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Abstract

Mobile edge computing (MEC) aims to tackle one of the most challenging obstacles in cloud computing

– high and unpredictable latency. By deploying edge servers at cellular base stations, mobile network

operators can offer computing resources at the network edge within users’ close geographic proximity.

Mobile application vendors can rent these computing resources to host their applications and serve their

users with low latency. Apart from the many challenges arisen with the development of MEC that have

been discovered and studied, we have identified a new problem – edge user allocation (EUA). In the

EUA problem, an app vendor needs to allocate its users to edge servers to achieve certain optimization

objectives such as minimizing the computing resource cost, maximizing the number of users allocated

to edge servers, or improving quality of service (QoS), etc. In this thesis, we focus on the formulation

of cost-effective solutions to edge user allocation.

First, we establish the a core foundation for the EUA problem by modeling it as a variable-sized vec-

tor bin packing problem, which aims to maximize the number of users allocated to edge servers while

minimizing the number of edge servers required to serve the allocated users. We propose an optimal ap-

proach to find optimal solutions to this problem using the Lexicographic Goal Programming technique.

Due to its NP-hardness, we propose a heuristic to efficiently solve this NP-hard problem in large-scale

scenarios.

Secondly, based on the foundation established above, where the users’ quality of service is fixed, we

now consider the scenario where an app vendor can flexibly adjust its users’ QoS to maximize user

satisfaction measured by the quality of experience (QoE). We propose an optimal approach to find

optimal solutions and a heuristic to efficiently solve this QoS-aware EUA problem. The experimental

results show a limitation of the proposed heuristic (low QoE when the number of users is very high).

Thus, we attempt to tackle this limitation by formulating this problem as a potential game then solve

it with a decentralized game-theoretical approach that is guaranteed to reach a Nash equilibrium as the

final solution.

In the previous two research problems, users are stationary/static, which could make our work imprac-
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tical in a dynamic scenario where users randomly come and go over time. This leads us to the third

research problem. Here, we consider a time-slotted system. A user can be allocated to either an edge

server or the remote cloud. If the assigned edge server is full, the user will be placed in a waiting

list waiting for service, which incurs an allocation delay cost. We aim to allocate users to maximize

the time-average system benefit measured by the number of allocated users, allocation delay cost, and

cloud latency cost. To solve this problem, we propose an online algorithm based on the Lyapunov op-

timization framework, which is very effective in optimizing a metric in the long term while stabilizing

the system.

Finally, having realized that wireless communication is an integral part of mobile edge computing

and should not be neglected, we attempt to solve the user allocation problem while considering the

key characteristics in wireless communication, namely multi-channel, achievable data rate, and non-

orthogonal multiple access (NOMA), etc. NOMA is an emergent 5G/6G multiple-access technique that

allows multiple users to share the same wireless channel by multiplexing users in the power domain,

enabling the massive connectivity demanded by 5G/6G. We aim to allocate users to proper channels in

edge servers to minimize the system cost, which is measured by computing resource cost and transmit

power cost. To solve this problem, we formulate it as an ordinal potential game then find a Nash

equilibrium with a decentralized game-theoretical approach. Since this is a static scenario where users

are stationary, we extend this problem by investigating a scenario where users come and go over time.

We aim to minimize the long-term system cost while stabilizing users’ overall data rate.

In all four research problems above, a series of rigorous experiments and theoretical analyses have been

conducted against a number of baseline and state-of-the-art approaches to demonstrate the effectiveness

and efficiency of the proposed approaches.
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Chapter 1
Introduction

This thesis investigates the edge user allocation (EUA) problem in mobile edge computing (MEC) – an

emergent distributed computing paradigm that brings computation power to the network edge, closer to

where it is required, to improve end-to-end latency for end-users. We tackle the EUA problem from an

app vendor’s perspective, aiming to help them minimize several types of associated costs when running

their applications and services on edge servers by systematically allocating users to proper edge servers.

This chapter provides an overview of this thesis. We introduce the background, motivation, key research

problems, our major contributions, and the outline of this thesis.

1.1 Research Background and Motivation

Recently, we are observing a rapid growth in mobile and IoT device subscriptions, including smart-

phones, wearables, environmental sensors, self-driving vehicles, etc. This comes with a rich variety and

sophistication of applications and services, such as critical response systems, vital monitoring systems,

facial recognition, interactive VR/AR gaming, ultra-low latency streaming, and so on. They usually

require intensive processing power and large energy capacity, which are not available on thin clients

such as mobile or IoT devices. Traditionally, heavy computation tasks are offloaded to app vendors’

servers in the cloud. Nevertheless, maintaining a low-latency connection to users is a major challenge

for app vendors due to the skyrocketing number of connected devices, the increasing network traffic and

computational load, plus the long distance between users and the cloud, all of which severely defeat the

purpose of time-sensitive applications and services embracing 5G/6G.
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CHAPTER 1. INTRODUCTION 2

Network latency impacts application performance, quality of service (QoS), and user quality of expe-

rience (QoE) significantly. This is one of the main reasons why edge computing, sometimes referred

to as fog computing [1], has emerged to tackle the challenge of high network latency. Mobile edge

computing [2] takes advantage of the highly distributed cellular base station environment. In an MEC

system, numerous edge servers, which provide both processing power [3, 4] and storage [5, 6], are de-

ployed at base stations [7]. App vendors like Uber or Youtube can deploy their apps on edge servers,

which are in closer geographic proximity to their users than the cloud, to remarkably reduce the latency

in accessing those apps [8, 9].

In an MEC system, edge servers are densely distributed. The coverage areas of adjacent edge servers1

usually partially overlap to avoid non-service areas [10,11] – the areas in which users cannot be served

by any edge server. A user located in an overlapping area will be allocated to one of the edge servers

covering them as long as that edge server has sufficient computing and communication resources, e.g.

CPU, RAM, storage, or bandwidth, to serve the user. In a real-world MEC system, there could be

numerous of such overlapping areas due to the dense distribution of base stations (up to 50 per km2

[12]).

The problem of allocating users to suitable edge servers in an MEC system is referred to as an EUA

problem. Compared to a cloud server, a typical edge server comes with constrained computing, storage

and communication resources due to its size limit [13, 14]. Thus, an ineffective user-to-edge-server

allocation may exhaust edge server resources rather quickly, leaving no available resources to serve

more users. Not only do app vendors have to consider the edge server capacity, but they also need to

take into account several factors such as user satisfaction, achievable data rate, edge server operating

costs, etc. Without considering those factors would negatively affect both users and app vendors. On

the user side, users would be less likely to receive a satisfactory service while using the applications or

services provided by the app vendors; for example, low data rate, poor QoS/QoE level, or even unable

to use the services. On the app vendor side, failure to satisfy their users would lead to serious financial

consequences and reputational damages. Furthermore, app vendors must properly manage the rented

resources on edge servers to fully utilize their investments and avoid incurring too much extra business

cost.

Unlike the computation offloading problem which challenges the edge infrastructure providers, e.g.,

AT&T, Vodafone, or T-Mobile, the EUA problem challenges the app vendors who rent computing

1We speak interchangeably of edge servers and base stations. For the sake of consistency, we will hereafter try to use the
term ”edge server” instead of ”base station”. In situations where the communication/networking aspects are discussed, ”base
station” will be used.
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CHAPTER 1. INTRODUCTION 3

resources to serve their own users. The rapid growth of mobile subscriptions promoted by 4G and the

forthcoming 5G/6G, which is predicted to reach 9 billions in 2025 [15], has put a great burden on the

existing infrastructure and made this NP-hard problem even more complicated. The EUA problem has

been gaining a lot of attention [16–34] in recent years since we first introduced it in [11]. In this thesis,

we tackle it from different angles in increasingly sophisticated scenarios, accompanied by extensive

experimental and theoretical evaluation.

1.2 Motivating Scenarios

A representative application that can utilize the benefits of MEC is online virtual-reality (VR) gaming.

This type of applications require a significant amount of compute power for graphics rendering, which

is not available on players’ mobile devices or any other thin clients such as IoT sensors, drones, etc.

Conventionally, mobile devices could offload heavy computation tasks to centralized cloud servers. A

major drawback of this model is the high network latency due to the long distance between the players

and the remote cloud servers. MEC addresses this issue by pushing computing power closer to players

(to be referred to as ”users” hereafter for the sake of consistency with the rest of the thesis). The game

vendor (to be referred to as ”app vendor” hereafter for the sake of consistency with the rest of the thesis)

needs to allocate its users to edge servers, which host applications to process the users’ tasks. Next,

we introduce several examples of the EUA problem in different scenarios. Those motivating scenarios

inspire the four research problems studied in this thesis, which are discussed in Section 1.3.

1.2.1 Scenario 1

Fig. 1.1 illustrates a small example of an MEC system with 3 base stations, each has an edge server,

and 8 users. An edge server can only serve users that are located within the cell coverage area of the

base station hosting the edge server. For example, edge server 1 would not be able to serve any users

other than users 1, 2, and 3. This is referred to as the proximity constraint throughout this thesis. Each

edge server has a limited amount of computing resources, denoted by a vector 〈CPU, RAM, storage,

bandwidth〉. Edge servers have to dedicate different amounts of computing resources to accommodate

different users. For example, serving a user who selects a higher graphics setting (e.g., 4K resolution,

spatial anti-aliasing, etc.) consumes more resources than serving a user with a lower setting (e.g.,

720p resolution, etc.). The total resource requirements of all users allocated to an edge server must

mot exceed the available computing resources of that edge server. This is referred to as the capacity

3
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Figure 1.1: An example of an MEC system (Scenario 1)

constraint. As illustrated in Fig. 1.1, there are five users located within the coverage of edge server 3,

whose aggregated resource requirement is 〈11, 17, 14, 16〉, which exceeds the available resources of

edge server s3 (〈10, 15, 11, 15〉). Thus, the app vendor needs to allocate one or some of those users

to other edge servers. In order to save the cost of operating edge servers, we aim to minimize the

number of edge servers needed to be used and maximize the number of allocated users.

A possible allocation is to allocate users 1 and 2 to server 1, users 4, 5, and 6 to server 2, and users 3,

7, and 8 to server 3. Neither proximity nor resource constraints is violated in this way. However, this

might not be the best solution. A better solution would be to allocate users 2, 4, 5, and 6 to server 2,

and users 1, 3, 7, and 8 to server 3. This allocation does not require edge server 1 at all.

1.2.2 Scenario 2

In Scenario 1, each user is assigned a fixed QoS level (video resolution in this example). Each QoS

level corresponds to an amount of computing resources required by an edge server (represented by a

multi-dimensional vector 〈CPU, RAM, storage, bandwidth〉). In the example in Fig. 1.1, we can see

that there are three possible QoS levels, namely 〈1, 2, 1, 2〉 (720p, assigned to users 1, 2, and 7),

〈2, 3, 3, 4〉 (1080p, assigned to users 4, 6, and 8), and 〈5, 7, 6, 6〉 (1440p. assigned to users 3 and

5). Now, in Scenario 2 (Fig. 1.2), we consider situations where the QoS level of a user can be flexibly

adjusted. Each user can be assigned any of the three possible QoS levels, depending on the app vendor’s

decision. Different QoS levels results in different user QoE levels. Users with higher video resolutions

would have a better experience (higher QoE) than users with lower video resolutions. Beside picking

a QoS level for each user, the app vendor also needs to determine an edge server to serve the user. In

4



CHAPTER 1. INTRODUCTION 5

222

Edge 

server 2

<10,17,15,16>

Edge 

server 1

<4,6,6,10>

Edge 

server 1

<4,6,6,10>

Edge 

server 1

<4,6,6,10>

<4,6,6,10>: <CPU, RAM, storage, bandwidth>

Edge 

server 3

<10,15,11,15>

Edge 

server 3

<10,15,11,15>

Edge 

server 3

<10,15,11,15>

Which server to serve 

User 2 (Edge server 1, 

or Edge server 2)?

<?,?,?,?>
1

3

4

5

6

7

8

<?,?,?,?>

<?,?,?,?>

<?,?,?,?>

<?,?,?,?>

<?,?,?,?>

<?,?,?,?>

<?,?,?,?>

Which QoS level to assign 

to User 2 (<1,2,1,2>, 

<2,3,3,4>, or <5,7,6,6>)?

Figure 1.2: An example of an MEC system (Scenario 2)

this scenario, we aim to maximize the accumulative QoE of allocated users.

To achieve this objective, one would think of assigning the highest QoS level to every user. This,

however, can be very expensive and will exhaust edge servers’ resources quickly, leaving no resources

for other users. Note that the correlation between QoS and QoE is not linear, which further complicates

the EUA problem. For the majority of users, there is no perceptible difference between 1080p and

1440p video resolutions on their mobile devices, or even between 1080p and UHD from a distance

farther than 1.5x the screen height regardless of the screen size [35]. Servicing a high definition video

quality like 1440p or UHD certainly consumes more resources (bandwidth, CPU, and GPU), which

might be unnecessary since most users on their mobile devices are likely to be satisfied with 1080p.

Instead, those resources can be utilized to serve users who are currently unhappy with the service, e.g.

those experiencing poor 240p or 360p graphics, or those not able to use the app at all due to all nearby

edge servers being overloaded. Therefore, the QoS levels of some users can be lowered, potentially

without causing any noticeable QoE downgrade, in order to better service users experiencing low QoS

levels. In this way, the users’ overall satisfaction can be maximized.

1.2.3 Scenario 3

In the previous two scenarios, the temporal dimension is not considered; the app vendor only needs to

allocate a fixed and known set of users. Here, we consider a scenario where users randomly come and

go over time (Fig. 1.3). The operational timeline of this MEC system is represented by a series of time

slots. In each time slot, there is a random number of existing users leave the system and a random of

new users. The app vendor has no knowledge of future user arrivals and departures. As computing

5
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Figure 1.3: An example of an MEC system (Scenario 3)

resources on edge servers are limited, edge servers might be exhausted and cannot serve new users. In

this case, there are two options for each new user: (1) be allocated to an edge server and wait to be

served once one or more existing users leave and released the occupied computing resources, and (2) be

allocated to the remote cloud server to be served straight away as cloud servers typically have abundant

resources. The first option incur a queuing delay cost as the user has to wait for a certain amount of

time until being served. The second option incurs a cloud latency cost as the remote cloud server is

further away from the user than an edge server. We define the throughput benefit as the benefit obtained

from allocating users to edge servers. In this scenario, our objective is to maximize the system cost,

which is measured by the throughput benefit and the costs of queuing delay and cloud latency.

1.2.4 Scenario 4

The communication aspect of MEC has not been incorporated in the previous three scenarios. Commu-

nication is an important component of MEC, along with computation, and thus must not be neglected.

Here in Scenario 4, we start to incorporate several features of a typical wireless communication net-

work. First, we consider uplink transmissions rather than downlink transmissions because uplink is

important for applications that transmits a great amount of data to users. Taking an online VR gaming

application for instance, a user would request an edge server to render game graphics, which cannot be

done on thin clients like mobile devices. The rendered graphics will then be sent back to the user.

Secondly, we incorporate non-orthogonal multiple access (NOMA) – an emergent multi-access tech-

nique that allows multiple users to share wireless channels by multiplexing users in the power domain,

6
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Figure 1.4: An example of an MEC system (Scenario 4)

enabling the massive connectivity demanded by the upcoming 5G/6G era. A base station, which hosts

an edge server, can serve users via multiple communication channels. In the example in Fig. 1.4, each

base station has two channels, Channel 1 and Channel 2. A user could experience intra-cell interference

(caused by users sharing the same channel in the same base station) and inter-cell interference (caused

by users sharing the same channel in neighbor base stations). In NOMA, the transmit power allocated

to a user is dependent on the channel condition of that user. For example, if user 3 is allocated to

channel 1 in base station 2, user 3 would experience the intra-cell interference caused by user 4, and

inter-cell interference caused by those allocated to channel 1 in base station 1. User 4 has better channel

condition than user 3 because of being closer to base station 2 and experience no inter-cell interference.

Therefore, user 3 should be allocated less transmit power than user 3 so that every user can achieve a

target data rate.

From the example above, we can see that the choices of base stations (edge servers), channels, and

transmit powers for all users are all intertwined and must be jointly considered. In this scenario we

aim to minimize the total amount of transmit power allocated to all users. We consider two sub-

scenarios: (1) a static scenario, where the number of users is fixed and time is not considered – similar

to Scenarios 1 and 2, and (2) a dynamic scenario, where users randomly come and go over time – similar

to Scenario 3. In the dynamic scenario, the allocation delay cost (equivalent of the queuing delay cost

in Scenario 3) must also be minimized.
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1.3 Key Research Problems

There are numerous kinds of applications and services in an MEC system, all with a number of unique

and specific characteristics in different scenarios that require investigation. The four motivating scenar-

ios identified in Section 1.2 correspond to the following four research problems:

• Research Problem 1 (Addressing aims of Scenario 1 – Section 1.2.1): The MEC system being

investigated is quasi-static, where users are static, e.g., traffic cameras, smart sensors, or mobile

users who do not move much, etc. The QoS level of each user is fixed. The capacity and proximity

constraints must not be violated. An app vendor needs to allocate as many users to as fewest edge

servers as possible to minimize the cost of renting resources on edge servers.

• Research Problem 2 (Addressing aims of Scenario 2 – Section 1.2.2): The MEC system being

investigated is quasi-static, similar to Research Problem 1. The QoS level of a user can now be

flexibly adjusted. For example, for a video-streaming service, the app vendor can determine the

resolution of the videos being streamed to each user such as 480p, 720p, or 1080p, etc. Each

QoS level is associated with a level of user satisfaction (QoE). An app vendor needs to properly

allocate users to edge servers and select a QoS level for each user so that the total user satisfaction

is maximized while not violating the capacity and proximity constraints.

• Research Problem 3 (Addressing aims of Scenario 3 – Section 1.2.3): The MEC system being

investigated is now dynamic, where users come and go randomly over time. An app vendor

does not know how many and when users would come or go. A user can be allocated to either

an edge server or the remote cloud. If the user is allocated to an edge server whose resources

are exhausted, the user would have to wait in a queue until existing users leave and free up the

occupied resources – this incurs a queuing delay cost. If allocated to the cloud, the user would

not have to wait in a queue as the cloud has an ample amount of resources. However, this incurs a

latency cost since the cloud is much further away from users compared to edge servers. The app

vendor needs to decide where to allocate its users so that the system benefit is maximized. The

system benefit is measured by the throughput benefit (calculated based on the number of users

allocated to edge servers) minus the queuing delay and latency costs.

• Research Problem 4 (Addressing aims of Scenario 4 – Section 1.2.4): Wireless communication

is an integral part of MEC as users are to be connected to base stations, which host edge servers,

through wireless communication. Several key characteristics in wireless communication are in-

corporated, namely multi-channel, interference, achievable data rate, and NOMA. An app vendor

8



CHAPTER 1. INTRODUCTION 9

needs to determine a proper channel in a suitable edge server and a sufficient amount of transmit

power for each user to minimize the system cost, while satisfying several constraints such as

proximity, capacity, user data rate, and base station transmit power constraints. We consider the

following two scenarios:

– Static scenario: In this scenario, users are static (similar to Research Problems 1 and 2),

the system cost consists of transmit power costs.

– Dynamic scenario: In this scenario, users come and go randomly over time (similar

to Research Problem 3). Users allocated to an exhausted edge server will be placed in a

waiting list. This incurs an allocation delay cost, which needs to be minimized along with

the transmit power cost.

Our research started off by a comprehensive literature review of existing research problems in MEC.

Once we had identified a gap in MEC research – edge user allocation, we commenced from a basic

research problem (Research Problem 1) to establish a foundation for the EUA problem. From there, our

research problems and corresponding solutions have kept evolving with more sophisticated scenarios.

The research methods employed to solve each research problem are mathematical modelling and exper-

imental observation. Specifically, we have modelled each research problem as an optimization problem

using integer or mixed-integer programming. To solve each optimization problem, we find and adopt

a suitable mathematical tool, e.g., heuristic, game theory, Lyapunov optimization, etc. Our proposed

approaches are then evaluated both theoretically and experimentally. They are also compared against a

number of baseline and state-of-the-art approaches, if applicable.

1.4 Literature Review

In this chapter, we systematically review and summarize key related works in relation to the four re-

search problems. The chapter is organized as follows. In Section 1.4.1, we review the studies related to

the user allocation problem in general MEC systems. Section 1.4.1.1 reviews existing works that study

cost-effective user allocation strategies (Research Problems 1 and 3). Section 1.4.1.2 reviews existing

works that take into account user QoS and QoE (Research Problem 2). In Section 1.4.2, we review rel-

evant user allocation methods proposed by the works that incorporate wireless communication aspects

in general in MEC systems (Section 1.4.2.1), or NOMA scheme in particular in pure cellular systems

(Section 1.4.2.2) (Research Problem 4).

9
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MEC is a natural extension of cloud computing with regard to the network topology and infrastructure

deployment, where the architecture is more geographically distributed compared to cloud computing.

Compared to the traditional cloud computing paradigm, MEC possesses numerous unique properties,

including wide-spread geographic distribution, a sizeable number of nodes, location awareness, the

predominant role of wireless access, and a strong presence of streaming and real-time applications,

enabling MEC to deliver a new generation of services and applications at the edge of the network. This

new architecture pushes cloud computing resources closer to users. Barcelona in Spain is one of the

first cities implementing MEC with many applications, including power monitoring in public spaces,

event-based video streaming, traffic analysis, and connectivity on-demand [36]. There are more than

3,000 edge servers deployed across the city serving thousands of IoT devices. The sheer number of

edge servers and end-devices, with the horizontal scaling nature of MEC, leads to the need for effective

and efficient solutions to many different research problems faced by app vendors, including the user

allocation problem.

Computation offloading [4, 10, 37] is an important research track in the field of MEC that shares some

similarities with the EUA problem. Nevertheless, those two problems are differentiated by several

essential characteristics. In the computation offloading problem, a user generates a series of compu-

tation tasks, which can be partly executed on its local device and edge servers (partial offloading), or

completely on edge servers or remote clouds (full offloading) [38]. A computation task usually has a

single-dimensional resource requirement (CPU cycles) [4, 10, 39]. On the other hand, in the user allo-

cation problem, an app vendor needs to dedicate multiple types of resources to serve a user on an edge

server [24, 40, 41]. In some works [4, 10], users are assumed to be pre-allocated to edge servers before

proceeding to the task offloading phase. Furthermore, a user in the user allocation problem must be

allocated to a server, either an edge server or a cloud server, instead of being able to partially offload its

computation tasks, or share computation tasks among edge servers.

Cloud task scheduling is also a research topic that shares some similarities with the EUA problem.

Nevertheless, from the app user’s perspective, the virtual machines or clouds in the same data center

share the same reachability while an app user can only access edge servers that cover it. This proximity

constraint is one of the unique characteristics in the MEC system, which has been widely acknowledged

in many other studies of edge computing [10, 16, 24, 29].

10
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1.4.1 User Allocation in general MEC Systems

1.4.1.1 Cost-Effective User Allocation in MEC Systems

In an MEC system, an app vendor can deploy its applications and services on edge servers to serve

their users with minimum latency. From an app vendor’s perspective, the user allocation problem is

the problem of how to allocate its users to proper edge servers so that its optimization objectives are

satisfied. We first introduced the user allocation problem in our previous work [11]. The authors of [42]

study the users-to-cloudlets allocation and cloudlet placement problems in wireless metropolitan net-

works. In their scenario, users are connected to access points, which might or might not have cloudlets,

using a density-based clustering algorithm. The ideology of their proposed algorithm is to let cloudlets

select users; whereas our ideology is to let users select edge server. Predictably, their approach would

fully use all the edge servers, which is contradictory to our objective in Research Problem 1 (Chapter

2) – minimizing the number of required edge servers. The user allocation problem in [43] is more of a

base-stations-to-edge-clouds allocation problem as opposed to our users-to-base-stations (edge servers)

allocation problem. The authors of [44] study the service placement problem that takes into account

user mobility. The users-to-edge-servers allocation is assumed to be already automatically handled by

the edge infrastructure provider. The authors of [45] also tackle the problem of resource allocation

for MEC, which allocates edge servers’ computing resources to multiple competing services owned by

different app vendors. We take the next step and address the user allocation problem, which allocates

the edge server computing resources owned by a single app vendor to its users.

In [46, 47], the authors assume that each small geographical area will be covered by a single edge

server, or each server covers a region exclusively with other servers. This is unlikely to happen in any

practical MEC situations, where different edge servers’ coverage areas might partially overlap to avoid

non-service areas [10, 29]. The authors of [16] consider scenarios where users can move from one

place to another, which require reallocating users among edge servers. Their user allocation approach

aims at maximizing the number of allocated users while minimizing the number of reallocations. This

does not help minimize the number of required servers as required by Research Problem 1. The authors

of [24] propose a game-theoretic user allocation approach that minimizes system costs, measured by the

amount of computing resources needed to serve users and the penalty of having unallocated users. This

approach also indirectly minimizes the number of required edge servers so we have compared it with our

approach in Chapter 2. In [19], the authors follow our work and attempt to solve Research Problem 1 by

using a fruit fly optimization-based algorithm. In [48], a one-user-one-VM (virtual machine) scenario

is addressed. This might be impractical in a MEC system since launching a VM is a time-consuming

11
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process, which defeats the edge computing’s purpose of ensuring a low-latency connection.

In [16, 23], the authors study a dynamic scenario where users come and go overtime – similar to the

scenario in our Research Problem 3 (Chapter 4). They, however, do not consider the user queuing

system like we do. Thus, the user queuing delay cost is not incorporated into the system cost in those

studies. This is also the case for the vast majority of existing researches on the EUA problem. In [49],

the authors assume that an edge server can serve a user outside its coverage via an intermediary server

when that intermediary server is being overloaded in terms of computation capability (but still has

sufficient communication capability to handle the user). In real-world scenarios, this assumption is not

necessarily realistic. Even if it is, it is only applicable to scenarios without many users. In most real-

world scenarios, due to edge servers’ constrained computing resources, it is unlikely for them to serve

their neighbor servers’ users. Most of the time, they will be busy serving their own users (those that

are covered by the edge server itself). This is why we consider a queuing system in Chapter 4. In this

chapter (and Chapter 5), we employ the Lyapunov optimization framework, which has been proven to

be very effective and widely applied when dealing with a time-slotted scenario [4,44,50–52]. Previous

works that employ the standard Lyapunov optimization framework usually assume that each job or

task can be completely executed within the duration of a time slot [4, 10, 52]. We apply the Lyapunov

optimization in a more general situation where a user session can last longer than one time slot, which

could be a few seconds or minutes in a highly stochastic MEC environment.

1.4.1.2 QoS-Aware User Allocation in MEC Systems

QoE management and QoE-aware resource allocation have long been a challenge even before the cloud

computing era [53]. The authors of [54] develop a framework for resource allocation among media

cloud, brokers and mobile social users that maximizes media cloud’s profit and users’ QoE. While the

concept of brokers is similar to edge servers, there are some essential differences. In their work, the

broker is simply a middleware for transferring tasks between the cloud and mobile users. Edge servers,

on the other hand, are capable of processing computation tasks. The authors of [55] study the trade-

off between QoE and system costs of virtual machine provisioning in a centralized video-streaming

cloud environment. In the aforementioned works, QoE is measured by the processing, playback, or

downloading rate. In Chapter 3 (Research Problem 2), we consider a more general scenario where QoE

is measured based on QoS levels, which are represented by the required amount of computing resource.

Relevant QoE-focused problems have started gaining attraction in the field of MEC as well. The authors

of [56] introduce an architecture that integrates resource-intensive computing with mobile applications

12



CHAPTER 1. INTRODUCTION 13

while leveraging MEC. They aim to provide a new line of personalized and QoE-aware applications.

The authors of [57] and [40] solve the application placement problem in the MEC system. In their

works, a user’s QoE is estimated based on three levels (low, medium, and high) of access rate, process-

ing time, and required resources. The user allocation problem that we are dealing with can be regarded

as the next step after application placement. The authors of [58] address the QoE-aware computa-

tion offloading scheduling problem in mobile clouds from a networking perspective, where the energy

consumption of mobile devices and latency must be considered. In contrast, in this thesis, the user al-

location problem is tackled from the app vendor’s perspective, who tries to allocate its own users rather

than dealing with low-level computation tasks.

Besides the aforementioned literature, there are a number of works on user allocation in edge comput-

ing [11, 16, 24, 26, 29]. They, however, do not consider QoE or adjustable QoS like we do in Research

Problem 2, which is a major limitation that severely lowers their performance in the scenario inves-

tigated here. [28] tackles the QoE-aware EUA problem. Nevertheless, it assumes that a user can be

served by multiple edge servers, whereas a user in our problem can only be served by one edge server.

In [18], the authors continue our Research Problem 2 and consider a more detailed QoE model, which

incorporates the distance between users and edge servers. The authors of [17] aim to increase user QoE

in scenarios where a user’s request can be decomposed into multiple tasks to be processed by different

edge servers.

1.4.2 User Allocation in NOMA-based MEC Systems

1.4.2.1 Wireless Communication-Aware User Allocation in MEC Systems

The vast majority of existing works on the EUA problem [11,16,21,24,28–31] do not take into account

various aspects of wireless communication such as multi-channel, inter-cell and intra-cell interference,

transmit power, achievable transmission data rate, etc. As wireless communication is the backbone

of MEC, the aforementioned characteristics should not be neglected in user allocation, which might

hold back the performance of MEC systems. In [25–27], the authors incorporate the communication

aspect of an MEC system that features multiple wireless channels with interference. Nevertheless, they

only consider intra-cell interference, whereas we also consider inter-cell interference, which could be

very severe in a dense real-world 5G/6G networks (up to 50 per km2 [12]), impacting users’ data rates

significantly and thus must not be neglected. Allocating users without considering the communication

aspect fully can be highly uneconomical since app vendors can now access and leverage network data

such as received signal, received power, throughput, neighbor cells, QoS, etc. [59]. Furthermore, none
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of the existing works on EUA considers NOMA, in which interference and power control play an

important role and should not be overlooked as demonstrated in our experiments in Chapter 5.

Realizing the benefits provided by NOMA, researchers are beginning to study several MEC problems

under NOMA settings [60–62]. However, most of them focus on the computing offloading problem,

which is an important problem that shares some similarities with the edge user allocation problem.

Nevertheless, they are distinguished by several essential characteristics as discussed in Section 1.4.1.1.

1.4.2.2 User Allocation in NOMA-based Cellular Networks

The user allocation problem (also often referred to as the user association problem) is a mature and

well-researched problem in conventional cellular networks [63]. However, the introduction of NOMA

has sparked a new wave of research on this problem. The authors of [64] aim to maximize the sum-

throughput in both downlink and uplink NOMA systems. They also demonstrate that NOMA can

achieve a significant throughput gain over the traditional orthogonal multiple access (OMA) scheme.

Inter-cell interference is not yet considered in [64] though. The authors of [65] confirm that carefully

pairing users into channels in NOMA can offer a larger sum rate than OMA. Nevertheless, this work

is limited to only two users per channel. The authors of [66, 67] also impose a limit on the number of

users on a channel. The authors of [68] try to maximize the sum data rate and spectral efficiency in a

multi-cell but single-channel system. The authors of [69, 70] aim to minimize the power consumption

and maximize the spectral efficiency in a multi-channel single-cell NOMA scenario. If applied to a

multi-cell NOMA scenario, the authors would also have to consider the inter-cell interference. The

authors of [71] attempt to increase the energy efficiency in a multi-cell multi-channel NOMA system

by allocating users based on a ranking of channel conditions. The authors of [72] aim to increase

users’ QoE by maximizing users’ data rates, which will consequently result in energy inefficiency. The

authors of [73] also aim to maximize the sum-rate. Whereas in most real-world scenarios, users only

require a specific data rate level to ensure the QoE. From the review of existing studies, we can see that

all the existing approaches will need to be remodeled or redefined when adapting to a new environment

like MEC as they completely neglect the computing side of MEC (the scarcity and heterogeneity of

computing resources on edge servers). Many of them even make unrealistic assumptions, e.g., a limit

on the number of users on each channel [65–67], and single-cell [69, 74] or single-channel [68, 75]

systems. These assumptions reduce the problem complexity but unnecessarily impede the prospects

of NOMA and render their approaches impractical in real-world NOMA-based MEC systems. Our

approach eliminates this limitation by jointly considering both communication and computation aspects
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in an MEC system.

1.5 Overview of the Publications (Chapters) in this Thesis

As this is a PhD by Publication, the body of this thesis consists of eight papers stemmed from the

research conducted as part of this study. They collectively solve the four research problems identified in

Section 1.3. This section provides an overview of the contributions of each paper. Table 1.1 summaries

those papers.

Table 1.1: List of publications resulting from this study

Ref. Venue Acronym Rank2 Published?3 Chapter Research
Problems
(RP)

[11] 16th International Conference
on Service-Oriented Comput-
ing

ICSOC A 2018 Chapter 3.1 RP1

[30] IEEE Transactions on Cloud
Computing

TCC Q1 2020 Chapter 3.2 RP1

[29] 17th International Conference
on Service-Oriented Comput-
ing

ICSOC A 2019 Chapter 4.1 RP2

[31] Future Generation Computer
Systems

FGCS A/Q1 2020 Chapter 4.2 RP2

[32] 40th International Conference
on Distributed Computing
Systems

ICDCS A 2020 Chapter 4.3 RP2

[34] IEEE Transactions on Services
Computing

TSC A*/Q1 2021 Chapter 5 RP3

[33] IEEE Transactions on Mobile
Computing

TMC A*/Q1 2021 Chapter 6.1 RP4

[76] 41th IEEE International Con-
ference on Computer Commu-
nications

INFOCOM A* In Review Chapter 6.2 RP4

Paper [11] addresses Research Problem 1, which is inspired by Motivating Scenario 1 (Section 1.2.1).

Since this is the first work on a new problem in MEC, this paper has received tremendous attention

from the research community, resulting in a series of publications by other researchers addressing the

EUA problems. This paper was also selected as the best research paper at ICSOC 2018. In this paper,

we propose and formally model a new research problem. We aimed to establish a solid foundation for

this EUA problem so we tried to keep it simple and concise instead of covering too many details such

2Measured as of Aug 2021 using CORE Ranking Portal (www.core.edu.au/conference-portal) and Scimago Rankings
(www.scimagojr.com)

3Date of publication if applicable
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as user mobility, bandwidth, delay requirements, security, etc. In paper [30], we propose an effective

and efficient solution to Research Problem 1. This is an extension of [11] so [11] will not be included

this thesis to avoid repetition.

Papers [29, 31, 32] addresses Research Problem 2, which is inspired by Motivating Scenario 2 (Section

1.2.2). Paper [34] addresses Research Problem 3, which is inspired by Motivating Scenario 3 (Section

1.2.3). Paper [33] addresses the static scenario in Research Problem 4, which is inspired by Motivating

Scenario 4 (Section 1.2.4). Paper [76] addresses the dynamic scenario in Research Problem 4, which

is inspired by Motivating Scenario 4 (Section 1.2.4). Those papers mathematically formulate the afore-

mentioned research problems and introduce various solutions that employ different techniques. All the

proposed solutions are theoretically analysed and experimentally demonstrated to outperform a number

of baseline and state-of-the-art approaches.

1.6 Thesis Organization

In this section, we provide an overview of the thesis along with our key contributions, and a literature

review of existing work in relation to the four identified research problems. We point out a number

of major limitations of the related work that make them impractical to the problems we are studying.

Chapters 2, 3, 4, and 5 solve the four research problems discussed in Section 1.3. Those four chapters

comprise of eight publications (summarized in Table 1.1) resulting from our study as this is thesis by

publication. In Chapter 6, we conclude this thesis and discuss the future research directions. Appendix

A contains the authorship statements for all the publications used as part of this thesis.
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Chapter 2
Cost-Effective User Allocation in

Mobile Edge Computing Systems

In this chapter, we establish a foundation for the EUA problem by addressing the scenario where users

are static, e.g., traffic cameras, smart sensors, mobile users who do not move much, etc. An app

vendor needs to allocate as many users to as fewest edge servers as possible to maximize user QoS and

minimize the cost of renting resources on edge servers. We model the EUA problem as a variable-sized

vector bin packing problem, which is an NP-hard problem, and propose an optimal approach to find

optimal solutions to this problem using Lexicographic Goal Programming technique. To address the

biggest drawback of this optimal approach – computational complexity, we propose an effective and

efficient heuristic to solve this problem in large-scale scenarios. We evaluate this heuristic by a series

of experiments against the optimal approach, two baseline approaches, two state-of-the-art edge user

allocation approaches, and several representative approximation algorithms for solving the VSVBP

problem. The proposed heuristic is demonstrated to be highly efficient and more effective than all other

non-optimal approaches in comparison, being able to allocate the highest number of users using fewest

edge servers in most experimental settings.

This chapter is presented in the form of our published paper [30] as P. Lai, Q. He, J. Grundy, F. Chen, M.

Abdelrazek, J. Hosking, J. Grundy, and Y. Yang, “Cost-effective app user allocation in an edge comput-

ing environment,” IEEE Transactions on Cloud Computing, pp. 1–1, 2020, doi: 10.1109/TCC.2020.3001570.

©2021 IEEE. Reprinted, with permission, from IEEE Transactions on Cloud Computing. This journal

paper is an extension of our published conference paper [11] P. Lai, Q. He, M. Abdelrazek, F. Chen,

17



CHAPTER 2. COST-EFFECTIVE USER ALLOCATION IN MOBILE EDGE COMPUTING SYSTEMS 18

J. Hosking, J. Grundy, and Y. Yang, ”Optimal edge user allocation in edge computing with variable

sized vector bin packing,” in Proceedings of International Conference on Service-Oriented Computing.

Springer, 2018, pp. 230-245. Note that several sections in the paper included below have been re-

moved or slightly modified to reduce repeated content that has appeared else where in this thesis. For

a full, unedited version, please refer to the original paper itself.
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Cost-Effective App User Allocation in an Edge
Computing Environment

Phu Lai, Qiang He, John Grundy, Feifei Chen, Mohamed Abdelrazek, John Hosking, and Yun Yang

Abstract—Edge computing is a new distributed computing paradigm extending the cloud computing paradigm, offering much lower
end-to-end latency, as real-time, latency-sensitive applications can now be deployed on edge servers that are much closer to
end-users than distant cloud servers. In edge computing, edge user allocation (EUA) is a critical problem for any app vendors, who
need to determine which edge servers will serve which users. This is to satisfy application-specific optimization objectives, e.g.,
maximizing users’ overall quality of experience, minimizing system costs, and so on. In this paper, we focus on the cost-effectiveness of
user allocation solutions with two optimization objectives. The primary one is to maximize the number of users allocated to edge
servers. The secondary one is to minimize the number of required edge servers, which subsequently reduces the operating costs for
app vendors. We first model this problem as a bin packing problem and introduce an approach for finding optimal solutions. However,
finding optimal solutions to the NP-hard EUA problem in large-scale scenarios is intractable. Thus, we propose a heuristic to efficiently
find sub-optimal solutions to large-scale EUA problems. Extensive experiments conducted on real-world data demonstrate that our
heuristic can solve the EUA problem effectively and efficiently, outperforming the state-of-the-art and baseline approaches.

Index Terms—Edge computing, fog computing, user allocation, optimization, resource allocation

F

1 INTRODUCTION

Several introductory paragraphs have been removed to
reduce repetition in this thesis. Please refer to the original
paper online for a full, unedited version.

IN a mobile edge computing (MEC) environment, a num-
ber of edge servers are deployed by edge infrastructure

providers like AT&T or Vodafone in a distributed fashion
(usually near cellular base stations [2]) so that they can
cover different geographical areas. Users within an edge
server’s coverage can connect to the edge server via LTE,
4G, or 5G [3]. Edge infrastructure providers are responsible
for ensuring a low latency connection to users. A user’s
latency requirement is assumed to be satisfied as long as
the user is allocated to an edge server. The coverage areas
of adjacent edge servers usually partially overlap to avoid
non-service areas – areas that are not covered by any edge
server [1], [4]. A user located in the overlapping area can
connect to one of the edge servers covering them (proximity
constraint) that has sufficient computing resources (capacity
constraint) such as CPU, storage, bandwidth, or memory.
Note that from the app vendor’s perspective, they need
to ensure that the resources hired on an edge server will
suffice to accommodate their users allocated to that edge
server during the allocation process. How much of the hired
resources will be used is dependent on the users at runtime.

This is an extended and revised version of a preliminary conference paper that
was presented in ICSOC 2018 [1].

• P. Lai, Q. He, and Y. Yang are with the School of Software and Electrical
Engineering, Swinburne University of Technology, 3122, Australia. E-
mail: tlai, qhe, yyang@swin.edu.au.

• J. Grundy is with the School of Information Technology, Monash Univer-
sity, 3168, Australia. E-mail: john.grundy@monash.edu.

• F. Chen and M. Abdelrazek are with the School of Information Technol-
ogy, Deakin University, 3125, Australia. E-mail: mohamed.abdelrazek,
feifei.chen@deakin.edu.au.

• J. Hosking is with the School of Science, University of Auckland, Auck-
land, New Zealand. E-mail: j.hosking@auckland.ac.nz.

Compared to a cloud data center, a typical edge server has
very limited computing resources [5], [6], which leads to the
need for an effective resource allocation strategy.

Edge servers’ capacities, current workloads, coverage,
proximity to users, and the number of users to allocate can
be obtained or calculated at runtime. Due to the limited
resources of the edge servers, an edge server might not be
able to serve all the users within its coverage. Since some
of the users might also be located in other edge servers’
coverage, an app vendor can allocate them to those edge
servers to share the workload with the overloaded servers.
Due to the aforementioned constraints, there might be some
users that cannot be assigned to any edge server. Those
users will be connected directly to a remote cloud server,
which is not desirable. Therefore, the optimization objective
here is to maximize the number of users allocated to edge
servers, which ensures the QoS from the app vendor’s
perspective. In the meantime, the number of edge servers
required to serve those users (or the number of active edge
servers) needs to be minimized. This will ensure the cost-
effectiveness of the allocation by cutting down the app
vendor’s costs of hiring edge servers to serve their app
users [1], [7] and improving the resource utilization on edge
servers [7], [8]. In fact, minimizing the number of required
servers is one of the key objectives in the server consoli-
dation problem in cloud computing [9], [10]. In this paper,
we study quasi-static scenarios where users are relatively
static, not roaming across edge servers quickly [4], [7], [11],
[12], e.g., surveillance cameras, traffic sensors, mobile, or IoT
users who stay in one location.

The above problem is referred to as an edge user allo-
cation (EUA) problem [1], [7], [13], [14]. This problem has
been modeled as a bin packing problem and proven to
be NP-hard in our previous work [1]. As demonstrated
in [1], the EUA problem is extremely computationally ex-
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2

pensive to solve optimally in a large-scale scenario due to
the dense distribution and limited computing resources of
edge servers. It takes up to 23 seconds to find an optimal
solution when there are just around 512 users and 125
edge servers, which is unacceptable for applications or
services that require real-time or near real-time decision
making. Therefore, we introduce Most Capacity First (MCF),
a heuristic approach for efficiently finding a sub-optimal
solution to the EUA problem. Note that the EUA problem
has a number of variants with different assumptions and
objectives, depending on specific applications and services.
For example, [13] aims to maximize the number of allocated
users and minimize the number of user reallocations when
dealing with user mobility; [7] aims to maximize the number
of allocated users with minimum system costs; and [14] aims
to maximize users’ overall quality of experience (QoE). The
main contributions of this paper include:

• In our previous work [1], we formally model the
EUA problem as a variable-sized vector bin packing
(VSVBP) problem, which is NP-hard. We then op-
timally solve this problem using the Lexicographic
Goal Programming (LGP) technique.

• Due to the NP-hardness of the problem, finding
an optimal solution is intractable in a scenario that
involves a great number of users and edge servers. To
effectively deal with the high complexity, this paper
proposes MCF – a heuristic approach for finding a
sub-optimal EUA solution efficiently.

• Extensive evaluations are conducted on a real-world
dataset to demonstrate the effectiveness and effi-
ciency of the proposed approaches. The results show
that our approaches outperform the state-of-the-art
and baseline approaches.

The remainder of the paper is organized as follows.
Section 2 motivates this research with an example. Section 3
introduces the VSVBP problem, based on which we formu-
late the EUA problem in Section 4. Section 5 presents our
LGP-based and heuristic approaches for solving the EUA
problem, which are evaluated in Section 6. Section 7 reviews
the related work and Section 8 concludes this paper.

2 MOTIVATING EXAMPLE

A representative application that can leverage the low la-
tency provided by edge computing is large-scale cloud gam-
ing [15] - the fastest growing gaming model [16]. This model
has made many online game platforms, such as Hatch1 and
Sony PlayStation Now2, more accessible to thin-client mo-
bile players since the resource-expensive game application
instances are running on powerful servers in the remote
cloud. Let us consider an increasingly popular virtual re-
ality game, which requires a great amount of computing
power for graphics rendering. The centralized cloud model
allows mobile devices to offload heavy computation tasks
to the servers in the cloud. However, this approach often
introduces significant network delays because of the long
distance between the players and the remote cloud servers.

