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ABSTRACT 

 

 

Multi-view visual environments are popular tools in a wide variety of application 

domains, including software design, circuit design, architecture design, and process 

management. They provide advanced information management that is accessed through 

multiple views, typically represented by a mixture of graphical and textual notations that 

in turn describe certain concepts or views of the system. 

 

Developing such visual environments – even just a small tool applying a simple visual 

language – would require considerable effort to overcome various difficulties. The most 

common problem encountered is the need to manage consistency and inconsistency 

between representations, and between multiple views of a single representation. 

 

In this thesis, we present our ideas on the provision of view specification support for 

multi-view visual environments, culminating in the presentation of a language, VSL, to 

facilitate the view specification effort in developing multi-view visual environments. We 

also present a prototype VSL tool that we created and its incorporation into Pounamu, a 

meta-tool for building diverse multi-view visual environments. 
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CHAPTER 1  
 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

As software and physical systems have become increasingly complex, the need for 

separation of concerns in software engineering has emerged as a crucial element. One of 

the most effective means to satisfy this requirement is to access information through 

multiple views, each of which visualises certain pieces of information that interest 

specific readers (e.g. users, designers, programmers, or managers). As a result, multi-

view visual environments have been adopted in a wide variety of application domains 

including software design, circuit design, architecture design, and process management. 

Developing such visual environments – even just a small tool applying a simple visual 

language – would require considerable effort to overcome various difficulties. 

Fortunately, many frameworks, toolkits, and meta-tools have been created to facilitate the 

development of such visual environments. These include MetaEdit+ [Kelly et al., 1996], 

Metabuilder [Ferguson et al., 2000], JView [Grundy et al., 1998a], Vampire [McIntyre, 

1995], and DiaGen [Minas and Viehstaedt, 1995]. In particular, Pounamu [Zhu et al., 

2004] is both a practical and handy meta-tool for specification and generation of multi-

view, multi-notational visual tools. 

 

Pounamu can be used to rapidly design, prototype, and evolve tools supporting a wide 

range of visual notations. A tool is defined as a meta-specification in Pounamu through 

its five dedicated components: a shape designer, a connector designer, a meta-model 
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designer, an event handler designer, and a view designer. After specified, the tool is 

automatically generated and can be used for modelling immediately. Changes to the tool 

meta-description can be made at any time – even when the tool is in use. Most 

importantly, Pounamu permits its tools to be easily extended by addition of both built-in 

and custom event handlers, integration with other tools via a web services-based API, or 

model transformation (e.g. code generation) using standard XML techniques (e.g. DOM 

and XSLT). Having theses capabilities is certainly important to the development of multi-

view visual tools, but they are relatively lacking in other existing approaches that attempt 

to address the same issue. 

 

However, specifying views in Pounamu can be quite difficult; this is especially true when 

the target-modelling domain requires complex mappings that maintain consistency 

between multiple views and the underlying information model (or repository). For 

example, a visual notational element may be mapped to a single or multiple repository 

entities, a visual aspect (e.g. containment) perceived among such elements may actually 

convey certain physical relationships existed in the repository, or the ability of using 

external values may be necessary in some circumstances. At present, Pounamu lacks 

high-level support for such cases that have been introduced above. Neither the view 

designer nor the event handler designer can be easily used to achieve advanced view 

specification needs. The view designer adopts a form-based metaphor, using dropdown 

lists and buttons, which is in some areas hard to use and is limited to the specification of 

one-to-one mappings. Although the event handler designer can be used to implement 

complex mappings, much detailed programming knowledge is usually compulsory, 

providing high barriers to easy use. 

 

Therefore, introducing high-level view specification support for Pounamu and similar 

development systems is extremely beneficial. In this thesis, we present a high-level, 

declarative approach to Pounamu view specification and generation. In doing so, we 
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develop a visual modelling language called VSL for view specification, and implement a 

prototype tool supporting VSL for view generation. 

 

1.2 Thesis Outline 

 

The following outlines the contents of each of the subsequent chapters of this thesis: 

 

Chapter Two: Background and Related Research – provides an overview of multi-

view visual environments, introduces Pounamu, and reviews previous research that is 

related to our work. 

 

Chapter Three: Preliminary VSL Designs – presents the processes that we used to 

design a visual modelling language for view specification, and our recommendations for 

the final language design. 

 

Chapter Four: VSL Notation Specification – gives a deep technical view about the 

View Specification Language (VSL), which is developed based on the experience noted 

in the last chapter. 

 

Chapter Five: VSL Examples – contains typical examples of view specifications 

expressed using VSL. 

 

Chapter Six: VSL Tool Implementation – shows how a tool for VSL could be built and 

how we managed to do our own prove-of-concept implementation. 

 

Chapter Seven: Evaluation – evaluates VSL and the prototype VSL tool we developed, 

and discusses the strengths and weaknesses of the system. 
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Chapter Eight: Conclusion and Future Work – concludes the thesis by summarising 

the major contributions of the work and providing suggestions and possible directions for 

future work. 
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CHAPTER 2  
 

 

BACKGROUND AND RELATED RESEARCH 

 

 

2.1 Introduction 

 

This chapter presents the background information and related research for this thesis. We 

start by introducing multi-view visual environments as a background to the problem we 

are trying to solve and where said problem arises. We then briefly describe an existing 

meta-tool, Pounamu, which is used as an example of a system to study our research 

problem. Following this, we address some of the related research that is similar to or 

provides some basis for the work in this thesis. Finally, we summarize our findings and 

introduce our plan of solution. 

 

2.2 Multi-view Visual Environments 

 

Software engineering and design environments (or tools) are large, complex pieces of 

software. They provide advanced information management that is accessed through 

multiple views, typically represented by a mixture of graphical and textual notations that 

in turn describe certain concepts or views of the system. For example, a software 

engineering CASE tool may provide editors for object-oriented analysis notations, such 

as entity-relationship diagrams, user interface specification diagrams, and those (e.g. Use 

Case diagrams, Class diagrams, and etc) of the Unified Modelling Language (UML) 

[UML, 2000]. 
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One of the main advantages of using a multi-view visual environment is its ability to 

support multiple representations (views) of a single information model. Each of these 

views provides a partial representation of that model with a certain degree of abstraction, 

e.g. grouping of similar concepts or constructs at different conceptual levels. The 

information expressed this way is certainly easy for the user to read, comprehend, and 

organize. More importantly, this ability is essential for many software design tools, which 

allow developers to work with software components at different levels of abstraction, 

using different representations [Meyers, 1991]. 

 

The most common problem encountered in the development of such environments and 

tools is the need to manage consistency and inconsistency between representations, and 

between multiple views of a single representation. That is, when one view is changed, the 

other views sharing the affected data must be updated to reflect the change as well. This 

problem is generally known as view consistency management. 

 

To build such complex tools, a common architecture (adopted by many existing 

approaches such as [Reiss, 1985], [Meyers, 1991] and [Grundy et al., 2000]) is to have an 

underlying information model (or repository) that represents the data structures embodied 

in the tool, with mappings to and from tool (i.e. editor) based representations and views 

that maintain consistency between various models. Figure 2-1 illustrates the structure of 

this architecture. 
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Figure 2-1 Common architecture of multi-view visual environments 

 

[Grundy and Hosking, 2001] provides a broad discussion about software tools. 

 

2.3 Pounamu – an Example of a System to Improve 

 

Pounamu is a meta-tool, developed here at the University of Auckland [Zhu et al., 2004], 

for specification and generation of multi-view, multi-notational visual tools and 

environments. The main features of Pounamu are listed as follows: 

� It provides an integrated environment (IDE) for developing other tools, such as 

CASE tools and domain-specific visual languages (DSVLs). 

� It supports round-trip engineering and live, evolutionary development so that tools 

can be designed, prototyped, and evolved rapidly. 

� It supplies a set of high-level designers – most of which are visual programming 

tools with relatively simple appearance and semantics – for specifying the meta-

specification of a tool. 

� It automatically generates a tool as specified, and allows changes to be made to the 

meta-tool specification at any time – even when the tool is in use. 
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� It provides tools with built-in multiple view support, which allows multiple 

representations (views) of the same underlying information model. 

� It has an automatic view consistency mechanism (based on CPRGs [Grundy et al., 

1998b]) to keep multiple views of the same information consistent. 

� It allows its tools to be extended by addition of both bespoke and custom event 

handlers, integration with other tools via a web services-based API, or model 

transformation (e.g. code generation) using standard XML techniques (e.g. DOM 

and XSLT). 

� It allows non-experts and even non-programmers to easily develop exploratory tools. 

 

A wide variety of tools have been developed using Pounamu. These include an electrical 

circuit designer (Figure 2-2, a), a software process modelling (b), and a web services 

composition tool (c). 

 

 

Figure 2-2 Examples of Pounamu applications, from [Zhu et al., 2004] 
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Figure 2-3 shows the main components of the Pounamu meta-tool. A desired tool (such 

as one of those shown in Figure 2-2) is initially defined as a meta-tool specification in 

Pounamu. There are five specification tools: the shape/connector designer permits 

specification of visual language notation components (e.g. shapes and connections); 

similarly, the meta-model designer permits specification of the tool’s underlying 

information model components (e.g. entities and associations); the event handler designer 

allows definition of event handlers to define behaviour semantics; and the view designer 

allows definition of views (view types) for graphical display and editing of information. 

Individual tool specifications are grouped into tool projects. 

 

 

Figure 2-3 The Pounamu approach, from [Zhu et al., 2004] 

 

With a tool project specification, multiple project models associated with that tool can be 

created. Modelling tools are used to create modelling projects and views, to edit view 

shapes and connections, and to update model entities and associations. 
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Pounamu uses view-to-model mappings (element mappings between view instance and 

information model instance) for view consistency management. Simple one-to-one 

mappings (from view shape/connection types to model entity/association types) are 

supported in the form-based view designer. More complex mappings (e.g. one-to-many 

and many-to-many) can be specified using event handlers (pieces of particular Java code). 

Examples of the view designer and the event handler designer are given as following. 

 

Figure 2-4 shows an example of the view designer, which is used to define a visual editor 

and its mapping to the underlying information model. Each view type defined contains 

the shape and connection types that are allowed in corresponding view instances, along 

with a mapping from each of them to a matching (model) entity/association type. As a 

form-based designer with limited facilities, this tool only supports simple 1:1 view-to-

model element mappings, e.g. the Class shape type maps to the EntityClass entity type, 

as shown in Figure 2-4. 

 

 

Figure 2-4 Example of the view designer 
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Figure 2-5 shows an example of the event handler designer, which is used to specify 

event handlers. An event handler is basically a piece of Java code that detects specific 

events (e.g. shape/connection addition) fired in the system and responds to those events 

with predefined actions (via Pounamu’s API). In general, event handlers are used to add 

various constraints, complex mappings, and back end support (e.g. code generation). 

 

 

Figure 2-5 Example of the event handler designer 

 

More detailed information about Pounamu can be found in [Zhu et al., 2004]. In the 

research presented in this thesis, we use Pounamu view specification as the motivation 

and exemplar application of our ideas, but these ideas have broader applicability. 

 

2.4 Related Research 

 

Many approaches have been proposed for the kinds of view consistency management 

described in the previous section: 
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High-level programming paradigms provide a software architecture or design pattern for 

building quite generic applications. These include Model-View-Controller (MVC) 

[Krasner and Pope, 1988] and Abstraction-Link-View (ALV) [Hill et al., 1994]. MVC 

supports the concept of views of data model, with the ability to propagate objects 

describing model object changes to observing objects. Similarly, ALV uses flexible inter-

object constraints allowing changes made to repository or view specification objects to 

maintain view consistency. These paradigms typically lack abstractions specific to multi-

view visual environments, causing the implementation of desired view consistency 

control logic to be time-consuming. 

 

Special frameworks, such as Meta-MOOSE [Ferguson et al., 1999], JViews [Grundy et 

al., 1998], and Escalante [McWhirter and Nutt, 1994], provide low-level yet very 

powerful sets of reusable facilities for building visual language environments. Many such 

frameworks adopt an event propagation approach, in which an event travels through from 

the source to all potential listeners. From this perspective, they are similar to the high-

level programming paradigms, but with specified and sophisticated view consistency 

mechanisms. However, these frameworks require detailed programming and class 

framework knowledge, limiting their ease of use. 

 

Some CASE tools, meta-CASE tools, and meta-tools provide high-level support for 

developing multi-view, multi-notational visual tools. These include DiaGen [Minas and 

Viehstaedt, 1995], JComposer [Grundy et al., 1998], Kaitiaki [Liu et al., 2005], 

MetaEdit+ [Kelly et al., 1996], GME [Ledeczi et al., 2001], IPSEN [Klein and Schürr, 

1997], and Pounamu. Some of them, such as DiaGen, JComposer, and Kaitiaki, adopt a 

code generation approach from a specification model, suffering from problems similar to 

those low-level frameworks, as custom coding work is usually required (especially for 

complex cases). Some of them, such as MetaEdit+, GEM, and IPSEN, use constraints 
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(e.g. OCL [Warmer and Kleppe, 1998]) and formalisms (e.g. graph grammars and graph 

rewriting rules [Glinert, 1990]) to maintain view consistency, but have a steep initial 

learning curve and tend to be more difficult to master. Others, such as Pounamu, have a 

more flexible architecture design, with the notion of data mapping relating repository to 

related visual views, but support only limited mapping types (e.g. one-to-one) at the high 

level. 

 

In addition, there are a number of mapping tools that provide insight to us by solving the 

related mapping problem: 

 

Domain-specific mapping tools, such as VML [Amor, 1997], RVM [Grundy et al., 2001], 

FBM [Li et al., 2002], and TSF [Peltier et al., 2000], use a high-level, declarative 

language for specifying data transformation which is compiled into a lower, “concrete” 

level for implementation. There are several characteristics found in these tools. Firstly, 

with a declarative nature much detailed mapping implementation is hidden behind the 

scenes; thus, making it easier for users to capture a high-level view of their mapping 

specifications. Secondly, most of these tools (e.g. VML, RVM, and FBM) adopt domain-

specific yet easy-to-understand visual notations, providing a low barrier for the users to 

start with. Finally, these tools can be easily altered to support a number of different 

underlying implementation techniques, including programming code (e.g. VML, RVM, 

and FBM), XSLT (e.g. TSF), and many others as appropriate. 

 

In the following sub-sections, we first briefly elaborate on the most influential research 

that is similar to or provides some basis for the work in this thesis, and then summarize 

our findings by comparing typical examples of the related approaches that have been 

noted above. 
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2.4.1 JComposer (Grundy et al) 

 

[Grundy et al., 1998a] developed a meta-CASE tool, JComposer, which can be used to 

develop complex CASE tools and design environments based on an existing framework, 

JViews (in fact, JComposer itself is developed using this framework). In doing so, 

JComposer provides several visual notations for specifying JViews-based tools, and 

generates JViews implementations (Java classes) of these tools. JComposer specifications 

are used to specify both the repository and view level components of an environment 

(structure), the structural relationships between them (semantics), and the changes 

propagated along the relationships (event-handling). Two specification examples are 

given in Figure 2-6. 

 

 

Figure 2-6 Examples of JComposer specifications, from [Grundy et al., 1998a] 

 

Figure 2-6 (a) shows an event handler specification. The notation used is based on a 

visual event-flow programming style (procedural). Actions (shaded ovals) and Filters 

(rectangles) can be attached, by Event Flows (arrowed lines), to components and 

relationships in order to detect and react to selected events (change descriptions). 

 

Figure 2-6 (b) shows a view model and view mapping specification. The notation used 

has a visual form containing elements in common with UML Class diagrams 
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(declarative). Each view Component (rectangle) can be connected by a Relationship 

(oval) to a corresponding repository Component (rectangle), with mapping Components 

(rectangles) to specify the mapping of view component changes to the repository 

component and vice versa. 

 

2.4.2 Kaitiaki (Liu et al) 

 

[Liu et al., 2005] describe another flow-based approach to event-handling specification. 

The approach uses a visual Event-Query-Action-Filter language, Kaitiaki, to provide end 

users ways of expressing event-handling mechanisms via visual specifications. An 

example is given in Figure 2-7. 

