Finite set of users
V = {v1, v2, . . . , vn} Finite set of edge servers

example, this constraint holds for the u in the top left corner if
the video is cached on v1, v2 or v4 and it does not hold if the
video is only cached on v3, v5 and/or v6. The rationale behind
this constraint is that edge servers can communicate with their
neighbor edge servers [9], but they are not designed or linked to
route (potentially large) data across multiple hops. Based on the
generic metrics for data caching cost and data retrieval latency,
specific pricing policies and latency models can be integrated into
our COP model. For example, app vendors can easily implement
their own cost models and data sizes into our model.

There might exist multiple data caching solutions satisfying
the latency constraint with the minimum cost. As edge servers
often have different coverage radius and different user densities
within their coverage areas, they usually cover different num-
bers of app users. Thus, the data caching solution should also
reduce the maximal latency across all app users in this area. From
YouTube’s perspective, another optimization objective is thus to
maximize the benefit produced by the cached data replicas, which
is measured by the total reduction in the data retrieval latency for
all the app users.

In this paper, we study quasi-static scenarios where users will
not move across edge servers’ coverage areas during the period of
time when the EDC problem is being solved [6,9,13,14]. In highly
mobile scenarios where users move across edge servers’ cover-
age areas quickly, the app vendor can update its EDC strategy
periodically or on-demand with a highly efficient EDC approach,
e.g., AEDC as proposed in Section 4.2 and analyzed in Section 5.5.
The model and approaches proposed in this paper are generic
and applicable to various edge computing scenarios. Thus, data
are cached on edge servers as a whole and we currently do
not consider the situation where data can be partially cached,
e.g., video segments. Also, the scale of the EDC problem in real-
world scenarios can be much larger than the example presented
in Fig. 1. Finding an optimal solution to a large-scale EDC problem
is far from trivial.

3. Problem formulation

3.1. Problem statement

The edge servers in a particular area constitute an edge server
network, which can be modeled as a graph where a node rep-
resents an edge server and an edge represents the link between
two edge servers. Denote G(V , E) as the graph, where V is the set
of nodes in G and E is the set of edges in G. In the remainder of
this paper, we will speak inter-changeably of an edge server and its
corresponding node in graph G, denoted as v. The notations adopted
in the paper are summarized in Table 1.

As mentioned in Section 2, this EDC problem is formulated in a
generic manner: (1) using the number of data replicas to measure

the data caching cost; and (2) using the number of hops between
edge servers to measure the latency.

Based on the server capacity constraint in Section 2, edge
servers only have limited resources. However, those limited re-
sources are needed by many app vendors at the same time to host
their services and cache their data for their app users. Thus, it is
unlikely for one app vendor to hire most of those resources on
an edge server and cache a huge amount of its data. A more cost-
effective and realistic method is to cache the most popular data
only for most app vendors. Therefore, this work considers the
individual data caching scenarios, and builds the foundation for
more sophisticated edge caching scenarios, e.g., caching multiple
data.

Given a piece of data and a set of edge servers vi (i =
{1, . . . , n}). Let ri ∈ {0, 1} be the decision indicating whether the
data is cached on vi, such that ri = 1 if edge server vi is selected to
cache data. Denote the vector R = ⟨r1, . . . , rn⟩ as the data caching
solution.

The distance between two nodes in the graph can be calcu-
lated by their shortest path. As we use the number of hops to
measure the data retrieval latency, the latency of an app user u
can be calculated as follow:

du = min{di,j, rj = 1, vj ∈ V },∀u ∈ Ui (1)

where Ui is the set of users covered by edge server vi.
The main objective of edge data caching is to provide high-

quality services for app users with low latency. Thus, the data
caching strategy R must satisfy the server latency constraint — the
required data must be accessible from an edge server in this edge
server network for every app user within a certain number of
hops:

du < dT ,∀u ∈ Ui (2)

where dT is the threshold of latency, measured by the number of
hops as well.

Based on the server adjacency constraint discussed in Section 2,
communications only occur between connected edge servers.
Thus, dT should be 2 here. However, this threshold can be relaxed
if new techniques occur to allow data transmissions through
multiple edge servers rapidly and the app vendor can accept the
relatively high latency.

3.2. Data Caching benefit

To evaluate and compare the effectiveness of different data
caching strategies, the concept of data caching benefit is in-
troduced here, which can be calculated based on the latency
reduction of user data retrieval. We use the number of hops
reduced by cached data on an edge server to measure the data
caching benefit. Thus, there is a negative correlation between data
retrieval latency and data caching benefit. The following equation

28

X. Xia, F. Chen, Q. He et al. / Future Generation Computer Systems 113 (2020) 228–239

shows how to calculate the benefit bu,j produced for app user
u ∈ Ui if edge server vj is selected to cache data:

bu,j =
{
dT − di,j if di,j < dT
0 if di,j ≥ dT

(3)

As discussed in Section 2, to avoid the blank area that is not
covered by any edge servers, the coverage of nearby edge servers
often partially overlap. An app user in the overlapping area can
access multiple edge servers, and retrieve data from any of those
edge servers that the data in their cache. Thus, the data caching
benefit produced by the data caching strategy for an app user u
is:

bu = max{rj ∗ bu,j, vj ∈ V } (4)

The data caching cost is the primary optimization objective
from the app vendor’s perspective. Thus, the data caching solution
R must minimize this cost:

minimize cost(R) (5)

With the minimum data caching cost, the optimal data caching
strategy R should also maximize the data caching benefit:

maximize benefit(R) (6)

In this way, we formulate this EDC problem as a constrained
optimization problem.

3.3. Problem hardness

Here we prove the NP-completeness of the EDC problem by
Theorem 1.

Theorem 1. The EDC problem is NP-complete.

Proof. To prove the NP-completeness of the EDC problem, the
minimum dominating set problem (MDS), one of the classic NP-
complete problems, is introduced first. Denote G = (V , E) as an
undirected graph where V is the set of n nodes and E is the set
of m edges. Let Conn,n be the matrix to describe the connection
between nodes such that Coni,j is 1 if there is an edge between
node vi and vj. Denote S as the solution of this MDS problem. The
MDS problem can be formulated as below:

min
n∑

i=1

vi (7a)

s.t. : vi ∈ {0, 1},∀i = {1, .., n} (7b)
n∑

i=1

Coni,j ≥ 1,∀j ∈ {1, . . . , n} (7c)

Now we present the reduction process from the EDC problem
to the MDS problem. The reduction consists of two parts: (1)
making each app user only covered by one edge server; and
(2) making only one app user in each edge server’s coverage.
Based on the reduction, the value of the benefit objective (6)
is always same if selecting the same number of edge servers.
In this case, the benefit objective is safely ignored. The instance
EDC(R, E, Benn,k) can be constructed with the above reduction by
an given instance MDS(S, E, Conn,n) in polynomial time, where
n = k and |R| = |S|. In this EDC(R, E, Benn,k), the benefit
matrix Benn,k is calculated by (3). This way, any feasible solution
S fulfilling objective (7a) and constraint (7b) also fulfills objective
(5). The constraint (7c) of the MDS problem shows that if a node
vi is not selected, there is at least one neighbor of vi selected in
the solution s. Similarly, the benefit of app user u ∈ Ui can be
obtained as bu ≥ 1. This way, any feasible solution S fulfilling
the constraint (7c) also fulfills the constraints (1) (2) (3) and
(4). Therefore, the EDC problem is reducible from MDS and it is
NP-complete. □

4. Edge data caching strategy

We first propose the optimal model solved by Lexicographic
Goal Programming1 technique, then provide an efficient approx-
imation algorithm with the analysis of its approximation ratio.

4.1. Optimal model

The EDC problem can be modeled as a constrained optimiza-
tion problem (COP). One of the two optimization objectives can be
prioritized over the other with the Lexicographic Goal Program-
ming technique, depending on the app vendor’s preference.

Given G = (V , E), where V = {v1, .., vn, } and E = {e1, . . . , em},
there is a set of variables R = {r1, .., rn}, where ri ∈ {0, 1},∀i ∈
{1, . . . , n}, ri being 1 if the data replica is cached on the ith node,
or 0 otherwise. The constraints for the COP model are:

bu = max{ri ∗ bu,i},∀u ∈ {1, . . . , k},∀i ∈ {1, . . . , n} (8)

1 ≤ bu ≤ 2,∀u ∈ {1, . . . , k} (9)

Constraint family (8) is calculated by (4), which guarantees
that all the app users can retrieve data from the nearest edge
server. Constraint family (9) enforces the latency constraint to
ensure that every app user can retrieve the data from an edge
server within one hop, which means the data is retrieved from
the app user’s local edge server via zero hops or neighbor edge
server via one hop.

To satisfy constraint families (8) and (9), there might be multi-
ple solutions. For example, two possible data caching solutions in
Fig. 2(a) and Fig. 2(b) are R1 = {0, 1, 1, 1, 0, 0}, which caches the
data on v2, v3, and v4, and R2 = {1, 0, 0, 0, 0, 1}, which caches the
data on v1 and v6. Both R1 and R2 are feasible with consideration
of (8) and (9). However, the data caching cost of R2 is less than
that of R1, where cost(R1) = 3 and cost(R2) = 2. To minimize
the data caching cost, the below objective in the COP model is
included to capture the app vendor’s first optimization objective:

min
n∑

i=1

ri (10)

The app vendor’s second optimization objective also needs to
be modeled in the COP. Let us assume two solutions as demon-
strated in Fig. 2(b) and Fig. 2(c), R2 = {1, 0, 0, 0, 0, 1}, which
caches the data on v1 and v6, and R3 = {0, 1, 0, 1, 0, 0}, which
caches the data on v2 and v4, both fulfilling the latency constraint
and achieving the app vendor’s first optimization objective to
minimize the data caching cost. However, compared with v1 and
v6, v2 and v4 cover more app users, i.e., 39 versus 13 in total.
Thus, R3 allows more app users to retrieve the data from their
local edge servers. Thus, from the app vendor’s perspective, R3
produces more caching benefits (i.e., lower retrieval latency) than
R2 at the same data caching cost. The below objective function
that maximizes the data caching benefits of all app users based
on (4) is included in the COP model to capture the app vendor’s
second optimization objective:

max
k∑

u=1

bu (11)

The COP above can be solved with Integer Programming prob-
lem solvers, such as Gurobi2 and IBM CPLEX Optimizer.3 Here we
name this optimal solution as IPEDC.

1 https://www.ibm.com/support/knowledgecenter/en/SSSA5P_12.9.0/ilog.
odms.cplex.help/CPLEX/UsrMan/topics/multiobj/multiobj_intro.html.
2 http://www.gurobi.com/.
3 https://www.ibm.com/analytics/cplex-optimizer.

29

X. Xia, F. Chen, Q. He et al. / Future Generation Computer Systems 113 (2020) 228–239

Fig. 2. Example data caching strategies.

4.2. Approximation algorithm

As mentioned in Section 3.3, the EDC problem isNP-complete.
It is intractable to find optimal solutions to large-scale EDC
problems. In [7], we proposed a simple greedy algorithm, namely
LGEDC. However, there is a significant performance gap between
IPEDC and LGEDC. Thus, we develop a new approximation algo-
rithm named AEDC to achieve higher performance with lower
computation overhead than LGEDC.

Given V = {v1, . . . , vn} and U = {u1, . . . , um}, AEDC imple-
ments an iterative process for app vendors to hire edge servers to
cache data replicas. The pseudo code is presented in Algorithm 1.

The algorithm starts with the initialization in Lines 1–4. To
calculate the benefits of the solution provided by this algorithm,
DCU is introduced to present the set of app users already covered
by the solution, while CU means the set of app users that can
access data via one hop. As edge servers can communicate with
their neighbor edge servers, for each server vi ∈ V , cui can be
presented as the set of app users in the coverage of edge server
vi and their neighbor edge servers (Line 5).

In Algorithm 1, ∆cui and ∆dcui are used to select edge servers
to cache data replicas, where ∆cui is the number of users in cui
but not in CU and ∆dcui presents the number of users in dcui
but not in DCU . For each iteration, ∆cui and ∆dcui are updated
for each edge server vi ∈ V . Then edge server v, which has the
maximum value of ∆cu, would be included into the solution set S
to maximize the number of newly covered users. If there are more
than one edge servers with that maximum value, AEDC selects the
one with the maximum value of ∆dcu to earn more benefits. This
process iterates until all the app users are covered by the set of
selected edge servers.

Fig. 3 presents the system state at different moments during
the AEDC process for the EDC example in Fig. 1. Fig. 3(a) illustrates
the initial state. Then, edge server v5 is selected to cache a data
replica because v5 can serve the most new app users (54 users)
via one hop where ∆CU = {42, 41, 38, 50, 54, 46} in Fig. 3(b). Af-
ter the first iteration, there are 6 users not covered by the solution
set S = {v5}, and the algorithm continues the iterative process
to choose another edge server. In the second iteration, both ∆cu1
and ∆cu2 are the maximal value while ∆CU = {6, 6, 5, 5, 0, 0}. In
this case, edge server v1 is selected in Fig. 3(c), because ∆dcu1 =

5 > ∆dcu2 = 4. Thus, the solution of AEDC is S = {v5, v1},
as all users have been covered by selected edge servers. Con-
sidering the optimal solution R3 = {0, 1, 0, 1, 0, 0} described in
Section 4.1, CostIPEDC = CostAEDC = 2 while BenefitsIPEDC = 99 >
BenefitsAEDC = 90.

As the IPEDC approach is implemented based on the Inte-
ger Programming technique, IPEDC selects the optimal solution
among all the possible solutions that have a total of C1

n+C
2
n+· · ·+

Cn
n = 2n possible results. Moreover, we prove that the COP of EDC

is NP-complete in Section 3.3, thus IPEDC cannot find the optimal
solution within polynomial time. In the AEDC algorithm, it can
be calculated that the worst case of computational complexity
is O(n2). This means that AEDC can reduce a large amount of

Algorithm 1: AEDC Algorithm.
1: Initialization:
2: CU,DCU, S ← ∅, benefits, cost = 0
3: for each server vi do
4: dcui ← Ui, cui ← Ui
5: end for
6: End of initialization
7: for each vi ∈ V do
8: for each neighbor vj of vi do
9: cui ← cui ∪ dcuj

10: end for
11: end for
12: repeat
13: for each vi ∈ V do
14: ∆cui = |cui ∩ ¬CU |
15: ∆dcui = |dcui ∩ ¬DCU |
16: end for
17: v← v0
18: for each vi ∈ V do
19: if ∆cuvi > ∆cuv or

∆cuvi = ∆cuv and ∆dcuvi > ∆dcuv then
20: v← vi
21: end if
22: end for
23: S ← S ∪ {v}
24: CU ← CU ∪ cui
25: DCU ← DCU ∪ dcui
26: until CU = U
27: return S

execution time to find the solution of EDC problem, compared
with IPEDC.

Now, we prove the approximation ratio of AEDC, where it is
the ratio of the cost incurred by AEDC and that incurred by IPEDC
in the worst case.

Theorem 2. The approximation ratio of AEDC is ln∆+1, where ∆
denotes the maximum number of app users that can be covered by
any edge server v ∈ V within 1 hop.

Proof. As mentioned in Section 2, the number of data replicas
is used to measure the data caching cost. For each edge server
selected to cache a data replica, the cost is 1. Here we implement
an amortized strategy to analyze the approximation ratio. This
way, we distribute the cost 1 to newly covered users equally
instead of the selected edge server. Take Fig. 3(b) as an example,
the cost of each user incurred by selecting v5 is 1

54 .
Based on constraint (9), all the app users should be covered

by the data caching strategy. Let Sopt denote the optimal solution
found by IPEDC. In this case, we can divide the graph G into |Sopt |
stars. Each star contains 1 edge server as the center of the star
and the newly covered users as its leaves.

30

X. Xia, F. Chen, Q. He et al. / Future Generation Computer Systems 113 (2020) 228–239

Fig. 3. Example system state at different moments during AEDC process.

Denote newU(v) as the number of newly covered app users
by adding edge server v into the solution. For each edge server
v ∈ Sopt , the corresponding star has newU(v) leaves. Based
on the heuristic logic of AEDC, the distributed cost is at most

1
newU(v) . Otherwise, AEDC would choose another edge server. After
assigning the distributed cost to newly covered app users, those
app users would not produce any more costs. In the worst case,
no two app users in the same star are covered together. Thus, the
total distributed cost of a star is at most:

1
newU(v)

+
1

newU(v)− 1
+ · · · +

1
2
+

1
1

Based on the harmonic series, we can obtain that the total
distributed cost of a star is at most ln(newU(v)) + 1. Thus, the
total cost produced by AEDC is at most |Sopt | · (ln(newU(v))+ 1).
Moreover, for each v ∈ V , newU(v) is always less than or equal
to ∆. Thus, the approximation ratio of AEDC is:

ratio ≤
|Sopt | · (ln∆+ 1)

|Sopt |
= ln∆+ 1 □ (12)

5. Experimental evaluation

We experimentally evaluate IPEDC and AEDC on a widely-used
real-world data set and a synthetic data set, and compare their
performance against four representative approaches.

5.1. Comparison approaches

In these experiments, we evaluate and compare the perfor-
mance of IPEDC and AEDC against four comparison approaches,
namely LGEDC[7], DIP,liu2019data, Random and Greedy-Covered-
Users:

• LGEDC: This algorithm keeps selecting the edge server with
the most links until it satisfies the latency constraint (2).
• DIP [15]: This approach tries to minimize the app vendor’s

revenue, combining caching cost and latency reduction, by
caching data on edge servers without leveraging the collab-
oration between edge servers. Its parameter settings in the
experiments are the same as [15], i.e., [5, 25] for the unit
cost of cache and [0.5, 2] for the unit cost of latency (same
as unit benefit). Accordingly, the range of the ratio between
them is [2.5, 50]. In the EDC problem, all users must be
covered. To pursue this goal, the ratio is fixed at 2.5 for DIP
in the experiments to cover as many users as possible.
• Random: This algorithm keeps selecting the edge server

randomly until it satisfies the latency constraint (2).
• Greedy-Covered-Users(GU): This algorithm keeps selecting

the edge server with the most app users until it satisfies the
latency constraint (2).

5.2. Experimental settings

Data Sets: There are two sets of experiments. The first set is
conducted the public real-world Edge User Allocation (EUA) data
set4[4] with 128 edge servers and 816 app users in the Melbourne
CBD area. The second set is conducted on a synthetic data set
that simulates more general EDC scenarios. In the experiments
on the synthesized data set, a specific number of edge servers
are randomly distributed within a particular area with app users
also generated randomly. In both sets of experiments, edges are
randomly generated to connect the edge servers according to the
edge density to ensure that the graph is connected.

Parameter Settings: To comprehensively analyze IPEDC and
AEDC, we vary two parameters in the experiments to simulate
different EDC scenarios, as presented in Table 2. This way, we
can also analyze how the changes in the parameters impact the
performance of our approaches. Each experiment is repeated 100
times every time we change a parameter, and the results are
averaged:

• The total number of edge servers (n = |V |). In experiment
Set #1 and Set #2.1, this number varies from 10 to 50 in
steps of 10.
• Edge density (d = |E|/|V |). In experiment Set #2.2, this

number varies from 1 to 3 in steps of 0.4.

Performance Metrics: In the experiments, we use four metrics
to evaluate the effectiveness and efficiency of all the approaches:

1. Data Caching Cost cost , the lower the better;
2. Data Caching Benefit benefit , the higher the better;
3. Benefit per Data Replica bpr , the higher the better; and
4. Computation Overhead time, the lower the better.

To stabilize the impact of the number of app users, we always
generate 100 app users in experiment Set #2.

5.3. Experimental results

Figs. 4–6 show the results of the experiments Set #1, #2.1 and
#2.2, respectively.

5.3.1. Effectiveness
Fig. 4 shows the results of experiment Set #1. Overall, of all

the six approaches, IPEDC achieves the highest benefit per data
replica at the lowest data caching cost, while AEDC is the
second lowest in cost with the second highest in benefit per
data replica. Fig. 4(b) shows that AEDC and IPEDC achieve lower
data caching benefits than those four comparison approaches.
With the priority to minimize the data caching cost, if an app
user can retrieve data from edge servers via one hop, there is no
need to do so via zero hops. Thus, IPEDC will aim for a solution

4 https://github.com/swinedge/eua-dataset.

31

X. Xia, F. Chen, Q. He et al. / Future Generation Computer Systems 113 (2020) 228–239

Table 2
Parameter settings.

Number of edge servers Edge density Data set

Set #1 10, 20, 30, 40, 50 1 Real-world
Set #2.1 10, 20, 30, 40, 50 1 Synthetic
Set #2.2 30 1, 1.4, 1.8, 2.2, 2.6, 3 Synthetic

Fig. 4. Experiment set #1.

that barely fulfills (9), i.e., a solution just good enough to allow
as many app users as possible to retrieve data from edge servers
via one hop.

Fig. 4(a) shows that the average data caching costs achieved
by IPEDC and AEDC are much lower than the other four ap-
proaches across all five cases, i.e., 8.61 (IPEDC) and 9.14 (AEDC)
versus 16.44 (LGEDC), 19.64 (DIP), 22.04 (GU) and 22.24 (Ran-
dom). The average advantage of IPEDC is 5.80% against AEDC,
47.63% against LGEDC, 56.16% against DIP, 60.93% against GU, and
61.29% against Random. Fig. 4(a) also shows that, as the number
of edge servers increases from 10 to 50, the data caching cost
achieved by AEDC increases from 3.62 replicas to 13.26 replicas
on average, similar to IPEDC (3.58 to 12.4) but much slower than
LGEDC (5.26 to 27.3), DIP (9.48 to 26.0), GU (6.34 to 38.38) and
Random (6.46 to 37.18). Fig. 4(b) shows that the increase in the
number of edge servers will increase the data caching benefits
achieved by all six approaches, from 498.68 to 1252.82 for IPEDC,
470.90 to 1179.74 for AEDC, 523.98 to 1374.32 for LGEDC, 666.24
to 1506.76 for DIP, 602.82 to 1475.24 for GU and 564.48 to

1451.04 for Random. Fig. 4(c) shows the significant advantages
of IPEDC and AEDC over the other approaches in achieving cost-
effective data caching strategies. IPEDC has the best performance,
which averagely outperforms AEDC by 9.70%, LGEDC by 57.39%,
DIP by 87.88% GU by 84.38% and Random by 96.57%.

Fig. 5 depicts the results of experiment Set # 2.1. Overall,
IPEDC again achieves the highest data caching benefit per
replica at the lowest data caching cost, following by AEDC. The
advantages of IPEDC and AEDC over the other four approaches
are significant. In this set of experiments, the edge servers are
set up in a similar way as in Set #1. Therefore, the results shown
in Fig. 5(a) are similar to those shown in Fig. 4. However, Fig. 5(b)
shows that the data caching benefit does not increase with
the increase in the number of edge servers. The reason is that,
unlike experiment Set #1, the number of app users in experiment
Set #2.1 does not increase. Thus, the data caching benefit does
not increase accumulatively as in Fig. 4(b). This is also the same
reason for the rapid decrease in the benefit per data replica
demonstrated in Fig. 5(c).

32

X. Xia, F. Chen, Q. He et al. / Future Generation Computer Systems 113 (2020) 228–239

Fig. 5. Experiment set #2.1.

Fig. 6 shows the results in experiment Set 2.2 where the
edge density varies. In terms of the average data caching cost
and benefit per data replica, IPEDC and AEDC outperform the
other four approacheswith large margins, and IPEDC still has the
best performance. The advantage of IPEDC is 9.62% against AEDC,
58.07% against LGEDC, 66.65% against DIP, 64.68% against GU and
64.59% against Random on average in data caching cost, while
13.38% against AEDC, 94.67% against LGEDC, 120.43% against DIP,
116.73% against GU and 125.71% against Random on average in
benefit per data replica.

Interestingly, Fig. 6 shows that the edge density impacts the
approaches in a very different way from the number of edge
servers. Fig. 6(a) shows that as the edge density increases from
1.0 to 3.0, the data caching costs achieved by IPEDC and AEDC
decrease from 8.47 to 4.18 and from 8.99 to 4.77 respectively.
After investigating the results, we find that the increase in the
edge density allows each edge server to link to more edge servers.
This increases the app users’ chances of retrieving data from edge
servers via one hop. IPEDC does not need to cache as many data
replicas to ensure that all app users are served by edge servers
within one hop. As a result, the average data caching cost de-
creases. For the same reason, the data caching benefit decreases,
as demonstrated in Fig. 6(b). The increase in the connectivity
between edge servers also allows more app users to be able to
retrieve data via one hop. As a result, the benefit per data replica
increases, as demonstrated in Fig. 6(c), from 18.18 to 31.01 for

IPEDC, from 16.35 to 26.97 for AEDC, from 10.41 to 16.15 for
LGEDC, from 11.20 to 11.15 for DIP, from 8.89 to 13.67 for GU and
from 8.60 to 13.25 for Random. Since DIP focuses on maximizing
the benefits with consideration of caching cost, the total benefits
achieved by DIP are only changed slightly when the maximum
benefits are fixed in Set #2.

Overall, our IPEDC and AEDC outperform LGEDC, DIP, GU
and Random significantly and consistently in formulating cost-
effective data caching strategies. Overall, AEDC can achieve about
90% of IPEDC’s performance in minimizing data caching cost
and benefits per replica across all the experiments. Both IPEDC
and AEDC are particularly effective in EDC scenarios where edge
servers are highly connected.

5.3.2. Efficiency
Figs. 4(d), 5(d) and 6(d) present the average computation

overheads of the six approaches in finding a solution to the EDC
problem. We can see in Figs. 4(d) and 5(d) that the computation
overhead of IPEDC increases rapidly when the number of edge
servers increases. When there are 50 edge servers to consider,
IPEDC takes more than 15 s to find the optimal solution, as shown
in Fig. 4(d). Excessive computation overheads are inevitable when
IPEDC is looking for the optimal solution to this NP-complete EDC
problem. Thus, IPEDC is suitable for solving EDC problems in
small sizes. To solve large-scale EDC problems, heuristics-based
approaches are more practical, e.g., AEDC, LGEDC or GU. The

33

X. Xia, F. Chen, Q. He et al. / Future Generation Computer Systems 113 (2020) 228–239

Fig. 6. Experiment set #2.2.

results in Fig. 6(d) indicate that both IPEDC and AEDC are capable
for handling dense graphs built based on edge servers that are
highly connected. In conclusion, IPEDC can be used to solve EDC
problems in small sizes while AEDC handles the large-scale ones.

5.4. Threats to validity

Threat to construct validity. The main threat to construct
validity is the four comparison approaches. Due to the nov-
elty of this edge data caching problem, we choose the greedy
approach proposed in [7], the optimal benefit-based approach
proposed in [15] and two basic baseline approaches to compare
with our approaches in the experiments. To minimize the threat
of comprehensive evaluation, two parameters are varied in the
experiments to simulate different EDC scenarios. This way, we
could not only evaluate IPEDC and AEDC with four comparison
algorithms but also present the impacts of varying parameters on
those algorithms.

Threat to external validity. The main threat here is whether
IPEDC and AEDC are also suitable in other edge computing sce-
narios. To address this, we formulate the approaches and measure
the performance in a more generic way: evaluating the effective-
ness by using the number of data replicas and the number of hops
for cost and benefit. Moreover, the two data sets used to con-
duct the experiments, including a real-world one and a synthetic
one. Thus, the representativeness and comprehensiveness of the
evaluation are ensured, and this threat is reduced.

Threat to conclusion validity. The lack of statistical tests,
e.g., chi-square tests, is the major threat to conclusion validity
in our paper. To compensate this threat, we have conducted
comprehensive and intensive experiments to cover various sce-
narios in different size and complexity. Every time a parameter
changes, we repeat the experiment for 100 times and calculate
the averaged results. This led to a large number of test cases,
which tend to result in a small p-value in the chi-square tests
and lower the practical significance of the test results [16]. For
example, in experiment Set #2, there were a total of 1100 runs.
This number is not even close to the number of observation
samples that concern Lin et al. in [16]. Thus, the threat to the
conclusion validity due to the lack of statistical tests might be
high but not significant.

5.5. Real-world applications

User mobility is an important characteristic of the real-world
edge computing environment. However, the structure of an edge
server graph does not change when the users move in the area. It
is determined by how the edge servers in the area are physically
linked. Moreover, for its high efficiency, AEDC can solve the EDC
problem quickly in different time slots, similar to the approaches
proposed in [9,14]. In each time slot, edge servers need to update
the information including users within its coverage area and their
requests. Specifically, when a user no longer needs a piece of

34

X. Xia, F. Chen, Q. He et al. / Future Generation Computer Systems 113 (2020) 228–239

data or has moved out of the current edge server’s coverage area,
this user can be removed from the current edge server’s user
set Ui. In the meantime, new users can be added into Ui. This
way, the context can be rapidly updated at the start of each time
slot. Then, the AEDC algorithm can be executed in each time
slot to formulate the corresponding data caching strategies. Given
its high efficiency as demonstrated in Figs. 4(d), 5(d) and 6(d),
AEDC can be executed periodically or on-demand to adapt to user
mobility in real-world EDC scenarios.

6. Related work

Data caching have been extensively investigated in the fields
of conventional distributed computing and cloud computing en-
vironments. With the popularity of edge computing, data caching
in the edge computing environment is obtaining attention from
researchers recently.

6.1. Conventional distributed data Caching

In the last few decades, there are many data caching prob-
lems investigated in conventional distributed computing envi-
ronments, including web caching [17], content-centric network-
ing [18], content delivery network [19], etc. Banerjee et al. [20]
developed a content placement strategy for information-centric
network based on data popularity, namely Greedy Caching. With
popular contents cached in the network, the Greedy Caching ap-
proach considered the cache miss rate at the edge to decide what
contents would be cached on the core server. In [21], the authors
formulated two caching strategies for data publish–subscribe sys-
tems, including eviction-based caching and time-to-live-based
caching to address the space and time issues, respectively. The au-
thors of [22] focused on balancing the trade-off between latency
and cost in the content-centric network. They addressed this issue
with a holistic model for provisioning the storage capability based
on the network performance and the provisioning cost.

6.2. Cloud data Caching

In the cloud computing environment, a critical problem of data
caching is how to utilize cache space efficiently on cloud hosts
and mobile devices.

Arteaga et al. [23] proposed CloudCache, a method for man-
aging cache, to fulfill the caching requirement of the workload
and minimize cache wear-out. In [24], the authors presented
how to use segment access-aware dynamic semantic cache in the
cloud computing environment for relational databases. A cache
access algorithm was introduced to consider cache exact hit,
cache extended hit, cache partial hit and cache miss. The authors
of [25] explored the cache design space for embedded proces-
sors with evolutionary techniques for mobile and thin client
processors in the cloud computing environment. A heuristic and
evolutionary method was presented to generate a near-optimal
cache space design for enhancing service quality. In [26], the
authors formulated a benefit maximization problem and created
a cache replacement approach based on spatio-temporal traffic
requirements. They also introduced a content clustering method
for collecting popular data and clustering similar contents.

6.3. Edge data Caching

As an extension of cloud computing, edge computing dis-
tributes both computing capacities and storage resources from
cloud server to edge servers [27]. With the deployment of edge
servers, the problems of computation offloading and data caching

occurs. The computation offloading problems have been exten-
sively investigated from different perspectives, including edge
servers’ energy efficiency [28] and offloading cost [29].

Recently, there are some researchers starting to investigate the
data caching problems in edge computing. As mentioned in Sec-
tion 2, the data caching strategies from conventional distributed
computing and cloud computing cannot be directly applied in
edge computing. Thus, those researches introduced new ideas and
approaches. Cao et al. proposed an optimal auction mechanism
with the consideration of the costs produced during delivery and
retrieval. The authors of [30] provided a caching system, namely
Agar, from the erasure-coded perspective. Agar was a dynamic
programming algorithm which could cache data chunks optimally
with consideration of data popularity and network latency.

Instead of improving internal cache utility on edge servers,
some researchers started to investigate how to combine the
advantages of both internal caches and external caches. Zhang
et al. [31] integrated in-network caching and edge caching to
ensure the latency requirements of time-sensitive transmissions
over the 5G network. The authors of [32] introduced a new
edge caching architecture with improved resource utility by using
smart vehicles as external edge caches.

The above studies mostly focus on cost savings. Data latency
is also an important issue in edge data caching problems. Drolia
et al. [33] proposed an edge caching system, namely Cachier, to
minimize the data retrieval latency. They implemented a coordi-
nating mechanism to balance the loads between the cloud server
and edge servers dynamically. Liu et al. [15] studied the data
caching problem in the edge computing environment with the
aim to maximize the app vendor’s revenue based on caching cost
and latency. This approach was implemented in our experiments
as DIP for comparison. However, those work ignored the collab-
oration between edge servers, as well as the benefit produced by
the reduction in user’ service latency.

Edge computing inherits the pay-as-you-go price model from
cloud computing. Thus, the cost incurred for app vendors is crit-
ical to the success of edge computing because they are the main
customers in the edge computing environment. However, all
the above work tackles the data caching problem from network
providers’ or app users’ perspectives, our work solves the Edge
Data Caching (EDC) problem from the app vendor’ perspective
in the edge computing environment. We also realistically and
innovatively solve the EDC problem in a generic manner to mini-
mize the data caching cost and maximize the data caching benefit
with the server coverage constraint and the server adjacency
constraint.

7. Conclusion

In this paper, we formulated the new Edge Data Caching
(EDC) problem as a constrained optimization problem based on
the graph from the app vendor’s perspective. The optimal so-
lution of the EDC problem is to find a solution that minimizes
the data caching cost and maximizes the data caching benefit.
We proved that the EDC problem is NP-complete. Then we
proposed an optimal solution IPEDC solved by Integer Program-
ming, and an approximation algorithm AEDC within a provable
bound. We conducted extensive experiments based on a real-
world data set and a synthetic data set to evaluate our ap-
proaches. The results demonstrate that both IPEDC and AEDC sig-
nificantly outperform all other four baseline approaches in formu-
lating cost-effective EDC solutions, while AEDC solves large-scale
EDC problems efficiently.

This research has established the foundation for the EDC prob-
lem and opened up a number of research directions. In the future,
we will investigate multiple data caching scenarios, partitionable
data caching scenarios, users’ dynamic participation and security
policy. Those will allow our approaches to accommodate more
sophisticated EDC scenarios.

35

X. Xia, F. Chen, Q. He et al. / Future Generation Computer Systems 113 (2020) 228–239

CRediT authorship contribution statement

Xiaoyu Xia: Conceptualization, Methodology, Software, Inves-
tigation, Writing - original draft. Feifei Chen: Conceptualization,
Methodology, Writing - review & editing, Supervision. Qiang
He: Conceptualization, Methodology, Writing - review & edit-
ing, Supervision, Funding acquisition. Guangming Cui: Concep-
tualization, Methodology, Software. Phu Lai: Conceptualization,
Methodology, Software. Mohamed Abdelrazek: Conceptualiza-
tion, Writing - review & editing, Supervision, Funding acquisi-
tion. John Grundy: Conceptualization, Writing - review & edit-
ing, Supervision, Funding acquisition. Hai Jin: Conceptualization,
Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This research is partially funded by Australian Research Coun-
cil Projects No. DP170101932, DP180100212 and Laureate Fel-
lowship, Australia FL190100035.

References

[1] Afif Osseiran, Volker Braun, Taoka Hidekazu, Patrick Marsch, Hans Schot-
ten, Hugo Tullberg, Mikko A Uusitalo, Malte Schellman, The foundation of
the mobile and wireless communications system for 2020 and beyond:
Challenges, enablers and technology solutions, in: IEEE 77th Vehicular
Technology Conference, VTC2013-Spring, 2013, pp. 1–5.

[2] Anthony D. Josep, Randy Katz, Andy Konwinski, Lee Gunho, David Pat-
terson, Ariel RabKin, A view of cloud computing, Commun. ACM 53 (4)
(2010).

[3] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, Lanyu Xu, Edge computing:
Vision and challenges, IEEE Internet Things J. 3 (5) (2016) 637–646.

[4] Phu Lai, Qiang He, Mohamed Abdelrazek, Feifei Chen, John Hosking,
John Grundy, Yun Yang, Optimal edge user allocation in edge computing
with variable sized vector bin packing, in: International Conference on
Service-Oriented Computing, 2018, pp. 230–245.

[5] Tuyen X. Tran, Mohammad-Parsa Hosseini, Dario Pompili, Mobile edge
computing: Recent efforts and five key research directions, IEEE COMSOC
MMTC Commun.-Frontiers 12 (4) (2017) 29–33.

[6] Qiang He, Guangming Cui, Xuyun Zhang, Feifei Chen, Shuiguang Deng, Hai
Jin, Yanhui Li, Yun Yang, A game-theoretical approach for user allocation
in edge computing environment, IEEE Trans. Parallel Distrib. Syst. (2019).

[7] Xiaoyu Xia, Feifei Chen, Qiang He, Guangming Cui, Phu Lai, Mohamed Ab-
delrazek, John Grundy, Hai Jin, Graph-based optimal data caching in edge
computing, in: International Conference on Service-Oriented Computing,
Springer, 2019, pp. 477–493.

[8] VNI Cisco Mobile, Cisco visual networking index: Global mobile data traffic
forecast update, 2016–2021 white paper, 2017.

[9] Lixing Chen, Sheng Zhou, Jie Xu, Computation peer offloading for energy-
constrained mobile edge computing in small-cell networks, IEEE/ACM
Trans. Netw. 26 (4) (2018) 1619–1632.

[10] Min Chen, Yixue Hao, Kai Lin, Zhiyong Yuan, Long Hu, Label-less learning
for traffic control in an edge network, IEEE Netw. 32 (6) (2018) 8–14.

[11] Shuo Wang, Xing Zhang, Yan Zhang, Lin Wang, Juwo Yang, Wenbo Wang,
A survey on mobile edge networks: Convergence of computing, caching
and communications, IEEE Access 5 (2017) 6757–6779.

[12] Alexandru Tatar, Marcelo Dias De Amorim, Serge Fdida, Panayotis Anto-
niadis, A survey on predicting the popularity of web content, J. Internet
Serv. Appl. 5 (1) (2014) 1–20.

[13] Xu Chen, Decentralized computation offloading game for mobile cloud
computing, IEEE Trans. Parallel Distrib. Syst. 26 (4) (2014) 974–983.

[14] Jie Xu, Lixing Chen, Pan Zhou, Joint service caching and task offloading for
mobile edge computing in dense networks, in: IEEE INFOCOM 2018-IEEE
Conference on Computer Communications, IEEE, 2018, pp. 207–215.

[15] Ying Liu, Qiang He, Dequan Zheng, Mingwei Zhang, Feifei Chen, Bin Zhang,
Data caching optimization in the edge computing environment, in: 2019
IEEE International Conference on Web Services, ICWS, IEEE, 2019, pp.
99–106.

[16] Mingfeng Lin, Henry C. Lucas Jr., Galit Shmueli, Research commentary—too
big to fail: large samples and the p-value problem, Inf. Syst. Res. 24 (4)
(2013) 906–917.

[17] Stefan Podlipnig, Laszlo Böszörmenyi, A survey of web cache replacement
strategies, ACM Comput. Surv. 35 (4) (2003) 374–398.

[18] Yonggong Wang, Zhenyu Li, Gareth Tyson, Steve Uhlig, Gaogang Xie,
Optimal cache allocation for content-centric networking, in: 21st IEEE
International Conference on Network Protocols, ICNP, 2013, pp. 1–10.

[19] Daniel S. Berger, Ramesh K. Sitaraman, Mor Harchol-Balter, AdaptSize:
Orchestrating the hot object memory cache in a content delivery net-
work, in: 14th USENIX Symposium on Networked Systems Design and
Implementation, 2017, pp. 483–498.

[20] Bitan Banerjee, Adita Kulkarni, Anand Seetharam, Greedy caching: An
optimized content placement strategy for information-centric networks,
Comput. Netw. 140 (2018) 78–91.

[21] Md Yusuf Sarwar Uddin, Nalini Venkatasubramanian, Edge caching for en-
riched notifications delivery in big active data, in: 38th IEEE International
Conference on Distributed Computing Systems, ICDCS, 2018, pp. 696–705.

[22] Yanhua Li, Haiyong Xie, Yonggang Wen, Zhi-Li Zhang, Coordinating in-
network caching in content-centric networks: Model and analysis, in: 33rd
IEEE International Conference on Distributed Computing Systems, ICDCS,
2013, pp. 62–72.

[23] Dulcardo Arteaga, Jorge Cabrera, Jing Xu, Swaminathan Sundararaman,
Ming Zhao, CloudCache: On-demand flash cache management for cloud
computing, in: 14th USENIX Conference on File and Storage Technologies,
FAST, 2016, pp. 355–369.

[24] Kun Ma, Bo Yang, Zhe Yang, Ziqiang Yu, Segment access-aware dynamic se-
mantic cache in cloud computing environment, J. Parallel Distrib. Comput.
110 (2017) 42–51.

[25] Abdel-Hameed A Badawy, Gabriel Yessin, Vikram Narayana, David May-
hew, Tarek El-Ghazawi, Optimizing thin client caches for mobile cloud
computing: Design space exploration using genetic algorithms, Concurr.
Comput.: Pract. Exper. 29 (11) (2017) e4048.

[26] Syed Tamoor-ul Hassan, Sumudu Samarakoon, Mehdi Bennis, Matti Latva-
Aho, Choong Seon Hong, Learning-based caching in cloud-aided wireless
networks, IEEE Commun. Lett. 22 (1) (2018) 137–140.

[27] Marcelo Yannuzzi, Frank van Lingen, Anuj Jain, Oriol Lluch Parellada,
Manel Mendoza Flores, David Carrera, Juan Luis Pérez, Diego Montero,
Pablo Chacin, Angelo Corsaro, et al., A new era for cities with fog
computing, IEEE Internet Comput. 21 (2) (2017) 54–67.

[28] Feng Wang, Jie Xu, Xin Wang, Shuguang Cui, Joint offloading and com-
puting optimization in wireless powered mobile-edge computing systems,
IEEE Trans. Wireless Commun. 17 (3) (2018) 1784–1797.

[29] Hong Yao, Changmin Bai, Muzhou Xiong, Deze Zeng, Zhangjie Fu, Hetero-
geneous cloudlet deployment and user-cloudlet association toward cost
effective fog computing, Concurr. Comput.: Pract. Exper. 29 (16) (2017)
e3975.

[30] Raluca Halalai, Pascal Felber, Anne-Marie Kermarrec, François Taïani, Agar:
A caching system for erasure-coded data, in: 37th IEEE International
Conference OnDistributed Computing Systems, ICDCS, 2017, pp. 23–33.

[31] Xi Zhang, Qixuan Zhu, Hierarchical caching for statistical qos guaran-
teed multimedia transmissions over 5g edge computing mobile wireless
networks, IEEE Wirel. Commun. 25 (3) (2018) 12–20.

[32] Ke Zhang, Supeng Leng, Yejun He, Sabita Maharjan, Yan Zhang, Cooperative
content caching in 5g networks with mobile edge computing, IEEE Wirel.
Commun. 25 (3) (2018) 80–87.

[33] Utsav Drolia, Katherine Guo, Jiaqi Tan, Rajeev Gandhi, Priya Narasimhan,
Cachier: Edge-caching for recognition applications, in: 37th IEEE Inter-
national Conference OnDistributed Computing Systems, ICDCS, 2017, pp.
276–286.

Xiaoyu Xia received his Master degree from The Uni-
versity of Melbourne, Australia in 2015. He is a Ph.D.
candidate at Deakin University. His research inter-
ests include edge computing, service computing and
software engineering.

Feifei Chen received her Ph.D. degree from Swinburne
University of Technology, Australia in 2015. She is a
lecturer at Deakin University. Her research interests
include software engineering, cloud computing and
green computing.

36

X. Xia, F. Chen, Q. He et al. / Future Generation Computer Systems 113 (2020) 228–239

Qiang He received his first Ph.D. degree from Swin-
burne University of Technology, Australia, in 2009 and
his second Ph.D. degree in computer science and en-
gineering from Huazhong University of Science and
Technology, China, in 2010. He is a senior lecturer
at Swinburne. His research interests include service
computing, software engineering, cloud computing and
edge computing. More details about his research can
be found at https://sites.google.com/site/heqiang/.

Guangming Cui received his Master degree from Anhui
University, China, in 2018. He is a Ph.D. candidate
at Swinburne University of Technology. His research
interests include software engineering, edge computing
and service computing.

Phu Lai received his M.Sc. degree in Information
Technology in 2017 and is currently working toward
a Ph.D. degree at Swinburne University of Technol-
ogy, Australia. His research interests include software
engineering, cloud computing and edge computing.

Mohamed Abdelrazek is an Associate Professor of
Software Engineering and IoT at Deakin University.
Before joining Deakin University in 2015, he worked
as a senior research fellow at Swinburne University of
Technology and Swinburne-NICTA software innovation
lab (SSIL). Before 2010, he was the head of software
development department at Microtech. More details
about his research can be found at https://sites.google.
com/site/mohamedalmorsy/.

John Grundy received the B.Sc. (Hons), M.Sc., and Ph.D.
degrees in computer science from the University of
Auckland, New Zealand. He is currently a professor
of software engineering at Monash University, Mel-
bourne, Australia. He is an associate editor of the IEEE
Transactions on Software Engineering, the Automated
Software Engineering Journal, and IEEE Software. His
current interests include domain-specific visual lan-
guages, model-driven engineering, large-scale systems
engineering, and software engineering education. More
details about his research can be found at https://sites.

google.com/site/johncgrundy/.

Hai Jin is a Cheung Kung Scholars Chair Professor of
computer science and engineering at Huazhong Uni-
versity of Science and Technology (HUST) in China. Jin
received his Ph.D. in computer engineering from HUST
in 1994. His research interests include computer ar-
chitecture, virtualization technology, cluster computing
and cloud computing, peer-to-peer computing, network
storage, and network security.

37

3.2 Multi-data Placement Strategies in Constrained

Edge Computing

In Chapter 3.1, we investigate the individual data placement strategies with the

aim to place a single data on edge servers to cover all the app users in a specific area

at minimum data caching cost. However, three major issues have not been considered

properly in Chapter 3.1. First, an app vendor may want to place multiple data

for its users in the same area. For example, YouTube may want to place multiple

popular videos requested by a lot of users. Second, edge servers’ storage capacities

are constrained and must be reserved by service providers for placing their data.

Third, an app user may be able to retrieve data from edge servers via multiple hops

over the edge server graph, instead of just zero or one hop. In this chapter, we study

this multi-data placement problem from the app vendor’s perspective to address the

above three issues. We first model this problem and prove its NP-hardness. To solve

this problem, we propose two approaches, including an optimal approach to solve this

problem exactly and an approximation approach to find the near-optimal solutions

to large-scale scenarios. To evaluate the proposed approaches, we conduct extensive

experiments based on a real-world dataset.

This chapter is based on a published paper, entitled: Constrained App Data

Caching over Edge Server Graphs in Edge Computing Environment, IEEE Transac-

tions on Services Computing, 2021. DOI:10.1109/TSC.2021.3062017.

38

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

Constrained App Data Caching over Edge
Server Graphs in Edge Computing Environment

Xiaoyu Xia, Feifei Chen, John Grundy, Senior Member, IEEE, Mohamed Abdelrazek, Hai Jin, Fellow, IEEE,
and Qiang He*, Senior Member, IEEE

Abstract—In recent years, edge computing, as an extension of cloud computing, has emerged as a promising paradigm for powering
a variety of applications demanding low latency, e.g., virtual or augmented reality, interactive gaming, real-time navigation, etc. In the
edge computing environment, edge servers are deployed at base stations to offer highly-accessible computing capacities to nearby
end-users, e.g., CPU, RAM, storage, etc. From a service provider’s perspective, caching app data on edge servers can ensure low
latency in its users’ data retrieval. Given constrained cache spaces on edge servers due to their physical sizes, the optimal data
caching strategy must minimize overall user latency. In this paper, we formulate this Constrained Edge Data Caching (CEDC) problem
as a constrained optimization problem from the service provider’s perspective and prove its NP-hardness. We propose an optimal
approach named CEDC-IP to solve this CEDC problem with the Integer Programming technique. We also provide an approximation
algorithm named CEDC-A for finding approximate solutions to large-scale CEDC problems efficiently and prove its approximation ratio.
CEDC-IP and CEDC-A are evaluated on a real-world data set. The results demonstrate that they significantly outperform four
representative approaches.

Index Terms—edge computing, data caching, optimization, approximation algorithm

F

1 INTRODUCTION

The world has witnessed an exponential growth of mo-
bile devices including mobile phones, wearable devices,
tablets, smart vehicle and Internet-of-Things (IoT) devices
[1]. These devices introduce massive traffic that leads to
network congestion and significantly impacts the quality
of service, especially service latency, which has become
the major obstacle to latency-sensitive applications such as
virtual or augmented reality, interactive gaming, real-time
navigation [2]. Edge computing is proposed to tackle this
challenge, where edge servers are attached to base stations
or access points close to users to offer them computation
and storage resources at the edge of the network [3]. It
is a key technology that facilitates the 5G mobile network
[4]. In the edge computing environment, edge servers, each
powered by one or more physical machines, are deployed at
base stations or access points that are geographically close to
app users. Service providers can hire computing capacities
on edge servers and host their applications on edge servers
(referred to as edge apps hereafter) to ensure low latency for
their app users [5]. In the meantime, computation tasks can
be offloaded from app users’ devices to their nearby edge

• X. Xia, F. Chen and M. Abdelrazek are with School of In-
formation Technology, Deakin University, Geelong, Victoria, Aus-
tralia. E-mail: xiaoyu.xia@deakin.edu.au; feifei.chen@deakin.edu.au; mo-
hamed.abdelrazek@deakin.edu.au.