1. www.hatch.live/
2. www.playstation.com/en-gb/explore/playstation-now/
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Fig. 1: Example edge computing environment

Therefore, pushing computing power closer to players with
edge computing is a promising solution to this problem.

Fig. 1 shows a small example of an MEC environment
with 8 players u1, ..., u8 and 3 edge servers, s1, ..., s3.
Each edge server covers a particular geographical area
and has a specific amount of computing resources (CPU,
RAM, storage, and bandwidth). An edge server can only
serve players within its coverage (proximity constraints).
For example, player u1 can be allocated to either edge
server s1 or s3 only. Edge server s2 cannot serve player
u1 since player u1 is outside its coverage area. In an
edge computing environment, the computing resources of
an edge server, such as CPU, RAM, bandwidth, etc., are
usually shared by multiple users. Thus, in addition to
the proximity constraints, the game vendor needs to take
into account various capacity constraints, i.e., whether the
available computing resources on an edge server suffice
to serve the players allocated to it. In Fig. 1, each edge
server has a limited amount of computing resources, de-
noted as a vector 〈CPU,RAM, storage, bandwidth〉. Differ-
ent players might require different amounts of computing
resources. For instance, edge servers that serve players
who select higher graphics settings (4K graphics quality,
spatial anti-aliasing, etc.) consume more resources to fa-
cilitate high-quality graphics rendering. The total resource
requirements of players allocated to an edge server must
not exceed the available computing resources on that edge
server. There are five players located within the coverage
of edge server s3, whose aggregated resource requirement
is 〈11, 17, 14, 16〉, which exceeds the available resources of
server s3 (〈10, 15, 11, 15〉). Thus, the game vendor needs to
allocate some of those players to other edge servers. The
objective is to allocate as many players to as few edge
servers as possible.

A possible solution to the EUA problem in Fig. 1 is to
allocate player u1 to server s1, players u2, u3, u4, and u6
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to server s2, and players u7, and u8 to server s3. Player
u4 cannot be allocated to server s2 since the server is
already serving other players and no longer has sufficient
resources to serve player u4. Neither proximity nor resource
constraints are violated in this way. However, this is not
the optimal solution in terms of QoS or cost-effectiveness
since only seven out of eight players are allocated to edge
servers, and all three edge servers are required. A better
solution would be to allocate players u2, u4, u5, and u6 to
server s2, and players u1, u3, u7, and u8 to server s3. This
allocation allows all eight users to be served by edge servers;
furthermore, it does not require edge server s1 at all.

Finding an optimal solution to the EUA problem is not
trivial, especially in a large-scale scenario with numerous
users covered by numerous edge servers. Fig. 1 is a very
small-scale example. In a real-world EUA scenario, there
would be many more players (or app users in general)
and edge servers, resulting in a much larger solution space
for the EUA problem. Assuming that there are n users
and m edge servers, the solution space may consist of up
to mn possible solutions. Thus, an effective and efficient
user allocation approach is needed for app vendors in such
scenarios.

3 BACKGROUND

Definition 1. Classic Bin Packing (BP) Problem. Given an
infinite supply of identical bins S = {s1, s2, ...} with capacity C
and a set of n items U = {u1, u2, ..., un}. Let a value wj be the
size of item uj that satisfies 0 < wj ≤ C , ∀uj ∈ U . The objective
is to pack as many items as possible into the bins such that the
total item size in each bin must not exceed the bin capacity C :∑

uj∈Usi wj ≤ C, ∀si ∈ S, where Usi is the set of items placed
in bin si.

The only constraint in the classic BP problem is that the
total size of the items packed into a bin must not exceed
the capacity of the bin. This combinatorial optimization
problem is known to be an NP-hard problem [17].

Definition 2. Variable-Sized Bin Packing (VSBP) Prob-
lem. Given a limited collection of k bin sizes such that 1 =
size(B1) > size(B2) > ... > size(Bk) > 0, there is an
infinite supply of bins for each bin type Bl, where l = 1, ..., k.
Let S = {s1, s2, ..., sm} be the list of bins needed for packing all
items. Given a list of n items U = {u1, u2, ..., un}, each with
item size wj ∈ (0, 1], where j = 1, ..., n, the aim of the VSBP
problem is to pack all items into bins so that the total size of items
in each bin must not exceed the bin capacity, and the total size of
the required bins

∑
si∈S size(si) is the minimum.

In the classic BP problem, all bins are homogeneous with
the same bin capacity. VSBP is a more general variant of
the classic BP in which a limited collection of bin sizes is
allowed. VSBP aims at minimizing the total size of the bins
used, which is different compared to the aim of the classic
BP problem.

Definition 3. Vector Bin Packing (VBP) Problem. Given
a set of n items U = {u1, u2, ..., un}, the size of item uj ∈ U
is denoted as d-dimensional vector wj = 〈w1

j , w
2
j , ..., w

d
j 〉, where

wj ∈ [0, 1]d. One is given an infinite supply of identical bins
S = {s1, s2, ...} with capacity C = 〈11, 12, ..., 1d〉. The aim is
to pack the set U into a minimum number of bins si ∈ S such

that ‖∑uj∈Usi wj‖∞ ≤ 1,∀si ∈ S , where Usi is the set of all
items packed in bin si.

In the classic BP problem, the size of an item is presented
as a single aggregation measure. In contrast, the size of
an item in the VBP problem is associated with a multi-
dimensional vector. The aim remains similar, in which the
sum of packed item size vectors must not exceed the bin
capacity vector in each dimension, which is normalized to 1
without loss of generality. The VBP problem is also known
as the multi-capacity BP problem in some literature [18],
[19].

EUA Problem. In the EUA problem, each edge server
corresponds to a bin with its available computing resources
being the bin capacity. An app user corresponds to an item,
whose computing resource requirement corresponds to the
size of that item.

In this paper, we tackle the EUA problem from the app
vendor’s perspective. Since different users require various
amounts of different computing resources [7], [20], [21],
the amount of computing resources required by a user
should be presented as a d−dimensional vector where each
dimension represents a resource type (CPU, RAM, storage,
etc.) instead of a single aggregate measure. This is also
applied to the amount of computing resources available on
edge servers. Therefore, the EUA problem can be modeled
as a mixture of the VSBP problem and the VBP problem,
hence being a variable-sized vector bin packing (VSVBP)
problem. The EUA problem is NP-hard since the classic
BP problem, which is NP-hard [17], is a special case of
the VSVBP problem where all bins’ sizes and all resources’
requirement of users are identical.

4 PROBLEM FORMULATION

Given a number of app users belong to a single app vendor
using the same application, our objective is to maximize
the total number of allocated app users and minimize the
number of edge servers required to serve those users. We
first introduce the relevant notations used in our model in
Table 1. In the EUA problem, every user covered by any
edge server must be allocated to an edge server unless all the
servers accessible to the user have reached their maximum
capacities. If a user cannot be allocated to any edge servers
or is not positioned within the coverage of any edge servers,
they will be directly connected to the app vendor’s central
cloud server.
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TABLE 1: Notations

Notation Description
S = {s1, s2, ..., sm} a finite set of edge server si, where i =

1, 2, ...,m.
D = {CPU,RAM,
storage, bandwidth}

a set of computing resource types.

Ci = 〈C1
i , C

2
i , ..., C

d
i 〉 the capacity of an edge server si. Ci is a

d−dimensional vector with each dimen-
sion Ck

i , k = 1, ..., d, representing the
available amount of resource type k ∈ D
on edge server si.

U = {u1, u2, ..., un} a finite set of user uj , where j = 1, 2, ..., n.
wj = 〈w1

j , w
2
j , ..., w

d
j 〉 d−dimensional vector representing the

computing resource requirement of user
uj . Each vector component wk

j , k =
1, ..., d represents the amount of resource
type k needed by user uj on an edge
server.

Usi ⊂ U a set of users allocated to edge server si.
Suj ⊂ S a set of user uj ’s neighbor edge servers,

i.e., edge servers that have user uj in their
coverage areas.

cov(si) the coverage of edge server si.

In the classic BP problem, an item can be placed in any
bin as long as the bin has sufficient remaining capacity.
However, in our problem, each edge server covers a limited
geographical region. Thus, an item (user) can only be placed
in one of several specific bins (edge servers). A user uj can
be allocated to an edge server si only if it is located in server
si’s coverage area:

uj ∈ cov(si),∀uj ∈ U ;∀si ∈ S (1)

and the total resource requirements of all users allocated
to an edge server must not exceed its available comput-
ing resources (Constraint (2)). Otherwise, the server will
be overloaded, causing service disruptions or performance
degradation. Take Fig. 1 for instance, the aggregated re-
source requirements of users u1, u2, and u3 are 〈7, 11, 8, 10〉,
which are greater than the available computing resources of
edge server s1 (〈4, 6, 6, 10〉). Thus, allocating all those three
users to this edge server violates the capacity constraint.

∑

uj∈Usi

wj � Ci,∀si ∈ S (2)

Our primary objective is to maximize the number of
users allocated to edge servers, which ensures the quality
of service from the app vendor’s perspective:

maximize
∑

si∈S
|Usi | (3)

Our secondary objective is to find a users-to-edge-
servers allocation such that the number of required edge
servers is minimum:

minimize

∣∣∣∣{si ∈ S
∣∣ ∑

uj∈Usi

wj > 0}
∣∣∣∣ (4)

5 APPROACHES

5.1 Lexicographic Goal Programming-based Approach
In this paper, we address the EUA problem with two op-
timization objectives: 1) maximizing the number of allocated

users and 2) minimizing the number of required edge servers,
while satisfying the proximity constraint and capacity con-
straint. Accordingly, we solve the EUA problem with the
LGP-based technique [22]. With the LGP technique, multiple
optimization objectives are ranked by their levels of impor-
tance, or priorities. The problem solver will attempt to find
an optimal solution that satisfies the primary objective and
then proceed to find a solution for the next objective without
deteriorating the previous objective(s). An LGP program can
be solved as a series of connected linear programs. The LGP
formulation of the EUA problem is as follows:

maximize
n∑

j=1

m∑

i=1

xij (5)

minimize
m∑

i=1

yi (6)

subject to: xij = 0 ∀i, j ∈ {i, j|uj /∈ cov(si)}
(7)

n∑

j=1

wk
j xij ≤ Ck

i yi ∀i ∈ {1, ...,m};∀k ∈ {1, ..., d}

(8)
m∑

i=1

xij ≤ 1 ∀j ∈ {1, ..., n} (9)

xij ∈ {0, 1} ∀i ∈ {1, ...,m};∀j ∈ {1, ..., n}
(10)

yi ∈ {0, 1} ∀i ∈ {1, ...,m} (11)

xij and yi are binary indicator variables such that

xij =

{
1, if user uj is allocated to edge server si.
0, otherwise.

yi =

{
1, if edge server si is used to serve users.
0, otherwise.

Objective (5) maximizes the number of app users allo-
cated to edge servers. Objective (6) minimizes the number
of edge servers required to serve allocated users. Here,
objective (5) is prioritized over objective (6). There are two
groups of binary variables, i.e., xij (10) and yi (11).

Proximity constraint (7): An edge server cannot serve
users who are located outside its coverage area. An app user
may be in the overlapping coverage area of multiple edge
servers. For instance, user u1 can be allocated to either edge
server s1 or s3 in Fig. 1.

Capacity constraint (8): Each edge server si has an
available resource capacity of Ci = 〈C1

i , C
2
i , ..., C

d
i 〉, a d-

dimensional vector. The aggregated resource requirements
of each resource type of all users allocated to an edge
server must not exceed its available capacity. Take Fig. 1
for example, allocating users u1 and u2 to server s1 is valid
since 〈2, 4, 2, 4〉 � 〈4, 6, 6, 10〉.

Constraint family (9) ensures that every app user is
allocated to at most one edge server. In other words, a user
can be allocated to either an edge server or the app vendor’s
remote cloud server.

We can find an optimal solution to a small-scale instance
of the EUA problem above with an Integer Programming
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solver, e.g., Gurobi3 or IBM ILOG CPLEX4. In our experi-
ments, we use IBM ILOG CPLEX Optimizer solver V12.8.0
(ilog.cplex5 package in Java).

5.2 Most-Capacity-First Heuristic
Due to theNP-hardness of the problem, finding an optimal
solution will take a very long time in large-scale scenarios.
This will be demonstrated in our experimental results pre-
sented in Section 6. Thus, to help app vendors allocate their
users in large-scale scenarios, this section proposes MCF
(MOST CAPACITY FIRST), an effective and efficient heuristic
for finding a near-optimal solution to the EUA problem.

Heuristic 1 Most Capacity First (MCF)

1: initialization:
2: a set of edge servers S and a set of users U
3: all users uj ,∀uj ∈ U , are unallocated
4: end initialization
5: sort U in ascending order of computing resource require-

ments (i.e., low-demanding users are prioritized, being
the first to be allocated)

6: for each user uj ∈ U do
7: Suj

, user uj ’s neighbor edge servers;
8: Sactiveuj

, user uj ’s active neighbor edge servers;
9: if Sactiveuj

6= ∅ then
10: allocate user uj to an edge server si ∈ Sactiveuj

which has the most available capacity
11: else
12: allocate user uj to an edge server si ∈ Suj which

has the most available capacity
13: end if
14: if si cannot be decided then
15: allocate user uj to the central cloud server
16: end if
17: end for

Given a set of edge servers S and a set of users U (lines 1-
4), MCF efficiently and effectively allocates an app vendor’s
users to edge servers. Initially, all users are unallocated.
In order to maximize the number of users allocated, MCF
first sorts the set of users U in ascending order of users’
computing resource requirements (line 5). The computing
resource requirement of a user is a multi-dimensional vector
with each component being a resource type. Since different
resource types (CPU, RAM, storage, or bandwidth) have
different scales, we can sort the computing resource require-
ments by normalizing all resource types’ requirements by
maximum norm (assuming all resource types are equally
important), then calculate the Euclidean norm over those
resource types. App vendors can also apply other methods
[23] as they see fit to sort users or servers by the amount of
computing resources.

Next, MCF allocates users one by one (lines 6-14) in the
order of their appearance in the list U sorted above. Since the
list of users has been sorted in ascending order of resource

3. www.gurobi.com/
4. www.ibm.com/analytics/cplex-optimizer/
5. www.ibm.com/support/knowledgecenter/SSSA5P 12.8.0/

ilog.odms.cplex.help/refjavacplex/html/ilog/cplex/package-
summary.html

requirements, users who have lower requirements will be
allocated before users who have higher requirements. This
helps maximize the number of users allocated because al-
locating high-demanding users first would exhaust edge
servers’ resources rather quickly. For each user, MCF re-
trieves the set of its neighbor edge servers (servers that have
the user in their proximity - line 7) and the set of its active
neighbor edge servers (servers that have already been used
to serve users, or are serving users - line 8). To minimize the
number of required edge servers, MCF attempts to allocate
the user to one of the active servers first (line 9), instead
of using a new edge server. Out of all active edge servers,
one with the most available capacity will be chosen to serve
the user (line 10). In this way, it will be most likely to have
sufficient capacity to accommodate other users later on. If
there is no current active server (line 11), MCF will allocate
the user to the neighbor edge server which has the most
available capacity (line 12). Note that allocating a user to an
edge server must not violate the capacity constraint in any
case. If all neighbor edge servers of the user have reached
their capacity, the user will be directly connected to the
app vendor’s central cloud server (lines 14-16), which is not
desirable. MCF completes once all users have been attended
to.

Time Complexity Analysis. As discussed at the end of
Section 3, the EUA problem is NP-hard. It is intractable
to find optimal solutions to large-scale EUA scenarios that
involve a large number of app users and/or edge servers.
MCF is a practical option in such scenarios for its high
efficiency. Here, we analyze the worst-case time complexity
of the proposed heuristic (MCF - Heuristic 1). The running
time of MCF consists of: 1) iterating through all n users
(Line 6), which costs O(n), and 2) sorting a maximum of m
edge servers to identify the edge server that has the most
available capacity (Line 10 or 12), which costs O(m log(m)).
Therefore, the time complexity of this block (Lines 7-13)
is O(nm log(m)), which is generally more complex than
Line 5. Hence, the overall time complexity of MCF is
O(nm log(m)). Note that m is the worst-case scenario; in
practice, each user is covered by a much smaller number of
edge servers or base stations (i.e., 32 base stations in theory
as specified by ETSI [24], or 15 base stations according
to the dataset used in our experiments in Section 6). As
experimentally demonstrated in Section 6.3.2, the running
time of MCF is around 1-2 ms in all scenarios.

Given the low running time of MCF, app vendors are
able to continuously run it to react to user movement since it
allocates app users one-by-one to edge servers. Specifically,
when a user moves out of the coverage area of the edge
server serving it, it will be disconnected from the edge
server; the occupied computing resources on that edge
server will be released; then MCF will consider it as a new
user and allocate it to a new edge server following the rules
defined in Heuristic 1, Lines 6-14. This is possible as long
as switching users from one edge server to another does
not incur extra costs, or if the extra costs are trivial. Such
extra costs may include the migration cost (e.g., the cost of
moving user data across edge servers) or reconfiguration
cost (e.g., some services might require reconfiguration to
serve new users) [25]. In some use cases, those extra costs
could be fairly trivial. Take video streaming for example
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[26], where videos encoded with different resolutions are
cached on edge servers so that a user can access them with
low latency. Switching the user across edge servers would
only require a small amount of data to be transferred, e.g.,
which video the user is watching, the resolution of the
video, and the position in the video where the user left
off. For applications and services where the extra costs are
considerable, the new costs will need to be modeled and
integrated into the objective functions. The heuristic will
thus need to be modified accordingly.

6 EXPERIMENTAL EVALUATION

We have performed a series of experiments on a real-world
dataset to evaluate the performance of our approaches
against other baseline and state-of-the-art approaches.

6.1 Performance Benchmark
Our LGP-based approach (Section 5.1), referred to as Opti-
mal hereafter, and MCF heuristic (Section 5.2) are compared
to four representative approaches, namely a Greedy base-
line, a Random baseline, and two state-of-the-art approaches
for solving the EUA problem:

• Greedy: This approach allocates each user to the edge
server with the most available capacity, regardless of
the server’s active status. Users are allocated in no
particular order.

• Random: This approach allocates each user to a ran-
dom edge server available. Users are allocated in no
particular order.

• ICSOC19: [14] proposes two approaches to solve
the user allocation problem so that the total users’
QoE is maximized. The QoS level, or the computing
resource requirement, of each user can be flexibly
adjusted. We solve a slightly different problem where
each user has a fixed QoS level. Their proposed
Integer Programming-based approach will be used
in our experimental evaluation.

• TPDS20: [7] proposes a game-theoretic approach to
solve the user allocation problem with the objective
of maximizing the number of allocated users and
minimizing system costs, measured by the amount
of computing resources needed to serve users and
the penalty of having unallocated users.

ICSOC19 and TPDS20 are chosen as the benchmark
state-of-the-art approaches as they solve the same problem
as ours – user allocation, and their objectives indirectly
imply the maximization of the number of allocated users.
TPDS20 also implies the minimization of the number of
required edge servers. All experiments are written in Java
and conducted on a Windows machine equipped with Intel
Core i5-7400T processor (4 CPUs, 2.4GHz) and 8GB RAM.

6.2 Experimental Settings
The experiments are conducted on the EUA dataset6 [1],
which contains the geographical locations of end-users and

6. www.github.com/swinedge/eua-dataset

all cellular base stations in Australia. This dataset was also
used in [14] and [7] to evaluate ICSOC19 and TPDS20.

Edge servers: To capture the characteristics of a 5G envi-
ronment [27], we simulate a highly dense urban area of 1.8
km2 covered by 125 base stations, each equipped with an
edge server. The coverage radius of each edge server is ran-
domly generated within 100-150m. The initial capacities of
edge servers are randomly generated by following a normal
distribution N (µ, σ2), where µ is the average capacity of
each resource type in D, and the standard deviation σ = 10
for all conducted experiments. Since a normal distribution
might contain negative numbers, any negative amount of
computing resources generated is rounded up to 1.

Edge users: We assume that there are three
possible types of resource requirements, wj ∈
{〈1, 2, 1, 2〉, 〈2, 3, 3, 4〉, 〈5, 7, 6, 6〉}, ∀uj ∈ U , and
D = {CPU,RAM, storage, bandwidth}. The computing
resource requirement of each user is uniformly
randomly selected. We select those three resource
requirement levels as representative in our experiments
since we have conducted experiments with other
types of resource requirement settings, where the
difference between resource requirements is large
(e.g., {〈1, 1, 1, 1〉, 〈4, 5, 6, 6〉, 〈7, 9, 10, 7〉}), or where the
resource requirements are identical, or skewed (e.g.,
{〈3, 2, 3, 2〉, 〈2, 3, 2, 3〉, 〈1, 2, 1, 3〉}), which all returned
similar results (almost identical, or just marginally
different).

To comprehensively analyze the performance of our
approaches in various EUA scenarios, we conduct a series
of experiments with different varying parameters, including
the number of users, the number of edge servers, and edge
servers’ capacities (µ as defined above). Table 2 summarizes
the settings of the experiments, which will be discussed in
the next section. Each experiment is repeated 100 times to
obtain 100 different user distributions, and the results are
then averaged. This allows extreme cases, such as overly
dense or sparse user/server distributions, to be neutralized.
To evaluate the performance of the approaches in achiev-
ing the optimization objective, we compare the number
of allocated users and required edge servers achieved by
the six approaches, and also the average number of users
allocated per required edge server. The efficiency will also
be evaluated by the CPU time taken to solve the problem.

TABLE 2: Experimental Settings

Users Edge servers Available resources (µ)
Set #1 100, ..., 1000 50% 35
Set #2 500 10%, ..., 100% 35
Set #3 500 50% 30, 35, ..., 75

6.3 Experimental Results
Figs. 2, 3, and 4 demonstrate the effectiveness of all the
approaches in experiment Sets #1, #2, and #3, respectively, in
terms of 1) the percentage of users allocated, the higher the
better (in sub-figures (c)), 2) the percentage of edge servers
needed to serve those users, the lower the better (in sub-
figures (b)), and 3) we additionally measure the average
number of users allocated per required edge server, the
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(a) Number of users vs. Average
number of users per required edge
server

(b) Number of users vs. Percentage
of edge servers required

(c) Number of users vs. Percentage
of users allocated

Fig. 2: Experimental results of experiment Set #1 (varying number of users)

(a) Number of edge servers vs. Av-
erage number of users per required
sdge server

(b) Number of edge servers vs. Per-
centage of edge servers required

(c) Number of edge servers vs. Per-
centage of users allocated

Fig. 3: Experimental results of experiment Set #2 (varying number of edge servers)

(a) Edge server capacity vs. Average
number of users per required edge
server

(b) Edge server capacity vs. Percent-
age of edge servers required

(c) Edge server capacity vs. Percent-
age of users allocated

Fig. 4: Experimental results of experiment Set #3 (varying edge server’ capacity)

higher the better (in sub-figures (a)). In general, Optimal, be-
ing the LGP-based approach for finding optimal solutions,
clearly achieves the best performance compared to all other
approaches across all experiments – being able to allocate
the most number of users to the fewest number of edge
servers. This comes at the cost of its very high computational
overhead and it is thus inapplicable in large-scale scenarios,
where low latency is critical. MCF outperforms all other
baseline and state-of-the-art approaches. The efficiency of
MCF is demonstrated in Figs. 5 and 6, measured by its
computation time.

6.3.1 Effectiveness
Experiment Set #1. In this set of experiments, the num-
ber of users varies from 100 to 1,000 in steps of 100.
The number of edge servers is fixed at 50% of all edge
servers in the simulated area. In Fig. 2a, as the number of
users increases, the average number of users allocated per
required edge server achieved by Optimal also increases,
closely followed by MCF. While the average number of
users per required edge server achieved by Optimal and
MCF increases linearly, the performance of the other four
approaches starts to plateau at some point, e.g., 600 users in
our experiments. This depicts the ineffectiveness of the other
approaches in large-scale scenarios with a great number of
users. With regard to the number of edge servers required
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(Fig. 2b), the approaches are divided into two groups based
on their performance. The first group, which includes IC-
SOC19, Greedy, and Random, requires far more edge servers
than the second group, which consists of Optimal, MCF,
and TPDS20. Optimal requires the fewest number of edge
servers, followed by MCF, then TPDS20. From 600 users
onwards, every approach requires 100% number of edge
servers since there is a large number of users now. Thus,
all available computing resources need to be utilized. Fig.
2c shows the percentage of users allocated. We can observe
a decreasing trend here. Since the amount of computing
resources is fixed, introducing more users will increase the
number of users who cannot be allocated to any edge server.
From 100 to 500 users, MCF allocates slightly fewer users
than Greedy and ICSOC19. However, in those cases, Greedy
and ICSOC19 require far more edge servers to serve those
users, which results in a lower average number of users
per required server in general as shown in Fig. 2a. Other
than those cases, MCF allocates considerably more users
than Greedy, Random, ICSOC19, and TPDS20. ICSOC19
performs poorly (almost as bad as Greedy and Random)
because it aims to maximize all users’ overall QoE, which
in turn needs to consume as much computing resources as
possible, hence a high number of required edge servers.
In the meantime, ICSOC19 is also very computationally
expensive since it aims to find the optimal solution to an
NP-hard problem. Its low effectiveness and low efficiency
can be observed in other experiment sets as well. While
being suitable for maximizing users’ overall QoE, we can
see that ICSOC19 is not effective in minimizing the number
or required edge servers.

Experiment Set #2. In this experiment set, we vary the
number of edge servers available to serve users, from 10% to
100% in steps of 10% (Fig. 3). As more edge servers become
available, more computing resources are available to serve
users, which eventually increases the number of allocated
users (Fig. 3c). In this aspect, the difference between all
the approaches is marginal. However, when it comes to the
number of edge servers needed (Fig. 3b), Optimal, MCF,
and TPDS20 significantly outperform other approaches, re-
quiring much fewer edge servers to serve users. ICSOC19,
Greedy, and Random require almost all edge servers in all
settings. Meanwhile, the percentage of edge servers required
by Optimal, MCF, and TPDS20 rapidly decreases as the
number of available edge servers increases. This demon-
strates the effectiveness of those approaches in utilizing the
given resources. Overall, the average number of allocated
users per required server (Fig. 3a) is higher for Optimal
and MCF (closely followed by TPDS20 from 40% onwards).
Greedy, Random, and ICSOC19 fail to utilize the increasing
number of edge servers, hence the downward trend. In
some cases (20% - 40% for Optimal, 20% - 60% for MCF),
the average number of allocated users per required edge
server decreases because the cost of using edge servers (the
number of required edge servers) outweighs the benefit of
serving more users. Regardless, Optimal and MCF still beat
other approaches.

Experiment Set #3. In this experiment set, we vary
the amount of average available computing resources on
each server. Similar to experiment Set #2, increasing edge
servers’ capacities eventually increases the total number of

allocated users (Fig. 4c) and the average number of allocated
users per required server (Fig. 4a). It also generates more
room for resource utilization. In Fig. 4b, Optimal, MCF, and
TPDS20 demonstrate the ability to utilize the given com-
puting resources by the decreasing percentage of required
edge servers. MCF, again, requires fewer edge servers than
TPDS20. When µ is increasing, the capacity of each edge
server becomes increasingly redundant, rendering an in-
creasing number of “unnecessary” edge servers, hence the
decrease in the percentage of required edge servers.

6.3.2 Efficiency
Fig. 5 depicts the efficiency of all the approaches, measured
by the average CPU execution time taken to solve an in-
stance of the EUA problem. Optimal is the most inefficient
approach that might take up to 50 seconds to find an optimal
user allocation solution. The elapsed CPU time of Optimal
increases considerably as we increase the size of the EUA
problem by adding more users (Set #1, Fig. 5a), more edge
servers (Set #2, Fig. 5b), and more edge server capacity
(Set #3, Fig. 5c). When it reaches a threshold, the elapsed
CPU time of Optimal decreases at a slower rate than it
increases. This threshold is determined by the number of
users to be allocated and the amount of computing resources
(available edge server capacity or available edge servers).
To be specific, in Fig. 5a, the CPU time starts to decrease
at 500 users. This happens because when the number of
users exceeds 500, a newly generated user tends to be
positioned at the exact location of an existing user. Thus,
the IBM CPLEX solver can base its decisions to be made for
the new user on the decisions made for the existing user.
As a result, we can see the elapsed CPU time is almost
symmetrical around that threshold (500 users). In Figs. 5b
and 5c, the elapsed CPU time decreases from 80% of the
total number of edge servers and from µ = 45 onward,
respectively. This occurs because after those thresholds, the
whole MEC system is likely to have sufficient computing
resources to serve a greater number of users without having
to consider many other possible allocation solutions, hence
less time required to decide an optimal solution.

Due to the extreme inefficiency of Optimal and ICSOC19,
Fig. 5 does not fully demonstrate the efficiency of other
approaches. Therefore, Optimal and ICSOC19 have been
excluded in Fig. 6 so that the efficiency of other approaches
can be visualized better. In all experiment sets (Figs. 6a, 6b,
and 6c), TPDS20 is two to three orders of magnitude slower
than other approaches, and its execution time increases
roughly linearly with the increases in any experimental
parameters. The rationale of this lies in the algorithm design
of TPDS20, which is an iterative mechanism that might
involve hundreds of iterations depending on the scale of
the problem. MCF, on the other hand, only takes around 1-2
ms to solve the problem in any experimental setting. This
demonstrates the scalability of MCF.

Generally speaking, MCF has been demonstrated to be
highly effective and efficient, outperforming all the baseline
and state-of-the-art approaches. TPDS20, while being suit-
able for solving that particular problem studied in [7], is
not suitable when it comes to solving the EUA problem in-
troduced in this paper. After all, game-theoretic approaches
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(a) Elapsed CPU time vs. Number of
users (Set #1)

(b) Elapsed CPU time vs. Number of
edge servers (Set #2)

(c) Elapsed CPU time vs. Edge
server capacity (Set #3)

Fig. 5: CPU time consumption in experiment Sets #1, #2, and #3

(a) Elapsed CPU time vs. Number of
users (Set #1)

(b) Elapsed CPU time vs. Number of
edge servers (Set #2)

(c) Elapsed CPU time vs. Edge
server capacity (Set #3)

Fig. 6: CPU time consumption in experiment Sets #1, #2, and #3 without Optimal and ICSOC19

have not been seen in the current literature as a method for
solving the bin packing problem.

6.3.3 Statistical Analysis
In this paper, each experiment is repeated 100 times to
obtain 100 different random user distributions. To determine
whether the approaches in comparison (Optimal, MCF,
Greedy, Random, ICSOC19, and TPDS20) are really dif-
ferent when applied to all possible user distributions (of
the relevant size), we perform one-sided Wilcoxon signed-
rank tests [28] with a significance level of 0.01 on all
three experiment sets. The detailed statistical results can be
found in Appendix A of the supplemental file. In summary,
the Wilcoxon signed-rank tests indicate that the difference
between the effectiveness of MCF and other baseline ap-
proaches under the majority of experimental settings are
statistically significant at the α = 0.01 level. The statistical
results are in line with the experimental results discussed
above. With regard to the efficiency, the execution time of
MCF is consistent at around 1-2 ms so we do not perform a
statistical test for that.

6.4 Threats to Validity
This section has been removed since there is no close con-
nection with the context of the thesis. Please refer to the
original paper online for a full, unedited version.

7 RELATED WORK

Edge computing is a natural extension of cloud computing
with regard to the network topology and infrastructure

deployment, where the architecture is more geographically
distributed compared to cloud computing. This new archi-
tecture pushes cloud computing resources closer to end-
users. Barcelona in Spain is one of the first cities imple-
menting edge computing with many applications, includ-
ing power monitoring in public spaces, event-based video
streaming, traffic analysis, and connectivity on-demand [29].
There are more than 3,000 edge servers deployed across the
city serving thousands of IoT devices. The sheer number
of edge servers and end-devices, with the horizontal scaling
nature of edge computing, leads to the need for effective and
efficient solutions to many different research problems faced
by app vendors, including the user allocation problem.

7.1 User Allocation
The literature review has been removed to reduce repetition
in this thesis. Please refer to the original paper online for a
full, unedited version.

7.2 Bin Packing
Bin Packing is a classic combinatorial NP-hard optimiza-
tion problem widely applied in different disciplines such
as operation research, or computer science (multiprocessor
scheduling [30], cloud task and resource allocation [31],
[32]). There are many variations of this problem, e.g., pack-
ing by weight or by cost [33], multi-dimensional BP [34],
dynamic BP [35], and a lot more variants with different
modified conditions, constraints, and assumptions to model
different problems. The latest attempt at exactly solving the
BP problem involves constraint programming. Shaw [36]
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proposes a new dedicated constraint based on a set of prun-
ing and propagation rules, which is later on implemented
in IBM CPLEX [37], which is the tool used in this paper to
search for optimal solutions to EUA problems.

Along with exact algorithms, various approximation
algorithms have also been introduced to solve different
variants of the classic BP problem. Most of the proposed
approximation algorithms are designed for different special
cases or variants of the classic BP problem, such as splittable,
small items (relative to the size of a bin) [38], variable-sized
items with identical bins [23], minimizing the total used bins
load with only two bin sizes [39]. Surveys on approximation
algorithms for BP problems can be found in [37], [40]. BP is
a straightforward problem so any improvement in online
solutions would require a special assumption as mentioned
above. The authors of [41] state that the theoretical analysis
of variable-sized BP remains open even in the case of only
three different bin sizes. In an MEC environment, edge
servers are most likely to have more than three differ-
ent sizes (capacities). Therefore, to properly evaluate our
approaches, we also compare our approaches with some
representative approximation algorithms for solving the BP
problem [41], including First Fit, First Fit Decreasing, First
Fit Increasing, Best Fit, Best Fit Decreasing, Best Fit Increas-
ing (Fig. 7). Next Fit and Next Fit Decreasing are not suitable
for the EUA problem since it allows only one open bin at all
times. Our proposed MCF is essentially a variant of Worst
Fit Increasing, which prioritizes already-active edge servers
and is adapted to multi-dimensional computing resource
requirements.

As demonstrated by Figs. 7a and 7c, the increasing vari-
ants, which allocate users with low resource requirements
first, outperform other approaches, especially the decreasing
variants. This highlights the importance of the order of
users being allocated. In all experimental settings, especially
Set #2 (Fig. 7b), MCF outperforms all other approaches in
comparison. More experimental results and statistical tests
can be found in Appendix B of the supplemental file. [42]
models the machine reassignment problem also as a VSVBP
problem. Its proposed heuristic is a generalization of First
Fit Decreasing and Best Fit Decreasing, which have been
shown above to be not suitable for the EUA problem.

8 CONCLUSION AND FUTURE WORK

Further complementing the conventional cloud computing,
edge computing is a promising distributed computing ar-
chitecture that is expected to deliver many new genres
of services and applications, especially those that require
low-latency connection and real-time decision making. This
comes with many new challenges of which user allocation
is one of them. When an edge computing environment
scales up, this problem becomes intractable to solve in an
efficient manner due to its NP-hardness. Therefore, we
propose MCF (Most Capacity First) – a simple yet highly
effective and efficient heuristic, to solve the user allocation
in large-scale scenarios, aiming to allocate as many users to
as few edge servers as possible. Our experiments on a real-
world dataset demonstrate the performance of our approach
against the baseline and state-of-the-art approaches.

The future work has been removed to reduce repetition
in this thesis. Please refer to the original paper online for a
full, unedited version.
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Mobility-agnostic online resource allocation for edge computing,”
IEEE Transactions on Mobile Computing, vol. 18, no. 8, pp. 1843–
1856, 2018.

[26] C. Liang, Y. He, F. R. Yu, and N. Zhao, “Enhancing video rate
adaptation with mobile edge computing and caching in software-
defined mobile networks,” IEEE Transactions on Wireless Communi-
cations, vol. 17, no. 10, pp. 7013–7026, 2018.

[27] W. H. Chin, Z. Fan, and R. Haines, “Emerging technologies and
research challenges for 5G wireless networks,” IEEE Wireless Com-
munications, vol. 21, no. 2, pp. 106–112, 2014.

[28] D. J. Sheskin, Handbook of parametric and nonparametric statistical
procedures. CRC Press, 2003.

[29] M. Yannuzzi, F. van Lingen, A. Jain, O. L. Parellada, M. M. Flores,
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APPENDIX A
STATISTICAL ANALYSIS

In this section, we present the results of the one-sided
Wilcoxon signed-rank tests [1] conducted on all three exper-
iment sets (Tables 1, 2, and 3). The accepted hypotheses that
MCF outperforms the other approaches with a significance
level of 0.01 are highlighted in bold text. Tables 1, 2, and
3 clearly validate that the difference between the effective-
ness of MCF and other baseline approaches are statistically
significant under the majority of experimental settings.

APPENDIX B
EXPERIMENTAL RESULTS OF SEVERAL CLASSIC AL-
GORITHMS FOR SOLVING THE BIN PACKING PROB-
LEM

In this section, we show the experimental results of MCF
against other classic algorithms for solving the bin packing
problem in all experiments sets in Figs. 1, 2, and 3. In Set
#1, MCF, FirstFitIncreasing, and BestFitIncreasing clearly
outperform other approaches. In Sets #2 and #3, MCF out-
performs the rest, being able to serve more user using much
fewer edge servers under almost all experimental settings.

We also present the results of the one-sided Wilcoxon
signed-rank tests [1] conducted on all three experiment sets
(Tables 4, 5, and 6). The accepted hypotheses that MCF
outperforms the other classic algorithms for solving the bin
packing problem with a significance level of 0.01 are high-
lighted in bold text. Tables 4, 5, and 6 clearly validate that
the difference between the effectiveness of MCF and other
approaches are statistically significant under the majority of
experimental settings.
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p-value corresponding to each experimental parameter (number of users)
100 200 300 400 500 600 700 800 900 1,000
Metric: number of users per server (Fig. 3a in main manuscript)

MCF vs. Optimal 1 1 1 1 1 1 1 1 1 1
MCF vs. Greedy < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. Random < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. ICSOC19 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. TPDS20 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 .006 < .001< .001< .001

Metric: required server percentage (Fig. 3b in main manuscript)
MCF vs. Optimal 1 1 1 1 .007 < .001< .001< .001 .475 1 1 1
MCF vs. Greedy < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. Random < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. ICSOC19 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. TPDS20 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 .037 .011 < .001< .001< .001 .012 .006 < .001< .001< .001

Metric: allocated users percentage (Fig. 3c in main manuscript)
MCF vs. Optimal 1 1 1 1 1 1 1 1 1 1
MCF vs. Greedy 1 1 < .001< .001< .001 1 .992 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. Random .612 .940 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. ICSOC19 1 1 < .001< .001< .001 1 1 .986 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. TPDS20 .423 .007 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

TABLE 1: Statistical results of MCF vs. baseline approaches in experiment Set #1 (varying number of users) with a
significance level of 0.01

p-value corresponding to each experimental parameter (number of edge servers)
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Metric: number of users per server (Fig. 4a in main manuscript)

MCF vs. Optimal 1 1 1 1 1 1 1 1 1 1
MCF vs. Greedy < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. Random < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. ICSOC19 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 .843 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. TPDS20 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

Metric: required server percentage (Fig. 4b in main manuscript)
MCF vs. Optimal .500 .013 .010 .004 .059 1 .475 1 1 1
MCF vs. Greedy .159 .004 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. Random .159 .004 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. ICSOC19 .159 .004 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. TPDS20 .500 .029 .010 .052 < .001< .001< .001 .004 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

Metric: allocated users percentage (Fig. 4c in main manuscript)
MCF vs. Optimal 1 1 1 1 1 1 1 1 1 1
MCF vs. Greedy < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 1 1 < .001< .001< .001 1 1 < .001< .001< .001
MCF vs. Random < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 .985 .995 < .001< .001< .001
MCF vs. ICSOC19 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 1 1 < .001< .001< .001 1 1 < .001< .001< .001
MCF vs. TPDS20 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

TABLE 2: Statistical results of MCF vs. baseline approaches in experiment Set #2 (varying number of edge servers) with a
significance level of 0.01

p-value corresponding to each experimental parameter (average edge server capacity)
30 35 40 45 50 55 60 65 70 75
Metric: number of users per server (Fig. 5a in main manuscript)

MCF vs. Optimal 1 1 1 1 1 1 1 1 1 1
MCF vs. Greedy < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. Random < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. ICSOC19 < .001< .001< .001 .697 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. TPDS20 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

Metric: required server percentage (Fig. 5b in main manuscript)
MCF vs. Optimal < .001< .001< .001 .018 1 1 1 1 1 1 1 1
MCF vs. Greedy < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. Random < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. ICSOC19 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. TPDS20 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

Metric: allocated users percentage (Fig. 5c in main manuscript)
MCF vs. Optimal 1 1 1 1 1 1 1 1 1 1
MCF vs. Greedy < .001< .001< .001 1 1 1 1 1 1 1 1 1
MCF vs. Random < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 .111 .032 .020 .020 < .001< .001< .001
MCF vs. ICSOC19 1 1 1 1 1 1 1 1 1 1
MCF vs. TPDS20 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

TABLE 3: Statistical results of MCF vs. baseline approaches in experiment Set #3 (varying number of edge servers’ capacity)
with a significance level of 0.01
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Fig. 1: Experimental results of experiment Set #1 (varying number of users) for several classic approximation algorithms
for the bin packing problem
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Fig. 2: Experimental results of experiment Set #2 (varying number of edge servers) for several classic approximation
algorithms for the bin packing problem
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Fig. 3: Experimental results of experiment Set #3 (varying edge servers’ capacity) for several classic approximation
algorithms for the bin packing problem
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4

p-value corresponding to each experimental parameter (number of users)
100 200 300 400 500 600 700 800 900 1000
Metric: number of users per server (Fig. 1a)

MCF vs. FirstFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 .564 1 1 1 1
MCF vs. BestFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

Metric: required server percentage (Fig. 1b)
MCF vs. FirstFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 .004 .002 .120 .037 < .001< .001< .001
MCF vs. BestFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 .004 .021 < .001< .001< .001
MCF vs. BestFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 .138 .005 < .001< .001< .001

Metric: allocated users percentage (Fig. 1c)
MCF vs. FirstFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitIncreasing .002 .116 .998 1 1 1 1 1 1 1
MCF vs. BestFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

TABLE 4: Statistical results of MCF vs. several classic approximation algorithms for the bin packing problem in experiment
Set #1 (varying number of users) with a significance level of 0.01

p-value corresponding to each experimental parameter (number of edge servers)
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Metric: number of users per server (Fig. 2a)

MCF vs. FirstFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

Metric: required server percentage (Fig. 2b)
MCF vs. FirstFit .159 .004 .001 .002 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitDecreasing .159 .004 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitIncreasing .921 .013 .002 .006 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFit .159 .004 .002 .171 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitDecreasing .159 .004 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitIncreasing .718 .128 .010 .013 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

Metric: allocated users percentage (Fig. 2c)
MCF vs. FirstFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

TABLE 5: Statistical results of MCF vs. several classic approximation algorithms for the bin packing problem in experiment
Set #2 (varying number of edge servers) with a significance level of 0.01

CHAPTER 2. COST-EFFECTIVE USER ALLOCATION IN MOBILE EDGE COMPUTING SYSTEMS 33

33



5

p-value corresponding to each experimental parameter (average edge server capacity)
30 35 40 45 50 55 60 65 70 75
Metric: number of users per server (Fig. 3a)

MCF vs. FirstFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

Metric: required server percentage (Fig. 3b)
MCF vs. FirstFit .002 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

Metric: allocated users percentage (Fig. 3c)
MCF vs. FirstFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. FirstFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFit < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitDecreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001
MCF vs. BestFitIncreasing < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001 < .001< .001< .001

TABLE 6: Statistical results of MCF vs. several classic approximation algorithms for the bin packing problem in experiment
Set #3 (varying edge servers’ capacity) with a significance level of 0.01
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Chapter 3
Quality of Service-Aware User

Allocation in Mobile Edge Computing

Systems

In Research Problem 1, the QoS level of each user is fixed. In this chapter , we investigate the scenario

where the QoS level of a user can be flexibly adjusted. For example, for a video-streaming service, the

app vendor can determine the resolution of the videos being streamed to each user such as 360p, 480p,

720p, 1080p, or 1440p, etc. Each QoS level is associated with a level of user satisfaction (measured by

QoE). The app vendor aims to allocate users to edge servers and select a QoS for each user so that the

total user satisfaction is maximized.

3.1 An Integer Programming-based Approach and A Greedy Heuristic

Approach

We define and model the QoS-aware EUA problem and prove its NP-hardness. To find optimal solu-

tions, we formulate this problem as an integer linear programming problem and employ IBM ILOG

CPLEX Optimizer to solve it. Being NP-hard, it is non-trivial to solve this problem in large-scale sce-

narios. Thus, we propose an efficient greedy heuristic. The proposed optimal and heuristic approaches

are then experimentally evaluated against a baseline and a state-of-the-art approach. Predictably, the

optimal approach is very inefficient and impractical in most real-world situations. The heuristic sig-
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nificantly outperforms the other two approaches in most experimental settings. When the numbers of

users are large, the total user QoE produced by the heuristic is lower than the other approaches. This

has motivated us to come up with a more effective solution, which is discussed in the next section.

This section is presented in the form of our published paper [29] as P. Lai, Q. He, G. Cui, X. Xia, M.