 

 

Figure 2-7 Example of a Kaitiaki event specification, from [Liu et al., 2005] 
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As shown in Figure 2-7, an Event (e.g. 1) can propagate various data flows (e.g. affected 

objects and property values changed). Queries (e.g. 2), Actions (e.g. 3), and Filters are 

parameterized with data propagated through incoming Data Propagation Links (e.g. 4). A 

Query retrieves elements and outputs them; a Filter selects elements from its input; and 

an Action applies operations to elements passed in. After going through all other 

elements, an event specification ends with an outgoing Port (e.g. 5). 

 

2.4.3 VML (Amor) 

 

[Amor, 1997] developed a high-level, declarative and bidirectional language, VML, for 

transferring one design tool view to another in the architecture, engineering, and 

construction (AEC) domains. The main goal of this language is to enable the developers 

to capture the essence of the mapping required between representations and to specify 

detailed correspondences between them [Grundy et al., 2004]. To complement the textual 

notation of VML, the author also provided a graphical notation called VML-G, which 

describes a subset of the full VML language and is aimed at high-level views of the 

mapping specification. An Example is given in Figure 2-8. 
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Figure 2-8 (a) A VML mapping and (b) its VML-G representation, from [Grundy et al., 2004] 

 

A VML mapping is made up of a specification of the schemas to be mapped between, 

and a set of correspondences between entities and attributes, called inter_class 

specifications, describing how the mapping is to be achieved [Grundy et al., 2004]. An 

inter_class definition (e.g. Figure 2-8, a) generally contains four parts: the first part (e.g. 

1) indicates the entities that are involved in the mapping being specified; the second part 

(optional) describes the conditions which must hold to use the mapping (invariants); the 

third part specifies correspondences between the attributes of entities involved 

(equivalences); and the last part (also optional) defines initial values for attributes when 

an object is created (initialisers). 

 

In VML-G, an inter_class definition is represented by a single icon (e.g. Figure 2-8, 2). 

This icon has three sections (invariants, equivalences, and initialisers) corresponding to 

the three sections of an inter_class definition. The other icon type (e.g. 3) denotes an 

entity taking part in the mapping with the inter_class. Each section of an inter_class icon 

often contains one or more rows, each of which has a symbol (in the centre) representing 

the type of mapping (e.g. equation, function, or procedure) being defined and a box (at 
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each end of the row) to which the attributes and entities involved in the mapping are 

connected. Wiring from an attribute or entity to a box connects it into that equation. 

 

2.4.4 TSF (Peltier et al) 

 

[Peltier et al., 2000] from the University of Nantes described a model-driven approach, 

called Two-space Framework (TSF), to XML model transformation. The approach uses 

an abstract level for specifying transformation that is compiled into a lower, “concrete” 

XSLT-based level for implementation. The abstract language is declarative and textual. 

An example is given in Figure 2-9. 

 

 

Figure 2-9 (a) Part of a UML meta-model, (b) part of a Java meta-model and (c) their transformation 

 

In Figure 2-9, there are two meta-models. The Attribute entity, contained in the source 

meta-model (a), corresponds to the Field entity, contained in the target meta-model. The 
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transformation rules from Attribute to Field (in fact, from the source meta-model to the 

target meta-model; note that Attribute and Field are leaves of the inheritance trees they 

belong to) are expressed as an entity transformation, shown in (c). In general, an entity 

transformation details entities from the meta-models that take part in the transformation 

(e.g. 1) and correspondences between attributes in entities (e.g. 2). 

 

2.4.5 Comparison of Related Approaches 

 

Table 2-1 provides a comparison of typical examples of the related approaches, which 

have been noted previously. 

 

Framework/ 

Tool 

Paradigm Mapping 

Specification  

Behaviour 

Specification 

MVC/ALV Textual code Powerful, but lacks abstractions specific to multi-view 

visual environments so that implementation of desired 

view consistency control logic is time-consuming 

JViews Textual code Powerful, but still requires detailed programming work 

and class framework knowledge 

JComposer Visual notation-based, 

declarative (Mapping)/ 

flow-based (Behaviour) 

(Mapping) Not obvious, 

limited mapping types 

Less powerful than code 

but easier, still has high 

entry barrier for novices 

and non-experts 

Pounamu Visual form-based limited, support simple 1:1 

mappings only 

Event handlers (code) 

Kaitiaki Visual notation-based, 

flow-based 

Not applicable Obvious, easier, 

(however) limited power 

and may be still hard to 

novices and non-experts 

XSLT Textual , declarative 

rule-based, Batch-

oriented 

Hard to use, limited to 

XML documents 

Not applicable 

TSF Textual , declarative 

rule-based, Batch-

oriented 

Slightly easy to use than 

XSLT, also limited to XML 

documents 
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VML Visual notation-based, 

declarative, incremental 

Easy to use, supports 

complex mapping types but 

limited to schemas 

Not applicable 

Table 2-1 Comparison of typical examples of the related approaches 

 

From this comparison, we can see that: 

� Textual-based approaches (e.g. MVC, ALV, JViews, XSLT, and TSF) are powerful 

(in a “do-it-yourself” sense) but suffer a certain degree of difficulty of use, 

depending on their domain specialisation. Some general-purpose approaches, such 

as MVC, ALV, and XSLT, tend to be more difficult to use than other special-

purpose approaches, e.g. JViews and TSF. On the whole, there is a huge step from 

these approaches to visual-based approaches in terms of usability. 

� Visual-based approaches (e.g. JComposer, Pounamu, Kaitiaki, and VML) generally 

provide easy-to-learn user interface for their domain tasks. Almost all of them use a 

generation approach from a specification model; many of them (e.g. JComposer, 

Kaitiaki, and VML) adopt domain-specific yet easy-to-understand visual notations 

for their specification tasks, providing even more easy-to-use facilities. However, 

these approaches typically limit the range of functions that they can provide to 

software developers. Thus, some of them (e.g. JComposer and Pounamu) also 

provide low-level facilities for complex cases. 

� Flow-based approaches (e.g. the event specification of JComposer and Kaitiaki) use 

an event-flow metaphor for behaviour specification. These approaches are suitable 

for end users who have certain programming background, and provide quite flexible 

visual specification mechanisms when compared to declarative-based approaches. 

However, as view consistency control logic is generally complex, a simple 

behaviour specification created this way may require much more effort than it seems. 

� Declarative-based approaches (e.g. view mapping specification of JComposer, 

XSLT, TSF, and VML) adopt a declarative nature for various specifications. Unlike 

procedural-based approaches, they try to hide as many implementation details as 
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possible, and are suitable for a large range of end users. However, these approaches 

typically limit the range of functions supported. 

 

2.5 Summary 

 

In this chapter, we provided an overview of the technologies involved in this thesis. First, 

we introduced various multi-view visual environments, such as software engineering and 

design tools, and their problem of view consistency. We then briefly described Pounamu, 

a meta-tool for building such visual environments, with a focus on its view consistency 

management (view-to-model mapping specification and behaviour specification). Finally, 

we addressed some of the related research that is similar to or provides some basis for the 

work in this thesis. 

 

Our motivation is obvious. We want to provide sophisticated, easy-to-use view 

consistency mechanisms for the development of multi-view visual environments, using 

Pounamu as a prime example of such a development system. 

 

Our solution plan for improving the view consistency management of Pounamu is as 

follows: 

� Provide a high-level (visual), declarative approach to (Pounamu) view specification 

and generation 

� Support a two-phase view implementation, the specification of view type models 

and the generation of view specification artefacts 

� Design an appropriate visual notation for our view specification modelling 

� Implement a modelling tool supporting that visual notation 

 

The following chapters develop a visual notation and a corresponding tool for our view 

specification modelling. 
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CHAPTER 3  
 

 

PRELIMINARY VSL DESIGNS 

 

 

3.1 Introduction 

 

In this chapter, we describe and illustrate the processes that we used to design a visual 

language for view specification. We first introduce our conceptual design of the language 

and highlight the issues that are likely encountered in practice. We then clearly explain 

our approach to addressing those issues, leading to a concrete design, which is, however, 

still in a preliminary state. Finally, we summarize our design experience, including both 

positive and negative issues, and our recommendations for the final design (which is 

presented in the next chapter). 

 

3.2 Language Design Issues 

 

It is obvious that the kind of view specification language that we are seeking would 

include certain graphical elements, which are used to represent meta-model entities and 

associations; view shapes and connections; mapping relationships relating view 

shapes/connections to meta-model entities/associations; and event handler-like 

components for complex view editing control and model constraint implementation. 

Figure 3-1 shows our preliminary conceptual design of this language. 
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Figure 3-1 The conceptual design 

 

In Figure 3-1, The View element (1) represents a view type being modelled; the Shape 

element (2) depicts a shape type, stating the kind of shapes allowed to use in the diagram; 

similarly, the Connection element (4) represents a connection type; the Entity element (3) 

depicts an entity type, defining the kind of data objects generated and maintained in the 

common repository; Similar to the Entity element, the Association element (5) represents 

an association type; and the Event Handler element (6) depicts a handler-like component. 

 

Also shown in Figure 3-1, The View element (1) has “Contain” relationships with the 

Shape element (2) and the Connection element (4), which indicates that the view type 

represented by the View element can contain specific shape/connection types. This View 

element also has a “Use” relationship with the Event Handler element (6), which 

similarly states that the view type makes use of the handler component. The remaining 

are mapping relationships between the Shape/Connection and the Entity/Association. 

Such relationships denote how a data object (e.g. entities and associations) should be 

created and managed in the common repository according to a graphical object in the 

diagram. 
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While this design is a viable candidate, it leads to several issues in practice, especially for 

large and complex cases. These issues are described as follows: 

 

(1) The language likely produces overly large diagrams, which contain too many 

graphical symbols and thus take too much space. The reason for this is that each 

shape/connection type is generally modelled using a pair of elements: a 

Shape/Connection with an Entity/Association. Try to imagine how many elements would 

be used in a single diagram for specifying a relatively small view type (say, containing 

ten different types of shapes/connections). Although multiple diagrams can be used (if 

the running environment support such an ability), the number of elements needed is still 

rather high per diagram with the addition of shape/connection types. 

 

(2) This language uses an overly simplistic mechanism for specifying mappings between 

Shapes/Connections and Entities/Associations. Simple lines (with only two ends) might 

be enough to cope with one-to-one mappings but are impractical at representing many-to-

many mappings or even one-to-many mappings. 

 

(3) In addition, this approach also hides too much mapping information, especially at the 

property level. When a Shape/Connection is partially mapped to an Entity/Association 

(meaning that part of the Shape/Connection attributes correspond to part of the 

Entity/Association properties), the user can not tell the difference with when the 

Shape/Connection is fully mapped to the Entity/Association. 

 

(4) As a high-level language (aiming at ease of view specification), it would need to 

incorporate certain advanced features, such as specifying visual relationships (geographic 

aspects) between two different shapes (e.g. one shape is restricted to visually contain the 

other).  
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(5) On the whole, this language must be easy for the modellers to work with for various 

specification tasks. Useful techniques may include: hiding and displaying specific 

graphic symbols in a diagram; completing certain tasks automatically; and making the 

language constructs rapidly understandable by readers. 

 

The next section presents our approach to refining the initial conceptual model to deal 

with these issues. 

 

3.3 Our Experiment 

 

Much of the design effort focuses on the visual language design rather than the 

underlying implementation techniques (which are presented in Chapter 6). In the 

following subsections, we first introduce the preliminary design, an experiment to see 

whether Mapping Consoles can mitigate some of the problems noted early in this chapter. 

We then continue describing this design in practice using a typical view specification 

example. 

 

The following section presents our judgment on and recommendations for this design. 

 

3.3.1 The Preliminary Design 

 

Figure 3-2 shows the notational elements that are created based on the conceptual design, 

which has been noted in the previous section. 
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Figure 3-2 The preliminary notational elements 

 

In Figure 3-2, the View element (1) depicts a view type being modelled; the Event 

Handler element (2) represents a handler-like component; the Symbol element (3) depicts 

a shape/connection type; the Model element (4) represents an entity/association type; the 

Property element (5) depicts an attribute/property (of a Symbol/Model); the Mapping 

Console element (6) is a view-to-model mapping coordinator, which is used between a 

Symbol and a Model; the Association element (7) represents a general-purpose 

relationship between two elements (e.g. a View with a Symbol, a Symbol with a Mapping 

Console, and a Model with a Mapping Console); the Mapping Link element (8) depicts a 

mapping relationship between two Properties; the Inter-notation Association element (9) 

represents a visual relationship (e.g. containment) between two Mapping Consoles; the 

Tag element (10) is a short piece of text (enclosed in a pair of square braces), which is 

used to attach an additional semantic to elements, such as for Symbols and Models 

(typical examples of Tags are shown in Table 1); and the Formula element (11) depicts a 

logic calculation, which is used between two Mapping Links for complex inter-property 

mappings (typical examples of Formulae are shown in Table 2). 
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Tag Example Remark 

[TYPE] [ TYPE: Connection] To further define a Model as a 

Connection type 

[Multiplicity] [Multiplicity: 0..*] To set a restriction on the number of 

instances of a shape/connection types 

in the diagram 

[Default] [Default: “Computer Science”] To set a default value of a property 

[Null] [Null: false] To indicate whether or not a property 

can contain null value 

[GoTo] [GoTo: Class View] To link a shape type to a specific view 

type 

Table 2 Example of typical tags 

 

Formula Operation Remark 

 Addition/ Catination To sum up (incoming) numeric values or link 

string values together 

 Subtraction To subtract one numeric value from another 

 
Multiplication To multiply one numeric value by another 

 Division To divide one numeric value by another 

 Null Detector To detect whether or not a value is null 

Table 3 Example of typical Formulae 

 

In addition, some elements such as View, Symbol and Model can be used as containers 

enclosing other elements such as Event Handler and Property. Figure 3-3 shows such 

examples. 
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Figure 3-3 Example of the three container elements 

 

As is shown in Figure 3-3, a View has two sections, “Visual Event Handler” and “Visual 

User Hander”. Each section can contain multiple Event Handlers of a specific type 

defined by the section name (1). Similarly, a Symbol (2) and a Model (3) can contain 

multiple Properties. (Arranging two symbols like this is an alternative way to state a “has 

a” relationship, in addition to using a connection.) 

 

In fact, a Mapping Console can also act as a container, but its usage is a bit different to 

those described above. Mapping Consoles can not directly obtain Properties. They are 

used as coordinators between Symbols and Models in view-to-model mappings. Figure 

3-4 shows a Mapping Console in use. 
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Figure 3-4 Example of using a Mapping Console 

 

As is shown in Figure 3-4, after a Symbol/Model is connected to a Mapping Console 

through an Association (1) (2), the Mapping Console will copy the Properties of this 

Symbol/Model. Properties copied by the Mapping Console are categorized into different 

sections (5). There are two mechanisms to specify an inter-property mapping. One 

mechanism is to use a Mapping Link to connect one Property to another (3), whereas the 

other mechanism is to drag one Property and drop it on top of another Property (4) (at 

which point a Mapping Link will be generated and connected to proper Properties 

automatically). After two properties are matched, they will be eliminated from their 

current sections and a new Property will appear in the “Matched Props” section. (Note 

that the Tag “[Type: Shape]”, which here is used to state that the Symbol represents a 

shape type, not a connection type.) 

 

In the following subsection, we continue describing these elements in which they are 

used to specify a simple visual language. 

 

3.3.2 Specifying a Visual Language 
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The visual language, as used in this example, is meant to provide a visual representation 

of a simple school model, which involves entities such as schools, classes, and students, 

and their relationships. This language defines two different but related view types: 

School View and Class View. Figure 3-5a shows a School diagram in use. 

 

 

Figure 3-5 (a) A School diagram and (b) a related Class diagram 

 

In Figure 3-5a, the school (St’Johns High School) is represented by the School element 

(top), which has “Hold” relationships with the three Class elements (Math, English, and 

Economy). There are several Student elements (e.g. Student A, Student B and Student C) 
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enclosed inside their Class elements. In particular, the English class (1) is further 

illustrated in the (School) Class diagram that is shown in Figure 3-5b. Compared to 

Figure 3-5a, the Class element (2) here does not contain any Student elements but 

properties (e.g. Level and RoomNo). In fact, the Student elements (e.g. 3) that were 

contained in (1) become stand-alone elements (e.g. 4), which themselves can contain 

properties (e.g. ID, Age, DOB, or etc) in a Class diagram. 

