

Automated Support for the Elaboration and Analysis

of Goal-Use Case Integration Models

by

Tuong Huan Nguyen

Thesis submitted in fulfillment

 of the requirements for the degree of

Doctor of Philosophy

Faculty of Science, Engineering and Technology

Swinburne University of Technology

2015

 i

Abstract

Combining goal and use case modeling has been recognized as a key approach for

understanding and analyzing software requirements specifications. However, there are a

number of challenges that prevent the successful application of such approach. First,

little consensus exists among the current goal and use case integrated modeling (GUIM)

approaches regarding the types of artifacts and relationships to be modeled, making it

difficult for requirements engineers to decide what to capture and how to specify them

in a goal and use case integrated model. Second, while natural language requirements

documents are critical source of goals and use cases, manually analyzing such

documents to identify these artifacts is a time-consuming and error-prone process due to

the complexity of natural languages. Third, the existing GUIM approaches generally

offer limited capability of analyzing the models of goals and use cases for the 3Cs

problems (problems regarding the consistency, completes, and correctness of such

models). Such limitations pose a serious threat of producing problematic requirements

specifications.

To address the above discuss problems, we introduce a novel Goal-Use Case

Integration Framework (GUI-F) that supports the modeling and analysis of goal and use

case integrated models. GUI-F consists of a meta-model that serves as a conceptual

foundation for goal and use case integrated modeling. It provides a comprehensive

classification of artifacts and relationships in a goal-use case model, and specifies the

constraints and dependencies between them. It also offers a set of specification rules

that govern how these defined artifacts should be specified.

GUI-F also offers a set of rule-based techniques to provide automated support for

extracting goal-use case integrated models from unconstrained textual requirements

documents. Our extraction techniques are able to automatically locate artifacts and

relationships buried in text, ensure the extract artifact specifications to be well-formed,

and classify the artifacts into appropriate categories.

Moreover, GUI-F provides an ontology-based technique that automates the

detection and resolution of the 3Cs problems in goal-use case models. Such technique

relies on the use of ontologies to capture domain knowledge and semantics, functional

 ii

grammar for semantically parameterizing artifact specifications, and our developed

meta-model for constraints and dependencies between artifacts and relationships.

We have conducted a number of cases studies and benchmark validations to

evaluate the performance of all GUI-F components. The positive results obtained from

these evaluations indicated GUI-F could effectively support requirements engineers in

modeling and analyzing goal-use case integrated models.

 iii

Acknowledgement

<A nice acknowledgement to be filled in here>

 iv

Declaration

This is to certify that this thesis contains no material which has been accepted for the

award of any other degree or diploma and that to the best of my knowledge this thesis

contains no material previously published or written by another person except where

due reference is made in the text of the thesis. Where the work is based on joint research

or publications, I have disclosed the relative contributions of the respective workers or

authors.

Tuong Huan Nguyen

 v

Table of Contents
Abstract	..	i	
Acknowledgement	..	iii	
Declaration	..	iv	
List of Figures	...	x	
List of Tables	...	xiii	
List of Publications	..	xvi	

	 Introduction	...	1	
1.1	 Goal	and	Use	Case	Integrated	Modeling	in	Requirements	Engineering	1	
1.2	 Research	Motivation	...	3	
1.3	 Research	Objectives	..	6	
1.4	 Research	Contributions	...	7	
1.5	 Thesis	Organization	..	9	

	 Background	and	Literature	Review	...	12	
2.1	 Requirements	..	12	
2.2	 Requirements	Engineering	..	13	
2.2.1	 Requirements	Engineering	Process	..	15	
2.2.2	 Requirement	Modeling	...	17	
2.2.3	 Goal-oriented	Requirements	Engineering	...	18	
2.2.4	 Use	case-driven	Requirements	Engineering	...	19	
2.2.5	 Combining	Goal	and	Use	Case	Modeling	in	Requirements	Engineering	21	
2.2.6	 Limitations	of	Current	Goal-Use	Case	Integration	Approaches	24	

2.3	 Information	Extraction	in	Requirements	Engineering	28	
2.3.1	 Early	Aspects	Extraction	..	29	
2.3.2	 Automated	Requirement	Models	Extraction	..	30	
2.3.2.1	 Goal	Extraction	..	31	
2.3.2.2	 Product	Line	Variability	Model	Extraction	...	31	
2.3.2.3	 Use	Case	Extraction	..	32	
2.3.2.4	 UML	Model	Extraction	...	34	

2.3.3	 Discussion	...	36	
2.4	 Requirements	Analysis	..	37	
2.4.1	 The	3Cs	Problems	in	Requirements	..	38	
2.4.1.1	 Consistency	...	38	

 vi

2.4.1.2	 Completeness	..	38	
2.4.1.3	 Correctness	...	39	

2.4.2	 Automated	Requirements	Analysis	Techniques	..	40	
2.4.2.1	 Formal	Methods	...	40	
2.4.2.2	 Natural	Language-based	Methods	..	44	
2.4.2.3	 Ontology-based	Methods	..	47	

2.4.3	 Discussion	...	48	
2.5	 Summary	of	Research	Gaps	..	49	

	 Approach	...	52	
3.1	 Motivating	Scenario	..	52	
3.1.1	 Determining	what	should	be	modeled	...	53	
3.1.2	 Goal-Use	Case	Integrated	Models	Extraction	..	54	
3.1.3	 Goal-Use	Case	Integrated	Model	Analysis	..	58	

3.2	 Problem	Analysis	...	61	
3.3	 Our	Approach	..	65	
3.4	 The	GUI-F	Process	..	69	
3.4.1	 Modeling	Process	..	69	
3.4.2	 Analysis	Process	..	72	

3.5	 Evaluation	Approach	..	73	
3.5.1	 Conducted	Evaluations	...	74	
3.5.2	 Case	Studies	...	76	

3.6	 Chapter	Summary	..	80	

	 Goal	and	Use	Case	Integration		Meta-model	81	
4.1	 Goal	and	Use	Case	Integration	Meta-model	..	82	
4.1.1	 Artifact	Layer	..	83	
4.1.1.1	 Artifacts	..	83	
4.1.1.2	 Relationships	...	87	
4.1.1.3	 Non-functional	Concern	Categories	...	93	
4.1.1.4	 Goal	and	Use	Case	Integration	Modeling	with	GUIMeta	...	94	

4.1.2	 Specification	Layer	...	96	
4.1.2.1	 Functional	Grammar-based	Specification	Parameterization	96	
4.1.2.2	 Specification	Rules	...	104	

4.2	 Evaluation	...	107	
4.2.1	 Evaluation	Setup	..	107	
4.2.2	 Evaluation	Results	..	109	
4.2.3	 Threats	to	Validity	..	113	

 vii

4.3	 Discussion	...	114	
4.3.1	 Correspondence	between	GUIMeta	and	related	approaches	114	
4.3.2	 Benefits	and	Limitations	of	GUIMeta	..	116	

4.4	 Chapter	Summary	...	118	

	 Rule-based	Goal	and	Use	Case	Integrated	Model	Extraction	..	119	
5.1	 Natural	Language	Processing	...	119	
5.1.1	 Natural	Language	Parsing	...	120	

5.2	 Rule-based	Goal-Use	Case	Integrated	Model	Extraction	125	
5.2.1	 Requirements	Document	Pre-processing	...	126	
5.2.1.1	 Format	Requirements	...	126	
5.2.1.2	 Section	Definition	...	128	
5.2.1.3	 Artifact	Indicator	List	..	129	
5.2.1.4	 Automated	Pre-processing	...	131	

5.2.2	 Linguistic	Analysis	..	132	
5.2.3	 Rule-based	Artifact	and	Relationship	Identification	...	132	
5.2.3.1	 Extraction	Rules	..	134	
5.2.3.2	 Extraction	Rule	Creation	Process	..	151	
5.2.3.3	 Extraction	Rule	Usage	...	151	

5.3	 Chapter	Summary	...	155	

	 Artifact	Specification	Polishing		and	Classification	156	
6.1	 Artifact	Specification	Polishing	..	156	
6.1.1	 Overview	...	157	
6.1.2	 Grammatical	Error	Correction	..	159	
6.1.3	 Passive	Voice	to	Active	Voice	Transformation	...	160	
6.1.4	 Artifact	Specification	Structure	Review	..	162	
6.1.5	 Modal	Auxiliary	Verb	Addition	..	170	

6.2	 Artifact	Classification	..	173	
6.2.1	 Text	Classification	with	Mallet	..	173	
6.2.2	 An	Extended	Version	of	Mallet	..	175	
6.2.3	 Artifact	Classifiers	...	177	

6.3	 Model	Construction	..	180	
6.4	 GUEST:	Goal	and	Use	Case	Extraction	Supporting	Tool	182	
6.4.1	 Tool	Architecture	..	182	
6.4.2	 Usage	Examples	...	184	

6.5	 Evaluation	...	191	

 viii

6.5.1	 Evaluation	Setup	..	192	
6.5.2	 Evaluation	Results	..	194	
6.5.3	 Threats	to	Validity	..	197	

6.6	 Discussion	...	198	
6.7	 Chapter	Summary	...	200	

	 Ontology-based		Goal-Use	Case	Model	Analysis	201	
7.1	 Overview	..	201	
7.2	 Ontology	...	203	
7.3	 Goal	and	Use	Case	Integrated	Model	Analysis	...	210	
7.3.1	 3Cs	Problem	Classification	..	210	
7.3.1.1	 Incompleteness	..	211	
7.3.1.2	 Incorrectness	..	213	
7.3.1.3	 Inconsistency	..	215	

7.3.2	 Artifact	Specification	Parameterization	..	216	
7.3.3	 3Cs	Problem	Detection	...	224	
7.3.3.1	 Syntactic	Problems	Detection	...	224	
7.3.3.2	 Semantic	Problems	Detection	...	226	

7.3.4	 3Cs	Problem	Resolution	...	231	
7.4	 GUITAR:	Goal-Use	Case	Integration	Tool	for	Analysis	of	Requirements	..	232	
7.4.1	 Tool	Architecture	..	232	
7.4.2	 Usage	Example	...	234	

7.5	 Evaluation	...	238	
7.5.1	 RQ1:	Specification	Parameterization	Evaluation	..	238	
7.5.2	 RQ2:	Goal-Use	Case	Model	Analysis	Evaluation	..	240	
7.5.3	 RQ3:	Comparing	GUITAR	with	Other	Tools	...	245	
7.5.3.1	 Experiment	Setup	...	245	
7.5.3.2	 Experiment	Results	..	249	

7.5.4	 Threats	to	Validity	..	253	
7.6	 Discussion	...	255	
7.7	 Chapter	Summary	...	258	

	 Conclusion	and	Future	Work	...	259	
8.1	 Key	Problems	Addressed	in	Goal	and	Use	Case	Integrated	Modeling	259	
8.2	 Key	Contributions	...	261	
8.3	 Key	Limitations	and	Future	Work	...	264	
8.4	 Final	Words	...	266	

 ix

 Case Studies .. 266

 Artifact Specification Boilerplates .. 314

 Correspondence between GUIMeta and Existing GUIM

Approaches ... 325

 Extraction Rule Creation and Quality Analysis 328

 Algorithms for Goals and Use Case Extraction 335

 Modifying Rule Creation and Quality Analysis 337

 Ontology Creation and Quality Analysis 342

 Algorithms for Semantics 3Cs Problems Detection 350

 x

List of Figures
Figure 2-1. The Requirements Engineering Process [163] ... 15	

Figure 2-2. Example of Cross-level Non-Functional Constraint Dependency 26	

Figure 3-2. Extracted Goal-Use Case Model .. 55	

Figure 3-3. Motivating Scenario for Goal-Use Case Model Analysis 59	

Figure 3-4. Overview of GUI-F Process ... 69	

Figure 3-5. Example of Section Indicator List .. 70	

Figure 3-6. Summary of Conducted Evaluations .. 76	

Figure 4-1. Artifact Layer (‘Goals and Constraints’ Part) .. 83	

Figure 4-2. Artifact Layer ('Use Case Structure' Part) .. 85	

Figure 4-3. Examples of Refine Relationships .. 88	

Figure 4-4. Examples for precede - start at - resume at Relationships 91	

Figure 4-6. A Sample Goal-Use Case Integration Model ... 95	

Figure 4-7. The Structure of a Specification ... 96	

Figure 4-9. Internal Structure of Time Measurement Term ... 102	

Figure 4-10. Specification Model for Business Goals .. 105	

Figure 4-11. Example Specification Rules for Business Goals 106	

Figure 5-1. Example of Parse Trees .. 120	

Figure 5-2. Textual Presentation of a Parse Tree .. 121	

Figure 5-3. Example of Dependency Parse Trees ... 121	

Figure 5-4. Textual Presentation of the Example Dependency Tree 122	

 xi

Figure 5-6. Example of How Document Section is Determined 128	

Figure 5-7. A Sample Section Indicator List .. 129	

Figure 5-8. Dependencies from Sentence (S) ... 133	

Figure 5-9. A Generic Dependency Tree .. 138	

Figure 6-2. Classification Algorithm .. 180	

Figure 6-3. GUEST Architecture .. 183	

Figure 6-4. Key Components in a Project ... 184	

Figure 6-5. Extract Text from a Requirements Document ... 185	

Figure 6-6. Artifact Indicator List ... 186	

Figure 6-7. Full Extracted Text ... 187	

Figure 6-8. An Extracted Business Goal and its Sub-goals .. 188	

Figure 6-9. An Extracted Use Case and its Components .. 188	

Figure 6-10. An Extraction Log .. 189	

Figure 6-11. Training a Classifier ... 190	

Figure 6-12. Training the Stanford Parser .. 191	

Figure 6-13. Creating an Extraction Rule ... 191	

Figure 7-2. Ontology Structure ... 203	

Figure 7-3. An Example of Linking an Artifact Specification to Ontological Items ... 209	

Figure 7-5. Tree View of a Parameterized Specification .. 219	

Figure 7-7. Updating the Domain Ontology with Ontology Editor 235	

Figure 7-8. Adding an artifact ... 235	

 xii

Figure 7-9. Inconsistency Detected ... 237	

Figure 7-10. Inconsistency Resolution ... 237	

	

 xiii

List of Tables
Table 2-1. Summary of Goal and Use Case Integration Approaches Analysis 28	

Table 4-1. Dependencies between Relationships in GUIMeta 92	

Table 4-2. Definition of Semantic Functions .. 97	

Table 4-3. Summary of Specification Parameterization ... 103	

Table 4-4. Mapping between Semantic Functions and Terms 103	

Table 4-5. GUIMeta Evaluation Results ... 110	

Table 4-6. Summary of Correspondence between GUIMeta and Related Approaches 116	

Table 5-1. List of Example Dependencies .. 123	

Table 5-2. Extraction Rule Syntax and Example ... 134	

Table 5-3. Matching Variables and Dependencies ... 135	

Table 5-4. Example Sentences with Ignorable Phrases .. 136	

Table 5-5. Syntax for Variable and Dependency Declarations 136	

Table 5-6. Examples of Ignorance Rules .. 139	

Table 5-7. Examples of Relationship Rules .. 141	

Table 5-8. Examples of Splitting Rules .. 142	

Table 5-9. Examples of Use Case Ignorance Rules .. 143	

Table 5-10. Examples of Step Extraction Rules ... 145	

Table 5-11. Examples of Extension Extraction Rules .. 146	

Table 5-12. Examples of Constraint Extraction Rules .. 148	

Table 5-13. Examples of Constraint Extraction Rules .. 149	

 xiv

Table 5-14. Examples of Repeating Step Extraction Rules .. 150	

Table 5-15. Extraction Rules Used in Goal Extraction Example 152	

Table 5-17. Summary of Use Case Component - Rule Category Mapping 154	

Table 6-2. Example for Passive Dependencies ... 161	

Table 6-3. Result of the Transformation ... 161	

Table 6-4. Syntax and Example of Node Adding Actions .. 164	

Table 6-5. Syntax and Example of Verb Adding Actions .. 165	

Table 6-6. Dependency Tree and Modifying Rule for Example 6-1 166	

Table 6-7. Summary of Action Execution in Example 6-1 .. 167	

Table 6-8. Dependency and Modifying Rule for Example 6-2 167	

Table 6-9. Summary of Action Execution in Example 6-2 .. 168	

Table 6-10. Modal Verb Replacement .. 171	

Table 6-11. Modal Verb Replacement Examples ... 172	

Table 6-12. Sentence to Feature Vector Transformation Process 174	

Table 6-13. New Transformation Process from Sentence to Feature Vector 177	

Table 6-14. Formulas for Metrics ... 193	

Table 6-15. Extraction Validation Results .. 196	

Table 7-1. Semantics of Concept Constructors in SROIQ .. 206	

Table 7-2. MOS Syntax .. 207	

Table 7-3. Examples of Using MOS ... 207	

Table 7-4. List of Ontology Class Suffixes .. 208	

 xv

Table 7-5. Summary of 3Cs Problem Categories ... 216	

Table 7-6. Indicating Dependencies for Semantic Functions 220	

Table 7-7. Indicating Dependencies for Term's Internal Structure 221	

Table 7-8. Dependency Tree ... 222	

Table 7-9. Semantic Labeling Rule Syntax .. 222	

Table 7-10. Sample Semantic Labeling Rules .. 223	

Table 7-11. Problem Detection Rules Used in Meta-Model Matching Technique 225	

Table 7-16. Parameterization Validation Results ... 239	

Table 7-17. Approach's Effectiveness Evaluation Results (with PROMISE Data) 241	

Table 7-18. Approach's Effectiveness Evaluation Results (with Other Case Studies) . 243	

Table 7-19. Benchmark Validation Result for Group 1 .. 248	

Table 7-20. Benchmark Validation Result for Group 2 .. 252	

 xvi

List of Publications
The following publications are derived from the research reported in this thesis:

[1] Tuong Huan Nguyen, John Grundy, and Mohamed Almorsy, “Integrating Goal-

oriented and Use Case-based Requirements Engineering: The Missing Link”,

ACM/IEEE 18th International Conference on Model Driven Engineering

Languages and Systems. Ottawa, 2015, ACM/IEEE.

[2] Tuong Huan Nguyen, John Grundy, and Mohamed Almorsy, “Rule-Based

Extraction of Goal-Use Case Models from Text”, 10th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium

on the Foundations of Software Engineering, Bergamo, 2015, ACM.

[3] Tuong Huan Nguyen, John Grundy, and Mohamed Almorsy, “Ontology-based

automated support for goal–use case model analysis”, Software Quality Journal,

23(3), p.1-39, 2015.

[4] Tuong Huan Nguyen, John Grundy, and Mohamed Almorsy, “GUITAR: An

ontology-based automated requirements analysis tool”, Requirements Engineering

Conference (RE), Karlskrona, 2014, IEEE.

The following publications were published during my PhD, however are not directly

related to the research reported in this thesis:

[1] Tuong Huan Nguyen, Bao Vo, Markus Lumpe, and John Grundy, “KBRE: a

framework for knowledge-based requirements engineering”, Software Quality

Journal, 22(1): p. 87-119, 2014.

[2] Tuong Huan Nguyen, Bao Vo, Markus Lumpe, and John Grundy, “REInDetector:

a framework for knowledge-based requirements engineering”, IEEE/ACM

International Conference on Automated Software Engineering, 2012, ACM.

Chapter 1: Introduction

 1

Introduction

1.1 Goal and Use Case Integrated Modeling in Requirements

Engineering

Requirements Engineering (RE) is normally the first step in the software development

life cycle. It is an iterative process of eliciting, structuring, specifying, analyzing, and

managing requirements of a software system [151]. The ultimate objective of this

process is to ensure the requirements of stakeholders in a software system are correctly

gathered, understood, and agreed on. The agreement between stakeholders and the

development team regarding the functionalities and constraints of the system are often

documented in a textual software requirements specification document (SRS) [163].

Scenario and Use case-driven Requirements Engineering (UDRE) [33, 155] have been

recognized as key approaches for capturing, understanding, analyzing requirements and

facilitating early system designs. Use cases and scenarios, with the emphasis on the

interactions between actors and system to achieve specific tasks, are considered

important requirements artifacts. UDRE offers an approach in which stakeholders can

express requirements in terms of operations and processes, and hence closer to their

way of conceptualizing a system [7]. In addition, by identifying and independently

analyzing different use cases, requirements engineers may focus on one narrow aspect

of the system usage at a time, and thus cope with the complexity of the requirements

Chapter 1: Introduction

 2

analysis process. However, UDRE suffers from a number of limitations. First, use cases

(and scenarios1) pertain to examples and illustrations (i.e., they describe specific cases

in which a system is used), and thus need to be generalized to obtain more complete

requirements [133]. Second, use cases are fragmented in the sense that different single

uses of the system are described while the underlying rationale and relationships

between them are not always known or expressed.

Goal-oriented Requirements Engineering (GORE) [6, 23, 49, 161, 178] is another key

approach in RE. GORE is concerned with the use of goals as the centralized concepts in

RE activities [161]. The idea of GORE is derived from the recognition that goals are the

root from that all requirements of the software system are defined. A goal is generally

defined as a high-level objective regarding what the software system is expected to

achieve. In a goal model, each goal (called parent-goal) should be refined by other more

specific goals (called sub-goals), which means the parent-goal describes the underlying

objective or rationale for having the sub-goals while the sub-goals provide details as to

how the parent-goal can be achieved in the system. The modeling of such refinement

relationships provides an important means for capturing, structuring, understanding, and

analyzing requirements.

Based on this concept, GORE helps overcome the problems of requirements

fragmentation (i.e., each piece of requirement describes an example/illustration of

system use without much connection between them) and lack of rationale capture in

UDRE. However, GORE also has its own limitations. First, domain experts often find it

hard to deal with fuzzy concepts of goals [6]. Second, many goals do not readily exist in

practice, and the discovery and refinement of them can be challenging (i.e., interviewed

stakeholders are not aware of certain goals) [133]. Finally, it is often not easy for

stakeholders to express goals at the required level of abstraction [164].

Due to the strengths and weaknesses of both UDRE and GORE, it can be seen that

either of them alone is not adequate to comprehensively support the RE process. To

overcome this problem, Potts [123] suggested that the two concepts should be combined

because they complement each other. In fact, the aspects in which GORE has

1 In RE, a scenario is a sequence of interactions between an actor and a system to accomplish a
certain task. A collection of scenarios is a use case.

Chapter 1: Introduction

 3

limitations are where UDRE’s benefits come from, and vice versa. Many researchers

share this view and have developed methods for combining goals and use cases together

to leverage the benefits while overcoming the limitations of either approach [7, 76, 90,

91, 97, 133, 154, 164]. Such methods are referred to as Goal-Use Case Integration

Modeling (GUIM) in our work. The combination enables the use of goals to guide the

elicitation and structuring of use cases while having use cases to operationalize goals [7,

76, 90, 91, 97, 133, 154, 164]. GUIM methods also help achieving greater modeling

strengths that are not achievable with each approach alone [7, 76, 90, 91, 97, 133, 154,

164].

1.2 Research Motivation

Despite of the benefits achievable from goal and use case integrated modeling, there are

a number of key challenges that prevent the successful application of GUIM approaches

in practice. Below, we briefly discuss these challenges.

Lack of a Conceptual Foundation to Guide the Integrated Modeling of Goal

and Use Cases

Little consensus exists among the current GUIM approaches in regards to what should

be modeled in a general goal and use case integrated model. For instance, in order to

support the modeling of a goal and use case integrated model, requirements engineers

should be given guidance as to what types of artifacts should be modeled, how they are

specified, classified, and connected to each other. However, our literature review

indicates that the existing GUIM techniques are generally isolated. In fact, different

approaches, with different foci, have different ways to specify, classify, and connect

artifacts (i.e., goals, use cases). For instance, Cockburn [26] defines the summary, user,

and sub-function levels of abstraction for goals and use cases while Rolland et al. [133]

categorize goals into business goals, design goals, service goals, and system goals.

Meanwhile, Lee et al. [91] classify goals under three facets: rigid vs. soft goals, actor-

specific vs. system-specific goals and functional vs. non-functional goals; and use cases

can be connected to goals in the intersecting type of functional, actor-specific and rigid.

Such isolation creates the confusion regarding what to model, and also makes it difficult

if models created in different approaches were to be combined.

Chapter 1: Introduction

 4

Moreover, no existing GUIM approach is comprehensive enough to model both goals

and use cases as each lacks support for certain artifact types and relationships. For

instance, the approaches developed by Cockburn [26] and Rolland et al. [133] do not

tackle the modeling and classification of non-functional goals while functional goals are

not modeled in Supakkul and Chung’s work [154]. In addition, although these

approaches were proposed to combine goals and use cases, the dependency between

goals and use cases in these works is loose since the operationalization relationship (i.e.,

a use case/scenario operationalizes a goal) is the only one dependency between goals

and use cases modeled in most approaches. There are also other important dependencies

between integrated goals and use cases that should be modeled as well. For example,

there needs to be a decomposition of non-functional constraints from the goal level to

the use case level.

From these problems, it can be seen that requirements engineers do not have sufficient

support when modeling goals and use cases together. The problems also suggest that

there should be a conceptual foundation that can provide guidelines as to what types of

artifacts should be captured in general goal and use case integrated models, what

relationships and dependencies these artifacts should have, and how they should be

specified.

Lack of Automated Support for the Creation of Goal and Use Case Integrated

Models from Text

Since SRSs are usually the documentation of the system’s objectives, functionalities,

and constraints acquired in each iteration of the RE process [163], they provide a

valuable source from which goals and use cases can be acquired (besides other

important sources such as stakeholder interview transcripts, legacy systems’

documents). However, extracting and modeling goals and use cases from SRSs is a non-

trivial process. In fact, in textual requirements documents, goals are normally buried

among other (non-goal) sentences and written in unstructured styles. Furthermore,

frequently, descriptions of use cases are not clear in requirements documents. Multiple

use case steps are commonly combined together as one (i.e., by conjunction). Moreover,

data or non-functional constraints are often mixed up with use case steps, making it hard

for requirements engineers to locate the information they need.

Chapter 1: Introduction

 5

Due to such complexities, manual goal and use case identification and modeling can be

a tedious, time-consuming, and error-prone process, especially for inexperienced

requirements engineers and large requirements documents. Automated support is thus

needed to assist requirements engineers with the extraction process. However, our

literature review indicates that no existing information extraction technique is capable

of comprehensively supporting the creation of goal and use case integrated models.

Lack of Automated Support for Analyzing Goal and Use Case Integrated

Models for the 3Cs Problems

While analysis is a critical task to verify and improve the quality of requirements, the

lack of agreed types of artifacts to be modeled in GUIM approaches prevents goal-use

case integrated models being adequately analyzed. Such models need to be analyzed for

defects such as incompleteness, inconsistency, and incorrectness (the 3Cs problems).

Although some GUIM approaches have their own ways of analysis, they do not

sufficiently address key questions such as: how to verify if an artifact is not properly

specified? How to check if artifacts are not correctly connected? How to ensure a use

case is matched with its associated goal? How to detect if a required artifact has not

been elicited?

Moreover, although various requirements analysis techniques exist, ranging from formal

methods [111, 165], natural language [51, 152] to ontology-based techniques [72, 128],

our investigation pointed out that they suffer from one or more of the following

problems (a detailed discussion about these problems is provided in Chapter 2):

• Lack of comprehensive support for the analysis of goal-use case models: most

automated analysis techniques have been proposed for tackling problems in goal

models (i.e., [161], [165], [49]), use case/scenario models (i.e., [111], [59]) or

general requirements (i.e., [51], [152]). They thus are not able to validate the

alignment between goals and use cases. In addition, many of the above questions

are not handled in these approaches.

• Require the use of complicated requirements specification languages: most

formal approaches to automated analysis of requirements require the use of

complicated formal modeling languages (i.e., [161], [165], [49], [20]). However,

many researchers have criticized that formal languages are not suitable for

Chapter 1: Introduction

 6

practical use since they are generally hard to read and write, and getting

adequate, consistent, and complete specifications requires considerable expertise

and training [43, 149].

• Lack of support for identifying semantic-related problems: identifying semantic-

related incompleteness, incorrectness and inconsistency in goal-use case models

requires the meaning of terms and knowledge in the requirements domain to be

captured and used by computers in the analysis processes. Without such

information, various types of 3Cs problems are not identifiable. For instance,

consider the use case describing the interaction between a user and the system

for creating a review article. Assume that banned users are not allowed to create

any review article in the domain and that no exception (or pre-condition) has

been created in the use case to handle this matter, then the use case specification

is incomplete. However, such incompleteness would not be identifiable if the

domain knowledge about the restriction in creating review articles is unknown.

A number of ontology-based approaches have been proposed to tackle semantic

requirements defects [72, 128, 145], however, these techniques are neither

adequately mature nor suited to goal-use case model analysis (i.e., focus on

limited range of problems and/or target only general requirements).

1.3 Research Objectives

From the discussed motivation, we aim to develop a framework that comprehensively

supports the elaboration and analysis of goal and use case integrated models.

Specifically, the objectives of our research are as follows:

• RO1: To develop a conceptual foundation for goal and use case integrated

modeling. Such a conceptual foundation should be able to provide guidance as to

what types of artifacts should be modeled, classified, and connected to each

other in a general goal-use case integrated model. It also should provide rules or

guidance as to how artifacts should be specified.

• RO2: To develop a technique to automatically extract goal and use case

integrated models from textual requirements documents. Such a technique

should be able to analyze text to identify artifacts and relationships between

these artifacts. It also needs to classify the identified artifacts according to the

Chapter 1: Introduction

 7

artifact and relationship categorization developed for objective RO1. Moreover,

the technique should be able to automatically ensure such artifacts to be properly

specified (according to the specification rules defined for objective RO1).

• RO3: To provide a technique to automatically analyze goal and use case

integrated models for inconsistency, incompleteness, and incorrectness. Such a

technique should allow users to work directly with natural languages. In other

words, it should provide a method to interpret and analyze textual artifact

specifications. Moreover, the technique should be able to automatically

incorporate domain-specific knowledge and semantics into the analysis of goal-

use case models. Furthermore, it should also provide explanations to identified

problems and effectively suggest resolution options to such problems.

1.4 Research Contributions

In this research, we have developed a goal-use case integration framework that provides

semi-automated support for the modeling and analysis of goal and use case models

specified in natural language. Below, we summarize the key contributions of our

research in the area of Requirements Engineering.

A Meta-Model for Goal and Use Case Integrated Modeling

We have developed a novel meta-model for goal and use case integrated modeling

(called GUIMeta) to serve as a conceptual foundation for modeling goals and use cases

together. GUIMeta was proposed to address the problem that, there is no consensus

among existing goal and use case integrated modeling approaches regarding what

concepts and relationships to capture, and how goal-use case model can be

systematically analyzed.

GUIMeta contains two layers. The artifact layer provides a comprehensive

classification of goals and structure of use cases, and defines relationships and

constraints between them. The specification layer provides specification rules for these

defined artifacts. We adopted an approach to semantically parameterizing the textual

artifact specifications using functional grammar [40]. Functional grammar provides a

method to decompose a textual specification into different parts (called semantic

functions); each of them has a unique semantic role (e.g., agent, object, beneficiary).

Chapter 1: Introduction

 8

Such parameterization provides a consistent way to interpret the semantic of each group

of words in a specification. This functional grammar-styled parameterization offers a

basis on which the artifact specification rules are defined. For instance, each rule offers

the guidelines as to what semantic functions should and should not be included in

specifications of each type of artifacts.

The combination of such artifact classification, functional grammar-styled

parameterization, and specification rules provides a framework that governs

specification and analysis of goal and use case integrated models. Moreover, we have

also established the correspondence between GUIMeta’s artifacts and those in other

GUIM approaches to enable the unification of models specified in different approaches.

GUIMeta, accompanied with its evaluation results, were published in the MODELS

2015 conference [109]. The details of GUIMeta are provided in Chapter 4 in this thesis.

A Rule-based Technique for Automated Extraction of Goal-Use Case

Integrated Model from Requirements Documents

We have developed a novel rule-based technique to semi-automatically extract goal and

use case integrated models from uncontrolled text with the objective of minimizing

manual efforts in identifying goals and use cases from requirements documents. Our

approach is based on linguistic analysis techniques and a set of extendable extraction

rules that helps identify goals, use cases and their relationships from text.

The key novelty of our approach is that, it is the first technique, to the best of our

knowledge, to combine the syntactic and semantic aspects of text in specifying

extraction rules to identify necessary details while ignoring unneeded content from

uncontrolled natural language text. The fact that our technique can work directly with

uncontrolled natural language text potentially enhances its applicability, compared to a

number of existing information extraction approaches in requirements engineering that

rely on constrained input text. Importantly, our technique is accompanied with a clearly

defined rule syntax and parser and thus, makes it possible for users to modify and

extend the extraction rule collection.

In addition, our technique is able to ensure the extracted artifacts to be well-formed

according to the specification rules defined in our meta-model GUIMeta. Moreover,

such extracted artifacts can also be automatically classified, allowing the most activities

Chapter 1: Introduction

 9

in the entire extraction process to be automated (only some manual pre-processing is

needed). The entire extraction approach, together with its evaluation results, were

published in the FSE 2015 conference [108]. They are introduced in Chapter 5 and 6.

An Ontology-based Technique for Automated Analysis of Goal-Use Case

Integrated Model

We have developed a novel ontology-based technique to semi-automatically analyze

natural language-based goal and use case integrated models for inconsistency,

incompleteness, and incorrectness (most tasks are fully automated, except for problems

resolutions that need users to manually make selections). Our approach goes beyond the

existing ontology-based requirements analysis techniques by offering a method to

incorporate sophisticated domain knowledge into the analysis process (not just domain-

specific terms and their dependencies). Moreover, the use of functional grammar allows

textual goal and use case specifications to be semantically parameterized. Such

parameterization provides a consistent way to interpret the semantics of each group of

words in a textual specification. Individual words in a specification are then linked to

their corresponding terms in the ontologies, allowing the entire semantics of textual

specifications to be captured, represented, and interpreted during the analysis process.

In addition, the parameterized specifications can be transformed into Manchester OWL

Syntax [62] statements, making it possible to integrate them with ontologies to perform

analysis. The fact that all of these parameterization and transformation can be

automated by our techniques enables requirements engineers to work directly with

natural language-based specifications with minimal required expertise of functional

grammar and Manchester OWL Syntax. Moreover, our technique allows the automated

generation of comprehensive explanations for detected problems and is capable of

suggesting repairing alternatives. Our analysis technique has been published in the RE

2014 conference [106] and SQJ Journal [107]. It is discussed in Chapter 7.

1.5 Thesis Organization

The remaining chapters of this thesis are organized as follows.

Chapter 2: Literature Review – In this chapter, we present some background on RE and

how the concepts of goals and use cases are used in RE. We also discuss our literature

Chapter 1: Introduction

 10

review on goal and use case integrated modeling, automated requirements extraction,

and automated requirements analysis. From our discussion, we identify the key research

gaps that this thesis then addresses.

Chapter 3: Approach – In this chapter, we provide a motivating scenario to illustrate

the research problems we target to address in this thesis. It is then followed by our

problem analysis to establish the requirements for possible solutions to such problems.

We then describe the approach that we took to fulfill these requirements. We also

present the overview of our entire approach to automated extraction and analysis of goal

and use case integrated models. Our evaluation approach, accompanied with an

introduction to the case studies used in our validations, are also provided in this chapter.

Chapter 4: Goal and Use Case Integration Meta-model – In this chapter, we present

our meta-model for goal and use case integrated modeling. We discuss its components,

including the artifacts, relationships, and the constraints and dependencies between

them. We also provide a background on functional grammar and its use in semantically

parameterizing artifact specifications. Based on that, we present our artifact

specification rules. Additionally, our evaluation for GUIMeta and its results are also

discussed.

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction – In this

chapter, we present our rule-based technique to identify goal-use case model artifacts

and relationships from text. We first provide a background on natural language

processing techniques used in our work. Based on the background, we provide details

about the extraction rules, including their syntax, their components, and how they can

be used to locate artifacts and relationships.

Chapter 6: Artifact Specification Polishing and Classification – In this chapter, we

discuss our modifying rules that are used to ensure the well-formedness of extracted

artifact specifications. We also discuss the mechanism behind Mallet classifier and its

limitations, and our extensions to adopt Mallet for classifying artifact specifications in

goal and use case integrated models. Moreover, we discuss the evaluations conducted to

validate our entire extraction approach.

Chapter 1: Introduction

 11

Chapter 7: Ontology-based Goal-Use Case Model Analysis – In this chapter, we

introduce our ontology-based technique to analyze goal-use case integrated models for

incompleteness, inconsistency, and incorrectness. We first present the structure of

ontology in our work to capture domain-specific knowledge and semantics,

accompanied with some discussion regarding the quality assurance of ontologies. We

then provide the classification of the 3Cs problems in our work and discuss various

algorithms used to identify such problems. Several evaluations conducted to assess the

performance of our analysis techniques, together with their results, are also provided.

Chapter 8: Conclusion and Future Work – This chapter concludes the thesis. It

provides a summary of the key contributions that we have made in our research. It also

discusses the limitations of our work, and the future work that we plan to carry out.

Chapter 2: Background and Literature Review

 12

Background and Literature Review

In this chapter, we present some background on requirements engineering and how the

concepts of goals and use cases are used in requirements engineering. Since the focus of

this research is on the extraction of goal and use case integrated models from text and

the analysis of such models for inconsistency, incorrectness and incompleteness (the

3Cs problems), our literature review covers a discussion on state-of-the-art in the areas

of goal-use case integration, automated requirements extraction, and automated

requirements analysis. In this discussion, we describe the existing approaches to

requirements extraction and analysis, and identify their benefits and limitations. From

this, we identify the key research gaps that this thesis then addresses. In the following

sections, when the term “requirement” is used, it is understood as a requirement for a

software system.

2.1 Requirements

According to Kotonya and Sommerville [84], “requirements are defined during the

early stages of a system development as a specification of what should be implemented.

They are descriptions of how the system should behave, constraints on the system’s

operation, or specifications of a system property or attribute. Sometimes they are

constraints on the development process of the system.” Preferably, a requirement should

specify what the system should satisfy instead of how it should be done. In other words,

a requirement should contain a description about a functionality or constraint of the

Chapter 2: Background and Literature Review

 13

system and it should not provide information as to how the system should be designed

to satisfy such functionality or constraint.

Based on the characteristics of requirements, they are commonly classified into two

categories: functional requirements which specify the functionalities of a system, and

non-functional requirements which define the constraints on the way a system satisfies

its functional requirements, or on the way it should be developed [163].

Since requirements serve as the input into the later stages of a system development

[172], it is critical to ensure that the requirements of a system are of high quality. In

fact, requirements should be assessed against a variety of qualities, including

consistency, completeness, correctness, unambiguity, verifiability, and so on [30].

In practice, requirements can take various forms, depending on the system development

methodology used, or the concern over the requirements at different stages during the

system development. Unrestricted natural language is the primary means for specifying

requirements since it is easy to write and understanding by human, and thus no special

training is required. However, one of the key problems with natural language

requirements specifications is that, it is sometimes ambiguous, making a single

requirement interpreted differently by different people [163].

To avoid such a problem, in many cases, requirements can be found written in

controlled natural languages [48] which specify rules on how requirements should be

written. In addition, to facilitate the automated analysis and verification of

requirements, they can be specified in formal languages that can be interpreted,

processed, and reasoned by computers [49, 165, 173]. Moreover, requirements can also

be represented with diagrammatic notations, each with its own focus and benefits. Some

examples include context diagrams, frame diagrams, entity-relationship diagrams, use

cases and scenarios, sequence diagram, goal models, and so on [163].

2.2 Requirements Engineering

We start with one of the oldest definitions of requirements [137]:

“Requirements definition is a careful assessment of the need that a system is

to fulfill. It must say why a system is needed, based on current or foreseen

Chapter 2: Background and Literature Review

 14

conditions, which may be internal operations or external market. It must say

what system features will serve and satisfy this context.”

It implies that requirements are concerned with the objectives of a software system, the

functionalities it must have to satisfy such objectives, and the constraints on how the

software must be designed and implemented [85].

Zave [180] put forward a related definition of RE:

“Requirements engineering is the branch of software engineering

concerned with the real-world goals for functions of, and constraints on

software systems. It is also concerned with the relationship of these factors

to precise specifications of software behavior, and to their evolution over

time and across software families.”

It can be seen that, the key concerns of RE are the functions and constraints of a

software system being considered, and the goals and objectives behind these functions

and constraints.

Pohl’s definition [120] further clarifies these points:

“Requirements engineering is the process of eliciting individual stakeholder

requirements and needs and developing them into detailed, agreed

requirements documented and specified in such a way that they can serve as

the basis for all other system development activities”

This definition makes it clear that the functions and constraints of a software system

must come from the elicited requirements and needs of its stakeholders. It also carries

the important characteristics that such requirements should be agreed on and

documented, and that such requirements will serve as the input for the next activities in

the software development life cycle (e.g., design, implementation, testing).

In line with this definition, Sommerville [151] takes a step further to note that “in

practice, requirements engineering is an iterative process.” An important characteristic

of RE is that, it is an iterative process instead of a one-time task. In this process, there

are a number of interleaved activities. These activities depend on the application

Chapter 2: Background and Literature Review

 15

domain, the people involved, and the organization developing the requirements.

However, the following generic activities are common to all RE processes:

requirements elicitation, requirements analysis, requirements validation and

requirements management [151]. We discuss a typical RE process in the following sub-

section.

2.2.1 Requirements Engineering Process

Figure 2-1 presents the spiral requirements engineering process recommended by Van

Lamsweerde [163]. According to the figure, each spiral starts with the domain

understanding and requirements elicitation phase in which requirements engineers study

the domain in which the system-as-is will operate and gather requirements from system

stakeholders (1). The elicited requirements are then analyzed for problems, and

negotiated with stakeholders if necessary (2). The analyzed and agreed requirements are

then specified and documented in a requirements document (3). Such a requirements

document is then verified to ensure its quality (4). Those steps can be repeated in

another spiral in case changes need to be made in the requirements. Below, we discuss

the requirements engineering process in details.

Figure 2-1. The Requirements Engineering Process [163]

Domain Understanding and Requirements Elicitation

Domain understanding and requirements elicitation is the process of seeking, uncovering,

acquiring, and elaborating requirements for software systems [182]. Requirements

elicitation focuses on learning and understanding the needs and requirements of the

Alternative Proposals

(2) Requirements
Analysis & Negotiation

(1) Domain Understanding &
Requirements Elicitation

(3) Requirements Specification
 & Documentation

(4) Requirements
Quality Assurance

Documented Requirements

Agreed RequirementsConsolidated
Requirements Start

Chapter 2: Background and Literature Review

 16

stakeholders of the system, with the ultimate objective is to communicate these

requirements to the system developers. Typically, this process involves the intertwined

activities such as domain study, stakeholder analysis, and requirements identification.

Requirements Analysis and Negotiation

Requirements analysis and requirements negotiation are closely related activities in

requirements engineering. Requirements analysis aims to get deeper understanding in

the elicited requirements and identify problems within such requirements [84, 163].

Negotiations between requirements engineers and stakeholders are usually involved

whenever problems are detected in the analysis to ensure requirements are correctly

collected and understood. After such negotiations, new or updated requirements may be

obtained. Some of the key concerns in requirements analysis include consistency and

completeness checking, necessity checking, feasibility checking, risk analysis, and

alternative discovery [163].

Requirements Specification and Documentation

After the requirements have been elicited, analyzed and confirmed with stakeholders,

they need to be correctly specified and documented. This phase is generally intertwined

with the previous ones. For instance, it may start as soon as some elicited materials are

obtained and agreed [163]. Therefore, the input into the requirements specification

phrase generally contains a collection of agreed statements in different types: general

system objectives, system requirements, user requirements, environmental assumptions,

domain properties and concept definitions. The output of this phrase is the early version

of the requirements document of the system.

Requirements Quality Assurance

The requirements quality phase is aimed to ensure the items specified in the

requirements documents meet various qualities including completeness, consistency,

adequacy, unambiguity, measurability, etc. The requirements quality phrase consists of

the following steps: detecting defects, reporting defects, analyzing their causes, and

undertaking appropriate actions to fix them [163]. The outcome of this phase is a

consolidated requirements document in which defects have been fixed.

Chapter 2: Background and Literature Review

 17

Requirements Evolution

The term “requirements evolution” here comes from van Lamsweerde’s terminologies

[163]. It matches the term “requirements management” in Sommerville’s work [151].

RE is not a one-time task. It is necessarily an iterative process since requirements of a

system are not static. Instead, they evolve. In fact, requirements and assumptions that

have been elicited, analyzed, specified and documented may need to be changed for a

variety of reasons. For instance, there may be defects in the requirements document to

be fixed, project fluctuation in terms of priorities and constraints, environmental

changes, or new needs arrive. The objective of the requirements evolution phase is to

handle such changes at various stages of the project to ensure the set of requirements is

of high quality. Requirements evolution is at the heart of the requirements engineering

process as it can trigger a new cycle in the spiral process shown in Figure 2-1.

2.2.2 Requirement Modeling

Requirements modeling play a central role in requirements engineering. It is defined as

the process of “building abstract descriptions of the requirements that are amenable to

interpretation” [116]. The existing system/organization as well as the possible

alternative configurations for the system-to-be are typically modeled [85]. These models

serve as a basic common interface to the various RE activities described above [160].

There are several benefits of modeling requirements. First, modeling supports

requirements elicitation by helping requirements engineers figure out what types of

requirements to be obtained, or surface hidden requirements [116]. Second, modeling

can help requirements engineers measure the progress of requirements elicitation. For

instance, if the model of current requirements is not complete, it is likely that there

should be more requirements to acquire. Third, modeling can help reveal problems in

requirements. For example, if an inconsistency is found in the model, it may indicate

conflicting and/or infeasible requirements [85]. Kof [82] also highlighted that system

modeling is a primary means to identify problems in natural language-based

requirements. Fourth, modeling can help getting deeper understanding of the elicited

requirements. For instance, goal models enable requirements engineers to focus on the

“why” aspects of requirements and thus help them understand the underlying objectives

of and relationships between requirements [176]. Models also provide a basis for

Chapter 2: Background and Literature Review

 18

requirements documentation and evolution. While informal models are analyzed by

humans, formal models of system requirements allow for precise analysis by both the

software tools and humans [85].

Since our research focus is on the modeling of requirements using goals and use cases,

we discuss the use of goals and use cases in requirements engineering in the following

sub-sections.

2.2.3 Goal-oriented Requirements Engineering

The major disadvantage of traditional requirements engineering approaches is its

inadequacy in dealing with complex software systems [38, 136, 139]. These approaches

simply consider requirements as processes and data and do not capture the rationale

behind them, thus making it difficult to understand requirements with respect to some

high-level concerns in the problem domain [85]. Moreover, most techniques focus on

modeling and specification of the software alone and therefore, lack of support for

reasoning about the composite system comprised of the system-to-be and its

environment [139].

The Goal-oriented Requirements Engineering (GORE) approach [6, 23, 49, 161, 178]

was developed to overcome the above discussed problems. GORE is concerned with the

use of goals for eliciting, elaborating, structuring, specifying, analyzing, negotiating,

documenting, and modifying requirements [161]. The idea of GORE is derived from the

recognition that goals are the root from that all requirements of the software system are

defined. In fact, the current system under consideration is typically analyzed in its

organizational, operational and technical settings. As soon as problems are pointed out

and opportunities are identified, high-level goals are identified and refined to address

such problems and meet the opportunities; requirements are then elaborated to meet

those goals [161]. Requirements are then refined into more specific requirements to

meet the higher-level requirements. Other requirements would then be generated by

repeating this process. GORE addresses the issues of lacking of requirements’ rationale

by providing both top-down and bottom-up links between requirements so that from a

specific requirement, it is possible to point out the underlining reason of it (through the

links to higher-level requirements) and also how it is realized by the system being

developed (through the links to lower-level requirements).

Chapter 2: Background and Literature Review

 19

The main claimed benefits of GORE include:

• A goal model provides traceability links from high-level strategic goals to low-

level technical requirements [177].

• Goals are normally more stable than the requirements to achieve them [8].

• Goal refinement provides a natural mechanism for structuring complex

requirements documents for increased readability [161].

• Goals provide a criterion for verifying the completeness of requirements. For

instance, the specification is complete with respect to a set of goals if all the

goals can be proved to be achieved from the specification and the properties

known about the domain considered [179].

• Goals help avoiding irrelevant requirements. For instance, if a requirement is

identified not contributing to a satisfaction of any goal, it can be considered

irrelevant [179].

• GORE provides a means for identifying and exploring alternative system

proposals [160].

Despite of the above benefits, GORE suffers from a number of limitations including:

• Goal discovery is a complicated task since practical experience shows that goals

are not readily given in software projects [6, 133].

• Domain experts often find it hard to deal with fuzzy concepts of goals [16].

• It is often not easy for stakeholders to express goals at the required level of

abstraction [164]

• The goal modeling process is initiated by collecting enterprise goals. However,

these goals often do not reflect the actual situation, but instead an idealized

environmental one. Therefore, this may lead to ineffective requirements [133].

2.2.4 Use case-driven Requirements Engineering

Use case-driven requirements engineering (UDRE) (i.e., [33, 53, 155, 156]), also

referred to as scenario-driven requirements engineering, is another approach to

requirements elicitation and modeling based on the analysis of the wider context in

which the system will operate [132]. It focuses on capturing examples, scenes, narrative

descriptions of contexts, use cases and illustrations of agent behaviors [134]. At the core

Chapter 2: Background and Literature Review

 20

of this approach is the concepts of use cases and scenarios. Use case is defined as a

collection of possible sequences of interactions between the system under discussion

and its actors, related to a particular goal. Scenario is one of the sequences of

interactions in a use case [26]. An actor of a use case can be a system, or a person, a

group of people who have a specific role played in the system [33]. From this definition,

a use case can also be understood as a specific way of using the system by using some

parts of its functionality [68]. In practice, a use case can be specified in various forms

including narrative text, structured text, images, animation or simulations [97].

The application of use cases in requirements capturing and analysis was first introduced

by Jacobson [68]. After that, they have become a key component in RE since use cases

(and scenarios) naturally facilitate the communication between requirements analysts

and stakeholders [33]. In fact, use cases offer an approach in which stakeholders can

express requirements in terms of operations and processes, and hence closer to their

way of conceptualizing a system [7].

Various benefits that can be achieved by the UDRE approach, including: eliciting

requirements in envisioned situations [124], discovery of exceptional cases [124, 156],

deriving conceptual object-oriented models [33, 69, 138, 139], understanding user needs

through scenario prototyping [65], to reason about design decisions [158] and so on. In

comparison with goals, typically use cases and scenarios are easier to get in the first

place. Goals can be made explicit only after deeper understanding of the system has

been gained [134]. In addition, according to an industrial practice survey within the

CREWS project, scenarios are useful in particular when abstract modeling fails [170].

However, UDRE also has its own problems. First, use cases (and scenarios) pertain to

examples and illustrations, and thus need to be generalized to obtain complete

requirements [133, 155]. Second, use cases are fragmented in the sense that different

single uses of the system are described [97] while the underlying rationale and

relationships between them are not always known or expressed. Although each use case

is associated to a goal, tracking and identifying the relationships between these goals are

not a focus in UDRE approaches. Third, since use cases cannot be tightly related to each

other, it is difficult to structure and manage use case models, especially with large

systems [93, 131].

Chapter 2: Background and Literature Review

 21

2.2.5 Combining Goal and Use Case Modeling in Requirements

Engineering

From the the earlier discussions, it can be seen that although both GORE and UDRE

approaches possess important capabilities, either of them is not adequate to

comprehensively support the requirements engineering process.

To overcome this problem, Potts [123] suggested that it is “unwise to apply goal-based

requirements methods in isolation” and that the two concepts should be combined

because they complement each other. In fact, the aspects in which GORE has

limitations are where UDRE’s benefits come from, and vice versa. Many researchers

share this view and have developed methods to integrate goals and use cases together

[7, 76, 90, 91, 97, 133, 154, 164]. These attempts can be classified into two tightly

related categories: the works that used goals and use cases (or scenarios) to derive each

other to improve the requirements elicitation process, and the work that combined goals

and use cases (or scenarios) to comprehensively model and analyze requirements.

Below, we discuss both categories of goal and use case integration approaches.

Coupling goals and use cases for requirements elicitation

Most approaches to coupling goal and use case modeling commonly share the idea of

having goal elaboration and use case elicitation are intertwined processes. This means a

concrete scenario description may prompt the elicitation of its underlining goals and a

goal specification may prompt the elaboration of scenario descriptions that illustrate or

validate it.

Rolland et al. [133] were among the first researchers who focused on this stream of

research. They developed a technique called L’Ecritoire for guiding the elicitation of

goals using scenarios based on the concept of requirement chunks. Each chunk contains

a goal and a scenario in which the scenario operationalizes its associated goal. Thus, a

requirement chunk is considered a possible way of achieving a goal. There are three

abstraction types of requirement chunks: contextual, system interaction, and system

internal level and four abstraction types of goals: business, design, service, and system

goals. At each level of requirement chunks, a goal is operationalized into a scenario and

thus a new chunk is formed. An appropriate scenario step is then selected as a goal and

Chapter 2: Background and Literature Review

 22

operationalized further. The definition of abstraction levels is one of the important

strengths of this work. It helps provide requirements engineers with a means to

differentiate artifacts on different levels of abstraction, and suggests the idea of when

the top-down operationalization process can be terminated. Following this approach, the

goals and scenarios of the system-to-be would be elicited. This work was then extended

by Kim et al. [76] who developed guidelines for transferring goals and scenarios into

use case models. However, these works only targeted functional goals and did not

support non-functional goals.

Sharing this view, Watahiki and Saeki [169] developed a method to guide the

requirements elicitation using both goals and use cases. In this work, similar to Rolland

et al.’s way of operationalizing goals using requirement chunk, each step in a use case is

considered as a goal for the next round of operationalization. The authors also proposed

the use of constraints which are linked to goals to express their non-functional concerns.

In the context of the KAOS framework, van Lamsweerde and Willemet [164] proposed

a way to use scenarios as typical examples of system usage. In this work, scenarios are

represented using the semi-formal event trace diagram notations. Based on that, a

formal method, which is based on temporal logic, is used to infer additional goals and

requirements in the KAOS language.

Integrating goals and use cases for comprehensive requirements modeling and

analysis

Various techniques in this stream of research have been proposed. Most of them share

the idea of combining the concepts of goals and use cases to have their modeling

strengths to complement each other. Such a combination is intended to obtain some

modeling capability which is not achievable with each concept individually.

Cockburn [26] suggested the use of goals as a way to structure use cases. He defines

three abstraction levels of artifacts. Summary goals are for system-level objectives. User

goals specify user tasks in the system. Sub-functions refine user goals and can be steps

in the use cases that operationalize user goals. Such structure allows use cases to be

managed and traced effectively, especially in large systems. Non-functional goals are

kept out of scope of this work.

Chapter 2: Background and Literature Review

 23

Lee et al. [91] developed another approach called goal-driven use cases to structure use

cases by goals, handle non-functional goals and analyze interactions between goals and

use cases. They defined a number of artifacts and relationships. For instance, goals are

classified in 3 facets: rigid vs. soft, system-specific vs. actor-specific and functional vs.

non-functional. A use case that achieves an original goal (defined as the intersection of

rigid, actor-specific and functional goals) is called an original use case while extension

use cases are those maintain or optimize soft, system-specific or non-functional goals

that constrain original goals. However, this work does not provide the internal structure

of use cases and thus it is not clear how extension use cases and original use cases are

different. Moreover, except for constrain relationships, other interactions between goals

are not defined.

Santander and Castro [141] introduced an approach to integrate the i* modeling

framework with use cases. In this work, the i* framework [175], with the support of the

strategic dependency model and the rationale dependency model, is used to capture the

rationale behind requirements and the task decomposition in a system. Use cases are

then used to model the sequence of actions between actors and the system to accomplish

the tasks. The authors also provide a number of heuristics to support the deriving of use

cases from i* models.

Supakkul and Chung [154] proposed an approach to better integrate functional and non-

functional requirements (NFR). In this work, use cases, which capture functional

requirements, are associated to non-functional goals specified using the NFR framework

[23]. To facilitate the integration, a set of NFR association points was proposed. For

instance, an actor association point is used to link an actor of a use case to his/her

desired non-functional properties of the system while a use case association point is

used to link a use case with its required non-functional constraints. The approach also

provides a set of propagation rules to enable the traceability across a goal-use case

model. The limitation of this work is its lack of support for functional goals, and thus

the interactions between functional goals, non-functional goals and their related use

cases cannot be captured.

Kim et al. [77] proposed a multi-view approach to requirements modeling using goals

and scenarios. Their approach was based on the argument that a multi-view approach

Chapter 2: Background and Literature Review

 24

would facilitate the gathering, organization, analysis, and understanding of the various

dimensions of requirements of a large complex system. It consists of four views of

requirements: structure view, abstraction view, function view, and quality view. The

structure view is achieved by capturing the “business description” of the system. A

“business description” in this work is a group of identified agents, activities, objects,

events, candidate goals, and structured objects. The abstraction view is captured by the

top-down and bottom-up refinement relationships between artifacts. The function view

is achieved by the system-user interactions within scenarios. The quality view is

achieved by connecting functional goals to quality attributes that the goals need to

satisfy. Besides the original top-down refinement process from goals to scenarios, this

work also provided some guidance on the bottom-up process in which goals can be

derived by the scenarios that operationalize them.

Liu and Yu [97] put forward a combined use of goals and use cases to represent design

knowledge of web-based systems. In this work, goals and use cases are visualized using

the Goal Requirement Language (GRL) [166] and the Use Case Map (UCM) [5],

respectively. The authors have demonstrated a great combination of GRL and UCM in

which GRL provides a rich set of elements (i.e., actor, task, resource, belief) to model

the intents, motivations and rationales of requirements while UCM is responsible for

visualizing the behavioral aspects of the designed system. Based on such a combination,

the approach facilitates the transition from high-level system objectives to specific

requirements and to high-level design. It also provides a comprehensive view of the

entire system requirements and early design, which enables requirements engineers to

review and possibly discover new requirements of the system.

2.2.6 Limitations of Current Goal-Use Case Integration

Approaches

In this section, we discuss the limitations of the current goal and use case integration

modeling (GUIM) approaches from the perspective of modeling and analyzing goal-use

case integrated models specified in natural language, which is the primary means of

requirements specification in practice [98].

Firstly, little consensus exists among the current GUIM approaches in regards to what

to be modeled in a general goal and use case integrated model. For instance, in order to

Chapter 2: Background and Literature Review

 25

support the modeling of a goal and use case integrated model, requirements engineers

should be given guidance as to what types of artifacts should be modeled, how they are

specified, classified, and connected to each other. However, according to our above

discussion, it can be seen that the existing GUIM techniques are generally isolated. In

fact, different approaches, with different foci, have different ways to specify, classify

and connect artifacts (i.e., goals, use cases). For instance, Cockburn [26] defines the

summary, user and sub-function levels of abstraction for goals and use cases while

Rolland et al. [133] categorize goals into business goals, design goals, service goals, and

system goals. Meanwhile, Lee et al. [91] classify goals under three facets: rigid vs. soft

goals, actor-specific vs. system-specific goals and functional vs. non-functional goals;

and use cases can be connected to goals in the intersecting type of functional, actor-

specific and rigid. Such isolation makes it difficult if models created in different

approaches were to be combined.

Moreover, no existing GUIM approach is comprehensive enough to model both goals

and use cases as each lacks support for certain artifact types. For instance, the

approaches developed by Cockburn [26], Rolland et al. [133], and Kim et al. [76] do not

tackle the modeling and classification of non-functional goals while functional goals are

not a focus in Supakkul and Chung’s work [154]. In addition, the work of Kim et al.

[77] lacks the classification of goals and their relationships. Moreover, the work of

Santander and Castro [141], which is based on the i* modeling framework, does not

support the categorization of goals across levels of abstraction as provided in the work

of Rolland et al. [133] or Cockburn [26]. Such abstraction-based goal classification

plays an important role in guiding the goal operationalization process [132, 162].

Second, although the above approaches were proposed to combine goals and use cases

(or scenarios), the dependency between goals and use cases (or scenarios) in these

works is loose. In fact, the operationalization relationship (i.e., a use case/scenario

operationalizes a goal) is the only one dependency between goals and use cases in most

of these approaches. In our view, more dependencies between integrated goals and use

cases should be modeled. For instance, there needs to be a decomposition of constraints

from the goal levels to the use case level.

Chapter 2: Background and Literature Review

 26

Figure 2-2 shows an example which demonstrates this point. In this example, the goal

G1 (“travelers shall be able to write reviews”) has a non-functional constraint which is

C1 (“travelers should be able to write review quickly.” G1 is operationalized by a use

case UC1 which specifies the interactions between a traveler and the system to have a

review created. The step 7 (“system validates the review”) in this use case has a

constraint which is “the validation should be completed within 1 second.” In this case,

it is necessary to model the relationship between C1 and SC1 (i.e., SC1 is a refinement

of C1) since SC1 can be understood as a lower-level constraint which helps satisfying

the higher-level constraint C1 (both are concerned with speed).

Figure 2-2. Example of Cross-level Non-Functional Constraint Dependency

Supakkul and Chung [154] also share the idea of linking non-functional constraints to

functional goals. However, their study does not cover the dependency between

constraints on goal levels and and those on use case levels.

Third, the lack of agreed types of artifacts to be modeled prevents goal-use case models

to be adequately analyzed. Such models need to be analyzed for defects such as

incompleteness, inconsistency, and incorrectness (the 3Cs problems). Although some

GUIM approaches have their own ways of analysis, they do not sufficiently address key

questions such as: how to verify if an artifact is not properly specified? How to check if

artifacts are not correctly connected? How to ensure a use case is matched with its

Use Case UC1: Write Review Actor: Traveller
Pre-condition: The travellers has successfully logged into the system
Post-condition: The new review is stored
Steps:
1. The traveller selects to create a review
2. System prompts the traveller to select a review category
3. The traveller selects a review category
4. System displays the suitable review creation form to the traveller
5. The traveller enters the review content
6. The traveller submits the review content
7. System validates the review
8. If the review content is valid, the system stores the review into the database
9. System displays confirmation message to the traveller
........

SC1: The validation
should be completed
within 1 second

G1: Travellers shall be
able to write reviews

C1: Travellers should be
able to write reviews
quickly

<operationalize>

<constrain>

<constrain>

Chapter 2: Background and Literature Review

 27

associated goal? How to detect if a required artifact has not been elicited? To address

these questions, an approach needs to satisfy the following 4 requirements:

(1) Providing the definitions of what types of artifacts to be model

(2) Providing guidelines or rules that suggest how artifacts of a specific type should

be specified so they can be verified for correctness

(3) Providing the definitions of what dependencies/relationships can/must be

specified between particular types of artifacts

(4) Providing the definitions and characterization of 3Cs problems that may exist in

a goal-use case model (i.e., how to define, classify, and detect them). This

requirement can be achieved if the other 3 requirements are me because if it is

known what types of artifacts to model and how they should be specified, then it

it possible to identify what types of defects a model of them could have in terms

of the 3Cs.

No existing goal and use case integration approach satisfies all these four requirements.

For instance, although Rolland et al. [133] provides the classification of goals and some

templates for writing goals, such templates are general and remain on a high level and

thus do not particularly guide how each type of goals (i.e., business goal, design goal)

should be specified. Similarly, Cockburn provides a general template for writing use

case steps while no template provided for goals. Moreover, although KAOS [164]

provides powerful formal methods for detecting obstacles and conflicts in goal models,

it does not provide guidelines on specifying artifacts. Furthermore, no support for use

cases or scenario analysis is provided.

The sum up, despite of the claimed benefits of GUIM, little consensus exists among the

current goal and use case integration approaches. As a result, requirements engineers

would not be well supported when combining goals and use cases, in regards to

modeling guidelines and analysis support. Therefore, a conceptual foundation should be

established for GUIM to support for both the modeling and analysis process. Such a

foundation should unify the existing goal and use case integration approaches and

satisfy the requirements (1)-(4) discussed above.

Table 2-1 summarizes our analysis of the existing goal and use case integration

approaches. The work of Liu and Yu [97] is excluded from this summary since goals

Chapter 2: Background and Literature Review

 28

and use cases in this work are specified by GRL and UCM while we target natural

language based goal and use case specifications.

Table 2-1. Summary of Goal and Use Case Integration Approaches Analysis

Approach

Support
Functional G

oals

Support N
on-

functional G
oals

A
rtifact

C
lassification

R
elationship
D

efinition

Specification
G

uidelines

3C
s Problem

C

lassification

Rolland et al. [133] √ Χ √ Χ
√

(high
level)

Χ

Kim et al. [76] √ Χ √ Χ
√

(high
level)

Χ

Watahiki and Saeki [169] √ √ Χ √ Χ Χ

van Lamsweerde and
Willemet [164] √ √ √ √ Χ Χ

Cockburn [26] √ Χ √ Χ
√

(high
level)

Χ

Lee et al. [91] √ √ √ Χ Χ Χ

Santander and Castro [141] √ √ √ √ Χ Χ

Supakkul and Chung [154] Χ √ √ √ Χ Χ

Kim et al. [77] √ √ √ Χ Χ Χ

2.3 Information Extraction in Requirements Engineering

Information Extraction is the process of automatically extracting structured information

from unstructured and/or semi-structured machine-readable documents [31]. In most

cases, this process involves the processing of human language texts by means of natural

language processing (NLP). In addition, the general form (i.e., template) of the

information to be extracted should be defined to guide the extraction process [70].

In the context of RE, Ryan [140], in 1993, claimed that NLP had not been and would

not be ready for use in this process in the foreseeable future mainly due to its lack of

Chapter 2: Background and Literature Review

 29

ability to “understand” the text. This argument still holds with the current state-of-the-

art in the NLP field, and thus it is not possible for computer systems to entirely replace

human engineers in the RE tasks. However, Kof [80] later argued that the goal of most

NLP-based approaches to RE is not to understand the text, but instead is to extract

concepts contained in requirement-related documents, and thus NLP techniques with

syntactic parsing and semantic parsing are still valuable to requirements engineers in

supporting (but not replacing) them with their tasks.

In fact, several NLP-based techniques have been developed from this perspective to

provide requirements engineers with automated support in different stages of the RE

process, such as requirements elicitation (e.g., [34, 99]), specifications (e.g., [100, 111,

129]), or analysis (e.g., [110, 167]). In this section, we limit the discussion to the

information extraction techniques in RE. The NLP-based requirements analysis

approaches are later discussed in section 2.4.

The efforts of applying information extraction techniques in requirements engineering

can be classified into two groups. The first group is concerned with mining early aspects

from requirement-related documents while the second one contains the approaches to

extracting requirement-related models from text. Most of these approaches focus on

extracting information from textual requirement-related documents (i.e., requirements

specification documents, stakeholder interview scripts) since most important details of

software projects are embedded in documents and thus studying such documents is the

key of getting information about projects and systems.

Our research falls into the second group and thus, techniques in this group are more

directly related to our work reported in this thesis. We discuss the techniques within

both groups in the following sub-sections.

2.3.1 Early Aspects Extraction

This area of research has its root in the field of aspect-oriented requirements

engineering (AORE). AORE is an area in requirements engineering which focuses on

the separation of crosscutting functional and non-functional properties at the

requirements level [129]. The idea of such separation of these crosscutting properties is

to support effective determination of their mapping and influence on artifacts at later

Chapter 2: Background and Literature Review

 30

development stages. In AORE, early aspects are defined as a broadly-scoped property,

represented by a single requirement or a coherent set of requirements (e.g., security

requirements), that affects multiple other requirement in the system so that it may

constrain the specified behavior of the affected requirements or influence the affected

requirements in order to alter their specified behavior [9].

Most existing effort of using information extraction in AORE target on providing

automated support for the identification of early aspects and crosscutting relationships

from requirement-related documents written in natural languages.

Rosenhainer [135] developed a technique to identify cross-cutting requirements from

requirements specification documents using regular expressions. The author defined

patterns for each non-functional requirement category and specified such patterns with

regular expressions. Requirements documents would then be processed to identify the

sentences that match the regular expressions.

Baniassad and Clarke [11] proposed the Theme approach to support the capturing of

early aspects at the requirement and design levels. In this approach, views of

requirements specifications are created to expose the relationships between system

behaviors and reveal crosscutting functionality. Ali and Kasirun [2] enhance this

method by developing a technique to automate the identification of crosscutting

requirements. This technique is based on the use of natural language processing tools to

identify verbs in each requirement. Requirements with same verbs are considered as

candidate crosscutting requirements. This work may generate a considerable number of

false positives since requirements with the same verbs may not necessarily be relevant

and crosscut each other. It thus need to be improved with some semantic analysis

support to minimize false positives and redundancies.

2.3.2 Automated Requirement Models Extraction

One of the main focuses of our research is the extraction of goal and use case

integration models from textual requirements documents. However, to the best of our

knowledge, no attempt has been made in the literature to automatically or semi-

automatically extract such models from text although there exist some approaches

dealing with goals and use cases individually. In this section, we provide a discussion

Chapter 2: Background and Literature Review

 31

on these approaches. We also summarize the related extraction approaches for UML

models and software product line variability models.

2.3.2.1 Goal Extraction

Antón [6] proposed a set of guidelines and heuristics based on the Inquiry Cycle model

[124] to manually extract goals from domain descriptions and other natural language

sources. Such heuristics are a set of questions that requirements engineers should

consider to answer when identifying goals from different sources. However, no

automation support was provided for the goal identification process.

In line with this work, Kof [81] proposed two rules for identifying goals from

stakeholders’ dialog: “Phrases like 'have to' and 'in order to' may directly show a goal.

If the first sentence of a paragraph does not contain any of the above phrases, the first

sentence states the reason why the previous paragraph is problematic. In this case, the

negation of this sentence shows the stakeholder’s goal.” The author reported an

experiment in which goals were manually extracted using these rules and pointed out

the challenges of such extraction. However, no technique was proposed to automate the

extraction process.

As can be seen later in Chapter 5 and 6, with the extraction technique developed in our

work, we are able to incorporate all these guidelines by writing extraction rules that

reflect them. To the best of our knowledge, there is no technique developed to automate

the identification or extraction of goals from natural language documents. Variability

models in the field of software product line share some similarities with goal models.

We thus discuss the approaches to extracting such models from text in the next section.

2.3.2.2 Product Line Variability Model Extraction

Software product line (SPL) is a software engineering paradigm that considers software

variability as a first-class entity [121]. One of the main concerns of the requirements

engineering process in SPL is to elicit and model the variability of requirements in

different single software products within the same product line. For instance, what the

common requirements for the entire product line are and what the specific requirements

for each individual product are.

Chapter 2: Background and Literature Review

 32

Unsurprisingly, some NLP-based techniques have been proposed to support such

variability modeling tasks. Niu and Easterbrook [111] developed an approach to semi-

automatically extract product line orthogonal variability model from natural language

requirements documents. The authors employed the notion of functional requirement

profile which is defined by the combination of a verb and an object in a requirement. In

this work, given a requirement, the OpenNLP library’s part-of-speech tagger [104] is

used to identify functional requirement profiles from requirements documents. Such

profiles would then be used to manually construct a variability model. This work,

however, does not deal with non-functional requirements. Moreover, functional

requirements are extracted only in the form of “verb-object” combination.

Weston et al. [171] followed another approach of extracting feature models from natural

language-based requirements documents. In their work, similar requirements are first

clustered into features based on some certain similarity measures. The requirements are

then analyzed by their tool to identify variability based on a set of keywords (called

variability lexicon) and grammatical patterns. Requirements engineers are required to

manually make modeling decision based on the tool’s output. A key limitation of this

work is its limited level of automation since most important modeling decisions have to

be manually made by users.

The variability models in these efforts can be considered similar to goal models in the

sense that they are all concerned with capturing artifacts on different levels of

abstraction and linking such artifacts with decomposition relationships. However, due to

having different objectives and their own limitations, these techniques cannot address

most problems we want to tackle in this research regarding goals extraction. For

instance, they have no or limited support to identify and classify goals and their

relationships from text, or ensure goals to have proper specifications.

2.3.2.3 Use Case Extraction

In this section, we discuss the existing approaches to automatically extracting use cases

from text, or understanding/processing textual use case specifications.

Kamalrudin et al. [73] developed a light-weight technique to extracting essential use

cases from text. Essential use cases are shorter, simpler and technology-free version of

Chapter 2: Background and Literature Review

 33

conventional use cases that primarily capture the sequences of abstract system-user

interactions. To facilitate the extraction, the authors develop a library of essential

interactions expressed as textual phrases, phrase variants, and regular expressions.

Based on string manipulations and regular expression matching techniques, they are

able to identify textual segments that can be mapped into more abstract representations.

Our research, however, focuses on extracting full conventional use case specifications

from text. These include details such as pre/post-conditions, extensions, use case steps,

and non-functional constraints on these steps.

Rauf et al. [130] introduced a framework to support the automated identification of

logical structures (i.e., use cases, business rules) from natural language-based

requirements documents. To accomplish this task, the authors proposed a number of

templates for specifying logical structures (i.e., templates outlining how a use case and

its components are written). Based on such templates, they developed algorithms for

identify the components in the specifications of logical structures. A key limitation of

this work is that it requires the logical structures to be written in specific templates and

thus, does not deal with uncontrolled textual specifications.

Santos et al. [142] proposed a technique to semi-automatically extract use cases from

freely-styled text. Their approach is based on NLP techniques to identify the syntactic

verb, object and subject of a sentence. Based on such details, use case name (which

contains verb and object) and use case actor (which is subject) can be identified. The

detected use case details would be then manually verified by users to determine their

appropriateness. Using the similar techniques of identifying verbs, objects and subjects

from sentences, Deeptimahanti and Sanyal [37] are able to extract use case diagrams

and design class models from text. These works, however, do not support the extraction

of use cases’ contents (i.e., pre/post-conditions, use case steps, extensions). Moreover,

no mechanism was provided to prevent irrelevant details from being processed. For

instance, every sentence that contains a subject, verb, and object would be processed

regardless whether it describes a functionality of the system. This thus results in heavy

manual verification on the user side.

Drazan and Mencl [41] developed a technique to identify use case steps from textual

use case descriptions in some formats defined by their set of premises. This technique

Chapter 2: Background and Literature Review

 34

enables the identification of use case steps, including the ones combined in a single

sentence by coordinating conjunctions, based on the use of NLP tools to detect the

subjects, verbs, direct objects, and indirect objects in sentences. The limitation of this

work is that it assumes use case descriptions are written in a restricted natural language.

In addition, it does not allow the extraction of other use case components (i.e., pre/post

condition or extensions).

Sinha et al. [149] introduced a linguistic analysis engine to get the understanding of

textual use case descriptions. The engine is able to identify components in use case

steps (actor, action) and classify steps into a number of predefined semantic classes (i.e.,

update, input, output) using shallow parsing and a domain dictionary. In this domain

dictionary, each commonly occurring verb is associated to one or more semantic

classes. This work, however, does not deal with the cases when multiple artifacts (i.e.,

steps and/or constraints) are mixed together. In addition, it lacks support for various use

case components (i.e., pre/post-conditions, extensions).

Rago et al. [127] focused on extracting sequenced use case steps from textual use cases

and identifying duplication among them. In this work, the initial textual use case

specifications are syntactically analyzed by some NLP tools (i.e., sentence splitter, part-

of-speech tagger, and stemmer) to obtain syntactical details. Based on such details, each

step is assigned a semantic class using some machine-learning techniques. Similar to

Sinha et al.’s work [149], this work only targets on extracting use case step sequences.

2.3.2.4 UML Model Extraction

A majority of information extraction-based techniques in RE is about generating UML

models (i.e., class diagram, sequence diagram) from text. Since UML models are

important software artifacts that can help with the requirements analysis and facilitate

early design, successful automation approach would potential be greatly beneficial

software projects.

Harmain and Gaizauskas [57] were among the first researchers to develop a technique

to automate the construction of class diagrams from textual requirements. In this work,

requirements are first parsed to obtain its semantic representation in which the

dependencies between words are known. It is then used to identify the candidate classes,

Chapter 2: Background and Literature Review

 35

attributes and relationships for a class diagram. For instance, all nouns would be

considered as candidate classes while action verbs become relationships and possessive

verbs indicate the existence of attributes.