Abdelrazek, F. Chen, J. Hosking, J. Grundy, Y. Yang, ”Edge user allocation with dynamic quality of

service,” in Proceedings of International Conference on Service-Oriented Computing, Springer, 2019,

pp. 86–101. Note that several sections in the paper included below have been removed or slightly

modified to reduce repeated content that has appeared else where in this thesis. For a full, unedited

version, please refer to the original paper itself.
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Abstract. In edge computing, edge servers are placed in close proximity
to end-users. App vendors can deploy their services on edge servers to
reduce network latency experienced by their app users. The edge user
allocation (EUA) problem challenges service providers with the objective
to maximize the number of allocated app users with hired computing
resources on edge servers while ensuring their fixed quality of service
(QoS), e.g., the amount of computing resources allocated to an app user.
In this paper, we take a step forward to consider dynamic QoS levels for
app users, which generalizes but further complicates the EUA problem,
turning it into a dynamic QoS EUA problem. This enables flexible levels
of quality of experience (QoE) for app users. We propose an Integer-
Programming based approach for finding a solution that maximizes app
users’ overall QoE. We also propose a heuristic approach for quickly
finding sub-optimal solutions to large-scale instances of the dynamic QoS
EUA problem. Experiments are conducted on a real-world dataset to
demonstrate the effectiveness and efficiency of our approaches against a
baseline approach and the state of the art.

Keywords: Resource allocation · Edge computing · Quality of Service
· Quality of Experience · User allocation

1 Introduction

Several introductory paragraphs have been removed to reduce repetition in this
thesis. Please refer to the original paper online for a full, unedited version.

Naturally, edge computing is immensely dynamic and heterogeneous. Users
using the same service have various computing needs and thus require different
levels of quality of service (QoS), or computational requirements, ranging from
low to high. Tasks with high complexity, e.g. high-definition graphic rendering,
eventually consume more computing resources in an edge server. A user’s satis-
faction, or quality of experience (QoE), varies along with different levels of QoS.
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Many researchers have found that there is a quantitative correlation between
QoS and QoE, as visualized in Fig. 1 [2, 5, 12]. At one point, e.g. W3, the user
satisfaction tends to converge so that the QoE remains virtually unchanged at
the highest level regardless of how high the QoS level is.
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Fig. 1: Quality of Experience - Quality of Service correlation

Consider a typical game streaming service for example, gaming video frames
are rendered on the game vendor’s servers then streamed to player’s devices.
For the majority of players, there is no perceptible difference between 1080p and
1440p video resolution on a mobile device, or even between 1080p and UHD
from a distance farther than 1.5x the screen height regardless of the screen
size [13]. Servicing a 1440p or UHD video certainly consumes more resources
(bandwidth, processing power), which might be unnecessary since most players
are likely to be satisfied with 1080p in those cases. Instead, those resources can
be utilized to serve players who are currently unhappy with the service, e.g. those
experiencing poor 240p or 360p graphic, or those not able to play at all due to
all nearby servers being overloaded. Therefore, the app vendor can lower the
QoS requirements of high demanding users, potentially without any remarkable
downgrade in their QoE, in order to better service users experiencing low QoS
levels. This way, app vendors can maximize users’ overall satisfaction measured
by their overall QoE. In this context, our research aims at allocating app users
to edge servers so that their overall QoE is maximized.

We refer to the above problem as a dynamic QoS edge user allocation (EUA)
problem. Despite being critical in edge computing, this problem has not been
extensively studied. Our main contributions are as follows:

– We define and model the dynamic QoS EUA problem, and prove its NP-
hardness.

– We propose an Integer Programming-based approach based on integer pro-
gramming (IP) for solving the dynamic QoS EUA and develop a heuristic
approach for finding sub-optimal solutions to large-scale instances of the
problem efficiently.
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Edge User Allocation with Dynamic Quality of Service 3

– Extensive evaluations based on a real-world dataset are carried out to demon-
strate the effectiveness and efficiency of our approaches against a baseline
approach and the state of the art.

The remainder of the paper is organized as follows. Section 2 provides a mo-
tivating example for this research. Section 3.1 defines the dynamic QoS problem
and proves that it is NP-hard. We then propose an IP-based approach to find
optimal solutions and an efficient sub-optimal heuristic approach in Sect. 4. Sec-
tion 5 evaluates the proposed approaches. Section 6 reviews the related work.
Finally, we conclude the paper in Sect. 7.

2 Motivating Example

Edge server

Edge user

Coverage

s1 <9,15,12,10>

 u1 

<16,9,10,13>: <CPU, RAM, 

Storage, Bandwidth>

s2 <6,9,10,13>
s4 <6,9,7,8>

s4 <3,5,5,8>

 u10 

 u3 

 u4 

 u2  u6 

 u5 

 u9 

 u7  u8 

Fig. 2: Dynamic QoS EUA example scenario

Using the game streaming example in Sect. 1, let us consider a simple scenario
shown in Fig. 2. There are ten players u1, ..., u10, and four edge server s1, ..., s4.
Each edge server has a particular amount of different types of available resources
ready to fulfill users’ requests. A server’s resource capacity or player’s resource
demand are denoted as a vector 〈CPU,RAM, storage, bandwidth〉. The game
vendor can allocate its users to nearby edge servers and assign a QoS level to each
of them. In this example, there are three QoS levels for the game vendor to choose
from, namely W1,W2 and W3 (Fig. 1), which consume 〈1, 2, 1, 2〉, 〈2, 3, 3, 4〉, and
〈5, 7, 6, 6〉 units of 〈CPU,RAM, storage, bandwidth〉, respectively. Players’ cor-
responding QoE, measured based on Eq. 3, are 1.6, 4.09, and 4.99, respectively.
If the server’s available resources are not limited then all players will be able to
enjoy the highest QoS level. However, a typical edge server has relatively limited
resources so not everyone will be assigned W3. The game provider needs to find
a player - server - QoS allocation so that the overall user satisfaction, i.e. QoE,
is maximized.
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4 P. Lai et al.

Let us assume server s2 has already reached its capacity and cannot serve
anymore players. As a result, player u8 needs to be allocated to server s4 along
with player u7. If player u8 is assigned the highest QoS level W3, the remaining
resources on server s4 will suffice to serve player u7 with QoS level W1. The
resulting total QoE of those two players is 1.6 + 4.99 = 6.59. However, we can
see that the released resources from the downgrade from W3 to W2 allows an
upgrade from W1 to W2. If players u7 and u8 both receive QoS level W1, players’
overall QoE is 4.09 + 4.09 = 8.18, greater than the previous solution.

The scale of the dynamic QoS EUA problem in the real-world scenarios can
of course be significantly larger than this example. Therefore, it is not always
possible to find an optimal solution in a timely manner, hence the need for an
efficient yet effective approach for finding a near-optimal solution to this prob-
lem efficiently.

3 Problem Formulation

3.1 Problem Definition

This section defines the dynamic QoS EUA problem. Table 1 summarizes the
notations and definitions used in this paper. Given a finite set of m edge servers
S = {s1, s2, ..., sm}, and n users U = {u1, u2, ..., un} in a particular area, we aim
to allocate users to edge servers so that the total user satisfaction, i.e. QoE, is
maximized. In the EUA problem, every user covered by edge servers must be
allocated to an edge server unless all the servers accessible for the user have
reached their maximum resource capacity. If a user cannot be allocated to any
edge servers, or is not positioned within the coverage of any edge servers, they
will be directly connected to the app vendor’s central cloud server.
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Table 1: Key Notations
Notation Description

S = {s1, s2, ..., sm} finite set of edge server sj , where j = 1, 2, ...,m

D = {CPU,RAM,
storage, bandwidth}

a set of computing resource dimension

cj = 〈c1j , c2j , ..., cdj 〉 d−dimensional vector with each dimension ckj being a resource
type, such as CPU or storage, representing the available re-
sources of an edge server sj , k ∈ D

U = {u1, u2, ..., un} finite set of user ui, where i = 1, 2, ..., n

W = {W1,W2, ...,Wq} a set of predefined resource level Wl, where l = 1, 2, ..., q. A
higher resource level requires more resource than a lower one
Wl < Wl+1. We will also refer to a resource level as a QoS
level.

wi = 〈w1
i , w

2
i , ..., w

d
i 〉 d−dimensional vector representing the resource amount de-

manded by user ui. Each vector component wk
i is a resource

type, k ∈ D. Each user can be assigned a resource level
wi ∈W

U(sj) set of users allocated to server sj , U(sj) ⊆ U
S(ui) set of user ui’s candidate servers – edge servers that cover

user ui, S(ui) ⊆ S
sui edge server assigned to serve user ui, sui ∈ S
cov(sj) coverage radius of server sj

A user ui can only be allocated to an edge server sj if they are located within
sj ’s coverage area cov(sj). We denote Sui

as the set of all user ui’s candidate
edge servers – those that cover user ui. Take Fig. 2 for example, users u3 and u4
can be served by servers s1, s2, or s3. Server s1 can serve users u1, u3, u4, and u5
as long as it has adequate resources.

ui ∈ cov(sj),∀ui ∈ U ;∀sj ∈ S (1)

If a user ui is allocated to an edge server, they will be assigned a specific
amount of computing resources wi = (wdi ), where each dimension d ∈ D repre-
sents a type of resource, e.g. CPU, RAM, storage, or bandwidth. wi is selected
from a predetermined setW of q resource levels, ranging from low to high. Each
of those resource levels corresponds to a QoS level. The total resources assigned
to all users allocated to an edge server must not exceed the available resources on
that edge server. The available computing resources on an edge server sj , sj ∈ S
are denoted as cj = (cdj ), d ∈ D. In Fig. 2, users u1, u3, u4, and u5 cannot all
receive QoS level W3 on server s1 because the total required resources would be
〈20, 28, 24, 24〉, exceeding server s1’s available resources 〈9, 15, 12, 10〉.

∑

ui∈U(sj)
wi ≤ cj , ∀sj ∈ S (2)

Each user ui’s assigned resource wi corresponds to a QoS level that results in
a different QoE level. As stated in [2, 5, 12], QoS is non-linearly correlated with
QoE. When the QoS reaches a specific level, a user’s QoE improves very trivially
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regardless of a noticeable increase in the QoS. For example, in the model in Fig.
1, the QoE gained from the W2 − W3 upgrade is nearly 1. In the meantime,
the QoE gained from the W1 −W2 upgrade is approximately 3 at the cost of a
little extra resource. Several works model the correlation between QoE and QoS
using the sigmoid function [7, 9, 16]. In this research, we use a logistic function
(Equation 3), a generalized version of the sigmoid function, to model the QoS -
QoE correlation. This gives us more control over the QoE model, including QoE
growth rate, making the model more generalizable to different domains.

Ei =
L

1 + e−α(xi−β) (3)

where L is the maximum value of QoE, β controls where the QoE growth should
be, or the mid-point of the QoE function, α controls the growth rate of the QoE
level (how steep the change from the minimum to maximum QoE level is), Ei

represents the QoE level given user ui’s QoS level wi, and xi =

∑
k∈D w

k
i

|D| . We

let Ei = 0 if user ui is unallocated.

Our objective is to find a user-server assignment {u1, ..., un} −→ {s1, ..., sm}
with their individual QoS levels {w1, ..., wn} in order to maximize the overall
QoE of all users:

maximize

n∑

i=1

Ei (4)

3.2 Problem Hardness

We can prove that the dynamic QoS EUA problem defined above is NP-hard
by proving that its associated decision version is NP-complete. The decision
version of dynamic QoS EUA is defined as follows:

Given a set of demand workload L = {w1, w2, ..., wn} and a set of server
resource capacity C = {c1, c2, ..., cm}; for each positive number Q determine
whether there exists a partition of L′ ⊆ L into C′ ⊆ C with aggregate QoE
greater than Q, such that each subset of L′ sums to at most cj ,∀cj ∈ C′, and
the constraint (1) is satisfied. By repeatedly answering the decision problem,
with all feasible combination of wi ∈ W,∀i ∈ {1, ..., n}, it is possible to find the
allocation that produces the maximum overall QoE.

Theorem 1. The dynamic QoS EUA problem is NP.

Proof. Given a solution with m servers and n users, we can easily verify its
validity in polynomial time O(mn) – ensuring each user is allocated to at most
one server, and each server meets the condition of having its users’ total workload
less or equal than its available resource. Dynamic QoS EUA is thus in NP class.

Theorem 2. Partition ≤p dynamic QoS EUA. Therefore, dynamic QoS EUA
is NP-hard.
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Edge User Allocation with Dynamic Quality of Service 7

Proof. We can prove that the dynamic QoS EUA problem is NP-hard by re-
ducing the Partition problem, which is NP-complete [6], to a specialization of
the dynamic QoS EUA decision problem.

Definition 1. (Partition) Given a finite sequence of non-negative integers
X = (x1, x2, ..., xn), determine whether there exists a subset S ⊆ {1, ..., n} such
that

∑
i∈S xi =

∑
j /∈S xj.

Each user ui can be either unallocated to any edge server, or allocated to an edge
server with an assigned QoS level wi ∈ W. For any instance X = (x1, x2, ..., xn)
of Partition, construct the following instance of the dynamic QoS problem:
there are n users, where each user ui has two 2-dimensional QoS level options,
〈xi, 0〉 and 〈0, xi〉; and a number of identical servers whose size is 〈C,C〉, where

C =

∑n
i=1 xi
2

. Assume that all users can be served by any of those servers. Note

that 〈xi, 0〉 ≡ 〈0, xi〉 ≡ wi. Clearly, there is a solution to dynamic QoS EUA
that allocates n users to two servers if and only if there is a solution to the
Partition problem. Because this special case is NP-hard, and being NP, the
general decision problem of dynamic QoS EUA is thus NP-complete. Since the
optimization problem is at least as hard as the decision problem, the dynamic
QoS EUA problem is NP-hard, which completes the proof.

4 Our Approach

We first formulate the dynamic QoS EUA problem as an integer programming
(IP) problem to find its optimal solutions. After that, we propose a heuristic
approach to efficiently solve the problem in large-scale scenarios.

4.1 Integer Programming Model

From the app vendor’s perspective, the optimal solution to the dynamic QoS
problem must achieve the greatest QoE over all users while satisfying a number
of constraints. The IP model of the dynamic QoS problem can be formulated as
follows:

maximize

n∑

i=1

m∑

j=1

q∑

l=1

Elxijl (5)

subject to: xijl = 0 ∀l ∈ {1, ..., q},∀i, j ∈ {i, j|ui /∈ cov(sj)} (6)
n∑

i=1

q∑

l=1

W k
l xijl ≤ ckj ∀j ∈ {1, ...,m},∀k ∈ {1, ..., d} (7)

m∑

j=1

q∑

l=1

xijl ≤ 1 ∀i ∈ {1, ..., n} (8)

xijl ∈ {0, 1} ∀i ∈ {1, ..., n},∀j ∈ {1, ...,m},∀l ∈ {1, ..., q}
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xijl is the binary indicator variable such that,

xijl =

{
1, if user ui is allocated to server sj with QoS level Wl

0, otherwise.
(9)

The objective (5) maximizes the total QoE of all allocated users. In (5), the
QoE level El can be pre-calculated based on the predefined set W of QoS levels
Wl,∀l ∈ {1, ..., q}. Constraint (6) enforces the proximity constraints. Users not
located within a server’s coverage area will not be allocated to that server. A user
may be located within the overlapping coverage area of multiple edge servers.
Resource constraint (7) makes sure that the aggregate resource demands of all
users allocated to an edge server must not exceed the remaining resources of
that server. Constraint family (8) ensures that every user is allocated to at most
one edge server with one QoS level. In other words, a user can only be allocated
to either an edge server or the app vendor’s cloud server.

By solving this IP problem with an Integer Programming solver, e.g. IBM
ILOG CPLEX5, or Gurobi6, an optimal solution to the dynamic QoS EUA
problem can be found.

4.2 Heuristic Approach

However, due to the exponential complexity of the problem, computing an opti-
mal solution will be extremely inefficient for large-scale scenarios. This is demon-
strated in our experimental results presented in Sect. 5. Approximate methods
have been proven to be a prevalent technique when dealing with this type of in-
tractable problems. In this section, we propose an effective and efficient heuristic
approach for finding sub-optimal solutions to the dynamic QoS problem.

Heuristic 1 Greedy

1: procedure AllocateEdgeUsers(S,U)
2: for each ui ∈ U do
3: Sui ← {sj ∈ S|ui ∈ cov(sj)};
4: if Sui 6= ∅ then
5: sui ← argmaxsj∈{0}∪Sui

{sj : cj ≥W1};
6: wi ← argmaxWl∈{0}∪W{Wl : Wl ≤ cj};
7: end if
8: end for
9: end procedure

The heuristic approach allocates every user ui ∈ U one by one (line 2). For
each user ui, we obtain the set Sui

of all candidate edge servers that cover that
user (line 3). If the set Sui

is not empty, or user ui is covered by one or more edge
servers, user ui will then be allocated to the server that has the most remaining
resources among all candidate servers (line 5) so that the server will be most
likely to have enough resources to accommodate other users. In the meantime,

5 www.ibm.com/analytics/cplex-optimizer/
6 www.gurobi.com/
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user ui is assigned the highest QoS level that can be accommodated by the
selected edge server (line 6).

The running time of this greedy heuristic consists of: (1) iterating through
all n users, which costs O(n), and (2) sorting a maximum of m candidate edge
servers for each user, which costs O(m logm), to obtain the server that has the
most remaining resources. Thus, the overall time complexity of this heuristic
approach is O(nm logm).

5 Experimental Evaluation

In this section, we evaluate the proposed approaches by an experimental study.
All the experiments were conducted on a Windows machine equipped with Intel
Core i5-7400T processor(4 CPUs, 2.4GHz) and 8GB RAM. The IP model in
Sect. 4.1 was solved with IBM ILOG CPLEX Optimizer.

5.1 Baseline Approaches

Our IP-based approach (referred to as Optimal hereafter) and sub-optimal heuris-
tic (referred to as Heuristic hereafter) approach are compared to two other ap-
proaches, namely a random baseline, and a state-of-the-art approach for solving
the EUA problem:

– Random: Each user is allocated to a random edge server as long as that
server has sufficient remaining resources to accommodate this user and has
this user within its coverage area. The QoS level to be assigned to this
user is randomly determined based on the server’s remaining resources. For
example, if the maximum QoS level the server can achieve is W2, the user
will be randomly assigned either W1 or W2.

– VSVBP : [14] models the EUA problem as a variable sized vector bin packing
(VSVBP) problem and proposes an approach that maximizes the number of
allocated users while minimizing the number of edge servers needs to be
used. Since VSVBP does not consider dynamic QoS, we randomly preset
users’ QoS levels, i.e., resource demands.

5.2 Experiment Settings

Our experiments were conducted on the widely-used EUA dataset [14], which
includes data of base stations and end-users within the Melbourne central busi-
ness district area in Australia. In order to simulate different dynamic QoS EUA
scenarios, we vary the following three parameters:

– Number of end-users: We randomly select 100, 200, ..., 1, 000 users. Each ex-
periment is repeated 100 times to obtain 100 different user distributions so
that extreme cases, such as overly sparse or dense distributions, are neutral-
ized.

– Number of edge servers: Say the users selected above are covered by m
servers, we then assume 10%, 20%, ..., 100% of those m servers are available
to accommodate those users.
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(a) Total QoE (b) Elapsed CPU time

Fig. 3: Experiment set #1 results

– Server’s available resources: The server’s available computing resources is
generated following a normal distribution N (µ, σ2), where σ = 1 and the
average resource capacity of each server µ = 5, 10, 15, ...50 in each dimension
d ∈ D.

Table 2 summarizes the settings of our three sets of experiments. The possible
QoS level, for each user is preset to W = {〈1, 2, 1, 2〉, 〈2, 3, 3, 4〉,
〈5, 7, 6, 6〉}. For the QoE model, we set L = 5, α = 1.5, and β = 2. We employ
two metrics to evaluate our approaches: (1) overall QoE achieved over all users
for effectiveness evaluation, and (2) execution time (CPU time) for efficiency
evaluation.

Table 2: Experiment Settings
Number of users Number of servers Server’s available resources

Set #1 100, 200, ..., 1000 70% 35

Set #2 500 10%, 20%, ..., 100% 35

Set #3 500 70% 5, 10, 15, ..., 50

5.3 Experimental Results and Discussion

Figures 3, 4, and 5 depict the experimental results of three experiment sets 1, 2,
and 3, respectively.

1) Effectiveness: Figures 3, 4, and 5(a) demonstrate the effectiveness of all
approaches in experiment sets 1, 2, and 3, measured by the overall QoE of
all users in the experiment. In general, Optimal, being the IP-based approach
for finding optimal solutions, obviously outperforms other approaches across all
experiment sets and parameters. The performance of Heuristic largely depends
on the computing resource availability, which will be analyzed in the following
section.

In experiment set 1 (Fig. 3(a)), we vary the number of users starting from
100 and ending at 1,000 in steps in 100 users. From 100 to 600 users, Heuristic
results in higher total QoE than Random and VSVBP. Especially in the first
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(a) Total QoE (b) Elapsed CPU time

Fig. 4: Experiment set #2 results

three steps (100, 200, and 300 users), Heuristic achieves a QoE almost as high as
Optimal. This occurs in those scenarios because the available resource is redun-
dant and therefore almost all users receive the highest QoS level. However, as the
number of users continues to increase while the amount of available resources
is fixed, the computing resource for each user becomes more scarce, making
Heuristic no longer suitable in these situations. In fact, from 700 users onwards,
Heuristic starts being outperformed by Random and VSVBP. Due to being a
greedy heuristic, Heuristic always tries to exhaust the edge servers’ resources
by allocating the highest possible QoS level to users, which is not an effective
use of resource. For example, one user can achieve a QoE of 4.99 if assigned the
highest QoS level W3, which consumes a resource amount of 〈5, 7, 6, 6〉. That
resource suffices to serve two users with QoS levels W1 and W2, resulting in an
overall QoE of 1.6 + 4.09 = 5.69 > 4.99. Since a user’s QoS level is randomly
assigned by Random and VSVBP, these two methods are able to user resource
more effectively than Heuristic in those specific scenarios.

A similar trend can be observed in experiment sets 2 and 3. In resource-
scarce situations, i.e. number of servers ranging from 10% - 40% (Fig. 4(a)), and
server’s available resources ranging from 5 - 25 (Fig. 5(a)), Heuristic shows a
nearly similar performance to Random and VSVBP (slightly worse in a few cases)
for the same reason discussed previously. In those situations, the performance
difference between Heuristic and Random/VSVBP is not as significant as seen
in experiment set 1 (Fig. 3(a)). Nevertheless, the difference might be greater if
the resources are more limited, e.g. 1,000 users in both experiment sets 2 and 3,
an average server resource capacity of 20 in set 2, and 50% number of servers in
set 3.

As discussed above, while being suitable for resource-redundant scenarios,
Heuristic has not been proven to be superior when computing resources are lim-
ited. This calls for a more effective approach to solve the dynamic QoS problem
under resource-scarce circumstances.

2) Efficiency: Figures 3, 4, and 5(b) illustrate the efficiency of all approaches
in the study, measured by the elapsed CPU time. The execution time of Opti-
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(a) Total QoE (b) Elapsed CPU time

Fig. 5: Experiment set #3 results

mal follows a similar pattern in all three experiment sets. As the experimental
parameters increase from the starting point to a point somewhere in the mid-
dle – 600 users in set 1, 70% number of servers in set 2, and 30 average server
resource capacity in set 3 – the time quickly increases until it reaches a cap
of around a hefty 3 seconds due to being NP-hard. The rationale for this is
that the complexity of the problem increases as we keep adding up more users,
servers, and available resource, generating more possible options and solutions
for Optimal to select from. After passing that mid-point, the time gradually de-
creases at a slower rate then tends to converge. We notice that this convergence
is a reflection of the convergence of the total QoE produced by Optimal in each
corresponding experiment set. After the experimental parameters passing the
point mentioned above, the available resource steadily becomes more redundant
so that more users can obtain the highest QoS level without competing with
each others, generating less possible options for Optimal, hence running faster.

In experiment sets 1 and 2, the execution time of Heuristic grows gradually up
to just 1 milliseconds. However, it does not grow in experiment set 3 and instead
stabilizes around 0.5 - 0.6 milliseconds. This is because the available resource
does not impact the complexity of Heuristic, which runs in O(nm logm).

5.4 Threats to Validity

This section has been removed since there is no close connection with the context
of the thesis. Please refer to the original paper online for a full, unedited version.

6 Related Work

Cisco [3] coined the fog computing, or edge computing, paradigm in 2012 to over-
come one major drawback of cloud computing – latency. Edge computing comes
with many new unique characteristics, namely location awareness, wide-spread
geographical distribution, mobility, substantial number of nodes, predominant
role of wireless access, strong presence of streaming and real-time applications,
and heterogeneity. Those characteristics allows edge computing to deliver a very
broad range of new services and applications at the edge of network, further
extending the existing cloud computing architecture.
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QoE management and QoE-aware resource allocation have long been a chal-
lenge since the cloud computing era and before that [10]. Su et al. [17] propose
a game theoretic framework for resource allocation among media cloud, brokers
and mobile social users that aims at maximizing user’s QoE and media cloud’s
profit. While having some similarity to our work, e.g. the brokers can be seen as
edge servers, there are several fundamental architectural differences. The broker
in their work is just a proxy for transferring tasks between mobile users and the
cloud, whereas our edge server is where the tasks are processed. In addition, the
price for using/hiring the broker/media cloud’s resource seems to vary from time
to time, broker to broker in their work. We target a scenario where there is no
price difference within a single service provider. [8] investigates the cost - QoE
trade-off in virtual machine provisioning problem in a centralized cloud, specific
to video streaming domain. QoE is measured by the processing, playback, or
downloading rate in those work.

QoE-focused architecture and resource allocation have started gaining at-
traction in edge computing area as well. [4] proposes a novel architecture that
integrates resource-intensive computing with mobile application while leverag-
ing mobile cloud computing. Their goal is to provide a new breed of personal-
ized, QoE-aware services. [15] and [1] tackle the application placement in edge
computing environments. They measure user’s QoE based on three levels (low,
medium, and high) of access rate, required resources, and processing time. The
problem we are addressing, user allocation, can be seen as the step after appli-
cation placement. [11] focuses on computation offloading scheduling problem in
mobile clouds from a networking perspective, where energy and latency must be
considered in most cases. They propose a QoE-aware optimal and near-optimal
scheduling scheme applied in time-slotted scenarios that takes into account the
trade-off between user’s mobile energy consumption and latency.

Apart from the aforementioned literature, there are a number of work on
computation offloading or virtual machine placement problem. However, they
do not consider QoE, which is important in an edge computing environment
where human plays a prominent role. Here, we seek to provide an empirically
grounded foundation for the dynamic QoS/QoE edge user allocation problem,
forming a solid basis for further developments.

7 Conclusion

App users’ quality-of-experience is of great importance for app vendors where
user satisfaction is taken seriously. Despite being significant, there is very limited
work considering this aspect in edge computing. Therefore, we have identified
and formally formulated the dynamic QoS edge user allocation problem with the
goal of maximizing users’ overall QoE as the first step of tackling the QoE-aware
user allocation problem. Having been proven to beNP-hard and also experimen-
tally illustrated, the IP-based approach is not efficient once the problem scales
up. We therefore proposed a heuristic approach for solving the problem more
efficiently. We have also conducted extensive experiments on real-world dataset
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to evaluate the effectiveness and efficiency of the proposed approaches against a
baseline approach and the state of the art.

The future work has been removed to reduce repetition in this thesis. Please
refer to the original paper online for a full, unedited version.
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3.2 An Iterative Heuristic Approach

The experimental results presented in Section 3.1 show some limitations of the proposed heuristic when

the number of users gets large. Specifically, from 600 users onward (Fig. 3a in the paper shown in

Section 3.1), its achieved overall user satisfaction is even worse than the other two baseline approaches.

Thus, in this section, we propose a more dynamic and effective heuristic that incrementally improve

each user’s QoE.

This section is presented in the form of our published paper [31] as P. Lai, Q. He, G. Cui, X. Xia, M.

Abdelrazek, F. Chen, J. Hosking, J. Grundy, Y. Yang, ”QoE-aware user allocation in edge computing

systems with dynamic QoS,” Future Generation Computer Systems, vol. 112, pp. 684–694, 2020. Note

that several sections in the paper included below have been removed or slightly modified to reduce

repeated content that has appeared else where in this thesis. For a full, unedited version, please refer

to the original paper itself.

52



QoE-aware User Allocation in Edge Computing
Systems with Dynamic QoSI

Phu Laia, Qiang Hea,∗, Guangming Cuia, Xiaoyu Xiab, Mohamed
Abdelrazekb, Feifei Chenb, John Hoskingc, John Grundyd, Yun Yanga

aSwinburne University of Technology, Hawthorn, Australia
bDeakin University, Burwood, Australia

cThe University of Auckland, Auckland, New Zealand
dMonash University, Clayton, Australia

Abstract

As online services and applications are moving towards a more human-centered
design, many app vendors are taking the quality of experience (QoE) increas-
ingly seriously. End-to-end latency is a key factor that determines the QoE
experienced by users, especially for latency-sensitive applications such as online
gaming, autonomous vehicles, critical warning systems and so on. Edge com-
puting has then been introduced as an effort to reduce network latency. In a
mobile edge computing system, edge servers are usually deployed at, or near cel-
lular base stations, offering processing power and low network latency to users
within their proximity. In this work, we tackle the edge user allocation (EUA)
problem from the perspective of an app vendor, who needs to decide which edge
servers to serve which users in a specific area. Also, the vendor must consider
the various levels of quality of service (QoS) for its users. Each QoS level leads
to a different QoE level. Thus, the app vendor also needs to decide the QoS
level for each user so that the overall user experience is maximized. We first
optimally solve this problem using Integer Programming technique. Being an
NP-hard problem, it is intractable to solve it optimally in large-scale scenarios.
Thus, we propose a heuristic approach that is able to effectively and efficiently
find sub-optimal solutions to the QoE-aware EUA problem. We conduct a se-
ries of experiments on a real-world dataset to evaluate the performance of our
approach against several state-of-the-art and baseline approaches.

Keywords: User allocation, Edge computing, Quality of Service, Quality of
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Experience, Resource allocation

1. Introduction

Several introductory paragraphs have been removed to reduce repetition in
this thesis. Please refer to the original paper online for a full, unedited version.

We refer to the above problem as a QoE-aware edge user allocation (EUA)
problem and make the following main contributions in this paper:

� We formally define the QoE-aware EUA problem and show that it is an
NP-hard problem.

� We propose an optimal approach based on Integer Programming (IP) for
solving this problem exactly.

� In our previous work [1], we introduced a heuristic approach to tackle
the complexity of the problem. However, its effectiveness under resource-
scarce scenarios needs to be improved. As a result, in this paper, we
introduce QoEUA – a new heuristic that performs better than our previous
heuristic under resource-scarce circumstances.

� Comprehensive experiments based on a real-world dataset are conducted
to demonstrate the effectiveness and efficiency of QoEUA against several
baseline and state-of-the-art approaches.

The rest of this paper is organized as follows. Section 2 provides an example
that motivates this research. Section 3 formulates the QoE-aware problem.
Section 4 proposes two approaches to this problem – an optimal approach to find
exact solutions and an efficient heuristic to find sub-optimal solutions. Section
5 evaluates the proposed approaches. Section 6 reviews the existing literature.
Finally, we conclude the paper and point out future work in Section 7.

2. Motivating Example

The motivating example been removed to reduce repetition in this thesis.
Please refer to the original paper online for a full, unedited version.

3. Problem Definition

The problem definition been removed to reduce repetition in this thesis.
Please refer to the original paper online for a full, unedited version.
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Table 1: Key Notations

Notation Description
S = {s1, s2, ..., sm} a finite set of edge server sj , where j = 1, 2, ...,m.
D = {CPU,RAM,
storage, bandwidth}

a set of computing resource types.

cj = 〈c1j , c2j , ..., cdj 〉 the available capacity of an edge server sj ∈ S. cj
is a d−dimensional vector with each dimension ckj
representing the available amount of resource type
k ∈ D on edge server sj .

U = {u1, u2, ..., un} a finite set of user ui, where i = 1, 2, ..., n.
W = {W1,W2, ...,Wq} a set of predefined QoS level Wl, where l =

1, 2, ..., q. A higher QoS level requires more com-
puting resources than a lower one.

wi = 〈w1
i , w

2
i , ..., w

d
i 〉 a d−dimensional vector representing the amount of

computing resources required by user ui ∈ U . wi is
selected from the set W, wi ∈W .

U(sj) a set of users allocated to edge server sj , U(sj) ⊆ U .
S(ui) a set of user ui’s neighbor edge servers – edge

servers that cover user ui, S(ui) ⊆ S.
sui

the edge server assigned to serve user ui, sui
∈ S.

cov(sj) the coverage of edge server sj .

4. Our Approach

We first formulate the QoE-aware EUA problem as an integer programming
(IP) problem to find its optimal solution. After that, we propose a heuristic
approach to efficiently solve the problem in large-scale scenarios.

4.1. Integer Programming Model

This section been removed to reduce repetition in this thesis. Please refer
to the original paper online for a full, unedited version.

4.2. Heuristic Approach

Due to the NP-hardness of the problem, computing an optimal solution will
be intractable for large-scale scenarios. This is demonstrated in our experimen-
tal results presented in Section 5. In this section, we propose QoEUA – an
effective and efficient heuristic approach for finding sub-optimal solutions to the
QoE-aware EUA problem. The pseudocode is presented in Algorithm 1.

Given a set of edge servers S, a set of users U , and a set of QoS levels W
(lines 1-4), QoEUA tries to allocate the users in U to the edge servers in S.
Initially, all the users are unallocated. QoEUA first sorts the users in U in
ascending order of the number of their neighbor edge servers (line 5). In other
words, users who are covered by fewer edge servers are to be allocated before
those who are covered by more edge servers. This helps increase the probability
of those users being allocated to edge servers.

The user sorting is then followed by an iterative process (lines 6-11). In each

3
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Algorithm 1 QoEUA

1: initialization:
2: a set of edge servers S, a set of users U , and a set of QoS levels W
3: all users uj ,∀uj ∈ U , are unallocated
4: end initialization
5: sort U in ascending order of the number of neighbor edge servers (i.e., users

who are covered by fewer edge servers are prioritized, being the first to be
allocated)

6: repeat
7: for each user ui ∈ U do
8: S(ui) , user ui’s neighbor edge servers;
9: allocate user ui to an edge server sj ∈ S(ui) which has the most

available capacity, and increase user ui’s current QoS level Wl by one level,
i.e., Wl+1

10: end for
11: until no users can improve their QoS levels

iteration, QoEUA allocates users one by one in the order of their appearances
in the sorted list U (line 7). For each user ui ∈ U , QoEUA retrieves the set of its
neighbor edge servers S(ui), i.e., servers that have the user ui in their coverage
areas (line 8). User ui is then allocated to an edge server sj ∈ S(ui) that has the
most available capacity (line 9). In this way, edge server sj will be more likely
to have sufficient capacity to accommodate other users or to increase the QoS
levels of existing users later on. If user ui has not been allocated before, it will be
assigned the lowest QoS level, i.e., W1. If user ui has been allocated a QoS level
Wl before, it will try to increase its current QoS level by one level, i.e., Wl+1.
The resource and proximity constraints must be fulfilled at all times. Note that
an allocated user is able to switch edge servers during the allocation process.
QoEUA completes when no users can improve their QoS levels anymore.

The running time of QoEUA consists of: (1) p iterations, which costs O(p),
and in each iteration, (2) iterating through all n users, which costs O(n), and
(3) sorting a maximum of m neighbor edge servers for each user, which costs
O(m logm), to obtain the server that has the most remaining resources. Thus,
the overall time complexity of this heuristic approach is O(pnm logm), which
is p times higher than the heuristic proposed in [1]. However, p is found to be
at most only 4 in our experiments.

The high efficiency of QoEUA allows app vendors to continuously run it,
or execute it on demand, to respond to user mobility. The consideration of
user mobility would not affect the initial problem formulation and the proposed
heuristic in some situations. Specifically, when a user moves outside the coverage
of its serving edge server, it will be disconnected from the edge server; the
occupied computing resources on that edge server will be released; QoEUA will
then consider it as a new user. That user, together with other new users who
need to be allocated, will be allocated to edge servers based on the rules defined

4
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in Algorithm 1, lines 5-11 (one can now consider the set U as a set of new users
who need to be allocated). This is feasible as long as migrating users across
edge servers does not incur extra costs, or if the extra costs are trivial. The
extra costs could be the migration cost or service reconfiguration cost [2]. In
some use cases, those extra costs could be relatively insignificant. Taking video
streaming for example [3], where videos encoded with different resolutions are
cached on edge servers, which allows a user to access them with low latency,
switching the user across edge servers only requires a very small amount of data
to be transferred, e.g., which video the user is watching, the position in the
video where the user left off, and the resolution of the video. For applications
and services where the extra costs are noticeable, the new costs will need to be
modeled. Thus, the initial problem formulation and the proposed solution will
need to be modified.

5. Experimental Evaluation

In this section, we evaluate the proposed approaches by a series of exper-
iments. All the experiments are conducted on a Windows machine equipped
with Intel Core i5-7400T processor (4 CPUs, 2.4GHz) and 8GB RAM. The IP
model in Section 4.1 is solved with IBM ILOG CPLEX Optimizer solver.

5.1. Benchmark Approaches

Our optimal approach, referred to as Optimal hereafter, and the QoEUA
heuristic are compared to several baselines and state-of-the-art approaches for
solving the EUA problem:

� Random: Each user is allocated to a random edge server as long as that
server has sufficient remaining resources to accommodate this user and has
this user within its coverage area. The QoS level to be assigned to this
user is randomly determined based on the server’s remaining resources.
For example, if the maximum QoS level can be achieved the server is W2,
the user will be randomly assigned either W1 or W2.

� ICSOC19 [1]: This is the greedy-like heuristic proposed in our previous
work.

� TPDS20 [4]: This approach solves the EUA problem with the objectives
of maximizing the number of allocated users and minimizing the overall
system cost calculated based on the costs of required computing resources
on edge servers. Since TPDS20 does not consider dynamic QoS, users’
QoS levels are randomly pre-specified.

� ICSOC18 [5]: This work proposes an optimal approach that maximizes
the number of allocated users while minimizing the number of edge servers
required to serve the allocated users. Similar to TPDS20, this work does
not consider dynamic QoS either. Thus, users are assigned the same QoS
levels as TPDS20.

5
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Table 2: Experimental Settings

Number of users Number of servers Edge server’s capacity
Set #1 100, 200, ..., 1000 50% 35
Set #2 500 10%, 20%, ..., 100% 35
Set #3 500 50% 15, 20, ..., 60

5.2. Experimental Settings

The experiments are conducted on the EUA dataset1 [5], which contains the
geographical locations of end-users and all cellular base stations in Australia.
This dataset is also used in [4], [1], and [5] to evaluate TPDS20, ICSOC19, and
ICSOC18, respectively.

Edge servers: To capture the characteristics of a MEC environment [6], we
simulate a highly dense urban area of 1.8 km2 covered by 125 base stations,
each equipped with an edge server. The coverage radius of each edge server is
randomly generated within 100-150m. The computing resources available on the
edge servers, or their capacities, are randomly generated by following a normal
distribution N (µ, σ2), where µ is the average capacity of each resource type in
D, and the standard deviation σ = 10 for all conducted experiments.

Edge users: We assume that for each user, there are three possible QoS levels
W = {< 1, 2, 1, 2 >,< 2, 3, 3, 4 >,< 5, 7, 6, 6 >}, andD = {CPU,RAM, storage,
bandwidth}. Those four types of resources are the representative ones. The pro-
posed approaches can accommodate other types of resources that are specific to
app vendors’ applications. We have conducted experiments with other settings
and achieved similar results. Thus, we select those three QoS levels as represen-
tative in our experiments. Different values for the QoE model have also been
tested. In the experiments, we set L = 5, α = 1.5, and β = 2 as representative.

To comprehensively analyze the performance of our approaches in various
EUA scenarios, we conduct a series of experiments with different varying param-
eters, including the number of users, number of edge servers, and edge server
capacity. Table 2 summarizes the settings of the experiments, which will be
discussed in the next section. Note that the values specified in the table are
representative. Other experiments with different values other than those have
been conducted, which yield similar results. Each experiment is repeated 100
times to obtain 100 different user distributions and the results are then aver-
aged. This allows extreme cases, such as overly dense or sparse user/server
distributions, to be neutralized. To evaluate the performance of the approaches
in achieving the optimization objective, which is to maximize the total QoE
of all users as discussed in Section 3, we compare the total QoE of all users
achieved by the six approaches, the higher the better. In addition, we measure
the number of users allocated to edge servers by each approach, the higher the
better. The efficiency of all approaches is also evaluated.

1www.github.com/swinedge/eua-dataset
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(a) Number of users vs. Total QoE (b) Number of users vs. Percentage of users
allocated

Figure 1: Experiment Set #1 results

5.3. Experimental Results and Discussion

1) Effectiveness: Figures 1, 2, and 3 depict the results of three experiment
Sets #1, #2, and #3, respectively, measured by the overall QoE of all users in
the experiment. We additionally measure the number of users allocated to edge
servers. In general, Optimal, being the optimal approach, obviously achieves
the greatest QoE under all experimental settings, closely followed by QoEUA.

In experiment Set #1 (Figure 1), we vary the number of users from 100
to 1,000 in steps of 100. In general, as the number of users increases, the
total QoE also increases until it can no longer increase since the computing
resources are exhausted to serve a large number of users. From 100 to 600
users, QoEUA achieves a higher total QoE than other approaches (Figure 1a).
Especially in the first four steps (100, 200, 300, and 400 users), QoEUA is
almost as good as Optimal. This occurs in those scenarios because the available
resources are redundant and therefore almost all the users receive the highest
QoS level. However, as the number of users continues to increase while the
amount of available resources is fixed, the average computing resources for each
user become more scarce, making QoEUA start to downgrade. As we can see,
from 500 users onward, the total QoE achieved by QoEUA slowly decreases and
starts being outperformed by ICSOC18, TPDS20, and Random at some point.
Still, the differences in the total QoE between QoEUA and those approaches
are very marginal, even at 1,000 users. Despite being outperformed in terms of
the total QoE in some cases, QoEUA is able to allocate significantly more users
to edge servers than all other approaches (Figure 1b). As we keep increasing
the number of users to be allocated, QoEUA allocates approximately 20% more
users compared to other approaches on average. Given 1,000 users, QoEUA can
allocate almost 80% of them while the second-best approach can only allocate
roughly 60% of them. For more experimental results on the percentage of users
allocated with different QoS levels, please refer to Appendix A.

In experiment Sets #2 and #3, we vary the number of edge servers available
to serve users (Figure 2) and edge server capacity (Figure 3). Increasing those
two parameters consequently increases the redundancy of computing resources

7

CHAPTER 3. QUALITY OF SERVICE-AWARE USER ALLOCATION IN MOBILE EDGE COMPUTING

SYSTEMS 59

59



(a) Number of edge servers vs. Total QoE (b) Number of edge servers vs. Percentage of
users allocated

Figure 2: Experiment Set #2 results

(a) Edge server capacity vs. Total QoE (b) Edge server capacity vs. Percentage of
users allocated

Figure 3: Experiment Set #3 results

available to serve users. As a result, we can observe the same trend in those
two experiment sets, where the total QoE and the percentage of users allocated
increase with the increase in the number of edge servers and the edge servers’
capacities. This pattern can be observed under all experimental settings and
for all approaches. In terms of the total QoE of all users (Figures 2a and
3a), QoEUA’s performance is very close to Optimal, just slightly lower. In the
meantime, QoEUA manages to allocate the most number of users, considerably
greater than all other approaches under any experimental settings (Figures 2b
and 3b). Clearly, QoEUA significantly outperforms the baseline and state-of-
the-art approaches in experiment Sets #2 and #3. For more experimental
results on the percentage of users allocated with different QoS levels, please
refer to Appendix A.

2) Efficiency: Figure 4 illustrates the efficiency of all the approaches in the
study, measured by the elapsed CPU time. The execution time of Optimal and
ICSOC18 follow a similar pattern in all three experiment sets. As the exper-
imental parameters increase from the starting point to a threshold somewhere
in the middle – 400 users in Set #1, 80% of the number of edge servers in Set
#2, and 55 average server resource capacity in Set #3 – the time rapidly rises
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(a) Number of users vs.
Execution CPU time

(b) Number of edge servers vs.
Execution CPU time

(c) Edge server capacity vs.
Execution CPU time

Figure 4: Execution CPU time in experiment Sets #1, #2, and #3

until it reaches a cap of around a hefty 8 seconds (for Optimal), which is un-
acceptable for real-time, latency-sensitive applications. This is expected since
the QoE-aware EUA problem is NP-hard. The rationale for this lies in the
complexity of the problem. Adding up more users, edge servers, and available
resources generates more possible options and solutions for Optimal to select
from. After passing those thresholds, the execution time decreases then tends
to converge. This happens in experiment Set #1 (Figure 4a) since when the
number of users exceeds 400, a newly generated user tends to be positioned at
the exact location of an existing user. Thus, the IBM CPLEX solver’s decision
to be made for the new user can be based on the decision made for the existing
user. As a result, we can see the elapsed CPU time of Optimal is almost sym-
metrical around that threshold (400 users) then roughly stabilizes at around 1
second, which is still very slow for real-time applications. In experiment Sets
#1 and #2, the execution time decreases because after the experimental param-
eters exceed the above-mentioned thresholds, the available computing resources
gradually become more redundant so that more users can obtain the highest
QoS level without having to compete with each other. This generates fewer
possible options for Optimal, thus takes less time to complete.