 

In the following, we illustrate how to specify this language using the notational elements 

presented previously. We first give a general description of the meta-model specification 

of this language, and we then demonstrate the School View specification and the Class 

View Specification, respectively. 

 

The meta-model specification: Figure 3-6 shows the meta-model elements of this 

language. The Model attached with a type Tag of “E” (1) depicts a School entity type, 

which has a string property Name; the Model assigned with a type Tag of “A” (2) depicts 

an Association association type, which also has a string property Name; and (3)(4) are 

similar to (1). 

 

 

Figure 3-6 The meta-model specification 
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The School View specification: Figure 3-7 shows the School view type specification of 

this language.  

 

 

Figure 3-7 The School View specification 

 

In Figure 3-7, the School view type itself is represented by the View (1), which contains 

the Event Handler (2) and is connected to several Mapping Consoles via the Associations 

(3). There are four Mapping Consoles, each of which is connected to a Symbol and a 

Model via Associations (e.g. 5). Once a Mapping Console is connected like this, the 

related Symbol and Model can be hidden in the background manually (e.g. 4, 6, and 7). 

After that, inter-property mappings can be specified – even when related Symbols and 

Models are invisible (e.g. 4, 6, and 7). In particular, (5) is connected to (6) via the Inter-

notation Association (11), which states that the Class Symbol visually contains the 

Student Symbol (e.g. as shown in Figure 3-5a). In addition, (5) is also assigned with a 
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GOTO Tag of “Class View” (12), which specifies the Class symbol can be further 

illustrated in (navigated to) a Class diagram (e.g. as shown in Figure 3-5b). 

 

The Class View specification: Figure 3-8 shows the Class view type specification of this 

language.  

 

 

Figure 3-8 The Class View specification 

 

Compared to Figure 3-7, there are only three Mapping Consoles, and we have chosen to 

show their related Symbols and Models (rather than eliding them) in Figure 3-8. In 

addition, The Student Symbol (2) and the Class Symbol (3) contain more visual 

properties, which are matched with corresponding model properties. This enables entities, 

such as classes and students, to be rendered differently between School diagrams and 
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related Class diagrams (as you can see by comparing Figure 3-5a to Figure 3-5b). The 

remaining elements are the same as is presented in Figure 3-7. 

 

3.4 Post-design Notes – Experience Learned 

 

Our notes are separated into three subsections. We first present positive attributes of the 

preliminary design, and follow this by negative attributes. After that, we finish the 

discussion by expressing some improvement ideas for the design. These are used as a 

basis for the final design described in the next chapter. 

 

3.4.1 Positive Attributes 

 

Mapping Consoles can be used to visually divide view specification diagrams into 

localized areas, each of which presents a view-to-model mapping involving related 

Symbols and Models (e.g. as shown in Figure 3-4 and 3-8). This enables the modeller to 

focus on a small area and to elide unnecessary Symbols and Models in the diagram as 

needed (e.g. Figure 3-7). Mapping Consoles also make inter-property mappings easier 

alone with drag and drop. 

 

Mapping Links are intuitive to modellers. The specification of mapping at the property 

level makes view specifications more obvious. This is because that a modeller can clearly 

see which properties are matched and how these properties are mapped each other (e.g. 

Figure 3-4, 3-7, and 3-8). In addition, wiring with Formulae enables the specification of 

complex inter-property mappings (e.g. Figure 3-7 and 3-8). 

 

Inter-notation Associations give modellers high-level support to enrich their language 

design with easy-to-use representation power (e.g. Figure 3-5 and 3-7). They are 
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reasonable easy to use. More importantly, they hide many specification details modellers 

would otherwise have to do on them own. 

 

Tags are quite handy for various small specification purposes. They are useful when the 

use of graphic symbols is ineffective (e.g. making things obvious). As pieces of textual 

information, they are highly applicable, extendable and biddable; they can be attached to 

any object as simple sting fields, each of which itself is able to contain multiple Tags. 

 

3.4.2 Negative Attributes 

 

Mapping Consoles sometimes make diagrams more complicated than they need to be 

(e.g. Figure 3-8); they double up certain parts of the information presented in the diagram 

(e.g. Figure 3-7 and 3-8) and are often too big to be used frequently (the more compact 

the diagram is, the easier it is for the modeller to draw, maintain, and comprehend). More 

importantly, the use of Mapping Consoles does not cope with complex (e.g. many-to-one, 

one-to-many, and many-to-many) view-to-model mappings: in these cases, hiding related 

Symbols and Models also screen some significant information, in which the Property 

holders (e.g. Symbols and Models) are lost (if additional information is provided, 

Mapping Consoles become even bigger). In fact, Mapping Consoles are non-structural 

constructs, which do not contribute to the structure of view type models; therefore, they 

are optional (learning how to use Mapping Consoles may take some time on top of 

others). 

 

Mapping Links (as lines) are too simple to represent complex inter-property mappings, 

especially the mappings that involve multiple Properties on either or both sides. More 

importantly, too many Mapping Links blur other types of connections in the diagram (e.g. 

Figure 3-7 and 3-8). The use of Formulae makes the diagram even harder to understand, 



CHAPTER THREE – PRELIMINARY VSL DESIGNS 

 36 

as more lines and circles are used graphically. In addition, although drag and drop is 

useful sometimes, it is ineffective in complex cases (e.g. many-to-many mappings) and 

takes too much effort to implement. 

 

Inter-notation Associations are inexpressive e.g. what the “Contains” in Figure 3-7 

implies can not be perceived. They also lacks at dealing with more than two Mapping 

Consoles, as they are just simple lines with two arrow heads. More importantly, they are 

not customizable; therefore, it is impossible for the modeller to make their own variations 

(after all, the requirements are often vary from case to case). 

 

Combining many Tags together in a single field would unexpectedly enlarge the size of 

the symbol (e.g. Figure 3-4, 4-7, and 4-8). Most importantly, too many Tags used in a 

diagram would cause the graphical symbols contained to be less obvious (this is highly 

against the principle of making a good visual language). 

 

3.4.3 Future Improvements 

 

Based on the positive and negative attributes discussed above, we propose to make the 

following improvements to the final design: 

 

First, our experimental introduction of Mapping Consoles has shown them to be an 

ineffective mechanism. For complex view-to-model mappings, a simple and intuitive 

mechanism is desired. In addition, while practicing with this initial design, we also 

realized that many-to-many view-to-model mappings are particularly hard to deal with 

(and almost impossible to achieve for implementation). Therefore, an effective 

mechanism needs to break such complex mappings into simple alternatives as well. 
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Second, the abstractions used, such as symbols and models, led to some difficulties for 

users. A diagram containing a large number of similar symbols differentiated by textual 

information is certainly hard for readers to understand (e.g. it is difficult to distinguish 

between a shape type and a connection type, between an entity type and an association 

type, and between an Event Handler and a Property). Therefore, clear visual distinctions 

need to be made among those similar elements. 

 

Third, the use of too many Mapping Links would similarly make the diagram difficult to 

understand. This difficulty would be even worse when many Formulae are also used. 

Thus, we need a revised mechanism to indicate the mapping directionality, to hide and 

display Mapping Links as needed, and, more importantly, to better support advanced 

inter-property mappings (e.g. many-to-one and many-to-many). 

 

And so forth, we feel that Inter-notation Associations are too simple and thus 

inexpressive. What is important is that they are not customizable and extendable. These 

serious issues need to be addressed along with the underlying implementation techniques. 

 

On the whole, we feel that some other minor improvements (e.g. polishing the language) 

would need to be made, so that the language is reasonably terse, easier to understand, and 

convenient to use. 

 

3.5 Summary 

 

This chapter has presented our language design processes. It started by introducing the 

conceptual design of this language and highlighting its issues of use. Following this, it 

provided the concrete design that takes into account of those issues, with a typical view 

specification example showing this concrete design in practice. Finally, it focused on the 



CHAPTER THREE – PRELIMINARY VSL DESIGNS 

 38 

experience that we learned during the whole design course, leading to the improvements 

that can be made in the final design. 

 

In the next chapter, we present our final design of the View Specification Language 

(VSL), which builds from the lessons gained in the design experiments undertaken in this 

Chapter. 



CHAPTER FOUR – VSL NOTATION SPECIFICATION 

 39 

CHAPTER 4  
 

 

VSL NOTATION SPECIFICATION 

 

 

4.1 Introduction 

 

In this chapter, we provide a deep technical view about the View Specification Language 

(VSL). We start by introducing VSL, briefly explaining what the language attempts to 

achieve, how it can be used, and what kind of notation it defines. Following this, we will 

in turn discuss Structural Elements, Mapping Elements, Constraint Elements, and 

Artefact Elements that are contained in the VSL notation. 

 

In order to help you clearly understand the abstract concepts presented in this chapter, we 

use the specification of a simple Use Case view type (similar to the one defined in UML, 

Unified Modelling Language [UML, 2000]) through all the sections to illustrate the basic 

features of the language. 

 

4.2 Overview 

 

The View Specification Language (VSL) is a high-level, declarative visual language 

designed to facilitate the effort of view specification and generation in developing multi-

view visual environments. In doing so, it defines a View Specification Diagram (VSD), 

which is based on a box-and-line diagramming technique tailored for creating graphical 

models of view types (definitions). A view specification model, then, is a network of 
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graphical objects, which are constructs (e.g. Shapes, Connections, Entities, and 

Associations), the mappings that define their data relations, and the constraints that 

define their syntactical and semantical behaviour. 

 

When specifying a view type, a user of VSL initially defines a structural specification 

denoting visual elements (e.g. Shapes and Connections) and model elements (e.g. 

Entities and Associations). The user then maps the visual elements with their 

corresponding model elements. Finally, the user applies constraints to necessary elements 

and generates a set of view specification artefacts (e.g. files, code, or both), which can 

then be used in a target running system for creating view instances (diagrams) as 

specified. 

 

VSL provides a visual notation containing various graphical elements that describe a 

view (diagram) type. These elements are distinguishable from each other and familiar to 

many end users (using a common iconic form). Some elements are similar in shape but 

are further differentiated by secondary factors such as colour, icon or both (similar 

elements often have comparable uses in modelling). Almost all the elements have their 

own properties: some properties are visually displayed on the screen, whereas others are 

hidden behind the scenes (accessible through platform-specific property sheets). Based 

on their use in the different stages mentioned above, all the elements are divided into four 

functional categories. These are as follows: 

� Structural Elements 

� Mapping Elements 

� Constraint Elements 

� Artefact Elements 

 

In the following sections, specification of a Use Case diagram type is used to describe 

and illustrate the process of designing a view specification using VSL. 
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Figure 4-1 A Use Case diagram 

 

Figure 4-1 shows the Use Case diagram in use. Use Case diagrams contain actors (e.g. 

Customer, Teller, and Supervisor) and use cases (e.g. Check Status, Deposit, Withdraw, 

and Establish Credit). Actors employ use cases according to their specific roles. Although 

this Use Case example is simple, showing only three notational elements, it serves to 

illustrate the basic uses of VSL. 

 

4.3 Structural Elements 

 

In VSL, Structural Elements can be used to define a structural specification of a view 

type being modelled. Such a specification generally describes various visual elements 

(e.g. shape/connection types), model (data) elements (e.g. entity/association types) and 

handler-like (programming) components (e.g. visual handlers). 
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Figure 4-2 Structural specification of the Use Case view type 

 

Figure 4-2 shows a structural specification of the Use Case view type that defines 

diagrams, such as the one shown in Figure 4-1. The view type itself is represented by the 

View (Use Case), which has one-to-many relationships to the Shapes (Actor and Case) 

and the Connection (Use) through the General Associations, such as (1). Also showing 

are the Entities (EActor and ECase) and the Association (AUse), and they are 

unconnected to any others at this stage. The remaining are the Properties (Label, Text, 

Type, and Name) contained in their corresponding containers. 

 

The detailed specifications of the six Structural Elements are as follows: 

 

View 

A View represents a view type being modelled; it can be connected to or from a 

Shape/Connection through a General Association, which indicates that the View has the 

Shape/Connection; it can act as a container that visually contains multiple Visual 

handlers, which indicates that the View has the Visual handlers. 
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(There are two mechanisms used in VSL to indicate a “has a” relationship between two 

shapes. One is to connect a shape to another through a proper connection. The other is to 

drop an item shape on top of a container shape, at which point the system will 

automatically put the item shape in place.) 

 

A View is represented as a rounded-corner rectangle with a label indicating the View 

name on the top (see the right-hand figure below). The properties of View are listed as 

follows: 

  

� Key 

� Name 

� Description  

 

For a View, the first property, “Key”, denotes the View identification, which is usually 

generated by the system automatically. The second property, “Name”, states the View 

name, which is used as the name of the view type that this View represents. The last 

property, “Description”, contains the View comments, which are optional and may be 

used as tool tips in running systems. 

 

Visual Handler 

A Visual Handler represents a handler-like component that is used by a view type; it can 

act as an item visually contained in a View, which indicates that the Visual handler is a 

part of the View. 

 

A Visual Handler is represented as a narrow rectangle with a quadrate red icon and a 

label indicating the Visual Handler name on the left (see the right-hand figure below). 

The properties of Visual Handler are listed as follows: 

 

� Key  
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� Name 

� Type 

 

For a Visual Handler, the first property, “Key”, denotes the Visual Handler identification, 

which is usually generated by the system automatically. The second property, “Name”, 

states the Visual Handler name, which is used as the name of the class that implements 

this Visual Handler. The last property, “Type”, indicates the Visual Handler type, which 

can be “User” or “Event”. A user Visual Handler has to be triggered manually, whereas 

an event Visual Handler is activated automatically after the monitored events have been 

fired. 

 

Shape 

A Shape represents a shape type that is contained in a view type; it can be connected to or 

from a View through a General Association, which indicates that the Shape is a part of 

the View; it can act as a container that visually contains multiple Properties, which states 

that the Shape has the Properties. 

 

(You may question our intention behind representing Properties as stand-alone shapes, 

because this would be generally achieved differently in many other visual modelling 

languages such as UML. We will later describe this intention when addressing Property.) 

 

A Shape is represented as a rounded-corner rectangle with a round white icon and a label 

indicating the Shape name on the top (see the right-hand figure below). The properties of 

Shape are as follows: 

 

� Key 

� Name 
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For a Shape, the first property, “Key”, denotes the Shape identification, which is usually 

generated by the system automatically. The last property, “Name”, states the Shape name, 

which is also the name of the shape type that this Shape represents. 

 

Connection 

A Connection represents a connection type that is contained in a view type; it can be 

connected to or from a View through a General Association, which indicates that the 

Connection is a part of the View; it can act as a container that visually contains multiple 

Properties, which states that the Connection has the Properties. 

 

A Connection is represented as a rounded-corner rectangle with a white semi-circle icon 

and a label indicating the Connection name on the top (see the right-hand figure below). 

The properties of Connection are as follows: 

 

� Key 

� Name 

 

 

For a Connection, the first property, “Key”, denotes the Connection identification, which 

is usually generated by the system automatically. The last property, “Name”, states the 

Connection name, which is also the name of the connection type that this Connection 

represents. 

 

Entity 

An Entity represents an entity type that usually corresponds to a shape type behind the 

scenes; it can act as a container that visually contains multiple Properties, which 

indicates that the Entity has the Properties. 
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An Entity is represented as a rounded-corner rectangle with a round white icon and a 

label indicating the Entity name on the top (it is distinguished from a Shape by having a 

different interior colour, as shown in the right-hand figure below). The properties of 

Entity are as follows: 

 

� Key 

� Name 

 

 

For an Entity, the first property, “Key”, denotes the Entity identification, which is usually 

generated by the system automatically. The last property, “Name”, states the Entity name, 

which is also the name of the entity type that this Entity represents. 

 

Association 

An Association represents an association type that usually corresponds to a connection 

type behind the scenes; it can act as a container that visually contains multiple Properties, 

which indicates that the Association has the Properties. 