Mala and Uma [100] proposed another technique to extract class diagrams from text. In

this work, sentences are split and verb phrases are extracted from each sentence. Using

part-of-speech tagging techniques and a collection of extraction rules, the authors are

able to identify object oriented elements (i.e., class, attribute) from the verb phrases.

This work, however, makes an assumption that all sentences being processed contain

information for a class diagram. It thus does not provide any mechanism to identify and

ignore irrelevant sentences (i.e., sentences that do not contain any details that should be

extracted as class diagram components). Its application is therefore limited since users

need to manually ensure that only pertinent text is considered for the extraction.

Sharma et al. [144] generated class diagrams from structured textual requirement using

a set of heuristics. In this work, requirements are required to be specified in templates

defined by the authors and words used in each requirement must come from a set of pre-

defined set of words (glossary) that can be used in the domain of interest. To facilitate

the extraction of class diagram, each requirement is first transformed into a set of

tokens, each is then associated to a word in the glossary. Based on that, the requirement

is then automatically classified in to their pre-defined categories. Heuristic rules, which

are specifically developed for each requirement category, are then used to turn the

tokens into candidate classes and relationships. The key limitations of this work are that

it only works with requirements specified in constrained formats and that the words

used in such requirements must already exist in a glossary.

Omar et al. [117] semi-automated the extraction of entity relationship (ER) diagrams

from textual requirements specifications. Their technique relies on the use of part-of-

speech tagging and a collection of heuristic rules that guide the identification of ER

diagram components such as entities, attributes, and relationships. These heuristics are

defined based on the part-of-speech tags words in sentences. Each heuristic is also given

a weighting score in order to resolve possible conflicting heuristics in some certain

cases. User intervention would be needed to guide the extraction process in cases of

conflicts.

Chapter 2: Background and Literature Review

 36

2.3.3 Discussion

As can be seen through our discussions, the existing information extraction techniques

in RE have been greatly beneficial from the advancement of NLP technologies. Most

techniques strongly rely on the use of NLP tools for various important tasks such as

tokenizing, part-of-speech tagging, syntactic parsing, and semantic parsing. Some of

these tasks can now be done with very high accuracy (i.e., many NLP parsers achieved

over 90% accuracy rates). Moreover, most NLP tools are accompanied with training

support that allows users to further train the tools to improve their accuracy and/or

suitability in some specific domains.

However, automated information extraction still remains a difficult task in RE due to

the following two main reasons. First, due to the flexibility and expressiveness of

natural languages, requirement-related specifications and documents can be written in

various ways, making them ambiguous and thus difficult to extract details from them.

Second, some extraction tasks require the understanding of text to be properly done.

Most approaches discussed in this section overcome the ambiguity of natural languages

by making an assumption that the input text into the information extraction process is

written in a constrained format (i.e., [41, 130, 144]). This means the requirement-related

documents should be written using certain constrained languages. However, the use of

constrained languages is considered impractical by many authors [87, 98]. One of the

key reasons is that, the restriction on the syntax and semantics of languages results in

losing the flexibility of natural languages. In addition, users may have to be trained on

the languages and remember their restrictions and syntaxes. Moreover, in large projects,

documents may be shared and edited by different individuals across teams, departments,

or organizations. It thus is extremely difficult to ensure such documents to completely

conform to certain restrictions. Therefore, a new technique is needed to tackle input text

in a freely-styled format.

In order to extract necessary details from text, a common method is using heuristic rules

to guide what to extract based on the identified grammatical structures of sentences.

This method has been adopted in most approaches. For instance, subjects are identified

as use case actors while predicates, direct objects, and indirect objects hint the

extraction of use case names or use case steps in [37, 41, 142].

Chapter 2: Background and Literature Review

 37

However, grammatical structures alone cannot guarantee precise extractions. For

example, there may be a sentence that does not semantically contain details that should

be extracted (in other words, that sentence should not be considered in the extraction).

Such a sentence may still have the required grammatical structure. That means it would

be included in the extraction results while it should not be. Most discussed approaches

avoid this problem by assuming that the input text is always valid, which means there is

no “irrelevant” content. However, that comes at the cost that users have to ensure the

validity of the input text by manually verifying the text before the extraction. Such

verification can be sometimes very labor-intensive and may limit the applicability of the

extraction techniques. Therefore, there should be a better method to deal with input text

that includes invalid content.

Current approaches have limited capability in extracting goal and use case integrated

models from text. Although some heuristics for goal identification have been developed,

no automated support has been provided. Moreover, existing efforts for use case

extraction focus on high-level use case specifications. They thus do not provide any

mechanism to identify use case internal components such as pre/post-conditions,

extensions, or constraints. Such detailed extraction is important in our work since one of

the key objectives in our research is to automate the analysis of goal-use case models.

2.4 Requirements Analysis

At the beginning of every software project, some kinds of requirements documents are

usually written. According to a survey by Luisa et al. [98], a majority of such

documents are written in natural languages. However, this brings up an issue that these

requirements documents may likely be imprecise, incomplete, and inconsistent since

these quality are considered extremely difficult to achieve using mere natural language

as the main presentation means [54, 74].

According to Boehm [12], in software development, the later an error is found, the more

expensive its correction. Therefore, it is a critical task in requirements engineering,

specifically in requirements analysis, to identify and resolve such defects to ensure the

success of the software project. In this section, we start with a discussion on problems

regarding the consistency, completeness, and correctness of requirements (the 3Cs

problems). We then discuss the existing efforts in automated requirements analysis.

Chapter 2: Background and Literature Review

 38

2.4.1 The 3Cs Problems in Requirements

2.4.1.1 Consistency

Consistency is the property that no two or more requirements in a specification

contradict each other [181]. In other words, if there exist two or more requirements that

cannot be fully satisfied altogether, then such requirements are considered inconsistent

with each other. The inconsistency of requirements is considered one of the most

serious problems in RE since it may prevent part of the stakeholders’ expectation being

unsatisfied and thus, hamper the success of the software development project [86].

According to Nuseibeh [115], the causes of requirements inconsistency may arise

different language usage, varying development strategies, different views held by

participants, and the overlap of the concerns of different stakeholders. Inconsistency is

viewed as an internal property of a certain body of knowledge [181] since it is only

concerned with the relationships among the requirements that have already been

explored and specified.

2.4.1.2 Completeness

Boehm [13] defined three fundamental characteristics of a complete requirements

documents: (1) No information is left unstated or “to be determined,” (2) The

information does not contain any undefined objects or entities, (3) No information is

missing from this document. The first two properties are referred to as internal

completeness since they are concerned with the existing requirements. The third

property is classified as external completeness since it aims to ensure all the information

required for the problem of interest is found within the specified requirements. This

demonstrates the complexity of ensuring the completeness of requirements since it is

impossible to guarantee no extra requirement is needed for a certain system [181].

Zowghi and Gervasi [181] proposed that, to determine the degree of completeness of

requirements, it is more meaningful to verify whether a specification is sufficiently

complete. The decision on how a requirements specification is sufficiently complete

would have to be defined with respect to the type of system being implemented. For

instance, in safety-critical systems, the important consideration to define sufficient

completeness are the system safety design constraints and requirements derived from

Chapter 2: Background and Literature Review

 39

hazard analysis [94]. Similar to inconsistency, incompleteness is also a serious issue in

RE since it results in missing features in the system-to-be [3].

2.4.1.3 Correctness

According to Zowghi and Gervasi [181], “correctness is usually meant to be the

combination of consistency and completeness.” In other words, a specification is correct

if it is both consistent and complete. Therefore, it is incorrect if it is inconsistent or

incomplete.

Zowghi and Gervasi [181] also indicate very important inter-relationships between

these properties. In fact, resolving inconsistency between requirements may involve the

removal of one or more requirements from the specification and thus results in the

diminish the requirements completeness and correctness. On the other hand, adding new

requirements may introduce new inconsistency in the specification and therefore also

reduce its correctness. Due to such characteristics, it is a well-known fact that

requirements are often incomplete and inconsistent during most of their life. Therefore,

requirements engineers should be able to keep track of the statuses regarding the

incompleteness and inconsistency (and thus, incorrectness) of requirements and have

appropriate actions (i.e., either tolerate the problems, or resolve them) at different stages

during the requirements evolution.

Since modeling requirements is one of the key approaches to understanding and

analyzing requirements. As discussed in section 2.2.2, different types of modeling

languages have been proposed to provide means for viewing requirements from

different perspectives (i.e., goal models, use case models). In such modeling

approaches, there is another notion of correctness that is about ensuring the models to

be generated correctly. For instance, the models need to conform to certain constraints

and rules of the associated modeling languages and the models must correspond to the

requirements being modeled. Since our research concentrates on goal and use case

integrated modeling, this is the notion of correctness that we focus on, besides

consistency and completeness problems.

Chapter 2: Background and Literature Review

 40

2.4.2 Automated Requirements Analysis Techniques

One of the key concerns of our research is developing automated support for the

identification of the 3Cs problems in goal and use case integrated models specified in

natural languages. In this section, we provide a review on existing efforts in automated

requirements. We limit the scope of our discussion to the approaches to detecting the

3Cs problems in natural language requirements, and goal-use case models. In these

approaches, only few address problems specific to the integration of goals and use

cases. In addition, limited work has been done on detecting inconsistency between goals

and associated use cases or missing relationships between goals and use cases.

All automated techniques for analyzing requirements share the same concept, that is, the

requirements have to be transformed to a certain formal modeling language which can

be interpreted and processed by computers. However, due to different concerns and

objectives, different approaches may follow different designs and techniques. We

classify the research efforts in this area into three categories that are discussed in

detailed in the following sub-sections: formal methods, ontology-based methods, and

natural language processing-based methods.

2.4.2.1 Formal Methods

Formal methods have a long history. They were probably the first approach in

automated requirements analysis with the first proposal was made at least in the 1970s

according to a 1977 literature review on requirements analysis techniques [157]. The

principle of formal methods is to formalize requirements with a formal language that

can be interpreted and processed by computers and thereby, facilitating the automated

detection of requirements problems. Various formal requirement specification

languages have been proposed to tackle requirements from different perspectives. Some

of the key formal languages include logic-based (i.e., propositional, first-order, or

temporal logic) specification languages, state-based specification languages (i.e., Z

[122, 153], VDM [42], B [1], Alloy [67], and OCL [168]), event-based specification

languages (i.e., SCR [58], RSML [95], LTS [159], and Petri nets [105]).

In the following sub-sections, we discuss the commonly used formal analysis

techniques and some of their applications in goal and use case model analysis.

Chapter 2: Background and Literature Review

 41

2.4.2.1.1 Formal Requirements Analysis Techniques

In this section, we discuss the commonly used techniques for verifying 3Cs problems in

requirements in formal methods.

Language Checks

This technique is the simplest one. It mainly deals with the correctness of requirements

specifications. It relies directly on the specification syntax and semantics of a specific

formal language being used [163]. For example, a specification is considered incorrect

if it does not conform to the language’s grammar, or it has a variable used outside its

scope (i.e., in Z specification language). Depending on the language used, the types of

checks can be different.

Dedicated Consistency and Completeness Checks

This technique is based on the checking of input-output relations that describe the

expected services or behaviors of the system [163]. For instance, to check consistency,

an algorithm can be developed to verify if there is any situation in which there are more

than one output corresponds to a single input (which would create an undesirable non-

deterministic system behavior). To check incompleteness, an algorithm can be built to

verify if there is an output situation that does not have any corresponding input (which

would result in some valid state or behavior of the system never being achieved).

Model checking

Model checking is a formal technique to verify finite-state concurrent systems in which

specifications are written in temporal logic [25]. In RE, model checking is normally

used to verify if a formal model satisfies some desired properties such as requirements,

assumptions, or domain properties [163]. The key idea of model checking is to

systematically analyze a model to identify property violations. If a violation is found,

the algorithm produces a counter-example that does not satisfy the property.

Theorem Proving

Different from model checking technique which is algorithmic, theorem proving

technique is used to verify requirements specifications based on the inference rules

defined in the formal languages underlying such specifications. In this technique, a

Chapter 2: Background and Literature Review

 42

certain property is first selected as a candidate theorem. The existing formal

specifications are considered as axioms. A theorem prover tool is then used to verify if

the candidate theorem can be proved based on the inference rules defined in the

specification language [163].

2.4.2.1.2 Formal Methods in Goal and Use Case Model Analysis

KAOS [161, 165] is a framework aimed to support the process of Requirements

Engineering including the management of requirements conflicts. In KAOS,

requirements are formalized in linear temporal logic (LTL) to enable the conflicts

detection using formal reasoning methods and heuristics. Based on the use of LTL,

some algorithms have also been developed to identify obstacles to goal satisfaction to

improve the model’s completeness [3]. However, the use of LTL requires requirements

engineers to be sufficiently familiar with LTL and be able to correctly specify

requirements. Thus, its applicability in practice can be fairly limited [43]. In addition,

although KAOS supports the capture of domain knowledge through the use of its

conceptual meta-model, the concepts and relationships in the problem domain and the

semantics of requirements cannot be adequately expressed and reasoned in LTL [15].

Tropos [49] provides formal analysis of early requirements. The analysis in Tropos is

done using model checking with the support of a specification language called Formal

Tropos which is derived from the i* modeling language [21] and the KAOS temporal

specification language. Similar to KAOS’s specification language, Formal Tropos is

considered complicated to be used in practice. Moreover, although supporting

inconsistency detection between goals, both frameworks do not provide explicit

automated supports to detect inconsistency between goals and use cases and

incorrectness and incompleteness among the artifacts. Furthermore, use case

specification and analysis are not supported in both KAOS and Tropos.

Lauenroth and Pohl [86] proposed an approach for dynamically checking consistency

among behavioral invariants in product line variability models. In this work, behaviors

of the product line are specified by a set of automata. A contradiction function is also

developed to serve as a basis for the inconsistency verification. The automatic checking

approach is based on the model checking technique. Due to having a different objective

from our research, this work does not tackle our problems in goal and use case analysis.

Chapter 2: Background and Literature Review

 43

Sikora et al. [146] developed a framework to specify scenarios at different levels of

abstraction (called system level and component level) and support the automated

consistency verification of such scenarios based on message sequence charts (MSC). In

this work, the consistency check is carried out for each pair of scenarios on the system

level and component level that are related by a ‘refines’ link. Such check is based on a

transformation of the specified MSCs to interface automata and the computation of

differences between the automata or, respectively, the regular languages associated with

the automata. This work, however, does not deal with semantic errors and other

problems such as incorrectness and incompleteness among goals and use cases.

Lee et al. [111] proposed a method to formalize use case specifications using Petri nets

in order to automatically identify inconsistency and incompleteness of use cases. Petri

nets provide a means to formally specify use cases as a set of events and states. A

number of inconsistency and incompleteness rules were developed to support the

automated verification of use cases. Many approaches followed a similar technique to

automate the analysis of use cases. They formalized use cases in different formal

languages. For instance, Hsia et al. [65] used BNF-like grammar, Dano et al. [32] used a

combination of a tabular notation and Petri nets, or Glinz [52] used statecharts.

However, the main drawbacks of these approaches include the complicated manual

formalization process of use cases and the lack of semantic capturing which makes

semantic problems undetectable.

2.4.2.1.3 Challenges of Formal Methods for Requirements Analysis

Formal methods provide great support for requirements specification and analysis. In

fact, due to the formally defined syntax and semantics, formal languages eliminate the

problems of ambiguous problem of natural language-based requirements specifications.

In addition, formal languages allow a way to automate the requirements analysis since

they can be interpreted and processed by computers.

However, a major practical challenge of using many formal methods is the use of

complicated formal languages. Many researchers have criticized that formal languages

are not suitable for practical use [43, 149] since they are generally hard to read and

write, and getting adequate, consistent, and complete specifications requires

considerable expertise and training. Due to such complexity, formal languages cannot

Chapter 2: Background and Literature Review

 44

be used as an effective communication means between requirements engineers and

stakeholders. Moreover, formal languages generally have limited expressive power

compared to natural languages [163]. They mostly only address the functional aspects

of systems (except some languages that can express temporal properties).

2.4.2.2 Natural Language-based Methods

Natural language-based techniques (i.e., [152, 59, 78]) for requirements analysis take

another direction. Instead of representing requirements in formal languages, they focus

on the use of natural languages as the principle representation language for

requirements. Different types of linguistic techniques can be applied to these

requirements to achieve some automated analysis support. Generally, these techniques

fall into two categories. The first one contains the approaches that rely only on linguistic

techniques to analyze textual requirements. The second category includes the efforts

that involve the transformation of textual requirements into formal specifications to

perform automated analysis. Below, we discuss efforts in both categories.

Approaches that Rely on Only Linguistic Techniques

Lami et al. [152] proposed an approach with tool support (QuARS) for analyzing

textual requirements specifications. The authors developed a quality model that defines

the indicators and metrics for detecting quality problems (i.e., ambiguity, subjectivity)

in textual requirements. Based on this model, problems can be automatically detected

based on keyword-matching techniques (i.e., finding if a requirement contains one or

more quality problem indicators and calculate metrics). The limitation of this work is

that, its analysis support is limited to syntax-related issues while the actual meanings of

requirements are not considered.

Also following a light-weight natural language technique, Kamalrudin et al. [59]

developed a to identify inconsistencies in Essential use case (EUC) models based on a

set of EUC patterns. The method allows natural language requirements to be extracted

into abstract interactions and transformed into EUCs for automated analysis. This work,

however, does not deal with semantic-related problems, and incompleteness and

incorrectness detection in goals and use cases.

Chapter 2: Background and Literature Review

 45

Kim et al. [78] introduced a method to semi-automatically support the identification of

conflicts in goal-scenario models using linguistic techniques. They assume that each

specification can be parameterized into verb, object, and resource. A number of rules

have been developed to hint the conflict detection. For instance, if two specifications

have the same verb and resource while having different objects, then they are

considered potentially conflicting since they may indicate two activities that use the

same resource. However, the accuracy of this approach is limited since they do not have

any support for checking the actual meaning of specifications. Moreover, goal and

scenario specifications may contain additional details, and thus, analyzing them based

on only verb, object and resource may not be sufficient. In addition, there is no support

to automate the identification of these parameters from textual specifications.

Sinha et al. [148] introduced a technique to analyze textual use case specifications. At

the core of this work is a pre-defined domain dictionary in which each action (verb) is

classified into a semantic class (i.e., INPUT, CREATE). Based on such a dictionary and

natural language parsing techniques, the authors can identify a number of problems in

use case specifications such as missing actors, or using an object before it is created, or

invoking an undefined use case. This work, however, lacks the consideration on

pre/post-conditions and extensions (i.e., identify if a certain exception in use case flow

has not been handled by a pre-condition or an extension).

Ferrari et al. [47] proposed a technique to measure and improve the completeness of

requirements specifications. The notion of completeness targeted in this work is

“backward functional completeness,” which means a set of requirements is considered

complete with respect to an input document if all terms from the input documents and

interactions between these terms are treated in the requirements specifications. In this

technique, given an input document, a natural language processing technique called

“contrastive analysis” is used to identify the domain-specific terms. The relevant

relations between such terms are also extracted based on the Log-likelihood metrics

(basically the idea is that, terms often appear together are likely to have relations).

Requirements are then analyzed to verify if they contain the extracted terms and

interactions. In this way, the degree of completeness can be determined.

Chapter 2: Background and Literature Review

 46

In our view, checking requirements completeness based on missing domain-specific

terms in requirement sets can be helpful to some extent. However, a high number of

false positives and false negatives can be produced (i.e., there is no need to have a

requirement that has a certain term, or even all domain-specific terms are used in a

requirement set, it does not necessarily mean the requirements are complete). Moreover,

this technique does not take into account synonyms of terms (i.e., if a term is not

contained in any requirement, however its synonym is. This thus should not be

considered as incomplete). A more comprehensive approach that can incorporate

knowledge in the problem domain could potentially improve the completeness

checking.

Approaches that Require Formal Language Transformation

Gervasi and Zowghi [51] aim at automating the inconsistency detection of high-level

natural language requirements. They developed a method that automates the

transformation of natural language requirements into propositional logic statements and

use default reasoning to identify inconsistencies. This work, however, does not deal

with semantic-related issues. 3Cs problems analysis in the context of goals and use

cases is also not supported.

Using a similar approach, Gervasi and Nuseibeh [50] enable the transformation of

natural language-based requirements into specifications in a formal language (i.e.,

SCR), which then allow automated analysis for various problems including

inconsistency. The transformation and validation of requirements are supported by the

tool Cico [4]. This work, however, also lacks support for semantic-related problem

detection, and analysis in the goal-use case modeling context.

Simko et al. [147] proposed a technique to automate the correctness verification of use

case specification. In this work, the authors defined the syntax and semantics of an

annotating language that can be used to annotate the flows of use cases and their

temporal information (i.e., a certain step must occur before another). Such annotations

can be automatically parsed and transformed into LTS specifications which then be

converted to the Symbolic Model Verifier language for automated analysis using model

checking. Inconsistency and incompleteness detection, however, are not in the scope of

this work.

Chapter 2: Background and Literature Review

 47

Holtmann et al. [60] introduced a technique of using a controlled natural language to

specify high-level textual requirements. Based on the use of this language, requirements

can be automatically transformed into the authors’ defined structural pattern in which

they can be analyzed for problems including inconsistency and incompleteness using a

set of rules. However, the types of requirements targeted in this work remain on a high

level. They mostly describe the system composition or enumerate which services are

supported.

2.4.2.3 Ontology-based Methods

Ontology-based requirements analysis approaches rely on the idea that domain

knowledge and semantics of domain-specific terms could be helpful in identifying

problems in requirements specifications. In these approaches, such knowledge and

semantics are generally captured in domain ontologies with OWL languages to provide

automated reasoning support.

Kaiya and Saeki [72] proposed an approach of using domain ontologies to analyze

inconsistency, incompleteness and incorrectness in requirements. Each term in a

requirement is manually mapped to an ontological concept for getting semantic support.

The analysis is done based on the relationships between concepts in the ontology. For

instance, if a requirement is linked to a concept ‘create,’ if ‘create’ has a ‘require’

relationship with ‘edit’ and there is no requirement linked to the concept ‘edit,’ then

there is incompleteness. Similarly, inconsistency is detected based on ‘contradictory’

concepts. The disadvantage of this approach is that using only relationships between

atomic concepts may result in a considerable number of false negatives. For instance, if

there are requirements about “create an account” and “edit a review,” then it is not

detectable that a requirement about “edit an account” is missing. In addition, the

approach does not provide analysis support in the context of goal-use case integration.

Rajan and Wahl [128] support the automated analysis of natural language requirements

using domain ontologies. Their tool support allows users to enter natural language

requirements in a constrained format, which are then automatically transformed into

some representations to allow automated reasoning. This work provides similar

ontological support to Kaiya and Saeki and thus shares the same disadvantages. Several

authors have proposed similar approaches, for instance [44, 66, 92].

Chapter 2: Background and Literature Review

 48

RAT [167] is an ontology-based requirements analysis tool that allows requirements to

be input in natural language. Based on a set of standardized requirements specification

syntax and user-defined glossaries, the tool enforces requirements to be written in a

systematic way to avoid linguistic defects (i.e., ambiguity, terminology inconsistency).

In addition, the tool offers a way to identify potential conflicting requirements by

categorizing requirements into different pre-defined ontology classes whose

relationships are captured. The key disadvantages of this work include its lack of

support for detection of logical inconsistency, inconsistency involving more than two

artifacts and several goal-use case models’ specific types of incompleteness and

incorrectness.

Körner and Brumm [83] proposed an approach to improving the completeness of

natural language requirements specifications with the help of ontologies and a part-of-

speech tagger. Their approach can detect possible requirements incompleteness such as

incompletely specified process words (i.e., a verb is used while its subject is missing),

the use of modal verbs of necessity (i.e., the word “must” is used), incompletely

specified conditions (i.e., there are “if” and “then” clauses specified in a sentence while

there is no “else” clause). This technique, however, does not tackle more complicated

tasks such as identifying if an extension is missing in use cases, or a goal is missing a

certain constraint.

2.4.3 Discussion

Each approach to automated requirements analysis has its own benefits and limitations.

Formal methods are promising approaches due to the strength of formal languages in

terms of machine-understandability. However, such methods suffer from two main

problems: limited expressive power, and being complicated for practical use. Natural

language-based techniques allow users to work directly with natural language.

However, they lack the capability of automating complicated checking as supported

with formal methods. Ontology-based approaches leverage the analysis of requirements

by providing a way to incorporate domain knowledge and semantics that have been

proved as an important part in verifying requirements. This technique generally requires

words in requirements to be associated to the corresponding ontological terms.

However, such association needs to be done manually in most existing ontology-based

Chapter 2: Background and Literature Review

 49

approaches, which considerably diminishes their level of automation. Moreover, current

ontology-based techniques mainly support the incorporation of the semantics of

domain-specific term into requirements analysis. No work has been done to examine the

possibility of capturing and using more sophisticated domain knowledge (i.e., domain

rules, tasks, constraints, assumptions) with ontologies.

With the objective of providing automated analysis support for goal and use case

integrated models specified in natural languages, we identified the following additional

research gaps:

• No work has been done to provide comprehensive automated analysis for goal

and use case models. Although there are a number of techniques developed for

goal and use case models individually, no work has tackled the possible

problems (i.e., inconsistency) when modeling goals and use cases together.

• No work has been done to comprehensively capture the semantics of natural

language-based requirements (formal methods are excepted since our objective

is to work with textual requirements specifications) and take such semantics into

account during the requirements analysis. Although some techniques attempted

to model the semantics of requirements, they only do that partially by

considering only key parameters of requirements such as actors, actions, and

objects (i.e., [45, 78, 83]). In our view, other parameters (e.g., beneficiary,

means, location) are critical for understanding requirements as well since they

contribute to the meanings of requirements.

2.5 Summary of Research Gaps

In this chapter, we have provided some background on requirements engineering and

discuss our literature review on the related efforts in goal-use case modeling,

requirements extraction, and requirements analysis. We summarize the identified

research gaps as follows:

Goal and Use Case Integrated Modeling (GUIM)

Different approaches, with different foci, define different set of concepts and

relationships to model. In addition, little consensus exists among the existing GUIM

approaches in regards to what to be modeled in a general goal and use case integrated

Chapter 2: Background and Literature Review

 50

model. Moreover, no existing GUIM approach is comprehensive enough to model both

goals and use cases as each lacks support for certain artifact types and dependencies.

Such problems potential result in the following issues:

• It is difficult for requirements engineers to decide what to capture in a general

goal-use case model

• It is difficult for requirements engineers if models created in different

approaches were to be combined.

• The lack of agreed types of artifacts to be modeled prevents goal-use case

models to be adequately analyzed. Existing GUIM approaches do not

sufficiently address key analysis questions such as: how to verify if an artifact is

not properly specified? How to check if artifacts are not correctly connected?

How to ensure a use case is matched with its associated goal? How to detect if a

required artifact has not been elicited?

In this research, we target to develop a goal and use case integrated meta-model to

address the discussed problems.

Automated Goal and Use Case Model Extraction

Current approaches have limited capability in extracting goal and use case integrated

models from text. Although some heuristics for goal identification have been developed,

no automated support have been provided. Moreover, existing efforts for use case

extraction focus on high-level use case specifications. They thus do not provide any

mechanism to identify use case internal components such as pre/post-conditions,

extensions, or constraints.

Many techniques overcome the ambiguity problem of natural languages by making an

assumption that the input text into the information extraction process is written in a

constrained format. However, constrained languages are considered unsuitable for use

in practice, making such extraction techniques less applicable.

Other techniques, on the other hand, deal with freely-styled text by using heuristic rules

to guide what to extract based on the identified grammatical structures of sentences.

However, grammatical structures alone cannot guarantee precise extractions. For

instance, a sentence containing irrelevant details may be extracted if it satisfies the

Chapter 2: Background and Literature Review

 51

required grammatical structure. The semantics of text thus needs to be also taken into

account during the extraction process to avoid (or minimize) invalid extraction results.

In our research, we target to develop automated support for the extraction of goal and

use case integrated models from text. We also aim to overcome the above discussed

problems by ensuring our technique to (1) support the model extraction from freely-

styled text, and (2) consider semantics of text during the extraction process.

Goal and Use Case Model Analysis

No work has been done to provide comprehensive automated analysis for goal and use

case models. Although there are a number of techniques developed for goal and use

case models individually, no work has tackled the possible problems when modeling

goals and use cases together (i.e., inconsistency between a goal and its connected use

case).

Moreover, no work exists to comprehensively capture the semantics of natural

language-based requirements (so that the entire requirements can be interpreted by

computers) and take such semantics into account during the requirements analysis. In

addition, although domain knowledge and semantics have been recognized as an

important part in requirements analysis, existing techniques (i.e., ontology-based

techniques) mainly consider the capturing and use of domain-specific terms and their

relationships without providing support for more complicated knowledge (i.e.,

assumption, domain tasks, or dependencies between tasks).

In our research, we aim to develop an approach to automating the analysis of goal and

use case integrated models for the 3Cs problems. We target at supporting natural

language-based goal and use case specifications while overcoming the above discussed

problems by: (1) providing a technique to systematically capture the semantics of

requirements so that they can be interpreted and processed by computers (so that the

analysis can be automated), and (2) providing a technique to comprehensively capture

and use domain knowledge and semantics with ontologies.

Chapter 3: Approach

 52

Approach

In this chapter, we provide an overview of our approach to goal and use case integrated

model extraction and analysis. Section 3.1 presents a motivating scenario (which is an

extension of a real-word case study later presented in section 3.5.2) to illustrate the

research problems that we target in this thesis. Section 3.2 discusses our analysis of the

problems. It presents the set of requirements that we established for possible solutions

to such problems. Section 3.3 provides an overview of the approach that we took to

build a goal and use case integration framework to address these solution requirements.

Section 3.4 describes the goal-use case modeling and analysis process in our

framework. Section 3.5 discusses our evaluation approach which includes an

introduction to the evaluations that we conducted, and the set of case studies that we

used for evaluations in this research. From this chapter to the rest of the thesis, we use

the term ‘artifact’ to refer to the elements being captured (except relationships) in a

goal-use case integrated model (i.e., goals, use case components, constraints).

3.1 Motivating Scenario

Consider a group of requirements engineers who are distilling the requirements for a

Traveler Social Networking system, that is intended to improve the quality of travel

planning (of travelers). They intend to use goal and use case modeling to

comprehensively capture, understand, and analyze the requirements. In the following

sub-sections, we discuss the problems that they face during this process.

Chapter 3: Approach

 53

3.1.1 Determining what should be modeled

Assume at the current stage, they have obtained the requirements document for the

system and start to build a goal and use case integrated model. Figure 3-1 presents some

selected parts in a requirements document that contain the descriptions of goals and use

cases. The requirements engineers need to extract the details of goals and use cases

from this piece of requirement text to build a goal-use case model. However, one of the

key challenges in this step is to determine what to model and how to model them.

Below, we provide a closer look into this challenge.

Figure 3-1. Motivating Scenario for Goal-Use Case Model Extraction

Although general understanding of requirements and goals may help identify what

artifacts should be extracted from text (i.e., sentence (S1) should not be considered as an

artifact since it is an introduction to a system), to ensure the consistency of goal-use

case modeling, fundamental guidelines are needed to instruct the requirements

engineers on what artifacts to be modeled, what their roles are and how they should be

specified. For instance, should the sentences Step 3-(ii) and Step 5-(ii) be modeled as

artifacts? From our analysis, they are important artifacts (data and quality constraints)

within the given use case. However they are not supported in many existing GUIM

approaches (i.e., [91], [27]).

(S1) This software system will be a Social Networking System for travellers around the world. (S2) This system will be
designed to improve the quality of travel planning by providing tools to assist in facilitating the communication between
travellers. (S3) To improve the quality of travel planning, the system supports travelers to share and gain experiences
while remaining easy to understand and use. (S4) More specifically, travelers shall be able to participate in forum
discussions, and create reviews and travel articles. (S5) They should also be supported to create reviews quickly.
...
Use case: Create Reviews
Brief Description: (S6) A traveler creates a review
Pre-condition: (S7) Before this use case can be initiated, the traveler has successfully logged into the system.
Main Success Scenario
Step 1. (i) The traveler selects to create a review.
Step 2. (i) System prompts the traveler to select a review category.
Step 3. (i) The traveler selects review category. (ii) The list of categories includes hotel, attraction, restaurant and tour.
Step 4. (i) System displays the suitable review creation form to the traveler.
Step 5. (i) The traveler enters the review content and submits it.
Step 6. (i) System validates the review. (ii) The validation should be completed within 1 second.
Step 7. (i) If the review content is valid, the system stores the review into the database and display confirmation message
to the traveler; (ii) else the system displays the errors to the traveller and the traveler repeats step 5.
Post-condition: (S8) After this use case is successfully finished, the new review is stored

Chapter 3: Approach

 54

In addition, although the artifact “Facilitate the communication between travelers”

(from sentence (S2)) can be modeled in several GUIM techniques, it is classified into

different categories by those techniques. For instance, it is categorized as a rigid goal in

[91], summary goal in [27], and design goal in [76]. Therefore, we need to unify them

in a conceptual foundation. Moreover, artifacts in a model need to be consistently

specified. For example, should the entire sentence (S2) be a specification for an artifact

or should it be split into two artifacts “Improve the quality of travel planning” and

“Facilitate the communication between travelers”? Unfortunately, the existing GUIM

approaches provide insufficient guidance on how to specify such artifacts.

Moreover, the existing GUIM techniques lack support for several important

relationships between artifacts at goal levels and use case level. For instance, the refine

relationship between the goal “Travelers shall be able to quickly create reviews” (from

(S5)) and the use case constraint “The validation should be completed within 1 second”

(from Step 6-(ii)) (a short validation time would help travelers quickly create reviews) is

neglected. Furthermore, since different techniques use different artifact categories,

different sets of relationships are defined. Thus, we need to study the correlation of

these relationships and unify them under a conceptual foundation.

3.1.2 Goal-Use Case Integrated Models Extraction

Assume that the requirements engineers now have a framework that indicates what

types of artifacts and relationships to be modeled. Figure 3-2 shows an example of their

desired extracted model from the text provided in Figure 3-1. In this example, BG1 is a

business goal. NPG1 and NPG2 are non-functional product goals. FFG1, FFG2, etc. are

functional feature goals. FSG1, FSG2, etc. are functional service goals. NSG1 is a non-

functional service goal. DC1 is a data constraint and NUUC1 is a non-functional use

case constraint. The characteristics of these types of goals are not important in this

scenario. They are discussed in details in Chapter 4. The key purpose of having these

goals here is to illustrate that the extracted goals should be placed on appropriate levels

of abstraction.

Moreover, three types of relationships are included in this example, including refine,

operationalize, and constrain. A refine relationship specifies an artifact supports the

satisfaction of another artifact. An operationalize relationship denotes a use case

Chapter 3: Approach

 55

describing steps to achieve a goal. A constrain relationship represents that an artifact

specifies a data or non-functional constraint of another artifact. Below, we discuss the

key challenges of the requirements engineers in extracting such a model from the

requirements text. For readability reason, we have placed labels underneath each artifact

or on each relationship to indicate in which example(s) that artifact or relationship is

referred to. For instance, Ex2 means that the corresponding artifact or relationship is to

be mentioned in Example 3-2.

Figure 3-2. Extracted Goal-Use Case Model

Identification of Artifacts from Text

Identifying artifacts from text is one of the key challenges due to the following reasons.

First, not all sentences and not all parts of a sentence in a requirement document contain

goal or use case descriptions. Second, multiple goals or use case steps may be mixed up

in a single sentence. Third, use case steps are often combined with constraints. Four,

FFG4: Travellers shall be able to
participate in forum discussions

FFG1: Facilitate the
communication between travellers

FFG2: Travellers shall be
able to gain experiences

FFG3: Travellers shall be
able to share experiences

BG1: Improve the quality of travel
planning

Business Level

NPG1: The system shall
be easy to understand

NPG2: The system
shall be easy to use

Product Level

Feature Level

FSG1: Travellers shall be
able to create reviews

FSG2: Travellers shall be
able to create travel articles

Service Level

Operationalize link
Refine link

Constrain link

Use Case UC1: Create Review Actor: Traveller
Pre-condition: The travellers has successfully logged into the system
Post-condition: The new review is stored
Steps:
UC1_Step1. The traveller selects to create a review
UC1_Step2. System prompts the traveller to select a review category
UC1_Step3. The traveller selects review category
UC1_Step4. System displays the suitable review creation form to user.
UC1_Step5. The traveller enters the review content
UC1_Step6. The traveller submits the review content
UC1_Step7. System validates the review
UC1_Step8. If the review content is valid, the system stores the review into the database
UC1_Step9. System displays confirmation message to the traveller
Extension Ext1:
 Condition: The review content is not valid
 Starting Step: 7
 Extension Steps:
 7.1. The system displays the errors to the traveller
 Resuming Step: 5

DC1: The list of
categories includes hotel,
attraction, restaurant and
tour

NUUC1: The validation
should be completed
within 1 second

NSG1: Travellers shall be
able to create reviews quickly

Ex2

Ex2

Ex3

Ex3Ex3

Ex3Ex3

Ex6 Ex6 Ex6

Ex6
Ex6

Ex7

Ex8

Ex9

Ex10

Ex11

Chapter 3: Approach

 56

alternative paths in a use case are often combined as a single use case step. Thus,

automatically filtering important information from text is needed. So is the automatic

separation of different artifacts mixed up together. We illustrate these challenges with

the following examples.

Example 3-1: The sentence (S1) – “This software system will be a Social Networking

System for travelers around the world” in Figure 3-1 does not contain a goal

description. It is rather an introduction to the system. It thus should be ignored.

Example 3-2: In the sentence (S2), the phrase “This system will be designed to” has no

significance regarding the objective, functionality or quality of the system. Its role in the

sentence is to highlight the more important part which is “improve the quality of travel

planning by providing tools to assist in facilitating the communication between

travelers.” For a similar reason, it can be seen that the phrase “providing tools to assist

in” is unimportant. Therefore, the artifacts to be extracted from this sentence are:

“Improve the quality of travel planning” and “Facilitate the communication between

travelers” (they are goals BG1 and FFG1 respectively in Figure 3-2).

Example 3-3: The sentence (S3) is a typical example of a single sentence that contains

multiple artifacts. In fact, five artifacts can be extracted from this sentence, including:

BG1 (“Improve the quality of travel planning”), FFG2 (“Travelers shall be able to gain

experiences”), FFG3 (“Travelers shall be able to share experiences”), NPG1 (“System

shall be easy to understand”), and NPG2 (“System shall be easy to use”).

Example 3-4: The step 3 of the use case in Figure 3-1 contains a use case step in the

first part (Step 3-(i) – “The traveler selects review category”) and a data constraint

(about manage options) in the second part (Step 3-(ii) – “The list of categories includes

hotel, attraction, restaurant, and tour”). They need to be distinguished to guarantee a

correct extraction of use cases. Additionally, step 5 is a combination of two separated

steps (“The traveler enters the review content” and “The traveler submits the review

content”). Moreover, step 6 consists of a use case step (Step6-(i)), and a non-functional

constraint (Step6-(ii)).

Example 3-5: Step 7 (in Figure 3-1) combines a use case step with an extension

specification. It should be extracted into the extension Ext1 in Figure 3-2.

Chapter 3: Approach

 57

Identification of Artifact Relationships

A goal-use case model requires the relationships between the artifacts to be specified.

These relationships are often implicitly mentioned in requirements specifications.

Example 3-6: In the sentence (S2), the structure “by providing…” implies a refinement

relationship between “improve the quality of travel planning” and “providing tools to

assist in facilitating the communication between travelers.” This relationship should be

extracted as showed between the goals BG1 and FFG1 in Figure 3-2. Similarly, in the

sentence (S3), we have the refinement relationships between BG1 (“Improve the quality

of travel planning”) and the following goals: FFG1 (“Travelers shall be able to gain

experiences”), FFG2 (“Travelers shall be able to share experiences”), NPG1 (“System

shall be easy to understand”), and NPG2 (“System shall be easy to use”). Note that

although both sentence (S2) and (S3) contain the text “Improve the quality of travel

planning,” they should be merged into a single artifact (BG1) to avoid redundancy.

Classification of Artifacts
In requirements engineering, goals need to be classified as functional or non-functional

(This is a common way to categorize goals, besides other classifications such as hard vs.

soft). Moreover, they need to be classified based on how abstract or concrete they are.

Both such classifications are important to understand and analyze goal models [132,

162]. In addition, other artifacts (components in use cases) also need to be classified to

differentiate one from another. The following examples clarify these challenges.

Example 3-7: The goal BG1 “Improve the quality of travel planning” describes a

business objective, not a functionality or quality of the system. It thus should be placed

on a business level.

Example 3-8: The goal NPG1 “The system shall be easy to understand” should be

classified as a non-functional goal since it describes a usability quality that the system

must meet. Moreover, NPG1 should be placed on a product level since it is concerned

about the system as a whole, rather than a specific feature.

Example 3-9: The artifact NUCC1 “The validation should be completed within 1

second” (from Step6-(ii) in Figure 3-1) should be classified as a non-functional

constraint since it describes a performance constraint of a use case step specified in

Step6-(i) (“System validates the review”).

Chapter 3: Approach

 58

Ensure Artifacts Are Properly Specified

When identifying artifacts, relevant text in the requirements document is located.

However, they are often fragments of the sentences in which they are contained and

thus in many cases, cannot be used as descriptions for stand-alone artifacts. Therefore,

we need to ensure those artifacts are rewritten in a sensible way after being extracted.

Example 3-10: In sentence (S3), it is identified that “remaining easy to understand”

contains a goal description. However, this phrase, by itself, is not a meaningful goal

description. The context of the whole sentence needs to be considered to obtain a proper

specification. As showed in Figure 3-2, this phrase should be changed to “The system

shall be easy to understand” to properly specify the goal (labeled as NPG1).

Example 3-11: There are two use case steps identified in the step 5 (“the travel enters

the review content and submits it”) of the use case description which are “The traveler

enters the review content” and “The traveler submits it.” The context of the sentence is

needed to recognize which noun phrase the pronoun “it” refers to. A replacement of

“it” by “the review content” is necessary for a proper use case step specification

(UC1_Step6 in Figure 3-2). This process is referred to as coreference resolution in the

field of natural language processing.

3.1.3 Goal-Use Case Integrated Model Analysis

Assume that the requirements engineers have extracted and built a goal-use case model

from the given text. They then continue to build up the model with the details from

other parts of the requirements document. However, the model now contains a number

of incorrectness, incompleteness and inconsistency that they need to be able to identify

and resolve. They are shown in Figure 3-3. In this section, we discuss some of these

problems in details. Similar to Figure 3-2, for the sack of readability, the labels

underneath each artifact indicates in which example(s) that artifact is mentioned.

Incorrectness

In our work, correctness refers to the correspondence between artifact specifications and

the system’s needs and constraints. In other words, it is concerned with the soundness of

an artifact specification. In the following examples, the obtained goals and use cases

may be incorrect due to their unsound specifications or relationships.

Chapter 3: Approach

 59

Figure 3-3. Motivating Scenario for Goal-Use Case Model Analysis

Example 3-12: Consider the functional goal FFG3 “System shall be secure” and UC2’s

use case step “Traveler enters article subject quickly.” These specifications are

malformed for their types. The former should describe a system’s functionality rather

than quality while the later should not state how a user achieves a task.

Example 3-13: Consider the goal FSG4 defined as “Travelers shall be able to write

hotels.” It is not correct semantically because hotels cannot be written.

Example 3-14: Consider use case UC3 which has the pre-condition “User has been

logged in” and the post-condition “Traveler has been signed in.” Such use case

specification is invalid as its post-condition is identical to its pre-condition, given that

user is equivalent to traveler and logged in is identical to signed in in this domain.

BG1: Improve the quality
of travel planning

FFG1: The system shall
support communication
between travelers

FSG2: Travelers shall
be able to create travel
articles

FFG2: Travelers shall be able
to share experiences

FSG32: Travelers shall
be able to register for
memberships

 Use Case: A Traveler creates a travel article
 Pre-condition:
 User has been logged in
 Post-condition:
 Traveler has been signed in
 Steps:

 Traveler enters the article subject quickly

X

X

X

 Use Case: A Traveler edits a review
 Pre-condition:
 Traveler has been logged in
 Post-condition:
 The review is edited
 Steps:

FSG4: Travelers shall
be able to write hotels

X

FSG6: Travelers shall
be able to create
reviews for tours X

FSG30: Travelers shall
be able to write only
reviews for places X

...... ...

...

X

FFG5: System shall
be secure X

FSG1: Travelers shall be
able to create reviews

X

X

Operationalize
Refine

UC2 UC3

X

X

Ex20

BGx: Business Goal - FFGx: Functional Feature Goal
FSGx: Functional Service Goal - UCx: Use Case
Where x is a number (1,2...)

Ex20

Ex19

Ex19Ex18

Ex17

Ex16 Ex15

Ex14

Ex13

Ex12

Ex12

Ex14

Chapter 3: Approach

 60

Incompleteness

Completeness is the quality that indicates whether all the needs and constraints for the

system have been identified. In the following examples, incompleteness may include

missing artifacts that need to be elicited and modeled, missing parts in artifact

specifications or missing relationships between modeled artifacts.

Example 3-15: Consider two goals: FSG32 “Travelers shall be able to register for

memberships” and FFG1 “System shall support communication between travelers.” The

former requires an operationalizing use case to describe the needed system-user

interaction for membership registration. The later needs to be further refined into a

specific goal since it is necessary to identify more specific goals that specify what types

of communication to be supported by the system. However, these needed artifacts have

not been specified.

Example 3-16: Consider the goal FSG1 “Travelers shall be able to create reviews.”

There is a missing goal about “editing reviews” given the general domain knowledge

that any content writing activity is usually accompanied with a content editing activity.

Example 3-17: Consider use case UC3 (“A traveler creates a travel article”). Assume

that in this domain a banned user is not allowed to create a travel article. Thus, if no

pre-condition or extension defined to handle this case, there is possibly incompleteness.

Example 3-18: Consider goal FSG2 “Travelers shall be able to create travel articles”

and use case UC3 “Traveler creates a travel article.” Assume they are not connected,

then that is incompleteness since UC3 describes the step to realize the goal specified by

FSG2.

Inconsistency

Consistency refers to the requirements model quality indicating that no two or more

specifications contradict each other. In the following examples, inconsistency can be the

discrepancies between a goal and its associated use case’s specification, illogical

relationships between artifacts, or conflicting artifact specifications.

Example 3-19: The goal FSG3 “Travelers shall be able to create travel articles” is

operationalized by the use case UC2 which has the description of “Traveler edits a

Chapter 3: Approach

 61

review.” This is considered an inconsistency since the use case needs to describe the

steps to achieve the goal it operationalizes.

Example 3 -20: Consider two goals, FSG6 “Users shall be able to create reviews for

tours” and FSG30 “Users shall be able to write only reviews for places.” They are

inconsistent given “write reviews” and “create reviews” are equivalent activities while

tour and place are disjoint concepts in the domain.

3.2 Problem Analysis

Although the examples of problems provided in the motivating scenario appear to be

simple when considered individually, manually addressing them is not a trivial task in

case the number of artifacts is large, and importantly, such task is not sufficiently and

effectively supported by the existing GUIM approaches. Therefore, the requirements

engineers are not well supported when modeling goals and use cases together. From this

we establish the following research questions that we address in this thesis:

RQ1: How can we establish a conceptual foundation for goal and use case integrated

modeling? This conceptual foundation should clearly indicate what artifacts and

relationships to be captured in a goal-use case integrated model, what the dependencies

and constraints between them, and how they should be specified.

RQ2: How can we develop a technique to automate the extraction of goal and use case

integrated models from textual requirements documents? To reduce the manual efforts

of developing goal and use case integrated models from text, some automated support

should be provided. This question is concerned with developing a technique that can

automatically (or semi-automatically) locate goals and use cases from text, classify

them, and identify the relationships between them to generate integrated models.

RQ3: How can we develop a technique to automate the detection and resolution of

incompleteness, inconsistency, and incorrectness in goal and use case integrated

models? This question is concerned with developing a technique that can automatically

(or semi-automatically) identify both syntactic and semantic 3Cs problems and propose

recommendations to users to resolve such problems.

Chapter 3: Approach

 62

To address the above research problems, we formulate the set of requirements for a

possible solution as follows.

R1: There should be a conceptual foundation for goal and use case integrated

modeling. Such a foundation should satisfy the following requirements.

• R1.1: The conceptual foundation should provide guidance as to what types of

artifacts should be modeled, classified, and connected to each other. Clear

definitions and classifications must be given to the artifacts and relationships

between artifacts. Moreover, the possible constraints or dependencies between

these artifacts and relationships must be indicated (i.e., a certain relationship

should not be used with a certain type of artifacts).

• R1.2: The conceptual foundation should provide rules or guidance as to how

artifacts should be specified. This research aims to support the natural

language-based specifications of goal and use case integrated models. Therefore,

to ensure artifacts are specified in a consistent way, it is helpful to have a set of

rules on how such textual specifications should be written. Moreover, to ensure

high specification quality, such specification rules should conform to the

existing relevant specification practices for textual software requirements. For

instance, functional requirements should be specified with action-verbs, or the

use of adjective-preposition phrase (e.g., “users are capable of creating

reviews”) should be avoided [152, 172].

If satisfying the above requirements, the targeted conceptual foundation would be both

helpful in the extraction and analysis of goal and use case integrated models. For

instance, it would help determine what to extract from a natural language-based

requirements document and in which form the extracted contents should be to build a

goal and use case integrated model. Moreover, the foundation would be able to provide

a basis on which artifacts and relationships between them can be analyzed. For instance,

it would be able to verify if an artifact is not correctly specified (based on the

specification rules), or if artifacts are not correctly connected (based on the constraints

and dependencies defined for artifacts and relationships).

Chapter 3: Approach

 63

R2: The technique should be able to automatically extract goal and use case

integrated models from natural language requirements documents. This requirement

is divided into the smaller requirements as follows.

• R2.1: The technique should be able to automatically locate goals, use case

components and their relationships from uncontrolled text. Such a technique

needs to be able to cope with the complexity of freely-styled text in

requirements documents. It is also required to identify and ignore irrelevant text

(i.e., non-goal or non-use case component). In addition, the technique should be

capable of recognizing relationships between the identified artifacts.

• R2.2: The technique should be able to ensure the well-formedness of the

extracted artifacts. As discussed in the motivating examples in section 3.1, the

extracted artifact specifications may be fragments of sentences and thus are not

grammatically correct artifact specifications (i.e., incomplete sentence, or

improper tense used). In addition, an extracted specification may not conform to

requirements specification practices (i.e., a functional goal specification is not

written using an action verb). Therefore, a well-formedness assurance technique

is necessary to ensure that the extracted artifacts are in well-formed English

grammar and written in conformance to our defined artifact specification rules

(discussed in requirement R1.2). This helps guarantee the correctness of the

extraction process.

• R2.3: The technique should be able to automate the classification of these

artifacts. After being extracted from a requirements document, artifacts need to

be classified when being placed into a goal and use case integrated model. The

classification of some use case components, such as step and condition, is

generally not necessary, since use cases are normally described in a certain

structure in a requirements document. However, goals and constraints that are

related to use case steps (i.e., data constraints, non-functional constraints) need

to be clearly classified. The classification of goals should cover the key

characteristics of goal modeling [163], which includes details as to whether a

goal is a functional or non-functional, and which abstraction level it should be

on. For example, “Users shall be able to send text messages to others” (FSG1)

and “System shall support communication” (FFG1) should be classified as

Chapter 3: Approach

 64

functional goals, while “System shall be secure” (NPG1) should be categorized

into a non-functional goal class. Moreover, FFG1 should be placed on a higher

level of abstraction than FSG1 as it describes an abstract requirement regarding

a ‘communication’ feature while FSG1 provides a requirement about a specific

function to support ‘communication.’

R3: The technique should be able to automatically analyze goal-use case integrated

models for 3Cs problems. Apart from identifying inconsistency, incompleteness and

incorrectness, in order to improve the quality of analyzing models, the technique should

be able to provide explanations for detected problems and suggest correction or

improvement options. This requirement is divided into the following sub-requirements.

• R3.1: There should be a way to consistently structure artifact specifications so

that their semantics can be effectively captured and analyzed by computers.

Each artifact specification should be structured in a way so that computers can

recognize its meaning, i.e., which action is referred to, which object to be

targeted by the action, how the action to be carried out. In other words, the

semantic composition of a specification should be known to computers. In

addition, such composition needs to be consistent in the sense that semantically

equivalent specifications should have the same semantic components even if

they are written differently. Moreover, the transformation of textual

specifications into such structured specifications needs to be fully automated or

semi-automated to ensure the applicability of the approach in practice. While

this requirement is concerned with how a specification is structured for semantic

capturing, requirement R1.2 has the focus on how each type of artifacts is

specified. There thus is a tight relationship between these two requirements

regarding the specification of artifacts. Therefore, R3.1 should be considered

when developing a solution to address requirement R1.2.

• R3.2: The technique should be able to incorporate and use the captured

knowledge and semantics in a certain domain. Such a technique would enable

the automated identification of semantic problems. It would allow not only the

meaning of individual vocabularies used in artifact specifications but also the

relevant knowledge in the domain to be available to and processable by

computers. For instance, consider two goals, FSG6 “Users shall be able to

Chapter 3: Approach

 65

create reviews for tours” and FSG30 “Users shall be able to write only reviews

for places” (discussed in Example 3-20), the inconsistency between them would

not be detected if it is unknown that “create reviews” and “write reviews” are

the same activity while “tour” and “place” are different concepts. Similarly,

consider the use case for “User creates a travel article” which has no pre-

condition or exception path defined to handle the case that a banned user is

trying to create a travel article (discussed in Example 3-17). Such

incompleteness would not be revealed if it is not known that banned users are

not allowed to create travel articles in this particular domain. Therefore, the

proposed solution needs to provide a way to retrieve and use captured semantics

and knowledge in particular domains.

3.3 Our Approach

We first focused on addressing the requirement R1 and its sub-requirements regarding

developing a conceptual foundation for goal and use case integrated modeling. Since

requirements R3.1 and R1.2 are tightly related, we started with addressing R3.1 when

developing a solution to satisfy R1.2. We have chosen functional grammar [40] as the

theoretical foundation to parameterize textual artifact specifications. Functional

grammar allows a specification to be structured into different components called

semantic functions; each holds a unique semantic role (i.e., agent, object, beneficiary,

manner). Such parameterization provides a consistent way to interpret the semantic of

each group of words in a specification, and thus offers a means to analyze specifications

with their meanings known. For instance, the goal “Users shall be able to create

reviews easily” is parameterized as “Agent(users) + Verb(create) + Object(reviews) +

Manner(easily) + Negation(False) + Tense (Present).”

In order to establish the conceptual foundation, we developed a meta-model called

GUIMeta (Goal and Use Case Integration Meta-model). GUIMeta consists of two

layers. The artifact layer defines the classification and descriptions of commonly used

artifacts and their relationships in a goal and use case integration model. In this layer,

goals are classified based on their functional – non-functional characteristics and levels

of abstraction. It also captures the commonly used components of use case

specifications. Relationships between different types of artifacts and their dependencies

were also taken into consideration when creating the artifact layer.

Chapter 3: Approach

 66

The specification layer provides the specification rules for the defined artifacts in the

artifact layer. It governs how each type of artifacts should be specified in a goal-use

case model. The formation of artifact specification rules in the specification layer is

built upon the discussed functional grammar-styled parameterization. Each rule contains

the sets of semantic functions that may or may not appear in a specification of a certain

artifact type. The specification rules are defined in the form of boilerplates2 that can be

used to provide specification templates for artifacts in a goal-use case integration model.

A discussion on how functional grammar is used to parameterize artifact specifications

and details of GUIMeta are provided in Chapter 4.

In order to meet the requirement R2.1, we developed an extendable set of artifact and

relationship extraction rules based on the dependencies between words in a sentence

(these dependencies are defined according to Stanford’s dependency collection [35]).

This idea was derived from our observations that although text in a requirements

document is normally in uncontrolled formats, the identification of artifacts and

relationships from sentences, and the recognition of unimportant sentences or parts of a

sentence (i.e., those contain no artifact specification) follow certain patterns.

For example, in sentences that have the form of “the system is designed to do

something,” the phrase “the system is designed to” should always be ignored since it

does not contain valuable details of a goal. The important thing in such sentences is the

“do something” phrase. The Stanford parser [79] was chosen as a natural language text

parser to support the rule-matching detection that enables the identification of artifacts

and relationships from text. We have extended the Stanford parser to enable to ability of

progressive training. Specifically, users are able to train the parser with their new data,

without re-train it with the entire dataset as required by the original version. In addition,

the Stanford Coreference Resolution System [89] is employed to resolve coreference in

sentences. We have developed the syntax and parser for extraction rules, making it

possible to extend the set of extraction rules in any domain. Chapter 5 describes our

artifact extraction technique.

2 In requirements engineering, boilerplates refer to templates for writing textual requirements

Chapter 3: Approach

 67

In order to satisfy the requirement R2.2, we developed a two-step process of artifact

specifications polishing to ensure their properness. In the first step, a specification is

ensured to be grammatically correct based on a number of linguistic analysis

techniques. In the second step, it is aimed to guarantee that the specification conforms

to our developed boilerplates for goal and use case specifications. The conformance of

specifications to our boilerplates also ensures them to satisfy a number of recommended

specification practices (i.e., functional requirements/goals are generally encouraged to

be written using action verbs instead of adjective-preposition phrases).

To accomplish this, we developed a set of extendable modifying rules that are able to

automatically modify a specification to ensure its conformance to the boilerplates. For

instance, the specification “users are capable of creating reviews” can be automatically

rewritten as a proper specification of “users shall be able to create reviews.” These

modifying rules share the same concepts as the discussed extraction rules. The

collection of modifying rules can also be extended by users to leverage the polishing

process. Chapter 6 provides a detailed discussion on the artifact polishing process.

To address the requirement R2.3 about the automated classification of extracted

artifacts, we investigated existing requirements classification tools. Unfortunately, we

found that no tool was available to be incorporated into our framework. Mallet [102], a

machine-learning based general text classifier, was identified as the most suitable tool to

be adopted in our work. However, we found a number of problems that reduced

Mallet’s accuracy to identify the suitable class for a goal specification. For instance, it

considers every word in a specification equivalently in its calculation to determine the

probability of a specification for being classified into a class. However, some words

may be better indicators for a certain class than others, and thus they should be

considered differently. We then extended Mallet to improve its accuracy. The extension

and evaluation to prove such improvement is discussed in Chapter 6.

In order to satisfy the requirements R3 and its sub-requirements, we developed a

categorization of inconsistency, incompleteness and incorrectness problems that may

exist in goal-use case integrated models based on the definitions and classification of

artifacts and relationships in GUIMeta. This classification serves as the basis on which

goal-use case integrated models are analyzed. We combined the use of functional

Chapter 3: Approach

 68

grammar and ontology to provide automated analysis support. Firstly, we developed a

technique to automate the discussed functional grammar-based parameterization of

artifact specifications. Such parameterization result is called a parameterized

specification in our work. Secondly, ontology is employed to capture domain semantics

and knowledge due to a number of their benefits: the suitability for capturing semantics

and knowledge, reusability, the increasing availability of ontologies in a wide-range of

domains and the existence of automated support for reasoning with ontologies. In order

to incorporate semantics into goal-use case models, words in an artifact’s parameterized

specification are linked to individual concepts in the ontology. For instance, given the

goal “Users shall be able to create reviews easily” that is parameterized as

“Agent(users) + Verb(create) + Object(reviews) + Manner(easily) + Negation(False)

+ Tense (Present),” ‘users’ is linked to the active entity concept ‘User’ while ‘reviews’

is linked to the inactive entity concept ‘Review,’ and ‘easily’ is linked to the quality

adverbial property ‘Easily’ in the ontology. Moreover, we developed a technique to

automatically transform structured specifications into Manchester OWL Syntax (MOS)

representations. Such representations allow the full integration between artifact

specifications and ontologies written in OWL languages (the most popular languages

for capturing ontologies currently) and thus enable the fully automated analysis of

artifact using the Pellet ontology reasoner [150].

The full automation of the transformation from textual specifications into parameterized

specifications and from parameterized specifications into MOS statements allows users

to work directly with natural language specifications. That helps overcome the

complexity of formal modeling languages which is a key disadvantage of formal

analysis approaches [43]. Chapter 7 discusses our analysis techniques.

All above techniques are placed under a single framework called GUI-F (Goal-Use

Case Integration Framework). We have developed two tools: GUEST (Goal-Use case

model Extraction Supporting Tool) that realizes our entire artifact extraction approach,

and GUITAR (Goal-Use Case Integration Tool for Analysis of Requirements) that

implements our analysis techniques. The two tools are fully integrated to offer the

seamless process of modeling and analysis of goal-use case models. The integrated tool

is called GUITARiST (a combination of GUITAR and GUEST). The process of

modeling and analysis is described in the following section.

Chapter 3: Approach

 69

3.4 The GUI-F Process

Figure 3-4 shows an overview of the process of goal-use case modeling and analysis

using the GUI-F framework. The modeling of goals and use cases is supported by the

GUEST tool while the analysis process is enabled by the GUITAR tool. Input is a

software requirements specification document. The aim of the modeling process is to

produce a well-formed goal-use case integrated model from the document. In the

analysis process, such model is validated for inconsistency, incompleteness and

incorrectness. Resolution options are then generated for each detected problem and

presented to users for their decisions. In the below sub-sections, we discuss each step

(activity) in the framework.

Figure 3-4. Overview of GUI-F Process

3.4.1 Modeling Process

GUI-F supports the modeling process by providing automated assistance to extract

goals, use cases and their relationships from a requirements document. Specifically,

given the input requirements document, our GUEST tool is able to generate an initial

Modelling Process - GUEST

Requirements
Document

Pre-
Processing

Linguistic
Analysis

Artifact &
Relationship
Identification

Artifact
Polishing

Artifact
Clasisifcation

Goal-Use
Case Model
Construction

Sections with
Artefact Specs

Classified
Artefacts

Polished Textual
Specifications

Raw Artifact
Specs &

Relationships

Parse Trees &
Dependency

Trees

Finalized Goal-
Use Case Model

Extracted
Goal-Use

Case Model

(Optional)
Goal-Use Case
Model Review

4321

57 6M

S

D indicates activities which are supported by a domain ontology

The Goal-Use Case Integration Meta-model is the underlying conceptual foundation for both the Modelling and Analysis Process

Unlabelled activities are carried out automatically by our tools

M indicates activities which are done manually S indicates activities which are done semi-automatically

Incorrectness
Incompleteness
 Inconsistencies

Resolution
Alternatives

Analysis Process - GUITAR

Resolution
Alternatives
Generation10

D

3Cs problems
Identification

9

D

3Cs problems
Resolution

11 M

Parameterized
Artifacts

Artifacts
Parameterization

8

D

Chapter 3: Approach

 70

goal-use case model. Users can optionally take an additional step to further complete

that extracted model. The steps taken in this extraction process are as follows.

Step 1: Pre-processing. A requirement document may consist of a number of sections

and not all of them include specifications of goals and/or use cases. Therefore, in this

first step, the target is to identify the sections that possibly contain goals and/or use

cases. This step is done through a semi-automated process.

First, users are required to manually fill in a list of section indicators that indicates

whether each section should be processed to look for artifacts of particular types (i.e.,

functional goals, non-functional goals) (such sections are called important sections) or

should be ignored since it contains irrelevant information (such sections are called

unimportant sections).

Second, the tool then automatically analyzes the text in each important section to

remove unnecessary details such as pictures, brackets, or multiple whitespaces. Figure

3-5 presents an example of a simplified section indicator list in XML format. In

GUEST, the details of this list depend on the content of the requirements document

being processed.

Figure 3-5. Example of Section Indicator List

Step 2: Linguistic Analysis. In this step, sentences in each identified section are split

and analyzed to resolve coreference if any. For instance, if there is a sentence specified

as “The traveler enters the review content and submits it,” it would be rewritten as

“The traveler enters the review content and submits the review content.” In addition,

each sentence is then parsed to obtain a parse tree, part-of-speech (POS) and

dependencies between its tokens (words). These tasks are supported by the Stanford

Coreference Resolution System [88] and Stanford parser [79].

Chapter 3: Approach

 71

Step 3: Artifact and Relationship Extraction. The extraction of artifacts and

relationships is supported by our extendable set of extraction rules. Each extraction rule

specifies which part in a matching sentence contains an artifact specification.

Depending on its type, a rule can also indicate the relationships between the artifacts

contained in such a sentence. In order to facilitate this process, a rule-checking engine is

used to analyze the parse trees, POS of words and dependencies obtained from step 2 to

identified sentences that match the rules. The output of this step is the “raw” version of

artifact specifications (in the sense that the artifacts’ specifications are the fragments of

sentences where they are extracted from and no edition has been made on them) and

their relationships.

Step 4: Artifact polishing. As discussed in section 3.3, in many cases, a specification of

an artifact may be mined from a fragment of a sentence and thus may not be completely

stand-alone and/or grammatically correct. In addition, extracted specifications may not

be written in accordance with the boilerplates defined by our goal-use case meta-model.

Therefore, the purpose of this step is to correct such specifications to ensure their

properness. It takes the “raw” version of artifact specifications extracted from step 3 and

produces well-formed textual specifications, which are guaranteed to be grammatically

correct stand-alone sentences, and conforming to the boilerplates, which implement the

requirements specification guidelines.

Step 5: Artifact classification. An important concern of a goal-use case model is how to

determine the types of the modeled artifacts. In this step, we address this concern. Apart

from some use case components (i.e., steps, conditions) whose classes might have been

determined in previous steps (we assume that use cases are written in a certain structure

in a requirements document), other artifacts (i.e., goals, constraints) need to be

categorized. The extracted and polished artifact textual specifications are taken as inputs

into this step. The output indicates the classes they should be in (i.e., business goals,

feature goals, non-functional goals, data constraints). This is achieved by our extended

version of Mallet, as mentioned in section 3.3.

Step 6: Goal-Use case model construction. After the artifacts and their relationships

have been extracted, polished, and classified, a model can be constructed. However,

there may be cases that the same artifact is repeated in different sentences in the

Chapter 3: Approach

 72

document, leading to duplication. This step is intended to deal with this problem. In

addition, in this step, GUEST also generates a report as to what problems and issues

have been identified through the extraction process that may need users’ attention. For

instance, a sentence in a requirements document may match multiple extraction rules,

and thus lead to different extraction alternatives. The outcome of this step is an initial

goal-use case model.

Step 7: Goal-Use case model review. After an initial model is produced, users are

required to manually review the generated reports and take any necessary actions to

correct errors. For instance, users can review the alternatives of the model presented to

them and select one of those alternatives if they believe it is more appropriate. In

addition, users may need to review the correctness of the extracted model and make

necessary modifications. At the end of this step, a goal-use case model is finalized.

3.4.2 Analysis Process

In GUI-F, the analysis process focuses on the validation and improvement of a goal-use

case integrated model. GUI-F automatically provides the detection of 3Cs problems in a

goal-use case model and suggests resolutions for those problems. The following steps

are taken in this process.

Step 8: Artifact parameterization. Before the detection of 3Cs problems commences, it

is necessary to have all artifacts parameterized using functional grammar so that they

can be formalized later for automated problem verification. This step is automatically

done by our artifacts parameterizer (called FGParam). It takes the textual specification

of each artifact and generates a structured specification. In addition, it establishes the

mapping between each individual term in the textual specification and a concept in the

associated domain ontology. In case a term does not exist in the ontology, the

parameterizer suggests options to add it into the ontology.

Step 9: 3Cs problem detection. In this step, the goal is to identify as many 3Cs

problems as possible, with the support from the captured knowledge and semantics in

an associated domain ontology. The detection process involves two stages.

First, the model is checked for syntactic problems, which are about its conformance to

GUIMeta’s constraints regarding artifacts and relationships. For instance, a relationship

Chapter 3: Approach

 73

is specified between two goals while it is not allowed by GUIMeta, or an artifact

specification contains a disallowed semantic function according to GUIMeta.

In the second stage, the focus is on semantic problems that are about the sensitivity of

artifact specifications in a given domain. In this stage, the domain ontology is utilized

for obtaining the supporting knowledge and semantics. In order to facilitate the

corporation of domain ontology and automated analysis, the structured specifications

are automatically transformed into Manchester OWL Syntax statements. The

explanations for each detected problem are also generated in this step.

Step 10: Resolution alternative generation. In this step, the goal is to support users in

resolving the detected problems by generating a list of resolution alternatives. The

generation of such resolutions is based on the analysis of the problem’s explanations

produced in the previous step. There are two important concerns in this process. First, a

single resolution may introduce additional problems in the model. Secondly, a

resolution may entail other problems to be solved. These circumstances are taken into

account during the resolutions generation process to provide the rankings for resolution

alternatives (i.e., an alternative leading to new problems may not be desirable as another

one which does not).

Step 11: 3Cs problem resolution. The resolution alternatives generated in step 10 are

presented to users for their decisions. A resolution may have an associated warning that

indicates it may introduce a new problem, or it may entail an existing problem resolved.

If an alternative were selected, necessary changes would be automatically made in the

goal-use case model. The model would then be validated again to confirm that the

problem is resolved and highlight new problems if any. In case users cannot find a

suitable resolution or wish to resolve the problems at a later stage, they can make their

own modifications or choose to temporarily ignore the problem. In such circumstances,

our GUITAR records the situation for future improvement. GUITAR also allows users

to report in case they believe the detection result is false.

3.5 Evaluation Approach

The evaluation strategy of our research is based on the use of case studies to verify the

accuracy of our techniques, and a number of benchmark validations to compare and

Chapter 3: Approach

 74

contrast our techniques with the existing comparable approaches. Below, we briefly

describe our evaluations conducted for the GUI-F components (which include

GUIMeta, the model extraction technique, and the model analysis technique). The

details of these evaluations are later discussed in the chapters that describe these

components (Chapter 4, 6, and 7).

3.5.1 Conducted Evaluations

To evaluate our meta-model for goal and use case integrated modeling (GUIMeta), we

carried out an evaluation with a number of case studies with the objective of verifying:

• How well does GUIMeta handle different types of artifacts in goal and use case

integration modeling? We aimed to identify which goals and use case

components in each case study could and could not be classified by GUIMeta’s

artifact layer.

• How suitable functional grammar is for parameterizing artifacts in goal-use

case integrated models? We aimed to investigate each artifact specification in

the case studies to identify if it could be sufficiently parameterized using the set

of functional grammar’s semantic functions adopted in our work.

• How appropriate are GUIMeta’s specification rules for goal and use case

integration modeling? We aimed to we evaluated the appropriateness of our

specification rules in specifying the classified goals and use case components.

An important consideration is whether the specification rules are overly

restrictive, making them not expressive enough.

To evaluate our techniques for automatically extracting goal and use case integrated

models from textual requirements documents, we conducted two evaluations. The first

one was concerned with the performance of our extended version of the Mallet

classifier. We carried out a benchmark validation to compare it with the original version

of Mallet and a state-of-the-art requirements classifier developed by Casamayor et al.

[18]. The second evaluation was intended to assess the accuracy of our entire extraction

techniques. We conducted this evaluation by applying our GUEST tool into two case

studies to obtain the extraction results. The results were then manually verified by us to

determine its validity. We used the precision and recall metrics to measure GUEST’s

performance in this validation.

Chapter 3: Approach

 75

To evaluate our techniques of automatically identifying the 3Cs problems in goal and

use case integrated models, we carried out three evaluations. First, we focused on

measuring the accuracy of our automated parameterization technique. To do that, we

gathered 310 textual requirements, used our tool to automatically parameterize them,

and then verified the result manually.

Second, we evaluated GUITAR’s performance in detecting 3Cs problems in goal-use

case models based on a number of selected case studies. In this evaluation, we first

obtained goal and use case models from the case studies. We then used GUITAR to

identify 3Cs problems in these models and verified the results manually to measure its

performance (using recall and precision metrics).

Third, we conducted a benchmark evaluation to compare and contrast GUITAR’s

performance with other industrial and academic requirements analysis tools. With tools

that were available to download and use, we set up and tested them with our case

studies. For tools that were not downloadable but having their demonstrative data

available, we ran GUITAR with such data and compared its results with the reported

outcomes of other tools.

There were three industrial case studies and one requirements repository used in our

evaluations of the GUI-F components, including a Traveler Social Networking System,

an Online Publishing System, a Split Payment System, and the PROMISE

Requirements Repository [14]. These case studies and repository were chosen since

they contain requirements from different domains, and thus diversified our validation

data. For the validation of our automated parameterization technique, apart from the

PROMOSE requirements data, we have also collected 110 textual requirements from

various sources in the literature to further diversify the testing data. These requirements

were not used in other evaluations since those evaluations requires tightly related

requirements to generate goal-use case models while these requirements came from

different projects.

Each single case study was used differently in the evaluations of different GUI-F

components. For instance, in the validation for our GUIMeta meta-model, we manually

identified goals, use cases, and other artifacts from the case studies and verified if they

can be classified and specified properly using GUIMeta’s artifact definitions,

Chapter 3: Approach

 76

classification, and specification rules. In the validation of GUEST regarding the

extraction techniques for goal-use case integrated models, we prepared the requirements

documents in the case studies so that they satisfied GUEST’s formatting requirements.

We then applied GUEST into the documents and verified its extraction results. The

benefit of using of the same set of case studies in most evaluations was that we could

get better understanding of the case studies (as opposed to using different case studies

for different types of evaluation). This enabled us to minimize mistakes in the manual

verification of the results produced by our proof-of-concept tools.

Figure 3-6 summarizes the evaluations that we have conducted in our research, grouped

by the GUI-F components, and the case studies that were used in each evaluation. In the

next section, we introduce these case studies.

Figure 3-6. Summary of Conducted Evaluations

3.5.2 Case Studies

Below, we provide a brief introduction to these case studies and requirements

repository. The requirements documents from these case studies can be found in the

GUIMeta

GUIMeta
Evaluation

Model Extraction

Benchmark
Evaluation for

Classifier

Extraction
Evaluation

3Cs Problem Detection

Parameterization
Evaluation

3Cs Problem Detection
Case Study-based

Evaluation

Benchmark Evaluation
for 3Cs Problem

Detection

OPS

SPS

TSN

PRO

OPS

SPS

PRO

PRO LIT

OPS

SPS

TSN

OPS

SPS

TSN

PRO

OPS Online Publishing System

PRO PROMISE Requirements RepositoryTSN Traveler Social Network

SPS Split Payment System

LIT Textual Requirements From Literature

Chapter 3: Approach

 77

Appendix A1. Due to the large size of the PROMISE requirements repository,

interested readers can find it on our supporting webpage at http://goo.gl/gCUofM.

The PROMISE Requirements Repository

The PROMISE (PRedictOr Models in Software Engineering) Requirements Repository

[14] is a collection of requirements specifications from 15 software projects in a

Master’s level class at DePaul University, which was made publicly available. The

PROMISE dataset have been used as evaluation data in various requirements

engineering research. This repository contains 625 requirements. Among them, 255

items are marked as functional requirements and the remaining 370 non-functional

requirements are classified into 11 categories, such as security, performance and

usability.

The PROMISE dataset was used in several evaluations in our research. First, it was

used as part of our evaluation of GUIMeta. Second, it was employed as part of our

evaluation for GUITAR to evaluate the accuracy of our 3Cs problems detection

techniques. Third, it was used in the validation of our automated parameterization

technique. Four, it was used in the benchmark validation to evaluate the performance of

our extended version of the Mallet classifier.

Due to the large size of the PROMISE dataset, we only used part of it in the first three

evaluations. In the evaluations of GUIMeta and GUITAR, we randomly selected 3

projects in the 15 projects in the PROMISE dataset and used them together with the

requirements from the other three case studies. These projects are in the domains of

Master Scenario Events List Management, Real Estate and Nursing Training Program

Administration, respectively. Moreover, in the evaluation of our automated

parameterization technique, we randomly selected and used 200 requirements from the

dataset.