• J. Grundy is with Faculty of Information Technology, Monash University,
Melbourne, Victoria, Australia. E-mail: john.grundy@monash.edu.

• H. Jin is with School of Computer Science and Technolgoy, HuaZhong
University of Science and Technology, China. Email: hjin@hust.edu.cn.

• Q. He is with School of Software and Electrical Engineering, Swin-
burne University of Technology, Melbourne, Victoria, Australia. E-mail:
qhe@swin.edu.au.

Manuscript received March xx, 202x; revised June xx, 202x.

servers to reduce the computation consumption and save
energy on their devices [6], [7].

As an increasing number of mobile and IoT devices
begin to access edge apps, more app data will be trans-
mitted through edge servers between the cloud and the
app users. From a service provider’s perspective, caching
those app data, especially the popular ones like viral videos
and photos from social web apps such as Facebook, will
minimize the delay in app users’ data retrieval. They can
retrieve app data from nearby edge servers instead of from
the cloud if those data are already cached on those edge
servers. In addition, caching app data on edge servers can
also considerably reduce the amount of data transferred
from the cloud to app users, and consequently lower the
service providers’ cost of data transfer under the pay-as-
you-go pricing scheme [8].

Data caching techniques have been widely employed in
many domains, e.g., web [9], database [10]. In the network
domain, data caching has also been intensively studied to
leverage its advantages, i.e. saving bandwidth consumption,
reducing network latency and reducing energy consump-
tion. In the last few years, many researchers have inves-
tigated caching strategies from different perspectives, e.g.,
coded caching [11], request routing [12], and information
theoretic caching [13]. As a new distributed computing
paradigm, edge computing offers new opportunities and
raises critical challenges for data caching. The fundamental
objective and mechanism are to cache popular app data
on edge servers so that nearby app users can retrieve the
cached app data with low latency. This is especially impor-
tant for latency-sensitive applications, e.g., interactive web
gaming such as Google Stadia, social video streaming such
as TicTok, etc. Caching app data on edge servers can also lift
the traffic burden on the Internet backbone by reducing the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

39

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

network traffic data significantly [14].
From the service provider’s perspective, edge data

caching (EDC) aims to cache a single data on edge servers
to cover all the app users in a specific area at minimum
data caching cost [15], [16]. However, three major issues
have not been considered properly by the existing work.
First, a service provider may want to cache multiple data
for its users in the same area. For example, YouTube may
want to cache multiple popular videos requested by a lot of
users. Second, edge servers’ constrained storage capacities
are constrained and must be reserved by service providers
for caching their data. Unlike cloud servers that have access
to virtually unlimited storage capacities in the cloud, edge
servers’ storage capacities are limited due to its size limit [6],
[17], [18], [19]. In the open edge computing environment,
many service providers may need to hire storage capacities
on the edge servers in the same area for caching their data.
This causes fierce competition among service providers and
makes it practically impossible for every service provider
to cache a huge amount of data on every edge server.
In such an environment, a common practice is for service
providers to reserve storage spaces on edge servers for
caching their data. Thus, cost-effectiveness is a key factor
in the formulation their data caching strategies. Unlike the
edge infrastructure provider who often aims to serve all
the users, service providers pursue to maximize caching
benefits by fully utilizing the reserved caching spaces. Full
user coverage is not always mandatory. Third, an app user
may be able to retrieve data from edge servers via multiple
hops over the edge server graph, instead of just zero or
one hop as constrained in [15]. Based on the edge-cloud
architecture [20], adjacent edge servers deployed at different
base stations can communicate with each other and transmit
data via high-speed links [6], [21], [22]. Thus, an app user
can access data cached on an edge server via multiple hops
over the edge server graph. However, to ensure low data
retrieval latency for its users, a service provider must specify
its app-specific latency constraint by the maximum number
of hops via which its user can retrieval data from an edge
server over the edge server graph.

To summarize, in practice, a service provider usually
reserves some caching spaces on edge servers - depending
on its caching budget - to cache multiple popular data
on edge servers in an area for its users to access un-
der the latency constraint. An optimal data caching strategy
must minimize its app users’ data retrieval latency with
constrained hired storage spaces on edge servers. In this
paper, this problem is referred as the Constrained Edge Data
Caching (CEDC) problem. We study this problem from the
service provider’s perspective to address the above three
issues. The major contributions of this paper are:

• We model and formulate the CEDC problem as a
constrained optimization problem (COP) from the
service provider’s perspective.

• We prove that the CEDC problem is NP-hard based
on the weighted k-set packing problem.

• We develop an optimal approach, namely CEDC-
IP, for solving the CEDC problem exactly with the
Integer Programming technique.

• We develop an approximation approach named

v3

v2

[d1, d2]

edge server

app user

required data

v4
v1vvvv

u4:[d3, d4]

u1:[d3]

u2:[d2, d5]

u3:[d6]
u5:[d1, d5]

u6:[d5, d7]

u7:[d1, d6]

empty storage
occupied storage

high-speed link

]]]

uuu

Fig. 1. An example CEDC scenario

CEDC-A for finding approximate solutions to large-
scale CEDC problems efficiently and prove the ap-
proximation ratio.

• We conduct extensive experiments on a real-world
data set to evaluate the proposed approaches against
four representative approaches.

The rest of the paper is organized as follows. Section 2
presents an example to illustrate and motivate the CEDC
problem. Section 3 formulates the CEDC problem and
proves its NP-hardness. Section 4 presents and analyzes
our optimal approach and approximation approach for find-
ing solutions to CEDC problems. Section 5 experimentally
evaluates the proposed approaches. Section 6 reviews the
related work. Section 7 concludes this paper and points out
our key future work.

2 MOTIVATING EXAMPLE

In the edge computing environment, adjacent edge servers
deployed at different base stations and access points can
communicate with their neighbor edge servers and share
their storage resources via high-speed links [6], [21]. Thus,
the edge servers in a particular area constitute an edge
server network. It can be modeled as a graph where a node
represents an edge server and an edge represents the link
between two edge servers. Data caching in an edge server
network differs from data caching in the cloud comput-
ing environment as well as other conventional distributed
computing environments with its three unique constraints,
i.e.,server capacity constraint, server coverage constraint and
server adjacency constraint.

Server Capacity Constraints: The storage resources on
an edge server are usually limited due to its size limit [3],
[15]. The competition between service providers makes it
impossible for a service provider to cache all app data on
every edge server. Thus, the common practice is for service
providers to reserve certain cache spaces on edge servers for
caching popular app data.

Server Coverage Overlaps: To avoid any blank coverage
areas in a specific geographic area, the coverage areas of
nearby edge servers often intersect [23], [24]. Thus, app
users in an overlapping area can access any of the edge
servers covering them.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

40

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

Server Adjacency Constraints: An app user can retrieve
a piece of app data from its nearby edge servers – we refer to
as local edge servers hereafter – that cover the app user if the
app data is cached on one of these edge servers. If the app
data is not cached on any of those local edge servers, the app
user can retrieve it from other edge servers that are linked
to its local edge servers via multiple hops over the edge
server graph – we refer to as neighbor edge servers – under the
latency constraint. Either way, the service provider’s latency
constraint will ensure that it is faster than retrieving the app
data from a server in the remote cloud.

From the service provider’s perspective, the objective of
CEDC is to minimize its users’ overall data retrieval latency
by caching app data with limited reserved cache spaces
on edge servers in a specific area. A representative CEDC
scenario is caching viral videos and photos for social web
apps. Social app users such as Facebook or Instagram users
access popular videos and photos shared by either their
friends or public figures. Always transmitting data from the
cloud to individual app users creates immense pressure on
the network and increases the latency in their data retrieval,
especially in areas with high user density and dynamic
traffic conditions. Caching those data on edge servers brings
them much closer to the users and reduce the latency in their
data retrieval.

Example 1: Fig. 1 presents an example area with four
edge servers, i.e., {v1, ..., v4}, each covering a specific geo-
graphic area. The boxes by each edge server represent the
cache spaces hired by the service provider on that edge
server. To illustrate the CEDC problem generically, each box
in Fig. 1 can cache one piece of app data. From the service
provider’s perspective, caching all its popular data on every
edge server in the area can easily accommodate all its users
in the area. However, this is not cost-effective nor practical
due to the server capacity constraint discussed above. Due
to the server coverage constraint and the server adjacency
constraint, the data must be cached on a number of those
edge servers so that all the users in that area can retrieve the
data from either their local edge servers or neighbor edge
servers. For example, we assume that the service provider’
latency constraint in Fig. 1 is 1 hop. This allows an app
user to access any edge servers within 1 hops over the edge
server graph for cached app data. Otherwise, it will have to
retrieve it from the service provider’s remote cloud server.
For example, u1 and u5 can only retrieve cached data from
either their local edge server v1 or their neighbor edge server
v2. Apparently, there are multiple data caching strategies
that fulfill all the three constraints. The one that minimizes
the users’ overall data retrieval latency is the optimal
solution to the CEDC problem. Thus, the CEDC problem
is inherently a constrained optimization problem (COP).

Model: To quantify the optimization objective and con-
straints in the CEDC problem in a generic manner, we model
the data sizes and cache spaces by the number of data units,
and the data retrieval latency by the number of hops. Take
Fig. 1 as an example. Each piece of data to be cached is
treated as 1 unit, and the total number of cache spaces on
v1 is 4 units, 2 of which are available at the moment. This
way, these models can be easily extended for calculating
data caching cost given the data size and a specific pricing
model, e.g., caching cost per size. Let us still assume that

the service provider’s latency constraint in this scenario
is 1 hop, and user u7 requests for data d1 and d6. The
data retrieval latency consists of two major components: the
latency between the user and its local edge server(s), and
the latency between edge servers. The former component is
not avoidable and thus is not considered in the formulation
of data caching strategy. Thus, u7’s data retrieval latency is
0 hop if the requested data is cached on edge server v4, or 1
hop if it is cached on v2 or v3. If the data is only cached on
edge server v1, u7 cannot retrieve the data from any edge
server in this area without violating the latency constraint.
Similar to the generic models for data and cache spaces,
the generic latency model can be extended with different
latency specifications.

The model and approaches proposed in this research
are generic and applicable to various apps. In our model
data are cached on edge servers in whole and we do not
consider the situation where data can be partially cached,
e.g., video segments. In addition, the scale of the CEDC
problem in real-world scenarios can be much larger than the
example presented in Fig. 1. Finding an optimal solution to
such a CEDC problem is not trivial. Similar to many studies
of edge computing [6], [21], [23], [25], [26], [27], [28], [29],
we investigate the CEDC problem in quasi-static scenarios
where the app users remain unchanged during the data
retrieval, e.g., their data needs and locations. More dynamic
scenarios will be investigated in our future work.

3 PROBLEM FORMULATION

3.1 Problem Statement
In this research, we model the networked n edge servers in a
specific area as a graph G(V,E) where V is the set of nodes
and E is the set of edges in G. In this graph, each node
vi ∈ V represents an edge server, while each edge et ∈ E
represents an edge between two nodes in G. In the remainder
of this paper, we will speak inter-changeably of an edge server and
its corresponding node in G, both denoted by v. The notations
adopted in the paper are summarized in Table 1.

As described in Section 2, we formulate the CEDC prob-
lem in a generic manner by measuring data retrieval latency
by the number of hops between edge servers and data sizes
and spaces by the number of data units.

Given a set of data D = {d1, ..., dk} to be cached on the
edge servers in the area, a data caching strategy is a vector
R = {〈r11, ..., r1n〉, ..., 〈rk1 , ..., rkn〉}, where rfi ∈ {0, 1}(1 ≤ i ≤
n, 1 ≤ f ≤ k) denotes whether data df is cached on edge
server vi.

As discussed in Section 2, the service provider has re-
served a finite amount of cache spaces on each edge server.
Thus, the number of data cached on an edge server vi cannot
exceed its available cache spaces asi:

∑

df∈D
rfi ≤ asi (1)

The distance between two nodes in the graph is mea-
sured by their shortest path. As we use the number of hops
to measure the data retrieval latency, the latency in an app
user u’s retrieval of data f is measured as follow:

lfu = min{li,j , rfj = 1, vj ∈ V },∀u ∈ Ui (2)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

41

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

TABLE 1
Summary of Notations

Notation Description
asi available cache spaces on edge server i
bfu maximum benefit for user u retrieving df

bu,j benefit of caching replica on server vj for app user u
D finite set of data
df data f

E set of links between edge servers
G graph presenting a particular area
k total number of data in D
L latency constraint from service provider
li,j latency from server i to server j
lfu minimum latency from app user u to retrieve df

m total number of app users
n total number of edge servers
R set of binary variables 〈rf1 , ..., r

f
n〉 indicates whether

data df is cached on edge servers from v1 to vn

rfi binary variable indicating cache df on edge server vi
tfu binary variable indicating user u requires data df

U set of app users
Ui set of users covered by server vi
V set of edge servers
vi edge server i

where li,j is the number of hops between vi and vj .
To evaluate and compare the effectiveness of different

data caching strategies, the concept of data caching benefit
is introduced here. It is calculated based on the latency
reduction in user data retrieval. We use the number of hops
reduced by cached data on an edge server to measure the
data caching benefit. Given a latency constraint value L,
the data caching benefits is 0 when the latency achieves
L + 1 hops. Denote lT = L + 1 as the value breaking the
threshold, the following equation shows how to calculate
the benefit bu,j produced for app user u ∈ Ui if edge server
vj is selected to cache the data:

bu,j = max{lT − li,j , 0} (3)

Example 2: Take Fig. 1 as an example. Let us assume
L = 1 and edge server v1 is selected to cache data d5. This
way, LT = 2 and we can calculate the benefits for user u2,
u5 and u6 to obtain d5 from v1, where b2,1 = 1, b5,1 = 2 and
b6,1 = 0.

As discussed in Section 2, to avoid the blank area that
are not covered by any edge servers, the coverage of nearby
edge servers often partially overlap [3]. An app user in the
overlapping area can access multiple optional local edge
servers and neighbor edge servers for cached data. Thus, the
data caching benefit produced by the data caching strategy
for an app user u to retrieve data f is:

bfu = max{rfj · bu,j · tfu, vj ∈ V, tfu ∈ {0, 1}} (4)

where the binary variable tfu indicates whether user u re-
quires df .

From the service provider’s perspective, the optimiza-
tion objective is to maximize the total reduction in all users’
overall data retrieval latency produced by its data caching

strategy R, which can be converted to the maximization of
the total caching benefit of all users based on (4):

maximize benefit(R) (5)

3.2 Problem Hardness
In this section, we demonstrate that the COP of CEDC is
NP-hard by proving the following theorem.
Theorem 1. The COP of CEDC is NP-hard.

Proof To prove this problem is NP-hard, we first in-
troduce the weighted k-set packing problem (WKSP). The
WKSP problem is known to be NP-hard [30]. Given a
universe Ue with elements ∀e ∈ Ue, a set S of subsets of Ue

and an integer number k. The subset C is a packing, where
C ⊆ S. All sets s ⊆ C are pairwise disjoint. Let weight(s)
be the weight of the set s and k be the maximum number of
selected sets. The formulation is displayed below:

object : max
∑

s∈C
weight(s) ·Xs (6a)

s.t. :
∑

s∈S
Xs ≤ k (6b)

Xs ∈ {0, 1},∀s ∈ S (6c)∑

e∈Ue

Xe ≤ 1 (6d)

Now we prove that the WKSP problem can be reduced
to an instance of the CEDC problem. We define the elements
based on the data requests and the users. For example, u1
require data {d1, d2}, u2 requires {d2} and u3 requires {d1}.
In this case, we can define the elements e ∈ {t11, t21, t22, t13}.
The reduction can be done as follows: given an instance
WKSP (S,Ue, k, weights(s)), we can construct the set of
|S| servers, denoted by V , and the set of |Ue| users, de-
noted by U . Let n = k, we can construct an instance
CEDC(V,U, n, benefit(v)) with the reduction above in
polynomial time, where function benefit(vf) is calculated
as the sum of benefit if data f is cached on edge server v. As
the constraint (6b) restricts the total number of selected sets,
we can project the equation

∑
vi∈V

∑
df∈D r

f
i ≤

∑
vi∈V asi

based on (1) in the CEDC problem to that constraint, such as
benefit(vi) = 0 if there is no available cache spaces on edge
server i. Based on (3) and (4), data f requested by user u ∈ U
can only be calculated once into the data caching benefit.
Thus, constraint (6d) can be fulfilled. Moreover, the increase
in the benefit produced by caching data f on edge server v
can be projected to weight(s). In this case, any solution R
satisfying objective (6a) also satisfies objective (4).

In conclusion, any solution Y always satisfies the re-
duced CEDC problem if Y satisfies the WKSP problem.
Therefore, the CEDC problem is reducible from the WKSP
problem and it is NP-hard.

�

4 EDGE WEB DATA CACHING STRATEGY FORMU-
LATION

We first model the CEDC problem with the Integer Pro-
gramming technique, then prove that the CEDC problem
is NP-hard. After that, we propose an approximation algo-
rithm for finding approximate solutions to large-scale CEDC
problems efficiently and prove its approximation ratio.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

42

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

v3

v2

[d1, d2]

edge server

app user

required data

v4
v1vvvv

u4:[d3, d4]

u1:[d3]

u2:[d2, d5]

u3:[d6]
u5:[d1, d5]

u6:[d5, d7]

u7:[d1, d6]

empty storage
occupied storage

high-speed link

d5

d1

d5

d2

]]]
d1

d7

d6

d5

uuu
d1

(a) Strategy R1

v3

v2

v4
v1vvvv

u4:[d3, d4]

u1:[d3]

u2:[d2, d5]

u3:[d6]
u5:[d1, d5]

u6:[d5, d7]

u7:[d1, d6]

d3

d1

d3

d2

]]]
d1

d3

d2

d1

uuu
d1

(b) Strategy R2

Fig. 2. Example CEDC Strategies

4.1 Optimization Approach

From the service provider’s perspective, the solution to the
CEDC problem must maximize the data caching benefit
measured by the total reduction in all the app users’ data
retrieval latency in this area. In the meantime, the server
capacity constraint, server coverage constraint and server
adjacency constraint must be fulfilled. Thus, the CEDC
problem can be modeled as a constrained optimization
problem (COP). The COP model for the CEDC problem is
formally expressed as follows.

For a graphG = (V,E), where V = {v1, .., vn}, there is a
matrix of variables R = {〈r11, ..., r1n〉, ..., 〈rk1 , ..., rkn〉}, where
rfi ∈ {0, 1},∀i ∈ {1, ..., n}, ∀f ∈ {1, ..., k}, rfi being 1 if a
data replica of df is cached on the ith node, 0 otherwise. The
constraints for the COP model are:

bfu = max(rfi · bu,i · tfu)

∀i ∈ {1, ..., n}, ∀u ∈ {1, ...,m}, ∀f ∈ {1, ..., k}
(7)

k∑

f=1

rfi ≤ asi,∀i ∈ {1, ..., n}, ∀f ∈ {1, ..., k} (8)

Constraint family (7) is converted from (4). It ensures
that every app user will always retrieve the required data
from the nearest possible edge server. Constraint family (8)
guarantees that the data cached on each edge servers must
not exceed the available cache spaces.

As discussed in Section 3.1, there might be multiple
solutions to this COP fulfilling (7) and (8).

Example 3: In Fig. 1, there are multiple possible
solutions satisfying constraints (7) and (8). Assuming the
latency constraint is no more than 1 hop in this scenario, two
possible data caching strategies are presented in Fig. 2:R1 =
{〈1, 0, 0, 0, 1, 0, 0〉, 〈1, 1, 0, 0, 1, 0, 0〉, 〈0, 0, 0, 0, 1, 1, 1〉, 〈1, 0,
0, 0, 0, 0, 0〉} that caches data {d1, d5} on v1, {d1, d2, d5}
on v2, {d5, d6, d7} on v3 and {d1} on v4, and R2 =
{〈1, 0, 1, 0, 0, 0, 0〉, 〈1, 1, 1, 0, 0, 0, 0〉, 〈1, 1, 1, 0, 0, 0, 0〉, 〈1, 0,
0, 0, 0, 0, 0〉}, caching data {d1, d3} on v1, {d1, d2, d3} on v2,
{d1, d2, d3} on v3 and {d1} on v4. Both of R1 and R2 fulfill
constrains (7) and (8). However, the overall caching benefits
produced by R1 and R2 are different based on (4) and (7):
benefit(R1) = 17 and benefit(R2) = 9. Thus, the below
objective function that maximizes the benefit of caching

data D over G is included in the COP model to achieve the
service provider’s optimization objective:

max
m∑

u=1

k∑

f=1

bfu (9)

The COP above can be solved with Integer Programming
problem solvers, such as Gurobi1 and IBM CPLEX Opti-
mizer2. This optimal approach is named CEDC-IP hereafter.
Specific caching cost models and network latency models
can be easily integrated to this CEDC-IP model.

4.2 Approximation Algorithm

As the COP of CEDC is NP-hard, finding the optimal solu-
tion to the COP is intractable in large-scale CEDC scenarios.
This section presents an approximation algorithm, named
CEDC-A, for finding approximate solutions to large-scale
CEDC problem efficiently.

Given V = {v1, ..., vn}, U = {u1, ..., um} and D =
{d1, ..., df}, CEDC-A creates an initial candidate list , and
then implements an iterative process for each initial candi-
date. After the above processes, CEDC-A selects the can-
didate solution with the maximum benefit for a service
provider to cache data on selected edge servers. The pseudo
code is presented in Algorithm 1, while the functions used
in Algorithm 1 are presented in Algorithm 2 and 3.

In this algorithm, the decision to cache one kind of data
on an edge server is treated as a candidate. The algorithm
starts with the initialization in Lines 1-3. The algorithm
initiates the set of solution candidates, C, by calculating the
benefit increment of each data in each edge server’s cover-
age area (Line 3). Each candidate has two properties, i.e.,
server id and data. CEDC-A always selects the candidate
with maximum benefit value to cache candidate’s data on
candidate’s server based on ci ∈ C (Lines 4 to 12). In the
end, the solution with the highest benefits will be selected
as the result of CEDC-A.

The computational complexity of functions presented in
Algorithm 2 and 3 is O(kn). Moreover, initCandidates()
can produce at most kn candidates, and the used cache

1. http://www.gurobi.com/
2. https://www.ibm.com/analytics/cplex-optimizer

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

43

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

Algorithm 1 CEDC-A Algorithm
1: Input: availableSpaces, U , V , D
2: C ← ∅
3: C = initCandidates()
4: for each ci ∈ C do
5: as = copy(availableSpaces)
6: candidate = getMaxBenefitCandidate(ci)
7: while |as| != 0 & candidate != null do
8: ci ← ci

⋃
candidate

9: ascandidate.id = ascandidate.id − 1
10: candidate = getMaxBenefitCandidate(ci)
11: end while
12: end for
13: R = arg maxci∈C benefit(ci);
14: return R

Algorithm 2 Function initCandidates
1: initCandidates():
2: Candidates← ∅
3: for each vi ∈ V do
4: if asi! = 0 then
5: for each df ∈ D do
6: Candidates← Candidates

⋃{rfi }
7: end for
8: end if
9: end for

10: return Candidates

spaces on all edge servers are also at most kn. Thus, in
the worst-case scenario, the computational complexity of
Algorithm 1 is O(k2n2).

Now, we prove the approximation ratio of CEDC-A,
where it is the ratio of benefits produced by CEDC-A and
that produced by optimal solution in the worst cases.

As function initCandidates() provides the candidate
list with the first cache decision, we can treat this function
as the first iteration in Algorithm 1. Let OPT present the
optimal solution (found by CEDC-IP) of the CEDC problem
and benefit(OPT) denote the benefit obtained by the OPT
caching strategy. Let us assume that the order of cache
decisions made by OPT is ascending in terms of cache
benefit, and γ is the index of the iteration when the first
edge server included in OPT ’s strategy but not in CEDC-
A’s strategy R.

Theorem 2. For each iteration t ≤ γ, the following inequality
is satisfied:

benefit(OPT)− benefit(Rt−1) ≤ |as| ·∆bt (10)

where Rt−1 is the strategy in iteration t − 1 and ∆bt is
the benefit produced by including rt into strategy R.

Proof Since Rt selects the edge server with the maximum
benefit at the tth iteration, for each edge server in OPT
but not in Rt−1, the benefit increment is at most ∆bt. Since
there are a maximum of |as| available cache spaces, the total
benefit produced by the edge servers in OPT but not Rt−1
is at most |as| ·∆bt. Thus, the above inequality is satisfied.
�

Algorithm 3 Function getMaxBenefitCandidate
1: getMaxBenefitCandidate(ci):
2: candidate = null
3: for each vj ∈ V

⋂¬ci do
4: if asj ! = 0 then
5: for each df ∈ D do
6: if benefit(ci

⋃
candidate) ≤ benefit(ci

⋃
rfj) then

7: candidate = new Candidate()
8: candidate.id = j
9: candidate.data = f

10: end if
11: end for
12: end if
13: end for
14: return candidate

Theorem 3. For each iteration t > γ, the benefit produced by
Rt fulfills:

benefit(Rt) ≥
(

1−
(

1− 1

|as|

)t−1)
benefit(OPT)

(11)

Proof Based on Theorem 2, the benefit achieved by St can
be calculated by (12). Thus, we can easily prove (11) by the
inductive proof. The details of the proof process are omitted
here.

benefit(Rt) = benefit(Rt−1) + ∆bt

≥ benefit(Rt−1) +
benefit(OPT)− benefit(Rt−1)

|as|
=

(
1− 1

|as|

)
benefit(Rt−1) +

1

|as|benefit(OPT)

(12)

�

Theorem 4. The approximation ratio of CEDC-A is
2
3

(
1− 1

e

)
.

Proof Based on the cache space constraint(8), the algo-
rithm can have at most |as| iterations. Thus, when t =
|as|+ 1, we can obtain (13) based on Theorem 3:

benefit(R|as|+1) ≥
(

1− 1

e

)
benefit(OPT) (13)

However, this exceeds the constraint (8). As discussed
above, the first decision in function initCandidates() is
treated as the first iteration.

When |as| = 1, the solution obtained by CEDC-A is the
same as OPT . In this case, the approximation ratio is 1.
When |as| ≥ 2, the benefit increment by ∆b|as|+1 is less
than or equal to 1

2benefit(R|as|). Thus, there is

benefit(R|as|) = benefit(R|as|+1)−∆b|as|+1

≥
(

1− 1

e

)
benefit(OPT)− 1

2
benefit(R|as|)

(14)

Based on (14), the approximation ratio of CEDC-A is
2
3

(
1− 1

e

)
. �

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

44

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

5 EXPERIMENTAL EVALUATION

We experimentally evaluate the performance of CEDC-IP
and CEDC-A. All of the experiments were conducted on
a Windows-10 machine equipped with Intel Core i7-8550
processor (8 CPUs, 1.80GHz) and 8GB RAM. The COP dis-
cussed in Section 4 is solved with IBM’s CPLEX Optimizer.

5.1 Baseline Approaches

In the experiments, we evaluate the performance of CEDC-
IP and CEDC-A against four representative approaches:

• Request-based Collaborative Caching (RCC): This ap-
proach aims to minimize the overall caching cost
incurred by serving the most users. This algorithm
originated from the collaborative data caching ap-
proach in [31], which is implemented in the content
delivery network.

• NCCEDC-IP: This approach finds the non-
collaborative data caching optimal solution, which
does not allow collaboration among edge servers.
Thus, app users can only access data from their local
edge servers. Other than that, it is formulated and
implemented in a way similar to CEDC-IP.

• Greedy-Connection (GC): This approach always selects
the edge server that has the most neighbour edge
servers to cache data under Constraint family (8).

• Random: This approach always selects the edge server
randomly to cache data under Constraint family (8).

5.2 Experiment Settings

5.2.1 Experiment data

The experiments are conducted on a real-world data set,
named EUA data set3 [3], which is widely used in research
on edge computing [23], [32], [33]. This data set contains the
geographical locations of 125 base stations and 816 mobile
users in the Melbourne CBD area. The links between edge
servers are randomly generated to ensure the edge servers
constitute a connected graph. In the experiments, L is set to
1 hop. The available cache spaces on each edge server are
generated following a normal distribution X ∼ N (µ, σ2),
where µ is half of the number of maximum cache spaces and
σ is 1.

5.2.2 Experimenting parameters

To simulate different CEDC scenarios, three parameters are
varied in the experiments.

• Number of edge servers |V|. This parameter impacts
the size of graph G and varies from 4 to 14 in steps
of 2.

• Number of maximum cache spaces MS. This param-
eter impacts the available cache spaces on edge edge
server and varies from 2 to 10 in steps of 2.

• Number of data |D|. The total number of data to be
cached over G. This parameter varies from 3 to 8 in
steps of 1.

3. https://github.com/swinedge/eua-dataset

TABLE 2
Parameter Settings

|V| MS |D|
Set #1.1 4, 6, 8, 10, 12, 14 4 6
Set #1.2 10 2, 4, 6, 8, 10 6
Set #1.3 10 4 3, 4, 5, 6, 7, 8
Set #2.1 20, 30, 40, 50, 60, 70 10 15
Set #2.2 50 2, 4, 6, 8, 10 15
Set #2.3 50 10 5, 10, 15, 20, 25, 30

5.2.3 Performance Metrics
In this experiments, three metrics are employed to evaluate
the performance of the approaches, one for effectiveness and
one for efficiency:

• Benefit per cache cost (bpc), measured by the total
number of hops reduced divided by the data cache
cost, higher the better.

• Served request ratio per cache cost (SRRpc), mea-
sured by the ratio of the served data requests divided
by the reserved data cache cost, higher the better.

• Computational overhead (time), measured by the
time taken to find the solution, the lower the better.

Table 2 summarizes the parameter settings. There are
two main sets of experiments, Set #1 for small-scale ex-
periments and Set #2 for large-scale experiments. All six
approaches are implemented in Set #1, while CEDC-IP and
NCCEDC-IP are not implemented in Set #2, because they
cannot find an optimal solution to the NP-hard CEDC
problem in Set #2 within a reasonable time. Every time the
value of a parameter varies, the experiment is repeated for
100 times and the averaged results are reported. To isolate
the impact of the number of app users, we randomly select
40 covered app users and 200 covered app users from the
data set in each run of the experiments in Set #1 and Set #2,
respectively.

5.3 Experimental Results
Table 3 summarizes the results of experiment Set #1 and Set
#2 where the best and second-best performances are marked
as dark and light grey, respectively, in each column.

5.3.1 Impact of number of edge servers
The results of experiment Set #1.1 are presented in Fig.
3(a) and Fig. 4(a). It shows that the benefit per cache cost
and the served request ratio per cache cost achieved by
CEDC-IP and CEDC-A outperform the other approaches
significantly. In Fig. 3(a), when the number of edge servers
increases from 4 to 14, the benefit per cache cost achieved
by all six approaches decreases, from 13.16 to 4.34 by 67.02%
for CEDC-IP, from 12.57 to 4.20 by 66.59% for CEDC-A, from
10.99 to 3.71 by 66.24% for RCC, from 10.35 to 3.59 by 65.31%
for NCCEDC-IP, from 9.54 to 3.34 by 64.99% for GC and
from 7.89 to 3.06 by 61.21% for Random. The advantages of
CEDC-IP are 3.77% over CEDC-A, 18.47% over RCC, 25.53%
over NC, 38.12% over GC and 62.76% over Random on
average. It is also shown in Fig. 3(a) that the advantages
of CEDC-IP and CEDC-A increase with the increase in

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

45

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

TABLE 3
Average performance results

Approaches
Set #1.1 Set #1.2 Set #1.3

bpc SRRpc (%) T ime bpc SRRpc (%) T ime bpc SRRpc (%) T ime

CEDC-IP 7.4817 7.5450 1.6518 4.7040 4.6500 0.6380 5.9150 5.7500 10.6384
CEDC-A 7.2100 7.6933 0.0002 4.5840 4.7000 0.0003 5.7183 5.7233 0.0002

RCC 6.3150 6.0817 0.0001 4.1880 3.9660 0.0002 5.2250 5.2250 0.0001
NCCEDC-IP 5.9600 6.7217 0.4198 3.8820 4.1940 0.3318 4.9483 5.2517 1.1959

GC 5.4167 5.0900 0.0002 3.6700 3.4820 0.0002 4.5917 4.3300 0.0001
Random 4.5967 4.4217 0.0001 3.3580 3.1940 0.0002 4.2467 4.0433 0.0001

Approaches
Set #2.1 Set #2.2 Set #2.3

bpc SRRpc (%) T ime bpc SRRpc (%) T ime bpc SRRpc (%) T ime

CEDC-A 3.1288 0.5698 0.0571 3.7530 0.7534 0.0346 2.9696 0.5194 0.0833
RCC 2.7973 0.5025 0.0104 3.1547 0.5889 0.0055 2.6645 0.4590 0.0146
GC 2.5341 0.4527 0.0053 2.4462 0.4632 0.0024 2.6064 0.4550 0.0051

Random 2.3308 0.4202 0.0031 2.1924 0.4166 0.0021 2.4447 0.4298 0.0047

the number of edge servers. Fig. 4(a) shows that the served
request ratio per cache cost of CEDC-A is almost the same
as that of CEDC-IP. Both CEDC-IP and CEDC-A achieve
much higher average served request ratio per cache than the
other approaches, i.e., 0.0755 (CEDC-IP) and 0.0769 (CEDC-
A) versus 0.0608 (RCC), 0.0672 (NCCEDC-IP), 0.0509 (GC)
and 0.0442 (Random).

The experimental results of Set #2.1 are depicted in Fig.
5(a) and Fig. 6(a). Overall, CEDC-A achieves the highest
benefit and served request ratio per cache cost on average.
As shown in Fig. 5(a), CEDC-A outperforms RCC, GC and
Random in benefit per cache cost, by 11.85%, 23.47% and
34.24%, respectively. In terms of served request ratio per
cache cost, Fig. 6(a) demonstrates that the advantages of
CEDC-A are 13.39% over RCC, 25.87% over GC and 35.60%
over Random.

With the increase in the number of edge servers (4 to 14
in Set #1.1 and 20 to 70 in Set #2.1), the benefit and served
request ratio per cache cost achieved by all approaches de-
crease. The reason is that, when the number of users is fixed,
the maximum benefits and the total number of requests are
fixed. Accordingly, the benefit and served request ratio per
cache cost decrease when more cache spaces are hired by
the service provider with the fixed number of users.

5.3.2 Impact of maximum cache spaces
The impacts of the maximum cache spaces on the ap-
proaches are shown in Fig. 3(b), Fig. 4(b), Fig. 5(b) and Fig.
6(b). In experiment Set #1.2, CEDC-IP achieves the highest
benefit per cache cost again, followed by CEDC-A. In terms
of the served request ratio per cache cost, CEDC-IP and
CEDC-A also outperform the other approaches significantly.
In Fig. 3(b), both CEDC-IP and CEDC-A outperform RCC,
NCCEDC-IP, GC and Random, by an average of 12.32% and
9.46%, 21.17% and 18.08%, 28.17% and 24.90%, 40.08% and
36.51%, respectively. Moreover, Fig. 4(b) shows that, for the
served request ratio per cache cost, the average advantages
of CEDC-A are 1.07% over CEDC-IP, 18.61% over RCC,
12.16% over NCCEDC-IP, 35.09% over GC and 47.28% over
Random. With the increase in the maximum cache spaces
from 2 to 10 in Set #1.2, the cache cost increases. As the

number of users is fixed at 40, the maximum total benefits
are fixed as well. Thus, the benefit and served request ratio
per cache cost decrease for all approaches with the increase
in the maximum cache spaces, while the trends and their
trends are similar in Fig. 5(b) and Fig. 6(b). In Set #2.2,
CEDC-A achieves the highest benefit and served request
ratio per cache cost again. The advantages of CEDC-A
are 18.97% and 27.93% over RCC, 53.42% and 62.65% over
GC, 71.18% and 80.84% over Random, in terms of benefit
per cache cost and served request ratio per cache cost,
respectively.

Based on the results shown in the above figures, the
advantages of CEDC-IP and CEDC-A are more even more
significant with fewer available cache spaces. This indi-
cates that CEDC-IP and CEDC-A are particularly suitable
for the edge computing environment. This is because it is
a highly competitive environment where the resources on
edge servers available for data caching are constrained.

5.3.3 Impact of number of data

Fig. 3(c) and Fig. 4(c) depict the results obtained in Set #1.3
where the number of data to be cached varies. In terms
of the benefit per cache cost and the served request ratio
per cache cost, CEDC-IP and CEDC-A outperform the
other approaches with significant margins. In terms of
the benefit per cache cost, as demonstrated in Fig. 3(c), the
average advantages of CEDC-IP are 3.44% over CEDC-A,
13.21% over RCC, 19.54% over NCCEDC-IP, 28.82% over
GC and 39.29% over Random. In Fig. 5(c) and Fig. 6(c),
the advantage of CEDC-A is significant over the other
three approaches. On average, CEDC-A outperforms RCC
by 11.45% and 13.16%, GC by 13.93% and 14.15%, Random
by 21.36% and 20.85%, in the benefit per cache cost and
served request ratio per cache cost, respectively.

Those results also demonstrate that the performance of
both CEDC-IP and CEDC-A decreases much slower than
the other approaches when the number of data to be cached
increases. That is, they scale better with the number of data
to be cached.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

46

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

4 6 8 10 12 14
Number of edge servers

2

4

6

8

10

12
Be

ne
fit
 p
er
 c
ac

he
 c
os

t CEDC-IP
CEDC-A
RCC
NCCEDC-IP
GC
Random

(a) Set #1.1

2 4 6 8 10
Maximum storage space

2

3

4

5

6

7

8

Be
ne

fit
 p

er
 c

ac
he

 c
os

t

(b) Set #1.2

3 4 5 6 7 8
Number of data

3

4

5

6

7

Be
ne

fit
 p

er
 c

ac
he

 c
os

t

(c) Set #1.3

Fig. 3. Benefit per cache cost vs. parameters in Set #1

4 6 8 10 12 14
Number of edge servers

0.0

2.5

5.0

7.5

10.0

12.5

15.0

SR
R

pe
r c

ac
he

 c
os

t (
%
) CEDC-IP

CEDC-A
RCC
NCCEDC-IP
GC
Random

(a) Set #1.1

2 4 6 8 10
Maximum storage space

0

2

4

6

8
SR
R

pe
r c

ac
he

 c
os

t (
%

)

(b) Set #1.2

3 4 5 6 7 8
Number of data

2

3

4

5

6

SR
R

pe
r c

ac
he

 c
os

t (
%

)

(c) Set #1.3

Fig. 4. Ratio of served request per cache cost vs. parameters in Set #1

5.3.4 Efficiency
The efficiency of an approach is evaluated by its compu-
tational overhead measured by the average time (in sec-
onds) taken to find a solution to the CEDC problem. The
results are summarized in Table 3. As shown, CEDC-IP is
much more computationally expensive than all the other
approaches in Set #1. It takes 10.6384 seconds on average
in Set # 1.3. This validates the NP-hardness of the CEDC
problem - excessive computational overheads are inevitable
for finding the optimal solution to large-scale CEDC prob-
lems. The other approaches, including CEDC-A, RCC, GC
and random, can find a solution almost immediately in Set
#1. In Set #2, the execution time increases for all approaches.
In Set #2, Random takes the least time to between 0.0021 and
0.0047 seconds on average, while CEDC-A takes the most
time, between 0.0346 seconds and 0.0833 seconds. CEDC-
A takes more time than RCC, GC and Random. This is
the performance price to pay for CEDC-A’s effectiveness
advantage over these approaches as shown and discussed
above. With the significant advantages of CEDC-A, espe-
cially where there are more edge servers, more data, and
less storage space, it is worth applying CEDC-A in the real
deployment.

5.3.5 Conclusion
Overall, CEDC-IP and CEDC-A outperform GC and Ran-
dom significantly and consistently in formulating cost-
effective data caching strategies in different CEDC scenarios.
As an approximation algorithm, the effectiveness of CEDC-
A is 96.37% to 97.54% on average as high as CEDC-IP as

shown by the results of experiment Set #1. In Set #2, CEDC-
A outperforms all other approaches significantly at the price
of slightly higher computational overheads. Thus, CEDC-IP
is suitable for solving small-size CEDC problems. To solve
large-scale CEDC problems, CEDC-A is more practical for
its high effectiveness and efficiency in finding near-optimal
solutions.

5.4 Threats to Validity

5.4.1 Construct Validity

The main threats to construct validity are the randomly gen-
erated graphs and and the four approaches used for com-
parison in the experiments. The graphs randomly generated
in the experiments may not represent all the edge server
networks in the real-world edge computing environment.
To minimize this threat, the experiment is repeated for 100
times - a total of 100 graphs are randomly generated - every
time the value of a setting parameter varies in the experi-
ments. In this way, a large number of edge server networks
are simulated in the experiments to provide comprehensive
guidelines on the performance of our approaches in real-
world scenarios. The comparison to RCC, NCCEDC-IP, GC
and Random, may not suffice to comprehensively evalu-
ate CEDC-IP and CEDC-A. To minimize this threat, three
experimental parameters are varied in the experiments to
simulate different CEDC scenarios. In this way, we could
evaluate CEDC-IP and CEDC-A by not only the comparison
with the four approaches but also by the impacts of the three
varying setting parameters.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

47

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

20 30 40 50 60 70
Number of edge servers

1

2

3

4

5
Be

ne
fit
 p
er
 c
ac

he
 c
os

t CEDC-A
RCC
GC
Random

(a) Set #2.1

2 4 6 8 10
Maximum storage space

2

3

4

5

Be
ne

fit
 p

er
 c

ac
he

 c
os

t

(b) Set #2.2

5 10 15 20 25 30
Number of data

1.50

1.75

2.00

2.25

2.50

2.75

Be
ne

fit
 p

er
 c

ac
he

 c
os

t

(c) Set #2.3

Fig. 5. Benefit per cache cost vs. parameters in Set #1

20 30 40 50 60 70
Number of edge servers

0.0

0.2

0.4

0.6

0.8

1.0

SR
R
pe

r c
ac
he

 c
os
t (
%
) CEDC-A

RCC
GC
Random

(a) Set #2.1

2 4 6 8 10
Maximum storage space

0.00

0.25

0.50

0.75

1.00

SR
R

pe
r c

ac
he

 c
os

t (
%

)

(b) Set #2.2

5 10 15 20 25 30
Number of data

0.25

0.30

0.35

0.40

0.45

SR
R

pe
r c

ac
he

 c
os

t (
%

)

(c) Set #2.3

Fig. 6. Ratio of served request per cache cost vs. parameters in Set #1

5.4.2 Threats to Internal Validity
The main threat to the internal validity is whether the
experiment setting favors CEDC-IP and CEDC-A over other
approaches. To minimize this threat, we varied three pa-
rameters to simulate various CEDC scenarios so that the
performance of different approaches could be compared
comprehensively and fairly. Moreover, all experiments were
repeated for 100 times and the results were averaged. This
way, the results of experiments were somehow set up in a
biased manner could be neutralized.

5.4.3 External Validity
The main threat here is whether CEDC-IP and CEDC-A
are also applicable for other edge computing scenarios. To
address this, we formulate the approaches and measure the
performance in a more generic way: evaluating the effective-
ness by using the number of data replicas and the number of
hops for cost and benefit. This way, the exact latency model
and cost model can be easily integrated into our approaches.
Moreover, the widely-used real-world data set is used to
evaluate all approaches. Thus, the representativeness and
comprehensiveness of the evaluation are ensured, and this
threat is reduced.

6 RELATED WORK

Data caching have been extensively investigated in the fields
of conventional distributed computing and cloud comput-
ing environments. With the popularity of edge computing,
data caching in the edge computing environment is obtain-
ing attention from researchers recently.

6.1 Conventional Distributed Data Caching
In the last few decades, there are many data caching prob-
lems investigated in conventional distributed computing
environments, including web caching [9], content delivery
network [34], etc. Banerjee et al. [35] developed a content
placement strategy for information-centric network based
on data popularity, namely Greedy Caching. With popu-
lar contents cached in the network, the Greedy Caching
approach considered the cache miss rate at the edge to
decide what contents would be cached on the core server.
In [36], the authors formulated two caching strategies for
data publish-subscribe systems, including eviction-based
caching and time-to-live-based caching to address the space
and time issues, respectively. The authors of [37] focused
on balancing the trade-off between latency and cost in the
content-centric network. They addressed this issue with a
holistic model for provisioning the storage capability based
on the network performance and the provisioning cost.

6.2 Cloud Data Caching
In the cloud computing environment, a critical problem of
data caching is how to utilize cache space efficiently on
cloud hosts and mobile devices.

Arteaga et al. [38] proposed CloudCache, a method
for managing cache, to fulfill the caching requirement of
the workload and minimize cache wear-out. In [39], the
authors presented how to use segment access-aware dy-
namic semantic cache in the cloud computing environ-
ment for relational databases. A cache access algorithm
was introduced to consider cache exact hit, cache extended

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

48

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

hit, cache partial hit and cache miss. The authors of [40]
explored the cache design space for embedded processors
with evolutionary techniques for mobile and thin client
processors in the cloud computing environment. A heuristic
and evolutionary method was presented to generate a near-
optimal cache space design for enhancing service quality. In
[41], the authors formulated a benefit maximization problem
and created a cache replacement approach based on traffic
requirements. They also introduced a content clustering
method for collecting popular data and clustering similar
contents.

6.3 Edge Data Caching

From the perspectives of network topology and infrastruc-
ture deployment, edge computing is an extension of cloud
computing with distributed computing capacities and ser-
vices at the edge of the network. App users in various do-
mains can benefit from the advantages of edge computing,
e.g., interactive gaming, real-time navigation, augmented re-
ality [2]. Offering many unique advantages, edge computing
also raises various new research challenges from the service
provider’s perspective, e.g., edge user allocation [3], [23],
edge data distribution [8], edge application deployment
[33], [42], edge data integrity [43], etc.

Recently, there are some researchers starting to inves-
tigate the data caching problems in edge computing. As
mentioned in Section 2, the data caching strategies from
conventional distributed computing and cloud computing
cannot be directly applied in edge computing. Thus, those
researches introduced new ideas and approaches. Cao et
al. proposed an optimal auction mechanism with the con-
sideration of the costs produced during delivery and re-
trieval [44]. The authors of [45] provided a caching system,
namely Agar, from the erasure-coded perspective. Agar was
a dynamic programming algorithm which could cache data
chunks optimally with consideration of data popularity and
network latency. Zhang et al. [46] integrated in-network
caching and edge caching to ensure the latency require-
ments of time-sensitive transmissions over the 5G network.
Drolia et al. [47] proposed a caching system, namely Cachier,
to minimize the data retrieval latency. They implemented a
coordinating mechanism to balance the loads between the
cloud server and edge servers dynamically. The authors
of [48] introduced a new edge caching architecture with
improved resource utility by using smart vehicles as ex-
ternal edge caches. Poularakis et al. [17] studied the joint
optimization of service placement and request routing in the
edge computing environment. The authors of [49] proposed
a hierarchical caching mechanism in the edge computing
environment with consideration of wireless communication.
They aimed to maximize the hitting rate by caching data in
different layers including routers, base stations and mobile
devices. In [50], the authors studied the budgeted service
placement problem in the edge computing environment.
They proposed a Lyapunov-based algorithm for minimiz-
ing the overall data retrieval latency. Deng et al. [51] also
investigated the service deployment problem in the edge
computing environment but tried to minimize the overall
cost rather than latency. They provided a primal-dual al-
gorithm named IDA4ReE to solve this problem under a

resource constraint and performance requirement. However,
these studies did not fully consider the unique constraints
in the edge computing environment, i.e. the server capacity
constraint, the server coverage constraint and the server
adjacency constraint.

Edge computing inherits the pay-as-you-go pricing
model from cloud computing, which allows service
providers to hire storage resources on edge servers from
edge infrastructure providers to cache app data for their
own users. Thus, both the benefit produced and the cost
incurred by data caching for service providers is critical to
the success of edge computing because, after all, service
providers are the main customers in the edge computing
environment. However, the above studies tackle the data
caching problem from either the mobile network operator’s
or the app user’s perspective. In [15], the data caching prob-
lem is firstly tackled from the service provider’s perspective
in the edge computing environment with the aim to cover
all the app users in an area. The approach proposed in [15]
can only cache data individually and does not consider the
constrained cache spaces on edge servers or edge servers’
ability to communicate. In this paper, we considered the
these practical issues and converted the EDC problem into
the constrained edge data caching (CEDC) problem. We
solved the CEDC problem in a generic manner to maximize
the data caching benefit with finite cache spaces on edge
servers, considering the unique server capacity constraint,
server coverage constraint and the server adjacency con-
straint in the edge computing environment.