 

An Association is represented as a rounded-corner rectangle with a white semi-circle icon 

and a label indicating the Association name on the top (it is distinguished from a 

Connection by having a different interior colour, see the right-hand figure below). The 

properties of Association are as follows: 

 

� Key 

� Name 

 

 

For an Association, the first property, “Key”, denotes the Association identification, 

which is usually generated by the system automatically. The last property, “Name”, 
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indicates the Association name, which is also the name of the association type that this 

Association represents. 

 

Property 

A Property represents a property or attribute of a shape/connection/entity/association 

type; it can act as an item visually contained inside a Shape/Connection 

/Entity/Association, which indicates that the Property belongs to the Shape/Connection/ 

Entity/Association. Properties are designed as stand-alone shapes; thus, a connection can 

be used explicitly between one Property and another. (This is needed in VSL for 

specifying inter-property mappings.) 

 

A Property is represented as a narrow rectangle with a quadrate grey icon and a label 

indicating the property name and type on the left (see the right-hand figure below). The 

properties of Property are as follows: 

 

� Key 

� Name 

� Type 

 

 

For a Property, the first property, “Key”, denotes the Property identification, which is 

usually generated by the system automatically. The second property, “Name”, states the 

Property name, which is also the name of the property this Property represents. The last 

property, “Type”, indicates the data type of the property. 

 

General Association 

A General Association can be used between a View and a Shape/Connection, which states 

that the View contains the Shape/Connection. 
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A General Association is represented as a solid line (see the right-hand figure below). 

The properties of General Association are as follows: 

 

� SMultiplicity 

� Name 

� TMultiplicity 

 

 

For a General Association, the first property, “SMultiplicity”, denotes the source 

multiplicity. The second property, “Name”, presents the name of the General Association. 

The last property, “TMultiplicity”, indicates the target multiplicity, which can be used to 

constrain the number of instances of the target shape/connection allowed in a diagram 

(see an example in Chapter 5, Section 2). 

 

4.4 Mapping Elements 

 

As noted in chapter two, multiple views map to a common repository in multi-view 

visual environments. Each of these views provides a partial representation of the 

repository and contributes to the construction of the repository model. Behind the scenes, 

this is achieved by specifying how the graphical symbols contained in the view relate to 

their underlying model data and vice versa. Such mapping relationships are often quite 

complicated. For example, a symbol may be created with external values passed in, may 

be associated to multiple different repository entity/association instances, or not be 

physically related to any such instances at all. Advanced mapping mechanisms are 

thereby needed. 

 

In VSL, Mapping Elements can act on Structural Elements to form mapping chains, 

which are routes that are connected by Mapping Elements. A full mapping chain first 

starts at an Input, after which it is passed to a Shape/Connection. Then it is transmitted to 
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one or more Entities/Associations and finally it is either stopped where it is or returned to 

the Shape/Connection where it ends. With the different Mapping Elements used in a 

mapping chain, the Structural Elements are mapped together as needed. 

 

 

Figure 4-3 Mapping specification of the Use Case view type 

 

Figure 4-3 shows a mapping specification of the Use Case view type on top of the 

structural specification denoted in Figure 4-2. There are three mapping chains created in 

Figure 4-3. The first (MC: 1) is initialised at the Shape (Actor) and then passed to the 

Entity (EActor) through the “multiple” Generation Flow (1), which indicates that an 

EActor entity is generated in the repository whenever an Actor shape is drawn in the 

diagram. Similarly, the second (MC: 2) is routed from the Shape (Case) to the Entity 

(ECase) via the “multiple” Generation Flow (2). Then the last (MC: 3) is started at the 

Connection (Use) and ended with the Association (AUse) through the bidirectional 

“multiple” Generation Flow (3), which states that a Use connection is generated in the 

diagram if an applicable AUse association is created in the repository, and vice versa. 

Compared to Figure 4-2, the model objects (EActor, ECase, and AUse) in Figure 4-3 

have now been mapped to their corresponding visual objects (Actor, Case, and Use). 
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Also shown in Figure 4-3 are two inter-property mappings. In the first mapping (left), the 

visual property (Label) is mapped to the model property (Type) via the bidirectional 

Property Mapper (4) connected by two Mapping Associations, such as (6), which 

indicates that changes made to the Label apply to the Type and vice versa. In the second 

mapping (middle), the visual property (Text) is mapped to the model property (Name) 

through the bidirectional Property Mapper (5) connected by two Mapping Associations, 

such as (7). 

 

The detailed specifications of the six Mapping Elements are as follows: 

 

Input 

An Input can be used to connect to a Shape/Connection through a Generation Flow, 

which indicates the direct consumer of this Input. In fact, the parameters defined in the 

Input are not only accessible by its direct consumer, but also the mapping chain that is 

carried out from that consumer. Inputs are needed for using external values e.g. creating 

the objects of a specific class type in UML (the class type has to be known prior to the 

creation). (See an example in Chapter 5, Section 3.) 

 

An Input is represented as a circle (see the right-hand figure below). The properties of 

Input are as follows: 

 

� Key 

� Handler 

� ParameterProfiles 

 

 

For an Input, the first property, “Key”, denotes the Input identification, which is usually 

generated by the system automatically. The second property, “Handler”, indicates the 

name of the handler class that is responsible for gathering the Input values (e.g. such a 
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handler class instance may pop up an interface allowing the diagram user to fill in the 

parameter values, and then stores them somewhere that can be queried later in the 

following processes). The last property, “ParameterProfiles”, contains the collection of 

the parameter definitions, which states the parameter names (all the parameter names in 

VSL begin with “?” to differentiate from the other textual identifications) and their value 

types. 

 

Property Mapper 

A Property Mapper can be connected to or from a Property through a Mapping 

Association; it can be visually attached to a Shape/Connection/Entity/Association to form 

a visual group, in which all the components contained move as a whole. A Property 

Mapper acts as a coordinator that helps support the visual-to-model property mappings. 

Because the presence of Property Mappers is potentially very frequent in a complex 

VSD – even in a simple VSD – Property Mappers are kept as small as possible to ensure 

the compactness and cleanliness of VSDs while still presenting useful visual clues. 

 

A Property Mapper is represented as a small square with an icon in the centre, and the 

icon varies depending on the type (arrow head) and formula (circle) of this Property 

Mapper (see the right-hand figure below). The properties of Property Mapper are as 

follows: 

 

� Key 

� Type 

� Formula 

 

 

For a Property Mapper, the first property, “Key”, denotes the Property Mapper 

identification, which is usually generated by the system automatically. The second 

property, “Type”, states the Property Mapper type, which can be “V->M”, “V<-M”, and 

or “V<->M” (respectively mapped from/to visual properties to/from model properties or 
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bi-directionally between them). The last property, “Formula”, contains the logical 

calculation (which can be represented by OCR) from and to the visual and model 

properties that relate to this Property Mapper. 

 

Generation Flow 

A Generation Flow can be used to connect an Input to a Shape/Connection, which 

indicates a “generation” relationship between the Input and the Shape/Connection; it also 

can be used to connect a Shape to an Entity and a Connection to an Association. A 

Generation Flow is a flow object that can pass a signal alone the mapping chain. In a 

mapping chain, a signal is passed from the start of a flow object to its end and then taken 

by the other flow objects that follow. Eventually it goes through the mapping chain to 

accomplish all the mapping specifications. The term “generation” is meant to indicate 

that the signal passing through a Generation Flow creates instances of the 

shape/connection/entity/association type. (See an example in Chapter 5, Section 3.) 

 

A Generation Flow is represented as a solid line with a solid arrowhead (see the right-

hand figure below). The properties of Generation Flow are as follows:  

 

� Direction 

� Type 

 

 

For a Generation Flow, the first property, “Direction,” denotes the Generation Flow 

orientation, which can be “Unidirectional” or “Bidirectional.” A unidirectional 

Generation Flow indicates that the mapping signal is only passed from the start of this 

Generation Flow to its end, whereas a bidirectional Generation Flow declares that the 

mapping signal is also passed from the end to the start. The last property, “Type” states 

the Generation Flow type, which can be “Unique” or “Multiple”. A unique Generation 

Flow implies that only one instance of the target type, to which the Generation Flow 

connects, is generated for all the instances of the source type, whereas a multiple 
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Generation Flow means that an instance of the target type is generated whenever an 

instance of the source type is created. 

 

Search Flow 

A Search Flow can be used to connect a Shape to an Entity, which indicates a “search” 

relationship between the Shape and the Entity; it can also be used to connect a 

Connection to an Association, but the usage is considered less practical. A Search Flow is 

a flow object, similar to a Generation Flow. The term “Search” is meant to indicate that 

the signal passed through a Search Flow results in looking up instances of the 

entity/association type in the repository. (See an example in Chapter 5, Section 3.) 

 

A Search Flow is represented as a solid line with a half solid arrowhead (see the right-

hand figure below). The properties of Search Flow are as follows: 

 

� AttributeProfiles 

� NOI 

� AutoCreated 

 

 

For a Search Flow, the first property, “AttributeProfiles”, contains the search criteria, 

which is used to filter all the instances of the target type that this Search Flow connects to. 

The second property, “NOI”, indicates the maximum number of the instances that can be 

found by this Search Flow. The last property, “AutoCreated”, holds a Boolean value, 

which indicates whether or not an instance, as specified in the search criteria, should be 

created if the search has not found any records. 

 

Reference Flow 

A Reference Flow can be used to connect a Shape to an Entity, which indicates a 

“reference” relationship between the Shape and the Entity; it can also be used to connect 

a Connection to an Association, but the usage is considered less practical. A Reference 
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Flow is very similar to a Search Flow because they share the same Structural Element set 

that they can connect with. Nevertheless, instead of searching, a Reference Flow uses the 

(external) value that is obtained through its InputParameter. (See an example in Chapter 5, 

Section 2.) 

 

A Reference Flow is represented as a solid line with a half open arrowhead (see the right-

hand figure below). The property of Reference Flow is as follows: 

 

� InputParameter  

 

For a Reference Flow, the property, “InputParameter”, states the name of the input 

parameter that is defined in the Input that exists in the same mapping chain as this 

Reference Flow. 

 

Mapping Association 

A Mapping Association can be used to connect a Property to or from a Property Mapper, 

which indicates a “mapping” relationship between the Property and the Property Mapper. 

Mapping Associations are specifically signified in grey to differentiate them from the 

other types of connections, and can be hidden or displayed manually (together in a VSD). 

 

A Mapping Association is represented as a solid grey line (see the right-hand figure 

below). There are no properties for a Mapping Association. 

 

  

 

4.5 Constraint Elements 
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Constraints are another kind of handler-like component established specifically in VSL 

(in addition to Visual handlers) to simplify the process of building view specification 

models. In fact, a Constraint can be viewed as a sophisticated Visual Handler, which is 

simple, useful, and re-useable. For example, Constraints can be used directly without any 

programming work, and they address the common needs that are required in the 

development of various multi-view visual environments. 

 

 

Figure 4-4 Constraint specification of the Use Case view type 

 

Figure 4-4 shows a constraint specification of the Use Case view type on top of the 

mapping specification illustrated in Figure 4-3. The Constraint (1) is joined by the Shape 

(Actor) through the Participation Link (2) assigned with a role of “Source”. The 

Constraint (1) is also joined by the Shape (Case) through the Participation Link (3) 

assigned with a role of “Target”. In addition, The Constraint (1) is joined by the 

Connection (Use) through the Participation Link (4) assigned with a role of “Connector”. 

This indicates that Actor can connect to Case through Use, but not the other way around. 
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The detailed specifications of two Constraint Elements are as follows: 

 

Constraint 

A Constraint can be connected to a Shape/Connection through a Participation Link, 

which indicates the Shape/Connection must obey the force or rule that is defined by the 

Constraint. In general, a force can be as simple as keeping diagram components visually 

together or as complex as switching representations of those components according to the 

zooming level. 

 

A Constraint is represented as a rounded-corner square with a centre icon varying on the 

type of the Constraint (see the figure below to the right). The properties of Constraint are 

as follows: 

 

� Key 

� Type 

� Participants 

� Parameters 

� Extended 

 

 

For a Constraint, the first property, “Key”, denotes the Constraint identification, which is 

usually generated by the system automatically. The second property, “Type”, indicates 

the Constraint type, which is further detailed below. The third property, “Participants”, 

contains the collection of participants that participate in this Constraint. The fourth 

property, “Parameters”, holds the parameter values, and is used to define this Constraint. 

The last property, “Extended”, is a Boolean value that states whether or not the default 

(underlying) implementation of the Constraint is used (if not, the user has to implement 

it on his/her own). 

 



CHAPTER FOUR – VSL NOTATION SPECIFICATION 

 57 

In VSL, there are various Constraints that can be used by modellers to solve common 

problems. Based on the functionality intended, all the Constraints are mapped to specific 

types as follows: 

 

 Custom: a custom Constraint should be used if all other types of Constraints are 

inapplicable in the situation. It is meant to indicate that the user has to implement the 

Constraint on his/her own. 

 Creatable: a creatable Constraint can be used when the user wants to control the 

creation of a shape. For example, you might specify that only two actors are allowed in 

the Use Case diagram. 

 Deletable: a deletable Constraint is similar to a creatable Constraint, except that it 

applies to deletion rather than creation. 

 Connectable: a connectable Constraint can be used to ensure that a connection 

connects a proper source shape to a proper target. For example, an actor can be connected 

to a use case – but not the other way around. 

 Attachable: an attachable Constraint can be used to make a shape adhesive to 

another, even when one of them moves (e.g. a Property Mapper attached to a Shape in 

the VSD). 

 Resizable: a resizable Constraint can be used to control the size of a shape (e.g. 

making the size of the shape unchangeable).  

 Containable: a containable Constraint can be used to turn a shape into a container 

that contains other shapes. When a container moves, all the contained shapes move with 

it. 

 Collectable: a collectable Constraint can be used to turn a shape into a collector 

that collects other shapes (e.g. Properties inside a Shape in the VSD). 
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 Collapsible: a collapsible Constraint can be used to make a set of shapes collapse 

into a single icon or expand into multiple icons. 

 Zoomable: a zoomable Constraint can be used to allow a shape to be represented 

differently according to the zooming levels (e.g. showing a larger version of a shape if 

the zooming level is higher). 

 

Participation Link 

A Participation Link can be used to connect a Shape/Connection (participant) to a 

Constraint with or without a (participation) role, which indicates the Shape/Connection 

obeys the Constraint. 

 

A Participation Link is represented as a solid line with a line arrowhead (see the right-

hand figure below). The property of Participation Link is as follows: 

 

� Role  

 

For a Participation Link, the property, “Role”, denotes the participation role, which 

differentiates the participant from others connected to the Constraint. 

 

4.6 Artefact Elements 

 

In VSL, Artefact Elements are a mechanism for a modeller to provide additional 

information for the readers. However, the basic structures of the view specification model, 

as determined by the Structural Elements, Mapping Elements, and Constraint Elements, 

are not changed with the addition of Artefact Elements in the VSD (as you can see by 

comparing Figure 4-4 to Figure 4-5); Artefact Elements simply provide secondary 

notation for modelling. 
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Figure 4-5 Artefact specification of the Use Case view type 

 

Figure 4-5 shows an artefact specification of the Use Case view type on top of the 

constraint specification presented in Figure 4-4. The Annotation (1) is connected to The 

View (Use Case) through the Artefact Association (3). Similarly, the Annotation (2) is 

connected to The Connection (Use) through the Artefact Association (4). 

 

The detailed specifications of the two Artefact Elements are as follows: 

 

Annotation 

An Annotation can be used to add textual information in a VSD; it can stand on its own 

as a general comment; it can be connected to others such as a Shape, which indicates that 

the Annotation applies to that Shape. 
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An Annotation is represented by a dotted-line rectangle with a label containing text 

information in the centre (see the right-hand figure below). The properties of Annotation 

are as follows: 

� Key 

� Content 

 

 

For an Annotation, the first property, “Key”, denotes the Annotation identification, which 

is usually generated by the system automatically. The last property, “Content”, contains 

the actual textural information of this Annotation. 