As the complexity of the problem increases by adding more users, edge
servers, and edge server capacity, the execution time of other approaches also
increases gradually. In all experiment sets, ICSOC19 takes 0.5-1 millisecond to
solve the allocation problem. QoEUA is an iterative algorithm. The number of
iterations it takes to complete is an important indicator of its efficiency. In the
experiments, QoEUA requires 2-4 iterations, or 1-3 milliseconds of CPU time,
which is acceptable for real-time applications and services.

5.4. Threats to Validity

Threat to construct validity. The main threat to construct validity lies in
the bias in our experimental design. To minimize any potential bias, we con-
duct experiments with different varying parameters that would directly affect
the experimental results, including the number of edge servers, the number of
users, and available computing resources (edge server capacity). The result of
each experiment set is the average of 100 executions, each with a different user
distribution, to neutralize special cases such as over-dense or over-sparse user
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distributions.
Threat to external validity. A threat to external validity is the generaliz-

ability of our findings in other specific domains. We mitigate this threat by
experimenting with different numbers of users and edge servers in the same ge-
ographical area to simulate various distributions and density levels of users and
edge servers, which might be observed in different real-world scenarios. Fur-
thermore, we employ a generic QoS-QoE model in this work to improve the
generalizability.

Threat to internal validity. A threat to internal validity is whether an ex-
perimental condition makes a difference or not. To minimize this, we fix the
other experimental parameters at a neutral value while changing a parameter.
For more sophisticated scenarios where two or more parameters change simul-
taneously, the results can easily be predicted in general based on the obtained
results as we mentioned in Section 5.3.

Threat to conclusion validity. The lack of statistical tests is the biggest
threat to our conclusion validity. This has been mitigated by a comprehensive
series of experiments that cover different scenarios varying in both size and
complexity. For each set of experiments, the result is averaged over 100 runs of
the experiment.

6. Related Work

This section been removed to reduce repetition in this thesis. Please refer
to the original paper online for a full, unedited version.

7. Conclusion and Future Work

App users’ quality of experience (QoE) is of great importance for app vendors
where user satisfaction is taken seriously. Despite being significant, there is very
limited work in edge computing considering this aspect. Therefore, we have
identified and formally formulated the QoE-aware edge user allocation problem
with the goal of maximizing users’ overall QoE as the first step of tackling
QoE-oriented problems in edge computing. Having been proven to be NP-hard
and also experimentally illustrated, the optimal approach is not efficient once
the problem scales up. In our previous work [1], we have proposed a heuristic
to deal with the high complexity of the problem. However, that approach is
not suitable in resource-scarce scenarios. This has led to the development of a
more effective heuristic in this paper. We also conduct extensive experiments
on a real-world dataset to evaluate the effectiveness and efficiency of our new
approach against several baseline and state-of-the-art approaches.

The future work has been removed to reduce repetition in this thesis. Please
refer to the original paper online for a full, unedited version.
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Appendix A. Extra experimental results

In this appendix, we present the experimental results on the percentage
of users allocated with different QoS levels in three experiment sets (Figures
A.5, A.6, and A.7). As set in Section 5.2, there are three possible QoS levels
W = {W1,W2,W3}, where W3 is the most demanding QoS level, i.e., requiring
the highest amount of computing resources among the three QoS levels, and W1

is the least demanding one. We only present the results produced by Optimal,
QoEUA, and ICSOC19 since they are the most relevant approaches which con-
sider dynamic QoS level. The other approaches just randomly pre-assign QoS
levels to users before the allocation process.

Figure A.5 depicts the percentage of unallocated users and users assigned
with QoS levels W1, W2, and W3 among all users in experiment Set #1. When
the number of users to be allocated is low at 100, there are sufficient resources to
accommodate almost all users at the highest QoS level. As the number of users
increases, Optimal tends to allocate most users with W2 since it is the most
“economical” option, i.e., highest QoE per unit of resources. Although QoEUA
does not tend to pick the most economical option, it is able to allocate more
users than Optimal (also refer to Figure 1b). Greedy, being a greedy approach,
allocates most users with the highest QoS level.

Figures A.6 and A.7 illustrate the percentage of unallocated users and users
assigned with QoS levels W1, W2, and W3 among all users in experiment Sets
#2 and #3. Their results follow the same pattern since the two varying exper-
imental parameters, i.e., number of edge servers and available server capacity,
both directly affect the amount of available resources which can be used to
serve users. When the amount of available resources is low, Optimal assigns
W2, which is the most economical option, to most users. With QoEUA, most
users get W1. As the amount of available resources increases, Optimal and
QoEUA can then start assigning higher QoS levels to the users.
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Figure A.5: Proportion of users by QoS levels in experiment Set #1

Figure A.6: Proportion of users by QoS levels in experiment Set #2
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3.3 A Game-Theoretical Approach

The experimental results in Section 3.2 still show some limitations of the proposed heuristic when the

number of users scales up. Even though it still outperforms the heuristic proposed in Section 3.1 in all

experimental settings, it starts getting outperformed by the two baseline approaches when the number

of users becomes really large (see Fig. 3a in the paper shown in Section 3.2). Thus, in this section,

we improve it by formulating this problem as a potential game then solve it with a decentralized game-

theoretical approach that is shown to be a able to reach a Nash equilibrium. The results are now very

close to optimal.

This section is presented in the form of our published paper [32] as P. Lai, Q. He, G. Cui, X. Xia, M.

Abdelrazek, F. Chen, J. Hosking, J. Grundy, Y. Yang, ”Quality of experience-aware user allocation in

edge computing systems: a potential game,” in Proceedings of IEEE International Conference on Dis-

tributed Computing Systems, pp. 223-233, Singapore, 2020. ©2021 IEEE. Reprinted, with permission,

from IEEE International Conference on Distributed Computing Systems. Note that several sections in

the paper included below have been removed or slightly modified to reduce repeated content that has

appeared else where in this thesis. For a full, unedited version, please refer to the original paper

itself.
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Abstract—As many applications and services are moving to-
wards a more human-centered design, app vendors are taking
the quality of experience (QoE) increasingly seriously. End-to-end
latency is a key factor that determines the QoE experienced by
users, especially for latency-sensitive applications such as online
gaming, health care, critical warning systems and so on. Recently,
edge computing has emerged as a promising solution to the
high latency problem. In an edge computing environment, edge
servers are deployed at cellular base stations, offering processing
power and low network latency to users within their geographic
proximity. In this paper, we tackle the user allocation problem
in edge computing from an app vendor’s perspective, where the
vendor needs to decide which edge servers to serve which users in
a specific area. Also, the vendor must consider the various levels
of quality of service (QoS) for its users. Each QoS level results
in a different QoE level; thus, the app vendor needs to decide
the QoS level for each user so that the overall user experience
is maximized. To tackle the NP-hardness of this problem, we
formulate it as a potential game then propose QoEGame, an
effective and efficient game-theoretic approach that admits a
Nash equilibrium as a solution to the user allocation problem.
Being a distributed algorithm, QoEGame is able to fully utilize
the distributed nature of edge computing. Finally, we theoretically
and empirically evaluate the performance of QoEGame, which
is illustrated to be significantly better than the state of the art
and other baseline approaches.

Index Terms—Edge computing, User allocation, Quality of
Experience, Quality of Service, Game theory

I. INTRODUCTION

The main contributions of this paper include:

¶Qiang He is the corresponding author of this paper.

• We formulate this problem as a potential game [1] that
aims to maximize the overall user QoE. The game is
then theoretically analyzed and proven to admit a Nash
equilibrium.

• Due to the NP-hardness of the problem, finding an
optimal solution to this problem is intractable, especially
when a small geographic area could involve a great num-
ber of users. To effectively deal with its high complexity,
we propose QoEGame, a distributed iterative algorithm
for finding a Nash equilibrium. This algorithm simulates
each user as a player in the game, whose decision, along
with the decisions of other players, will benefit towards
the final objective – maximizing the total QoE of all users.

• Extensive evaluations based on a real-world dataset are
carried out to demonstrate the effectiveness and efficiency
of QoEGame. The results show that QoEGame signifi-
cantly outperforms the state of the art and other baseline
approaches.

The remainder of the paper is organized as follows. We
provide a motivating example in Section II. Section III for-
mulates the QoE-aware EUA problem, which is then modeled
as a potential game in Section IV. In Section V, we propose
QoEGame, a game-theoretic approach for solving this prob-
lem. It is experimentally evaluated in Section VI. Section VII
summarizes the key related work. Finally, we conclude the
paper and discuss future work in Section VIII.

II. MOTIVATING EXAMPLE

This section has been removed to reduce repetition in this
thesis. Please refer to the original paper online for a full,
unedited version.

III. PROBLEM FORMULATION

A. System Model

Edge servers: An MEC system in a particular area consists
of a set of m edge servers denoted by S = {s1, ..., sm}.
Each edge server sj ∈ S, j = 1, ...,m, has a certain amount
of computing resources cj = (cdj ), a |D|-dimensional vector,
where d ∈ D = {CPU,memory, storage, ...}. Each edge
server covers a specific geographical area cov(sj), as shown
in Figure 2.
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QoS levels:

Fig. 2: Example MEC scenario

Edge users: Let U = {u1, ..., un} denote the set of n user
ui, i = 1, ..., n in the area. In the EUA problem, every user
must be allocated to an edge server unless all the servers
covering the user have exhausted their computing resources.
A user will be directly connected to the app vendor’s cloud
server if none of those edge servers has sufficient computing
resources, or if the user is not located within the coverage of
any edge servers.

For an application or service, there are q pre-defined QoS
levels, denoted by W = {W1, ...,Wq}. Each QoS level
Wk, k = 1, ..., q, requires a specific amount of computing
resources Wk = (W d

k ), a |D|-dimensional vector, d ∈ D. A
higher QoS level requires a higher amount of resources.

B. Allocation Decisions

In the QoE-aware EUA problem, an app vendor needs to
jointly make two decisions for each user ui ∈ U :

Definition 1. (SERVER ALLOCATION DECISION) Given the
set of edge servers S = {s1, ..., sm}, let ai ∈ {0} ∪ S denote
the edge server which user ui is allocated to. ai = 0 when ui
is unallocated.

Definition 2. (QOS SELECTION DECISION) Given the set of
QoS levels W = {W1, ...,Wq}, user ui is assigned a QoS
level bi ∈ {0} ∪ W once allocated to an edge server. bi = 0
when ui is unallocated.

Definition 3. (ALLOCATION DECISION PROFILE) Each user
ui ∈ U is associated with a pair of decisions pi = (ai, bi)
as defined above. An allocation decision profile is a set of
allocation decisions, one for each user, denoted by p =
(p1, ..., pn) = ((a1, b1), ..., (an, bn)).

User ui can only be allocated to one of the neighbor edge
servers Sui , which are the edge servers that have user ui in

their coverage areas (proximity constraint):
ai ∈ {0}∪Sui

, where Sui
= {sj ∈ S|ui ∈ cov(sj)},∀ui ∈ U

(1)
and the accumulated resource demands of all users allocated
to an edge server must not exceed the available computing
resources of that edge server (resource constraint). Let Ualctsj =
{ui ∈ U|ai = sj} denote the set of users allocated to edge
server sj , we have:∑

ui∈Ualct
sj

bi � cj , ∀sj ∈ S (2)

We use Usj = {ui ∈ U|ui ∈ cov(sj)} to denote the set of
users located within edge server sj’s coverage.

C. System Benefit (QoE) Model

In the QoE-aware EUA problem, an app vendor benefits
from satisfying its users, or maximizing their users’ QoE.
In general, a higher QoS level results in a higher QoE
level. As demonstrated in [2]–[4], QoS and QoE exhibit a
nonlinear correlation. When the QoS reaches a particular level,
a user’s QoE shows a very trivial improvement regardless of a
noticeable increase in the QoS. Take the model in Figure 1 for
example, the QoE gained from the W2−W3 upgrade is nearly
1. In the meantime, the QoE gained from the W1−W2 upgrade
is approximately 3 at the expense of a little extra resource.
The logistic function (3) has been widely acknowledged and
employed in a lot of works [5]–[7] to model the correlation
between QoE and QoS due to its generality and simplicity,
which increases the generalizability of this work.

Ep(pi) =
L

1 + e−α(xi−β) (3)

where Ep(pi) represents the QoE level of user ui given its
QoS level bi, L > 0 is the maximum value of QoE, β > 0
controls where the mid-point of the QoE function is on the
x-axis (QoS level in Figure 1), α > 0 controls the growth rate
of the QoE level (how steep the change from the minimum to
the maximum QoE level is). xi = (

∑
d∈D b

d
i )/|D|, where bdi

is the normalized amount of type-d resource required by user
ui, d ∈ D. We let Ep(pi) = 0 if user ui is unallocated.

D. Optimization Model

Given a set of users U = {u1, ..., un}, a set of edge servers
S = {s1, ..., sm}, and a set of QoS levelsW = {W1, ...,Wq},
the QoE-aware EUA problem can be formulated as a con-
strained optimization problem as follows:

max
∑

ui∈U
Ep(pi)

s.t. (1), (2)
(4)

This formulation maximizes the total QoE of all users while
satisfying the proximity constraint (1) and resource constraint
(2). The solution to this problem is an allocation decision
profile p. [8] proves that this problem is NP-hard by reducing
the Partition problem to a special case of the decision version
of this QoE-aware EUA problem.
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IV. QOE-AWARE USER ALLOCATION GAME

In this section, we introduce QoEGame, a game-theoretic
approach for effectively and efficiently solving the QoE-aware
EUA problem. Traditionally, game theory has been widely
applied in numerous areas as a powerful method for analyz-
ing the interactions of players pursuing their own individual
interests. In this paper, the players, i.e., the app users in the
EUA problem, make decisions that could benefit other users
as well, without significantly sacrificing their own benefit.
Furthermore, QoEGame allows app vendors to efficiently solve
the QoE-aware EUA problem in a distributed fashion by
making allocation decisions for each user individually on each
edge server, effectively leveraging the distributed characteristic
of edge computing. App vendors do not have to suffer the
high computational complexity of finding centralized optimal
solutions. This is critical since users in an edge computing
environment are usually highly latency-sensitive.

A. Game Formulation

We formulate a QoE-aware EUA game that finds a decision
profile which effectively selects QoS levels for users and
allocates them to edge servers. The decision profile consists
of two decisions for each user ui ∈ U , namely an edge
server allocation decision ai and a QoS level selection decision
bi. Following the rules of the game, those decisions are
determined so that the app vendor’s objective is achieved. Let
p−i = (p1, ..., pi−1, pi+1, ..., pn) denote the allocation strategy
of all users except user ui. Note that in the EUA problem, a
user makes decisions that benefit the whole system’s goal, i.e.
maximizing the total QoE of all users, instead of selfishly
making decisions for its own benefit. In other words, the
decision made by a user could allow other users to make
“good” decisions accordingly. Based on other users’ decisions
p−i, a user ui can make a suitable decision pi so that the total
QoE of all users is maximized (4).

Then, we model the above QoE-aware problem as a game
Γ = (U , {Pi}ui∈U , {Ei}ui∈U ), where the set of players is the
set of users U , Pi is the set of possible allocation strategies
for users ui, and Ei is the benefit function which measures the
benefit (total QoE) produced by user ui’s decision pi ∈ Pi.
In the game, users’ allocation strategies might conflict. For
example, in Figure 2, allocating users 2 and 4 to edge server
2 might exhaust its available computing resources, preventing
users 1 and 6 from using the app with high QoS levels or
even from being served by edge server 2. A better solution
would be to allocate users 2 and 4 to edge servers 1 and 3,
respectively, if they have sufficient resources, and users 1 and
6 to edge server 2. In this way, the total QoE of all users is
maximized, every user is happy and does not desire to deviate
from their existing allocation strategies. Next, we investigate
whether this game admits at least one Nash equilibrium – a
stable state of the game in which no player can make a decision
that improves its own benefit if other players’ strategies remain
unchanged [9]. In the game, it is a stable state where no user
can make a decision that improves the overall benefit of all
neighbor users instead of its own benefit because our objective

is to maximize the total benefit of all the users, as discussed
above.

Definition 4. (NASH EQUILIBRIUM) An allocation decision
profile p∗ = (p∗1, ..., p

∗
n) is a Nash equilibrium if no user can

unilaterally update its decision to increase the system benefit:

Ep∗−i
(p∗i ) ≥ Ep∗−i

(pi),∀pi ∈ Pi,∀ui ∈ U (5)

Lemma 1. Given a Nash equilibrium p∗ of the game, the
allocation decision p∗i ∈ Pi made for each user ui ∈ U is the
best response to the decisions p−i made by the other n − 1
users.

Proof: If the allocation decision p∗i made by user ui is not
the best decision in Pi, there must be another better decision
pi ∈ Pi that increases the system benefit (total QoE of all
users), i.e. Ep∗−i

(p∗i ) < Ep∗−i
(pi). As a result, changing from

p∗i to pi leads to greater system benefit. This is in contradictory
to (5), where no user can unilaterally increase the overall
benefit in a Nash equilibrium.

Lemma 1 guarantees that if a Nash equilibrium does indeed
exist, QoEGame allows users to self-organize into a mutually
agreed strategy. This eliminates the burden of high computa-
tional complexity of finding optimal solutions to large-scale
QoE-aware EUA problems.

B. Game Property

A critical property of a potential game is that it admits at
least one Nash equilibrium [1]. In this section, we confirm the
existence of a Nash equilibrium in the QoE-aware EUA game
by proving that this is a potential game.

Definition 5. (POTENTIAL GAME) A game is a potential game
if the following holds for a potential function φ(p):

Ep−i
(pi) < Ep−i

(p′i)⇒ φp−i
(pi) < φp−i

(p′i) (6)
for any ui ∈ U , pi, p′i ∈ Pi and p−i ∈

∏
l 6=i Pl.

Based on Definition 5, we define a potential function:

φp−i
(pi) =

1

2

∑

ui∈U

∑

uj 6=ui

∑

d∈D
bdi ·

∑

d∈D
bdj (7)

Now, we prove that the QoE-aware EUA game formulated
in Section IV-A is a potential game with potential function
φp−i

(pi) defined in (7).

Theorem 1. The QoE-aware EUA game is a potential game
with the potential function φp−i

(pi).

Proof: Let us assume that a user ui has two allocation
decisions pi and p′i such that Ep−i

(pi) < Ep−i
(p′i). According

to (3), Ep−i
(pi) < Ep−i

(p′i) implies:
L

1 + e−α(xi−β) <
L

1 + e−α(x
′
i−β)

where xi = (
∑
d∈D b

d
i )/|D|. Since L,α, β > 0, we have

Ep−i
(pi) < Ep−i

(p′i)⇒ xi < x′i. Therefore,
∑
d∈D b

d
i

|D| <

∑
d∈D b

d
i
′

|D| , which implies
∑

d∈D
bdi <

∑

d∈D
bdi
′

(8)
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Based on (8), we have:

φp−i
(pi)− φp−i

(p′i) = (
∑

d∈D
bdi −

∑

d∈D
bdi
′
)
∑

uj 6=ui

∑

d∈D
bdj < 0

Therefore, φp−i
(pi) < φp−i

(p′i), i.e., Theorem 1 holds.

V. DISTRIBUTED USER ALLOCATION ALGORITHM

In this section, we introduce QoEGame – an iterative
and distributed user allocation algorithm for finding a Nash
equilibrium in a potential game. QoEGame is inspired by best
response dynamics [10], an evolutionary process that involves
a finite number of iterations. In every iteration, each individual
user develops the best allocation strategy in response to
other users’ strategies. It is important to note that the actual
computation happens on edge servers, not on user devices. The
process ends when no user desires to update their decisions,
i.e. a Nash equilibrium. This is called the Finite Improvement
Property of potential games.

A. Algorithm Design

QoEGame (Algorithm 1) is a distributed and iterative mech-
anism that is able to find a Nash equilibrium of the game.
Given a set of users U , edge servers S, and available QoS
levels W , QoEGame allocates users to edge servers with
suitable QoS levels so that the total QoE of all users is
maximized.

Algorithm 1 QoEGame

1: initialization:
2: each user ui chooses an allocation decision pi = (ai, bi) =

(0, 0), ∀ui ∈ U .
3: end initialization
4: repeat
5: for each user ui ∈ U do
6: if ui is unallocated, ai = bi = 0 then
7: find the decision p′i = (a′i, b

′
i) that benefits ui

the most, i.e. highest QoE. a′i ∈ Sui
, b′i ∈ W .

8: else . ui is allocated to an edge server sj ,
ai 6= 0, bi 6= 0

9: find the decision p′i = (a′i, b
′
i) that is the most

beneficial for all involved users Usj .
10: end if
11: if p′i > pi then
12: contend p′i for the decision update opportunity.
13: if ui wins the decision update contention then
14: apply decision p′i.
15: end if
16: end if
17: end for
18: until no users need to update their decisions

Initially, no user is allocated and every user ui starts with
an allocation decision pi = (ai, bi) = (0, 0), ∀ui ∈ U (Lines
1-3). After that, leveraging the Finite Improvement Property,
the algorithm goes through an iterative process that allows
every user to update their decisions iteration by iteration. The

updated decision p′i must produce a higher total QoE compared
to the previous decision pi.

In each iteration, each user ui individually finds an optimal
allocation decision p′i (Lines 6-10). If p′i leads to a higher QoE
than the previous decision pi, user ui will submit a request to
contend for the opportunity to update pi to p′i (Lines 11-12).
Once all the users have submitted their requests for decision
update, the request with the greatest QoE improvement will
be chosen as the sole winner in that iteration (Lines 13-14)
and the allocation strategy will be updated accordingly (note
that this strategy is not final and can be updated in future
iterations). A request for decision update might involve one
or more users. For example, user ui might want to lower its
QoS level so that other users can utilize the released resources.
If this request is selected as the winner, the allocation of all
involved users will be updated accordingly. The requests for
decision update that did not win will not be updated in the
next iteration. All users affected by the latest decision update
are required to update their decisions in the next iteration.

We now discuss the process for finding an optimal allocation
decision for each user (Lines 6-10) in more detail. There are
two possible cases based on a user’s allocation status in the
previous iteration. First, if ui has not been allocated, it will
select an edge server that can serve it with the highest possible
QoS level (greedy-like approach). Secondly, if ui has already
been allocated to an edge server sj , it will find a decision that
is the most beneficial for all the involved users Usj , i.e. users
located within server sj’s coverage area. User ui can freely
move to another edge server and select another QoS level. The
resources released by ui’s decision or any available resources
can then be utilized to serve more users or to increase the QoS
levels of allocated users. QoEGame is a distributed algorithm
since the process of finding an optimal allocation decision is
executed for each individual user in parallel on edge servers.

Convergence analysis. The Finite Improvement Property
of the potential game ensures that the allocation process will
reach a Nash equilibrium after a finite number of iterations.
Let T be the total number of iterations, Qi ,

∑
d∈D b

d
i ,

Qmin , min (Qi), Qmax , max (Qi), i = 1, ..., n, the
following Theorem 2 holds.

Theorem 2 (Upper Bound of Convergence Time). The maxi-
mum convergence time of QoEGame, measured by the number
of decision iterations, is n2Q2

max/(2(n− 1)Qmin).

Proof: According to (7), we have:

0 ≤ φp−i
(pi) ≤

1

2

∑

ui∈U

∑

uj∈U
Qmax =

1

2
n2Q2

max

A decision change from pi to p′i of a user ui leads to an
increase in the system benefit defined in Section III-C, i.e.,
Ep(pi) < Ep(p′i). According to Definition 5, it also results in
an increase in the potential function φ, denoted by δi, i.e.,

φp−i
(pi) + δi ≤ φp(p′i)
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According to the proof of Theorem 1, we have:

φp(p′i)− φp(pi) = (
∑

d∈D
bdi
′ −

∑

d∈D
bdi )

∑

uj 6=ui

∑

d∈D
bdj > 0

Since bdi is the normalized amount of type-d resource
required by user ui, we have

∑
d∈D b

d
i
′−∑d∈D b

d
i ≥ 1. Thus,

φp(p′i)−φp(pi) ≥ 1
∑

uj 6=ui

∑

d∈D
bdj =

∑

uj 6=ui

Qj ≥ (n−1)Qmin = δi

We have δi = (n − 1)Qmin representing the minimum
improvement of the potential function between two iterations,
and 1

2n
2Q2

max representing the maximum value of the po-
tential function. Therefore, the number of iterations required
satisfies:

R ≤ n2Q2
max

2(n− 1)Qmin

Therefore, Theorem 2 holds.

B. Price of Anarchy in Total QoE

The design of QoEGame involves non-deterministic factors
– if there are multiple users proposing allocation decisions
with the same system benefit improvement, one of them will be
randomly selected as the winner in that iteration. This leads to
the fact that there might be more than one Nash equilibrium in
the game. Thus, we evaluate the performance of QoEGame by
analyzing the Price of Anarchy (PoA) in the total QoE, which
indicates the ratio between the worst Nash equilibrium and the
optimal allocation strategy [1]. Let χ denote the set of decision
profiles that are able to reach different Nash equilibria in the
game and p∗ = (p∗1, p

∗
2, ..., p

∗
n) denote the optimal decision

profile. Given a decision profile p ∈ χ, let poaQoE(p) be the
PoA measured by the ratio between the total QoE produced
by p and p∗, poaQoE(p) is calculated as follows:

poaQoE(p) =

min
p∈χ

∑
ui∈U

Ep(pi)

∑
ui∈U Ep∗(pi)

(9)

As discussed in Section III, there are two possibilities for
the allocation of a user ui: 1) ui can be allocated (pi 6= (0, 0))
and 2) ui cannot be allocated (pi = (0, 0)). The QoE
benefit of unallocated users is zero. Thus, in the discussion
in this section, we omit the QoE of unallocated users. Ac-
cording to (3), a higher QoS level leads to a higher QoE
level. Let QoE(p) = Ep(pi) = L/(1 + e−α(

Qi
|D|−β)). Then,

QoEmax(p) = L/(1 + e−α(
Qmax
|D| −β)) and QoEmin(p) = L

/(1 + e−α(
Qmin
|D| −β)).

Based on the above definitions, we have Theorem 3.

Theorem 3. Given a decision profile p ∈ χ that achieves
a Nash equilibrium in the QoE-aware EUA game and the
optimal decision profile p∗, the PoA of the game poaQoE(p)
measured by the ratio between the total QoE achieved by p
and p∗, satisfies:

1 ≥ poaQoE(p) ≥
∑
ui∈U QoEmin(p)I{pi 6=(0,0)}∑
ui∈U QoEmax(p∗)I{pi 6=(0,0)}

(10)

where I{condition} is an indicator function which returns 1 if
condition is true, and 0 otherwise.

Proof: Case 1: For any allocation decision profile p ∈ χ,
we have QoE(p) ≤ QoE(p∗). Thus, 1 ≥ poaQoE(p).

Case 2: For any allocation decision profile p ∈ χ that is not
the optimal decision profile (p 6= p∗), there is at least one user
not allocated to the most suitable edge server or assigned the
most suitable QoE level. The minimum QoE incurred by this
user is QoEmin(p). Thus, the minimum total QoE incurred
by p is: ∑

ui∈U
QoEmin(p)I{pi 6=(0,0)}

Similarly, for the optimal decision profile p∗, the maximum
QoE of one user is QoEmax(p∗), and the maximum total QoE
incurred by p∗ is:∑

ui∈U
QoEmax(p∗)I{pi 6=(0,0)}

Therefore, the minimum PoA of the total QoE is

poaQoE(p) ≥
∑
ui∈U QoEmin(p)I{pi 6=(0,0)}∑
ui∈U QoEmax(p∗)I{pi 6=(0,0)}

Combining Case 1 and Case 2, we prove the theorem:

1 ≥ poaQoE(p) ≥
∑
ui∈U QoEmin(p)I{pi 6=(0,0)}∑
ui∈U QoEmax(p∗)I{pi 6=(0,0)}

VI. EMPIRICAL EVALUATION

We have performed a series of experiments on a widely-used
real-world dataset to evaluate the performance of QoEGame
against existing approaches.

A. Performance Benchmark

QoEGame is compared against five representative ap-
proaches, i.e. an optimal approach, three state-of-the-art ap-
proaches for solving the QoE-aware EUA problem, and a
random baseline approach:
• Optimal: This is the integer programming (IP)-based

approach introduced in [8], which finds optimal solutions
to QoE-aware EUA problems, i.e. the solutions with the
highest total QoE. This approach is implemented with the
IBM ILOG CPLEX Optimizer solver1.

• ICSOC19: Proposed in [8], this greedy approach allocates
each user to an edge server that has the most available
computing resources. Each user is then assigned the
highest possible QoS level given the computing resources
available on the edge server serving it.

• TPDS20 [11]: This approach solves the EUA problem
with the objectives of maximizing the number of allocated
users and minimizing the overall system cost calculated
based on the costs of required computing resources on
edge servers. Since TPDS20 does not consider dynamic
QoS, users’ QoS levels are randomly pre-specified.

• ICSOC18 [12]: This approach models the EUA problem
as a variable-sized vector bin packing problem and pro-
poses a lexicographic goal programming-based approach
that maximizes the number of allocated users while

1www.ibm.com/analytics/cplex-optimizer/
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minimizing the number of edge servers required to serve
the allocated users. Similar to TPDS20, this approach
does not consider dynamic QoS either. Thus users are
assigned the same QoS levels as TPDS20.

• Random: This approach allocates each user to a random
edge server as long as that edge server has sufficient
computing resources to accommodate this user and has
this user within its coverage area. The QoS level to be
assigned to this user is randomly determined based on
the edge server’s remaining computing resources. For
example, if the maximum QoS level that the edge server
can offer the user is W2, the user will be randomly
assigned either W1 or W2.

All the experiments are conducted on a Windows 10 Enter-
prise computer equipped with Intel Core i5-7400T processor
(4 CPUs, 2.4GHz) and 8GB RAM.

B. Experimental Settings

The experiments are conducted on the EUA dataset2 [12],
which contains the geographical locations of end-users and
all cellular base stations in Australia. This dataset was also
used in [8], [11], and [12] to evaluate ICSOC19, TPDS20,
and ICSOC18.

Edge servers: To capture the characteristics of a 5G envi-
ronment [13], we simulate a 1.8 km2 Melbourne CBD area
covered by 125 base stations, each equipped with an edge
server. The coverage radius of each edge server is randomly
generated within 100-150m. The computing resources avail-
able on the edge servers are randomly generated following a
normal distribution N (µ, σ2), where µ is the average capacity
of each resource type in D, and the standard deviation σ = 10
for all conducted experiments. Since a normal distribution
might contain negative numbers, any negative amount of
computing resources generated is rounded up to 1.

Edge users: We assume that for each user, there are three
possible QoS levels W = {< 1, 2, 1, 2 >,< 2, 3, 3, 4 >,<
5, 7, 6, 6 >}, and D = {CPU,RAM, storage, bandwidth}.
We have conducted experiments with other settings and
achieved similar results. Thus, we select those three QoS
levels as representative in this section. Different values of the
parameters in the QoE model (3) have also been tested. In this
section, we employ L = 5, α = 1.5, and β = 2, and present
the corresponding results.

To comprehensively analyze the performance of QoEGame
in various EUA scenarios, we conduct a series of experiments
with different varying parameters, including the number of
users, number of edge servers, and edge servers’ available
computing resources. Table I summarizes the settings of the
experiments, which will be discussed in the next section. Each
experiment is repeated 100 times to obtain 100 different user
distributions and the results are then averaged. This allows
extreme cases, such as overly dense or sparse user/server
distributions, to be neutralized. To evaluate the performance of
the approaches in achieving the optimization objective, which

2www.github.com/swinedge/eua-dataset/

TABLE I: Experimental Settings

Users Edge servers Available resources (µ)
Set #1 100, ..., 1000 70% 35
Set #2 500 10%, ..., 100% 35
Set #3 500 70% 5, 10, ..., 50

is to maximize the total QoE of all users as discussed in
Section III, we compare the total QoE of all users achieved
by the six approaches, the higher the better. To evaluate the
approaches from another perspective, we also measure the
number of users that are allocated to edge servers by each
approach, the higher the better. The efficiency of QoEGame
is also evaluated.

C. Experimental Results

Figures 3, 4, and 5 demonstrate the effectiveness of all
approaches in experiment Sets #1, #2, and #3 in terms of
the total QoE of all users. Figures 6, 7, and 8 demonstrate
their effectiveness in terms of the number of allocated users.
In general, Optimal, being the IP-based approach for finding
optimal solutions, clearly achieves the highest QoE compared
to all other approaches across all experiments. This comes
at the cost of its very high computational overhead (could
go up to over 3 seconds as demonstrated in [8]) and is thus
inapplicable in real-world 5G scenarios, where low latency is
critical. QoEGame achieves a QoE performance very close to
Optimal and clearly outperforms all other approaches. At the
same time, QoEGame is able to allocate a good number of
users to edge servers. We will also demonstrate the efficiency
of QoEGame, measured by its convergence time, i.e. the
number of iterations taken to reach a Nash equilibrium. This
is a critical and machine-independent efficiency indicator for
game-theoretic approaches [14]–[17].

1) Effectiveness:
Experiment Set #1. In this set of experiments, the number
of users is varied from 100 users to 1,000 users in steps
of 100. The number of edge servers is fixed at 70% of all
edge servers in the simulated area. Figure 3 shows the total
QoE of all users in the experiments. Under all experimental
settings, the difference in the total QoE achieved by Optimal
and QoEGame is very marginal, which, with the theoreti-
cal analysis in Section V-B, confirms the near-optimality of
QoEGame. From 100 to 400 users, ICSOC19 achieves a QoE
almost as high as Optimal and QoEGame. This occurs under
those settings because the available computing resources are
redundant and therefore almost all users receive the highest
QoS level. However, as the number of users continues to
increase while the total amount of computing resources is
fixed, the average amount of computing resources for each
user becomes more scarce. As a result, the performance of
ICSOC19 deteriorates quickly. Random and the other two
state-of-the-art approaches, i.e. ICSOC18 and TPDS20, are
outperformed by Optimal and QoEGame since they do not
consider the scenario where the QoS level of a user can be
dynamically adjusted. TPDS20 is even worse than Random
since it focuses on minimizing system costs.
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Fig. 3: Total QoE vs. number of users
(Set #1).

Fig. 4: Total QoE vs. number of edge
servers (Set #2).

Fig. 5: Total QoE vs. edge server’s
available computing resources (Set #3).

Fig. 6: Percentage of allocated users vs.
number of users (Set #1).

Fig. 7: Percentage of allocated users vs.
number of edge servers (Set #2).

Fig. 8: Percentage of allocated users
vs. edge server’s available computing
resources (Set #3).

Figure 6 shows the percentage of allocated users. We can
observe a decreasing trend here. Clearly, since the amount
of computing resources is fixed, introducing more users will
increase the number of users who cannot be allocated to any
edge servers. ICSOC18, aiming to maximize the number of
users served, is obviously able to allocate the most users as
also demonstrated in Figures 7 and 8, closely followed by
Optimal and QoEGame. Random and TPDS20 allocate fewer
users than ICSOC18, Optimal, and QoEGame. ICSOC19 is
by far the worst because it rapidly exhausts the available
computing resources on edge servers.

Note that given the same amount of computing resources
under all experimental settings, increasing the number of users
will consequently decrease the average QoE of each allocated
user as shown in the inset graph in Figure 3 since the same
amount of computing resources is now to be shared among
more users. ICSOC19 appears to be the best approach in
this aspect since every user is greedily assigned the highest
possible QoS level on an edge server. Nevertheless, this results
in an extremely low number of allocated users. This can be
observed in all other sets of experiments.

Experiment Sets #2 & #3. In these experiment sets, we vary
the number of edge servers available to serve users, from 10%
to 100% in steps of 10% (Figures 4 and 7), and the amount of
available computing resources on edge servers, from 5 to 50 in
steps of 5 (Figures 5 and 8). The total QoE depicted in Figures
4 and 5 exhibits a trend similar to experiment Set #1 (Figure
3), where QoEGame achieves a very near-optimal performance
and outperforms all other approaches by considerable margins.
As we increase the number of edge servers and the available

computing resources, the total computing resources become
more redundant, allowing more users to enjoy the highest
QoS level. This is the reason why ICSOC19 also gradually
approaches the performance of the Optimal. Additionally, as
the computing resources become redundant, more users can be
allocated to edge servers as illustrated in Figures 7 and 8. As
can be seen in the figures, Optimal and QoEGame continue
to outperform TPDS20 and Random. The percentage of users
allocated by ICSOC19 is remarkably lower compared to all
other approaches.

Optimal and QoEGame also outperform TPDS20, IC-
SOC18, and Random, in terms of the average QoE per
allocated user (inset graphs in Figures 4 and 5). ICSOC19
achieves the best performance in this aspect due to the same
reason discussed for experiment Set #1.

2) Efficiency:
It is intractable to find an optimal solution to the NP-

hard QoE-aware EUA problem with Optimal in large-scale
scenarios. As a result, we introduce QoEGame, an iterative
and distributed algorithm. In this section, we discuss the
efficiency of QoEGame and how well it scales with different
experiment parameters. Figures 9, 10, and 11 demonstrate
the convergence time of QoEGame in experiment Sets #1,
#2, and #3, respectively, measured by the average number of
iterations required by QoEGame to reach a Nash equilibrium.
In Figure 9, the number of iterations increases linearly with
the increase in the number of users from 100 to 500 users.
From 500 users onwards, the convergence time decreases
at a slower pace than it increases. The rationale for these
phenomena lies behind the competitiveness of the game. In
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Fig. 9: Number of decision iterations
vs. number of users (Set #1).

Fig. 10: Number of decision iterations
vs. number of edge servers (Set #2).

Fig. 11: Number of decision iterations
vs. edge server’s available capacity (Set
#3).

the 100-500 user range, there are still sufficient computing
resources to accommodate almost all the users (Figure 6).
More users thus lead to more possible decisions to be made
for each individual user, hence the increase in the convergence
time. As the number of users enters the range of 600-1,000,
most of the extra users are unallocated due to the scarcity of
computing resources. However, because of the high density
of users, who collectively contribute to finding the solution in
parallel, QoEGame is able to find a Nash equilibrium quicker.

In experiment Set #2 (Figure 10), increasing the number
of edge servers increases the possibility of decision updates,
i.e. more decision updates, or more required iterations, hence
the gradual increase in the convergence time of QoEGame.
In experiment Set #3, as shown in Figure 11, increasing
the available computing resources also increases the decision
update possibility. However, after a certain point, 40 in this
case, the convergence time decreases since there are now
relatively redundant computing resources and more users can
be served with high QoS levels without much competition.

VII. RELATED WORK

This section has been removed to reduce repetition in this
thesis. Please refer to the original paper online for a full,
unedited version.

VIII. CONCLUSIONS AND FUTURE WORK

User quality of experience (QoE) is of great significance for
any applications and services that are human-centric. However,
there is very limited work in this area in edge computing. In
this paper, we investigate the edge user allocation problem, in
which an app vendor needs to allocate its own users to proper
edge servers and at the same time, achieve its optimization
objectives. We consider the scenario where the quality of
service (QoS) level of a user can be dynamically adjusted
depending on the current state of the system, e.g. the available
computing resources on the edge servers. Each QoS level can
be mapped to a QoE level, or how satisfied a user is with the
service given a delivered QoS level. Our goal is to maximize
the total QoE experienced by all the users. We formulate this
problem as a potential game and introduce QoEGame – an
iterative and distributed algorithm to find a Nash equilibrium
in the game. The effectiveness and efficiency of QoEGame
are theoretically and empirically demonstrated via a series

of experiments conducted on a real-world dataset, against a
number of baseline and state-of-the-art approaches.

The future work has been removed to reduce repetition in
this thesis. Please refer to the original paper online for a full,
unedited version.
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Chapter 4
Dynamic User Allocation in

Stochastic Mobile Edge Computing

Systems

In Research Problems 1 and 2, we address a static situation where an app vendor needs to allocate a

known, fixed set of users. This is a limitation to a dynamic scenario where users come and go randomly

over time. Taking an online gaming service for instance, a user would come and start playing, stay for

the duration of the game, then leave. The game provider does not know how many and when users

would come or go. A user can be allocated to either an edge server or the remote cloud. If the user is

allocated to an edge server whose resources are exhausted, the user would have to wait in a queue until

existing users leave and free up the resources – this incurs a queuing delay cost. If allocated to the cloud,

the user would not have to wait in a queue as the cloud has an ample amount of resources. However,

this incurs a latency cost since the cloud is much further away from users compared to edge servers.

The app vendor needs to decide where to allocate its users so that the system benefit is maximized. The

system benefit is measured by the number of users allocated to edge servers minus the queuing delay

and latency costs.

In this chapter, we propose an online algorithm based on the Lyapunov optimization framework, which

is very effective in optimizing a system benefit metric in the long term while stabilizing the system,

making sure all the queue backlogs are not overloaded. An app vendor is able to flexibly adjust its

priority for the throughput benefit (measured by the number of users allocated to edge servers), queuing

76



CHAPTER 4. DYNAMIC USER ALLOCATION IN STOCHASTIC MOBILE EDGE COMPUTING

SYSTEMS 77

delay cost, and cloud latency cost. The proposed algorithm does not rely on any prior knowledge

of the statistics of user arrivals or departures and is able to automatically adapt to the priority set by

the app vendor and allocate users accordingly to achieve the time-average optimization objective. We

theoretically analyse its optimality and experimentally evaluate it against two baseline and three state-

of-the-art approaches. Our approach achieves the highest system benefit among all the approaches in

comparison. We also experimentally demonstrate that the trade-off between the throughput benefit and

the user latency and queuing delay costs can be flexibly adjusted.

This chapter is presented in the form of our published paper [34] as P. Lai, Q. He, X. Xia, F. Chen, M.

Abdelrazek, J. Grundy, J. Hosking, and Y. Yang, ”Dynamic User Allocation in Stochastic Edge Com-

puting Systems,” IEEE Transactions on Services Computing, 2021. doi: 10.1109/TSC.2021.3063148.

©2021 IEEE. Reprinted, with permission, from IEEE Transactions on Services Computing. Note that

several sections in the paper included below have been removed or slightly modified to reduce re-

peated content that has appeared else where in this thesis. For a full, unedited version, please refer

to the original paper itself.
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Dynamic User Allocation in Stochastic Mobile
Edge Computing Systems

Phu Lai, Qiang He, Xiaoyu Xia, Feifei Chen, Mohamed Abdelrazek, John Grundy, John Hosking, and
Yun Yang

Abstract—Mobile edge computing (MEC) is a new distributed computing paradigm where edge servers are deployed at, or near
cellular base stations in close proximity to end-users. This offers computing resources at the edge of the network, facilitating a highly
accessible platform for real-time, latency-sensitive services. A typical MEC environment is highly stochastic with random user arrivals
and departures over time. Here, we address the user allocation problem from a service provider’s perspective, who needs to allocate
its users to the cloud or edge servers in a specific area. A user, who has a multi-dimensional resource requirement, can be allocated to
either the remote cloud, which incurs a high latency, or an edge server, which results in a low latency but might require the user to wait
in a queue. This study aims to achieve a controllable trade-off between performance (throughput) and several associated costs such as
queuing delay and latency costs. We model this problem as a stochastic optimization problem, propose SUAC (Stochastic User
AlloCation) – an online Lyapunov optimization-based algorithm, and prove its performance bounds. The experimental results
demonstrate that SUAC outperforms existing approaches, effectively allocating users with a desired trade-off while keeping the system
strongly stable.

Index Terms—Mobile edge computing, user allocation, Lyapunov optimization, resource allocation

F

1 INTRODUCTION

IN recent years, mobile edge computing (MEC) has been
introduced to tackle a major challenge in cloud com-

puting – unpredictable and high latency, which is hold-
ing back the development of latency-sensitive applications
and services such as VR/AR, smart cities, critical system
warning, healthcare and so on. In a MEC environment,
numerous edge servers are distributed at, or near cellular
base stations or access points [1], which are much closer to
end-users compared to remote cloud servers. Thus, this new
distributed computing paradigm remarkably reduces end-
to-end latency. A service provider such as Uber or YouTube
can deploy its services on edge servers to better serve its
users [2]. To minimize non-service areas, i.e., the areas that
are not covered by any edge server, the coverage areas of
adjacent edge servers usually partially overlap [3]. Fig. 1
depicts an example of a MEC system in a small area.