7 CONCLUSION

In this paper, we formulated the new constrained edge data
caching (CEDC) problem in the edge computing environ-
ment from the service provider’s perspective. We proved
that the CEDC problem is NP-hard. To solve this problem,
we proposed an optimal approach named CEDC-IP based
on integer programming to maximum the data caching
benefit measured by the overall reduction in app users’ data
retrieval latency with limited cache resources. As the CEDC
problem is NP-hard, we also provided an approximation
approach named CEDC-A for finding approximate solu-
tions to large-scale CEDC problems efficiently. Extensive ex-
periments were conducted on a widely-used real-world data
set to evaluate the performance of the proposed approaches.
The results showed that our approaches significantly out-
performed the state-of-the-art approaches in various CEDC
scenarios. In our future work, we will consider the mobility
of app users, real-time cache updating scenarios, security
constraints and data regulation.

ACKNOWLEDGEMENT

This research is partially funded by Australian Research
Council Discovery Projects No. DP180100212, DP200102491
and Laureate Fellowship FL190100035. Qiang He is the
corresponding author of this paper.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

49

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

REFERENCES

[1] A. Osseiran, V. Braun, T. Hidekazu, P. Marsch, H. Schotten,
H. Tullberg, M. A. Uusitalo, and M. Schellman, “The foundation
of the mobile and wireless communications system for 2020 and
beyond: Challenges, enablers and technology solutions,” in IEEE
77th Vehicular Technology Conference (VTC2013-Spring), 2013, pp. 1–
5.

[2] M. Yannuzzi, F. van Lingen, A. Jain, O. L. Parellada, M. M. Flores,
D. Carrera, J. L. Pérez, D. Montero, P. Chacin, A. Corsaro et al., “A
new era for cities with fog computing,” IEEE Internet Computing,
vol. 21, no. 2, pp. 54–67, 2017.

[3] P. Lai, Q. He, M. Abdelrazek, F. Chen, J. Hosking, J. Grundy, and
Y. Yang, “Optimal edge user allocation in edge computing with
variable sized vector bin packing,” in International Conference on
Service-Oriented Computing, 2018, pp. 230–245.

[4] G. Cui, Q. He, X. Xia, P. Lai, F. Chen, T. Gu, and Y. Yang,
“Interference-aware saas user allocation game for edge comput-
ing,” IEEE Transactions on Cloud Computing, 2020.

[5] T. X. Tran, M.-P. Hosseini, and D. Pompili, “Mobile edge com-
puting: Recent efforts and five key research directions,” IEEE
COMSOC MMTC Commun.-Frontiers, vol. 12, no. 4, pp. 29–33,
2017.

[6] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading
for energy-constrained mobile edge computing in small-cell net-
works,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp.
1619–1632, 2018.

[7] S. Wu, C. Niu, J. Rao, H. Jin, and X. Dai, “Container-based
cloud platform for mobile computation offloading,” in 2017 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2017, pp. 123–132.

[8] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Cost-effective app data distribution in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp.
31–44, 2020.

[9] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replace-
ment strategies,” ACM Computing Surveys (CSUR), vol. 35, no. 4,
pp. 374–398, 2003.

[10] K. Elhardt and R. Bayer, “A database cache for high performance
and fast restart in database systems,” ACM Transactions on Database
Systems (TODS), vol. 9, no. 4, pp. 503–525, 1984.

[11] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N.
Diggavi, “Hierarchical coded caching,” IEEE Transactions on In-
formation Theory, vol. 62, no. 6, pp. 3212–3229, 2016.

[12] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal
request routing and content caching in heterogeneous cache net-
works,” IEEE/ACM Transactions on Networking (TON), vol. 25,
no. 3, pp. 1635–1648, 2017.

[13] C.-Y. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic
caching: Sequential coding for computing,” IEEE Transactions on
Information Theory, vol. 62, no. 11, pp. 6393–6406, 2016.

[14] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing—a key technology towards 5g,” ETSI white paper,
vol. 11, no. 11, pp. 1–16, 2015.

[15] X. Xia, F. Chen, Q. He, G. Cui, P. Lai, M. Abdelrazek, J. Grundy, and
H. Jin, “Graph-based optimal data caching in edge computing,” in
International Conference on Service-Oriented Computing. Springer,
2019, pp. 477–493.

[16] ——, “Graph-based data caching optimization for edge comput-
ing,” Future generation computer systems, vol. 113, pp. 228–239, 2020.

[17] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile
edge computing networks,” in IEEE INFOCOM 2019-IEEE Confer-
ence on Computer Communications. IEEE, 2019, pp. 10–18.

[18] H. Zhao, S. Deng, Z. Liu, J. Yin, and S. Dustdar, “Distributed
redundancy scheduling for microservice-based applications at the
edge,” IEEE Transactions on Services Computing, 2020.

[19] S. Deng, Z. Xiang, P. Zhao, J. Taheri, H. Gao, J. Yin, and A. Y.
Zomaya, “Dynamical resource allocation in edge for trustable
internet-of-things systems: A reinforcement learning method,”
IEEE Transactions on Industrial Informatics, vol. 16, no. 9, pp. 6103–
6113, 2020.

[20] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on Computer Communications. IEEE,
2016, pp. 1–9.

[21] H. Guo and J. Liu, “Collaborative computation offloading for
multi-access edge computing over fiber-wireless networks,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4514–4526,
2018.

[22] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.
281–294, 2020.

[23] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and
Y. Yang, “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Transactions on Parallel and
Distributed Systems, 2019.

[24] P. Lai, Q. He, G. Cui, X. Xia, M. Abdelrazek, F. Chen, J. Hosking,
J. Grundy, and Y. Yang, “Edge user allocation with dynamic
quality of service,” in International Conference on Service-Oriented
Computing. Springer, 2019, pp. 86–101.

[25] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[26] W. Chen, D. Wang, and K. Li, “Multi-user multi-task computation
offloading in green mobile edge cloud computing,” IEEE Transac-
tions on Services Computing, vol. 12, no. 5, pp. 726–738, 2018.

[27] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks
with mobile edge computing,” IEEE Transactions on Wireless Com-
munications, vol. 16, no. 8, pp. 4924–4938, 2017.

[28] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and com-
puting optimization in wireless powered mobile-edge computing
systems,” IEEE Transactions on Wireless Communications, vol. 17,
no. 3, pp. 1784–1797, 2018.

[29] J. L. D. Neto, S.-y. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar,
and S. Secci, “Uloof: a user level online offloading framework for
mobile edge computing,” IEEE Transactions on Mobile Computing,
vol. 17, no. 11, pp. 266–2674, 2018.

[30] E. Hazan, S. Safra, and O. Schwartz, “On the complexity of
approximating k-set packing,” computational complexity, vol. 15,
no. 1, pp. 20–39, 2006.

[31] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A prov-
ably efficient online collaborative caching algorithm for multicell-
coordinated systems,” IEEE Transactions on Mobile Computing,
vol. 15, no. 8, pp. 1863–1876, 2016.

[32] X. Xia, F. Chen, G. Cui, M. Abdelrazek, J. Grundy, H. Jin, and
Q. He, “Budgeted data caching based on k-median in mobile edge
computing,” in 27th IEEE International Conference on Web Services.
IEEE, 2020, pp. 197–206.

[33] B. Li, Q. He, G. Cui, X. Xia, F. Chen, H. Jin, and Y. Yang,
“Read: Robustness-oriented edge application deployment in edge
computing environment,” IEEE Transactions on Services Computing,
2020.

[34] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize:
Orchestrating the hot object memory cache in a content delivery
network,” in 14th USENIX Symposium on Networked Systems Design
and Implementation, 2017, pp. 483–498.

[35] B. Banerjee, A. Kulkarni, and A. Seetharam, “Greedy caching:
An optimized content placement strategy for information-centric
networks,” Computer Networks, vol. 140, pp. 78–91, 2018.

[36] M. Y. S. Uddin and N. Venkatasubramanian, “Edge caching for
enriched notifications delivery in big active data,” in 38th IEEE
International Conference on Distributed Computing Systems (ICDCS),
2018, pp. 696–705.

[37] Y. Li, H. Xie, Y. Wen, and Z.-L. Zhang, “Coordinating in-network
caching in content-centric networks: Model and analysis,” in
33rd IEEE International Conference on Distributed Computing Systems
(ICDCS), 2013, pp. 62–72.

[38] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and M. Zhao,
“Cloudcache: On-demand flash cache management for cloud com-
puting,” in 14th USENIX Conference on File and Storage Technolo-
gies(FAST), 2016, pp. 355–369.

[39] K. Ma, B. Yang, Z. Yang, and Z. Yu, “Segment access-aware dy-
namic semantic cache in cloud computing environment,” Journal
of Parallel and Distributed Computing, vol. 110, pp. 42–51, 2017.

[40] A.-H. A. Badawy, G. Yessin, V. Narayana, D. Mayhew, and
T. El-Ghazawi, “Optimizing thin client caches for mobile cloud
computing: Design space exploration using genetic algorithms,”
Concurrency and Computation: Practice and Experience, vol. 29, no. 11,
pp. 1–13, 2017.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

50

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. **, NO. *, NOVEMBER 2020

[41] S. Tamoor-ul Hassan, S. Samarakoon, M. Bennis, M. Latva-Aho,
and C. S. Hong, “Learning-based caching in cloud-aided wireless
networks,” IEEE Communications Letters, vol. 22, no. 1, pp. 137–140,
2018.

[42] F. Chen, J. Zhou, X. Xia, H. Jin, and Q. He, “Optimal application
deployment in mobile edge computing environment,” in 13th IEEE
International Conference on Cloud Computing. IEEE, 2020, pp. 184–
192.

[43] B. Li, Q. He, F. Chen, H. Jin, Y. Xiang, and Y. Yang, “Auditing
cache data integrity in the edge computing environment,” IEEE
Transactions on Parallel and Distributed Systems, 2020.

[44] X. Cao, J. Zhang, and H. V. Poor, “An optimal auction mechanism
for mobile edge caching,” in 38th IEEE International Conference on
Distributed Computing Systems (ICDCS), 2018, pp. 388–399.

[45] R. Halalai, P. Felber, A.-M. Kermarrec, and F. Taı̈ani, “Agar: A
caching system for erasure-coded data,” in 37th IEEE International
Conference onDistributed Computing Systems (ICDCS), 2017, pp. 23–
33.

[46] X. Zhang and Q. Zhu, “Hierarchical caching for statistical qos
guaranteed multimedia transmissions over 5g edge computing
mobile wireless networks,” IEEE Wireless Communications, vol. 25,
no. 3, pp. 12–20, 2018.

[47] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in 37th IEEE Interna-
tional Conference onDistributed Computing Systems (ICDCS), 2017,
pp. 276–286.

[48] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5g networks with mobile edge computing,”
IEEE Wireless Communications, vol. 25, no. 3, pp. 80–87, 2018.

[49] X. Zhang and Q. Zhu, “Collaborative hierarchical caching over
5g edge computing mobile wireless networks,” in 2018 IEEE
International Conference on Communications (ICC). IEEE, 2018, pp.
1–6.

[50] J. Zhou, J. Fan, J. Wang, and J. Jia, “Dynamic service deployment
for budget-constrained mobile edge computing,” Concurrency and
Computation: Practice and Experience, vol. 31, no. 24, pp. 1–16, 2019.

[51] S. Deng, Z. Xiang, J. Taheri, K. A. Mohammad, J. Yin, A. Zomaya,
and S. Dustdar, “Optimal application deployment in resource con-
strained distributed edges,” IEEE Transactions on Mobile Computing,
2020.

Xiaoyu Xia received his Master degree from The
University of Melbourne, Australia in 2015. He
is a PhD candidate at Deakin University. His
research interests include edge computing, par-
allel and distributed computing, service comput-
ing, software engineering and cloud computing.

Feifei Chen received her PhD degree from
Swinburne University of Technology, Australia in
2015. She is a lecturer at Deakin University. Her
research interests include software engineering,
cloud computing and green computing.

John C. Grundy received the BSc (Hons), MSc,
and PhD degrees in computer science from the
University of Auckland, New Zealand. He is cur-
rently Australian Laureate Fellow and a profes-
sor of software engineering at Monash Univer-
sity, Melbourne, Australia. He is an associate
editor of the IEEE Transactions on Software En-
gineering, the Automated Software Engineering
Journal, and IEEE Software. His current inter-
ests include domain-specific visual languages,
model-driven engineering, large-scale systems

engineering, and software engineering education. More details about
his research can be found at https://sites.google.com/site/johncgrundy/.

Mohamed Abdelrazek is an Associate Pro-
fessor of Software Engineering and IoT at
Deakin University. Before joining Deakin Uni-
versity in 2015, he worked as a senior re-
search fellow at Swinburne University of Tech-
nology and Swinburne-NICTA software innova-
tion lab (SSIL). Before 2010, he was the head of
software development department at Microtech.
More details about his research can be found at
https://sites.google.com/site/mohamedalmorsy/.

Hai Jin is a Cheung Kung Scholars Chair Pro-
fessor of computer science and engineering at
Huazhong University of Science and Technology
(HUST) in China. Jin received his PhD in com-
puter engineering from HUST in 1994. His re-
search interests include computer architecture,
virtualization technology, cluster computing and
cloud computing, peer-to-peer computing, net-
work storage, and network security.

Qiang He received his first PhD degree from
Swinburne University of Technology, Australia,
in 2009 and his second PhD degree in com-
puter science and engineering from Huazhong
University of Science and Technology, China,
in 2010. He is an Associate Professor at
Swinburne. His research interests include ser-
vice computing, software engineering, cloud
computing and edge computing. More de-
tails about his research can be found at
https://sites.google.com/site/heqiang/.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TSC.2021.3062017

51

3.3 Summary

Chapter 3 makes the first attempt to solve data placement problems in edge com-

puting from an app vendor’s perspective, and answers RQ1. In this chapter, we first

investigate the individual data placement problem in edge computing and propose

two approaches, including an optimal approach and a greedy algorithm. After that,

considering three major issues in Chapter 3.1, we study the multi-data placement

problem under the reserved cache space constraint via multiple hops in the edge com-

puting environment. Similar to Chapter 3.1, we propose an optimal solution to solve

this problem exactly and an approximation algorithm to find solutions effectively and

efficiently. This chapter has established the foundation for the edge data placement

problem and opened up a number of research directions.

52

Chapter 4

Edge Data Replacement

In the edge computing environment, data should be placed and replaced dynamically

over time. Placed data may need to be flushed out to save cache spaces for more

popular data. Moreover, users arrive and leave the specific area covered by edge

servers over time. These dynamic data demands and user mobility are not known

in advance and must be accommodated on the fly. To address the dynamics in

edge computing and answer RQ2, this chapter aims to investigate the edge data

replacement problem from the app vendor’s perspective, comprised of two published

papers.

53

4.1 Lyapunov-Based Collaborative Data Replace-

ment Strategies in Edge Computing

From the app vendor’s perspective, it is critical to find a suitable data replacement

strategy that minimizes the total cost with limited storage spaces on edge servers

while fulfilling the unique constraints of edge computing, including server capacity

constraint, server coverage constraint and server adjacency constraint. To optimally

place and replace data on edge servers, complete information about the edge com-

puting system overtime is required. However, it is unrealistically in real-world sce-

narios where users’ data requests usually arrive dynamically. In this chapter, we

propose a Lyapunov-based collaborative data replacement approach named CEDC-O

to minimize the total cost while ensuring low data retrieval latency. We evaluate

this approach on a real-world dataset, and the results demonstrate that our approach

outperforms the state-of-the-art approaches significantly.

This chapter is based on a published paper, entitled: Online Collaborative Data

Caching in Edge Computing, IEEE Transactions on Parallel and Distributed Systems,

Vol. 32(2), pp. 281-294.

54

Online Collaborative Data Caching in Edge
Computing

Xiaoyu Xia , Feifei Chen , Qiang He , Senior Member, IEEE, John Grundy , Senior Member, IEEE,

Mohamed Abdelrazek, and Hai Jin , Fellow, IEEE

Abstract—In the edge computing (EC) environment, edge servers are deployed at base stations to offer highly accessible computing

and storage resources to nearby app users. From the app vendor’s perspective, caching data on edge servers can ensure low latency

in app users’ retrieval of app data. However, an edge server normally owns limited resources due to its limited size. In this article, we

investigate the collaborative caching problem in the EC environment with the aim to minimize the system cost including data caching

cost, data migration cost, and quality-of-service (QoS) penalty. We model this collaborative edge data caching problem (CEDC) as a

constrained optimization problem and prove that it isNP-complete. We propose an online algorithm, called CEDC-O, to solve this

CEDC problem during all time slots. CEDC-O is developed based on Lyapunov optimization, works online without requiring future

information, and achieves provable close-to-optimal performance. CEDC-O is evaluated on a real-world data set, and the results

demonstrate that it significantly outperforms four representative approaches.

Index Terms—Edge computing, data caching, online algorithm

Ç

1 INTRODUCTION

THE world has witnessed an exponential growth of mobile
devices including mobile phones, wearable devices, tab-

lets, smart vehicle and Internet-of-Things (IoT) devices over
the last decade [1]. The enormous network traffic often
causes network congestion and increases network latency.
To address this issue, edge computing (EC), a new comput-
ing paradigm, has emerged to distribute computing capaci-
ties from centralized cloud to distributed edge servers [2].
Each edge server is powered by one or more physical devi-
ces and is attached to a base station or an access point that is
geographically close to app users’ mobile devices. Mobile
and IoT application vendors (referred to as app vendor here-
after) can host their apps on edge servers (referred to as edge
apps hereafter) to ensure low latency and high-quality serv-
ices for their app users by hiring computing and storage
resources on edge servers [3]. Computation tasks can be off-
loaded from mobile devices to nearby edge servers to
reduce the computation overhead and energy consumption

on those mobile devices [4], [5], [6], [7]. This is a key technol-
ogy that facilitates the 5G mobile network [8].

As a rapidly increasing number of app users begin to
access edge apps, more mobile data will be transmitted
through edge servers between the cloud and app users’
mobile devices. From an app vendor’s perspective, caching
those data, especially popular ones like viral videos and
posts from Facebook1 and Twitter,2 will significantly reduce
network delay in app users’ retrieval of app data. App users
can retrieve data from nearby edge servers instead of from
the remote cloud servers if the data are already cached on
those edge servers. In addition, caching data on edge serv-
ers can also considerably reduce the amount of data trans-
ferred between the cloud and the mobile devices, which
consequently lower app vendors’ cost of data transfer under
the pay-as-you-go pricing scheme.

Data caching techniques have been widely implemented
in many different domains, from hardware cache, e.g., CPU
[9], GPU [10], memory [11], disks [12], to software cache,
e.g., web [13], database [14], etc. In the network domain,
data caching has also been intensively studied to leverage
its advantages in saving bandwidth consumption, reducing
network latency and minimizing access costs [15], [16], [17].
In the last few years, many researchers have investigated
network cache from different perspectives, e.g., cache allo-
cation and replacement strategies [18], coded caching [19],
request routing [20], and information-theoretic caching [21],
[22]. As a new computing paradigm, EC offers new oppor-
tunities and raises new challenges for data caching. The fun-
damental objective and mechanism are to cache popular
data on edge servers so that nearby app users can retrieve
the cached data with low latency. This is especially

� Xiaoyu Xia, Feifei Chen, and Mohamed Abdelrazek are with the School of In-
formation Technology, Deakin University, Geelong, Victoria 3220, Australia.
E-mail: {xiaoyu.xia, feifei.chen, mohamed.abdelrazek}@deakin.edu.au.

� Qiang He is with the School of Software and Electrical Engineering, Swin-
burne University of Technology, Melbourne, Victoria 3122, Australia.
E-mail: qhe@swin.edu.au.

� John Grundy is with the Faculty of Information Technology, Monash Univer-
sity,Melbourne, Victoria 3800, Australia. E-mail: john.grundy@monash.edu.

� Hai Jin is with the Services Computing Technology and System Lab, Big
Data Technology and System Lab, Cluster and Grid Computing Lab, School
of Computer Science and Technolgoy, Huazhong University of Science and
Technology,Wuhan, Hubei 430074, China.
E-mail: hjin@hust.edu.cn.

Manuscript received 16 Jan. 2020; revised 17 June 2020; accepted 3 Aug. 2020.
Date of publication 13 Aug. 2020; date of current version 24 Aug. 2020.
(Corresponding author: Qiang He.)
Recommended for acceptance by Y. Yang.
Digital Object Identifier no. 10.1109/TPDS.2020.3016344

1. https://www.facebook.com/
2. https://www.twitch.tv/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

55

important for latency-sensitive applications, e.g., interactive
gaming, real-time navigation, augmented reality, etc. In
addition, caching data on edge servers can also lift the traf-
fic burden on the Internet backbone by reducing the amount
of mobile traffic data transmitted between the cloud and
app users’ mobile devices significantly [23].

Given a set of popular data, from an app vendor’s per-
spective, a straightforward solution is to cache them all on
every edge server in a particular area to minimize the
latency in its app users’ data retrieval in that area. In addi-
tion to data latency, the app vendor also needs to consider
the cost of hiring storage resources on edge servers for data
caching based on the pay-as-you-go pricing model. The cost
also occurs during data transmission and migration among
the network. Thus, from an app vendor’s perspective, it is
critical to find a collaborative data caching strategy that
minimizes the total system cost with limited storage spaces
on edge servers while fulfilling the above mentioned con-
straints in the edge computing environment, including
server capacity constraint, server coverage constraint and
server adjacency constraint. Over time, a lot of data will be
cached on the edge servers and new data will replace old
data. An app vendor’s hired storage resources on edge serv-
ers and its cached app data constitute an edge caching sys-
tem. In the long-term, how to keep an app vendor’s edge
caching system stable over time across multiple time slots is
the key problem to be solved in this paper.

We refer to this data caching problem in the EC environ-
ment collaborative edge data caching (CEDC) problem. To the
best of our knowledge, this work is the first attempt to solve
this CEDC problem from the app vendor’s perspective. The
key contributions of this work are as follows:

� We model and formulate the CEDC problem as a
constrained optimization problem from the app ven-
dor’s perspective.

� We prove that the CEDC problem isNP-complete.
� We propose an online algorithm named CEDC-O

based on Lyapunov optimization to solve the CEDC
problem across multiple time slots without requiring
future information, and prove the performance
bounds of this algorithm.

� We evaluate the performance of our algorithm by
extensive simulations conducted on a real-world
data set.

The rest of the paper is organized as follows. Section 2
presents an example to illustrate and motivate the CEDC
problem. Section 3 presents the systemmodel, formulates the
CEDC problem and proves its NP-completeness. Section 4
presents the CEDC-O algorithm and theoretically analyzes its
performance bounds. Section 5 evaluates the CEDC-O algo-
rithm experimentally. Section 6 reviews the related work, fol-
lowed by the conclusion in Section 7.

2 MOTIVATING EXAMPLE

EC is significantly different from cloud computing which
facilitates the content-centric network and the content deliv-
ery network. In the EC environment, adjacent edge servers
deployed at different base stations can communicate with
their neighbor edge servers and transmit data via high-speed

links [4], [24]. App users’ workloads in a particular area can
be transferred and balanced across the edge servers covering
that area [4]. This architecture overcomes the single-point
failure problem encountered by the one with the macro base
station [25]. Thus, the edge servers in a particular area can
constitute a graph, namely edge server network, where a node
represents an edge server and an edge represents the link
between two edge servers.

Fig. 1 shows an example of a typical edge environment
involving a set of mobile devices, fm1; . . . ;m6g, and edge
servers, fv1; . . . ; v4g. Mobile devices connect to edge servers
to retrieve data. Compared to cloud servers, the storage
resources on an edge server are usually limited due to their
limited sizes [26]. This intensifies the competition between
app vendors for computing and storage resources on edge
servers, making it extremely expensive and, in most cases
impossible, for an app vendor to cache all its app data on
every edge server. In such an environment, the common prac-
tice for an app vendor is to reserve a number of cache spaces
on each edge servers for caching its most popular data. This is
a fundamental difference between cloud computing and EC
because the computing and storage resources available in the
cloud are often assumed to be virtually unlimited. The limited
resources on edge servers are referred to as the server capacity
constraint. Furthermore, data caching in the EC environment
differs from data caching in the cloud computing environ-
ment as well as other conventional distributed computing
environmentswith its two unique constraints, i.e., server cover-
age constraint and server adjacency constraint:

Server coverage constraint: An edge server covers a spe-
cific geographical area so that app users’ mobile devices
within its coverage area can connect to it via LTE or Radio
Network [27]. In a particular area, a number of edge servers
are usually deployed in a distributed manner so that they
can cover different geographical areas. The coverage areas
of adjacent edge servers usually partially overlap to avoid
blank areas not covered by any edge servers. For example,
mobile device m1 in Fig. 1 can directly access edge server v2
and v3 whilem2 can only access edge server v1 directly.

Server adjacency constraint: An app user can retrieve
cached app data from its nearby edge servers (referred to as
local edge servers hereafter) if the data is cached on any of
these edge servers. Otherwise, the data can be retrieved from
those local edge servers’ neighbor edge servers, i.e., edge serv-
ers that are directly linked to them via high-speed links [24].
Either way, it is faster than retrieving the data from a remote

Fig. 1. An example scenario for edge computing.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

56

cloud server [24]. Take m1 in Fig. 1 as an example. This
device can access the caches in its local edge servers v2 and
v3, or its neighbor edge servers v1 and v4, or the remote cloud.
The only difference is the data retrieval latency, which is rep-
resented by the different colors of the links in Fig. 1.

3 SYSTEM MODEL

In this section, we first introduce the system architecture for
edge data caching, then define the three components of sys-
tem cost, including data caching cost, data migration cost and
QoS penalty based on the constrains discussed in Section 2.
The notations adopted in this section are summarized in
Table 1.

3.1 System Architecture

In this research, we model the edge server network within a
specific area as a graph GðV;EÞ where V ¼ fv1; . . . ; vng is
the set of nodes and E ¼ fe1; . . . ; ekg is the set of edges in G.
In this graph, each node v 2 V represents an edge server,
while each edge e 2 E represents the link between two edge
servers in G. In the remainder of this paper, we will speak inter-
changeably of an edge server and its corresponding node in G,
both denoted by v.

To quantify the optimization objective and constraints in
the CEDC problem in a generic manner, we measure the
data sizes and cache spaces by the number of data units,
and the data retrieval latency with the number of hops.
Take Fig. 1 as an example. The cost of caching data d on all
the four edge servers is 4. When data d is only cached on
edge server v3, Device 1 can retrieve the data from its local
edge server v3 via 0 hop, while Device 1 can retrieve the
data from its neighbor edge server v4 via 1 hop. This way,
these models can be easily extended by integrating specific
pricing models and latency models from edge infrastructure
providers.

Given a set of data D required by app users in a specific
area in time slot t, a data caching strategy to cover those
data requests can be presented as �t ¼ f�t

1; . . . ; �
t
ng, where

�t
i ¼ f�t

i;d; 8d 2 Dg. �t
i;d denotes whether data d is cached on

edge server vi:

�t
i;d ¼

0 if data d is not cached on vi in time slot t
1 if data d is cached on vi in time slot t

�
:

(1)

Let us denote ttm;d as whether the request for data d from
the app user’s mobile devicem exists in time slot t:

ttm;d ¼
0 if the m0s request for data d does

not exist in time slot t
1 if the m0s request for data d exists in t

8<
: :

(2)

Since the data requests arrive randomly in the stochastic
EC environment, we model the data request arrivals as an
independent and identical distribution, similar to many
studies in the fields of edge computing, cloud computing
and wireless networking [28], [29], [30].

As mentioned in Section 1, the storage resources on an
edge server is usually limited. Thus, the competition
between app vendors usually makes it impossible for an
app vendor to cache all its app data on every edge server.
Thus, the number of data cached in any time slot t on each
edge server vi cannot violate the available server capacity
constraint:

X
d2D

�t
i;d � Ai; 8t ¼ f0; :::; T � 1g; i ¼ f1; . . . ; ng: (3)

3.2 Data Retrieval Latency

The data retrieval latency in the edge server network con-
sists of two components: the latency between the device
and its nearby edge server, and the latency between its local

TABLE 1
Notations in Our System Model

Notation Description

Ai available cache spaces on edge server i
Cð�tÞ total system cost in time slot t
CDð�tÞ cost of data storage in time slot t
CMð�tÞ cost of data migration in time slot t
CPð�tÞ QoS penalty in time slot t
cl unit cost of data latency
cmc unit cost of data migration from cloud
cms unit cost of data migration from edge server
cs unit cost of data storage
d requested data d
D finite set of requested data
E finite set of links between edge servers
G graph presenting the edge server network
li;j hops between edge server vi and vj
lti;d lowest latency to migrate data d for vi from the

edge server network in time slot t
ltm;d lowest latency of for mobilem to retrieve d

from the edge server network in time slot t
lT latency limit accepted by the app vendor
L long-term average latency constraint
m mobile devicem
M set of mobile devices
Mj set of mobile devices covered by server vj
t time slot t
T infinite set of time
V set of edge servers
vi edge server i
X t

i;d binary variable indicating whether data d has
been already cached on edge server vi at the
beginning of time t

Yt
i;d binary variable indicating whether edge server

i can retrieve data d from a neighbor edge
server or the remote cloud

�t data caching strategy in time slot t
�t
i;d binary variable indicating whether data d

will be cached on edge server vi at the end
of time t

ttm;d binary variable indicating whether the mobile
devicem requests for data d in time slot t

r ratio of cmc over cs
h ratio of cms over cs
v ratio of cp over cs

XIA ETAL.: ONLINE COLLABORATIVE DATA CACHING IN EDGE COMPUTING

57

edge server and neighbor edge server. As the first compo-
nent is extremely small in the 5G network and not influ-
enced by the data caching strategy, it is not considered in
the formulation of the data caching strategy. Thus the net-
work delay in retrieving data d for the app user’s mobile
devicem in time slot t is calculated as follows:

ltm;d ¼ minfli;j; �t
i;d ¼ 1; vi 2 V g; 8m 2 Mj; (4)

where vi is the edge server caching data d and vj is the edge
server covering the app user’s mobile device m, and li;j is
the number of hops between vi and vj.

We denote lT as the latency limit specified by the app
vendor. If the latency ltm;d is higher than lT , mobile device m
will access the data directly from the remote cloud. In this
way, the delay in m’s retrieval of data d from the remote
cloud server c in time slot t is calculated as ltm;d ¼ lc;m, where
lc;m > lT is the latency between c andm.

3.3 System Cost

From the app vendor’s perspective, a key performance indi-
cator for its edge caching system is the total system cost pro-
duced by the data caching strategy.

Fig. 2 depicts the key elements of the system cost model.
Data caching cost is measured based on the storage resources
hired by the app vendor in each time slot. Data migration
cost is produced by migrating data from the cloud or the
neighbor edge servers to the local edge servers. QoS penalty
is the third component of the system cost, occurring when a
user has to retrieve data from the cloud server with a high
latency.

3.3.1 Data Caching Cost

It is calculated by how many cache spaces hired by the app
vendor. As mentioned above, the cache spaces are mea-
sured by the number of data units. Thus, the data caching
cost in time slot t can be calculated as follows:

CDð�tÞ ¼
X
vi2V

X
d2D

cs�
t
i;d; (5)

where cs is the unit cost of hiring data resources on an edge
server for data caching.

3.3.2 Data Migration Cost

As transferring new data from the remote cloud to an edge
server or between edge servers to be cached incurs addi-
tional network delay, data migration cost is incurred and is
calculated based on the number of new cached data. Here,
we denote X t

i;d ¼ 0 if data d is already cached on edge server
vi at the start of time slot t, otherwise X t

i;d ¼ 1:

X t
i;d ¼ 1� �t�1

i;d : (6)

Similar to (4), we denote lti;d ¼ minfli;j; �t�1
j;d ¼ 1; 8vj 2 V g

as the lowest latency for edge server vi to obtain data d in
time slot t, over the edge server network. We denote the
unit cost of data migration from the cloud to the app user’s
mobile device by cmc, and the unit cost of data transmission
from a neighbor edge server to mobile device by cms. If the
cost of data migration over the edge server network is
higher than that from the remote cloud (cms � lti;d > cmc), vi
will retrieve the data from the remote cloud directly. Here
we denote the source of a requested data as Yt

i;d 2 f0; 1g:

Yt
i;d ¼

0 if cms � lti;d > cmc

1 if cms � lti;d � cmc

�
: (7)

Thus, we obtain the data migration cost as follows:

CMð�tÞ ¼
X
vi2V

X
d2D

�t
i;dX t

i;dððcms�lti;d � cmcÞYt
i;d þ cmcÞ: (8)

We denote r as the ratio of cmc over cs and h as the ratio
of cms over cs, then we obtain:

CMð�tÞ ¼
X
vi2V

X
d2D

cs�
t
i;dX t

i;dððh�lti;d � rÞYt
i;d þ rÞ: (9)

3.3.3 QoS Penalty

As mentioned in Section 2, the data can be retrieved from
local edge servers or neighbor edge servers. Either way, it is
faster than retrieving the data from a remote cloud server
[24]. Thus, the quality-of-service (QoS) is impacted signifi-
cantly for users who cannot retrieve data from any available
edge servers within lT . Thus, the QoS penalty occurs when
a user has to retrieve data from the remote cloud server or
from an edge server with a limit-violating latency. Here, we
denote utm;d 2 f0; 1g to indicate whether a QoS penalty is
applied tom’s retrieval of data d:

utm;d ¼
1 if ltm;d > lT
0 if ltm;d � lT

�
: (10)

Please notice that lc;m > lT ; 8m 2 M. This way, utm;d is
always 1.

We denote cp as the unit cost incurred by QoS penalty,
determined by the app vendor based on its priority for its
app users’ QoS. The QoS penalty in time slot t, as part of
system cost, is calculated as:

CPð�tÞ ¼
X
m2M

X
d2D

cpu
t
m;d ¼

X
m2M

X
d2D

v � csutm;d; (11)

where v is the ratio of cp over cs.

Fig. 2. System Cost: Data caching cost, migration cost and QoS penalty.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

58

3.4 Problem Formulation and Hardness

With the consideration of the systemarchitecture in Section 3.1
and the costs presented in Section 3.3, the total system cost is
calculated by summing all the aforementioned costs:

Cð�tÞ ¼ CDð�tÞ þ CMð�tÞ þ CPð�tÞ
¼ csð

X
vi2V

X
d2D

�t
i;dð1þX t

i;dððh� rÞYt
i;d þ rÞÞ

þ
X
m2M

X
d2D

v � csutm;d:

(12)

In a CEDC scenario, from the app vendor’s perspective, it
is important to minimize the system cost incurred by cach-
ing data on edge servers, migrating data across edge servers
and failing to serve users on edge servers. While pursing
this optimization objective, it is also necessary to stabilize
the time-averaged system latency perceived by the users in
the long term. Thus, an app vendor usually has a long-term
average system latency constraint for requests served by
edge servers, denoted by L. Thus, the following inequality
must be fulfilled:

lim
T!1

1

T

XT�1

t¼0

P
m2M

P
d2D utm;d � ltm;dP

m2M
P

d2D utm;d

� L: (13)

In the stochastic EC environment, data requests ran-
domly arrive and leave [28]. Thus, the app vendor’s long-
term system performance usually outweighs its immediate
short-term system performance. Thus, we formulate the
CEDC problem over multiple time slots as a constrained
optimization problem (COP):

P1 :min lim
T!1

XT�1

t¼0

Cð�tÞ

s:t: :ð1Þ; ð3Þ; ð4Þ; ð6Þ; ð13Þ:

Now, we demonstrate that the COP of CEDC problem in
a single time slot t is NP-complete by proving the following
theorems.

Theorem 1. The COP of CEDC in time slot t is NP.

Proof. As there are ð1þ jMj þ 2jV jÞjDj constraints in total,
any solution to the COP can be validated in polynomial
time by checking whether the solution satisfies the con-
straints (1), (3), (6) and (4). Thus, theCEDCproblem isNP.tu

Theorem 2. The COP of CEDC in time slot t isNP-complete.

Proof. To prove this problem isNP-complete, we first intro-
duce the weighted k-set packing problem. The weighted
k-set packing problem is known to be NP-complete [31].
Given a universe U with elements 8e 2 U , a set U 0 of sub-
sets of U and an integer number k. The subsetX is a pack-
ing, where X � U 0. All sets x � X are pairwise disjoint.
LetWðxÞ be the weight of the set x and k be the maximum
number of selected sets. The formulation is displayed
below:

object : max
X
x2X

WðxÞT x (14a)

s:t: :
X
x2X

T x � k (14b)

T x 2 f0; 1g; 8x 2 X (14c)

X
e2U

T e � 1: (14d)

Next, we prove that the weighted k-set packing prob-
lem can be reduced to an instance of the COP of CEDC
problem. We define the elements based on the data
requests from app user’s mobile devices. The reduction
can be done as follows: 1) adding the cloud server vcloud
as a node into the graph; 2) adding edges from vcloud to
all other nodes in the graph; 3) setting the storage cost
incurred on vcloud to 0; 4) setting lT ¼ L ¼ jV j. After the
above reduction, constraint (13) can be ignored. Given
any instance WeightedKSetðX;U; k;WðxÞÞ, we can con-
struct CEDCðV;M; n;Benefitsði; dÞÞ with the reduction
above in polynomial time while jXj ¼ jV j, jU j ¼ jMj and
n ¼ k. The function Benefitsði; dÞ is calculated as the
reduced QoS penalty minus the data caching cost if data
d is cached on edge server vi. As the constraint (14b)
restricts the total number of selected sets, we can project
(3) in the CEDC problem to that constraint. Based on (4),
the latency in mobile device m’s retrieval of data d is the
lowest latency between m and any edge server with d in
the cache. Thus, constraint (14d) can be fulfilled. More-
over, we can convert our original objective (12) to
CDð�tÞ þ CLðvcloudÞ �

P
vi2V

P
d2D �t

i;dBenefitsði; dÞ. Then,
we can project our converted objective to the objective
(14a). Thus, the COP of CEDC problem in time slot t is
reducible from the weighted k-set packing problem, and
it isNP-complete. tu

4 ONLINE CACHING ALGORITHM DESIGN

To solve the CEDC problem optimally, the complete infor-
mation about the system over all the time slots must be
known. However, this cannot be realistically fulfilled for
real-world scenarios. To practically fulfil the app vendor’s
long-term latency constraint (13), we need to convert P1, a
non-convex problem, to a linear and convex problem. To do
so, we propose an Online Collaborative Edge Data Caching
(CEDC-O) algorithm based on Lyapunov optimization [32]
for finding near-optimal solutions to the CEDC problem in
individual time slots without future information. The nota-
tions adopted in this section are summarized in Table 2.

4.1 Online Collaborative Edge Data Caching
Algorithm

We provide an online algorithm, named CEDC-O, based on
Lyapunov optimization, to convert the long-term optimiza-
tion problem P2 to optimization problems in individual
time slots. The most significant characteristic of CEDC-O is
that it only requires the information in the current time slot
rather than the complete information in all the time slots

XIA ETAL.: ONLINE COLLABORATIVE DATA CACHING IN EDGE COMPUTING

59

when solving P2. While trying to minimize the system cost,
the app vendor also needs to stabilize the system latency to
ensure low-latency data access for its users. Thus, in this
paper, the system metric to stabilize by CEDC-O is the time-
averaged system latency perceived by the users over the
long term.

Lyapunov optimization is typically applied in the com-
munication and queuing systems. With the application of
Lyapunov optimization, the problems can be formulated as
problems that optimize the time averages of certain objec-
tives subject to some time average constraints, and they can
be solved with a common mathematical framework that is
intimately connected to queuing theory [32]. Unlike the typ-
ical application of Lyapunov optimization that models the
problem as a queuing network, we define the accumulated
latency in Definition 1 to stabilize the system latency over
time.

Definition 1 (Accumulated Latency). Accumulated latency
st is the overdue delay accumulated over t time slots, calculated as:

sðtþ 1Þ ¼ maxfsðtÞ þ Lavgð�tÞ � L; 0g (15)

where Lavgð�tÞ ¼
P

m2M
P

d2D ut
m;d

�lt
m;dP

m2M
P

d2D ut
m;d

, and sð0Þ ¼ 0 because

there is no latency at the very beginning.

Based on Definition 1, the accumulated latency will
increase if the latency is overL in the previous time slot. This
can be employed as a penalty to adjust the data caching strat-
egy to stabilize the system latency over time as specified by
(13). Now, we can convert the long-term latency constraint
(13) to a new constraint based on accumulated latency:

lim
T!1

1

T

XT�1

t¼0

E½sðtÞ� � 0: (16)

Given (15), a Lyapunov function can be defined as
LðsðtÞÞ , 1

2 s
2ðtÞ. It indicates the system stability measured

by its accumulated latency LðsðtÞÞ. Here, the Lyapunov
drift DðsðtÞÞ is applied in each time slot to enhance the sys-
tem stability:

DðsðtÞÞ ¼ E½Lðtþ 1Þ � LðtÞjsðtÞ�

¼ 1

2
E½s2ðtþ 1Þ � s2ðtÞjsðtÞ�

¼ 1

2
E½ðLavgð�tÞ � LÞ2jsðtÞ� þ sðtÞE½Lavgð�tÞ � LjsðtÞ�

� Q þ sðtÞE½Lavgð�tÞ � LjsðtÞ�;

(17)

whereQ ¼ 1
2L

2 because of Lavgð�tÞ � 0.
As we obtain the upper bound of the Lyapunov drift

function, we introduce the penalty in our CEDC-O algo-
rithm based on the total cost objective (12). We denote g as a
positive parameter in Lyapunov optimization for adjusting
the trade-off between the system cost Cð�tÞ and the number
of time slots needed to converge the time-averaged latency
back to L when (13) is violated. Here, we introduce the Lya-
punov drift-plus-penalty function DPðtÞ, defined as:

DPðtÞ ¼ DðsðtÞÞ þ g � E½Cð�tÞjsðtÞ�: (18)

In each time slot, the data caching strategy is formulated
to minimize the total cost Cð�tÞ and to keep the system sta-
ble, and we can get the upper bound of this function by:

DPðtÞ � Q þ sðtÞE½Lavgð�tÞ � LjsðtÞ� þ g � E½Cð�tÞjsðtÞ�:
(19)

The pseudocode of the CEDC-O algorithm is presented
in Algorithm 1. In each time slot, the data caching strategy
is formulated by finding the optimal solution to P2:

P2 : minðQ þ sðtÞðLavgð�tÞ � LÞ þ g � Cð�tÞÞ
s:t: : ð1Þ; ð3Þ; ð6Þ; ð4Þ; ð15Þ:

Algorithm 1. CEDC-O Algorithm

1: Input: G ¼ ðV;EÞ;M;A ¼ fA1; . . . ; Ang;L; cs; r; h;v
2: Output: data caching strategy � ¼ f�1; . . . ; �Tg
3: sð0Þ ¼ 0, t ¼ 0
4: repeat
5: Observe the data requests tt ¼ fttm;dj8m 2 M;d 2 Dg
6: Find the solution �t, where:

�t ¼ argminðQ þ sðtÞðLavgð�tÞ � LÞ þ g � Cð�tÞÞ (20)

7: Observe Lavgð�tÞ and update sðtÞ based on (15)
8: t ¼ tþ 1
9: until t ¼ T

In Algorithm 1, no further information is required to
solve P2 except the data requests in the current time slot.
After implementing the drift-plus-penalty function, our
CEDC-O algorithm considers the additional term sðtÞ
ðLavgð�tÞ � LÞ, while Q is a constant. This drift-plus-penalty
helps stabilize the system’s average latency Lavgð�tÞ around

TABLE 2
Notations in Our Algorithm Design

Notation Description

C value of system cost produced by �
C0 value of system cost produced by �0

Copt value of system cost produced by �opt

Cmin smallest system cost of all possible solutions
Cmax largest system cost of all possible solutions
DPðtÞ Lyapunov drift-plus-penalty function
Lavgð�tÞ average system latency in time slot t
LðsðtÞÞ Lyapunov function, calculated by 1

2 s
2ðtÞ

Q constant value equal to 1
2L

2

Q0 constant value equal to Qþ g � ðCmax � CminÞ
g positive parameter adjusting the trade-off between

system cost Cð�tÞ and the average latency Lavgð�tÞ
� solution obtained by CEDC-O
�t � in time slot t
�0 feasible solution fulfilling (21)
�0t �0 in time slot t
�	 feasible solution fulfilling (27)
�	t �	 in time slot t
�opt optimal solution to P1 over all time slots
�t
opt �opt in time slot t

sðtÞ accumulated latency in time slot t
DðsðtÞÞ Lyapunov drift function

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

60

L. Once Lavgð�tÞ exceeds L, a penalty is applied to P2 and
drives the CEDC-O algorithm to lower the system latency.
Moreover, when sðtÞ increases, minimizing Lavgð�tÞ is of
high significance in stabilizing the system and converging
Lavgð�tÞ to the long-term budget (16). This is validated
experimentally in Section 5.

4.2 Performance Analysis

Now, we analyze the performance of the CEDC-O algo-
rithm based on the following theorems.

Theorem 3. The time-averaged system cost of CEDC-O algo-
rithm is bounded by Oð1

g
Þ.

Proof. Let us assume that the optimal solution to P1 is
�opt ¼ f�0

opt; . . . ; �
T�1
opt g. The average system cost of �opt is

Copt ¼ 1
T

PT�1
t¼0 E½Cð�t

optÞjsðtÞ�. The following inequality has

been proven in [32]:

9�0t;E½Lavgð�0tÞ � LjsðtÞ� � u; u ! 0þ: (21)

The CEDC-O algorithm provides the solution that
minimizes P2 from all feasible decisions including �0

which contains �0t. Thus, we can obtain:

E½Cð�0tÞjsðtÞ� � E½Cð�t
optÞjsðtÞ�: (22)

After applying (21) to (19), we can obtain:

DðsðtÞÞ þ g � E½Cð�0tÞjsðtÞ�

�
ð19Þ

sðtÞE½ðLavgð�0tÞ � LÞjsðtÞ� þ g � E½Cð�0tÞjsðtÞ� þ Q

�
ð22Þ

sðtÞE½ðLavgð�0tÞ � LÞjsðtÞ� þ g � E½Cð�t
optÞjsðtÞ� þ Q

�
ð21Þ

u � sðtÞ þ g � E½Cð�t
optÞjsðtÞ� þ Q

¼ g � E½Cð�t
optÞjsðtÞ� þ Q:

(23)

Based on (17) and (23), we sum all the DðsðtÞÞ for all
time slots and get:

E½LðsðT ÞÞ � Lðsð0ÞÞ� þ g �
XT�1

t¼0

E½Cð�0tÞjsðtÞ�

� g �
XT�1

t¼0

E½Cð�t
optÞjsðtÞ� þ T � Q ¼ g � T � Copt þ T � Q:

(24)

Denote C0 as the value of system cost incurred by data
caching strategy �0. Considering the facts that LðsðT ÞÞ �
0 and Lðsð0ÞÞ ¼ 0, we can obtain:

C0 � 1

T
ðE½LðsðT ÞÞ � Lðsð0ÞÞ� þ lim

T!1

XT�1

t¼0

E½Cð�0tÞjsðtÞ�Þ

� Copt þ
Q
g
:

(25)

Based on (20), the performance C of solution � pro-
vided by our CEDC-O algorithm always outperforms
that of �0. The distance of the time-averaged system cost
between � and �opt is:

C � Copt � C0 � Copt �
Q
g
: (26)

Thus, the time-average system cost of our CEDC-O
algorithm is bounded by OðQ

g
Þ ¼ Oð1

g
Þ. tu

Theorem 4. By applying the CEDC-O algorithm, the time-aver-
age accumulated latency is bounded by OðgÞ.

Proof. Based on (15) and (16), we assume that there exist �	t

and a positive value d to fulfill:

E½Lavgð�	tÞ � LjsðtÞ� � �d: (27)

Denote Cmin and Cmax as the smallest and largest sys-
tem cost respectively. From (19), we obtain:

DðsðtÞÞ þ g � Cmin � Qþ g � Cmax

þ sðtÞE½Lavgð�	tÞ � LjsðtÞ�
: (28)

Define Q0 ¼ Qþ g � ðCmax � CminÞ. We have the follow-
ing:

DðsðtÞÞ� Q0 þ sðtÞE½Lavgð�	tÞ � LjsðtÞ�

�
ð27Þ

Q0 � d � sðtÞ:
(29)

By adding expectation to both sides of (29), we obtain:

E½DðsðtÞÞ� ¼ E½LðsðtÞÞ � Lðsðt� 1ÞÞ� � Q0 � d � E½sðtÞ�:
(30)

The time-average accumulated latency can be
obtained by the sum of (30) of each time slot divided by
the number of total time slots T :

1

T
lim
T!1

XT�1

t¼0

E½sðtÞ� �
Q0 � 1

T E½LðsðT ÞÞ�
d

� Q0

d
: (31)

Considering the fact that OðQ0
d
Þ ¼ OðgÞ, the time-aver-

age accumulated latency of CEDC-O algorithm is
bounded by OðgÞ. tu

Based on Theorem 3, our CEDC-O algorithm finds the
optimal solution to problem P2 when g ! 1. However,
with the increase in g, the accumulated latency increases.
The CEDC-O algorithm then needs more time slots to con-
verge the time-averaged system latency so that the constraint
(13) can be fulfilled. The performance analysis of the CEDC-
O algorithm is also experimentally validated in Section 5.

5 SIMULATION

We experimentally evaluate the performance of CEDC-O
and the impacts of different parameters on its performance.
All simulations were conducted on a Windows-10 machine.