On the other hand, the entire PROMISE dataset was used in our benchmark evaluation

for requirements classification since the result of Casamayor et al.’s classifier (which

was chosen as a benchmark application in this evaluation) was produced based on the

original version of the dataset. We thus used the same version of data as theirs to ensure

the results were comparable.

Chapter 3: Approach

 78

Online Publishing System (OPS)

This case study is concerned with the development of an online publishing system that

supports the process of submitting articles, reviewing articles, accepting articles, and

publishing articles to journal. The objective of this system is to maximize the efficiency

and productivity of the journal editors by automating the article review process. The key

users are the system include editors, authors, reviewers, and readers. Some of the key

features of this system include:

• Search articles: this enables readers of the journal to search for a particular

article by title, authors, or category, and download the article to their machines.

• Author’s support: this include features that allow authors to submit their articles

and communicate with the editors.

• Review’s support: this includes features that allow reviewers to submit their

reviews, and communicate with the editors.

• Editor’s support: most features of this system are intended for editors since they

are the primary users of the system. These include: retrieving article submission,

assigning reviewers to articles, updating reviewers and authors’ information,

checking article statuses, or publishing accepted articles.

This case study was used in most of our evaluations, including the validation of

GUIMeta, GUITAR (for 3Cs problem detection accuracy, and benchmark validation),

and GUEST (for model extraction accuracy). The main content of the requirements

document from this case study contains 26 pages, including text, pictures and tables.

According to our investigation, the document contains 63 requirements and 11 use

cases, which then include 137 statements such as use case steps and conditions.

Split Payment System (SPS)

This case study is concerned with the development of an Android split payment

application, which is aimed to facilitate an efficient process of tracking and settling

shared expenses. By using the synchronization and notification features, the application

enables users to be updated with the latest status of the payments. The key features of

this application are as follows:

Chapter 3: Approach

 79

• User registration: which allows users to register for accounts in order to use the

application

• Group creation and management: allows users to create groups of people who

have shared expenses, add new members to groups, or delete groups

• Uploading bills and resolving debts: allows users to upload bills to their groups

and select options for splitting expenses among members

• Settings: allows users to customize his/her preferences in the application

Similar to the OPS case study, SPS case study was used in most of our evaluations. The

main content of the requirements document from this case study contains 40 pages.

However, only 26 pages in it include requirements details, the rest of the document

contains design information. We have identified from this document 67 requirements

and 16 use cases, which then include 96 artifacts such as use case steps and conditions.

Traveler Social Network (TSN)

This case study is concerned with the development of a social networking system,

intended to be used by travelers around the world. The key objective of the system is to

provide a place where travelers can connect to each other, share and gain travel

experience with the ultimate purpose of improving their travel planning quality. Some

of the key features of this system include:

• User management: this allows users to register memberships, edit their

accounts, reset their passwords. It also includes support for administrators to

monitor, ban, or remove user accounts

• User Interaction: this includes features allowing users to send friend request,

follow other users, create groups, making comments, or sending messages

• Forum: offers a place for asking/answering questions and sharing experience.

• Content creation: this involves features allowing users to write reviews for

attractions or services, or create travel articles

Since this case study comes from a confidential industrial project, only part of the

requirements document was available for our evaluation and publishing. The main

content (cover page, table of content excluded) of this partial requirements document

was 19 pages long. Within this document, we identified 124 requirements and 20 use

Chapter 3: Approach

 80

cases, which then contain 218 statements such as use case steps, pre/post-conditions,

and so on. This case study was used in several evaluations, including the validation of

GUIMeta, GUITAR (for 3Cs problem detection accuracy, and benchmark validation).

3.6 Chapter Summary

In this chapter, we provided an overview of our approach to modeling and analyzing

goal-use case models. We presented a motivating scenario to illustrate the research

problems and discussed the requirements for possible solutions to these problems.

Based on such requirements, we presented our techniques and methods to extract goal-

use case models from textual requirements documents, and analyze such models for 3Cs

problems including inconsistency, incompleteness and incorrectness. An overview of

the modeling and analysis process in our GUI-F framework was also provided.

Moreover, we discussed our evaluation approach in this research, and introduced the set

of case studies and requirements repository used in our evaluations. In the next chapters,

we discuss our techniques in details. Chapter 4 presents the specification

parameterization method using functional grammar and the details of our meta-model

for goal and use case integration (GUIMeta). Chapter 5 and 6 describe our techniques

for extracting goal and use case integrated models from natural language-based

requirements documents. Chapter 7 discusses our ontology-based approach to analyzing

goal and use case integrated models for inconsistency, incompleteness and

incorrectness.

Chapter 4: Goal and Use Case Integration Meta-model

 81

Goal and Use Case Integration

Meta-model

In this chapter, we present our Goal-Use Case Integration Meta-model (GUIMeta) that

provides a conceptual foundation for integrating goal and use case modeling. GUIMeta

consists of two layers. The artifact layer provides a comprehensive classification of

goals, constraints, structure of use cases, and defines relationships between them. The

specification layer provides specification rules for these artifacts. We have employed

functional grammar as the underlying grammatical theory to parameterize artifact

specifications. Such parameterization provides the basis on which the specification rules

are developed. GUIMeta and the functional grammar-based parameterization approach

are our solution to address both requirements R1 (regarding a conceptual foundation for

goal and use case integrated modeling) and R3.1 (regarding structuring artifact

specifications to effectively capture their semantics) discussed in Chapter 3.

Section 4.1 describes GUIMeta and its layers in details, including some background

about functional grammar and discusses how it is used to parameterize artifact

specifications in our work. Section 4.2 discusses our evaluation results. In Section 4.3,

we present a discussion about the relationship between GUIMeta and the existing goal-

use case integration approaches, the benefits and limitation of GUIMeta.

Chapter 4: Goal and Use Case Integration Meta-Model

 82

4.1 Goal and Use Case Integration Meta-model

In this section, we present GUIMeta, our two-layered meta-model for goal and use case

integration. GUIMeta offers a conceptual foundation that governs the process of

modeling and analysis of goal and use case integrated models. GUIMeta’s artifact layer

provides a comprehensive classification of artifacts and defines relationships between

them. The specification layer provides specification rules for the defined artifacts based

on the functional grammar-styled parameterization. For instance, it offers the guidelines

on what semantic functions should and should not be included in specifications of each

type of artifacts.

The design of our meta-model is based on over 450 goals and 190 use cases from the

literature and industry3. These are from different domains including web applications,

embedded systems, process control systems, and information systems. The development

of GUIMeta was done in two steps. First, we focused on the artifact layer. We studied

the existing goal-use case integration modeling, goal-use case coupling and

requirements abstraction categorization approaches (i.e., [91], [154], [133], [76], [55])

to identify the overlaps and differences between their defined artifacts. Based on that,

we developed the core categories of artifacts. We then used the exemplar goals and use

cases to recognize the artifacts that are not supported by those approaches and

integrated them into the categories.

Second, we analyzed individual goals, constraints and use cases. We used functional

grammar to parameterize the textual specifications of these artifacts, and studied the

commonalities among semantic functions usually used for each category of artifacts.

From such results, we developed a collection of specification rules for each artifact

category. Moreover, we also took into account some common requirement specification

practices (i.e., [152, 172]) to ensure the artifact specifications to conform to standard

requirements practices. For instance, functional goals should be described in the form of

“<subject> + shall be able to + <action verb>,” or the use of adjective + preposition

phrases should be avoided. The outcome of step two is the specification layer.

3 They can be found on the project website at http://goo.gl/gCUofM

Chapter 4: Goal and Use Case Integration Meta-model

 83

Below, we describe GUIMeta’s artifact and specification layers. In the discussion on

the specification layer, we provide some background on functional grammar and how it

is used for artifact specification parameterization.

4.1.1 Artifact Layer

The artifact layer provides a classification of artifacts and relationships in goal-use case

integrated models. In the following sub-sections, we discuss these concepts in details.

4.1.1.1 Artifacts

Figure 4-1 illustrates the “goals and constraints” part of GUIMeta’s artifact layer, which

defines a wide range of goals across levels of abstractions:

Figure 4-1. Artifact Layer (‘Goals and Constraints’ Part)

Business goal (BG): a BG describes the business objectives of the software system

being built. A business goal does not include any information about what the system

should do or how it should operate. For instance, “Improve quality of travel planning”

or “Reduce workload for employees.”

NonFunctional
Product Goal

NonFunctional
Use Case
Constraint

NonFunctional
Service Goal

NonFunctional
Feature Goal

Business Goal

Functional
Service Goal

Functional
Feature Goal

Data Constraint

Use Case Step

Use Case

NonFunctional
Goal

Functional Goal

refine

operationalize composition

constrain

1

*

*

sub-type

refine and constrain are many-to-many relationships
require and exclude relationships can be established between any pair of artifacts

Chapter 4: Goal and Use Case Integration Meta-Model

 84

Functional feature goal (FFG): a FFG describes a feature the system should support to

achieve one or more business goals (or higher feature goals). A goal at this level should

not offer details as to what functions are needed in order for the product to support a

feature; rather it should be an abstract description of the feature itself. An example of

functional feature goals is “System shall support communication.” In this example, it is

known that the system shall support a feature that allows users to communicate.

However, it is not specific enough to provide information regarding what types of

communication (i.e., text messages, voice mail) to be offered. In another example, the

functional feature goal “Users shall be able to share experience with others” describes

a requirement for an “experience sharing” feature, yet what services that the system

offers for users to share their experiences are not known.

Functional service goal (FSG): a FSG provides details as to how a feature is achieved.

It contains a description of what function a user can perform. The main difference

between a FSG and a FFG is that, a FSG is specific enough to form a testable unit and

can be operationalizable by a use case; while a FFG describes a high-level feature and

thus cannot have any connected use case. For example, “Users shall be able to send text

messages to other users” and “Users shall be able to create a travel article” are the

FSGs that refine the above discussed FFGs.

Non-functional product goal (NPG): a NPG describes quality constraint on the entire

product. It should not contain any information about particular features or services

supported by the system. For instance, “The system shall be secure” or “the system

shall be always available to users.”

Non-functional feature goal (NFG): a NFG describes a quality constraint of a

particular feature of the system (i.e., which is specified in a FFG). A NFG should not

contain detailed information about how such constraint can be met by the system. For

example, “Users shall be able to share experience easily” or “Ensure users can

communicate at any time.”

Non-functional service goal (NSG): a NSG describes a quality constraint on a

particular service. For example, “The article creation process is familiar to typical

Internet users” is a NSG that restricts the FSG “Users shall be able to create travel

articles.”

Chapter 4: Goal and Use Case Integration Meta-model

 85

Figure 4-2. Artifact Layer ('Use Case Structure' Part)

In GUIMeta, a use case describes the interactions between a user and a system in order

to achieve a functional service goal. Such connection is modeled by an operationalize

relationship. Due to the focus on only requirements engineering, we keep the internal

interactions of system components, which are more about system architecture, out of

scope. In other words, the software system to be developed is considered as a “black

box” and thus system-user interactions are the lowest level artifacts to be modeled in

our framework. Our use case structure is adopted from Cockburn’s use case template

[28]. Figure 4-2 presents the structure of use case. It contains the following components:

• Description: a textual description of the use case (e.g., “a user creates a

review”). Description is an attribute of a use case. It thus does not appear in

Figure 4-2, which shows only components.

• Precondition: a condition that must be satisfied before the use case can be

started. For instance, “The user has already logged in.” A use case may have

multiple preconditions.

• Post-condition: a condition that must be satisfied after the use case is

completed. For instance, “A new review is stored in the system.” A use case

may have multiple post-conditions.

Use Case Step

Use Case

System Step Repeating Step

Dead-end StepExtension Step

User Step

Post-condition

Precondition

Extension
ConditionExtension

composition specify

sub-type resume atstart from

precede

reference

**

*

*

**

*

*
*

*

*

*

1 1

1

*

Repeating
Condition

*

Chapter 4: Goal and Use Case Integration Meta-Model

 86

• Use case step: there are three types of use case steps. User and system steps

describe the interactions between a user and the system with the purpose of

achieving the goal associated to (operationalized by) the use case. User steps are

those carried out by users while system steps are performed by the system. Some

examples of these types of steps are: “The user fills out the review creation

form” and “The user submits the form” (user steps), “The system validates the

review creation form” (system step).

Another type of steps is repeating step. Repeating steps do not describe system-

user interactions, they rather control the flow of other steps in a use case. For

instance, “The user repeats step 3 to step 5 until a sufficient number of members

is added to the group.” A repeating step contains three components: a starting

step (i.e., step 3), an ending step (i.e., step 5) and one of more terminating

conditions (i.e., “sufficient number of members is added to the group”) that

specify when to terminate the repetition. All steps in a use case must to be

strictly ordered (no cyclic order).

• Main success scenario: in our framework, main success scenario is a logical

concept, but not an artifact (that is why it is not presented in Figure 4-2). A main

success scenario, as the name suggests, considers only the situation when the use

case runs from the first step to the last one without any interruption or

exceptions.

• Extension: extensions are used to handle the exceptions in the main success

scenario. For instance, when the user fills out and submits the review creation

form, if the system detects that the details in the form are not valid, then an

extension needs to be added into the use case to handle this problem. An

extension contains the following components:

o Starting step: the step from which the exception is invoked.

o Resuming step: the step where the use case resumes after necessary steps

to handle the exception have been taken.

o Extension condition: the condition that must be satisfied for an

extension to be invoked. For instance, “The review subject is blank.” An

extension may have multiple conditions.

o Extension steps: extension steps are similar to the main success scenario

steps. They describe the interactions needed to handle the exception.

Chapter 4: Goal and Use Case Integration Meta-model

 87

Apart from goals and use cases, GUIMeta defines two types of lower level constraints

to model the artifacts that constrain use case components. A non-functional use case

constraint (NUUC) describes a quality constraint (i.e., security, usability) on a use case

step (e.g., “The system shall validate the form details in less than 1 second”). A data

constraint (DC) captures a data requirement for a particular entity mentioned in a

functional service goal or use case step (e.g., “A review contains a subject, a rating, and

a comment”).

4.1.1.2 Relationships

The artifact layer defines the commonly used relationships between artifacts in goal and

use case integrated modeling [23, 71, 161]. The followings provide details about these

relationships shown in Figure 4-1.

Refine: refine relationships are used to model the refinements of goals and constraints

in goal and use case integrated models. For instance, if the functional service goal FSG1

“Users shall be able to write reviews” refines the functional feature goal FFG2 “Users

shall be able to share travel experiences with others,” then that means the satisfaction

of FSG1 contributes to the satisfaction of FFG2. In this case, FSG1 is called a sub-

artifact of FFG2 and FFG2 is called a parent-artifact of FSG1 (we can use more specific

terms “sub-goal” and “parent-goal” in this case since both FSG1 and FFG2 are goals).

There are three types of refine relationships in GUIMeta:

• AND-refine relationship: AND-refine relationships are used for cases of

minimal refinement, which means an artifact (i.e., FFG2) would only be satisfied

if all the sub-artifacts (i.e., FSG1) linked to it via AND-refine relationships are

satisfied

• OR-refine relationship: OR-refine relationships are used in cases of alternative

refinement, which means the artifact being refined can be satisfied by fulfilling

any of the sub-artifacts involved in the OR-refine relationships. Conversely,

satisfying any of these sub-artifacts would fulfill the (parent) artifact.

• Optional-refine relationship: Optional-refine relationships are used in cases of

optional refinement. This denotes that the sub-artifacts involved in Optional-

refine relationships are the preferred options but they are not strictly required for

the parent-artifact to be fulfilled. They may contribute to the realization of the

Chapter 4: Goal and Use Case Integration Meta-Model

 88

artifact being refined. However, without such sub-artifacts, the parent-artifact

can still be satisfied. For instance, if FSG1 optionally refines FFG2, then the

satisfaction of FFG2 is not affected regardless the satisfaction status of FSG1.

Figure 4-3 presents an example showing different types of refine relationships. In this

example, a functional feature goal FFG3 specifies a compulsory feature

(communication) to allow users to share their travel experiences with others (FFG2).

The two services of “create reviews” and “create travel diaries” (FSG1 and FSG2) are

alternatives of each other. At least one of them is needed to satisfy FFG2. Moreover,

FFG4 specifies a “discussion forum” feature. As indicated by the Optional-refine

relationship, this feature is considered “nice-to-have” yet not critical to enable the

experience sharing between users.

Figure 4-3. Examples of Refine Relationships

Only goals and non-functional use case constraints may be involved in a refine

relationship. There are also a number of rules in regard to this type of relationships:

• A non-functional use case constraint can only refine a non-functional service

goal.

• A non-functional goal never refines a functional goal (it instead constrains a

functional goal, which is discussed later in this section).

• A non-functional goal only refines the non-functional goals that are either on the

same level of abstraction or one level higher in the abstraction hierarchy

(referred to as “same or one-level higher non-functional goals”). For instance, a

FSG2: Users shall be able
to create travel diaries

FFG2: Users shall be able
to share their travel
experiences with others

FSG1: Users shall be able
to write reviews

AND-refine relationship

FFG3: System shall
support communication
between users

FFG4: System shall provide
a discussion forum

OR-refine relationship

Optional-refine relationship

Chapter 4: Goal and Use Case Integration Meta-model

 89

non-functional feature goal can only refine another non-functional feature goal

or a non-functional product goal. It cannot refine a non-functional service goal.

• A functional goal only refines its “same or one-level higher functional goals”

and the non-functional goals that constrain those goals. For instance, a

functional service goal can refine another functional service goal, a functional

feature goal, a non-functional feature goal, or a non-functional service goal. It

cannot refine a business goal or a non-functional product goal.

Constrain: constrain relationships are used to define non-functional or data constraints

on a functional goals or a use case step. The following rules are used to determine the

eligibility of constrain relationships between artifacts:

• A data constraint can only be connected to a functional service goal or a use case

step via a constrain relationship.

• A non-functional use case constraint can only be connected to a use case step via

a constrain relationship.

• Non-functional product goals are the highest-level non-functional goals. They

thus do not constrain any other artifacts (rather refine business goals).

• Non-functional feature goals can only constrain functional feature goals and

non-functional service goals can only constrain functional service goals.

• An artifact can constrain and can be constrained by multiple artifacts.

Require: require relationships are used to describe situations in which the satisfaction

of an artifact requires the satisfaction of another. For instance, the functional service

goal FSG4 “Users shall be able to edit their reviews” requires another functional

service goal FSG1 “Users shall be able to write reviews” since a review cannot be

edited if it has not been created.

Exclude: exclude relationships are opposite to require relationships. They describe the

situations in which two artifacts in the model cannot be both satisfied. In other words,

the system being developed must not fulfill the requirements specified in both artifacts.

An exclude relationship is bidirectional, which means if an artifact A excludes an

artifact B, then B excludes A. As an example, FSG1 “Users shall be able to write

reviews” and FSG4 “Only admins shall be able to write reviews” exclude each other

since they cannot be both satisfied in a system.

Chapter 4: Goal and Use Case Integration Meta-Model

 90

Operationalize: an operationalize relationship is used to connect a use case to a

functional service goal to model the situation that the use case describes the system-user

interactions to achieve the goal. In GUIMeta, a use case can only operationalize one

goal while a goal can be operationalized by multiple use cases. For instance, the goal

FSG1 “Users shall be able to write reviews” can be operationalized by use case UC3

“A user writes a review for a hotel” and use case UC4 “A user writes a review for an

attraction.”

Below we discuss the relationships within use cases that are shown in Figure 4-2.

Specify: specify relationships are used to model the cases when both use cases describe

similar tasks but one is more detailed than another. For instance, use case UC1 “A user

creates a content” only describes abstractly the steps required to generate a general

content while use case UC2 “A user creates a review” contains specific details about

the interactions to create a travel article that is a specific type of content. Similarly, the

use case UC3 and UC4 above are specific use case of UC2.

Reference: reference relationships model the cases that a use case uses another use case

to perform one of its steps. For instance, given the use case UC1 “A user creates a

review.” Assume that in the first step of UC1, the user needs to log into the system, then

we have step UC1_Step1 “The user logs into the system.” In order to facilitate the login

process, UC1 invokes another use case UC5 that describes the process for a user to log

into the system. In this case, UC5 is included as part of UC1. GUIMeta allows this

situation to be modeled by using a reference relationship between UC1_Step1 and UC5

(UC1_Step1 references UC5).

Precede: precede relationships are used to model the ordering of steps in a use case. For

instance, if the step UC1_Step1 precedes UC1_Step2, then UC1_Step1 is before

UC1_Step2 in the use case that they are in.

Start from: “start from” relationships are used in use case extensions. Since an

extension defines an exceptional path to the main success scenario, it is necessary to

know from which step in the main success scenario the exception is raised. A “start

form” relationship then connects the extension to that step. Each extension must have

one “start form” relationship.

Chapter 4: Goal and Use Case Integration Meta-model

 91

Resume At: similar to “start from” relationships, “resume at” relationships are used to

mark the point where the main success scenario is resumed from an extension. If an

extension leads to a failure of the use case (the post-conditions cannot be reached), then

it does not have a “resume at” relationship with any step in the main success scenario.

Figure 4-4. Examples for precede - start at - resume at Relationships

Figure 4-4 presents examples for precede, “start from” and “resume at” relationships.

The step UC1_Step2 precedes the step UC1_Step3 since it should happen before

UC1_Step3 in the use case. Similarly, UC1_Step3 precedes UC1_Step4 and so on.

The extension UC1_Ext1 is aimed to handle the cases when the system detects some

invalid details in the review creation form. It is invoked from the step UC1_Step5 in

which the system validates the form details. Therefore, UC1_Ext1 starts from

UC1_Step5. In this extension, the system displays error messages to the user to help

them recognize what problems are detected in the form. The main success scenario then

resumes at step UC1_Step3 where the user needs to fills out the form again.

Since different types of relationships are defined between artifacts in GUIMeta, it is

important to know how these relationships are related to each other. Table 4-1

summarizes the dependencies between the discussed relationships. One of the important

characteristics is that refine and constrain are special cases of require relationships.

Specifically, if FSG1 refines FFG2, then FFG2 requires FSG1 because the satisfaction

of FFG2 depends on the satisfaction of FSG1. Similarly, if NSG1 constrains FSG1,

then NSG1 requires FSG1 because if FSG1 is not satisfied, the satisfaction of its

 Use Case UC1: A user creates a review
 Actor: User
 Pre-condition:
 User has been logged in
 Post-condition:
 A new review is stored
 Steps:

 UC1_Step2: The system presents the review
 creation form to the user
 UC1_Step3: The user fills out the form
 UC1_Step4: The user submits the form
 UC1_Step5: The system validates the form

Extension: UC1_Ext1
Condition: Details in the review
creation form are invalid
Steps:
UC1_Ext1_Step1: The system displays
error messages to the user

precede start from resume at

Chapter 4: Goal and Use Case Integration Meta-Model

 92

constraints (i.e., NSG1) is unnecessary. The dependencies between relationships form

the basis on which a goal-use case integrated model can be analyzed for syntactic 3Cs

problems.

Table 4-1. Dependencies between Relationships in GUIMeta

Formal Description Explanation

require(𝑎#, 𝑎%) ∧ require(𝑎%, 𝑎') →
require(𝑎#, 𝑎')

Require is a transitive relationship. If 𝑎#
requires 𝑎%, 𝑎% requires 𝑎% then 𝑎#
requires 𝑎'

refine(𝑎#, 𝑎%) → ¬ refine(𝑎%, 𝑎#) If 𝑎# refines 𝑎%, then 𝑎% cannot refine 𝑎#

refine(𝑎#, 𝑎%) → require(𝑎%, 𝑎#) If 𝑎# refines 𝑎%, then that means 𝑎%
requires 𝑎#

exclude(𝑎#, 𝑎%) → exclude(𝑎%, 𝑎#) Exclude is a bidirectional relationship

exclude(𝑎#, 𝑎%) → ¬ require(𝑎#, 𝑎%) If 𝑎# excludes 𝑎%, then 𝑎# does not
require 𝑎%

constrain(𝑎#, 𝑎%) → require(𝑎#, 𝑎%) If 𝑎# constrains 𝑎%, then 𝑎# requires 𝑎%

specify(𝑢#, 𝑢%) → ¬ specify(𝑢%, 𝑢#) If 𝑢# refines 𝑢%, then 𝑢% cannot refine 𝑢#

precede(𝑠#, 𝑠%) ∧ precede(𝑠%, 𝑠') →
precede(𝑠#, 𝑠')

Precede is a transitive relationship. If 𝑠#
precedes 𝑠%, 𝑠% requires 𝑠% then 𝑠#
precedes 𝑠'

isStepOfUseCase(𝑠, 𝑢) → ¬
reference(𝑠, 𝑢)

If 𝑠 is a step in the use case 𝑢, then 𝑠
cannot reference 𝑢

startsFrom(𝑒, 𝑠)	→ ¬ resumesAt(𝑒, 𝑠) If an extension 𝑒 starts from a use case
step 𝑠, then it cannot resumes at 𝑠

hasDeadEndStep(𝑒, 𝑠#)	∧	
resumesAt(𝑒, 𝑠%)	→ 	∅

An extension 𝑒 cannot have a dead-end
step while resuming to the main success
scenario

¬ hasDeadEndStep(𝑒, 𝑠#)	∧	 ¬
resumesAt(𝑒, 𝑠%)	→ 	∅

An extension 𝑒 must have a dead-end
step or resumes to the main success
scenario

𝑎#, 𝑎%, 𝑎' are non-use case artifacts in in goal-use case integrated model
𝑠, 𝑠#, 𝑠%, 𝑠' are use case steps
𝑢, 𝑢#, 𝑢% are use cases
𝑒 is a use case extension

Chapter 4: Goal and Use Case Integration Meta-model

 93

4.1.1.3 Non-functional Concern Categories

Each non-functional goal or constraint has a concern. For instance, the non-functional

use case constraint “The system shall validate the form details in less than 1 second”

has a speed concern while the non-functional service goal “The article creation process

is familiar to typical Internet users” is concerned with the usability of a system.

GUIMeta allows additional classification of non-functional goals and constraints based

on their concerns by proving a collection of non-functional concern categories presented

in Figure 4-5. These categories are derived from Lamsweerde’s work on the taxonomy

of non-functional goals [163] and Sommerville and Kotonya’s work on the

classification of non-functional requirements [84]. The non-functional concerns are

divided into two groups: quality of service and compliance. Each group is then refined

into sub-categories such as security, reliability, performance (under quality of service)

or legal and standard (under compliance).

Figure 4-5. Non-functional Concern Categories

The classification of non-functional goals and constraints based on their concerns may

bring a number of benefits. First, that helps identify potential relationships between

artifacts. For instance, given a functional service goal FSG1 “Users shall be able to

create reviews” which refines a functional feature goal FFG2 “Users shall be able to

share experience with others.” FFG2 is constrained by a non-functional feature goal

NFG2 “Users shall be able to share experience easily.” FSG1 is constrained by a non-

Quality Of
Service

SafetyOperational Scalability Maintainability

Compliance

Legal StandardSecurity

Confidentiality Access
Control AuditImmunity

Nonfunctional
Concern

Performance

Speed Capacity

Reliability

Fault Tolerant Availability AccuracyIntegrityUser
Interaction

Usability Look & Feel

Interface

Software
Interoperability

Device
Interoperability

Chapter 4: Goal and Use Case Integration Meta-Model

 94

functional service goal NSG1 “The article creation process is familiar to typical

Internet users.”

Assume that no relationship has been specified between NSG1 and NFG2, then that

could be alerted as incompleteness since these two goals express the same concern

(usability) on the same feature (FFG2 describes an “experience sharing” feature while

FSG1 specifies a function – create review, to support that feature). A refine relationship

should be established between them in which NSG1 refines NFG2 since it specifies a

more specific constraint to ensure “users to share experience easily.”

Second, the categories of non-functional concerns can be used as means to identify

potential missing artifacts in a goal-use case integrated model. For instance, if there

exists a certain concern in the categories (e.g., usability) that does not have any

corresponding non-functional artifact specified (an artifact that has such concern), then

it can be alerted that there is a missing artifact that has that concern (e.g., a usability

non-functional product goal) in the model.

4.1.1.4 Goal and Use Case Integration Modeling with GUIMeta

In this section, we present an example that shows how goal and use case integrated

modeling is supported by the concepts defined in GUIMeta. Figure 4-6 illustrates a

partial goal-use case model built from requirements for a traveler social networking

system that is intended to improve the quality of travel planning (of travelers). As

shown in the figure, the artifacts are organized into different categories that reflect the

artifacts’ functional-non-functional characteristic and the levels of abstraction.

The top artifact is a business goal (BG1) that denotes the objective of the system, which

is to improve the quality of travel planning. BG1 is then refined into a number of

functional feature goals (i.e., FFG1, FFG2) and non-functional product goals (i.e.,

NPG1, NPG2). These goals are then further refined to identify more specific features,

services or constraints that the system must satisfy. For instance, the functional feature

goal FFG2 “users shall be able to share their travel experiences with others” is refined

into another functional feature goal FFG3 “system shall support communication” and

functional service goals like FSG1 “users shall be able to write reviews” and FSG3

“users shall be able to write travel articles.”

Chapter 4: Goal and Use Case Integration Meta-model

 95

Figure 4-6. A Sample Goal-Use Case Integration Model

The identified non-functional product goals are also refined into more specific non-

functional goals that provide constraints on the identified functional feature goals and

functional service goals. For example, the non-functional feature goal NFG1 “users

shall be able to share experiences easily” provides a usability constraint on FFG2 on

the feature level and its sub-goal NSG1 “the article creation process is familiar to

typical Internet users” provides a more specific usability constraint on FSG3 on the

service level. FSG3 is also constrained by another non-functional service goal NSG2

“users shall be able to create travel article quickly.”

The functional service goals FSG1 and FSG3 are operationalized by the use case UC1

and UC2 respectively. These use cases describe the user-system interactions in order to

achieve their associated goals. In our example, a UC2’s step (“system validates the

article content”) is constrained by a non-functional use case constraint NUUC1 that

specifies “the system must validate the article content in less than 1 second.” NUUC1

is a refinement of NSG2 into the use case level.

BG1: Improve the
quality of travel planning

FFG3: The system shall
support communication

FSG3: Users shall be able
to create travel articles

FFG2: Users shall be able
to share their travel
experiences with others

 UC2: A user create a travel article
 Pre-condition:
 User has been logged in
 Post-condition:
 A new travel article is created
 Steps:

 User requests to submit the article
 System validates the article content

 UC1: A user write a review
 Pre-condition:
 User has been logged in
 Post-condition:
 A new review is created
 Steps:

... NPG2: System being
built shall be secure

FSG1: Users shall be
able to write reviews

NPG1: System being
built shall be easy to
use

NFG1: Users shall be able
to share their travel
experiences easily

FFG1: Users shall be able
to gain travel experiences
from others

NFG2: Guarantee the
reliability of the shared
experience

NUUC1: System must
validate the article content
in less than 1 second

NSG1: The article creation
process is familiar to typical
Internet users

Operationalize

AND-refine

Constrain

...

...

...

...

... ...

...

Business Level

Functional Feature Level

Functional Service Level

Non-Functional Product Level

Use Case Level

Non-Functional Service Level

BGx: Business Goal - FFGx: Functional Feature Goal
FSGx: Functional Service Goal - UCx: Use Case
Where x is a number (1,2...)

NSG1: Users shall be able
to create travel articles
quickly

...

Non-Functional Feature Level

Chapter 4: Goal and Use Case Integration Meta-Model

 96

4.1.2 Specification Layer

We first provide some background about functional grammar and how we used it to

parameterize textual specifications of artifacts in goal-use case integrated models. We

then discuss the specification rules for the artifacts defined in the artifact layer.

4.1.2.1 Functional Grammar-based Specification Parameterization

Functional Grammar is a general theory concerning the grammatical organization of

natural languages [40]. The key idea of functional grammar is to structure a natural

language sentence into different parts (called semantic functions); each of them has a

unique semantic role. The combination of different semantic functions forms a meaning

of a sentence and a modification of any of these functions would change the meaning of

that sentence. Functional grammar is native to the field of linguistics. In requirements

engineering, a number of authors have applied functional grammar in their approaches

[76, 126, 133]. In our work, functional grammar provides means to consistently

formalize and structure natural language-based artifact specifications. In this section and

the rest of this thesis, we use the term “artifact” to refer to goals, constraints, use cases

and use case components (i.e., steps, conditions) in goal-use case integrated models.

Figure 4-7. The Structure of a Specification

4.1.2.1.1 Semantic Functions

Figure 4-7 presents the components of an artifact specification in our work (i.e., goals,

use case steps, use case conditions, etc.). A specification consists of four predicates,

each denoting a number of semantic functions. Nuclear predicate contains the basic

elements of a sentence. That is, which action is conducted (verb), by whom (agent), or

on what target (object)? Core predicate enriches nuclear predicate with information

related to the beneficiary of an action or how an action is to be performed (manner).

Extended predicate further enhances the statement with information about the duration

Specification

Core
Predicate

Reference Location
Spatial

Orientation

Destination

Source

0..1 0..20..1 0..1

Purpose

0..1

0..1 0..1

0..1

0..1

Additional
Participant

Beneficiary

Company

Way

Means

Manner

Extended
Predicate

Tense Negation

1

1 1
Duration

0..1

Nuclear
Predicate

Verb Target

Object

Quality

1

1 0..1
Primary

Participant

Agent

Positioner

0..1

Frequency
0..1

Proposition
Predicate

Condition Event

0..1

0..1 0..1

Chapter 4: Goal and Use Case Integration Meta-model

 97

or frequency of an action. Proposition predicate provides information about when or

under what conditions an action is to be carried out. As shown in Figure 4-7, verb is the

compulsory semantic function in any specification. Depending on the type of an artifact,

other semantic functions can be specified. Table 4-2 provides the definitions of the

semantic functions used in GUIMeta.

Table 4-2. Definition of Semantic Functions4

Semantic
Function

Definition

Agent The entity pursuing the action (used with action verbs)

Positioner The entity being described (used with to-be or possessive verbs)
Object The entity being possessed by another entity or affected by an action

Quality A quality to be attained or preserved
Source The entity from which something moves/ is moved

Destination The entity towards which something moves/ is moved
Location The entity where something is located

Beneficiary Person or group for (or against) whose benefit the action is carried
out

Purpose The entity towards which the action is carried out
Reference The second or third term of a relation with reference to which the

relation is said to hold

Manner The manner by which the action is taken

Means The instrument used when an action is taken
Duration The duration of an activity

Frequency The frequency of an activity
Event The event which results in the action to be carried out

Condition The condition whose satisfaction results in the action to be carried out
Tense The tense in which the action occurs, either present or past or future

Negation It is to negate the statement when needed. It has a Boolean value
(true or false)

4 Tense and Negation are our self-introduced semantic functions

Chapter 4: Goal and Use Case Integration Meta-Model

 98

The following examples demonstrate the use of functional grammar in parameterizing

artifact specifications. In our work, we refer to the parameterization of specifications as

parameterized specifications.

Example 4-1: The goal “System shall notify users immediately when new messages

arrive” is parameterized as “Agent(system) + Verb(notify) + Object(users) +

Manner(immediately) + Event(new messages arrive) + Tense(present) +

Negation(false).”

Example 4-2: The use case step “If the review has less than 50 characters, the system

shall display an error message” is parameterized as “Condition(the review has less

than 50 words) + Agent(system) + Verb(display) + Object(error message) +

Tense(present) + Negation(false).”

Example 4-3: The non-functional goal “The system shall be secure” is parameterized

as “Positioner(system) + Verb(tobe) + Quality(secure) + Tense(present) +

Negation(false).”

Example 4-4: The functional goal “System shall send update emails to users every 2

weeks” is parameterized as “Agent(system) + Verb(send) + Object(update email) +

Beneficiary(user) + Frequency(2 weeks) + Tense(present) + Negation(false).”

Example 4-5: The non-functional goal “Users who do not have technical background

can easily create reviews” is parameterized as Agent(users who do not have technical

background) + Verb(create) + Object(reviews) + Manner(easily) + Tense(present) +

Negation(false) .

Example 4-6: The use case step “System displays a prompt for amount to the user” is

parameterized as “Agent(system) + Verb(displays) + Object(prompt for amount) +

Beneficiary(user) + Tense(present) + Negation(false).”

4.1.2.1.2 Terms

Semantic functions provide a way to determine the semantic roles of certain groups of

words in a sentence. In other words, the “content” of each semantic function may

include multiple words. In order to fully parameterize a specification, Prat [126]

Chapter 4: Goal and Use Case Integration Meta-model

 99

proposed a formalization of various terms based on functional grammar to represent the

internal structure of each semantic function’s content in the context of goal modeling.

We have extended his work (and functional grammar theory) to provide the definitions

of additional terms to adequately representing goal-use case model specifications. In

this section, we discuss these terms5 in details.

Verbal Term

Verbal terms constitute the underlining structure of specifications in our work. A verbal

term is made up from all components described in Figure 4-7. Due to their nature of

representing verb phrases in sentences (those with a verb followed by additional

details), verbal terms are used to provide the internal structure of condition and event

semantic functions, and verbal restrictors (discussed in the section) in our work. The use

of verbal terms is illustrated in the following examples. Note that the “VerbalTerm”

keyword is used in these examples for demonstration purpose only. In our presentation

of parameterized specifications, it is preferred not to include such keyword for the sack

of simplicity and readability (the absent of such keyword generally does not cause any

confusion).

Example 4-7: The event “new messages arrive” in Example 4-1 is parameterized as

“Event(VerbalTerm(Positioner(new messages) + Verb(arrive) + Tense(present) +

Negation(false))).” This is normally written as Event(Positioner(new messages) +

Verb(arrive) + Tense(present) + Negation(false)) (without “VerbalTerm”).

Example 4-8: The condition “the review has less than 50 characters” in Example 4-2 is

parameterized as Condition(VerbalTerm(Positioner(review) + Verb(Have) + Object

(less than 50 characters)). The internal structure of the object semantic function should

be described by a nominal term (discussed in the next section).

Nominal Term

Nominal terms are used to parameterize noun phrases that describe entities. Figure 4-8

illustrates the internal structure of a nominal term. A nominal term consists of one or

5 While Prat uses the word “group” (i.e., nominal group) to refer to internal units of a semantic
function’s content, we prefer to use “term” (i.e., nominal term), which is used also in
functional grammar theory, since we believe it better refers to internal structures.

Chapter 4: Goal and Use Case Integration Meta-Model

 100

more atomic nominal terms that are connected by conditional operators (i.e., and, or).

Each atomic nominal term has three components as follows:

Figure 4-8. Structure of Nominal Terms

• Head: is the compulsory component of an atomic nominal term. It represents the

core of a noun phrase (that is always a noun). For instance, ‘characters’ is the

head of the noun phrase “less than 50 characters” (in Example 4-8).

• Quantifier: is an optional component of an atomic nominal term. It is used to

represent the elements that indicate quantities in a noun phrase. A quantifier

optionally contains a quantity, a quantifier operator and a comparison operator.

Quantity has numeric or percentage values (1, 2, 1.5, 90%…) with two

exceptions that are ‘multiple’ and ‘unlimited.’ A quantifier operator can have

the value of ‘all’ or ‘only.’ In linguistic, there may be more quantifier operators,

for instance, ‘many,’ ‘few,’ or ‘some.’

However, due to the focus on requirements modeling, these operators are not

considered in our work since they are discouraged to be used in requirements

specifications due to their ambiguity characteristics [75]. A comparison

operator can be “less than,” “more than,” “less than or equal to” or “more

than or equal to.” A comparison operator cannot be used in case the quantity

value is not specified. As an example, a quantifier component can be used to

represent the sub-phrase “less than 50” in the noun phrase “less than 50

characters” (in Example 4-8).

Quantity

Quantifier Head

Nominal Term

Atomic
Nominal Term

Comparison
Operator

Verbal
Restrictor

Qualifier

AttributeQuantifier
Operator

Adpositional
Restrictor

Nominal Semantic
Functions

1..*

(All, Only)

0..1

0..*

0..1

0..10..1 1

0..1 0..10..1 0..1

(More Than,
Less Than,

Less Than or
Equal To...)

(1, 2, 3, ...,
multiple,

unlimited)

Composition

Dependency

RoleVerbal Term

(Subject, Object)

1 1

Chapter 4: Goal and Use Case Integration Meta-model

 101

• Qualifier: is an optional component in an atomic nominal term. It is used to

represent both the pre-modifiers (by attributes) and post-modifiers (by verbal

restrictors and adpositional restrictors) in a noun phrase. An attribute may hold

one or more adjectives (“and,” “or” connectors are used in case of multiple

adjectives) that describe the nominal term’s head (i.e., new in “new messages”).

Verbal restrictors provide the representation of participles or relative clauses in

noun phrases. For instance, a verbal restrictor can represent the relative clause

“who do not have technical background” in the phrase “Users who do not have

technical background” in Example 4-5.

A verbal restrictor is parameterized into a verbal term followed by a role

component that indicates whether the head of the nominal term is the subject or

object of the activity described by the verbal restrictor’s verbal term (it is subject

in the currently considered example). Adpositional restrictors are used to

represent prepositional and possessive phrases in a noun phrase. An adpositional

restrictor may contain one or many nominal semantic functions; each represents

a prepositional or possessive phrase (nominal semantic functions are those

describe entities, i.e., object, beneficiary, location, source…). For instance, “for

amount” in the noun phrase “prompt for amount” (in Example 4-6) can be

described by an adpositional restrictor that has a purpose semantic function.

Adjectival Term and Adverbial Term

Adjectival terms are associated with adjectives, in the same way that attributes in

nominal terms are linked to adjectives. An adjectival term has no internal structure. Its

value is always an adjective. In our work, modifiers of adjectives are not supported (i.e.,

very fast, faster, fastest, really good) since they should be avoided for ensuring

unambiguity in requirements specifications [75]. As an example, the quality semantic

function in example 4-3 is parameterized as Quality(AdjectivalTerm(secure)) (or

Quality(secure) in a shortened version).

Similarly, adverbial terms are associated with adverbs and have no internal structure.

They are used to represent the values of manner semantic functions. In example 4-1, the

manner semantic function is specified as Manner(immediately). Note that it is not

necessary to write Manner(AdverbialTerm(immediately)) since manners can only be

specified by adverbial terms.

Chapter 4: Goal and Use Case Integration Meta-Model

 102

Time Measurement Term

Figure 4-9. Internal Structure of Time Measurement Term

Time measurement terms are our extension to Prat’s work and functional grammar

theory to describe duration and frequency. Figure 4-9 illustrates the internal structure of

a time measurement term, which consists of a compulsory quantity and time

measurement unit (i.e., second, day, week), and an optional comparison operator. For

instance, the frequency “every 2 weeks” in Example 4-4 can be structured as

“Frequency(Quantity(2) + MeasurementUnit(week)).” Note that it is not necessary to

write “Frequency(TimeMeasurementTerm(Quantity(2) + MeasurementUnit(week)))”

since frequency can only be represented using term measurement term (the same format

applied to duration).

Table 4-3 presents the full parameterization of specifications in Example 4-1 to 4-6

using the discussed terms. For readability purpose, it is preferred not to specify

NominalTerm where a nominal term is used since the Head keyword (and possibly

Quantifier or Qualifier) is sufficient to indicate the use of a nominal term (i.e.,

Agent(Head(System)) instead of Agent(NominalTerm(Head(System))). Moreover, since

word forms (i.e., plural vs. singular) are not important in the parameterization process,

the standard form of words (called stem) is used.

Table 4-4 summarizes the possible terms that can be used to represent each semantic

function. Nominal term is the only one that can be used to structure semantic functions

describing entities. Other than nominal terms, objects can be structured using verbal

terms. For instance, consider the goal “encourage users to share travel experience.” It

is parameterized as Verb(Encourage) + Object(Agent(Head(User)) + Verb(Share) +

Object(Head(TravelExperience)) + Tense(Present) + Negation(false)) + Tense

(Present) + Negation(false). The object of the goal in this situation is an “experience

sharing” activity carried out by users (which is ‘encouraged’). This type of object is

referred to as verbal object in our work.

Comparison
Operator Quantity

Time Measurement
Term

Time Measurement
Unit

0..1 1 1

Chapter 4: Goal and Use Case Integration Meta-model

 103

Table 4-3. Summary of Specification Parameterization

Specification Parameterization

System shall notify
users immediately when
new messages arrive

Agent(Head(System)) + Verb(Notify) + Object(
Head(User)) + Manner(Immediately) +
Event(Positioner(Qualifier(Attribute(New)) +
Head(Message)) + Verb(Arrive) + Tense(Present) +
Negation(false)) + Tense(Present) + Negation(false)

If the review has less
than 50 characters, the
system shall display an
error message

Agent(Head(System)) + Verb(Display) +
Object(Head(ErrorMessage)) +
Condition(Positioner(Review) + Verb(Have) +
Object(Quantifier(Comparison Operator(Less Than) +
Quantity(50)) + Head(Word)) + Tense(Present) +
Negation(false)))) + Tense(Present) + Negation(false)

The system shall be
secure

Positioner(Head(System)) + Verb(ToBe) +
Quality(AdjectivalTerm(Secure)) + Tense(Present) +
Negation(false)

System shall send
update emails to users
every 2 weeks

Agent(Head(System)) + Verb(Send) +
Object(Head(UpdateEmail)) + Beneficiary(Head(User)) +
Frequency(Quantity(2) + MeasurementUnit(Week)) +
Tense(Present) + Negation(false)

Users who do not have
technical background
can easily create
reviews

Agent(Head(User) + Qualifier(VerbalRestrictor(
Verb(Have) + Object(TechnicalBackground) +
Tense(Present) + Negation(true) + Role(Subject)))) +
Verb(Create) + Object(Review) + Manner(Easily) +
Tense(Present) + Negation(false)

System displays a
prompt for amount to
the user

Agent(Head(System)) + Verb(Display) +
Object(Head(Prompt) + Qualifier(Adpositional Restrictor(
Purpose(Head(Amount)))))) + Beneficiary(User) +
Tense(Present) + Negation(false)

Table 4-4. Mapping between Semantic Functions and Terms

Semantic Function(s) Term(s)
Agent/Positioner/Source/Destination/Location
/Beneficiary/Reference/Means

Nominal Term

Purpose/Object Nominal Term, Verbal Term
Quality Nominal Term, Adjectival Term
Manner Adverbial Term
Duration Nominal Term,

Time Measurement Term
Frequency Time Measurement Term
Event/Condition Verbal Term

Chapter 4: Goal and Use Case Integration Meta-Model

 104

4.1.2.2 Specification Rules

The specification layer is aimed to provide specification rules for each type of artifacts

defined in the artifact layer. The benefits of these rules are twofold. First, they provide

consistent guidelines for writing artifacts. In fact, each type of artifacts in a model has

its own characteristics. Some artifacts are more specific while some artifacts are more

abstract than others. Some artifacts are concerned with the functionality of a system

while others tend to describe the objectives, quality or data constraints of a system, or

conditions to be satisfied. Due to such variances, artifacts of different types are

normally specified differently. Thus specification rules would help in consistently

determining how each artifact should be specified by guiding what should and should

not be included in its specification.

Second, since specification rules govern how an artifact should be written, they can be

used as the basis for analyzing artifacts for 3Cs problems (i.e., specifications that do not

follow the specification rules may be considered problematic).

As discussed in section 4.1, functional grammar can be used to parameterize artifact

specifications into different parameters called semantic functions. Each semantic

function has a unique semantic role in an artifact specification (i.e., object, beneficiary,

manner). Therefore, we choose to formalize the specification rules based on such

parameterization. Specifically, each rule defines which semantic functions should and

should not be used in a specification of an artifact type. For instance, as business goals

are usually high-level strategic statements, condition or duration should not be specified

while other parameters (i.e., beneficiary, destination) are permitted.

Figure 4-10 shows the specification model for business goals that contains the

compulsory and optional sets of semantic functions that can be used to describe a

business goal, and the dependencies between them. The semantic functions that do not

appear in the figure (i.e., condition, event) are those should not be used in a business

goal specification. As shown in the figure, the compulsory semantic functions are verb,

tense and negation (tense and negation are attributes of a specification rather than

contents to be specified).

Chapter 4: Goal and Use Case Integration Meta-model

 105

Figure 4-10. Specification Model for Business Goals

Business goal specifications accept “to-be,” possessive and action verbs. If the verb

used in a specification is “to-be,” then a quality must be used in the specification

(enforced by the requiring link). Similarly, if a transitive action verb or a possessive

verb is used, then an object is needed. Other types of components in the figure are

optional. “Improve editors’ work efficiency” (parameterized as “Verb(Improve) +

Object(Editor’s work efficiency)”) is an example of business goal specifications with

only a verb and an object. A business goal may contain a beneficiary. For instance,

“reduce workload for employees” is parameterized as “Verb(Reduce) +

Object(Workload) + Beneficiary(Employee). However, if a condition were added into

the specification (i.e. “If most employees are working overtime”), then it would become

invalid because a condition semantic function is not permitted here, according to the

specification rule.

Another important consideration in the specification model is, not all optional semantic

functions may appear together in the same specification. According to our investigation

of the exemplar requirements, business goal specifications with a reference semantic

function do not naturally contain a source or destination (depicted by the “excluding”

Business
Goal

Nuclear
Predicate

Core
Predicate

Verb Target

Beneficiary

Possessive
Verb

Action Verb

ToBe

Transitive
Action Verb
Intransitive
Action Verb

Object

Quality

Reference

Manner

1

1 0..1

Extended
Predicate

Tense Negation

1

1 1
Location Spatial

Orientation

Destination

Source

0..1 0..2

0..1

0..1
Purpose

0..1

0..1

0..1

0..1

0..1

requiring (if component A is linked to component B by a requiring link,
 then B must be used whenever A is used)

composition
sub-type

X
X

excluding (if two components are linked by a excluding link, they must not be used together)X

Chapter 4: Goal and Use Case Integration Meta-Model

 106

links in Figure 4-10). For instance, consider a business goal with a reference semantic

function: “Align business process with best IT practices.” It is unnatural to add a

source (i.e., “from a certain location”) or destination (i.e., “to a certain location”) into

this specification.

A specification model is used to define specification rules in the form of boilerplates6.

Each rule outlines one or more ways of writing specifications of a certain type of

artifacts. Figure 4-11 presents some specification rules for business goals, which are

derived from the specification model in Figure 4-10.

B1. <transitive action verb> <object> ((for) <beneficiary>)
([with | to]) <reference> ([in | at | on] <location>) (for
<purpose>)

B2. <transitive action verb> <object> ((for) <beneficiary>)
([in | at | on] <location>) (from <source>) (to
<destination>) (for <purpose>)

B3. <intransitive action verb> ((for) <beneficiary>) ([with
| to | of]) <reference> ([in | at | on] <location>) (for
<purpose>)

Note: (…) denotes optional parameters. [x | y | .. | z] denotes alternative parameters

Figure 4-11. Example Specification Rules for Business Goals

Each specification rule (or boilerplate) describes possible ways of specifying a business

goal. For instance, rule B1 provides possible alternatives that a business goal

specification can have a transitive verb and a reference (denoted by “([with | to])

<reference>” without a surrounding pair of brackets). In that case, an object semantic

function (‘<object>’) must be included. In addition, location and purpose semantic

functions are optional (they may or may not be included in a specification of this case).

Note that according to the specification model, source and destination must not be

included in this case since a reference is already used. However, in rule B2, which

specifies the cases when no reference is used, source and destination can be included.

The words such as ‘with,’ ‘to,’ ‘in’ are included in the boilerplates to provide

recommendations for specifying textual artifact specifications.

6 In requirements engineering, boilerplates refer to templates for writing textual requirements

Chapter 4: Goal and Use Case Integration Meta-model

 107

GUIMeta offers specification rules for all defined artifacts, including all types of goals,

use case components (use case steps and conditions), data constraints and non-

functional use case constraints. In addition, although conditions and events are not

artifacts, they are described by verbal terms that can be as complex as some

specifications for artifacts. GUIMeta thus also provide specification rules for them.

These specification rules are provided in Appendix A2.

4.2 Evaluation

We evaluated GUIMeta by assessing its suitability in goal and use case integration

modeling. Specifically, we aimed to address the following questions:

• RQ1: How well does GUIMeta handle different types of artifacts in goal and use

case integration modeling?

• RQ2: How suitable functional grammar is for parameterizing artifacts in goal-

use case integrated models?

• RQ3: How appropriate are GUIMeta’s specification rules for goal and use case

integration modeling?

4.2.1 Evaluation Setup

To answer these questions, we employed six industrial case studies, in which three came

from the PROMISE requirements repository. In each case study, we manually identified

goals and use cases and used them to evaluate GUIMeta. To address RQ1, we verified

the coverage of GUIMeta’s artifact layer. Specifically, we aimed to identify which goals

and use case components in each case study could and could not be classified by our

artifact layer. To address RQ2, we investigated each artifact specification to identify if it

could not be sufficiently parameterized using the set of functional grammar’s semantic

functions adopted in our work. To do that, we first automatically parameterized artifact

by using FGParam – a Java library that we developed to automate the parameterization

of textual artifact specifications based on functional grammar (discussed in Chapter 7).

FGParam is also able to indicate the part of text that cannot be parameterized due to the

lack of semantic functions to handle it. We then manually verified the generated

parameterization results and ensured they were correct. The cases of parameterization

failure (specifications could not be fully parameterized) were recorded.

Chapter 4: Goal and Use Case Integration Meta-Model

 108

To address RQ3, we evaluated the appropriateness of our specification rules, which are

defined in GUIMeta’s specification layer, in specifying the classified goals and use case

components. An important consideration is whether the specification rules overly

restrict specifications to small sets of semantic functions that are not enough to express

them (i.e., assume that the parameterization of a functional service goal’s specification

of “Users shall be able to withdraw money from their accounts via ATM machine” has

a means semantic function – ATM machine, while the specification rules of functional

service goals does not allow a means to be specified). To do that, we compared each

artifact’s parameterization with the corresponding specification rules of such artifact to

identify if the parameterization of contains a set of semantic functions that is not

covered by any of the specification rules. For instance, if a condition semantic function

existed in the parameterization of a business goal specification, then it was a problem

since the condition semantic function is not included in the business goal specification

rule.

The first three case studies we used came from the domains of traveler social network

(TSN), online publication system (OPS) and split payment system (SPS) that we

introduced in Chapter 3. Three further case studies were randomly chosen from the

PROMISE dataset, which provided requirements in the domains of Master Scenario

Events List Management (MSEL), Real Estate (REs) and Nursing Training Program

Administration (NTPA). The number of artifacts in each PROMISE case study is

smaller than those in the TSN, OPS and SPS because they do not contain use cases and

business goals, due to the focus mainly on functional and non-functional requirements

of this dataset.

In the TSN, OPS and SPS case studies, we obtained goals, constraints and use cases by

investigating their requirements documents. In the PROMISE case studies, although

they contained pre-extracted non-functional and functional requirements, each of these

requirements was normally a combination of multiple single-sentence requirements. In

such cases, we split a requirement into multiple ones. In addition, combined words such

as “Program Administrators/Nursing Staff Members” were changed to single words

(i.e., Program Administrators). Moreover, each sentence with coordinating conjunctions

(i.e., “and”) is split into two separated ones. However, if the split sentences have

identical structure (i.e., “The system shall offer the ability to pause the refresh of data”

Chapter 4: Goal and Use Case Integration Meta-model

 109

and “The system shall offer the ability to resume the refresh of data”), we only keep

one of them to maintain the structural differences between artifacts. Our evaluation data

can be found at http://goo.gl/gCUofM.

4.2.2 Evaluation Results

In this section, we discuss our findings for each of the above research questions.

RQ1: How well does GUIMeta handle different types of artifacts in goal and use case

integrated modeling?

Table 4-5 presents our evaluation results. We successfully categorized all 800 artifacts

extracted from all six case studies into our defined artifact classes in GUIMeta’s artifact

layer, including different types of goals, and use case steps, conditions, data and non-

functional constraints.

Every artifact was classified into one and only one artifact class, which means there was

no confusion regarding which class an artifact should belong to. The C rows in each

case study section (i.e., TSN, OPS) in Table 4-5 show the number of artifacts classified

into each artifact class. Similarly, the NC rows present the number of artifacts that were

not classifiable. The NC values were zero in all case studies, which means all artifacts

were successfully classified.

In order to classify the artifacts into our defined classes, we matched the meaning of

each artifact with the definition of each class to identify the best suitable class for it. For

instance, if an artifact describes a business objective without mentioning a functionality

or constraint of a system (i.e., “Maximize the editor's work productivity”), then it

should be classified as a business goal. In case the artifact describes an overall quality

of a system (i.e., “The application can be accessed at any time”), then it should be a

non-functional product goal.

Chapter 4: Goal and Use Case Integration Meta-Model

 110

Table 4-5. GUIMeta Evaluation Results

C: classified NC: not classified RM: rule mismatched NP: not parameterizable
BG: Business Goal FFG: Functional Feature Goal FSG: Functional Service Goal
NPG: Non-functional Product Goal NFG: Non-functional Feature Goal
NSG: Non-functional Service Goal NUCC: Non-functional Use Case Constraint
DC: Data Constraint UCS: Use Case Step UCC: Use Case Condition

 BG FFG FSG NPG NFG NSG NUCC DC UCS UCC Total

TSN

C 4 18 74 7 7 14 19 9 130 60 342

NC 0 0

RM 0 0

NP 0 1 5 0 1 0 0 0 3 1 11

OPS

C 3 19 21 4 8 8 9 5 90 33 200

NC 0 0

RM 0 0

NP 0 0 0 0 4 1 3 0 9 0 17

SPS

C 2 16 21 8 11 9 9 11 73 3 163

NC 0 0

RM 0 0

NP 0 0 0 0 2 2 4 0 4 0 12

MSEL C 0 0 15 6 2 5 5 0 0 0 33

NC 0 0

RM 0 0

NP 0 0 0 1 0 5 1 0 0 0 7

REs C 0 3 15 11 6 4 2 0 0 0 41

NC 0 0

RM 0 0

NP 0 1 1 2 1 0 2 0 0 0 7

NTPA C 0 8 39 10 9 5 0 10 0 0 81

NC 0 0

RM 0 0

NP 0 1 0 3 1 1 0 0 0 0 6

Chapter 4: Goal and Use Case Integration Meta-model

 111

The most complicated classifications we encountered were those involved the decision

as to whether an artifact was abstract enough to be placed on the feature level (i.e.,

functional feature goal, non-functional feature goal) or specific enough to be placed on

the service level (i.e., functional service goal, non-functional service goal). The key

difference between a functional service goal and a functional feature goal is that the

former describes a testable service of the system which can be operationalized by a use

case while the later specifies an abstract feature that cannot be operationalized by a use

case. In many cases, such classification was made easily by evaluating the abstraction of

the language used in the artifact’s specification (i.e., “Support automated notifications”

is very abstract, it thus should be a feature goal) or checking whether a use case existed

to operationalize the artifact (then it should be a service goal).

However, in some cases (especially in PROMISE case studies, where full requirements

documents were not available), the level of abstraction of an artifact was not clear due

to the lack of additional details about it. For instance, consider the artifact “users shall

be able to schedule appointments,” it was not clear whether this artifact describes a

feature regarding appointment scheduling which involves a sequence of activities such

as availability requesting, availability sending, date nominating, each operationalized by

a use case, or it refers to a simple function of a system that involves some steps such as

choosing participants and sending email. In the former case, the artifact should be

classified as a functional feature goal. It should instead be a functional service goal in

the later case. In such situations, we made relevant assumptions to determine which

class an artifact should belong to.

In PROMISE case studies, although there was no use case included, we classified some

artifacts as non-functional use case constraints since we believed they might have been

extracted from a use case. For example, consider “the top 1/4 of the table will hold

events that occur sequentially,” this artifact seemed to describe a user interface

constraint in a use case (i.e., “manage events” or “view events” use case).

RQ2: How suitable functional grammar is for parameterizing artifacts in goal-use

case integrated models?

In order to determine the suitability of functional grammar in parameterizing artifact

specifications, we tried to parameterize each specification using our adopted set of

Chapter 4: Goal and Use Case Integration Meta-Model

 112

semantic functions. If it was found that a specification was not sufficiently

parameterized, we attempted to find a way to rewrite such specification so that its

meaning was retained while it could be properly parameterized. For instance, while the

specification “the system shall allow users to create groups in an intuitive way” could

not be parameterizable (since our adverbial term used to describe manners cannot

parameterize the phrase “in an intuitive way”), its equivalent version “the system shall

allow users to create groups intuitively” could be. In case no way could be found, we

recorded that the specification was not parameterizable.

The NP (not parameterizable) row in each case study in Table 4-5 shows the number of

artifacts that were not parameterizable during our evaluation. According to the numbers,

the majority of artifacts were successfully parameterized. There was only 60 out of 860

artifacts (7%) were not parameterizable. The non-parameterizable artifacts fell in to the

following cases:

• Artifacts with temporal properties: for instance, a goal “System logs a user off

after 15 minutes of being inactive” or a constraint “System shall ensure a locked

account to be locked until an admin unlocks it” was not parameterizable in

GUIMeta. This was due to the lack of semantic functions to support for such

temporal properties (i.e., after, until).

• Artifacts with complicated time expression: for instance, “the product shall be

available for use 24 hours per day, 365 days per year” or “the system shall be

available for use between the hours of 8am and 6pm.”

• Artifacts with other non-parameterizable phrases: there were also some cases

in which artifact specifications contain parts whose semantics are not covered by

our set of semantic functions. For example, “The system will use the stored e-

mail addresses as a primary means of communicating information to affected

parties” (the phrase of “use something as something” was not supported), “on a

10x10 projection screen, 90% of viewers must be able to read event data from a

viewing distance of 30” or “the product shall be able to distinguish between

authorized and unauthorized users in all access attempts” (no semantic

function exists to handle the phrases “from a distance of …” and “distinguish

between…”).

Chapter 4: Goal and Use Case Integration Meta-model

 113

RQ3: How appropriate are GUIMeta’s specification rules for goal and use case

integration modeling?

The appropriateness of GUIMeta’s specification rules were evaluated by verifying if

there existed any parameterizable artifact whose parameterization contained semantic

functions that were not included in the corresponding specification rule. As indicated by

the zero value in the RM (rule mismatched) row of each case study in Table 4-5, there

was no mismatch found between the artifacts’ parameterized specifications and their

corresponding specification rules (in the total of 800 parameterizable artifacts). This

implied that our specification rules did not overly restrict artifact specifications.

4.2.3 Threats to Validity

In this section, we discuss the threats to validity from this evaluation.

External Threat: A threat to external validity was the representativeness of the

selected case studies. Having good results with the selected case studies may not imply

similar results in others. To reduce this threat, we diversified the data by selecting case

studies from different domains while obtaining a large amount of requirements.

Internal Threat: A threat to internal validity was the human factors involved in the

evaluation tasks. In RQ1, the classification of artifacts was done manually and thus

might be incorrect and subjective. In RQ2 and RQ3, the parameterization of artifacts

and the matching of the parameterized specifications and specification rules were also

done manually.

To alleviate this, we did the tasks carefully and reviewed them twice after they had been

done. In addition, in regards to RQ1, although subjectivity might be involved in the

classification of a goal into the feature or service level, that did not affect the overall

result of the validation, which was concerned with the possibility that a certain artifact

could not be classified into any of our defined class. Moreover, to further minimize the

risk of manual artifact parameterization, we used our FGParam tool (which achieved

90% accuracy in our evaluation – discussed in Chapter 8) to generate the initial

parameterizations, and then manually verified the results and made necessary

corrections. This threat can be further reduced if two or more people with relevant

knowledge and experiences were involved in the evaluation.

Chapter 4: Goal and Use Case Integration Meta-Model

 114

4.3 Discussion

In this section, we first describe about the correspondence between GUIMeta and the

related approaches to integrating goal and use case modeling and requirements

abstraction. We then discuss the benefits and limitations of GUIMeta in the modeling

and analysis of goal-use case integrated models.

4.3.1 Correspondence between GUIMeta and related approaches

Apart from providing a fundamental foundation for GUIM, GUIMeta was designed to

unify existing GUIM approaches. In fact, we provide one-to-one mappings between

their concepts and GUIMeta’s. This enables the transformation of models from those

approaches into our format. Based on that, the combination of models specified in

different approaches can be facilitated. In this section, we discuss the correspondence

and differences between GUIMeta and the existing GUIM approaches. We discuss goal

and scenario coupling approach [133] and requirements abstraction model [55] in

greater details since these work share the most commonalities with GUIMeta.

Goal and Scenario Coupling (USC)

As discussed in Chapter 2, the goal and scenario coupling approach was developed by

Rolland et al. [133] with the objective of guiding the elicitation of goals using scenarios

based on the concept of requirement chunks. There are four abstraction levels of goals

defined in this work. Business goals describe the ultimate purposes of the system.

Design goals describe possible manners of fulfilling a business goal. Service goals

specify possible manners of providing services to fulfill design goals. Internal goals

describe system component interactions to fulfill service goals. The goal abstraction

levels in GUIMeta were inspired by the ones in this work. Apart from the term

“business goal” remains the same in our work, “service goal” and “design goal” are

termed as “functional feature goal” and “functional service goal” respectively. In

addition, internal goals are not used in our work since they tend to describe the internal

architecture of a system, while our focus is on requirements engineering. The key

difference between GUIMeta and USC is that while USC only supports functional

goals, GUIMeta offers a complete framework to integrate goals and use cases in a

model. Specifically, GUIMeta provides the classification of non-functional goals, use

Chapter 4: Goal and Use Case Integration Meta-model

 115

case structure, data constraint and non-functional use case constraints (these concepts

have also not defined in other existing goal-use case integration modeling approaches).

Moreover, GUIMeta defines a collection of relationships that allow artifacts across

abstraction levels and categories to be linked together.

Requirement Abstraction Model (RAM)

Gorschek and Wohlin [55] proposed a requirements abstraction model in which

requirements are classified into 4 abstraction levels. Product-level requirements

describe system’s high-level features that can be directly comparable to product

strategies. Feature-level requirements describe lower-level features that a system must

support. Functional-level requirements specify actions that users can perform with a

system. Component-level requirements specify steps of how each function is performed.

Similar to internal goals in USC, component-level requirements are not used in

GUIMeta since they tend to describe internal structure of a system. The functional-level

and feature-level requirements match the functional service and feature goals in

GUIMeta respectively. Moreover, while product-level requirements are used to describe

very abstract system features, we also classify them as functional feature goals and

define refinement links so that can be further refined into more specific feature goals.

Similar to USC, RAM does not provide a classification for non-functional requirements.

Thus, one of key differences between GUIMeta and RAM is our categorization of non-

functional goals, data constraint, non-functional use case constraints and the definitions

of relationships between artifacts.

Other GUIM approaches

GUIMeta also covers most concepts used in other GUIM approaches (i.e., [26, 91, 141,

154]). However, since different GUIM approaches have different foci, it is not possible

and also not meaningful to combine all of their concepts into GUIMeta. GUIMeta

instead was designed as a general-purpose meta-model for goal and use case model

integration. Therefore, there are some concepts from some certain approaches (i.e.,

agent, object, and event models in [77], or strategic dependency model in [141]) that are

not included in GUIMeta. However, GUIMeta can always be extended with new

concepts and relationships.

Chapter 4: Goal and Use Case Integration Meta-Model

 116

Table 4-6. Summary of Correspondence between GUIMeta and Related Approaches

Approach Related Approach’ concept GUIMeta’s Corresponding
Concept(s)

Rolland et al.
[133] & Kim
et al. [76]

Business goal: ultimate purpose
of the system

BG

Design goal: possible manners of
fulfilling a business goal

FFG

Service goal: possible manners of
providing services to fulfill
design goals

FSG

Gorschek &
Wohlin [55]

Product level requirement:
product strategies

FFG

Feature level requirement: high-
level feature that the product
supports

FFG

Functional level requirement:
action that users can perform

FSG

Cockburn
[26]

Summary goal: system objectives FFG

User goal: user’s task FSG

Sub-function goal: describe user
activities

Use case step

For readability purpose, Table 4-6 only provides a summary of the correspondence

between concepts in some existing GUIM approaches and those in GUIMeta. The

complete list of correspondence is provided in Appendix A3. In this table, BG, NPG,

FFG, FSG, NFG, NSG, and NUCC refers to business goal, non-functional product goal,

functional feature goal, functional service goal, non-functional feature goal, non-

functional service goal, and non-functional use case constraint, respectively.

4.3.2 Benefits and Limitations of GUIMeta

GUIMeta provides a conceptual foundation that governs the process of modeling and

analysis of goal and use case integrated models. As discussed in the next chapters,

GUIMeta is the core component in our Goal-Use Case Integration framework that

provides automated support for the extraction of goal and use case integrated models

from natural language-based requirements documents and analysis of such models for

inconsistency, incompleteness and incorrectness.

Chapter 4: Goal and Use Case Integration Meta-model

 117

Moreover, developed based on the commonality of a large number of exemplar

requirements, GUIMeta’s specification rules in the form of boilerplates can be used as

guidelines on writing goal and use case specifications. This helps to ensure the

properness of artifact specification right in the stages of elicitation and modeling to save

analysis effort later on. For instance, the boilerplate “<transitive action verb><object>

((for) <beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>)

(for <purpose>)” provides a template for writing a business goal such as “reduce

workload for users” (<location>, <source>, <destination> and <purpose> are

optional parameters).

The key limitation of GUIMeta is that it currently does not support the parameterization

of specifications in some particular forms. Firstly, artifacts with temporal properties

such as ‘until,’ ‘unless,’ ‘after x seconds’ are not parameterizable. Secondly, we

currently do not have support for specifications with complex time expressions like “24

hours per day, 360 days per year” or “between 8am and 6pm.”

Thirdly, there are also some cases in which artifact specifications contain un-

parameterizable phrases such as “the system will use the stored e-mail addresses as a

primary means of communicating information to affected parties” or “on a 10x10

projection screen, 90% of viewers must be able to read event data from a viewing

distance of 30.” That is because these properties are not supported by functional

grammar. In functional grammar, the discussed temporal properties are all captured as a

general “time” semantic function, which does not sufficiently indicate the semantic

difference between these properties. For instance, a phrase with ‘until’ must be handled

differently from a phrase with ‘after’ since their semantics are different. They thus

cannot be handled by the same semantic function (‘time’). Moreover, functional

grammar lacks support to handle the phrases such as ‘use…as something’ and ‘from a

distance of…’ in the discussed examples.

We plan to extend functional grammar with additional semantic functions to

accommodate these cases. For instance, each temporal property would be associated to

a unique semantic function so that their semantic roles can be fully differentiated.

Chapter 4: Goal and Use Case Integration Meta-Model

 118

4.4 Chapter Summary

In this chapter, we provided a detailed discussion on GUIMeta, our goal-use case

integration meta-model that was built as a conceptual foundation for the modeling and

analysis of goal and use case integrated models. GUIMeta contains two layers. The

artifact layer provides a comprehensive classification of goals and structure of use

cases, defines relationships between them. The specification layer provides specification

rules for the defined artifacts based on functional grammar-based parameterization. We

also provided the details of our validation carried out to evaluate the suitability of

GUIMeta in goal-use case integration modeling. We have successfully classified all

artifacts in the selected case studies into our defined artifact classes. Moreover, we

found that 93% of artifacts could be parameterizable using functional grammar. In the

next part of this thesis, Chapter 5 and 6 describe our technique for extracting goal and

use case integrated models from natural language-based requirements documents.

Chapter 7 discusses our ontology-based approach to analyzing goal and use case

integrated models for inconsistency, incompleteness and incorrectness.

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 119

Rule-based Goal and Use Case

Integrated Model Extraction

In this chapter, we present our rule-based techniques for extracting goal and use case

integrated models from natural language-based requirements documents. These

techniques are developed to address the requirements R2.1 and R2.2 discussed in

Chapter 3. Our approach relies on the use of natural language parsing techniques and an

extendable sets of rules for extracting and polishing goal and use case specifications.

Section 5.1 provides a background about the natural language processing techniques

related to our work. Section 5.2 describes our rule-based method for extracting goal and

use case specifications.

5.1 Natural Language Processing

Natural Language Processing (NLP) is an area of research and application that explores

how computers can be used to understand and manipulate natural language text or

speech to do useful tasks [22]. NLP techniques have been adopted in different fields to

improve the human-computer interactions. In our work, NLP plays a major role in both

the extraction and analysis process of goal-use case integrated models. In this section,

we provide some preliminary knowledge about natural language parsing and

coreference resolution.

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 120

5.1.1 Natural Language Parsing

Figure 5-1. Example of Parse Trees

Natural language parsing is used extensively in applications that require the

understanding and processing of natural language. It is concerned with analyzing the

grammatical structure of sentences (or a sequence of words) to find out the role of each

word or group of words in a sentence, and the relationships between them according to

some grammar formalism. For example, which words should be grouped together as a

noun phrase, verb phrase, or which word is the object or subject of a verb. In our work,

we limit the scope to only specifications in English.

The outcome of natural language parsing is presented as a parse tree. There are two

types of parse trees that are described as follows:

Constituency parse tree

A constituency parse tree breaks a sentence (or a sequence of words) into sub-phrases

(i.e., verb phrase, noun phrase). Each sub-phrase is then broken into smaller sub-phrases

or individual words from the parsed sentence. The non-terminal nodes in a constituency

parse tree present part-of-speech (POS) tags and the terminal nodes (leaves) present

words. Figure 5-1 illustrates an example parse tree of the sentence “Users shall be able

to create reviews.”

ROOT

S

S

NP VP

NNS

Users

MD

shall

VP

VB

be

ADJP

JJ

able VP

TO VP

to VB

create

NP

NNS

reviews

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 121

In this example, the entire sentence (denoted by the ‘S’ tag under ‘ROOT’) is divided

into a noun phrase (NP) and a verb phrase (VP). The noun phrase is made up by a plural

noun (NNS) “Users.” The verb phrase contains a modal verb (MD – “shall”) and a

sub-verb phrase that is then broken down into a verb (VB) and an adjective phrase

(ADJP) and so one. The process is repeated until individual words are reached. The tags

such as VP, NP, VB are called part-of-speech tags, which are used as standard tags by

most natural language parsers [21, 79, 104, 119]. They are derived from the Penn Tree

bank [101]. Figure 5-2 presents a textual presentation of the same parse tree.

(ROOT
 (S
 (NP (NNS Users))
 (VP (MD shall)
 (VP (VB be)
 (ADJP (JJ able)
 (S
 (VP (TO to)
 (VP (VB create)
 (NP (NNS reviews))))))))))

Figure 5-2. Textual Presentation of a Parse Tree

Dependency parse tree

A dependency parse tree, as its name suggests, presents the grammatical dependencies

(relationships) between words in a sentence being parsed. In our work, we adopted the

Stanford typed dependency collection [35], which was designed to provide a simple

description of the grammatical relationships between words in a sentence that can easily

be understood and effectively used by people without linguistic expertise to extract

textual relations. A typed dependency is a one-way binary relationship between a

governor and a dependent. Figure 5-3 provides an example of a dependency parse tree.

Figure 5-3. Example of Dependency Parse Trees

able-4
(JJ)

be-3
(VB)

to-5
(TO)

create-6
(VB)

reviews-7
(NNS)

Users-1
(NNS)

shall-2
(MD) dobj

nsubj aux cop xcomp

mark

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 122

Each node in a dependency tree represents a word in the parsed sentence. A node is

associated with a POS tag and an index (starts with 1) that indicates the position of the

corresponding word in the parsed sentence. Instead of showing the phrases as in a

constituency tree, a dependency tree provides the relationships between words. In this

example, “able” is the root of the dependency tree since it only has dependency links

pointing to other nodes without any links pointing to it. In other words, “able” is never

a dependent in any dependency in this sentence. All other nodes in the tree are called

descendants of the root node. “Users” is identified as the nominal subject (nsubj) of

“able” (“user” is the dependent, “able” is the governor of this dependency), while

“shall” is the auxiliary verb (aux) that supports “able” in the sentence. Similarly, “to

create reviews” is a clausal complement (xcomp) of the root “able.” “Reviews” is the

direct object (dobj) of the verb “create.”

nsubj(able-4, Users-1)

aux(able-4, shall-2)

cop(able-4, be-3)

root(ROOT-0, able-4)

aux(write-6, to-5)

xcomp(able-4, write-6)

dobj(write-6, reviews-7)

Figure 5-4. Textual Presentation of the Example Dependency Tree

Figure 5-4 presents the textual presentation of the dependency tree that uses the syntax

of “dependency_name(governor, dependent).” Since a textual presentation does not

have any visualization to indicate the root of the dependency tree, a “root” dependency

is used to mark a node as the root. In this case “root(ROOT-0, able-4)” denotes that

“able” is the root of the dependency tree. The index of 0 means a dummy word, which

is only used for the governor of a root dependency.