In a MEC environment, the edge user allocation (EUA)
problem has arisen as a critical problem that challenges
service providers [4], [5], [6], [7]. As thin clients, e.g., mobile
or IoT devices, are not capable of executing computationally
demanding tasks, they will be allocated to cloud servers or
edge servers, which are more powerful and able to process
those tasks. A service provider needs to decide where to
allocate its users so that some optimization objectives are
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Fig. 1: An example MEC system

achieved. In an EUA scenario, each user consumes a specific
amount of computing resources, e.g., CPU, RAM, storage,
and bandwidth, on an edge server or a cloud server once
allocated. An edge server will not be able to serve a user
if it does not meet that user’s resource requirement. In this
article, we focus on non-preemptive allocation [8], [9] – al-
location without interrupting ongoing services of allocated
users, i.e., it is not possible to reallocate allocated users.

Ideally, all end-users in a specific geographic area should
be allocated to edge servers in their proximity. However, a
service provider can only hire a relatively small amount of
computing resources since an edge server usually has a very
limited computing capacity [10], [11]. It is thus not always
possible to serve all users simultaneously. As a consequence,
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some users may have to wait to be served in a queue. Since
an excessively long queue results in a long waiting time,
some users will be allocated to the remote cloud to be served
by a server in the cloud. As the cloud platform has the
elasticity to scale up or down in real-time, it has virtually
unlimited computing resources, hence no queuing needed
for the users allocated to the remote cloud. This reduces
the waiting time to almost zero but at the expense of high
latency between the cloud and the users.

Existing research on the EUA problem has a number of
limitations, which we address in this study. 1) They assume
that all the users have identical computing resource requirements
or the arrivals of users are always known [4], [5], [6], [7].
This is unrealistic because the MEC environment is highly
stochastic. Users with various resource requirements join the
MEC system dynamically and randomly over time. A user’s
exact duration in the MEC system is also unknown, i.e.,
they randomly depart from the MEC system. One can only
give a rough estimate of how long a user would stay in the
system. After a user’s departure, the computing resources
are released to serve new users. 2) Existing approaches do not
consider the fact that users can come and go over time [4], [6].
Thus proposed approaches can only be executed to allocate
users that join the MEC system in a single time slot. In the
next time slot, when new users arrive, those approaches
would have to be re-executed without taking any long-
term objectives into account, thus the allocation solutions
computed in different time slots might be conflicting each
other. 3) More importantly, the limited computing resources
in mobile edge computing [10], [11] and the massive num-
ber of users in 5G networks [12] further complicate the
EUA problem. When the number of users is very large
and the MEC system does not have sufficient computing
resources, our approach allows users to wait in a distributed
queuing system. In fact, the queuing method has been wildly
employed recently in edge computing [3], [13], [14]. The
aforementioned existing approaches for EUA assume that
users will be allocated to the cloud immediately when edge
servers are exhausted of computing resources. However,
their models do not incorporate any costs that might incur when
users are allocated to the cloud. In addition, the allocated users
do not stay in the MEC system permanently. The computing
resources released when they leave the MEC system can be
utilized to serve new users. This also has not been taken into
account by existing approaches.

The throughput of a time-slotted MEC system is defined
as the average number of users allocated to edge servers
over time. At the beginning of each time slot, a service
provider needs to decide where to allocate its users, the
remote cloud or which edge server. Under the unpredictabil-
ity of user arrivals and departures, the objectives of this
stochastic EUA problem are twofold: 1) maximizing the
throughput benefit by allocating as many users as possible
to edge servers as long as it is beneficial to do so, and
2) minimizing the penalty incurred by the queuing delay
and cloud-to-user latency. In order to achieve a control-
lable trade-off between the performance (throughput) and
costs, we employ the Lyapunov optimization framework
[15], which can make decisions based on the current state
of the system without any future information about user
arrivals and departures. Its unique advantage over other

online optimization approaches is its ability to optimize the
performance of a system in a metric (the system benefit
measured collectively by the throughput benefit, queuing
delay cost, and latency cost in our study), while stabilizing
the system (the length of the queues of users waiting to
be allocated to each edge server in our study). It can be
used to transform a long-term optimization problem into a
series of short-term optimization problems, which are to be
solved in each time slot. Doing this over multiple time slots
will collectively achieve the long-term objective, i.e., system
benefit maximization, while stabilizing all the user queues.
The main contributions of this study include:

• We formally model the stochastic EUA problem that
aims to help service providers allocate their users
in order to achieve their long-term objectives, i.e.,
to maximize system throughput, and to minimize
users’ latency and queuing costs while keeping the
stochastic MEC system strongly stabilized.

• We present SUAC, an online algorithm based on the
Lyapunov optimization framework. Although SUAC
does not require future information of user arrivals
and departures, it can be theoretically shown that
SUAC is able to find near-optimal solutions with an
[O(1/V ), O(V )] performance-cost trade-off.

• A series of experiments are conducted on a real-
world dataset to comprehensively evaluate the per-
formance of SUAC.

The organization of this article is as follows. Section 2
introduces the MEC system model. Section 3 first introduces
the throughput benefit and associated costs, then formulates
the stochastic EUA problem. Section 4 presents the SUAC
algorithm, which is then evaluated in Section 5. Section 6
reviews the related literature. Finally, Section 7 concludes
the article and points out future work.

2 SYSTEM MODEL

In this section, we formally model the MEC system and
its associated key characteristics. A MEC system in a specific
geographical area consists of a set of edge servers. It is
a time-slotted system where multiple users arrive in each
time slot and need to be allocated to either an edge server
or the cloud. Each edge server maintains a queue to hold
users that have been allocated to the server but have not
been served yet due to insufficient computing resources. The
main notations used in this article are summarized in Table
1.

2.1 System Description
Edge Servers: The set of S edge servers denoted by S =

{1, 2, ..., S}. Each edge server s ∈ S has a certain amount of
different computing resource types R such as CPU, RAM,
storage, or bandwidth. Each edge server is equipped with
a limited amount of computing resources. The computing
capacity of an edge server s is an |R|−dimensional vector
Cs. Each edge server covers a particular geographic area, as
illustrated in Fig. 1.

Edge Users: There are K types of users categorized
by their computing resource requirements, k ∈ K =
{1, 2, ...,K}. Let an |R|−dimensional vector cu denote user
u’s computing resource requirement.

CHAPTER 4. DYNAMIC USER ALLOCATION IN STOCHASTIC MOBILE EDGE COMPUTING

SYSTEMS 79

79



3

TABLE 1: Main Notations

Notation Description

S the set of S edge servers s. S = {1, 2, ..., S}
R the set of computing resource types, or computing capacity

dimensions. R = {CPU,RAM, storage, bandwidth, ...}
Cs computing capacity of edge server s. Cs is an |R|-dimensional

vector where each dimension is the capacity of a resource type
in R

K the set of K user types k, categorized by their computing
resource requirements. K = {1, 2, ...,K}

Ak(t) the set of type-k users u (k ∈ K) arrive in time slot t. The set
of all users arrive in time slot t is A(t) = ⋃

k∈KAk(t)

cu computing resource requirement of user u. cu is an |R|-
dimensional vector where each dimension is the capacity of
a resource type in R

au,s(t) allocation decision on whether user u will be allocated to edge
server s in time slot t

bu(t) allocation decision on whether user u will be allocated to the
remote cloud in time slot t

Qs(t) queue backlog of edge server s, i.e., number of users waiting
to be served by edge server s, in time slot t

Ds(t) number of users who leave the queue and start being served
by edge server s in time slot t

br time-average benefit gained from system throughput
cd time-average queuing delay for all users
ch time-average latency of all users allocated to the remote cloud
rs time-average throughput of edge server s
ws the weight that indicates service provider’s priority for the

throughput benefit gained from serving users by edge server s
Ns service rate of edge server s, i.e., the maximum number of

users can be simultaneously served by edge server s
` expected user session length
ns(t) number of users being served by edge server s in time slot t
hu user u’s cloud-to-user latency
ωr, ωd,
ωh

normalizing parameters for throughput benefit, queuing delay
cost, and latency cost

V Lyapunov control parameter

User Arrivals and Departures: The operational timeline of
this MEC system is discretely slotted with normalized slot
duration t ∈ {0, 1, 2, ...}. Each time slot t may range from
several milliseconds, seconds, to a few minutes, depending
on the application context. Let Ak(t) denote the set of type-
k users that arrive in time slot t, the set of all users that
arrive in time slot t is A(t) =

⋃
k∈KAk(t). Each random

variable |Ak(t)|, ∀k ∈ K, is independent of the current
number of users in the system. Without loss of generality,
we assume that the number of users that arrive in a time
slot is bounded, i.e.,

∑
k∈K |Ak(t)| ≤ Amax, ∀t, where Amax

is the maximum of users of all types arrive in a time slot. The
time-average arrival rate is given by λk = E{|Ak(t)|}. The
total time-average user arrival rate λ of the system is thus∑

k∈K λk. A user’s duration in the system (the length of a
user session) is unknown at all time, i.e., users depart from
the MEC system randomly, and is measured by the number
of time slots. Our approach does not rely on any prior
knowledge of the statistics of user arrivals or departures.

2.2 Allocation Decisions
In each time slot, a number of new users arrive and need

to be allocated to either 1) ideally, edge servers, or 2) the

remote cloud. Let au,s(t),bu(t) ∈ {0, 1} be the allocation
decision to be made for user u in time slot t. We have
au,s(t) = 1 if user u is to be allocated to edge server s, and
bu(t) = 1 if user u is to be allocated to the remote cloud. Let
a(t) = {au,s(t),bu(t)}u∈A(t) denote the allocation strategy
for all users that arrive in time slot t, which must satisfy the
following constraints.

Firstly, each user u can be allocated to only one server,
either the remote cloud server or an edge server:

bu(t) +
∑

s∈S
au,s(t) = 1,∀u ∈ A(t),∀t (1)

Note that we do not consider users who are not located
within the coverage of any edge server. A user u can be
allocated to an edge server s only if it is located in that edge
server’s coverage area covs (proximity constraint):

au,s(t) = 0 if u /∈ covs,∀u ∈ A(t),∀s ∈ S,∀t (2)

and the accumulated computing resource requirements of
the users being served by an edge server must not exceed
the capacity of that edge server (capacity constraint):

∑

u∈D(t)

(au,s(t)cu) � Cs,∀s ∈ S,∀t (3)

where D(t) is the set of users being served by edge server s.

2.3 Queuing Dynamics and Stability

We introduce a distributed queuing architecture where
each edge server s ∈ S maintains a local queue. If a user is
decided to be allocated to an edge server by a mechanism
to be discussed later, it will be buffered in the queue of that
edge server until that edge server has sufficient computing
resources to serve it. We denote queue backlog Qs(t) as the
queue length (number of waiting users) of edge server s in
time slot t. We have the following queuing dynamics:

Qs(t+ 1) =
[
Qs(t)−Ds(t)

]
+

+ as(t) (4)

where as(t) =
∑

u∈A(t) au,s(t) is the number of users
decided to be allocated to edge server s in time slot t, and
Ds(t) is the number of users that leave the queue and start
being served by edge server s. Note that Ds(t) is not the
number of users who depart from the system (the user
session has ended, or the service is no longer required) in
time slot t. A queue Qs(t) is considered strongly stable [15]
if the queue backlog is bounded: lim

T→∞
1
T

∑T−1
t=0 E{Qs(t)} <

∞,∀s ∈ S . Intuitively, this means that the queue length
remains finite and does not blow up to infinite over time. A
MEC system is strongly stable when all the queues’ lengths
are bounded. We will later theoretically and experimentally
show that our approach can stabilize the MEC system.

Remark: We consider a distributed queuing model
rather than a centralized one, i.e., all edge servers maintain
a single queue, for two main reasons. First, the distributed
queuing architecture is more common in data centers since
the queue memory operates at a much slower speed [8].
Secondly, as the central queue might be far away from users,
it would incur extra communication delay, which is not
acceptable in the MEC environment.
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3 PROBLEM FORMULATION

We now identify several key MEC components that are
taken into account in our model, including the performance
(benefit gained from system throughput), and the costs
(incurred by queuing delay and cloud-to-user latency).

3.1 Time-Average Throughput
From the service provider’s perspective, the overall

system throughput, i.e., the number of users allocated to
edge servers, is one of the key performance metrics that
reflects the quality of service. We define the time-average
throughput rs of each edge server s as follows:

rs = lim
T→∞

1

T

T−1∑

t=0

E
{ ∑

u∈A(t)

au,s(t)
}
,∀s ∈ S (5)

We have
∑

s∈S rs as the overall throughput of the MEC
system, which ideally should be maximized and is obvi-
ously subject to the following constraint:

∑
s∈S rs ≤ λ,

i.e., the time-average throughput cannot exceed the time-
average user arrival rate. The time-average benefit that a
service provider gains from system throughput is measured
by:

br =
∑

s∈S
(wsrs) (6)

where ws is a non-negative weight for the throughput rs
of each edge server s ∈ S . This weight enables the service
provider to adjust the benefit gained from different edge
servers’ throughput. A high value ofws indicates that, given
the same throughput, the benefit gained from edge server
s is more significant than other edge servers with lower
ws. For example, if the prices for the computing resources
on edge server s are cheaper than those on other edge
servers, the throughput on edge server s is more beneficial
or profitable.

3.2 Queuing Delay and Latency Cost
For each user, there are two possible allocation options,

either the remote cloud or an edge server. Each option is
associated with a type of cost. If allocated to an edge server,
the user is placed in a queue waiting for its turn to be served
since being allocated to an edge server is more desirable,
hence highly demanding. This incurs a queuing delay cost. If
allocated to the remote cloud, which has an ample volume
of computing power to serve many users simultaneously,
the user skips the queuing but suffers a high cloud latency
throughout its service session. This incurs a latency cost.

3.2.1 Queuing Delay Cost
The queuing delay cost for a user depends on the current

congestion state of its assigned queue and the computing
power of the edge server associated with that queue. For
example, a more congested queue would apparently lead to
a longer queuing delay. However, one also needs to take
into account the computing capacity of the edge server
associated with that queue. If the edge server’s computing
capacity is high, it can serve more users simultaneously,
resulting in a higher service rate than those with low com-
puting capacities.

The service rate of an edge server s is Ns/`, where ` is
the expected user session length, measured by the number

of time slots, and Ns is the maximum number of users of
all types that can be simultaneously served by edge server s
in one time slot. In practice, ` can be empirically estimated
based on historical data. Ns can be calculated based on the
computing capacity Cs of edge server s. For example, say
there are three possible types of user resource requirements
< 1, 3, 1, 2 >, < 2, 1, 3, 1 >, and < 3, 1, 2, 2 >, and edge
server s has a capacity of< 43, 43, 41, 41 >. This edge server
s has enough capacity to serve 22 users concurrently (e.g.,
10 users of type < 1, 3, 1, 2 >, 5 users of type < 2, 1, 3, 1 >,
and 7 users of type < 3, 1, 2, 2 >).

Let ns(t) denote the number of users being served by
edge server s in time slot t. Then, the queuing delay of
a user u who has just arrived at edge server s can be
measured by [ns(t)−Ns+Qs(t)+1]+

Ns/`
, whereQs(t) is the current

queue length of edge server s, i.e., the number of queuing
users excluding new user arrivals. The estimated queuing
delay of another user who arrived right after user u is
thus [ns(t)−Ns+Qs(t)+2]+

Ns/`
. Intuitively, [ns(t)−Ns +Qs(t) +

i]+,∀i ≤ as(t) represents the number of users queuing
ahead of the new users when the edge server is full, in-
cluding the users currently being served by the edge server.
[ns(t) − Ns + Qs(t) + i]+ = 0 if the server has sufficient
resources to serve new users right away without queuing
them. We can see that the queuing delay of users allocated
to an edge server is proportional to the current queue length
Qs(t) and the number of users allocated to that edge server
as(t). Let Ms(t) = ns(t) − Ns + Qs(t), the time-average
queuing delay for all users in all edge servers can be defined
as follows:

cd =
∑

s∈S
lim

T→∞
1

T

T−1∑

t=0

E
{

[Ms(t) + 1]+
Ns/`

+ ...

+
[Ms(t) + as(t)]+

Ns/`

}
(7)

3.2.2 Latency Cost
If allocated to the remote cloud, the user suffers from

high latency throughout its service session. The latency, or
communication delay, is influenced by many factors such as
transmission medium, distance, bandwidth, etc. To simplify
the model, we let hu be the cloud-to-user latency for user u.
The time-average latency of all users allocated to the remote
cloud is:

ch = lim
T→∞

1

T

T−1∑

t=0

E
{ ∑

u∈A(t)

(bu(t)hu)

}
(8)

3.3 Time-Average System Benefit Maximization
In the previous sections, we have modeled the through-

put benefit br, the queuing delay cost cd, and the latency
cost ch. Now, we formulate the maximization of the time-
average system benefit as the following stochastic optimiza-
tion problem:

(P1) max
au,s,bu

ωrbr − ωdcd − ωhch (9)

s.t. (1), (2), (3)

where ωr, ωd, and ωh are non-negative weights acting as
normalizing parameters for throughput benefit, queuing
delay cost, and latency cost, respectively, since they have
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different scales. This also allows service providers to ad-
just their priority for the throughput benefit and other
costs. Solving P1 in an offline and centralized fashion is
intractable. Optimally solving this optimization problem
requires complete offline future information such as user
arrivals and departures, user locations, and user require-
ments. In the highly stochastic MEC environment, that
information are often unpredictable and vary over time.
Therefore, we tackle this challenge by introducing an online
algorithm based on the Lyapunov optimization framework,
which can make decisions in every time slot without future
information.

4 STOCHASTIC USER ALLOCATION

In this section, we introduce the trade-off between the
system benefit and system stability, measured by the queue
congestion. We then propose SUAC, an online algorithm
based on the Lyapunov optimization framework to solve
the stochastic EUA problem.

4.1 Stability-Benefit Trade-off

Let Q(t) = (Q1(t), ..., QS(t)) be the queue backlog
vector. For each time slot t, we define a quadratic Lyapunov
function L(Q(t)) as:

L(Q(t)) , 1

2

∑

s∈S
Qs(t)

2 (10)

This function is a scalar measure of the congestion state
of the MEC system. Intuitively, L(Q(t)) is large when at
least one of the edge server’s queue Qs(t) is congested,
and L(Q(t)) is small when all the queue backlogs are
small, representing a stable system. Given the Lyapunov
function, we define the conditional Lyapunov drift to measure
the change in this function between two consecutive time
slots:

∆(Q(t)) , E{L(Q(t+ 1))− L(Q(t))|Q(t)} (11)

Our objective is to find a user allocation strategy a(t) to
coordinate the queue congestion state, throughput benefit,
and other related costs in every time slot. By incorporating
the queue stability into the performance-cost trade-off, we
come up with a drift-minus-benefit expression as follows:

∆(Q(t))− V E{ωrbr − ωdcd − ωhch|Q(t)} (12)

where V is a non-negative control parameter to balance
the trade-off between the drift ∆(Q(t)) (queue stability)
and the system benefit (throughput benefit minus queuing
delay and latency costs). V = 0 indicates that the system
should be stabilized as much as possible regardless of the
throughput benefit, i.e., to allocate all users to the remote
cloud. Depending on the situation, a service provider can
flexibly change the value of V to adjust the trade-off. For
example, they can decrease V to keep the queue backlogs
small, avoiding system congestion while maximizing the
system benefit as much as possible. Under the Lyapunov
optimization framework, the user allocation strategy should
be chosen to minimize the supremum bound of the above
drift-minus-benefit expression (12).

Lemma 1. Given any allocation strategies in any time slots, the
following bound of the drift-minus-benefit (12) holds:

∆(Q(t))− V E{ωrbr − ωdcd − ωhch|Q(t)}

≤ B +
∑

s∈S
E
{

as(t)
2V K + as(t)Ps(t)|Q(t)

}

+
∑

u∈A(t)

E
{
V ωhhu

(
1−

∑

s∈S
au,s(t)

)
|Q(t)

}
(13)

where B = 1
2 (
∑

s∈S N
2
s + Amax2

) is a constant, as(t) =∑
u∈A(t) au,s(t), Ms(t) = ns(t) − Ns + Qs(t), Ps(t) =

Qs(t) + V
(
K(2Ms(t) + 1)− ωrws

)
, and K = ωd`

2Ns
.

Proof. Let as(t) =
∑

u∈A(t) au,s(t). Since ([a − b]+ + c)2 ≤
a2 + b2 + c2 − 2a(b− c),∀a, b, c ≥ 0, we can derive:

∆(Q(t)) = E
{
L(Q(t+ 1))− L(Q(t))|Q(t)

}

= E
{

1

2

∑

s∈S

((
[Qs(t)−Ds(t)]+ + as(t)

)2 −Qs(t)
2

)
|Q(t)

}

≤ E
{

1

2

∑

s∈S

(
Ds(t)

2 + as(t)2

− 2Qs(t)
(
Ds(t)− as(t)

))
|Q(t)

}
(14)

Since
∑

s∈S as(t) ≤ Amax and as(t) ≥ 0,∀s ∈ S , we
have

∑
s∈S as(t)2 ≤ Amax2

. In addition, Ds(t) ≤ Ns,∀s ∈
S,∀t, thus

∑
s∈S(Ds(t)

2+as(t)2) is bounded by
∑

s∈S N
2
s +

Amax2

. Also, −2Qs(t)Ds(t) ≤ 0,∀s ∈ S,∀t, therefore,

∆(Q(t)) ≤ B + E
{∑

s∈S

(
as(t)Qs(t)

)
|Q(t)

}
(15)

where B = 1
2 (
∑

s∈S N
2
s +Amax2

) is a constant.
By subtracting V E{ωrbr−ωdcd−ωhch} from both sides

of (15), we have:

∆(Q(t))− V E{ωrbr − ωdcd − ωhch|Q(t)}

≤ B + E
{∑

s∈S

(
as(t)Qs(t)

)
|Q(t)

}
− V E

{
ωr

∑

s∈S
(wsrs)

− ωd

∑

s∈S

( [Ms(t) + 1]+
Ns/`

+ ...+
[Ms(t) + as(t)]+

Ns/`

)

− ωh

∑

u∈A(t)

(
bu(t)hu

)
|Q(t)

}

†
≤ B + E

{∑

s∈S

(
as(t)Qs(t)

)
|Q(t)

}
− V E

{∑

s∈S
(ωrwsas(t))

−
∑

s∈S

ωd`(2Ms(t) + 1 + as(t))as(t)
2Ns

− ωh

∑

u∈A(t)

(
hu
(
1−

∑

s∈S
au,s(t)

))
|Q(t)

}

= B +
∑

s∈S
E
{

as(t)2V K

+ as(t)
(
Qs(t) + V

(
K(2Ms(t) + 1)− ωrws

))
|Q(t)

}

+
∑

u∈A(t)

E
{
V ωhhu

(
1−

∑

s∈S
au,s(t)

)
|Q(t)

}
(16)
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where K = ωd`
2Ns

and Ms(t) = ns(t) − Ns + Qs(t). The
inequality † is because of the constraint (1) and the fact that
[a+ 1]+ + ...+ [a+n]+ ≥ na+n(n+ 1)/2,∀a ∈ R,∀n ≥ 0.
Therefore, Lemma 1 holds.

We have now transformed the stochastic optimization
problem P1 into the bounding of the drift-minus-benefit. In
the next section, we propose an online allocation algorithm
given the drift-minus-benefit bound found in Lemma 1.

Remark: This model is easily extensible by incorporating
one or more virtual queues into (10). A virtual queue could
be a deficit queue of energy consumption, operating budget,
etc., allowing service providers to enforce more constraints.

4.2 Stochastic User Allocation Algorithm
In this section, we propose SUAC, a Stochastic User

AlloCation algorithm (Algorithm 1), which observes the
state of the MEC system in every time slot t and determines
an allocation strategy a(t) to minimize the supreme bound
on the drift-minus-benefit (12), i.e., the right-hand side of
(13). Employing the concept of opportunistically minimiz-
ing an expectation, this can be achieved by solving the
optimization problem P2 below.

(P2) min
au,s,bu

∑

s∈S

(
as(t)2V K + as(t)Ps(t)

)

+
∑

u∈A(t)

(
V ωhhu

(
1−

∑

s∈S
au,s(t)

))
(17)

s.t. (1), (2), (3)

Algorithm 1 SUAC ALGORITHM

Input: S, V, ωr, ωd, ωh

Output: allocation decisions au,s(t),bu(t),∀t,∀s ∈ S
1: for each time slot t = 0, 1, ...,∞ do
2: Observe incoming users A(t) and edge servers’

queues Qs(t),∀s ∈ S ;
3: Choose au,s(t),bu(t),∀u ∈ A(t) by solving P2;
4: Update the queue Qs,∀s ∈ S according to (4);
5: end for

In every time slot, new users arrive and then get allo-
cated to either the remote cloud or edge servers depending
on the solutions to optimization problem P2. In the mean-
time, each edge server serves the users waiting in its queue
if it has sufficient computing resources. After a random
number of time slots, those users depart and release the
computing resources so that the queuing users can start
using the service on a first-come, first-served (FCFS) basis.
Note that SUAC requires neither the knowledge of future
user arrivals nor general statistical user distributions. Given
the pre-defined parameters V, ωr, ωd, ωh, SUAC can achieve
a controllable trade-off between throughput and other as-
sociated costs while guaranteeing a stable MEC system. In
other words, all the edge servers’ queues are stable at all
times, bounding users’ expected queuing delay. Problem P2
can be solved using an integer programming solver, e.g.,
IBM ILOG CPLEX Optimizer1 or Gurobi2). According to

1. www.ibm.com/analytics/cplex-optimizer
2. www.gurobi.com

our experiments, IBM ILOG CPLEX Optimizer can handle
as many as 1,000 users arriving at 26 edge servers in each
30-second time slot.

SUAC is an online algorithm that allocates users as they
arrive in the MEC system. When a user moves within the
same edge server’s coverage area across two time slots, they
will not be considered as a new user. If they move from
one edge server’s coverage area into another edge server’s
coverage area across two time slots, they will be allocated
as a new user in the second time slot. In this way, SUAC
can accommodate user mobility. Within one time slot, we
study the quasi-static scenarios where users do not move
across edge servers, similar to many other studies [3], [4],
[13], [16].

The following theorem demonstrates the existence of a
performance-cost trade-off [O(1/V ), O(V )] in the proposed
SUAC algorithm, allowing service providers to adjust the
control parameter V to achieve its desired trade-off between
the throughput benefit and other associated costs, namely
queuing delay and latency costs.

Theorem 1. For any user arrival rate in any time slot, employing
SUAC with any non-negative V satisfies the following perfor-
mance bounds:

1) The time-average system benefit is within a gap (B/V ) to
the optimal solution:

lim
T→∞

1

T

T−1∑

t=0

E
{
ωrbr − ωdcd − ωhch

}
≥ β∗ − B

V
(18)

2) The average queue backlog is upper bounded:

lim
T→∞

1

T

T−1∑

t=0

∑

s∈S
E{Qs(t)} ≤ B + V (β∗ − βmin) (19)

where β∗ = ωrb∗r − ωdc∗d − ωhc∗h, and b∗r , c∗d, and c∗h are the
optimal values of Problem P2, and B = 1

2 (
∑

s∈S N
2
s +Amax2

),
and βmin is defined in the proof.

Proof. First, we prove the first part of Theorem 1. Using
the result obtained in Theorem 4.5 in [15], we can show
that there exists a stationary randomized allocation pol-
icy Φ for P2 that determines feasible allocation strategies
aΦ
u,s(t),b

Φ
u (t), ∀u ∈ A(t),∀s ∈ S,∀t, independent of the

current queue backlogs Qs(t),∀s ∈ S in every time slot t,
and yields the following steady state values:

E{aΦ
s (t)} = E

{∑
u∈A(t)

aΦ
u,s(t)

}
= r∗s ,

E{aΦ
s (t)

(
aΦ
s (t) + 2Ms(t) + 1

)
} ≤ c∗d,

E
{ ∑

u∈A(t)

(
(1−

∑

s∈S
aΦ
u,s(t))hu

)}
= c∗h (20)

Let β = ωrbr − ωdcd − ωhch denote the system benefit
(Section 3.3) in time slot t. For all feasible allocation solu-
tions, which includes those produced by Φ, the proposed
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SUAC algorithm minimizes the drift-minus-benefit bound
proven in Lemma 1, thus the following inequality holds:

∆(Q(t))− V E{β(t)|Q(t)}

≤ B +
∑

s∈S
E
{

aΦ
s (t)2V K + aΦ

s (t)Ps(t)|Q(t)

}

+
∑

u∈A(t)

E
{
V ωhhu

(
1−

∑

s∈S
aΦ
u,s(t)

)
|Q(t)

}
(21)

Taking expectations of the above inequality and using
the law of iterated expectations give us:

E{L(Q(t+ 1))} − E{L(Q(t))} − V E{β(t)}

≤ B +
∑

s∈S
E
{

a∗s(t)2V K + a∗s(t)Ps(t)|Q(t)

}

+
∑

u∈A(t)

E
{
V ωhhu

(
1−

∑

s∈S
a∗u,s(t)

)
|Q(t)

}
(22)

By plugging (20) into the right-hand side of (22) and
rearranging the terms, we have:

E{L(Q(t+ 1))} − E{L(Q(t))} − V E{β(t)} ≤ B − V β∗

+
∑

s∈S
E{a∗s(t)Qs(t)|Q(t)} (23)

The above holds for all t ∈ {0, 1, 2, ...}. By summing the
above inequality over t ∈ {0, 1, ..., T − 1} for some integer
T > 0 and applying the law of telescoping sums, we have:

E{L(Q(T ))} − E{L(Q(0))} − V
T−1∑

t=0

E{β(t)} ≤ TB − V Tβ∗

+
T−1∑

t=0

∑

s∈S
E{a∗s(t)Qs(t)|Q(t)} (24)

Since L(Q(0)) = 0, L(Q(T )) ≥ 0, and a∗s(t)Qs(t) ≥ 0,
∀s ∈ S,∀t, dividing both side of the above inequality by T
yields:

1

T

T−1∑

t=0

E{β(t)} ≥ β∗ − B

V
(25)

The proof of the first part of Theorem 1 completes by
letting T →∞.

Next, we prove the second part of of Theorem 1. Suppose
there are constants B ≥ 0, V ≥ 0, ε ≥ 0, and β∗ such that
for all time slot t and all possible values of Q(t), we have:

∆(Q(t)) + V E{β(t)|Q(t)} ≤ B + V β∗ − ε
∑

s∈S
Qs(t) (26)

Taking expectations of both sides, summing over t ∈
{0, 1, ..., T − 1}, and applying the law of iterated expecta-
tions yield:

E{L(Q(T ))} − E{L(Q(0))}+ V
T−1∑

t=0

E{β(t)|Q(t)}

≤ T (B + V β∗)− ε
T−1∑

t=0

∑

s∈S
E{Qs(t)} (27)

Assume the expected system benefit β(t) is lower
bounded by a finite value βmin so that we have E{β(t)} ≥

βmin for all possible allocation decisions. As L(Q(0)) = 0
and L(Q(T )) > 0, plugging this into the above inequality
and rearranging terms yield:

1

T

T−1∑

t=0

∑

s∈S
E{Qs(t)} ≤

B + V (β∗ − βmin)

T
(28)

Letting T → ∞ completes the proof of the second part
of Theorem 1.

5 EVALUATION

We have performed a series of experiments to verify and
evaluate the performance of our proposed SUAC algorithm.

5.1 Experiment Setup
Edge servers: We use the EUA dataset3 [6], which contains

the geographic locations of end-users and all cellular base
stations in Australia. Then, we simulate a highly dense
500m×500m area covered by 26 base stations, assuming
each base station is equipped with an edge server. The
coverage radius of each edge server is randomly generated
within a range of 100-150m. The edge server capacities
are randomly generated following a normal distribution
N (µ, σ2), where µ is the average capacity of each resource
type (CPU, RAM, storage, and bandwidth), and the stan-
dard deviation σ = 10 for all experiments conducted in this
article. Since a normal distribution might contain negative
numbers, any negative amount of computing resources gen-
erated is rounded up to 1. We set ws = 1 for all edge servers
s ∈ S so that the benefit gained from the same throughput
would be equal among all edge servers.

Edge users: All edge servers are able to serve N =∑
s∈S Ns users simultaneously. The number of newly-

arrived users in each time slot |A(t)| is drawn from
a Poisson distribution with rate [0, ζN ], where ζ ∈
(0, 0.1] controls the traffic intensity. We assume R =
{CPU,RAM, storage, bandwidth}. Each resource require-
ment is a |R|−dimensional vector, where each vector com-
ponent is the normalized amount of a resource type in R.
Each user’s resource requirement is randomly generated
using a uniform distribution within < 1, 1, 1, 1 > and
< 4, 4, 4, 4 >. Each user’s session duration is uniformly
distributed in [10, 20] time slots. Each time slot is set at
30-second length. The latency experienced by a user, if
allocated to the remote cloud, is randomly set in [50,250]
ms [17].

All the experiments are conducted on a Windows ma-
chine equipped with Intel Core i5-7400T processor (4 CPUs,
2.4GHz) and 8GB RAM. The optimization problem P2 is
solved with IBM ILOG CPLEX Optimizer4 in line 3 of
Algorithm 1.

5.2 Performance Benchmark
We evaluate SUAC against the state of the art and two

baseline approaches:

• Join-the-Shortest-Queue (JSQ): The authors of [8],
[9] propose a class of randomized algorithms for
placing VMs in physical servers that can achieve

3. www.github.com/swinedge/eua-dataset
4. www.ibm.com/analytics/cplex-optimizer
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TABLE 2: Experiment sets

µ ζ V ωr ωd ωh

Set #1 40 0.01, 0.02, ..., 0.1 0.3 300 7 200

Set #2 10, 20, ..., 90 0.07 0.3 300 7 200

Set #3 40 0.07 0.05, 0.1, 0.15, ..., 0.45 200, 300, 400, 500 7 200

Set #4 40 0.07 0.05, 0.1, 0.15, ..., 0.45 300 3, 5, 7, 9 200

Set #5 40 0.07 0.05, 0.1, 0.15, ..., 0.45 300 7 50, 200, 350, 500

Fig. 2: Average queue backlog vs.
varying traffic intensity ζ under four
algorithms (Set #1).
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Fig. 3: Queue backlog evolution under
four algorithms with ζ = 0.3 (Set #1).

Fig. 4: Percentage of users allocated to
edge servers (Set #1).

maximum throughput without preemptions in a
cloud computing environment. The users and edge
servers in our problem can be seen as VMs and phys-
ical servers in their problems. Since our problem has
a third tier (the remote cloud server), we modify their
approach to incorporate this extension. We consider
the remote cloud server as a ”virtual” edge server
without a queue. Suppose a user u arrives at time
slot t, it can be allocated to the cloud with probability
Pr(bu = 1) = Pr(au,1 = 1) = ... = Pr(au,S = 1).
If not allocated to the cloud, it will be allocated to
the edge server with the shortest queue. Each queue
maintains a Poisson clock to control when to serve
the queuing users.

• Density-based Clustering (DBC): In [18], users are
allocated to cloudlets (equivalent to edge servers in
our work) using a density-based clustering algorithm
that takes into account the distances between users
and their neighbor edge servers. Users are to be allo-
cated to an edge server that has the most candidate
users first, i.e., users that are covered by the server.
For example, say users u1 and u2 can be allocated
to either edge servers s1 or s2. Edge server s1 covers
more users than edge server s2. User u1 is closer to s1

than it is to s2, and u2 is closer to s2 than it is to s1.
Hence, the users allocation will start from s1 since
it has more candidate users. User u1 has a higher
allocation priority than u2 when being assigned to
s1. Since this approach does not take queuing system
into account, we assume that excessive users, i.e.,
users that are allocated to edge servers but the edge
servers do not have sufficient computing resources
to serve the users, will be redirected to the remote
cloud.

• QoE-aware User Allocation (QoEUA): In [7], the
authors map each user resource requirement to a
quality-of-experiment (QoE) level. They optimally
allocate users to edge servers using an integer pro-

gramming approach so that the total QoE of all the
users is maximized. Similar to DBC, this approach
does not take queuing system into account. Thus, we
assume that excessive users will be redirected to the
remote cloud.

• Throughput Optimal (TPO): To achieve the maxi-
mum throughput benefit, this approach completely
ignores the remote cloud. Every user will be allo-
cated to the edge server with the shortest queue.
Predictably, this approach may well result in a high
queuing delay cost.

• Random: New users are uniformly allocated to either
the cloud or edge servers at random.

5.3 Experiment Sets

We conduct a series of experiments with different vary-
ing parameters to analyze the performance of SUAC in
various MEC scenarios. Table 2 summarizes all the exper-
iment sets which will be discussed in the next section. We
first experiment with various traffic intensities (ζ) in Set #1,
ranging from light traffic to very intense traffic, to simulate
different user arrival rates. In Set #2, we vary the computing
resource capacity (µ) that each edge server has to serve
users, ranging from scarce resources to abundant resources;
this impacts the service rate of each edge server. After that,
we vary the control parameter V used in Eq. (17), and at
the same time, the throughput benefit weight ωr , queuing
delay cost weight ωd, and latency cost weight ωh in Sets #3,
#4, and #5, respectively. These domain-specific parameters
are used in Eq. (17) to indicate the priorities for SUAC’s
pursuit of system throughput, queuing delay, and latency,
respectively, when SUAC allocates users to edge servers
over time. In a real-world setting, a service provider can
determine those parameters according to their needs. Note
that in those three experiment sets, parameters V, ωr, ωd, ωh

have no impact on the allocation results produced by the
five benchmark approaches since they work independently
of those parameters. Each experiment setting is executed for
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a duration of 1,000 time slots.

5.4 Experiment Results
5.4.1 Impact of Traffic Intensity (User Arrival Rate)

In Set #1, we vary the traffic intensity ζ from 0.01, 0.02
to as high as 0.1. For example, say the 26 edge servers can
serve 500 users simultaneously, ζ = 0.1 means that there
are 50 new users joining the system in every time slot on
average. Fig. 2 illustrates the time-average queue backlog
under four approaches when the MEC system is put under
various traffic intensities. The time-average queue backlog
is the average number of users queuing per server during
the simulated duration. Fig. 3 depicts the evolution of the
queue backlog in Set #1 when ζ = 0.3 during the first 400
time slots. Note that DBC and QoEUA are not shown in
those two figures because they do not employ a queuing
system, or have no queues.

The time-average queue backlogs under JSQ, TPO, and
Random (Fig. 2) grow linearly with the traffic intensity. At
ζ = 0.1, the average queue backlog of TPO is very long, i.e.,
roughly 140 users queuing per server, which is unacceptable
for any latency-sensitive services. This is unsurprising since
TPO only allocates all users to edge servers. On the other
hand, under SUAC, the time-average queue backlog slowly
increases with the increasing traffic intensity, then converges
and remains unchanged at approximately 40 users regard-
less of the varying traffic intensity (ζ = 0.08−0.1). A service
provider can easily increase or decrease the queue backlog
level by increasing or decreasing the control parameter V . In
Fig. 3, the queue backlogs of all four approaches gradually
increase during the first few time slots. After that, while
the other three approaches keep getting their queues more
congested, SUAC stops allocating too many users to edge
servers and starts directing them to the remote cloud, stabi-
lizing the MEC system instead of overloading it. We noticed
the same phenomenon in all other experiments, which are
not presented here for brevity. This strongly demonstrates
the ability of SUAC to stabilize the MEC system under any
traffic conditions.

Fig. 4 shows the percentage of users allocated to edge
servers (the higher the better). The numbers of users allo-
cated to edge servers by SUAC, DBC, and QoEUA decrease
as we increase the traffic intensity ζ . This is expected be-
cause the edge servers can only serve up to a certain number
of users and the rest have to be allocated to the remote
cloud. Otherwise, the queues would be heavily congested.
The numbers of users allocated to edge servers by JSQ
and Random remain constant since they decide if a user is
allocated to the remote cloud by using the same randomness
factor. Under some experiment settings (ζ = 0.08−0.1), JSQ
and Random manage to allocate more users to edge servers
than SUAC. However, SUAC still beats them in terms of
system benefit because under JSQ and Random, the queuing
delay cost outweighs the throughput benefit. Under all
other experiment settings, SUAC significantly outperforms
all other approaches. TPO is not presented here because it
does not allocate users to the remote cloud.

Fig. 5 visualizes the normalized time-average system
benefit gained by the six approaches under different traf-
fic intensities. At the very beginning, all four approaches
achieve relatively equal performance since the traffic was

very light, thus all the users could be allocated to edge
servers without queuing. As more users arrive, SUAC starts
to significantly outperform the other three approaches since
they suffer from a very high queuing delay cost (JSQ, TPO,
and Random) or cloud latency cost (DBC and QoEUA). The
throughput benefit and queuing delay cost produced by
SUAC remain unchanged when increasing traffic intensity
since all the queues are kept stabilized as discussed above.
To stabilize the system under intense traffic conditions,
SUAC directs new users to the remote cloud, hence the
considerable increase in the cloud latency cost, which in
turn results in the loss of system benefit. We can infer that in
order to deal with an increasing user arrival rate, a service
provider needs to hire more edge computing resources to
increase the service rate.

5.4.2 Impact of Edge Server Capacity (Service Rate)
In this section, we evaluate the impact of service rate

(Set #2), which is determined by the amount of computing
resources available on edge servers. An increase in the
average edge server capacity eventually leads to an increase
in the service rate of the system, meaning an edge server
can hold more users in its queue without increasing the
queuing delay. This is demonstrated in Fig. 6, as the average
server capacity µ increases from 10 to 30, the average queue
backlog under SUAC also gradually increases, starting from
around 10 users to almost 40 users per edge server’s queue.
In other words, SUAC can allocate more users to edge
servers only when it is safe to do so given the current
service rate. From µ = 30 onward, its average queue
backlog steadily decreases since the service rate is now
relatively high, which allows edge servers to serve more
users simultaneously. DBC and QoEUA do not employ a
queuing system so they are presented in this figure.

In contrast, the other three approaches (JSQ, TPO, and
Random) work independently of the service rate. As a
result, increasing the service rate will lessen the stress on
the queue backlogs under those approaches. In the figure,
we can see that the average queue backlogs of JSQ, TPO, and
Random gradually decrease as the average server capacity
increases. We can predict that when all the edge servers have
an abundant amount of computing resources, the queue
backlogs under all four approaches will eventually converge
to close to zero. However, as aforementioned, such resource-
abundant situations are extremely unlikely to happen in the
MEC environment. In such cases, joint load balancing (i.e.,
SUAC) and dynamic management of MEC resources, or any
other simple approaches, can actually control queue backlog
effectively.

Fig. 7 visualizes the corresponding normalized time-
average system benefit in the experiment analyzed above.
Again, SUAC clearly outperformed all other approaches un-
der any experiment setting. For the same reason discussed
above, the time-average system benefit of all approaches
will eventually converge once the service provider is able
to hire an excessive amount of edge computing resources,
which would be highly expensive and unlikely to happen
in any real-world scenarios. JSQ and Random have a ran-
domness factor so there will always be some users allocated
to the cloud despite a large amount of computing resources.
DBC does not employ a queuing system so some users will
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Fig. 5: Time-average system benefit vs.
varying traffic intensity ζ under four
algorithms (Set #1).

Fig. 6: Average queue backlog vs.
varying server capacity µ under four
algorithms (Set #2).

Fig. 7: Time-average system benefit vs.
varying server capacity µ under four
algorithms (Set #2).

Fig. 8: Time-average system benefit vs.
varying values of V under SUAC with
different values of ωr (Set #3).

Fig. 9: Time-average system benefit vs.
varying values of V under SUAC with
different values of ωd (Set #4).

Fig. 10: Time-average system benefit
vs. varying values of V under SUAC
with different values of ωh (Set #5).

Fig. 11: Throughput benefit, queuing
delay cost, and latency cost vs. vary-
ing values of V under SUAC with
different values of ωr (Set #3).

Fig. 12: Throughput benefit, queuing
delay cost, and latency cost vs. vary-
ing values of V under SUAC with
different values of ωd (Set #4).

Fig. 13: Throughput benefit, queuing
delay cost, and latency cost vs. vary-
ing values of V under SUAC with
different values of ωh (Set #5).

be allocated to the cloud straightaway, even though they
could have just waited in a queue for a short period of time.
Similar to DBC, QoEUA does not employ a queuing system.
Given those rationales, JSQ, Random, DBC, and QoEUA
do not perform as good as SUAC or TPO even when the
average service capacity is large.

5.4.3 Impact of Control Parameter V and Associated
Weights ωr, ωd, and ωh

In this section, we investigate the impact of the trade-off
control parameter V as well as other associated weights,
namely ωr, ωd, and ωh. Since V, ωr, ωd, and ωh do not
influence the user allocation decisions made by JSQ, TPO,
and Random, we do not include those approaches in this
section. The effectiveness of SUAC against them has already
been experimentally analyzed in Sections 5.4.1 and 5.4.2.

In Sets #3, #4, and #5, we simulate varying values of
V under SUAC with different values of throughput benefit
weight ωr (Set #3), queuing delay cost weight ωd (Set #4),
and cloud latency cost weight ωh (Set #5). In Figs. 8, 9, 10,
11, 12, and 13, the y-axis on the left-hand side corresponds to
the value of the bar graph, and the y-axis on the right-hand
side corresponds to the value of the line graph. As expected,

a higher value of V results in a longer average queue back-
log (hence higher queuing delay cost) as can be seen in all
experiment sets. This demonstrates the flexibility of SUAC
that enables service providers to control the congestion state
of their MEC systems.