XIA ETAL.: ONLINE COLLABORATIVE DATA CACHING IN EDGE COMPUTING

61

5.1 Settings

5.1.1 Data Set

The simulations are conducted based on the widely-used
real-world EUA data set [2]. This data set contains the geo-
graphical locations of 125 cellular base stations and 816
mobile users around those base stations in the Melbourne
central business district area. In all sets of simulations, a cer-
tain number of edge servers are randomly selected from the
data set. In each time slot, the total number of app users’
data requests is randomly generated following a normal
distribution X
 Nðm0; s02Þ, where m0 is jMj

2 and s0 is jMj
4 , to

cover 99.99 percent possibility. All the data requests are
independently and identically distributed. The links
between edge servers are randomly generated but we
ensure that the edge servers constitute a connected graph.

To reflect the advantage of EC over cloud computing in
terms of latency, the latency between the cloud and the app
user’s mobile devices in this graph area is 20 hops. This
number is area-specific and does not impact the experimen-
tal results significantly as long as it is adequately large. To
run the simulations realistically, we adopt AWS’s Snowball
Edge Pricing,3 and set cmc to $0:016, cms to $0:008 and cs
to $0:04 caching per piece of data. The available storage
space of each edge server is randomly generated separately
following a normal distribution X
 Nðm; s2Þ, where m is
the half number of maximum cache spaces and s is 1, to
build the standard normal distribution covering all the
possibilities.

5.1.2 Benchmark Approaches

We compare our new CEDC-O algorithm with four repre-
sentative approaches: Delay-Oriented, Online-Optimal, Reve-
nue-Oriented and Coverage-Oriented:

� Delay-Oriented data caching approach (DO): this
approach always finds the optimal solution to mini-
mize the total data latency of all users. The data cach-
ing strategy is found by this approach. Since This
approach originated from [28].

� Online-Optimal data caching approach (OO): this
approach finds the optimal solution to the CEDC
problem based on P1 in each individual time slot.
Since (13) is a long-term latency constraint, we use
(32) as a constraint to drive OO in individual time
slots:

P
m2M

P
d2D utm;d � ltm;dP

m2M
P

d2D utm;d

� L: (32)

� IPEDC [33]: this approach minimizes the data cach-
ing cost to cover nearby users. Since some of the
users may not be covered in our scenarios, we mod-
ify the original IPEDC approach to cover as many
users as possible without violating the latency con-
straint (32).

� Maximum Revenue data caching approach (MR) [34]:
This approach calculates the data caching revenue
the benefits minus the costs produced by the data
caching strategy in the EC environment. It always
finds the optimal solution with the maximum data
caching revenue. To perform a fair comparison in
CEDC scenarios, latency constraint (32) is included
into MR.

5.1.3 Parameter Settings

to analyze the performance of our CEDC-O comprehen-
sively, we conducted seven sets of simulations to observe
its performance in different CEDC scenarios. In each set of
simulations except Set #1, we change one setting parameter
and fix the other six. The simulation settings are summa-
rized in Table 3. This way, we can compare the performance
of the four approaches and observe how the changes in the
setting parameters impact the performance of CEDC-O. The
total number of time slots is 300 in all the simulations. Each
time a setting parameter varies as follows, the simulation is
repeated 20 times and the results are averaged:

� Number of edge servers (n). This parameter impacts
the size of graph G and varies from 5 to 10 in steps of
1.

� Number of data (jDj). The total number of data to be
cached over G, varies from 2 to 6 in steps of 1.

� Number of maximum cache spaces (MS). This
parameter impacts the available cache spaces on
edge server and varies from 2 to 6 in steps of 1.

� Ratio of cp over cs (v) in (11). This parameter indi-
cates the app vendor’s priority for QoS and increases
from 0.15, 0.20, 0.25, 0.30 to 0.35.

� Latency limit (lT). This parameter varies from 0 to 4
in steps of 1. Specifically, lT ¼ 0 means that edge
servers cannot communicate with each other - users
can only access data from their local edge servers.

TABLE 3
Parameter Settings

n jDj MS v lT L g

Set #1 8 4 5 0.25 2 2 1
Set #2 5,6,7,8,9,10 4 5 0.25 2 0.8 1
Set #3 8 2,3,4,5,6 5 0.25 2 0.8 1
Set #4 8 4 2,3,4,5,6 0.25 2 0.8 1
Set #5 8 4 5 0.15,0.20,0.25,0.30,0.35 2 0.8 1
Set #6 8 4 5 0.25 0,1,2,3,4 0.8 1
Set #7 8 4 5 0.25 2 0.4,0.8,1.2,1.6,2 1
Set #8 8 4 5 0.25 2 0.8 0.5,1.0,1.5

3. https://aws.amazon.com/snowball-edge/pricing/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

62

� Long-term latency (L) in (15). This parameter varies
from 0.4 to 2 in steps of 0.4.

� Trade-off parameter (g) between Cð�tÞ and sðtÞ in P2.
As discussed in Section 4.2, this parameter impacts
the performance bound of CEDC-O and increases
from 0.5, 1.0 to 1.5.

5.1.4 Performance Metrics

In these simulations, five performance metrics are
employed to evaluate all approaches:

� System cost (Cð�tÞ), the lower the better.
� Data caching cost (CDð�tÞ), the lower the better.
� Data migration cost (CMð�tÞ), the lower the better.
� QoS penalty (CPð�tÞ), the lower the better.
� Number of served requests (Srn), the higher the

better.

5.2 Performance Comparison

Fig. 3 presents the results of Set #1. Overall, of all the four
approaches, CEDC-O achieves the lowest system cost. Fig. 3a
depicts that, in term of the system cost in each time slot, the
advantages of CEDC-Oare 8.60 percent overOO, 23.05 percent
over IPEDC, 37.04 percent over DO and 51.58 percent over
MR. The advantage of CEDC-O over OO is not as significant
because OO finds the optimal solution to the CEDC problem
in each individual time slot. However, in 199 out of the 300
time slots in the experiments, CEDC-O achieves a system cost
lower than than achieved by OO. This shows the overall
advantage of CEDC-O overOOover time.

In Fig. 3b, the average data caching cost of CEDC-O is
again the lowest at 0.3166, while the average data cache
costs of OO, IPEDC, DO and MR are 0.3373, 0.4128, 0.5065
and 0.3314, respectively. Interestingly, the performance of
DO in this figure is almost a horizontal line. DO always tries
to achieve the lowest latency without considering the used

cache space. Thus, it exhausts all the available cache spaces
in most of the time slots.

Fig. 3c demonstrates the data migration costs of the five
approaches over individual time slots. The migration costs
of all the approaches are very high at the beginning, i.e.,
0.0907 for CEDC-O, 0.1120 for OO, 0.1547 for IPEDC, 0.2204
for DO and 0.1333 for MR. This is because all the cached
data are migrated from the cloud in time slot 0. After the
data are cached on edge servers, the migration cost
decreases because required data are already cached on edge
servers.

Fig. 3d shows that IPEDC achieves the lowest QoS pen-
alty, closely followed by CEDC-O and OO. The average
QoS penalties of all the approaches are 0.035 for CEDC-O,
0.0373 for OO, 0.0205 for IPEDC, 0.2193 for DO and 0.6548
for MR. IPEDC focuses on covering the maximum number
of users with available cache spaces. Thus, it achieves the
lowest QoS penalty.

In terms of the average system latency of served requests
over the edge server network, all the approaches fulfill con-
straint (13) as shown in Fig. 3e. The average latency is
0.7975 for CEDC-O, 0.7842 for OO, 0.7804 for IPEDC 0.4999
for DO and 0.7744 for MR. Fig. 3e also shows that the per-
formances of OO, IPEDC and MR fluctuate slightly around
0.8. The reason is that the time-averaged latency achieved
by these approaches are limited by (32).

5.3 Impact of Edge Server Number

Fig. 4 demonstrates the results of simulation Set #2, where
the number of edge servers varies. Again, CEDC-O outper-
forms the other four approaches in terms of system cost per
time slot, by 7.36 percent against OO, 23.14 percent against
IPEDC, 46.43 percent against DO and 56.45 percent against
MR. Since the number of users is determined by the number
of edge servers selected from the EUA dataset, the number
of users and the number of data requests increase accord-
ingly when the number of edge servers increases. Thus, the

Fig. 3. Simulation Set #1.

XIA ETAL.: ONLINE COLLABORATIVE DATA CACHING IN EDGE COMPUTING

63

system costs of all the approaches increases when the num-
ber of edge servers increases, as shown in Fig. 4.

5.4 Impact of Data Number

Fig. 5 depicts the results of simulation Set #3. When the
number of data varies, CEDC-O again achieves the lowest aver-
age system cost per time slot. When the number of data
increases from 1 to 5, the system costs per time slot achieved
by all the five approaches increase, from 0.0956 to 0.3996 for
CEDC-O, from 0.0948 to 0.4252 for OO, from 0.1136 to
0.5252 for IPEDC, from 0.2960 to 0.8456 for DO and from
0.2116 to 0.8624 for MR. With the increase in the number of
data, app users are more likely to request different data
from across multiple time slots. Accordingly, the average
system costs achieved by all the five approaches increase.

5.5 Impact of Maximum Cache Spaces

In simulation Set #4, CEDC-O achieves the lowest system cost
per time slot at the lowest data cache cost per time slot. The advan-
tages of CEDC-O in the system cost per time slot are 5.50 per-
cent over OO, 25.23 percent over IPEDC, 47.32 percent over
DO and 57.66 percent overMR. The costs spent on data cach-
ing per time slot increase from 0.29 to 0.42 for CEDC-O, from
0.40 to 0.85 for DO and from 0.30 to 0.48 for OG, when the
number of maximum cache spaces increases from 2 to 6. Dif-
ferent from other approaches, the system cost per time slot of
DO always increases when the number of maximum cache
spaces increases from 2 to 6. The reason is that DO focuses on
latency optimization instead of cost optimization, and thus
always exhausts the available cache spaces.

5.6 Impact of QoS Priority

Fig. 7 shows the impact of QoS priority on the performance
of CEDC-O in terms of the QoS penalty and the number of

served users over the edge server network. The average
number of users served over the edge server network per
time slot increases from 119.9 to 123.3, where v increases
from 2 to 6. The reason is that the more data cache spaces
are hired to serve more users to reduce the QoS penalty.
However, the QoS penalty increases from 0.0294 to 0.0328
when v increases from 2 to 3, then decreases to 0.0210 when
v increases from 3 to 6. This is because the increase in the
QoS penalty caused by the increasing v is more than the
reduction caused by hiring more cache spaces when pursu-
ing the objective of the minimum system cost.

5.7 Impact of Latency Limit

Fig. 8 shows the QoS penalty and the number of served users
over the edge server network per time slot when the latency
limit lT varies.When lT increases from 0 to 4, theQoS penalty
rapidly decreases from 0.6810 to 0, while the average number
of served users increases from 72.8 to 130.9. This is because
most of the users can access more edge servers when the
latency limit increases. Specifically, there are 8 edge servers
in Set #6, and many users can access all those edge servers
within 3 hops. Thus, all the requests can be fulfilled and the
QoS penalty is 0.

5.8 Impact of long-Term Latency

Fig. 9 illustrates the results of Set #7 when the long-term
latency constraint varies. The system cost per time slot of
CEDC-O decreases from 0.5848 to 0.2772 when L increases
from 0.4 to 1.6. It stabilizes when L increases from 1,6 to 2.0.
The main reason is that the same data replica can be trans-
mitted to more users when L increases. In terms of the aver-
age latency of served requests Lavgð�tÞ, it stabilizes for the
same reason when L increases from 1,6 to 2.0.

Fig. 4. Simulation Set #2.

Fig. 5. Simulation Set #3. Fig. 7. Simulation Set #5.

Fig. 6. Simulation Set #4.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

64

5.9 Impact of Trade-Off Parameter

Fig. 10 shows the impact of the trade-off parameter g in P2

on the time-averaged latency, which is the left side of (13).
As discussed in Section 4.2, CEDC-O needs more time slots
to satisfy constraint (13) when g increases. With g ¼ 0:5, g ¼
1:0 and g ¼ 1:5, the time-averaged latency achieved by
CEDC-O converges back to L ¼ 0:8 in time slots 4, 100 and
195, respectively. In the small-scale figure, the blue line
overtakes the red one in the 5th time slot. This is because of
DðsðtÞÞ ¼ 0 in the 4th time slot and that no penalty is pro-
duced in the next time slot. In this case, the objective
becomes minðQ þ g � Cð�tÞÞ and the time-averaged latency
increases significantly in the 5th time slot. In the meantime,
CEDC-O with g ¼ 1:0 still tries to converge the time-aver-
aged latency back to L. After the 5th time slot, the blue line
is always lower than the red one, while the red one is lower
than the yellow one. In conclusion, the system stability,
ensured by the long-term latency constraint (13) (same as
the accumulated latency requirement (16)), is ensured by
the CEDC-O algorithm with different trade-off parameters.

5.10 Threats to Validity

5.10.1 Construct Validity

The major threat to construct validity is the four approaches
used for comparison. Due to the novelty of the CEDC prob-
lem in the EC environment, DO has a different objective
from CEDC and OO only considers the current time slot,
while IPEDC and MR do not consider the long-term latency
constraint. Thus, there is a threat that the comparison does
not suffice to comprehensively evaluate CEDC-O. To mini-
mize this threat, we enhanced IPEDC and MR by including
(32) into their implementation. Moreover, we changed
seven parameters, as presented in Table 3, to simulate vari-
ous CEDC scenarios. In this way, we could evaluate our

approaches by not only the comparison to the other
approaches, but also the demonstration of how the changes
in the parameters impact the performance of CEDC-O.

5.10.2 External Validity

The main threat to the external validity of the evaluation is
whether our approaches can be generalized and applied in
other CEDC scenarios in the EC environment. To tackle this
threat, We measured the performance of our approaches in
a generic way. Specifically, we measured the data sizes and
cache spaces by the number of data units and the data
retrieval latency by the number of hops. In this way, the
evaluation results can be interpreted with specific models
for all cost components. In addition, we ran the simulations
on a widely-used real-world data set while varying seven
parameters to vary the size and the complexity of the CEDC
problem. This way, the representativeness and comprehen-
siveness of the evaluation are ensured.

6 RELATED WORK

Data caching have been extensively investigated in the
fields of conventional distributed computing and cloud
computing environments. With the popularity of edge com-
puting, data caching in the edge computing environment is
obtaining attention from researchers recently.

6.1 Conventional Distributed Data Caching

In the last few decades, there are many data caching prob-
lems investigated in conventional distributed computing
environments, including web caching [13], content delivery
network [35], etc. Banerjee et al. [36] developed a content
placement strategy for information-centric network based
on data popularity, namely Greedy Caching. With popular
contents cached in the network, the Greedy Caching
approach considered the cache miss rate at the edge to
decide what contents would be cached on the core server.
In [37], the authors formulated two caching strategies for
data publish-subscribe systems, including eviction-based
caching and time-to-live-based caching to address the space
and time issues, respectively. The authors of [38] focused on
balancing the trade-off between latency and cost in the con-
tent-centric network. They addressed this issue with a holis-
tic model for provisioning the storage capability based on
the network performance and the provisioning cost.

Fig. 8. Simulation Set #6.

Fig. 9. Simulation Set #7.

Fig. 10. Simulation Set #8.

XIA ETAL.: ONLINE COLLABORATIVE DATA CACHING IN EDGE COMPUTING

65

6.2 Cloud Data Caching

In the cloud computing environment, a critical problem of
data caching is how to utilize cache space efficiently on
cloud hosts and mobile devices. Arteaga et al. [39] proposed
CloudCache, a method for managing cache, to fulfill the
caching requirement of the workload and minimize cache
wear-out. In [40], the authors presented how to use segment
access-aware dynamic semantic cache in the cloud comput-
ing environment for relational databases. A cache access
algorithm was introduced to consider cache exact hit, cache
extended hit, cache partial hit and cache miss. The authors
of [41] explored the cache design space for embedded pro-
cessors with evolutionary techniques for mobile and thin
client processors in the cloud computing environment. A
heuristic and evolutionary method was presented to gener-
ate a near-optimal cache space design for enhancing service
quality. In [42], the authors formulated a benefit maximiza-
tion problem and created a cache replacement approach
based on traffic requirements. They also introduced a con-
tent clustering method for collecting popular data and clus-
tering similar contents.

6.3 Edge Data Caching

Edge computing (EC) extends cloud computing with com-
puting resources and services geographically distributed at
the edge of the cloud [43]. With the deployment of edge
servers, the problem of computation offloading arises. It has
been well studied with consideration of edge servers’
energy efficiency, offloading cost and joint caching [28], [44].

Recently, the challenges raised by data caching are being
investigated in the EC environment. Existing data caching
approaches are rendered obsolete by the new characteristics
of EC and thus cannot be directly applied in the EC environ-
ment. Thus, researchers are proposing and investigating
new ideas and techniques for data caching in the EC envi-
ronment. Cao et al. present an optimal auction mechanism
to maximize the service provider’s revenue based on cache
allocation and user valuation reports. They propose compu-
tationally efficient approaches to apply the auction mecha-
nism based on data retrieval and delivery costs. The authors
of [45] propose a caching system named Cachier for recogni-
tion applications in the EC environment. Cachier coordi-
nates the loading balance between edge servers and the
cloud to minimize the data retrieval latency dynamically.
However, the above approaches employ offline methods
and require complete information about active users and
data requests in all time slots. They cannot handle edge
data caching scenarios where data and users may come and
go randomly.

Instead of solving the edge data caching problem opti-
mally in an offline manner, some researchers investigate
online approaches for solving the dynamic edge data caching
problems. Xu et al. [28] propose an online algorithm named
OREO to decide service caching and task offloading. The sys-
tem aims to minimize the total network latency and applies a
long-term energy consumption constraint to stabilize the
edge caching system. The authors of [46] propose MOREA,
an online algorithm considering user mobility, to allocate
different resources like caches and CPUs on edge servers for
computation offloading. In [47], the authors integrate the

cloud radio access network with the EC technology to sched-
ule resources including caches and computational resources
dynamically. They propose the VariedLen algorithm tomax-
imize the mobile network provider’s profit. They also extend
the standard Lyapunov technology so that individual tasks
can be performed across multiple time slots. However, exist-
ing works investigate edge data caching only to complement
computing offloading and fail to give data caching sufficient
attention as a unique technology with advantages in reduc-
ing data retrieval latency and improving the quality of serv-
ices and users’ experiences, especially from the app vendor’s
perspective who is an important stakeholder in the EC
environment.

Edge computing inherits the pay-as-you-go pricing
model from cloud computing, which allows app vendors to
hire storage resources on edge servers from edge infrastruc-
ture providers to cache app data for their users. Thus, the
cost incurred by data caching for app vendors is critical to
the success of edge computing because, after all, app ven-
dors are the main customers in the edge computing envi-
ronment. To the best of our knowledge, this paper makes
the first attempt to propose an approach named CEDC-O
for solving the CEDC problem from the app vendor’ per-
spective in the EC environment. By innovatively and realis-
tically modeling the CEDC problem as a long-term
optimization problem, CEDC-O can help app vendors
ensure the long-term performance of their edge data cach-
ing performance.

7 CONCLUSION

In this paper, we studied the collaborative edge data cach-
ing (CEDC) problem. We first identified the major chal-
lenges and proposed a comprehensive cost model for this
problem, where system cost is composed of data caching
cost, data migration cost and QoS penalty. We also proved
the NP-completeness of the CEDC problem. We proposed
CEDC-O, an online algorithm with provable performance
guarantee, and evaluated its performance with extensive
simulations. This research has established the foundation
for the CEDC problem and opened up a number of future
research directions. In our future work, we will consider
dynamics on available edge server caches, user mobility
and security policies.

ACKNOWLEDGMENTS

This work was funded in part by Australian Research Coun-
cil Discovery Projects (DP180100212 and DP200102491) and
Laureate Fellowship FL190100035.

REFERENCES

[1] A. Osseiran et al., “The foundation of the mobile and wireless
communications system for 2020 and beyond: Challenges, ena-
blers and technology solutions,” in Proc. IEEE 77th Veh. Technol.
Conf., 2013, pp. 1–5.

[2] P. Lai et al., “Optimal edge user allocation in edge computing with
variable sized vector bin packing,” in Proc. Int. Conf. Service-Ori-
ented Comput., 2018, pp. 230–245.

[3] T. X. Tran, M.-P. Hosseini, and D. Pompili, “Mobile edge comput-
ing: Recent efforts and five key research directions,” IEEE COM-
SOCMMTC Commun.-Frontiers, vol. 12, no. 4, pp. 29–33, Jul. 2017.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

66

[4] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for
energy-constrainedmobile edge computing in small-cell networks,”
IEEE/ACMTrans. Netw., vol. 26, no. 4, pp. 1619–1632, Aug. 2018.

[5] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks
with mobile edge computing,” IEEE Trans. Wireless Commun.,
vol. 16, no. 8, pp. 4924–4938, Aug. 2017.

[6] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,” IEEE
Trans.Wireless Commun., vol. 16, no. 3, pp. 1397–1411,Mar. 2017.

[7] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[8] Q. He et al., “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 3, pp. 515–529, Mar. 2020.

[9] P. Stenstrom, “A survey of cache coherence schemes for multi-
processors,” Computer, vol. 23, no. 6, pp. 12–24, 1990.

[10] J. D. Owens et al., “A survey of general-purpose computation on
graphics hardware,” in Computer Graphics Forum, vol. 26. Hoboken,
NJ, USA:Wiley, 2007, pp. 80–113.

[11] B. Jacob, S. Ng, and D. Wang,Memory Systems: Cache, DRAM, Disk.
San Mateo, CA, USA: Morgan Kaufmann, 2010.

[12] A. J. Smith, “Disk cachemiss ratio analysis and design consider-
ations,” ACM Trans. Comput. Syst., vol. 3, no. 3, pp. 161–203, 1985.

[13] S. Podlipnig and L. B€osz€ormenyi, “A survey of web cache replace-
ment strategies,” ACM Comput. Surv., vol. 35, no. 4, pp. 374–398,
2003.

[14] K. Elhardt and R. Bayer, “A database cache for high performance
and fast restart in database systems,” ACM Trans. Database Syst.,
vol. 9, no. 4, pp. 503–525, 1984.

[15] A. Mukhopadhyay, N. Hegde, and M. Lelarge, “Optimal content
replication and request matching in large caching systems,” in
Proc. IEEE Conf. Comput. Commun., 2018, pp. 288–296.

[16] K. Ji, G. Quan, and J. Tan, “Asymptotic miss ratio of LRU caching
with consistent hashing,” in Proc. IEEE Conf. Comput. Commun.,
2018, pp. 450–458.

[17] G. Casale, “Analyzing replacement policies in list-based caches
with non-uniform access costs,” in Proc. IEEE Conf. Comput. Com-
mun., 2018, pp. 432–440.

[18] K. Cho, M. Lee, K. Park, T. T. Kwon, Y. Choi, and S. Pack, “Wave:
Popularity-based and collaborative in-network caching for con-
tent-oriented networks,” in Proc. IEEE Conf. Comput. Commun.
Workshops, 2012, pp. 316–321.

[19] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching
attains order-optimal memory-rate tradeoff,” IEEE/ACM Trans.
Netw., vol. 23, no. 4, pp. 1029–1040, Aug. 2015.

[20] M. Dehghan et al., “On the complexity of optimal request routing
and content caching in heterogeneous cache networks,” IEEE/
ACM Trans. Netw., vol. 25, no. 3, pp. 1635–1648, Jun. 2017.

[21] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of cach-
ing,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867,May 2014.

[22] C.-Y. Wang, S. H. Lim, and M. Gastpar, “Information-theoretic
caching: Sequential coding for computing,” IEEE Trans. Inf. The-
ory, vol. 62, no. 11, pp. 6393–6406, Nov. 2016.

[23] M. Patel et al., “Mobile edge computing-introductory technical
white paper,” Mobile-Edge Comput. (MEC) Industry Initiative,
White Paper, pp. 1089–7801, 2014.

[24] H. Guo and J. Liu, “Collaborative computation offloading for
multi-access edge computing over fiber-wireless networks,” IEEE
Trans. Veh. Technol., vol. 67, no. 5, pp. 4514–4526, May 2018.

[25] M. Armbrust et al., “A view of cloud computing,” Commun. ACM,
vol. 53, no. 4, pp. 50–58, 2010.

[26] M. Chen, Y. Hao, K. Lin, Z. Yuan, and L. Hu, “Label-less learning
for traffic control in an edge network,” IEEE Netw., vol. 32, no. 6,
pp. 8–14, Nov./Dec. 2018.

[27] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computinga key technology towards 5G,” ETSI White Paper,
vol. 11, no. 11, pp. 1–16, 2015.

[28] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task off-
loading for mobile edge computing in dense networks,” in Proc.
IEEE Conf. Comput. Commun., 2018, pp. 207–215.

[29] T. Zhang, F. Ren, and R. Shu, “Towards stable flow scheduling in
data centers,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 11,
pp. 2627–2640, Nov. 2018.

[30] N. Abedini and S. Shakkottai, “Content caching and scheduling in
wireless networks with elastic and inelastic traffic,” IEEE/ACM
Trans. Netw., vol. 22, no. 3, pp. 864–874, Jun. 2014.

[31] E. Hazan, S. Safra, and O. Schwartz, “On the complexity of
approximating k-set packing,” Comput. Complexity, vol. 15, no. 1,
pp. 20–39, 2006.

[32] M. J. Neely, “Stochastic network optimization with application to
communication and queueing systems,” Synthesis Lectures Com-
mun. Netw., vol. 3, no. 1, pp. 1–211, 2010.

[33] X. Xia et al., “Graph-based optimal data caching in edge
computing,” in Proc. Int. Conf. Service-Oriented Comput., 2019,
pp. 477–493.

[34] Y. Liu, Q. He, D. Zheng, M. Zhang, F. Chen, and B. Zhang, “Data
caching optimization in the edge computing environment,” in
Proc. IEEE Int. Conf. Web Serv., 2019, pp. 99–106.

[35] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter , “AdaptSize:
Orchestrating the hot object memory cache in a content delivery
network,” in Proc. 14th USENIX Symp. Netw. Syst. Des. Implementa-
tion, 2017, pp. 483–498.

[36] B. Banerjee, A. Kulkarni, and A. Seetharam, “Greedy caching: An
optimized content placement strategy for information-centric
networks,” Comput. Netw., vol. 140, pp. 78–91, 2018.

[37] M. Y. S. Uddin and N. Venkatasubramanian, “Edge caching for
enriched notifications delivery in big active data,” in Proc. 38th
IEEE Int. Conf. Distrib. Comput. Syst., 2018, pp. 696–705.

[38] Y. Li, H. Xie, Y. Wen, and Z.-L. Zhang, “Coordinating in-network
caching in content-centric networks: Model and analysis,” in Proc.
33rd IEEE Int. Conf. Distrib. Comput. Syst., 2013, pp. 62–72.

[39] D. Arteaga, J. Cabrera, J. Xu, S. Sundararaman, and M. Zhao,
“CloudCache: On-demand flash cache management for cloud
computing,” in Proc. 14th USENIX Conf. File Storage Technol., 2016,
pp. 355–369.

[40] K. Ma, B. Yang, Z. Yang, and Z. Yu, “Segment access-aware
dynamic semantic cache in cloud computing environment,” J. Par-
allel Distrib. Comput., vol. 110, pp. 42–51, 2017.

[41] A.-H. A. Badawy, G. Yessin, V. Narayana, D. Mayhew, and
T. El-Ghazawi, “Optimizing thin client caches for mobile cloud
computing: Design space exploration using genetic algorithms,”
Concurrency Comput.: Practice Experience, vol. 29, no. 11, 2017,
Art. no. e4048.

[42] S. Tamoor-ul Hassan , S. Samarakoon, M. Bennis, M. Latva-Aho ,
and C. S. Hong, “Learning-based caching in cloud-aided wireless
networks,” IEEE Commun. Lett., vol. 22, no. 1, pp. 137–140, Jan.
2018.

[43] M. Yannuzzi et al., “A new era for cities with fog computing,”
IEEE Internet Comput., vol. 21, no. 2, pp. 54–67, Mar./Apr. 2017.

[44] S. Jo�silo and G. D�an, “A game theoretic analysis of selfish mobile
computation offloading,” in Proc. IEEE Conf. Comput. Commun.,
2017, pp. 1–9.

[45] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in Proc. 37th IEEE Int.
Conf. Distrib. Comput. Syst., 2017, pp. 276–286.

[46] L. Wang, L. Jiao, J. Li, J. Gedeon, and M. M€uhlh€auser, “MOERA:
Mobility-agnostic online resource allocation for edge computing,”
IEEE Trans. Mobile Comput., vol. 18, no. 8, pp. 1843–1856, Aug.
2019.

[47] X. Wang et al., “Dynamic resource scheduling in mobile edge
cloud with cloud radio access network,” IEEE Trans. Parallel Dis-
trib. Syst., vol. 29, no. 11, pp. 2429–2445, Nov. 2018.

Xiaoyu Xia received the master’s degree from
the University of Melbourne, Australia, in 2015.
He is currently working toward the PhD degree at
Deakin University. His research interests include
edge computing, service computing, and soft-
ware engineering.

XIA ETAL.: ONLINE COLLABORATIVE DATA CACHING IN EDGE COMPUTING

67

Feifei Chen received the PhD degree from the
Swinburne University of Technology, Australia, in
2015. She is a lecturer with Deakin University.
Her research interests include software engineer-
ing, cloud computing, and green computing. For
more details please visit https://sites.google.com/
view/feifeichen/.

Qiang He (Senior Member, IEEE) received the
first PhD degree from the Swinburne University
of Technology, Australia, in 2009, and the second
PhD degree in computer science and engineering
from the Huazhong University of Science and
Technology, China, in 2010. He is a senior lec-
turer with Swinburne. His research interests
include service computing, software engineering,
cloud computing, and edge computing. For more
details please visit https://sites.google.com/site/
heqiang/.

John C. Grundy (Senior Member, IEEE) received
the BSc (Hons), MSc, and PhD degrees in com-
puter science from the University of Auckland, New
Zealand. He is currently an Australian Laureate fel-
low and a professor of software engineering with
Monash University, Melbourne, Australia. He is an
associate editor of the IEEE Transactions on Soft-
ware Engineering, Automated Software Engineer-
ing Journal, and IEEE Software. His current
interests include domain-specific visual languages,
model-driven engineering, large-scale systems

engineering, and software engineering education. For more details please
visit https://sites.google.com/site/johncgrundy/.

Mohamed Abdelrazek received the PhD degree
from Swinburne University, in 2014. He is cur-
rently an associate professor with software engi-
neering and IoT with the School of Information
Technology, Deakin University, Australia. He has
more than 10 years experience in building soft-
ware solutions. His research interests include
software engineering, security, and artificial intel-
ligence. For more details please visit https://sites.
google.com/site/mohamedalmorsy/.

Hai Jin (Fellow, IEEE) received the PhD degree in
computer engineering from the Huazhong Univer-
sity of Science and Technology, in 1994. He is a
CheungKungScholars chair professor of computer
science and engineering with the Huazhong Uni-
versity of Science and Technology (HUST), in
China. His research interests include computer
architecture, virtualization technology, cluster com-
puting and cloud computing, peer-to-peer comput-
ing, network storage, and network security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 2, FEBRUARY 2021

68

4.2 Effective, Efficient and Cost-effective Data Re-

placement Strategies in Edge Computing

Except for the cost, the benefit produced by placing and replacing data is also impor-

tant to the success of app vendors. The key challenge for app vendors is to formulate

more cost-effective strategies, considering both the caching benefit obtained from pro-

viding low-latency data retrieval to its users and the caching cost incurred based on the

pay-as-you-go scheme. In this chapter, we formally formulate this online edge data

replacement problem and prove its NP-hardness. To solve this problem effectively

and efficiently, we propose an online algorithm named OL-MEDC, without requiring

future information. We compare OL-MEDC with five representative approaches, in-

cluding the Lyapunov-based on presented in Chapter 4.1. The experimental results

show OL-MEDC’s advantages over these approaches in addressing this online edge

data replacement problem.

This chapter is based on a published paper, entitled: OL-MEDC: An Online

Approach for Cost-effective Data Caching in Mobile Edge Computing Systems, IEEE

Transactions on Mobile Computing, accepted in 2021.

69

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021

OL-MEDC: An Online Approach for
Cost-effective Data Caching in Mobile Edge

Computing Systems
Xiaoyu Xia, Feifei Chen, Qiang He, Senior Member, IEEE , Guangming Cui, John Grundy, Senior Member,

IEEE , Mohamed Abdelrazek, Athman Bouguettaya, Fellow, IEEE , and Hai Jin, Fellow, IEEE

Abstract—Mobile Edge Computing (MEC) has emerged to overcome the inability of cloud computing to offer low latency services. It
allows popular data to be cached on edge servers deployed within users’ geographic proximity. However, the storage resources on
edge servers are constrained due to their limited physical sizes. Existing studies of edge caching have predominantly focused on
maximizing caching performance from the mobile network operator’s perspective, e.g., maximizing data retrieval success rate,
minimizing system energy consumption, balancing the overall caching workload, etc. App vendors, as key stakeholders in MEC
systems, need to maximize the caching revenue, considering the cost incurred and the benefit produced. We investigate this novel
Mobile Edge Data Caching (MEDC) problem from the app vendor’s perspective, and prove its NP-hardness. We then propose Online
MEDC (OL-MEDC), an approach that formulates MEDC strategies for app vendors, without requiring future information about data
demands. Its performance is theoretically analyzed and experimentally evaluated. The experimental results demonstrate that
OL-MEDC outperforms state-of-the-art approaches by at least 20.41% on average.

Index Terms—data caching, mobile edge computing, online algorithm, cost-effective.

F

1 INTRODUCTION

THe world is witnessing an exponential growth of mobile
and Internet-of-Things devices in recent years [1], [2].

These devices generate enormous network traffic, often
increase network latency and cause network congestion.
To tackle this challenge, Mobile Edge Computing (MEC)
has emerged to distribute computing and storage resources
at the network edge by deploying edge servers at base-
stations within end-users’ geographic proximity [3]. Mobile
and Internet-of-Things application vendors – referred to as
app vendors hereafter – can request the use of computing
and storage resources on edge servers to deploy applications
for ensuring low-latency service and data accesses for their
users [4].

As the number of end-users accessing edge applications
increases, it is expected that a large amount of app data
will be transmitted via edge servers between remote cloud
servers and users’ end-devices. Caching app vendors’ data
on edge servers, (e.g. viral videos), will significantly reduce
their users’ data retrieval latency because the users can

• X. Xia, F. Chen and M. Abdelrazek are with School of Information
Technology, Deakin University, Australia.
E-mail: xiaoyu.xia@deakin.edu.au; feifei.chen@deakin.edu.au;
mohamed.abdelrazek@deakin.edu.au.

• Q. He and G. Cui are with School of Software and Electrical En-
gineering, Swinburne University of Technology, Australia. E-mail:
qhe@swin.edu.au; gcui@swin.edu.au.

• J. Grundy is with Faculty of Information Technology, Monash University,
Australia. E-mail: john.grundy@monash.edu.

• A. Bouguettaya is with School of Computer Science, University of Sydney,
Australia. Email: athman.bouguettaya@sydney.edu.au.

• H. Jin is with School of Computer Science and Technology, Huazhong
University of Science and Technology, China. Email: hjin@hust.edu.cn.

retrieve data directly from edge servers within their close
geographic proximity.

Data caching techniques have been intensively studied
and applied to leverage their advantages in saving band-
width consumption, minimizing access costs and reducing
network latency [5], [6], [7]. In the last few years, there has
been intensive research investigating network cache in the
conventional network paradigms relying on different per-
spectives, e.g., information-theoretic caching [8] and request
routing [9]. As a new computing paradigm, MEC offers new
opportunities but poses new challenges for data caching. In
MEC systems, the fundamental goal is to lower users’ data
retrieve latency by caching popular data on edge servers
[10].

Research has started in earnest to study data caching
problems in MEC systems – referred to as the Mobile Edge
Data Caching (MEDC) problem hereafter – from the mobile
network operator’s perspective with different offline opti-
mization objectives, e.g., minimum response latency [11],
or maximum data sharing efficiency [12]. However, these
studies have not systematically considered the requirements
and concerns of app vendors like Facebook or Uber who
posses storage resources on edge servers to cache data. In
the MEC environment, app vendors and mobile network
operators are two stakeholders with quite different interests.
From the mobile network operator’s perspective, the main
objective is to optimize the overall caching performance in
edge data caching scenarios, e.g., maximizing data retrieval
success rate [13], minimizing system energy consumption
[14], or balancing the overall caching workload [15]. In ad-
dition to mobile users, app vendors are the mobile network
operators’ other group of customers in the MEC environ-
ment. The key challenge for app vendors is to formulate

70

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021

more cost-effective caching strategies, considering both the
caching benefit obtained from providing low-latency data
retrieval to its users and the caching cost incurred based on
the pay-as-you-go scheme.

Given a set of requested data in an area, caching all the
requested data on every individual edge server is a straight-
forward solution for app vendors to ensure low latency for
all the users. However, edge servers’ cache capacities are
normally limited and expensive because of their physical
size limits [16]. It is difficult to cache a large amount of
data for each app vendor on each edge server because of
the competitions among app vendors. A common practice
is to reserve cache capacities on individual edge servers
in advance. Users may then benefit from low-latency data
retrievals provided by their nearby edge servers, producing
caching benefits for the app vendor. In the meantime, caching
costs are incurred based on the pay-as-you-go scheme when
data are transmitted to be cached [17]. Both caching benefits
and caching costs must be considered when cost-effectively
formulating MEDC strategies for app vendors. In addition,
different data will need to be cached dynamically over time.
Cached data may need to be flushed out to save cache
spaces for more popular data. These dynamic data demands
are not known in advance and must be accommodated on
the fly. Thus, offline MEDC approaches are subject to low
effectiveness over time.

In this paper, we study this online MEDC problem from
the app vendor’s perspective for maximizing the caching revenue,
considering both caching benefits and caching costs. The main
contributions include:
• We formulate this online MEDC problem and prove its
NP-hardness.

• We propose OL-MEDC (Online MEDC), an online ap-
proach for formulating cost-effective MEDC strategies
over time, to solve the MEDC problem over time without
requiring future information about data demands.

• We analyze the guarantee bound of OL-MEDC theoreti-
cally.

• We compare OL-MEDC with five representative ap-
proaches through extensive experiments, and show OL-
MEDC’s advantages over these approaches in addressing
the online MEDC problem.

The organization of the paper is as follows. An example
motivating the MEDC problem is provided in Section 2.
In Section 3, we present the system model, formulate the
MEDC problem and prove that the MEDC problem is NP-
hard. In Section 4, we present the design of OL-MEDC,
and prove its performance guarantee theoretically. Section
5 evaluates OL-MEDC experimentally against five repre-
sentative approaches, analyzes the construct, internal and
external threats to the validity of the evaluation, and discuss
how they are mitigated. The related work is reviewed in
Section 6. We conclude this study and point out the future
work in Section 7.

2 MOTIVATING EXAMPLE

In an MEC environment, edge servers in an area can trans-
mit data with other via high-speed links [4]. Those edge
servers and links constitute an edge server network [17].

d1

d2

d3

d4

v1

v2 v3

v4u1

u4

u5

u6

u7

u11

u8

u9

u10

u2

u3

Edge Server

Mobile User

Fig. 1: An example MEDC scenario

This architecture single-point failure problem in the edge-
cloud architecture, where a centralized macro base station is
used to control the communications between edge servers
[18]. It also avoids unpredictable network latency when
edge servers can only communicate the backhaul network
[17]. In fact, the edge-cloud architecture is a fully-connected
edge server network. Thus, OL-MEDC can also accommo-
date the edge-cloud architecture.

Fig. 1 shows a typical MEC system, involving 4 edge
servers, {v1, ..., v4} and 11 users, {u1, ..., u11} that request 4
data, {d1, ..., d4}. Compared to cloud servers, the storage
resources at the network edge are constrained by edge
servers’ limited physical capacities. As discussed in Section
1, caching plenty of data on each edge server is usually im-
possible due to edge servers’ constrained storage resources
and the consequent competition among app vendors [3].
This is the capacity constraint. Due to this constraint, an
app vendor will not always be able to acquire the required
cache spaces. Thus, app vendors normally need to reserve
a certain number of cache spaces on every edge server
in advance. Take Fig. 1 for example. The app vendor has
reserved four cache spaces on edge server v1. However,
d1, d2 and d3 are requested in the coverage area of v1,
and the cache spaces of v1 do not suffices to cache those
three kinds of data. Usually, reserving a large amount of
cache spaces on an individual edge server is cost-ineffective
because users’ data demands for popular data vary from
area to area [19]. The ability for edge servers to enable
collaborative caching further reduces the app vendor’s need
to reserve large amounts of cache capacities on individual
edge servers.

Each edge server in the MEC system has its coverage
area, and only the users in this coverage area can access
the edge server directly [20]. In an overlapping area covered
by multiple edge servers, a user can access its local edge
servers, i.e. the edge servers covering this user. For example,
user u4 in Fig. 1 can access both v1 and v2 directly. This is
the coverage constraint. If a user cannot retrieve data from its
local edge servers, this user can obtain the data from remote
edge servers as long as the app-specific latency constraint
is not violated [3], [21]. This is the latency constraint. Take
u6 in Fig. 1 for example. It can obtain data directly from its
local edge servers v2 and v3, or remote edge servers v1 and

71

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021

v4. If none of them has the requested data, the user has to
retrieve it from the cloud. The main difference between these
retrieval methods lies in the corresponding data retrieval
latencies.

In addition to the above three unique constraints in MEC
systems, the main difference between this study and existing
studies is that this paper investigates the MEDC problem for
app vendors, considering data dynamics in MEC systems.
Please note that the cost of hiring cache spaces is fixed
because cache spaces are reserved in advance by the app
vendor. The optimal MEDC strategy for app vendors should
maximize the app vendor’s caching revenue, i.e., caching benefit
minus caching cost. Fig. 1 shows that users u9, u10 and u11
request data d1. Caching d1 on v4 in its reserved cache
spaces can reduce the data retrieval latency of those users,
compared with retrieving data from the remote cloud. This
produces the caching benefit. However, transmitting d1 to
v4 is charged by the mobile network operator. This incurs
the caching cost. Furthermore, the status of a dynamic real-
world MEC system changes over time. For example, users
may leave the system and new popular data may be re-
quested by new users. The MEDC strategy must be updated
accordingly to remain optimal, taking into account these
system dynamics, the information of which is not available
prior to their occurrences. Finding and implementing the
global optimal MEDC strategy over a long period of time is
impractical. The app vendor’s MEDC must be updated over
time in an online manner without the need for knowing
future data dynamics in the real-world MEC system.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system architecture,
then define the data retrieval latency, caching cost, and
caching benefit under constrains discussed in Section 2.

3.1 System Architecture
Let V denote the set of edge servers and E denote the set
of links in an MEC system, the edge server network can be
modeled as a graph G(V,E). The notations are summarized
in Table 1.

Let D denote the data requested in the MEC system in
a specific time slot t, let st = {st1, ..., stn} denote the MEDC
strategy for time slot t, where sti = {sti,f ,∀df ∈ D}, and sti,f
indicates whether df is decided to be cached on vi in time
slot t:

sti,f =

{
0 if df is not cached on vi in t
1 if df is cached on vi in t

(1)

Let qtm,d denote whether user um requests data df in
time slot t:

qtm,f =

{
0 if um does not request df in t
1 if um requests df in t

(2)

The data cached on vi must not exceed the reserved
spaces on vi in any time slot:

∑

df∈D
sti,f · |df | ≤ Ai,∀vi ∈ V, t ∈ T (3)

where |df | is the size of df . This is the cache space constraint.

TABLE 1: Summary of Notations

Notation Description
Ai reserved cache spaces on vi
c remote cloud server
cce unit data transmission cost from cloud to edge server
cee unit data transmission cost between edge servers
D set of requested data
df data f
E set of edges in G
G edge server network
qtm,f binary variable indicating um requests for df in t
S data caching strategy over T
st data caching strategy in t
sti,f binary variable indicating df will be cached on vi

at the end of t
t time slot t
T set of time slots
V set of edge servers
vi edge server i
U set of end-users’ devices
Uj set of end-users’ devices covered by vj
um end-users’ device m
γ unit of caching benefit

Φj,i hops between edge server vj and vi
ΦL latency limit
Φt

i,f lowest latency transmitting df for vi in t
Φt

m,f lowest latency of um retrieving df in t

3.2 Data Retrieval Latency

There are two main components in the data retrieval latency
of a user, including the latency transmitting data between
edge servers and the latency transmitting data to the user
from an edge server covering this user. Since the latter is
extremely low in 5G and is not influenced by the MEDC
strategy, we do not consider this component in the model.
Modeling the connected edge servers in the MEC system
as a graph in the same way as [17], the number of hops in
MEC systems is used to generically quantify data retrieval
latency. The latency of user um retrieving data df in time
slot t, denoted by Φtm,f , is calculated as follows:

Φtm,f = min{Φj,i, stj,f = 1,∀vj ∈ V
⋃
c},∀um ∈ Ui (4)

where vj is the edge server caching df , vi is the edge server
covering um, and Φj,i is the minimum number of hops
between vj and vi.

Remark: Similar to [3], [17], specific latency models can
be easily integrated into OL-MEDC to accommodate various
real-world MEDC scenarios. Specifically, Φj,i in (4) can be
replaced with a latency function Φ(j, i, f) that represents
the latency in delivering data df from vj to vi:

Φtm,f = min{Φ(j, i, f), stj,f = 1,∀vj ∈ V
⋃
c},∀um ∈ Ui

(5)

Let ΦL denote the app-specific latency constraint, i.e., the
maximum data retrieval latency allowed. If Φtm,f is higher
than ΦL, um will access df from the remote cloud.

72

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021

3.3 Caching Cost
To cache a data df on an edge server in the MEC system,
df can be transmitted from another edge server or from the
cloud. Either way, the transmission cost occurs. The caching
cost incurred by implementing an MEDC strategy st is the
total transmission cost incurred by transmittingD according
to st. As discussed in Section 2, the app vendor reserves
cache spaces on edge servers in advance. Thus, the cost
incurred by hiring cache spaces is fixed and thus does not
need to be considered here.

Similar to (4), let Φti,f = min{Φi,j , st−1j,f = 1,∀vj ∈ V }
denote the lowest latency in transmitting df to vi in time slot
t. There are two types of data transmissions: from the remote
cloud server to an edge server and from an edge server to
another. Let cce denote the unit cost of transmitting data
from cloud to edge servers, and cee denote the unit cost of
transmitting data between edge servers. If the cost incurred
by transmitting df from the remote cloud server (cee ·Φti,f >
cce) is lower than that from another edge server in the MEC
system (cce < cee · Φti,f), the data will be transmitted from
the remote cloud to vi. Thus, the cost of transmitting data
df in time slot t, denoted as C(st), is:

C(st) =
∑

vi∈V

∑

df∈D
|df | · sti,f (1− st−1i,f) · costti,f (6)

where costti,f = min{cee ·Φti,f , cce} is the minimum cost for
delivering df to vi in time slot t.

Remark: Similar to latency, specific transmission cost
models can be easily integrated into OL-MEDC. A cost func-
tion c(j, i, f) that represents the cost of delivering df from
vj to vi can be employed to calculate the actual minimum
cost of delivering df to vi in time slot t:

costti,f = min{c(j, i, f), stj,f = 1,∀vj ∈ V
⋃
c} (7)

3.4 Caching Benefit
As discussed in Section 2, a user retrieves data from a local
edge server covering it or a remote edge server caching the
data as long as it does not violate the app-specific latency
constraint ΦL. Thus, caching benefit is yielded when a user
can retrieve data in the MEC system within ΦL. Let Btm,f be
the caching benefit yielded for individual user um’s retrieval
of data df . It can be calculated as follows:

Btm,f =





max{ΦL − Φtm,f , 0} if um retrieves df from
an edge server

0 if um retrieves df from
the remote cloud

(8)
Now, the caching benefit yield by an MEDC strategy in

time slot t can be calculated by:

B(st) =
∑

um∈U

∑

df∈D
Btm,f · qtm,f (9)

3.5 Problem Formulation And Hardness
Let γ denote the app vendor’s priority for lowering users’
data retrieval latency. A large γ indicates that the app
vendor is inclined to lower network latency for its users
at higher caching costs, and vice versa. Based on the cost

and benefit models in Sections 3.3 and 3.4, the caching
revenue produced by MEC strategy st, denoted by P(st),
can be calculated by caching benefit B(st) minus caching
cost C(st):

P(st) = γ · B(st)− C(st) =
∑

um∈U

∑

df∈D
γ · Btm,f · qtm,f

−
∑

vi∈V

∑

df∈D
|df | · sti,f · (1− st−1i,f) · costti,f

(10)

Now, the MEDC problem over a period of time T that
consists of multiple time slots can be modeled as follows:

max lim
T→∞

T∑

t=1

P(st)

s.t. : (1), (2), (3), (4)

Now, we prove the NP-hardness of the MEDC problem
in an individual time slot t (referred to as the t-MEDC
problem hereafter) with Theorem 1.
Theorem 1. The t-MEDC problem in a time slot is NP-hard.