Given such details, dependency trees complement constituency trees to provide a deeper

analysis of natural language sentences. As discussed later in this chapter, dependency

parsing is the underlying concept of our rule-based goal-use case model extraction

approach. There are currently 42 grammatical relations (also called typed dependencies)

between words in the Stanford typed dependency collection. Table 5-1 provides

definitions of 10 most frequently encountered relations during our work. A full

reference of the dependencies can be obtained from [36].

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 123

Table 5-1. List of Example Dependencies

Semantic
Function

Definition

conj Describe conjunction relation between two words (i.e., and, or)

cop A copula is the relation between the complement of a copular verb
and the copular verb

dobj The direct object of a verb phrase is the noun phrase which is the
(accusative) object of the verb

nsubj A nominal subject is a noun phrase which is the syntactic subject of a
clause

nsubjpass A passive nominal subject is a noun phrase which is the syntactic
subject of a passive clause

mark A marker is the word introducing a finite clause subordinate to
another clause

xcomp An open clausal complement (xcomp) of a verb or an adjective is a
predicative or clausal complement without its own subject

aux An auxiliary of a clause is a non-main verb of the clause
neg The negation modifier is the relation between a negation word and

the word it modifies

prep A prepositional modifier of a verb, adjective, or noun is any
prepositional phrase that serves to modify the meaning of the verb,
adjective, noun, or even another preposition

Natural language parsing tool

There are various natural language parsers that support the constituent parsing [21, 79,

104, 119] and dependency parsing [79, 103, 112]. We decided to use the Stanford parser

[79] in this research since it satisfies two important criteria. First, the Stanford parser,

among few other parsers, provides supports for both constituent and dependency

parsing. Second, the parser reportedly achieved high accuracy in evaluations [19].

The Stanford parser is a statistical parser, which means it uses knowledge of language

gained from a collection of manually-parsed sentences to build a parser model and

based on such model, the parser tries to produce the most likely analysis of new

sentences. The process of building a parser model from a collection of hand-parsed

sentences is called training while a collection of sentences used for training is called

training data.

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 124

One of the biggest limitations of the Stanford parser (and other statistical parsers) is that

its parsing result is highly dependent on the quality of its training data. For instance, a

sentence may unlikely be parsed correctly if the training data does not include sentences

with similar grammatical structures to its. Therefore, the capability of training the parser

is critical for our approach, which relies on the parser, to be applied in unlimited

domains with different types of requirement specifications. Fortunately, the Stanford

parser provides a training feature that allows users to train the parser based on their own

training data.

Coreference

Coreference refers to cases in which a pronoun (i.e., ‘he,’ ‘they,’ ‘her’), possessive

adjective (i.e., ‘his,’ ‘her’), determiner (i.e., ‘this,’ ‘that’) or phrase is used to describe

an object under investigation with different expression. For instance, in these two

consecutive sentences “Users can create reviews in the system” and “Moreover, they

can edit their reviews,” ‘they’ (and ‘their’) in the later sentence refers to ‘users’ in the

former one. In another example, ‘it’ refers to “the form” in the sentence “The editor fills

in the form and submits it.” In the context of coreference, the term that refers to another

is called anaphor (i.e., ‘they,’ ‘it’ in the examples) while the term being referred to is

called antecedent (i.e., ‘users,’ ‘the form’).

Coreference is a serious issue in extracting and analyzing goal-use case model from

natural language text since it prevents proper goal or use case specifications to be

acquired. For instance, consider again the second sentence in the first example “They

can edit their reviews” (S1). If the coreference were not resolved (i.e., ‘they’ is not

changed to ‘users’), the obtained specification would not carry the complete meaning of

the original sentence. This obtained specification is also not understandable since it is

not known what ‘they’ really means. In addition, that prevents the specification to be

analyzed. For instance, if there is another specification “Only system admins can edit

reviews” (S2), then S1 is inconsistent with S2 since S2 implies that users (users are not

admins) are not allowed to edit reviews in the system. However, such inconsistency

would not be detectable since it is not recognized ‘they’ refers to ‘users.’

In our work, we use the Stanford Coreference Resolution System (SCRS) [89] to

resolve coreference. The reasons for choosing SCRS are twofold. First, it is among the

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 125

most accurate coreference system [89]. Second, SCRS was integrated as part of the

Stanford parser, making it a seamless process of resolving coreference and parsing

sentences. In the discussed examples, SCRS can be used to rewrite the sentences as

“Users can create reviews in the system. Moreover, users can edit their reviews” and

“The editor fills in the form and submits the form.”

5.2 Rule-based Goal-Use Case Integrated Model Extraction

Figure 5-5. Goal-Use Case Integrated Model Extraction Process

Figure 5-5 presents an overview of our goal and use case integrated model extraction

approach, which has been briefly described in Chapter 3. Our approach accepts

requirements documents in .doc and .txt formats as input. The extraction process starts

with pre-processing a requirements document to identify the right sections to extract

goals and use cases, and remove unnecessary details such as photos, tables, brackets and

symbol characters (Step 1). In step 2, a linguistic analysis is then conducted on the pre-

processed text to resolve coreference and generate dependency parse trees. In step 3, a

rule-based technique is applied to identify artifacts and relationships between artifacts

based on the generated dependency trees and an extendable set of extraction rules. In

step 4, the identified artifact specifications are polished to ensure they properly follow

our boilerplates. In step 5, the polished artifact specifications are classified into our

artifact categories (defined in our meta-model GUIMeta – discussed in Chapter 4). In

Requirements
Document
(.doc, .txt)

Pre-
Processing

Linguistic
Analysis

Artifact &
Relationship
Identification

Artifact
Polishing

Artifact
Clasisifcation

Goal-Use
Case Model
Construction

Sections with
Artefact Specs

Classified
Artefacts

Polished Textual
Specifications

Raw Artifact
Specs &

Relationships

Parse Trees &
Dependency

Trees

Finalized Goal-
Use Case Model

Extracted
Goal-Use

Case Model

(Optional)
Goal-Use Case
Model Review

4321

57 6M

S

Unlabelled activities are carried out automatically by our tools

M indicates activities which are done manually S indicates activities which are done semi-automatically

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 126

step 6, all extracted and classified details are combined to generate a goal and use case

model. In step 7, extraction reports generated throughout the extraction process are

presented to users who can then optionally make modifications to the extracted model.

We have developed GUEST (Goal-Use Case Extraction Supporting Tool) to implement

the techniques for supporting the entire extraction process.

In this chapter, we describe our techniques for step 1, 2 and 3. The rest of the process,

together with some usage examples and evaluation results, are discussed in Chapter 6.

5.2.1 Requirements Document Pre-processing

Our first step in the extraction process is concerned with pre-processing requirements

documents to prepare for the linguistic analysis in the next step. The outcome of this

step is a number of document sections (we use the term document sections when

appropriate to avoid possible confusions when referring to these sections and the

sections in this chapter) associated with information as to what types of artifacts that

they contain. Unnecessary and unprocessable details are identified and removed from

these document sections. In this section, we first present the format requirements for

requirements documents in our approach. We then provide some background about how

document section is defined in our work. That is then followed by the discussions about

how artifact type indicator list can be created and what should be removed from the

original requirements documents to ensure the extraction process to be properly

continued.

5.2.1.1 Format Requirements

In order to allow the model extraction techniques to be applied across domains, there is

no specific constraint on the structure of requirements documents to be used as input

(except that they must be in .doc or .txt formats). However, although GUEST automates

some tasks in pre-processing requirements documents, some manual effort is required to

ensure the following criteria are met:

• No Slashes: A requirements document should contain no slash (“/”) that is used

with the meaning of conjunctions (i.e., ‘and,’ ‘or’). Such use of slashes is

ambiguous since it is often not clear whether the authors of the documents refers

to ‘and’ or ‘or.’ Slashes thus need to be replaced with appropriate words.

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 127

• Section numbering: A requirement document should have all sections

numbered in a strictly ascending order. For instance, the first section must start

with “1”, following by “2”, or “1.1”. “1.1” then is followed by “2”, “1.2” or

“1.1.1”. The section numbered “1.1.1” can be followed by another section

numbered “1.1.1.1”, “1.1.2”, “1.2” or “2”. There must not be any case such as

“1.1.1” is followed by “3”, “1.1”, “1.3” or “1.1.3”. The section numbering is

critical for GUEST to correctly work since it identifies sections by investigating

heading numbers. A section number must follows the format of

“(\d+\.)*\d(\.)?”. For instance, it does not matter whether a number ends

with a dot (“.”) (“1.1” or “1.1.” are both accepted). We term such strictly

ascending order for numbering document sections as section-numbering order.

• No “table of content”: A “table of content” section (if any) must be removed

from a requirements document since it likely confuses GUEST when looking for

document sections (since it contains section numbers).

• Use case indicator: Each use case must be in its own section. For instance, if a

use case specification is currently in a document section (i.e., 1.1.3), such use

case then needs to be within a sub-section (i.e., 1.1.3.1). Moreover, document

sections that contain use case specifications must have consistent headings. For

example, it should be named by a keyword such as “use case,” or

“stimulus/response sequence.” There is no requirement as to which keywords

should be use. However, the selected keywords must be used consistently in all

use cases and should be correctly included in an artifact indicator list (discussed

in the next section).

• Use case component indicators: Use case components (i.e., main success

scenario, precondition) must also have consistent indicators. For instance, a use

case’s list of preconditions should be indicated by the keyword ‘preconditions,’

a use case extension can be indicated by ‘extension,’ ‘exception’ and so on.

Similar to use case section indicators, there is no requirement as to which

keywords should be use for use case components. They only need to be

consistently used and declared in an artifact indicators list.

• Important details need to be in plain text: Use case specifications (and other

important details) must be presented in plain text. For instance, if a use case

description is in tabular form, it should be transformed to plain text (formatting

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 128

such as bold, italic is not a matter). All tables will be automatically removed by

GUEST during the pre-processing of requirements documents.

• Use case step numbering: Use case steps should not be labeled by only

numbers such as “1”, “2” since that may confuse GUEST when the tool is

looking for document sections. They must be labeled by “Step 1”, Step 2” and

so on.

5.2.1.2 Section Definition

Figure 5-6. Example of How Document Section is Determined

In this section, we provide our definition of document section in GUEST. A document

section is defined as a part of document that starts from a document section heading and

ends before the next document section heading. A heading ℎ% (labeled with the number

𝑛%) is considered the next heading of ℎ# (labeled with the number 𝑛#) if 𝑛% is the next

number of 𝑛# according to the section-numbering order. The document section 𝑠% with

heading ℎ% is then called the next section of the section 𝑠# with heading ℎ#. Reversely,

𝑠# is the previous section of 𝑠% . Figure 5-6 illustrates our definition of document

sections. In this example, the portion of document from “1. Heading 1” to right before

“1.1. Heading 1.1” is considered as a document section. Similarly, the portion from

“1.2. Heading 1.2” to “1.2.1. Heading 1.2.1” is another section. Since there is no

1. Heading 1
...
...
1.1. Heading 1.1
...
...
1.2. Heading 1.2
...
...
1.2.1. Heading 1.2.1
...
...
2. Heading 2
...
...

document section

document section

document section

document section

document section number
document section heading

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 129

definition for “sub-section,” the document section with number “1.1” is completely

separated from the document section numbered “1”. This demonstrates why it is critical

in GUEST that sections in a requirements document must be numbered in accordance

with the section-numbering order. For instance, if section 1.1 instead were numbered as

“1.2”, then the entire document would be considered as a single section (with section

number “1” and heading “Heading 1”).

5.2.1.3 Artifact Indicator List

 <non-use_case>
 <indicator>scope of project</indicator>
 <indicator>product perspective</indicator>
 </non-use_case>
 <nf_goal>
 <indicator>user interfaces</indicator>
 <indicator>security requirements</indicator>
 </nf_goal>
 <use_case>
 <indicator>stimulus/response sequences</indicator>
 </use_case>
 <pre-condition>
 <indicator>preconditions</indicator>
 </pre-condition>
 <use_case_desc>
 <indicator>brief description</indicator>
 </use_case_desc>
 <main_scenario>
 <indicator>basic path</indicator>
 </main_scenario>
 <extension>
 <indicator>exceptions</indicator>
 </extension>
 <use_case_goal>
 <indicator>goal in context</indicator>
 </use_case_goal>
 <ignored_section>
 <indicator>overview of document</indicator>
 <indicator>potential risks</indicator>
 </ignored_section>

Figure 5-7. A Sample Section Indicator List

One of the main challenges in extracting goals and use cases from uncontrolled

requirements documents is that, not every section in a requirements document contains

details about goals and use cases. A requirements document may include sections such

as introduction, glossaries or timeline that unlikely contain any details for a goal-use

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 130

case model. In addition, use cases and their components may have different indicators in

different documents. For example, a use case may be indicated by the keyword “use

case” or “stimulus/response sequence,” use case extensions can be signified by the

keyword “extensions,” “exception” or “exceptional paths.” Therefore, some manual

effort is needed at the beginning of the extraction process to study the documents to

identify which sections of the documents being considered potentially contain goal

and/or use case specifications (we call such sections important sections), which sections

should be ignored because they contain unneeded details (we call such sections

unimportant sections) and which keywords (indicators) are used to indicate use cases

and use case components. In GUEST, such information is required to be specified in a

so-called artifact indicators list in XML format. Figure 5-7 presents an example of a

simplified artifact indicator list.

In this example, “scope of project” and “product perspective” are specified as the

indicators of sections that contains non-use case artifacts. That means they may contain

functional, non-functional goals and data constraints. The <non-use case> tag is used

when it is not sure what type(s) of artifacts can be found in a section. In such case, the

extracted artifacts from that section will then be automatically classified by GUEST

(discussed in Chapter 6). Note that since use cases must have their own section numbers

and it is assumed that a use case does not contain goals, there is no situation in which a

section contains both a use case and goals (an exception is that a use case may contains

the goal directly operationalized by it. Such goal is normally defined under the “use

case goal” component of a use case). A use case specification may contain non-

functional use case constraints and data constraints of its steps. They can be

automatically identified by GUEST in the extraction process. Therefore, a <use_case>

tag is used to indicate sections that contain use cases (and their constraints). In case it is

sure that a certain section contains only artifacts of a particular type (i.e., non-functional

goals), a narrower-scope tag can be used. For instance, it is specified in Figure 5-7 that

the “user interface” section only contains non-functional goals (<nf_goal>).

The sample indicator list also includes indicators for use case components such as

precondition (<pre-condition>), main success scenario (<main_scenario>), use case

goal (<use_case_goal>), description (<use_case_desc>), and extensions

(<extension>). The <ignored_section> tag is used to indicate the sections that should

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 131

be ignored in the extraction process. Alternatively, these sections can be manually

removed from the considered requirements document to avoid the need to specify their

indicators. However, the remaining sections in the document must be guaranteed to

have heading numbers in our defined section-numbering order.

In case a section heading is not included as an artifact type indicator, it is implicitly

understood that such a section has the same type of artifacts as its previous section. The

list of artifact type indicators varies depending on the content of the requirements

document being considered. If the same style of requirements document writing is used

by a company in different projects, such list can be reused with little modifications.

5.2.1.4 Automated Pre-processing

After modifications have been made to ensure a requirements document to meet the

format requirements and a list of indicators is created, GUEST provides extra support to

pre-process the document to remove unnecessary and unprocessable details before the

linguistic analysis can be started. The pre-processing steps are described as follows:

• Extract plain text from the requirements document: this step is not needed if

the requirements document is in .txt format. In case it is in .doc format, GUEST

extracts the entire document into plain text by using the Apache POI library7. In

this step, all figures and tables (if any), which are not processable by GUEST,

are removed.

• Extract important section text: in this step, GUEST manipulates through the

extracted plain text to associate each section in the document with the type(s) of

artifacts expected to be extracted from that section based on the manually

generated artifact type indicators. The sections whose headings matching the

“ignored section” indicators are ignored during this process.

• Remove other unnecessary details: in this step, GUEST removes all necessary

and unprocessable details from the text extracted from the previous steps. These

details include: parentheses, brackets, braces and their contained details,

multiple-whitespaces, ellipses, slashes and mathematical expressions. Question

marks and exclamations are replaced with periods (“.”).

7 https://poi.apache.org/

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 132

5.2.2 Linguistic Analysis

After all section text are associated with the types of artifacts and pre-processed, they

are analyzed to resolve coreference and producing parse trees. The steps taken in

linguistic analysis are as follows:

• Resolve coreference: in this step, the Stanford coreference resolution system is

run on the text of each section to identify the coreference within and between

sentences. Based on the identified coreference, GUEST automatically rewrites

the sentences in the section text by replacing the anaphora and their antecedents.

For example, the sentences “Users can create reviews in the system” and

“Moreover, they can edit their reviews” would be rewritten as “Users can

create reviews in the system. Moreover, users can edit their reviews” while “The

editor fills in the form and submits it” would be rewritten as “The editor fills in

the form and submits the form.” Note that the coreference process needs only to

be done for each section instead of the entire (pre-processed) requirements

document since coreference is not likely to occur between texts in different

sections.

• Split sentences: after coreference is resolved, text in each section is split into

sentences. This task is supported by the Stanford parser.

• Parse sentences: each sentence is then parsed using the Stanford parser to

generate dependency parse trees.

5.2.3 Rule-based Artifact and Relationship Identification

The use of rules to extract artifacts and relationships is inspired by our observation that

although requirements specification text is freely styled and unstructured, the

identification of unimportant phrases or goal relationships usually follow certain

patterns. For instance, consider the sentence (𝑆): “The system will be designed to

improve the quality of travel planning by facilitating the communication between

travelers,” the phrase “The system is designed to” should be ignored because it

contains no important information. The role of this phrase is to introduce an intention

following it in the sentence (i.e., “improve the quality of travel planning”). If this

phrase were used in another sentence with the same role, it should still be ignored. In

addition, the words in this phrase do not equally contribute to its unimportance. In fact,

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 133

‘system,’ ‘is,’ ‘designed’ and ‘to’ are more important than ‘the.’ This leads to the

conclusion that the phrase “system <be> designed to” (do something) (with <be>

refers to the use of ‘is,’ ‘are,’ ‘will be,’ ‘shall be’ and so on) should be ignored in any

sentence containing it. Moreover, the refinement relationship between “facilitate the

communication between travelers” and “improve the quality of travel planning” can be

recognized by the structure “do something by doing something” detected in the

sentence. Our observation showed that refinement relationships could be extracted by

this structure in most cases.

Note that normal textual comparison cannot guarantee correct extractions. For instance,

if we identify refinement relationships by looking for the exact match of

“<verb>+<object>+by+<verb_ing>,” then we would fail to reveal the relationship in

“improve the quality of travel planning by efficiently facilitating the communication

between travelers” because ‘efficiently’ is now between ‘by’ and <verb_ing>, making

the structure unmatched. It is the dependencies between the words that matter, rather

than the order they appear in the sentence. In fact, the most important factor in this

example is the ‘prepc_by’ relationship between ‘maximize’ and ‘automating’ (the full

list of dependencies from sentence (𝑆) is presented in Figure 5-8). This relationship

would still remain unchanged regardless of what details are added into the related verb

phrases of maximize and automating (the relationship between the two words would

only change if the connector ‘by’ is removed, or either of them is changed, or the

sentence structure is modified). This demonstrates that dependencies between words can

be used to identify both artifacts and relationships between artifacts from text.

det(system-2, The-1)

aux(designed-5, will-3)

root(ROOT-0, designed-5)

aux(improve-7, to-6)

det(quality-9, the-8)

det(communication-16, the-15)

prepc_by(improve-7,
facilitating-14)

dobj(facilitating-14,
communication-16)

nsubjpass(designed-5, system-2)

auxpass(designed-5, be-4)

dobj(improve-7, quality-9)

nn(planning-12, travel-11)

xcomp(designed-5, improve-7)

prep_of(quality-9, planning-12)

prep_between(communication-16,
travelers-18)

Figure 5-8. Dependencies from Sentence (𝑺)

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 134

In our work, extraction rules are used to analyze the dependency parse tree of a sentence

to identify if some certain conditions are satisfied. If a rule’s conditions were met, some

actions would then be executed to extract artifacts and possibly relationships from such

a sentence. The outcome of a rule execution is one or more sub-trees of the original

dependency tree, accompanied with a relationship between them. The textual

specifications of artifacts would then be produced from the extracted sub-trees in the

artifact polishing step (to be discussed in Chapter 6). In this section, we discuss our

extraction rules in details and present how they are used to identify artifacts and

relationships from textual sentences.

5.2.3.1 Extraction Rules

5.2.3.1.1 Extraction Rule Syntax

Table 5-2 presents the generic syntax and an example of extraction rules. An extraction

rule is comprised of two components: a matching condition and a list of actions. A

matching condition contains two parts, including a list of variable declarations and a

list of matching dependencies specified based on the declared variables. These matching

dependencies are used to determine if a match exists between a dependency tree and a

rule. If a sentence has a dependency tree that matches a rule, then we say that sentence

matches the rule. During the extraction process, if a dependency tree matches a rule,

then the rule’s actions are executed. How actions are executed depends on their types.

Table 5-2. Extraction Rule Syntax and Example

Generic Syntax Example

<Variable
Declarations>
<Matching
Dependencies>
-> <Action
Declarations>

X={design|aim|intend|target}
Y/VB
root(X)
nsubjpass(X, {system|project})
auxpass(X, {be})
xcomp(X, Y)
-> root(Y)

The presented example shows a rule that can be used to identify that the phrase such as

“the system is designed to” in sentence (𝑆) should be ignored during the artifact

extraction. In this example, there are two variables declared. The variable X is defined

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 135

as any node in a dependency tree that has the stem of ‘design,’ ‘aim,’ ‘intend’ or

‘target’ (stem is the standard form of a word). The variable Y is defined as a node that

has the POS tag of VB in a dependency tree. In other words, Y is a standard verb that

can have any value.

A dependency tree matches this rule if and only if there exist a pair of nodes in this tree

that matches X and Y, and its set of dependencies cover the list of dependencies

specified by the rule. For example, the dependency tree of sentence (𝑆) matches this

rule since it is found that there exists a set of nodes and dependencies in the tree that

completely matches the variables and matching dependencies in the rule. Note that the

use of dependencies between specific words in sentences enables us to consider not only

the syntactic but also semantic aspects of text in the extraction. For instance, apart from

taking into account the grammatical relationships between words, our syntax also

allows us to specify the conditions regarding which specific words should be involved

in the dependencies or which specific words should be included in the sentence.

Table 5-3 shows the details of these matches. Note that root(X) is the shorter form of

root(?, X), which means X is the root of the dependency tree. The action of this rule

is root(Y), which means the root of the tree should be moved to Y, resulting all the

nodes that are not part of the tree rooted at Y to be removed (thus, the phrase “the

system is designed to” is removed). A detailed discussion about rule actions is provided

in the next section.

Table 5-3. Matching Variables and Dependencies

Rule Condition Matching Components
X={design|aim|intend|target} designed-5

Y/VB improve-7

root(X) root(ROOT-0, designed-5)

nsubjpass(X,{system|project}) nsubjpass(designed-5,system-2)

auxpass(X, {be}) auxpass(designed-5, be-4)

xcomp(X, Y) xcomp(designed-5, improve-7)

Based on the described dependency matching technique, this rule can be applied in

similar cases to identify phrases that should be ignored. Table 5-4 presents some of

these cases.

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 136

Table 5-4. Example Sentences with Ignorable Phrases

Example Sentence Phrase can be removed

The system shall be intended to
improve the quality of travel planning

“The system shall be intended to”

This project is aimed to reduce the
workload for employee

“This project is aimed to”

Our system is targeted to automate
the artifact publishing process

“Our system is targeted to”

Table 5-5. Syntax for Variable and Dependency Declarations

 Syntax Meaning & Example(s)

Variable
declaration

X={a} or X={a|b} Variable X has a value which then has
the stem of a, or one of the stems in a,
b…
Example: X={design|aim}

X/AB or X/{AB|CD} Variable X has the POS tag of AB, or
one of the POS tags in AB, CD…
Example: X/{NN|NNS}

Dependency
Declaration

root(X) Specify that X is the root of a
dependency tree

dep_name(X, ?) There is a dep_name dependency
between X and any node.
Example: dobj(X, ?)

dep_name(X, Y) There is a dep_name dependency
between X and Y.
Example: xcomp(X, Y)

dep_name(X,?/{AB|CD}) There is a dep_name dependency
between X and any node having the
POS tag of AB, CD …
Example: nsubj(X, ?/{NN|NNS})

dep_name(X, ?/AB) There is a dep_name dependency
between X and any node having the
POS tag of AB
Example: nsubj(X, ?/NN)

dep_name(X,{a|b}) There is a dep_name dependency
between X and any node that has a value

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 137

 Syntax Meaning & Example(s)

which has the stem of a or b
Example:
nsubjpass(X,{system|project})

dep_name(X,{a}) There is a dep_name dependency
between X and any node that has a value
which has the stem of a
Example: nsubjpass(X,{system})

not dep_name(X, Y) There is no dep_name dependency
between X and Y.
Example: not xcomp(X, Y)

In table 5-5, we present the syntax for specifying variables and dependencies. An

important feature in variable declarations is that the value of a variable is defined based

on the standard form of words (stem). The advantage of this is that, we do not need to

enumerate all possible forms of words that a variable may have. For instance, X={be}

is used to eliminate the need of specifying X={be|is|are|been} or X={improve} is

used instead of X={improve|improves|improved}.

Since goals and use case specifications are normally located in separated sections in a

requirements document and the extraction is done section by section, the extractions of

them are carried out separately (except that a use case description sometimes contains

information about the goal it operationalizes). We thus developed separated sets of

extraction rules for goals and use cases.

5.2.3.1.2 Goal Extraction Rules

As discussed in the previous section, a goal extraction rule contains a condition and a

list of actions. In many cases, a rule only has one action that is called a primary action.

The primary action must be restricted to the type that the rule belongs to. For instance, a

root action (as used in the example rule in Table 5-2) can only be used for navigation

goal extraction rules. A rule may have additional actions that are all called secondary

actions. A secondary action represents a new dependency to be added to a matched

dependency tree. For instance, a secondary action nsubj(X, Y) suggests that a new

nsubj dependence (with the governor and dependent are the nodes that match the

variables X and Y respectively) should be added into the dependency tree. A secondary

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 138

action may be in the form such as nsubj(X, dobj(Y)), which indicates that the

dependency being added has X as the governor and the dependent is the governor of an

existing dobj dependency whose dependent is Y (i.e., assume that such dobj

dependency already exists). The number of secondary actions in a rule is not limited.

There are four types of goal extraction rules as follows.

Ignorance Rules

Ignorance rules are used to recognize a sentence or parts of a sentence that have no

important information. They thus should be ignored during the extraction process. An

ignorance rule must have an ignorance action as its primary action. An ignorance action

has the syntax of ignore(X) with X is a variable declared in the rule’s variable

declaration part. Assume if a dependency tree matches this rule and the node 𝑁 in such

tree matches the variable X, then the execution of this ignorance action is executed

would remove the sub-tree rooted at 𝑁 from the dependency tree. For instance, if node

“Node 7” in Figure 5-9 matches X, then “Node 7,” “Node 10,” “Node 11” and all its

descendant nodes and dependencies would be removed from the dependency tree. In

case the root of the tree (i.e., “Node 1”) matches X, then that indicates the entire

dependency tree is cleared, which means the entire sentence is ignored.

Figure 5-9. A Generic Dependency Tree

Table 5-6 presents some examples of ignorance rules. The first rule implies that the

word “specifically” which is used as an adverbial modifier (advmod) of a verb in a

sentence should be ignored. The second rule implies that a sentence should be

Node 1

Node 4

Node 8

Node 5

Node 9Node 6

Node 3Node 2

Node 10

Node 7

Node 11

... ...

... ...

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 139

completely ignored if it is in the form such as “database contains (or includes)

something” since such a sentence is architectural and design-oriented. The second

column in the table provides examples of sentences that match the corresponding rules.

The lists of dependencies of these sentences are also presented with the matched

dependencies highlighted (bold).

Table 5-6. Examples of Ignorance Rules

Ignorance Rule Example Sentence

X={specifically}
advmod(?/{VB|VBZ|VBN}, X)
-> ignore(X)

Matching variables:
X=Specifically-1

Specifically, the system shall allow travelers
to participate in forum discussions
advmod(allow-6, Specifically-1)
det(system-4, the-3)
nsubj(allow-6, system-4)
aux(allow-6, shall-5)
root(ROOT-0, allow-6)
nsubj(participate-9,travelers-7)
aux(participate-9, to-8)
xcomp(allow-6, participate-9)
nn(discussions-12, forum-11)
prep_in(participate-9,
discussions-12)

X={contain|include}
Y={database}
root(X)
dobj(X, Y)
-> ignore(X);

Matching variables:
X=database-2
Y=contains-3

The database contains two tables
det(database-2, The-1)
nsubj(contains-3, database-2)
root(ROOT-0, contains-3)
num(tables-5, two-4)
dobj(contains-3, tables-5)

Navigation Rules

A navigation rule is used to move the root of a dependency tree to a certain node, which

entails every node that is not part of the new root’s sub-tree will be removed. A

navigation rule must have a root action as its primary action. A root action has the

syntax of root(X) with X is a variable declared in the rule’s variable declaration part.

Consider again Figure 5-9, assume that “Node 5” matches the variable X, then when the

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 140

root action is executed, all nodes except “Node 5,” “Node 8,” “Node 9” and its

children nodes are removed. “Node 5” then becomes the root of the tree, which means

the dependency root(ROOT-0, Node5) is added.

The discussed rule in Table 5-2 and Table 5-3 is an example of navigation rules. In the

presented case, the execution of the rule’s action (“root(Y)”) moves the root of the

dependency tree to “improve” (that matches Y). As a result of this execution,

“improve” becomes the new root of the dependency tree and the phrase “the system

will be designed to” is removed from the sentence.

Relationship Rule

Relationship rules are concerned with extracting goals while identifying relationships

between them. We support the specification of rules to identify refinement, require and

relevant relationships. Goals are considered relevant when they are related, but no

additional information to infer more detailed relationship between them. A relationship

rule must have a relationship action as its primary action. A relationship action has the

syntax of rel_name(goal(X), goal(Y)) with rel_name can be sub_goal,

require or relevant. For instance, sub_goal(goal(X), goal(Y)) means that

the goal extracted from a tree rooted at X is a sub-goal of the goal extracted from a tree

rooted at Y.

Table 5-7 presents some examples of relationship rules. The first rule is used to identify

sub-goal relationships if a sentence is written in the format of “do something by doing

something.” In the corresponding example sentence, this rule can help identify that

“Facilitating the communication between travelers” is a sub-goal of “Improve the

quality of travel planning.” The second rule is used to reveal require relationships in

sentences that are written in the format of “before being able to do something, someone

have/need to (or must) do something.” Based on this rule, it can identified from the

corresponding example sentence that the goal “Users are able to create reviews”

requires the goal “Users register for memberships.”

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 141

Table 5-7. Examples of Relationship Rules

Relationship Rule Example Sentence

X/{VB|VBD|VBG|VBN|VBP|VBZ}
Y/VBG
root(X)
prepc_by(X, Y)
-> sub_goal(goal(Y), goal(X))

Matching Variables:
X=Improve-1
Y=facilitating-8

Improve the quality of travel planning
by facilitating the communication
between travelers
root(ROOT-0, Improve-1)
det(quality-3, the-2)
dobj(Improve-1, quality-3)
nn(planning-6, travel-5)
prep_of(quality-3, planning-6)
prepc_by(Improve-1,
facilitating-8)
det(communication-10, the-9)
dobj(facilitating-8,
communication-10)
prep_between(communication-
10, travelers-12)

X={have|need|must}
Y={able}
cop(Y, {be})
prepc_before(X, Y)
xcomp(Y, ?/VB)
nsubj(X, ?)
root(X)
not nsubj(Y, ?)
-> require(goal(Y), goal(X)),
nsubj(Y, nsubj(X));

Matching Variables:
X=have-9
Y=able-3

Before being able to create reviews,
users have to register for memberships
cop(able-3, being-2)
prepc_before(have-9, able-3)
aux(create-5, to-4)
xcomp(able-3, create-5)
dobj(create-5, reviews-6)
nsubj(have-9, users-8)
root(ROOT-0, have-9)
aux(register-11, to-10)
xcomp(have-9, register-11)
prep_for(register-11,
memberships-13)

Splitting Rule

Splitting rules are used in case coordinating conjunctions (i.e., and/or) are used in a

sentence. They allow a sentence to be split into two goals with a sibling (if “and” is

used) or alternative (if “or” is used) relationship between them. These relationships

mean that the goals should share the same parent goal via AND-refine relationships (in

case of sibling) or OR-refine relationships (in case of alternative). A splitting rule must

have a splitting action as its primary action, which has the syntax of splitting_type

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 142

(goal(X), goal(Y)) with splitting_type can be either split_sibling or

split_alternative. For instance, split_sibling(goal(X), goal(Y)) means

that the goal extracted from a tree rooted at X is a sibling-goal of the goal extracted from

a tree rooted at Y.

Table 5-8 presents an example of splitting rules. Based on this rule, the sentence in the

second table column can be split into two sibling goals: “Users can search reviews by

author names” and “Users can search reviews by destinations.”

Table 5-8. Examples of Splitting Rules

Ignorance Rule Example Sentence

X/{NN|NNS|NNP|JJ}
Y/{NN|NNS|NNP|JJ}
conj_and(X, Y)
-> split_sibling(X, Y)

Matching Variables:
X=names-7
Y=destinations-9

Users can search reviews by author names and
destinations
nsubj(search-3, Users-1)
aux(search-3, can-2)
root(ROOT-0, search-3)
dobj(search-3, reviews-4)
nn(names-7, author-6)
prep_by(reviews-4, names-7)
conj_and(names-7, destinations-9)

5.2.3.1.3 Use Case Extraction Rules

In a document section that potentially contains use cases, the use case components (i.e.,

use case name, steps, extensions) can normally be identified using an artifact indicator

list presented in Figure 5-7. For instance, the term “pre-conditions” indicates the

precondition specifications of a use case, or the term “basic path” indicates the main

success scenario of a use case. However, in many cases, the specification of a

component may contain extra information, or different components are mixed up with

each other (i.e., two use case steps may be combined together, or a use case step may be

mixed up with a data constraint). Thus, we developed a set of extraction rules to identify

these components. Below, we discuss different types of use case extraction rules.

Similar to goal extraction rules, a use case extraction rule may optionally contain a

number of secondary actions. However, some types of rules such as extension

extraction rules may have more than one primary action (which are compulsory).

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 143

Use Case Ignorance Rule

Similar to goal specifications, there are also details that should not be considered when

extracting use case specifications from text. However, due to the different concerns

between goals and use cases, the set of ignorance rules for use cases are different from

that for goals.

Table 5-9. Examples of Use Case Ignorance Rules

Use Case Ignorance Rule Example Sentence

X={case}
Y={use}
Z={end}
nn(X, Y)
nsubj(Z, X)
root(Z)
-> uc_ignore(Z);

Matching Variables:
X=case-3
Y=use-2
Z=ends-4

The use case ends here
det(case-3, The-1)
nn(case-3, use-2)
nsubj(ends-4, case-3)
root(ROOT-0, ends-4)
advmod(ends-4, here-5)

X={case}
Y={use}
Z={initiate|start}
nn(X, Y)
mark(Z, {before})
auxpass(Z, {is|be})
nsubjpass(Z, X)
advcl(?, Z)
-> uc_ignore(Z);

Matching Variables:
X=case-4
Y=use-3
Z=initiated-7

Before this use case can be initiated, the traveler
has successfully logged into the system
mark(initiated-7, Before-1)
det(case-4, this-2)
nn(case-4, use-3)
nsubjpass(initiated-7, case-4)
aux(initiated-7, can-5)
auxpass(initiated-7, be-6)
advcl(logged-13, initiated-7)
det(traveler-10, the-9)
nsubj(logged-13, traveler-10)
aux(logged-13, has-11)
advmod(logged-13, successfully-12)
root(ROOT-0, logged-13)
det(system-16, the-15)
prep_into(logged-13, system-16)

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 144

A use case ignorance rule only has one primary action, which has the syntax of

uc_ignore(X). Similar to the action in goals’ ignorance rules, such an action means

the dependency sub-tree rooted at X must be removed from the original dependency

tree. If X is the root of the original dependency tree, the sentence is completely ignored.

Table 5-9 shows some examples for use case ignorance rules accompanied with the

sentences that they can be applied in. The example sentence is followed by its textual

dependency tree in the table’s second column. The variable-word matching is provided

under each rule to present how the rule matches the structure of its corresponding

sentence. In the first example, the entire sentence is ignored according to the rule. In

the second example, only part of the sentence that corresponds to the dependency sub-

tree rooted at Y (which matches the word ‘initiated’) is ignored. This results in a new

sentence of “The traveler has successfully logged into the system.”

Step Extraction Rule

Step extraction rules are designed to extract use case steps combined in one single

sentence (i.e., by ‘and/or,’ or ‘after/before’). Using a step extraction rule, not only the

steps are extracted, but also their relationships (i.e., precede relationship) are identified.

In case two steps are alternatives of each other (i.e., when the ‘or’ conjunction is used),

a new extension is then created to establish an alternative use case path.

A step extraction rule has one primary action which as the syntax of

rel_name(statement(X),statement(Y)) with rel_name can be either precede

or alternative_path. For instance, precede(statement(X), statement(Y))

means that the step (which is a use case statement) extracted from a tree rooted at X

precedes the step extracted from a tree rooted at Y.

Table 5-10 presents an example of step extraction rules. This rule specifies a matching

condition in which a conj_and (‘and’ conjunction) relationship exists between two

verbs while no prep_between relationship exists between them and the verbs are not

involved in any ‘if’ clause (which avoids the case that these verbs are part of a condition

clause). If a dependency tree matches this rule, two consecutive use case steps can be

extracted. In the corresponding example sentence, 2 steps: “The user fills the form” and

“The user submits the form” are extracted in which the former precedes the later.

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 145

Table 5-10. Examples of Step Extraction Rules

Step Extraction Rule Example Sentence

X/{VB|VBD|VBG|VBN|VBP|VBZ}
Y/{VB|VBD|VBG|VBN|VBP|VBZ}
conj_and(X, Y)
not prep_between(?/{NN|NNS}, X)
not prep_between(?/{NN|NNS}, Y)
not mark(X, {if})
not mark(Y, {if})
-> precede(statement(X),
statement(Y));

Matching Variables:
X=fills-3
Y=submits-7

The user fills the form and submits
the form
det(user-2, The-1)
nsubj(fills-3, user-2)
root(ROOT-0, fills-3)
det(form-5, the-4)
dobj(fills-3, form-5)
conj_and(fills-3, submits-7)
det(form-9, the-8)
dobj(submits-7, form-9)

Extension Extraction Rule

Although extensions in a use case should be placed in the extension (or exception) paths

within the use case specification, our observation showed that simple extensions (with

one or two extension steps) are frequently described within the main success scenario of

the use case. An extension may be mixed up with a use case step to describe an

exceptional case regarding such a step (i.e., using “if - else” clauses). An extension may

also be specified alone as a use case step (although it is not a use case step) to describe

an alternative to another step. Extension extraction rules are used to deal with such

situations.

The execution of such rules is intended to identify extension condition(s), extension

step(s) and separate them from the normal use case step in case the extension is mixed

up with a use case step. Based on its definition, an extension extraction rule must have

two primary actions: extension_condition(statement(X)) and extension_

step(statement(Y)). The first action indicates that the extension condition is

extracted from the dependency tree rooted at X. The second action means the extension

step is extracted from the dependency tree rooted at Y. A rule may contain a secondary

action use_case_step(statement(Z)) in case it is needed to identify the use case

step that is mixed up with the extension. Another possible secondary action is

extension_start(W) which is used to extract the information regarding where the

extracted extension is invoked from the use case.

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 146

Table 5-11 shows some extension extraction rules accompanied with the sentences that

they can be applied in. In the first example, the extension condition is the negation of

the statement extracted from a dependency sub-tree rooted at Y (extension_

condition(neg(statement(Y))), which is “the review content is not valid.” The

extension step is extracted from a dependency sub-tree rooted at Z, which is “The

system displays the errors to the user.” The notion “Y\Z” indicates the portion of the

dependency tree generated by stripping the dependency sub-tree rooted at Z from the

dependency sub-tree rooted at X (Z is a descendant of X). Therefore, the extracted use

case step is “If the review content is valid, the system stores the review into the

database.”

In another example, the extension condition is identified as “The review content is

invalid.” The extension step is “The system displays the errors to the user” and “Step

5” is marked as where the extension is invoked (extension_start(Z)).

Table 5-11. Examples of Extension Extraction Rules

Extension Extraction Rule Example Sentence

X/{VB|VBD|VBG|VBN|VBP|VBZ}
Y/{VB|VBD|VBG|VBN|VBP|VBZ|N
N|NNS|JJ|JJS|JJR}
Z/{VB|VBD|VBG|VBN|VBP|VBZ}
mark(Y, {if})
advcl(X, Y)
root(X)
advmod(Z,{else})
parataxis(X, Z)
->
extension_condition(neg(stat
ement(Y))),
extension_step(statement(Z))
,
use_case_step(statement(X\Z)
);

Matching Variables:
X=stores-10
Y=valid-6
Z=displays-20

If the review content is valid, the system
stores the review into the database; else the
system displays the errors to the user
mark(valid-6, If-1)
det(content-4, the-2)
nn(content-4, review-3)
nsubj(valid-6, content-4)
cop(valid-6, is-5)
advcl(stores-10, valid-6)
det(system-9, the-8)
nsubj(stores-10, system-9)
root(ROOT-0, stores-10)
det(review-12, the-11)
dobj(stores-10, review-12)
det(database-15, the-14)
prep_into(stores-10, database-15)
advmod(displays-20, else-17)
det(system-19, the-18)
nsubj(displays-20, system-19)
parataxis(stores-10,displays-20)
det(errors-22, the-21)

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 147

Extension Extraction Rule Example Sentence

dobj(displays-20, errors-22)
det(user-25, the-24)
prep_to(errors-22, user-25)

X/{VB|VBD|VBG|VBN|VBP|VBZ}
Y/{VB|VBD|VBG|VBN|VBP|VBZ|N
N|NNS|JJ|JJR|JJS}
Z/CD
prep_in(X, {step})
num({step}, Z)
mark(Y, {if})
advcl(X, Y)
root(X)
->
extension_condition(stateme
nt(Y)),
extension_step(statement(X\
Y)), extension_start(Z);

Matching Variables:
X=displays-14
Y=invalid-10
Z=5-3

In step 5, if the review content is invalid,
the system displays the errors to the user
prep_in(displays-14, step-2)
num(step-2, 5-3)
mark(invalid-10, if-5)
det(content-8, the-6)
nn(content-8, review-7)
nsubj(invalid-10, content-8)
cop(invalid-10, is-9)
advcl(displays-14,invalid-10)
det(system-13, the-12)
nsubj(displays-14, system-13)
root(ROOT-0, displays-14)
det(errors-16, the-15)
dobj(displays-14, errors-16)
det(user-19, the-18)
prep_to(errors-16, user-19)

Constraint Extraction Rule

Constraint extraction rules are used to identify if a use case should instead be classified

as a non-functional constraint or a data constraint of the use case it is in. This type of

rules is aimed to provide an early classification of use case components in the extraction

stage. Another round of classification would then be conducted in the artifact

classification step (to be discussed in Chapter 6). Since in many cases the grammatical

structures of non-functional and data constraints are considerably different from normal

use case steps (i.e., a data constraint may describe what information to be included, or a

non-functional constraint may specify the time should be taken for a system to complete

a step), this type of rules could be greatly useful to identify such constraints.

A constraint extraction rule only has one primary action which has the syntax of

constraint_type(statement(X)) with constraint_type can be either

uc_non_functional_constraint or uc_data_constraint. For instance,

non_functional_constraint(statement(X)) indicates that the statement

extracted from the dependency sub-tree rooted at X is a non-functional constraint.

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 148

Table 5-12. Examples of Constraint Extraction Rules

Constraint Extraction Rule Example Sentence

X={include|contain}
Y={list|choice|option}
Z/{NN|NNS|NNP}
root(X)
nsubj(X, Y)
dobj(X, Z)
conj_and(Z, ?/{NN|NNS|NNP})
-> uc_data_constraint
(statement(Y));

Matching Variables:
X=includes-5
Y=list-2
Z=hotel-6

The list of categories includes hotel,
attraction and tour.

det(list-2, The-1)
nsubj(includes-5, list-2)
prep_of(list-2, categories-4)
root(ROOT-0, includes-5)
dobj(includes-5, hotel-6)
conj_and(hotel-6, attraction-8)
conj_and(hotel-6, tour-10)

X/{VB|VBD|VBG|VBN|VBP|VBZ}
Y={second|minute|hour}
Z={than}
W/CD
root(X)
mwe(Z, {less|more})
quantmod(W, Z)
num(Y, W)
prep_in(X, Y)
->
uc_non_functional_constraint
(statement(X))

Matching Variables:
X=validate-3
Y=second-11
Z=then-9
W=1-10

System should validate the review
content in less than 1 second.

nsubj(validate-3,System-1)
aux(validate-3, should-2)
root(ROOT-0, validate-3)
det(content-6, the-4)
nn(content-6, review-5)
dobj(validate-3,content-6)
mwe(than-9, less-8)
quantmod(1-10, than-9)
num(second-11, 1-10)
prep_in(validate-3,second-11)

Table 5-12 presents some examples of constraint extraction rules. The first rule

indicates that a sentence written in the format of “list (or choice or option) includes (or

contains) something” is a data constraint. The second rule indicates that if a sentence

has the form of “do something in less (or more) than a number of second (or minute, or

another time unit)” is a non-functional constraint. In GUEST, we make the assumption

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 149

that the identified constraint has a “constrain” relationship with the step that is

immediately before it in the use case being considered.

Use Case Relationship Extraction Rule

Use case relationship extraction rules are used to identify the “include” relationships

between use cases when such relationships are implicitly specified as steps in the main

success scenario of a use case. Consider a use case step “Use case ‘Register for

membership’ is performed” in Table 5-13. This is obviously not a normal use case step.

It is instead a specification that another use case (‘Register for membership’ use case)

should be invoked at this step. The rule specified in the first column can be used to

reveal this relationship.

Each use case relationship extraction rule only has one primary action which has the

syntax of uc_include(X) with X is the root of the dependency sub-tree where the

included use case’s name can be extracted.

Table 5-13. Examples of Constraint Extraction Rules

Constraint Extraction Rule Example Sentence

X={case}
Y={use}
Z={perform}
W/{VB|VBD|VBG|VBN|VBP|VBZ|NN|
NNP|NNS}
nn(X, Y)
nsubjpass(Z, X)
ccomp(Z, W)
auxpass(Z, {is|be})
root(Z)
-> uc_include(W);

Matching Variables:
X=case-2,Y=Use-1,Z=performed-9

Use case ‘Register for membership’ is
performed
nn(case-2, Use-1)
nsubjpass(performed-9, case-2)
ccomp(performed-9, Register-4)
prep_for(Register-4,
membership-6)
auxpass(performed-9, is-8)
root(ROOT-0, performed-9)

Repeating Step Extraction Rule

Repeating step extraction rules are used to verify whether a use case step belong to the

“repeating step” sub-class. A rule of this type must have three primary actions. First,

the action repeating_step_condition(statement(X)) indicates that the

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 150

condition of that repeating step is extracted from the dependency sub-tree rooted at X.

Secondly, the action repeating_step_start(Y) indicates the ID number of the first

repeated step (i.e., 3). Similarly, the action repeating_step_end(T) indicates the ID

number of the last repeated step.

Table 5-14 presents an example of repeating step extraction rules. According to the

matching details showed in the table, the following information is extracted from the

example sentence (in the second column):

• Repeating step condition: “A sufficient number of members is added to the

group”

• Starting step: “Step 3”

• Ending step: “Step 5”

Table 5-14. Examples of Repeating Step Extraction Rules

Repeating Step Extraction Rule Example Sentence

X={repeat}
Y={step}
Z={step}
W/CD
T/CD
U/{VB|VBD|VBG|VBN|VBP|VBZ|NN|NNS
|JJ|JJR|JJS}
root(X)
num(Y, W)
prep_to(X, Z)
num(Z, T)
mark(U, {until})
advcl(X, U)
->
repeating_step_condition(stateme
nt(U)), repeating_step_start(W),
repeating_step_end(T)

Matching Variables:
X=repeats-3
Y=step-4
Z=step-7
W=3-5
T=5-8
U=added

The user repeats step 3 to step 5 until
a sufficient number of members is
added to the group

det(user-2, The-1)
nsubj(repeats-3, user-2)
root(ROOT-0, repeats-3)
dobj(repeats-3, step-4)
num(step-4, 3-5)
prep_to(repeats-3, step-7)
num(step-7, 5-8)
mark(added-16, until-9)
det(number-12, a-10)
amod(number-12,
sufficient-11)
nsubjpass(added-16,
number-12)
prep_of(number-12,
members-14)
auxpass(added-16, is-15)
advcl(repeats-3, added-16)
det(group-19, the-18)
prep_to(added-16, group-
19)

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 151

5.2.3.2 Extraction Rule Creation Process

GUEST currently provides a set of over 250 extraction rules. However, since

requirements documents can be written in various styles, there may be cases in which

such extraction rules are not adequate to handle certain sentences. For instance, a certain

unimportant part of a sentence is not identified and thus extracted as part of an artifact

specification. A relationship between goals embedded in a sentence may not be

recognized. To deal with this problem, GUEST allows users to extend the existing set of

rules by developing their own extraction rules using a rule editor. Currently in GUEST,

extraction rules are manually developed based on the analysis of how some certain

phrases are ignored, or how artifacts and relationships are extracted from certain

sentences. The discussions regarding the steps taken to write new extraction rules and

the quality analysis of such rules are provided in the Appendix A4.

5.2.3.3 Extraction Rule Usage

In this section, we describe how extraction rules are used in our work to support the

identification of artifacts and relationships from text. Since use cases are specified in

their own sections in a requirements document, there is no case in which goal and use

case extraction rules need to be executed in the same section, except when the goal of a

use case is specified within that use case specification. However, even in such cases,

goal and use case extraction rules are also used independently. In the following, we

discuss the extraction processes for goals and use cases in which goal and use case

extraction rules are used respectively. The details regarding the algorithms behind these

extraction processes are provided in the Appendix A5.

Goal Extraction

A certain sentence may match different rules and the execution of each of these rules

may produce different results. To solve these problems, rules of different types are

given different priorities. Specifically, the goal extraction rules are prioritized in the

following order: ignorance rules (having the highest priority), navigation rules,

relationship rules, and splitting rules. In addition, GUEST supports the quality analysis

of extraction rules to ensure rules’ correctness, redundancy and consistency.

Furthermore, in case a sentence is found matching multiple rules, the alternative

extraction results will be recorded and presented to users at the end of the extraction

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 152

process for their actions. Such actions may include selecting the preferred extraction

outputs, or repairing the rules in case one or more rules are found incorrectly specified.

To extract goals from sentences in a section, we use an iterative process to analyze each

sentence in consideration of the rule priorities. In each iteration, GUEST searches for

the rule with highest priority that matches the dependency parse tree of such a sentence.

If there were such a rule, it would be executed to generate an outcome that contains one

or more new dependency trees (which are sub-trees of the original dependency tree) and

possibly a relationship between these trees (if a relationship or splitting rule is used).

The resulting dependency trees are then considered in the next iteration and so on. The

process ends when no matching rule is found. The final resulting dependency trees are

used to produce textual goal specifications.

In the following, we use an example to demonstrate the process of extracting goals from

the sentence “The system will be designed to improve the quality of travel planning by

facilitating the communication between travelers”, which we refer to as the original

sentence. Table 5-15 shows the two extraction rules used in this example. R1 is a

navigation rule while R2 is a relationship rule.

Table 5-15. Extraction Rules Used in Goal Extraction Example

Rule R1 X={design|build|aim|intend|target}
Y/VB
root(X)
nsubjpass(X, {system|project|software|application})
auxpass(X, {be})
aux(Y, {to})
xcomp(X, Y)
-> root(Y)

Rule R2 X/VB
Y/VBG
root(X)
prepc_by(X, Y)
-> sub_goal(goal(Y), goal(X))

Table 5-16 illustrate the iterative process of extracting goals and their relationships from

the original sentence. Rule R1 is applied in the first iteration since it takes precedence

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 153

over R2 that then is applied in the second iteration. The new dependency trees Tree 1

and Tree 2 are generated from the extraction, in which Tree 2 refines Tree 1.

Table 5-16. Extraction Process of the Original Sentence

Original
Dependency
Tree

det(system-2, The-1)
aux(designed-5, will-3)
root(ROOT-0,designed-5)
aux(improve-7, to-6)
det(quality-9, the-8)
det(communication-16,
the-15)
dobj(facilitating-14,
communication-16)
prep_between(communicat
ion-16, travelers-18)

prepc_by(improve-7,
facilitating-14)
nsubjpass(designed-5,
system-2)
auxpass(designed-5, be-4)
xcomp(designed-5,improve-
7)
dobj(improve-7, quality-9)
nn(planning-12, travel-11)
prep_of(quality-9,
planning-12)

Iteration 1 Rule R1 matched and applied, resulting in the new dependency tree:
root(ROOT-0,improve-7)
aux(improve-7, to-6)
det(quality-9, the-8)
det(communication-16,
the-15)
dobj(facilitating-14,
communication-16)

prepc_by(improve-7,
facilitating-14)
dobj(improve-7, quality-9)
nn(planning-12, travel-11)
prep_of(quality-9,
planning-12)
prep_between(communication
-16, travelers-18)

Iteration 2 Rule R2 matched and applied, resulting in two new dependency
trees: Tree 1 and Tree 2 in which Tree 2 refines Tree 1

Tree 1 Tree 2
root(ROOT-0,improve-7)
aux(improve-7, to-6)
det(quality-9, the-8)
dobj(improve-7, quality-9)
nn(planning-12, travel-11)
prep_of(quality-9,
planning-12)

root(ROOT-0,
facilitating-14)
det(communication-16,
the-15)
dobj(facilitating-14,
communication-16)
prep_between(communica
tion-16,travelers-18)

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 154

Use Case Extraction

Since use case specifications are normally structured with component indicators (i.e.,

use case name, pre-condition), there are only a few cases in which multiple types of

rules may be applicable in the same piece of text. For instance, in extracting the pre-

conditions and post-conditions from a use case specification, only ignorance rules

(under the category of use case extraction rules) are applicable (i.e., to identify parts of

a condition description that should be ignored). In addition, no extraction rule is needed

for mining the use case’s name (since it is normally described by only a few words).

Table 5-17. Summary of Use Case Component - Rule Category Mapping

Use Case Component Applicable Rule Categories

Use Case Name, Actor None

Pre-condition & Post-condition Ignorance Rules

Use Case Goal Goal extraction rules

Use Case Step All use case extraction rules

Non-functional constraint & data
constraint (This is for cases when
these constraints are explicitly
specified using some indicators in
use case specification. Normally
they are embedded in use case steps)

Ignorance Rules, Constraint
Extraction Rules

Use Case Extension All use case extraction rules

Use case step specifications are where all extraction rules are to be applied since it is

where other types of components (i.e., extension, constraints) are embedded. Use case

goal is a special component in a use case specification. It requires goal extraction rules

to be used to extract the goal(s) of the use case from the text. In case there is a single

goal, or multiple goals with sibling or alternative relationships (between them) are

found from the text, an operationalize relationship will then be established between each

of them and the use case being considered. If there are multiple goals with other

relationships (i.e., refine), or no goal (i.e., the entire goal description is ignored

according to an ignorance rule) is extracted, then the problem is recorded and reported

to users. Table 5-17 summarizes the applicable categories of use case extraction rules

for each use case component.

Chapter 5: Rule-based Goal and Use Case Integrated Model Extraction

 155

Based on this mapping, the use case extraction process is done by inspecting each

specified component in a use case (by looking for the use case component indicators

specified in the artifact indicator list at the beginning of the entire extraction process).

Based on each type of component, a suitable set of rules is then invoked to analyze each

sentence in the specification of such component. The process of searching for matching

rules and executing these rules is similar to that of goal extraction.

5.3 Chapter Summary

In this chapter, we provided a detailed discussion about our rule-based approach to

extracting goal and use case integrated models from natural language-based software

requirements specification documents (SRS). We started the chapter with some

background knowledge on natural language processing that is relevant to our

techniques. We then discussed the formatting requirements of SRSs to be used with our

extraction techniques. We described the pre-processing and linguistic analysis process

that make the text ready for the extraction of artifacts and relationships. The use of

extraction rules to identify artifacts and relationships from text were discussed in

detailed. In Chapter 6, we continue our discussion about extraction techniques with the

focus on artifact polishing and classification, and model construction. Chapter 6 also

provides details about our GUEST tool, some usage examples, and the evaluation

results.

Chapter 6: Artifact Specification Polishing and Classification

 156

Artifact Specification Polishing

and Classification

In this chapter, we describe the polishing and classification of artifact specifications

used in our rule-based approach to goal and use case integrated model extraction. In

section 6.1, we discuss our artifact specification polishing techniques. Section 6.2

provides details about the Mallet text classifier and how it was extended and used to

support the classification of the extracted artifact specifications. Section 6.3 describes

how a goal and use case model is constructed from information collected from the

previous steps. Section 6.4 provides a discussion about GUEST, a tool developed to

implement our entire extraction approach, accompanied with some usage examples. We

conclude this chapter with details about the validation we have conducted to evaluate

the performance of GUEST in extracting goal and use case models from text.

6.1 Artifact Specification Polishing

We present our technique to polish the artifact specifications resulted from the “artifact

and relationship identification” step (discussed in Chapter 5). The objective of artifact

specification polishing is to ensure the extracted specifications to conform to our

defined specification boilerplates discussed in Chapter 4.

Chapter 6: Artifact Specification Polishing and Classification

 157

6.1.1 Overview

The outcome of the artifact and relationship identification step is a set of dependency

trees and their relationships. Each dependency tree is a sub-tree of the dependency tree

(called original dependency tree) of the original sentence. Since the dependencies

contain the words and indexes (positions) of these words in the original sentence, they

can be used to form a textual specification for an extracted artifact. Table 6-1 presents

the extracted dependency trees obtained from the original sentence (“The system will be

designed to improve the quality of travel planning by facilitating the communication

between travelers”) and the textual artifact specifications created from them.

Table 6-1. Example of Generating Textual Specification from Dependencies

Dependency Collection Textual Specification
root(ROOT-0, improve-7)
aux(improve-7, to-6)
det(quality-9, the-8)
prep_of(quality-9, planning-12)
nn(planning-12, travel-11)
dobj(improve-7, quality-9)

To improve the quality of travel
planning

root(ROOT-0, facilitating-7)
det(communication-16, the-15)
dobj(facilitating-14,
communication-16)
prep_between(communication-16,
travelers-18)

Facilitating the communication
between travelers

However, since these extracted dependency trees are only fragments of the original

dependency tree, in many cases they do not readily represent a grammatically correct,

complete and stand-alone specification. For example, the first specification in Table 6-1

has an unneeded word ‘to’ at the beginning while the second specification has the main

verb in the present participle form (‘facilitating’) while it should be in its standard form

(‘facilitate’).

In addition, in order to guarantee artifacts are consistently specified in a goal and use

case integrated model, the extracted artifact specifications need also to conform to our

defined specification boilerplates presented in Chapter 4. Although specification

boilerplates are defined specifically for each artifact type, in this step we aim to ensure

Chapter 6: Artifact Specification Polishing and Classification

 158

the extracted specifications to satisfy the general properties of these boilerplates. The

reasons are twofold. Firstly, the categories of the extracted artifacts (except for use case

components) have not been determined at this stage (they will be classified in the next

step – artifact classification). Therefore, it is not possible to verify such artifacts against

any categories. Secondly, the verification as to whether an artifact specification meets

the boilerplates for its type is not necessarily in the scope of artifact extraction. It

instead belongs to the analysis phase that is to be discussed in Chapter 7.

There are three general properties of our specification boilerplates that are described as

follows. These properties come from the general requirement specification guidelines

that we adopted [152, 172]. The artifact specification polishing process focuses on

ensuring these properties in the extracted specifications.

• P1: Any specification, except for use case conditions, must be in active voice.

• P2: The use of adjective-preposition phrases instead of verb phrases must be

avoided. For instance, a specification such as “editors are capable of entering

new reviewers” should not be used. It should be instead written as “editors shall

be able to enter new reviewers.”

• P3: Each goal specification, which has a subject, must be written in the form of

“subject + shall/may be + adjectival phrase/noun phrase” or “subject shall/may

be able to + verb phrase.” If the specification does not have a subject, it must

start with a verb that is in its standard form. Use case component specifications

do not have this property.

In order to address these needs, we developed a four-step specification polishing

process. In each step, a dependency tree is input and a new dependency tree is produced

as a result. The first step is concerned with ensuring an extracted specification to be

correct grammatically (i.e., verb is in the right form). The second step ensures the

specification (if it is not a use case condition) is in active voice. A passive voice-to-

active voice transformation is needed if the specification is found to be in passive voice.

It thus guarantees that the property P1 is satisfied. The third step is used to rewrite the

specification if an adjective-preposition phrase is used instead of a verb phrase

(property P2). In this step, GUEST also provides a feature to help automatically rewrite

the specification in a way preferred by users (but still conforms to the boilerplates). For

instance, the specification “users without technical background can easily use the

Chapter 6: Artifact Specification Polishing and Classification

 159

system” can be rewritten as “users who do not have technical background can easily

use the system.” In the last step, if the specification is a goal, it is ensured to have the

appropriate modal auxiliary verb as discussed in property P3.

In the following sections, we discuss the techniques used in each of these steps.

6.1.2 Grammatical Error Correction

Grammatical errors are usually caused when a sentence has part of it trimmed (i.e., by

ignorance rules) while the remaining part of such a sentence, which is usually a phrase,

is not readily a stand-alone sentence. Similarly, errors may be produced in the case

where a sentence is split into multiple specifications (by goal relationship or splitting

rules, use case step extraction rules or extension extraction rules, etc.). These types of

grammatical errors commonly fall into the following cases:

Incorrect tense: this type of errors refers to the cases in which the main verb of a

specification is not specified in its suitable form. The specification “Facilitating the

communication between travelers” presented in Table 6-1 is an example of this type of

errors. To fix this problem, we developed an algorithm to verify the root verb (call it X)

of a specification and make modifications according to the following rules:

• If there does not exist a nsubj or nsubjpass dependency that has X as its

governor (which means there is no subject or passive subject of the verb), then

the verb must be in its standard form.

• If there is a nsubjpass dependency that has X as its governor and if the

specification is a use case condition, then the verb must be in the past participle

form. However, if the specification is not a use case condition, no change needs

to be made on the verb since it will be updated in the next step (when the entire

specification is transformed to active voice).

• If there is a nsubj dependency that has X as its governor and if the specification

is a goal, then no change is needed since the verb value will be updated in the

last step of this polishing process (adding modal auxiliary verbs). If the

specification is a use case pre-condition, then the verb is ensured to be in the

simple past or simple present tense depending on the currently used tense. For

instance, if the verb’s POS tag is VBN (past participle), it will remain

Chapter 6: Artifact Specification Polishing and Classification

 160

unchanged. If the past perfect tense or past continuous tense is used (detected by

checking the existence and POS tag of its auxiliary verb), the auxiliary verb will

be removed and the root verb is changed to its past participle form. In other

cases or if the specification belongs to another type of use case component, the

verb is ensured to be in the simple present tense. In this case, the value of the

verb depends on whether the subject is in singular or plural form. This can be

detected by checking the POS tag of the subject (NNS and NNPS indicate plural

and NN and NNP indicate singular). The SimpleNLG library8 is used to get the

value of a verb based on its forms.

Unneeded words: according to our observation, the specification (“To improve the

quality of travel planning”) presented in Table 6-1 represents the only case in which an

unneeded word (i.e., ‘to’) is left in an extracted specification. To fix this problem, we

verify if an aux(X, {to}) dependency exists in the extracted dependency tree (X is

the root verb) and ‘to’ does not appear in any other dependencies in that tree. If that is

the case, then that aux dependency is then removed.

6.1.3 Passive Voice to Active Voice Transformation

A passive voice specification can be recognized by verifying that its associated

dependency tree contains the following dependencies:

• nsubjpass and auxpass: these dependencies always appear in a dependency

tree of a specification. nsubjpass dependency is used to represent the

connection between the subject and verb of a passive clause. Semantically, the

subject is the object of the action specified by the verb. auxpass dependency is

used to represent the connection between this verb and a passive auxiliary verb

in the same passive clause. This auxiliary verb is normally a ‘to-be’ verb. Table

6-2 shows a dependency tree of a passive specification. The discussed nsubjpass

and auxpass dependencies are highlighted.

• agent: An agent is the complement of a passive verb that is introduced by the

preposition “by” and does the action specified by the verb. Therefore, it is the

semantic subject of the action. Since a passive specification may not contain a

8 https://code.google.com/p/simplenlg/

Chapter 6: Artifact Specification Polishing and Classification

 161

“by” clause, a dependency agent may not appear in a passive dependency tree.

Table 6-2 also shows an example of an agent dependency.

Table 6-2. Example for Passive Dependencies

Sale reports are generated
monthly by the system

nn(reports-2, Sale-1)
root(ROOT-0, generated-4)
advmod(generated-4, monthly-5)
det(system-8, the-7)
nsubjpass(generated-4, reports-2)
auxpass(generated-4, are-3)
agent(generated-4, system-8)

Since these dependencies can be considered as the indicators of a passive specification,

we term them as “passive dependencies.” In order to transform a passive specification

into active voice, we employ an algorithm that removes or replaces the passive

dependencies with their corresponding active dependencies. Specifically, a nsubjpass

dependency should be replaced with a dobj dependency while the related auxpass

dependency is removed. An agent dependency should be replaced with a nsubj

dependency. In addition, the algorithm updates the positions of these dependencies’

governors and dependents to reflect the transformation. For instance, the object (“sale

reports”) of the verb (“generated”) is moved from the position behind the verb to the

front of it. Furthermore, since the verb is no longer in a passive clause, it should be

updated to the standard form (i.e., “generate”). Table 6-3 illustrates the result of these

modifications. The crossed out dependencies are those removed and the highlighted

(bolded) dependencies are those added.

Table 6-3. Result of the Transformation

The system generates sale
reports monthly

det(system-2, The-1)
root(ROOT-0, generates-3)
nn(reports-5, sale-4)
advmod(generates-3, monthly-6)
nsubj(generates-3, system-2)
dobj(generates-3, reports-5)
nsubjpass(generated-4, reports-2)
auxpass(generated-4, are-3)
agent(generated-4, system-8)

Chapter 6: Artifact Specification Polishing and Classification

 162

6.1.4 Artifact Specification Structure Review

In this step, the dependency tree is reviewed to check if it describes an artifact

specification in an undesirable way. Other than ensuring the specification is not written

using adjective-preposition phrase, GUEST enables users to define rules for modifying

the structure of the specification according to their specific formatting requirements

(given that these requirements conform to the defined specification boilerplates).

The process of artifact specification structure review is done based on a set of modifying

rules. The syntax of modifying rules is adopted from that of extraction rules. Each

modifying rule also contains a list of matching conditions specified by variables and

dependencies and a list of modifying actions. Since modifying rules are intended to

manipulate and update existing dependency trees, an action used in a rule can also be

used in another. That makes the syntaxes of different types of rules may not be clearly

distinguished. Therefore, different from extraction rules, modifying rules are not clearly

categorized. The behavior of each rule entirely depends on the actions that it has. These

actions (termed as “dependency manipulating actions”) are discussed in the following

sections.

Dependency Adding Action

Dependency adding actions are used to add a new dependency into the dependency tree

being considered. It has the syntax of dep_name(governor, dependent) in which

dep_name is the name of the dependency being added, governor and dependent

refer to the variable name of a node that is intended to be the governor and dependent of

this dependency respectively. An example of this type of rule is dobj(W, Y). In this

example, a dobj dependency is being created between the nodes W and Y. Dependency

adding actions are frequently used in extraction rules as secondary actions.

Dependency Removal Action

A Dependency removal action is used to remove a certain dependency from a

dependency tree. It has the syntax of remove(dep_name(governor, dependent))

in which dep_name(governor, dependent) is the dependency to be removed. For

example, the action remove(dobj(W, Y)) means that if the dobj dependency exists

between the nodes W and Y, it would be removed from the dependency tree.

Chapter 6: Artifact Specification Polishing and Classification

 163

Dependency Collection Removal Action

Dependency collection removal actions are used to remove multiple dependencies with

a single action. This type of actions takes two or more variables. The first one is called

origin that is the node where the removal begins. Other variables are called terminal

points. A terminal point denotes the node where the removal ends. A terminal point

must be a descendant node of the origin. When executing a dependency collection

removal action, all descendant nodes of the origin and their dependencies are removed

except for the dependency sub-trees rooted at the terminal points. Dependency

collection removal actions have the syntax of remove_col(origin,

terminal_point,…, terminal_point).

Figure 6-1 illustrates an example of how this type of action works. Assume the variable

X refers to the node capable-4, Y refers to users-2, and Z refers to creating-5.

Then the action remove_col(X, Y, Z) would remove the following dependencies:

nsubj(capable-4,users-2), cop(capable-4, are-3) and prepc_of(

capable-4,creating-6).

Figure 6-1. Example of Dependency Collection Removal Action

Node Adding Action

A “node adding” action is used to create a new node in a dependency tree (a node in a

dependency tree corresponds to a word in its textual specification). Since the action’s

objective is only creating a new node, it must be used in conjunction with other actions

that make use of the newly created node. Therefore, this type of actions is considered as

a “helper” action or “dependent” action. Table 6-4 presents the syntax of this type of

actions and an example showing how it is used.

capable-4
(JJ)

are-3
(VBP)

creating-5
(VBG)

reviews-6
(NNS)

users-2
(NNS)

dobj

nsubj cop prepc_of

terminal point

origin

terminal point

Registered-1
(JJ)

amod

Chapter 6: Artifact Specification Polishing and Classification

 164

Table 6-4. Syntax and Example of Node Adding Actions

Syntax new(name, {value}, POS_tag, node_before, node_after)

Variables:

name: the name given to the node. It is also called as “variable
name” It is used in other actions to refer to this node. i.e., X, Y

Value: the standard value of the node. i.e., {who}, {create},
{review}

POS_tag: the POS tag assigned to the node, it is used later to
determine the actual value of the node. For instance, if POS_tag is
VBG, then the node will have the value of {creating} if its
standard value is {create}
node_before: the node that should be placed before the node being
created when the dependency tree is transformed to a textual
specification. It is ‘null’ if the new node should be the first word in the
specification.
node_after: the node that should be placed before the node being
created when the dependency tree is transformed to a textual
specification. It is ‘null’ if the new node should be the last word in the
specification.

Example new(Z, {who}, WP, X, Y)

In this example, a new node named Z with value of “who” and POS tag
of WP is created. In the corresponding textual specification of the
dependency tree, the word “who” (the node’s value) should be placed
after the word associated to node X and before the word associated to
node Y.

Verb Adding Action

Verb adding actions are a subset of node adding actions. They are used to create a verb

that can then be used to create a verb phrase in a text specification. They can also be

used to modify an existing verb (i.e., change POS tag, add negation). The verb being

created or modified can optionally (using a variable) be marked as the root of the

dependency tree being considered. Verb adding actions are primarily used for replacing

an adjective-preposition phrase with a verb phrase and adding a relative clause into a

noun phrase. Table 6-5 presents the syntax of this type of actions and an example

showing how it is used.

Chapter 6: Artifact Specification Polishing and Classification

 165

Table 6-5. Syntax and Example of Verb Adding Actions

Syntax new_verb(name, {value}, POS_tag_ref, POS_tag_subject,
node_before, node_after, is_negated, is_root)

Variables:

name: the name given to the node. It is also called as “variable
name” It is used in other actions to refer to this node. i.e., X, Y

value: the standard value of the node. i.e., {write}, {create}.
If the node already exists, then the value of the variable is ‘null.’

POS_tag_ref: the node that is referenced to determine the POS tag
of the node being added as the root. For instance, if the referenced node
has the POS tag of VBN, then the new node will has a VBN POS tag.

POS_tag_subject: in case no node is available to reference for a
POS tag, then a POS tag subject is needed. This variable refers to the
node that is the subject of the verb to be added. Based on the POS tag
of the subject, the verb’s POS tag can be determined (i.e., if the subject
has the NNS POS tag, then the verb has the VBP POS tag). If both
POS_tag_ref and POS_tag_subject variables are ‘null,’ then it is
assumed the verb has a VB POS tag
node_before: the node that should be placed before the node being
created when the dependency tree is transformed to a textual
specification. This variable has a ‘null’ value if the new node should be
the first word in the specification, or it is an existing node.
node_after: the node that should be placed before the node being
created when the dependency tree is transformed to a textual
specification. This variable has a ‘null’ value if the new node should be
the last word in the specification, or it is an existing node.
is_negated: a Boolean value indicating whether the phrase being
considered should be negated. If so, a neg dependency should be
added into the dependency tree in a suitable way.
is_root: a Boolean value indicating whether the verb should be
marked as the root of the dependency tree. If so, the existing root
dependency must have its dependent node changed to the verb being
added/modified.

Example new_verb(Z, {create}, W, null, X, Y, false, true)

In this example, a new node named Z that has the standard value of
“create” and the same POS tag as that of W. In the corresponding
textual specification of the dependency tree, the word “create” (the
node’s value) should be placed after the word associated to node X and
before the word associated to node Y. There is no negation needs to be
added. The verb is marked as the root of the universal dependency tree.

Chapter 6: Artifact Specification Polishing and Classification

 166

Below we provide some examples to illustrate how the discussed actions are used.

Example 6-1: Consider the specification “users are capable of creating reviews.” The

goal is to rewrite it as “users create reviews” (which will then be updated with modal

verbs in the next step and become “users shall be able to create reviews”). The

dependency tree of the specification and the modifying rule used to modify it are

presented in Table 6-6.

Table 6-6. Dependency Tree and Modifying Rule for Example 6-1

X=capable-3, Y=Users-1
Z=creating-4, T=are-2

X={capable}
Y/{NN|NNS|NNP|NNPS}
Z/VBG
T={be}
nsubj(X, Y)
cop(X, T)
root(X)
prepc_of(X, Z)
-> new_verb (Z, null, null, Y,
null, null, false, true),
remove_col(X, Y, Z),
nsubj(Z, Y);

There are three actions in this modifying rule. The first is a verb adding action. Since Z

is an existing node (it is ‘creating’), the value, node_before and node_after

parameters (the second, fifth and sixth parameters) have no value. Z is set to have a

POS tag that suits to have Y as its subject (the forth parameter). The current POS tag of

Y is NNS (plural noun). Therefore, Z should have the POS tag of VBP and its value

should be changed to ‘create.’ In addition, no negation needs to be added (the seventh

variable). Lastly, Z is marked as the root of the dependency tree. That means the root

dependency will have its dependent node changed to Z (which becomes root(ROOT-

0, create-4)).

The second action is a dependency collection removal action. It is intended to remove a

set of dependencies with the origin is X and the terminal points are Y and Z. As a result

of this action execution, the dependencies nsubj(capable-3,users-1),

cop(capable-3, are-2) and prepc_of(capable-3,creating-5) are all

removed.

capable-3
(JJ)

are-2
(VBP)

creating-4
(VBG)

reviews-5
(NNS)

Users-1
(NNS)

dobj

nsubj cop prepc_of

Chapter 6: Artifact Specification Polishing and Classification

 167

In the last step, the nsubj(create-4, users-1) is created and added into the

dependency tree. Table 6-7 summaries the outcome through each of these steps. In each

step, the newly added or modified parts of the dependency trees are highlighted.