The sensitivity of throughput benefit weight ωr (Set
#3). Fig. 8 plots the average queue backlog and time-average
system benefit gained by SUAC with different values of
ωr . A higher ωr means that the service provider places a
higher priority on the benefit gained from system through-
put. As a result, SUAC attempts to allocate more users to
edge servers, leading to a higher queue backlog and more
expensive queuing delay cost. Since more users are being
allocated to edge servers, fewer users will be allocated to
the remote cloud, lowering the cloud latency cost (Fig. 11). A
greater ωr gains a higher time-average system benefit under
the same value of V because the higher throughput benefit
and lower cloud latency cost outweigh the queuing delay
cost.

In this experiment set, the time-average system benefit
under the same ωr remains virtually unchanged across vary-
ing values of V even when the queue backlog changes. The
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reason is that the increasing throughput benefit, increasing
queuing delay cost and decreasing cloud latency cost are
balancing out each other. This will not be the case if the
service provider adjusts ωd or ωh. Sets #4 and #5 will
demonstrate how the changing patterns of time-average sys-
tem benefit with changing V can be influenced differently
compared to the pattern observed in this experiment set.

The sensitivity of queuing delay cost weight ωd (Set
#4). Fig. 9 plots the average queue backlog and time-average
system benefit gained by SUAC with different values of
ωd. A higher value of ωd means that a more congested
queue is penalized harder than a less congested queue, and
thus fewer users are allocated to edge servers, resulting in
a lower queue backlog. This is why under the same V , a
lower ωd leads to a higher throughput benefit and a lower
latency cost (Fig. 12). When ωd is small, even though the
queue backlog is large, the queuing delay cost is still low
because of the small ωd. Collectively, a lower ωd gains a
higher system benefit.

In terms of the time-average system benefit with V
changing, there are several patterns here. With ωd = 3,
the time-average system benefit tends to increase with the
increasing V because the increasing throughput benefit and
decreasing latency cost far outweigh the increasing queuing
delay cost. With ωd = 5, they balance out each other
so there is not much difference across different values of
V . With ωd = 7 and 9, the increasing throughput bene-
fit and decreasing latency cost start being outweighed by
the increasing queuing delay cost, hence the decrease in
time-average system benefit. Again, those patterns can be
changed if the service provider adjusts the values of ωh or
ωr .

The sensitivity of latency cost weight ωh (Set #5).
Fig. 10 plots the average queue backlog and time-average
system benefit gained by SUAC with different values of ωh.
A higher value of ωh means that the more users allocated to
the remote cloud, the harder the penalty. Therefore, with the
same V , SUAC will lean towards allocating more users to
edge servers under a higher value of ωh, leading to a higher
average queue backlog, which also incurs a higher queuing
delay cost. Since the cloud latency cost of a higher ωh is
much more expensive than that of a lower ωh (Fig. 13), the
system benefit gained by a higher ωh is lower.

As V increases, the time-average system benefit gained
by SUAC decreases for all experimental values of ωh. This
occurs because the increasing queuing delay cost outweighs
the increasing throughput benefit and decreasing latency
cost. Similar to Sets #3 and #4, the pattern can be adjusted
with a different value of ωr or ωd.

As demonstrated, the control parameter V , and weight
parameters ωr, ωd, and ωh control the congestion state of
a MEC system, which in turn influence the system benefit.
Those parameters are selected by the service provider de-
pending on their needs, or the significance of the throughput
benefit, queuing delay cost, and latency cost. Given those
pre-selected parameters, SUAC guides the user allocation
process over time so that the system benefit is maximized.

6 RELATED WORK

This section has been removed to reduce repetition in
this thesis. Please refer to the original paper online for a
full, unedited version.

7 CONCLUSION AND FUTURE WORK

In this study, we investigate the stochastic edge user
allocation problem in a time-slotted MEC system. A service
provider needs to take into account several factors such as
queuing delay and cloud latency costs while maximizing
the system throughput. We address a realistic MEC environ-
ment where users come and go dynamically and randomly
over time, making it hard to find an optimal allocation due
to the lack of future information. We propose SUAC – a Lya-
punov optimization-based online algorithm that allocates
users without requiring any information about user arrivals
and departures. As theoretically proven, SUAC achieves a
bounded performance guarantee. We conduct a series of
experiments based on a real-world dataset, which clearly
demonstrates the superiority of SUAC over the existing
approaches and its ability to achieve a desired tradeoff as
well as strongly stabilize the system.

The future work has been removed to reduce repetition
in this thesis. Please refer to the original paper online for a
full, unedited version.
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Chapter 5
Cost-Effective User Allocation in

NOMA-based Mobile Edge Computing

Systems

We recognize that wireless communication is an inherent part of MEC as users are to be connected to

base stations through wireless communication. Thus, the communication aspect must not be overlooked

when allocating users to edge servers like the previous three research problems. Here, we attempt to

solve the EUA problem while considering several key characteristics in wireless communication, in-

cluding multi-channel, achievable data rate, and non-orthogonal multiple access (NOMA), etc. NOMA

is a new multiple-access scheme in wireless communication that allows multiple users to share the same

wireless channel. This is a promising enabler for the massive connectivity demanded by the forthcom-

ing 5G/6G networks. An app vendor needs to allocate users to proper channels in edge servers and

allocate transmit power to those users to minimize the system cost, which is measured by computing

resource cost and transmit power cost, while ensuring the user data rate requirement. We tackle two sce-

narios where users are static (Section 5.1), and where users come and go randomly over time (Section

5.2).
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5.1 A Static Scenario

In this section, we consider the scenario where users are static. We formulate this problem as an ordinal

potential game and then find Nash equilibria by a decentralized game-theoretical approach, minimizing

the system cost measured by the computing resource cost and transmit power cost. Its optimality

and convergence rate are then theoretically analyzed. The proposed approach is also experimentally

demonstrated to be highly effective and efficient, significantly outperforming two baseline and two

state-of-the-art approaches.

This section is presented in the form of a published paper [33] as P. Lai, Q. He, G. Cui, F. Chen, J.

Grundy, M. Abdelrazek, J. Hosking, and Y. Yang, ”Cost-Effective User Allocation in 5G NOMA-based

Mobile Edge Computing Systems,” IEEE Transactions on Mobile Computing, 2021. doi: 10.1109/TMC.2021.3077470.

©2021 IEEE. Reprinted, with permission, from IEEE Transactions on Mobile Computing. Note that

several sections in the paper included below have been removed or slightly modified to reduce re-

peated content that has appeared else where in this thesis. For a full, unedited version, please refer

to the original paper itself.
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Cost-Effective User Allocation in 5G
NOMA-based Mobile Edge Computing Systems
Phu Lai, Qiang He, Senior Member, IEEE , Guangming Cui, Feifei Chen, Member, IEEE , John Grundy,

Senior Member, IEEE , Mohamed Abdelrazek, John Hosking, and Yun Yang, Senior Member, IEEE

Abstract—Mobile edge computing (MEC) allows edge servers to be placed at cellular base stations. App vendors like Uber and
YouTube can rent computing resources and deploy latency-sensitive applications on edge servers for their users to access.
Non-orthogonal multiple access (NOMA) is an emerging technique that facilitates the massive connectivity of 5G networks, further
enhancing the capability of MEC. The edge user allocation (EUA) problem faces new challenges in 5G NOMA-based MEC systems. In
this study, we investigate the EUA problem in a multi-cell multi-channel downlink power-domain NOMA-based MEC system. The main
objective is to help mobile app vendors maximize their benefit by allocating maximum users to edge servers in a specific area at the
lowest computing resource and transmit power costs. To this end, we introduce a decentralized game-theoretic approach to effectively
select a channel and edge server for each user while fulfilling their resource and data rate requirements. We theoretically and
experimentally evaluate our solution, which significantly outperforms various state-of-the-art and baseline approaches.

Index Terms—Non-orthogonal multiple access (NOMA), mobile edge computing, user allocation, game theory

F

1 INTRODUCTION

MOBILE edge computing (MEC) [1] is introduced to
tackle one of the most challenging obstacles in cloud

computing – high and unpredictable latency. By deploying
edge servers at cellular base stations (BSs), mobile network
operators can offer computing resources at the network
edge, much closer to end-users. Mobile app vendors like
Uber and YouTube can rent these computing resources to
host their services and serve their users with low latency.
This is of paramount importance for latency-sensitive ser-
vices and applications such as interactive VR/AR gaming,
vital monitoring systems, etc.

The rapid growth of mobile subscriptions promoted by
the forthcoming 5G, which is predicted to reach 9 billion
in 2025 [2], has put a great burden on the existing wire-
less communication infrastructure. Several multiple-access
techniques for wireless communication have been widely
adopted for decades, e.g., code division multiple access
(CDMA), orthogonal frequency division multiple access
(OFDMA), and time division multiple access (TDMA). In
conventional systems that employ those orthogonal mul-
tiple access techniques, different users are allocated or-
thogonal resources in time, code, or frequency domain.
Take OFDMA scheme, for example, each individual user
is allocated a dedicated channel, which prevents multiple
access interference. However, such schemes are not capable
of supporting a massive number of simultaneous users. As

• P. Lai, Q. He, G. Cui and Y. Yang are with the School of Software
and Electrical Engineering, Swinburne University of Technology, 3122,
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a result, non-orthogonal multiple access (NOMA) was pro-
posed to facilitate the massive connectivity demanded by
5G [3], [4], [5]. NOMA achieves high spectrum efficiency by
allowing multiple users to be served simultaneously using
the same time and frequency resources (channels) in power
or code domain [3]. It also lowers the transmission latency
and signaling cost [6]. NOMA can be implemented flexibly
to enhance the performance of many wireless technolo-
gies, namely MEC, multiple-input multiple-output (MIMO),
visible light communications, millimeter-wave communica-
tions, cognitive and cooperative communications, massive
MIMO, energy harvesting, and wireless caching [7]. MEC
brings computing power closer to users with low latency.
By integrating NOMA into MEC, network latency will be
lowered even further. This is critical, especially when the
numbers of 5G applications and MEC users are expected to
grow rapidly in the near future.

The problem of allocating users to edge servers/base
stations1 in an MEC system is referred to as an edge user
allocation (EUA) problem. Recently, researchers are starting
to investigate the impact of NOMA on the computation
offloading problem [8] in MEC systems but not the EUA
problem. Existing user allocation approaches do not con-
sider both communication and computation aspects in the
MEC system at the same time. User allocation approaches
in pure cellular systems [9], [10], [11] often lack the com-
putation aspects of MEC, e.g., the existence of computing
resources and their scarcity and heterogeneity. To lower
the complexity of the problem, many of them even do not
consider multi-cell and multi-channel [10], [11], [12], or limit
the number of users on a channel [9], [13], [14], which holds
back the potential of NOMA. Meanwhile, user allocation

1. We speak interchangeably of edge servers and base stations. For
the sake of consistency, we will hereafter try to use the term ”edge
server” instead of ”base station”. In situations where the communica-
tion/networking aspects are discussed, ”base station” will be used.
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approaches in MEC systems [15], [16], [17], [18], [19], [20]
often neglect or have not properly considered the commu-
nication aspects (multiple wireless channels, interference,
and power control), especially in a NOMA setting. This
is particularly uneconomical when MEC applications now
have access to network information, e.g., QoS, throughput,
neighbor cells, received signal, received power [21], [22].
These can be utilized by app vendors to optimize their
services deployed on edge servers. In other words, some of
the networking responsibilities such as power allocation can
now be delegated to app vendors. In this study, we address
the cost-effective EUA problem in a downlink multi-cell
multi-channel multi-user 5G NOMA-based MEC system
from an app vendor’s perspective. An app vendor allocates
each user by making a joint decision: 1) user allocation,
which is the allocation of users to channels in edge servers,
and 2) transmit power allocation, to maximize the number
of allocated users and minimize the system cost (costs of
computing resources and transmit power). Meanwhile, a
number of unique constraints of MEC systems must be
satisfied (minimum user data rate requirement, proximity,
and resource constraints).

Applications hosted on edge servers often need to send
a substantial amount of data to users, e.g., videos produced
by content providers or rendered graphics produced by
interactive VR/AR applications. In those applications, users
only send light-weight instructions (job/task description)
to edge servers. Thus, this study focuses on downlink
transmissions in NOMA-based MEC systems. To deal with
the intra-cell interference caused by multiple users sharing
the same channel, successive interference cancellation (SIC),
a multi-user signal separation technique, is applied at the
receivers when decoding wireless signals. By multiplexing
users in the power domain at the transmitters (BSs) and em-
ploying SIC at the receivers (users), NOMA has been shown
to remarkably improve the capacity and user throughput
performance compared with conventional multiple access
schemes [3]. Together with intra-cell interference, inter-cell
interference caused by nearby BSs also impacts the perfor-
mance of a NOMA system. When the interference is severe,
a user would require a lot of transmit power to achieve the
minimum data rate. Therefore, interference must be taken
into account when allocating users so that the app vendor
can guarantee the quality of their service by maximizing the
number of users that achieve a satisfactory data rate with
minimum transmit power.

In addition to communication resources, computing re-
sources rented on edge servers also need to be optimized.
Similar to cloud computing, MEC also benefits from multi-
tenancy [16], where multiple tenants/users can be simulta-
neously served by a single software instance or share the
same infrastructure or database in an efficient manner [23],
[24]. It allows higher resource utilization, energy efficiency,
and overall performance on edge servers through workload
consolidation [25]. In an MEC environment, multi-tenancy
benefit can be achieved by allocating maximum users to an
edge server provided that it does not overload the com-
puting and communication resources in that edge server.
Leveraging multi-tenancy effectively allows an app vendor
to reduce the amount of computing resources required to
serve its users, saving system costs or operating costs. In
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Fig. 1: An example of downlink multi-cell NOMA-based
MEC networks

the meantime, saving edge servers’ computing resources
enables the app vendor to accommodate more users. This
is essential for every app vendor and must be seriously
considered in the allocation of users to edge servers.

The NOMA-EUA problem is NP-hard (proved later in
Appendix B) so it is almost impossible to find an optimal
solution in a real-world scenario. To mitigate this issue, we
introduce an efficient game-theoretic approach to find sub-
optimal solutions. The key contributions of this article are:

• We define and formulate the NOMA-EUA problem,
taking into account multiple channels, interference,
and power control.

• We model the NOMA-EUA problem as a potential
game and propose a decentralized algorithm, named
miUA, to efficiently find a Nash equilibrium. We then
theoretically analyze the performance of miUA.

• We perform a series of experiments to empirically
evaluate the performance of miUA. It is shown that
miUA significantly outperforms all state-of-the-art
and baseline approaches.

The rest of this article is organized as follows. Section
2 discusses the key motivation for this work. In Section 3,
we review the relevant literature. Section 4 introduces our
NOMA system model. Section 5 formulates the NOMA-
EUA problem. Section 6 proposes a solution to the NOMA-
EUA problem, including a theoretical analysis. The pro-
posed solution is experimentally evaluated in Section 7.
Finally, we draw a conclusion and point out future work
in Section 8.

2 MOTIVATION

In a 5G MEC system, BSs are densely distributed, es-
pecially in high-traffic areas. Their cell coverage areas of-
ten partly overlap to minimize non-service areas. An app
vendor can allocate a user positioned in an overlapping
region to one of its neighbor edge servers that has sufficient
communication and computing resources. Multiple users
can be concurrently served on the same wireless channel.
A channel cannot serve too many users at once due to the
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high interference it would cause. Furthermore, compared
to a typical cloud environment, resources on edge servers
in an MEC system are highly constrained and expensive
[26], [27]. An ineffective user allocation will soon exhaust
the computing and networking resources and result in a
poor data rate for users. Similar to [16], [28], [29], [30],
[31], we study a quasi-static scenario, in which users stay
fairly still in one place and do not quickly travel across
different BSs/edge servers. Typical scenarios include those
that involve mobile or IoT users not moving quickly, traffic
cameras, smart sensors, etc.

In downlink NOMA, SIC is facilitated by differentiating
the transmit power between users sharing the same channel
[4]. In single-cell NOMA scenarios, to ensure successful de-
coding of the superposed signal sent by a BS, stronger users
on a channel (who have higher channel gains) are allocated
less transmit power, and weaker users (who have lower
channel gains) are allocated more transmit power [32]. Each
user employs SIC to cancel the signal interference caused by
weaker users. Nevertheless, decoding solely by the order of
channel gains does not apply to multi-cell NOMA scenarios
because users’ channel conditions are now also affected
by the inter-cell interference caused by their unassociated
neighbor BSs [10], which could be very extreme in a dense
multi-cell network.

Take Fig. 1 for example, where user 3 and user 4 suffer
from intra-cell interference as they share the same channel in
the same edge server. In addition to intra-cell interference,
user 3 is also impacted by the inter-cell interference caused
by its neighbor base stations, i.e., BS 1 and BS 2. Fortunately,
it has been demonstrated that an effective power allocation
and decoding order can considerably reduce inter-cell in-
terference [10], which in turn improves users’ data rate,
or system throughput in general [10], [32]. Thus, the EUA
problem must be jointly solved with the power allocation
problem to ensure that every user receives an app-specific
satisfactory data rate.

3 RELATED WORK

This section has been removed to reduce repetition in
this thesis. Please refer to the original paper online for a
full, unedited version.

4 SYSTEM MODEL

4.1 System Description
Edge servers: Let S = {s1, s2, ..., sM} denote the set

of M BSs or edge servers in an MEC system. The com-
puting capacity of an edge server sj ∈ S is represented
by a |T |-dimensional vector Qj = (Qtj), where each di-
mension Qtj is the capacity of resource type t ∈ T =
{CPU,RAM, storage, ...}. Each edge server sj covers a cell
of radius Rj .

For each edge server sj , the total bandwidth B is equally
divided between a set of V channels Cj = {c1j , c2j , ..., cVj }.
The bandwidth of each channel ckj ∈ Cj is thus Bkj = B/V ,
where k ∈ {1, 2, ..., V }.

Mobile users: We use U = {u1, u2, ..., uN} to represent the
set of N users. Let a |T |-dimensional vector wi = (wti), t ∈
T , denote user ui’s computing resource requirement, i.e.,
the amount of computing resources that could be consumed

by an edge server assigned to serve user ui ∈ U . Let dj,i
be the distance between edge server sj and user ui. The
set of user ui’s neighbor edge servers is denoted by Si =
{sj ∈ S|dj,i ≤ Rj}. Note that a user can only be allocated
to a single channel in an edge server. To allocate each user
ui ∈ U , two decisions need to be made as defined below:

Definition 1. (User Allocation Decision) Let akj,i = {0, 1} be
the binary decision variable for user ui. We have akj,i = 1 if user
ui is allocated to channel ckj in edge server sj ; otherwise akj,i = 0.
We use a = {ai|ui ∈ U} to denote the user allocation strategy
composed by the decisions for all the users ∀ui ∈ U . We have
ai , (sj , c

k
j ), where akj,i = 1, indicate the pair of channel and

edge server that is assigned to serve user ui.

Let Uj = {ui ∈ U|
∑V
k=1 akj,i = 1},∀sj ∈ S , denote the

set of users allocated to edge server sj , and Ukj = {ui ∈
U|akj,i = 1},∀sj ∈ S,∀ckj ∈ Cj , denote the set of users
allocated to channel ckj on edge server sj .

Definition 2. (Power Allocation Decision) Let pkj,i denote
the transmit power allocated to user ui on channel ckj of edge
server sj , i.e., the amount of power consumed by edge server sj to
transmit data to user ui on channel ckj . We use p = {pi|ui ∈ U}
to denote the power allocation strategy composed by the power
allocation decisions for all the users, and pi , (pkj,i),∀ui ∈
U ,∀sj ∈ S,∀ckj ∈ Cj .

Appendix A of the supplementary file summarizes the
notations used in this article.

4.2 Signal Model

According to the NOMA scheme [3], edge server sj
broadcasts a superposition-coded signal xkj to all users allo-
cated on channel ckj simultaneously. The transmitted signal
xkj can be expressed as follows:

xkj =
∑

ui∈Uk
j

√
pkj,ix

k
j,i (1)

where xkj,i is the signal transmitted from edge server sj to
user ui on channel ckj . NOMA facilitates a simultaneous
transmission of multiple users’ signals [10], [33], whose
power levels are differentiated, over the same transmission
period and channel. We denote the total transmit power of
edge server sj on channel ckj by pkj =

∑
ui∈Uk

j
pkj,i. The

total transmit power allocated to all users on all channels
of an edge server sj must not exceed its maximum transmit
power Pj : we have

∑
ckj∈Cj p

k
j ≤ Pj .

For each user ui allocated to edge server si on channel
ckj (when akj,i = 1), its received signal ykj,i is the summation
of its intended signal, intra-cell interference (caused by
other users sharing the same channel), inter-cell interference
(caused by nearby BSs/edge servers), and other noise. Note
that (1) includes both the signal intended for user ui and the
signal intended for the other users sharing the same channel
with ui, which causes intra-cell interference. ykj,i is defined
as follows:

ykj,i = hkj,ix
k
j︸ ︷︷ ︸

intended signal
+ intra-cell interference

+
∑

sl∈S\{sj}
hki,lx

k
l

︸ ︷︷ ︸
inter-cell interference

+ okj,i︸︷︷︸
noise

(2)
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where hkj,i is the complex channel coefficient between user
ui and edge server sj on channel ckj , and okj,i is the ad-
ditive white Gaussian noise with variance σ2, i.e., okj,i ∼
CN (0, σ2). User ui’s channel gain on channel ckj is |hkj,i|2,
which includes all the factors that can influence a signal.

4.3 Successive Interference Cancellation
This overview section provides an established foun-

dation of Successive Interference Cancellation (SIC) in a
downlink NOMA system. We do not consider uplink trans-
missions because in the scenario being studied, users only
send light-weight job instructions to edge servers, which
will return a substantial amount of data back to the users.
SIC is implemented for users sharing the same channel,
i.e. Ukj , so that they can decode their received superposed
signal. Assume that Ukj has been determined, i.e., some
users have been allocated to the k-th channel in edge server
sj . With SIC, stronger users detect and cancel the signals
of weaker users, who treat the signals of stronger users as
noise [3]. Without loss of generality, suppose all the users in
Ukj are ordered by their channel conditions: u1, u2, ..., u|Uk

j |,
where u1 and u|Uk

j | has the weakest and strongest channel
conditions, respectively. SIC is not required for user u1 since
it is the first in Ukj to decode signal. User u1 first decodes
xk1,j and subtracts its components from yk1,j . The user who
comes next in the decoding order (user u2) can thus decode
its received signal without interference from user u1. Fol-
lowing this principle, the signal-to-interference-plus-noise
ratio (SINR) of the signal received by user ui ∈ Ukj is:

γkj,i =
|hkj,i|2pkj,i

|hkj,i|2
∑|Uk

j |
q=i+1 pkj,q + Ikj,i + σ2

(3)

where Ikj,i =
∑
sl∈Si\{sj} |hkl,i|2pkl is the inter-cell inter-

ference caused by user ui’s neighbor edge servers on
channel ckj . Given (3), the SINR of user u|Uk

j |, which is
the last user to decode the received signal, is: γk|Uk

j |,j
=

(|hk|Uk
j |,j
|2pk|Uk

j |,j
)/(Ik|Uk

j |,j
+ σ2).

Suppose ui, uq ∈ Ukj and i < q, i.e., user uq has a
stronger channel condition. According to [10], [34], [35],
in order to ensure a successful SIC, user uq’s achievable
data rate for decoding user ui’s signal must be greater
than or equal to user ui’s data rate for decoding its own
signal: rkj,q→i ≥ rkj,i→i. If this condition is not satisfied, user
ui’s achievable data rate will decrease due to the intra-cell
interference not being canceled. Thus, user ui’s achievable
data rate rkj,i on channel ckj can be given by:

rkj,i = min{rkj,q→i|∀q ≥ i} (4)

where rkj,q→i, i.e. user uq’s data rate for decoding user ui’s
signal is:

rkj,q→i = Bkj log2

(
1 +

|hkj,q|2pkj,i

|hkj,q|2
∑|Uk

j |
t=i+1 pkj,t + Ikj,q + σ2

)
(5)

Intuitively, user ui’s achievable data rate is the minimum
data rate of the users that come after user ui in the SIC
decoding order, which will be discussed next.

SIC Decoding Order. As analyzed above, the position of
a user in the decoding order plays an important role in its

achievable data rate. Therefore, the decoding order cannot
be overlooked when the data rate is being optimized. By
transforming (4), user ui’s achievable data rate rkj,i can be
expressed by:

rkj,i = Bkj log2

(
1 +

pkj,i
∑|Uk

j |
t=i+1 pkj,t +Hk

j,i

)
(6)

where

Hk
j,i = max

{
Ikj,q + σ2

|hkj,q|2
∣∣∣∣∀q ≥ i

}
(7)

To ensure an acceptable data rate with low transmit
power for all the users, the decoding order should be
determined based on their channel conditions and inter-
cell interference as follows: Hk

j,1 ≥ ... ≥ Hk
j,|Uk

j |
. This order

is guaranteed if the decoding order of users allocated to
channel ckj on edge server sj follows the sequence:

Θ(ckj ) ,
Ikj,1 + σ2

|hkj,1|2
≥ ... ≥

Ik
j,|Uk

j |
+ σ2

|hk
j,|Uk

j |
|2 (8)

It has been shown that this decoding order is an optimal
order for efficiently increasing the data rate of each individ-
ual users [10]. If this decoding order is satisfied, user ui’s
achievable data rate rkj,i is:

rkj,i = Bkj log2

(
1 +

|hkj,i|2pkj,i

|hkj,i|2
∑|Uk

j |
t=i+1 pkj,t + Ikj,i + σ2

)
(9)

4.4 Resource Utilization Model
Multi-tenancy is an important feature in computing re-

source management [24] and must also be considered in
EUA [16]. By allowing users to share the same software
instance, app vendors can efficiently utilize the computing
resources rented on edge servers. This is critical in MEC
systems where computing resources on edge servers are
relatively scarce [31]. This drives app vendors to aggregate
their users to a small set of edge servers. For example, say
two users need to be served who require one CPU each.
Allocating them to two different edge servers would require
two CPUs to serve them. Taking advantage of multi-tenancy,
allocating them to the same edge server to be served by the
same software instance would require slightly less than two
CPUs. According to [36], the CPU utilization of edge server
sj with multi-tenancy can be estimated based on the number
of users served by sj :

fj = − logz(|Uj |) (10)

where z is decided based on app-specific computation task
size (0.9 < z < 1) and |Uj | > 1 is the number of users
allocated to edge server sj . When |Uj | increases, the CPU
utilization of edge server sj increases monotonically until it
converges at some point. The convergence occurs when |Uj |
is sufficiently high and incurs an expensive computational
overhead for resource sharing [25]. When the extra compu-
tational overhead exceeds the corresponding multi-tenancy
benefit, it does not benefit the app vendor as much as before,
and it is more cost-effective to serve the extra users with
another edge server.

CHAPTER 5. COST-EFFECTIVE USER ALLOCATION IN NOMA-BASED MOBILE EDGE

COMPUTING SYSTEMS 95

95



5

As shown in [25], the storage utilization also follows
a model similar to (10). Assuming the utilization of other
computing resources, e.g., RAM or storage, also follows a
similar model, the utilization of the computing resource
t ∈ T on edge server sj when user ui is being allocated
can be measured by:

f tj,i = − logzti (|Uj |) (11)

where zti is decided based on the computation task size of
user ui and is dependent of computing resource type t ∈ T ,
|Uj | is the number of users on server sj to which user ui is
allocated. We have 0 < f tj,i < 1, ∀t ∈ T , ∀sj ∈ S .

4.5 Computing Resource Cost Model

In an MEC system, an app vendor needs to pay for
computing resources rented on edge servers. Thus, it is
important to utilize multi-tenancy to the fullest extent to
save on computing resource costs. Given a user allocation
strategy a, the computing resource cost incurred by the
decision of user ui ∈ U is:

Ma(ui) =





∑
t∈T

τ t(1− f tj,i)wti , if
∑

ckj∈Cj
akj,i = 1

ε
∑
t∈T

τ twtmax, if
∑
sj∈S

∑
ckj∈Cj

akj,i = 0
(12)

where (1−f tj,i)wti is the amount of computing resource type
t ∈ T in edge server sj that the app vendor would need to
reserve for user ui if user ui is allocated to edge server sj ,
and τ t is the weight controlling the app vendor’s priority
for saving computing resource type t ∈ T by leveraging
multi-tenancy. For example, if an app is compute-intensive,
saving processing power such as CPU would be more
beneficial than saving other computing resources such as
storage. When

∑
sj∈S

∑
ckj∈Cj akj,i = 0, i.e., user ui is not

allocated to any edge server, the cost incurred is modeled
as ε

∑
t∈T τ

twtmax, where ε > 1 is the weight that indicates
the severity of the penalty when the user is unallocated,
and wtmax is the maximum amount of computing resource
of type t ∈ T that a user in the system may consume.
From an app vendor’s perspective, it is essential to minimize
the number of unallocated users. To drive the app vendor
to allocate as many users as possible to edge servers, the
cost incurred by failing to allocate a user is modelled to
be always greater than the cost incurred when the user is
allocated to an edge server. Otherwise, it will simply choose
not to allocate any users at all to bring the system cost down
to zero.

5 PROBLEM FORMULATION

We model the NOMA-EUA problem as a mixed-integer
constrained optimization problem as follows:

min
{a,p}

N∑

i=1

(
η1Ma(ui) + η2

M∑

j=1

V∑

k=1

akj,ip
k
j,i

)
(13a)

s.t.
N∑

i=1

|T |∑

t=1

atj,i(1− f tj,i)wti ≤ Qtj ,∀sj ∈ S (13b)

M∑

j=1

V∑

k=1

akj,idj,i ≤ Rj ,∀ui ∈ U (13c)

M∑

j=1

V∑

k=1

akj,i ≤ 1,∀ui ∈ U (13d)

akj,ir
k
j,i ≥ akj,irmin,∀sj ∈ S,∀ckj ∈ Cj ,∀ui ∈ U (13e)

Θ(ckj ),∀sj ∈ S (13f)
V∑

k=1

N∑

i=1

akj,ip
k
j,i ≤ Pj ,∀sj ∈ S (13g)

akj,i ∈ {0, 1},∀sj ∈ S,∀ckj ∈ Cj ,∀ui ∈ U (13h)

pkj,i ∈ R≥0,∀sj ∈ S,∀ckj ∈ Cj ,∀ui ∈ U (13i)

where a and p are the user and power allocation strategies,
respectively. Optimization objective (13a) minimizes the to-
tal system cost, i.e., the computing resource cost modeled in
Section 4.5 and the cost of the total transmit power allocated
to all users. η1 and η2 (η1+η2 = 1) are the weight parameters
that indicates the relative importance of the normalized
computing resource cost and normalized transmit power
cost, respectively. Computing resource constraint (13b) en-
sures that the aggregated computing resource consumption
of all the users in an edge server does not exceed the its
computing capacity. Proximity constraint (13c) ensures that
an edge server can only serve users within its coverage area.
Constraint (13d) indicates that any user can only be either
unallocated, or be allocated to one channel of an edge server.
Constraint (13e) ensures a minimum app-specific data rate
rmin for each allocated user. In a dynamic scenario where
multiple time slots are considered, this constraint could be
relaxed as long as the time-average data rate satisfies the
requirement. For example, the data rate of a user may be
lower than rmin in a time slot and higher than rmin in
the next time slot. This enables a more flexible allocation of
power. Constraint (13f) enforces the optimal decoding order
stated in Section 4.3, which allows any user to successfully
decode the signals of weaker users on the same channel.
Constraint (13g) ensures that all the users allocated to an
edge server do not use more transmit power than the edge
server’s maximum power capacity. Constraints (13h) and
(13i) indicate the possible values of user allocation decisions
akj,i and transmit power decisions pkj,i.

The optimization problem above can be proved to be
NP-hard by showing that its subproblem (Section 5.1)
is NP-hard. Considering the dynamic channel conditions
associated with different edge servers, the NOMA-EUA
problem becomes even more complicated. To solve it effi-
ciently, we decompose it into two subproblems: 1) a user
allocation problem, and 2) a power allocation problem.
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The user allocation problem (Section 5.1) will be solved
first to allocate users to channels in edge servers. At this
stage, we aim to fully utilize the computing resources on
edge servers by minimizing the computing resource cost.
In the meantime, we attempt to minimize user interference
to save on transmit power. Since transmit power has not
been allocated to users yet, a fixed and identical transmit
power is temporarily assumed for all the users so that we
can approximate the intra-cell and inter-cell interference
experienced by the users. This method will increase the
likelihood of low interference in general. When all the users
have been allocated to edge servers, transmit power will be
allocated to them (Section 5.2) to fulfill their minimum data
rate requirement with minimum transmit power.

5.1 User Allocation Problem
The user allocation problem can be modelled as follows:

min
{a}

Ca,p ,
N∑

i=1

(
η1Ma(ui) + η2Ia,p(ui)

)

s.t. (13b), (13c), (13d), (13h)

(14)

where in optimization objective (14), we add a new term
Ia,p(ui), i.e., the interference cost, to replace the transmit
power cost shown in (13a). As transmit power is determined
by the channel condition, we can minimize the transmit
power by proactively selecting a pair of edge server and
channel that is most likely to incur the lowest interference
to all the users involved. Note that transmit power and in-
terference are inter-dependent. The interference experienced
by a user is influenced by its channel gain and the transmit
power allocated to other users; and the transmit power of a
user is determined based on the interference it experiences.
To deal with this, we fix one parameter while optimizing the
other. Specifically, at this stage, all the users are assumed
to have identical and fixed transmit power. Given a fixed
transmit power, one can pick an edge server and a channel
so that later on, when a proper power allocation mechanism
kicks in, it will incur low interference for all the users.

When η1 is higher than η2, our proposed user alloca-
tion approach, miUA, would prioritize saving computing
resource costs. When η2 is higher than η1, it would pri-
oritize minimizing interference and thus saving the trans-
mit power. Weights η1 and η2 can be adjusted domain-
specifically to fulfil the app vendor’s needs. For example,
if the transmit power cost in a specific region is too high,
η1 can be lowered. Given a user allocation strategy a and
a power allocation strategy p, which is fixed for now, the
interference-plus-noise experienced by a user ui, denoted
by Ia,p(ui), is defined as:

Ia,p(ui) =





|hkj,i|2
∑|Uk

j |
q=i+1 pkj,q + Ikj,i + σ2, if

∑
ckj∈Cj

akj,i = 1

εImax, if
∑
sj∈S

∑
ckj∈Cj

akj,i = 0

(15)
where ε > 1 is the weight specified by the app vendor that
indicates the severity of the penalty when the user is unal-
located, Imax is the maximum interference-plus-noise that a
user could experience. It is formulated in this way so that the
interference cost of unallocated users is always greater than

the interference cost of allocated users, thus driving app
vendors to allocate users to edge servers. The computing
resource cost has also been formulated by following this
methodology in Section 4.5. We can prove the NP-hardness
of this problem by reducing the NP-complete PARTITION
problem [37] to a special case of its corresponding decision
version. The proof can be found in Appendix B.

Note that in the implementation of our proposed algo-
rithm, Ma(ui) and Ia,p(ui) will be min-max normalized. The
possible minimum and maximum values of computing re-
source and interference costs can easily be calculated based
on the given edge server information in real-world scenar-
ios, i.e. edge server computing resource capacity, available
channels, edge server locations, and minimum user data rate
requirement. Constraints related to power and data rate,
including (13e), (13f), (13g), and (13i) are not considered
in this subproblem because they do not contribute to the
optimization of computing resources. These constraints will
be enforced through power allocation.

5.2 Power Allocation Problem
Once users have been allocated to channels in edge

servers by solving the user allocation problem formulated
above, we start allocating transmit power to users. The
power allocation problem is expressed as follows:

min
{p}

N∑

i=1

M∑

j=1

V∑

k=1

akj,ip
k
j,i

s.t. (13e), (13f), (13g), (13i)

(16)

The main objective of this subproblem is to allocate to users
as little transmit power as possible while satisfying the
user’s minimum data rate requirement, SIC decoding order
constraint, and power capacity constraint. A data rate higher
than what is required for accessing an app is not necessary
for most, if not all, apps.

6 USER ALLOCATION

In this section, we present a game-theoretic approach
employed by miUA to effectively and efficiently solve
the user allocation problem introduced in Section 5.1. The
power allocation problem introduced in Section 5.2 will
be solved in Section H. Over the years, game theory has
been shown to be a versatile method for solving NP-hard
problems in MEC systems [16], [29], [31]. In this study,
players are simulated to make allocation decisions indi-
vidually, pursuing to achieve objective (14). The game is
decentralized by design and can alleviate the computational
overhead that occurs by a centralized optimal solution.

6.1 Game Formulation and Properties
Our game aims to determine a user allocation strategy

a, which consists of the allocation decisions for all the
users. Those decisions are made to pursue the app ven-
dor’s objective (14) by obeying the rules of the game. Let
a−i = (a1, ..., ai−1, ai+1, ..., aN ) denote the user allocation
strategy except the decision for user ui. Given other users’
decisions a−i, each individual user ui will try to find a
decision so that the total system cost is minimized.

The user allocation problem is modeled as a game Γ =
(U , {Ai}ui∈U , {Ca,p(ai)}ui∈U ), where U is the set of users
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(players), Ai is the set of all possible allocation strategies
for each user ui, and Ca,p(ai) is the cost function that mea-
sures the cost incurred by user ui’s decision ai = (sj , c

k
j ),

the lower the better, Ca,p(ai) =
∑
uq∈Ul∪Uj (η1Ma(uq) +

η2Ia,p(uq)), where Ul is the set of users allocated to server
sl, which is the server to which user ui was allocated (if
any) before it is allocated to server sj . Both Ul and Uj must
be considered because switching a user from a server sl
to another server sj impacts the computing resources and
inter-cell/inter-cell interference of the users in server sl and
sj .

Next, we show that there exists at least one Nash equilib-
rium in the game, which is a stable state of the game where
the system cost cannot be further lowered by changing the
decision for any individual users unilaterally.

Definition 3. (Nash Equilibrium) A user allocation strategy
a∗ = (a∗1, ..., a

∗
N ) is a Nash equilibrium when no user can

unilaterally change its decision to further lower the system cost:

Ca∗−i,p(a∗i ) ≤ Ca∗−i,p(ai),∀ai ∈ Ai,∀ui ∈ U (17)

Lemma 1 guarantees that if there exists a Nash equilib-
rium, the decisions for all the users will finally constitute an
allocation strategy that is a Nash equilibrium through finite
iterations in the game.

Lemma 1. Given a Nash equilibrium a∗ of the game, the
allocation decision a∗i ∈ Ai made for each user ui ∈ U is the
best response to the decisions a−i made for the other n− 1 users.

Proof: Please refer to Appendix C.
A potential game always admits at least one Nash equi-

librium [38]. To prove the existence of a Nash equilibrium
in our user allocation game, we need to show that it is a
potential game, which is defined as follows.

Definition 4. (Potential Game) A game is an ordinal potential
game if, for a potential function φ(a), there exists

Ca−i,p(ai) > Ca−i,p(a′i)⇔ φa−i(ai) > φa−i(a′i) (18)

where ui ∈ U , ai, a′i ∈ Ai and a−i ∈
∏
q 6=iAq .

The following theorem proves that our user allocation
game is an ordinal potential game.

Theorem 1. The formulated user allocation game Γ is an ordinal
potential game with the potential function:

φ(a) =
∑

ui∈U
η1
∑

t∈T

(
τ twti logzti (|Uj |)

)
1∑

ck
j
∈Cj

ak
j,i=1

+
∑

ui∈U
η2h

k
j,i

|Uk
j |∑

q=i+1

pkj,i1aq=ai1
∑

ck
j
∈Cj

ak
j,i=1

+
∑

ui∈U
η2

∑

sl∈S\{sj}
(|hkl,i|2pkl )1∑

ck
j
∈Cj

ak
j,i=1

+
∑

ui∈U

(
ε
∑

t∈T
(τ twtmax) + εImax

)
1∑

sj∈S
∑

ck
j
∈Cj

ak
j,i=0 (19)

where 1condition is an indicator function that returns 1 if the
condition is true, and 0 otherwise.

Proof: Please refer to Appendix D.

6.2 Decentralized User Allocation Algorithm

To solve the user allocation game formulated above,
we propose a multi-tenancy and interference-aware user
allocation algorithm (miUA). It is an iterative and decentral-
ized algorithm that follows a class of strategy updating rules
called best response dynamics [39], which is an evolutionary
process involving a finite number of iterations. In each
iteration, the decision for each user is determined by its
best responses (the allocation decisions that incur the lowest
system costs) to the decisions for other users made in the
previous iteration. This is a decentralized process where
edge servers run the algorithm in parallel and coordinate
the iterations of the game via messaging synchronization,
similar to [16], [29], [31]. Due to the Finite Improvement
Property of ordinal potential games, it is guaranteed that this
process will eventually converge to a Nash equilibrium [38].

Algorithm 1 miUA
Input: S , U , and other parameters
Output: user allocation strategy a

1: initialization:
2: every user ui is initially unallocated, ai = (sj , c

k
j ) =

(0, 0), ∀ui ∈ U .
3: end initialization
4: repeat
5: Get the current system cost Ca,p
6: for each user ui ∈ U do
7: for each neighbor server sj ∈ Si of user ui do
8: for each channel ckj ∈ Cj on server sj do
9: Calculate Ca′,p(a′i) – the new cost if user

ui is allocated to channel ckj in server sj
10: end for
11: end for
12: From all possible decisions a′i above, find one

with the lowest cost Ca′,p(a′i)
13: if a′i 6= ai and Ca′,p < Ca,p then
14: Contend a′i for the decision update
15: end if
16: end for
17: Find user ui, whose decision update a′i incurs system

cost Ca′,p that is the lowest among all users U
18: Apply decision a′i
19: until no decision updates needed for any users
20: Allocate transmit power to users

Given all the required parameters, Algorithm 1 allocates
users so that the total system cost (14) is minimized. During
the allocation, every user is assumed to have a fixed and
identical transmit power p initially. Once all the users have
been allocated, each user’s transmit power will be adjusted
to meet the data rate requirement. This will be discussed
in Section H. With regards to the user allocation, no user
is allocated initially (Lines 1-3). After that, decisions are
updated for users iteratively (Lines 5-16) such that the
system cost incurred in the next iteration is lower than
the previous iteration. The updated decision for user ui is
denoted as a′i, which incurs a new system costCa′,p. Once all
the decision updates are submitted, the decision that incurs
the lowest system cost (Line 17) will be chosen and applied
to the corresponding user (Line 18). The allocation strategy
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a will also be updated accordingly. Note that the allocation
strategy a at this stage is not final and can be updated in the
consequent iterations. After this iteration, users that are not
affected by the updated allocation strategy are not required
to alter their current decisions. The decisions for users
affected by the latest allocation strategy update need to be
updated. For example, say users u1 and u2 both want to be
allocated to the same channel in the same edge server. After
user u2 is allocated to this server in the current iteration
of the game, this server is now exhausted of computing
resources and insufficient to server user u1. Consequently,
the decision for user u1 needs to be updated with a new
pair of edge server and channel.

The procedure of finding the best allocation decision for
each user (Lines 5-16) will now be discussed in more detail.
In each iteration, the best allocation decision for each user ui
is determined by going through every channel in every ui’s
neighbor edge server (Lines 7-11). The pair of channel and
edge server that incurs the lowest system cost, which can
be calculated by (14) (Line 9), is selected for user ui (Line
12). Next, if user ui is not already allocated to this channel
in this edge server, and the new system cost is lower than
the current system cost, this pair of channel and edge server
will be submitted for the decision update opportunity (Lines
13-15). If selected (by the mechanism previously discussed,
Line 17), the decision update for user ui will be applied.
Should a better allocation decision for user ui be found
in consequent iterations, it will again be submitted to be
updated. It is important to note that the decision update
process for each user (Lines 6-11) in an iteration can be
executed in parallel because the process for a user does not
rely on other users’ processes. Moreover, for each individual
user, the search for the best pair of channel and edge server
(Lines 7-11) can also be parallelized.

After the user allocation process completes, Algorithm 2
(Appendix H, adopted in [35], [40]) is executed to allocate
transmit power to users (Line 20). Its objective is to ensure
data rates for all the users at a minimum overall transmit
power cost. It is in line with the power allocation problem
formulated in Section 5.2. This is a decentralized and itera-
tive algorithm that has been shown to eventually converge
to the global optimal power allocation solution, if one ex-
ists [35], [40], [41]. Please note that other power allocation
algorithms can also be employed instead of Algorithm 2
to achieve different optimization objectives, e.g., maximum
overall data rate, maximum energy efficiency, etc., without
impacting the correctness of miUA.

6.3 Performance Analysis
6.3.1 Convergence Analysis

The convergence time of miUA is evaluated by the
number of iterations T taken to find a Nash equilibrium.
Theorem 2 proves the upper bound of T .

Theorem 2. The convergence time of Algorithm 1 is upper
bounded by:

T ≤ N
(
ε
∑
t∈T (τ twtmax) + εImax

)

|hmin|2p
(20)

where |hmin|2 is the minimum channel gain that a user could
experience, and p is the default transmit power allocated to users

during the user allocation process.