Proof To do the proof, we first introduce the weighted k-
set packing (WKSP) problem, a classic NP-hard problem.
Let X denote an element universe with ∀x ∈ X and S
denote the set of all subsets in X . Each subset s ∈ S covers
a set of elements with weight w(s). Given the limit k, the
WKSP problem can be represented by:

max
∑

s∈S
w(s) · cs (11a)

s.t. :
∑

s∈S
cs ≤ k (11b)

∑

x∈X
cx ≤ 1 (11c)

where cs ∈ {0, 1} indicates whether set s ∈ S is included
into the solution, and cx ∈ {0, 1} indicates whether element
x is covered.

Now we present how to reduce a special case
of the t-MEDC problem with same size data to the
WKSP problem. Here we construct an 1-time-slot in-
stance t − MEDC(V,U, n,P(s)) based on a given in-
stance MEDC(V,U, n,P(s)) in the polynomial time where
|S| = |V |, |X | = |U | and n = k. The function P(s) is the
caching revenue produced by the MEDC strategy s based
on (10). In this case, we can project the revenue function
P(s) to w(s). This way, any solution satisfying the objective
of the t-MEDC problem also satisfies objective (11a). As
constraint (11b) constrains the maximum number of selected
sets,

∑
vi∈V

∑
df∈D si,f ≤

∑
vi∈V Ai based on (3) can be

projected to (11b). Since the caching benefit of each data
request df of user um can only be counted once, (11c) is
satisfied. In this case, any solution satisfying constraints (3)
and (4) also satisfies constraints (11b) and (11c). Thus, the
WKSP problem can be reduced from the t-MEDC problem.
Since the WKSP is NP-hard, the t-MEDC problem is also
NP-hard. �

The t-MEDC problem is a special case of the MEDC
problem where T = 1. Thus, the MEDC problem over T
is also NP-hard based on Theorem 1.

73

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021

Algorithm 1 Single Time-slot MEDC Algorithm (ST-MEDC)

1: initialization
2: s̃, ŝ← ∅
3: end of initialization
4: s̃i,f ∅
5: repeat
6: s̃ s̃

⋃
s̃i,f

7: obtain the most cost-effective data caching deci-
sion s̃i,f under cache space constraint: s̃i,f =

arg max{B(s̃
⋃
s̃i,f)−B(s̃)
|df | ,∀vi ∈ V, df ∈ D}

8: until no feasible decision s̃i,f
9: ŝi,f ∅

10: repeat
11: ŝ ŝ

⋃
ŝi,f

12: obtain the data caching decision ŝi,f with the highest
benefit increase under cache space constraint: ŝi,f =
arg max{B(ŝ

⋃
ŝi,f)− B(ŝ),∀vi ∈ V, df ∈ D}

13: until no feasible decision ŝi,f
14: return arg maxs∈{s̃,ŝ}B(s)

4 ALGORITHM DESIGN AND ANALYSIS

The complete information about the MEC system over time
is required to solve the MEDC problem optimally. However,
it is unrealistically in real-world scenarios where users’ data
requests usually arrive dynamically. In this section, we first
present the ST-MEDC (Single Time-slot MEDC) algorithm
for solving the MEDC problem in a single time slot. Then,
we introduce the OL-MEDC (Online MEDC) algorithm for
finding near-optimal MEDC strategies over time.

4.1 Single Time-slot MEDC Algorithm

Finding optimal solutions in large-scale MEDC scenarios is
intractable, due to the NP-hardness of the t-MEDC prob-
lem. Thus, OL-MEDC employs a heuristic algorithm named
ST-MEDC (Single Time-slot MEDC) to solve the t-MEDC
problem, aiming to maximize the caching benefit B(st) in
individual time slots.

The pseudo-code of ST-MEDC is shown in Algorithm
1. Starting with initialization, ST-MEDC creates two initial
MEDC strategy candidates s̃ and ŝ (Lines 1-3). Then, it
obtains s̃ first in an iterative manner: always including the
data caching decision s̃i,f that produces the highest ratio
of caching benefit over used caching spaces B(s̃

⋃
s̃i,f)−B(s̃)
|df |

into s̃ until the cache space constraint (3) is violated or
no feasible decision s̃i,f can be found (Lines 4-8). Simi-
larly, the algorithm obtains ŝ by selecting the data caching
decision ŝi,f with the highest increase in caching benefit
B(s̃

⋃
s̃i,f) − B(s̃) (Lines 9-13). In Line 14, the solution

with the higher total caching benefit is the final result of
Algorithm 1.

The computational complexities of finding decisions in
Lines 7 and 12 are at mostO(|V |·|D|), respectively. There are∑
vi∈V Ai at most iterations in each of the two loops in ST-

MEDC. Thus, the computational complexity of ST-MEDC is
O(2 · |V | · |D|∑vi∈V Ai) = O(|V |2 · |D|).

Algorithm 2 Online MEDC Algorithm (OL-MEDC)

1: initialization
2: β = 0, t = 1, s0 ← ∅, S = {s0}
3: end of initialization
4: while t ≤ T do
5: obtain MEDC strategy st by Algorithm 1
6: calculate B(st), C(st) by st and st−1

7: calculate B(st−1) by st−1

8: if γ · β ≥ k · C(st) or β = 0 then
9: β = B(st)

10: else
11: β = β + B(st−1)
12: st st−1

13: end if
14: S S ⋃ st
15: t = t+ 1
16: end while

4.2 Online MEDC Algorithm
Now we present OL-MEDC, the online algorithm for for-
mulating cost-effective MEDC strategies over time based
on ST-MEDC. The pseudo-code of OL-MEDC is shown
in Algorithm 2. As discussed in Section 2 and Section 3,
caching cost is an important component in the caching
revenue. Updating the MEDC strategy in every time slot
may incur high caching costs. Thus, OL-MEDC updates
the current MEDC strategy only when it has already pro-
duced adequate benefits, i.e. γ · β > k times the caching
cost incurred by implementing the MEDC strategy update,
where β is the accumulated caching benefit produced by
the current MEDC strategy since its implementation and
k is a parameter specified by the app vendor based on its
willingness to trade off caching cost for caching benefit.
In general, a large k will tend to reduce caching costs by
keeping the current MEDC strategy.

Algorithm 2 initializes the accumulated caching benefit
by β = 0 and creates an initial MEDC strategy (Lines 1-3). In
each time slot, Algorithm 2 first obtains an approximation
solution st with Algorithm 1 (Line 5), then calculates the
benefit produced by st and the caching cost incurred by
updating st−1 to st (Line 6). After that, it calculates the
caching benefit produced with the current MEDC strategy
unchanged (Line 7). Then, through Line 8 to Line 15, the
algorithm compares the accumulated caching benefit β ob-
tained by st−1: if β > 1

γ times C(st) or st−1 is infeasible,
st−1 is updated by st. Otherwise, st−1 remains and no extra
caching cost incurs.

As discussed in Section 4.1, the computational com-
plexity of ST-MEDC is O(|V |2 · |D|). Thus, the computa-
tional complexity of OL-MEDC in each time slot is also
O(|V |2 · |D|). This indicates the high efficiency of OL-MEDC
and allows it to formulate MEDC strategies rapidly over
time.

4.3 Performance Analysis
Here, we first analyze the approximation ratio of ST-MEDC
in terms of caching benefit, i.e., the ratio of the caching
benefit produced by ST-MEDC in the worst case over that
produced by the optimal solution. After that, we analyze

74

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021

the competitive ratio of OL-MEDC over time, i.e., the ratio
of the total caching revenue produced by OL-MEDC in the
worst case over that produced by the optimal strategy, based
on the approximation ratio of ST-MEDC.

In terms of caching benefit, we obtain the approximation
ratio of ST-MEDC by analyzing the performance bound of s̃
with Theorems 2 - 5. We divide each data cache decision s̃i,f
into |df | sub-decisions, where each sub-decision produces
B(s̃⋃ s̃i,f)−B(s̃)

|df | caching benefit. Let s̃′ denote the set of sub-
decisions based on data caching strategy s̃.

Let s̃′l denote the sub-decision set when the lth sub-
decision is included in s̃′. Let s∗ denote the optimal solution
of the t-MEDC problem, and B(s∗) denote the caching ben-
efit yielded by the optimal t-MEDC strategy. The increase
in the caching benefit by including the lth sub-decision,
denoted by ∆B̃l, is at least

B(s∗)−B(s̃′l−1)∑
vi∈V Ai

.

Theorem 2. For the lth sub-decision included in s̃′, the
increase in benefit, ∆B̃l, follows:

∆B̃l ≥
B(s∗)− B(s̃′l−1)∑

vi∈V Ai
(12)

Proof To proof this theorem, we first divide the optimal
the optimal t-MEDC strategy s∗ into a set of sub-decisions
s′∗, where B(s∗) = B(s′∗). Since s̃′l selects the sub-decision
with the maximum ratio of benefit when including the lth
sub-decision, for the first sub-decision in s′∗ but not in
s̃′l−1, it is at most ∆B̃l increased in the caching benefit. In
addition, there is at most

∑
vi∈V Ai cache spaces available

in the MEC system. Thus, the total caching benefit produced
by {s′|s′ ∈ s′∗⋂¬s̃′l−1} is at most

∑
vi∈V Ai ·∆B̃l. Thus, the

above inequality is satisfied. �
Now, we prove that the caching benefit produced by s̃′l

provided by ST-MEDC with the lth sub-decision included, is

at least

(
1−

(
1− 1∑

vi∈V Ai

)l−1)
times the caching benefit

produced by s′∗ with Theorem 3.
Theorem 3. For each included sub-decision l, the caching

benefit produced by s̃′l fulfills the following:

B(s̃′l) ≥

1−

(
1− 1∑

vi∈V Ai

)l−1
B(s′∗) (13)

Proof According to Theorem 2, we can obtain the caching
benefit produced by s̃′l based on (14).

B(s̃′l) = B(s̃′l−1) + ∆B̃l ≥ B(s̃′l−1) +
B(s′∗)− B(s̃′l−1)∑

vi∈V Ai

=

(
1− 1∑

vi∈V Ai

)
B(s̃′l−1) +

1∑
vi∈V Ai

B(s′∗)

(14)

This way, we can prove this theorem by the inductive proof
easily, and omitted details here. �

According to Theorem 3, the lower bound of the caching
benefit with the (l + 1)

th sub-decision of s̃′ can be calcu-
lated:

B(s̃′l+1) ≥

1−

(
1− 1∑

vi∈V Ai

)l
B(s′∗) (15)

The total amount of available cache spaces is
∑
vi∈V Ai.

When all the cache spaces are occupied (l =
∑
vi∈V Ai), the

caching benefit produced by strategy s̃l+1 fulfils:

B(s̃′l+1) ≥

1−

(
1− 1∑

vi∈V Ai

)l
B(s′∗)

=

(
1−

(
1− 1

l

)l)
B(s′∗) ≥

(
1− 1

e

)
B(s′∗)

(16)

However, s̃l+1 violates the cache space constraint with
the (l + 1)

th sub-decision included into s̃′l+1, where l =∑
vi∈V Ai. Here, we prove the lower bound of the caching

benefit produced by s̃′l with Theorem 4.
Theorem 4. When l =

∑
vi∈V Ai, the benefit produced by s̃′l

is at least e−12e times what is produced by s′∗:

B(s̃′l) = B(s̃′∑
vi∈V Ai

) ≥ e− 1

2e
B(s′∗)

Proof According to (16), the benefit produced by s̃′l ful-
fills:

B(s̃′l) ≥
(

1− 1

e

)
B(s′∗)−∆ ˜Bl+1 (17)

Since the increase in the caching benefit in the l + 1th

time slot ∆ ˜Bl+1 cannot be higher than that in the lth time
slot:

∆ ˜Bl+1 ≤ ∆B̃l ≤ B(s̃′l) (18)

Thus, we can obtain:

B(s̃′l) ≥
(

1− 1

e

)
B(s′∗)− B(s̃′l) ≥

e− 1

2e
B(s′∗) (19)

Thus, the theorem holds. �
Please note that the MEDC strategy s̃ obtained by ST-

MEDC considers the differentiated data sizes. Thus, the
set of sub-decisions s̃′ derived from s̃ will not always
contain up to

∑
vi∈V Ai sub-decisions. Now, we analyze the

approximation ratio of the t-MEDC strategy s provided by
ST-MEDC in terms of the caching benefit:
Theorem 5. The caching benefit produced by ST-MEDC

is at least (1−ω)(e−1)
2e times the caching benefit pro-

duced by the optimal solution s∗, where ω =

|V |·min

{
min
{
Ai,∀vi∈V

}
,max

{
|df |,∀df∈D

}}

∑
vi∈V Ai

.

Proof We first analyze the performance of s̃ in ST-MEDC
here, to obtain the approximation ratio of ST-MEDC.

B(s̃) ≥ B(s̃′∑
vi∈V Ai

)− ω · B(s̃′∑
vi∈V Ai

)

= (1− ω) · B(s̃′∑
vi∈V Ai

) ≥ (1− ω) · e− 1

2e
B(s′∗)

=
(1− ω)(e− 1)

2e
· B(s′∗) =

(1− ω)(e− 1)

2e
· B(s∗)

(20)

Since the final MEDC strategy constituted by ST-MEDC
always produces benefit no lower than s̃, we can obtain:

B(s) = max{B(s̃),B(ŝ)} ≥ B(s̃) ≥ (1− ω)(e− 1)

2e
· B(s∗)

(21)

75

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021

Thus, the approximation ratio of ST-MEDC in terms of
caching benefit is (1−ω)(e−1)

2e . �
According to Theorem 5, we can prove the competitive

ratio of OL-MEDC in terms of caching revenue:

Theorem 6. The competitive ratio of OL-MEDC is
(k−γ)(1−ω)2(e−1)2η

4ke2 , where η =
min
{
B(st),∀t∈{1,...,T}

}

max
{
B(st),∀t∈{1,...,T}

} .

Proof According to Line 8 in Algorithm 2, the caching cost
is at most γk times the accumulated caching benefit β. In the
worst case, the MEDC has to be updated in every time slot
over T and the total caching cost incurred (

∑T
t=1 C(st)) is

no more than γ
k

∑T
t=1 B(st). Thus, the total caching revenue

produced by S = {s0, s1, ..., sT } can be calculated by:

T∑

t=1

P(st) =
T∑

t=1

(B(st)− C(st)) ≥ (
k − γ
k

) ·
T∑

t=1

B(st) (22)

Let
∑T
t=1 P(s∗t) denote the caching revenue obtained by

the offline optimal approach over T .

T∑

t=1

P(st) ≥ (
k − γ
k

) ·
T∑

t=1

(1− ω)(e− 1)

2e
B∗min

≥ (
k − γ
k

) · (1− ω)(e− 1)

2e
·
T∑

t=1

η∗ · B∗max

≥ (
k − γ
k

) ·
(

(1− ω)(e− 1)

2e

)2

· η ·
T∑

t=1

P(s∗t)

(23)

Thus, OL-MEDC always provides a solution that
achieves (k−γ)(1−ω)2(e−1)2η

4ke2 times the optimal offline solu-
tion in terms of the caching revenue.

�

5 EXPERIMENTAL EVALUATION

5.1 Benchmark Approaches

In the experiments, OL-MEDC is compared with five repre-
sentative approaches :
• IP-MEDC: In each individual time slot, it provides the

optimal solution P(st) to t-MEDC problem described in
Section 3.5 with IBM’s CPLEX Optimizer.

• CEDC-O [3]: This online approach aims to maximize the
coverage of user requests while minimizing the system
cost. As mentioned in Section 2, the app vendor needs to
reserve cache spaces. Thus, the cost of hiring cache spaces
is not included in this approach.

• Request-based Collaborative Caching (RCC) [22]: This
online approach focuses on serving the most users by the
MEDC strategy over time in the MEC system.

• AEDC [23]: This offline approach finds solutions to t-
MEDC problems with the aim to approximate the max-
imum caching benefits obtained by IP-MEDC. In the
experiments, AEDC runs in each individual time slot to
obtain the results.

• Distributed Caching Algorithm (DCA): This distributed
algorithm originates from [24] and is enhanced to solve
the online MEDC problem. Edge servers communicate

and cache data collaboratively in each time slot. This algo-
rithm maximizes the overall caching revenue by heuristi-
cally caching data on edge servers that yield the highest
caching revenues.

5.2 Experimental Settings

The real-world EUA dataset1 is used for conducting the
experiments in this study. In the experiments, a total of
200 mobile users are randomly selected from the dataset to
simulate users in the system. According to the experimental
settings, a certain number of edge servers are randomly
selected from the dataset and connected to simulate an
MEC system. The latency limit ΦL is set to 2 hops. Similar
to [25], a number of these users are randomly selected
to send requests for a set of data (D) in each time slot,
following N (µ, σ2), a normal distribution, where µ = |M |

2

and σ = |M |
4 . The sizes of data requested are also randomly

selected between 1 to the maximum reserved cache spaces
in the experiments.

AWS’s Snowball Edge Pricing2 is adopted in the exper-
iments. We set cce to $0.016, cee to $0.006 and γ to $0.004.
The normal distribution N (µ′, σ′2) is used to randomly
generate the reserved cache spaces on every edge server,
where µ’ equals to half of the maximum reserved cache
spaces among all the edge servers and σ′ = 1.

5.3 Parameter Settings

To evaluate OL-MEDC comprehensively, we conduct seven
sets of experiments to simulate various MEDC scenarios.
Set #1 aims to demonstrate and compare the performance of
the six approaches over 100 time slots, i.e., T = 100. Set #2
aims to demonstrate the applicability of OL-MEDC in four
different MEDC modes:
• General Mode (GM). In this mode, the generic latency

and cost models presented in Section 3 are applied and
data demands in individual time slots follow a discrete
uniform distribution across individual edge servers.

• Zipf Mode (ZM). In this mode, the generic latency and
cost models are applied in the same way as GM, while
users’ demands for different data follow a Zipf distribu-
tion, similar to [26].

• Latency-specific Mode (LM). In this mode, a specific
latency model is applied by randomly selecting a latency
value from (0, 2) for each link between two edge servers.
In addition, a generic cost model is applied and data
demands follow a discrete uniform distribution.

• Cost-specific Mode (CM). In this mode, a specific cost
model is applied by randomly selecting a cost value from
(0, 2) for each link between two edge servers. In addition,
the generic latency model is applied and data demands
follow a discrete uniform distribution.

As summarized in Table 2, we vary the value of one
of the following five parameters while fixing the others
in Sets #2-#7. In this way, we can evaluate OL-MEDC in
different MEDC scenarios and demonstrate the impacts of
the parameters. In these sets, each experiment also continues

1. https://github.com/swinedge/eua-dataset
2. https://aws.amazon.com/snowball-edge/pricing/

76

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021

TABLE 2: Parameter Settings

Mode |V | θ MS |D| k

Set #1 GM 10 1.0 4 4 1
Set #2 GM, TM, LM, CM 10 1.0 4 4 1
Set #3 GM 6, 8, 10, 12, 14, 16 1.0 4 4 1
Set #4 GM 10 1.0, 1.2, 1.4, 1.6, 1.8, 2.0 4 4 1
Set #5 GM 10 1.0 2, 3, 4, 5, 6 4 1
Set #6 GM 10 1.0 4 2, 3, 4, 5, 6 1
Set #7 GM 10 1.0 4 4 1, 4, 16, 64, 256

0 20 40 60 80 100
Time slot t

0.0

0.2

0.4

0.6

Ca
ch

in
g

re
ve

nu
e

IP-MEDC
OL-MEDC
CEDC-O

RCC
AEDC
DCA

(a) P(st) vs. t

0 20 40 60 80 100
Time slot t

0.2

0.3

0.4

0.5

0.6

Ca
ch

in
g

be
ne

fit

(b) B(st) vs. t

0 20 40 60 80 100
Time slot t

0.0

0.1

0.2

0.3

Ca
ch

in
g

co
st

(c) C(st) vs. t

Fig. 2: Set #1

for 100 time slots, is repeated 100 times when a setting
parameter varies, and the average results are reported. The
changed parameters in Sets #3-#7 are:
• Number of edge servers (|V |). This parameter varies from

6 to 16 in steps of 2 and impacts the size of the MEC
system.

• Edge density (θ). Given n edge servers in the simulated
MEC system, e edges are randomly generated based on
θ = e/n. This parameter increases from 1 to 2 in steps of
0.2.

• Maximum reserved cache spaces among all edge servers
(MS). This parameter decides the maximum reserved
cache spaces on the edge servers, varying from 2 to 6 in
steps of 1.

• Number of data (|D|). This parameter increases from 2 to
6 in steps of 1 and is the number of users’ requested data
over T .

• Parameter k in Algorithm 2. This parameter varies among
1, 4, 16, 64, 256 and is used in Algorithm 2 to determine
the updating frequency of the data caching strategy.

As discussed in Section 2, it is cost-ineffective to reserve
huge cache spaces on individual edge servers. Therefore,
those reserved cache spaces must not exceed the threshold
MS in the experiments.

5.4 Performance Metrics

Four performance metrics are adopted in the experiments
for evaluating OL-MEDC:
• Caching revenue P(st), the higher the better.
• Caching benefit B(st), the higher the better.
• Caching cost C(st), the lower the better.
• Maximum computation time, measured by seconds, the

lower the better.

In the evaluation, we observe the maximum computation
time of an approach across the 100 time slots to measure
its efficiency and feasibility, rather than the average com-
putation time. This is because if the approach freezes in
any of the time slots due to excessive computation time, it
will not be able to continue to update the MEDC strategy
for the rest of T . Since DCA is a distributed algorithm,
the computation time in each time slot is determined by
the most time-consuming data caching decision. Please note
that the efficiency results of Set #7 is not presented because
k does not impact the computation time of OL-MEDC.

5.5 Effectiveness
Figs. 2 - 8 show the experimental results of all seven sets of
experiments. Overall, IP-MEDC achieves the highest average
caching revenue, closely followed by OL-MEDC. The average
advantages of IP-MEDC and OL-MEDC are 29.78% and
20.41% over CEDC-O, 39.52% and 29.45% over RCC, 40.05%
and 29.94% over AEDC and 149.80% and 131.76% over
DCA.

Fig. 2 depicts the results of Set #1. Overall, IP-MEDC
and OL-MEDC’s performance are stable over time, outperform-
ing the other four approaches significantly in maximizing the
caching revenue. Fig. 2(a) shows that the average caching
revenues achieved by IP-MEDC and OL-MEDC are 37.09%
and 22.96% higher than CEDC-O, 46.64% and 31.52% higher
than RCC, 54.36% and 38.45% higher than AEDC, 121.30%
and 98.49% higher than DCA. The average caching revenue
achieved by OL-MEDC reaches 89.69% of that achieved
by IP-MEDC. This indicates the high effectiveness of OL-
MEDC. The advantages of IP-MEDC and OL-MEDC in
maximizing caching revenue come from their high ability
to achieve high caching benefits. This can be seen in Fig.
2(b). Achieving comparable caching benefits, IP-MEDC and

77

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021

GM ZM LM CM
Mode

0.2

0.3

0.4

0.5

0.6

0.7
Av

er
ag

e
ca

ch
in

g
re

ve
nu

e IP-MEDC
OL-MEDC
CEDC-O

RCC
AEDC
DCA

Fig. 3: Set #2

6 8 10 12 14 16
|V|

0.2

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e

ca
ch

in
g

re
ve

nu
e IP-MEDC

OL-MEDC
CEDC-O

RCC
AEDC
DCA

Fig. 4: Set #3

1.0 1.2 1.4 1.6 1.8 2.0
θ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Av
er

ag
e

ca
ch

in
g

re
ve

nu
e

IP-MEDC
OL-MEDC
CEDC-O

RCC
AEDC
DCA

Fig. 5: Set #4

2 3 4 5 6
MS

0.2

0.4

0.6

0.8

Av
er

ag
e

ca
ch

in
g

re
ve

nu
e IP-MEDC

OL-MEDC
CEDC-O

RCC
AEDC
DCA

Fig. 6: Set #5

2 3 4 5 6
|D|

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Av
er

ag
e

ca
ch

in
g

re
ve

nu
e IP-MEDC

OL-MEDC
CEDC-O

RCC
AEDC
DCA

Fig. 7: Set #6

1 4 16 64 256
k

0.35

0.40

0.45

0.50

0.55

0.60

Av
er

ag
e

ca
ch

in
g

re
ve

nu
e/

be
ne

fit Revenue
Benefit

0.00

0.05

0.10

0.15

0.20

0.25

Av
er

ag
e

ca
ch

in
g

co
st

Cost

Fig. 8: Set #7

OL-MEDC outperform CEDC-O, RCC, AEDC and DCA by
large margins. Specifically, their average caching benefits
are 46.98% and 45.17% higher than CDEC-O, 18.29% and
16.83% higher than RCC, 12.95% and 11.56% higher than
AEDC, and 119.47% and 116.78% higher than DCA. Fig. 2(c)
compares the caching costs incurred by the six approaches
over T . CEDC-O incurs the lowest caching cost because
CEDC-O aims to minimize the system cost. On average,
the caching costs incurred by IP-MEDC and OL-MEDC are
0.0424 and 0.0881, lower than RCC and AEDC’s 0.1190,
0.1583, but higher than CEDC-O and DCA’s 0.0039 and
0.0212.

Fig. 3 demonstrates the average caching revenues
achieved by all six approaches in Set #2. In all four modes,
IP-MEDC and OL-MEDC outperform CEDC-O, RCC, AEDC
and DCA with large margins. The average advantages of IP-
MEDC and OL-MEDC are 34.87% and 24.58% over CEDC-
O, 42.88% and 31.97% over RCC, 41.86% and 31.03% over
AEDC and 176.39% and 155.30% over DCA. In the ZM mode
where data demands follow the Zipf distribution, the six ap-
proaches achieve caching revenues similar to those achieved
in other modes. This indicates the ability of OL-MEDC to
accommodate data demands following different patterns.
The average caching revenues achieved by IP-MEDC and
OL-MEDC in the LM and CM modes are higher than
those in GM and ZM modes. In the LM mode, IP-MEDC
and OL-MEDC can effectively increase caching benefits by
delivering data through low-latency links, which increases
caching revenues. In the CM mode, they excel at minimizing
caching costs by delivering data at low transmission costs,
which also increases caching revenues.

Fig. 4 - Fig. 7 show the experimental results of Set #3 -
#6. Those figures demonstrate that IP-MEDC and OL-MEDC
significantly outperform the other four approaches again in terms
of caching revenue. The results of Set #3 is depicted in Fig.

4 with various numbers of edge servers. With the initial
increase from 6 edge servers, the caching revenues achieved
by IP-MEDC and OL-MEDC increase. The reason is that
more users can be served by their nearby edge servers and
the caching benefits increases correspondingly. However,
the caching revenues decrease when the number of edge
servers exceeds 10. This is because the maximum achievable
caching benefits are fixed with the fixed numbers of users.
With more edge servers, there are more cache spaces in the
MEC system. This increases the possibility of data transmis-
sions, which potentially incurs extra caching costs. Thus,
the caching revenues achieved by all approaches decrease
in Fig. 4.

When the edge density θ increases, the caching revenue
increases in Fig. 5, because each end-user has a higher
chance of being served by an edge server under the latency
constraint. As a result, all the approaches can achieve higher
caching revenues. When the maximum reserved spaces
increase from 2 to 6, the caching revenues achieved by
all the fix approaches increase in Fig. 6. However, when
the maximum reserved spaces increase from 5 to 6, the
increase becomes much slower. This indicates that reserving
a large amount of cache spaces on an individual edge server
is usually cost-ineffective. Fig. 7 depicts the results of Set
#6. When the number of requested data |D| decreases, the
caching revenues achieved by all the approaches decrease.
The increase in |D| leads to a higher possibility of trans-
mitting data from the cloud because the reserved caching
spaces are fixed. This way, it decreases the caching benefits
and consequently the caching revenues.

Fig. 8 shows the impact of parameter k on OL-MEDC in
caching revenue, benefit and cost. As discussed in Section
4.2, Algorithm 2 employs k to reduce caching costs. As
shown in Fig. 8, a larger k can indeed lower the caching cost.
However, it also decreases the caching benefit in the mean-

78

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021

TABLE 3: Maximum computation time

Set #1 Set #2 Set #3 Set #4 Set #5 Set #6
IP-MEDC 2.6540 2.6637 379.9838 3.3022 19.9294 7.6132
OL-MEDC 0.0095 0.0108 0.1541 0.0102 0.0087 0.0090
CDEC-O 0.3661 0.5285 3.1908 0.3836 0.6719 0.7918

RCC 0.0054 0.0061 0.0107 0.0078 0.0063 0.0075
AEDC 0.0057 0.0068 0.0129 0.0058 0.0066 0.0077
DCA 0.0005 0.0010 0.0008 0.0006 0.0005 0.0010

time. Thus, an app vendor pursuing maximum caching
benefit despite caching cost can feed a small k value to
Algorithm 2. If an app vendor wants to maximize the cost-
effectiveness of its MEDC strategy, it can select a k value
that maximizes the caching revenue, e.g., k = 16 in Set #7.

5.6 Efficiency
In the experiments, we use the maximum computation time
taken across the 100 time slots to evaluate the efficiency.
The results are presented in Table 3. It demonstrates that
IP-MEDC takes much more computation time than others, due
to the NP-hardness of the t-MEDC problem. In particular,
the maximum computation times taken by IP-MEDC and
CDEC-O are 379.9838 seconds and 3.1908 seconds in Set #5,
while the maximum computation times taken by OL-MEDC,
RCC, AEDC and DCA are at most 0.1541 seconds, 0.0107
seconds, 0.0129 seconds and 0.0008 seconds, respectively.
This shows that OL-MEDC is computationally feasible to deploy
on large scales, real-world edge data caching problems.

5.7 Threats to Validity
In this section, we analyze the threats to the validity of the
experimental evaluation, including the threats to construct
validity, internal validity and external validity.

5.7.1 Threats to Construct Validity
The main threats to construct validity in the experiments
are the generated graphs and five comparison approaches.
Randomly generated graphs may not always illustrate real-
world scenarios precisely. To minimize this threat, the
graphs are randomly generated in each execution - 100
graphs are generated when a parameter changes. Moreover,
the five comparison approaches, i.e., IP-MEDC, CDEC-O,
RCC, AEDC and DCA, may not suffice to evaluate OL-
MEDC comprehensively. To minimize this threat, we sim-
ulate different MEDC scenarios by varying five parameters.
In addition, we also evaluate the applicability of OL-MEDC
in different real-world scenarios by evaluating its perfor-
mance in four MEDC modes.

5.7.2 Threats to Internal Validity
For the internal validity, the main threat is the experiment
settings that may favor OL-MEDC over other approaches.
To tackle this threat, we simulated various MEDC scenarios
by changing six parameters for comprehensively and fairly
comparing the performance of all the six approaches. In
addition, the experiment was repeated 100 times to obtain
the averaged results when a setting parameter varies. In

this way, biased results obtained in extreme experiments,
e.g., those with unrealistic data request distribution or edge
server distribution, are neutralized.

5.7.3 Threats to External Validity
The generalize application of OL-MEDC in different MEDC
scenarios is the main threat to the external validity. In this
paper, we generically modeled the MEDC problem and
evaluated all approaches to reduce this threat. We employed
the number of hops to measure latency. Therefore, we can
easily interpret the evaluation results with specific retrieval
latency and data size models. Furthermore, the experiments
were conducted on a real-world dataset. In addition, we
changed the complexity and size of the MEDC problem
by varying the parameters in the experiment settings. In
this way, we can ensure the representativeness and compre-
hensiveness of experimental evaluations. Thus, the threat to
external validity is mitigated.

6 RELATED WORK

Mobile edge computing (MEC) extends cloud computing by
pushing computing resources and services to the network
edge [27]. App vendors can deploy their services and data
on edge servers to offer their users low service latency
and data retrieval latency. In the meanwhile, many new
challenges are posed, including edge user allocation [28],
edge application deployment [29], edge data integrity [30],
edge DDoS mitigation [21], collaborative edge computing
[20] and edge data caching [3], [31].

Existing data caching approaches for cloud computing
and conventional distributed computing are rendered obso-
lete, due to the characteristics of MEC systems. Researchers
are starting to study data caching problems in MEC sys-
tems. In [32], the authors considered the caching revenue
produced during the data delivery process. They proposed
an auction mechanism to find an optimal data caching
solution. The authors of [33] proposed a new edge cache
architecture by including caches on smart vehicles into
the network caches. This approach improves the resource
utility and the effectiveness of this architecture. However,
these studies focus on offline approaches, which require
complete information about the MEC system over time.
Thus, dynamic MEDC scenarios cannot be handled by these
offline approaches.

Very recently, a number of online data caching ap-
proaches have been proposed. The authors of [34] studied
the joint service caching and task offloading problem in
MEC. They proposed a Lyapunov-based approach, namely
OREO, to achieve the minimum network latency while
ensuring the low energy consumption in the long-term.
Considering users’ mobility, the authors of [35] propose
MOREA that allocates various resources, i.e. cache spaces
and CPU circles on edge servers for scheduling offloading
tasks. The authors of [16] studied a micro-service deploy-
ment problem with the aim to minimize the overall cost
instead of data retrieval latency. They proposed IDA4ReE,
a primal-dual based algorithm, to find the solution to
this problem with consideration of resource constraints
and performance requirements. However, existing studies
investigated data caching problems in the MEC systems

79

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021

mainly to complement offloading scheduling. Thus, they
failed to pay sufficient attention to data caching itself, as
a unique technology aiming to reduce data retrieval latency,
especially from the app vendor’s perspective.

The MEDC problem was first studied from the app ven-
dor’s perspective in [31]. This research aims to cache data in
an MEC system for serving all the users while minimizing
the total cost. The main limitations of this study are the
lack of consideration of edge servers’ storage capacities
and the data dynamics on MEC systems. In [36], Xia et
al. considered cache space reservation in the MEDC prob-
lem. However, they ignored the dynamics in MEC systems,
and only focused on caching benefit without considering
caching cost. The authors of [3] provided a Lyapunov-based
online algorithm, CEDC-O, for solving the MEDC problem
dynamically. However, they unrealistically assumed that
app vendors can always hire the needed storage spaces
on edge servers without reservation, and focused solely
on user coverage rather than caching revenue. The exper-
iment results in Section 5.5 show that the caching revenue
produced by CEDC-O is much lower than that produced
by OL-MEDC. To the best of our knowledge, OL-MEDC is
the first attempt to solve the MEDC problem efficiently for
app vendors in an online manner, taking into the unique
constraints and data dynamics in real-world MEC systems.

7 CONCLUSION

In this paper, we investigated the Mobile Edge Data Caching
(MEDC) problem in MEC systems from the app vendor’s
perspective. We identified the major challenges and mod-
eled the MEDC problem formally. We then proved that the
MEDC problem is NP-hard. To accommodate the dynam-
ics of MEC systems, we proposed OL-MEDC, an online
approach for formulating MEDC strategies over time with
a provable performance guarantee. Through extensive ex-
periments, the results demonstrated the advantages of OL-
MEDC in maximizing the caching revenue in MEC systems,
compared with representative approaches. We will consider
MEC systems that allow data to be partitioned for caching
in our future work.

ACKNOWLEDGEMENT

This research is funded by Australian Research Council Dis-
covery Projects No. DP180100212, DP200102491 and Laure-
ate Fellowship FL190100035. Qiang He is the corresponding
author of this paper.

REFERENCES

[1] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and
Y. Yang, “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Transactions on Parallel and
Distributed Systems, 2019.

[2] Z. Ning, P. Dong, X. Wang, X. Hu, L. Guo, B. Hu, Y. Guo, T. Qiu,
and R. Y. K. Kwok, “Mobile edge computing enabled 5g health
monitoring for internet of medical things: A decentralized game
theoretic approach,” IEEE Journal on Selected Areas in Communica-
tions, vol. 39, no. 2, pp. 463–478, 2021.

[3] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.
281–294, 2020.

[4] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement
with provable guarantees in heterogeneous edge computing sys-
tems,” in IEEE Conference on Computer Communications. IEEE,
2019, pp. 514–522.

[5] G. Casale, “Analyzing replacement policies in list-based caches
with non-uniform access costs,” in IEEE Conference on Computer
Communications. IEEE, 2018, pp. 432–440.

[6] A. Mukhopadhyay, N. Hegde, and M. Lelarge, “Optimal content
replication and request matching in large caching systems,” in
IEEE Conference on Computer Communications, 2018, pp. 288–296.

[7] K. Ji, G. Quan, and J. Tan, “Asymptotic miss ratio of lru caching
with consistent hashing,” in IEEE Conference on Computer Commu-
nications, 2018, pp. 450–458.

[8] S. H. Lim, C.-Y. Wang, and M. Gastpar, “Information-theoretic
caching: The multi-user case,” IEEE Transactions on Information
Theory, vol. 63, no. 11, pp. 7018–7037, 2017.

[9] L. Pu, L. Jiao, X. Chen, L. Wang, Q. Xie, and J. Xu, “Online resource
allocation, content placement and request routing for cost-efficient
edge caching in cloud radio access networks,” IEEE Journal on
Selected Areas in Communications, vol. 36, no. 8, pp. 1751–1767, 2018.

[10] S. Li and T. Lan, “Hotdedup: Managing hot data storage at
network edge through optimal distributed deduplication,” in IEEE
Conference on Computer Communications. IEEE, 2020, pp. 247–256.

[11] J. Xie, D. Guo, X. Shi, H. Cai, C. Qian, and H. Chen, “A fast hybrid
data sharing framework for hierarchical mobile edge computing,”
in IEEE Conference on Computer Communications. IEEE, 2020, pp.
2609–2618.

[12] G. Luo, H. Zhou, N. Cheng, Q. Yuan, J. Li, F. Yang, and X. S. Shen,
“Software defined cooperative data sharing in edge computing
assisted 5g-vanet,” IEEE Transactions on Mobile Computing, 2019.

[13] D. Malak, M. Al-Shalash, and J. G. Andrews, “Optimizing con-
tent caching to maximize the density of successful receptions in
device-to-device networking,” IEEE Transactions on Communica-
tions, vol. 64, no. 10, pp. 4365–4380, 2016.

[14] F. Gabry, V. Bioglio, and I. Land, “On energy-efficient edge caching
in heterogeneous networks,” IEEE Journal on Selected Areas in
Communications, vol. 34, no. 12, pp. 3288–3298, 2016.

[15] Z. Liu, Z. Bai, Z. Liu, X. Li, C. Kim, V. Braverman, X. Jin, and I. Sto-
ica, “Distcache: Provable load balancing for large-scale storage
systems with distributed caching,” in 17th {USENIX} Conference
on File and Storage Technologies ({FAST} 19), 2019, pp. 143–157.

[16] S. Deng, Z. Xiang, J. Taheri, K. A. Mohammad, J. Yin, A. Zomaya,
and S. Dustdar, “Optimal application deployment in resource con-
strained distributed edges,” IEEE Transactions on Mobile Computing,
2020.

[17] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Cost-effective app data distribution in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp.
31–44, 2020.

[18] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in 35th Annual IEEE International Confer-
ence on Computer Communications. IEEE, 2016, pp. 1–9.

[19] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. S. Shen,
“Content popularity prediction towards location-aware mobile
edge caching,” IEEE Transactions on Multimedia, vol. 21, no. 4, pp.
915–929, 2018.

[20] L. Yuan, Q. He, S. Tan, B. Li, J. Yu, F. Chen, H. Jin, and Y. Yang,
“Coopedge: A decentralized blockchain-based platform for coop-
erative edge computing,” in Proceedings of the 30th Web Conference,
2021.

[21] Q. He, C. Wang, G. Cui, B. Li, R. Zhou, Q. Zhou, Y. Xiang,
H. Jin, and Y. Yang, “A game-theoretical approach for mitigating
edge ddos attack,” IEEE Transactions on Dependable and Secure
Computing, 2021.

[22] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A prov-
ably efficient online collaborative caching algorithm for multicell-
coordinated systems,” IEEE Transactions on Mobile Computing,
vol. 15, no. 8, pp. 1863–1876, 2016.

[23] X. Xia, F. Chen, Q. He, G. Cui, P. Lai, M. Abdelrazek, J. Grundy,
and H. Jin, “Graph-based data caching optimization for edge
computing,” Future generation computer systems, vol. 113, pp. 228–
239, 2020.

[24] Y. Huang, X. Song, F. Ye, Y. Yang, and X. Li, “Fair and efficient
caching algorithms and strategies for peer data sharing in perva-
sive edge computing environments,” IEEE Transactions on Mobile
Computing, vol. 19, no. 4, pp. 852–864, 2019.

80

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , 2021

[25] S. Chen, L. Jiao, L. Wang, and F. Liu, “An online market mecha-
nism for edge emergency demand response via cloudlet control,”
in IEEE Conference on Computer Communications. IEEE, 2019, pp.
2566–2574.

[26] Y. Yang and J. Zhu, “Write skew and zipf distribution: Evidence
and implications,” ACM transactions on Storage (TOS), vol. 12, no. 4,
pp. 1–19, 2016.

[27] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting
line: Joint network selection and service placement for mobile
edge computing,” in IEEE Conference on Computer Communications.
IEEE, 2019, pp. 1459–1467.

[28] P. Lai, Q. He, G. Cui, F. Chen, J. Grundy, M. Abdelrazek, J. G.
Hosking, and Y. Yang, “Cost-effective user allocation in 5g noma-
based mobile edge computing systems,” IEEE Transactions on
Mobile Computing, 2021.

[29] B. Li, Q. He, G. Cui, X. Xia, F. Chen, H. Jin, and Y. Yang,
“Read: Robustness-oriented edge application deployment in edge
computing environment,” IEEE Transactions on Services Computing,
2020.

[30] B. Li, Q. He, F. Chen, H. Jin, Y. Xiang, and Y. Yang, “Auditing
cache data integrity in the edge computing environment,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 5, pp.
1210–1223, 2021.

[31] X. Xia, F. Chen, Q. He, G. Cui, P. Lai, M. Abdelrazek, J. Grundy, and
H. Jin, “Graph-based optimal data caching in edge computing,” in
International Conference on Service-Oriented Computing. Springer,
2019, pp. 477–493.

[32] X. Cao, J. Zhang, and H. V. Poor, “An optimal auction mechanism
for mobile edge caching,” in 38th IEEE International Conference on
Distributed Computing Systems, 2018, pp. 388–399.

[33] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5g networks with mobile edge computing,”
IEEE Wireless Communications, vol. 25, no. 3, pp. 80–87, 2018.

[34] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task
offloading for mobile edge computing in dense networks,” in IEEE
Conference on Computer Communications, 2018, pp. 207–215.

[35] L. Wang, L. Jiao, J. Li, J. Gedeon, and M. Mühlhäuser, “Moera:
Mobility-agnostic online resource allocation for edge computing,”
IEEE Transactions on Mobile Computing, vol. 18, no. 8, pp. 1843–
1856, 2018.

[36] X. Xia, F. Chen, J. Grundy, M. Abdelrazek, H. Jin, and Q. He,
“Constrained app data caching over edge server graphs in edge
computing environment,” IEEE Transactions on Services Computing,
2021.

Xiaoyu Xia received his Master degree from The
University of Melbourne, Australia in 2015. He
is a PhD candidate at Deakin University. His
research interests include edge computing, par-
allel and distributed computing, service comput-
ing, software engineering and cloud computing.

Feifei Chen received her PhD degree from
Swinburne University of Technology, Australia in
2015. She is a lecturer at Deakin University. Her
research interests include software engineering,
cloud computing and green computing.

Qiang He received his first PhD degree from
Swinburne University of Technology, Australia,
in 2009 and his second PhD degree in com-
puter science and engineering from Huazhong
University of Science and Technology, China,
in 2010. He is an Associate Professor at
Swinburne. His research interests include ser-
vice computing, software engineering, cloud
computing and edge computing. More de-
tails about his research can be found at
https://sites.google.com/site/heqiang/.

Guangming Cui received his Master degree
from Anhui University, China, in 2018. He is a
PhD candidate at Swinburne University of Tech-
nology. His research interests include software
engineering, edge computing and service com-
puting.

John C. Grundy received the BSc (Hons), MSc,
and PhD degrees in computer science from
the University of Auckland, New Zealand. He
is currently Australian Laureate Fellow and a
professor of software engineering at Monash
University, Melbourne, Australia. He is an As-
sociate Editor in Chief of IEEE Transactions
on Software Engineering, and Associste Edi-
tor of Automated Software Engineering Jour-
nal and IEEE Software. His current interests in-
clude domain-specific visual languages, model-

driven engineering, large-scale systems engineering, and software en-
gineering education. More details about his research can be found at
https://sites.google.com/site/johncgrundy/.

Mohamed Abdelrazek is an Associate
Professor of Software Engineering and
IoT at Deakin University. Before joining
Deakin University in 2015, he worked as
a senior research fellow at Swinburne
University of Technology and Swinburne-
NICTA software innovation lab (SSIL). More
details about his research can be found at
https://sites.google.com/site/mohamedalmorsy/.

Athman Bouguettaya is a Professor in the
School of Computer Science at University of
Sydney, Australia. He received his PhD in Com-
puter Science from the University of Colorado at
Boulder (USA) in 1992. He is or has been on
the editorial boards of several journals including,
the IEEE Transactions on Services Computing,
ACM Transactions on Internet Technology, the
International Journal on Next Generation Com-
puting and VLDB Journal. He was the recipient
of several federally competitive grants in Aus-

tralia (e.g., ARC) and the US (e.g., NSF, NIH). He is a Fellow of the
IEEE and a Distinguished Scientist of the ACM.

Hai Jin received the Ph.D. degree in computer
engineering from Huazhong University of Sci-
ence and Technology (HUST), Wuhan, China,
in 1994. He is a Cheung Kung Scholars Chair
Professor of computer science and engineering
with the HUST. His research interests include
computer architecture, virtualization technology,
cluster computing and cloud computing, peer-to-
peer computing, network storage, and network
security.

81

4.3 Summary

In this chapter, we attempt to solve the edge data replacement problems for app

vendors, with consideration of dynamic data demands and user mobility, to answer

RQ2. In Chapter 4.1, we formulate the online collaborative data replacement strat-

egy named CEDC-O for app vendors in edge computing systems based on Lyapunov

Theory, without requiring future information. However, the approach proposed in

Chapter 4.1 only considers the cost, and the benefit is also important to the success

of app vendors. Thus, Chapter 4.2 proposes a cost-effective online data replacement

algorithm named OL-MEDC for app vendors to maximize the total revenue, including

the cost and benefit. The experiment results show that OL-MEDC outperforms the

state-of-the-art approaches including CEDC-O in both effectiveness and efficiency for

addressing the online edge data replacement problem. This research has established

the foundation for the edge data replacement problem and opened up many future

research directions.

82

Chapter 5

Edge Data Distribution

Existing research efforts have focused on how to place and replace data across edge

servers to achieve different optimization objectives. The fact that data transmission

from within the cloud to distributed edge servers may incur excessive costs is largely

ignored. For example, Amazon Web Services charges up to US$0.09 + US$0.02 to

transfer 1GB data out of its S3 data storage facilities to the internet1. It is a significant

component in the cost structure for app vendors to consider in the edge computing

environment, similar to a large body of work on cloud computing [54, 63]. In this

chapter, we attempt to answer RQ3 by solving the edge data distribution problem,

aiming to minimize the data distribution cost, in both quasi-static and dynamic

edge computing scenarios based on a published paper and a submitted manuscript,

respectively.

1https://aws.amazon.com/s3/pricing/

83

5.1 Cost-effective Data Distribution Strategies in

Quasi-static Edge Computing Scenarios

Unlike data transmission in cloud computing and wireless sensor networks [31, 20,

41, 7], app data distribution in the edge computing environment consists of two

major components: 1) data transmission from the cloud to edge servers; 2) and

data transmission between edge servers. Both components must be considered in

a systematic manner to formulate cost-effective data distribution strategies for app

vendors. In this chapter, we study this edge data distribution problem in quasi-static

edge computing scenarios, with the aim to minimize the data distribution cost while

guaranteeing the data transmission latency. To solve this problem effectively and

efficiently, we design an O(k)-approximation algorithm named EDD-A from the view

of the Steiner Tree.

This chapter is based on a published paper, entitled: Cost-Effective App Data

Distribution in Edge Computing, IEEE Transactions on Parallel and Distributed Sys-

tems, Vol. 32(1), pp. 31-44, 2020.

84

Cost-Effective App Data Distribution in Edge
Computing

Xiaoyu Xia , Feifei Chen , Qiang He ,Member, IEEE, John C. Grundy , Senior Member, IEEE,

Mohamed Abdelrazek, and Hai Jin , Fellow, IEEE

Abstract—Edge computing, as an extension of cloud computing, distributes computing and storage resources from centralized cloud

to distributed edge servers, to power a variety of applications demanding low latency, e.g., IoTservices, virtual reality, real-time

navigation, etc. From an app vendor’s perspective, app data needs to be transferred from the cloud to specific edge servers in an area

to serve the app users in the area. However, according to the pay-as-you-go business model, distributing a large amount of data from

the cloud to edge servers can be expensive. The optimal data distribution strategy must minimize the cost incurred, which includes two

major components, the cost of data transmission between the cloud to edge servers and the cost of data transmission between edge

servers. In the meantime, the delay constraint must be fulfilled - the data distribution must not take too long. In this article, we make the

first attempt to formulate this Edge Data Distribution (EDD) problem as a constrained optimization problem from the app vendor’s

perspective and prove itsNP-hardness. We propose an optimal approach named EDD-IP to solve this problem exactly with the Integer

Programming technique. Then, we propose an OðkÞ-approximation algorithm named EDD-A for finding approximate solutions to large-

scale EDD problems efficiently. EDD-IP and EDD-A are evaluated on a real-world dataset and the results demonstrate that they

significantly outperform three representative approaches.