Table 6-7. Summary of Action Execution in Example 6-1

Action Resulting Dependency Tree

new_verb (Z, null, T, null,
null, null, false, true)

nsubj(capable-3, users-1)
cop(capable-3, are-2)
root(ROOT-0, create-5)
prepc_of(capable-3, create-5)
dobj(create-5, reviews-6)

remove_col(X, Y, Z)
root(ROOT-0, create-5)
dobj(create-5, reviews-6)

nsubj(Z, Y)
root(ROOT-0, create-5)
dobj(create-5, reviews-6)
nsubj(create-5, users-1)

Table 6-8. Dependency and Modifying Rule for Example 6-2

X=users-1, Y=background-4

X/{NN|NNP|NNS|NNPS}
Y/{NN|NNP|NNS|NNPS}
prep_without(X, Y)
-> new(Z, {who}, WP, X, Y), new_verb(W, {have}, null, X, Z,
Y, true, false), remove(prep_without(X, Y)), nsubj(W, Z),
rcmod(X, W), dobj(W, Y);

use-7
(VB)

can-5
(VBP)

system-9
(VBG)

users-1
(NNS)

nsubj aux dobj

background-4
(NN)

prep_without

technical-3
(JJ)

dobj

easily-6
(RB)

advmod

the-8
(DT)

det

Chapter 6: Artifact Specification Polishing and Classification

 168

Example 6-2: Consider the specification “users without technical background can

easily use the system.” The goal is to rewrite it as “users who do not have technical

background can easily use the system.” The dependency tree of the specification and

the modifying rule used to modify it are presented in Table 6-8.

There are six actions in this modifying rule. The first is a new node action that is

intended to create a new node Z with the value of ‘who,’ POS tag of WP and is placed

after X and before Y.

The second action is a verbal root adding action that creates a new verb W that has the

standard value of ‘have.’ W has X as the POS tag subject. Since X has the NNS POS

tag, W has the POS tag of VBP and thus its value remains ‘have.’ The fifth and sixth

variables indicate the W should be placed before Z and after Y when the dependency

tree is transformed into a textual specification. The seventh variable indicates that a

negation should be added with the verb. Therefore, the dependencies aux(W, {do})

and neg(W, {not}) are added into the dependency tree. The addition of negation

dependencies depends on both the POS tag of the verb (i.e., to determine it should be

“do not” or “does not”) and whether modal verbs are in use. For instance, in cases

when “shall” is used, then only the neg(W, {not}) dependency is added.

The rest of the actions are concerned with removing and adding dependencies. Table 6-

9 summaries the state of the dependency tree after each action is executed.

Table 6-9. Summary of Action Execution in Example 6-2

Action Resulting Dependency Tree

new(Z, {who}, WP, X, Y)

nsubj(use-7, users-1)
amod(background-4, technical-3)
prep_without(users-1,
background-4)
aux(use-7, can-5)
advmod(use-7, easily-6)
root(ROOT-0, use-7)
det(system-9, the-8)
dobj(use-7, system-9)
Z={who}/WP created

new_verb(W, {have}, null,
X, Z, Y, true, false)

nsubj(use-7, users-1)
amod(background-4, technical-3)
prep_without(users-1,

Chapter 6: Artifact Specification Polishing and Classification

 169

Action Resulting Dependency Tree
background-4)
aux(use-7, can-5)
advmod(use-7, easily-6)
root(ROOT-0, use-7)
det(system-9, the-8)
dobj(use-7, system-9)
W={have} created
aux(W, {do})
neg(W, {not})

remove(prep_without(X, Y))

nsubj(use-7, users-1)
amod(background-4, technical-3)
aux(use-7, can-5)
advmod(use-7, easily-6)
root(ROOT-0, use-7)
det(system-9, the-8)
dobj(use-7, system-9)
aux(W, {do})
neg(W, {not})

nsubj(W, Z)

nsubj(use-7, users-1)
amod(background-4, technical-3)
aux(use-7, can-5)
advmod(use-7, easily-6)
root(ROOT-0, use-7)
det(system-9, the-8)
dobj(use-7, system-9)
aux(W, {do})
neg(W, {not})
nsubj(W, Z)

rcmod(X, W)

nsubj(use-7, users-1)
amod(background-4, technical-3)
aux(use-7, can-5)
advmod(use-7, easily-6)
root(ROOT-0, use-7)
det(system-9, the-8)
dobj(use-7, system-9)
aux(W, {do})
neg(W, {not})
nsubj(W, Z)
rcmod(X, W)

dobj(W, Y)

nsubj(use-7, users-1)
amod(background-4, technical-3)
aux(use-7, can-5)
advmod(use-7, easily-6)

Chapter 6: Artifact Specification Polishing and Classification

 170

Action Resulting Dependency Tree
root(ROOT-0, use-7)
det(system-9, the-8)
dobj(use-7, system-9)
aux(W, {do})
neg(W, {not})
nsubj(W, Z)
rcmod(X, W)
dobj(W, Y)

Modifying Rule Creation and Quality Analysis

Similar to extraction rules, the creation of modifying rules is currently done manually

with the support of the rule editor in GUEST. Modifying rules are normally created by

analyzing a sentence and determine the changes needed to modify such a sentence so

that it is written in a desired way. A detailed discussion on the creation and quality

analysis of modifying rules is provided in Appendix A6.

6.1.5 Modal Auxiliary Verb Addition

This step is only required for goals since use case components do not need to be

specified with modal auxiliary verbs according to the specification boilerplates. The

input into this step is a dependency tree that has been processed through the previous

steps. Therefore, it is ensured that the specification corresponding to this dependency

tree is grammatically correct (except that the root verb may not be in a correct form

since it was intentionally left to be considered in this step), in active voice and specified

properly using a verb phrase. The following rules are used to consider adding modal

auxiliary verbs into this dependency tree.

R1: If the root verb already has the required modal auxiliary verbs, then nothing should

be updated.

R2: If a modal verb has been used, however it is not the required one, then such a

modal verb is replaced with the appropriate one. Table 6-10 presents how the

replacement is done.

Chapter 6: Artifact Specification Polishing and Classification

 171

R3: If the root verb is “to-be” (i.e., “is,” “are”), then “shall” should be added before

the verb (and after the subject if any) while the “to-be” verb is transformed to its

standard form (“be”).

R4: If the root verb is a normal verb, then “shall be able to” is added before the verb

(and after the subject if any) while the verb is transformed to its standard form.

R5: If the specification contains a negation (i.e., “users cannot create reviews”), then

the above modification must be adjusted accordingly. For instance “shall be able to”

becomes “shall not be able to.” Negations can be detected by verifying if a neg

dependency (i.e., neg(create, not)) exists in the dependency tree.

Table 6-10. Modal Verb Replacement

Original Text Replacement Text

Must be/will be/should be Shall be

Must/will/shall/should + Verb Shall be able to + Verb

May + Verb May be able to + Verb

All these modifications are done on the dependency tree (which then entails the

corresponding textual specification to be updated). For instance, to add the phrase

“shall be able to” to the textual specification, the following dependencies are added into

the dependency tree: aux({able}, {shall}), cop({able}, {be}),

root({able}), aux(X, {to}), xcomp({able}, X) and nsubj({able}, Y)

with X is the root verb and Y is the subject of this verb (if it exists). Note that “able” is

the root of the new dependency tree, therefore a number of relevant existing

dependencies (i.e., root(X)) must be removed. In addition, the ordering among the

added words (i.e., “able” is after “be”) and between them with the existing words

(“to” is before X) need to be entered into the dependency tree so a proper textual

specification can be later generated.

Table 6-11 provides some examples about how these rules are used to add suitable

modal verbs into specifications. In this Table, the bold and italic dependencies indicate

those created by replacing modal verbs (discussed in rule R2), bold dependencies

indicate those added to while crossed out dependencies indicate those removed from the

dependency tree.

Chapter 6: Artifact Specification Polishing and Classification

 172

Table 6-11. Modal Verb Replacement Examples

Original Spec & Dependency
Tree

New Spec & Dependency Tree

The system must be secure
det(system-2, The-1)
nsubj(secure-5, system-2)
aux(secure-5, must-3)
cop(secure-5, be-4)
root(ROOT-0, secure-5)

The system shall be secure
det(system-2, The-1)
nsubj(secure-5, system-2)
aux(secure-5, shall-3)
cop(secure-5, be-4)
root(ROOT-0, secure-5)

Note: “shall” replaces “must”

Users shall create reviews
nsubj(create-3, Users-1)
aux(create-3, shall-2)
root(ROOT-0, create-3)
dobj(create-3, reviews-4)

Users shall be able to create reviews
nsubj(able, Users-1)
aux(able, shall)
cop(able, be)
root(ROOT-0, able)
aux(create-3, to)
xcomp(able, create-3)
dobj(create-3, reviews-4)
nsubj(create-3, Users-1)
root(ROOT-0, create-3)
aux(create-3, shall-2)

Added ordering:
before(Users,shall),
before(shall,be), before(be,able),
before(able, to), before(to,create)

Banned users cannot write articles

amod(users-2, Banned-1)
nsubj(write-5, users-2)
aux(write-5, can-3)
neg(write-5, not-4)
root(ROOT-0, write-5)
dobj(write-5, articles-6)

Banned users shall not be able to write articles
amod(users-2, Banned-1)
nsubj(able, users-2)
aux(able, shall)
neg(able, not)
cop(able, be)
root(ROOT-0, able)
aux(write-5, to)
xcomp(able, write-5)
dobj(write-5, articles-6)
nsubj(write-5, users-2)
aux(write-5, can-3)
neg(write-5, not-4)
root(ROOT-0, write-5)

Added ordering:
before(users, shall),
before(shall,not), before(not,be),
before(be, able), before(able,
to), before(to, write)

Chapter 6: Artifact Specification Polishing and Classification

 173

6.2 Artifact Classification

The goal specifications extracted from the previous steps need to be classified to

determine what artifact type (defined in GUIMeta’s artifact layer) they belong to so they

can be placed in a goal and use case integrated model. Such classification should

contain the information about whether a goal specification is a business, functional or

non-functional goal and which level of abstraction it belongs to (i.e., business, product,

feature or service level).

In addition, if a goal is classified as a non-functional goal, it is useful to identify what

non-functional category it belongs to (i.e., usability, security). Moreover, while most

components in a use case do not need to be classified (since they normally come with

indicators that indicate their roles in a use case), use case steps need to be classified to

verify if they should be categorized as a non-functional or data constraints instead. This

is critical even there are constraint extraction rules that can be used to recognize these

constraints from step specifications because these extraction rules may be insufficient to

identify all constraints.

In this section, we first provide some background about Mallet [102], a machine

learning toolkit that supports text classification on which our classification technique is

based. We then present our extension to Mallet to improve its accuracy in classifying

textual specifications in goal and use case integrated models. Lastly, we discuss how

such the extended version of Mallet supports the classification of artifacts in our work.

6.2.1 Text Classification with Mallet

Mallet supports text classification based on a range of machine learning algorithms

including Naïve Bayes, Maximum Entropy and Decision Tree. Mallet allows the

training of a classification model based on a set of sentences (or sequences of words)

manually labeled to be certain topics or classes. Based on such a model, Mallet enables

the calculation for the probability that a particular sentence can be classified into a

certain class.

In order to perform model training and text classification, Mallet transforms each

textual sentence into a so-called feature vector. Each feature vector contains the

mapping of an integer number the represents a word in the sentence and the number of

Chapter 6: Artifact Specification Polishing and Classification

 174

times that this word appears in the sentence. When training is performed, these feature

vectors are used to compute the probability of each word to be classified into each class.

When classifying a sentence, the feature vector generated from such a sentence enables

the calculation of probability for a sentence to be classified into each class based on the

probabilities obtained during previous trainings. Table 6-12 presents the process of

transforming textual sentences into feature vectors. We take the sentence “Users shall

be able to create reviews” as an illustrating example.

Table 6-12. Sentence to Feature Vector Transformation Process

Steps Example Outcome

1. Tokenize sentence {“Users”, “shall”, “be”, “able”, “to”, “create”,
“reviews”}

2. Convert token values to lowercase {“users”, “shall”, “be”, “able”, “to”, “create”,
“reviews”}

3. Convert tokens to features {“users” (132), “shall” (12), “be” (45), “able”
(18), “to” (76), “create” (165), “reviews”
(321)}

4. Convert features to feature vectors {132 – 1, 12 – 1, 45 – 1, 18 – 1, 76 – 1, 165 –
1, 321 – 1}

In the first step, the sentence is tokenized to obtain the set of words contained in the

sentence. In step 2, these tokens (words) are converted into lower case. If this step is

done during text classification and if an obtained token is not found in the set of trained

tokens, it will be removed. In step 3, each token is assigned an integer number. If this

step is done during training and if the token has already been assigned a number (i.e., it

has been found in a sentence that has been processed), then the same number would be

given. Otherwise the token is assigned the next integer number that has not been

allocated to any other tokens. If this step is done during text classification then the token

will then be given the number that previously assigned to the same token during

training. In the last step, the assigned number is mapped to the number of times the

token appears in the sentence (they are all 1 in this example since each word only

appears once). Mallet provides an option to remove stop words (i.e., “a,” “an,” “the,”

“that”…) from the token list. For instance, if using this option, “shall,” “be,” “able”

and “to” would not be considered. That enables the classifier to focus on only

important words to classify sentences.

Chapter 6: Artifact Specification Polishing and Classification

 175

6.2.2 An Extended Version of Mallet

Since Mallet implements algorithms for general text classification, it does not well fit

into the task of classifying goal specifications. In this section, we discuss our extensions

to tailor the classifier to the needs of artifact specification classification.

Mallet’s limitations in artifact specification classification

L1: Mallet considers different forms of a word differently. For instance, “improves” is

considered as a different word from “improve” or “improved.” Similarly, “reviews” is

different from “review.” However, from the semantic point of view, different forms of

a word still share the same meaning. They thus should be treated equivalently. In

addition, there exist cases in which a word can be both verb and noun (i.e., “request,”

“link”). They need to be differentiated.

L2: Mallet treats words individually without considering multiple word expressions. A

multiple word expression is a group of words that are usually used together in a

sentence. For example, “user interface” is a commonly used expression in usability and

look-and-feel non-functional goals or constraints. It is also less likely to be used in other

types of specifications. Therefore, if “user interface” is considered as a single word, it

would be more probable that a specification containing this word to be correctly

classified compared to the case that the word is split into “user” and “interface.” That

is because “user” and “interface” may appear in different classes of specifications

(especially “user”). It thus may be less likely the specification is correctly classified

(unless the number of usability or look-and-feel specifications is considerably higher

than the number of specifications containing the word “user” and/or “interface”).

L3: Mallet lacks support for using keywords or patterns to enhance the classification of

text, specifically, artifact specifications. In fact, there are keywords that can hint the

category of the artifact specifications in which they are used. For instance, a

specification containing the word “productivity” or “efficiency” may likely be a

business goal (i.e., “improve employee’s productivity.” A specification that contains

“color scheme” or “color code” may probably be a look-and-feel non-functional goal

or constraint. Similarly, specifications with “hours per day” or “hours per week” may

likely describe the availability of a system. In addition, a pattern such as “in x seconds”

Chapter 6: Artifact Specification Polishing and Classification

 176

or “under x minutes” may indicate non-functional specifications concerning speed of a

system. Being able to utilize these keywords and patterns would probably improve the

accuracy of artifact classification.

Addressing these limitations

In order to overcome these limitations, we provide additional processing into the

transformation of sentence into feature vectors. Firstly, to address the limitation L1,

each token is converted to its standard form (i.e., “reviews” would becomes “review”).

In addition, to handle the cases in which a single word may be used with different roles

(i.e., verb, noun), a POS tag is added after each token (i.e., “review_vb,” “review_nn”).

Secondly, to address the limitations L2 and L3, we build a set of keywords that are

commonly used in specifications of the artifact classes defined in GUIMeta. Each

keyword is associated to one or more artifact classes, implying that a specification

containing such a keyword may likely belong to one of these classes. A keyword may

contain multiple words. In this case, a dash (“-”) is used between words. For instance,

“user-interface,” “operating-system” or “easy-to-learn.” A multi-word keyword can

also represent a pattern. For example, “every-second” and “under-minute” are used to

denote the patterns “in x seconds” and “under x minutes” respectively. Such keywords

can be used to find specifications that contain the patterns since numbers (i.e., x in these

patterns) would be removed since they are considered stop words.

To facilitate the use of keywords and patterns, the list of keywords is used as an

additional training dataset during the training of a classification model. This ensures the

feature created based on each keyword has a high probability for being classified into

the classes associated to the keyword. In addition, the way a sentence is tokenized needs

to be updated to accommodate multi-word tokens. For instance, if a sentence contains

the word “user interface,” then this word only corresponds to a single token instead of

two tokens holding “user” and “interface” separately.

Table 6-13 presents two examples for the new transformation process from sentences to

feature vectors. In this new process, the sentence tokenization and lowercase conversion

are combined as a single step. In this step, the following processing is done:

Chapter 6: Artifact Specification Polishing and Classification

 177

• A sentence is parsed using the Stanford parser to obtain a list of tokens, and each

word is labeled with a POS tag.

• The sequence of tokens is examined to verify if multi-word keywords are used

in this sentence, if a multi-word keyword is found, then the involved individual

tokens are connected to each other with dashes (“-”).

• Stop words are then removed from the token list

• The remaining tokens are then converted to their standard form, then to lower

case and concatenated with an underscore (“_”), and then their standard POS tag

(multi-word tokens do not need to have a POS tag assigned). For instance,

“validates” in the first example is a verb and thus is converted to “validate_vb.”

The other two steps (“Convert tokens to features” and “Convert features to feature

vectors”) remain unchanged.

Table 6-13. New Transformation Process from Sentence to Feature Vector

Considered sentence: “System validates the review content in 1 second”

Steps Example Outcome

1. Tokenize sentence {“system_nn”, “validate_vb”, “review_nn”,
“content_nn”, “in-second”}

2. Convert tokens to features {“system_nn” (198), “validate_vb” (139),
“review_nn” (321), “content_nn” (476), “in-
second” (683)}

3. Convert features to feature vectors {198 – 1, 139 – 1, 321 – 1, 476 – 1, 683 – 1}

Considered sentence: “System shall be easy to use”

Steps Example Outcome

1. Tokenize sentence {“system_nn”, “easy-to-use”}

2. Convert tokens to features {“system_nn” (198), “easy-to-use” (956)}

3. Convert features to feature vectors {198 – 1, 956 – 1}

6.2.3 Artifact Classifiers

Our extended version of Mallet plays a key role in the development of our classifier to

classify artifact specifications. Our classifier is composed of two separated classifiers.

The horizontal classifier is used to determine if a specification describes a business

objective, functional or non-functional property or data constraint. For a non-functional

Chapter 6: Artifact Specification Polishing and Classification

 178

goal or constraint, it also provides the prediction as to which non-functional category

the specification belongs to (i.e., security, usability). Currently we support the

identification of 20 non-functional categories defined in GUIMeta’s artifact layer

(discussed in Chapter 4). The vertical classifier is used to identify the abstraction level a

goal should belong to (product, feature, or service level).

The rationale for using two separate classifiers are twofold. Firstly, the classification of

use case step specifications only requires the horizontal classifier. Secondly, this

separation of classification concerns can help reducing training data size. For instance,

if a single classifier were used, then we would need sufficient training data for 23x3

classes, as opposed to only 23 classes (business goal, functional goals, data constraints

and 20 non-functional goal or constraint categories) for the horizontal classifier and 3

classes (product, feature and service) for the vertical classifier. Additionally, the

training data can be shared between the two classifiers (i.e., a specification is classified

as a functional goal and belong to the service level of abstraction), given they are

appropriately labeled for each classifier.

Up to now we have trained the classifiers with over 2500 requirements collected from

multiple sources including online resources, literature and books. GUEST allows the

classifiers to be further trained or re-trained. In addition, we have created a set of over

350 keywords for supporting the classification of artifacts. This set of keywords can

also be extended and modified depending on the need of particular projects.

Figure 6-2 presents the high-level algorithm for the classification process goals. The

classification result is usually the class that the goal has the highest probability of

belonging to. However, since it may exist cases in which multiple classes have the same

probability, the classification result may sometime contain multiple classes. In this

classification process, a goal specification is first classified by the horizontal classifier.

If the goal is classified as a business goal or a data constraint, then the classification is

terminated (the goal’s class has been determined). If the result is a functional goal or a

non-functional goal, then the vertical classifier is used to identify the level of

abstraction the goal should be on (i.e., feature, service). The combination of

classification results from these two classifiers would then be used to determine the

class of the goal.

Chapter 6: Artifact Specification Polishing and Classification

 179

The classification of use case steps is similar to that for goals. However, it is much

simpler since only the horizontal classifier is required.

Function classifyGoal(spec)
 Input: a goal specification
 Output: a list of class the goal specification can belong

 to // multiple classes are returned instead of a single
 class when the specification has equivalent highest
 probability of being classified into different classes

 classes = empty list of goal classes
 horiontalClasses = classify(horizontalClassifier, spec)
 IF horizontalClasses = NULL || isEmpty(horizontalClasses)
 return NULL
 END IF
 FOR EACH class in horizontalClasses
 IF class = ‘business goal’ || class = ‘data constraint’
 classes.ADD(class)
 ELSE
 verticalClasses = classify(verticalClassifier, spec)
 IF verticalClasses = NULL ||isEmpty(verticalClasses)
 return NULL
 END IF
 Classes.ADD(CombineGoalClasses(class,

 verticalClasses))
 END IF
 END FOR
 return classes
END Function
Function classify(classifier, spec)
 Input: a classifier and a specification to be classified
 Output: a list of class the specification can belong to

 return classifier.classify(spec)
END Function

Function combineGoalClasses(horizontalClass, verticalClasses)
 Input: a horizontal class and a list of vertical classes
 Output: a list of class the specification can belong to

 classes = empty list of goal classes
 FOR EACH verticalClass in verticalClasses
 class = getClass(horizontalClass, verticalClass) //get

 goal class based on horizontal and vertical
 classification. i.e., if horizontalClass = ‘functional
 goal’ & verticalClass = ‘service goal’ then class =
 ‘functional service goal.’ If horizontalClass =

Chapter 6: Artifact Specification Polishing and Classification

 180

 ‘functional goal’ while verticalClass = ‘product goal’
 then class = NULL
 IF class != NULL
 classes.ADD(class)
 END IF
 END FOR
 return classes
END Function

Figure 6-2. Classification Algorithm

6.3 Model Construction

The outcomes of previous steps in the model extraction process are documented in the

form of an extraction report, which contains extraction results and an extraction log.

Extraction results contain a set of extracted and classified specifications and the

relationships between these specifications. In this step, these details are synthesized to

build a model. For instance, if a specification is classified as a business goal, then a

business goal is generated based on such a specification.

The relationships that are extracted between these specifications would also be used to

form the relationships between artifacts in a model. One of the main issues in the

synthesis of extraction results is that the extracted artifacts may be the duplicates of

each other. GUEST is able to identify duplicate artifacts if they have the same

specifications. In such cases, only one copy of the duplicated artifact is included in the

model. GUEST by itself does not handle the duplication of artifacts that have

semantically equivalent specifications (but written differently). Such cases are

addressed by our GUITAR tool, which provides semantic analysis support in the form

of goal-use case integrated models. GUITAR is discussed in Chapter 7. Since GUEST

and GUITAR are fully integrated in a single tool called GUITARiST, users are

provided an option to request that a model is analyzed immediately after it is extracted.

In this case, an analysis report generated by GUITAR would be provided to users.

Extraction results may contain multiple sets of specifications and relationships in case

alternative results were obtained. For instance, a goal can be classified into multiple

artifact classes, or multiple extraction rules can be applied into a single sentence,

leading to different artifacts and relationships extracted. In such cases, GUEST uses one

of the alternatives to create a model. However, the alternative results are also presented

Chapter 6: Artifact Specification Polishing and Classification

 181

to users. They then can choose to create another model based on an alternative

extraction result if such an alternative is more desirable. GUEST also provides full

model editing features to enable users to make necessary corrections or manually extend

the model when additional details are available.

The extraction results are dependent on the quality of various components including the

natural language parser (Stanford parser in this case), the coreference resolution system,

the artifact classifier and the set of extraction rules, modifying rules. Therefore, there

are cases the obtained extraction result is not correct due to the errors produced by one

or more of these components. For instance, if the natural language parser does not

correctly parse a sentence, then that would lead to an incorrect result in the entire

extraction related to that sentence, no matter how the quality of the other components

are. Similarly, if no extraction rule exists to identify that a sentence actually contains

two goal specifications with a certain relationship between them, then the extraction

result would also be incorrect.

In order to help users monitor and get more insights into the extraction process, GUEST

produces an extraction log that contain the results produced by each component in each

step of the extraction and details of problems encountered during the entire extraction

process. In case users identify an error in an extracted model, they can review the entire

extraction process (based on this extraction log) to locate the source of problems and

make corrections. For instance, if it is found that the natural language parser incorrectly

parsed a sentence, then users can train the parser with a correct manually generated

parse tree (for that sentence) to ensure a correct parse if a similar sentence is

encountered in the future. The details of an extraction log are described as follows:

• Pre-processing details: each sentence (called an original sentence) in the

original requirements document is associated to its pre-processed version (the

version that was used for the extraction). This association indicates the details

modified or removed in the original sentence during the pre-processing step.

This information helps users identify if important details were removed or

modified and thus make adjustments in the requirements documents to avoid

this incorrectness.

Chapter 6: Artifact Specification Polishing and Classification

 182

• Constituent parse trees and dependency trees: the constituent parse tree and

dependency parse tree of each processed sentence in a requirements document

are included. They help users determine if a sentence is not correctly parsed.

• Coreference resolution details: contain information about the identified

coreference and changes made in the relevant sentences to resolve such

coreference.

• Used extraction rules: contain the information about the extraction rules

applied for each sentence and the outcome produced after each rule was

executed. The cases in which a single sentence matches with multiple extraction

rules are also highlighted. These details enable users to get insights into how

alternative extraction results are produced. These can also help them verify if

some certain extractions were not done properly (i.e., due to a rule that was not

specified correctly).

• Polishing details: contain the information about how a specification is polished.

For instance, is such a specification needed to be transformed from passive voice

to active voice, or which modifying rules have been used.

• Classification results: the probabilities calculated by the artifact classifier for

each artifact specification are all recorded. That helps users verify the

correctness of the artifact classifier and get insights into alternative extraction

results are produced (if any).

6.4 GUEST: Goal and Use Case Extraction Supporting Tool

We describe our tool GUEST that supports the extraction of goal and use case

integrated models from textual requirements documents based on the discussed

extraction techniques. We first discuss the architecture of the tool. We then provide

some usage examples to demonstrate how GUEST supports the extraction process.

6.4.1 Tool Architecture

GUEST is developed as an Eclipse Rich Client Platform tool. Figure 6-3 presents an

overview of GUEST’s architecture. The tool consists of three main components. The

extraction controlling module is responsible for the entire process of extracting goal-use

case models from natural language-based requirements documents. It contains a number

of sub-modules, each is responsible for a step in the extraction process. The document

Chapter 6: Artifact Specification Polishing and Classification

 183

processing module extracts requirements documents into plain text (handled by the

document extractor), associates document sections to artifact types and pre-process the

section text (handled by the text preprocessor). The linguistic analysis module contains

the Stanford coreference resolver that helps resolving coreference in the processed text

and the Stanford parser that is used to produce constituent and dependency parse trees.

Figure 6-3. GUEST Architecture

The extraction rule handler and artifact identifier are the components of the artifact

identification module. The former is responsible for parsing extraction rules, identifying

matching rules for a sentence and executing these rules to produce outcomes. The later

manages the process for identifying goals, use case components and relationships with

the support of the former component. Similarly, the artifact polisher in the artifact

polishing module manages the entire process of polishing an artifact specification (i.e.,

transform passive voice to active voice, replacing adjective-preposition phrases) with

the support of the modifying rule handler which handles the identification and execution

of modifying rules.

Extraction Controlling Module

Linguistic Analysis
Module

Stanford
Parser

Stanford
Coreference

Resolver

Document Processing
Module

Document
Extractor

Text
Preprocessor

Artifact Identification
Module

Artifact
Identifier

Extraction
Rule Handler

Artifact Polishing
Module

Artifact
Polisher

Modifying
Rule Handler

Artifact
Classification

Module

Artifact
Classifier

Extraction Controlling Module

Model Extractor Extraction Logger

Artifact Modeling Module

Artifact Modeler

Model Builder

Training Module

Stanford Parser Trainer

Classifier Trainer

Rule Editor

Chapter 6: Artifact Specification Polishing and Classification

 184

In addition, the artifact classifier (from the artifact classification module), which is built

based on Mallet classifier, enables artifact specifications to be classified. Lastly, the

extraction controlling module provides two components. The model extractor controls

the entire extraction process, gathers the outcomes from all steps and produces

extraction results. The extraction logger records the outcomes from each step and all

problems that occur during extraction.

The artifact modeling module receives the extraction results from the extraction

controlling module to build goal-use case models (handled by the model builder).

Moreover, the artifact modeling module enables the editing of goal-use case models

after they have been extracted (handled by the artifact modeler). This module also

allows users to select between alternative extraction results and produces alternative

goal-use case models. The training module allows users to train the Stanford parser and

artifact classifier with additional data (supported by the Stanford parser trainer and

classifier trainer). It also provides a rule editor that enables the editing and adding of

extraction and modifying rules.

6.4.2 Usage Examples

In this section, we provide some examples to illustrate the use of GUEST in extracting

goal and use case integrated models. These examples are based on a scenario in the

domain of traveler social networking system.

Figure 6-4. Key Components in a Project

Chapter 6: Artifact Specification Polishing and Classification

 185

Figure 6-4 shows a screenshot that displays the key components of a project in GUEST

(since GUEST and GUITAR tools are integrated into a single tool called GUITARiST,

the window in the figure has its name as GUITARiST. The GUITAR tool is discussed in

Chapter 7. The directory ‘SRS’ contains the requirements documents to be extracted.

The directory ‘libs’ contains the supporting libraries for the extraction and modeling of

goals and use cases. These include the Stanford parser model, classifier files, the

collection of extraction and modifying rules (both are referred to as text navigation

rules). The ‘training_data’ directory stores the training data for the parser and

classifiers. The extracted model is stored in an XML file placed in the ‘artifacts’

directory.

Figure 6-5. Extract Text from a Requirements Document

Once the demo.doc file (which is a requirements document to be extracted) is double

clicked, GUEST pre-processes the text in this document and associates each section in

this document to certain artifact types according to the artifact type indicator list that

was created and included in the “libs” directory of the project. Figure 6-5 shows the

text extracted and pre-processed from the requirements document. GUEST provides a

SRS editor to enable users to further edit the extracted text if needed. Figure 6-6 shows

the artifact indicator lists created for this document. The full extracted text is showed in

Figure 6-7. In this figure, the annotators (i.e., S1, S2) are added to help referring to the

sentences in the following discussion.

Chapter 6: Artifact Specification Polishing and Classification

 186

<gu_indicators>
 <non_use_case>

 <indicator>project scope</indicator>
 </non_use_case>
 <use_case>
 <indicator>use case</indicator>
 </use_case>
 <pre-condition>
 <indicator>pre-condition</indicator>
 </pre-condition>
 <post-condition>
 <indicator>post-condition</indicator>
 </post-condition>
 <use_case_desc>
 <indicator>description</indicator>
 </use_case_desc>
 <main_scenario>
 <indicator>main success scenario</indicator>
 </main_scenario>

</gu_indicators>

Figure 6-6. Artifact Indicator List

GUEST is able to automatically extract the model from this text based on a collection of

extraction rules. Figure 6-8 presents the partial extracted model in which a number of

artifacts are identified, polished and classified. For instance, the functional feature goal

FFG2 (“Travelers shall be able to gain travel experiences”) and its sub-goals (FFG1,

FFG5, FSG1, FSG2, FSG3, FSG4, and FSG5) are extracted. These goals (and the

relationships between them) are derived from three sentences: S2, S4, and S5. Firstly,

FFG2, FSG1 (“travelers shall be able to write reviews for places”), and FSG2

(“Travelers shall be able to write reviews for services”) are extracted from the sentence

S2 (“In addition, it should allow travelers to gain and share travel experiences by

enabling them to write reviews for places and services”). Secondly, from the sentence

S4 (“Moreover, travelers can gain travel experiences by asking questions in a forum

and obtaining information from reviews and articles”), FSG3 (“Travelers shall be able

to ask questions in a forum”), FSG4 (“Travelers shall be able to obtain information

from reviews”), and FSG5 (“Travelers shall be able to obtain information from

articles”) are identified as sub-goals of FFG2. Thirdly, FFG5 (“The system shall be

able to support the communication between travelers”) is extracted as another sub-goal

of FFG2 from the sentence S5 (“Furthermore, to enable travelers to share and gain

Chapter 6: Artifact Specification Polishing and Classification

 187

travel experience, the system supports the communication between them”). Note that the

text referring to the goal FFG2 (“Travelers shall be able to gain travel experiences”) is

repeated in all three mentioned sentences. GUEST is able to identify such duplication

and only includes one copy of such goal in the extracted goal-use case model.

In addition, for traceability purpose, GUEST provides a link between each obtained

artifact and the sentence from which it is extracted. For instance, when clicking on the

functional service goal FSG4, the sentence where this goal was extracted from is

highlighted in the SRS editor.

1. Project Scope
(S1) This system is intended to connect travelers around the World and improve the
quality of travel planning. (S2) In addition, it should allow travelers to gain and share
travel experiences by enabling them to write reviews for places and services.
(S3) Travelers can also write articles to tell friends about the interesting stories during
their trips. (S4) Moreover, travelers can gain travel experiences by asking questions in
a forum and obtaining information from reviews and articles. (S5) Furthermore, to
enable travelers to share and gain travel experience, the system supports the
communication between them.
(S6) An important requirement is that the system must be easy to use and understand
for travelers. (S7) In addition, the system must be secure and can prevent attacks.
2. Use case: Write Reviews
Description
A traveler writes a review
Pre-condition
The traveler has successfully logged into the system.
Post-condition
The new review is stored
Main Success Scenario
Step 1. The traveler selects to create a review.
Step 2. System prompts the traveler to select a review category.
Step 3. The traveler selects review category. The list of categories includes hotel,
attraction and tour.
Step 4. System displays the suitable review creation form to the traveler.
Step 5. The traveler enters the review content and submits it
Step 6. System validates the review
Step 7. If the review content is valid, the system stores the review into the database
and displays a confirmation message to the traveler; else the system displays the
errors to the traveler and the traveler repeats step 5.

Figure 6-7. Full Extracted Text

Chapter 6: Artifact Specification Polishing and Classification

 188

Figure 6-8. An Extracted Business Goal and its Sub-goals

Figure 6-9. An Extracted Use Case and its Components

Figure 6-9 presents an extracted use case from the use case description in the extracted

text (in Figure 6-7). Based on the brief description of the use case (“a traveler writes a

Chapter 6: Artifact Specification Polishing and Classification

 189

review”), a functional service goal FSG8 (“Travelers shall be able to write reviews”) is

created and linked to this use case.

In this example, the pre-condition “the traveler has successfully logged into the system”

and the post-condition “the new review is stored” is extracted based on the

corresponding indicators (‘pre-condition’ and ‘post-condition’) in the use case

specification (cf. Figure 6-7). Moreover, although no extension is explicitly specified in

the text, it is implicitly stated in the sentence “If the review content is valid, the system

stores the review into the database and displays confirmation message to the traveler;

else the system displays the errors to the traveler and the traveler repeats step 5.”

As shown in Figure 6-9, GUEST extracts the statements “if the review content is valid,

the system stores the review into the database” and “the system displays confirmation

message to the traveler” as steps of the use case. GUEST also identifies an extension of

the use case that handles the case when the review content is not valid. Such extension

includes the step “the system displays the errors to the traveler,” the starting step

(UC1_Step7 – which is the use case step that deals with the opposite case of the one

handled by this extension) and resuming step (UC1_Step5 – which is specified by the

sentence “the traveler repeats step 5”).

Figure 6-10. An Extraction Log

Chapter 6: Artifact Specification Polishing and Classification

 190

GUEST also enables users to view extraction log that contains the details as to how

each sentence in the text is processed and analyzed to extract artifacts and relationships.

Figure 6-10 shows an example for such a log for the sentence S3. The portion of log in

this figure shows the classification results of each artifact extracted from this sentence.

Since the quality of extraction depends on the accuracy of the Stanford parser, artifact

classifiers and the collection of extraction and modifying rules, GUEST enables users to

further train the parser and classifiers, create new rules and modify existing rules.

Figure 6-11 presents a dialog in which the horizontal classifier is incrementally trained

with new data. The data should be in the format of <label>[space]<text> in which

<text> refers to a sentence or sequence of word and <label> refers to the class into

which such a sentence should be categorized. In case it is needed to completely retrain

the classifier, the relevant training data file in the “training_data” directory in the

project tree should be removed before new training data are entered into the dialog.

Figure 6-11. Training a Classifier

Figure 6-12 shows a dialog in which the Stanford parser is further trained with new

data. Parser training data should be in the format of a constituent tree.

Chapter 6: Artifact Specification Polishing and Classification

 191

Figure 6-12. Training the Stanford Parser

Figure 6-13 presents a dialog in which a new extraction rule is added into the rule

collection.

Figure 6-13. Creating an Extraction Rule

6.5 Evaluation

In this section, we present the evaluations conducted to evaluate the effectiveness of

GUEST in extracting goal and use case integrated models from requirements

documents. Specifically, we seek to answer the following research questions:

Chapter 6: Artifact Specification Polishing and Classification

 192

• RQ1: How accurately does GUEST classify artifacts by their textual

specifications?

• RQ2: How accurately does GUEST extract goal-use case models from

requirement specifications documents?

6.5.1 Evaluation Setup

Table 6-14 presents our formulas to calculate the metrics for each research questions.

To tackle the research question RQ1, we carried out a benchmark validation to compare

and contrast our requirements classifier (which is an extended version of the Mallet

classifier) with the existing state-of-the-art classifiers: Casamayor et.al. non-functional

requirements classifier [18] (we term it as Casamayor in this section) and original

version of Mallet (we refer to it as original Mallet in this section). The reasons for this

selection were fourfold. First, Casamayor is among the classifiers developed recently

and reportedly obtained high results in its evaluation. Second, Casamayor’s experiment

steps were described clearly and its data is available, making it possible to reconstruct

the exactly same validation. Thirdly, no requirements classifier was available to

download at the time when this validation was conducted, and lastly, the original

version of Mallet was selected as a benchmark application to verify whether our

improvements made to extend it were effective.

In this evaluation, we followed Casamayor’s experiment steps to run a validation on the

PROMISE dataset that we introduced in Chapter 3. This dataset contains 255 functional

requirements and 370 non-functional requirements. However, only the non-functional

requirements were used in this evaluation (since Casamayor et al. only employed these

requirements). Multiple experiments were run using the cross-validation technique. In

each experiment, a k-portion of data (i.e., k=90%) was randomly selected as training

data and the rest was used as testing data. Each experiment is run in 10 iterations to

obtain the scores for the precision and recall metrics (cf. Table 6-15). 19 experiments

were run with k was 5, 10,…, 95 respectively.

Chapter 6: Artifact Specification Polishing and Classification

 193

Table 6-14. Formulas for Metrics

 Formulas

RQ1

TP: True Positive (number of artifacts are correctly classified)

FP: False Positive (number of incorrectly classified artifacts)

RQ2

TP: True Positive (number of valid extracted artifacts or relationships)

FP: False Positive (number of invalid extracted artifacts or relationships)

FN: False Negative (number of artifacts or relationships not extracted)

To address the research question RQ2, we targeted to evaluate GUEST’s performance

in different phases of the extraction process. These phases include the extraction of raw

artifacts and relationships, the polishing of artifacts, and artifact classification. While all

extraction results were considered in the first two phases, only goals, data constraints

and non-functional constraints are considered for the last phase (artifact classification)

since other types of artifacts (i.e., use case components such as steps, conditions) do not

need to be classified during the extraction process (they are identified by a list of

component indicators and/or extraction rules).

We chose to use the online publication system (OPS) and split payment system (SPS)

industrial case studies in this evaluation. The requirements documents from these case

studies follows the IEEE requirements specification template and contains a number of

sections for goals and use cases. In each case study, we first manually modeled goals

and use cases from the given requirements document. We then ensured the

requirements document to meet the formatting requirements of GUEST. For instance,

we removed table of contents, replaced slashes (‘/’) with appropriate words (i.e., ‘and,’

‘or’ depending on the actual meaning of a slash in a context), and moved important

content out of tables (since GUEST ignores all text in tables). We then used GUEST to

extract goal-use case model and compared it with our manually extracted model. We

gathered and analyzed the comparison results for all extraction phrases.

Chapter 6: Artifact Specification Polishing and Classification

 194

6.5.2 Evaluation Results

In this section, we discuss the results of our evaluation. Our full experimental data can

be found at http://goo.gl/gCUofM.

Figure 6-14. Classifier Benchmark Validation Results

Chapter 6: Artifact Specification Polishing and Classification

 195

RQ1: Artifact Classification

Figure 6-14(a) and (b) present the comparison between three classifiers regarding

precision and recall rates. According to the result, all three classifiers obtained higher

precision and recall rates when the training set size increased. It can be noticed from

this comparison that our classifier produced higher-quality results than others when the

training set was small. This was due to the support of our non-functional indicator

keywords. As showed in the graphs, when the training set size increased, Casamayor’s

results raised with highest rates and surpassed our classifier when the training set was

over 50% of the entire data (that means the training set is larger than the testing data

set). Original Mallet followed a very similar trend as our classifier that is due to the

share of algorithms between the two classifiers. However, our classifier outperformed

original Mallet with at least 5% difference in most experiments. From these results, it

can be seen that the key benefit of our classifier is that it performs relatively well with a

small training dataset.

RQ2: Goal-Use Case Model Extraction

The results are showed in table 6-15. We achieved 86% precision and 84% recall rates

for the artifact extraction, and 87% precision and 78% recall rate for the relationship

extraction. A number of artifacts and relationships were not extracted due to the missing

of relevant extraction rules. In addition, some relationships were not detected since

identifying such relationships required the understanding of the entire contexts in which

the artifacts were specified. For instance, consider these two sentences: “The system

will be easy to use for users. It should ensure articles to be available to readers at any

time and allow them to search and download articles quickly and easily.” GUEST

could not identify the ‘sub-goal – parent-goal’ relationship between “readers shall be

able to search articles easily” (extracted from the second sentence) and “The system

will be easy to use for users” (extracted from the first sentence). Such a relationship

was not found by GUEST since it is not identifiable in the way the sentences are written

and thus, the detection of it must rely on the meaning of the extracted artifacts. This

type of relationship can instead by identified by our tool GUITAR (developed for model

analysis) that is discussed in Chapter 7.

Chapter 6: Artifact Specification Polishing and Classification

 196

Table 6-15. Extraction Validation Results

D: total detected FP: False Positive FN: False Negative

Case Study OPS SPS Average F-Measure

Artifact

D 199 167

 FP 29 22

FN 30 28

Precision 85% 86% 86%
85%

Recall 85% 83% 84%

Relationship

D 161 99

 FP 22 13

FN 39 24

Precision 86% 87% 87%
82%

Recall 78% 78% 78%

Polishing 96% 95% 96%

Goal Classification 83% 79% 82%

Moreover, some other relationships between artifacts from different sentences were not

detectable due to the use of verbal phrase coreference in such sentences. For instance,

consider the sentences: “The application periodically communicates with the SplitPay

server. This allows bills to be uploaded to a central server.” The word ‘this’ in the

second sentence refers to the entire activity in the first sentence (“The application

periodically communicates with the SplitPay server”). Therefore, apart from the two

artifacts “The application periodically communicates with the SplitPay server” and

“upload bills to a central server,” the expected extraction result would need to contain

the ‘sub goal – parent goal’ relationship between the former and the later artifacts. This

type of relationship was not identified by GUEST since our tool currently does not

provide support for verbal phrase coreference (in fact, there is no linguistic tool exists

that can properly identify such type of coreference currently).

We achieved 96% accuracy rates of the polishing of artifacts. In this evaluation, a

polishing result is considered correct if the extracted artifact specification satisfies our

defined specification rules (boilerplates). The common errors GUEST had during this

evaluation were due to missing relevant rewriting rules. For instance, GUEST could not

properly rewrite the goal “Include support for simultaneous bills” to the desired form

Chapter 6: Artifact Specification Polishing and Classification

 197

of “Support simultaneous bills.” We achieved 81% overall (83% and 79% respectively

in OPS and SPS case studies) for artifact classification in this validation. This means

about 20% of the extracted goals were not correctly classified into the right classes by

our classifiers.

To sum up, from these case studies, it is seen that our artifact specification classifier

performed reasonably well. From the benchmark validation, it was found that our

classifier’s performance, while constantly being higher than that of original version of

Mallet, was not too far below the result of Casamayor’s classifier, a state-of-the-art

requirements classifier. Our classifier even outperformed Casamayor’s classifier when

the training set is small, due to the support of our classification keywords. Importantly,

the quality of our classifier can be further improved by doing additional training, which

is supported by GUEST.

In addition, we identified that the false positives and false negatives in artifact and

relationship extraction were due to three main reasons: missing extraction rules, parsing

errors, and lacking of semantic understanding. In fact, some artifacts and relationships

could not be extracted correctly (or extracted while they should be ignored) since no

suitable supporting extraction rules exist. On the other hand, in some cases, suitable

extraction rules did exist, however a sentence was not parsed properly by the Stanford

parser, making the artifacts and/or relationships unrecognized. Similarly, the

incorrectness in artifact polishing and classification came from invalid results produced

by the linguistic parser, missing modifying rules and artifact classifier respectively.

Therefore, extraction results could be improved if our extraction rule and modifying

rule sets are extended and the parser and classifier are further trained. Such extension

and training are all supported by GUEST.

6.5.3 Threats to Validity

In this section, we discuss the threats to validity from this evaluation.

External Validity: A threat to external validity was the representativeness of the

selected case studies and the quality of our parser, classifier and rules. In fact, having

good results with the selected case studies may not imply similar results in others. To

reduce this threat, we increased the variability of the data by selecting requirements

Chapter 6: Artifact Specification Polishing and Classification

 198

from different sources while obtaining a large amount of requirements. The parser,

classifier and rule collection used were developed prior to the evaluation. They were not

re-trained or modified to specifically deal with requirements in these case studies.

Internal Validity: Threats to internal validity include the human factors in determining

the correctness of GUEST results in each validation. In RQ2, we manually extracted

goals and use cases from the requirements documents and we manually verified the

tool’s outputs for artifact extraction, polishing and classification. To mitigate this, we

reviewed all manual tasks twice to avoid errors. However, having two or more people

with relevant knowledge and experience participating in the validation would

potentially further improve its reliability.

6.6 Discussion

In this section, we first discuss the benefits and limitation of our approach to extracting

goal and use case integrated models from text.

Reduce effort for goal-use cases modeling: with the focus on automating the

extraction of goal-use case models from text, our approach can help requirements

engineers reduce the effort and time to model goals and use cases from requirements

documents, and thus, can potentially be used to quickly gain understanding of natural

language requirements documents. Moreover, with a clearly defined syntax, users can

add new rules to improve the quality of extraction. In addition, once created, extraction

and modifying rules can be used across different projects. Furthermore, since GUEST’s

underlying techniques for natural language parsing and artifact classification provide

support for multiple languages, it is possible to adopt and apply our approach for

requirements written in other languages. In this case, a new set of extraction rules that

suits the grammars of each such language needs to be developed.

Possible application of our technique in other areas: Our techniques of automated

extraction, polishing and classification can be used for any textual sentences. While our

set of extraction rules was developed specifically for goals and use cases, its underlining

concept can still be applied to support the information extraction in other areas. For

instance, extraction rules can be developed in a similar way (i.e., develop rule actions

and algorithms to execute these actions) to identify privacy or security policies [174]

Chapter 6: Artifact Specification Polishing and Classification

 199

from software documents, or development task from software documents [158]. Our

rule-based technique can also provide a new approach in ontology learning [17, 24].

Specifically, similar rules can be created to detect ontological concepts, properties and

their relationships to extract ontologies from natural language texts. Moreover, our

polishing technique using modifying rules can also be applied in the field of automated

boilerplate conformance (i.e., [10]) where a text must be ensured to conform to a certain

specification rule.

GUEST’s extraction accuracy depends on the quality of the Stanford parser and

the artifact classifier: a common issue for a statistical machine learning technique is

that it may not produce correct results for what it has not been trained for. Therefore, it

is possible to have a sentence incorrectly parsed or a specification incorrectly classified

in GUEST. Such problems can be resolved by training the parser and classifier with

relevant data. GUEST provides the incremental training of both the parser and

classifier.

Understanding of grammatical dependency required for rules writing: In GUEST,

the extraction and rewriting rules need to be manually written. This requires the rule

writers to have knowledge of grammatical dependency and thus some training would be

required for end users to be able to extend the rules repository. We plan to overcome

this problem by developing an algorithm that semi-automates the generation of a rule

from the associations between sentences and lists of desired information to be extracted

from them. In addition, a visual rule editor would be developed.

Unidentifiable artifact relationships: a number of relationships between artifacts in

different sentences are not detectable since there exists no tool that can automatically

detect coreference based on verb phrases in different sentences. In future work, we plan

study the possibility of extending the identification techniques for pronoun-based

coreference to apply into verb phrase-based coreference problems.

Lack of evaluation of the approach’s usefulness: although having promising results

in our case study-based evaluation, GUEST has not been validated for a real software

project. We thus plan to carry out an evaluation with our industry partners to evaluate

the approach’s usefulness in requirements engineering.

Chapter 6: Artifact Specification Polishing and Classification

 200

6.7 Chapter Summary

In this chapter, we presented our techniques for polishing artifact specifications. Such

techniques are aimed at ensuring artifact specifications to be grammatically correct and

conform to our specification boilerplates. We also discussed the Mallet classifier and

how it is extended to support the classification of artifact specifications. GUEST, the

tool developed to implement our entire goal-use case integrated model extraction

approach, together with some usage examples was also presented. We also discussed

our validation conducted to evaluate the performance of our approach in different

scenario. The evaluation results are very promising. In two selected case studies,

GUEST achieved 86% precision and 84% recall rates for goals and use cases extraction,

87% and 78% of precision and recall rates for relationships extraction. It also obtained

96% accuracy for the automated artifact specification polishing in these case studies.

The evaluation showed that our artifact classifier entirely outperformed Mallet and was

better than Casamayor’s classifier with smaller training datasets. In Chapter 7, we

discuss our ontology-based techniques for analyzing goal and use case integrated

models.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 201

Ontology-based

Goal-Use Case Model Analysis

In this chapter, we discuss our ontology-based techniques to analyze goal and use case

integrated models. The goal of this analysis is to identify incompleteness, inconsistency

and incorrectness problems in such models. We also aim to provide explanations for

detected problems and suggestions for the resolution of such problems. These

techniques are developed to address the requirement R3 and its sub-requirements

(discussed in Chapter 3) regarding automated support for goal and use case model

analysis. Section 7.1 provides some background about the use of ontology in our

analysis approach. Section 7.2 discusses our analysis techniques. Section 7.3 presents

GUITAR, the tool developed to implement our entire analysis approach, accompanied

with some usage examples. Section 7.4 provides a discussion about the validation that

we have conducted to evaluate the performance of GUITAR in analyzing goal and use

case integrated models.

7.1 Overview

Figure 7-1 provides an overview of our analysis approach that was briefly discussed in

Chapter 3. Our approach has a goal and use case integrated model as input. Such a

model can either be extracted from textual requirements documents by GUEST or

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 202

manually generated by users. In the first step of our analysis process, the specifications

of artifacts in the considered goal-use case model are automatically parameterized based

on functional grammar (1). The details as to how functional grammar is used to

parameterize artifact specifications were given in Chapter 4. These parameterized

specifications are then automatically transformed into Manchester OWL Syntax (MOS)

specifications (2) which then are used to identify 3Cs problems (inconsistency,

incompleteness and incorrectness) in the model (3). In this step, to support the

identification of semantic problems, we developed an ontology-based technique to

incorporate domain specific knowledge and semantics into the analysis process. In step

4, the resolutions are generated based on the identified problems (4). In the last steps,

the identified problems, together with explanations and resolutions are presented to

requirements engineers (5). Based on this, they then need to manually make decisions

on how to resolve the detected problems.

Figure 7-1. Analysis Process

We have developed GUITAR (Goal-Use Case Integration Tool for Analysis of

Requirements), a tool that implements our analysis approach. GUITAR automates

almost all steps in the analysis process, except the last step in which the resolution

decisions are up to users’ preferences.

GUEST
Goal-Use Case

models

Incorrectness
Incompleteness
 Inconsistencies

Resolutions

GUITAR

D indicates an activity which is supported by a domain ontology
The entire analysis process are supported by Goal-Use Case Integration Meta-model

Manual Model
Creation

Resolve/Ignore
problems

5 M

Generate
Resolution
Alternatives

4

D

A

Identify 3Cs
problems

3

D

A

M indicates activities which are done manually indicates activities which are done automatically A

Artifact
Specification

Parameterization

Prameterized
Artifact

Specifications
MOS

Transformation
MOS-based

Artifact
Specifications

A A12

Requirements
Engineer use

use

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 203

7.2 Ontology

To facilitate the automated analysis of goal-use case models, GUITAR augments

artifact specifications with domain semantics and knowledge in the form of ontology. In

this section, we provide some background about ontology and its use in our approach.

Ontology Definition and Representation

Ontology is defined as a specification of a conceptualization [56]. In the context of

knowledge capturing and sharing, ontology is a description of concepts and their

associated relationships within a domain. In our work, ontology is intended to capture

the semantics of terms. Using functional grammar, an artifact specification can be

automatically parameterized into a set of atomic ontological items whose semantics are

known. This provides the basis upon which artifacts can be analyzed. In GUITAR, the

existence of domain ontology is a prerequisite of semantic analysis. Figure 7-2 depicts

the meta-model of ontology used in our approach. Some key concepts are as follows:

Figure 7-2. Ontology Structure

Verb refers to verbs in the domain that describe actions (e.g., display, show, create),

possession (e.g., have, contain) or statuses (e.g., to-be, arrive, come). Action verbs are

Verb

Action
Verb

Possession
Verb

State
Verb ToBe

Property

Adjectival
Property

Adverbial
Property

Functional
Property

Quality
Property

Activity

Measurement
Unit

Comparative
Operator

Quantitative
Operator

Relationship

hasObject Require
Exclude

LeadTo

SubClass

Equivalent Disjoint

Entity

Active
Entity

Inactive
Entity Product

Precede

Transitive
Action Verb

Intransitive
Action Verb

Temporal
Property

hasAttribute

hasSubject

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 204

further classified as transitive action verbs and intransitive action verbs. The former

type requires an associated object while the later does not.

Entity refers to core elements in the domain. It has the following sub-types:

• Product entities refer to the software system/product being developed and its

components (e.g., system, product).

• Active entities are the rest of the entities that can perform an action (e.g., user,

admin, librarian).

• Inactive entities are entities that do not perform actions; they are instead objects

of actions (e.g., book, library, password).

Activity refers to an activity in the domain (e.g., write reviews, update account

information).

Measurement unit refers to measurement units in the domain. They can be classified

further (e.g., data storage units like MB, or time units like MHz).

Comparative operator is used in comparison (e.g., more than or less than).

Quantitative operator describes cardinality (e.g., all or only).

Property includes adjectival properties (e.g., high, low) and adverbial properties.

Adverbial properties are classified into functional properties (e.g., automatically,

manually), qualitative properties (e.g., quickly, safely), and temporal properties (e.g.,

firstly, secondly, before).

Some basic relationships are used to capture the connections between concepts in a

domain:

Equivalent specifies analogous concepts in a particular domain.

Subclass describes a refinement relationship between two concepts.

Disjoint captures non-overlapping pairs of concepts.

Other relationships are mainly used to capture domain knowledge:

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 205

hasObject relationship connects verbs with entities to specify the valid application of an

action on an entity. For example, the verb ‘write’ has a ‘hasObject’ relationship with the

‘content’ entity, that means ‘write’ actions can only be applied to ‘content’ entities.

Require/Exclude relationship specifies that a concept requires or contradict to another

(i.e., ‘banned users are not allowed to create reviews’ is captured by a an ‘exclude’

relationship between the ‘banned user’ entity and the ‘create review’ activity).

LeadTo relationship is used between activities or between an activity and an adjectival

property to specify that an activity can refine another activity or satisfy a property. For

instance, ‘Write email’ leadTo ‘Enable communication’ or ‘validate identity’ leadTo

“secure.”

Precede relationship is used between activities to specify that an activity must be done

before another activity can be conducted. For instance, ‘create account’ precedes ‘write

review.’ The reversed relationship of ‘precede’ is a sub-type of ‘require’ relationship.

For instance, in this case the ‘write review’ activity requires the ‘create account’

activity.

Ontology Representation Language

In our work, we chose to use SROIQ Description Logic [63] as the formal foundation

for ontologies since it has well-defined semantics, known reasoning algorithms, is

decidable 9 and importantly, satisfy all our needs regarding defining concepts and

relationships in ontologies. In the following, we provide some background about

SROIQ.

In SROIQ logic, the domain of interest is modeled by individuals, concepts and roles.

Individuals are the instances that instantiate particular concepts, thus concepts can be

viewed as representing unary properties of individuals, while roles consist of binary

relations between concepts or individuals. In this section, we use C and D to denote

concept expressions. A concept inclusion axiom is an expression of the form C ⊑ D

(which means the concept C is a specialization of the concept of D). For instance,

9 Being decidable means that there exists an effective algorithm that always returns results when
determining relationships between concepts (instead of looping indefinitely).

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 206

RegisteredUser	⊑	User means that the concept RegisteredUser is inclusive

in the concept User. A SROIQ TBox is a set of general concept inclusion axioms. Thus,

a TBox can capture a class hierarchy. On the other hand, an ABox is a finite set of

concept expressions of the form C(a) (which means a is an instance of C). For

instance, to express that James is a registered user, we write

RegisteredUser(James) or, to express that Mary is a friend of James, we write

friendOf(James, Mary). Finally, all assertions concerning roles are gathered in

an RBox. For instance, to indicate that the relationship constrain is the sub-type of

the relationship require, we can state the following role inclusion axiom in an RBox:

constrain ⊑ require. The SROIQ knowledge base (or ontology) is the union of

the TBox, ABox and RBox. Table 7-1 illustrates the syntax of SROIQ logic.

Table 7-1. Semantics of Concept Constructors in SROIQ

Constructor SROIQ Syntax Semantics (in first-order logic)

intersectionOf 𝐶# ⊓ …⊓ 𝐶8 𝐶# 𝑥 ∧ …∧ 𝐶8(𝑥)

unionOf 𝐶# ⊔ …⊔ 𝐶8 𝐶# 𝑥 ∨ …∨ 𝐶8(𝑥)

complementOf ¬𝐶 ¬𝐶(𝑥)
inclusion 𝐶 ⊑ 𝐷 ∀𝑥. 𝐶(𝑥) → 𝐷(𝑥)

allValuesFrom ∀𝑅. 𝐶 ∀𝑦. 𝑅(𝑥, 𝑦) → 𝐶(𝑦)

someValuesFrom ∃𝑅. 𝐶 ∃𝑦. 𝑅(𝑥, 𝑦) → 𝐶(𝑦)
maxCardinality ≤ 𝑛𝑅. 𝐶 ∃E8𝑦. 𝑅(𝑥, 𝑦)

minCardinality ≥ 𝑛𝑅. 𝐶 ∃G8𝑦. 𝑅(𝑥, 𝑦)

In our work, we adopted Manchester OWL Syntax (MOS) [62], an OWL210 language

that is used to represent ontologies. The reasons for choosing MOS are threefold.

Firstly, OWL2 language’s semantics are compatible to SROIQ. Secondly, MOS

provides a natural language-based and easy-to-read syntax for OWL2. Using MOS thus

allows users a user-friendly way of reading and manipulating ontologies. Thirdly,

although MOS is the primarily used OWL language syntax in our work, GUITAR can

flexibly accept ontologies specified using other syntaxes since other OWL2 syntaxes

10 http://www.w3.org/TR/owl2-overview/

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 207

(and older versions of OWL language, i.e., OWL1, OWL1.1) can be converted to MOS

format.

Table 7-2. MOS Syntax

Constructor SROIQ Syntax MOS Syntax

intersectionOf 𝐶# ⊓ …⊓ 𝐶8 𝐶#	𝐴𝑁𝐷…𝐴𝑁𝐷	𝐶8

unionOf 𝐶# ⊔ …⊔ 𝐶8 𝐶#	𝑂𝑅…𝑂𝑅𝐶8

complementOf ¬𝐶 𝑁𝑂𝑇	𝐶

inclusion 𝐶 ⊑ 𝐷 𝐶	𝑆𝑢𝑏𝐶𝑙𝑎𝑠𝑠𝑂𝑓:	𝐷

allValuesFrom ∀𝑅. 𝐶 𝑅	𝑂𝑁𝐿𝑌	𝐶	
someValuesFrom ∃𝑅. 𝐶 𝑅	𝑆𝑂𝑀𝐸	𝐶

maxCardinality ≤ 𝑛𝑅. 𝐶 𝑅	𝑀𝐴𝑋	𝐶

minCardinality ≥ 𝑛𝑅. 𝐶 𝑅	𝑀𝐼𝑁	𝐶

Table 7-3. Examples of Using MOS

Constructor Example Meaning

intersectionOf UserAccount AND
hasAttribute SOME
Locked

A class of locked user
accounts

unionOf Messaging EquivalentTo:
InstantMessaging OR
AsynchronousMessaging

A type of messaging can
be either instant or
asynchronous

complementOf User SubClassOf: NOT
Admin

Users are not admins

inclusion ProfilePicture
SubClassOf: Photo

A profile picture is a
photo

allValuesFrom User AND hasPhoto ONLY
LandscapePhoto

The class of users whose
photos are all landscape
photos

someValuesFrom User AND hasPhoto SOME
LandscapePhoto

The class of users who
have at least one
landscape photos

maxCardinality User AND hasPhoto MAX 5
LandscapePhoto

The class of users who
have at most five
landscape photos

minCardinality User AND hasPhoto MIN 2
LandscapePhoto

The class of users who
have at least two
landscape photos

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 208

In MOS, the term ‘class’ corresponds to the term ‘concept’ while ‘property’

corresponds to ‘role’ in SROIQ. A property in MOS can be an object property that

describes a binary relationship between two classes, or a data property that describes a

relationship between a class and a data value. Using MOS, all concepts (i.e., entity,

verb, property) and their sub-concepts described in Figure 7-2 are created as classes

while the relationships (except for subclass, equivalent and disjoint that are built-in

relationships) are created as object properties. Table 7-2 presents MOS syntax in

comparison to SROIQ’s syntax. Table 7-3 presents some examples of expressing

concepts and relationships using MOS.

Ontological Concept Naming Convention

To ensure the consistency in specifying the name of each concept in ontology, we use

the following naming convention rules:

1 A concept name must be in its standard form. For example, ‘display’ is used instead

of ‘displays’ or ‘displayed.’

2 A concept name must be in camel case (e.g., ‘Display,’ ‘RegisteredUser’).

3 A concept name must have a suffix that indicates the class it belongs to. For

instance, an entity concept must have the suffix ‘_e’ while a verb concept must

have the suffix of ‘_v.’ Table 7-4 presents the list of suffixes used in our naming

convention.

Table 7-4. List of Ontology Class Suffixes

Ontology Class Suffix

Entity _e

Verb _v

Activity _act

Adjectival Property _adjp

Quality Property _qp

Functional Property _fp

Temporal Property _tp

Comparative Operator _co

Measurement Unit _mu

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 209

Incorporating Ontology with Functional Grammar

As discussed in Chapter 4, functional grammar is employed as a means to parameterize

artifact textual specifications. Such parameterization enables the understanding of the

semantic composition of each specification. Ontology further augments the semantic

capturing by providing a way to track the meaning of each individual word used in a

specification. This is done by linking each word to the corresponding ontological

concept.

Figure 7-3. An Example of Linking an Artifact Specification to Ontological Items

Figure 7-3 shows an example in which a specification “if the review has less than 50

characters, the system displays an error message” is parameterized using functional

grammar. Each individual word in this specification is linked to an ontological item

(represented as a shaded boxes). For instance, the word ‘System’ is linked to the product

entity ‘System_e’ in the ontology, or the word ‘has’ is linked to the possession verb

‘Have_v.’ The suffix ‘_e’ or ‘_v’ are used to indicate which class a concept belongs to.

Specification

Proposition
Predicate

haserror message reviewdisplays

VerbAgent

Head

Nuclear
Predicate

Nominal Term

Atomic
Nominal Term

Object

System

Condition

VerbalTerm

Head

Nominal Term

Atomic
Nominal Term

VerbPositioner

Head

Nuclear
Predicate

Nominal Term

Atomic
Nominal Term

less than 50 characters

Quantity

Quantifier

Object

Head

Nominal Term

Atomic
Nominal Term

Comparative
Operator

(Product Entity) (Inactive Entity)(Inactive Entity)(Action Verb) (Possession
Verb)

(Comparative
 Operator)

(Inactive Entity)

Have_vErrorMessage_e Review_vDisplay_vSystem_e LessThan_co Character_e

Ontological Items

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 210

This helps differentiate the use of word that can be both noun and verb (e.g., review,

request). Note that in this example, extended predicates are omitted for simplicity.

How to build and maintain ontology?

GUITAR is able to work independently from domain ontologies. However, the

availability of a domain ontology is essential to detect semantic problems that often

require the understanding of domain specific knowledge and terminologies. Therefore,

obtaining a domain ontology and verifying its quality is an important task in our

approach. A detailed discussion regarding this matter is provided in Appendix A7.

7.3 Goal and Use Case Integrated Model Analysis

We discuss our techniques for detecting and resolving incompleteness, inconsistency

and incorrectness (3Cs problems) in goal and use case integrated model. We first

discuss the categorization of the 3Cs problems handled in our work. We then present the

technique used to automate the parameterization of artifact specifications. It will be

followed by discussions about our problem detection and resolution techniques.

7.3.1 3Cs Problem Classification

From the definition, categorization and rules of artifacts and relationships in GUIMeta,

we define and classify the possible 3Cs problems that may exist in goal-use case

models. Such classification provides a foundation on which artifacts in a goal-use case

integration model can be analyzed for inconsistency, incompleteness and incorrectness.

In GUIMeta, problems in each 3Cs group (i.e., inconsistency, incompleteness) are

categorized based on how they can be detected. Specifically, they are divided into

syntactic and semantic problem classes. Syntactic problems are concerned about the

conformance of a specification to GUIMeta’s defined rules regarding artifact or

relationship specifications (i.e., if an artifact specification violates a specification rule,

then it is incorrect. If a functional service goal does not have any use case that

operationalizes it, then it is incomplete). Therefore, syntactic problems can be detected

based on rule-matching techniques. Semantic problems refer to the issues involving one

or more specifications that can be only detected if the meanings of such specifications

are known. In the following sub-sections, we provide details on the classification.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 211

7.3.1.1 Incompleteness

7.3.1.1.1 Syntactic Incompleteness

Syntactically incomplete artifact specification: an artifact specification is considered

syntactically incomplete if its parameterization does not contain all the compulsory

semantic functions (specified by specification rules). For instance, the functional service

goal “Users shall be able to create” is incomplete since there is a missing object of the

action ‘create.’

Syntactically missing artifact: in our framework, artifacts must be refined from the

business level until the use case level is reached. That means every artifact (except for

use case internal components) in a model must be part of a tree (called a refinement

tree) with the root is a business goal and the leaves are use cases (which operationalize

functional service goals) or non-functional use case constraints (which refine non-

functional service goals). Moreover, in a use case, some certain compulsory

components must be specified. We categorize the “missing artifact” syntactic

incompleteness as follows:

• Missing goal or constraint: refers to the cases in which a goal or constraint does

not have its required parent-artifact and/or sub-artifact to form a refinement tree.

For instance, a business goal does not have any sub-goal, a functional service

goal is not operationalized by any use case or does not have a parent-goal, a

non-functional use case constraint does not have a parent goal (which is a non-

functional service goal).

• Missing use case component: refers to the cases in which a use case does not

have all of its required components specified, including: pre-condition, post-

condition, actor and use case step. A use case specification is also incomplete

one of its extensions does not have any condition or starting step specified.

7.3.1.1.2 Semantic incompleteness

Semantically missing artifact: there are cases in which an artifact, that should be

specified in the model, is not specified. There are many possible reasons for this

situation. For instance, an important requirement may not be provided by the

stakeholders of the system, or a requirement may be overlooked when requirements

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 212

engineers create the model. The missing requirement is possible about a function that

the system should perform, a constraint that it should satisfy, a condition or a step in a

use case. In order to identify such incompleteness, knowledge in the domain of interest

is normally required. Based on our definition and classification of artifacts and

relationships in the artifact layer, we categorize “semantically missing artifacts” as

follows:

• Missing artifact with relationship: this category covers the cases in which an

artifact that has a certain relationship with an existing artifact in the model has

not been specified. The possible situations are: the missing artifact is required by

an existing artifact, the missing artifact is a parent or sub artifact of an existing

artifact, the missing artifact should provide a certain constraint on an existing

one. For instance, the functional service goal FSG8 “Users shall be able to edit

reviews” is specified while another goal “users shall be able to write reviews”

has not. Assume that it is a general knowledge in this domain that if a content

can be edited, it is required that such content has been created somewhere. In

this case, there is an incompleteness which can be resolved by adding the

missing goal and a require relationship between FSG8 and such goal.

• Missing use case components: this category is concerned with the missing

internal components of a use case specification. The difference between this

category and the “syntactically missing use case components” category is that,

syntactic problems can only be detected if a certain component is completely

missing in a use case (i.e., a use case has no precondition) while in semantic

problems, a component is considered missing even if one or more components

of its type have been specified (i.e., if a use case has a precondition, there may

be another precondition that has not be defined). This type of semantic

incompleteness contains the following sub-categories:

o Missing use case step: includes the cases in which one or more steps is

missing in a use case’s main success scenario or extension.

o Missing post-condition: one or more post-conditions of a use case are

missing. Such a situation happens when a use case has more intended

outcome than what have been specified in the existing post-conditions.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 213

o Missing exceptional handling: Such a situation happens when the

existing preconditions and extensions of a use case do not sufficiently

exclude exceptional cases that may cause failure to that use case’s main

success scenario. For instance, consider the use case UC1 “a user creates

a review.” Assume that in this domain, banned users must not be allowed

to create reviews. If there is no existing precondition or extension that

handles this case, then the use case specification is incomplete. This can

be resolved by adding either a precondition or an extension to deal with

the exception.

Semantically missing relationship: refers to cases when a relationship is missing

between two already specified artifacts while it needs to be specified. For instance,

given FSG7 “Users shall be able to edit reviews” and FSG1 “Users shall be able to

write reviews.” There should be a ‘require’ relationship between FSG7 and FSG1 given

the domain knowledge that if a content can be edited, it is required that such content has

been created somewhere. In addition, if there is a use case UC3 with the description of

“a user edits a review” and it is not linked to FSG7, then an operationalize relationship

(UC3 operationalizes FSG7) is missing.

7.3.1.2 Incorrectness

7.3.1.2.1 Syntactic Incorrectness

Syntactic incorrect artifact specification: refers to cases in which a specification of an

artifact contains one or more semantic functions that are not allowed according to the

specification rule of that artifact’s type. For instance, consider a use case step that

specifies “User enters article subject quickly.” It is incorrect since the quality attribute

(“quickly”) should not be used in a use case step specification according to the

specification rule for use case steps.

Syntactic incorrect relationship: refers to cases in which a relationship is defined

between two artifacts while it should not be. Such situation happens when the

declaration of the relationship violates our defined rules regarding relationships in the

artifact layer. For instance, a use case is specified to operationalize a functional feature

goal. This is incorrect according to our rules as functional feature goals are normally

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 214

very abstract and not operationalizable. Similarly, it is incorrect if a functional service

goal is specified to refine a business goal.

7.3.1.2.2 Semantic Incorrectness

Semantic incorrect artifact specification: refers to cases when an individual

specification does not have a proper meaning, or is not semantically suitable for its type.

For example, it is incorrect if a goal is specified as “Users shall be able to write hotels,”

obviously because ‘hotels’ cannot be ‘written.’ In another example, consider a

functional service goal is defined as “Users shall be able to configure their settings.”

This specification is correct syntactically since it does not contain any disallowed

semantic functions. However, it is an incorrect specification considering its semantic.

Since “configuring settings” is a very abstract activity and cannot be directly

operationalized into a use case, the artifact should instead be defined as a functional

feature goal and refined by more specific (functional service) goals, for instance,

“Users shall be able to change their profile privacy settings.”

Semantic incorrect use case structure: refers to cases when two or more components in

a use case violate each other. Such situations happen when use case’s rules (discussed in

section 1.2.1.2) are broken. For instance, a use case has preconditions cover its post-

conditions (that means the goal of the use has already been achieved before it is started),

or a use case includes another use case while its post-conditions is a subset of that

included use case’s preconditions, or a use case has two extensions that start from the

same step while having semantically equivalent conditions. Consider, as an example, a

use case has a precondition “User has been logged in” and a post-condition “Traveler

has been signed in.” This is invalid since the precondition is semantically equivalent to

the post-condition, given that user is equivalent to traveler and “logged in” and “signed

in” are synonyms in the domain of interest.

Semantic incorrect relationship: refers to cases when a relationship is created between

two artifacts that should not have such relationship, considering their meanings. For

instance, a require relationship is defined between two artifacts that do not require each

other, or an extension is specified to start from a use case step when it is actually

invoked from another step.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 215

7.3.1.3 Inconsistency

7.3.1.3.1 Syntactic inconsistency

Inconsistent relationships: refers to cases when inconsistent relationships are defined

between artifacts. For example, consider the goals: FSG1 “Users shall be able to create

reviews,” NSG2 “Ensure the reliability of reviews,” and FSG3 “Admins shall be able to

create reviews.” If it is specified that FSG2 requires NSG2, NSG2 requires FSG3,

FSG3 excludes FSG1, there is an inconsistency because it can be inferred that FSG1

requires FSG3 while FSG3 excludes FSG1.

7.3.1.3.2 Semantic inconsistency

Goal-use case mismatched: refers to cases when a use case is defined to operationalize

a goal while its defined system-user interactions are not relevant to achieving such goal.

For instance, consider a goal “Users shall be able to create travel articles” which is

operationalized by a use case that describe steps for a user to edit a review. This is an

inconsistency since the goal and its associated use case are irrelevant.

Inconsistency involved two artifacts: refers to cases when two artifacts in a model have

their meaning conflicting with each other. For instance, given the goals “Users shall be

able to write reviews for tours” and “Travelers shall be able to create reviews for only

places.” They are inconsistent given user and traveler are equivalent while tour and

place are disjoint concepts in the domain of interest (traveler social networking

domain).

Inconsistency involved more than two artifacts: refers to cases when a set of three or

more artifacts in a model have their meaning conflicting with each other, while

individual pairs of artifacts in such set are not insistent. For instance, consider three

goals: “If a user account is locked, system sends an email notification to the user”

(FSG10), “If a user account is locked, system sends a SMS notification to the user”

(FSG11) and “If system send a user an email notification, it will not send any SMS

notification to that user” (FSG12). They are inconsistent because it can be deducted

from FSG10 and FSG11 that both email and SMS notification will be sent in case an

account is locked, which is conflicting with FSG12.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 216

Table 7-5 summaries the discussed 3Cs problem categories.