 

Artefact Association 

An Artefact Association can be used to connect an Annotation to others such as an Entity, 

which indicates that the Annotation refers to that Entity. 

 

An Artefact Association is represented as a dashed line (see the right-hand figure below). 

 

  

 

4.7 Summary 

 

This chapter has presented VSL, mainly its notation. We first introduced some general 

concepts of the language. We then described all the notational elements in depth, such as 

Structural Elements, Mapping Elements, Constraint Elements, and Artefact Elements. In 

addition, we illustrated how to specify a simple Use Case view type using VSL in a series 

of steps. In the next chapter, we will illustrate the use of VSL with several complex 

examples. 
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CHAPTER 5  
 

 

VSL EXAMPLES 

 

 

5.1 Introduction 

 

In this chapter, we present a number of examples of view specifications expressed using 

VSL. We start by introducing a basic example to clearly describe and explain the use of 

the fundamental elements of VSL. We then demonstrate how to use an Input and related 

elements, how to use a mixture of Mapping Flows, and how to use several Constraints 

for complex view specification scenarios. On the whole, the chapter is intended mainly to 

illustrate the use of VSL. 

 

5.2 A Basic Example 

 

Figure 5-1 shows an example View Specification Diagram (VSD), which defines a view 

type (called Example View). This view type itself is represented by the View (1), which is 

associated to two Shapes and one Connection using three General Associations. The 

Shape (Shape1) is connected to the Entity (Entity1) via a Generation Flow; the Shape 

(Shape2) is connected to the Entity (Entity1) via a Search Flow; and the Connection 

(Connection1) is connected to the Association (Association1) via a Generation Flow. 

Also shown are view-to-model property mappings. For example, the view Property 

(Property1), contained in Shape1, is mapped to the model Property (Property3) through 

two Mapping Associations inserted with a Property Mapper. 
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Figure 5-1 An example View Specification Diagram 

 

In the following, we divide the above example into three parts, shown in Figure 5-2, 

Figure 5-3 and Figure 5-4, respectively. For each part, we describe the elements involved 

and illustrate the process in detail. 
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Figure 5-2 Illustration of the part one of the basic example 

 

Figure 5-2 illustrates the first part. The View (1) represents the “Example View” view 

type being modelled; similarly, the Shape (3) represents the “Shape1” shape type; and the 

Entity (5) represents the “Entity1” entity type. The General Association (2), assigned 

with a target multiplicity of “0..*”, indicates that an Example View diagram (e.g. 10) can 

contain null to unlimited instances (e.g. 8) of Shape1. The unidirectional Generation 

Flow (4), assigned with a type of “Multiple”, indicates that whenever an instance of 

Shape1 is created in the diagram, a related instance of Entity1 is generated in the 

common repository (e.g. 9). In addition, the view Property (Property1) is mapped to the 

model Property (Property3) using the bidirectional Property Mapper (6), meaning that 

changes made to Property1 (the Property1 of a Shape1 instance) apply to Property3 (the 

Property3 of a corresponding Entity1 instance), and vice versa. Whereas the view 

Property (Property2) is mapped to the model Property (Property4) using the 

unidirectional model-to-view Property Mapper (7), meaning that changes made to 

Property4 apply to Property2, and not the other way around. 
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Figure 5-3 Illustration of the part two of the basic example 

 

Figure 5-3 illustrates the second part. The View (1) represents the “Example View” view 

type being modelled; similarly, the Shape (3) represents the “Shape2” shape type; and the 

Entity (5) represents the “Entity1” entity type. The General Association (2), assigned 

with a target multiplicity of “0..1”, indicates that an Example View diagram can contain 

null to single instance (e.g. 9) of Shape2. The Search Flow (4), assigned with a search 

criteria of “Property3 = Property5”, indicates that an instance of Shape2 is dynamically 

associated to specific instances of Entity1 based on its Property5 value (e.g. 10). In 

addition, the view Property (Property6) is mapped to the model Property (Property4) 

using the unidirectional model-to-view Property Mapper (6) assigned with a formula of 

“Property6 = Sum(Property4)”, meaning that changes made to Property4 apply to 

Property6 and the Property6 value of a Shape2 instance equals the sum of the Property4 

values of related Entity1 instances according to (4). Also shown is the Annotation (8), 

which is associated to the Property Mapper (6) via the Artefact Association (7). 
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Figure 5-4 Illustration of the part three of the basic example 

 

Figure 5-4 illustrates the last part. The View (1) represents the “Example View” view type 

being modelled; similarly, the Connection (3) represents the “Connection1” connection 

type; and the Association (5) represents the “Association1” association type. The General 

Association (2), assigned with a target multiplicity of “0..*”, indicates that an Example 

View diagram can contain null to unlimited instances (e.g. 7) of Connection1. The 

bidirectional Generation Flow (4), assigned with a type of “Multiple”, indicates that 

whenever an instance of Connection1 is created in the diagram, a related instance of 

Association1 is generated in the common repository, and vice versa if it is applicable (e.g. 

applicable: 8, inapplicable: 9). In addition, the view Property (Property7) is mapped to 

the model Property (Property8) using the bidirectional Property Mapper (6), meaning 

that changes made to Property7 apply to Property8, and vice versa. 
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5.3 Using an Input 

 

Figure 5-5 (a) shows a simple UML Class diagram, with two Class elements connected. 

The Class (1), which represents a student class, is connected to the Class (2), which 

represents a School class, through an Association (connection) assigned with a name of 

“Study at”. These two classes are instantiated as Object elements in an Object diagram, 

as shown in Figure 5-5 (b). There are one instance of School, the Object (3), and two 

instances of Student, the Object (4) and Object (5). These Objects are also connected (as 

shown) via two Associations. 

 

 

Figure 5-5 (a) A UML Class diagram and (b) a related Object diagram 

 

Although an object is an instance of a class, an Object element is actually different to a 

Class element. An Object is typically associated to a Class using an Association assigned 

with a name of “Instance of”, and it is generally created with a specific Class known in 

advance (so that a proper Association can be generated automatically). This is one of the 
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possible situations in which Inputs can be used. Figure 5-6 shows an example of using an 

Input. 

 

 

Figure 5-6 Example of using an Input 

 

In Figure 5-6, the Input (1), assigned with a parameter profile of “?Classifier: Entity”, is 

connected to the Shape (Object) via the unidirectional Generation Flow (2), meaning that 

an external value, defined by the parameter profile, is passed into the creation of an 

Object instance. The unidirectional Generation Flow (3), assigned with a type of 

“Multiple”, indicates that whenever an instance of Object is created in the diagram, a 

related instance of E_Object is generated in the common repository. The Reference Flow 

(4), assigned with an input parameter of “?Classifier”, indicates that the external value 

(passed in) is treated as a specific instance of E_Class. The General Association (5), 

assigned with a name of “Instance of”, indicates that an E_Object instance created is 

automatically connected to the E_Class instance (passed in) via a new “Instance of” 

Association. The unidirectional model-to-view Property Mapper (6) indicates that 
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changes made to the property Name of an E_Class instance apply to the property 

Classifier of related Object instances according to (4). 

 

5.4 Using a mixture of Mapping Flows 

 

Figure 5-7 shows a Small Business diagram. An Employee (which represents a person 

who works for a company) can be connected to a Department (which represents a 

division of a company) via a “Work at” connection; and a Department can be connected 

to a Company (which represents a business organization) via a “Belong to” connection. 

After these elements are connected, some of their properties are changed automatically. 

The property Department of an Employee presents the name of the Department this 

Employee works at (e.g. 4); the property NoOfPeople of a Department is the total 

number of the Employees this Department has (e.g. 3); the property NoOfPeople of a 

Company is the sum of the NoOfPeople values of the Departments this Company 

contains (e.g. 2). In particular, there are two identical Companies, each of which takes 

their own “Belong to” connections, as shown in the diagram (1). 

 

 

Figure 5-7 A Small Business diagram 
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In the following, we specify the above view type in three phases, shown in Figure 5-8, 

Figure 5-9 and Figure 5-10, respectively. For each phase, we describe and explain the 

important elements, especially Mapping Flows, in detail. 

 

 

Figure 5-8 Phase one of the Small Business View specification 

 

Figure 5-8 shows the first phase. There are three Generation Flows. The unidirectional 

Generation Flow (1), assigned with a type of “Multiple”, indicates that whenever an 

Employee instance is created in the diagram, a related E_Employee instance is generated 

in the common repository. The Generation Flow (3) is used in a similar way to (1). The 

unidirectional Generation Flow (5), assigned with a type of “Unique”, indicates that no 

matter how many instances of Company are created in the diagram (or related diagrams), 

there is only one instance of E_Company in the common repository, and this instance 

corresponds to all the instances of Company (e.g. Figure 5-7
1
). 
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Also shown in Figure 5-8, there are two Search Flows. The Search Flow (2), assigned 

with a search criteria of “Assn = A_Work at” and a number-of-instance of “0..1”, 

indicates that an instance of Employee is associated to zero or one specific instance of 

E_Department based on the search criteria. The Search Flow (4), assigned with a search 

criteria of “Assn = A_Belong to” and a number-of-instance of “*”, indicates that a 

Company instance is associated to an arbitrary number of E_Department instances based 

on the search criteria. 

 

In addition, there are two Property Mappers related to (2) and (4). The unidirectional 

model-to-view Property Mapper (6) indicates that changes made to the property Name of 

an E_Department instance apply to the property Department of related Employee 

instances according to (2) (e.g. Figure 5-7
4
). The unidirectional model-to-view Property 

Mapper (7), assigned with a formula of “Compnay.NoOfPeople = 

Sum(E_Department.NoOfPeople)”, indicates that changes made to the property 

NoOfPeople of an E_Department instance apply to the property NoOfPeople of related 

Company instances, and the NoOfPeople value of an Company instance equals the sum 

of the NoOfPeople values of all related E_Department instances according to (4) (e.g. 

Figure 5-7
2
). (The Visual Handler, 8, is used to increase the NOOfPeople value of 

Department instances automatically.) 
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Figure 5-9 Phase two of the Small Business View specification 

 

Figure 5-9 shows the second phase. There are two Generation Flows. The bidirectional 

Generation Flow (1), assigned with a type of “Multiple”, indicates that whenever an 

instance of “Work at” is created in the diagram, a related instance of “A_Work at” is 

generated in the common repository, and vice versa if it is applicable (e.g. Figure 5-4
8, 9

). 

The unidirectional Generation Flow (2), assigned with a type of “Multiple”, indicates 

that whenever an instance of “Belong to” is created in the diagram, a related instance of 

“A_Belong to” is generated in the common repository, and not the other way around (this 

is necessary because multiple identical Company instances, sharing the same 

E_Company instance, can appear in the same diagram e.g. Figure 5-7
1
). 
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Figure 5-10 Phase three of the Small Business View specification 

 

Figure 5-10 shows the last phase. The connectable Constraint (1) is joined by the Shape 

(Employee) as a Source via the Participation Link (2), the Shape (Department) as a 

Target via the Participation Link (3), and by the Connection (Belong to) as a Connector 

via the Participation Link (4). This indicates that an Employee instance can connect to a 

Department instance via a “Belong to” instance, and not the other way around. (The 

connectable Constraint, right, is used in a similar way.) 

 

5.5 Using several Constraints together 

 

Figure 5-11 shows a simple UML Activity diagram, with an Activity element containing 

several other elements. The Activity (1) represents a “Log on” activity. It begins with the 

Action (Get Username), which outputs a valid Username object. The next Action is “Get 

Password”, which outputs a valid Password object. The Activity (Authenticate User) 
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executes when it receives a valid Username and a valid Password via its input Pins (2). 

The user is authenticated, and the activity finishes. 

 

 

Figure 5-11 A UML Activity diagram 

 

As you can see, an Activity can contain other elements, such as Starts, Ends and Actions 

(e.g. Figure 5-11
1
); an Action can be attached with multiple Pins (e.g. Figure 5-11

2
), 

which are fixed in size. These can be easily achieved by using specific Constraints. 

Figure 5-12 shows an example of using such Constraints. 
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Figure 5-12 Example of using several Constraints 

 

In Figure 5-12, there are three Constraints. The containable Constraint (1) is joined by 

the Shape (Activity) as a Container via the Participation Link (4), the Shape (Start) as an 

Item via the Participation Link (5), the Shape (End) as an Item via the Participation Link 

(6), and by the Shape (Action) as an Item via the Participation Link (7). This indicates 

that an Activity instance can (visually) contain instances of Start, End, and Action (e.g. 

Figure 5-11
1
). The attachable Constraint (2) is similarly joined by the Shape (Action) as 

a Target via the Participation Link (8) and by the Shape (Pin) as a Source via the 

Participation Link (9). This indicates that an Action instance can be attached with Pin 

instances (e.g. Figure 5-11
2
). In addition, the resizable Constraint (3) is joined by the 

Shape (Pin) alone (without an explicit participation role). This indicates that the size of 

Pins is constrained, e.g. unchangeable. 

 

5.6 Summary 

In this chapter, we illustrated the use of VSL by showing several View Specification 

Diagrams (VSDs). We in turn demonstrated a basic view specification example, a simple 

UML object diagram, a Small Business diagram, and a simple UML activity diagram. 
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CHAPTER 6  
 

 

VSL TOOL IMPLEMENTATION 

 

 

6.1 Introduction 

 

In this chapter, we present the design and implementation of our proof-of-concept tool. 

We first introduce the implementation background, to provide a general description about 

the Eclipse Platform, Eclipse Modelling Framework (EMF), and Graphical Editor 

Framework (GEF). We then describe our implementation approach and highlight the two 

core modules of the tool, the Constraint module and the Back End Generation module. 

Finally, we go on to discuss each of these modules, respectively. 

 

6.2 The Eclipse Platform and Related Techniques 

 

Eclipse is a Software Development Kit (SDK), which can be used as both a Java™ 

integrated development environment (IDE) and a tool for building products based on the 

Eclipse Platform [Eclipse, 2006]. The Eclipse SDK consists of several core Eclipse 

projects: Platform, Java Development Tools (JDT), and the Plug-in Development 

Environment (PDE). 

 

The main features of the Eclipse Platform are the following: 
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� The Eclipse Platform provides a managed windowing system: user interface 

components (e.g. entry fields and push buttons), docking views and editors, drag and 

drop, and the ability to contribute menu items and tool bars. 

� It can be used as an integration point, so that building a tool on top of the Eclipse 

Platform enables the tool to integrate with other tools also written using the Eclipse 

Platform. 

� It is built on a mechanism for discovering, integrating, and running modules called 

plug-ins (in fact the Platform itself is implemented as several core plug-ins). 

Additional tools can be implemented as Eclipse plug-ins to extend the functionality 

of the Eclipse Platform, such as working with new content types and doing new 

things with existing content types. 

 

Many frameworks have been created based on the Eclipse Platform. There are two 

modelling frameworks that are closely related to our implementation work. They are: 

� EMF (Eclipse Modelling Framework) – a Java framework and code generation 

facility for building tools and other applications based on a structured model [EMF, 

2004]. 

� GEF (Graphical Editor Framework) – a foundation for building rich, interactive user 

interfaces that are not easily built using native widgets found in the base Eclipse 

Platform [GEF, 2004]. 

 

An EMF model can be defined as an application model in UML using a combination of 

UML diagrams (e.g. Class Diagram, Collaboration Diagram, State Diagram, and etc). 

Once a model is specified, the EMF generator can create a corresponding set of Java 

implementation classes shipped with sophisticated model change notification, persistence 

support, model validation, and a very efficient reflective API for manipulating EMF 

objects generically. 
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The GEF component is further separated into two Eclipse plug-ins: Draw2d and GEF. 

The Draw2d plug-in is a lightweight toolkit containing graphical components called 

figures, which are used to construct any types of diagrams, documents, or drawings. The 

GEF plug-in adds editing capability on top of Draw2d, to facilitate the display of any 

model graphically and support interactions from mouse, keyboard, or the Eclipse 

workbench. 

 

6.3 Overview of Implementation Approach 

 

Figure 6-1 shows the main components of our VSL tool. This tool is expressed as a meta-

tool specification along with several event handlers. The meta-tool specification can be 

loaded into Marama [Grundy et al., 2006], a set of Eclipse plug-ins for realizing 

Pounamu-based visual tools. While the tool is running, Marama is responsible for 

automatically instantiating and deposing related event handler instances as needed. The 

primary goal of this tool effort was to: 

� Provide a multi-view visual environment for specifying various view (diagram) 

types using the VSL notation. 