Index Terms—Edge computing, optimization, data distribution, cost-effectiveness, edge server network

Ç

1 INTRODUCTION

THE world has witnessed exponentially growing mobile
data traffic in this decade promoted by a huge increase

in mobile devices and Internet of Things (IoT) connected
devices [1]. This explosion of mobile data traffic has led to a
wealth of research aiming to relieve the enormous data
transmission loads on networks. Conventional network
paradigms facilitated by cloud computing, including con-
tent delivery networks, content-centric networks and infor-
mation centric networks, cannot handle the increases in
network latency and network congestion caused by the rap-
idly increasing mobile traffic. In recent years, edge comput-
ing has emerged as a new computing paradigm that push
computing and storage resources to the edge of the cloud
[2]. These edge servers, each powered by one or many phys-
ical machines, are deployed at base stations or access points
that are geographically close to devices [3]. Vendors of

mobile and IoT applications (referred to as app vendors
together hereafter) can hire computing and storage resour-
ces on edge servers for hosting their apps to serve their own
app users with low latency [4]. Offloading computation
tasks from app users’ end-devices to nearby edge servers
can ease the computation burden and energy consumption
on those resource-limited end-devices [5], [6], [7], [8]. This is
also a key technology of the 5G mobile network [9].

As edge servers become the entry points to the Internet
for a larger number of mobile and IoT devices, a much
larger proportion of the rapidly increasing mobile traffic
data will be transmitted through those edge servers from
the cloud. From an app vendor’s perspective, caching app
data on edge servers can considerably reduce the latency
for their own users’ data retrieval. In addition, it will largely
reduce the volume of their app data transmitted between
the cloud and its app users. This in turn will decrease the
corresponding data transmission costs [10]. The new chal-
lenges raised by data caching in the edge computing envi-
ronment have attracted many researchers’ attention in
recent years [11], [12], [13], [14], [15].

However, existing research efforts have focused on how
to cache data across edge servers to achieve different opti-
mization objectives, e.g., to minimize caching cost [14], to
minimize retrieval latency [15], to guarantee the quality of
transmissions [12], etc. The fact that data transmission from
within the cloud to distributed edge servers may incur
excessive costs is largely ignored. For example, Amazon
Web Services charges up to US$0.09 + US$0.02 to transfer 1
GB data out of its S3 data storage facilities to the internet.1 It

� XiaoyuXia, Feifei Chen, andMohamedAbdelrazek are with the School of Infor-
mation Technology, DeakinUniversity, Geelong, Victoria 3217, Australia.
E-mail: {xiaoyu.xia, feifei.chen, mohamed.abdelrazek}@deakin.edu.au.

� Qiang He is with the School of Software and Electrical Engineering, Swin-
burne University of Technology, Melbourne, Victoria 3122, Australia.
E-mail: qhe@swin.edu.au.

� John Grundy is with the Faculty of Information Technology, Monash Univer-
sity,Melbourne, Victoria 3800, Australia. E-mail: john.grundy@monash.edu.

� Hai Jin is with Services Computing Technology and System Lab, Big Data
Technology and System Lab, Cluster and Grid Computing Lab, School of
Computer Science and Technolgoy, HuaZhong University of Science and
Technology, Wuhan 430074, China. E-mail: hjin@hust.edu.cn.

Manuscript received 28 Jan. 2020; revised 22 June 2020; accepted 16 July 2020.
Date of publication 21 July 2020; date of current version 31 July 2020.
(Corresponding author: Qiang He.)
Recommended for acceptance by D. Medhi.
Digital Object Identifier no. 10.1109/TPDS.2020.3010521 1. https://aws.amazon.com/s3/pricing/

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

85

is a significant component in the cost structure for app ven-
dors to consider in the edge computing environment, simi-
lar to a large body of work on cloud computing [16], [17].
Unlike data transmission in cloud computing and wireless
sensor networks [18], [19], [20], [21], app data distribution
in the edge computing environment consists of two major
components: 1) data transmission from the cloud to edge
servers; 2) and data transmission between edge servers.
Both components must be considered in a systematic man-
ner to formulate cost-effective data distribution strategies
for app vendors. We refer to this problem as the edge data
distribution (EDD) problem in this paper.

The scale of an EDD scenario can be very large and find-
ing a solution is not trivial. To help app vendors formulate
cost-effective EDD strategies that minimize the EDD cost
while fulfilling the app vendor’s EDD time constraint, this
paper makes the first attempt to study the EDD problem
from the app vendor’s perspective. The key contributions of
this paper are as follows:

� We formulate and model the EDD problem as a con-
strained optimization problem (COP) from the app
vendor’s perspective and prove that it isNP-hard.

� We develop an optimal approach, namely EDD-IP,
for finding optimal solutions to EDD problems with
the Integer Programming technique.

� We develop an approximation approach named
EDD-A for finding approximate solutions to large-
scale EDD problems rapidly.

� We conduct extensive experiments on a widely-
used real-world dataset to evaluate the proposed
approaches against three representative approaches.

The rest of this paper is organized as follows. Section 2
motivates this research with an example. Section 3 formu-
lates the EDD problem and proves its NP-hardness.
Section 4 presents and analyzes our optimal approach and
approximation approach for solving the EDD problem.
Section 5 evaluates the proposed approaches experimen-
tally. Section 6 reviews the related work. Section 7 con-
cludes this paper and points out the future work.

2 MOTIVATING EXAMPLE

Facebook Horizon2 is a representative application that can
significantly benefit from caching their data on edge servers.
Facebook users wearing Oculus headsets can access VR vid-
eos and VR games on Facebook Horizon. Caching popular
VR videos on edge servers will allow Facebook users cov-
ered by those edge servers to access the videos with mini-
mum latency, which is critical because VR users are highly
latency-sensitive. It will also reduce the data traffic between
the Facebook Horizon server in the cloud and Facebook
Horizon users. However, assuming a similar price for data
transmission asked by Amazon, cost-ineffective data distri-
bution strategies may cost Facebook Horizon significantly
just to distribute VR videos to edge servers. As the number
of Facebook Horizon users continues to grow, such extra
expense will increase rapidly.

Fig. 1 presents an example EDD scenario with 10 edge
servers in a specific geographic area. Those edge servers are
connected via high-speed links to facilitate data transmis-
sions between them [7], [22]. Let us assume that a Facebook
Horizon VR video is to be cached on 7 of those edge serv-
ers.3 There are many possible strategies for distributing the
VR video onto those 7 edge servers. A straightforward EDD
strategy is to transmit this VR video from the cloud to each
individual edge server directly. We refer to such data trans-
missions as cloud to edge server (C2E) transmissions hereaf-
ter. Alternatively, the VR video can first be transmitted from
the cloud onto one of the edge servers, which then transmits
the VR video onto other edge servers via the high-speed
links between them. The data transmissions between edge
servers are referred to as edge server to edge server (E2E)
transmissions hereafter. A third possible EDD strategy is
similar to the second one, but the VR video is first transmit-
ted from the cloud to several of the edge servers instead of
one. Given the same amount of data to transmit, E2E trans-
missions cost less than C2E transmissions because of the
much shorter distance between adjacent edge servers and
the zero burden caused by E2E transmissions on the internet
backbone [23]. Therefore, different EDD strategies incur dif-
ferent costs.

From Facebook’s perspective, it is critical to formulate a
cost-effective data distribution strategy that minimizes the
data distribution cost. While pursing low data distribution
cost, the time taken to distribute the VR video onto all the 7
edge servers must also be considered. As discussed above,
low latency is one of the major objectives of edge computing
[24]. Thus, an EDD strategy must also fulfill Facebook Hori-
zon’s time constraint.4

3 PROBLEM FORMULATION

In this section, we first formulate the EDD problem as a con-
strained optimization problem, then prove theNP-hardness
of this problem based on the Steiner Tree problem. The
notations used in this paper are summarized in Table 1.

Fig. 1. An example EDD scenario.

2. https://www.oculus.com/facebookhorizon

3. When different VR videos are to be cached, their distribution pro-
cesses are not correlated in terms of transmission cost and transmission
delay. Thus, their corresponding EDD strategies are formulated
individually.

4. Please note that the time constraint for EDD varies from applica-
tion to application.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

86

3.1 Problem Statement

Edge computing is significantly different from cloud com-
puting which facilitates content-centric network and content
delivery network. In an edge computing environment, adja-
cent edge servers deployed at different base stations and
access points can communicate with their neighbor edge
servers and share their storage resources via high-speed
links [7], [22]. Thus, the edge servers in a particular area
constitute an edge server network, which can be modeled as a
graph where a node represents an edge server and an edge
represents the link between two edge servers.

In this research, the n edge servers in a particular area are
modeled as a graphG. For each edge server v, graphG has a
corresponding node. For each pair of linked edge servers (u,
v), graph G has a corresponding edge eu;v. We use GðV;EÞ
to represent the graph, where V is the set of nodes in G and
E is the set of edges in G. In the remainder of this paper, we
will speak inter-changeably of an edge server and its correspond-
ing node in graph G, denoted as v; 8v 2 V . Let R denote the set
of destination edge servers in graph G, i.e., the edge servers to
which the data are to be transmitted from the cloud.

Example 1. As discussed above, the edge server network in
Fig. 1 can be modeled as the graph G presented in Fig. 2,
while the destination edge servers are presented as black
nodes and others are white nodes. In graph G, there are
10 edge servers with 14 edges in total, where R ¼ f1; 2; 3;
4; 6; 7; 9g.

The fees for data transmissions charged by different
cloud service providers, e.g., Amazon and Google, are dif-
ferent. Amazon even has different pricing models in its

different regions. Similarly, edge infrastructure providers
usually have different pricing models for their E2C trans-
missions and E2E transmissions. Thus, we use a ratio g to
indicate the difference between the C2E transmission cost
and the E2E transmission cost generically. For example, g ¼
20 indicates that a C2E transmission costs 20 times as much
to transmit a data than an E2E transmission - C2E transmis-
sions are usually more expensive than E2E transmissions as
discussed in Section 2. In addition, the data transmission
latency between two edge servers is measured by the num-
ber of hops between them in graph G. Thus, the C2E trans-
mission cost can be converted to g times of the 1-hop E2E
transmission cost. This way, the optimization objective and
the corresponding constraints in the EDD problem can be
modeled in a more generic manner. Specific pricing models
and network latency models can be easily integrated to cal-
culate the actual EDD cost and EDD time consumption, i.e.,
the total cost and time of transmitting the data from the
cloud to the destination edge servers, respectively.

There are two possible phases of EDD. 1) The C2E trans-
mission, where the data is transmitted from the cloud to one
or many of the edge servers in the area, which are referred to
as the ”initial transit edge servers” hereafter. 2) The E2E
transmission, where the data is transmitted from the initial
transit edge servers to the destination edge servers via other
transit edge servers. Please note that an initial transit edge
server is not necessarily a destination edge server. A destina-
tion edge server may also be a transit edge server because it
may transmit the data further to other destination edge serv-
ers. Accordingly, an EDD strategy consists of two parts, a
C2E strategy and an E2E strategy. A C2E strategy specifies
the initial transit edge servers. It is denoted as a vector S ¼<
s1; . . . ; sn > , where sv ð1 � v � nÞ indicates whether edge
server v is selected as an initial transit edge server to receive
the data from the cloud directly

sv ¼
0 if v is selected as an initial transit edge server
1 if v is NOT selected as an initial transit edge

server

8<
: :

(1)

An E2E strategy is also represented by a vector T E2E ¼<
T 1;1; T 1;2; . . . ; T n;n > , where T u;vðu; v 2 V Þ denoteswhether
the data is transmitted through edge eu;v inG

T u;v ¼
1 if data is transmitted through edge eu;v
0 if data is NOT transmitted through edge eu;v

�
:

(2)

TABLE 1
Summary of Notations

Notation Description

c cloud node
dlimit delay limit defined by app vendor
dv delay that edge server v obtain data after data

arrives the edge server network
Dv depth of v, equal to dv þ 1
Dlimit depth limit, equal to dlimit þ 1
E set of links between edge servers
eu;v edge/link between edge server u and v
G graph presenting a particular area
H latency limit defined by app vendor
R set of destination edge servers
g the ratio of data transmission cost of C2E

and a 1-hop transmission cost of E2E
S set of binary variables indicating the selection of

the initial transit edge servers
sv binary variable indicating whether v is an initial

transit edge server
T set of binary variables indicating the data

distribution path
Tce tree with root cwith edges ec;v; 8v 2 fTms � cg
Tedd�a tree returned by Algorithm 2
Tms tree returned by Algorithm 1
T u;v binary variable indicating data transmitted from u

to v
V set of edge servers
v edge server v
u edge server u

Fig. 2. Graph structure of EDD scenario in Fig. 1.

XIA ETAL.: COST-EFFECTIVE APP DATA DISTRIBUTION IN EDGE COMPUTING

87

Since a valid EDD strategy must connect each destination
edge server v 2 R to an initial edge server in S through
T E2E , constraint (3) must be fulfilled

isConnectedðv; S; T E2EÞ ¼ true; 8v 2 R: (3)

The details to fulfil constraint (3) will be discussed later
in Theorem 3.

As discussed above, the EDD time constraint is deter-
mined by the app vendor - i.e., application-specific. As dis-
cussed in Section 1, we formulate the EDD problem in a
generic manner. The data transmission latency between two
edge servers is measured by the number of hops between
them in G. Let dlimit denote the app vendor’s EDD time con-
straint. Please note that the EDD time constraint here does
not include the C2E latency because it is ensured by the
edge infrastructure provider and does not impact the for-
mulation of the EDD strategy - it can never be avoided or
reduced by an EDD strategy. Thus, each destination edge
server v’s E2E latency, i.e., the data transmission latency
between v and its connected initial edge server in S must
not exceed this constraint

0 � dv � dlimit; dv 2 Zþ; 8v 2 R: (4)

Example 2. Take Fig. 2 as an example. Let us assume that
the app vendor’s EDD time constraint is dlimit ¼ 2. This
means that it must not take more than two hops for a des-
tination edge server to receive the data from an initial
transit edge server. In Fig. 2, if node 3 is the only edge
server selected as the initial transit edge server, one possi-
ble E2E strategy is to select edges {e3;1, e3;6, e3;7, e1;2, e1;4,
e6;9g. This means that in T E2E there is T 3;1 ¼ T 3;6 ¼
T 3;7 ¼ T 1;2 ¼ T 1;4 ¼ T 6;9 ¼ 1. Accordingly, we can obtain
the 7 destination edge servers’ E2E latency: d3 ¼ 0, d1 ¼
d6 ¼ d7 ¼ 1, d2 ¼ d4 ¼ d9 ¼ 2.

Given an EDD time constraint dlimit, the app vendor’s
optimization objective is to minimize the EDD cost, which
consists of the part incurred by the C2E transmission(s) and
the E2E transmissions

minimize CostC2EðSÞ þ CostE2EðT E2EÞ; (5)

while fulfilling the EDD time constraint (4).

3.2 Problem Hardness

Now we prove that the EDD problem is NP-hard by prov-
ing Theorems 1 and 2.

Theorem 1. The EDD problem isNP.

Proof. As there are no more than ðjV j þ jEj þ 2jRjÞ con-
straints in total, any solution to this EDD problem can be
validated in polynomial time by checking whether the
solution satisfies the constraints (1), (2), (3) and (4). Thus,
the EDD problem isNP. tu

Theorem 2. The EDD problem isNP-hard.

Proof. To prove the NP-hardness of the EDD problem, we
first introduce the classic Rooted Minimum Steiner Tree
(RMST) problem. The RMST problem is well-known to be
NP-hard [25], [26], and can be defined as follows. Given a
graph G ¼ ðV;EÞ, a set of destination nodes N in G, and a

root node root of the Steiner tree ST . For each edge e 2 E,
there is a variable Ye to indicate whether it is in ST (Ye ¼ 1)
or not (Ye ¼ 0). Moreover, each edge e has its own weight
We. Function pathðn; root; STÞ is used to obtain the possible
path from root to the node n through the edges inE. If node
n is the root of ST or not in ST , there should not exist a path
from root to n, which means pathðn; root; STÞ ¼ null. The
formulation is presented below

object : min
X
Ye � We (6a)

s:t: : Ye 2 f0; 1g (6b)

pathðn; root; ST Þ 6¼ null; 8n 2 N : (6c)

Now we prove that the RMST problem can be reduced
to an instance of the EDD problem. The reduction can be
done as follows: 1) add the cloud server as a node r into
G to obtain a new graph G0; 2) add the edges from node r
to every other node in G0; 3) relax the EDD time con-
straint dlimit to jV j. Given any instance RMST ðG; root;
R;WÞ, we can correspondingly construct EDDðG0; cloud;
R; CostC2E; CostE2EÞ with the reduction above in polyno-
mial time where jGj ¼ jG0j, while CostC2E and CostE2E

can be treated as the weights of the edges. By the reduc-
tion, the constraint (4) can be relaxed properly. As the
constraint (6b) in the RMST problem only considers the
edge variables, we can convert constraint (1) to Sv ¼
T c;v 2 f0; 1g. By combining this with constraint (2), con-
straint (6b) is fulfilled. Additionally, both constraints (3)
and (6c) ensure that all the nodes in R are connected to
root. Moreover, objective (6a) of RMST is to obtain the
minimum total weight of ST , which can be projected to
(5) by mapping the CostC2E and CostE2E to the weights
of edges.

In conclusion, any solution Y always satisfies the
RMST problem if Y satisfies the reduced EDD problem.
Therefore, the EDD problem is reducible from the RMST
problem and it is thus NP-hard. tu

4 EDGE DATA DISTRIBUTION STRATEGY

FORMULATION

We first present an optimization approach, namely EDD-IP,
to exactly solve the EDD problem formulated in the previous
section. Then, we introduce an OðkÞ-approximate approach
named EDD-A to solve large-scale EDD problems approxi-
mately, followed by a theoretical analysis of its performance.

4.1 Optimization Approach

The solution to the EDD problem must minimize the EDD
cost while fulfilling the app vendor’s EDD time constraint
Dlimit. Thus, the EDD problem can be modeled as a con-
strained optimization problem.

Following the methodology of the proof of Theorem 3,
we use similar techniques to convert the EDD problem to an
integer program model that can be solved by integer pro-
gramming solvers, such as IBM CPLEX Optimizer5 and

5. https://www.ibm.com/analytics/cplex-optimizer

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

88

Gurobi.6 Accordingly, this optimal approach is named
EDD-IP.

First, we add the cloud c into V , then add the edges from
c to each edge server v 2 V n c in graph G. Then, the C2E
strategy S ¼< s1; . . . ; sn > can be formulated by selecting
edges in graph G, i.e., T c ¼< T c;1; T c;2; . . . ; T c;n > , where
T c;v ðv 2 V n cÞ denotes whether the data is transmitted
from the cloud c to v through the new edge ec;v. Here, we
combine the C2E strategy S and the E2E strategy T E2E as
the data distribution strategy T = < T c;1; . . . ; T c;n; T 1;1;
. . . ; T n;n > , where variable T u;v 2 f0; 1g ðu 2 fcg [
½1; n�; v 2 ½1; n�Þ indicates whether edge eu;v is included in T .
Second, we implement the definition of depth in the Steiner
tree to represent the order of transmitting the data. Denote
Dv as the depth of edge server v, where Dv ¼ dv þ 1 and
Dc ¼ 0. Then, the EDD time constraint dlimit can be defined
as a depth limit Dlimit ¼ dlimit þ 1.

After this, we define the variable for each edge server v

Iv ¼
0 if v is visited during the EDD process
1 if v is NOT visited during the EDD process

�
:

(7)

Now, the COP model for the EDD problem is formally
expressed as follows:

min g
X
v2V nc

T c;v þ
XX

v;u2V ncT u;v (8)

Iv ¼ 1; 8v 2 R (9)

X
u2V
T u;v ¼ Iv; 8u; v 2 V n c (10)

T u;v � Iu � Iv; 8u; v 2 V (11)

Iv; T u;v 2 f0; 1g; 8u; v 2 V (12)

Dc ¼ 0 (13)

Dc <Dv � Dlimit; 8v 2 V n c (14)

Dv �Du ¼ 1; 8u; v 2 V; T u;v ¼ 1; (15)

where g is the ratio that generically indicates the ratio of the
C2E transmission unit cost over the E2E transmission unit
cost, as introduced in Section 3.1.

Example 3. Fig. 3a shows the EDD strategy formulated by
EDD-IP with EDD time constraint dlimit ¼ 1. The C2E
strategy specifies that nodes 6 and 4 are selected as the
initial transit edge server. They receive the data from the
cloud and then transmit it to all other destination edge
servers. The EDD strategy selects edges {ec;4, ec;6, e6;3, e6;7,
e6;9, e4;1, e4;2} for data transmissions. The total cost is 2g þ
6 times of a 1-hop E2E transmission cost.

Theorem 3. EDD-IP computes an optimal solution to the EDD
problem.

Proof. Let CC2E and CE2E denote the unit costs of C2E data
transmission and E2E data transmission, respectively.
This way, objective (5) can be converted to CC2E �P

v2V nc T c;v þ CE2E �
PP

u;v2V ncT u;v, with CostC2EðSÞ cal-
culated by CC2E �

P
v2V nc T c;v and CostE2EðT E2EÞ calcu-

lated by CE2E �
PP

u;v2V ncT u;v. Denote g ¼ CC2E
CE2E

, objective

(5) can be presented as CE2E � ðg
P

v2V nc T c;v þPP
u;v2V ncT u;vÞ. Since CE2E is a constant, objective (5) can

be transformed to objective (8) by removing CE2E .

There are two situations in Eq. (10): 1) if v is not vis-
ited, any edge pointing to v will not be selected in the
C2E strategy; 2) if v is visited, there must be exactly
selected one edge that points to v. Constraints (9) and
(10) ensure that all the destination edge servers in R are
visited during the EDD process. Constraint (11) ensures
that, if edge eu;v is selected, both edge servers u and v
must be selected. Otherwise, eu;v can never be included
into the E2E strategy.

Thus, constraints (9), (10), (11) and (12) collectively
ensure that every destination edge server v 2 R is con-
nected to the cloud server inG, fulfilling (3) in Section 3.1.

Constraint (13) makes sure that the EDD process
always starts from the cloud. In addition, constraint (14)
ensures that the EDD time constraint is fulfilled, while
constraint (15) guarantee the the depth of u is always one
less than that of v, if edge fu; vg exists.

Thus, EDD-IP computes an optimal solution to the
EDD problem. tu

As discussed in Section 3.1, specific cost models and
latency models can be easily integrated to calculate the
actual EDD costs and EDD time consumption in real-world

Fig. 3. EDD solutions.

6. http://www.gurobi.com/

XIA ETAL.: COST-EFFECTIVE APP DATA DISTRIBUTION IN EDGE COMPUTING

89

EDD scenarios. For example, given a cost function costðu; vÞ
that represents the transmission cost between u and v, the
total EDD cost can be calculated by

P
v2V nc T c;v � costðc; vÞ þPP

u;v2V ncT u;v � costðu; vÞ. Given a specific latency con-
straint Llimit and a latency function Lðu; vÞ that represents
the latency between u and v via eu;v, constraints (13) (14)
and (15) can be replaced by (16), (17) and (18) respectively

LT ðc; cÞ ¼ 0 (16)

Lðc; vÞ � LT ðc; vÞ � Llimit; 8v 2 V n c (17)

LT ðc; vÞ � LT ðc; uÞ ¼ Lðu; vÞ; 8u; v 2 V; T u;v ¼ 1; (18)

where LT ðc; vÞ represents the total transmission latency
between c and v via the path from c to v indicated by T .

4.2 Approximation Algorithm

As proven in Section 3.2, the EDD problem is NP-hard.
Finding the optimal solution is intractable in large-scale
EDD scenarios. To address this issue, this section presents
an approximation approach, named EDD-A, for finding
approximate solutions to large-scale EDD problems effi-
ciently. The approximation ratio of EDD-A is OðkÞ, which
means that the ratio of the EDD cost incurred by EDD-A
and that incurred by the optimal solution is OðkÞ in the
worst case, where k is a constant.

Similar to the techniques used in Section 4.1, EDD-A is an
approach designed based on the concept of Steiner tree by
adding the cloud server c and the corresponding edges into
G. There are two parts in EDD-A: 1) calculating an approxi-
mate minimum Steiner tree Tms based on a simple but fast
algorithm presented in Algorithm 6 (CMST); 2) splicing and
pruning Tms with the latency constraint H ¼ Dlimit, based
on Algorithm 2.

We first introduce our Connectivity-oriented Minimum
Steiner Tree (CMST) algorithm for calculating the approxi-
mation to the minimum Steiner tree. CMST is based on the
algorithm proposed in [27] which is simple but effective. In
our CMST algorithm, it first collects the nodes closest (with
the lowest cost) to Tms as a set, then selects the one with the
highest connectivity (Lines 3-4 in Algorithm 1).

Algorithm 1. CMST Algorithm

1: Input: GðV;EÞ, R, c
2: Output: Aminimum Steiner Tree Tms

3: initialize a tree Tms based on G
S
fcloudg, only consisting of

the node fcloudg;
4: return Tms if all the destination edge servers in R have been

added into Tms, else go to step 3;
5: find a set of edge servers C that are closest to Tms, while

C
T
Tms ¼ ?

6: find edge server v with the highest connectivity, then add v
to Tms;

7: go to step 2.

Example 4. Take Fig. 2 as an example. By applying CMST,
edges {ec;1, e1;2, e1;3, e1;4, e3;6, e3;7, e6;9} are added into Tms,
as shown in Fig. 3b. The total cost of Tms is g þ 6. Let us
assume that all E2E transmissions must be finished

within one hop (dlimit ¼ 1) to facilitate the following dis-
cussion. This meansH ¼ 2. Thus, Nodes 6, 7 and 9 violate
this limit. Thus, the EDD-A algorithm needs to fix such
violations.

Algorithm 2. EDD-A Algorithm

1: Input: GðV;EÞ, R, c,H, Tms

2: Output: A low-cost Steiner Tree Tedd�a withinH
3: Tedd�a Tms, parents½c� null
4: For each edge server v 2 G, set the parent of v in Tedd�a as

parents½v�, the data retrieval latency of edge server v in
Tedd�a as d½v� where d½c� 0, and the cost from v to c in
Tedd�a as costs½v�

5: for each edge server v in Tedd�a in DFS order do
6: if v =2 R or d½v� � H then
7: continue
8: end if
9: find the edge server s 2 fTedd�a � cg that minimizes the

cost of path ½c� s� v�.
10: if Dd½s; v� þ d½s� � H then
11: update parents½� and costs½� for edge servers on path

½c� s� v�, add path ½s� v� into Tedd�a and update d½�
12: for each edge server u 2 R do
13: if costs½u� > costs½v� þ costðv; uÞ then
14: costs½u� costs½v� þ costðv; uÞ
15: add path ðv; uÞ into Tedd�a and update d½�
16: end if
17: end for
18: else
19: parents½v� c
20: costs½v� costðc; vÞ
21: update d½�
22: end if
23: for each child u of v 2 Tedd�a do
24: if costs½u� > costs½v� þ costðv; uÞ then
25: parents½u� v
26: costs½u� costs½v� þ costðv; uÞ
27: end if
28: if costs½v� > costs½u� þ costðu; vÞ then
29: parents½v� u
30: costs½v� costs½u� þ costðu; vÞ
31: end if
32: update d½�
33: end for
34: end for
35: prune unused edges in Tedd�a based on parents½�
36: returnTedd�a

Algorithm 2 presents the pseudo code of EDD-A. It takes
the minimum Steiner tree Tms returned by Algorithm 1 as
input. First, it initializes Tedd�a by Tms and sets the parent of
cloud server c as null (Line 3). Then, it initializes parents½�
for recording the parent of each node in Tedd�a, d½� for
recording the transmission latency between c and each
node in Tedd�a, and costs½� for recording the transmission
costs between c and each node in Tedd�a. After that, the algo-
rithm visits each node v that violates the latency limitH and
finds the minimum-cost path ½c� s� v�. If path ½c� s� v�
helps v eliminate the violation, EDD-A adds path ½c� s� v�
into Tedd�a and updates parents½�, d½� and costs½� accordingly
(Lines 11-17). If the latency limit is still violated, i.e., the
sum of latency Dd½s; v� and edge server s’s latency d½s�

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

90

exceeds the latency limit H, v will be connected to c directly
(Lines 19-21). Next, EDD-A visits each child u of v to update
the shortest paths and the parents for both u and v (Lines
23-33). Finally, the algorithm prunes the unused edges in
Tedd�a (Line 35), and returns Tedd�a as the final result.

Example 5. Continuing with Example 2, EDD-A selects
node 6 to connect with the cloud node c directly by add-
ing edge ec;6. Now, node 9, i.e., the child of node 6 in
Tedd�a, can obtain the data via 1 hop. After this, EDD-A
visits node 7 and finds the shortest path ½c� 6� 7�. Thus,
EDD-A adds edge e6;7 into Tedd�a. After running EDD-A,
the result is presented in Fig. 3c. The total cost now is
2g þ 5, and the EDD time constraint, H ¼ 1, is fulfilled. In
this case, the EDD strategy formulated by by EDD-A has
the same cost as EDD-IP.

In the EDD-A algorithm, the computational overhead of
finding the minimum Steiner tree Tms is OðjRj2Þ. It takes at
most OðjV j2Þ to read each edge server in Tedd�a in DFS order
and obtain the shortest path by the Dijkstra algorithm.
Thus, the total computational overhead of EDD-A is
OðjRj2 þ jV j3Þ ¼ OðjV j3Þ ¼ Oðn3Þ.

In the rest of this section, we prove that EDD-A is an
OðkÞ-approximation algorithm based on the following theo-
rems and lemmas, where k is a constant.

Theorem 4. CMST is a 2-approximation algorithm to calculat-
ing the Steiner minimum tree.

Proof. The original idea of CMST is the same as the algorithm
proposed in [27]. The difference between them is the com-
parison in the connectivity between the nodes that have the
same cost. This difference does not impactCMST’s approxi-
mation ratio. Thus, CMST is a 2-approximation algorithm,
the same as the approximation algorithm presented
in [27]. tu

Let us assume a tree Tce that consists of all the edge serv-
ers in Tms and the root cwith the edges ½c; v�, 8v 2 fTms � cg.
Denote costðTceÞ, costðTmsÞ and costðTedd�aÞ as the total cost
of Tce, Tms and Tedd�a accordingly.

Theorem 5. For tree Tedd�a produced by EDD-A, the cost of
Tedd�a is

2g
H þ 1 times of the cost of Tms at most.

Proof. Let v0 ¼ c, and vi be the ith edge server, where i 2
1; . . .m, that introduces additional paths during the
DFS traversal. Once the shortest path ½c� vi�, which is
edge ½c; vi�, is added into Tedd�a, the cost is exactly
costTceðc; viÞ ¼ g. Moreover, if the path from c to edge
server vi contains edge ½c; vi�1� after updating the tree
Tedd�a, we can obtain costTedd�aðc; viÞ � costTceðc; vi�1Þ þ
costTmsðvi�1; viÞ. However, if the direct path from c to vi is
added into Tedd�a, it means that d½vi� exceeds H, and there
is costTedd�aðc; viÞ � g þH ¼ ð1þ H

g
Þ � costTceðc; viÞ. Thus,

we can obtain the following equation:

1þH
g

� �
� costTceðc; viÞ � costTedd�aðc; viÞ

� costTceðc; vi�1Þ þ costTmsðvi�1; viÞ:
(19)

Summing (19) for all the m edge servers, we can
obtain

1þH
g

� �Xm
i¼1

costTceðc; viÞ

�
Xm
i¼1
ðcostTceðc; vi�1Þ þ costTmsðvi�1; vi; TmsÞÞ:

(20)

Because of
Pm

i¼1 costTceðc; viÞ �
Pm�1

i¼1 costTceðc; viÞ, there
is

H
g
costðTceÞ �

Xm
i¼1

costTmsðvi�1; viÞ; (21)

where costðTceÞ ¼
Pm

i¼1 costTceðc; viÞ.
For each edge server v changing the path in Tedd�a but

not adding path ½c; v�, the update cost, costupdateðvÞ, must
be less than costTceðc; vÞ. Thus, the total cost after con-
structing Tms cannot be more than

Pm
i¼1 costTceðc; viÞ.

Based on the DFS traversal, each edge is visited twice.
Thus, the total cost of costTmsðvi�1; viÞ is no more than
twice of costðTmsÞ

Xm
i¼1

costTmsðvi�1; viÞ � 2 � costðTmsÞ: (22)

Thus, the total cost of Tedd�a should be bounded by

costðTedd�aÞ � costðTceÞ þ costðTmsÞ �
2g

H þ 1

� �
� costðTmsÞ:

(23)
tu

Theorem 6. EDD-A is an OðkÞ-approximation algorithm.

Proof. As discussed in Theorem 4, the cost of Tms is at most
twice the cost of the minimum Steiner tree T . However,
the cost of the optimal solution of the EDD problem,
OPT , cannot be less than that of the minimum Steiner
tree. Thus, we can obtain

costðTedd�aÞ
costðTOPT Þ

� costðTedd�aÞ
costðT Þ � 2

2g

H þ 1

� �
¼ 4g

H þ 2:

(24)

From (24), the approximation ratio of EDD-A is 2þ 4g
H .

Let k ¼ 2þ 4g
H . As both g andH are constant inputs, k is a

constant. Thus, EDD-A is an OðkÞ-approximation algo-
rithm where k is a constant. tu

Similar to EDD-IP, specific cost and latency models can
also be easily integrated into the EDD-A algorithm. Let
fg1; g2; . . . ; gng denote the C2E costs, fa1;1; a1;2; . . . ;an;ng as
the E2E costs, and Lðu; vÞ as the latency model. Cost func-
tions costðc; vÞ and costðu; vÞ can be replaced by gv and au;v,
respectively, in Algorithm 2, and the latency function
Dd½s; v� can be calculated by Lðu; vÞ. Now we prove that
EDD-A is still an OðkÞ-approximation algorithm in real-
world EDD scenarios with specific cost and latency models.

Theorem 7. EDD-A is an OðkÞ-approximation algorithm with
specific cost and latency models.

Proof. We denote gmax ¼ fg1; g2; . . . ; gng as the maximum
C2E cost, amin ¼ fa1;1;a1;2; . . . ;an;ng as the minimum E2E

XIA ETAL.: COST-EFFECTIVE APP DATA DISTRIBUTION IN EDGE COMPUTING

91

cost, Lmax
E2E as the maximum E2E latency and Lmin

C2E as the
minimum C2E latency. In this case, a specific latency limit
Llimit is given by the app vendor to replace H. Let v0 ¼ c,
and vi (i 2 f1; . . .mg) be the ith edge server that intro-
duced additional paths during the DFS traversal in Algo-
rithm 2. Once edge ½c; vi�, is added into Tedd�a, the cost is
exactly costTceðc; viÞ ¼ gi. If the path from c to edge server
vi contains edge ½c; vi�1� after updating tree Tedd�a, we can
obtain

costTedd�aðc; viÞ � costTceðc; vi�1Þ þ costTedd�aðvi�1; viÞ:
(25)

However, if the direct path from c to vi is in Tedd�a, it
means d½i� > Llimit. Given amin and Lmax

E2E , the ratio of
cost over latency for any E2E edge is more than or equals
to amin
Lmax
E2E

. DenoteH0 ¼ amin
Lmax
E2E
ðLlimit � Lmin

C2EÞ, we can obtain

costTedd�aðc; viÞ � gi þH0 ¼ 1þH
0

gi

� �
� costTceðc; viÞ:

(26)

Combing (26) and (25), (27) stands

1þH
0

gi

� �
� costTceðc; viÞ �

costTceðc; vi�1Þ þ costTmsðvi�1; viÞ:
(27)

Summing (27) for all the m edge servers, we can
obtain

Xm
i¼1

1þH
0

gi

� �
costTceðc; viÞ

�
Xm
i¼1
ðcostTceðc; vi�1Þ þ costTmsðvi�1; viÞÞ:

(28)

Since gi is always lower than or equals to gmax, we can
obtain

1þ H
0

gmax

� �Xm
i¼1

costTceðc; viÞ �
Xm
i¼1

1þH
0

gi

� �
costTceðc; viÞ:

(29)

Because of
Pm

i¼1 costTceðc; viÞ �
Pm�1

i¼1 costTceðc; viÞ and
(29), there is

H0
gmax

costðTceÞ �
Pm

i¼1 costTceðvi�1; viÞ; (30)

where costðTceÞ ¼
Pm

i¼1 costTceðc; viÞ.
Based on Theorem 4, we can obtain k ¼ 2þ 4gmax

H0 . The
corresponding process is omitted here because it is the
same as in Theorems 5 and 6. Thus, Theorem 7 holds. tu

5 EXPERIMENTAL EVALUATION

We have experimentally evaluated the performance of
EDD-IP and EDD-A. All experiments were conducted on a
Windows-10 machine equipped with Intel Core i7-8665U
processor (4 CPUs, 1.90 GHz) and 8 GB RAM.

5.1 Simulation Settings

5.1.1 Approaches in Comparison

In our experiments, we evaluate the performance of EDD-IP
and EDD-A against three representative approaches:

� EDD-IP: This approach finds the optimal EDD solu-
tions by solving the COP defined in Section 4.1 with
IBM’s CPLEX CP Optimizer. Specifically, IloCon-
straint7 is used to implement the constraints in EDD-
IP, including constraint (11) with the product terms
of binary variables.

� EDD-A: This approach finds near-optimal EDD solu-
tions with Algorithm 2 described in Section 4.2.

� Minimum-cost Multi-cast Routing (MMR) [28]: This
approach deals with the data routing problem in
communication networks. It is also based on Steiner
tree and presented as Algorithm 1 in [28].

� Greedy Connectivity (GC): In this approach, we define
the connectivity of edge server as the number of
edge servers in R that have yet to receive the data.
This approach always selects the edge servers with
the highest connectivity to receive data from the
cloud, which will then transmit the data to other des-
tination edge servers in R, until all the destination
edge servers in R can receive the data within the
EDD time constraint dlimit.

� Random: This approach randomly selects edge serv-
ers to receive the data from the cloud, which then
transmit the data to other destination edge servers in
R , one after another, until all the destination edge
servers in R receive the data within the EDD time
constraint dlimit.

5.1.2 Experiment Data

Two sets of experiments are conducted on a widely-used
EUA dataset8[29]. This dataset contains the geographical
locations of 1,464 real-world base stations in Melbourne,
Australia. As discussed in Section 3.1, g is dependent on
specific edge infrastructure providers. In the experiments,
we set g ¼ 20. The links between edge servers are randomly
generated and to ensure a connected graph, based on the
widely-used Erd€os R�enyi random graph model [30].

5.1.3 Experiment Parameters

To simulate different EDD scenarios, four parameters that
impact the performance of EDD-IP and EDD-A are varied
in the experiments.

� The number of edge servers (n) in G. This parameter
impacts the size of graph G.

� Edge density (density). We define the edge density
with density ¼ jEj=n. This parameter impacts the
density of graph G.

� Ratio of destination edge servers (ratio). This ratio is cal-
culated by ratio ¼ jRj=n. It determines the number
of destination edge servers in graph G.

7. https://www.ibm.com/support/knowledgecenter/
SSSA5P_12.8.0/ilog.odms.studio.help/pdf/usrcpoptimizer.pdf

8. https://github.com/swinedge/eua-dataset

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

92

� EDD time constraint (limit). Measured by the number
of hops, this parameter indicates the app vendor’s
preference for the time taken by the EDD process.

As mentioned in Section 4.2, finding the optimal solutions
is intractable in large-scale EDD scenarios. Thus, we limit the
maximum running time (in seconds) of EDD-IP in Set #2.

� Maximum running time (Tlimit). EDD-IP will stop and
return the optimal solution among all the solutions
that have been found within Tlimit.

Table 2 summarizes the parameter settings. There are
two main sets of experiments, Set #1 of small-scale experi-
ments and Set #2 of large-scale experiments. Every time the
value of a parameter varies, the experiment is repeated for
100 times and the results are averaged. The last two col-
umns in Table 2 are the number of variables (3nþ dnþ 2),
consisting of I (nþ 1), D (nþ 1) and T (dnþ n), and the
number of constraints (4nþ 2dnþ ratio � nþ 1) based on
(9), (10), (11), (13), (14) and (15) in the EDD-IP model pre-
sented in Section 4.1.

5.1.4 Performance Metrics

The objective of the EDD problem is to minimize the EDD
cost. Thus, this cost is a significant metric for evaluating the
effectiveness of EDD-IP and EDD-A. In addition, as discussed
in Section 1, the applications in the edge computing environ-
ment are latency-sensitive. It must not take too much time to
find an EDD solution. Thus, the computational overhead is
selected to evaluate the efficiency of EDD-IP and EDD-A.

� EDD cost (cost), calculated by (5), the lower the better.
� Computational overhead (time), measured by the time

taken by an approach to find the solution, the lower
the better.

5.2 Experimental Results

5.2.1 Experiment Set #1

Through comparison with MMR, GC and random, Fig. 4
demonstrates the effectiveness of EDD-IP and EDD-A in
experiment Set #1 and the impacts of the four parameters. It
can be seen that the EDD strategies formulated by EDD-IP can
distribute the data at the lowest cost, followed by EDD-A.
Across the four subsets of experiments, the average advan-
tages of EDD-IP are 18.22 percent over EDD-A, 28.01 per-
cent over MMR, 32.54 percent over GC and 48.34 percent
over Random. The average advantages of EDD-A are
11.96 percent over MMR, 17.62 percent over GC and 36.87
percent over Random.

Effectiveness. Fig. 4a shows the effectiveness results of
experiment Set #1.1. When the number of edge servers n
increases from 10 to 35, the costs of the EDD strategies for-
mulated by all five approaches increase, from 41.2 to 134.8
by 227.18 percent for EDD-IP, from 59.8 to 170.6 by 185.28
percent for EDD-A, from 59.8 to 193.2 by 223.08 percent for
MMR, from 61.6 to 201.2 by 226.62 percent by GC, and from
64.6 to 256.8 by 297.52 percent for Random. Of all the five
approaches, EDD-A has the lowest overall increase.

Fig. 4b shows the results of experiment Set #1.2. Again,
EDD-IP and EDD-A outperform other approaches with signifi-
cant margins. The average advantages of EDD-IP are
21.38 percent over EDD-A, 31.97 percent over MMR, 40.43
percent over GC and 53.17 percent over Random, while the
numbers for EDD-A are 13.46 percent over MMR, 24.23 per-
cent over GC and 40.44 percent over Random. As the edge
density d increases from 1.0 to 2.0, the costs decrease for all
the approaches. This is because, with the number of edge
servers n fixed, a higher edge density d gives destination
edge servers higher chances to receive the data within the
EDD time constraint. This reduces the cost incurred by C2E

TABLE 2
Parameter Settings

n d ratio limit Tlimit jvariablesj in EDD-IP jconstraintsj in EDD-IP

Set #1.1 10, 15, ..., 35 1.0 0.6 2 1 42, 62, ..., 142 67, 100, ..., 232
Set #1.2 20 1.0, 1.2..., 2.0 0.6 2 1 82, 86, ..., 102 133, 141, ..., 173
Set #1.3 20 1.0 0.2, 0.4 ..., 1.0 2 1 82 125, 129, ..., 141
Set #1.4 20 1.0 0.6 1, 2, ..., 5 1 82 133

Set #2.1 200, 300, ..., 700 2.0 0.6 2 10 1002, 1502, ..., 3502 1721, 2581, ..., 6021
Set #2.2 200 2.0, 2.4, ..., 4.0 0.6 2 10 1002, 1082, ..., 1402 1721, 1881, ..., 2521
Set #2.3 200 2.0 0.2, 0.4, ..., 1.0 2 10 1002 1641, 1681, ..., 1801
Set #2.4 200 2.0 0.6 1, 2, ..., 5 10 1002 1721
Set #2.5 200 2.0 0.6 2 2, 4, ..., 10 1002 1721

Fig. 4. Effectiveness comparison in Set #1.

XIA ETAL.: COST-EFFECTIVE APP DATA DISTRIBUTION IN EDGE COMPUTING

93

because few destination edge servers have to receive the
data directly from the cloud.

Fig. 4c shows the effectiveness results of experiment
Set #1.3, where EDD-IP and EDD-A achieve the best and
second best performance, respectively. The advantage of
EDD-IP over EDD-A is 16.09 percent. The advantages of
EDD-A over MMR, GC and Random are 13.79, 17.24 and
44.77 percent, respectively. As ratio increases from 0.2 to
1.0, all five approaches need more costs to distribute the
data. This is expected because a larger number of desti-
nation edge servers will certainly incur higher costs of
C2E and/or E2E transmissions.

Fig. 4d shows the results of experiment Set #1.4. EDD-
IP outperforms EDD-A by 15.56 percent, while EDD-A
outperforms MMR, GC and Random by 11.27, 11.79 and
28.20 percent, respectively. As limit increases, the costs of all
five approaches decrease. The main reason is that a less strin-
gent EDD time constraint relies less on C2E transmissions
which are faster butmore expensive than E2E transmissions.

Efficiency. The efficiency results of Set #1 is presented in
Fig. 5. As demonstrated, EDD-IP is much more computation-
ally expensive than all other approaches. This validates the
NP-hardness of the EDD problem - excessive computational
overheads are inevitable for finding the optimal solutions to
large-scale EDD problems. As demonstrated in Fig. 5a, in
largest-scale EDD scenarios with 700 edge servers, EDD-IP
takes 39.96 seconds to find the optimal solution in Set #1.1.
Moreover, EDD-IP takes up to 71.03 seconds in Set #1.2.
When the edge density increases from 1.0 to 2.0, the size of
the solution space for EDD-IP to explore becomes larger
quickly. Thus, its computational overhead increases significantly
with the increase in edge density. Similar phenomena are
observed in Fig. 5c. Interestingly, the computational over-
head of EDD-IP in Fig. 5d increases when the EDD time con-
straint limit increases from 1 to 3, then decreases after that.
With limit > 3, EDD-IP can find the optimal solution that
requires as few as 1 initial transit edge servers. This eases

the EDD-IP’s pain in inspecting the possible solutions that
require multiple initial transit edge servers. As a result,
EDD-IP’s computational overhead decreases.

Compared with EDD-IP, the computational overheads of
EDD-A stay at a very low level, taking less than 8.06 seconds in
average to find a solution in the entire Set #1. To further eval-
uate the performance of EDD-A, we present and discuss the
results of Set #2, i.e., large-scale experiments, in Section 5.2.2.

5.2.2 Experiment Set #2

Effectiveness. Fig. 6 demonstrates the EDD costs achieved by
EDD-IP, EDD-A, MMR, GC and Random in experiment Sets
#2.1 to #2.4 . Overall, their trends in achieving a low cost are
similar to Fig. 4 with the same reasons for their performance
changes as discussed in Section 5.2.1. Since the maximum
running time of EDD-IP is limited in Set #2, its solution is not
always the real optimal solution. Thus, EDD-A achieves the
best performance in the entire Set #2. In Fig. 6a, the costs
increase from 650.3 to 2,200.1 by 238.82 percent for EDD-IP,
from 623.4 to 2,115.0 by 239.27 percent for EDD-A, from
706.2 to 2,346.2 by 232.23 percent for MMR, from 764.6 to
2,515.8 by 229.03 percent for GC, and from 1,142.0 to 5,614.6
by 391.65 percent for Random. Fig. 6b shows that the advan-
tages of EDD-A are 29.86 percent over EDD-IP, 11.08 percent
over MMR, 17.63 percent over GC and 49.26 percent by Ran-
dom on average in experiment Set #2.2 where the edge den-
sity d increases from 2.0 to 4.0. The performance differences
between the five approaches demonstrated in Figs. 6c and 6d
are similar to those demonstrated in Figs. 4c and 6d. Thus, it
is not discussed in detail here. Fig. 8a depicts that the cost
achieved by EDD-IP decreases in Set #2.5 when the running
time limit Tlimit increases. This is because given more run-
ning time, EDD-IP can search for more possible solutions to
achieve a lower cost.

Efficiency. Fig. 7 depicts the efficiency of each approach in
experiment Sets #2.1 to #2.4. In such large-scale experiments,

Fig. 5. Efficiency comparison in Set #1.

Fig. 6. Effectiveness comparison in Sets #2.1 - #2.4.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

94

EDD-A, MMR, GC and Random can still find their solutions
very fast. In Set #2.1, EDD-A takes a little more time than
MMR and Random when the number of edge servers
increases. This is the performance price to pay for EDD-A’s
advantages over these approaches in terms of effectiveness
as shown and discussed above. With the significant advan-
tages of EDD-A, especially where there are more edge serv-
ers, a higher edge density, a higher ratio of destination edge
servers and a lower EDD time constraint, it is worth running
EDD-A in real-world applications. As shown in Fig. 8b, the
computational overheads of EDD-IP are slightly higher than
its running time limit. The reason is that after EDD-IP stops
searching for possible solutions when Tlimit is reached, it still
needs some time to find the best solution among those possi-
ble solutions.