Table 7-5. Summary of 3Cs Problem Categories

 Problem sub-type

Incompleteness Syntactic P1. Syntactically incomplete artifact specification

P2. Syntactically missing artifact
• P2.1. Missing goal or constraint
• P2.2. Missing use case component

Semantic P3. Semantically missing artifact
• P3.1. Missing artifact with relationship
• P3.2. Missing use case component

o P3.2.1. Missing use case step
o P3.2.2. Missing post-condition
o P3.2.3. Missing exceptional handling

P4. Semantically missing relationship

Incorrectness Syntactic P5. Syntactic incorrect artifact specification

P6. Syntactic incorrect relationship

Semantic P7. Semantic incorrect artifact specification

P8. Semantic incorrect use case structure

P9. Semantic incorrect relationship

Inconsistency Syntactic P10. Relationship inconsistency

Semantic P11. Goal-Use Case mismatched

P12. Inconsistency involved two artifacts

P13. Inconsistency involved more than two artifacts

7.3.2 Artifact Specification Parameterization

The functional grammar-based parameterization of artifact specification plays an

important role in the detection of 3Cs problems. Firstly, since the specification rules are

defined based on functional grammar, we need to have artifact specifications being

parameterized in functional grammar to verify their syntactical correctness. Secondly,

the functional grammar-based parameterization of artifacts enables the incorporation of

ontology into artifact specifications, which allows for the semantic analysis of artifacts.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 217

Artifact parameterization is carried out when analysis is needed for an entire goal and

use case integrated model or an individual artifact (i.e., verify if an artifact is correctly

specified). Therefore, parameterization is done after a model has been extracted by

GUEST or when a new artifact is manually entered into a model by GUITAR. In case

an artifact in the model was extracted using GUEST, its textual specification has been

polished so that it has the following properties: being grammatically correct, written in

active voice and written using an action (or to-be) verb (discussed in Chapter 6). In case

an artifact is manually entered into the model using GUITAR, it would also be

automatically verified and ensured to have such properties using the same polishing

technique. Therefore, we assume the input into this parameterization steps are

specifications that satisfy the above properties.

To parameterize an artifact specification, we need to identify the semantic role (i.e.,

agent, object, beneficiary) that each word or group of words in such a specification

plays. In addition, to enable the semantic problem identification, we need to link each

word in a parameterized specification with a concept in domain ontology. In the

followings, we discuss these steps in details.

Identify semantic roles

To identify the semantic role of each word or group of words in such a specification, we

rely on the dependencies between words in a specification, which can be obtained from

a dependency parse tree. The example below illustrates how the parameterization is

supported by a dependency parse tree.

Example 7-1: Assume that we need to parameterize the specification “if the review has

less than 50 characters, the system displays an error message.” Its dependency tree is

presented in Figure 7-4. In order to parameterize this specification, we first consider the

root of this dependency tree (which is displays-12). Since it is an action verb, we

obtain the verb semantic function and can identify other semantic functions based on the

dependencies between it and other nodes. For instance, the dependency

nsubj(displays-12, system-11) indicates that the sub-tree rooted at system-

11 contains the value of an agent semantic function. In other words, ‘system’ is the

agent in this specification (although the entire phrase is ‘the system,’ since determiners,

i.e., the, a, an, are not semantically important in our work, they are always ignored).

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 218

Figure 7-4. Dependency Tree for Example 7-1

Similarly, the dependency dobj(displays-12, message-15) indicates that ‘error

message’ is the object in this specification. In addition, according to our observation,

the following dependencies always together indicate a condition specified in a sentence:

advcl(X, Y) and mark(Y, “if”) in which X is the root of the entire dependency

tree and Y is a node in such a tree. If these two dependencies exist, then Y is the root of

a tree that makes up the condition semantic function. Therefore, based on the existence

of these dependencies in this example, “review has less than 50 characters” is the

condition of this specification.

The parameterization of the specification at this stage is: “Verb(displays) +

Agent(system) + Object(error message) + Condition(review has less than 50

characters).” We now consider the internal structure of the condition, which should be

parameterized as a verbal term. Similar to the above discussion, since the root of this

sub-tree is a possession verb (has-4) and it has the dependencies nsubj(has-4,

review-3) and dobj(has-4, characters-8), we can identify the positioner in

this condition is ‘review’ (the subject of a possession verb is a positioner instead an

agent) and the object is “less than 50 characters.” The internal structure of this object

displays-12
(VBZ)

message-15
(NN)

has-4
(VBZ)

system-11
(NN)

nsubj dobj advcl

the-10
(DT)

det

if-1
(IN)

mark

review-3
(NN)

the-2
(DT)

nsubj

det

characters-8
(NNS)

50-7
(CD)

than-6
(IN)

less-5
(JJR)

error-14
(NN)

an-13
(DT)

dobj

num

quantmod

mwe

det nn

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 219

semantic function is then also identified based on its internal dependencies. Firstly,

since its root is a noun (characters-8), it should be parameterized as a nominal term.

In addition, the num(characters-8, 50-7) dependency implies that this nominal

term has a quantifier whose quantity is 50. The quantmod(50-7, than-6) and

mwe(than-6, less-5) suggest that there is a comparative operator (less than) in this

quantifier (quantmod is quantity modifier, and mwe is multiple word expression).

Moreover, the POS tag of the root node is used to determine the value of the tense

semantic function. It is VBZ in this case. This means the tense is ‘present.’

Furthermore, the value of the negation semantic function is determined by the existence

of a neg dependency whose governor is the root node. Since there is no such a

dependency in this case, the value of negation is ‘false.’ Therefore, based on the

investigation of the dependencies in this specification, we are able to parameterize it as
Agent(system) + Verb(displays) + Object(error message) +

Condition(Positioner(review) + Verb(has) + Object(Head(

characters) + Quantifier(Quantity(50) + Comparative_Operator(

less than) + Tense(Present) + Negation(false)) + Tense(Present)

+ Negation(false).

Figure 7-5. Tree View of a Parameterized Specification

Specification

Proposition
Predicate

haserror message reviewdisplays

VerbAgent

Head

Nuclear
Predicate

Nominal Term

Atomic
Nominal Term

Object

System

Condition

VerbalTerm

Head

Nominal Term

Atomic
Nominal Term

VerbPositioner

Head

Nuclear
Predicate

Nominal Term

Atomic
Nominal Term

less than 50 characters

Quantity

Quantifier

Object

Head

Nominal Term

Atomic
Nominal Term

Comparative
Operator

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 220

A parameterized specification can be viewed as a tree in which each semantic function

is a child node of a predicate that it belongs to (according to functional grammar). Each

semantic function is then refined by the functional grammar term describing it while

each term is refined by its internal components. The leaf nodes are the values of the

components that cannot be refined further. In this session, we refer to such values as

parameterization atomic values. Figure 7-5 presents the tree view of the discussed

parameterized specification.

Table 7-6. Indicating Dependencies for Semantic Functions

Semantic
Function

Indicating Dependencies

Verb • When Y = X and Y is a verb
• cop(X, Y) (when root is not a verb)

Agent nsubj(X, Y) (when root is an action verb)
Positioner nsubj(X, Y) (when root is not an action verb)
Object dobj(X, Y)

Quality When Y = X and Y is not a verb
Location prep_in(X, Y), or prep_on(X, Y), or prep_at(X, Y)
Destination prep_to(X, Y)
Source prep_from(X, Y)

Beneficiary • prep_for(X, Y), or prep_against(X, Y)
• Require semantic labeling rules

Company Require semantic labeling rules
Purpose Require semantic labeling rules
Reference prep_about(X, Y)

Require semantic labeling rules
Manner advmod(X, Y) & Y’s POS tag is RB and Y is not a time

manner (i.e., monthly, daily)
Means prep_with

Frequency • tmod(X, Y)
• advmod(X, Y) & Y’s POS tag is RB and Y is a time

manner
Duration prep_in(X, Y) & num(Y, Z) & Y is a time unit (i.e.,

second, minute) & Z is a number
Condition advcl(X, Y) & mark(Y, Z) & Z is “if”
Event advcl(X, Y) & advmod(Y, Z) & Z is “when” or “as”
Tense • If the root is a verb, if its POS tag is VBN then the tense is

“past”, otherwise it is “present”
• If the root is not a verb, then there must be a dependency

cop(X, Y). If Y’s POS tag is VBN, then the tense is
“past”, otherwise it is “present”

Negation neg(X, Y)

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 221

Table 7-6 presents the association between each semantic function and the dependencies

that indicate the existence of such a semantic function in a specification. In this table, X

denotes the root of the currently considered tree (this tree can be a sub-tree of the entire

dependency tree of a specification to be parameterized). In each row, the left column

presents a semantic function that may exist in a specification represented by this tree.

The right column presents the dependencies that can indicate the existence of such a

semantic function in this tree. In this table, we use Y to denote the root of the sub-tree

that contains the value of such a semantic function. Take the sub-tree representing the

condition in Example 7-1 as an example. In this case, X is has-4, and characters-8

(Y) is the root of the sub-tree that contains the value of the object semantic function of

this condition.

Similarly, Table 7-7 shows the dependencies that can indicate the use of internal

structure of functional grammar terms.

Table 7-7. Indicating Dependencies for Term's Internal Structure

Term’s internal structure Indicating Dependencies

Quantity num(X, Y)

Comparative Operator • quantmod(X, Y) & mwe(Y, Z) in which Y
and Z make up the word “less than” or “more
than”

• amod(X, Y) & prep(Y, Z) & conj_or(Y,
W) & prep_to(W, T) in which Y, Z, W, and
T make up the word “less than or equal to” or
“more than or equal to”

Attribute amod(X, Y) and Y’s POS tag is JJ, JJR, or JJS

Verbal Restrictor vmod(X, Y), or vcmod(X, Y), or amod(X, Y),
or advmod(X, Y), In which Y is a verb

Possessor poss(X, Y)

Due to the complexity of English, to identify some semantic functions (i.e., company,

means, purpose), considering only dependencies is not sufficient. For instance, consider

the specification “system notifies users of the changes” (its textual dependency tree is

given in Table 7-8), although notifies-2 is the root and there exists the relationship

dobj(notifies-2, users-3), users-3 is not the object, but instead the

beneficiary in the specification. In addition, the same preposition dependency (i.e.,

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 222

prep_with, prep_of) may indicate different semantic function in different

specifications. Consider the specification “editors can login with their accounts.” Its

dependency tree has the prep_with(login-3, accounts-6) dependency and

“their accounts” makes up a means semantic function. However, in the specification

“editors can communicate with reviewers,” ‘reviewers’ has the company semantic role

although the dependency prep_with(communicate-3, reviewers-5) exists.

Table 7-8. Dependency Tree

nsubj(notifies-2, system-1)
root(ROOT-0, notifies-2)
dobj(notifies-2, users-3)

det(changes-6, the-5)
prep_about(users-3, changes-6)

Table 7-9. Semantic Labeling Rule Syntax

Syntax Explanation
X-> <semantic function> Meaning: if a dobj(X, Y) dependency

exists, then the sub-tree rooted at Y makes up
the value of the specified semantic function
Example: Alert->BENEFICIARY

X(%)?, p-> <semantic
function>

Meaning: if a prep_p(X, Y) dependency
exists, then the sub-tree rooted at Y makes up
the value of the specified semantic function. If
‘%’ is used, that means a dobj(X, Z) needs
to also exist.
Examples:
discuss, on->REFERENCE
align%, to->REFERENCE

X%, p-> A1:<semantic
function 1>, <semantic
function 2>

Meaning: is a prep_p(X, Y) dependency
exists, and a dobj(X, Z) dependency exists,
then the sub-tree rooted at Z makes up the
value of the semantic function 1, while the
sub-tree rooted at Y makes up the value of the
semantic function 2.
Example:
equip%, with->A1:BENEFICIARY,
OBJECT

Notes:
X refers to a verb or an adjective
p refers to a preposition
(%)? means % is optional
A1 means argument 1 (in the field of semantic parsing), it refers to object.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 223

To overcome this problem, we developed a set of semantic labeling rules based on an

investigation on the common English verb, adjective + preposition combinations. In

Table 7-6, the semantic functions that may need to be identified by semantic labeling

rules are associated to the text “require semantic labeling rules”). The syntax of

semantic labeling rules is given in Table 7-9. Currently, we have developed 168

semantic labeling rules based on the commonly used verb-preposition combination.

This set of rules can be extended using this syntax.

Table 7-10 presents the labeling rules for the discussed examples. The first rule means

that if a prep_with(communicate, Y) dependency exists, then the Y sub-tree has

the means semantic role. From this it can be determined that ‘reviewers’ is the value of

the company semantic function in the specification “editors can communicate with

reviewers.” The second rule means that if prep_of(notify, Y) and dobj(

notify, Z) exist, then sub-tree rooted at Y is the reference semantic function and the

sub-tree rooted at Z is the beneficiary semantic function. From this it can be seen that

‘users’ is the beneficiary and ‘the changes’ is the reference semantic function in the

specification “system notifies users of the changes.”

Table 7-10. Sample Semantic Labeling Rules

1. communicate, with->COMPANY

2. notify%, of-> A1:BENEFICIARY, REFERENCE

Link to ontology

In order to enable the detection of semantic problems, each word in a parameterized

specification is linked to a concept in a domain ontology. To do that, we transform each

parameterization atomic value to the required format for ontological items (i.e., values

must be in their standard form, camel format and followed by suffixes that indicate their

ontological classes). For instance, the value ‘error message’ would become

‘ErrorMessage_e.’ This is because ‘error message’ is a composite noun (determined by

the POS tag of ‘error’ and ‘message’ and the nn – noun compound modifier

dependency between them) and thus it is classified as an entity.

In similar examples, ‘displays’ is transformed to ‘Display_v,’ ‘less than’ is transformed

to ‘LessThan_co,’ and ‘reviews’ is transformed to ‘Review_e.’ In case these new words

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 224

are concepts in ontology, then they would be used by GUITAR to identify semantic

problems. In case one or more of these words do not exist in ontology, GUITAR

requests users to consider adding them properly into ontology. GUITAR can still work

if a specification has a word that does not exist in ontology. However, in this case its

meaning would be ignored during the semantic analysis.

7.3.3 3Cs Problem Detection

We discuss the main techniques used for identifying the problems of incompleteness,

incorrectness and inconsistency defined in section 7.2. The techniques for detecting

syntactic problems are generally different from those for semantic problems. In the

following sub-sections, we present these two sets of techniques in details.

7.3.3.1 Syntactic Problems Detection

The techniques for syntactic problem detection focus on checking the conformance of

goal-use case model specifications to the rules defined in GUIMeta.

T1: Meta-model Matching Technique. This technique is used to identify syntactical

incompleteness and incorrectness (problems P1, P2, P5 and P6 in Table 7-5). The key

idea is to use GUIMeta (discussed in Chapter 4) to validate an artifact specification or

relationship. Specifically, the definitions and dependencies of artifacts and relationships

specified in the artifact layer are used to validate artifacts, relationships and identify

missing artifacts. The specification rules defined in the specification layer are used in

conjunction with the functional grammar-based specification parameterization to

identify missing or invalid parts in a specification. The following examples illustrate the

use of this technique in detecting problems. Table 7-11 summaries how this technique

to identify problems.

Example 7-2: If a functional feature goal is not refined by any functional service goal,

then it is incompleteness since according to our rules, functional feature goals are on

high-levels and must be further refined by service goals.

Example 7-3: Given a goal specification “Users shall be able to create.” It is

incomplete since an object of the action ‘create’ is missing. The parameterization of this

specification is “Agent(users) + Verb(create).” Since our rules specify that an

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 225

action verb needs to be associated to an object, this incompleteness can be identified

(because there is no object semantic function in the parameterization).

 Example 7-4: A use case step specification “User enters article subject quickly” is

incorrect, as the quality attribute (‘quickly’) should not be used in a use case step

specification according to our specification rules.

Example 7-5: Given a use case operationalizes a functional feature goal. This is

incorrect because functional feature goals are normally abstract and cannot be

operationalizable.

Table 7-11. Problem Detection Rules Used in Meta-Model Matching Technique

‘Invalid Artifact’ Detection ‘Invalid Relationship’ Rule Detection
specifiedBy(a, sfs),
elementOf(sf, sfs),

¬	allow(Type(a), sf)
=> invalid(a)

link(a1, a2, rel),

¬	allow(type(a1), type(a2),rel)
=> invalid(rel)

specifiedBy(a, sfs),
elementOf(sf1, sfs),
elementOf(sf2, sfs),
incompatible(sf1, sf2)
=> invalid(a)

‘Missing Artifact’ Detection
require(type(a), art_type, rel),

¬	exist(a, art_type, rel)
=> missing(a, art_type, rel)

a,	a1,	a2	are artifacts.	rel	is a relationship	
specifiedBy(x, y):	x	is a list of semantic functions to specify artifact	y	
allow(x, y):	semantic function	y	is allowed to specify an artifact of type	x		
incompatible(x, y):	semantic functions	x	and	y	are not allowed to be
concurrently used to specify an artifact
link(x, y, z):	artifacts	x	and	y	are connected by relationship	z	
allow(x, y, z):	relationship	z	is allowed to connect an artifact of type	x	and an
artifact of type	x	according to meta-model	
exist(x, y, z):	there exists an artifact of type	y	that has a z relationship with
artifact	x	
missing(x, y, z):	there is a missing artifact of type	y	to be connected to the
artifact	x	by the relationship	z	

T2: Rule-based Inference. This technique is used to identify inconsistent relationships

specified between artifacts (problem P10 in Table 7-5). It can also infer new

relationships based on the existing ones. The key idea is to use Semantic Web Rule

Language (SWRL) [64] to capture relationships and their rules (these rules have been

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 226

described in Chapter 4). Based on that, new relationships can be automatically deduced

using Pellet reasoner [150].

For example, given the following goal specifications: G1 “Users create reviews,” G2

“Ensure the reliability of reviews,” and G3 “Admins create reviews” and the

relationships: G1 requires G2, G2 requires G3, G3 excludes G1. These relationships

can be represented in SWRL as require(G1, G2), require(G2, G3) and exclude(G3, G1).

Using this technique, the require(G1, G3) relationship can be inferred. However, since

‘require’ and ‘exclude’ relationships cannot be defined between the same pair of

artifacts, the inconsistency is identified.

7.3.3.2 Semantic Problems Detection

The detection of semantic problems is supported by the use of ontology, which provides

domain-specific semantic and knowledge. In order to automate such detection, we use

Pellet reasoner that is able to infer the relationships (including inconsistency,

disjointness, sub-class, and instance-of) between ontological concepts and provide

explanations for the inferred relationships. Since Pellet can only reason about concepts

in a single ontology specified in an OWL language, there must be a way to represent

artifact specifications as concepts using an OWL language and incorporate such

concepts into ontology to do analysis. In our work, we adopted Manchester OWL

Syntax (MOS) as a means to incorporate artifact specifications and ontology. In the

following sub-sections, we present how artifact specifications can be represented with

MOS before discuss in details the semantic analysis techniques.

Represent Artifact Specifications with MOS

The representation of artifact specifications with MOS is based on the parameterization

of such specifications. The following examples illustrate how MOS presentations are

derived from parameterized specifications.

Example 7-6: Given the specification “Only registered users shall be able to create

reviews.” Its parameterization (with links to ontological concepts) is “Agent

(QuantitativeOperator(Only) + RegisteredUser_e) + Verb(Create_v)

+ Object(Review_e).” Based on this, its MOS representation is “Specification

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 227

AND hasAgent ONLY RegisteredUser_e AND hasVerb SOME Create_v AND

hasObject SOME Review_e.”

Example 7-7: Given the specification “System displays a prompt for amount to the

user.” Its parameterization is “Agent(System_e) + Verb(Display_v) +

Object(Prompt_e + Qualifier(AdpositionalRestrictor(Purpose

(Amount_e)))) + Beneficiary(User_e).” Its MOS representation is
“Specification AND hasAgent SOME System_e AND hasVerb SOME

Display_v AND hasObject SOME (Prompt AND hasPurpose SOME

Amount_e) AND hasBeneficiary SOME User_e.”

Example 7-8: Given the specification “Users who do not have technical background

shall be able to create reviews easily.” It parameterization is “Agent(User_e +

Qualifier(VerbalRestrictor(Verb(Have_v) + Object(Background_e +

Attribute(Technical_adjp)) + Negation(true)))) + Verb(Create_v)

+ Object(Review_e) + Manner(Easily_qp).” Its MOS representation is
“Specification AND hasAgent SOME (User_e AND hasVerbalRestrictor

SOME (VerbalRestrictor AND hasVerb SOME Have_v AND hasObject

SOME (Background AND hasAttribute SOME Technical_adjp))) AND

hasVerb SOME Create_v AND hasObject SOME Review_e AND hasManner

SOME Easily_qp.”

As can be seen from the above examples, each artifact specification is represented in

MOS by a sub-class of the class Specification. This sub-class is the intersection of

Specification and a number of classes created based on the semantic functions exist

in this specification’s parameterization. For instance, if the parameterization of the

specification has an object semantic function, then we add into such intersection a class

specified as hasObject followed by the MOS specification of the internal structure of

the object.

However, as shown in the discussion below about the semantic problem detection

techniques, there is no case in which an entire MOS representation of an artifact

specification is used in semantic analysis. Instead, only parts of it are used to compare

to the corresponding parts in the MOS representation of another artifact. For instance,

the MOS representation of an object of an artifact is compared to that of an object of

another artifact to identify problems.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 228

Semantic Problem Detection Techniques

In this section, we present a high-level discussion on our techniques for detecting

semantic 3Cs problems. Details regarding the algorithms behind these techniques are

provided in Appendix A8.

T3: Relationship Checking/Inferring. This technique is used to identify semantic

incompleteness or incorrectness (problems P3, P4 and P7 in Table 7-5). Its key idea is

to extract an activity from a parameterized specification and use ontologies to identify

its relevant relationships. For example, consider the “user creates a review” use case

and assume that although it is known in this domain that a banned user is not allowed to

create reviews, there is no pre-condition or extension in this use case to handle this case.

Using this technique such a problem can be identified by first extracting the activity in

the use case’s description (i.e., Verb(Create_v) + Object(Head(Review_e))),

then transform it into a MOS description (i.e., hasVerb SOME Create_v AND

hasObject SOME Review_e).

The next step is to check the ontology for an exclude relationship between that activity

and an entity (i.e., “create review” excludes “banned user”). If the entity is

a sub-class of the agent in the use case’s description (i.e. User) and if there is no pre-

condition or extension handling this exception, then there is incompleteness. Note that it

does not need to be an explicit relationship between “create review” and “banned

user” in the ontology. Such relationship can be inferred in by GUITAR based on the

semantics of concepts in the ontology.

T4: Parameter Matching. This technique is used to detect the equivalence,

inconsistency (problems P11 and P12 in Table 7-5) and overlap between two

specifications. The key idea is to compare the corresponding parameters in the

parameterizations of both specifications. For example, consider the goals G1 “Users

shall be able to write reviews for tours” and G2 “Travelers shall be able to create

reviews for only places.” The parameterization of G1 is “Agent(User_e) +

Verb(Write_v) + Object(Review_e + Object(Tour_e)) + Negation(

true)” and G2’s parameterization is “Agent(Traveler_e) + Verb(Create_v)

+ Object(Review_e + Object(QuantitativeOperator(Only) + Place_e

)) + Negation(true).” The inconsistency between these goals is detected by

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 229

matching the corresponding parameters in these parameterizations by their MOS

representations (i.e., the agent or object of G1 is compared to the agent or object of G2,

respectively). To determine if two goals are inconsistent, the following conditions must

be met:

• C1: There are no parameters X and Y such that G1’s parameterization has X and

G2’s parameterization does not have X while G2’s parameterization has Y and

G1’s parameterization does not have Y.

• C2: If there are verb and object in both parameterizations, and if the verbs in G1

and G2 are different (not equal semantically), then the goals’ activity must

belong to the same ontological class (activity is a combination of a verb and an

object).

• C3: There is only one pair of corresponding parameters of these goals are

conflicting

• C4: For any parameter X that exists in both G1 and G2 parameterizations, G1’s

X value and G2’s X value must be overlapped, which means G1’s X value is

equivalent to, or a sub-class, or a super-class of G2’s X value.

It can be seen that G1 and G2 meets condition C1 since they have the same set of

parameters (agent, verb, object, and negation). Although the verbs in G1 and G2 are

different (i.e., ‘write’ and ‘create’), they share the same activity (i.e., ‘write review’ and

‘create review’). The overlap between these activities are identified based on their MOS

representations “hasVerb SOME Write_v AND hasObject SOME (Review_e

AND hasObject SOME Tour_e)” and “hasVerb SOME Create_v AND

hasObject SOME (Review_v AND hasObject ONLY Place_e).” Assume that

there are two equivalent classes ‘WriteContent_act’ and ‘CreateContent_act’

defined in the ontology as “hasVerb SOME Write_v AND hasObject SOME

Content_e” and “hasVerb SOME Create_v AND hasObject SOME

Content_e” respectively and the class ‘Review_e’ is defined as a sub-class of

‘Content_e.’ Then GUITAR is able to identify that G1 and G2 describe the same

class of activities (that belong to the class of ‘create content’). Therefore, the condition

C2 is met.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 230

The condition C3 and C4 are also satisfied since the agents of G1 (‘User_e’) and G2

(‘Traveler_e’) are equivalent (assume ‘User_e’ and ‘Traveler_e’ are

equivalent concepts in this domain). In addition, the objects in G1 (“Review_e AND

hasObject SOME Tour_e”) and G2 are conflicting since ‘Tour_e’ and

‘Place_e’ are disjoint concepts (assume this has been defined in the ontology).

In case all conditions, except for C3, are met, then it can be concluded that the

specifications are overlapping with each other. If each pair of corresponding parameters

in both specifications has equivalent values, then it can be concluded that the

specifications are equivalent.

T5: Relationship Extraction. This technique is used to detect inconsistency between

more than two artifacts that usually forms an inconsistent cyclic relationship between

artifacts specifications (problem P13 in Table 7-5). This type of problems normally

occurs between goals. For example, consider three goals: “if a user account is locked,

system sends an email notification to the user” (G1), “if a user account is locked, system

sends a SMS notification to the user” (G2) and “if system send a user an email

notification, it shall not send any SMS notification to that user” (G3). They are

inconsistent because it can be deducted from G1 and G2 that both email and SMS

notification will be sent in case an account is locked, which is conflicting with G3.

This inconsistency can be detected by separating the main description and condition (or

event) in a specification into different statements with ‘require’ relationships. For

instance, the first specification is converted into “a user account is locked” (G1.1)

requires “system sends an email notification to the user” (G1.2). The second

specification is converted into “a user account is locked” (G2.1) requires “system

sends a SMS notification to the user” (G2.2). The third specification is converted into

“system sends a user an email notification” (G3.1) requires “system shall not send

SMS notification to that user” (G3.2). Doing so would transform this problem into the

relationship inconsistency problem in which rule-based inference technique (T2) can be

applied.

Using the technique T2, it is possible to detect that G1.1 is equivalent to G2.1, G1.2 is

equivalent to G3.1 and G2.2 is opposite to G3.2. Based on these relationships, together

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 231

with the specified ‘require’ relationships, the inconsistency can be identified. Interested

readers can find the algorithm to extract condition (or event) and main description of an

artifact for the purpose of identifying cyclic inconsistent relationship in Appendix A8.

7.3.4 3Cs Problem Resolution

Incompleteness Resolutions

Incompleteness resolutions come directly from the reasons of the identified problems.

For instance, if a specification is missing an object (i.e., “Users shall be able to

create”), then “adding an object” (i.e., an object of the verb ‘create’ in this example) is

a resolution. The decision as to which object to be added belongs to users. If a

relationship is missing between two artifacts, then its addition will be suggested.

Incorrectness Resolutions

Resolutions for incorrectness are mainly removal or change requests. For instance, if an

invalid semantic function is used, the resolution is to remove it. If a use case has its

post-condition equivalent to its pre-condition, then either the involved pre-condition or

post-condition is requested to be changed.

Inconsistency Resolutions

Inconsistency resolutions are based on three strategies: removal, change and restriction

weakening. The Removal strategy removes one of the conflicting artifacts. The Change

strategy requires the modifications of the parts of specifications that cause

inconsistency. The Weakening strategy is used when conflict arises from restrictions in

one or more specifications. For instance, G1: “Users shall be able to write reviews for

tours” and G2: “Users shall be able to create reviews for only places.” This strategy

suggests the removal of the ‘only’ restriction in G2.

Resolution Ranking

A resolution of a problem may entail another problem to be created. Therefore, it is

helpful to provide some effect analysis of each resolution presented to users. In this

section, we define a concrete resolution is one that suggests specific modification to the

model (i.e., add a specific missing relationship, remove an artifact, remove an ‘only’

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 232

restriction in an artifact specification) rather than the one that requires user input (i.e.,

add an object into the specification without knowing which value the object has). For

each concrete resolution presented to users, GUITAR analysis the effect of it by taking

the following steps.

First, GUITAR generates a new model based on the modification indicated in such a

resolution. Second, it runs a full analysis (including incompleteness, inconsistency and

incorrectness detection) on the new model and identifies problems. Third, GUITAR

identifies the new problems that occur due to the modification suggested in such a

resolution (by comparing to the set of problems detected in the original version of the

model). If there is a new problem occurring due to the resolution, then such a resolution

is considered as an unsafe resolution. Otherwise it is a safe resolution. The resolutions

identified for a single problem are ranked according to the number of problems

generated if each resolution is executed. Therefore, safe resolutions are always ranked

higher than unsafe resolutions. GUITAR also allows highlight unsafe resolutions and

allow users to view the effect resulted (i.e., the problems generated) by running such

resolutions.

7.4 GUITAR: Goal-Use Case Integration Tool for Analysis of

Requirements

7.4.1 Tool Architecture

GUITAR was developed and integrated into GUEST to provide seamless support for

the modeling and analysis of goal and use case integrated models. The entire tool is

called GUITARiST, which is a combination of the word GUITAR and GUEST. Figure

7-6 shows an overview of GUITAR’s architecture. The tool contains three main inter-

connected components: artifact modeling module, knowledge module and analysis

module.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 233

Figure 7-6. GUITAR's Architecture

The artifact modeling module is shared between GUEST and GUITAR. As discussed in

Chapter 6, this module is responsible for creating and editing goal-use case models. The

knowledge module contains an ontology editor that allows the edition and analysis of

domain ontologies. Such edition and analysis are supported by OWL API [61] and the

Pellet reasoner . The knowledge controller manages the retrieval and updates of domain

ontologies during the analysis process.

GUITAR’s analysis module is responsible for the detection and resolution of the

incompleteness, incorrectness and inconsistency of artifacts. It contains five main

components: analysis controller, artifact parameterizer, MOS description generator,

explanation generator and resolution generator. The analysis controller manages the

entire analysis process. It takes a goal-use case model as input and returns the detected

problems with explanations and resolution alternatives. The artifact parameterizer is

used to automatically generate the parameterizations of artifact specifications.

The MOS description generator produces MOS representations of parameters from

parameterized specifications to support the semantic analysis. The reasoner is built on

top of Pellet reasoner to facilitate the automated analysis of artifacts for 3Cs problems.

Artifact Modeling Module

Artifact Modeler

Model Builder

Knowledge Module

Knowledge
Controller

Ontology
Editor

Analysis Module

MOS
Description
Generator

Artifact
Parameterizer

Reasoner

Explanation
Generator

Resolution
Generator

Analysis
Controller

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 234

The explanation generator takes the analysis outcomes from the reasoner and produces

explanations for detected problems. The resolution generator analyzes the explanations

of problems and generates resolution alternatives.

7.4.2 Usage Example

In this section, we provide some examples to demonstrate the use of GUITAR in

analyzing goal and use case integrated models for incompleteness, inconsistency and

incorrectness. These examples are based on a scenario in the domain of traveler social

networking system.

Ontology Update

Although GUITAR requires domain ontology to be available as a pre-requisite for the

semantic problem detection, it does incorporate an ontology editor that allows users to

quickly maintain and extend ontologies on the fly. Let us assume the requirements

engineers have obtained ontology for the traveler social network domain. However, they

now want to update it with an equivalent relationship between the activities ‘create

content” and “write content.” To do this, they invoke the ontology editor, browse to

CreateContent_act activity and choose to add a new equivalent class. Figure 7-7(a)

shows that “write content” is being defined. The description of this class is written in

MOS as “hasVerb SOME Write AND hasObject SOME Content.” GUITAR

shows a light red background if the input is invalid or incomplete; otherwise it is turned

to white (Figure 7-7(b)).

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 235

Figure 7-7. Updating the Domain Ontology with Ontology Editor

Figure 7-8. Adding an artifact

Adding Artifacts

GUITAR enables users to enter artifacts’ specifications in natural language. To

facilitate automated analysis. The parameterization of a specification (also called

structured description) is optional. It can automatically be generated by GUITAR at this

stage. However, users can postpone the parameterization until a semantic analysis is

conducted in the model (GUITAR automatically parameterize each artifact specification

at the beginning of the semantic analysis if its parameterization has not been generated).

(a)

(b)

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 236

Assume that the requirements engineers are adding a new functional service goal:

“FSG30 – users shall be able to create reviews for only places.” To do this, they open a

“new artifact” dialog, selects to create a functional service goal. GUITAR then

generates the goal’s ID based on the previously used IDs. In case the requirements

engineers want to parameterize this specification, they can click on the “structure

description” text area and GUITAR would then generate the parameterization of this

goal specification.

Figure 7-8 shows that the parameterized specification “Agent(Head(User_e)) +

Verb(Create_v) + Object(Head(Review_e) + Qualifier(Adpositional

Restrictor(Object(Quantifier(QuantifierOperator(Only)) + Head(

Place_e)))) + Negation(false) + Tense(Present)” has been generated for

the specification “users shall be able to create reviews for only places.” GUITAR is

also linked to the artifact polishing module in GUEST (discussed in Chapter 6) to

ensure artifact specifications to conform to our specification boilerplates. For instance,

if the specification “users shall be capable of creating reviews for only places.”

GUITAR would rewrite it as “users shall be able to create reviews for only places.”

Inconsistency Detection

The requirements engineers now try to validate the set of artifacts for inconsistencies.

They start the inconsistency validator. An inconsistency has been identified between

FSG30 – “users shall be able to create reviews for only places” and FSG6 – “users

shall be able to write reviews for places and tours.” Figure 7-9(a) shows that the

problem is described and the involved artifacts are highlighted in both artifact tree view

and graphical view. The explanations (Figure 7-9(b)) show that they are inconsistent as

‘create content’ is equivalent to ‘write content’ while ‘review’ is a sub-class of

‘content,’ and ‘place’ is disjoint with ‘tour.’

Inconsistency resolution

The requirements engineers now want to resolve the detected inconsistency. They click

on the “Quick Fix” icon and GUITAR provides a dialog showing a number of possible

resolution options (Figure 7-10). They include deleting either FSG30 or FSG6, remove

the ‘only’ restriction in FSG30 (weakening strategy), make other modifications to either

FSG30 or FSG6, or ignore the problem for now and come back later.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 237

Figure 7-9. Inconsistency Detected

Figure 7-10. Inconsistency Resolution

(a) (b)

(a)

(b)

problems
highlighted

problem
explanation

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 238

7.5 Evaluation

In this section, we present some evaluations conducted to evaluate the effectiveness of

GUITAR in automatically analyze goal and use case integrated models specified in

natural language. The key question we seek to answer in this evaluation is:

“How accurately does GUITAR analyze natural language-based goal-use

case models for 3Cs problems”

Specifically, we aimed to address the following research questions:

• RQ1: How accurately does GUITAR parameterize natural language-based

requirement specifications?

• RQ2: How accurately does GUITAR analyze goal-use case integrated models

for inconsistency, incompleteness and incorrectness?

• RQ3: How is GUITAR’s performance in comparison with other industrial and

academic tools regarding analyzing textual requirements for inconsistency,

incompleteness and incorrectness?

To address these research questions, we performed two types of evaluation. Firstly, for

RQ1 and RQ2, we used a number of industrial and academic case studies and evaluated

GUITAR’s performance on these case studies. Secondly, for RQ3, we conducted a

benchmark validation in which a number of comparable industrial and academic tools

were selected and compared with GUITAR in regards to their analysis performance in a

number of chosen case studies. In the following sub-sections, we discuss these

evaluations in details. Our evaluation data and results can be found at

http://goo.gl/gCUofM.

7.5.1 RQ1: Specification Parameterization Evaluation

We used the PROMISE requirements dataset introduced in Chapter 3 in this evaluation.

The PROMISE data was pre-processed before being used in this validation to ensure

they appropriately represented typical artifact specifications in goal-use case models.

For instance, we split a requirement into multiple ones if it contains more than one

sentence. In addition, combined words such as ‘his/her,’ ‘himself/herself’ were changed

to single words (i.e., his). Moreover, each requirement specification with a coordinating

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 239

conjunction (i.e., ‘and’) is split into two requirements. For instance, the requirement

“readers can search and download articles” is split into two requirements which are

“readers can search articles” and “readers can download articles.” However, if the

obtained requirements have identical structure (i.e., “readers can search articles” and

“readers can download articles”), we only keep one of them to maintain the structural

differences between requirements. In this evaluation, we randomly selected 200

requirements from all 15 PROMISE projects. To further diversify the set of sample

requirements, we also included 110 requirements collected from different sources in the

literature.

Each requirement was automatically parameterized by GUITAR and the results were

manually checked by us to determine the accuracy rates. A parameterization result was

considered accurate if: (1) a requirement was completely and correctly parameterized by

GUITAR, or (2) part of a requirement was not possible to be parameterized since it was

not supported by our meta-model (GUIMeta) and that GUITAR pointed this out

correctly. For instance, consider the requirement “The product shall continue to assign

turns until the game is ended.” If GUITAR correctly parameterizes the phrase “The

product shall continue to assign turns” while indicating that the phrase “until the game

is ended” is not parameterizable, then this is correct since a temporal phrase such as

“until…” is not supported in our work.

A two round-validation was conducted. Firstly, we parameterized the requirements

based on our existing collection of modifying and semantic labeling rules to verify

GUITAR’s existing parameterization capability. We then identified the reason for errors

found in the results. If the reason was incorrect parsing or missing supporting rules, we

then trained the parser with correct parse trees or attempted to write new rules using our

defined syntax. In the second round, we attempted to parameterize the requirements that

GUITAR failed to parameterize in round 1 with the newly trained parser and/or new

collection of rules. The result of this round indicated the best achievable capability of

GUITAR in this validation.

Table 7-12. Parameterization Validation Results

Round 1 (existing capability) 274 over 310 (88%)

Round 2 (best achievable capability) 304 over 310 (98%)

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 240

Table 7-16 presents our evaluation results. We obtained 88% and 98% of

parameterization accuracy in round 1 and 2 respectively. In the second round, there

were a few number of requirements that GUITAR failed to parameterize since their

grammatical structures confused GUITAR in determining the semantic functions. For

instance, consider the requirement specification of “The product shall determine when

the road sections will freeze.” GUITAR mistakenly identified the phrase “when the

road sections will freeze” as an event of the specification (while it was actually not) due

to the existence of the following dependencies: root(ROOT-0, determine-4),

advmod(freeze-10, when-5), advcl(determine-4, freeze-10). In another

example, GUITAR incorrectly labeled “90 minutes” as the value of a duration semantic

function in the specification “90% of new users shall be able to start the display of

events within 90 minutes of using the product.” The correct parameterization should

instead indicate that the phrase “within 90 minutes of using the product” is not

supported by our meta-model. We plan to overcome these problems by extending the

syntax of our semantic labeling rules to allow the specification of situation in which a

phrase starting with ‘when’ while having advmod and advcl dependencies should and

should not be considered as an event semantic function. Similarly, this technique should

also tackle the confusion over duration semantic functions in the second example.

Overall, the results from this evaluation were very promising. It implied that our

parameterization technique can be used to well parameterize various types of

requirements specifications. Especially, the very high accuracy rate obtained in the

second round of the evaluation showed that GUITAR is able to correctly parameterize

most requirement specifications given the linguistic parser is well trained and the

modifying and semantic labeling rules are well developed. Since such parser training

and rule development are supported by our tool, our parameterization quality can

always be improved.

7.5.2 RQ2: Goal-Use Case Model Analysis Evaluation

This evaluation was aimed to assess the effectiveness of our goal-use case model

analysis approach. We use precision rate and recall rate to measure the soundness and

completeness of the analysis results. The precision metric is used to evaluate the

approach’s soundness. A higher precision means the approach returns more valid results

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 241

(true positive – TP) and less invalid results (false positive – FP). The recall metric is

used to assess the completeness of the approach. A higher recall means the approach

returns more valid results (true positive) and has less missed valid results (false negative

– FN). The maximum of both precision and recall are 1 (equation 1, 2).

We carried out two rounds of evaluation as follows.

Evaluation with PROMISE Data. We started with an evaluation with PROMISE

projects’ requirements. We have randomly three projects in this dataset. They offered

requirements in the domains of Master Scenario Events List Management (MSEL), Real

Estate (REs) and Nursing Training Program Administration (NTPA). These projects

contain various types of requirements. For each project, we built an ontology for storing

knowledge and semantics in its domain. The ontologies were built by our investigation

in the relevant requirements and study of the domains. The ontologies were checked for

consistency using GUITAR’s embedded ontology editor tool before the evaluation. In

this evaluation, if a requirement could be classified as a GUI-F artifact, it was then

entered into GUITAR to build a goal-use case model. Since PROMISE data mainly

contains a list of requirements without explicitly specifying their connections, artifact

relationship validation was ignored in this experiment.

Table 7-13. Approach's Effectiveness Evaluation Results (with PROMISE Data)

Problem Types MSEL REs MTPA Precision Recall

Incorrectness

D 6 5 20

100% 100% FP 0 0 0

FN 0 0 0

Incompleteness

D 11 7 11

86% 83% FP 1 1 2

FN 2 1 2

Inconsistency

D 0 0 0

- - FP 0 0 0

FN 0 0 0

D: Detected Problems FP: False Positive FN: False Negative

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 242

The evaluation was done by first using GUITAR to identify the problems and the result

was then manually verified by us. Table 7-17 shows the result of this evaluation. The

main problems found in these case studies were incorrect goal specifications. For

instance, “The product shall synchronize with the office system every hour” is defined

as a non-functional goal instead of a functional goal. Both precision and recall for

incorrectness detection in this evaluation are 100%. We achieved 86% and 83% for

incompleteness evaluation’s precision and recall respectively. That was due to

GUITAR’s suggestion about a missing non-functional goal of a specific type (i.e., law

compliance) when it may not be needed. We noticed that it is not feasible to thoroughly

verify the recall rate of incompleteness detection since it is not possible to find all

potential missing requirements for a project. Our verification was done by determining

missing requirements based on the domain knowledge that we collected and stored in

the relevant ontologies. Although no inconsistency existed in the case studies, there was

a positive result that GUITAR did not identify any “problem” which actually was not a

problem (false positive is zero).

Evaluation with other industrial case studies. Due to the limitation of the range of

problems existing in the PROMISE data; we carried out another round of evaluation

with some industrial case studies. We employed three industrial case studies in the

domains of traveler social network (TSN), online publication system (OPS) and split

payment system (SPS) that were introduced in Chapter 3. In this round of evaluation,

we first obtained a goal-use case model from each case study and manually analyzed it

for 3Cs problems. However, since the number of problems was not significant, we took

another step to manually seed incompleteness, inconsistencies and incorrectness into the

models. Doing so enabled us to have the full control over the problems existing in the

models and thus was able to determine if there was a problem that could be correctly

identified by our tool (true positive), could not be detected by our tool (false negative),

or an identified problem was not actually a problem (false positive).

The seeding process was done by first referencing example 3Cs problems from the

literature, categorizing them into different sub-types, each sub-type was then classified

into different difficulty levels (called sub-type/difficulty level categories) by

investigating how sophisticated the relevant detection techniques are. For instance,

under the “use case specification incorrectness” sub-type, “invalid use case step

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 243

specification” is categorized as a simple problem as most of them can be detected by

meta-model matching technique (and some simple ontology inference), while problems

of “Different use case exceptions whose conditions are same/subsuming each other”

are considered difficult since the inference over multiple ontology concepts and

relationships may be needed for identifying these problems (these types of problems

were extracted from [29]). The last step of this process was to introduce similar

problems into the case studies. For each type of 3Cs problems (i.e., incorrectness), we

maintained the balance between the numbers of problems belonging to different sub-

type/difficulty level categories. Specifically, 66 incompleteness, 32 incorrectness and 24

inconsistency problems were introduced across three case studies (there were 10, 8 and

8 sub-type/difficulty level categories defined under incompleteness, incorrectness and

inconsistency respectively). When generating problems, we considered only those

involving artifacts that can be specified with GUITAR (i.e., without temporal properties

in their specifications).

Table 7-14. Approach's Effectiveness Evaluation Results (with Other Case Studies)

Problem Types TSN OPS SPS Precision Recall

Incorrectness

D 10 12 7

100% 90% FP 0 0 0

FN 1 1 1

Incompleteness

D 23 22 22

89% 90% FP 2 2 3

FN 2 2 2

Inconsistency

D 6 8 5

100% 79% FP 0 0 0

FN 3 1 1

D: Detected Problems FP: False Positive FN: False Negative

Table 7-18 shows our evaluation results. GUITAR achieved 100% for precision and

90% for recall in incorrectness detection. The main kinds of incorrectness detected were

mismatches between artifacts descriptions and their categories. GUITAR was unable to

reveal some artifacts that were incorrectly placed on invalid levels of abstraction. For

instance, in the context of a traveler social network system, if a functional service goal

is defined as “Users shall be able to configure their settings,” then it has an incorrect

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 244

specification since “configuring settings” is a very abstract activity and cannot be

directly operationalized into a use case. It instead should be defined as a functional

feature goal and refined by more specific (functional service) goals, for instance,

“Users shall be able to configure their profile privacy settings.” GUITAR could not

identify this problem since it was unable to recognize abstract activities from more

specific ones. A possible way to overcome this issue is to incorporate our artifact

classifier (introduced as part of GUEST in Chapter 6) to determine the abstraction level

of artifacts.

We have achieved 89% and 90% for precision and recall respectively in incompleteness

identification. That was due to our use of non-functional constraint categories in

identifying missing non-functional artifacts. For instance, GUITAR matches our non-

functional constraint categories against the set of modeled non-functional artifacts, if

there is any category (i.e., security) which does not have corresponding modeled

artifacts, then the tool indicates that there could be a missing non-functional artifact in

such category (i.e. a security goal is missing). Although this technique is able to identify

a number of missing non-functional artifacts, it was the reason why the precision and

recall values decreased.

Firstly, not all non-functional constraint categories are applicable to a certain domain.

For instance, the “software interoperability” category is not applicable to the traveler

social network system used. This produces invalid detection result (reduced precision).

Secondly, if there were already a security artifact of a certain class (i.e., security non-

functional service goal) being modeled, GUITAR would not indicate that a security

artifact of such class is missing (if it does not fall into other types of incompleteness we

support). This may cause the situation that one or more security artifacts are missing but

not detected (reduced in recall). We plan to overcome this issue by doing an

investigation in categories of non-functional constraints that are normally used in a

number of common domains. Doing so will help us to minimize false positives and thus

increase the precision rate.

We have achieved 100% precision in inconsistency detection. However, the recall rate

is 79%. This was because GUITAR currently does not support the identification of

related words used in different forms. For instance, GUITAR was not able to detect an

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 245

inconsistency between two constraints “uploadable images must be less than 4mb” and

“users shall be able to upload images up to 5mb.” In this example, it could not find the

relationships between the term “uploadable images” and the activity “upload images.”

We plan to overcome this issue by incorporating a natural language technique to

identify the relationships between different forms of a word (i.e., uploadable and

upload) and based on that infer the relationships between different specifications.

7.5.3 RQ3: Comparing GUITAR with Other Tools

We have conducted a benchmark validation with a number of selected requirements

analysis approaches in order to further evaluate GUITAR’s capabilities in analyzing

3Cs problems. In this validation, we performed two types of evaluations. The first type

of evaluation was used for approaches that have tools available (for us to download and

validate). In this evaluation, we compared them with GUITAR by using their tools to

analyze requirements in our case studies. The second type was for approaches that do

not have their tools available. There are 2 criteria for considering an approach for this

type. Firstly, the approach must be knowledge-based (ontology-based or dictionary-

based). The rationale for this limitation is that approaches without knowledge bases are

generally disadvantaged when compared with GUITAR on the same set of

requirements. Secondly, the data used to demonstrate or validate the approach must be

available so that we could re-use to validate GUITAR. Such data include the ontology

or knowledge base used, the original requirement set to analyze and the analysis results.

In this type of evaluation, the aim is to verify which types of problems detectable in the

benchmark approaches were also identifiable or unidentifiable with GUITAR.

7.5.3.1 Experiment Setup

The selection criteria for benchmark approaches were as follows:

• Compulsory criteria

o (1) The approach is capable of automatically or semi-automatically

analyzing textual requirements for at least one of the 3Cs problems.

o (2) The approach’s tool can be from either research or industry

o (3) The approach’s tool is available to download and installable on

common operating systems (Windows, Mac OS and Linux), OR

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 246

The approach’s tool is not available, however the approach is

knowledge-based and the data used to demonstrate or validate the

approach is available for re-use with GUITAR

• Desirable criteria

o (4) The approach provides support for goal and/or use case modeling and

analysis

o (5) The approach employs domain ontologies for semantic analysis

The selection process resulted in seven approaches in which five with tools and two

without tools. In the list of approaches below, the tool name is used if it was available;

otherwise the name of the first author of the contribution is used.

Requirement Quality Analyzer (RQA): RQA11 is an industrial tool developed by the

REUSE Company. The tool uses a wide set of metrics to assess the quality of a

requirement specification, mainly correctness, consistency and completeness. RQA is

based on natural language processing, ontologies and semantic techniques to allow a

comparison of the meaning of the requirements.

Requirements Assistant (RA): Requirements Assistant 12 is an industrial tool that

analyzes requirements written in a natural language. It detects incompleteness,

inconsistency, vagueness, testability issues, and ambiguity in a set of requirements.

Innoslate: Innoslate 13 is an industrial tool that supports the full lifecycle from

requirements definition and management to operations and support. The tool provides

an automated support to evaluate the clearness, completeness, design-orientation (i.e.,

whether a requirement describes design option) and verifiability.

Requirements-Driven Software Development System (ReDSeeDS): ReDSeeDS

[118] is a research tool which offers a full Model-Driven Engineering lifecycle, from

modeling to analyzing requirements and converting requirements into JAVA code.

ReDSeeDS is the only tool in this evaluation that supports the modeling of both goals

and use cases.

11 http://www.reusecompany.com/requirements-quality-analyzer
12 http://www.sirius-requirements.com/product/
13 https://www.innoslate.com/

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 247

Requirements Processing Tool (ReProTool): ReProTool [41] is a research tool that

allows users to bind requirements with the code of a developed application. Besides

general requirements, the tool is capable of semi-automatically analyzing use cases

written in natural language.

Kaiya: [71] developed a technique to verify completeness, correctness and consistency

of textual requirements based on ontologies of knowledge and semantics. In this

approach, terms used in each requirement need to be manually mapped into an

ontological item. Based on the mapping and the relationships between ontological

items, 3Cs problems can be identified. A tool was reportedly developed for this

approach. However, it could not be obtained at the time this evaluation was done.

Dzung: [44] proposed a similar technique to Kaiya. However, it focuses on providing

suggestion to improve the completeness of requirements based on domain ontologies. In

this work, terms in a requirement are also manually linked to ontological terms. A set of

rules was proposed to generate suggestions regarding new requirements. The tool from

this approach was not obtainable.

We divided these benchmark approaches into 2 groups. The first one contains the 5

approaches with tools and the other 2 belong to the second group.

For the first group, we re-used the three industrial case studies used in the research

question RQ2: TSN, OPS, and SPS. For each benchmark application, we import

requirements from the case studies in the format that the application supports. For

instance, relationships between requirements were only imported into ReDSeeDS since

it was the only tool that supports requirements relationship modeling. In addition, use

cases were only entered into ReDSeeDS and ReProTool since they were not supported

by other tools. If a tool did not allow use case specifications, use case steps were

entered as normal requirements. Moreover, in RQA that supported the use of ontologies,

we entered our ontologies developed in the previous validation into the tool.

For each approach in the second group, we recreated an ontology in our format based on

the ontology they provided. For each provided requirement, we determined the artifact

type it should belong to (i.e., “Users can retrieve books via the Internet” was classified

as a functional service goal) and entered it into GUITAR.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 248

T
ab

le
 7

-1
5.

 B
en

ch
m

ar
k

V
al

id
at

io
n

R
es

ul
t f

or
 G

ro
up

 1

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 249

7.5.3.2 Experiment Results

First-group: benchmark approaches with tools

Table 7-19 depicts the results achieved in this validation. In the following subsections,

we discuss about the results obtained by each benchmark application in comparison

with the results produced by GUITAR.

RQA

Inconsistency. Inconsistency in RQA is defined as the mismatch between measurement

units used in requirements or the overlapping between requirements. The overlapping

between two requirements is calculated based on the number of words with close or

same meanings found in both requirements. This comparison is supported by the use of

domain ontologies in the tool. The problem is that finding requirements that are

overlapping is not sufficient to identify real inconsistency between them because having

something in common does not necessarily means two requirements are contradict to

each other. In this validation, RQA produces over 3000 overlapping pairs of

requirements in each of the case studies. However, only a very small number of

overlaps were inconsistencies, meaning that the number of false positives is very high.

For instance, RQA identified an overlap between two requirements “System shall be

secure” and “System shall be easy to use.” However, they are not inconsistent with

each other. In addition, there were many cases detected overlapping requirements do not

describe a common feature or functionality. For example, “members shall be able to

disband a group” and “group members shall be able to simulate transfers of debt.”

Furthermore, there are a number of inconsistencies that were detectable by GUITAR

however remained unknown in RQA. An example of such cases is two requirements “If

a new bill is entered into the group, all group members will be notified by email,” “If a

new bill is entered into the group, all group members will be notified by SMS” and “If a

member is notified by email, the member will not be notified by SMS.”

Incorrectness. RQA utilizes a set of metrics to evaluate the correctness of

requirements. Those metrics cover a number of well-known requirement qualities such

as ambiguity, measurability, verifiability and vagueness. In this validation, the

requirements marked as having low quality by RQA were those contain the word/phrase

“shall,” “shall be able to” or “all” and those with abstract concepts such as “easy to

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 250

use,” “quickly,” “manage.” However, since GUITAR is designed to deal with goals on

different level of abstractions and goals are usually described in the format of “shall be

able to” sentences, we accept these vagueness characteristics. Therefore, it was not

applicable to compare GUITAR and RQA regarding incorrectness detection.

Incompleteness. RQA evaluates the completeness of requirements by matching a

requirement description with its list of boilerplates. Since the boilerplates used in RQA

are different from the boilerplates used in GUITAR (which are designed for goal and

use case specifications), a comparison between the tools was not suitable.

Requirements Assistant (RA)

RA identified 4, 2 and 3 inconsistencies in TSN, OPS and SPS case studies

respectively. However, they were all false positives. For instance, two requirements

“System shall store the list of articles” and “System shall store the list of reviewers”

were considered inconsistent by the tool why they obviously are not.

While having no support for correctness evaluation, RA validated the completeness of

requirements based on a set of “absolute” keywords such as “all,” “any,” “anything.”

For instance, the requirement “When a new bill is entered into the group, all group

members will be notified by email” was flagged as incomplete with a suggestion of

reviewing for exceptions by the tool. We consider such cases are better classified as

general warnings rather than actual completeness problem.

Innoslate

Innoslate supports the automated detection of completeness, clearness, design-

orientation and verifiability problems. Design-orientation is a characteristic of a

requirement regarding whether it describes how a certain functionality is implemented

rather than what the system should support. Since our notion of correctness refers to the

appropriateness of an artifact specification (goal or use case component) in the

consideration of their type, design-orientation can be classified as a sub-type of

correctness according to our definition. In this validation, Innoslate identified 30, 18 and

11 incorrectness (design-orientated) cases in the TSN, OPS and SPS case studies

respectively. However, they were all false positives according to our judgment. For

instance, “Members shall be able to view their debts” was flagged as design-oriented

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 251

statement while it is really a requirement describing a functionality of the system.

Moreover, there were 4 incompleteness cases identified in the TSN case study.

However, they were all false positives since the tool incorrectly indicated that the

involved requirements contained no verb phrase while they actually had. No

incompleteness was detected in the OPS and SPS case studies.

ReDSeeDS

ReDSeeDS enables the modeling of requirements and use cases together. Various types

of relationships between these artifacts can be specified in the tool. In the validation,

ReDSeeDS was able to identify ill-formed use case specifications. For instance, it

revealed use cases with missing pre-conditions or a use case extension in which no

“resume” step or “failure” step defined. ReDSeeDS, however, was unable to identify a

majority of problems in the case studies. For instance, invalid relationships (i.e.,

“operationalizing” and “conflict” relationships defined between a pair of requirements)

or a use case with the same pre-condition and post-condition.

ReProTool

ReProTool allows use cases to be modeled and analyzed in a semi-automatically way.

Users are required to manually classify use case steps and based on that they can be

analyzed by the tool. Due to the lack of semantic support (i.e., ontology or pre-defined

language resources), ReProTool was not able to identify semantic problems. In this

validation, only simple syntactic problems were identified by ReProTool. For instance,

it was able to detect that a use case step “the information” is incomplete due to the

missing of an actor, action and object. More complicated problem, i.e., a lack of an

extension to handle the case when the article file does not exist in the use case step “The

editor attaches the article file to the form” was not identifiable.

Second group: approaches without tools

Table 7-20 presents the results obtained for this group. For Kaiya and Dzung, the value

in each cell depicts the number of problems of the corresponding types detectable by

their approaches (according to their papers). For GUITAR, it shows the number of

problems detected by our tool.

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 252

Table 7-16. Benchmark Validation Result for Group 2

Problem Type Tools

Kaiya GUITAR Dzung GUITAR

Incorrectness 2 0 0 0

Incompleteness 2 2 11 8

Inconsistency 1 1 0 0

GUITAR could identify all 3Cs problems by Kaiya except 2 incorrectness cases. In

Kaiya, if there is a requirement containing at least a word which is not mapped to an

ontological item, then it is considered incorrect. For example, the requirement “User

can play a music in any speed” is incorrect since its words are not fully mapped to

ontological items. This requirement, however, was not considered incorrect by

GUITAR since it is not malformed by itself. In GUITAR, the mapping between words

and ontological concepts is done automatically by through our automated support for

artifact parameterization.

In the comparison between Dzung and GUITAR, our tool identified 8 over 11

incompleteness cases raised by Dzung. The other 3 cases were suggested by Dzung to

enhance the requirement completeness because there exist the corresponding functions

in the ontology. For example, a requirement about adding a user into the system is

suggested since “add user” function exists in the ontology. GUITAR did not raise an

attention regarding this function because there were no existing requirements that

describe relevant functions to “add user.” Since GUITAR was designed to provide the

most precise information to users (the key is to minimize false positives), it generally

does not consider a function defined in the ontology that has no corresponding

requirement specified (we call it as a “missing ontological function case”) as

incompleteness. The rationale is that a domain ontology may be very large and shared

across projects in the same domain. A single function may be required in a project but

may not be needed in another. Therefore, considering “missing ontological function

cases” as incompleteness could overwhelm users with a large number of false positives.

In our work, “missing ontological function cases” are only considered as possible

incompleteness if there is an existing requirement that describes a closely related

function to it. For example, if there exists a requirement specifying “admins shall be

able to remove users from the system,” then GUITAR would report an incompleteness

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 253

concerning “Add user.” In GUITAR, although “missing ontological function cases” are

not considered incompleteness, it does allow users to view all functions captured in the

ontology (referred to as activities in our terminologies) using GUITAR’s Ontology

Editor.

Thus, from the results of this validation, it was shown that GUITAR was able to

identify at least all representative problems detectable by Kaiya and Dzung.

7.5.4 Threats to Validity

External Threats

Firstly, since all evaluations that we carried out involved the use of a number of case

studies and/or requirement data, there is an external threat regarding the

representativeness of such requirements. In the research question RQ1 regarding the

parameterization of requirements specifications, the accuracy of GUITAR may vary

depending on the requirements selected, and the quality of our linguistic parser and

collection of modifying and semantic labeling rules.

To reduce this threat, we maintained a high variability of the data by selecting

requirements from different sources and ensured some difference exist between

requirements (i.e., we avoided having requirements with the same grammatical

structure). In addition, apart from the evaluation with the existing parser and rule

collection, we carried the second round of validation to evaluate the tool in case the

parser and rules were perfect for the given set of requirements. This allowed us to gain

the understanding about the standard performance of the tool (when the parser and rules

were not specifically trained and developed for the experiment data) and its highest

capability in the experiment settings (when the parser and rules are perfect for the

experiment data). To reduce the representativeness threat in RQ2, we selected six case

studies in different domains with different types of requirements to diversify the

experiment data. Importantly, we also ensured problems in those case studies covered a

wide range of 3Cs problems.

Secondly, in our benchmark validation, having good results with the selected

approaches may not imply similar results with others. However, the best attempt has

been made to get all relevant tools that were available to download and install at the

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 254

time the validation was carried out. In addition, to alleviate this threat, we have

broadened our selection criteria to consider approaches with no available tool but

having their demonstrative data available for use to validate GUITAR.

Internal Threats

Firstly, for RQ2, the types of requirements problems exist (for evaluation on PROMISE

data) or being seeded in each case study may vary and affect the precision and recall

rate of our tool. For instance, if there are more problems of the types the tool cannot

detect and less problems of the types it can identify, then the precision will be reduced,

and vice versa. To alleviate this, we tried to generate situations in which the problems

are realistic and the balance between different types of problems is maintained. In the

evaluation with seeded problems, we referenced example 3Cs problems in the literature

to ensure the seeded errors were realistic. In addition, we also maintained the balanced

numbers of errors across categories and difficulty levels. In future work, we plan to

carry out another evaluation with industry partners’ real requirements and errors.

Secondly, the quality of domain ontologies might affect the validity of our analysis

support evaluation (RQ2). However, since this validation was designed to validate the

soundness and completeness of our technique based on what it “knew” (what was stored

in the ontology) and what it “did not know” (what was not stored in the ontology), the

quality of ontology is less important. In fact, in this validation, we did not judge the tool

as unsatisfied for not detecting a problem whose relevant semantic and knowledge are

not known to it. Therefore, the cases that mattered were those in which GUITAR failed

to identify a problem while it had sufficient knowledge to detect such problem.

Following this principle, we have minimized the effect of ontology quality by using an

iterative process in which we ran the validations, then checked the results with the set of

the generated problems, then verified if there were any problems that had not been

identified because of missing concepts or relationships in the ontologies. If yes, then

updated the ontologies with those missing parts and ran the validations again. If no, we

recorded that our tool had failed to identify the problems and diagnosed the reasons.

The result from the last iteration was the most important one because in that iteration we

could eliminate all cases in which a problem was undetected when the tool had no

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 255

relevant knowledge about it. The documented result in the paper was the one after the

last iteration.

Threats to internal validity also include the human factors in our evaluation. In RQ1, the

parameterization results were manually verified to determine their correctness. In RQ2,

the 3Cs problem detection outcomes were manually checked to determine their

accuracy. In RQ3, the tasks of entering requirements from the case studies into the

benchmark applications and verifying their analysis results were done manually.

Therefore, there were chances that errors could be generated due to the manual effort.

To reduce this threat, we carried out the tasks very carefully and reviewed every steps

twice during the evaluation.

7.6 Discussion

We have presented our ontology-based technique to analyze goal and use case models

for 3Cs problems. Our technique was built on top of our goal-use case integration meta-

model (GUIMeta) introduced in Chapter 4, which provides a fundamental foundation to

model, classify, parameterize and analyze artifacts in a goal and use case integrated

model. The functional grammar-based parameterization allows the semantics of artifacts

to be examined in a consistent way. Such parameterization of artifacts allows artifacts’

textual specifications to be automatically transformed into formal descriptions in MOS

that then promotes the automated analysis of the artifacts. Importantly, our technique is

designed to encapsulate “intelligence” so that it can deal with problems that require

domain specific knowledge to analyze. Such “intelligence” includes knowledge and

semantics in certain domains that are to be captured and represented in the form of

ontologies. The principle behind this feature is that the more GUITAR knows, the

higher analysis quality it can perform. This allows GUI-F to be further augmented by

enriching the domain ontologies.

Our experiments to date showed some promising results in the capability of GUITAR in

analyzing 3Cs problems. Our benchmark validation indicated that GUITAR could

identify a number of 3Cs problems that were not detectable by other tools. The key

reasons are the use of domain ontologies and the technique for parameterizing

requirements consistently. This second point explains for the better outcome GUITAR

achieved in the validation compared to other ontology-based tools like RQA. In RQA,

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 256

false positive values were very high since requirements were compared to each other

based on the meanings of the words they contained without considering which roles

played by those words (i.e., object, beneficiary). Regarding user experience, while

Kaiya and Dzung tools require manual matching of requirements and ontological

concepts, it can be done automatically in GUITAR through our parameterization

process.

In the following subsections, we discuss about the key limitation and challenges of our

approach to analyzing goal and use case integrated models specified in natural

language.

The effort of building domain ontologies. Ontology building is a time and labor-

intensive exercise. It is an iterative and on-going process rather than a one-time task. In

order to create a domain ontology, a domain study needs to be performed. In such study,

domain concepts and relationships between them are extracted. In addition, knowledge

and constraints needs also to be captured. There are a number of ontology learning tools

that support the automated or semi-automated extraction of ontology from natural

language documents. Although some of them are helpful in the ontology creation (i.e.,

Text2Onto [24], OntoLT [17]), they are far from entirely replacing human effort in this

process.

However, in our view, the effort required for creating ontologies is a challenge rather

than a limitation of the approach. It can be considered as a trade-off between the ability

of identifying semantic problems, that are not detectable without a collection of domain

knowledge and semantic (such as an ontology), and the effort spent to create such

ontology. In fact, ontology-based approaches have been used extensively in

requirements engineering (RE) and software engineering. According to a recent

systematic literature review on the applications of ontologies in RE [39], several

ontology-based techniques have been proposed and proven the effectiveness of using

ontologies in solving different problems in RE, from elicitation to analysis and to

validation. As shown in the benchmark validation, our approach was able to identify

problems that are not detectable by other tools, partly because the use of domain

ontologies. In addition, according to the same study, 34% of the reviewed approaches

reported their success in reusing ontologies in their contributions. In our view,

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 257

reusability is one of the key benefits of ontologies. Creating ontologies can be costly,

however it can be reused across projects in the same domain. Therefore, in our view, the

benefits of building ontologies outweigh the effort to create them.

Nevertheless, we plan to build an “initial ontology” which contains pre-populated

concepts that are commonly shared across domains, as an extension of our developed

collection and categorization of commonly used verbs. It is intended to be done by

consulting lexical resources like Wordnet [46], Verbnet [143] and other dictionaries.

Such “initial ontology” would potentially help reduce the time and effort since only

very domain specific semantics and knowledge would need to be captured in the

ontology creation process.

The lack of support for analyzing requirements with temporal properties. Our

approach currently does not support the specification of temporal properties such as

‘until,’ ‘unless,’ ‘after x seconds’ due to two reasons. Firstly, as discuss in Chapter 4,

these properties are not supported by the functional grammar which our technique is

based on and thus, such requirements cannot be parameterized by GUITAR. In addition,

temporal properties are not specifiable by MOS, the language used for formal

specifications of artifacts in our work. There are more formal languages with more

expressiveness power compared to MOS, however the reason for the choice of MOS

was twofold. Firstly, it can be closely integrated with ontologies. Secondly, MOS is

based on Description Logics and thus is computationally decidable, as opposed to more

expressive logics like first-order logic or linear temporal logic that are undecidable. To

overcome this problem, we plan to consider extending the functional grammar with

additional semantic functions to accommodate temporal properties. Each property

would be associated to a unique semantic function so that its semantic role in a

specification can be fully differentiated. In addition, we plan to investigate the

possibility of enhancing MOS with a set of inference rules concerning temporal

properties in our future work.

The lack of support for analyzing other quality problems. Currently, our approach

mainly focuses on analysis the consistency, completeness and correctness of goal-use

case models. In the benchmark validation, there were also a number of quality problems

(other than 3Cs) were detectable by other tools but was not with GUITAR. For instance,

Chapter 7: Ontology-based Goal-Use Case Model Analysis

 258

RA was able to identify a testability issue with the requirement “Communication forms

are consistent throughout the system” (although at the level of keyword-based detection

with no detailed and meaningful explanation or suggestion). This requirement is hard to

test since the quality of being “consistent” is unclear. It is planned to consider

extending GUITAR with the support for other quality problems in our future work. This

extension would be strongly supported by our functional grammar-based

parameterization that helps in deeply analyzing the semantics of requirements, as

opposed to keyword-based approaches.

7.7 Chapter Summary

In this chapter, we presented our ontology-based approach to analyzing goal and use

case integrated models for incompleteness, inconsistency and incorrectness (3Cs

problems). We started the chapter with a discussion on ontology, and its structure and

presentation in our work. We then discussed the techniques for creating and assessing

the quality of domain ontologies. The techniques for analyzing 3Cs problems were

described in details. These include the classification of 3Cs problems based on

GUIMeta – our meta-model for goal and use case integration, the parameterization of

artifact specification, and the identification and resolution of 3Cs problems. We have

also discussed our validation carried out to evaluate GUITAR’s performance in

analyzing goal-use case models for incompleteness, inconsistency and incorrectness.

We achieved 88% and 98% accuracy two rounds of the parameterization validation. In

addition, we achieved high precision (95% on average) and recall rates (88% on

average) in six cases studies that indicate the high effectiveness of our approach in 3Cs

problems detection. Moreover, the benchmark validation result showed that our tool

could detect a wide range of 3Cs problems that were not identifiable in other

approaches. In Chapter 8, we summarize our contributions in this research and discuss

our future work.

Chapter 8: Conclusion and Future Work

 259

Conclusion and Future Work

In this chapter, we summarize the key problems we addressed in this research, and the

key contributions that we have made. We also discuss the key limitations of our

techniques developed during this research and describe the future extensions that we

plan to make to improve our techniques.

8.1 Key Problems Addressed in Goal and Use Case

Integrated Modeling

In this section, we discuss how the research objectives discussed in Chapter 1 have been

addressed in our work.

RO1: Develop a conceptual foundation for goal and use case integrated modeling. This

objective is concerned with the lack of a consensus among goal and use case integrated

modeling approaches regarding what concepts and relationships to capture, and how

goal-use case model can be systematically analyzed. To address this problem, we have

developed a novel meta-model for goal and use case integrated modeling called

GUIMeta to serve as a conceptual foundation for modeling goals and use cases together.

GUIMeta was proposed to address the problem that, there is no consensus among goal

and use case integrated modeling approaches regarding what concepts and relationships

to capture, and how goal-use case model can be systematically analyzed. GUIMeta

contains two layers. The artifact layer provides a comprehensive classification of

Chapter 8: Conclusion and Future Work

 260

artifacts in a goal-use case model and defines relationships between them. The

specification layer provides the specification rules for the defined artifacts based on the

functional grammar-styled parameterization. Such rules offer the guidelines as to what

should and should not be included in specifications of each type of artifacts. The

combination of such artifact classification, functional grammar-styled parameterization,

and specification rules provides a framework that governs specification and analysis of

goal and use case integrated models. Moreover, we have also established the

correspondence between GUIMeta’s artifacts and those in other GUIM approaches to

enable the unification of models specified in different approaches.

RO2: Develop a technique to automatically extract goal and use case integrated models

from textual requirements documents. To address this objective, we have developed a

novel rule-based technique to semi-automatically extract goal and use case models from

textual requirements documents. The key novelty of our approach is that, it is the first

technique, to the best of our knowledge, to combine the syntactic and semantic aspects

of text in specifying extraction rules to identify necessary details while ignoring

unneeded content from uncontrolled natural language text. The fact that our technique

can work directly with uncontrolled natural language text potentially enhances its

applicability, compared to a number of existing information extraction approaches in

requirements engineering that rely on constrained input text.

Moreover, our technique is able to ensure the extracted artifacts to be well-formed

according to the specification rules defined in our meta-model GUIMeta. Moreover,

such extracted artifacts can also be automatically classified, allowing the entire

extraction process to be mostly automated (only some manual pre-processing is

needed). Furthermore, although we targeted only English text in our research, our

extraction technique can be extended to support other languages (i.e., French, Germany)

with little modifications (i.e., the main needed modification is to adapt to the grammars

of the new languages).

RO3: Provide a technique to automatically analyze goal and use case integrated

models for inconsistency, incompleteness, and incorrectness. To address this objective,

we introduced a novel ontology-based technique to semi-automatically analyze natural

language-based goal and use case integrated models for 3Cs problems. Our techniques

Chapter 8: Conclusion and Future Work

 261

provide fully automate most tasks in the analysis process, except for the resolution of

problems that need users to manually make selections. Our approach goes beyond the

existing ontology-based requirements analysis techniques by offering a method to

incorporate sophisticated domain knowledge into the analysis process (not just domain-

specific terms and their dependencies).

Moreover, we have applied functional grammar to semantically parameterize textual

goal and use case specifications. Such parameterization enables the semantics of

specifications to be captured, represented, and interpreted during the analysis process.

Last but not least, our developed technique to automatically parameterize textual artifact

specifications and transform such parameterized specifications into Manchester OWL

Syntax statements enables requirements engineers to work directly with natural

language-based specifications with minimal required expertise of functional grammar

and Manchester OWL Syntax. The benchmark evaluation (discussed in Chapter 7)

proved the outstanding performance of our technique in comparison with some

industrial and academic requirements analysis tools in some selected case studies.

8.2 Key Contributions

In this section, we discuss our key contributions in the related research areas, including

goal and use case modeling, information extraction in requirements engineering, and

requirements analysis.

Rule-based extraction technique: We have invented a novel rule-based technique to

extract goals, use cases, and their dependencies from text. Although the technique was

originally designed to be used in the goal-use case context, its key underlying concepts

are independent and thus could be applied to other information extraction tasks.

The key value of this technique is its ability to overcome two main challenges in

information extraction (discussed in Chapter 2): the difficulty in dealing with

uncontrolled input text, and the lack of semantic consideration when writing extraction

rules. We solve these problems by developing a language for specifying extraction rules

based on the dependency grammar. The rules can also incorporate semantic information

to specify matching conditions. For instance, we can define matching conditions by

specifying which words or phrases should or should not exist in a sentence, and what

Chapter 8: Conclusion and Future Work

 262

dependencies they should or should not have. This allows our technique to deal with

uncontrolled text to identify what should and should not be extracted from such text.

Importantly, our technique is accompanied with a clearly defined rule syntax and parser

and thus, makes it possible for users to modify and extend the extraction rule collection.

There are various areas in which our extraction technique could be applied. For

instance, extraction rules can be developed in a similar way (i.e., develop rule actions

and algorithms to execute these actions) to identify privacy or security policies [174]

from software documents, or development task from software documents [158]. Our

rule-based technique can also provide a new approach in ontology learning [17, 24].

Specifically, rules can be created to detect ontological concepts, properties and their

relationships to extract ontologies from natural language texts.

Automated text modification technique: we have developed a rule-based technique to

automatically modify text that is written in an undesired format. This technique shares

the same principle as the extraction technique discussed above. Specifically, a

modifying rule contains a matching condition and a list of modification actions. A

matching condition is specified based on the existence of and dependencies between

certain words or phrases in a sentence, and can be used to identify undesired formats.

Modification actions are used to automatically modify the text that satisfies the

corresponding matching condition.

This technique could be adopted for text correction. For instance, it could be used to

verify if a certain piece of text matches a required template and if not, the text could be

automatically corrected.

Functional grammar-based parameterization: We have developed a method to use

functional grammar as the fundamental theory to semantically parameterize textual

requirements. Using this parameterization technique, the semantics of requirements can

be captured in a systematic and consistent way. In addition, we have developed

algorithms to automate such parameterization process so that textual specifications can

be automatically parameterized. This thus opens an opportunity to automate the

transformation from textual informal requirements into formal specifications via

parameterized specifications since the parameterization provides details regarding the

syntactic and semantic decomposition of textual specifications.

Chapter 8: Conclusion and Future Work

 263

In addition, since the functional grammar is a general theory, our parameterization

technique is not limited to requirements specifications. Therefore, its application could

be extended to other areas that involve the need of capturing the semantics of text.