Proof: Please refer to Appendix E.

6.3.2 Complexity Analysis

In this section, we analyze the worst-case time complex-
ity of miUA (Algorithm 1). Its sequential time complexity
is O(TmaxN

3MV logN). Tmax is the maximum number of
iterations taken by miUA to find a Nash equilibrium, which
has been found in Theorem 2. In each iteration, a user (there
is a maximum of N users) finds the best allocation decision
by enumerating each channel in every neighbor edge server
(Lines 7-11 of Algorithm 1) to find a channel in an edge
server that produces the lowest system cost and contend for
the decision update (Line 14 of Algorithm 1). The maximum
number of options that this user might have to go through is
M neighbor servers x V channels. In practice, the number of
a user’s neighbor edge servers is much less than M . In our
experiments, a user has at most 4 neighbor edge servers.
For each of these options, system cost calculation requires
calculating the computing resource cost and interference
cost for N users, each costing N logN . It is dominated by
the calculation of intra-cell interference, which involves the
sorting of users by their channel conditions. Calculating
computing resource cost and inter-cell interference is less
expensive. Thus, miUA costs O(TmaxN

3MV logN) if ex-
ecuted sequentially, which is very computationally expen-
sive. Fortunately, the system cost calculation for an option
for a user is independent of the calculation for other options.
Thus, miUA can be executed in parallel, reducing the time
complexity to approximately O(TmaxN

3MV logN)
ρ , where ρ is

the total number of edge servers, or processing threads to
be specific, running miUA collectively. Our experiments in
Section 7.3.2 empirically demonstrate the efficiency of miUA
when executed in parallel.

6.3.3 Performance Bounds

Theorem 3 analyzes the lower and upper bounds on the
number of allocated users in each edge server.

Theorem 3. Let numj(a) be the number of users allocated
to edge server sj given a user allocation strategy a, numj(a)
satisfies:

(numj(a) + 1)
(
1 + logz(numj(a))

)
≥
⌊
Qtj
wmax

⌋

numj(a)
(
1 + logz(numj(a))

)
≤
⌊
Qtj
wmin

⌋

Proof: Please refer to Appendix F.
Next, we analyze the theoretical optimality of miUA

using its Price of Anarchy (PoA), which is a critical op-
timality indicator for game-theoretic approaches [16], [28],
[29], [31]. It shows the ratio between the worst Nash equi-
librium and the optimal solution [38]. The PoA is defined

as: PoA =
max
a,p∈A

Ca,p

CaOPT ,pOPT
, where A is the set of all the user

allocation strategies that lead to Nash equilibria, and (aOPT ,
pOPT ) is the optimal allocation strategy.
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Theorem 4. In the user allocation game Γ, the PoA in terms of
the system cost satisfies:

1 ≤ PoA ≤

∑
ui∈U

(
η1ε

∑
t∈T τ

twtmax + η2εImax
)

∑
ui∈U

(
η1
∑
t∈T

τ t
(
1 + logzti (num∗j (aOPT ))

)
wti + η2σ2

)

(21)

Proof: Please refer to Appendix G.

7 PERFORMANCE EVALUATION

We perform a series of experiments to evaluate miUA
against three baseline approaches and two state-of-the-art
approaches.

7.1 Performance Benchmark
We compare miUA against five representative ap-

proaches:

• Optimal: To find optimal solutions to the mixed-
integer programming NOMA-EUA problem intro-
duced in Section 5, we use IBM ILOG CP Optimizer
solver2. Due to the sophistication of the problem,
this approach can only be executed in small-scale
experiments.

• Serving Channel Gain-based Subchannel Allocation
(SCG-SA) [42]: This approach solves the channel and
power allocation problem in a NOMA-based cellular
network to increase the energy efficiency. For each
channel, SCG-SA ranks users based on their channel
conditions. Users with stronger channel conditions
are allocated first because they consume less transmit
power. SCG-SA is designed to operate in a pure
cellular network without edge servers, and thus does
not consider the heterogeneity of edge servers with
varying computing resources. Also, SCG-SA works
on users that are already allocated to edge servers.
Therefore, before allocating users to channels and
allocating transmit power to users with SCG-SA, we
employ a state-of-the-art user allocation approach
(EUAGame) to allocate users to edge servers.

• EUAGame [16]: This approach allocates maximum
users at the minimum computing resource cost by
leveraging the multi-tenancy feature. However, it
does not consider the communication/networking
aspect. Thus, in the experiments, after users have
been allocated to edge servers, we first allocate users
to channels randomly and then perform a fixed
power allocation where the total available transmit
power of a base station is fully allocated to users
based on their channel conditions. Assuming the
users allocated to edge server sj (Uj) are indexed
by order of channel condition, where users u1 and
u|Uj | have the best and worst channel conditions,
respectively, the transmit power allocated to user
ui ∈ Uj is then Pji/

∑|Uj |
x=1 x.

• NearestUA: This is a naive baseline approach that al-
locates each user to their nearest edge server that has
sufficient computing resources. The rationale behind

2. www.ibm.com/au-en/analytics/cplex-cp-optimizer

TABLE 1: Experiment settings

Cell radius (Rj ) 289m
Inter-site distance 500m
Minimum distance between user
and edge server

35m

Large-scale path loss model 128.1 + 37.6log10(dj,i)dB
Base station’s maximum transmit
power (Pj )

46dBm

Thermal noise density −174dBm/Hz
System bandwidth (B) 10MHz

this approach is that a short distance between a user
and an edge server usually results in a strong channel
condition. After that, each user is allocated to the
channel with the fewest users. Then, this approach
employs Algorithm 2 to allocate transmit power to
users.

• Random: This baseline approach assigns each user
to a random channel in a random edge server that
has enough computing capacity. This approach also
employs Algorithm 2 to allocate transmit power to
users.

7.2 Experiment Settings

The experiment settings are compliant with the existing
LTE specifications [43] and summarized in Table 1. Edge
servers’ available computing resources Qj are randomly
generated based on a normal distribution N (µ, 102), where
µ is the average capacity of each resource type in T =
{CPU,GPU,RAM, storage}, and the standard deviation is 5.
We set the weight parameters η1 = η2 = 0.5. Users are ran-
domly distributed within the coverage of those edge servers
by following a uniform distribution. Users’ required data
rate rmin is set at 2Mbps. We assume that users have three
possible levels of normalized computing resource require-
ments, wi ∈ {< 1, 2, 1, 1 >,< 2, 1, 2, 2 >,< 3, 3, 2, 2 >}.
We have conducted experiments with other resource re-
quirements, which produce similar results, so we pick those
three levels as the representatives. Each user’s computing
resource requirement is randomly selected from those three
levels.

We carry out seven sets of experiments (Table 2). In
each experiment set, we vary one parameter while fixing
the others. The first three sets (Sets #1s, #2s, and #3s) are
small-scale experiments since Optimal is extremely time-
consuming and infeasible to run in large-scale scenarios
(Sets #1, #2, #3, #4). To evaluate miUA, we compare the
normalized system costs (computing resource and transmit
power costs, the lower the better) achieved by all the ap-
proaches. We also break it down by comparing the number
of allocated users and the total transmit power consumed
by all users. We do not explicitly present the result of
computing resource cost since it can be deduced from the
number of allocated users, which is a more intuitive metric.
The convergence time of miUA is also evaluated, which is
an important machine-independent efficiency indicator for
game-theoretical approaches [16], [28], [29], [44], [45].
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Fig. 2: System cost vs. number of users
(Set #1s).

Fig. 3: System cost vs. number of users
(Set #2s).

Fig. 4: System cost vs. number of users
(Set #3s).
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Fig. 5: Percentage of satisfied users vs.
number of users (Set #1).
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Fig. 6: Total transmit power vs. number
of users (Set #1).
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Fig. 7: System cost vs. number of users
(Set #1).
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Fig. 8: Percentage of satisfied users vs.
available server capacity (Set #2).
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Fig. 9: Total transmit power vs. avail-
able server capacity (Set #2).
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Fig. 10: System cost vs. available server
capacity (Set #2).
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Fig. 11: Percentage of satisfied users vs.
number of channels (Set #3).
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Fig. 12: Total transmit power vs. num-
ber of channels (Set #3).
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Fig. 13: System cost vs. number of chan-
nels (Set #3).
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Fig. 14: Percentage of satisfied users vs.
number of edge servers (Set #4).
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Fig. 15: Total transmit power vs. num-
ber of edge servers (Set #4).
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Fig. 16: System cost vs. number of edge
servers (Set #4).
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TABLE 2: Experiment sets

Number of
users N

Edge server
capacity µ

Number of
channels V

Number of
edge servers M

Set #1s 4, ..., 10 8 4 2

Set #2s 10 5, ..., 10 4 2

Set #3s 10 8 1, ..., 5 2

Set #1 150, ..., 500 30 5 12

Set #2 500 22, ..., 36 5 12

Set #3 500 30 1, ..., 8 12

Set #4 500 30 5 6, ..., 20

7.3 Experimental Results

In general, miUA is able to allocate the most users at the
lowest system cost in all the experiment sets, followed by
SCG-GA. In particular, the total transmit power required by
miUA is remarkably lower than any other approach. The
performances of NearestUA and Random are comparable
across all the parameter settings and all the experiments.
EUAGame exhibits the worst performance, which shows
that fixed power allocation is not suitable in NOMA-based
MEC systems. The experimental results will be discussed in
the following sections with more details.

7.3.1 Effectiveness
Experiment Sets #1s, #2s, and #3s (Fig.s 2, 3, and 4): In

these small-scale experiments, the performance difference
between the approaches is insignificant, except for EU-
AGame. Nevertheless, when zooming in the graphs (please
refer to the subgraph within each figure), we can still notice
that Optimal is obviously the best, closely followed by
miUA. EUAGame always uses maximum transmit power,
leading to extremely high system cost compared with the
other approaches.

Experiment Set #1: We gradually increase the number of
users from 150 to 500. As the number of users increases, the
percentage of satisfied users by all the approaches decreases
(Fig. 5). Since edge servers’ capacities are fixed, adding
more users to the system will quickly exhaust edge servers’
computing resources, thus increasing the number of users
that cannot be allocated to any edge servers or do not meet
the minimum data rate requirement. Note that the satisfied
users reported here (Fig.s 5, 8, 11, and 14) are the users
who are allocated to edge servers and achieve the required
minimum data rate. More details on the users, including
those who are allocated but do not receive a satisfactory
data rate, are shown in Fig.s 17, 18, 19, and 20.

Under all parameter settings, miUA is able to satisfy
the most users. When there are not many users, SCG-SA is
able to satisfy almost as many users as miUA. However, the
difference between those two approaches grows noticeably
larger as the number of users increases. EUAGame seems
to be the worst because although it could allocate a good
number of users to edge servers (even better than miUA
in some cases), many of them do not achieve a satisfactory
data rate (Fig. 17). This phenomenon also occurs in all the
other experiment sets as depicted in Fig.s 17, 18, 19, and 20.
Despite serving the most users among all the approaches,
miUA consumes the least overall transmit power, lower
than all other approaches by vast margins (Fig. 6). SCG-

SA starts with a relatively good performance. However,
its performance degrades rapidly as the number of users
increases. This shows that even though all the approaches
(except EUAGame) employ a state-of-the-art power alloca-
tion mechanism, miUA still outperforms them by actively
minimizing interference during the process of allocating
users to edge servers and channels, saving a significant
amount of transmit power. In overall, the system cost of
miUA is the lowest (Fig. 7).

Experiment Set #2: We vary the average computing
resource capacity µ available on edge servers from 22 to
36. As the computing resources become more abundant,
edge servers can accommodate more users, leading to an
increasing trend in the percentage of users allocated and
satisfied by all the approaches (Fig.s 8 and 18). It can be seen
that miUA vastly outperforms other approaches. In the be-
ginning when the server capacity is limited, NearestUA and
Random seem to outperform SCG-GA, which is no longer
the case once the computing capacity increases thanks to
the state-of-the-art server and channel selection methods
employed by SCG-GA. miUA is again the approach that
consumes the least power (Fig. 9) and incurs the lowest
system cost (Fig. 10).

Experiment Set #3: We vary the number of channels
in each base station from 1 to 8. In general, the perfor-
mances of SCG-SA, EUAGame, NearestUA, and Random
remain fairly constant (Fig. 13). In contrast, miUA is able
to fully utilize the multi-channel characteristic. Given more
channels, fewer users have to compete with each other,
lowering the intra-cell and inter-cell interference in the
system. As the number of channels increases, more users
can achieve the minimum data rate required (Fig.s 11 and
19) with remarkable transmit power savings (Fig. 12). When
the number of channels becomes adequately large (from 5
channels onward), the number of satisfied users and the
overall transmit power start to converge without noticeable
improvement. The reason is that all the allocated users have
already achieved a sufficient data rate and the computing re-
sources on edge servers are too exhausted to accommodate
more users (Fig. 19).

Experiment Set #4: The number of edge servers is varied
from 6 to 20. Extra edge servers immediately increase the
total amount of computing and communication resources
available in the system. As a result, more users can be
satisfied (Fig.s 14 and 20). EUAGame, NearestUA, and
Random fail to take advantage of this so they only achieve a
very minimal improvement in the number of satisfied users.
Even without a noticeable increase in the number of satisfied
users, the overall transmit power consumed by those three
approaches still continues to increase roughly linearly with
the number of edge servers (Fig. 15). miUA and SCG-SA
can effectively leverage the increase in edge servers and
show a clear improvement in the number of satisfied users.
When the number of edge servers increases, users are less
likely to be allocated to the same channel in general. This
significantly reduces the intra-cell and inter-cell interference.
As a result, miUA and SCG-SA do not require much more
overall transmit power (Fig. 15) even when the number of
satisfied users increases (Fig. 14). In general, the system cost
achieved by miUA is far lower than all the other approaches
(Fig. 16).
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Fig. 17: Details of allocated users (Set #1). Fig. 18: Details of allocated users (Set #2).

Fig. 19: Details of allocated users (Set #3). Fig. 20: Details of allocated users (Set #4).

7.3.2 Efficiency
Discussion: As shown by the four sets of experiments,

miUA clearly outperforms all the other approaches by sig-
nificant margins. It achieves the highest number of satisfied
users, i.e., those allocated to edge servers with their data
rate requirements fulfilled while saving a significant amount
of transmit power. SCG-SA, NearestUA, and Random are
beaten by miUA even though they all employ the same
power allocation method that aims to minimize the overall
transmit power while satisfying the data rate requirement.
This demonstrates the importance of allocating individual
users to appropriate edge servers and channels. The fixed
power allocation scheme that assigns full transmit power
on a base station to users based on their channel conditions,
which is employed by EUAGame, is obviously not suitable
in NOMA-based MEC systems. Evidently, the vast majority
of users allocated by EUAGame do not receive a sufficient
data rate (Fig.s 17, 18, 19, and 20).

To evaluate the efficiency of miUA, we measure its
convergence time by the number of decision iterations it
takes to reach a Nash equilibrium (Fig.s 21, 22, 23, and
24). This metric is widely used to evaluate the efficiency of
game-theoretic approaches [16], [28], [29], [44], [45] due to
its machine independence (different machines with different
computing power might result in different CPU time taken
to solve a problem). For reference, we also present the
elapsed CPU time for all the approaches. The experiments
are performed on a Linux machine equipped with 2 x Intel
Gold 6140 18-core processors and 32GB RAM.

In all experiment sets, the complexity of the user al-
location problem increases when the experiment parame-
ter increases. Consequently, miUA gradually requires more
iterations to reach a Nash equilibrium. Under the largest

experiment setting (20 edge servers, 5 channels per server,
and 500 users), it takes almost 700 iterations, which is quite
reasonable for the scale of the problem. With the increase
in the number of iterations, the elapsed CPU time also
increases (with the exception of experiment Set #3). Because
of the complex calculation of intra-cell interference, inter-
cell interference, and system cost, miUA is noticeably more
computationally expensive than the other approaches and
takes much more CPU time. However, it still falls within
the acceptable range since based on our experiments, the
greatest time taken by miUA is 80ms (in Set #2). In Set #3
when the number of channels increases, miUA gradually
runs quicker despite the increasing number of iterations.
This happens because when the number of channels is
small, more users are allocated to each channel on average.
This increases the complexity of the sorting of the users on
each channel by their channel conditions, which is compu-
tationally demanding.

8 CONCLUSION AND FUTURE WORK

In this work, the edge user allocation problem in a down-
link non-orthogonal multiple access (NOMA)-based mobile
edge computing (MEC) system is investigated. To tackle this
NP-hard problem, we model it as a potential game with
the objective to maximize the number of allocated users at
the minimum computing resource and transmit power costs
while satisfying their data rate requirements. By jointly con-
sidering both the communication and computation aspects
of a NOMA-based MEC system, miUA, our decentralized
game-theoretic approach, greatly outperforms all the other
approaches, being able to serve the most users with the
least transmit power. Our experiments highlight the signif-
icance of incorporating wireless interference into the user
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Fig. 21: Number of decision iterations and elapsed CPU
time vs. number of users (Set #1).
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Fig. 22: Number of decision iterations and elapsed CPU
time vs. Available server capacity (Set #2).
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Fig. 23: Number of decision iterations and elapsed CPU
time vs. number of channels (Set #3).
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Fig. 24: Number of decision iterations and elapsed CPU
time vs. number of edge servers (Set #4).

allocation approach in a NOMA-based MEC system. We also
theoretically analyze the optimality and convergence of our
proposed approach.

The future work has been removed to reduce repetition
in this thesis. Please refer to the original paper online for a
full, unedited version.
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APPENDIX A
KEY NOTATIONS

Key notations used in this article are summarized in
Table 3.

TABLE 3: Key Notations

Symbol Description

akj,i allocation decision on whether user ui will be allocated to the
k-th channel of edge server sj

Bk
j bandwidth of channel ckj in edge server sj
Cj the set of channels ckj , k ∈ {1, 2, ..., V }, in edge server sj
Ca,p total system cost given a user allocation strategy a and a

power allocation strategy p
Ca,p(ai) system cost incurred by user ui’s decision ai
dj,i distance between user ui and edge server sj
f tj,i the utilization of computing resource type t on edge server

sj when user ui is being allocated
|hkj,i|2 channel gain of user ui on channel ckj of edge server sj
Ikj,i inter-cell interference experienced by user ui on ckj
Ia,p(ui) interference cost incurred by user ui given a user allocation

strategy a and power allocation strategy p
Ma(ui) computing resource cost incurred by user ui given an alloca-

tion strategy a
Pj maximum transmit power (power capacity) of edge server sj
pk
j,i allocation decision on the amount of transmit power allocated

to user ui on the k-th channel of edge server sj
pkj transmit power of edge server sj on channel ckj
Qj computing capacity of edge server sj . Qj is a |T |-

dimensional vector
Rj cell radius of edge server sj
rkj,i achievable data rate of user ui on channel ckj
S the set of edge servers sj , j ∈ {1, 2, ...,M}
Si set of user ui’s neighbor edge servers
T the set of computing resource types, or computing capacity

dimensions. T = {CPU,RAM, storage, ...}
U the set of users ui, i ∈ {1, 2, ..., N}
Uj set of users allocated to edge server sj
Uk
j set of users allocated to edge server sj on channel ckj
wi computing resource requirement of user ui. wi is a |T |-

dimensional vector
zti computation task size and computing resource type depen-

dent parameter used in resource utilization model
Θ(ckj ) SIC decoding order of users on channel ckj
rmin minimum user data rate requirement
τ t a weight indicating app vendor’s priority of saving comput-

ing resource type t ∈ T
η1, η2 weights of computing resource cost and interference cost in

the whole system cost
ε, ε weights indicating the severity of the penalty on computing

resource cost and interference cost when a user is unallocated

APPENDIX B
PROOF OF NP-HARDNESS OF NOMA-EUA

Proof: The user allocation problem modeled in Section
5.1 can be proved to be NP-hard by proving that its associ-
ated decision version is NP-complete. Its decision version is
defined as follows:

Given a set of all the users U = {u1, ..., uN} and a set
of all the channels in all edge server C = {Cj |sj ∈ S}, for
each positive number M , determine whether there exists a

partition of U ′ ⊆ U into C′ ⊆ C with a cost (computing
resource and interference costs (14)) lower than M , while
satisfying constraints (13b) and (13c). By repeatedly solving
the decision problem with all feasible combination of users
and channels, it is possible to find the user allocation that
incurs the lowest cost (14).

First, we show that the EUA problem is NP. We can easily
validate a solution of the EUA problem in polynomial time
– ensuring that each user is allocated to at most one channel
in an edge server, and the aggregated computing resources
consumed by all the users in an edge server does not exceed
its capacity. This problem is thus in NP class.

Then, the EUA problem can be proven to be NP-hard
by reducing the NP-complete PARTITION problem [37] to
a special case of the user allocation decision problem. The
PARTITION problem is defined as follows: Given a finite
series of non-negative integers W = (w1, w2, ..., wN ), de-
termine if there exists a subset S ⊆ {1, ..., N} such that∑
i∈S wi =

∑
j /∈S wj .

Each user ui can be either unallocated, or allocated
to a channel in an edge server. For any instance W =
(w1, w2, ..., wN ) of PARTITION, construct the following in-
stance of the user allocation problem with N users, for each
user ui, there are two possible 2-dimensional computing
resource requirements, 〈wi, 0〉 and 〈0, wi〉; and a number of

identical servers whose size is 〈Q,Q〉, where Q =

∑N
i=1 wi
2

.
Assume that all users can be served by any of those servers.
Note that 〈wi, 0〉 ≡ 〈0, wi〉 ≡ ui, which represents a user’s
computing resource requirement. Clearly, there is a solution
to the user allocation problem which allocates N users to
two servers if and only if there is a solution to the PARTI-
TION problem. Therefore, this special case is NP-hard. This,
combined with the fact that it is NP as shown above, proves
that the associated decision version of the user allocation
problem is NP-complete. Because an optimization problem
is at least as hard as its decision version, the user allocation
problem defined in Section 5.1 is thus NP-hard. Therefore,
the NOMA-EUA problem is also NP-hard, which completes
the proof.

APPENDIX C
PROOF OF LEMMA 1

Proof: If the allocation decision a∗i made for user ui is
not the best decision in Ai, there must be a better decision
ai ∈ Ai that decreases the system cost, i.e., Ca∗−i,p(a∗i ) >
Ca∗−i,p(ai). As a result, switching from a∗i to ai will lead to a
lower system cost. This is in contradictory to (17), where no
user in a Nash equilibrium can unilaterally lower the system
cost.

APPENDIX D
PROOF OF THEOREM 1

Proof: For ease of exposition, here we assume all users
have the same computing resource requirement wi, i.e.,
wi = w,∀ui ∈ U , and have the same zti , i.e., zti = zt,∀ui ∈
U . Also note that during the user allocation process, all users
are allocated an identical transmit power p. The existence
of a Nash equilibrium where different users have different
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computing resource requirements and computation task
sizes is experimentally validated in Section 7.

Let us suppose the current decision ai = (sj , c
k
j ) of

user ui and its updated decision a′i = (s′j , c
k′
j′ ) (the de-

cision made in the next iteration in Algorithm 1) satisfy
Ca,p(ai) ≥ Ca′,p(a′i). According to (12), (14), and (15), there
are two possible cases: 1) ui moves from an edge server to
another edge server, and 2) ui moves from being unallo-
cated to being allocated. The case where user ui switches
to another channel in the same edge server is a special
case of Case 1, where the computing resource cost remains
unchanged.

Case 1: User ui’s transition from an edge server to
another edge server,

∑
ckj∈Cj akj,i = 1 and

∑
ckj∈Cj′ ak

′
j′,i = 1:

Condition Ca,p(ai) ≥ Ca′,p(a′i) implies:

∑

uq∈Uj∪U ′j

(η1Ma(uq) + η2Ia,p(uq)) ≥
∑

uq∈Uj∪Uj′
(η1Ma′(uq)

+ η2Ia′,p(uq))

⇔
∑

uq∈Uj∪Uj′

(
η1
(
Ma(uq)−Ma′(uq)

)

+ η2
(
Ia,p(uq)− Ia′,p(uq)

))
≥ 0 (22)

Based on (12), there is:
∑

uq∈Uj∪Uj′
η1
(
Ma(uq)−Ma′(uq)

)

= η1

( ∑

ul∈Uj

∑

t∈T
τ t logztl (|Uj |)wtl −

∑

uo∈Uj′

∑

t∈T
τ t logzto(|Uj′ |)wto

)

(23)

Let h denote the channel gain of a user on its assigned
channel. Based on (15), there is:

∑

uq∈Uj∪Uj′
η2
(
Ia,p(uq)− Ia′,p(uq)

)

=
∑

uq∈Uj∪Uj′
η2

(
h

|Uj |∑

b=q+1

p− h
|Uj′ |∑

b′=q+1

p

+
∑

sl∈Sq\{sj}
hpkl −

∑

sl′∈Sq\{sj′}
hpk

′
l′ + σ2 − σ2

)
(24)

Given (22), (23), and (24), we can see that Ca,p(ai) ≥
Ca′,p(a′i) implies:

η1

( ∑

ul∈Uj

∑

t∈T
τ t logztl (|Uj |)wtl −

∑

uo∈Uj′

∑

t∈T
τ t logzto(|Uj′ |)wto

)

+
∑

uq∈Uj∪Uj′
η2

(
h

|Uj |∑

b=q+1

p− h
|Uj′ |∑

b′=q+1

p

+
∑

sl∈Sq\{sj}
hpkl −

∑

sl′∈Sq\{sj′}
hpk

′
l′

)
≥ 0 (25)

Based on the definition of the potential game, we need to
show that the cost decrease (both computing resource and
interference costs) caused by a user ui updating its current
decision ai to a new decision a′i will result in a decrease in

the potential function (19). Given the potential function (19),
there is:

φa−i
(ai)− φa−i

(a′i)

= η1
∑

uq∈Uj

∑

t∈T
τ t
(

logztq (|Uj |)wtq − logztq (|Uj′ |)wtq
)

+ η2
∑

uq∈Uj

(
|hkj,q|2

|Uj |∑

b=q+1

pkj,q +
∑

sl∈Sq\{sj}
|hkl,q|2pkl + σ2

)

− η2
∑

uq∈Uj′

(
|hk′j′,q|2

|Uj′ |∑

b′=q′+1

pk
′
j′,q

+
∑

sl′∈Sq′\{sj′}
|hk′l′,q′ |2pk

′
l′ + σ2

)
(26)

Based on (25), we can see φa−i
(ai) − φa−i

(a′i) ≥ 0 when
Ca,p(ai)− Ca′,p(a′i) ≥ 0.

Case 2: User ui’s transition from being unallocated to
allocated,

∑
sj∈S

∑
ckj∈Cj akj,i = 0 and

∑
ckj∈Cj′ ak

′
j′,i = 1:

We can use the similar argument in Case 1 to show that
Ca,p(ai) − Ca′,p(a′i) ≥ 0 leads to φa−i(ai) − φa−i(a′i) ≥ 0.
Combined this with the result in Case 1, we can conclude
that our user allocation game is an ordinal potential game.

APPENDIX E
PROOF OF THEOREM 2

Proof: According to (19), we have:

0 ≤ φ(a) ≤ N
(
ε
∑

t∈T
(τ twtmax) + εImax

)
(27)

because the term
∑
ui∈U

(
ε
∑
t∈T

(τ twtmax) +

εImax
)
1∑

sj∈S
∑

ck
j
∈Cj

akj,i=0 in the potential function

φ(a) is always greater than the other terms combined.
In each iteration decision, a user ui ∈ U updates its

current decision ai to a new decision a′i to decrease the
computing resource and interference costs, represented by
Ca,p(ai) − Ca′,p(a′i). Next, we need to find the minimum
possible value of Ca,p(ai)−Ca′,p(a′i), i.e., the minimum cost
decrease that might occur when a user changes its decision.

We can easily see that the minimum cost decrease hap-
pens when a user’s decision update meets all the following
conditions:

• The user is already allocated to an edge server and
does not wish to move to another server. Thus, the
computing resource cost remains unchanged when
ai is updated to a′i.

• The user only wishes to switch to another channel
to lower its intra-cell interference. The minimum
improvement of intra-cell interference occurs when
the new channel has one user fewer than the current
channel. The intra-cell interference incurred by this
one user is |hmin|2p.

• The user is located in the middle of its current cell.
In other words, it is not covered by any other edge
server. Thus, this user does not suffer from inter-cell
interference.
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When the above conditions are satisfied, the minimum
cost decrease is then |hmin|2p. As a result, miUA will termi-
nate by driving the potential function to a minimum point

(Nash equilibrium) within at most
N
(
ε
∑

t∈T (τ
twt

max)+εImax

)
|hmin|2p

iterations.

APPENDIX F
PROOF OF THEOREM 3

Proof: For ease of exposition, let τ t = 1,∀t ∈ T , and
zti = z,∀t ∈ T ,∀ui ∈ U . For a user ui to be allocated to
edge server sj , server sj must have sufficient computing
resources. This can be expressed by:

∑

uq∈Uj\{ui}
(1− fj,q)wq + (1− fj,i)wi ≤ Qj (28)

where the left-hand side of the inequality is the total re-
source consumption of all existing users in edge server sj
and user ui. First, we find the upper bound on the number
of allocated users. Let num∗j (aOPT ) = |Uj | be the maximum
number of allocated users on edge server sj produced by a
centralized optimal solution aOPT . Then, (28) implies:

(
num∗j (aOPT )− 1

)(
1 + logz(num

∗
j (aOPT ))

)
wmin

+
(
1 + logz(num

∗
j (aOPT ))

)
wmin ≤ Qj

⇔ num∗j (aOPT )
(
1 + logz(num

∗
j (aOPT ))

)
≤
⌊
Qj
wmin

⌋

(29)

Now we find the lower bound on the number of allo-
cated users. For an arbitrary Nash equilibrium a, there is
at least one unallocated user ui (if this user was allocated
too then this would have been an optimal solution, here we
investigate the case where the solution is sub-optimal). Since
this is a Nash equilibrium, user ui cannot select any server.
This leads to:

∑

uq∈Uj
(1− fj,q)wq + (1− fj,i)wi ≥ Qj

⇔ numj(a)
(
1 + logz(numj(a))

)
wmax

+
(
1 + logz(numj(a))

)
wmax ≥ Qj

⇔ (numj(a) + 1)
(
1 + logz(numj(a))

)
≥
⌊
Qj
wmax

⌋
(30)

The combination of (29) and (30) completes the proof.

APPENDIX G
PROOF OF THEOREM 4

Proof: Case 1: For any allocation strategy (a,p), its
system cost is clearly always higher than the system cost
of an optimal allocation strategy, i.e., Ca,p ≥ CaOPT ,pOPT ,
hence PoA ≥ 1.

Case 2: Next, we analyze the bounds on the system cost
of an arbitrary Nash equilibrium and an optimal solution.

For an arbitrary Nash equilibrium (a,p), its system cost Ca,p
always satisfies:

Ca,p ≤ max
a,p∈A

∑

ui∈U

(
η1Ma(ui) + η2Ia,p(ui)

)

†
≤
∑

ui∈U

(
η1ε

∑

t∈T
τ twtmax + η2εImax

)
(31)

where the inequality † is because of the computing resource
and interference cost models (12) and (15).

For an optimal solution (aOPT ,pOPT ), its system cost
CaOPT ,pOPT always satisfies:

CaOPT ,pOPT =
∑

ui∈U

(
η1MaOPT (ui) + η2IaOPT ,p∗(ui)

)

‡
≥
∑

ui∈U

(
η1
∑

t∈T
τ t
(
1 + logzti (num∗j (aOPT ))

)
wti + η2σ

2

)

(32)

where num∗j (aOPT ) is the maximum number of allocated
users on edge server sj produced by an optimal solution
aOPT . The inequality ‡ is because of the computing resource
and interference cost models (12) and (15), and the fact that
IaOPT ,pOPT (ui) ≥ σ2.

Since Ca,p ≥ CaOPT ,pOPT , combined with (31) and (32),
we have:

PoA ≤
∑
ui∈U

(
η1ε

∑
t∈T τ

twtmax + η2εImax
)

∑
ui∈U

(
η1
∑
t∈T τ

t
(
1 + logzti (num∗j (aOPT ))

)
wti + η2σ2

)

Combining Case 1 and Case 2 completes the proof.

APPENDIX H
POWER ALLOCATION

After the user allocation is finished, miUA allocates
transmit power to users to ensure their required data rate.
The power allocation problem formulation can be found in
Section 5.2.

H.1 Power Allocation Problem Transformation
Instead of allocating transmit power to each user indi-

vidually, the power allocation problem (16) can be converted
into a problem of finding the total transmit power of all the
users on a channel (or in other words, the transmit power
allocated to a channel). After that, the power allocated to
each channel will be allocated to the users on that channel.
The rationale behind this is that the transmit power required
by a user is determined by the total transmit power of
users allocated to its neighbor edge servers on the same
channel, apart from the transmit power of users sharing the
channel in the same server. Once the total transmit power
of the users allocated to the neighbor edge servers on the
same channel is found, we can find the transmit power for
each individual users. Lemma 2 below defines the minimum
transmit power required by a channel to satisfy the data rate
requirement of the users allocated to that channel. We use
psc = {pkj |ckj ∈ Cj , sj ∈ S} to denote the channel transmit
power allocation strategy.
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Lemma 2. Given Ukj – the set of users allocated to channel ckj on
edge server sj , to ensure the required data rate rmin for all those
users, the total transmit power pkj of those users, i.e., the transmit
power allocated to channel ckj , must satisfy:

pkj ≥
|Uk

j |∑

i=1

(
2

rmin
Bk

j − 1
)(

2
rmin
Bk

j − 1
)i−1

Hk
j,i , ykj (psc)

Proof: Please refer to Appendix I.
According to [35], [41], the optimal solution to finding

the total transmit power of all the users allocated to a
channel can be found by solving the following problem,
which is transformed from problem (16).

min
{pk

j }

M∑

j=1

V∑

k=1

pkj (33a)

s.t. pkj ≥
|Uk

j |∑

i=1

(
2

rmin
Bk

j − 1
)(

2
rmin
Bk

j − 1
)i−1

Hk
j,i , ykj (psc),

∀ckj ∈ Cj ,∀sj ∈ S (33b)

Θ(ckj ),∀sj ∈ S (33c)
V∑

k=1

pkj ≤ Pj ,∀sj ∈ S (33d)

pkj ∈ R≥0,∀ckj ∈ Cj ,∀sj ∈ S (33e)

where objective (33a) minimizes the total transmit power
allocated to all the channels in all the edge servers. Con-
straint (33b) is retrieved from Lemma 2, which helps enforce
constraint (13e). Constraint (33c) enforces the SIC decoding
order on each channel. Constraint (33d) ensures that the
total transmit power allocated to all the channels in an edge
server does not exceed that edge server’s power capacity.
Constraint (33e) indicates the possible values of channel
transmit power decision pkj .

H.2 Decentralized Power Allocation Algorithm

Similar to Algorithm 1, the power allocation algorithm
below (Algorithm 2, adopted in [35], [40]) is also decentral-
ized.

This is a two-stage algorithm. First, the BS’s transmit
power is allocated to each channel (Lines 1-11). After that,
the transmit power allocated to each channel will be al-
located to the users on that channel (Lines 12-19). In the
first stage, initially, the transmit power of a base station is
equally assigned to all channels in that base station (Lines 2-
4). This is followed by an iterative and recursive process for
updating the transmit power allocated to channels, which
consists of a finite number of iterations (Lines 5-11). In each
iteration, the transmit power allocated to each channel is
updated based on the transmit power allocated to other
channels, which may have been updated in the previous
iteration (Line 8). Similar to [35], ykj (psc) is a standard
interference function [41] since it satisfies three criteria as
follows: 1) Positivity: ykj (psc) > 0, and 2) Monotocity: If
psc > p′sc then ykj (psc) > ykj (p′sc), and 3) Scalability: For
all α > 1, then αykj (psc) > ykj (αpsc). When ykj (psc) is
standard, Algorithm 2 is referred to as a standard power
control algorithm, which will eventually converge to a unique

Algorithm 2 Decentralized power allocation algorithm
Input: S , U , a, and other parameters
Output: power allocation strategy p

1: Stage 1: allocating BS’s transmit power to channels
2: initialization:
3: pkj = Pj/V , ∀sj ∈ S , ∀ckj ∈ Cj
4: end initialization
5: repeat
6: for each server sj ∈ S do
7: for each channel ckj ∈ Cj in server sj do
8: Calculate pk

(iIteration)

j = ykj (p(iIteration−1)
sc )

9: end for
10: end for
11: until convergence
12: Stage 2: allocating channel’s transmit power to users
13: for each server sj ∈ S do
14: for each server sj ’s channel ckj ∈ Cj do
15: for ui ∈ Ukj do . start from the weakest user

16: Calculate pkj,i =
(
2

rmin
Bk

j −1
)(∑i−1

q=1 pkj,q+H
k
j,i

)

17: end for
18: end for
19: end for

fixed point (the global optimal solution, if one exists) from
any initial power allocation [35], [40], [41].

In the second stage, the transmit power allocated to
channels will be allocated to the users on these channels
(Lines 13-19). On each channel, the transmit power is allo-
cated in the order of channel conditions, or the SIC decoding
order (8). The user with the weakest channel condition is
the first to be allocated transmit power using (9), where
rkj,i = rmin (Line 16). Transmit power is allocated to that
user first because it is the first to decode the received signal
without the need for SIC or the consideration of the power
of the other users sharing the same channel.

Complexity Analysis. Similar to Algorithm 1, Algo-
rithm 2 can also be executed in parallel since the calculation
of pk

(iIteration)

j for each channel of each edge server (Line 8)
is independent of the calculations for all the other channels.
The worst-case time complexity of calculating pk

(iIteration)

j

is O(NcMu), where Nc is the highest number of users
allocated to a channel and Mu is the highest number of
neighbor edge servers of a user. In practice, Nc and Mu are
relatively small. According to [35], this algorithm usually
converges in 20 iterations.

APPENDIX I
PROOF OF LEMMA 2

Proof: Based on (6), and (13e), the minimum user data
rate requirement for serving a user ui, who is allocated to
channel ckj on edge server sj , can be expressed by:

rkj,i = Bkj log2

(
1 +

pkj,i
∑|Uk

j |
t=i+1 pkj,t +Hk

j,i

)
≥ rmin

Therefore, to reach the minimum user data rate rmin,
the minimum transmit power pkj,i allocated to user ui must
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satisfy:

pkj,i =
(
2

rmin
Bk

j − 1
)( |Uk

j |∑

t=i+1

pkj,t +Hk
j,i

)

Next, we find the total transmit power allocated to all
the users on a channel so that they all can receive the
minimum user data rate. First, let us consider the case where
channel ckj has two users u1 and u2. Assume that u1 has the
weakest channel condition and u2 has the strongest channel
condition. By following SIC decoding order constraint (13f),
the transmit power allocated to users u1, and u2 is:

pkj,2 =
(
2

rmin
Bk

j −1
)
Hk
j,2 , pkj,1 =

(
2

rmin
Bk

j −1
)(

pkj,2+Hk
j,1

)

The total transmit power allocated to all the users on
channel ckj is then:

pkj = pkj,1+pkj,2 = Hk
j,1

(
2

rmin
Bk

j −1
)
+Hk

j,2

((
2

rmin
Bk

j −1
)
+
(
2

rmin
Bk

j −1
)2
)

When channel ckj has three users u1, u2, and u3, where u1
has the weakest channel condition and u3 has the strongest
channel condition, the transmit power allocated to u1, u2,
and u3 is then:

pkj,3 =
(
2

rmin
Bk

j −1
)
Hk
j,3 , pkj,2 =

(
2

rmin
Bk

j −1
)(

pkj,3+Hk
j,2

)

pkj,1 =
(
2

rmin
Bk

j − 1
)(

pkj,2 + pkj,3 +Hk
j,1

)

The total transmit power allocated to all the users on
channel ckj is then:

pkj = pkj,1 + pkj,2 + pkj,3

= Hk
j,1

(
2

rmin
Bk

j − 1
)

+Hk
j,2

((
2

rmin
Bk

j − 1
)

+
(
2

rmin
Bk

j − 1
)2
)

+Hk
j,3

((
2

rmin
Bk

j − 1
)

+ 2
(
2

rmin
Bk

j − 1
)2

+
(
2

rmin
Bk

j − 1
)3
)

Finally, using mathematical induction, the minimum to-
tal transmit power allocated to all the users on a general
channel ckj is:

pkj =

|Uk
j |∑

i=1

(
2

rmin
Bk

j − 1
)(

2
rmin
Bk

j − 1
)i−1

Hk
j,i
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5.2 A Dynamic Scenario

In this section, we consider the scenario where users come and go randomly over time. We aim to

maximize the allocation delay and intra-cell/inter-cell interference, inherently minimizing the transmit

power and maximizing the energy efficiency of the MEC system, while keeping user data rates at a

stable and satisfactory level. We adopt Lyapunov optimization to transform this long-term problem into

a series of subproblems to be solved in individual time slots. To effectively and efficiently solve the

subproblem mentioned above within each time slot, we model it as a potential game then introduce

a decentralized user and power allocation algorithm to find Nash equilibria, utilizing the distributed

nature of MEC. We theoretically and experimentally evaluate the proposed approach and show it to

significantly outperform a baseline and three state-of-the-art approaches.

This section is presented in the form of a paper [76] that is under review by IEEE International Confer-

ence on Computer Communications (INFOCOM).
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Online User and Power Allocation for Dynamic
NOMA-based Mobile Edge Computing

Anonymous Author(s)

Abstract—In this work, we study online user allocation in mo-
bile edge computing (MEC) networks powered by non-orthogonal
multiple access. App vendors need to determine a proper wireless
channel in a base station/edge server and sufficient transmit
power for every user. We consider a stochastic MEC system where
users arrive and depart over time. When an edge server runs
out of computing resources, some users will have to wait until
the resources become available again. This incurs an allocation
delay cost. We aim to minimize the allocation delay and transmit
power costs, increasing the energy efficiency of the MEC system.
To achieve this objective while guaranteeing users’ data rate
requirements, we adopt the Lyapunov framework to transform
this long-term optimization problem into a series of subproblems
to be solved in every time slot. Unlike typical Lyapunov optimiza-
tion frameworks designed to stabilize queuing systems, we aim to
stabilize users’ data rates over time. To solve the aforementioned
subproblems efficiently, we present a distributed game theory-
based approach. The proposed algorithm is theoretically and
experimentally evaluated, and is demonstrated to outperform
several baseline and state-of-the-art methods, highlighting the
significance of systematic consideration for both computation and
communication aspects of this problem.

I. INTRODUCTION

Mobile edge computing (MEC) has fueled the potential of
latency-sensitive applications [1], [2] as edge servers can be
installed at cellular base stations (BSs) in close distance to
users. App vendors can rent computing resources in edge
servers and host their services for their users to access.
To facilitate the massive connectivity over 5G/6G networks,
non-orthogonal multiple access (NOMA) is proposed [3].
Compared with traditional multi-access methods for wireless
communication (e.g., OFDMA, TDMA, or CDMA), NOMA
achieves greater spectral efficiency and user throughput per-
formance by accommodating multiple users concurrently with
the same frequency or time resources in the power or code
domain [3]. Integrating NOMA into MEC systems will further
promote latency-sensitive applications in the 5G/6G era.

The edge user allocation (EUA) problem has been investi-
gated extensively in recent years as an offline problem [4]–[8].
MEC researchers have begun to study computation offloading
with NOMA. However, the EUA problem in NOMA-based
MEC still remains open. Here, we study an online EUA
problem in downlink multi-channel multi-cell power-domain
NOMA-based MEC systems. In power-domain NOMA, a
frequency channel can serve multiple users simultaneously.
An app vendor needs to select a suitable channel in a suitable

BS/edge server1 with a sufficient amount of transmit power to
serve each user and satisfy its data rate requirement. We study
a highly stochastic time-slotted MEC system. In every time
slot, there is a random number of user arrivals and departures.

When allocating users, app vendors have to incorporate
two types of costs. Firstly, due to the heterogeneity and
limitation of edge servers’ computing resources [9], new users
might have to wait until existing users depart the system and
free up the occupied computing resources in edge servers.
This incurs an allocation delay cost. Secondly, the transmit
power cost must be minimized. With the above in mind, a
minimum data rate requirement must be fulfilled for as many
users as possible. In NOMA, the transmit powers allocated to
different users are tightly coupled and must be considered in
conjunction with each other. Two decisions are jointly made
for each user: 1) user allocation, including BS/edge server
and channel assignments; and 2) power allocation, so that the
allocation delay and transmit power costs are minimized. Our
key contributions include:
• We model the online EUA problem. To our best knowledge,

this is the first study on online user and power allocation
in stochastic multi-channel multi-cell NOMA-based MEC.
We adopt Lyapunov optimization to transform this long-
term problem into a series of subproblems to be solved in
individual time slots. Unlike typical adoptions of Lyapunov
optimization that model target systems as queuing systems,
our approach aims to stabilize users’ data rates over time.

• To effectively and efficiently solve the subproblem men-
tioned above within each time slot, we model it as a po-
tential game then introduce a decentralized user and power
allocation algorithm to find Nash equilibria, utilizing the
distributed nature of MEC.