5.2.3 Conclusion

The experimental results demonstrated and discussed above
indicate that EDD-IP is suitable for solving EDD problems of
reasonable sizes. To solve large-scale EDD problems, EDD-A
is more practical for its high efficiency in finding solutions
very close to the optimal ones.

5.3 Threats to Validity

5.3.1 Construct Validity

Themain threats to the construct validity are threefold: 1) the
comparison with MMR, GC and Random may not suffice to
comprehensively evaluate EDD-IP and EDD-A; 2) the data-
set used in the experiments may not represent all real-world
scenarios exactly; 3) the performance of our approaches in
real-world EDD scenarios may not be exactly the same as in
our experiments. To minimize these threats, we varied set-
ting parameters in both sets of experiments, as summarized
in Table 2, to simulate a broad range of various EDD scenar-
ios. This has allowed us to evaluate our approaches more
comprehensively. Moreover, we evaluated EDD-IP and

EDD-A by not only the comparisonwith three representative
approaches but also the demonstration of how the changes in
the setting parameters impacted their performance. In this
way, the experimental results can be used as guidelines on
the estimation of the performance of our approaches in real-
world applications.

5.3.2 External Validity

The main threat to the external validity of the evaluation is
whether EDD-IP and EDD-A can be generalized and
applied in other application scenarios in the edge comput-
ing environment. To tackle this threat, we modeled the
problem and evaluated the performance of EDD-IP and
EDD-A in a generic manner - using the number of hops to
represent the data transmission latency between edge serv-
ers and a ratio g to indicate the difference between the C2E
transmission cost and the E2E transmission cost. In this
way, the evaluation results can be interpreted with specific
latency and cost models. We also varied parameters to
change the size and the complexity of the EDD problem.
This way, the representativeness and comprehensiveness of
the evaluation are ensured. The above mitigates the threat
to external validity.

5.3.3 Conclusion Validity

The lack of statistical tests, e.g., chi-square tests, is the major
threat to conclusion validity in our paper. To compensate
this threat, we have conducted comprehensive and inten-
sive experiments to cover various scenarios in different size
and complexity. In addition, every time a parameter
changes, we repeat the experiment for 100 times and calcu-
late the averaged results. This led to a large number of test
cases, which tend to result in a small p-value in the chi-
square tests and lower the practical significance of the test
results [31]. For example, in experiment Set #1, there were a
total of 2,200 runs. This number is not even close to the
number of observation samples that concern Lin et al. in
[31]. This way, the threat to the conclusion validity due to
the lack of statistical tests might be high but is not
significant.

6 RELATED WORK

Edge computing was proposed by Cisco in 2012 as a new
computing paradigm. As an extension of cloud computing,
edge computing distributes cloud-like computing resources
and services to the edge of the cloud [24]. Applications,
services and data can now be deployed on edge servers toFig. 8. Effectiveness and efficiency of EDD-IP in Set #2.5.

Fig. 7. Efficiency comparison in Sets #2.1 - #2.4.

XIA ETAL.: COST-EFFECTIVE APP DATA DISTRIBUTION IN EDGE COMPUTING

95

offer end-users ultra-low latency. It offers new opportuni-
ties and in the meantime raises many new challenges, e.g.,
edge server placement, edge user allocation, computation
offloading, edge application deployment, edge data caching
and edge data distribution.

Edge server placement is a fundamental problem in edge
computing. In [32], the authors focused onminimizing the cost
incurred during edge server deployment. They designed a
cost-effective method that employs integer programming to
help edge infrastructure providers make decisions on edge
server placements. Similarly, Yin et al. [33] presented a decision
support framework based on flexible placement, namely Ten-
tacle. It aims tominimize the cost of edge infrastructure deploy-
mentwhilemaximizing the overall systemperformance.

The edge user allocation problem in the edge computing
environment was first studied in [29]. The authors of [29]
modeled this problem as a variable sized vector bin packing
problem to maximize the number of allocated app users,
while minimizing the cost of hiring edge servers. He et al.
[3] tackled a similar problem in edge user allocation with
the aim to find a near-optimal solution in an efficient man-
ner. They proposed EUAGame, a game-theoretic approach
that employs a decentralized algorithm to find the Nash
equilibrium of the game as the solution to the problem.

The problem of computation offloading has been inten-
sively studied with consideration of edge servers’ energy effi-
ciency, offloading cost and joint service with caching [5], [32],
[34], [35]. Xu et al. [5] proposed an online algorithm, namely
OREO, to efficiently improve offloading performance jointly
with service caching. OREO was developed based on Lyapu-
nov optimization to reduce computation offloading latency
while keeping energy consumption low. In [36], Wang et al.
considered the computation offloading problem in wireless
cellular networks with mobile edge computing. They mod-
eled this problem as a convex problem and then decomposed
it to be solved in a distributedmanner.

Application deployment is another problem in the edge
computing environment that has attracted increasing atten-
tion from researchers. A number of approaches have been
proposed to determine optimal deployment strategies with
different objectives, such as maximizing the user or request
coverage [37], minimizing the deployment cost [38], and
maximizing the profit [39]. For example, Wang et al. [38]
focused on an application migration problem and proposed
a Markov decision process based framework for migrating
application instances between edge-clouds, with the aim to
minimize the average migration cost and the transmission
cost over time. Mahmud et al. [39] proposed a new pricing
model deploying applications on fog instances. They also
proposed a user compensation method based on SLA viola-
tion. Based on the new pricing model and the user compen-
sation method, an approach was proposed to find optimal
application deployment strategies that fulfil resource con-
straints like processing cores and memory.

In recent years, researchers have started to propose and
investigate new ideas and techniques for data caching in the
edge computing environment. Cao et al.[14] presented anopti-
mal auction mechanism to maximize service provider’s reve-
nue based on cache allocation and user valuation reports.
They proposed computationally-efficient approaches to apply
the auction mechanism based on data retrieval and delivery

costs. The authors of [11] proposed a caching system named
Cachier for recognition of applications in an MEC environ-
ment. Cachier coordinates the loading balance between edge
servers and the cloud tominimize the data retrieval latency in
a dynamicalmanner. Breitbach et al. proposed a datamanage-
ment system for edge computing environments by decou-
pling data placement based on task scheduling [40]. The
system adjusted the data replica placement cost to achieve the
balance between data management overhead and execution
delay. In [41], the authors focused on data-intensive IoTwork-
flows in a collaborative edge and cloud computing environ-
ment. They also formulated the problem as a 1-0 integer
programming model and provided a variant of the intelligent
swarm optimization algorithm to solve the problem.

However, existing research has not considered the fact
that transmitting the data on cloud and edge computing
infrastructure is also a large component in app vendors’ cost
structure in the edge computing environment. Without con-
sidering this component, app vendorswill not be able to real-
istically evaluate the costs of caching their app data on edge
servers. To the best of our knowledge, this paper makes the
first attempt to solve the edge data distribution problem
from the app vendor’ perspective in the edge computing
environment. Its aim is to minimize the cost of distributing
data from the cloud to edge server, with consideration of the
costs incurred during C2E and E2E transmissions, while ful-
filling the app vendor’s time constraint for data distribution.

7 CONCLUSION

In this paper, we formulated the edge data distribution
problem in the edge computing environment as a con-
strained optimization problem from the app vendor’s per-
spective. We proved that the EDD problem is NP-hard. To
solve this problem, we proposed an optimal approach
named EDD-IP based on the Integer Programming tech-
nique to minimize the cost incurred during data distribu-
tion. As the EDD problem is NP-hard, we also provided an
approximation approach named EDD-A for finding approx-
imate solutions to large-scale EDD problems efficiently.
Extensive experiments were conducted on a widely-used
real-world dataset to evaluate the performance of the pro-
posed approaches. The results showed that our approaches
significantly outperformed the representative approaches in
various EDD scenarios.

This research has established the foundation for the EDD
problem and opened up a number of future research direc-
tions. In our future work, we will consider the robustness
and fault-tolerance of EDD strategies, and more dynamic
and heterogeneous aspects of edge servers.

ACKNOWLEDGMENTS

This research was funded in part by the Australian Research
Council Discovery Projects No. DP180100212, DP200102491,
and Laureate Fellowship FL190100035.

REFERENCES

[1] A. Osseiran et al., “The foundation of the mobile and wireless
communications system for 2020 and beyond: Challenges, ena-
blers and technology solutions,” in Proc. IEEE 77th Veh. Technol.
Conf., 2013, pp. 1–5.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

96

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet Things J., vol. 3, no. 5,
pp. 637–646, Oct. 2016.

[3] Q. He et al., “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 3, pp. 515–529, Mar. 2020.

[4] T. X. Tran, M.-P. Hosseini, and D. Pompili, “Mobile edge comput-
ing: Recent efforts and five key research directions,” IEEE COM-
SOCMMTC Commun.-Frontiers, vol. 12, no. 4, pp. 29–33, 2017.

[5] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task off-
loading for mobile edge computing in dense networks,” in Proc.
IEEE Conf. Comput. Commun., 2018, pp. 207–215.

[6] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user computa-
tion offloading for mobile-edge cloud computing,” IEEE/ACM
Trans. Netw., vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[7] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for
energy-constrainedmobile edge computing in small-cell networks,”
IEEE/ACMTrans. Netw., vol. 26, no. 4, pp. 1619–1632, Aug. 2018.

[8] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient
resource allocation for mobile-edge computation offloading,” IEEE
Trans.Wireless Commun., vol. 16, no. 3, pp. 1397–1411,Mar. 2017.

[9] L. Yang, H. Zhang, M. Li, J. Guo, and H. Ji, “Mobile edge comput-
ing empowered energy efficient task offloading in 5G,” IEEE
Trans. Veh. Technol., vol. 67, no. 7, pp. 6398–6409, Jul. 2018.

[10] J. Zhao, W. Gao, Y. Wang, and G. Cao, “Delay-constrained cach-
ing in cognitive radio networks,” IEEE Trans. Mobile Comput.,
vol. 15, no. 3, pp. 627–640, Mar. 2016.

[11] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in Proc. 37th IEEE Int.
Conf. Distrib. Comput. Syst., 2017, pp. 276–286.

[12] X. Zhang and Q. Zhu, “Hierarchical caching for statistical QoS
guaranteed multimedia transmissions over 5G edge computing
mobile wireless networks,” IEEE Wireless Commun., vol. 25, no. 3,
pp. 12–20, Jun. 2018.

[13] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5G networks with mobile edge computing,” IEEE
Wireless Commun., vol. 25, no. 3, pp. 80–87, Jun. 2018.

[14] X. Cao, J. Zhang, and H. V. Poor, “An optimal auction mechanism
for mobile edge caching,” in Proc. 38th IEEE Int. Conf. Distrib. Com-
put. Syst., 2018, pp. 388–399.

[15] R. Halalai, P. Felber, A.-M. Kermarrec, and F. Taı̈ani, “Agar: A
caching system for erasure-coded data,” in Proc. 37th IEEE Int.
Conf. Distrib. Comput. Syst., 2017, pp. 23–33.

[16] Y. Wang, B. Veeravalli, and C.-K. Tham, “On data staging algo-
rithms for shared data accesses in clouds,” IEEE Trans. Parallel
Distrib. Syst., vol. 24, no. 4, pp. 825–838, Apr. 2013.

[17] Q. Zhang, Q. Zhang, W. Shi, and H. Zhong, “Firework: Data proc-
essing and sharing for hybrid cloud-edge analytics,” IEEE Trans.
Parallel Distrib. Syst., vol. 29, no. 9, pp. 2004–2017, Sep. 2018.

[18] Y. Liu, M. Dong, K. Ota, and A. Liu, “ActiveTrust: Secure and
trustable routing in wireless sensor networks,” IEEE Trans. Inf.
Forensics Security, vol. 11, no. 9, pp. 2013–2027, Sep. 2016.

[19] K. Gai, L. Qiu, M. Chen, H. Zhao, andM. Qiu, “SA-EAST: Security-
aware efficient data transmission for its in mobile heterogeneous
cloud computing,” ACM Trans. Embedded Comput. Syst., vol. 16,
no. 2, pp. 1–22, 2017.

[20] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato, “Hybrid
method for minimizing service delay in edge cloud computing
through VM migration and transmission power control,” IEEE
Trans. Comput., vol. 66, no. 5, pp. 810–819, May 2017.

[21] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, “IoT-based big data stor-
age systems in cloud computing: Perspectives and challenges,” IEEE
Internet Things J., vol. 4, no. 1, pp. 75–87, Feb. 2017.

[22] H. Guo and J. Liu, “Collaborative computation offloading for
multi-access edge computing over fiber-wireless networks,” IEEE
Trans. Veh. Technol., vol. 67, no. 5, pp. 4514–4526, May 2018.

[23] M. Patel et al., “Mobile-edge computing introductory technical
white paper,” White Paper, Mobile-Edge Comput. (MEC) Industry
Initiative, pp. 1089–7801, 2014.

[24] M. Yannuzzi et al., “A new era for cities with fog computing,”
IEEE Internet Comput., vol. 21, no. 2, pp. 54–67, Mar./Apr. 2017.

[25] R. M. Karp, “Reducibility among combinatorial problems,” in
Complexity of Computer Computations. Berlin, Germany: Springer,
1972, pp. 85–103.

[26] F. K. Hwang and D. S. Richards, “Steiner tree problems,” Net-
works, vol. 22, no. 1, pp. 55–89, 1992.

[27] H. Takahashi, “An approximate solution for the steiner problem
in graphs,”Math. Japonica, vol. 6, pp. 573–577, 1990.

[28] G. Xue, “Minimum-cost QoS multicast and unicast routing in
communication networks,” IEEE Trans. Commun., vol. 51, no. 5,
pp. 817–824, May 2003.

[29] P. Lai et al., “Optimal edge user allocation in edge computing with
variable sized vector bin packing,” in Proc. Int. Conf. Service-
Oriented Comput., 2018, pp. 230–245.

[30] P. Erd€os and A. R�enyi, “On random graphs publ,”Math. Debrecen,
vol. 6, pp. 290–297, 1959.

[31] M. Lin, H. C. Lucas Jr, and G. Shmueli, “Research commentary—
too big to fail: Large samples and the p-value problem,” Inf. Syst.
Res., vol. 24, no. 4, pp. 906–917, 2013.

[32] H. Yao, C. Bai, M. Xiong, D. Zeng, and Z. Fu, “Heterogeneous
cloudlet deployment and user-cloudlet association toward cost
effective fog computing,” Concurrency Comput. Pract. Experience,
vol. 29, no. 16, 2017, Art. no. e3975.

[33] H. Yin et al., “Edge provisioning with flexible server placement,”
IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 4, pp. 1031–1045,
Apr. 2017.

[34] F.Wang, J. Xu, X.Wang, and S. Cui, “Joint offloading and computing
optimization in wireless powered mobile-edge computing systems,”
IEEETrans.Wireless Commun., vol. 17, no. 3, pp. 1784–1797,Mar. 2018.

[35] S. Jo�silo and G. D�an, “A game theoretic analysis of selfish mobile
computation offloading,” in Proc. IEEE Conf. Comput. Commun.,
2017, pp. 1–9.

[36] C. Wang, C. Liang, F. R. Yu, Q. Chen, and L. Tang, “Computation
offloading and resource allocation in wireless cellular networks
with mobile edge computing,” IEEE Trans. Wireless Commun.,
vol. 16, no. 8, pp. 4924–4938, Aug. 2017.

[37] T. He, H. Khamfroush, S. Wang, T. La Porta, and S. Stein, “It’s
hard to share: Joint service placement and request scheduling in
edge clouds with sharable and non-sharable resources,” in Proc.
38th Int. Conf. Distrib. Comput. Syst., 2018, pp. 365–375.

[38] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with pre-
dicted future costs,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 4, pp. 1002–1016, Apr. 2017.

[39] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya,
“Profit-aware application placement for integrated fog–cloud
computing environments,” J. Parallel Distrib. Comput., vol. 135,
pp. 177–190, 2020.

[40] M. Breitbach, D. Sch€afer, J. Edinger, and C. Becker, “Context-
aware data and task placement in edge computing environ-
ments,” in Proc. IEEE Int. Conf. Pervasive Comput. Commun., 2019,
pp. 1–10.

[41] Y. Shao, C. Li, and H. Tang, “A data replica placement strategy for
IoT workflows in collaborative edge and cloud environments,”
Comput. Netw., vol. 148, pp. 46–59, 2019.

Xiaoyu Xia received the master’s degree from
The University of Melbourne, Australia, in 2015.
He is currently working toward the PhD degree at
Deakin University, Australia. His research interests
include edge computing, service computing, and
software engineering.

Feifei Chen received the PhD degree from the
Swinburne University of Technology, Australia, in
2015. She is currently a lecturer at Deakin Univer-
sity, Australia. Her research interests include soft-
ware engineering, cloud computing, and green
computing.

XIA ETAL.: COST-EFFECTIVE APP DATA DISTRIBUTION IN EDGE COMPUTING

97

Qiang He (Member, IEEE) received the first PhD
degree from the Swinburne University of Tech-
nology, Australia, in 2009 and the second PhD
degree in computer science and engineering from
the Huazhong University of Science and Technol-
ogy, China, in 2010. He is a senior lecturer at Swin-
burne, Australia. His research interests include
service computing, software engineering, cloud
computing and edge computing. For more infor-
mation please visit https://sites.google.com/site/
heqiang/

John C. Grundy (Senior Member, IEEE) received
the BSc (Hons), MSc, and PhD degrees in com-
puter science from the University of Auckland,
New Zealand. He is currently an australian laure-
ate fellow and a professor of software engineering
at Monash University, Melbourne, Australia. He is
an associate editor of the IEEE Transactions on
Software Engineering, Automated Software Engi-
neering Journal, and IEEE Software. His current
interests include domain-specific visual languages,
model-driven engineering, large-scale systems

engineering, and software engineering education. For more informa-
tion please visit https://sites.google.com/site/johncgrundy/

Mohamed Abdelrazek is an associate professor
of software engineering and IoTat Deakin Univer-
sity, Australia. Before joining Deakin University,
Australia, in 2015, he worked as a senior research
fellow at the Swinburne University of Technology,
Australia and Swinburne-NICTA software innova-
tion lab (SSIL). Before 2010, he was the head of
Software Development Department at Microtech.
For more information please visit at https://sites.
google.com/site/mohamedalmorsy/

Hai Jin (Fellow, IEEE) received the PhD degree in
computer engineering from the Huazhong Univer-
sity of Science and Technology, China, in 1994. He
is a Cheung Kung scholars chair professor of com-
puter science and engineering at the Huazhong
University of Science and Technology (HUST),
China. His research interests include computer
architecture, virtualization technology, cluster com-
puting and cloud computing, peer-to-peer comput-
ing, network storage, and network security.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 32, NO. 1, JANUARY 2021

98

5.2 Cost-effective Data Distribution Strategies in

Online Edge Computing Scenarios

The approach proposed in Chapter 5.1 is designed to handle data transmissions in an

offline manner without considering temporal data dynamics in real-world edge cache

systems - users’ demands on data vary at different locations over time, as mentioned

in Chapter 4. Moreover, every time a piece of data is requested by new edge servers

in the system, it has to be transmitted from the remote cloud to the destination edge

servers through intermediate edge servers in Chapter 5.1. Data transmissions in a

real-world edge cache system must be handled in an online manner to overcome the

above critical limitations. The key is to source data for destination edge servers from

other edge servers in the system instead of from the cloud if it is more cost-effective

to do so. In this chapter, we study this edge data distribution problem in an online

manner, and propose a Lyapunov-based online approach to minimize the total cost

while stabilizing low average transmission latency in the long term.

This chapter is based on a submitted manuscript, entitled: Formulating Cost-

Effective Data Distribution Strategies Online for Edge Cache Systems, IEEE Trans-

actions on Parallel and Distributed Systems, Major Revision.

99

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2021

Formulating Cost-Effective Data Distribution
Strategies Online for Edge Cache Systems

Xiaoyu Xia, Feifei Chen, Qiang He, Senior Member, IEEE , John Grundy, Senior Member, IEEE , Mohamed
Abdelrazek, Jun Shen, Athman Bouguettaya, Fellow, IEEE , and Hai Jin, Fellow, IEEE

Abstract—Edge Computing (EC) enables a new kind of caching system in close geographic proximity to end-users by allowing app
vendors to cache popular data on edge servers deployed at base stations. This edge cache system can better support
latency-sensitive applications. However, transmitting data from the centralized cloud to the edge servers without proper transmission
strategies may cost app vendors dearly based on the pay-as-you-go model. Cost-effective data distribution strategies are of particular
importance for applications, whose data to be cached at the edge often changes dynamically over time. In this paper, we study this
Online Edge Data Distribution (OEDD) problem, aiming to minimize app vendors’ total transmission cost, while ensuring low
transmission latency in the long term. We first model this problem and prove its NP-hardness. We then propose a novel
Latency-Aware Online (LAO) approach, an online algorithm for solving this OEDD problem over time with provable performance
guarantees. The evaluation of LAO on a real-world dataset demonstrates that it can help app vendors formulate cost-effective edge
data distribution strategies in an online manner.

Index Terms—edge computing, data distribution, edge cache system, optimization, online algorithm.

F

1 INTRODUCTION

The number of mobile devices has increased exponentially
in the last decade, approaching 500 billion by 2030 as pre-
dicted by CISCO [1]. These devices generate an enormous
load on networks. Considerable network resources are re-
quired to transmit such massive data. Conventional caching
systems are facilitated by cloud computing, including Con-
tent Delivery Networks (CDNs), content-centric networks
and information-centric networks. However, those caching
systems cannot fulfill the rapidly-increasing need for low
latency raised by real-time applications, e.g., AR, VR, online
games, etc. Edge Computing (EC) has emerged as the exten-
sion of cloud computing to tackle this critical limitation. EC
distributes the resources to edge servers deployed at base
stations in geographic proximity to nearby end-users [2], [3].
App vendors like Facebook Horizon1 and Google Stadia2

can hire storage and computing capacities on edge servers

• X. Xia, F. Chen and M. Abdelrazek are with School of In-
formation Technology, Deakin University, Geelong, Victoria, Aus-
tralia. E-mail: xiaoyu.xia@deakin.edu.au; feifei.chen@deakin.edu.au; mo-
hamed.abdelrazek@deakin.edu.au.

• Q. He is with School of Software and Electrical Engineering, Swin-
burne University of Technology, Melbourne, Victoria, Australia. E-mail:
qhe@swin.edu.au.

• J. Grundy is with Faculty of Information Technology, Monash University,
Melbourne, Victoria, Australia. E-mail: john.grundy@monash.edu.

• J. Shen is with School of Computing and Information Technology, Uni-
versity of Wollongong, Wollongong, New South Wales, Australia. E-mail:
jshen@uow.edu.au.

• A. Bouguettaya is with the School of Computer Science, University of
Sydney, Australia. Email: athman.bouguettaya@sydney.edu.au.

• H. Jin is with Services Computing Technology and System Lab, Big Data
Technology and System Lab, Cluster and Grid Computing Lab, School of
Computer Science and Technology, Huazhong University of Science and
Technology, China. Email: hjin@hust.edu.cn.

1. https://www.oculus.com/facebook-horizon/
2. https://stadia.google.com/

for caching popular data and hosting their applications to
serve users within those edge servers’ coverage areas with
low end-to-end data retrieval latency [4], [5].

Data caching has been intensively investigated to reduce
data retrieval latency [6], [7], [8], [9], [10]. A fundamental
obstacle to further advances in caching is the often unpre-
dictable high latency caused by the long distance between
end-users and the cache [11]. EC addresses this issue by
expanding the boundary of data caching to reach geo-
graphical proximity to end-users [12], [13]. As edge servers
the entry point for an increasing number of devices, there
has been an equivalent increase in traffic going through
edge servers. Therefore, caching data on edge servers can
considerably reduce users’ data retrieval latency as there
is no need to retrieve data from remote cloud servers [14].
Additionally, this could have the effect of reducing the
volume of data transmitted from the cloud to users and
decreasing the corresponding transmission costs [4]. The edge
servers deployed in an area constitute an edge cache system.
New challenges raised by edge cache systems are starting to
attract researchers’ attention [13], [15], [16], [17], [18].

Existing research on edge cache systems has focused on
caching data across edge servers for different optimization
objectives, e.g., maximizing hit ratio [9], [13], minimizing
caching cost [4], [16] or minimizing retrieval latency [15],
[17]. The fact that transmitting data from the cloud to
edge servers may incur excessive costs has been completely
ignored. For example, 1 GB data transferred out of data
centers to the internet charges up to US$0.11 under Amazon
Web Services price model3. It is an important consideration
for app vendors when leveraging edge cache systems. In
addition, taking too long to transmit data onto edge servers
impacts users’ data retrieval latency and causes user aban-

3. https://aws.amazon.com/s3/pricing/

100

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2021

v1

v3 v5

v4

v6 v7
v2

Edge server

Source server

Destination server

C2EData transmission

(a) EDD for v5 in time slot t0

v1

v3 v5

v4

v6 v7
v2

C2E

E2E

E2E

E2E

(b) EDD for v1, v3 and v6 in time slot t1

v1

v3 v5

v4

v6 v7
v2

E2E

E2E

E2E

(c) OEDD for v1, v3 and v6 in time slot t1

Fig. 1: Example EDD and OEDD processes. Note: This example presents the distribution of one VR video over time. The
processes for distributing different VR videos are not correlated. Thus, their strategies are individually formulated.

donment [19]. Xia et al. studied this edge data distribution
(EDD) problem [20], aiming to cost-effectively transmit data
from the cloud to destination edge servers, i.e., the edge
servers to cache that data in the edge cache system.

Example. Consider the example of Facebook Horizon
(FH), an VR platform. FH application can significantly
benefit from caching data like popular4 VR videos (and
the corresponding HTML, CSS, JS and image files) on
edge servers [20]. FH users in the edge cache system can
retrieve popular VR videos from edge servers with low
data retrieval latency. This can also significantly reduce the
data transmission cost incurred by the data traffic between
FH’s cloud server and FH users. An edge cache system is
shown in Fig. 1(a), involving a set of edge servers {v1, ..., v7}
covering different geographic areas. The edge servers in the
edge cache system constitute a edge server network [20].
The edge server network overcomes the single-point failure
problem in the edge-cloud architecture5 [24], where edge
servers can communicate with others through a centralized
macro base station. It also avoids unpredictable network
latency when edge servers can only communicate via the
backhaul network [20], [25]. In time slot t0, a VR video d is
requested by many of the FH users within edge server v5’s
coverage areas. As illustrated by Fig. 1(a), d is transmitted
from the remote FH cloud server to be cached v5 via a
C2E (cloud to edge server) transmission. Future FH users
covered by v5 can retrieve d with low latency.

However, the approach proposed in [20] is designed to
handle data transmissions in an offline manner without con-
sidering temporal data dynamics in real-world edge cache
systems - users’ demands on data vary at different locations
over time [26]. Every time a piece of data is requested by
new edge servers in the system, it has to be transmitted from
the remote cloud to the destination edge servers through
intermediate edge servers. Take Fig. 1(b) for example, where

4. Data popularity prediction has been investigated extensively in the
past two decades. It focuses on cache hit rate, which is orthogonal to
how edge cache systems reduce cache hit distance [9], [21], [22], [23].
Thus, the data to be distributed by LAO is assumed to be popular in
this study.

5. Edge servers communicating with each other based on the edge-
cloud architecture can be modeled as a fully-connected edge server
network. Thus, the models and the algorithms proposed in this paper
are also suitable for solving OEDD problems based on the edge-cloud
architecture.

edge servers v1, v3 and v6 need to cache VR video d after v5

in time slot t1. As demonstrated, the approach proposed
in [20] has to transmit d from the cloud to v3 first via a C2E
transmission. Then, v3 will transmits d to v1, and v6 through
v5 via E2E (edge server to edge server) transmissions. As d
goes viral over time, d is requested by many other edge
servers in the system, e.g., v2, v4 and v7. The inevitable
and expensive C2E transmissions can easily incur excessive
transmission costs. In the meantime, the E2E transmissions
incur extra data retrieval latency for users served by v1 and
v6 compared to those served by v3 (and those served by
v5 in Fig. 1(a)). This undermines EC’s pursuit of low data
retrieval latency for users.

Data transmissions in a real-world edge cache system
must be handled in an online manner to overcome the above
critical limitations. The key is to source data for destination
edge servers from other edge servers in the system instead
of from the cloud if it is more cost-effective to do so. As
illustrated by Fig. 1(c), d can be transmitted from v5 to v1, v3

and v6. Compared with the strategy presented in Fig. 1(b),
this strategy is more cost-effective, especially in the long
term, because it greatly reduces the total transmission cost
and transmission latency by avoiding slow and expensive
C2E transmissions when possible. However, sourcing data
from an edge server far away from the destination server(s)
may take excessive time and incurs high transmission latency
which are ignored in [20]. Thus, from the app vendor’s
perspective, to strike a proper balance, the cost-effective online
EDD (OEDD) must minimize the total transmission cost while
stabilizing low average transmission latency in the long term.

This paper proposes LAO, a Latency-Aware Online ap-
proach, for formulating cost-effective OEDD strategies over
time for app vendors. To the best of our knowledge, it is the
first attempt at the OEDD problem. The key contributions
of this work include:

• We formulate the OEDD problem and prove its NP-
hardness.

• We propose an innovative online approach, LAO, for
solving the OEDD problem based on the Lyapunov
optimization theory, and theoretically prove its per-
formance bounds.

• We evaluate LAO with extensive experiments con-
ducted on a widely-used real-world data set.

101

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2021

The rest of this paper is organized as follows. In Section
2, we present system models, formulates the OEDD problem
and proves its NP-completeness. Section 3 presents LAO
in detail and analyzes its performance theoretically. Section
4 evaluates LAO experimentally against state-of-the-art al-
gorithms. We review the related work Section 5, and then
concludes this paper in Section 6.

2 SYSTEM MODEL

We introduce the edge cache system architecture first in this
section. Then we formally define the transmission cost. After
that, we formulate the OEDD problem and prove that this
OEDD problem is NP-hard.

2.1 System Architecture
The edge server network in an edge cache system can be
modeled as a graph G(V,E), where V is the set of nodes
and E is the set of edges in G. Graph G has a corresponding
node for each edge server and the cloud server. The link
between FH’s cloud server and each of the edge servers in
the system is also modeled as an edge. With the cloud server
modeled as node c, we use G(V, c, E) to represent the entire
edge cache system6.

As discussed in Section 1, a data d can be transmitted
to a destination edge server from either the cloud server or
another edge server in the system. Denote St as the set of
source servers in time slot t, including the cloud server c and
the edge servers that has d in cache, e.g., v5 in Fig. 1(b).

Let Rt denote the set of destination edge servers in
time slot t, i.e., the edge servers to which d needs to be
transmitted. Let vector ωt =< ωt0, ..., ω

t
n >, where ωt0 = ωtc

and ωtv ∈ {0, 1} (0 ≤ v ≤ n), indicate whether node
v is a transmission node in time slot t, i.e., whether v is
involved in the transmission of d as the source node, the
intermediate node or the destination node. Similarly, let
vector γt =< γt0,0, γ

t
0,1, ..., γ

t
n,n > (γtu,v ∈ {0, 1}) denote

whether transmitting d via edge eu,v in time slot t. Notice
that γu,v ≡ 0 if u = v or eu,v /∈ E. For each node v ∈ V \St,
d is transmitted through edge server v if d is transmitted via
an edge connecting another edge server and v:

∑

u∈V
γtu,v ≥ ωtv,∀v ∈ V \ St (1)

In addition, if d is transmitted via eu,v in time slot t, it
will be transmitted through u and v in time slot t:

γtu,v = ωtv · ωtv,∀u, v ∈ V (2)

2.2 Transmission Cost
The prices for C2E and E2E transmissions are region-
specific and vary in edge cache systems built by different
edge infrastructure providers. In this paper, we measure
transmission costs in a generic manner, similar to [20]. In
this way, actual C2E and E2E transmission costs can be
calculated based on specific pricing models in real-world
scenarios, e.g., Amazon or Google’s. Let costu,v denote

6. In this paper, we speak interchangeably of a server and its corre-
sponding node in G, e.g., source nodes and source servers.

TABLE 1: Summary of Notations

Notation Description

c remote cloud

costt transmission cost incurred by γt

costu,v cost of transmission through edge eu,v

d data to be cached

E set of links/edges existing in G

eu,v edge from node u to v

G graph presenting a particular area

l̄ time-averaged maximum transmission latency

ltu,v time taken to transmit the data via edge eu,v in time

slot t

lγ
t

v time taken to transmit the data to v according to γt

Rt set of destination edge servers in time slot t

St set of source servers in time slot t

t time slot t

T number of time slots

u, v nodes u, v in graph G

V set of edge servers

γ EDD strategy

γt set of binary variables indicating whether data is

transmitted through any edge eu,v ∈ E in time slot t

γtu,v binary variable indicating whether data is transmitted

through eu,v in time slot t

ωt set of binary variables indicating whether data

transmission strategy visits node v ∈ V in time slot t

ωtv binary variable indicating whether data transmission

strategy visits node v in time slot t

the transmission cost incurred by transmitting a piece of
data from edge server u to v and costc,v as the cost of
transmitting the data from the remote cloud server c to v.
Denoted by costt, the transmission cost incurred by the EDD
strategy γt in time slot t is:

costt =
∑

v∈V
γtc,v · costc,v +

∑

u∈V

∑

v∈V
γtu,v · costu,v (3)

Please note that the cache spaces on edge servers are
constrained and expensive due to their limited sizes [27],
[28], [29], [30]. App vendors need to compete for the storage
spaces in the edge cache system. A common practice is to
reserve cache spaces in advance rather than on-demand [31].
Thus, the expenses of storing data in the edge cache system
are fixed and not included in (3).

2.3 Transmission Latency

Let l̄ denote the time-averaged maximum transmission la-
tency expected by the app vendor, and lγ

t

v denote the time
taken to transmit the data to edge server v according to
EDD strategy γt. As discussed in Section 1, cost-effective
OEDD must stabilize low transmission latency in the long
term. This is achieved by stabilizing the average time taken

102

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2021

to transmit data to each destination server below l̄ over T
time slots:

lim
T→∞

1

T

T−1∑

t=0

∑
v∈Rt lγ

t

v

|Rt| ≤ l̄ (4)

In particular, data d does not need to be transmitted to
any of the source servers because d is already in their cache.
Accordingly, there is:

lγ
t

v = 0,∀v ∈ St (5)

If d goes through edge eu,v in G according to γt, the
times taken to transmit d to u and v fulfil:

lγ
t

u − lγ
t

v = ltu,v,∀u, v ∈ V, if γtu,v = 1 (6)

2.4 Problem Formulation and Hardness
As discussed in Section 1, the app vendor wants to minimize
the total transmission cost over time. Thus, in a time slot t,
d can go through any nodes in G only once. Accordingly, (1)
can be refined as follows:

∑

u∈V
γtu,v = ωtv,∀v ∈ V \ St (7)

For each destination edge server v ∈ Rt, it must be
included in γt, i.e., the EDD strategy in time slot t:

ωtv = 1,∀v ∈ Rt (8)

In the edge cache system, users’ data requests arrive and
leave randomly [32]. From the app vendor’s perspective,
the edge cache system’s long-term performance usually is
superior to its short-term performance. To minimize the
total transmission cost over time, we formulate the OEDD
problem as follows:

P1 : min lim
T→∞

1

T

T−1∑

t=0

costt

s.t. γtu,v, ω
t
v ∈ {0, 1},∀u, v ∈ V

(2), (4), (5), (6), (7), (8)

Now, we demonstrate that the t-OEDD problem, i.e., the
subproblem of P1 in an individual time slot t without (4), is
NP-hard.
Theorem 1. The t-OEDD problem is NP-hard.

Proof To do this proof, we first introduce a known NP-
hard problem, the Rooted Minimum Steiner Tree (RMST)
problem: given a graph G(V,E,R,W, r) where V is the set
of nodes, E is the set of edges, R is the set of destination
nodes R ∈ V , and W is the weights of edges ∀e ∈ E, the
RMST problem is to find a Steiner tree from G that starts
from node r with minimum weights. Now we present how
to reduce the t-OEDD problem to the RMST problem. We
first include a virtual node r′ into graph G. Then, we add
an edge to connect this virtual node to each of the source
nodes in G. In the t-OEDD problem, each edge eu,v has a
specific transmission cost costu,v , which can be treated as
the weight of the corresponding edge in the RMST problem.
In this way, the t-OEDD problem is converted to: given a
graph G and a starting point r′, find the Steiner tree with
the minimum total weight (the minimum transmission cost).

A solution that fulfills this reduced t-OEDD problem also
fulfills the RMST problem. This indicates that the RMST
problem can be reduced to the t-OEDD problem and the
t-OEDD problem is thus NP-hard. �

The t-OEDD problem is a special case of the OEDD
problem where T = 1. Thus, the OEDD problem over T
is also NP-hard.

3 ONLINE ALGORITHM DESIGN AND ANALYSIS

Lyapunov optimization theory has been widely applied in
many domains by modeling dynamic systems as queuing
systems to stabilize queues like task queues and request
queues [33]. LAO leverages Lyapunov optimization theory
in an innovative way to stabilize transmission latency over
time. In this section, we present LAO in detail and analyze
its performance theoretically.

3.1 Latency-Aware Online Algorithm Design
InP1, constraint (4) aims to stabilize the time-averaged max-
imum transmission latency. However, it requires complete
information about destination edge servers in all time slots,
which cannot be obtained in advance in real-world edge
cache systems. To tackle this challenge, we introduce the
accumulated latency.
Definition 1 (Accumulated Latency). Denoted by σt+1 (t ∈

[0, T − 1]), the accumulated latency is the overdue delay
accumulated in an edge cache system over t time slots.
It can be calculated by:

σt+1 =
⌊
σt +

∑

v∈Rt

(lγ
t

v − l̄)
⌋
+

(9)

where σ0 = 0, i.e., the initial value of the accumulated
latency before the first time slot is 0. The accumulated
latency increases when the average transmission latency
exceeds l̄, i.e., the expected time-averaged maximum trans-
mission latency. According to Definition 1, the long-term
transmission latency constraint (4) can be converted to a
new constraint:

lim
T→∞

1

T

T−1∑

t=0

E[σt] ≤ 0 (10)

Based on (9), we define L(σ(t)) , 1
2σ

2(t) to measure the
accumulated latency σ(t). Then, we define ∆(σ(t)) below
to introduce constraint (10) as part of the optimization
objective to strike the balance between the time-averaged
transmission latency and total transmission cost in the long
term:

∆(σt) = E[L(σt+1)− L(σt)|σt] =
1

2
E[σ2

t+1 − σ2
t |σt]

=
1

2
E[(σt +

∑

v∈Rt

(lγ
t

v − l̄))2 − σ2
t |σt]

= E[σt
∑

v∈Rt

(lγ
t

v − l̄)|σt] +
1

2
E[(

∑

v∈Rt

(lγ
t

v − l̄))2|σt]

(11)

Next, we combine ∆(σt) with the optimization objective
of P1:

ζ · E[costt|σt] + ∆(σt) (12)

103

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2021

where ζ is the app-specific parameter representing the ur-
gency to maintain the time-averaged transmission latency
by lowering current transmission latency when (10) was
violated in the previous time slot. In general, a lower
ζ will accelerate the stabilization at a potentially higher
transmission cost. Its impact on LAO will be experimentally
evaluated in Section 4.

According to (11), the calculation of ∆(σt) in time slot
t requires L(σt+1), which is not available in time slot t. To
address this issue, we now try to find the upper bound on
(12) that can be calculated based on information available in
time slot t. Because lγ

t

v is not lower than 0,
∑
v∈Rt(lγ

t

v − l̄))2

is not higher than
∑
v∈Rt l̄2. Let us define a constant Θ =

1
2

∑
v∈Rt l̄2. Based on (11), the upper bound on ∆(σt) fulfils:

∆(σt) ≤ σt · E[
∑

v∈Rt

(lγ
t

v − l̄)|σt] + Θ (13)

Based on (13), the upper bound on (12) can be found:

ζ · E[costt|σt] + ∆(σt) ≤
ζ · E[costt|σt]− σt · E[

∑

v∈Rt

(l̄ − lγt

v)|σt] + Θ (14)

It can be calculated based on the information available in
time slot t. Now, P1 can be approximated by finding the
solution to P2 below that minimizes the upper bound on
(12) according to (14) in each time slot over T :

P2 : min ζ · costt − σt ·
∑

v∈Rt

(l̄ − lγt

v) + Θ (15)

s.t. : (2), (5), (6), (8), (7)

Algorithm 1 Latency-Aware Online approach (LAO)

1: Input: G(V, c, E), llimit, l̄, T, S = {S0, ...,ST−1}
2: Output: data distribution strategy γ = {γ0, ..., γT−1}
3: σ0 = 0, t = 0, γ ← ∅
4: repeat
5: Observe the destination edge serversRt, create a new

set R′t = {v|v ∈ Rt⋂¬St} and set lγ
t

v = 0, ∀v ∈
Rt⋂St

6: UseR′t to find the solution γt with the minimal value
of (15)

7: Calculate lγ
t

v for each edge server v ∈ Rt, and update
accumulated latency σt based on (9)

8: γ = γ
⋃
γt

9: t = t+ 1
10: until t = T
11: return γ

Algorithm 1 presents the pseudocode of LAO. It begins
with initializing the EDD strategies and the accumulated
latency (Lines 3). LAO iterates through all the possible
EDD strategies fulfilling the constraints in P2 and chooses
the one producing the lowest objective value according to
(15) (Lines 5-6). After that, LAO calculates the accumulated
latency (Line 7). Please note that Algorithm 1 will iterate
over time when used in practice.

3.2 Theoretical Performance Analysis

In this section, we theoretically analyze LAO’s performance
in minimizing the total transmission cost and stabilizing
the time-averaged transmission latency with Theorem 2 and
Theorem 3, respectively.

Theorem 2. The total transmission cost of LAO over T time
slots is bounded by O(1

ζ) compared with the optimal
solution.

Proof Let γ∗ = {γ∗0, ..., γ∗T−1} denote the optimal solu-
tion to P1, which incurs transmission cost cost∗t. LAO finds
the solution to P2 from its solution space which contains the
solution space of P1. Now, we deduce the upper bound on
(12) with respect to cost∗t:

ζ · E[costt|σt] + ∆(σt)
(14)
≤ ζ · E[costt|σt]− E[σt ·

∑

v∈Rt

(l̄ − lγt

v)|σt] + Θ

≤ ζ · E[cost∗t|σt]− E[σt ·
∑

v∈Rt

(l̄ − lγ∗tv)|σt] + Θ

(†)
≤ ζ · E[cost∗t|σt]− σt ·

∑

v∈Rt

(l̄ − lγ∗tv) + Θ

(‡)
≤ ζ · E[cost∗t|σt] + Θ

(16)

Note that the optimal solution γ∗ is independent of the
accumulated latency. Thus, inequality (†) in (16) stands.
Inequality (‡) holds because constraint (4) must be fulfilled
by the optimal solution γ∗ to problemP1 while σt ≥ 0 based
on (9). By summing (16) across t ∈ [0, T − 1], we can obtain:

lim
T→∞

ζ

T
·
T−1∑

t=0

E[costt|σt]

≤ lim
T→∞

ζ

T
·
T−1∑

t=0

E[cost∗t|σt] + Θ− E[L(σT)− L(0)]

T

≤ lim
T→∞

ζ

T
·
T−1∑

t=0

E[cost∗t|σt] + Θ

(17)

where L(σT) − L(0) is always non-negative according to
definition of L(σt).

Thus, the margin between the solution γ found by LAO
and the optimal solution γ∗ is bounded by Θ

ζ :

lim
T→∞

1

T
·
T−1∑

t=0

E[costt − cost∗t|σt] ≤
Θ

ζ
(18)

As mentioned in Section 3.1, Θ is a constant of
1
2

∑
v∈Rt l̄2. Thus, the margin between γ and γ∗ is O(1

ζ).
�
Theorem 3. The time-averaged accumulated latency

achieved by LAO is bounded by O(ζ).

Proof According to (9) and (10), let us assume a positive
value X and the existence of a γ′t that fulfill:

E[
∑

v∈Rt

(lγ
′t
v − l̄)|σt] ≤ −X (19)

Let costmin and costmax denote the lowest and highest
transmission costs achieved by the all the possible solutions

104

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2021

to P1, respectively. Introducing costmin and costmax into
(14) leads to:

∆(σt)+ζ · costmin ≤
Θ + ζ · costmax + σt · E[

∑

v∈Rt

(lγ
′t
v − l̄)|σt] (20)

Define Θ′ = Θ + ζ · (costmax − costmin). We have the
following:

∆(σt) ≤ Θ′ + σt · E[
∑

v∈Rt

(lγ
′t
v − l̄)|σt]

(19)
≤ Θ′ −X · σt

(21)

The upper bound on the average accumulated latency
across all the time slots can be obtained:

1

T

T−1∑

t=0

σt
(21)
≤ Θ′

X −
∑T−1
t=0 ∆(σt)

TX
(11)
=

Θ′

X −
E[L(σT)− E[L(σ0)]

TX ≤ Θ′

X

(22)

Considering the fact that O(Θ′

X) = O(ζ), the averaged
accumulate latency across all the time slots of LAO is
bounded by O(ζ). With a lower ζ , the time-averaged ac-
cumulate latency is also lower, indicating the acceleration of
the stabilization. �

Based on the analysis above, when ζ → ∞, the solution
found by LAO is the optimal one to P1. However, with
a higher value of ζ , the accumulated latency will increase
and more time slots are required to stabilize this time-
averaged transmission latency (10). The performance analy-
sis presented in this section is also validated and analyzed
experimentally in Section 4.

4 EXPERIMENTAL EVALUATION

We experimentally evaluated the performance of LAO in
different OEDD scenarios by varying different parameters.
We conducted all experiments on a Windows-10 machine
and a real-world data set.

4.1 Experimental Settings

4.1.1 Benchmark approaches
Three representative approaches are implemented to be
compared against LAO:

• EDD-IP (EI) [20]: it always provides the optimal
solution with the minimum data distribution cost.
This approach is an offline approach and is executed
in every single time slot for finding a strategy for
distributing the corresponding data to the edge cache
system always from the cloud.

• Enhanced-EDD-IP (EEI): this approach is the en-
hanced version of EDD-IP that may source data for
destination edge servers from the cloud or from other
edge servers in the system. If the long-term trans-
mission latency constraint (4) is fulfilled, EEI aims to
minimize the data distribution cost. Otherwise, EEI
finds the solution that minimizes the transmission
latency to fulfill constraint (4).

• Latency-Oriented data distribution (LO): it always finds
the optimal solution with the minimum data distri-
bution latency in each time slot, originated from the
optimal solution presented in [34].

4.1.2 Performance metrics

Two metrics are implemented in the experiments to evaluate
the performance of LAO:

• Time-averaged transmission latency, calculated ac-
cording to the left side of (4), the lower the better.
We also observe whether the approaches fulfill the
long-term transmission latency constraint (4).

• Total transmission cost, calculated with (3) over T ,
the lower the better.

4.1.3 Data set

All the experiments are conducted on a widely-used real-
world dataset7. This dataset contains the geographical lo-
cations of 125 cellular base stations (edge servers) in Mel-
bourne, Australia. Similar to many studies in the EC envi-
ronment [4], [20], [35], [36], we measure transmission cost
and transmission latency in a generic manner. Specifically,
C2E transmission cost is 1 and E2E transmission cost is
ratio. E2E transmission latency is 1 and C2E transmission
latency is 10. In each experiment, the total number of time
slots is 200 (T = 200). In each experiment, a number of
|V | edge servers are randomly selected from the dataset
to simulate an edge cache system. The links between edge
servers are randomly generated according to density and
we ensure that the edge servers in the system constitute a
connected edge server network. In each time slot t, data
d is randomly decached from each individual edge server
according to pdec. The edge servers that still cache d will
be the source edge servers in time slot t. In the meantime,
a number of the other edge servers randomly request d
according to preq and become destination edge servers in
time slot t. Then, the four approaches are performed to
formulate the corresponding EDD strategies in time slot t.

4.1.4 Experiment parameters

To comprehensively analyze the performance of LAO, we
conduct eight sets of experiments, i.e., Set #1 to Set #8, to
simulate various real-world edge cache systems and OEDD
scenarios.

• Number of edge servers (|V |). This parameter de-
cides the size of the edge cache system.

• Edge density (density). This parameter represents
the density of graphG(V,E) that represents the edge
server network in the system. It is calculated by
density = |E|/|V |.

• Ratio of E2E transmission cost over C2E transmission
cost (ratio). This parameter simulates different pric-
ing models from edge infrastructure providers for
data transmissions.

• Time-averaged maximum transmission latency (l̄).
Used in Eq. (9), this parameter is the app vendor’s

7. https://github.com/swinedge/eua-dataset

105

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2021

TABLE 2: Parameter Settings

|V | density ratio l̄ pdec preq ζ

Set #1 40 1.0 0.5 5.0 0.6 0.10 1

Set #2 20,30,40,50,60 1.0 0.5 5.0 0.6 0.10 1

Set #3 40 1.0,1.2,1.4,1.6,1.8,2.0 0.5 5.0 0.6 0.10 1

Set #4 40 1.0 0.1,0.3,0.5,0.7,0.9 5.0 0.6 0.10 1

Set #5 40 1.0 0.5 3.0,3.5,4.0,4.5,5.0,5.5,6.0 0.6 0.10 1

Set #6 40 1.0 0.5 5.0 0.8,0.7,0.6,0.5,0.4 0.10 1

Set #7 40 1.0 0.5 5.0 0.6 0.05,0.10,0.15,0.20,0.25 1

Set #8 40 1.0 0.5 5.0 0.6 0.10 100,1,0.01

expected time-averaged maximum transmission la-
tency. A low l̄ indicates app vendor’s high priority
for pursuing low data retrieval latency.