� Generate the Pounamu view specification artefacts from a view type model as 

defined. 
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Figure 6-1 Implementation of the VSL Tool 

 

Although the (Marama) event handlers required in the tool are very complex, the most of 

them are relatively easy to implement. The reason is because the use of two important 

fundamental modules (as shown in Figure 6-1, bottom): 

� The Constraint module includes a set of built-in constraint handlers, which are used 

to support the VSL constraint mechanism. 

� The Back End Generation module provides easy-to-use facilities for template-based 

file generation in relation to view specification models. 
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Figure 6-2 The VSL Tool specifications in Pounamu 

 

The meta-tool specification is created in Pounamu using several meta-tool designers, as 

shown in Figure 6-2. The tool model (entities and associations) data is defined in the 

meta-model designer (a); the VSL notational elements (shapes and connections) are 

specified via the shape/connector designer (b); the event handlers (as required by the tool) 

are added into the specification using the event handler designer (c); and the VS (View 

Specification) view type is constructed through the view designer based on the notational 

elements, model data elements, and event handlers that are specified above (d). 

 

Before going to see the details about the Constraint and Back End Generation modules 

(in the following sections), it helps to have a sense of what the VSL tool dose and what it 

looks like to the user. 

 

6.3.1 The usage at a glance 
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When using the VSL tool, a user may perform four sequential steps: the first step is for 

the user to start Eclipse and then load the tool project specification; the second step is to 

create a view specification diagram; the third step would be to draw necessary (VSL) 

graphical elements in the diagram; and the last step is to generate the view specification 

artefacts (e.g. XML files and Java codes) from the view type model that is defined. 

Figure 6-3 shows a screen capture of the typical Eclipse main workbench window while 

the user is working with the VSL tool. 

 

 

Figure 6-3 The VSL Tool being used in Marama 

 

Graphical elements are accessed via a palette (a); shapes and connections can be directly 

manipulated in a canvas (b); properties of a selected shapes or connection can be edited 

using the standard Eclipse property sheet (c); a hierarchical (Marama) outline view of a 

current-active diagram is provided (d); and the navigator view shows the tool model 

projects and diagrams available. 
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6.4 The Constraint Module 

 

The Constraint module contains a set of constraint handlers, which is essentially built on 

top of the Marama event handler model. In this way, a constraint handler can be regarded 

and even used as a specialized Marama event handler; therefore, it can certainly achieve 

whatever a Marama event handler is incapable to achieve e.g. receiving and propagating 

change descriptions, and maintaining consistency between multiple views of the same 

common repository. 

 

However, there are several advantages to use constraint handlers, in stead of Marama 

event handlers, in the VSL tool. These advantages are the following: 

� Constraint handlers are usually ready-to-use components; therefore, much low-level 

(error-prone) programming work may be avoided. 

� They have been specifically chosen, designed, and implemented, targeting to the 

specification problems (e.g. controlling the size of shapes or restricting the use of a 

connection between particular shapes) that are commonly encountered by many 

modellers. 

� They are fairly easy to apply and highly reusable: each of them corresponds to a 

(VSL) Constraint of a specific type, such as “Attachable” and “Collectable”, and 

thus it can be automatically instantiated using the related information that is 

specified in the diagram. 

� They are customizable; implementing user-defined and extending existing constraint 

handlers are supported. This allows the Constraint module to be extended further by 

developers. 

 

Figure 6-4 shows part of the VSL tool view specification, which is used to describe the 

concepts and illustrate the processes that are presented in the following subsections. 
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Figure 6-4 Part of the VSL Tool view specification 

 

In Figure 6-4, there are two Constraints used in the diagram. The attachable Constraint 

(1) is joined by the Shapes (Shape, Connection, Entity, and Association as “Source” 

participants) and the Shape (Property Mapper as a “Target” participant). The collectable 

Constraint (2) is connected with the Shapes (Shape, Connection, Entity, and Association 

as “Collector” participants), the Shape (Property as an “Item” participant), and the 

Connection (Constraint Association as a “Connector” participant). Also shown are two 

Annotations. The top (3) visualizes the parameter settings defined in (1), whereas the 

bottom (4) represents the parameter settings specified in (2). 
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In the following subsections, we first introduce the common infrastructure that helps 

support the development of constraint handlers, and then briefly demo how to implement 

a custom constraint handler based on this infrastructure. 

 

6.4.1 The Common Infrastructure 

 

The common infrastructure is made up of three core Java classes, which form an 

underlying implementation structure for developing constraint handlers. The main aim of 

this infrastructure is to provide a consistent implementation style throughout all the 

constraint handlers, and to provide a mechanism for instantiating constraint handlers 

automatically (as specified in the diagram). Figure 6-5 shows a UML Class diagram 

containing these three classes. 

 

 

Figure 6-5 Class diagram of the common infrastructure 

 

The AbstractConstraint class (Figure 6-5, left) is an abstract base class, which much be 

inherited by all the constraint handlers. It itself inherits the MaramaVisualHandler class 

so that any constraint handler instance can be used as a MaramaVisualHandler instance. 
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In addition, it uses the other two classes, Participator and Parameter. The Participator 

class is meant to encapsulate a participant object, usually a shape/connection type with a 

participation role, whereas the Parameter class is used to encapsulate a parameter object, 

typically a parameter name with a desired value. 

 

Also shown are the attributes and methods contained in these classes. In the following, 

we briefly describe them by using part of the Java file that is generated by the VSL tool 

from the view specification illustrated in Figure 6-4. 

 

 

Figure 6-6 Part of the instantiation code generated 
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The above exposed code (Figure 6-6) is divided into three parts: (1), (2), and (3). In the 

top part (1), a variable called “constraint” is declared as the AbstractConstriant Type. 

Then, it is assigned with a new instance of Attachable (one of the built-in constraint 

handlers) in the start of the middle part (2). Following this, there are several methods 

being called through the variable: some of them (e.g. addParticipator) take a comma-

separated string value (e.g. “Property: Item”, as denoted in Figure 6-3), initializing and 

adding a participant object; others (e.g. setParameter) similarly take a string value (e.g. 

“Collector_Margin_Top = 25”). Finally, the Attachable instance is loaded into the system 

runtime, as shown by the last line of (2). Similar processes are carried out in the bottom 

part (3) as is presented in (2). 

 

6.4.2 Implementing a constraint handler 

 

To implement a custom constraint handler, the first and most critical step would be to 

create a Java class inheriting the base class, AbstractConstriant. An example of such a 

signature is given as follows: 

 

public class Attachable extends AbstractConstraint 

 

Then, the developer would overload the AddParticipator method depending on what 

kinds of the participants and how many of them that the constraint handler can cope with. 

An example of such an overloaded method is shown as follows: 

 

public void addParticipator(Participator participator) 

{ 

 super.addParticipator(participator); [1] 

  

 if(participator.role.toLowerCase().contains("source")) [2] 

 { 

  sourceTypes.add((String) participator.getIParticipator()); 
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 } 

 else if(participator.role.toLowerCase().contains("target")) 

 { 

  targetTypes.add((String) participator.getIParticipator()); 

 } 

} 

 

Typically, a duplicate call would be made to the parent method (1), and then the rest of 

code, starting from (2), would be responsible for initializing the related inner data items 

based on the object that is passed into the method. 

 

After that, the developer would similarly overload the setParameter method with respect 

to the control variables that the constraint handler can have. An example of such an 

overloaded method is listed as follows: 

 

public void setParameter(Parameter parameter) 

{ 

 super.setParameter(parameter); 

  

 if(parameter.getName().toLowerCase().equals("position")) 

 { 

  position = Position.valueOf(parameter.getValue()); 

 } 

 else if(parameter.getName().toLowerCase().equals("difference")) 

 { 

  String[] segments = parameter.getValue().split(","); 

            difference = new Point(Integer.parseInt(segments[0].trim()), 

                                 Integer.parseInt(segments[1].trim())); 

 } 

} 

 

The rest of the work would be as same as implementing a Marama event handler.  

 

For more detailed information, please refer to Appendix A, in which the full source code 

of a built-in constraint handler is provided. 
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6.5 The Back End Generation Module 

 

The Back End Generation module contains facilities for generating view specification 

artefacts, mainly text files such as XML files and (Java) source code. Some facilities such 

as generation model elements provide an easy-to-access interface to view specification 

models. Other facilities such as JET (Java Emitter Templates) templates are used to 

encode the kinds of files to generate. Figure 6-7 shows the back end generation approach. 

 

 

Figure 6-7 The back end generation approach 

 

A view specification is visually specified in the diagram but essentially stored as various 

Marama model elements in the common repository (as shown in Figure 6-5, top left). A 

generation model element (bottom left) is used to encapsulate a corresponding Marama 

model element, and it is specifically designed for working with Jet templates (obtaining 

data is much simpler than directly using a Marama model element, only a straight 

method call e.g. as shown in Figure 6-8). A Jet template (which is a sequence of string 
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inserted with special directives) uses one or more generation model elements for 

generating template-based files.  

 

 

Figure 6-8 Part of the instantiation template 

 

For detailed information about how to write a JET template, please refer to [EMF, 2004]. 

 

6.6 Summary 

 

In this chapter, we discussed the design and implementation of our prototype VSL tool. 

We introduced the implementation background, and explained the basic design of our 

tool. We then detailed some core areas of our implementation, especially the Constraint 

module and the Back End Generation module. 

 

This chapter is essentially intended to show how a tool for VSL could be built and how 

we managed to do our own prove-of-concept implementation. 



CHAPTER SEVEN - EVALUATION 

 89 

CHAPTER 7  
 

 

EVALUATION 

 

 

7.1 Introduction 

 

In this chapter, we provide an evaluation of the language and tool that we developed for 

multi-view visual environments. We first present an evaluation of our language and tool 

using Green and Petre’s cognitive dimensions framework [Green and Petre, 1996]. We 

then give a brief, retrospective analysis on the strengths and weaknesses of our approach. 

 

7.2 Cognitive Dimensions Evaluation 

 

The cognitive dimensions framework was developed to provide a broad-brush evaluation 

technique for interactive devices and for non-interactive notations. It proposes a small 

vocabulary of terms that capture diverse and often competitive aspects of structure, 

especially visual programming environments. As a set of discussion tools, the framework 

offers a plain basis for evaluation by indicating the characteristics of cognitive artefacts 

that should be concerned. We will briefly introduce the cognitive dimensions and apply 

them to our language and tool. 

 

Abstraction Gradient 

An abstraction is a grouping of similar elements to be treated as one entity. In this case, 

Abstraction Gradient refers to the level of abstraction present in a given language. A 
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language can be regarded as abstraction-hating, abstraction-tolerant or abstraction-hungry, 

based on the minimum starting level of abstraction and the capability to incorporate 

further abstractions. Choosing the proper abstraction level for a language is not easy; 

more abstractions may increase the comprehensibility of a language, but simultaneously 

decrease its simplicity. 

 

VSL is somewhat of a mixed system in relation to abstractions, of which there are several 

used in the notation. Some abstractions, such as property mappers and constraints, are 

explicit to the user. Other abstractions, such as flows and associations, are implicit. These 

abstractions are carefully kept small and simple; thus, the starting level in the system is 

relatively low for a target user. 

 

During the course of our language design, we were struggling with the decision whether 

or not to use an extra abstraction around structural elements. The use of the abstraction 

allows all the structural elements to be treated as a single entity. This increases the 

applicability of VSL, but also introduces a number of complicating issues, such as 

escalating the difficulty of using the notation and doubling the amount of time required to 

implement our tool. 

 

Closeness of Mapping 

Closeness of Mapping is a measurer to reflect how easy the user can use the language to 

solve the corresponding real world problem. The closer the language is to the problem 

domain, the easier it is for the user to perform related tasks. In a good practice, the 

entities in the problem domain would be directly mapped to the entities in the language. 

Thus, the operations on those problem entities would likewise be mapped directly to the 

operations on those entities in the language. 
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Our problem domain is to use VSL as a high-level language to generate corresponding 

view specification artefacts. The graphical notation extends from a notation that is 

familiar to the domain users, using a common iconic form. Although the mechanism of 

specifying element properties is a bit uncommon, this would be straightforward to end 

users. We feel that the mapping links and constraints are intuitive in this context. There is, 

however, a huge step from this visual form to the underlying textual representations (e.g. 

XML files and Java code). 

 

Consistency 

Consistency in the context of language is regularly expressed via its antonym, 

“inconsistency”, as it is initially difficult to define. A language is considered inconsistent 

if it represents similar concepts or performs related tasks in an unpredictable manner. An 

easy way to measure the consistency of a language is to ask, “When a person knows 

some of the language, how much of the rest can be successfully guessed?” 

 

We feel that VSL is consistent. We have not noticed any particular areas of inconsistency 

and there are certainly areas of planned consistency. For example, all the constraints are 

used in a consistent way (via the participation pattern), regardless of the strengths they 

enforce or the number of parties they handle. Also, the visual shapes chosen are 

predictable: schema elements are represented by rounded-corner rectangles, and their 

mappings are noted by lines. 

 

Diffuseness/Terseness 

Diffuseness is meant to measure how compactly (e.g. the number of symbols and space) 

the notation achieves the results with respect to other notations that achieve the same 

results. While the level of diffuseness that should be aimed in a notation remains unclear, 

both extremes of being too diffuse and too terse are unexpected. When expressed by an 

extremely diffuse notation, the information takes more time to read and is more difficult 



CHAPTER SEVEN - EVALUATION 

 92 

to remember. Whereas, when it is represented by an overly terse notation it is difficult to 

understand. This is because it has to be conveyed in very subtle distinctions, which 

increases the difficulty of readability. 

 

We begin the language design with a clear goal that VSL will be kept as compact as 

possible, since a view specification diagram tends to be more diffuse with the addition of 

entities. Because of this reason, we abandoned several alternative symbols (e.g. Mapping 

Console and Formula) in our final design. It is difficult to judge whether VSL is diffuse 

or terse without comparing it to another language. Generally, VSL is less diffuse than 

JComposer [Grundy et al., 1998a]. It is, however, more diffuse than other, less-related 

visual languages such as MetaBuilder [Ferguson et al., 2000], due to the fact that an 

entity is usually represented by two symbols in VSL – a visual symbol and a model 

symbol. On the whole, however, we feel that VSL is relatively terse. 

 

Error-proneness 

Errors can be further separated as mistakes and slips. A slip is doing something that you 

didn’t mean to do (where you would normally know what to do), whereas a mistake is 

almost unavoidable in situations where performing tasks is extremely difficult. Error-

proneness refers to how likely the user will make a slip in the course of using the 

language. Some typical examples of slips are often found in textual programming 

languages, e.g. typing errors and paired-delimiter systems. 

 

Although visual languages in general are more immune to these types of errors, we 

notice one unavoidable issue is common. That is, it is quite easy for users to make slips 

in specifying inter-property mappings. This is often caused by specifying too many inter-

property mappings in a small area in which the user might pick a wrong property to begin 

or end with. Unfortunately, we were not able to introduce any effective means in the tool 

to detect and avoid this kind of slip because they remain correct in the syntax. 
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Hard Mental Operations 

Hard Mental Operations refer to tasks that are caused hard to accomplish or concepts that 

are caused difficult to comprehend by the notation. To test hard mental operations, one 

must first combine two or three constructs to see if the end result gets incomprehensible. 

If the answer is “yes”, he must then try to identify whether there is a way in some other 

language to make this result comprehensible. Unless no trace is found (it is actually a 

complicated problem to deal with), then it is valid. 

 

We feel that VSL is generally easy to use; the mapping lines and constraints are intuitive 

and fairly easy to understand. Still, there is some complicity in the use of combining 

different flow elements (e.g. a Generation Flow with a Search Flow). It is certain this 

would be a bit difficult for the user to comprehend. However, we cannot conclude 

whether it falls into the category of creating a “hard mental operation” because none of 

the languages we found supports the feature.  