• We theoretically and experimentally evaluate the proposed
approach and show it to significantly outperform various
baseline and state-of-the-art approaches.
The rest of this paper is structured as follows. Relevant

studies are reviewed in Section II. In Section III, we model
the stochastic MEC system and formulate the problem. In
Section IV, a Lyapunov optimization-based online user allo-
cation method is presented. As part of this online algorithm,
we introduce a game-theoretical approach in Section V. Our
approach is experimentally evaluated in Section VI. Lastly, the
paper is concluded in Section VII.

1The terms ”edge server” and ”base station” (BS) will be used interchange-
ably.
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II. RELATED WORK

This section has been removed to reduce repetition in this
thesis. Please refer to the original paper online for a full,
unedited version.

III. SYSTEM MODEL

A. System Description

Edge servers: An MEC system consists of M BSs denoted
by S = {s1, ..., sM}. The cell radius of BS sj ∈ S is radj .
The set of K channels in each BS sj is denoted by Cj =
{c1j , ..., cKj }. We divide the total bandwidth B of each BS sj
equally into all channels Cj . Each channel ckj ∈ Cj has a band-
width Bkj = B/K. Each BS sj has an edge server installed,
whose computing capacity is denoted by an |R|-dimensional
vector Rj = (Rrj ) with dimension Rrj being the capacity of
resource type r ∈ R = {CPU, memory, storage,...}.

Mobile users: This system’s operational timeline is repre-
sented by a series of equal-length time slots t. Let U(t) be
the set of newly-arrived users ui in time slot t, and U be the
set of all the current users in the system. We use an |R|-
dimensional vector wi = (wri ), r ∈ R, to denote the required
amount of computing resources to accommodate user ui in an
edge server. The distance from user ui to BS sj is dj,i. We use
Si = {sj ∈ S|dj,i ≤ radj},∀ui ∈ U(t), to denote the set of
user ui’s neighbor BSs, i.e., BSs that cover user ui. A user’s
session (the time a user uses the application, or is served by
an edge server) is unknown at any time and represented by a
number of time slots. For every user ui, we need to make two
decisions as follows.

User Allocation Decision. akj,i(t) = {0, 1} denotes the
decision variable for user ui in time slot t. akj,i(t) = 1 if
user ui is assigned to BS sj on channel ckj in time slot t;
otherwise akj,i(t) = 0. Let a(t) = {ai(t)|ui ∈ U(t)} represent
the user allocation strategy comprised of the decisions for all
the users in time slot t. ai(t) , (sj , c

k
j ), where akj,i(t) = 1,

indicates the BS and channel that serve user ui in time slot t.
We let ai(t) , (0, 0) when user ui is unallocated.

Power Allocation Decision. pi(t) indicates user ui’s allo-
cated transmit power in time slot t. Let p(t) = {pi(t)|ui ∈ U}
represent the power allocation strategy comprised of the power
allocation decisions for all the current users in the system in
time slot t.

Let Uj(t) = {ui ∈ U|
∑K
k=1 akj,i(t) = 1}, be the set of

users allocated to BS sj in time slot t, and Ukj (t) = {ui ∈
U|akj,i(t) = 1}, be the set of users allocated to channel ckj in
BS sj in time slot t, Ukj (t) ⊆ Uj(t). A user cannot be allocated
to multiple channels or BSs in a time slot.

B. Allocation Delay Model

When user ui is assigned to server sj that has insufficient
computing resources, ui will be put in a waiting list Qj waiting
to be served. Once one or more existing users have left and free
up the occupied resources, server sj can start serving the users
in the waiting list on a first-come, first-served basis. Given
edge server sj’s computing capacity, we can easily calculate

Nj , the maximum number of simultaneous users it can serve in
a time slot. We use ` to represent the expected length of a user
session, which can be approximated based on historical data in
practice. Edge server sj’s service rate can then be calculated
by Nj/`. Let nj(t) be the number of users being served by
server sj and Qj(t) be the length of server sj’s waiting list in
time slot t. The allocation delay cost of a newly-arrived user
ui in server sj , or the number of time slots that ui has to wait
until being served by sj , can be estimated by:

Mi(a(t)) =





[nj(t)−Nj +Qj(t) + 1]+
Nj/`

if
∑

ckj∈Cj

akj,i(t) = 1

Mmax if
∑

sj∈S

∑

ckj∈Cj

akj,i(t) = 0 (1)

where Mmax is the penalty when user ui is unallocated,
which can be any arbitrarily large number. An unallocated user
always incurs a greater allocation delay cost than an allocated
user to drive app vendors into allocating users.

C. Interference Model
1) Signal Model: Based on NOMA scheme, a BS transmits

a superposition-coded signal to everyone on a channel [3].
In downlink transmissions, users employ SIC to decode the
received superposed signal. Without loss of generality, suppose
that all users Ukj (t) on channel ckj are sorted by their channel
conditions: u1, u2, ..., u|Uk

j (t)|, where u1 has the weakest chan-
nel condition and u|Uk

j (t)| has the strongest channel condition.
User u1, being the weakest user in Ukj (t), decodes the signal
without performing SIC. User u1’s decoded component is then
subtracted from the superposed signal. The subsequent user in
Ukj (t), i.e., user u2, can decode the received signal without
interference from user u1. Following this principle, the signal
received by user ui ∈ Ukj (t) on channel ckj in BS sj in time
slot t has a signal-to-interference-plus-noise ratio γi(t) of:

γi(t) =
|hkj,i|2pi(t)

|hkj,i|2
∑|Uk

j (t)|
q=i+1 pq(t) + Ikj,i(t) + σ2

(2)

where |hkj,i|2 is user ui’s channel gain on channel ckj ,

|hkj,i|2
∑|Uk

j (t)|
q=i+1 pq(t) is the intra-cell interference experienced

by user ui (caused by those sharing the same channel with
user ui), Ikj,i(t) =

∑
sl∈Si\{sj} |hkl,i|2pkl (t) is the inter-cell

interference experienced by user ui (caused by users in ui’s
neighbor BSs), and σ2 is the addictive white Gaussian noise.
Taking into account the factors that affect a channel’s condi-
tion, the SIC decoding order of users on channel ckj in time
slot t must follow:

Θk
j (t) ,

Ikj,1(t) + σ2

|hkj,1|2
≥ ... ≥

Ik
j,|Uk

j (t)|(t) + σ2

|hk
j,|Uk

j (t)||2
(3)

where weaker users (high inter-cell interference and low
channel gain) decode before stronger users. According to [10],
Θk
j (t) is optimal for efficiently improving each individual user’

data rate. When Θk
j (t) is followed, user ui’s achievable data

rate ri in time slot t is then: ri(t) = Bkj log2

(
1 + γi(t)

)
.

CHAPTER 5. COST-EFFECTIVE USER ALLOCATION IN NOMA-BASED MOBILE EDGE

COMPUTING SYSTEMS 113

113



2) Interference Cost Model: Given allocation strategies
a(t) and p(t), the interference-plus-noise Ii(a(t),p(t)) expe-
rienced by user ui can be measured by:

Ii(a(t),p(t)) =





|hkj,i|2
|Uk

j (t)|∑

q=i+1

pq(t) + Ikj,i(t) + σ2

if
∑

ckj∈Cj

akj,i(t) = 1

Imax if
∑

sj∈S

∑

ckj∈Cj

akj,i(t) = 0 (4)

where Imax is the highest interference-plus-noise that a user
would receive if allocated to a channel. Imax can also be any
arbitrarily large number. It acts as a penalty for unallocated
users to drive app vendors into allocating users, similar to how
the allocation delay cost is formulated in Section III-B.

D. Problem Formulation

We formulate the online EUA problem as follows.

(P1) min lim
T→∞

1

T

T−1∑

t=0

E
{ ∑

ui∈U

(
η1Mi(a(t)) + η2Ii(a(t),p(t))

)}

s.t.
|Uj |∑

i=1

|R|∑

r=1

K∑

k=1

akj,i(t)w
r
i ≤ Rrj ,∀sj ∈ S,∀t (5a)

M∑

j=1

K∑

k=1

akj,i(t)dj,i ≤ radj ,∀ui ∈ U ,∀t (5b)

Θk
j (t),∀sj ∈ S,∀ckj ∈ Cj ,∀t (5c)

lim
T→∞

1

T

T−1∑

t=0

E
{
ri(t)

}
≥ rreq,∀ui ∈ U (5d)

M∑

j=1

K∑

k=1

akj,i(t) = 1,∀ui ∈ U (5e)

K∑

k=1

|U|∑

i=1

akj,i(t)pi(t) ≤ Pj ,∀sj ∈ S,∀t (5f)

akj,i(t) ∈ {0, 1},∀sj ∈ S,∀ui ∈ U ,∀ckj ∈ Cj (5g)

pi(t) ∈ R≥0,∀ui ∈ U ,∀t (5h)

where η1 and η2 (η1+η2 = 1) are the weights that indicate the
importance of allocation delay and interference costs. As the
MEC system is highly stochastic, optimizing the long-term
system performance is more beneficial than optimizing the
short-term, spontaneous system performance. The objective
is to minimize the time-average expectation of system cost,
which consists of allocation delay costs and interference costs
over multiple time slots. Constraints (5a) and (5b) ensure that
an edge server/BS does not accommodates users outside its
computing capacity and cell coverage, respectively. Constraint
(5c) enforces the SIC decoding order (3). Constraint (5d)
ensures a long-term minimum data rate requirement rreq for
every user. Constraint (5e) makes sure that a user is not
allocated to multiple channels or BSs in a time slot. Constraint

(5f) ensures that the total power assigned to all users in a BS
does not exceed the BS’s maximum power allowance at any
time. Constraints (5g) and (5h) define the acceptable values of
akj,i(t) and pi(t).

IV. ONLINE USER AND POWER ALLOCATION WITH
LYAPUNOV OPTIMIZATION

We introduce a Lyapunov optimization-based algorithm to
solve problem P1.

A. Problem Transformation with Lyapunov Optimization

To meet the long-term data rate requirement (5d), i.e., to
stabilize users’ average data rate over time, we introduce a
concept called accumulated data rate for each user ui, which
is defined by:

Di(t+ 1) = max{Di(t) + rreq − ri(t), 0} (6)

where Di(0) = 0,∀ui ∈ U . The accumulated data rate Di(t+
1) of a user ui represents its overdue data rate accumulated
over t time slots relative to the data rate requirement rreq. Its
value increases if the user’s data rate in the previous time slot
ri(t) decreases and vice versa. This can be used to adjust the
user and power allocation strategies to stabilize users’ average
data rate over time as enforced by (5d). To fulfill the long-term
data rate requirement, Di(t) must be stabilized, or mean rate

stable [11]: lim
t→∞

E
{
Di(t)

}
t = 0. Based on Eq. (6), we define

a quadratic Lyapunov function: L(D(t)) , 1
2

∑
ui∈U Di(t)

2,
where D(t) , {Di(t),∀ui ∈ U}. We can see that L(D(t)) is
high when there is at least one user with a high accumulated
data rate Di(t), and L(D(t)) is low when the accumulated
data rate of every user is small, representing a stable state.
We then define a conditional Lyapunov drift to observe how
the Lyapunov function changes between two consecutive time
slots: ∆(D(t)) , E{L(D(t + 1)) − L(D(t))|D(t)}. We
minimize the system cost while stabilizing users’ average
data rate. By incorporating the system cost into the Lyapunov
drift above, our optimization objective can be fulfilled without
violating the data rate constraints. This can be achieved via a
drift-plus-penalty:

∆(D(t)) +V E
{ ∑

ui∈U

(
η1Mi(a(t)) + η2Ii(a(t),p(t))

)∣∣D(t)
}

where V > 0 is a parameter which adjusts the relative
importance of the system cost to the accumulated user data
rate. Depending on the application context, app vendors can
flexibly regulate the trade-off between time-average system
cost and accumulated data rate by changing the value of V .
For instance, they can increase V to relax the user data rate
requirement and put more emphasis on minimizing the system
cost. Under the Lyapunov optimization scheme, we pursue the
optimization objective in P1 by minimizing the supreme bound
of the above drift-plus-penalty.
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Lemma 1. Given any user and power allocation strategy in
any time slot, the drift-plus-penalty is bounded by:

∆(D(t)) + V E
{ ∑

ui∈U

(
η1Mi(a(t)) + η2Ii(a(t), p(t))

)∣∣D(t)

}

≤ O +
∑

ui∈U
E
{
r2i (t)

2
+Di(t)

(
rreq − ri(t)

)
− rreqri(t)

+ V
(
η1Mi(a(t)) + η2Ii(a(t), p(t))

)∣∣D(t)

}
(7)

where O =
r2req
2 is a finite constant.

Proof. See Appendix A.

Next, we propose OUAD (Algorithm 1), an Online User
Allocation algorithm in Dynamic NOMA-based MEC systems,
which formulates a user and power allocation strategy, a(t) and
p(t), to lower the supreme bound of the drift-plus-penalty (7)
in every time slot. Employing the concept of minimizing an
expectation opportunistically [11], we can accomplish this by
solving problem P2 defined below.

(P2) min
a(t),p(t)

∑

ui∈U

(
r2i (t)

2
+Di(t)

(
rreq − ri(t)

)
− rreqri(t)

+ V
(
η1Mi(a(t)) + η2Ii(a(t),p(t))

))
(8)

s.t. (5a), (5b), (5c), (5e), (5f), (5g), (5h)

Algorithm 1 OUAD

1: Input: S, V, η1, η2, rreq
2: Output: user and power allocation decisions

akj,i(t),pi(t),∀t,∀sj ∈ S,∀ui ∈ U
3: for every time slot t do
4: Observe newly-arrived users U(t) and each current

user’s accumulated data rate Di(t),∀ui ∈ U
5: Determine a(t),p(t) by solving P2
6: Update users’ accumulated date rate Di(t+ 1),∀ui ∈
U , according to Eq. (6)

7: Update Qj(t+ 1),∀sj ∈ S
8: end for

In every time slot, newly-arrived users are assigned to
BSs/edge servers with sufficient transmit power (Line 5 of
Algorithm 1) based on the observed user arrivals and users’
accumulated data rates (Line 4). Users that are assigned to
an exhausted edge server will be put on a waiting list for that
edge server and wait until one or more existing users depart. A
user leaving the system releases computing resources, which
can then be used to accommodate the waiting users. Users’
accumulated data rates and waiting lists for all the edge
servers are updated after a user and power allocation strategy
has been determined in each time slot (Lines 6-7). OUAD
works without prior knowledge of future user arrivals, user
departures, or statistics of the user distribution. This online
algorithm allocates every user as soon as they arrive and thus

can accommodate user mobility. When a user moves out of its
associated BS’s cell coverage, we will treat it as a new user
and reallocate it to another BS in the next time slot. Employing
the same technique as Theorem 4.2 in [11], we can see that
OUAD achieves an [O(1/V ),O(V )] trade-off between time-
average system cost and accumulated data rate.

Problem P2 is NP-hard because its subproblem is already
NP-hard, which we will show later. It is hard to be solved
optimally within a time slot. To find a near-optimal solution
efficiently, we break it down into a user allocation problem
(Stage #1 - Section IV-B) and a power allocation problem
(Stage #2 - Section IV-C). We first assign users to channels in
BSs in Stage #1. Here, we seek a solution with a low allocation
delay cost that is most likely to result in low interference in
overall. We use the words ”most likely” because we have not
properly allocated transmit power to users yet, and thus the
interference has not been evaluated. Once all the users are
allocated to BSs, we will execute Stage #2 to adjust their
transmit power to meet their data rate requirements in an
energy-efficient manner.

B. User Allocation Problem

In this phase, we allocate every user to a channel in a BS
by solving problem P3 modeled below.

(P3) min
a(t)

∑

ui∈U

(
r2i (t)

2
+Di(t)

(
rreq − ri(t)

)
− rreqri(t)

+ V
(
η1Mi(a(t)) + η2Ii(a(t),p(t))

))
(9)

s.t. (5a), (5b), (5e), (5g)

Interference and transmit power are highly interdependent.
An app vendor allocates transmit power to users based on
the inter- and intra-cell interference they experience, which
is partly caused by other users’ transmit power. To handle
this interdependence, we fix one decision (power allocation
decision) while choosing the other (user allocation decision).
At this stage, all the users are assigned a default transmit
power. This allows us to estimate the interference experienced
by users and incorporate it into optimization objective (9). This
increases the possibility of low interference when a proper
power allocation algorithm is applied later on. Problem P3
is NP-hard because a special case of it is a reduction of the
NP-complete PARTITION problem [12]. The proof employs
the same technique used in Appendix B of [4] so it will be
omitted here due to limited space.

C. Power Allocation Problem

All the users are now assigned to channels in BSs once
problem P3 is solved. Next, we adjust their transmit power by
solving problem P4, which is modeled by:

(P4) min
p(t)

∑

ui∈U

(
r2i (t)

2
+Di(t)

(
rreq − ri(t)

)
− rreqri(t)

+ V η2Ii(a(t),p(t))

)
(10)
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s.t. (5c), (5f), (5h)

Mi(a(t)) is now excluded in the objective because power
allocation decisions have no impact on users’ allocation de-
lays. The transmit power of users that arrived in previous time
slots will also be adjusted because their received interference
might change when there are new users arriving at the system.

V. USER AND POWER ALLOCATION GAME

To effectively solve problem P2 in an efficient manner in
individual time slots, we first model it as a potential game. To
find Nash equilibria in this game, we propose a decentralized
two-stage algorithm, where each stage is responsible for
solving a subproblem defined above (P3 and P4).

A. Game Formulation and Properties

In each time slot t, an app vendor pursues objective (8) by
finding a suitable user and power allocation strategy a(t) and
p(t). The decision for each individual user ui is determined
based on other users’ decisions a−i(t) and p−i(t).

The EUA problem in a time slot is modelled as a game
Z = (U(t), {Ai(t),Pi(t)}ui∈U(t), {C(ai(t),pi(t))}ui∈U ),
where U(t) is the set of players (users) arriving in time
slot t, Ai(t) and Pi(t) are the sets of possible user and
power allocation decisions available to each user ui, and
C(ai(t),pi(t)) is the system cost incurred by decisions ai(t)
and pi(t) made for user ui, the lower the better:

C(ai(t),pi(t)) =
∑

ui∈U

(
r2i (t)

2
+Di(t)

(
rreq − ri(t)

)

− rreqri(t) + V
(
η1Mi(a(t)) + η2Ii(a(t),p(t))

))
(11)

Next, we show that Z has at least one Nash equilibrium – a
stable state of Z where an app vendor cannot lower the system
cost any further by unilaterally changing the decision for any
single user. In a Nash equilibrium a∗(t),p∗(t), the allocation
decision made for a user is the best response to the allocation
decisions made for all other users [13]. This makes sure that if
a Nash equilibrium exists, the decisions for all the users will
automatically self-organize into a Nash equilibrium in finite
iterations. In each iteration, every user proactively responds to
the decisions made for all the other users to further reduce the
system cost. A potential game (defined below) always admits
one or more Nash equilibria [14]. The presence of a Nash
equilibrium in Z can be confirmed by showing that Z is a
potential game.

Definition 1. (Ordinal Potential Game) An ordinal po-
tential game is a game that has a potential function
φ(ai(t), pi(t)) satisfying C(ai(t), pi(t)) > C(a′i(t), p′i(t)) ⇔
φ(ai(t), pi(t)) > φ(a′i(t), p′i(t)), where ai(t), a′i(t) ∈ Ai(t),
and pi(t), p′i(t) ∈ Pi(t).

Theorem 1. Z is an ordinal potential game that has a
potential function φ(ai(t), pi(t)) defined as:

φ(ai(t), pi(t))

=
∑

ui∈U

(
r2i (t)

2
+Di(t)

(
rreq − ri(t)

)
− rreqri(t)

)
1ai(t)6=(0,0)

+
∑

ui∈U
V `η1

[nj(t)−Nj +Qj(t) + 1]+
Nj

1ai(t) 6=(0,0)

+
∑

ui∈U
V η2|hkj,i|2

|Uk
j (t)|∑

q=i+1

pkj,q1ai(t)6=(0,0)

+
∑

ui∈U
V η2

∑

sl∈Si\{sj}
|hkl,i|2pkl 1ai(t) 6=(0,0)

+
∑

ui∈U
(η1Mmax + η2Imax)1ai(t)=(0,0) (12)

where the zero-one indicator function 1condition returns 1 if
the condition is true, and 0 if the condition is false.

Proof: See Appendix B.

B. Algorithm Design

To find Nash equilibria in game Z, we present a distributed
algorithm that adopts best-response dynamics [13], an iterative
evolutionary procedure. In each iteration, we determine an
allocation decision for every user by finding the best response
to the decisions applied to other users. This decentralized
procedure can be executed in parallel on edge servers, which
coordinate the game through messaging synchronization [9],
[15]. This procedure always converge to a Nash equilibrium
thanks to Finite Improvement Property [14]. Our approach
consists of two stages: Stage #1 (Algorithm 2) for solving
problem P3, and Stage #2 (Algorithm 3) for solving problem
P4.

Stage #1 (Algorithm 2): Algorithm 2 allocates every user to
a channel in a BS. At this stage, every user is assigned a tem-
porary default transmit power. Once Algorithm 2 completes,
Algorithm 3 will adjust their transmit power to meet their
data rate requirements. In Algorithm 2, all users are initially
unallocated (Line 1). Subsequently, allocation decisions are
updated and applied for every user iteratively (Lines 2-16),
lowering the system cost after every iteration until it cannot
be lowered any further. In each iteration, we determine the
best decision a′i(t) for each user ui by iterating over all the
channels in all of its neighbor BSs and select the channel that
would generate the lowest system cost C(a′i(t),p(t)) if user
ui is to be allocated to it (Lines 3-10). If C(a′i(t),p(t)) is
not lower than the current system cost, there is no need to
update user ui’s current decision. If the new decision a′i(t)
leads to a lower system cost, user ui’s current decision will
be updated with a′i(t). The request for applying a′i(t) will be
submitted for the opportunity to be officially applied (Lines
11-13). Among all the requests for decision applying, the one
with the lowest system cost will be officially applied (Line
15). The user, whose request for decision update is selected,
now has a new allocation decision. Note that the allocation
strategy in an iteration is not final; it may be amended in
following iterations if a new allocation decision for a user is
found. Users assigned to an exhausted edge server will be put
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on a waiting list until one or more existing users depart the
system and release the occupied computing resources.

Algorithm 2 Stage #1: User Allocation
Input: S, U(t), fixed power allocation strategy p(t)
Output: user allocation strategy a(t)

1: ai(t) = (0, 0), ∀ui ∈ U(t)
2: repeat
3: Compute current system cost C(a(t),p(t))
4: for each user ui ∈ U(t) do
5: for each neighbor BS sj ∈ Si of user ui do
6: for each channel ckj ∈ Cj in BS sj do
7: Compute C(a′i(t),p(t)) – the new cost if

user ui is to be assigned to ckj
8: end for
9: end for

10: Among all feasible decisions a′i(t) above, find
one that incurs the lowest cost C(a′i(t),p(t))

11: if C(a′i(t),p(t)) < C(a(t),p(t)) then
12: Request to apply a′i(t)
13: end if
14: end for
15: Among all requests for applying decision update,

apply the one with the lowest C(a′i(t),p(t))
16: until decision updates not required for any users
17: Execute Stage #2

The process of updating decisions for all users (Lines 4-
14) can be executed in parallel because the processes for
different users are independent of each other. The search
for the best decision for each user (Lines 5-9) can also be
parallelized. After all the users are allocated, we execute Stage
#2 (Algorithm 3) to adjust their transmit powers.

Stage #2 (Algorithm 3): Given the user allocation strategy
found in Stage #1, Algorithm 3 adjusts the transmit power for
all users. We consider a discrete power control scheme [16]–
[18], where the transmit power of a user is selected from a
set L of discrete power levels. Discrete power control enables
a simpler transmitter design than continuous power control
and significantly reduces overhead incurred by information
exchange among network nodes [17]. Initially, every user
is allocated the lowest power level (Line 1). After that, for
each user in each iteration, we iterate through every possible
power level to find the one that incurs the lowest system cost
C(a(t),p′i(t)) (Lines 5-8). If C(a(t),p′i(t)) is lower than the
system cost incurred by the power allocation strategy found
in the last iteration (calculated in Line 3), the request for
updating this user’s power will be submitted for a chance
to be applied (Lines 9-11). Once all the users’ requests for
updating transmit power are submitted, the request with the
lowest system cost will be officially applied in this iteration
(Line 13). This iterative process terminates when we cannot
update any user’s transmit power to lower the system cost.

Algorithm 3 Stage #2: Power Allocation
Input: S, U , user allocation strategy a(t) found in Stage

#1, a set L of discrete power levels
Output: power allocation strategy p(t)

1: Every user ui ∈ U(t) is allocated the lowest power level
2: repeat
3: Compute current system cost C(a(t),p(t))
4: for each user ui ∈ U do
5: for each power level l ∈ L do
6: Compute C(a(t),p′i(t)) – the new cost if

user ui is given power level l
7: end for
8: Among all possible decisions p′i(t) above, find

one that incurs the lowest C(a(t),p′i(t))
9: if C(a(t),p′i(t)) < C(a(t),p(t)) then

10: Request to apply p′i(t)
11: end if
12: end for
13: Among all requests for applying decision update,

apply the one that has lowest C(a(t),p′i(t))
14: until decision updates not required for any users

C. Performance Analysis
We analyze the convergence time of Algorithms 2 and 3 by

the number of iterations they take to reach a Nash equilibrium.

Theorem 2. The convergence time of Algorithms 2 and 3 is
upper bounded by:

|U|
(
η1Mmax + η2Imax

)

τ2

2 +Di(t)(rreq − τ)− rreqτ + V η2|hmin|2p
(13)

where |hmin|2 is the lowest possible channel gain of a user, p
is the default transmit power in Algorithm 2 or the difference
between two consecutive transmit power levels in Algorithm 3,
and τ is the minimum change in data rate when an allocation
decision is updated.

Proof: The proof is routine and similar to the proof of
Theorem 2 in [4]. It is thus omitted due to limited space.

We then analyze the theoretical optimality of the solutions
found by Algorithms 2 and 3 by examining the Price of
Anarchy (PoA) in system cost. PoA, being the ratio of the
the worst Nash equilibrium to the theoretical optimal strategy
[14], is an important optimality indicator for game theory-
based methods [9], [15]. We use (aopt(t),popt(t)) to denote
the optimal strategy. The system-cost PoA is then defined as

max
a(t)∈A(t),p(t)∈A(t)

C(a(t),p(t))

C(aopt(t),popt(t)) .

Theorem 3. The system cost PoA in game Z satisfies:

1 ≤ PoA ≤

∑
ui∈U

(
η1Mmax + η2Imax

)

∑
ui∈U

( r2min

2 +Dmax

(
rreq − rmax

)

− rreqrmax + V η2σ
2

) (14)

where rmin and rmax are the possible minimum and maximum
data rates of a user (rmin < rreq < rmax), Dmax is the
possible maximum accumulated data rate of a user.
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Proof: The proof is routine and similar to the proof of
Theorem 4 in [4] so it is omitted due to limited space.

VI. PERFORMANCE EVALUATION

A. Performance Benchmark

We evaluate OUAD against four representative approaches:
• SUAC [19]: This online user allocation approach minimizes

the allocation delay cost in a time-slotted setting. It does not
incorporate a proper power control scheme. Thus, to ensure
the fairness of the comparison, after all users are allocated to
BSs, we execute DPC-SPM, a state-of-the-art power control
algorithm in NOMA [20], to assign minimum transmit
power to users while meeting their data rate requirements.

• SCG-SA [21]: This approach aims to increase the energy effi-
ciency while meeting user data rate requirements in NOMA-
based cellular networks. SCG-SA only allocates users, who
are presumably already allocated to BSs, to channels. It does
not allocate users to BSs. Thus, we will allocate users to
their nearest BSs. Subsequently, SCG-SA allocates users to
channels based on a ranking of user channel conditions.
This approach is designed without the consideration of
time-slotted scenarios. In the experiments, we execute this
approach once in every time slot. Unallocated users in a
time slot are considered as new users in the next time slot.

• miUA [4]: This approach incorporates both inter- and intra-
cell interference in NOMA-based MEC systems and also
aims to maximize the energy efficiency. Similar to SCG-SA,
miUA is designed without the consideration of time-slotted
scenarios so we will execute this approach in every time
slot. Unallocated users in a time slot are considered as new
users in the next time slot.

• Join Shortest Queue (JSQ): In each time slot, each user is
assigned to the neighbor BS/server which has the shortest
waiting list.

B. Experiment Settings

Our experiments are compliant with the LTE specifica-
tions [22] (Table I). We consider a 7-cell hexagon-layout
network, corresponding to 7 BSs/edge servers, each with
6 communication channels. Each user requires four types
of computing resources, R = {CPU, storage,RAM,GPU}.
We randomly generate edge servers’ computing capacities
using a normal distribution N (80, 202), where 80 is the
average amount of each computing resource, and 20 is the
standard deviation. All edge servers combined can serve
N =

∑
sj∈S Nj concurrent users. User arrivals are generated

based on a Poisson process at rate [0, ζN ], where ζ ∈ R
controls the traffic intensity. They are uniformly distributed
within BSs’ coverage areas. wi is randomly picked from
three normalized levels {<2,2,3,3>,<2,2,2,1>,<1,1,1,2>}.
The set L of discrete transmit power levels is set to
{−30dBm,−29dBm, ..., 23dBm}. Each user session’s length
is uniformly drawn from 10 to 20 1-second time slots. We
conduct three sets of experiments as summarized in Table II.

TABLE I: Experiment settings

BS maximum transmit power (Pj ) 46dBm
Inter-site distance 500m
Cell radius (Rj ) 289m
Minimum distance between user & BS 35m
Thermal noise density −174dBm/Hz
Large-scale propagation model 128.1 + 37.6log10(dj,i)dB
System bandwidth (B) 10MHz

TABLE II: Experiment sets

Traffic
intensity ζ

Data rate
requirement rreq

Control
parameter V

Set #1 0.04, 0.041, ..., 0.049 0.5 5

Set #2 0.045 0.2, 0.3, ..., 0.7 5

Set #3 0.045 0.3, 0.5, 0.7 1, 2, ..., 10

C. Experiment Results

1) Impact of Traffic Intensity (Set #1): In Set #1, we
simulate different user arrival rates by varying the traffic
intensity ζ. When ζ increases, the allocation delay experienced
by a user on average (Fig. 1) gradually increases due to the
rising number of users joining the system (for reference, there
are around 20 new users in each time slot when ζ = 0.049).
SUAC, whose sole objective is to minimize the allocation
delay, clearly achieves the lowest allocation delay among
all the approaches, closely followed by JSQ and OUAD.
miUA achieves the worst performance, incurring an average
allocation delay twice higher than OUAD.

Fig. 1: Allocation delay vs.
traffic intensity ζ (Set #1).

Fig. 2: Energy efficiency vs.
traffic intensity ζ (Set #1).

Fig. 3: Total transmit power
vs. traffic intensity ζ (Set #1).

Fig. 4: CDF of all users’ data
rates (Set #1, V = 0.045).

The energy efficiency (Fig. 2) is measured by the ratio
of the total data rate to the total power consumption. miUA
is the most energy-efficient method since it solely focuses
on minimizing inter- and intra-cell interference. However, its
energy efficiency comes at the price of very long allocation
delays (Fig. 1). OUAD achieves a much lower allocation
delay while its energy efficiency is only slightly lower than
miUA (even on par with miUA in some cases). OUAD and
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miUA are remarkably more energy-efficient than the other
three approaches. This shows the significance of considering
interference in user allocation. Fig. 3 depicts the total transmit
power required by all the approaches. We can see that SCG-
SA, SUAC, and JSQ consume more power than OUAD and
miUA by orders of magnitude. Fig. 4 illustrates the cumulative
distribution function (CDF) of users’ average data rate. A
great portion of users allocated by SCG-SA, SUAC, and
JSQ achieves either very low or very high data rates, largely
deviating from the target data rate rreq = 0.5Mbps. The
average data rate of users allocated by OUAD is slightly higher
than those allocated by miUA.

Fig. 5 visualizes the time efficiency under different traffic
intensities. The line plot shows the average elapsed CPU time
per time slot. The bar plot shows the number of decision
iterations taken by Algorithms 2 and 3, which is a commonly
used efficiency metric for game-theoretic approaches [9], [23]
because of its machine independence (the time taken to solve
a problem varies machine to machine). When traffic intensity
ζ increases, Algorithms 2 and 3 require more iterations,
consequently higher CPU time in total. OUAD is slightly
faster than miUA. OUAD and miUA are the slowest due to
the complexity of calculating user interference. Nevertheless,
their completion time is still well within an acceptable range.
In each time slot, OUAD allocates all new users within around
30ms – well below the duration of each time slot (1 second).
This ensures that OUAD can be practically applied in MEC
systems where low latency is mandated.

Fig. 5: Time efficiency vs. traffic
intensity ζ (Set #1).

Fig. 6: Average allocation
delay vs. data rate require-
ment rreq (Set #2).

Fig. 7: Energy efficiency vs.
data rate requirement rreq
(Set #2).

Fig. 8: Total transmit power
vs. data rate requirement rreq
(Set #2).

2) Impact of Minimum Data Rate Requirement (Set #2):
In Set #2, we vary the minimum data rate requirement rreq .
Unsurprisingly, this does not have any impact on the allocation
delay as shown in Fig. 6, which remains unchanged regardless
of the changing rreq . Again, OUAD achieves a very low
allocation delay, only marginally higher than SUAC, whose

Fig. 9: CDF of all the users’
data rates (Set #2, rreq =
0.7Mbps).

Fig. 10: Time efficiency vs.
data rate requirement rreq
(Set #2).
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Fig. 11: Parameter V vs.
users’ average data rate by
OUAD (Set #3).
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Fig. 12: Parameter V vs. to-
tal transmit power by OUAD
(Set #3).

only goal is to lower the allocation delay cost. miUA is the
most energy-efficient method (Fig. 7) at the cost of very
high allocation delays (Fig. 6). OUAD’s energy efficiency
is very close to miUA, while its average allocation delay is
much lower than miUA. In general, when rreq increases, all
the approaches require more transmit power to serve users
(Fig. 8). Their energy efficiency decreases accordingly. Fig.
9 depicts the CDF of the average data rate of all the users.
Again, contrasted to OUAD and miUA, SCG-SA, SUAC, and
JSQ largely deviate from the minimum data rate requirement
rreq = 0.7Mbps. They fail to deliver satisfactory data rates
to a great number of users and meanwhile, they provide
excessive data rates to an equally great number of users. This
demonstrates an extremely inefficient use of transmit power.

Fig. 10 shows the time efficiency. Changing rreq does not
affect Algorithm 2, thus its number of decision iterations re-
mains the same in all settings. The change in rreq impacts only
Algorithm 3. An increase in rreq increases the complexity of
Algorithm 3, which now requires more iterations to converge
to a Nash equilibrium. This leads to a slight increase in CPU
time. Again, in each time slot, OUAD takes roughly 30ms to
allocate all new users, which is within an acceptable range
and well below the duration of each time slot.

3) Impact of Parameter V (Set #3): We examine how
parameter V impacts the user average data rate achieved by
OUAD under different data rate requirements rreq. Based on
(8), a greater value of V results in a lower emphasis on the
accumulated data rate (6). An increase in V lowers users’
average data rate (Fig. 11), and consequently decreases the
total transmit power required (Fig. 12). When V is very high,
users’ average data rate is even below the data rate requirement
rreq since it now takes longer for users’ data rates to converge
to rreq. Because of the slow convergence, many users already
left the system before their data rates can converge to a
satisfactory level. This observation shows that app vendors
can adjust V to flexibly control the trade-off between users’
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average data rate and energy consumption or system cost
depending on their app-specific requirements.

VII. CONCLUSION

We address the edge user allocation (EUA) problem in
multi-channel multi-cell mobile edge computing (MEC) sys-
tems powered by power-domain NOMA. We incorporate the
temporal dimension to accommodate random user arrivals and
departures. The cost of allocation delay and transmit power is
minimized, improving the energy efficiency while satisfying
several constraints in NOMA-based MEC systems, including
a long-term user data rate constraint. We propose OUAD,
a Lyapunov- and game theory-based online user and power
allocation algorithm, to allocate users and transmit power
without any data of future user arrivals and departures. OUAD
is shown to significantly outperform all the representative
approaches through a series of experiments.

APPENDIX A
PROOF OF LEMMA 1

Proof. We have: ∆(D(t)) = E{L(D(t+1))−L(D(t))|D(t)}

=E

{
∑

ui∈U

(
Di(t)(rreq−ri(t))−rreqri(t)+

r2req
2 +

r2i (t)

2

)
|D(t)

}

≤O+E

{
∑

ui∈U

(
Di(t)(rreq−ri(t))−rreqri(t)+

r2i (t)

2

)
|D(t)

}

where O =
r2req
2 is a constant. Adding V

(
η1Mi(a(t)) +

η2Ii(a(t),p(t))
)

to both sides of this inequality finishes the
proof.

APPENDIX B
PROOF OF THEOREM 1

Proof. Suppose users ui’s current decisions ai(t) = (sj , c
k
j ),

pi(t), and its updated decisions a′i(t) = (sj′ , c
k′
j′ ), p′i(t) (the

decisions made in the next iteration in Algorithms 2 and 3)
satisfy C(ai(t),pi(t)) ≥ C(a′i(t),p′i(t)). Based on Eq.s (1)
and (4), this theorem must be proven in two cases: 1) ai(t) 6=
(0, 0) and a′i(t) 6= (0, 0), and 2) ai(t) = (0, 0) and a′i(t) 6=
(0, 0). According to the definition of potential games, we need
to demonstrate that the decrease in system cost caused by
a user ui updating its current decisions ai(t),pi(t) to new
decisions a′i(t),p′i(t) will result in a decrease in the potential
function (12). By arranging terms and using Eq.s (11), (1),
(4), we can see φ(ai(t),pi(t)) − φ(a′i(t),p′i(t)) ≥ 0 when
C(ai(t),pi(t)) − C(a′i(t),p′i(t)) ≥ 0, which completes the
proof. The details are omitted due to limited space.
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Chapter 6
Conclusions, Limitations, and Future

Work

In this chapter, we conclude this thesis. In particular, Section 6.1 summarises our key contributions

and their implications to the society. Section 6.2 discusses the limitations of our work and suggests the

research directions that could be taken in the future.

6.1 Key Contributions and Conclusions

The problem of allocating users or mobile devices to cellular base stations is a mature and well-

researched problem in conventional cellular networks. However, mobile edge computing (MEC) has

arrived with many unique characteristics, namely the presence of computing resources (in edge servers

deployed at base stations), new business requirements and pricing models, etc. MEC is a new comput-

ing paradigm with a lot of promising potentials, facilitating the availability of a wide range of ultra-low

latency applications and services such as smart cities, Industry 4.0, vital health and infrastructure mon-

itoring systems, as well as facial recognition, interactive VR/AR, video streaming, online gaming, just

to name a few. By studying the edge user allocation (EUA) in MEC, we hope to accelerate the develop-

ment of MEC, especially in the 5G/6G era, where the amount of network traffic and subscriptions are

expected to grow exponentially.

In the EUA problem, we aim to help app vendors properly allocate their users to edge servers. Depend-

ing on the scenarios and application contexts, a number of optimization objectives must be achieved.
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Next, we provide a summary of the scenarios that we have investigated, including our contributions:

• In Chapter 2, we have solved Research Problem 1 (Motivating Scenario 1 - Section 1.2.1). We

first establish the foundation for the EUA problem and pave the way for future research on the

EUA problem. We tackle a static scenario where users are relatively stationary. Our objective is

to maximize the number of allocated users and minimize the number of edge servers needed to

serve the allocated users. To begin with, we propose an optimal approach using Lexicographic

Goal Programming technique. This has resulted in a publication [11], which was selected as the

best research paper in the 16th International Conference on Service-Oriented Computing. Since

its publication, this paper has attracted a tremendous attention from the MEC community world-

wide. Later on, we propose a heuristic to solve this problem in an efficient manner [30].

• In Chapter 3, we have solved Research Problem 2 (Motivating Scenario 2 - Section 1.2.2). We

tackle the scenario where users’ QoS levels can be adjusted, as opposed to the scenario in Re-

search Problem 1 where the QoS level of every user is fixed. In addition to determining an edge

server for each user, the app vendor also needs to determine a QoS level for each user. The ob-

jective is to maximize the user satisfaction (measured by their QoE). We first propose an optimal

approach and an efficient heuristic approach [29]. The proposed heuristic shows a degradation in

the user QoE when the number of users is very high, thus we attempt to improve it with another

heuristic [31]. We then noticed that this new heuristic still had some room for improvement in

the user QoE. This led us to proposing a decentralized game-theoretical approach [32], whose

performance is very close to optimal.

• In Chapter 4, we have solved Research Problem 3 (Motivating Scenario 3 - Section 1.2.3). We

study a dynamic scenario where users come and go over time, incorporating the temporal dimen-

sion into the EUA problem. This chapter addresses a limitation of Research Problems 1 and 2,

i.e., the lack of consideration of user dynamics. The new temporal dimension introduces a new

type of cost that app vendors must take into account, which is the user queuing delay cost. To

strike a controllable trade-off between the queuing delay cost and system throughput (measured

by the number of users allocated to edge servers) over time, we propose an online algorithm [34]

based on the Lyapunov optimization framework.

• In Chapter 5, we have solved Research Problem 4 (Motivating Scenario 4 - Section 1.2.4). We

realize that wireless communication is an integral part of MEC as users are to be connected to base

stations through wireless communication. The communication aspect should not be overlooked

in the EUA problem. This is a major limitation of Research Problems 1, 2, and 3, which do not
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incorporate the communication aspect of MEC. In this chapter, we address the EUA problem

while considering some of the most important characteristics in wireless communication such

as the presence of multiple communication channels in a base station, wireless interference, and

achievable data rate. In particular, we investigate a non-orthogonal multiple access (NOMA)-

based MEC system. NOMA is a new multi-access technique with the ability to facilitate the

massive connectivity in 5G/6G networks. In addition to determining an edge server for each

user, an app vendor also has to determine a proper channel in a base station/edge server and a

sufficient amount of transmit power for each user to minimize the system cost, while ensuring

users’ data rates. In Section 5.1, we tackle a static scenario, where the system cost comprises of

the computing resource and transmit power costs. To solve the EUA problem in this scenario,

we propose a game-theoretical approach [33]. In Section 5.2, we tackle a dynamic scenario,

where the system cost comprises of the allocation delay and transmit power costs. To solve

the EUA problem in this scenario, we propose a Lyapunov optimization and game theory-based

approach [76].

6.2 Limitations and Future Work

Being a new problem, the EUA problem can be investigated further from various aspects. In this section,

we point out a few potential research directions.

So far, all of our research problems are addressed from the perspective of an app vendor. Looking

at those problems from other stakeholders’ perspectives, e.g., mobile infrastructure providers or users,

other research problems might arise. One is how to ensure the collective benefit of various stakeholders.

Edge servers’ performance degradation caused by the interference of workloads, or differentiated user

workload patterns, may occur in some applications. This could potentially impact the performance and

the available resources of an edge computing system, hence should be considered in future studies.

Furthermore, it is possible that some users might not use the entire resources allocated to them during

their runtime, leading to an under-utilized edge computing infrastructure. We can thus investigate the

scenario where the runtime resource consumption might noticeably differ from the resources allocated

to users during the allocation process.

In Chapter 3, we adopt a general QoS-to-QoE model to increase the generalizability of our research. In

some domain-specific applications, this model might not be applicable. Thus, finer-grained QoE models
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designed for those applications could be considered and incorporated in the future. It is possible that

those models cannot be simply plugged into our current problem formulation because those domain-

specific applications might involves more constraints. Therefore, the EUA problem might need to be

reformulated in those cases.

The online approaches proposed in Chapters 4 and 5 are able to cope with user mobility by treating

moving users as new users when they move outside the coverage of a base station/edge server. However,

there might be some cases where moving users cannot be treated simply as new users. For example, a

user might have session data on their current edge server. An app vendor needs to determine whether

to migrate that data to the new edge server, which might incur an extra cost.

There exists a limitation in Chapter 4. In this chapter, the optimization problem in every time slot is

solved optimally. If the size of the problem massively scales up and it cannot be solved within a time

slot, the app vendor could employ a ”divide-and-conquer” approach by dividing a big geographical

area into smaller areas and run the algorithm in each of those areas separately. Alternatively, we can

find a more efficient approach, such as game theory like we have employed in the dynamic scenario in

Chapter 5.

In Chapter 5, we start to incorporate various aspects of wireless communication into the EUA problem.

Apart from what we have studied, many other dimensions could be explored. As app vendors now have

access to network information such as received signal, received power, throughput, neighbor cells, etc.,

new security and privacy issues might arise. One could also consider uplink transmissions, massive

multiple-input multiple-output, etc.

Finally, all of our performance evaluations so far are experiment-based. Performance analysis of the all

proposed solutions on a real-world testbed is highly desirable to validate our research with regards to

the effectiveness, efficiency, and practicality.
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