• Data decache possibility (pdec). This parameter de-
termines the possibility for an edge server to remove
d from its cache. It simulates the scarcity of app
vendor’s cache spaces in the system and impacts the
number of source edge servers in each time slot.

• Data request possibility (preq). This parameter con-
trols the possibility that an edge server becomes a
destination edge server in each time slot. A high preq
represents high popularity of d.

• Trade-off parameter (ζ). As discussed in Section 3.2,
this parameter is used in (15) to represent the ur-
gency to stabilize the time-averaged transmission
latency when (10) was violated.

In the experiments, we vary the values of the seven
parameters below to observe their impacts on LAO different
OEDD scenarios. Except in Set #1, we vary the value of one
setting parameter while fixing the other six parameters in
each set of the experiments, as summarized in Table 2. Once
a setting parameter is changed, we repeat the experiments
for 30 times and obtain the averaged results.

4.2 Experimental Evaluation

4.2.1 Performance Comparison
The results of Set #1 is shown in Fig. 2. Fig. 2(a) depicts that
LAO quickly stabilizes the transmission latency and keeps
it below l̄, fulfilling the long-term transmission latency con-
straint (4). We can also see that LAO does this at the lowest
of the total transmission cost among all the four approaches.
LO and EEI can also fulfil (4) over time. LO incurs the lowest
time-average transmission latency, followed by LAO with
an average performance gap of 19.08%. This is because LO
tries to minimize low transmission latency despite the high
transmission cost incurred as shown in Fig. 2(b).

Fig. 2(b) demonstrates that LAO significantly outper-
forms EEI, EI and LO in minimizing transmission cost, by an
average of 43.72%, 38.75% and 66.96% over T , respectively,
across 200 time slots. The overall transmission cost incurred
by EEI is slightly higher than that incurred by EI. This
is because EEI tries to fulfill the long-term transmission
latency constraint (4) at the price of higher transmission

costs. LAO’s superior performance demonstrated in Fig. 2
validates the importance of tackling the EDD problem in an
online manner.

The results of the time-averaged latency achieved by all
the four approaches in Sets #2 - #7 are similar to Fig. 2(a).
Thus, we summarize the average results in Table 3. It shows
that LAO is second only to LO in all the experiments. Next,
we focus on the total transmission costs incurred by the
approaches in Sections 4.2.2 - 4.2.7.

4.2.2 Impact of number of edge servers (|V |)
Fig. 3 compares the transmission costs incurred by the
four approaches when the size of the edge cache system
|V | varies from 20 to 60. It is clear that LAO incurs the
lowest total transmission costs over time. On average, the
advantages of LAO are 37.69% over EEI, 40.00% over EI
and 63.11% over LO. When |V | increases from 20 to 60,
more edge servers will request data d on average in each
time slot and it takes more time to transmit d to all the
destination edge servers in general. LAO can source d for
destination edge servers closet to destination edge servers
and thus does not incur much more transmission costs when
|V | increases. Specifically, when |V | increases from 20 to
60 by 300%, LAO’s total transmission cost increases from
307.22 to 719.17 by only 134.09%, much lower than EEI’s
179.63% increase from 445.83 to 1,246.66, EI’s 210.55% from
437.22 to 1,357.78 and LO’s 213.55% from 637.78 to 2,001.67.

4.2.3 Impact of edge density (density)

Fig. 4 presents the impacts of density on the total transmis-
sion costs. Overall, LAO achieves the lowest total transmis-
sion cost. On average, the advantages of LAO are 33.77%
over EEI, 36.38% over EI and 58.65% over LO. When
density increases from 1.0 to 2.0, the total transmission costs
achieved by all the four approaches decrease, by 38.68%
from 530.00 to 325.00 for LAO, by 40.83% from 811.20 to
480.00 for EEI, by 20.69% from 762.80 to 605.00 for EI and
by 59.42% from 1429.40 to 580. The reason is that, with an
increase in density, each edge server is connected to more
other edge servers in the system on average. This shortens
the average distance between edge servers over the edge
server network, and data can be sourced to destination edge
servers with lower transmission costs.

106

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2021

TABLE 3: Time-averaged Latency (Sets #1 - #7)

Set #1 Set #2 Set #3 Set #4 Set #5 Set #6 Set #7

LAO 4.65 4.66 4.11 4.62 4.28 4.82 4.63

EEI 4.96 4.83 4.32 4.63 4.53 4.93 4.63

EI 9.38 9.22 9.04 9.31 9.36 9.25 9.24

LO 3.77 3.93 3.46 3.87 3.57 4.16 3.67

0 25 50 75 100 125 150 175 200
Time Slot t

3

4

5

6

7

8

9

10

11

Ti
m
e-
av

er
ag

ed
 L
at
en

c

̄l

L̄O EEI EI LO

(a) Latency over T

0 25 50 75 100 125 150 175 200
Time Slot t

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

To
ta

l T
ra

ns
m

iss
io

n
Co

st

1e3

LAO
EEI
EI
LO

(b) Cost over T

Fig. 2: Set #1

20 30 40 50 60
|V|

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

To
ta

l T
ra

ns
m

iss
io

n
Co

st

1e3

LAO
EEI
EI
LO

Fig. 3: Cost vs. |V | (Set #2)

1.0 1.2 1.4 1.6 1.8 2.0
density

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

To
ta

l T
ra

ns
m

iss
io

n
Co

st

1e3

LAO
EEI

EI
LO

Fig. 4: Cost vs. density (Set #3)

0.1 0.3 0.5 0.7 0.9
ratio

0.0

0.5

1.0

1.5

2.0

2.5

To
ta

l T
ra

ns
m

iss
io

n
Co

st
1e3

LAO
EEI

EI
LO

Fig. 5: Cost vs. ratio (Set #4)

4.2.4 Impact of ratio of E2E transmission cost over C2E
transmission cost (ratio)

Fig. 5 compares the total transmission costs when ratio
increases from 0.1 to 0.9 in Set #3. Overall, LAO outperforms
EEI, EI and LO with large margins, i.e., 54.85% against EEI,
50.62% against EI and 71.07% against LO. The increase in
ratio reduces the cost of E2E transmissions over C2E trans-
missions and consequently increases the total transmission
costs incurred all the four approaches. The cost incurred by
EI increases only by 21.12% from 761.20 to 922.00 because
EI always sources data from the remote cloud. The cost
incurred by LO increases the most significantly - from
528.80 to 2619.20 by 395.31%. LO focuses on minimizing
transmission latency without considering transmission cost
or ratio. As a result, more expensive E2E transmissions
incurred by a higher ratio immediately increase its trans-

mission cost. EEI’s transmission cost also increases with
ratio, but less significantly than LO, only by 277.89% from
367.20 to 1387.60. As ratio increases, EEI needs more C2E
transmissions on average and incurs higher transmission
costs. For the same reason, LAO’s transmission cost also
increases with ratio, but is much slower compared with
EEI and LO, only by 169.92% from 196.80 to 531.20. This
shows that given different ratio values, LAO can always
formulate the most cost-effective solutions by finding the
best combinations of C2E and E2E transmissions.

4.2.5 Impact of time-averaged maximum transmission la-
tency l̄
Fig. 6 illustrates the impact of l̄ on the total transmission
costs in Set #4. Again LAO is the clear winner, with its
transmission cost slightly decreases 575.00 to 455.00 by
20.87% when l̄ increases from 3.0 to 6.0. EEI’s cost decrease

107

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2021

3.0 3.5 4.0 4.5 5.0 5.5 6.0̄l
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

To
ta

l̄T
ra

ns
m

iss
io

n̄
Co

st
1e3

LAO
EEI

EI
LO

Fig. 6: Cost vs. l̄ (Set #5)

0.8 0.7 0.6 0.5 0.4
pdec

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

To
ta

l T
ra

ns
m

iss
io

n
Co

st

1e3

LAO
EEI

EI
LO

Fig. 7: Cost vs. pdec (Set #6)

0.05 0.10 0.15 0.20 0.25
preq

0.0

0.5

1.0

1.5

2.0

2.5

To
ta

l T
ra

ns
m

iss
io

n
Co

st

1e3

LAO
EEI

EI
LO

Fig. 8: Cost vs. preq (Set #7)

0 25 50 75 100 125 150 175 200
Time Slot t

3

4

5

6

7

8

9

10

Ti
m
e-
av

er
ag

ed
 L
at
en

cy

l

ζ=100
ζ=1
ζ=0̄01

(a) Time-average Transmission Latency vs. ζ over T

0 25 50 75 100 125 150 175 200
Time Slot t

0

1

2

3

4

5

6

To
ta

l T
ra

ns
m

iss
io

n
Co

st

1e2

ζ= 100
ζ= 1
ζ= 0.01

(b) Total Transmission Cost vs. ζ over T

Fig. 9: Latency and Cost achieved by LAO vs. ζ (Set #8)

is also slight, from 935.00 to 764.00 by 18.29%. The increase
in l̄ relaxes the constraint for low data retrieval latency. LAO
and EEI can source data for destination edge servers from
edge servers further away to lower their total transmission
costs. EI and LO do not consider l̄ and thus are not impacted
by the value of l̄.

4.2.6 Impact of data decache possibility (pdec)

Fig. 7 shows the impact of pdec on the four approaches in
Set #5. Overall, LAO outperforms EEI, EI and LO, by an
average of 37.91%, 37.90% and 62.60% respectively. As pdec
increases, it is more likely for LAO, EEI and LO to source
data from within the system rather than the cloud. Using
this advantage, their costs decrease with the increase in pdec
significantly, from 770.00 to 337.00 by 56.23% for LAO, from
1270.00 to 533.00 by 58.03% for EEI and from 1698.00 to
1060.00 by 37.57% for LO. The cost incurred by EI decreases
only by 7.13% from 898.00 to 834.00 because EI only sources
data from the cloud.

4.2.7 Impact of data request possibility (preq)

Fig. 8 demonstrates the impact of preq on the total trans-
mission costs. Overall, the advantages of LAO are again
significant, in terms of the total transmission cost, i.e. 32.51%
over EEI, 42.05% over EI and 60/92% over LO. With a
higher requestq , there are more destination edge servers in
each time slot. Thus, total transmission costs achieved by all

approaches increase when requestq increases from 0.05 to
0.25.

4.2.8 Impact of trade-off parameter (ζ)
Fig. 9 shows the impact of ζ (introduced by (12) into P2) on
LAO. As discussed in Section 3.1, a lower ζ will accelerate
the stabilization of the time-averaged transmission latency
at a potentially higher transmission cost. It is validated
experimentally by the results presented in Fig. 9(b) and Fig.
9(a). As shown in Fig. 9(a), at the very beginning of the
experiments, the average latency is high because data d has
to be sourced from the remote cloud. When ζ = 100, LAO
takes 26 time slots to decrease the average latency to below
l̄ before it is stabilized. When ζ = 1 and 0.01, LAO takes
only 8 and 5 time slots, respectively, to do the same. The fast
stabilization comes the price of high cost, as demonstrated
in Fig. 9(b). When ζ = 0.01, LAO incurs the highest cost
of 641.00 on average, 26.15% and 33.13% higher than when
ζ = 1 an ζ = 100, respectively.

4.3 Threats to Validity
4.3.1 Construct Validity
The main threats to construct validity of the evaluation
are the randomly generated graphs and and the three
approaches used for comparison in the experiments. Ran-
domly generated graphs may not always represent real-
world scenarios precisely. To minimize this threat, the

108

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2021

graphs are randomly generated in each execution - a total of
100 graphs are generated every time the value of a param-
eter varies. The three comparison approaches, i.e., EI, EEI
and LO, may not suffice to evaluate LAO comprehensively.
To minimize this threat, we conducted comprehensive ex-
periments by varying seven experimental parameters in
Table 2 to evaluate the performance of LAO in various
OEDD scenarios. In this way, we could evaluate LAO by
comparison against EI, EEI and LO, and also by the impacts
of those seven experimental parameters.

4.3.2 Threats to Internal Validity
Whether the experiment setting favors LAO over other
approaches is the main threat to the internal validity. To
tackle this threat, we simulated various OEDD scenarios by
changing seven parameters. This way, we could compre-
hensively and fairly compare the performance of different
approaches. In addition, we repeated the experiments for 30
times to obtain the averaged results when a parameter was
changed. Then biased results obtained in experiments are
neutralized.

4.3.3 Threats to External Validity
LAO’s generalization and application in different OEDD
scenarios are the main threat to the external validity of our
evaluation. To reduce this threat, we modeled the OEDD
problem and evaluated all approaches in a generic manner.
For example, we used the number of hops to measure
the latency and the unit transmission cost to measure the
C2E transmission cost and E2E transmission cost, similar
to [20]. Therefore, we can easily interpret the evaluation
results with specific latency and cost models, e.g. Amazon
or Google’s price model. Furthermore, the real-world EUA
data set was adopted to execute the experiments. We also
varies the size and the complexity of the OEDD problem
by changing the parameters in experimental settings. In this
way, the representativeness and comprehensiveness of the
experimental evaluation can be improved, and the threat to
external validity is mitigated.

5 RELATED WORK

The evolution of broad and mobile communications in the
past two decades has continuously lowered the expenses of
bandwidth and latency has become the main impediment
to improving user-perceived performance [11]. Amazon es-
timates that every 100ms increase in latency cuts its sales
and profits by 1% [37].

The key to low data retrieval latency is to cache the
right data within end-users’ close reach, especially for edge
cache systems that must accommodate end-users’ dynamic
demands [38]. There is a large body of work on how to
determine the right data to cache dynamically through user
demand prediction [39]. The key performance metric is the
cache hit ratio. It measures the percentage of data requests
that can be served by the cache system. The performance
improvement of a cache system relies on the increase in
the accuracy of user demand prediction. The other main
method for reducing data retrieval latency is to shorten
the distance between data cache and end-users. To achieve
this goal, large-scale content delivery infrastructures like

content delivery networks (CDNs) have been built in the
cloud. Data replicas can be cached on up to thousands of
distributed CDN nodes (servers) around the globe [40] to
serve end-users in the corresponding regions [23]. CDNs
have facilitated further advances in the application of user
demand prediction techniques to cache systems. The key
idea is to reduce or minimize the cache hit distance that
measures the distance between end-users and the CDN
nodes serving them [23]. However, there is a fundamental
limit on the caching performance improvements that can
be achieved through the re-engineering and expansion of
CDNs [41]. End-users still have to retrieve data from the
public internet and it is difficult to predict, control or reduce
their data retrieval latency [11]. It is the main barrier to fur-
ther performance improvement of data caching for latency-
sensitive applications like gaming and VR.

Edge computing (EC) enables 5G to break that barrier
by allowing data to be cached on edge servers deployed at
base stations [42]. The caching system facilitated by edge
servers reduces the physical distance between end-users
and data to hundreds of meters [9]. Edge data caching has
attracted a great deal of attention in very recent years [43].
Similar to studies of conventional cloud cache systems like
CDN, existing studies of edge cache systems try to achieve
various optimization goals from the edge infrastructure
provider’s perspective, e.g., maximizing caching benefits
[4], [16] and minimizing data retrieve latency [15], [17], [44].
The approaches proposed in these studies fully leverage
the short physical distance between data and end-users
in edge cache systems. However, the impacts of the long
distance between the remote cloud and edge servers on
edge cache systems have been ignored completely, including
the potentially high costs and latency incurred by the data
transmission from the remote cloud server. Xia et al. studied
these impacts and tried to solve the edge data distribution
problem in an offline manner [20]. However, their approach
always have to fetch data from the remote cloud server onto
edge servers and incurs impractically high costs and latency
in the long term, especially for data whose popularity often
vary at different locations over time [21], as demonstrated
in Section 4. To help app vendors utilize edge cache systems
in the long term, this paper tackles the online edge data
distribution problem as the first attempt. This allows our
approach to source data from within the edge cache system.
The experimental results presented and discussed in Section
4 demonstrated its superior performance in minimizing data
transmission costs and stabilizing data transmission latency
over time.

6 CONCLUSION

In this paper, we studied the online edge data distribution
(OEDD) problem in the Edge Computing (EC) environment
from the app vendor’s perspective. We first formulated the
OEDD problem and proved itsNP-hardness. Then, we pro-
posed a new Latency-Aware OEDD algorithm, named LAO,
that formulates cost-effective EDD strategies online over
time. We evaluated LAO’s performance both theoretically
and experimentally. This research builds a solid foundation
for enabling edge cache systems in the real world and opens
up a number of new research directions along the line.

109

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2021

In our future work, we will investigate the distribution of
streaming data and try to fault-tolerate the data distribution
process.

ACKNOWLEDGEMENT

This research is partially funded by Australian Research
Council Discovery Projects No. DP180100212, DP200102491
and Laureate Fellowship FL190100035.

REFERENCES

[1] CISCO, Cisco Edge-to-Enterprise IoT Analytics for Electric Utilities
Solution Overview, February 1, 2018. [Online]. Available:
https://www.cisco.com/c/en/us/solutions/collateral/data-
center-virtualization/big-data/solution-overview-c22-
740248.html

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637–646, 2016.

[3] Q. He, G. Cui, X. Zhang, F. Chen, S. Deng, H. Jin, Y. Li, and
Y. Yang, “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Transactions on Parallel and
Distributed Systems, vol. 31, no. 3, pp. 515–529, 2019.

[4] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Online collaborative data caching in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp.
281–294, 2020.

[5] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading
for energy-constrained mobile edge computing in small-cell net-
works,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp.
1619–1632, 2018.

[6] Y. Ma, X. Liu, S. Zhang, R. Xiang, Y. Liu, and T. Xie, “Measurement
and analysis of mobile web cache performance,” in Proceedings of
the 24th International Conference on World Wide Web, 2015, pp. 691–
701.

[7] K. Ji, G. Quan, and J. Tan, “Asymptotic miss ratio of lru caching
with consistent hashing,” in IEEE INFOCOM 2018-IEEE Conference
on Computer Communications, 2018, pp. 450–458.

[8] R. Halalai, P. Felber, A.-M. Kermarrec, and F. Taı̈ani, “Agar: A
caching system for erasure-coded data,” in 37th IEEE International
Conference on Distributed Computing Systems, 2017, pp. 23–33.

[9] N. Garg, M. Sellathurai, V. Bhatia, B. Bharath, and T. Ratnarajah,
“Online content popularity prediction and learning in wireless
edge caching,” IEEE Transactions on Communications, vol. 68, no. 2,
pp. 1087–1100, 2019.

[10] Y. Wang, B. Veeravalli, and C.-K. Tham, “On data staging algo-
rithms for shared data accesses in clouds,” IEEE Transactions on
Parallel and Distributed Systems, vol. 24, no. 4, pp. 825–838, 2012.

[11] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan, N. Cardwell,
Y. Cheng, A. Jain, S. Hao, E. Katz-Bassett, and R. Govindan, “Re-
ducing web latency: the virtue of gentle aggression,” in Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM. ACM, 2013,
pp. 159–170.

[12] B. Li, Q. He, F. Chen, H. Jin, Y. Xiang, and Y. Yang, “Auditing
cache data integrity in the edge computing environment,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 5, pp.
1210–1223, 2021.

[13] Q. Li, Y. Zhang, A. Pandharipande, Y. Xiao, and X. Ge, “Edge
caching in wireless infostation networks: Deployment and cache
content placement,” in IEEE Conference on Computer Communica-
tions Workshops. IEEE, 2019, pp. 1–6.

[14] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A prov-
ably efficient online collaborative caching algorithm for multicell-
coordinated systems,” IEEE Transactions on Mobile Computing,
vol. 15, no. 8, pp. 1863–1876, 2016.

[15] T. Tran and D. Pompili, “Adaptive bitrate video caching and pro-
cessing in mobile-edge computing networks,” IEEE Transactions on
Mobile Computing, pp. 1–15, 2018.

[16] X. Cao, J. Zhang, and H. V. Poor, “An optimal auction mechanism
for mobile edge caching,” in 38th IEEE International Conference on
Distributed Computing Systems. IEEE, 2018, pp. 388–399.

[17] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in 37th IEEE Interna-
tional Conference on Distributed Computing Systems. IEEE, 2017, pp.
276–286.

[18] Y. Li, H. Ma, L. Wang, S. Mao, and G. Wang, “Optimized con-
tent caching and user association for edge computing in densely
deployed heterogeneous networks,” IEEE Transactions on Mobile
Computing, pp. 1–1, 2020.

[19] E. Schurman and J. Brutlag, “The user and business impact of
server delays, additional bytes, and http chunking in web search,”
in Velocity Web Performance and Operations Conference. oreilly, 2009.

[20] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Cost-effective app data distribution in edge computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 1, pp.
31–44, 2021.

[21] P. Yang, N. Zhang, S. Zhang, L. Yu, J. Zhang, and X. S. Shen,
“Content popularity prediction towards location-aware mobile
edge caching,” IEEE Transactions on Multimedia, vol. 21, no. 4, pp.
915–929, 2018.

[22] J. Gao, S. Zhang, L. Zhao, and X. S. Shen, “The design of dynamic
probabilistic caching with time-varying content popularity,” IEEE
Transactions on Mobile Computing, 2020.

[23] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mech-
anisms in information-centric networking,” IEEE Communications
Surveys & Tutorials, vol. 17, no. 3, pp. 1473–1499, 2015.

[24] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in IEEE International Conference on Com-
puter Communications. IEEE, 2016, pp. 1–9.

[25] H. Guo and J. Liu, “Collaborative computation offloading for
multi-access edge computing over fiber-wireless networks,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 5, pp. 4514–4526,
2018.

[26] Y. Jiang, M. Ma, M. Bennis, F.-C. Zheng, and X. You, “User pref-
erence learning-based edge caching for fog radio access network,”
IEEE Transactions on Communications, vol. 67, no. 2, pp. 1268–1283,
2018.

[27] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile
edge computing networks,” in IEEE Conference on Computer Com-
munications. IEEE, 2019, pp. 10–18.

[28] Y. M. Saputra, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz,
“A novel mobile edge network architecture with joint caching-
delivering and horizontal cooperation,” IEEE Transactions on Mo-
bile Computing, vol. 20, no. 1, pp. 19–31, 2019.

[29] Y. Ma, W. Liang, J. Li, X. Jia, and S. Guo, “Mobility-aware and
delay-sensitive service provisioning in mobile edge-cloud net-
works,” IEEE Transactions on Mobile Computing, pp. 1–1, 2020.

[30] Y. Huang, J. Zhang, J. Duan, B. Xiao, F. Ye, and Y. Yang, “Resource
allocation and consensus of blockchains in pervasive edge com-
puting environments,” IEEE Transactions on Mobile Computing, pp.
1–1, 2021.

[31] X. Xia, F. Chen, J. Grundy, M. Abdelrazek, H. Jin, and Q. He,
“Constrained app data caching over edge server graphs in edge
computing environment,” IEEE Transactions on Services Computing,
pp. 1–1, 2021.

[32] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task
offloading for mobile edge computing in dense networks,” in IEEE
Conference on Computer Communications, 2018, pp. 207–215.

[33] M. J. Neely, “Stochastic network optimization with application
to communication and queueing systems,” Synthesis Lectures on
Communication Networks, vol. 3, no. 1, pp. 1–211, 2010.

[34] F. Tang, H. Zhang, and L. T. Yang, “Multipath cooperative routing
with efficient acknowledgement for leo satellite networks,” IEEE
Transactions on Mobile Computing, vol. 18, no. 1, pp. 179–192, 2018.

[35] G. Cui, Q. He, F. Chen, Y. Zhang, H. Jin, and Y. Yang, “Interference-
aware game-theoretic device allocation for mobile edge comput-
ing,” IEEE Transactions on Mobile Computing, pp. 1–1, 2021.

[36] B. Li, Q. He, G. Cui, X. Xia, F. Chen, H. Jin, and Y. Yang,
“Read: Robustness-oriented edge application deployment in edge
computing environment,” IEEE Transactions on Services Computing,
2020.

[37] S. Puzhavakath Narayanan, Y. S. Nam, A. Sivakumar, B. Chan-
drasekaran, B. Maggs, and S. Rao, “Reducing latency through
page-aware management of web objects by content delivery net-
works,” ACM SIGMETRICS Performance Evaluation Review, vol. 44,
no. 1, pp. 89–100, 2016.

[38] S. Podlipnig and L. Böszörmenyi, “A survey of web cache replace-
ment strategies,” ACM Computing Surveys, vol. 35, no. 4, pp. 374–
398, 2003.

110

John C. Grundy received the BSc (Hons), MSc,
and PhD degrees in computer science from the
University of Auckland, New Zealand. He is cur-
rently Australian Laureate Fellow and a profes-
sor of software engineering at Monash Univer-
sity, Melbourne, Australia. He is an associate
editor of the IEEE Transactions on Software En-
gineering, the Automated Software Engineering
Journal, and IEEE Software. His current inter-
ests include domain-specific v isual languages,
model-driven engineering, large-scale systems

engineering, and software engineering education. More details about
his research can be found at https://sites.google.com/site/johncgrundy/.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. , NO. , 2021

[39] W. Ali, S. M. Shamsuddin, A. S. Ismail et al., “A survey of web
caching and prefetching,” Int. J. Advance. Soft Comput. Appl, vol. 3,
no. 1, pp. 18–44, 2011.

[40] Microsoft. (2020) Content delivery networks (cdns).
[Online]. Available: https://docs.microsoft.com/en-us/microsoft-
365/enterprise/content-delivery-networks

[41] R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krish-
namurthy, T. Anderson, and J. Gao, “Moving beyond end-to-end
path information to optimize cdn performance,” in Proceedings of
the 9th ACM SIGCOMM conference on Internet measurement, 2009,
pp. 190–201.

[42] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on
mobile edge computing: The communication perspective,” IEEE
Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2322–2358,
2017.

[43] J. Yao, T. Han, and N. Ansari, “On mobile edge caching,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2525–2553,
2019.

[44] S. Zhang, P. He, K. Suto, P. Yang, L. Zhao, and X. Shen, “Coop-
erative edge caching in user-centric clustered mobile networks,”
IEEE Transactions on Mobile Computing, vol. 17, no. 8, pp. 1791–
1805, 2017.

Xiaoyu Xia received his Master degree from The
University of Melbourne, Australia in 2015. He
is a PhD candidate at Deakin University. His
research interests include edge computing, par-
allel and distributed computing, service comput-
ing, software engineering and cloud computing.

Feifei Chen received her PhD degree from
Swinburne University of Technology, Australia in
2015. She is a lecturer at Deakin University. Her
research interests include software engineering,
cloud computing and green computing.

Qiang He received his first PhD degree from
Swinburne University of Technology, Australia,
in 2009 and his second PhD degree in com-
puter science and engineering from Huazhong
University of Science and Technology, China,
in 2010. He is an Associate Professor at
Swinburne. His research interests include ser-
vice computing, software engineering, cloud
computing and edge computing. More de-
tails about his research can be found at
https://sites.google.com/site/heqiang/.

Mohamed Abdelrazek is an Associate Pro-
fessor of Software Engineering and IoT at
Deakin University. Before joining Deakin Uni-
versity in 2015, he worked as a senior re-
search fellow at Swinburne University of Tech-
nology and Swinburne-NICTA software innova-
tion lab (SSIL). Before 2010, he was the head of
software development department at Microtech.
More details about his research can be found at
https://sites.google.com/site/mohamedalmorsy/.

Jun Shen is a Associate Professor at the Uni-
versity of Wollongong in Wollongong, NSW Aus-
tralia. His expertise is on web services and Se-
mantic Web. He has been an editor, PC chair,
guest editor, and a PC member for numerous
journals and conferences published by the IEEE,
ACM, Elsevier, and Springer. From 2007, he was
a chair of Education Chapter of IEEE NSW sec-
tion. He is a senior member of the IEEE.

Athman Bouguettaya is a Professor in the
School of Computer Science at University of
Sydney, Australia. He received his PhD in Com-
puter Science from the University of Colorado
at Boulder (USA) in 1992. He was previously
Science Leader in Service Computing at CSIRO
ICT Centre, Canberra. Australia. Before that, he
was a tenured faculty member and Program di-
rector in the Computer Science department at
Virginia Polytechnic Institute and State Univer-
sity (commonly known as Virginia Tech) (USA).

He is or has been on the editorial boards of several journals includ-
ing, the IEEE Transactions on Services Computing, ACM Transactions
on Internet Technology, the International Journal on Next Generation
Computing and VLDB Journal. He was the recipient of several federally
competitive grants in Australia (e.g., ARC) and the US (e.g., NSF, NIH).
He is a Fellow of the IEEE and a Distinguished Scientist of the ACM.

Hai Jin is a Cheung Kung Scholars Chair Pro-
fessor of computer science and engineering at
Huazhong University of Science and Technology
(HUST) in China. Jin received his PhD in com-
puter engineering from HUST in 1994. His re-
search interests include computer architecture,
virtualization technology, cluster computing and
cloud computing, peer-to-peer computing, net-
work storage, and network security.

111

5.3 Summary

In this chapter, we formulate the edge data distribution problem in the edge comput-

ing environment from the app vendor’s perspective to minimize the cost incurred by

data distribution. We prove that the edge data distribution problem is NP-hard. In

Chapter 5.1, we study this edge data distribution problem in quasi-static scenarios.

To solve this problem, we first propose an optimal solution named EDD-IP, and then

provide a tree-based approximation approach. With consideration of the dynamics

in the edge computing environment, we further study this data distribution problem

in an online manner in Chapter 5.2. Without requiring complete information in

advance, we design an online approach based on Lyapunov Theory. The results of

experiments conducted on a real-world dataset demonstrate that our proposed ap-

proach can help app vendors formulate cost-effective edge data distribution strategies

in an online manner. This research builds a solid foundation for enabling edge cache

systems in the real world and opens up a number of new research directions along

the line.

112

Chapter 6

Conclusions and Future Work

This thesis mainly discusses the data caching problems in edge computing, including

edge data placement problem, edge data replacement problem and edge data distri-

bution problem. Those problems are identified and the corresponding solutions are

proposed in Chapters 3 - 5, respectively. In this chapter, we summarize the contri-

butions within the body of this work. After that, we indicate several open issues for

future research.

6.1 Conclusions

The main contributions of this thesis are as follows:

1. We make the first attempt to investigate the edge data placement problems

from an app vendor’s perspective in the edge computing environment. We first

study the individual data placement problem with the aim to minimize the

data caching cost while ensuring all users can retrieve data from their nearby

edge servers. Considering that an app vendor normally have multiple data to be

cached, we further study the multi-data placement problem, aiming to minimize

113

all users’ data retrieval latency with limited cache spaces on edge servers.

2. We tackle the edge data replacement problem for app vendors as the first at-

tempt in the dynamic edge computing environment. To minimize app vendors’

system cost while ensuring users’ low data retrieval latency in a long term, we

propose a Lyapunov-based online approach, named CEDC-O to solve this prob-

lem without future information. Considering the cost-effectiveness, we propose

an online frame named OL-MEDC, embedded an approximation algorithm to

improve in effectiveness and efficiency for solving this edge data replacement

problem.

3. As the first attempt, we study the edge data distribution problem from an app

vendor’s perspective with the aim to minimize the cost incurring the data distri-

bution from the cloud to edge servers. We first propose a two-phase algorithm

based on the Rooted Minimum Steiner Tree problem to ensure that this edge

data distribution problem can be solved effectively and efficiently in quasi-static

scenarios. In the dynamic edge computing scenarios, the edge data distribution

problem becomes more complex due to the uncertainty of future information.

Thus, we design an online approach to solve this edge data distribution in each

time slot without complete information about future dynamics.

6.2 Future Work

Although the proposed methods solved some data caching problems in various edge

computing scenarios, there are still some problems that need to be further addressed.

This section discusses the open issues as the extensions of the presented work in the

114

thesis.

Edge data placement. We have discussed the edge data placement problem

in Chapter 3, and investigated both individual data placement problem and multi-

data placement problem from app vendors’ perspective. However, there is an implicit

assumption that all the cached data are always reliable and trustworthy. With edge

servers deployed in a geographically distributed manner, the EC environment is highly

dynamic and volatile, subject to various intentional and accidental corruptions as well

as many security threats. Due to edge servers’ limited resources, they are much less

powerful and reliable than cloud servers deployed in mega-size data centers, and thus

are more vulnerable to intentional and accidental corruptions. Hence, edge servers

must not be assumed reliable or trustworthy all the time. Taking into account the

various potential faults, an app vendor must deploy its application instances on the

edge servers to collectively deliver a robust service to the users in that area. Therefore,

we would like to investigate the robust edge data placement problem in our future

work, considering the user coverage, data retrieval latency and robustness.

Edge data replacement. Chapter 4 shows our two proposed approaches to

tackle the edge data replacement problem with the aims to minimize the system

cost and maximize the system revenue. Similar to the limitations mentioned in edge

data distribution, the wireless communication between edge servers and users are

not considered in this thesis, which can significantly impact users’ quality of service.

In this case, the data rates received by users cannot be guaranteed. In addition, the

approaches proposed in Chapter 4 always take the same processes whatever the data

request pattern is, e.g. data block, data file or data streaming. In the future work,

we would like to investigate this edge data replacement problem with consideration

115

of wireless communication, and design different approaches for updating data in edge

servers’ caches with specific data patterns.

Edge data distribution. In Chapter 5, we discuss the edge data distribution

problems and propose two approaches for app vendors in both quasi-static and dy-

namic edge computing systems. However, the problems only studied focus on the

single data distribution in edge computing systems. Multi-data distributed simulta-

neously could complicate this edge data distribution significantly. In addition, one

limitation is that the transmission latency from edge servers to users is ignored. In

the edge computing systems, users, especially mobile users, needs to receive data via

wireless communication, in which the interference among users could impact users’

data rates severely. Thus, in the future work, we would like to investigate the edge

data distribution in a dynamic multi-access edge computing environment for provid-

ing cost-effective edge data distribution strategies.

116

Bibliography

[1] Arteaga, D., Cabrera, J., Xu, J., Sundararaman, S., Zhao, M.: Cloudcache:

On-demand flash cache management for cloud computing. In: 14th USENIX

Conference on File and Storage Technologies. pp. 355–369 (2016)

[2] Badawy, A.H.A., Yessin, G., Narayana, V., Mayhew, D., El-Ghazawi, T.: Opti-

mizing thin client caches for mobile cloud computing: Design space exploration

using genetic algorithms. Concurrency and Computation: Practice and Experi-

ence 29(11), 1–13 (2017)

[3] Banerjee, B., Kulkarni, A., Seetharam, A.: Greedy caching: An optimized con-

tent placement strategy for information-centric networks. Computer Networks

140, 78–91 (2018)

[4] Berger, D.S., Sitaraman, R.K., Harchol-Balter, M.: Adaptsize: Orchestrating

the hot object memory cache in a content delivery network. In: 14th USENIX

Symposium on Networked Systems Design and Implementation. pp. 483–498

(2017)

[5] Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the

internet of things. In: Proceedings of the first edition of the MCC workshop on

117

Mobile cloud computing. pp. 13–16 (2012)

[6] Breitbach, M., Schäfer, D., Edinger, J., Becker, C.: Context-aware data and task

placement in edge computing environments. In: 2019 IEEE International Con-

ference on Pervasive Computing and Communications. pp. 1–10. IEEE (2019)

[7] Cai, H., Xu, B., Jiang, L., Vasilakos, A.V.: Iot-based big data storage systems in

cloud computing: perspectives and challenges. IEEE Internet of Things Journal

4(1), 75–87 (2016)

[8] Cao, X., Zhang, J., Poor, H.V.: An optimal auction mechanism for mobile edge

caching. In: 38th IEEE International Conference on Distributed Computing Sys-

tems. pp. 388–399 (2018)

[9] Chen, L., Zhou, S., Xu, J.: Computation peer offloading for energy-constrained

mobile edge computing in small-cell networks. IEEE/ACM Transactions on Net-

working 26(4), 1619–1632 (2018)

[10] Chen, X., Jiao, L., Li, W., Fu, X.: Efficient multi-user computation offloading for

mobile-edge cloud computing. IEEE/ACM Transactions on Networking 24(5),

2795–2808 (2016)

[11] Chen, Y., Zhang, N., Zhang, Y., Chen, X., Wu, W., Shen, X.S.: Energy efficient

dynamic offloading in mobile edge computing for internet of things. IEEE Trans-

actions on Cloud Computing (2019). https://doi.org/10.1109/TCC.2019.2898657

[12] Cho, K., Lee, M., Park, K., Kwon, T.T., Choi, Y., Pack, S.: Wave: Popularity-

based and collaborative in-network caching for content-oriented networks. In:

IEEE Conference on Computer Communications Workshops. pp. 316–321 (2012)

118

[13] Dehghan, M., Jiang, B., Seetharam, A., He, T., Salonidis, T., Kurose, J.,

Towsley, D., Sitaraman, R.: On the complexity of optimal request routing and

content caching in heterogeneous cache networks. IEEE/ACM Transactions on

Networking 25(3), 1635–1648 (2017)

[14] Deng, S., Xiang, Z., Taheri, J., Mohammad, K.A., Yin, J., Zomaya,

A., Dustdar, S.: Optimal application deployment in resource con-

strained distributed edges. IEEE Transactions on Mobile Computing (2020).

https://doi.org/10.1109/TMC.2020.2970698

[15] Deng, S., Xiang, Z., Zhao, P., Taheri, J., Gao, H., Yin, J., Zomaya, A.Y.: Dynam-

ical resource allocation in edge for trustable internet-of-things systems: A rein-

forcement learning method. IEEE Transactions on Industrial Informatics 16(9),

6103–6113 (2020)

[16] Drolia, U., Guo, K., Tan, J., Gandhi, R., Narasimhan, P.: Cachier: Edge-

caching for recognition applications. In: 37th IEEE International Conference

onDistributed Computing Systems. pp. 276–286 (2017)

[17] Elhardt, K., Bayer, R.: A database cache for high performance and fast restart in

database systems. ACM Transactions on Database Systems 9(4), 503–525 (1984)

[18] ETSI, M.: Mobile edge computing - introductory technical white paper (2014)

[19] Forecast, C.V.: Cisco visual networking index: Global mobile data traffic forecast

update. 2017–2022 White Paper (Feb,2019)

119

[20] Gai, K., Qiu, L., Chen, M., Zhao, H., Qiu, M.: Sa-east: security-aware effi-

cient data transmission for its in mobile heterogeneous cloud computing. ACM

Transactions on Embedded Computing Systems 16(2), 1–22 (2017)

[21] Gharaibeh, A., Khreishah, A., Ji, B., Ayyash, M.: A provably efficient online

collaborative caching algorithm for multicell-coordinated systems. IEEE Trans-

actions on Mobile Computing 15(8), 1863–1876 (2016)

[22] Guo, H., Liu, J.: Collaborative computation offloading for multi-access edge com-

puting over fiber-wireless networks. IEEE Transactions on Vehicular Technology

67(5), 4514–4526 (2018)

[23] Halalai, R., Felber, P., Kermarrec, A.M., Täıani, F.: Agar: A caching system

for erasure-coded data. In: 37th IEEE International Conference onDistributed

Computing Systems. pp. 23–33 (2017)

[24] Tamoor-ul Hassan, S., Samarakoon, S., Bennis, M., Latva-Aho, M., Hong, C.S.:

Learning-based caching in cloud-aided wireless networks. IEEE Communications

Letters 22(1), 137–140 (2018)

[25] He, Q., Cui, G., Zhang, X., Chen, F., Deng, S., Jin, H., Li, Y., Yang, Y.: A

game-theoretical approach for user allocation in edge computing environment.

IEEE Transactions on Parallel and Distributed Systems 31(3), 515–529 (2019)

[26] Hu, Y.C., Patel, M., Sabella, D., Sprecher, N., Young, V.: Mobile edge comput-

ing—a key technology towards 5g. ETSI white paper 11(11), 1–16 (2015)

120

[27] Karamchandani, N., Niesen, U., Maddah-Ali, M.A., Diggavi, S.N.: Hierarchi-

cal coded caching. IEEE Transactions on Information Theory 62(6), 3212–3229

(2016)

[28] Lai, P., He, Q., Abdelrazek, M., Chen, F., Hosking, J., Grundy, J., Yang, Y.:

Optimal edge user allocation in edge computing with variable sized vector bin

packing. In: International Conference on Service-Oriented Computing. pp. 230–

245 (2018)

[29] Li, C., Bai, J., Tang, J.: Joint optimization of data placement and scheduling for

improving user experience in edge computing. Journal of Parallel and Distributed

Computing 125, 93–105 (2019)

[30] Li, Y., Xie, H., Wen, Y., Zhang, Z.L.: Coordinating in-network caching in

content-centric networks: Model and analysis. In: 33rd IEEE International Con-

ference on Distributed Computing Systems. pp. 62–72 (2013)

[31] Liu, Y., Dong, M., Ota, K., Liu, A.: Activetrust: Secure and trustable routing

in wireless sensor networks. IEEE Transactions on Information Forensics and

Security 11(9), 2013–2027 (2016)

[32] Luo, G., Zhou, H., Cheng, N., Yuan, Q., Li, J., Yang, F., Shen, X.: Software-

defined cooperative data sharing in edge computing assisted 5g-vanet. IEEE

Transactions on Mobile Computing 20(3), 1212–1229 (2021)

[33] Ma, K., Yang, B., Yang, Z., Yu, Z.: Segment access-aware dynamic seman-

tic cache in cloud computing environment. Journal of Parallel and Distributed

Computing 110, 42–51 (2017)

121

[34] Ma, X., Zhou, A., Zhang, S., Wang, S.: Cooperative service caching and work-

load scheduling in mobile edge computing. In: IEEE INFOCOM 2020-IEEE

Conference on Computer Communications. pp. 2076–2085. IEEE (2020)

[35] Maddah-Ali, M.A., Niesen, U.: Fundamental limits of caching. IEEE Transac-

tions on Information Theory 60(5), 2856–2867 (2014)

[36] Maddah-Ali, M.A., Niesen, U.: Decentralized coded caching attains order-

optimal memory-rate tradeoff. IEEE/ACM Transactions on Networking 23(4),

1029–1040 (2015)

[37] Ouyang, T., Li, R., Chen, X., Zhou, Z., Tang, X.: Adaptive user-managed service

placement for mobile edge computing: An online learning approach. In: IEEE

INFOCOM 2019-IEEE Conference on Computer Communications. pp. 1468–

1476. IEEE (2019)

[38] Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A.E.,

Purcell, T.J.: A survey of general-purpose computation on graphics hardware.

In: Computer graphics forum. vol. 26, pp. 80–113. Wiley Online Library (2007)

[39] Podlipnig, S., Böszörmenyi, L.: A survey of web cache replacement strategies.

ACM Computing Surveys 35(4), 374–398 (2003)

[40] Poularakis, K., Llorca, J., Tulino, A.M., Taylor, I., Tassiulas, L.: Joint service

placement and request routing in multi-cell mobile edge computing networks. In:

IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. pp.

10–18 (2019)

122

[41] Rodrigues, T.G., Suto, K., Nishiyama, H., Kato, N.: Hybrid method for minimiz-

ing service delay in edge cloud computing through vm migration and transmission

power control. IEEE Transactions on Computers 66(5), 810–819 (2016)

[42] Schadt, E.E., Linderman, M.D., Sorenson, J., Lee, L., Nolan, G.P.: Computa-

tional solutions to large-scale data management and analysis. Nature reviews

genetics 11(9), 647–657 (2010)

[43] Shafiq, M.Z., Khakpour, A.R., Liu, A.X.: Characterizing caching workload of a

large commercial content delivery network. In: 35th Annual IEEE International

Conference on Computer Communications. pp. 1–9 (2016)

[44] Smith, A.J.: Disk cache—miss ratio analysis and design considerations. ACM

Transactions on Computer Systems 3(3), 161–203 (1985)

[45] Sourlas, V., Paschos, G.S., Flegkas, P., Tassiulas, L.: Mobility support through

caching in content-based publish/subscribe networks. In: 10th IEEE/ACM In-

ternational Conference on Cluster, Cloud and Grid Computing. pp. 715–720

(2010)

[46] Stenstrom, P.: A survey of cache coherence schemes for multiprocessors. Com-

puter 23(6), 12–24 (1990)

[47] Tran, T., Pompili, D.: Adaptive bitrate video caching and processing in mobile-

edge computing networks. IEEE Transactions on Mobile Computing pp. 1–15

(2018)

123

[48] Tran, T.X., Hosseini, M.P., Pompili, D.: Mobile edge computing: Recent efforts

and five key research directions. IEEE COMSOC MMTC Commun.-Frontiers

12(4), 29–33 (2017)

[49] Uddin, M.Y.S., Venkatasubramanian, N.: Edge caching for enriched notifica-

tions delivery in big active data. In: 38th IEEE International Conference on

Distributed Computing Systems. pp. 696–705 (2018)

[50] Wang, C., Liang, C., Yu, F.R., Chen, Q., Tang, L.: Computation offloading and

resource allocation in wireless cellular networks with mobile edge computing.

IEEE Transactions on Wireless Communications 16(8), 4924–4938 (2017)

[51] Wang, C.Y., Lim, S.H., Gastpar, M.: Information-theoretic caching: Sequential

coding for computing. IEEE Transactions on Information Theory 62(11), 6393–

6406 (2016)

[52] Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., Wang, W.: A survey on

mobile edge networks: Convergence of computing, caching and communications.

IEEE Access 5, 6757–6779 (2017)

[53] Wang, X., Wang, K., Wu, S., Di, S., Jin, H., Yang, K., Ou, S.: Dynamic re-

source scheduling in mobile edge cloud with cloud radio access network. IEEE

Transactions on Parallel and Distributed Systems 29(11), 2429–2445 (2018)

[54] Wang, Y., Veeravalli, B., Tham, C.K.: On data staging algorithms for shared

data accesses in clouds. IEEE Transactions on Parallel and Distributed Systems

24(4), 825–838 (2012)

124

[55] Wang, Y., Li, Z., Tyson, G., Uhlig, S., Xie, G.: Optimal cache allocation for

content-centric networking. In: 21st IEEE International Conference on Network

Protocols. pp. 1–10 (2013)

[56] Xie, J., Guo, D., Shi, X., Cai, H., Qian, C., Chen, H.: A fast hybrid data sharing

framework for hierarchical mobile edge computing. In: IEEE INFOCOM 2020-

IEEE Conference on Computer Communications. pp. 2609–2618. IEEE (2020)

[57] Xie, J., Qian, C., Guo, D., Li, X., Shi, S., Chen, H.: Efficient data placement

and retrieval services in edge computing. In: 2019 IEEE 39th International Con-

ference on Distributed Computing Systems. pp. 1029–1039. IEEE (2019)

[58] Xu, J., Chen, L., Zhou, P.: Joint service caching and task offloading for mobile

edge computing in dense networks. In: IEEE INFOCOM 2018-IEEE Conference

on Computer Communications. pp. 207–215. IEEE (2018)

[59] Yang, L., Zhang, H., Li, M., Guo, J., Ji, H.: Mobile edge computing empowered

energy efficient task offloading in 5g. IEEE Transactions on Vehicular Technology

67(7), 6398–6409 (2018)

[60] Yannuzzi, M., van Lingen, F., Jain, A., Parellada, O.L., Flores, M.M., Carrera,

D., Pérez, J.L., Montero, D., Chacin, P., Corsaro, A., et al.: A new era for cities

with fog computing. IEEE Internet Computing 21(2), 54–67 (2017)

[61] You, C., Huang, K., Chae, H., Kim, B.H.: Energy-efficient resource allocation

for mobile-edge computation offloading. IEEE Transactions on Wireless Com-

munications 16(3), 1397–1411 (2017)

125

[62] Zhang, K., Leng, S., He, Y., Maharjan, S., Zhang, Y.: Cooperative content

caching in 5g networks with mobile edge computing. IEEE Wireless Communi-

cations 25(3), 80–87 (2018)

[63] Zhang, Q., Zhang, Q., Shi, W., Zhong, H.: Firework: Data processing and

sharing for hybrid cloud-edge analytics. IEEE Transactions on Parallel and Dis-

tributed Systems 29(9), 2004–2017 (2018)

[64] Zhang, X., Zhu, Q.: Collaborative hierarchical caching over 5g edge computing

mobile wireless networks. In: 2018 IEEE International Conference on Commu-

nications. pp. 1–6. IEEE (2018)

[65] Zhang, X., Zhu, Q.: Hierarchical caching for statistical qos guaranteed multi-

media transmissions over 5g edge computing mobile wireless networks. IEEE

Wireless Communications 25(3), 12–20 (2018)

[66] Zhao, H., Deng, S., Liu, Z., Yin, J., Dustdar, S.: Distributed redundancy schedul-

ing for microservice-based applications at the edge. IEEE Transactions on Ser-

vices Computing (2020)

[67] Zhou, J., Fan, J., Wang, J., Jia, J.: Dynamic service deployment for budget-

constrained mobile edge computing. Concurrency and Computation: Practice

and Experience 31(24), 1–16 (2019)

126