Specification boilerplates: We have developed a set of boilerplates for goals and use

case components specifications. Although these boilerplates were originally designed

for integrated models of goals and use cases, they can be used with individual use case

models or goal models provided that goals are classified according to our classification

(i.e., business goals, functional feature goals, and so on). Importantly, our automated

parameterization technique can also be used in conjunction with the boilerplates to

verify if a specification properly conforms to one of its corresponding boilerplates.

Moreover, our automated text modification technique can be applied to automatically

rewrite such a specification to ensure its boilerplate conformance.

Ontology structure: We have developed an ontology structure that offers a way to

comprehensively capture and represent various types of domain knowledge, including

domain-specific terms’ semantics, domain-specific activities and their dependencies,

and activity-actor assignment. Moreover, through the use of the functional grammar-

based specification parameterization, we provide a technique to automate the matching

of terms used in requirement specifications to the concepts in ontologies. Our technique

thus offers a significant improvement in the area of ontology-based requirements

engineering since most efforts in this area require the manually mapping between words

in textual requirements into ontological concepts to perform analysis.

Requirements analysis technique: Although our analysis technique was originally

designed for goal and use case integrated models, except a number of checking

specifically developed for goals and use cases, several types of checking, such as

semantic inconsistency or incompleteness detection, can be applied into general textual

requirements. The key advantages of our techniques in comparison to the existing

requirements analysis efforts include: (1) The ability to accept textual requirements as

input, (2) The ability to incorporate domain knowledge and semantics to support the

detection of semantic problems in a more comprehensive way compared to existing

ontology-based approaches (we allow more types of knowledge and semantics to be

Chapter 8: Conclusion and Future Work

 264

captured), (3) Little manual effort is needed as the entire process of transforming textual

requirements into MOS statements and analyzing such statements is fully automated.

8.3 Key Limitations and Future Work

In this section, we discuss the limitations of our techniques in supporting the extraction

and analysis of goal-use case integrated models. Based on these limitations, where

appropriate, we discuss our plan for future work.

The accuracy of our extraction technique depends on the quality of the integrated

linguistic tools: These include the Stanford parser for sentence parsing, the Stanford

Coreference Resolution System for resolving coreference in sentences, and our

extended version of Mallet classifier for classifying artifact specifications. The key

reason is that, these linguistic tools are developed based on statistical machine learning

techniques that require proper and sufficient training data to produce correct results.

Therefore, it is possible to have a sentence incorrectly parsed or a specification

incorrectly classified, especially in the domains that the linguistic tools have not been

trained for. To simplify the training process, we have implemented the training feature

that allows these linguistic tools to be trained via our GUITARiST tool.

Understanding of grammatical dependency required for rules writing: Our

extraction technique requires the extraction and modifying rules to be manually written.

This requires the rule writers to have knowledge of grammatical dependency and thus

some training would be required for end users to be able to extend the rules collection.

To alleviate this problem, in future work, we plan to develop algorithms that semi-

automate the generation of a rule from input of users. Such input may contain the

associations between sentences and lists of desired information to be extracted from

them. Based on that, the algorithms are expected to identify the matching conditions and

extraction actions, and suggest possible rules that fulfill the users’ needs. In addition,

we also plan to develop a visual rule editor to further support rule creation.

Unidentifiable artifact relationships: a number of relationships between artifacts in

different sentences are not detectable since there exists no tool that can automatically

detect coreference based on verb phrases in different sentences with a sufficiently high

level of accuracy. For instance, such type of coreference can be found in the sentences:

Chapter 8: Conclusion and Future Work

 265

“The application periodically communicates with the SplitPay server. This allows bills

to be uploaded to a central server.” In this example, the word ‘this’ refers to the entire

activity described in the first sentence. In future work, we plan study the possibility of

improving the current identification techniques for this type of coreference problems.

Lack of support for analyzing requirements with temporal properties. Our

approach currently does not support the specification of temporal properties such as

‘until,’ ‘unless,’ ‘after x seconds’ due to two reasons. Firstly, these properties are not

supported by the functional grammar which our technique is based on and thus, such

specifications with temporal properties cannot be parameterized in our work.

In addition, temporal properties are also not specifiable in Manchester OWL Syntax

(MOS), the language used for formally specifying artifacts in our work. There are more

formal languages with more expressive power (e.g., LTL [166]) compared to MOS,

however the reason for the choice of MOS was twofold. Firstly, it can be closely

integrated with ontologies. Secondly, MOS is based on Description Logics and thus is

computationally decidable, as opposed to more expressive logics like first-order logic or

linear temporal logic that are undecidable.

To overcome this problem, we plan to extend functional grammar with additional

semantic functions to accommodate temporal properties. Each property would be

associated to a unique semantic function so that its semantic role in a specification can

be fully differentiated. In addition, we plan to investigate the possibility of enhancing

MOS with a set of inference rules concerning temporal properties in our future work.

The lack of analysis support for other quality problems. Currently, our approach

mainly focuses on the consistency, completeness and correctness of goal-use case

models. Other quality problems such as ambiguity, verifiability remained out of scope.

Therefore, we plan to investigate the possibility of extending our analysis technique to

detect these problems. By using our functional grammar-based parameterization

technique that helps in deeply capturing and analyzing the semantics of requirements,

our technique has a strong potential to achieve high detection accuracy, compared to

many existing analysis approaches that rely on only keyword-matching techniques.

Chapter 8: Conclusion and Future Work

 266

8.4 Final Words

In this thesis, we presented a number of challenges in using goals and use cases to

model software requirements. Specifically, we focused on three important problems

regarding the elaboration and analysis of such models: (1) a lack of unified conceptual

meta-model for goal and use case integration, (2) a lack of technique for acquiring goal-

use case models from textual requirements documents, and (3) a lack of technique for

analyzing such models for incompleteness, inconsistency, and incorrectness. Our

developed framework and tool support, which are backed by a set of linguistic

techniques (functional grammar, natural language processing, text classification, etc.),

have been proved (through a number of experiments) to be beneficial to addressing

these challenges.

One of the important contributions of this thesis is that, our techniques are not limited to

the field of Requirements Engineering. In fact, most of the presented techniques could

also be applied into various research areas. For example, a customization or an

extension of our rule-based goal and use case extraction techniques could be a solution

to various information retrieval problems. Similarly, an extension of our automated text

parameterization technique could become an underlying component for various text

analysis systems.

However, there is a number of issues that have not been addressed within the scope of

this thesis. They include the lack of automated support for identifying artifact

relationships implied in verb phrase coreferences, the lack of support for analyzing

requirements with temporal properties, and the dependency of our extraction techniques

on users’ ability of writing extraction rules. These issues could be a great input into

future research and the solution to them could result in great improvement in the quality

of goal-use case integrated modelling.

Appendix A1: Case Studies

 267

Appendix A1 Case Studies

This appendix provides 3 case studies used in our research. Due to space limitation,

unnecessary details (e.g., unused pictures, tables, design information) have been

removed.

Online Publishing System14

1. Introduction

1.1. Purpose

The purpose of this document is to present a detailed description of the Web Publishing

System. It will explain the purpose and features of the system, the interfaces of the

system, what the system will do, the constraints under which it must operate and how

the system will react to external stimuli. This document is intended for both the

stakeholders and the developers of the system and will be proposed to the Regional

Historical Society for its approval.

1.2. Scope of Project

This software system will be a Web Publishing System for a local editor of a regional

historical society. This system will be designed to maximize the editor’s productivity by

providing tools to assist in automating the article review and publishing processes. This

helps reduce the manual effort in these processes. By maximizing the editor’s work

efficiency and production the system will meet the editor’s needs while remaining easy

to understand and use.

More specifically, this system is designed to allow an editor to manage and

communicate with a group of reviewers and authors to publish articles to a public

website. The software will facilitate communication between authors, reviewers, and the

editor via E-Mail. Preformatted reply forms are used in every stage of the articles’

progress through the system to provide a uniform review process; the location of these

14 The original version of this case study can be found at http://goo.gl/34EVX4

Appendix A1: Case Studies

 268

forms is configurable via the application’s maintenance options. The system also

contains a relational database containing a list of Authors, Reviewers, and Articles.

1.3. Glossary

Active Article: The document that is tracked by the system; it is a narrative that is

planned to be posted to the public website.

Author: Person submitting an article to be reviewed. In case of multiple authors, this

term refers to the principal author, with whom all communication is made.

Database: Collection of all the information monitored by this system.

Editor: Person who receives articles, sends articles for review, and makes final

judgments for publications.

Field: A cell within a form.

Historical Society Database: The existing membership database (also HS database).

Member: A member of the Historical Society listed in the HS database.

Reader: Anyone visiting the site to read articles.

Review: A written recommendation about the appropriateness of an article for

publication; may include suggestions for improvement.

Reviewer: A person that examines an article and has the ability to recommend approval

of the article for publication or to request that changes be made in the article.

Software Requirements Specification: A document that completely describes all of the

functions of a proposed system and the constraints under which it must operate. For

example, this document.

Stakeholder: Any person with an interest in the project who is not a developer.

User: Reviewer or Author.

1.4. References

Appendix A1: Case Studies

 269

IEEE. IEEE Std 830-1998 IEEE Recommended Practice for Software Requirements

Specifications. IEEE Computer Society, 1998.

1.5. Overview of Document

The next chapter, the Overall Description section, of this document gives an overview

of the functionality of the product. It describes the informal requirements and is used to

establish a context for the technical requirements specification in the next chapter.

The third chapter, Requirements Specification section, of this document is written

primarily for the developers and describes in technical terms the details of the

functionality of the product.

Both sections of the document describe the same software product in its entirety, but are

intended for different audiences and thus use different language.

2 Overall Description

2.1 System Environment

The Web Publishing System has four active actors and one cooperating system.

The Author, Reader, or Reviewer accesses the Online Journal through the Internet. Any

Author or Reviewer communication with the system is through email. The Editor

accesses the entire system directly. There is a link to the (existing) Historical Society.

2.2 Functional Requirements Specification

This section outlines the use cases for each of the active readers separately. The reader,

the author and the reviewer have only one use case apiece while the editor is main actor

in this system.

2.2.1 Reader Use Case

2.2.1.1 Use case: Search Article

Brief Description: The Reader searches for an article

Appendix A1: Case Studies

 270

Pre-condition: Before this use case can be initiated, the Reader has already accessed the

Online Journal Website.

Initial Step-By-Step Description

1. The Reader chooses how to search the Web site. The choices are author,

category, and keyword.

2. If the search is by author, the system creates and presents an alphabetical list of

all authors in the database. In the case of an article with multiple authors, each is

contained in the list.

3. The Reader selects an author.

4. The system creates and presents a list of all articles by that author in the

database.

5. The Reader selects an article. The selected article is displayed clearly.

6. The system displays the Abstract for the article. The abstract should appear

within half a second after the reader selects the article

7. The Reader selects to download the article or to return to the article list or to the

previous list.

Extension

In step 2, if the Reader selects to search by category, the system creates and presents a

list of all categories in the database.

3. The Reader selects a category.

4. The system creates and presents a list of all articles in that category in the database.

Return to step 5.

Extension

In step 2, if the Reader selects to search by keyword, the system presents a dialog box to

enter the keyword or phrase.

3. The Reader enters a keyword or phrase.

4. The system searches the Abstracts for all articles with that keyword or phrase and

creates and presents a list of all such articles in the database. Return to step 5.

Appendix A1: Case Studies

 271

Post-condition: The selected article is downloaded to the client machine.

2.2.2 Author Use Case

2.2.2.1 Use case: Submit Article

Brief Description: The author either submits an original article or resubmits an edited

article.

Pre-condition: Before this use case can be initiated, the Author has already connected to

the Online Journal Website.

Initial Step-By-Step Description

1. The Author chooses the Email Editor button.

2. The System uses the sendto HTML tag to bring up the user’s email system.

3. The Author fills in the Subject line and attaches the files as directed and emails

them.

4. The System generates and sends an email acknowledgement.

2.2.3 Editor Use Case

2.2.3.1 Use Case: Add author

Brief Description: The Editor adds a new author to the database.

Precondition: The Editor has accessed the Article Manager main screen.

Basic Path

1. The system presents a blank grid to enter the author information. The blank grid

should be familiar to most Internet Users.

2. The Editor enters the information and submits the form. The author information

includes name and email.

Appendix A1: Case Studies

 272

3. The system checks that the name and email address fields are not blank and updates

the database.

Extension

If in step 2, either field is blank, the Editor is instructed to add an entry. No validation

for correctness is made.

Post-condition: The Author has been added to the database.

2.2.3.2 Use Case: Add Reviewer

Brief Description: The Editor adds a new reviewer to the database

Pre-condition: The Editor has accessed the Article Manager main screen.

Basic Path

1. The system accesses the Historical Society (HS) database and presents an

alphabetical list of the society members.

2. The Editor selects a person.

3. The system transfers the member information from the HS database to the Article

Manager (AM) database. If there is no email address in the HS database, the editor is

prompted for an entry in that field.

4. The information is entered into the AM database.

Extension

In step 3, if there is no entry for the email address in the HS database or on this grid, the

Editor will be reprompted for an entry. No validation for correctness is made.

Post-condition

The Reviewer has been added to the database.

2.2.3.3 Use Case: Update Person

Appendix A1: Case Studies

 273

Brief Description: The Editor selects to update a person

Pre-condition: The Editor has accessed the Article Manager main screen.

Basic Path

1. The Editor selects Author or Reviewer.

2. The system creates and presents an alphabetical list of people in the category. the list

of people should appear after 2 seconds

3. The Editor selects a person to update. System should clearly highlight the selected

person.

4. The system presents the database information in grid form for modification.

5. The Editor updates the information and submits the form.

6. The system checks that required fields are not blank.

Extension

In step 5, if any required field is blank, the Editor is instructed to add an entry. No

validation for correctness is made.

Post-condition: The database has been updated.

2.2.3.4 Use Case: Update Article Status

Brief Description: The Editor selects to update the status of an article in the database

Pre-condition: The Editor has accessed the Article Manager main screen and the article

is already in the database.

Basic Path

1. The system creates and presents an alphabetical list of all active articles.

2. The Editor selects the article to update.

3. The system presents the information about the article in grid format.

Appendix A1: Case Studies

 274

4. The Editor updates the information and resubmits the form.

Extension

In step 4, the use case Enter Communication may be invoked.

Post-condition: The database has been updated.

2.2.3.5 Use case: Receive Article

Brief Description: The Editor enters a new or revised article into the system.

Pre-condition: Before this use case can be initiated, the Editor has already accessed the

main page of the Article Manager and has a file containing the article available.

Initial Step-By-Step Description

1. The Editor selects to Receive Article.

2. The system presents a choice of entering a new article or updating an existing

article.

3. The Editor chooses to add or to update.

4. If the Editor is updating an article, the system presents a list of articles to choose

from and presents a grid for filling with the information; else the system presents a

blank grid.

5. The Editor fills in the information and submits the form.

6. The system verifies the information and returns the Editor to the Article Manager

main page.

2.2.3.6 Use case: Update Reviewer

Brief Description: The Editor enters a new Reviewer or updates information about a

current Reviewer.

Pre-condition: Before this use case can be initiated, the Editor has already accessed the

main page of the Article Manager.

Appendix A1: Case Studies

 275

Initial Step-By-Step Description

1. The Editor selects to manage Reviewer.

2. The system presents a choice of adding or updating.

3. The Editor chooses to add or to update.

4. The system links to the Historical Society Database.

5. If the Editor is updating a Reviewer, the system and presents a grid with the

information about the Reviewer; else the system presents list of members for the editor

to select a Reviewer and presents a grid for the person selected. The system displays at

most 10 members at a time.

6. The Editor fills in the information and submits the form.

7. The system verifies the information and returns the Editor to the Article Manager

main page.

2.2.3.7. Use Case: Check Status

Brief Description: The Editor has selected to check status of all active articles

Pre-condition: The Editor has accessed the Article Manager main screen.

Basic Path

1. The system creates and presents a list of all active articles organized by their status.

Article statuses include received, reviewer assigned, revision awaited, and finished

2. The Editor may request to see the full information about an article.

Post-condition: The requested information has been displayed.

2.2.3.8. Use case: Send Response

This use case extends the Update Article use case.

Brief Description: The Editor sends a response to an Author.

Appendix A1: Case Studies

 276

Pre-condition: Before this use case can be initiated, the Editor has already accessed the

article using the Update Article use case.

Initial Step-By-Step Description

1. The Editor selects to Send Response.

2. The system calls the email system and puts the Author’s email address in the

Recipient line and the name of the article on the subject line.

3. The Editor fills out the email text and sends the message.

4. The system returns the Editor to the Article Manager main page.

2.2.3.9. Use Case: Publish Article

Brief Description: The Editor selects to transfer an approved article to the Online

Journal

Pre-condition: The Editor has accessed the Article Manager main screen.

Basic Path

1. The system creates and presents an alphabetical list of the active articles that are

flagged as having their copyright form returned.

2. The Editor selects an article to publish.

3. The system accesses the Online Database and transfers the article and its

accompanying information to the Online Journal database. Published article information

include name, author, abstract, category and content. The transfer must not take more

than 2 seconds

4. The article is removed from the active article database.

Post-condition: The article is properly transferred.

2.2.3.10. Use Case: Remove Article

Appendix A1: Case Studies

 277

Brief Description: The Editor selects to remove an article from the active article

database

Pre-condition: The Editor has accessed the Article Manager main screen.

Basic Path

1. The system provides an alphabetized list of all active articles. The list of articles

should be easy to understand.

2. The editor selects an article. The selected article should be clearly highlighted

3. The system displays the information about the article and requires that the Editor

confirm the deletion.

4. The Editor confirms the deletion.

Post-condition: The article is removed from the database.

2.3 User Characteristics

The Reader is expected to be Internet literate and be able to use a search engine. The

main screen of the Online Journal Website will have the search function and a link to

“Author/Reviewer Information.”

The Author and Reviewer are expected to be Internet literate and to be able to use email

with attachments.

The Editor is expected to be Windows literate and to be able to use button, pull-down

menus, and similar tools.

The detailed look of these pages is discussed in section 3.2 below.

2.4 Non-Functional Requirements

The Online Journal will be on a server with high speed Internet capability. The physical

machine to be used will be determined by the Historical Society. The software

developed here assumes the use of a tool such as Tomcat for connection between the

Appendix A1: Case Studies

 278

Web pages and the database. The speed of the Reader’s connection will depend on the

hardware used rather than characteristics of this system.

The Article Manager will run on the editor’s PC and will contain an Access database.

3. Requirements Specification

3.1 External Interface Requirements

The only link to an external system is the link to the Historical Society (HS) Database to

verify the membership of a Reviewer. The Editor believes that a society member is

much more likely to be an effective reviewer and has imposed a membership

requirement for a Reviewer. The HS Database fields of interest to the Web Publishing

Systems are member’s name, membership (ID) number, and email address (an optional

field for the HS Database).

The Assign Reviewer use case sends the Reviewer ID to the HS Database and a

Boolean is returned denoting membership status. The Update Reviewer use case

requests a list of member names, membership numbers and (optional) email addresses

when adding a new Reviewer. It returns a Boolean for membership status when

updating a Reviewer.

3.2 Detailed Non-Functional Requirements

3.2.1 Logical Structure of the Data

The logical structure of the data to be stored in the internal Article Manager database is

given below <table removed>.

3.2.2 Usability

The system will be easy to use for users. It should ensure articles to be available to

readers at any time and allow them to search and download articles quickly and easily.

Editors should find it easy to enter or update authors, reviewers, articles when first

using the system. The form configuration must be simple for typical internet users.

3.2.3 Security

Appendix A1: Case Studies

 279

The server on which the Online Journal resides will have its own security to prevent

unauthorized write and delete access. There is no restriction on read access. The use of

email by an Author or Reviewer is on the client systems and thus is external to the

system.

The PC on which the Article Manager resides will have its own security. Only the

Editor will have physical access to the machine and the program on it. There is no

special protection built into this system other than to provide the editor with write

access to the Online Journal to publish an article.

SplitPay15

1. INTRODUCTION

1.1 PURPOSE

The purpose of this Software Requirements Specification (SRS) document is to provide

a detailed description of the functionalities of the SplitPay system. This document will

cover each of the system's intended features, as well as offer a preliminary glimpse of

the software application's User Interface (UI). The document will also cover hardware,

software, and various other technical dependencies.

1.2 DOCUMENT CONVENTIONS

This document features some terminology which readers may be unfamiliar with. See

Appendix A (Glossary) for a list of these terms and their definitions.

1.3 INTENDED AUDIENCE AND READING SUGGESTIONS

This document is intended for all individuals participating in and supervising the

SplitPay project. Readers interested in a brief overview of the product should focus on

the rest of Part 1 (Introduction), as well as Part 2 of the document (Overall Description),

which provide a brief overview of each aspect of the project as a whole. These readers

may also be interested in Part 6 (Key Milestones) which lays out a concise timeline of

the project.

15 The original version of this case study can be found at http://goo.gl/LbN0Po

Appendix A1: Case Studies

 280

Readers who wish to explore the features of SplitPay in more detail should read on to

Part 3 (System Features), which expands upon the information laid out in the main

overview. Part 4 (External Interface Requirements) offers further technical details,

including information on the user interface as well as the hardware and software

platforms on which the application will run.

Readers interested in the non-technical aspects of the project should read Part 5, which

covers performance, safety, security, and various other attributes that will be important

to users. Readers who have not found the information they are looking for should check

Part 8 (Other Requirements), which includes any additional information which does not

fit logically into the other sections.

1.4 PROJECT SCOPE

The SplitPay system is composed of two main components: a client-side application

which will run on Android handsets, and a server-side application which will support

and interact with various client-side features. The system is designed to facilitate the

process of tracking and settling shared expenses. Potential scenarios include paying

rent, splitting a check at dinner, sharing travel expenses, etc.

For more information about the project and its goals, see Appendix B (Project

Proposal).

2. OVERALL DESCRIPTION

2.1 PRODUCT PERSPECTIVE

The SplitPay project is a new, self-contained product intended for use on the Android

platform. While the SplitPay mobile application is the main focus of the project, there is

also a server-side component which will be responsible for database and

synchronization services. The scope of the project encompasses both server-side and

client-side functionalities, so both aspects are covered in detail within this document.

2.2 PRODUCT FEATURES

The following list offers a brief outline and description of the main features and

functionalities of the SplitPay system. The features are split into two major categories:

core features and additional features. Core features are essential to the application's

operation, whereas additional features simply add new functionalities. The latter

features will only be implemented as time permits.

Appendix A1: Case Studies

 281

2.2.1 CORE FEATURES

2.2.1.1. USER REGISTRATION AND WELCOME

• Only appears once (the first time the application is run)

• Allows the user to register with the SplitPay server

• Enables the user to customize his account settings and preferences

2.2.1.2. GROUP CREATION & MANAGEMENT

• Streamlines the process of creating and organizing groups

• Provides support for multiple groups

• Allows the user to add group members manually or from contacts list

2.2.1.3. POSTING A BILL

• Stores and monitors the bill amount, the individuals involved, etc.

• Includes support for multiple simultaneous bills

• Efficiently distributes debt amongst the individuals responsible for the bill

2.2.1.4. MEMBER-TO-MEMBER TRANSACTIONS

• Enables group members to simulate transfers of debt, payments made, etc.

• Adjusts member balances accordingly

• Records relevant information (amount paid, members involved, etc.)

2.2.1.5. FINAL DEBT RESOLUTION

• Calculates the most efficient method of sorting out debts

• Notifies group members of unresolved debts, credits, etc.

• Offers the option to disband a group once all payments are made

2.2.1.6. GROUP HISTORY

• Automatically records all transactions and bills posted to each group

• Provides users with access to a detailed history of transactions o Supports

sorting transactions by date, amount, payer, etc.

2.2.1.7. SHOW ALL DEBTS

• Enumerates all of a user's unresolved debts across each group he is a part of

• Provides easy access to relevant information (past transactions, group info, etc.)

Appendix A1: Case Studies

 282

• Offers the option to resolve a debt (or debts) immediately

2.2.1.8. SETTINGS MENU

• Allows the user to customize his preferences

• Enables the user to modify certain features and functionalities

• Can be accessed at any time using the built-in Settings button on Android

phones

2.2.1.9. HELP MENU

• Displays a list of topics covering the different components of SplitPay

• Offers detailed information on each feature, menu, etc.

• Can be accessed at any time via the Settings menu

2.2.1.10. PUSH NOTIFICATIONS

• Appear after any significant event occurs in a group

• Alert group members of newly incurred expenses o Remind users of unresolved

debts

2.2.2. ADDITIONAL FEATURES

2.2.2.1 MEMBER DEBT VISUALIZATION

• Presents a visual representation of current member balances

• Allows users to navigate through financial information in a more intuitive

fashion

• Automatically updates as users post expenses and make transactions

2.2.2.2. PAYPAL INTEGRATION

• Incorporates a mechanism for initiating real transactions

• Facilitates secure, hassle-free transactions between members

• Automatically updates member balances as transactions occur

2.2.2.3. GPS TRACKING

• Stores location data associated with certain events

• Utilizes Google Maps to display transaction locations

• Creates an expense map which can be viewed by all members of a group

Appendix A1: Case Studies

 283

2.2.2.4. RECEIPT IMAGING

• Utilizes the camera built into Android handsets

• Records and stores a snapshot of receipts associated with different expenses

• Provides a method of checking and verifying expenses posted to a group

2.2.2.5. E-MAIL and SMS NOTIFICATIONS

• Extends the standard notifications service built into SplitPay

• Automatically delivers notifications via e-mail and text message

• Enables individuals without SplitPay to receive group notifications

2.2.2.6. SPLITPAY TUTORIAL

• Provides an abridged version of the Help menu for first-time users

• Offers a step-by-step run through of each feature, menu, etc.

• Enables any user to quickly and easily take advantage of all of SplitPay's

functionalities

A major functionality present in several of these features is automatic synchronization.

Using Android's internet capabilities, the application periodically communicates with

the SplitPay server. This allows bills, transactions, groups, and group histories to be

uploaded to a central server where the data can be shared with all other Android users in

the group. This process of exchanging data between the server and the phone(s) is

referred to as syncing.

2.3 USER CLASSES AND CHARACTERISTICS

The SplitPay project is meant to offer a shared expenses solution that is faster, easier,

and more convenient than manually calculating and handling debts. Consequently, the

application will have little or no learning curve, and the user interface will be as

intuitive as possible. Thus, technical expertise and Android experience should not be an

issue. Instead, anticipated users can be defined by how they will use the product in a

particular situation. The following list categorizes the scenarios in which SplitPay is

expected to be utilized:

1. Long-term recurring expenses (e.g. rent, groceries, utilities)

• Keep track of expenses

• Notify users when debts are incurred

Appendix A1: Case Studies

 284

• Record who has paid and who still owes

2. Short-term recurring expenses (e.g. travel costs? gas, food, hotel)

• Add new expenses (quickly and easily)

• Record who is paying and what he is paying for

• Update member balances on the fly

3. Single expense (e.g., splitting a bill at dinner)

• Create a group (quickly and easily)

• Add non-registered individuals to the group

• Quickly calculate each member's balance

These groups are not meant to separate or categorize users, just the different situations

in which SplitPay is likely to be used. In fact, a user may utilize the application for all

of these scenarios simultaneously. This is another defining feature of the SplitPay

system: support for multiple groups. This functionality allows a user to track expenses

pertaining to several unrelated groups at the same time.

It is crucial that each of these situations be fully supported in the final product so as to

maximize the overall value of the product. It is also important that the application be as

user-friendly as possible, otherwise it will not be a viable alternative to handling shared

expenses manually. Most importantly, the application must be reliable. Regardless of

the situation, the application must accurately distribute costs. There is zero tolerance for

error when dealing with financial transactions.

2.4 OPERATING ENVIRONMENT

The main component of the SplitPay project is the software application, which will be

limited to the Android operating system (specifically Android 2.2 and above). The

application is not resource- or graphics-intensive, so there are no practical hardware

constraints. The app will rely on several functionalities built into Android's Application

Programming Interface (API), so ensuring appropriate usage of the API will be a major

concern. Beyond that, the application is a self-contained unit and will not rely on any

other Android-related software components.

The application will, however, frequently interact with the SplitPay server, a virtual

dedicated server hosted by GoDaddy.com. The server operates on a Linux CentOS

Appendix A1: Case Studies

 285

platform with 1GB of RAM and 15GB of allocated storage space. The SplitPay

database will be stored on the server using MySQL and will be interfaced with a

wrapper written in PHP 5.

2.5 DESIGN AND IMPLEMENTATION CONSTRAINTS

The primary design constraint is the mobile platform. Since the application is

designated for mobile handsets, limited screen size and resolution will be a major

design consideration. Creating a user interface which is both effective and easily

navigable will pose a difficult challenge. Other constraints such as limited memory and

processing power are also worth considering. SplitPay is meant to be quick and

responsive, even when dealing with large groups and transactions, so each feature must

be designed and implemented with efficiency in mind.

2.6 USER DOCUMENTATION

The primary goal of SplitPay is to facilitate the process of managing shared expenses.

Consequently, the application will be designed to be as simple to use as possible.

Nonetheless, users may still require some supplementary information about each

component of the SplitPay system. The application will contain two features that offer

this: The SplitPay Tutorial and the Help menu.

The Help menu is a collection of topics covering each of the application's menus,

features, etc. At any time, the user can navigate to the Help menu and select any of

these topics to obtain more information. Details about the Help menu can be found in

section 3.9 of this document.

The SplitPay Tutorial takes all of these topics and condenses them into a single, step-

by-step demonstration that the user can access immediately after installing the

application. This tutorial is meant to quickly and effectively teach new users the "ins

and outs" of the application. Section 3.16 covers the tutorial in further detail.

2.7 ASSUMPTIONS AND DEPENDENCIES

TIME DEPENDENCIES

As mentioned previously, the features of SplitPay are divided into two groups: core

features and additional features. Core features are crucial to the basic functionality of

the SplitPay application. These features must all be implemented in order for the

application to be useful.

Appendix A1: Case Studies

 286

Optional features, however, are not critical to the function of the application. They are

usability improvements and convenience enhancements that may be added after the

application has been developed. Thus, the implementation of these features is entirely

dependent upon the time spent designing and implementing the core features. The final

decision on whether or not to implement these features will be made during the later

stages of the design phase.

HARDWARE DEPENDENCIES

Some of the additional features rely on hardware components present in Android

handsets. For instance, the camera will be used to record images of receipts for digital

storage. Consequently, this feature is entirely reliant upon the ability to access the

camera's functionalities. In addition, the application will use the handset's location

sensors (GPS) to record the location of a specific bill or transaction. Both the camera

and the GPS functionalities will be achieved using the API provided by the Android

operating system.

EXTERNAL DEPENDENCIES

Several of the features presented in this document rely on the existence and maintained

operation of several APIs. A non-exhaustive list follows.

EMAIL NOTIFICATIONS

The Android platform is not suited for sending mass emails. Thus, the central server

will be responsible for this feature of the application. The smartphone client will notify

the server when messages need to be sent using a custom API that is to be created. This

API will use standard HTTP messaging to facilitate client-server communications. The

API will be implemented using PHP.

SMS NOTIFICATIONS

This feasibility of this feature is yet to be determined. If implemented, this feature

would allow offline users without an Android smartphone to receive notifications of

outstanding debt and other information via text messages. A suitable and free text

messaging API that can be called from the server has yet to be found. The possibility of

sending text messages from the Android smartphone client itself is also being reviewed.

PAY-PAL WEB API

Appendix A1: Case Studies

 287

We will use the PayPal API in order to facilitate payment of debts that users may have

incurred and wish to pay using the software.

GOOGLE PLACES API

The software application may integrate the ability to interact with Google Places for

marking the location of a bill or purchase. Note that this API is not guaranteed to be

perfectly functional, as it is currently in the beta phase of its lifecycle and is provided by

an experimental branch of its host company, Google Labs. Using this API may require

the use of the GPS hardware on the Android platform, where it is available.

3. SYSTEM FEATURES

SplitPay's system features are divided into two main categories: core features and

additional features. Core features form the body of the application and include any

features that are essential to the functionality of the SplitPay system. These features

must be implemented in order to have a fully functioning application. Additional

features, however, are not required for the app to function. They include any features

which, if time permits, will be added to the application in order to provide extra

functionality.

CORE FEATURES

3.1 USER REGISTRATION AND WELCOME

When the application is installed and run for the very first time, the user is presented

with an initial registration and welcome screen. This screen prompts the user to create

an account on the SplitPay server using the email address associated with his Google

account. The user also enters a "Display Name,” which will be the name that is shown

as their handle within the groups. Completing this process will create and store an

account for the user on the SplitPay server, enabling all of the app location's

synchronization capabilities.

3.1.1 STIMULUS/RESPONSE SEQUENCES

Step 1 SplitPay application launched from the Android home screen

Step 2 The user is prompted to enter an email address and a display name

• The user's Google account info is entered by default

Step 3 This information is sent to server and stored in the database

Appendix A1: Case Studies

 288

Step 4 Registration is completed and user is taken to main screen

3.2 GROUP CREATION AND MANAGEMENT

The "Groups" screen will be the main screen of the application. From this screen, users

will be able to view and manage existing groups. Groups may be created by adding

members from the user's contacts or by manually entering an email address and name.

The creator of a group is designated as the "Leader" of that group. The Leader is

responsible for confirming transactions submitted by other members of the group and

will also have the ability to stop or disband the group.

3.2.1 STIMULUS/RESPONSE SEQUENCES: GROUP CREATION

Step 1 The user selects "Create a New Group" from the main Groups screen

Step 2 The user must choose a unique name to be used as the group's identifier (e.g.,

"D.C. Road Trip"). The user can add members to the group from contacts stored on the

phone or via manual entry (email address and display name are required).

• Users who are not registered with the SplitPay server are designated on the

server as "offline users"

• These users cannot participate in transactions directly, so the leader is

responsible for reconciling their balances

• At any time, these offline users may register a SplitPay account (using the same

information stored on the server) and take control of their transactions

Step 3 The user finishes selecting members and confirms that the group is complete

Step 4 The user is then designated as the leader of the group

3.3 POSTING A BILL

On several screens, users are given the option to create a new expense, or "Bill,” and

post it to a particular group. Bills created within the application are meant to represent

expenses incurred by the group in real life. Users must input a display name (e.g.,

"Groceries"), the associated cost, and select the individuals responsible for the expense.

Once the Bill is confirmed, it is synced to the server, enabling all other SplitPay users in

the group to view it.

3.3.1 STIMULUS/RESPONSE SEQUENCES: POSTING A BILL TO THE

GROUP

Appendix A1: Case Studies

 289

Step 1 The user is presented with a screen where they enter the following information:

• Expense title

• Bill amount

• Optional information includes

• Location

• Type of expense (e.g., Travel, Groceries, Food, etc.)

• Comments (i.e., any other information the user finds relevant)

Step 2 The user then selects the members of the group involved in the Bill

• User can choose "Select All" or pick members individually

Step 3 An algorithm calculates the distribution of debt amongst each member involved

in the bill

Step 4 The Bill is pushed to the server, which notifies other group members of the Bill

and also updates their running balances

3.4 MEMBER-TO-MEMBER TRANSACTIONS

This feature represents a real-world transaction between two or more m embers of a

group. A common scenario would involve the user resolving his debt by making

payments to other group members. The resulting changes in balances are calculated

automatically and displayed for the users involved.

3.4.1 STIMULUS/RESPONSE SEQUENCES

Step 1 The user selects Member-to-Member Transaction and inputs the following data:

• Transaction Description (optional)

• Member(s) to be paid

• Amount to be paid (to each member if multiple)

Step 2 The user confirms the transaction

Step 3 Each involved member has his balance adjusted automatically

Step 4 The information is sent to the server for approval by the Leader (unless the

Leader created the transaction)

3.5 FINAL DEBT RESOLUT ION

Appendix A1: Case Studies

 290

This feature is utilized when the Leader of a group wants to end the group and resolve

all debts. An algorithm takes into account the balances of all members and determines

the most efficient method of resolving debts, minimizing the number of transactions

between members.

3.5.1 STIMULUS/RESPONSE SEQUENCES

Step 1 The group's Leader chooses to end the group and resolve all debts

Step 2 The algorithm automatically determines the most efficient way to resolve all

debts

Step 3 E-mails and notifications are sent out containing the following information:

• The group's name, members, and the user's overall balance in that group

• A list of group members who the user owes and how much he owes to each

person

• A list of group members who owe the user and how much each person owes him

Step 4 Each member can then use Member-to-Member transactions to resolve his debts.

Step 5 Once all debts are resolved, all members are notified and the group may then be

removed from the main Groups page. Bill and Transaction Histories are still available,

however.

3.6 GROUP HISTORY

This screen provides a view of all transactions and bills that occurred within a group.

This list will be presented in chronological order by default, but can also be sorted by

payer, amount, etc. It will show the names of members involved in each transaction and

the amounts paid, and the user has the option of viewing each item in more detail by

selecting it. The detailed view will display all members involved in the bill, any

comments about it, and any additional information that was included when it was

created (Location, Type, etc.).

3.6.1 STIMULUS/RESPONSE SEQUENCES

Step 1 The user is presented with a list of all transactions posted to the current group

• The user may sort these items by date, amount, payer, etc.

Step 2 The user may select any one of the transactions for detailed viewing

Appendix A1: Case Studies

 291

• Upon selection, a dialog is presented with the details o f the transaction

3.7 SHOW ALL DEBTS

This is a global feature that will enumerate an individual's debt across all groups of

which he is a member. Visual cues will be used to provide a distinction between

positive, negative, and even balances within each group. There will also be an option to

reconcile all debts from this screen. Selecting this option will show the user a list of

transactions which are required before his debts can be resolved. The user will be able

to initiate these transactions within the app from this screen.

3.7.1 STIMULUS/RESPONSE SEQUENCES

Step 1 The user enters this screen from the popup context menu from any other screen

in the app

Step 2 The user can see his status in each of the groups he is a member of

• Selecting a specific group from this list displays that group's History page

Step 3 The user has the option to resolve his debts with a transaction for each group

3.8 SETTINGS MENU

This menu allows the user to modify more advanced settings within the application. The

menu is accessed from any screen by the Preferences button, a hardware button built

into all Android handsets.

3.8.1 STIMULUS/RESPONSE SEQUENCES

Step 1 From any menu, the user may press the Settings button

• This is a physical button featured on all Android phones

Step 2 From a pop-up menu, the user may select what he wishes to modify

Step 3 After making the desired changes, the user may save his preferences and exit the

menu, or simply exit without saving

Step 4 The user is then returned to the screen he was on before accessing the Settings

menu

3.9 HELP MENU

Appendix A1: Case Studies

 292

The Help menu is meant to answer any questions the user may have while using

SplitPay. The menu displays a list of topics related to features, menus, and the app in

general. The user can select any of these topics to access further information and

explanations.

3.9.1 STIMULUS/RESPONSE SEQUENCES

Step 1 From any screen, the user may press the Settings button built into the phone

Step 2 This displays the Settings menu, where he can then select the Help menu

Step 3 The user is presented with a list of help topics which he can scroll through

Step 4 Once the user selects a topic, more information on that topic i s displayed

Step 5 The user can navigate back to the Help screen or exit the Help menu altogether

3.10 PUSH NOTIFICATIONS

Push notifications is an added mechanism to provide updates and alerts from the

application server to the user's android device. Whenever a new expense is posted in a

group, the server will broadcast notifications to all group members' phones of the new

bill and each user's respective balances. Members are also notified when all debts in a

group are resolved or when the leader chooses to notify all members of the group's

balance.

3.10.1 STIMULUS/RESPONSE SEQUENCES: GROUP NOTIFICATION

Step 1 The leader selects to notify all members of the group's current balance.

Step 2 Server pushes a notification to all members' devices with a pop-up.

• e.g., "Current Balance of the Group 'Trip to DC' is $100."

ADDITIONAL FEATURES

3.11 MEMBER DEBT VISUALIZATION

This feature allows users to access group balances as bar graphs, rather than the default

text-only form. These visuals can be obtained at any time by selecting the Member Debt

Visualization option from any group. The visuals are updated any time a group

member's balance changes.

3.11.1 STIMULUS/RESPONSE SEQUENCES

Appendix A1: Case Studies

 293

Step 1 The user activates this visualization via a button on a particular group page

Step 2 From here, the user can view details about individual member s by selecting

them

3.12 PAYPAL

This feature will offer users the option to resolve their debts through using PayPal. This

will enable users to make real financial transactions through the app, which will then

update all balances accordingly.

3.12.1 STIMULUS/RESPONSE SEQUENCES

Step 1 The user accesses this feature from any transactions-related screen

Step 2 The user enters his PayPal account information

• The user has the option of being automatically logged in next time he uses this

feature

Step 3 The user is taken to a screen where he must fill out all of the necessary details

of the transaction

• If this information was already entered in the transactions screen, it will be filled

in automatically

Step 4 The user confirms the payment, and the transaction is completed

3.13 GPS TRACKING

When a Bill is posted or a transaction is made, this feature records the GPS location of

the phone(s) involved. At any point, a user may access this information in the form of a

map with each saved location displayed. This feature provides a visual record of where

the group has been, what payments were made at specific locations, and what path on

the map the group has taken. The application will use Google Places as its maps tool.

3.13.1 STIMULUS/RESPONSE SEQUENCES

Step 1 When posting a bill or transaction, the user has an option to add the GPS location

Step 2 If this option is selected, the phone records the GPS location and also sends it to

the server, where it is synced to all other SplitPay-enabled phones

Step 3 The user may also manually enter in an address if the GPS location is not desired

Appendix A1: Case Studies

 294

Step 4 From any group screen, the user may access the group's associated map

Step 5 Each address and GPS location is pinned to the map, with a line tracing the path

between each pin

3.14 RECEIPT IMAGING

Receipt imaging allows users to store the receipt associated with a Bill for later viewing.

Whenever a user posts a Bill, he will have the option to take a pho to of the receipt

using the phone's built-in camera. This image is then sent to the server and synced with

all SplitPay users in the group.

3.14.1 STIMULUS/RESPONSE SEQUENCES

Step 1 While creating a new Bill, the user may select the Receipt Imaging feature.

Step 2 This activates the camera and creates a window on the screen to act as a

viewfinder.

Step 3 The user then take s a picture of the receipt by pressing a button on the app.

Step 4 The user has the option to retake the picture until he is satisfied with the result.

Step 5 The picture of the receipt is then saved and becomes accessible by viewing the

Bill.

Step 6 After the new bill is created, the data will be pushed to the server and synced

with other phones

3.15 E-MAIL and SMS NOTIFIC ATIONS

Since groups may involve individuals without SplitPay (i.e., offline users), there must

be an alternative method of notifying these individuals. The simplest way to achieve

this is via e-mail or text message (SMS). This will allow these individuals to enjoy

some of the same functionalities as SplitPay users.

3.15.1 STIMULUS/RESPONSE SEQUENCES

Step 1 When a Bill is posted or a transaction is made, the server is updated and any user

involved is sent a notification

• The group leader may modify offline users? notification preferences, which will

determine whether the user receives an e-mail, a text message, or no notification

at all

Appendix A1: Case Studies

 295

Step 2 SplitPay users are notified within the application, but offline users are sent an e-

mail or text message containing information about the update.

3.16 SPLITPAY TUTORIAL

The SplitPay Tutorial is a structured, condensed version of the Help menu. This feature

will allow the user to view brief explanations of each menu and feature. These

explanations will be kept brief, as the user interface will be designed to be as intuitive as

possible. The tutorial will be designed to answer any questions a first-time user may

have about the application.

3.16.1 STIMULUS/RESPONSE SEQUENCES

Step 1 At the initial registration screen, the user will have the option to view the tutorial

Step 2 The tutorial will then direct the user to each of the menus within the app,

explaining each feature in some detail. The user will not be able to do anything on these

screens besides navigating through the steps of the tutorial.

Step 3 Once each menu has been explained, the tutorial will return the user to the

welcome screen and allow him to complete the registration process.

Alternatively, the user may quit at any point in order to return to the welcome screen

4. OTHER NONFUNCTIONAL REQUIREMENTS

4.1 PERFORMANCE REQUIREMENTS

Performance should not be an issue because all of our server queries involve small

pieces of data. Changing screens will require very little computation and thus will occur

very quickly. Server updates should only take a few seconds as long as the phone can

maintain a steady signal. The cost-division algorithms used by in application will be

highly efficient, taking only a fraction of a second to compute.

4.2 SAFETY REQUIREMENTS

SplitPay will not affect data stored outside of its servers nor will it affect any other

applications installed on the user's phone. It cannot cause any damage to the phone or its

internal components. The only potential safety concern associated with this application

applies to virtually all handset apps: SplitPay should not be used while operating a

vehicle or in any other situation where the user's attention must be focused elsewhere.

Appendix A1: Case Studies

 296

4.3 SECURITY REQUIREMENTS

This application assumes that only the user or whoever he allows will have access to his

Android handset. With that being said, only a Google email address is required to verify

the identity of the user upon opening the app. Since it is not password protected, there is

no method to authenticate the user's identity. This could only pose a thread if a user has

set up PayPal functionality, however any transaction involving real currency must be

authorized and confirmed before becoming final. The PayPal API provides all of the

security checks needed to ensure that no fraudulent transactions occur.

4.4 SOFTWARE QUALITY ATTRIBUTES

The graphical user interface of SplitPay is to be designed with usability as the first

priority. The app will be presented and organized in a manner that is both visually

appealing and easy for the user to navigate. There will be feedbacks and visual cues

such as notifications to inform users of updates and pop-ups to provide users with

instructions.

To ensure reliability and correctness, there will be zero tolerance for errors in the

algorithm that computes and splits expenses between group members. To maintain

flexibility and adaptability, the app will take into account situations in which a user

loses internet connection or for whatever reason cannot establish a connection with the

server. These users will still be able to use the application, but any Bills, transactions,

etc. posted while disconnected will be cached until the connection is restored.

Furthermore, the group leader also has the option to add members who do not own an

Android phone and add transactions on their behalf. With SplitPay being ported solely

for the Android platform, this software application has the advantage of being portable

and convenient to use whenever and wherever. Overall, the app balances both the ease

of use and the ease of learning. The layout and UI of the app will be simple enough that

users will take no time to learn its features and navigate through it with little difficulty.

Traveler Social Networking System

1.1 Document Purpose

This document provides information about requirements and qualities of HWG, a new

social networking system for travelers.

Appendix A1: Case Studies

 297

Due to some confidentiality restriction, this document only contains part of the entire

original requirements document.

1.2 Product Scope

This system is intended to connect travelers around the World and improve the quality

of travel planning. In addition, it should allow travelers to gain and share travel

experiences by enabling them to write reviews for places and services.

Travelers can also write articles to tell friends about the interesting stories during their

trips. Moreover, travelers can gain travel experiences by asking questions in a forum

and obtaining information from reviews and articles. Furthermore, to enable travelers to

share and gain travel experience, the system supports the communication between them.

An important requirement is that the system must be easy to use and understand for

travelers. In addition, the system must be secure and can prevent attacks.

2 Overall Description

2.1 Product Perspective

The key objective of the system is encouraging experience gaining and sharing. This

system shall be a stand-alone web-based application and accessible via the Internet at

any time. In the future, a mobile application shall be developed to allow users to access

the system via smartphones.

2.2 Product Functionality

2.2.1 User management

The system should provide facilities for users to register for accounts. They can register

for accounts using social media accounts (i.e., Facebook, Google or Twitter). If users

register using these social media accounts, their profile pictures will be imported by the

system from these accounts.

The system needs also to provide administrators with the ability to manage user

accounts. Specifically, they should be able to ban and remove user accounts when

necessary. Moreover, administrators can also reset accounts’ passwords.

System shall also support privilege assignment and management. Administrators are

enabled to specify the part of the systems to which a user can access. For example,

particular users are only allowed to access forum settings/modify forum posts and other

Appendix A1: Case Studies

 298

users are allowed only to change the frequency of emails sent to particular groups of

users. Those privileges of users can easily be changed by the administrators.

2.2.2 Connection

2.2.2.1 Making friends and following

Users can make friends with each other. Specifically, a user can send a friend request to

another user and this user can either accept or deny the request. In addition, users can

also choose to follow another user instead of sending a friend request to that user. If a

user follows another user, he/she would receive updates about the posts such a user

makes. Users can also follow a forum threads to receive updates about new posts in

such threads. They can also follow a certain topic to receive updates about new contents

in such a topic.

2.2.2.2 Profile page

Each user has a profile page. A profile page contains the summary of the user’s

activities, status and wall comments. Profile pages should be organized in a clear way.

The system displays the activities of users on their profile pages. Users can set their

account privacy to prevent some certain activities to be displayed on their profile pages.

A user can write comments of their friends’ walls. They can later edit or remove their

comments. Only administrators can delete comments from users’ walls.

2.2.2.3 Group page

Users can also create groups. Group owners can set the visibility of the group which is

either public or private. If the group is private, only group members can see posts in that

group. If a group is public, every user can access the content of that group. Content of a

group includes the list of activities in the group, the wall comments of its members and

the files shared between members in the group. Group members can invite their friends

to join a group.

2.2.2.4 Newsfeed

System displays the updates of the entities a user follows on the user’s news feed. Such

entities include other users, forum and topics. The newsfeed in this system should be

similar to the newsfeed in Facebook. The system should support update filtering. More

specifically, users shall be able to filter the content to be displayed on their newsfeed.

Appendix A1: Case Studies

 299

2.2.2.5 Wall comments

Users are able to post comments on their walls or their friends’ walls. Users can also

post a reply to an existing comment on a wall. To support users to control their walls,

the system allows them to set the users who can post comments on their walls. In

addition, users can remove any comments on their walls. However, they cannot edit

other users’ comments. They can edit only their comments.

2.2.3 Forum

The system shall allow users to post questions and answers in a forum. To enable users

to use the forum conveniently, the system allows them to post questions to forum from

their profile pages. To answer a question in the forum, users can reply to a question or

reply to an existing answer. Users can follow a question to receive updates whenever

new answers to that question are posted. Users can choose to receive notifications by

email or internal messages. The organization of the forum is similar to the forum’s

organization in tripadvisor.

2.2.4 Communication

The system supports the communication between users. Specifically, the system

supports both one-to-one and group instant messaging. Users can send messages to their

friends. They can also attach files to messages.

2.2.5 Article writing

The system allows users to create travel articles. They can also add media files (videos,

photos) into an article. An article with photos or videos is marked with a media file logo

to differentiate it with text-only articles. The system supports typographic features to

enable users to create appealing articles.

To upload a video to an article, a users need to upload it to a third-party website, obtain

the video’s link and embed the link into the articles. User can remove a video from an

article by removing its link from the article.

Users can upload images directly to the article. The images shall be stored in the

system. The size of an uploaded image must not be greater than 1Mb. If a user uploads

an image that is greater than 1Mb, the system shall automatically resize the image. The

system allows users to position the images in an article. Obviously, users can remove

images from an article.

Appendix A1: Case Studies

 300

2.2.6 Review

Users are allowed to write reviews for tours and places. Obviously, this requires tours

and places’ information to be previously added by administrators into the system. Users

can also send an entity-adding request to the administrators to request them to add a

new entity. A review contains a review subject, review description and a rating. When a

user views a tour or a place, the system displays its reviews. The system also shows an

entity’s average review score on its page. Users can vote for a review. If a review

receives a vote, some scores shall be added into the review owner’s account. The score

calculation should be accurate. To ensure the reliability of reviews, the system should

be able to prevent fake reviews to be created. It does so by monitoring the review

activities of users.

2.2.7 Trip planning

The system allows users to plan their travels. Users can create a trip on their profile

page and send invitation to their friends to invite them to join the trip. When accepting

an invitation to a trip, a user can access and edit the trip information. In order to enable

users to plan their travels effectively, the system allows them to ask questions related to

their trips on the trip’s page. These questions will then be displayed on the pages of

locations relevant to the trip. Users who follow these locations shall be notified about

the new questions.

2.2.8 Travel expert

Users can register to be travel experts for some certain destinations. Whenever a

question about a certain destination is posted in the system, that destination’s travel

experts shall be notified. The administrators can monitor user activities. If the

administrators identify a user who has substantial knowledge about a destination, they

will send an expert invitation to that user.

2.3 Users and Characteristics

The intended users of the system are travelers or people who are interested in travelling

around the World. Typically, they have regular access to the Internet via computers or

smartphones. The technical expertise, educational level and computer experience of

users may vary. Therefore, the system should be designed to be easy to use by typical

Internet users. The categories of the anticipated users are as follows:

Appendix A1: Case Studies

 301

• People who travel frequently. These users would frequently ask questions, make

connections with other travelers and share their experiences. This is the main

intended user group of the system.

• People who do not frequently travel, however having interest in travel. These

users would frequently read the content posted in the system. They would

frequently follow popular travelers in the system to receive updates from them.

• People who have a lot of travel experience. They have been to many cities and

countries. They are usually experts in one or more destinations. This type of

users frequently offers help, guidance to other users. They would frequently

answers questions in the forum or trip plans.

• Business users: these users come to the system not for gaining or sharing

experiences. Their purpose is to advertise for some certain hotels, restaurants,

events or tours. They are typically business owners. For instance, the owner of a

restaurant may come to suggest an addition of his/her restaurant into the system

if it has not been added so that travelers shall be able to get more information

about the restaurant and/or provide reviews for the restaurant.

2.4 Operating Environment

Since HWG is a web-based system, there is no specific requirement regarding the

client’s hardware or operating system. Users only need a computer/smartphone with a

browser and Internet connection to access web applications in order to use the system.

The system will be hosted on a GoDaddy.com’s virtual dedicated server. The server is

required to run on a Linux operating system with at least 2GB RAM and 30GB storage

space for the first release. The server hardware requirements may increase when the

number of users increases. MySQL is required for storing data in the system.

The system shall frequently interact with Facebook, Twitter and Google via their APIs

to allow users to link their social media accounts to HWG. In addition, that also enables

users to share HWG contents on the social media that they are using.

2.5 Design and Implementation Constraints

The system must be able to respond quickly to client requests. In the first release, the

system should be able to handle 500 concurrent users. The system’s server should have

Appendix A1: Case Studies

 302

at least 2GB RAM and 30GB storage space. The system also needs to be available at

any time. Backups are conducted every day.

2.6 User Documentation

HWG is intended to be easy to use and understand by users. The system also provides

online help to users. In addition, a number of tutorials showing the instructions of using

some features are provided to users after their registrations. Users obviously can view

these instructions later at any time.

3 Specific Requirements

This section presents the detailed the use cases that describes the above feature of the

system.

3.1.1 User management

3.1.1.1 Use case: Register membership

Description: a user registers for an account

Pre-condition: the user has accessed the registration page

Post-condition: a new account is created

Main Success scenario:

Step 1. The user selects a registration option. The registration options are

with_social_media_account and without_social_media_account.

Step 2. If the users select to create an account without a social media account, the

system displays the registration form to the user

Step 3. The user enters their details into the registration form and submits it

Step 4. The system verifies the details. The system should verify the details in less than

1 second.

Step 5. If the details are valid, the system creates a new account

Step 6. The system displays the confirmation message to the user

Extension:

In step 2, if the user selects to create an account with a social media account, then:

Appendix A1: Case Studies

 303

Step 2.1. The system displays a list of social media account types to the user. The list of

supported account types includes Facebook, Twitter and Google.

Step 2.2. The user selects an account type

Step 2.3. The system requests the user to enter the account details

Step 2.4. The user enters the account details

Step 2.5. The system connects to the selected social media website

Step 2.6. The system displays the registration form with the user’s details from the

social media website

The extension resumes at step 3

Extension:

In step 5, if the details are not valid, then the system displays an error message and the

user repeats step 3.

3.1.1.2 Use case: Reset password

Description: A user resets his password

Pre-condition: User is at the login page

Post-condition: an account resetting email is sent to the user

Main Success scenario:

Step 1. The user requests to reset their password

Step 2. The system requests the user to provide their email address

Step 3. The user enters their email address

Step 4. The system verifies the email address

Step 5. If the email address is valid, the system sends an account reset email to the user.

The user should be able to receive the email quickly.

Extensions:

Extension:

In step 5, if the email address is not valid, the system displays an error message and the

user repeats step 3.

Appendix A1: Case Studies

 304

3.1.2 Connection

3.1.2.1 Use Case: Create group

Description: A user creates a group

Pre-condition: a user is already logged in

Post-condition: a group is created and the user is assigned as the group’s owner

Main Success Scenario:

Step 1. The user requests to create a group

Step 2. The system displays a group creation form to the user. The group creation form

should be intuitive for the user.

Step 3. The user enters the group details into the form. The group details include group

name, group description and group visibility.

Step 4. The system creates the group

Step 5. The system requests the user to invite members to the group

Step 6. The user invites members to the group. This step is done by the ‘invite group

member’ use case.

3.1.2.2 Use case: invite group member

Description: a group owner invites users to the group

Pre-condition: the group owner has accessed the group’s page

Post-condition: a user is invited to the group

Main Success Scenario:

Step 1. The group owner requests to invite a user to the group

Step 2. The system displays the member invitation form to the group owner. The

member invitation form should be intuitive for the user.

Step 3. The group owner enters a list of usernames of users to be invited. The group

owners should be able to enter the usernames efficiently. The system should supports

AJAX automated fill-in.

Appendix A1: Case Studies

 305

Step 4. If the usernames are correct, the system sends invitation emails to the users; else

the system displays an error and the group owner repeats step 3.

3.1.2.3 Use case: Add friend

Description: a user adds a friend

Pre-condition: the user has accessed the other user’s profile page

Post-condition: a friend invitation is sent to the other user

Main Success Scenario:

Step 1. The user requests add the other user as a friend

Step 2. The system verifies the user’s eligibility to the other user as a friend

Step 3. If the user is eligible to add friends, then the system sends a friend request to the

other user; else the system displays an error message to the user.

3.1.2.4 Use case: Remove friend

Description: a user removes a friend

Pre-condition: the user has accessed his profile page

Post-condition: a friend is removed from the user’s friend list

Main Success Scenario:

Step 1. The user requests to display his list of friends

Step 2. The system displays the user’s list of friends

Step 3. The user selects the friends to be removed. He/she should be able to select

multiple friends in an efficient way.

Step 4. The system displays a confirmation message to the user

Step 5. The user confirms the deletion

Step 6. The system removes the friends from the list

Extension:

In step 6, if the user cancels the deletion, the use case is terminated.

3.1.2.5 Use case: Post comment

Appendix A1: Case Studies

 306

Description: a user posts a comment on a wall

Pre-condition: the user has logged in

Post-condition: a comment is posted on the wall

Main Success Scenario:

Step 1. If the user wants to post a new comment on the wall, then he requests to post a

new comment

Step 2. The system displays a commenting space

Step 3. The user enters the comment

Step 4. The user submits the comment

Step 5. The system stores the comment

Extension:

In step 1, if the user wants to post a reply to an existing comment, he requests to post a

reply comment and the use case resumes at step 2.

3.1.2.6 Use case: Remove comment

Description: a user removes a comment

Pre-condition: the user has logged in and the user is permitted to remove the comment

Post-condition: the comment is removed

Main Success Scenario:

Step 1. The user requests to remove the comment

Step 2. The system displays a confirmation message

Step 3. The user confirms the deletion

Step 4. The system removes the comment from the wall

3.1.2.7 Use case: Update status

Description: a user updates his status

Pre-condition: the user has logged in

Post-condition: a new status is added

Appendix A1: Case Studies

 307

Main Success Scenario:

Step 1. The user requests to update the status

Step 2. The system displays a status space

Step 3. The user enters the status

Step 4. The user submits the status

Step 5. The system stores the status

3.1.2.8 Use case: Filter newsfeed

Description: a user filters his newsfeed

Pre-condition: the user has accessed his newsfeed

Post-condition: the newsfeed’s content is filtered

Main Success Scenario:

Step 1. The user requests to filter the newsfeed

Step 2. The system provides the user with the filtering options

Step 3. The user selects filtering options. The filtering options should be easy to

understand for typical Internet users.

Step 4. The system displays a confirmation message

Step 5. The user confirms the selection

Step 6. The system updates the newsfeed settings.

Extension:

In step 5, if the user cancels the selection, step 3 is repeated.

3.1.2.9 Use case: Change privacy settings

Description: a user filters his privacy settings

Pre-condition: The user has accessed his profile page

Post-condition: the privacy settings are changed

Main Success Scenario:

Step 1. The user requests to change the privacy settings

Appendix A1: Case Studies

 308

Step 2. The system provides the user with the list of privacy setting options. The setting

options should be easy to understand for typical Internet users.

Step 3. The user selects privacy setting options

Step 4. The system displays a confirmation message

Step 5. The user confirms the selection

Step 6. The system updates the privacy settings.

Extension:

In step 5, if the user cancels the selection, step 3 is repeated.

3.1.2.10 Use case: Follow entity

Description: a user follows an entity

Pre-condition: The user has logged in

Post-condition: the user follows the entity

Main Success Scenario:

Step 1. If the user is at his profile page, he requests to search for an entity. The

followable entities include users, questions and topics.

Step 2. The system displays a search form. The search form should be easy to use.

Step 3. The user enters keywords

Step 4. The system displays the list of matching entities

Step 5. The user selects an entity

Step 6. The user requests to follow the entity

Step 7. The system stores the following

Extension:

In step 1, if the user is at the entity’s page, the use case continues at step 4.

3.1.3 Forum

3.1.3.1 Use case: post question

Description: a user posts a question

Appendix A1: Case Studies

 309

Pre-condition: the user has logged in

Post-condition: a question is posted

Main Success Scenario:

Step 1. The user requests to post a new question

Step 2. The system displays a question form

Step 3. The user enters the question

Step 4. The user submits the question

Step 5. The system stores the question

3.1.3.2 Use case: post answer

Description: a user posts an answer

Pre-condition: the user has logged in and the user is at a question’s page

Post-condition: an answer is posted

Main Success Scenario:

Step 1. The user requests to post an answer for the question

Step 2. The system displays an answer form

Step 3. The user enters the answer

Step 4. The user submits the answer

Step 5. The system stores the answer

3.1.4 Communication

3.1.4.1 Use case: send message

Description: a user sends a message to other users

Pre-condition: The user has logged in

Post-condition: a message is sent to other users

Main Success Scenario:

Step 1. If the user is at his profile page, he requests to search for his friends

Appendix A1: Case Studies

 310

Step 2. The system displays a search form. The search form should be easy to

understand.

Step 3. The user enter keywords

Step 4. The system displays a list of matching friends

Step 5. The user selects friends to be sent messages. The user should be able to select

multiple friends efficiently.

Step 6. The user repeats step 3 to step 5 until he finds all needed friends

Step 7. The user requests to send a message to the friends

Step 8. The system delivers the message to the friends. The system should deliver the

message immediately.

Extension:

In step 1, if the user is at another user’s page, the use case continues at step 7.

3.1.5 Article writing

3.1.5.1 Use case: Write travel article

Description: a user writes a travel article

Pre-condition: The user has logged in

Post-condition: The new travel article is stored

Main Success Scenario:

Step 1. The user requests to create a travel article.

Step 2. System displays the article creation form to the user. The article creation form

should be easy to use.

Step 3. The user enters the article content and submits it

Step 4. System validates the article content. The system should validate the article

content in less than 1 second.

Step 5. If the article content is valid, the system stores the article into the database and

displays confirmation message to the user; else the system displays the errors to the user

and the user repeats step 3.

Appendix A1: Case Studies

 311

3.1.6 Review

3.1.6.1 Use case: Write review

Description: a user writes a review

Pre-condition: The user has logged in

Post-condition: The new review is stored

Main Success Scenario:

Step 1. The user selects to create a review.

Step 2. System prompts the user to select a review category.

Step 3. The user selects review category. The list of categories includes hotel, attraction

and tour.

Step 4. System displays the suitable review creation form to the user. The review

creation form should be familiar with typical Internet users.

Step 5. The user enters the review content and submits it

Step 6. The system validates the review. The system should validate the review in less

than 1 second.

Step 7. If the review content is valid, the system stores the review into the database and

displays confirmation message to the user; else the system displays the errors to the user

and the user repeats step 5.

3.1.7 Trip planning

3.1.7.1 Use case: Create travel plan

Description: A user creates a travel plan

Pre-condition: The user has logged in

Post-condition: A travel plan is created

Main Success Scenario:

Step 1. The user requests to create a travel plan

Step 2. The system displays the travel plan creation form to the user

Step 3. The user enters the travel plan details and submits them

Appendix A1: Case Studies

 312

Step 4. System validates the travel plan

Step 5. If the travel plan is valid, the system stores it; else the system displays the errors

to the user and the user repeats step 3.

3.1.7.2 Use case: Invite to trip

Description: A user invites his friends to a trip

Pre-condition: The user has logged in and the user has accessed the trip’s page

Post-condition: An invitation is sent to the friends

Main Success Scenario:

Step 1. The user requests to search for his friends

Step 2. The system displays a search form. The search form should be easy to use.

Step 3. The user enters keywords

Step 4. The system displays a list of matching friends

Step 5. The user selects friends to be invited. The user should be able to select multiple

friends efficiently,

Step 6. The user repeats step 3 to step 5 until he finds all needed friends

Step 7. The user requests to invite these friends to the trip

Step 8. The system delivers the invitation to the friends.

3.1.8 Travel expert

3.1.8.1 Use case: Register as travel expert

Description: A user registers as a travel expert

Pre-condition: The user has logged in

Post-condition: A travel expert request is sent to the administrator

Main Success Scenario:

Step 1. The user selects to send a travel expert request

Step 2. The system displays a travel expert request form to the user

Step 3. The user enters the request details into the form and submits it

Appendix A1: Case Studies

 313

Step 4. If the request’s details are valid, the system stores it and displays a confirmation

message to the user; else the system displays the errors to the user and the user repeats

step 3

4 Other Non-functional Requirements

4.1 Performance Requirements

The system should be fast. It should respond quickly to users’ requests. The system

should also provide quick information validation. In addition, the system should

minimize the delay when sending instant messages.

4.2 Safety and Security Requirements

The system should be secure. It should support user authentication. The privacy of users

should also be protected. Users should be able to update their privacy settings easily.

Moreover, to prevent virus attacks, the system should provide anti-virus feature.

4.3 Software Quality Attributes

The system should be easy to use. Specifically, users should not find it hard to create

reviews, travel articles or travel plans. The management of profiles should be intuitive

and familiar for users. Moreover, the system should be always available. Users shall be

able to access the system via the Internet at all time.

Appendix A2: Artifact Specification Boilerplates

 314

Appendix A2 Artifact Specification Boilerplates

Notes:

• () à optional
• […|…] à alternatives

Business goal boilerplates:

B1. <transitive action verb><object> ((for) <beneficiary>) ([with | to]) <reference> ([in

| at | on] <location>) (for <purpose>)

B2. <transitive action verb><object> ((for) <beneficiary>) ([in | at | on] <location>)

(from <source>) (to <destination>) (for <purpose>)

B3. <intransitive action verb> ((for) <beneficiary>) ([with | to | of]) <reference> ([in | at

| on] <location>) (for <purpose>)

B4. <intransitive action verb> ((for) <beneficiary>) ([in | at | on] <location>) (from

<source>) (to <destination>) (for <purpose>)

B5. <possessive verb><object> ([in | at | on] <location>) (for <purpose>)

B6. Be <quality> (([with | to]) <reference>) ([in | at | on] <location>) (for <purpose>)

B7. Be <quality> ((for) <beneficiary>) ([in | at | on] <location>) (for <purpose>)

Functional Feature Goal boilerplates:

FF1. (<agent> [shall (not)| shall (not) be able to]) <transitive action verb> <object>

(for) <beneficiary> ([in | at | on] <location>) (from <source>) (to <destination>)

(<functional manner>)

FF2. (<agent> [shall (not)| shall (not) be able to]) <transitive action verb> <object>

([with | to]) <reference> (for) <beneficiary> ([in | at | on] <location>) (<functional

manner>)

Appendix A2: Artifact Specification Boilerplates

 315

FF3. (<agent> [shall (not)| shall (not) be able to]) <transitive action verb> <object>

([with | to]) <reference> ([in | at | on] <location>) (<functional manner>) (for

<purpose>)

FF4. (<agent> [shall (not)| shall (not) be able to]) <transitive action verb> <object>

(with <company>) ([in | at | on] <location>) (<functional manner>) (for <purpose>)

FF5. (<agent> [shall (not)| shall (not) be able to]) <intransitive action verb> (for)

<beneficiary> ([in | at | on] <location>) (from <source>) (to <destination>) (<functional

manner>) (for <purpose>)

FF6. (<agent> [shall (not)| shall (not) be able to]) <intransitive action verb> ([with | to])

<reference> (for) <beneficiary> ([in | at | on] <location>) (<functional manner>)

FF7. (<agent> [shall (not)| shall (not) be able to]) <intransitive action verb> ([with | to])

<reference> ([in | at | on] <location>) (<functional manner>) (for <purpose>)

FF8. (<agent> [shall (not)| shall (not) be able to]) <intransitive action verb> (with

<company>) ([in | at | on] <location>) (<functional manner>) (for <purpose>)

Functional Service Goal boilerplates

FS1. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object> ((for)

<beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (every <quantity> <time unit>) (<functional

manner>) ([<event> | <condition>])

FS2. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object>

([with | to]) <reference> (for) <beneficiary> ([in | at | on] <location>) ([by | with | via]

<means>) ([for | in] <duration>) (every <quantity> <time unit>) (<functional manner>)

([<event> | <condition>])

FS3. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object>

([with | to]) <reference> ([in | at | on] <location>) ([by | with | via] <means>) ([for | in]

<duration>) (every <quantity> <time unit>) (<functional manner>) (for <purpose>)

([<event> | <condition>])

Appendix A2: Artifact Specification Boilerplates

 316

FS4. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object> (with

<company>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (every <quantity> <time unit>) (<functional

manner>) (for <purpose>) ([<event> | <condition>])

FS5. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> ((for)

<beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (every <quantity> <time unit>) (<functional

manner>) (for <purpose>) ([<event> | <condition>])

FS6. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> ([with | to])

<reference> (for) <beneficiary> ([in | at | on] <location>) ([by | with | via] <means>)

([for | in] <duration>) (every <quantity> <time unit>) (<functional manner>) ([<event>

| <condition>])

FS7. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> ([with | to])

<reference> ([in | at | on] <location>) ([by | with | via] <means>) ([for | in] <duration>)

(every <quantity> <time unit>) (<functional manner>) (for <purpose>) ([<event> |

<condition>])

FS8. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> with

<company> ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (every <quantity> <time unit>) (<functional

manner>) (for <purpose>) ([<event> | <condition>])

Non-functional Product Goal boilerplates

NP1. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object> ((for)

<beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>) (<manner>)

NP2. <positioner> shall (not) <possessive verb> <object> ([in | at | on] <location>) (for

<purpose>)

NP3. <agent> shall (not) be <quality> ((for) <beneficiary>) ([in | at | on] <location>)

(<manner>) (for <purpose>)

Appendix A2: Artifact Specification Boilerplates

 317

Non-functional Feature Goal boilerplates

NF1. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object> ((for)

<beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>) ([for | in]

<duration>) (<manner>) (for <purpose>)

NF2. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object>

([with | to]) <reference> (for) <beneficiary> ([in | at | on] <location>) ([for | in]

<duration>) (<manner>) (for <purpose>)

NF3. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object>

([with | to]) <reference>) ([in | at | on] <location>) ([for | in] <duration>) (<manner>)

(for <purpose>)

NF4. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object> with

<company> ([in | at | on] <location>) ([for | in] <duration>) (<manner>) (for

<purpose>)

NF5. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> ((for)

<beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>) ([for | in]

<duration>) (<manner>) (for <purpose>)

NF6. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> ([with | to])

<reference> (for) <beneficiary> ([in | at | on] <location>) ([for | in] <duration>)

(<manner>) (for <purpose>)

NF7. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> ([with | to])

<reference>) ([in | at | on] <location>) ([for | in] <duration>) (<manner>) (for

<purpose>)

NF8. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> with

<company> ([in | at | on] <location>) ([for | in] <duration>) (<manner>) (for

<purpose>)

NF9. <positioner> shall (not) <possessive verb> <object> ([in | at | on] <location>) ([for

| in] <duration>) (<manner>) (for <purpose>)

Appendix A2: Artifact Specification Boilerplates

 318

NF10. <positioner> shall (not) be <quality> ((for) <beneficiary>) ([in | at | on]

<location>) ([for | in] <duration>) (<manner>) (for <purpose>)

Non-functional Service Goal boilerplates

NS1. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object> ((for)

<beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (<manner>) (for <purpose>) ([<event> |

<condition>])

NS2. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object>

([with | to]) <reference> (for) <beneficiary> ([in | at | on] <location>) (from <source>)

(to <destination>) ([by | with | via] <means>) ([for | in] <duration>) (<manner>) (for

<purpose>) ([<event> | <condition>])

NS3. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object>

([with | to]) <reference> ([in | at | on] <location>) ([by | with | via] <means>) ([for | in]

<duration>) (<manner>) (for <purpose>) ([<event> | <condition>])

NS4. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object> (with

<company>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (<manner>) (for <purpose>) ([<event> |

<condition>])

NS5. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> ((for)

<beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (<manner>) (for <purpose>) ([<event> |

<condition>])

NS6. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> ([with | to])

<reference> (for) <beneficiary> ([in | at | on] <location>) (from <source>) (to

<destination>) ([by | with | via] <means>) ([for | in] <duration>) (<manner>) (for

<purpose>) ([<event> | <condition>])

Appendix A2: Artifact Specification Boilerplates

 319

NS7. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> ([with | to])

<reference> ([in | at | on] <location>) ([by | with | via] <means>) ([for | in] <duration>)

(<manner>) (for <purpose>) ([<event> | <condition>])

NS8. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> (with

<company>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (<manner>) (for <purpose>) ([<event> |

<condition>])

NS9. <positioner> shall (not) <possessive verb> <object> ([in | at | on] <location>) ([for

| in] <duration>) (<manner>) (for <purpose>) ([<event> | <condition>])

NS10. <positioner> shall (not) be <quality> ([in | at | on] <location>) ([for | in]

<duration>) (<manner>) (for <purpose>) ([<event> | <condition>])

Non-functional Use Case Constraint boilerplates

NU1. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object>

((for) <beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by |

with | via] <means>) ([for | in] <duration>) (every <quantity> <time unit>) (<manner>)

(for <purpose>) ([<event> | <condition>])

NU2. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object>

([with | to]) <reference> (for) <beneficiary> ([in | at | on] <location>) (from <source>)

(to <destination>) ([by | with | via] <means>) ([for | in] <duration>) (every <quantity>

<time unit>) (<manner>) (for <purpose>) ([<event> | <condition>])

NU3. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object>

([with | to]) <reference> ([in | at | on] <location>) (from <source>) (to <destination>)

([by | with | via] <means>) ([for | in] <duration>) (every <quantity> <time unit>)

(<manner>) (for <purpose>) ([<event> | <condition>])

NU4. <agent> [shall (not)| shall (not) be able to] <transitive action verb> <object> (with

<company>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (every <quantity> <time unit>) (<manner>) (for

<purpose>) ([<event> | <condition>])

Appendix A2: Artifact Specification Boilerplates

 320

NU5. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> ((for)

<beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (every <quantity> <time unit>) (<manner>) (for

<purpose>) ([<event> | <condition>])

NU6. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> ([with | to])

<reference> (for) <beneficiary> ([in | at | on] <location>) (from <source>) (to

<destination>) ([by | with | via] <means>) ([for | in] <duration>) (every <quantity>

<time unit>) (<manner>) (for <purpose>) ([<event> | <condition>])

NU7. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> ([with | to])

<reference> ([in | at | on] <location>) ([by | with | via] <means>) ([for | in] <duration>)

(every <quantity> <time unit>) (<manner>) (for <purpose>) ([<event> | <condition>])

NU8. <agent> [shall (not)| shall (not) be able to] <intransitive action verb> (with

<company>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (every <quantity> <time unit>) (<manner>) (for

<purpose>) ([<event> | <condition>])

NU9. <positioner> shall (not) <possessive verb> <object> ([in | at | on] <location>)

([for | in] <duration>) (<manner>) (for <purpose>) ([<event> | <condition>])

NU10. <positioner> shall (not) be <quality> ([in | at | on] <location>) ([for | in]

<duration>) (<manner>) (for <purpose>) ([<event> | <condition>])

Data Constraint boilerplates

D1. <positioner> shall <possessive verb> <object>

D2. <positioner> shall (not) be <quality>

Use Case Step boilerplates

US1. <agent> <transitive action verb> <object> ((for) <beneficiary>) ([in | at | on]

<location>) (from <source>) (to <destination>) ([for | in] <duration>) (for <purpose>)

([<event> | <condition>])

Appendix A2: Artifact Specification Boilerplates

 321

US2. <agent> <transitive action verb> <object> ([with | to]) <reference> (for)

<beneficiary> ([in | at | on] <location>) ([for | in] <duration>) ([<event> | <condition>])

US3. <agent> <transitive action verb> <object> ([with | to]) <reference> ([in | at | on]

<location>) ([for | in] <duration>) (for <purpose>) ([<event> | <condition>])

US4. <agent> <intransitive action verb> ((for) <beneficiary>) ([in | at | on] <location>)

(from <source>) (to <destination>) ([for | in] <duration>) (for <purpose>) ([<event> |

<condition>])

US5. <agent> <intransitive action verb> ([with | to]) <reference> (for) <beneficiary>

([in | at | on] <location>) ([for | in] <duration>) ([<event> | <condition>])

US6. <agent> <intransitive action verb> ([with | to]) <reference> ([in | at | on]

<location>) ([for | in] <duration>) (for <purpose>) ([<event> | <condition>])

Use Case Condition boilerplates

UC1. <agent> ([do not | does not | did not]) <transitive action verb> <object> ((for)

<beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) (<functional manner>) (for <purpose>)

UC2. <agent> ([do not | does not | did not]) <transitive action verb> <object> ([with |

to]) <reference> (for) <beneficiary> ([in | at | on] <location>) (from <source>) (to

<destination>) ([by | with | via] <means>) (<functional manner>) (for <purpose>)

UC3. <agent> ([do not | does not | did not]) <transitive action verb> <object> ([with |

to]) <reference> ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with

| via] <means>) (<functional manner>) (for <purpose>)

UC4. <agent> ([do not | does not | did not]) <transitive action verb> <object> (with

<company>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) (<functional manner>) (for <purpose>)

UC5. <agent> ([do not | does not | did not]) <intransitive action verb> ((for)

<beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) (<functional manner>) (for <purpose>)

Appendix A2: Artifact Specification Boilerplates

 322

UC6. <agent> ([do not | does not | did not]) <intransitive action verb> ([with | to])

<reference> (for) <beneficiary> ([in | at | on] <location>) (from <source>) (to

<destination>) ([by | with | via] <means>) (<functional manner>) (for <purpose>)

UC7. <agent> ([do not | does not | did not]) <intransitive action verb> ([with | to])

<reference> ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) (<functional manner>) (for <purpose>)

UC8. <agent> ([do not | does not | did not]) <intransitive action verb> (with

<company>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) (<functional manner>) (for <purpose>)

UC9. <positioner> ([do not | does not | did not]) <possessive verb> <object> ([in | at |

on] <location>) (<manner>) (for <purpose>)

UC10. <positioner> ([is not | are not | was not | were not]) <quality> ([in | at | on]

<location>) (<manner>) (for <purpose>)

Condition boilerplates

C1. <agent> [do not | does not | did not] <transitive action verb> <object> ((for)

<beneficiary>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (every <quantity> <time unit>) (<functional

manner>)

C2. <agent> [do not | does not | did not] <transitive action verb> <object> ([with | to])

<reference> (for) <beneficiary> ([in | at | on] <location>) ([by | with | via] <means>)

([for | in] <duration>) (every <quantity> <time unit>) (<functional manner>)

C3. <agent> [do not | does not | did not] <transitive action verb> <object> ([with | to])

<reference> ([in | at | on] <location>) ([by | with | via] <means>) ([for | in] <duration>)

(every <quantity> <time unit>) (<functional manner>) (for <purpose>)

C4. <agent> [do not | does not | did not] <transitive action verb> <object> (with

<company>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) ([for | in] <duration>) (every <quantity> <time unit>) (<functional

manner>) (for <purpose>)

Appendix A2: Artifact Specification Boilerplates

 323

C5. <agent> [do not | does not | did not] <intransitive action verb> ((for) <beneficiary>)

([in | at | on] <location>) (from <source>) (to <destination>) ([by | with | via] <means>)

([for | in] <duration>) (every <quantity> <time unit>) (<functional manner>) (for

<purpose>)

C6. <agent> [do not | does not | did not] <intransitive action verb> ([with | to])

<reference> (for) <beneficiary> ([in | at | on] <location>) ([by | with | via] <means>)

([for | in] <duration>) (every <quantity> <time unit>) (<functional manner>)

C7. <agent> [do not | does not | did not] <intransitive action verb> ([with | to])

<reference> ([in | at | on] <location>) ([by | with | via] <means>) ([for | in] <duration>)

(every <quantity> <time unit>) (<functional manner>) (for <purpose>)

C8. <agent> [do not | does not | did not] <intransitive action verb> with <company> ([in

| at | on] <location>) (from <source>) (to <destination>) ([by | with | via] <means>)

([for | in] <duration>) (every <quantity> <time unit>) (<functional manner>) (for

<purpose>)

C9. <positioner> ([do not | does not | did not]) <possessive verb> <object> ([in | at | on]

<location>) ([for | in] <duration>) (<functional manner>) (for <purpose>)

C10. <positioner> ([is not | are not | was not | were not]) <quality> ([in | at | on]

<location>) ([for | in] <duration>) (<functional manner>) (for <purpose>)

Event boilerplates

E1. <agent> <transitive action verb> <object> ((for) <beneficiary>) ([in | at | on]

<location>) (from <source>) (to <destination>) ([by | with | via] <means>) (<temporal

manner>)

E2. <agent> [do not | does not | did not] <transitive action verb> <object> ([with | to])

<reference> (for) <beneficiary> ([in | at | on] <location>) ([by | with | via] <means>)

(<temporal manner>)

E3. <agent> [do not | does not | did not] <transitive action verb> <object> ([with | to])

<reference> ([in | at | on] <location>) ([by | with | via] <means>) (<temporal manner>)

(for <purpose>)

Appendix A2: Artifact Specification Boilerplates

 324

E4. <agent> [do not | does not | did not] <transitive action verb> <object> (with

<company>) ([in | at | on] <location>) (from <source>) (to <destination>) ([by | with |

via] <means>) (<temporal manner>) (for <purpose>)

E5. <agent> [do not | does not | did not] <intransitive action verb> ((for) <beneficiary>)

([in | at | on] <location>) (from <source>) (to <destination>) ([by | with | via] <means>)

(<temporal manner>) (for <purpose>)

E6. <agent> [do not | does not | did not] <intransitive action verb> ([with | to])

<reference> (for) <beneficiary> ([in | at | on] <location>) ([by | with | via] <means>)

(<temporal manner>)

E7. <agent> [do not | does not | did not] <intransitive action verb> ([with | to])

<reference> ([in | at | on] <location>) ([by | with | via] <means>) (<temporal manner>)

(for <purpose>)

E8. <agent> [do not | does not | did not] <intransitive action verb> with <company> ([in

| at | on] <location>) (from <source>) (to <destination>) ([by | with | via] <means>)

(<temporal manner>) (for <purpose>)

E9. <positioner> ([do not | does not | did not]) <possessive verb> <object> ([in | at | on]

<location>)

E10. <positioner> ([is not | are not | was not | were not]) <quality> ([in | at | on]

<location>) (for <purpose>)

Appendix A3: Correspondence between GUIMeta and Existing GUIM Approaches

 325

Appendix A3 Correspondence between GUIMeta and

Existing GUIM Approaches

The correspondence between GUIMeta’s concepts and those in the existing Goal and

Use Case Integrated Modeling approaches

Approach Related Approach’ concept GUIMeta’s Corresponding
Concept(s)

Rolland et al.
[133] & Kim
et al. [76]

Business goal: ultimate purpose
of the system

BG

Design goal: possible manners of
fulfilling a business goal

FFG

Service goal: possible manners of
providing services to fulfill
design goals

FSG

Gorschek &
Wohlin [55]

Product level requirement:
product strategies

FFG

Feature level requirement: high-
level feature that the product
supports

FFG

Functional level requirement:
action that users can perform

FSG

Lee et al.
[91]

Rigid goal: goal that must be
completely satisfied

FFG, FSG

Soft goal: goal that can be
partially satisfied

BG, NPG, NFG, NSG

Actor-specific goal: actors’
objectives with the system

FFG, NFG, FSG, NSG with agent
is an actor

System-specific goal:
requirements on services that
system provides

NPG, NFG, NSG with agent is a
system or system component

Functional goal FFG, FSG

Non-functional goal NPG, NFG, NSG

Original goal: intersection of
rigid, actor-specific and function
goal

FFG, FSG with agent is an actor

Cooperative and conflict
relationships between goals

Require/refine and exclude
relationships respectively

Satisfied/denied relationships Satisfied/denied relationships can

Appendix A3: Correspondence between GUIMeta and Existing GUIM Approaches

 326

between an original goal and a
use case

be represented in GUIMeta
through operationalize, refine,
require and exclude relationships.
For instance, if G1 is
operationalized by U1 and G1
refines G2, then G1 and G2 are
both satisfied by U1. If G3
excludes G1, then G3 is denied
by U1.