 

Hidden Dependencies 

A hidden dependency is an invisible relationship between two components so that one of 

them is dependent on the other. The main reason to avoid hidden dependencies is to teach 

users how to make each operation and what impacts are caused by that operation. 

Without knowing all the information, a user is often confused and is more prone to 

perform wrong (perhaps even harmful) actions in the system. 

 

This type of dependency may occur in VSL due to the declarative nature of the 

specification language. Some flow elements, such as Search Flow and Reference Flow, 

are transferred into corresponding artefacts that are hidden in the background. Moreover, 

the use of various constraints hides large amounts of tedious specification details behind 
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the scenes. However, in our experience we feel that these kinds of dependencies are 

unlikely to cause the user to make any serious mistakes. 

 

Premature Commitment 

Premature Commitment implies that the user is forced to make a decision before the 

relevant information is made available. The problem likely arises when an order of doing 

things is enforced by the working environment that contains a large number of internal 

dependencies in the notation, rendering the order inappropriate. 

 

As a specification language, VSL constraints a few orders that are almost impossible to 

avoid. For example, the user should have a set of structure elements ready before the 

mapping specification can be laid out. Fortunately, most of these orders are obvious to 

target users, and would be appropriate in this occasion. However, VSL (like many visual 

languages) encounters some problems related to the physical layout of the diagrammatic 

elements making up the notation. Questions such as “where to place the first icon?” and 

“which icon should be picked up over another?” can be difficult, especially when a user 

does no have a solid understanding of the diagram. 

 

Nevertheless, there is one area that may fall into the category of creating a “premature 

commitment”. That is, the user would be expected to place and define an Input prior to 

the creation of a corresponding Reference Flow. This tends to be a problem because the 

Reference Flow is dependent on the Input, but the required information is not fully 

visible. 

 

Progressive Evaluation 

Progressive Evaluation refers to the ability to test partial systems in the course of 

development. Immediate feedback assists a user in identifying potential problems that are 
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difficult to debug and solve in a later stage, especially when a user has less experience in 

the task domain. 

 

This is a particularly difficult aspect to evaluate at the langue level but the tool level. 

Once the user starts placing icons in the diagram, the tool can generate the view 

specification artefacts at any time. However, (as the limited time involved in this thesis 

work) the tool currently does not give any meaningful feedback to the user. 

 

Role-Expressiveness 

Role-Expressiveness is intended to describe how clearly the notation expresses itself in a 

variety of roles. Such a role can refer to a single entity or a combination of several 

different entities. A common way to enhance role-expressiveness is realized by the use of 

meaningful or well-known identities. 

 

We feel that the role-expressiveness is good in VSL. The shapes chosen are familiar to 

target users, using a common iconic form. Functional related elements are represented by 

similar shapes with carefully chosen secondary aspects, such as different colours, icons, 

or both. This further improves the role-expressiveness by visually dividing the objects 

contained in a diagram into functional groups. 

 

VSL tool is implemented as a multi-view visual environment in which multiple views of 

a single model are allowed. It is possible to create a modularised model, with each view 

of the model displaying a single related group of entities from that model. 

 

Secondary Notation and Escape from Formalism 

Secondary Notation refers to the manner in which extra information is carried by means 

other than the formal syntax of the language. For example, programmers often use 

indents, extra brackets and new lines to make the code easy to understand by others (even 
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themselves). Escape from Formalism is closely related to secondary notation. It is meant 

to indicate whether the language contains the power to specify the information that is 

unsupported by its formalism. The most common example of this is the use of comments 

in many programming languages.  

 

In VSL we feel that the secondary notation is relatively weak, due to the box-and-line 

design. The structure elements can, in principle, be laid out anywhere in a diagram, but in 

practice the layout is dominated by the desire to keep the mapping flow lines reasonably 

tidy. We doubt it would be a good idea to enforce the layout in this case; nevertheless, 

doing it manually often requires too much effect from the user. Fortunately, we feel in 

VSL that we performed well with regard to the escape from formalism. Comments can be 

attached to primitives as well as groups of objects. 

 

Viscosity: Resistance to Local Change 

Viscosity implies how much work the user has to make in order to perform a small 

change, especially when the change impacts a large amount of other changes. In general, 

the environment with its comprehensive support and the language having more 

abstractions may act well in viscosity. 

 

We feel that VSL has low viscosity. Changing mapping lines is easy for the user to 

perform. Although the steps involved in reassigning constraints may vary depending on 

the actual case, all the operations required are both simple and obvious. Altering 

structural elements in few cases may cause some difficulty, but the situations (e.g. a 

structural element is used completely wrong, as required to change all its properties and 

associated mappings and constraints) are extremely unlikely to happen. 

 

There are also certain supports shipped with the tool environment. Joined connections are 

automatically eliminated after corresponding icons are deleted. If an entity is dropped 
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from the repository, all the corresponding icons disappear in the related diagrams. Most 

importantly, in the VSL tool updates are automatically in turn propagated to any other 

components that need to change in response to the update, which makes the change even 

easier to perform. However, we were restricted by the limited time involved in this thesis 

work; so many helpful facilities have not been supplied, although concrete ideas were in 

place. 

 

Visibility and Juxtaposability 

Visibility denotes simply whether desired information is reachable without cognitive 

work. As compared to hidden dependencies, visibility is a measure of the number of steps 

required to discover and display a piece of information. Juxtaposability is an important 

part of visibility. It refers to the ability to see and compare any two portions of the 

program on screen next to each other at the same time. 

 

We feel in VSL that the visibility is great. Most information is readily available and 

expressed by the (VSL) diagrams. Although the other information is hidden in the 

background, this information is fairly easy for the user to access through the property 

sheet. The VSL tool certainly has good juxtaposability as well, with the ability to have 

multiple views open side by side, displaying different parts of the same view 

specification. In fact, the comparison can be done even easier through the corresponding 

facility that is supplied by the tool environment. 

 

7.3 General Comments 

 

On the whole, we are very pleased with both the language and the tool we have created. 

By the large, we feel the approach we have taken is very promising and offers several 

unique benefits over other approaches to providing view specification support for multi-

view visual environments. 
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First, we feel the fact that VSL as a visual language is a major benefit. The visual 

notation provides an intuitive medium for communication about view definition. The 

specification diagrams can be rapidly and simply created, either on paper or on a 

computer screen, and even more easily interpreted and understood. We feel that VSL is 

clearly easier to use than other textual languages that have been designed for the same 

purpose. 

 

Second, we feel that VSL offers more advanced mapping support over related visual 

languages. Complex view-to-model mappings are explicitly allowed; thus, it is easier for 

the user to create various view types according to a common model, as is often required. 

For example, a diagram component may be created with external values passed in, may 

be associated to multiple model components, or may not be physically related to any 

model component whatsoever. 

 

Third, we feel that the use of a declarative style in VSL is a strong point of the approach. 

The visual language hides much of the complicity of view specifications; therefore, the 

user can concentrate on the high level design of the view specification rather than the 

underlying implementation techniques. Moreover, the use of common-targeted visual 

constraints further reduces the effort involved and lowers the entry level required for end 

users to start with. 

 

Thus, we feel that the high-level, declarative approach to Pounamu view specification 

and generation is particularly good. The use of our VSL tool significantly reduces the 

view specification effort required for developing Pounamu-based multi-view visual 

environments. 
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However, we still have some reservations. First of all, the visual language has a few 

issues that have been noted in the cognitive dimensions evaluation. Secondly, we feel that 

there are still some improvements that can be made in the language, based on our 

experiences throughout this thesis study. Finally, our tool currently does not support all 

the features that are defined in VSL. 

 

Our suggestions for future extensions to the language and the tool are discussed in the 

next chapter. 

 

7.4 Summary 

 

In this chapter, we carried out an evaluation of our VSL language and the prototype VSL 

tool that we have developed. We first applied the cognitive dimensions framework in this 

evaluation, and then generally discussed the strengths and weaknesses of our approach. 
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CHAPTER 8  
 

 

CONCLUSION AND FUTURE WORK 

 

 

8.1 Overall Summary 

 

In this thesis, we have investigated the issues involved in providing view specification 

support for the development of multi-view visual environments. We also presented a 

high-level, declarative approach to Pounamu view specification and generation. 

 

We began with an overview of the background technology and a comprehensive review 

of the related research into view specification support for multi-view visual environments, 

with a main focus on view consistency management (an essential component of view 

specification). Based on the knowledge learned from this review, we outlined our plan of 

solution to improve Pounamu view specification, which is used as the motivation and 

exemplar application of our ideas (which have broader applicability). After discussing the 

experience we learned during our language design, we then presented the View 

Specification Language (VSL), a visual modelling language we created for view 

specification, and several typical VSL examples. Following this, we presented a 

prototype implementation of a VSL tool, which can be used for Pounamu-based view 

generation. Finally, we presented an evaluation of the prototype VSL tool and VSL itself, 

where we argue that VSL has great potential as a modelling language to facilitate the 

effort of view specification and generation in developing multi-view visual environments. 
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8.2 Contributions of this Thesis 

 

The main contributions of this thesis are: 

 

� We provide VSL, a domain-specific visual language, for view specification. The 

notation contained provides an intuitive medium for communication about view 

definition. The specification diagrams can be rapidly and simply created, on either 

paper or a computer screen, and easily comprehended and interpreted. More 

importantly, VSL offers many high-level features such as advanced mapping 

support (e.g. Generation Flow, Search Flow and Reference Flow) and easy-to-apply 

visual control (e.g. various Constraints). These features reduce the difficulty of view 

specification and lower the entry level requirements for starting users. 

 

� We also provide a high-level, declarative approach to Pounamu view specification 

and generation. This approach uses VSL as its modelling language; it provides many 

high-level, easy-to-use facilities; it produces diagrams (rather than, for example, 

textual artefacts); and it automatically generates Pounamu-based view specification 

artefacts as specified. We feel that our approach has significantly reduced the view 

specification effort required for developing Pounamu-based multi-view visual 

environments. 

 

8.3 Suggestions for Future Work 

 

There are a variety of directions in which this project could be further extended. Here we 

wish to highlight a number of areas of possible further research we have identified. Some 

of the areas we discuss are improvements or natural extensions of our work, while others 

are possible applications of our work. 
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In terms of the future work that could be done on the language, there are many possible 

areas of extension. Some that have occurred to us are: 

 

� Divide the single VSL notation into a set of functional distinct notations, each of 

which is responsible for a specific perspective of view definition, so that a view 

definition can be expressed by a clear set of different diagrams (views). This could 

lead to a better clarity of view specification, and thus reduce the error-proneness. 

 

� Provide an abstract intermediate mapping layer (e.g. allowing use of abstract model 

elements, each of which may partially or completely represent one or more concrete 

model elements) between view elements and corresponding model elements, so the 

complexity of a range of view-to-model mappings could be reduced. 

 

� Introduce more common-required (visual) constraints, possibly a full coverage of 

those used by UML, and enhance the current VSL constraint extension mechanism, 

perhaps adopting a flow-based approach, e.g. Kaitiaki [Liu et al., 2005]. 

 

� Investigate how to migrate VSL to other multi-view development systems that are 

similar to Pounamu, and how to apply VSL to a range of other applications such as 

translation of notational elements into different terminals and translation of 

notational elements in general. 

 

There are also areas of possible future work involved in the processes associated with the 

language and supported by a VSL tool. They are listed as follows: 

 

� Better (diagram) editing support, such as automatic completion of simple 

specification takes, smart layout of diagram components, and advanced visualization 

of diagrams (e.g. selectively emphasizing part of a diagram). 
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� Support for automated mapping (e.g. automatically matching a view 

element/property to a potential model element/property), perhaps even an 

investigation into some practical techniques in Artificial Intelligence. 

 

� Further investigation into the tool integration with other systems, possibly 

incorporating a standard set of back end generation techniques, such as XSLT for 

XML documents, Jet for programming source code (currently used), and QVT-based 

methods for model transformation. 
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APPENDIX A 

Source code of the Attachable constraint handler 

 

package nz.ac.auckland.cs.VSL.Constraint; 

 

import java.util.ArrayList; 

import java.util.List; 

import java.util.Vector; 

 

import nz.ac.auckland.cs.marama.model.diagram.MaramaConnection; 

import nz.ac.auckland.cs.marama.model.diagram.MaramaShape; 

 

import org.eclipse.draw2d.geometry.Dimension; 

import org.eclipse.draw2d.geometry.Point; 

import org.eclipse.draw2d.geometry.Rectangle; 

import org.eclipse.emf.common.notify.Notification; 

import org.eclipse.gef.commands.Command; 

 

public class Attachable extends AbstractConstraint  

{ 

 private Vector<MaramaShape> renderingSources = new Vector<MaramaShape>(); 

 

 // Participators as roles of string shape type 

 public List<String> sourceTypes = new ArrayList<String>(); 

 public List<String> targetTypes = new ArrayList<String>(); 

  

 // VSL location connector 

 private String connectorType = "Constraint_Association"; 

  

 // Parameters as specific types 

 public Position position = Position.Inner; 

 public Point difference = null; 

  

 public boolean isTargetAutoLocated = false; 

  

 public boolean isSourceChangeable = false; 

  

 public boolean isSourceAutoSpanned = false; 

  

 public int source_InnerMargin_Right = 0; 
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 public int source_InnerMargin_Bottom = 0; 

  

 public boolean isTargetMoveable = false; 

  

 public boolean isMultiTargetsAllowed = false; 

 public Orientation extentionOrientation = Orientation.Vertical; 

 public int target_Spacing = 0; 

  

 @Override 

 public void addParticipator(Participator participator) 

 { 

  super.addParticipator(participator); 

   

  if(participator.role.toLowerCase().contains("source")) 

  { 

   sourceTypes.add((String) participator.getIParticipator()); 

  } 

  else if(participator.role.toLowerCase().contains("target")) 

  { 

   targetTypes.add((String) participator.getIParticipator()); 

  } 

 } 

  

 @Override 

 public void setParameter(Parameter parameter) 

 { 

  super.setParameter(parameter); 

   

  if(parameter.getName().toLowerCase().equals("position")) 

  { 

   position = Position.valueOf(parameter.getValue()); 

  } 

  else if(parameter.getName().toLowerCase().equals("difference")) 

  { 

   String[] segments = parameter.getValue().split(","); 

    

   difference = new Point(Integer.parseInt(segments[0].trim()), 

Integer.parseInt(segments[1].trim())); 

  } 

  else 

if(parameter.getName().toLowerCase().equals("isTargetAutoLocated".toLowerCase())) 

  { 

   isTargetAutoLocated = Boolean.parseBoolean(parameter.getValue()); 
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  } 

  else 

if(parameter.getName().toLowerCase().equals("isSourceChangeable".toLowerCase())) 

  { 

   isSourceChangeable = Boolean.parseBoolean(parameter.getValue()); 

  } 

  else 

if(parameter.getName().toLowerCase().equals("isSourceAutoSpanned".toLowerCase())) 

  { 

   isSourceAutoSpanned = Boolean.parseBoolean(parameter.getValue()); 

  } 

  else 

if(parameter.getName().toLowerCase().equals("source_InnerMargin_Right".toLowerCase())) 

  { 

   source_InnerMargin_Right = Integer.parseInt(parameter.getValue()); 

  } 

  else 

if(parameter.getName().toLowerCase().equals("source_InnerMargin_Bottom".toLowerCase())) 

  { 

   source_InnerMargin_Bottom = Integer.parseInt(parameter.getValue()); 

  } 

  else 

if(parameter.getName().toLowerCase().equals("isTargetMoveable".toLowerCase())) 

  { 

   isTargetMoveable = Boolean.parseBoolean(parameter.getValue()); 

  } 

  else 

if(parameter.getName().toLowerCase().equals("isMultiTargetsAllowed".toLowerCase())) 

  { 

   isMultiTargetsAllowed = Boolean.parseBoolean(parameter.getValue()); 

  } 

  else 

if(parameter.getName().toLowerCase().equals("extentionOrientation".toLowerCase())) 

  { 

   extentionOrientation = Orientation.valueOf(parameter.getValue()); 

  } 

  else 

if(parameter.getName().toLowerCase().equals("target_Spacing".toLowerCase())) 

  { 

   target_Spacing = Integer.parseInt(parameter.getValue()); 

  } 

 } 
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 @Override 

 public void beforeExecute(Command command) 

 { 

  MaramaShape shapeChanged = shapeChanged(command); 

  if(shapeChanged != null) 

  { 

   boolean isTarget = isTarget(shapeChanged); 

    

   if(shapeDeleted(command) != null) 

   { 

    if(isTarget) targetDeleted(shapeChanged); 

   } 

  } 

 } 

  

 @Override 

 public void afterExecute(Command command) 

 { 

  if(this.renderingSources.size() != 0) 

  { 

   for(MaramaShape source : this.renderingSources)  

   { 

    this.render(source); 

   } 

   this.renderingSources.clear(); 

  } 

 } 

 

 @Override 

 public void notifyChanged(Notification e) 

 {  

  MaramaShape shapeChanged = shapeChanged(e); 

  if(shapeChanged != null) 

  { 

   boolean isSource = isSource(shapeChanged); 

   boolean isTarget = isTarget(shapeChanged); 

   

   if(shapeAdded(e) != null) 

   { 

    if(isSource) sourceAdded(shapeChanged); 

    if(isTarget) targetAdded(shapeChanged); 

   } 
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   if(shapeResized(e) != null) 

   { 

    if(isSource) sourceResized(shapeChanged); 

    if(isTarget) targetResized(shapeChanged); 

   } 

    

   if(shapeMoved(e) != null) 

   { 

     

    if(isSource) sourceMoved(shapeChanged); 

    if(isTarget) targetMoved(shapeChanged, (Point) 

e.getOldValue()); 

   } 

    

   if(shapeDeleted(e) != null) 

   { 

    if(isSource) sourceDeleted(shapeChanged); 

    //if(isTarget) targetDeleted(shapeChanged); 

   } 

  } 

 } 

  

 // Source events start 

 protected void sourceAdded(MaramaShape source) 

 { 

  this.autoLocate(); 

 } 

  

 protected void sourceResized(MaramaShape source) 

 { 

  this.render(source); 

 } 

  

 protected void sourceMoved(MaramaShape source) 

 { 

  this.render(source); 

 } 

  

 protected void sourceDeleted(MaramaShape source) 

 { 

  this.autoLocate(); 

 } 

 // Source events end 
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 // Target events start 

 protected void targetAdded(MaramaShape target) 

 { 

  MaramaShape source = this.getFirstAvailableSourceByIntersection(target); 

   

  if(source != null) 

  { 

   this.addTarget(source, target); 

   this.render(source); 

  } 

  else this.autoLocate(); 

 } 

  

 protected void targetResized(MaramaShape target) 

 { 

  MaramaShape source = this.getSourceByTarget(target); 

   

  if(source != null) 

   this.render(source); 

 } 

  

 protected void targetMoved(MaramaShape target, Point orginalTargetLocation) 

 { 

  MaramaShape orginalSource = this.getSourceByTarget(target); 

  MaramaShape newSource = this.getFirstAvailableSourceByIntersection(target); 

   

  // Move into a source 

  if(orginalSource == null && newSource != null) 

  { 

   this.addTarget(newSource, target); 

   this.render(newSource); 

  } 

  else if(orginalSource != null && newSource != null && 

    !orginalSource.getBounds().intersects(target.getBounds())&& 

    orginalSource != newSource) 

  { //From a container move into another container 

   if(this.isSourceChangeable) 

   { 

    this.removeTarget(orginalSource, target); 

    this.render(orginalSource); 

    this.addTarget(newSource, target); 

    this.render(newSource); 
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   } 

   else this.render(orginalSource); 

  } 

  else if(orginalSource != null) 

  { // Move while connected to a source 

   if(this.isTargetMoveable) 

   {// if the position is inner, only allow move inside the source 

    Dimension difference = 

target.getBounds().getLocation().getDifference(orginalTargetLocation); 

    Rectangle bounds =  

     new 

Rectangle(orginalSource.getBounds().getLocation().translate(difference), 

orginalSource.getSize()); 

    this.setShapeConstraint(orginalSource, bounds); 

   } 

   else this.render(orginalSource); 

  } 

 } 

  

 protected void targetDeleted(MaramaShape target) 

 { 

  MaramaShape source = this.getSourceByTarget(target); 

   

  if(source != null) 

   this.renderingSources.add(source); 

 } 

 // Target events end 

  

 protected boolean isSource(MaramaShape shape) 

 { 

     if(shape == null) 

     { 

      throw new NullPointerException("shape"); 

     } 

      

     return sourceTypes.contains(shape.getShapeType()); 

 } 

  

 protected boolean isTarget(MaramaShape shape) 

 { 

  if(shape == null) 

     { 

      throw new NullPointerException("shape"); 
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     } 

      

     return targetTypes.contains(shape.getShapeType()); 

 } 

  

 protected void autoLocate() 

 { 

  if(this.isTargetAutoLocated) 

  { 

    

  } 

 } 

  

 protected void render(MaramaShape source) 

 { 

  List<MaramaShape> targets = this.getTargetsBySource(source); 

   

  if(targets.size() == 0) 

   return; 

   

  setEnabled(false); 

   

  Point location = source.getBounds().getLocation(); 

   

  if(position == Position.Bottom) 

  { 

   location.y += source.getHeight(); 

  } 

  else if(position == Position.Right) 

  { 

   location.x += source.getWidth(); 

  } 

  else 

  { 

   // Do nothing for the rest 

  } 

   

  if(difference != null) 

   location.translate(difference); 

   

  List<MaramaConnection> connectors = this.getConnectorsBySource(source); 

  for (MaramaConnection connector : connectors)  

  { 
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   if(!connector.isHidden()) connector.setHidden(true); 

   MaramaShape target = connector.getTarget(); 

   this.assignTargetIndex(source, target); 

    

   Point targetLocation = location.getCopy(); 

    

   if(this.position == Position.Top) 

   { 

    targetLocation.y -= target.getHeight(); 

     

    this.setShapeConstraint(target, new 

Rectangle(targetLocation, target.getSize())); 

     

    if(extentionOrientation == Orientation.Vertical) 

     location.y -= (target.getHeight() + 

this.target_Spacing); 

    else 

     location.x += (target.getWidth() + 

this.target_Spacing); 

   } 

   else if(this.position == Position.Bottom) 

   {  

    this.setShapeConstraint(target, new 

Rectangle(targetLocation, target.getSize())); 

     

    if(extentionOrientation == Orientation.Vertical) 

     location.y += (target.getHeight() + 

this.target_Spacing); 

    else 

     location.x += (target.getWidth() + 

this.target_Spacing); 

   } 

   else if(this.position == Position.Left) 

   { 

    targetLocation.x -= target.getWidth(); 

     

    this.setShapeConstraint(target, new 

Rectangle(targetLocation, target.getSize())); 

     

    if(extentionOrientation == Orientation.Vertical) 

     location.y += (target.getHeight() + 

this.target_Spacing); 

    else 
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     location.x -= (target.getWidth() + 

this.target_Spacing); 

   } 

   else if(this.position == Position.Right) 

   {  

    this.setShapeConstraint(target, new 

Rectangle(targetLocation, target.getSize())); 

     

    if(extentionOrientation == Orientation.Vertical) 

     location.y += (target.getHeight() + 

this.target_Spacing); 

    else 

     location.x += (target.getWidth() + 

this.target_Spacing); 

   } 

   else if(this.position == Position.Inner) 

   { 

    this.setShapeConstraint(target, new 

Rectangle(targetLocation, target.getSize())); 

     

    if(extentionOrientation == Orientation.Vertical) 

     location.y += (target.getHeight() + 

this.target_Spacing); 

    else 

     location.x += (target.getWidth() + 

this.target_Spacing); 

   } 

  } 

   

  if(this.isSourceAutoSpanned) 

  { 

   // Get ride of the last spare spacing 

   if(extentionOrientation == Orientation.Vertical) 

    location.y -= this.target_Spacing; 

   else 

    location.x -= this.target_Spacing; 

    

   Rectangle bounds = source.getBounds(); 

   MaramaShape theHigestShape = this.findHighestShape(targets); 

   MaramaShape theWidestShape = this.findWidestShape(targets); 

    

   if(this.position == Position.Top || this.position == 

Position.Bottom) 
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   { 

    if(extentionOrientation == Orientation.Vertical) 

    { 

     if(bounds.width < theWidestShape.getWidth()) 

      bounds.width = theWidestShape.getWidth(); 

    } 

    else 

    { 

     if(bounds.width < location.x - bounds.x) 

      bounds.width = location.x - bounds.x; 

    } 

   } 

   else if(this.position == Position.Left || this.position == 

Position.Right) 

   { 

    if(extentionOrientation == Orientation.Vertical) 

    { 

     if(bounds.height < location.y - bounds.y) 

      bounds.height = location.y - bounds.y; 

    } 

    else 

    { 

     if(bounds.height < theHigestShape.getHeight()) 

      bounds.height = theHigestShape.getHeight(); 

    } 

   } 

   else if(this.position == Position.Inner) 

   { 

    if(extentionOrientation == Orientation.Vertical) 

    { 

     if(bounds.width <= theWidestShape.getWidth()) 

      bounds.width = theWidestShape.getWidth() + 

this.source_InnerMargin_Right; 

      

     if(bounds.height <= location.y - bounds.y) 

      bounds.height = location.y - bounds.y + 

this.source_InnerMargin_Bottom; 

    } 

    else 

    { 

     if(bounds.width <= location.x - bounds.x) 

      bounds.width = location.x - bounds.x + 

this.source_InnerMargin_Right; 
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     if(bounds.height <= theHigestShape.getHeight()) 

      bounds.height = theHigestShape.getHeight() + 

this.source_InnerMargin_Bottom; 

    } 

   } 

    

   this.setShapeConstraint(source, bounds); 

  } 

   

  setEnabled(true); 

 } 

  

 // Helpers start 

 private MaramaShape findHighestShape(List<MaramaShape> shapes) 

 { 

  if(shapes == null || shapes.size() == 0) 

   throw new NullPointerException("Parameters"); 

   

  MaramaShape theHighestShape = null; 

   

  for(MaramaShape shape : shapes) 

  { 

   if(theHighestShape == null) 

    theHighestShape = shape; 

   else 

   { 

    if(shape.getHeight() > theHighestShape.getHeight()) 

     theHighestShape = shape; 

   } 

  } 

   

  return theHighestShape; 

 } 

  

 private MaramaShape findWidestShape(List<MaramaShape> shapes) 

 { 

  if(shapes == null || shapes.size() == 0) 

   throw new NullPointerException("Parameters"); 

   

  MaramaShape theWidestShape = null; 

   

  for(MaramaShape shape : shapes) 
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  { 

   if(theWidestShape == null) 

    theWidestShape = shape; 

   else 

   { 

    if(shape.getWidth() > theWidestShape.getWidth()) 

     theWidestShape = shape; 

   } 

  } 

   

  return theWidestShape; 

 } 

 

 private boolean isSourceFull(MaramaShape source) 

 { 

  if(source == null) 

   throw new NullPointerException("Parameters"); 

   

  if(this.isMultiTargetsAllowed) 

  { 

   return false; 

  } 

  else 

  { 

   if(getTargetsBySource(source).size() == 0) 

    return false; 

  } 

   

  return true; 

 } 

  

 @SuppressWarnings("unchecked") 

 private MaramaShape getFirstAvailableSourceByIntersection(MaramaShape target) 

 { 

  if(target == null) 

   throw new NullPointerException("Parameters"); 

   

     List<MaramaShape> shapes = getDiagram().getChildren(); 

      

     for(MaramaShape shape : shapes) 

     { 

      if(shape != target &&  

        isSource(shape) && 
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        !isSourceFull(shape) && 

        shape.getBounds().intersects(target.getBounds())) 

      { 

       return shape; 

      } 

     } 

      

     return null; 

 } 

  

 private MaramaShape getSourceByTarget(MaramaShape target) 

 { 

  if(target == null) 

   throw new NullPointerException("Parameters"); 

   

  MaramaConnection connector = null; 

   

  try  

  { 

   connector = this.getConnectorByTarget(target); 

  }  

  catch (Exception e)  

  { 

   e.printStackTrace(); 

  } 

   

  if(connector != null) 

  { 

   return connector.getSource(); 

  } 

   

  return null; 

 } 

  

 private void addTarget(MaramaShape source, MaramaShape target) 

 { 

  if(source == null || target == null) 

   throw new NullPointerException("Parameters"); 

   

  this.createNewConnection(this.connectorType, source, target); 

 } 

  

 private void removeTarget(MaramaShape source, MaramaShape target) 
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 { 

  if(source == null || target == null) 

   throw new NullPointerException("Parameters"); 

   

  this.deletePositioningConnector(target); 

 } 

  

 @SuppressWarnings("unchecked") 

 private List<MaramaShape> getTargetsBySource(MaramaShape source) 

 { 

  if(source == null) 

   throw new NullPointerException("Parameters"); 

   

  List<MaramaShape> targets = new ArrayList<MaramaShape>(); 

   

  List<MaramaConnection> connections = 

source.getSourceConnections(this.connectorType); 

  for (MaramaConnection connection : connections) 

  { 

   if(isConnector(connection)) 

    targets.add((MaramaShape) connection.getTarget()); 

  } 

 

  return targets; 

 } 

  

 private void assignTargetIndex(MaramaShape container, MaramaShape item) 

 { 

  if(container == null || item == null) 

   throw new NullPointerException("Parameters"); 

   

  if(container.getIndex() > item.getIndex()) 

   item.setIndex(container.getIndex()); 

 } 

  

 private boolean isConnector(MaramaConnection connection) 

 { 

  if(connection == null) 

  { 

   throw new NullPointerException("connection"); 

  } 

   

  if(this.connectorType.equals(connection.getConnectionType()) && 
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    isSource(connection.getSource()) && 

    isTarget(connection.getTarget())) 

  { 

   return true; 

  } 

   

  return false; 

 } 

  

 private void deletePositioningConnector(MaramaShape target) 

 {  

  if(target == null) 

   throw new NullPointerException("Parameters"); 

   

  try  

  { 

   this.deleteConnector(this.getConnectorByTarget(target)); 

  }  

  catch (Exception e)  

  { 

   e.printStackTrace(); 

  } 

 } 

  

 @SuppressWarnings("unchecked") 

 private List<MaramaConnection> getConnectorsBySource(MaramaShape source) 

 { 

  if(source == null) 

   throw new NullPointerException("Parameters"); 

   

  List<MaramaConnection> connectors = new ArrayList<MaramaConnection>(); 

  List<MaramaConnection> connections = 

source.getSourceConnections(this.connectorType); 

   

  for(MaramaConnection connection : connections) 

  { 

   if(isConnector(connection)) connectors.add(connection); 

  } 

   

  return connectors; 

 } 

  

 @SuppressWarnings("unchecked") 
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 private MaramaConnection getConnectorByTarget(MaramaShape target) throws Exception 

 { 

  if(target == null) 

   throw new NullPointerException("Parameters"); 

   

  List<MaramaConnection> connectors = new ArrayList<MaramaConnection>(); 

  List<MaramaConnection> connections = 

target.getTargetConnections(this.connectorType); 

   

  for(MaramaConnection connection : connections) 

  { 

   if(isConnector(connection)) connectors.add(connection); 

  } 

 

  if(connectors.size() == 1) 

   return connectors.get(0); 

   

  if(connectors.size() > 1) 

   throw new Exception("More than one source have been found on the 

target"); 

   

  return null; 

 } 

 // Helpers end 

  

 @Override 

 public MaramaConnection createNewConnection(String type, MaramaShape parent, 

MaramaShape child) 

 { 

  if(this.isExecuting()) 

   return super.createNewConnection(type, parent, child); 

   

  return null; 

 } 

 

 @Override 

 public void deleteConnector(MaramaConnection shape) 

 { 

  if(this.isExecuting()) 

   super.deleteConnector(shape); 

 } 

 

 @Override 
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 public void setShapeConstraint(MaramaShape shape, Rectangle newBounds) 

 { 

  if(this.isExecuting()) 

   super.setShapeConstraint(shape, newBounds); 

 } 

} 
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