Cockburn
[26]

Summary goal: system objectives FFG

User goal: user’s task FSG

Sub-function goal: describe user
activities

Use case step

Watahiki and
Saeki [169]

Business goal, Feature goal and
Service goal which are derived
from Rolland et al. [133]

BG, FFG, and FSG respectively

Constraint NPG, NFG, NSG, NUCC

Constrain link Constraint relationship

van
Lamsweerde
& Willemet
[164]

‘Maintain’ goal, ‘Achieve’ goal,
‘Avoid’ goal

These are not supported by
GUIMeta, since we focus on
abstraction-based goal
classification

AND, OR decomposition AND, OR refinement relationship

Santander
and Castro
[141]

Strategic dependency modeling
concepts: to model i.e., an actor is
dependent on another actor with a
certain goal

Not supported by GUIMeta.
However, GUIMeta can be
extended to support such
modeling

Goal: a condition or state of
affairs in the world that the actor
would like to achieve

BG, FFG

Task: specify a particular way of
doing something

FFG, FSG

Soft goal: similar to goal, but the
satisfaction is subject to
interpretation

NPG, NFG, NSG

Resource: an entity that is not
considered problematic by
the actor

Not supported. However, can be
added to GUIMeta as an
extension

Goal-task link
Soft goal-task link
Soft goal-Soft goal link

Refinement relationships

Appendix A3: Correspondence between GUIMeta and Existing GUIM Approaches

 327

Task-Task link

Resource-task link Not supported since resources are
not supported. However, can be
added to GUIMeta

Supakkul
and Chung
[154]

Non-functional requirement NPG, NFG, NSG

Actor association point These are not directly supported
by GUIMeta since the notion of
actor is not used.
They can be indirectly supported
by declaring non-functional
goals, non-functional categories,
and constrain relationship.

Use case association point

Actor-use case association

System boundary association
point

Kim et al.
[77]

Structure view: it’s about
capturing business descriptions. A
business description is the
boundary of system and business,
specified by activity, agent, event,
object, candidate goal, and
structured object

Not supported by GUIMeta since
the business description
components (except goals) are
not included in GUIMeta.
However, they can be added as
extensions

 Abstraction view: capture
refinement relationships of
artifacts

Achieved by specifying goals and
refinement relationship

 Function view: capture system-
user interaction

Achieved by using use cases

 Quality view: goals should be
connected to quality attributes
they need to satisfy

Achieved by specifying non-
functional goals (NPG, NFG,
NSG) and constrain relationship

Appendix A4: Extraction Rule Creation and Quality Analysis

 328

Appendix A4 Extraction Rule Creation and Quality Analysis

Extraction Rule Creation

In this appendix, we discuss the steps taken to write new extraction rules based on our

defined rule categories and syntax. The following sentence (referred to as original

sentence) is used to provide examples for illustrating the extraction rule creation

techniques.

“The system will be designed to improve the quality of travel planning by

facilitating the communication between travelers”

Step 1: Identify ignorable parts or extractable artifact(s) and relationship(s) and

their rationales. This step focuses on identifying the possible artifacts and relationships

that can be extracted from a given sentence and/or which part of the sentence should be

ignored. This also includes the analysis for the reasons behind such extraction and/or

ignorance. Based on such analysis, the initial ideas about how necessary extraction rules

should be written are generated.

From the original sentence, the following information is identified:

• Ignored part: “The system will be designed.” This phrase should be ignored

since in this context, it does not contribute to specify any business objectives,

functionalities or constraints of a system. It is instead an introductory phrase for

another phrase following it (“to improve the quality of travel planning”). Note

that in another context, it is not guaranteed that the same phrase should also be

ignored. For instance, in a sentence such as “The system will be designed in

accordance to the HVCA standard,” it is obviously an important part of a

standard compliance goal. Therefore, what makes the phrase unimportant in this

case is its use with a following verb phrase. In other words, it is concluded that

if the phrase is used in the context of “The system will be designed to do

something,” then it should be ignored. The sentence would then become:

“improve the quality of travel planning by facilitating the communication

between travelers.”

Appendix A4: Extraction Rule Creation and Quality Analysis

 329

• Extracted artifacts and relationships: there are two goals that can be extracted

from this sentence, which are “Improve the quality of travel planning” (G1) and

“Facilitate the communication between travelers” (G2). G2 refines G1, or G2 is

a sub-goal of G1. The reason for this is that, G1 and G2 both describe important

details about a system (a business objective a functionality respectively). In

addition, the refinement relationship between these goals is recognized since the

sentence has the structure of “do something by doing something” (verb + object

+ by +verb_ing + object).

This information suggests that two extraction rules would need to be generated to

handle this single sentence. One helps ignore the unimportant phrase “The system will

be designed” (called R1) and another helps reveal the artifacts G1 and G2 and the

refinement relationships between them (called R2).

Step 2: Create rules based on the rule ideas. In the previous step, the initial ideas for

rules are generated. In this step, the goal is to transform these ideas into actual rules

classified and written in accordance with our rule categories and syntax. The following

sub-steps are taken during this process:

det(system-2, The-1)

aux(designed-5, will-3)

root(ROOT-0, designed-5)

aux(improve-7, to-6)

det(quality-9, the-8)

det(communication-16, the-15)

dobj(facilitating-14,
communication-16)
prepc_by(improve-7,
facilitating-14)

nsubjpass(designed-5, system-2)

auxpass(designed-5, be-4)

xcomp(designed-5, improve-7)

dobj(improve-7, quality-9)

nn(planning-12, travel-11)

prep_of(quality-9, planning-12)

prep_between(communication-16,
travelers-18)

Figure A4-1. Dependency Parse Tree of the Original Sentence

• Step 2.1: Obtain the dependency parse tree. Extraction rules are specified

based on the grammatical dependencies between words in a sentence. Therefore,

obtaining dependency parse trees is the first important step to transform rule

ideas into rule specifications. In addition, based on the obtained dependency

parse tree, it is possible to locate the dependencies related to the phrases (or part

Appendix A4: Extraction Rule Creation and Quality Analysis

 330

of sentence) involved in the rule ideas. The dependency tree is also an important

input for choosing the categories of rules in the next step. Figure A4-1 shows the

dependency parse tree of the original sentence. The bold dependencies are those

relevant to rule R1 and the italic dependencies are related to rule R2.

• Step 2.2: Determine the categories of the rule(s) being created. It is critical to

determine the types of the rules being created since different types of rules have

different syntaxes and characteristics. For instance, the first rule in our example

is for ignoring part of a sentence. Therefore, it could be either an ignorance rule

or a navigation rule. According to Figure A4-1, designed-5 is the root of the

phrase to be ignored (“The system will be designed”). However, it is also the

root of the entire tree. Thus, it is unsuitable to specify it as an ignorance rule

since an ignorance rule requires a primary action to have the root of the phrase

to be ignored as its variable (ignore(designed-5)). However, this leads to

the entire tree to be ignored since designed-5 is also the root of the tree.

Therefore, it should be specified as a navigation rule. In addition, the second

rule is intended to extract both artifacts and relationships from a sentence. A

relationship extraction rule would be suitable for this purpose.

• Step 2.3. Write the rule(s). Once the categories have been determined, the

initial versions of rules can be generated. In this initial version, the matching

dependencies identified in step 2.1 become the matching condition of the rules.

Actions are added according to the requirements of the rule categories and what

are expected to by done by the rules. If there is any word that appears in more

than one dependency and action, a variable is created for it. For each word that

appears only in one of the dependencies, it is specified inside the dependency

with a pair of surrounding curly brackets (“{}”). Table A4-1 presents the

initially generated rules. It can be seen that the matching condition in these rules

corresponds to the highlighted dependencies in Figure A4-1. The words that

appear multiple times in the matching conditions and actions are defined as

variables (i.e., X, Y, Z in rule R1 and X, Y in rule R2).

Appendix A4: Extraction Rule Creation and Quality Analysis

 331

Table A4-1. Initially Generated Extraction Rules

Rule R1 X={designed}
Y/VB
Z={system}
root(X)

det(Z, {the})

aux(X, {will})
nsubjpass(X, Z)
auxpass(X, {be})
xcomp(X, Y)
-> root(Y)

Rule R2 X/VB
Y/VBG
root(X)
prepc_by(X, Y)
-> sub_goal(goal(Y), goal(X))

Step 3: Generalize the rules. Extraction rules should be designed in a way that

maximizes its applicability in as many as possible cases to support the model extraction

process. In the previous step, initial versions of extraction rules are generated based on

the specific context considered. In this step, the goal is to generalize such rules to

extend its applicability in other similar contexts. This involves a deeper analysis on the

original sentence and initial rules to verify whether those rules can be applied (or can be

extended/modified to be applicable) in different variances of the original sentence. The

variances of a sentence can be identified by replacing certain words in such a sentence

with their alternatives (i.e., replacing “the” with “a,” “this,” “that”), or changing the

structure of the sentence while keeping its meaning unchanged (i.e., rewrite a passive-

voice sentence in active voice). Such an analysis enables the generalization of the rules

to make them applicable to different variances of a sentence (i.e., no matter “the” or

“this” or “that” is used, the rule is still applicable). In case it is identified that a single

rule cannot handle all variances of a sentence, then a new rule (most of the time it is

similar to the previously created rule, except some minor changes) needs to be created.

This entire step can be viewed as a brainstorming process to identity as many as widely

applicable rules based on a single original sentence.

Appendix A4: Extraction Rule Creation and Quality Analysis

 332

Table A4-2. Generalized Extraction Rules

Rule R1 X={design|build|aim|intend|target}
Y/VB
root(X)
nsubjpass(X, {system|project|software|application})
auxpass(X, {be})
aux(Y, {to})
xcomp(X, Y)
-> root(Y)

Rule R1* X={design|develop|build}
Y/VB
root(X)
dobj(X, {system|application})
aux(Y, {to})
xcomp(X, Y)
-> root(Y);

Rule R2 X/VB
Y/VBG
root(X)
prepc_by(X, Y)
-> sub_goal(goal(Y), goal(X))

Table A4-2 shows the generalization results of the rules created in the previous step.

Regarding rule R1, it is identified that if the ignored phrase in the original sentence is

rewritten as “The system is designed to…” (“will be” is replaced by “is”), or “This

system shall be intended to…” (“this” replaces “the,” “shall” replaces “will,”

“intended” replaces “designed”), its role is unchanged and should still be ignored. In

addition, the situation is also not changed if “system” is updated to “software,” (“The

software is designed to…”). Based on this observation, the initial R1 rule is modified to

accommodate these variances. The dependency det(Z, {the}) is removed since

regardless of what determiner is used, the role of the phrase is unchanged. Similarly, the

dependency aux(X, {will}) is removed to allow the rule to handle all variances of

the to-be verb allowable in this phrase (i.e., “is,” “are,” will be,” “shall be”).

When considering restructuring the entire original sentence in active voice, it is found

that the generated rule R1 is no longer applicable since it has the matching condition

nsubjpass(X,{system|project|software}) and auxpass(X, {be}) that can

only be met by an passive voice sentence. In addition, while the phrase “The system is

Appendix A4: Extraction Rule Creation and Quality Analysis

 333

intended to…” is commonly used, it is not usual to write “Intend the system to….”

Therefore, a new (but similar) rule should be created to handle the case the original

sentence is written in active voice. Such rule is showed as rule R1* in Table A4-2.

Regarding rule R2, it is already quite general since its variables do not have values.

Therefore, no variance can be generated.

In GUEST, the values of rule variables are recommended to be in the standard form of

the words they refer to if possible. For instance, “design” is used instead of “designs”

or “designed,” or “application” is used instead of “applications.” This allows the rules

to be general enough to handle different variances (i.e., cases in which the plural form is

used is handled in the same way as when a singular form is used).

Extraction Rule Quality Analysis

Extraction rules play the key role in our approach to goal-use case model extraction.

The accuracy of extraction result is directly affected by the quality of extraction rules.

Therefore, it is critical to ensure the high quality of these rules. GUEST offers a number

of features to verify the correctness, overlap and consistency of them.

Correctness

 GUEST provides a syntax checker based on regular expression to guarantee that rules

are specified in conformance to our defined syntax. For instance, there must be a

matching condition and at least one action in a rule. In addition, a rule must conform to

the requirements of the category it belongs to. For instance, a goal ignorance goal must

have its primary action as an “ignore” action. The syntax checker is integrated with the

rule editor to ensure rules to be specified correctly.

Redundancy

Since the number of extraction rules may evolve over times, or they may be developed

by different users, managing the set of rules is challenging. It is thus inevitable that

some rules may be redundant with some other. For instance, the rule 𝑅# has a set of

dependencies 𝐷# as its matching condition and a set of actions 𝐴#. Similarly, the rule 𝑅%

has a set of dependencies 𝐷% and a set of actions 𝐴%. Given 𝐷# is a subset of 𝐷% and 𝐴#

is the same as 𝐴%, then rule 𝑅% is redundant since if a sentence matches 𝑅#, it definitely

matches 𝑅%. Redundancy does not affect the accuracy of the extraction. However, it

Appendix A4: Extraction Rule Creation and Quality Analysis

 334

may create extra processing overhead since a sentence is found matching different

(redundant) rules that then involves the execution of all these rules. GUEST is able to

automatically identify redundancy within a given set of rules by comparing these rules’

matching conditions.

Consistency

Consistency is another important property of extraction rules. In GUEST, we define

inconsistency as the case in which there is a rule whose matching condition is

equivalent to the matching condition of another rule while their sets of actions are not

equal to each other. Inconsistency is a serious issue since the same sentence may match

both rules with different characteristics and behaviors. This implies that at least one of

these rules is not correctly specified. Similar to redundancy detection, GUEST

automatically identifies rule inconsistencies by comparing rules by their matching

conditions and actions.

Overlap

We define overlaps between extraction rules as the cases in which there is a rule whose

matching condition is a subset of the matching condition of another rule, and these rules

are not redundant or inconsistent. Overlap is often not a problem. However, overlap

calculation it may be helpful as means to review or investigate the set of extraction

rules. GUEST is able to calculate and display the degree of overlapping between each

pair of rules based on the proportion of dependencies shared between them.

Appendix A5: Algorithms for Goal and Use Case Extraction

 335

Appendix A5 Algorithms for Goal and Use Case Extraction

This appendix provides the high-level algorithms for the process of using extraction

rules for identifying goals and use cases from text.

Goal Extraction

Figure A5-1 provides the algorithm for goal extraction.

Function extractGoals(sen)
Input: sen à the sentence being considered for extraction
Output: an extraction report that stores the association
between a list of used extraction rules and the final
extracted dependency collections, alternative extraction
results, and any problems that occur during extraction.

 rootDepTree = getDependencyTree(sen)

rootDC = getDependencyCollection(rootDepTree) //dependency
collection (DC) is a data structure designed to wrap a
dependency tree and record its relevant information, i.e.,
its relationship with other dependency collections and the
list of extraction rules used to derive it from the
original sentence. Each rule execution outcome contains
one or more dependency collections. Each non-empty DC
corresponds to an extracted goal during the extraction.
rootDC contains only dependencies obtained from sen.

extractionReport = an empty extraction report

extractGoals(rootDC, extractionReport) //search for
matching rules, generate rule execution results and create
reports for problems detected

return extractionReport
End Function

Function ExtractGoals(rootDC, extractionReport)

processedDCs = new Stack

processedDCsàPUSH(rootDC)

ExtractGoal(extractionReport, processedDCs)

END Function

Function ExtractGoals(extractionReport, processedDCs)

WHILE !empty(processedDCs)

currentDC = processedDCsàPOP

processDC(currentDC, extractionReport, processedDCs)

END WHILE

END Function

Appendix A5: Algorithms for Goal and Use Case Extraction

 336

Function processDC(currentDC, processedDCs, extractionReport)

outputs = extractWithIgnoranceRules(currentDC) //list of
extraction outputs, each for a matched rule. An output
contains two dependency collections and their
relationship. The dependency collections can be NULL
depending on the matched rule.

IF outputs != NULL //in case one or more matching
ignorance rules are found and executed

recordOutputs(outputs, processedDCs, extractionReport)
//record the outputs into extraction report, update the
processesdDCs stack with the new DCs from the outputs.
In case multiple rules were matched, alternative
extractions would be recorded.

ELSE

outputs = extractWithNavigationRules(currentDC)

IF outputs = NULL

outputs = extractWithRelationshipRules(currentDC)

IF outputs = NULL

outputs = extractWithSplittingRules(currentDC)

IF outputs != NULL

recordOutputs(outputs, processedDCs,
extractionReport)

END IF

ELSE

recordOutputs(outputs, processedDCs,
extractionReport)

END IF

ELSE

recordOutputs(outputs,
processedDCs,extractionReport)

END IF

END IF

END Function

Figure A5-1. Algorithm for Goal Extraction

Use Case Extraction

Figure A5-2 provides the algorithms for use case extraction.

Appendix A5: Algorithms for Goal and Use Case Extraction

 337

Function extractUseCase(text)

Input: text à textual specification of the entire use
case

Output: an extraction report that stores a set of
extracted dependency collections (DC). Each DC
corresponds to an artifact. The report also captures the
extracted relationships between these DCs, alternative
extraction results and any problems that occur during the
extraction. The extracted DCs and relationships will then
be used to create a use case and its components, possibly
use case goals and constraints and relationships between
these artifacts.

extractionReport = new empty extraction report

usecase = new empty use case

extractionReport.addUseCase(usecase)

currentComponent = NULL //store the currently considered
use case component

lines = split(text) //split text by line breaks

FOR EACH line: lines

component = getComponent(line) //get component from
the line

IF component = NULL //in case the line is not a
component indicator, then it is part of the
specification of the currently considered component

processComponent(currentComponent, line, usecase,
extractionReport) //process the component
specification. Depending on the component, suitable
extraction rules are used. The algorithm for
finding and executing matching rules is similar to
that of goal extraction.

ELSE

currentComponent = component //update the currently
considered component

END IF

END FOR

return extractionReport

END Function

Figure A5-2. Algorithm for Use Case Extraction

Appendix A6: Modifying Rule Creation and Quality Analysis

 338

Appendix A6 Modifying Rule Creation and Quality Analysis

In this appendix, we discuss the steps taken to write new modifying rules based on our

defined rule syntax. The following specification (referred to as original specification) is

used to provide examples for illustrating the modifying rule creation techniques.

“Users are capable of creating reviews”

Step 1: Identify how the specification should be properly written. In this step, the

focus is on determining if the original specification is improperly written and if that is

the case, how it should be specified. In this example, it is decided that the original

should be instead written as “Users create reviews.” We refer to it as a modified

specification in our discussion. The desired specification should be “Users shall be able

to create reviews.” However, the modal verb phrase (“shall be able to”) addition

should be handled in the next step of the polishing process rather than by modifying

rules.

Step 2: Identify the necessary modifications to the dependency tree. Modifying

rules are aimed to make modifications in specifications based on their dependency tree

structures. Therefore, in this step, both the original specification and modified

specification are first parsed to obtain their dependency trees. The dependency trees are

then compared to identify the necessary modifications that need to be made. Table 6-10

presents these dependency trees. We refer to them as original dependency tree and

modified dependency tree respectively. It can be seen that the two dependency trees

share a number of important details. In both trees, ‘users’ is the nominal subject

(denoted by the dependency nsubj(X, users) in which X is the root of a tree) and

‘reviews’ is the direct object of ‘create.’ From this observation, it is clear that in

order to obtain the modified dependency tree, the following modifications should be

made to the original tree. Firstly, the dependencies that are related to the phrase “are

capable of” should be removed (the ones in italic in Table A6-1). Secondly, the node

creating-5 in the original dependency tree should be changed to its standard form

(i.e., create) and set as the root of the new tree. Thirdly, a new dependency that

specifies the nsubj relationship between create and Users-1 should be created.

Appendix A6: Modifying Rule Creation and Quality Analysis

 339

Table A6-1. Dependency Trees of the Original and Modified Specifications

Original Dependency Tree Modified Dependency Tree
nsubj(capable-3, Users-1)
cop(capable-3, are-2)
root(ROOT-0, capable-3)
prepc_of(capable-3, creating-5)
dobj(creating-5, reviews-6)

nsubj(create-2, Users-1)
root(ROOT-0, create-2)
dobj(create-2, reviews-3)

Step 3: Determine the necessary actions to facilitate the modifications. Based on the

necessary modifications identified in step 2, we determine the actions that can facilitate

such modifications. These actions must be from the set of actions we have defined for

modifying rules. In this example, we first look for an action that can be used to remove

the dependencies corresponding to the phrase “are capable of.” There are two types of

actions that can be used for this purpose: dependency removal action and dependency

collection removal action. Since the dependencies that we want to remove are linked

directly to capable-3, a dependency collection removal action with the origin as

capable-3 can be used. In addition, because dobj(creating-5, reviews-6)is

the only dependency that should be remained after this removal, we only need to add

one terminal point, which is creating-5. Therefore, the action should be

remove(capable-3, creating-5). In addition, creating-5 should be

transformed to its standard form (i.e., create-5) and set as the root of the new

dependency tree.

Based on our set of defined actions, a verb adding action can be applied in this case. As

discussed earlier in this section, such an action has the syntax of new_verb(name,
{value}, POS_tag_ref, POS_tag_subject, node_before, node_after,

is_negated, is_root). Since creating-5 is an existing node, we do not need to

fill in the {value}, node_before, and node_after parameters. Moreover, the new

POS tag of this node should be the same as that of the node are-2 in the original

dependency tree. Therefore, the value of POS_tag_ref is are-2. Furthermore, the

value of is_negated and is_root is false and true respectively since no negation

should be added and creating-5 is to be set as the root of the new dependency tree.

To sum up the action should be new_verb(<name of this node>, null, T,

null, null, null, false, true). The name of this node will be determined in

Appendix A6: Modifying Rule Creation and Quality Analysis

 340

the next step. Regarding the last needed modification about creating a new dependency

nsubj(create-5, Users-1), a dependency adding action can be applied.

Step 4: Write the rule. After all actions are determined, it is time to write the rule to

facilitate the modifications in the original specification. An important task in this step is

identifying the conditions of such a rule. In this example, it can be seen that if a

specification is in the form of “someone is/are capable of doing something,” then it

should be instead written in the form of “someone do/does something.” From this

analysis and the determined actions in step 3, the initial version of the modifying rule

can be created. Figure A6-1 presents this rule.

X={capable}
Y/{NN|NNS|NNP|NNPS}
Z/VBG
T={be}
nsubj(X, Y)
cop(X, T)
root(X)
prepc_of(X, Z)
-> new_verb(Z, null, T, null, null, null, false, true),
remove_col(X, Z), nsubj(Z, Y);

Figure A6-1. The Initial Version of the Modifying Rule

Step 5: Generalize the rule. Modifying rules should be designed in a way that

maximizes its applicability in as many as possible cases to support the specification

polishing process. In the previous step, the initial version of the modifying rule is

generated based on the considered specific context. In this step, the goal is to generalize

such a rule to extend its applicability in other similar contexts. Consider the current

version of the rule in our example. Although the conditions are sufficiently general, the

actions are not adequate to deal with some variances this specification. For instance, in

case the original specification is written as “Registered users are capable of creating

reviews” (its dependency tree is shown in Figure A6-2), the dependency between

Registered-1 and users-2 would be lost during the polishing process due to the

action of remove_col(X, Z) (in which X refers to capable-4 and Z refers to

creating-5). To prevent this problem, an additional terminal point should be added

Appendix A6: Modifying Rule Creation and Quality Analysis

 341

into this action to prevent the dependency tree rooted at users-2 to be removed. The

action thus should be remove_col(X, Z, Y) (Y refers to users-2 in this rule).

Figure A6-2. A Variance of the Original Specification

Figure A6-3. Another Variance of the Original Specification

Moreover, the dependency adding action new_verb(Z, null, T, null, null,

null, false, true) is also not sufficient to handle some variances. Consider an

example in which the original specification is “Every user will be capable of creating

reviews” (its dependency tree is shown in Figure A6-3). Since the value of the

POS_tag_ref parameter in this action is T, which refers to the node be-4, the POS tag

of creating_5 in the new dependency tree is the same as be-4, which is VB. This

means the modified specification would become “Every user create reviews” which is

grammatically incorrect (“create” should be instead “creates”). From this observation,

it turns out that the POS tag of creating_5 should be determined based on the

subject of the entire specification instead of being referenced from be-4. Thus, the

action should now be changed to new_verb(Z, null, Y, null, null, null,

false, true). The updated version of this modifying rule is presented in Figure A6-

4.

capable-4
(JJ)

are-3
(VBP)

creating-5
(VBG)

reviews-6
(NNS)

users-2
(NNS)

dobj

nsubj cop prepc_of

Registered-1
(JJ)

amod

capable-5
(JJ)

will-3
(MD)

creating-6
(VBG)

reviews-7
(NNS)

user-2
(NN)

dobj

nsubj aux prepc_of

Every-1
(DT)

det

be-4
(VB)

cop

Appendix A6: Modifying Rule Creation and Quality Analysis

 342

X={capable}
Y/{NN|NNS|NNP|NNPS}
Z/VBG
T={be}
nsubj(X, Y)
cop(X, T)
root(X)
prepc_of(X, Z)
-> new_verb (Z, null, T, null, null, null, false, true),
remove_col(X, Z, Y), nsubj(Z, Y);

Figure A6-4. The Final Version of the Modifying Rule

Similar to the extraction rule quality analysis support discussed in Appendix A4,

GUEST also provide users to analyze modifying rules for correctness, redundancy,

consistency.

Appendix A7: Ontology Creation and Quality Analysis

 343

Appendix A7 Ontology Creation and Quality Analysis

Ontology Creation Process

In this section, we describe our steps to create ontologies. We adapted Noy et al.

ontology building guidelines [113]. Protégé16 is our choice for ontology development

tool due to its comprehensive features. The examples used in this section come from our

attempt of building ontology for the traveler social networking domain.

Step 1: Determine the domain and scope of the ontology. In this step, it is important

to identify in which domain we are going to build an ontology. A domain often has a

number of sub-domains. For instance, the sub-domains of the traveler social networking

domain include: travel, social network (online community) and web application. In

addition, the scope of the ontology needs to be determined. In the context of GUITAR,

ontology is expected to contain the concepts and relationships of concepts in the

relevant domains. Our ontology structure (cf. Figure 7.2 in Chapter 7) suggests what to

look for to build ontology. For instance, they include:

• What the entities and properties used to describe the domain are (i.e., traveler,

booking, account, safe, expensive)

• What activities to be carried out (i.e., create review, book hotel)

• What the characteristics of such activities. For instance, who usually book

hotels? Who write reviews? Who is not allowed to write reviews? In what means

a user can book hotels (i.e., phone, internet)?

Step 2: Consider reusing existing ontologies. It is always worth considering existing

ontologies and checking the possibility of reusing them for our particular domain and

tasks. In this step, the sub-domains identified in step 1 become extremely important. If

no existing ontology were found for the main domain, looking into the sub-domains

would be helpful in obtaining existing relevant ontologies. For instance, since no

ontology was found for the traveler social networking domain, we then searched and

obtained relevant ontologies in the domains of travel and online community. Some

16 http://protege.stanford.edu/

Appendix A7: Ontology Creation and Quality Analysis

 344

ontology repositories such as Protégé Ontology Library17, DAML Ontology Library18

and Swoogle Semantic Web Search Engine19 offer pre-built ontologies in different

domains. Once relevant ontologies are obtained, the following steps are performed.

• Step 2.1: Study the ontologies’ contents and structures. It is critical to gain

understanding of what each ontology contains and how it is specified (i.e., its

naming convention and class hierarchy). Such information is very important

when merging these ontologies into one, especially if they are overlapped.

Reading and studying the relevant domains’ documentations are usually

required to comprehend the contents of the ontologies.

• Step 2.2: Merge the ontologies into a single ontology. We use PROMPT

[114], a plugin for Protégé, to merge multiple ontologies. PROMPT provides a

semi-automated and interactive support to (1) identify identical or linguistically

similar concepts in two ontologies, (2) suggest merging actions and (3) identify

and resolve conflicts in the resulting ontology. PROMPT reportedly achieved

over 90% precision and recall rates for its suggestion quality.

• Step 2.3: Convert the resulting ontology to our format. In GUITAR, we

specify and use ontologies in Manchester OWL Syntax. Therefore, it is

necessary to convert the resulting ontology into this format to be usable with

our tool. This can be done automatically by Protégé. In addition, we need to

make sure the ontology is specified according to our ontology meta-model. For

instance, we use our notion of activity instead of object properties to describe

the relationships between classes (the only allowable object properties are those

defined under relationship category in our ontology meta-model). In fact, the

relationship “users create reviews” is described with an activity “create

review” and a “hasSubject” relationship between this activity and the class

“user.” Using activities enables the capturing of relationships between activities

(i.e., two activities are identical, or one requires another), which is not possible

by using object properties. In addition, it is important to make sure the names of

concepts conform to our naming convention.

17 http://protegewiki.stanford.edu/
18 http://www.daml.org/ontologies/
19 http://www.swoogle.umbc.edu

Appendix A7: Ontology Creation and Quality Analysis

 345

Step 3: Semi-automatically build an initial ontology. In case no existing ontology

can be obtained, or if existing ontologies are incomplete (if we identify the need for

additional details for the ontology) or unsuitable for our needs, we can start exploring

ontology components from the domain descriptions or documents that we find. In this

step, we use Text2Onto [24], an ontology learning tool, to build an initial ontology.

Text2Onto provides a semi-automated support for extracting ontologies with concepts

and relationships (i.e., sub-class, instances) from textual domain descriptions.

It thus helps us save time and effort in building an initial version of the ontology.

Text2Onto is the best ontology learning tool currently available according to our

investigation. It, however, has a number of limitations. First, it identifies all noun

phrases in a sentence as concepts. This often creates false positives because not all noun

phrases are valid domain concepts. Therefore, after the initial ontology is obtained, it is

necessary to manually verify the validity of the identified concepts and relationships

(i.e., remove unnecessary concepts). Second, it does not support the identification of

quality properties (i.e., good, expensive), activities and a number of relationships (i.e.,

require, exclude, leadTo) that are required in our framework. Thus, additional steps

need to be taken to further complete the ontology. In case an existing ontology is used,

it would be merged into the initial ontology.

Step 4: Identify and classify concepts in the ontology. In this step, we focus on

identifying additional concepts in the domain that have not been included in the initial

ontology. We also classify all concepts (include the existing ones) according to our

ontology structure. For example, some terms in the traveler social networking domain

are travel, traveler, hotel, ‘reserve room,’ secure. Traveler should then be classified as

an active entity, hotel as an inactive entity, ‘reserve room’ as an activity and secure as

an adjectival property. For specific terms such as English, French, white, or red, we

define them as instances of more general terms (i.e., Language, Color). We have

developed our classification of around 300 commonly used verbs and their relationships

(i.e., equivalent, disjoint)20. Therefore, in this step, verbs do not need to be identified

and classified unless they do not exist in our collection.

20 The verb collection can be found at http://goo.gl/gCUofM

Appendix A7: Ontology Creation and Quality Analysis

 346

Step 5: Identify relationships between concepts. In this step, we identify additional

semantic relationships between the concepts. Examples of such relationships are

equivalent, disjoint, sub-class, require, exclude, leadTo (between activities),

hasAttribute (i.e., the entity ‘service’ has attributes of ‘good’ or ‘poor’). In textual

domain descriptions, these relationships are usually recognized by a number of

grammatical structures. For example, a require relationship between the activities

‘register account’ and ‘post comment’ can be identified from the sentence “a user must

register for an account before he can post comments in the system.” In this example,

the structure ‘must do something before doing something’ implies a require

relationship.

Ontology building is a time and effort-consuming task. It is necessarily an iterative

process. For instance, in case step 5 is already completed, if new domain

documentations are available, we would need to go back to step 3 to identify and

classify additional terms. Additionally, if a new existing ontology were found, step 2

and later would be repeated. A sample ontology we created for the traveler social

networking domain can be found at http://goo.gl/gCUofM.

While the creation of the domain ontology should be carried out at the beginning of the

domain study phase, it can be extended at any time during the RE process when new

knowledge about the domain is obtained. GUITAR provides an ontology editor to

enable quick editing and on-the-fly update of ontologies (cf. section 7.4 in Chapter 7).

Ontology Quality Analysis

As the semantic analysis of requirements in our approach largely depends on the

ontology’s quality, it is critical to ensure the ontology is error-free before the analysis

can be started. Table A7-1 presents a categorization of ontology anomalies in the

context of our work. These categories were developed based on a collection of general

ontology pitfalls identified and investigated by researchers and practitioners [125]. We

identified the list of applicable anomalies and extended it with our identified possible

ontology issues. The anomalies are classified into 3 categories: incorrectness,

incompleteness and inconsistency. The complete description of these anomalies can be

found in Table A7-2.

Appendix A7: Ontology Creation and Quality Analysis

 347

Table A7-1. Categories of Ontology Anomalies

Incorrectness

A1: Creating unclassified classes
A2: Merging different concepts into the
same class
A3: Missing annotations
A4: Syntactically invalid relationships
A5: Semantically invalid relationships
A6: Specifying a hierarchy exceedingly

A7: Specifying the subject of an activity
and object of a verb exceedingly
A8: Wrapping intersection and union
A9: Misusing ontology annotations
A10: Using a miscellaneous class
A11: Using different naming criteria in
the ontology

Incompleteness

A12: Missing classes A13: Missing relationships

Inconsistency

A14: Ontology is logically inconsistent

In our work, we use OOPS! (OntOlogy Pitfall Scanner) 21 , a web-based ontology

validator, to identify these anomalies. OOPS! is able to automatically identify A2, A3,

A8-11 and A14 (cf. Table A7-1). Our ontology editor can be used to automatically

detect A1 and A4. A5, A6, A7, A12 and A13 are semantic problems. For instance, A5 is

concerned with the semantic validity of a relationship between two classes (i.e., does

activity A really requires activity B?). A12 and A13 are about the possibility that a class

or a relationship in the domain of interest has not been identified by the ontology

engineer. In our work, we partially support the identification of these problems. For

instance, our ontology editor detects the cases when not all predefined classes (i.e.,

active entity, inactive entity, adjectival property) have a subclass. In addition, it

identifies classes that are not connected to any pre-defined classes or does not have all

of its predefined relevant relationships specified (i.e., an activity that does not have a

require relationship with any other activity). Such detection helps ontology engineers

enhance the ontology completeness.

21 http://oops.linkeddata.es/

Appendix A7: Ontology Creation and Quality Analysis

 348

Table A7-2. Descriptions of Ontology Anomalies22

Incorrectness

A1. Creating unclassified classes: there exists a class that does not belong to any

pre-defined class in the ontology meta-model.

A2. Merging different concepts in the same class: a class is created whose identifier

is referring to two or more different concepts. An example of this type of pitfall is to

create the class ‘StyleAndPeriod,’ or ‘ProductOrService.’

A3. Missing annotations: ontology terms lack annotations properties. Annotation is

critical to improve the ontology understanding

A4. Syntactically invalid relationships: some relationships specifications are not

(syntactically) correct according to the ontology meta-model. For instance, a ‘leadTo’

relationship is specified between two verbs ‘Book_v’ and ‘Attend_v’ while they are

only allowed between activities.

A5. Semantically invalid relationships: some relationships are not semantically

correct. For instance, two entities ‘Library_e’ and ‘Librarian_e’ have an equivalent

relationship.

A6. Specializing a hierarchy exceedingly: the hierarchy in the ontology is

specialized in such a way that the final leaves cannot have instances, because they are

actually instances and should have been created in this way instead of being created

as classes. An example of this type of pitfall is to create the class

‘RatingOfRestaurants’ and the classes ‘1star_e,’ ‘2stars_e,’ and so on, as subclasses

instead of as instances. Another example is to create the classes ‘Melbourne_e,’

‘Sydney_e,’ ‘Canberra_e,’ and so on as subclasses of ‘Place_e.’ This pitfall could be

also named ‘Individuals are not Classes.’

A7. Specifying the subject of an activity or object of a verb exceedingly: in some

cases, the specification of an activity’s subject (agent) or a verb’s object is more

restricted than expected. An example of this type of pitfall is to restrict the possible

agent of the ‘createReview_a’ activity to the class ‘User_e,’ instead of allowing also

the class ‘Admin_e or User_e’ to create reviews.

A8. Swapping intersection and union: in some cases, the use of intersection (of

22 The descriptions of these common ontology anomalies are based on the Catalogue of common
pitfalls http://oops.linkeddata.es/catalogue.jsp

Appendix A7: Ontology Creation and Quality Analysis

 349

classes) should instead be correctly specified with union. For instance, it would be

incorrect if the agent of the ‘createReview_a’ activity above is specified as ‘Admin_e

AND User_e’ since this equals to an empty class.

A9. Misusing ontology annotations: The contents of some annotation properties are

swapped or misused. An example of this type of pitfall is to include in the Label

annotation of the class ‘Crossroad_e’ with the following sentence ‘the place of

intersection of two or more roads’ and to include in the Comment annotation the

word ‘Crossroads.’

A10. Using a miscellaneous class: to create in a hierarchy a class that contains the

instances that do not belong to the sibling classes instead of classifying such instances

as instances of the class in the upper level of the hierarchy. An example of this type

of pitfall is to create the class ‘HydrographicalResource_e,’ and the subclasses

‘Stream_e,’ ‘Waterfall_e,’ etc., and also the subclass ‘OtherRiverElement_e.’

A11. Using different naming criteria in the ontology: Ontology elements are not

named using the same convention within the whole ontology. It is considered a good

practice that the rules and style of lexical encoding for naming the different ontology

elements is homogeneous within the ontology.

Incompleteness

A12. Missing ontology classes and A13 Missing ontology relationships: One or more

classes and relationships in the domain are missing from the ontology.

Inconsistency

A14: Ontology is logically inconsistent: Inconsistency is identified in case there exist

a class inferred to be equal to an empty class (owl:Nothing).

*Anomalies in italic can be automatically identified by either OOPS! or GUITAR.

Appendix A8: Algorithms for Semantic 3Cs Problems Detection

 350

Appendix A8 Algorithms for Semantic 3Cs Problems

Detection

This appendix presents some of the key algorithms for detecting semantic 3Cs problems

in a goal-use case integrated model.

Table A8-1 and Table A8-2 present our algorithms for detecting missing relationships

(P4 in Table 7-5) and missing use case exceptions or pre-conditions (P3.2.3 in Table 7-

5) respectively. Algorithms for other problems solvable by this technique follow the

same concepts.

Table A8-1. Algorithm for Detecting Missing Relationship

Function checkMissingRelationship(a1, a2)

 Input: a1 and a2 are artifact specifications

 Output: a problem report that contains the association between a
 missing relationship and the explanation for it. Such
 explanation is based on the explanation for the relationships
 between ontological concepts generated by Pellet. A problem
 report may contain more than one missing relationship

 IF isAlternative(a1, a2) //if the artifacts are
 alternative of each other, then no need to identify
 relationship between them

 return NULL

 END IF

 a1_act = getActivity(a1) //extract activity of artifact a1

 a2_act = getActivity(a2) //extract activity of artifact a1

 a1_mos_act = getMOSDesc(a1_act) //get MOS representation
 of the activity a1_act

 a2_mos_act = getMOSDesc(a2_act)

 report = findPossibleRel(a1_mos_act, a2_mos_act)

 IF report != NULL

 return report

 END IF

 return NULL

END Function

Appendix A8: Algorithms for Semantic 3Cs Problems Detection

 351

Table A8-2. Algorithm for Detecting Missing Extension/Pre-condition

Function checkMissingExceptionOrPreCon(s)

 Input: s is a use case step specification

 Output: a problem report that contains the association between
 an identified exceptional case and the explanation for it. The
 explanation is based on the explanation of relationships between
 ontological concepts generated by Pellet. A problem report may
 contain more than one exceptional case

 s_act = getActivity(s) //get the activity of the use case
 step

 s_mos_act = getMOSDesc(s_act)

 s_agent = getAgent(s)

 s_mos_agent = getMOSDesc(s_agent)

 s_obj = getObject(s)

 s_mos_obj = getMOSDesc(s_obj)

 exclActors = getExcludingActors(s_mos_act) //infer active
 entities that has ‘exclude’ relationship
 with the activity

 exclObjs = getExcludingObjects(s_mos_act) //infer inactive
 entities that has ‘exclude’ relationship
 with the activity

 //identify the actors and objects (in exclActors and
 exclObjs) that are sub-classes of s_mos_agent and s_mos_obj
 respectively

 relevantActorsObjs = getRelevantActorsObjs(actors, objs)

 IF relevantActorsObjs = NULL

 Return NULL

 END IF

 report = new MissingPreCon_ExtReport //create an empty
 report

 FOR EACH actor_obj in relevantActorsObjs

 //check if a pre-condition or an extension already
 exists to handle this actor or object.

 isActor = checkIsActor(actor_obj) //check if the class
 is actor (active entity) or object (inactive entity)

 uc = getUseCase(s)

 //check if a pre-condition or an extension exists to
 handle this entity. For instance, if an actor ‘banned
 user’ is known for not being allowed to do the action
 required by the use case or step (i.e. create review),
 then this function return true in case there is a pre-
 condition in the form of ‘the user is not a banned
 user,’ or ‘the user is not banned’

 IF !checkPreconExists(actor_obj, isActor, uc) &

 !checkExtensionExists(actor_obj, isActor, uc)

 record(actor_obj, report) //this adds an
 association between actor_obj and the explanation

Appendix A8: Algorithms for Semantic 3Cs Problems Detection

 352

 why it is a missing exceptional case to handle

 END IF

 END FOR

END Function

Table A8-3 presents the algorithm for detecting inconsistency between two goals.

Table A8-3. Algorithm for Detecting Goal Pairwise Inconsistency

Function checkGoalPairwiseInconsistency(a1, a2)

 Input: a1 and a2 are two goal specifications

 Output: an explanation for the detected inconsistency. It is
 NULL if no inconsistency found

 sfs1 = getSemanticFunctions(a1) //get all semantic functions of
 a1. Verb and object are combine into an activity function

 sfs2 = getSemanticFunctions(a2)

 IF sfs1 has at least an element which is not in sfs2 AND
 vice versa

 return NULL

 ENF IF

 //get common set of semantic functions of two a1 and a2

 common_sfs = getCommonSfs(sfs1, sfs2)

 conflicting_sfs = new List to store pairs of conflicting
 semantic functions

 overlapped_sfs = new List to store pairs of overlapped
 semantic functions. 2 semantic functions are overlapped if
 one’s MOS representation is equivalent to or subclass of
 another’s)

 FOR EACH sf in overlapped_sfs

 sf_val1 = getSemanticFunctionValue(a1, sf)

 sf_val2 = getSemanticFunctionValue(a2, sf)

 sf_mos_val1 = getMOSDesc(a1, sf)

 sf_mos_val2 = getMOSDesc(a2, sf)

 IF !relevant(sf_mos_val1, sf_mos_val2) //’relevant’ means
 sf_mos_val1 and sf_mos_val2 are neither overlapped nor
 conflicting

 return NULL

 END IF

 IF isConflicting(sf_mos_val1, sf_mos_val2)

 conflicting_sfs.ADD(sf, sf_mos_val1, sf_mos_val2)

 ELSE IF isOverlapping(sf_mos_val1, sf_mos_val2)

 overlapped_sfs.ADD(sf, sf_mos_val1, sf_mos_val2)

 END IF

 END FOR

Appendix A8: Algorithms for Semantic 3Cs Problems Detection

 353

 IF count(conflicting_sfs) = 1

 expl = generateInconsistencyExpl(conflicting_sfs,
 overlapped_sfs)

 return expl

 END IF

 return NULL

END Function

Table A8-4 presents the algorithm to extract condition or event and main description of

an artifact for the purpose of identifying cyclic inconsistent relationship.

Table A8-4. Algorithm for Extracting Conditions/Events

Function extractConditionEvent(goals, ontology)
 Input: goals is a list of goals in the model
 addedArtifacts = new empty map
 FOR EACH goal g in goals
 IF hasConditionOrEvent(g)
 g1 = getConditionOrEvent(g)
 g2 = getMainDesc(g) //main description is the rest

 of g, after removing its condition or event
 setRelationship(g1, g2, “require”) //set the

 ‘require’ relationship between these g1 and g2
 addedArtifacts.add(g1, g)
 addedArtifacts.add(g2, g)
 END IF
 END FOR
 FOR EACH artifact a in addedArtifacts
 duplicate = false
 FOR EACH goal g in goals
 IF isDuplicate(a, g) //check if they are

 semantically identical. Use Parameter
 matching technique (T4) to do this.
 duplicate = true
 mergeRelationships(a, g)
 BREAK
 END IF
 END FOR
 IF !duplicate
 goals.add(a)
 END IF
 END FOR
 //the updated version of goals from this algorithm is only used

 for cyclic relationship validation. It does not affect the
 original goal-use case model.
END Function

References

 354

References

[1] J.-R. Abrial, and A. Hoare, "The B-book: assigning programs to meanings".

Cambridge University Press. 2005.

[2] B.S. Ali and Z.M. Kasirun. "Developing tool for crosscutting concern

identification using nlp". in Information Technology, 2008. ITSim 2008.

International Symposium on. IEEE. 2008.

[3] D. Alrajeh, J. Kramer, A.v. Lamsweerde, A. Russo, and S. Uchitel. "Generating

obstacle conditions for requirements completeness". in Proceedings of the 2012

International Conference on Software Engineering. IEEE Press. Zurich,

Switzerland. 2012.

[4] V. Ambriola and V. Gervasi. "Processing natural language requirements". in

Proceedings of the 12th International Conference on Automated Software

Engineering. 1997.

[5] D. Amyot, X. He, Y. He, and D.Y. Cho. "Generating Scenarios from Use Case

Map Specifications." in Proceedings of International Conference on Quality

Software, 3: p. 108-115. 2003.

[6] A.I. Anton. "Goal-based requirements analysis". in Proceedings of the 2nd

International Conference on Requirements Engineering. IEEE. 1996.

[7] A.I. Anton, R.A. Carter, A. Dagnino, J.H. Dempster, and D.F. Siege. "Deriving

goals from a use-case based requirements specification." Requirements

Engineering, 6(1): p. 63-73. 2001.

[8] A.I. Antón, W.M. McCracken, and C. Potts. "Goal decomposition and scenario

analysis in business process reengineering". in Advanced Information Systems

Engineering. Springer. 1994.

[9] J. Araùjo, E. Baniassad, P. Clements, A. Moreira, A. Rashid, and B.

Tekinerdogan. "Early aspects: The current landscape." Technical Notes,

CMU/SEI and Lancaster University. 2005.

[10] C. Arora, M. Sabetzadeh, L. Briand, F. Zimmer, and R. Gnaga. "Automatic

checking of conformance to requirement boilerplates via text chunking: An

industrial case study". in Empirical Software Engineering and Measurement,

2013 ACM/IEEE International Symposium on. IEEE. 2013.

References

 355

[11] E. Baniassad and S. Clarke. "Theme: An approach for aspect-oriented analysis

and design". in Proceedings of the 26th International Conference on Software

Engineering. IEEE Computer Society. 2004.

[12] B.W. Boehm, "Software engineering economics". Vol. 197. Prentice-hall

Englewood Cliffs (NJ). 1981.

[13] B.W. Boehm. "Verifying and validating software requirements and design

specifications." IEEE software, 1(1): p. 75. 1984.

[14] G. Boetticher, T. Menzies, and T. Ostrand, "The PROMISE Repository of

Empirical Software Engineering Data, 2007."

[15] T.D. Breaux, A.I. Antón, and J. Doyle. "Semantic parameterization: A process

for modeling domain descriptions." ACM Transactions on Software Engineering

and Methodology (TOSEM), 18(2): p. 5. 2008.

[16] J. Bubenko, C. Rolland, P. Loucopoulos, and V. DeAntonellis. "Facilitating

“fuzzy to formal” requirements modeling". in Requirements Engineering, 1994.,

Proceedings of the First International Conference on. IEEE. 1994.

[17] P. Buitelaar, D. Olejnik, and M. Sintek, "A protégé plug-in for ontology

extraction from text based on linguistic analysis," in The Semantic Web:

Research and Applications. 2004, Springer. p. 31-44.

[18] A. Casamayor, D. Godoy, and M. Campo. "Identification of non-functional

requirements in textual specifications: A semi-supervised learning approach."

Information and Software Technology, 52(4): p. 436-445. 2010.

[19] D.M. Cer, M.-C. De Marneffe, D. Jurafsky, and C.D. Manning. "Parsing to

Stanford Dependencies: Trade-offs between Speed and Accuracy". in LREC.

2010.

[20] W. Chan, R.J. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin, and J.D.

Reese. "Model checking large software specifications." Software Engineering,

IEEE Transactions on, 24(7): p. 498-520. 1998.

[21] E. Charniak. "Statistical techniques for natural language parsing." AI magazine,

18(4): p. 33. 1997.

[22] G.G. Chowdhury. "Natural language processing." Annual review of information

science and technology, 37(1): p. 51-89. 2003.

[23] L. Chung, B. Nixon, E. Yu, and J. Mylopoulos. "Non-functional Requirements."

Software Engineering. 2000.

References

 356

[24] P. Cimiano and J. Völker, "Text2Onto," in Natural language processing and

information systems. 2005, Springer. p. 227-238.

[25] E.M. Clarke, O. Grumberg, and D. Peled, "Model checking". MIT press. 1999.

[26] A. Cockburn. "Structuring Use Cases with Goals1." 1997.

[27] A. Cockburn. "Structuring Use Cases with Goals." 1997.

[28] A. Cockburn. "Basic use case template." Humans and Technology, Technical

Report, 96. 1998.

[29] A. Cockburn, "Writing effective use cases, The crystal collection for software

professionals." 2000, Addison-Wesley Professional Reading.

[30] I.C.S.S.E.S. Committee, I. Electronics Engineers, and I.-S.S. Board, "IEEE

recommended practice for software requirements specifications: approved 25

June 1998". Vol. 830. IEEE. 1998.

[31] J. Cowie and W. Lehnert. "Information extraction." Communications of the

ACM, 39(1): p. 80-91. 1996.

[32] B. Dano, H. Briand, and F. Barbier. "An approach based on the concept of use

case to produce dynamic object-oriented specifications". in Requirements

Engineering, 1997., Proceedings of the Third IEEE International Symposium on.

IEEE. 1997.

[33] B. Dano, H. Briand, and F. Barbier. "A use case driven requirements engineering

process." Requirements Engineering, 2(2): p. 79-91. 1997.

[34] D. de Almeida Ferreira and A.R.d. Silva. "RSLingo: An information extraction

approach toward formal requirements specifications". in Model-Driven

Requirements Engineering Workshop (MoDRE), 2012 IEEE. IEEE. 2012.

[35] M.-C. De Marneffe and C.D. Manning. "The Stanford typed dependencies

representation". in Coling 2008: Proceedings of the workshop on Cross-

Framework and Cross-Domain Parser Evaluation. Association for Computational

Linguistics. 2008.

[36] M.-C. De Marneffe and C.D. Manning. "Stanford typed dependencies manual."

URL http://nlp. stanford. edu/software/dependencies manual. pdf. 2008.

[37] D.K. Deeptimahanti and R. Sanyal. "Semi-automatic generation of UML models

from natural language requirements". in Proceedings of the 4th India Software

Engineering Conference. ACM. 2011.

References

 357

[38] T. DeMarco, "Structured analysis and system specification". Yourdon Press.

1979.

[39] D. Dermeval, J. Vilela, I.I. Bittencourt, J. Castro, S. Isotani, P. Brito, and A.

Silva. "Applications of ontologies in requirements engineering: a systematic

review of the literature." Requirements Engineering: p. 1-33. 2015.

[40] S.C. Dik and K. Hengeveld, "The theory of functional grammar: the structure of

the clause". Walter de Gruyter. 1997.

[41] J. Drazan and V. Mencl, "Improved processing of textual use cases: Deriving

behavior specifications," in SOFSEM 2007: Theory and Practice of Computer

Science. 2007, Springer. p. 856-868.

[42] E. Dürr and J. van Katwijk. "VDM++, a formal specification language for object-

oriented designs". in CompEuro'92.'Computer Systems and Software

Engineering', Proceedings.: IEEE. 1992.

[43] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. "Patterns in property specifications

for finite-state verification". in Software Engineering, 1999. Proceedings of the

1999 International Conference on. IEEE. 1999.

[44] D.V. Dzung and A. Ohnishi. "Improvement of quality of software requirements

with requirements ontology". in Quality Software, 2009. QSIC'09. 9th

International Conference on. IEEE. 2009.

[45] A. Fantechi and E. Spinicci. "A Content Analysis Technique for Inconsistency

Detection in Software Requirements Documents". in WER. Citeseer. 2005.

[46] C. Fellbaum, "WordNet". Wiley Online Library. 1998.

[47] A. Ferrari, F. dell’Orletta, G.O. Spagnolo, and S. Gnesi, "Measuring and

Improving the Completeness of Natural Language Requirements," in

Requirements Engineering: Foundation for Software Quality. 2014, Springer. p.

23-38.

[48] N.E. Fuchs and R. Schwitter. "Attempto controlled english (ace)." arXiv preprint

cmp-lg/9603003. 1996.

[49] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso.

"Specifying and analyzing early requirements in Tropos." Requirements

Engineering, 9(2): p. 132-150. 2004.

[50] V. Gervasi and B. Nuseibeh. "Lightweight validation of natural language

requirements." Software: Practice and Experience, 32(2): p. 113-133. 2002.

References

 358

[51] V. Gervasi and D. Zowghi. "Reasoning about inconsistencies in natural language

requirements." ACM Transactions on Software Engineering and Methodology

(TOSEM), 14(3): p. 277-330. 2005.

[52] M. Glinz, "An integrated formal model of scenarios based on statecharts," in

Software Engineering—ESEC'95. 1995, Springer. p. 254-271.

[53] M. Glinz. "Improving the quality of requirements with scenarios". in Proceedings

of the Second World Congress on Software Quality. 2000.

[54] L. Goldin and D.M. Berry. "AbstFinder, a prototype natural language text

abstraction finder for use in requirements elicitation." Automated Software

Engineering, 4(4): p. 375-412. 1997.

[55] T. Gorschek and C. Wohlin. "Requirements abstraction model." Requirements

Engineering, 11(1): p. 79-101. 2006.

[56] T. Gruber, "What is an Ontology." 1993.

[57] H.M. Harmain and R. Gaizauskas. "CM-Builder: an automated NL-based CASE

tool". in Automated Software Engineering, 2000. Proceedings ASE 2000. The

Fifteenth IEEE International Conference on. IEEE. 2000.

[58] C.L. Heitmeyer, R.D. Jeffords, and B.G. Labaw. "Automated consistency

checking of requirements specifications." ACM Transactions on Software

Engineering and Methodology (TOSEM), 5(3): p. 231-261. 1996.

[59] J. Heumann. "Generating test cases from use cases." The rational edge, 6(01).

2001.

[60] J. Holtmann, J. Meyer, and M. Von Detten. "Automatic validation and correction

of formalized, textual requirements". in Software Testing, Verification and

Validation Workshops (ICSTW), 2011 IEEE Fourth International Conference on.

IEEE. 2011.

[61] M. Horridge and S. Bechhofer. "The owl api: A java api for owl ontologies."

Semantic Web, 2(1): p. 11-21. 2011.

[62] M. Horridge, N. Drummond, J. Goodwin, A.L. Rector, R. Stevens, and H. Wang.

"The Manchester OWL Syntax". in OWLed. 2006.

[63] I. Horrocks, O. Kutz, and U. Sattler. "The Even More Irresistible SROIQ." KR, 6:

p. 57-67. 2006.

References

 359

[64] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.

"SWRL: A semantic web rule language combining OWL and RuleML." W3C

Member submission, 21: p. 79. 2004.

[65] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, and C. Chen. "Formal

approach to scenario analysis." IEEE Software, (2): p. 33-41. 1994.

[66] H. Hu, L. Zhang, and C. Ye. "Semantic-based requirements analysis and

verification". in Electronics and Information Engineering (ICEIE), 2010

International Conference On. IEEE. 2010.

[67] D. Jackson. "Alloy: a lightweight object modelling notation." ACM Transactions

on Software Engineering and Methodology (TOSEM), 11(2): p. 256-290. 2002.

[68] I. Jacobson. "Object oriented software engineering: a use case driven approach."

1992.

[69] I. Jacobson. "The use-case construct in object-oriented software engineering."

1995.

[70] S. Jeffrey, J. Richards, F. Ciravegna, S. Waller, S. Chapman, and Z. Zhang. "The

Archaeotools project: faceted classification and natural language processing in an

archaeological context." Philosophical Transactions of the Royal Society of

London A: Mathematical, Physical and Engineering Sciences, 367(1897): p.

2507-2519. 2009.

[71] H. Kaiya and M. Saeki. "Ontology based requirements analysis: lightweight

semantic processing approach". in Quality Software, 2005.(QSIC 2005). Fifth

International Conference on. IEEE. 2005.

[72] H. Kaiya and M. Saeki. "Using domain ontology as domain knowledge for

requirements elicitation". in Requirements Engineering, 14th IEEE International

Conference. IEEE. 2006.

[73] M. Kamalrudin, J. Grundy, and J. Hosking. "Tool support for essential use cases

to better capture software requirements". in Proceedings of the IEEE/ACM

international conference on Automated software engineering. ACM. 2010.

[74] E. Kamsties and B. Paech. "Surfacing Ambiguity in Natural Language

Requirement." 2000.

[75] E. Kamsties, D.M. Berry, and B. Paech. "Detecting ambiguities in requirements

documents using inspections". in Workshop on Inspections in Software

Engineering, Paris, France. Citeseer. 2001.

References

 360

[76] J. Kim, S. Park, and V. Sugumaran. "Improving use case driven analysis using

goal and scenario authoring: A linguistics-based approach." Data & Knowledge

Engineering, 58(1): p. 21-46. 2006.

[77] J. Kim, J. Kim, S. Park, and V. Sugumaran. "A multi-view approach for

requirements analysis using goal and scenario." Industrial Management & Data

Systems, 104(9): p. 702-711. 2004.

[78] M. Kim, S. Park, V. Sugumaran, and H. Yang. "Managing requirements conflicts

in software product lines: A goal and scenario based approach." Data &

Knowledge Engineering, 61(3): p. 417-432. 2007.

[79] D. Klein and C.D. Manning. "Accurate unlexicalized parsing". in Proceedings of

the 41st Annual Meeting on Association for Computational Linguistics-Volume

1. Association for Computational Linguistics. 2003.

[80] L. Kof, "Natural language processing for requirements engineering: Applicability

to large requirements documents". na. 2004.

[81] L. Kof, "On the identification of goals in stakeholders’ dialogs," in Innovations

for Requirement Analysis. From Stakeholders’ Needs to Formal Designs. 2008,

Springer. p. 161-181.

[82] L. Kof, "Requirements analysis: concept extraction and translation of textual

specifications to executable models," in Natural Language Processing and

Information Systems. 2010, Springer. p. 79-90.

[83] S.J. Körner and T. Brumm. "Natural language specification improvement with

ontologies." International Journal of Semantic Computing, 3(04): p. 445-470.

2009.

[84] G. Kotonya and I. Sommerville, "Requirements engineering: processes and

techniques". John Wiley & Sons, Inc. 1998.

[85] A. Lapouchnian. "Goal-oriented requirements engineering: An overview of the

current research." University of Toronto: p. 32. 2005.

[86] K. Lauenroth and K. Pohl. "Dynamic consistency checking of domain

requirements in product line engineering". in International Requirements

Engineering, 2008. RE'08. 16th IEEE. IEEE. 2008.

[87] B.-S. Lee and B.R. Bryant. "Automated conversion from requirements

documentation to an object-oriented formal specification language". in

Proceedings of the 2002 ACM symposium on Applied computing. ACM. 2002.

References

 361

[88] H. Lee, Y. Peirsman, A. Chang, N. Chambers, M. Surdeanu, and D. Jurafsky.

"Stanford's multi-pass sieve coreference resolution system at the CoNLL-2011

shared task". in Proceedings of the Fifteenth Conference on Computational

Natural Language Learning: Shared Task. Association for Computational

Linguistics. 2011.

[89] H. Lee, A. Chang, Y. Peirsman, N. Chambers, M. Surdeanu, and D. Jurafsky.

"Deterministic coreference resolution based on entity-centric, precision-ranked

rules." Computational Linguistics, 39(4): p. 885-916. 2013.

[90] J. Lee and N.-L. Xue. "Analyzing user requirements by use cases: A goal-driven

approach." IEEE software, 16(4): p. 92-101. 1999.

[91] J. Lee, N.-L. Xue, and J.-Y. Kuo. "Structuring requirement specifications with

goals." Information and Software Technology, 43(2): p. 121-135. 2001.

[92] Y. Lee and W. Zhao. "An ontology-based approach for domain requirements

elicitation and analysis". in Computer and Computational Sciences, 2006.

IMSCCS'06. First International Multi-Symposiums on. IEEE. 2006.

[93] E. Letier and A. Van Lamsweerde. "Deriving operational software specifications

from system goals." ACM SIGSOFT Software Engineering Notes, 27(6): p. 119-

128. 2002.

[94] N. Leveson. "Completeness in formal specification language design for process-

control systems". in Proceedings of the third workshop on Formal methods in

software practice. ACM. 2000.

[95] N.G. Leveson, M.P.E. Heimdahl, H. Hildreth, and J.D. Reese. "Requirements

specification for process-control systems." Software Engineering, IEEE

Transactions on, 20(9): p. 684-707. 1994.

[96] D. Liu, K. Subramaniam, A. Eberlein, and B.H. Far, "Natural language

requirements analysis and class model generation using UCDA," in Innovations

in Applied Artificial Intelligence. 2004, Springer. p. 295-304.

[97] L. Liu and E. Yu. "Designing information systems in social context: a goal and

scenario modelling approach." Information systems, 29(2): p. 187-203. 2004.

[98] M. Luisa, F. Mariangela, and N.I. Pierluigi. "Market research for requirements

analysis using linguistic tools." Requirements Engineering, 9(1): p. 40-56. 2004.

References

 362

[99] S.G. MacDonell, K. Min, and A.M. Connor. "Autonomous requirements

specification processing using natural language processing." arXiv preprint

arXiv:1407.6099. 2014.

[100] G.A. Mala and G. Uma, "Automatic construction of object oriented design

models [UML diagrams] from natural language requirements specification," in

PRICAI 2006: Trends in Artificial Intelligence. 2006, Springer. p. 1155-1159.

[101] M.P. Marcus, M.A. Marcinkiewicz, and B. Santorini. "Building a large annotated

corpus of English: The Penn Treebank." Computational linguistics, 19(2): p. 313-

330. 1993.

[102] A.K. McCallum. "MALLET: A Machine Learning for Language Toolkit." 2002.

[103] R. McDonald, K. Lerman, and F. Pereira. "Multilingual dependency analysis with

a two-stage discriminative parser". in Proceedings of the Tenth Conference on

Computational Natural Language Learning. Association for Computational

Linguistics. 2006.

[104] T. Morton, J. Kottmann, J. Baldridge, and G. Bierner, "Opennlp: A java-based

nlp toolkit." 2005.

[105] T. Murata. "Petri nets: Properties, analysis and applications." Proceedings of the

IEEE, 77(4): p. 541-580. 1989.

[106] T.H. Nguyen, J. Grundy, and M. Almorsy. "GUITAR: An ontology-based

automated requirements analysis tool". in Requirements Engineering Conference

(RE), 2014 IEEE 22nd International. IEEE. 2014.

[107] T.H. Nguyen, J. Grundy, and M. Almorsy. "Ontology-based automated support

for goal–use case model analysis " Software Quality Journal, 23(3). 2015.

[108] T.H. Nguyen, J. Grundy, and M. Almorsy, "Rule-Based Extraction of Goal-Use

Case Models from Text," in 10th Joint Meeting of the European Software

Engineering Conference and the ACM SIGSOFT Symposium on the Foundations

of Software Engineering (FSE/ESEC 2015). 2015, ACM: Bergamo, italy.

[109] T.H. Nguyen, J.C. Grundy, and M. Almorsy. "Integrating Goal-oriented and Use

Case-based Requirements Engineering: The Missing Link". in ACM/IEEE 18th

International Conference on Model Driven Engineering Languages and Systems.

Ottawa: ACM/IEEE. 2015.

References

 363

[110] A.P. Nikora and G. Balcom. "Automated identification of LTL patterns in natural

language requirements". in Software Reliability Engineering, 2009. ISSRE'09.

20th International Symposium on. IEEE. 2009.

[111] N. Niu and S. Easterbrook. "Extracting and modeling product line functional

requirements". in International Requirements Engineering, 2008. RE'08. 16th

IEEE. IEEE. 2008.

[112] J. Nivre. "An efficient algorithm for projective dependency parsing". in

Proceedings of the 8th International Workshop on Parsing Technologies (IWPT.

Citeseer. 2003.

[113] N.F. Noy and D.L. McGuinness, "Ontology development 101: A guide to

creating your first ontology." 2001, Stanford knowledge systems laboratory

technical report KSL-01-05 and Stanford medical informatics technical report

SMI-2001-0880.

[114] N.F. Noy and M.A. Musen. "The PROMPT suite: interactive tools for ontology

merging and mapping." International Journal of Human-Computer Studies, 59(6):

p. 983-1024. 2003.

[115] B. Nuseibeh. "To be and not to be: On managing inconsistency in software

development". in Software Specification and Design, 1996., Proceedings of the

8th International Workshop on. IEEE. 1996.

[116] B. Nuseibeh and S. Easterbrook. "Requirements engineering: a roadmap". in

Proceedings of the Conference on the Future of Software Engineering. ACM.

2000.

[117] N. Omar, J. Hanna, and P. McKevitt. "Heuristic-based entity-relationship

modelling through natural language processing". in Artificial Intelligence and

Cognitive Science Conference (AICS). Artificial Intelligence Association of

Ireland (AIAI). 2004.

[118] J. Osis, "Model-Driven Domain Analysis and Software Development:

Architectures and Functions: Architectures and Functions". IGI Global. 2010.

[119] S. Petrov, L. Barrett, R. Thibaux, and D. Klein. "Learning accurate, compact, and

interpretable tree annotation". in Proceedings of the 21st International Conference

on Computational Linguistics and the 44th annual meeting of the Association for

Computational Linguistics. Association for Computational Linguistics. 2006.

References

 364

[120] K. Pohl, "Requirements engineering: fundamentals, principles, and techniques".

Springer Publishing Company, Incorporated. 2010.

[121] K. Pohl, G. Böckle, and F.J. van der Linden, "Software product line engineering:

foundations, principles and techniques". Springer Science & Business Media.

2005.

[122] B. Potter, D. Till, and J. Sinclair, "An introduction to formal specification and Z".

Prentice Hall PTR. 1996.

[123] C. Potts. "Fitness for use: the system quality that matters most". in Proceedings of

the Third International Workshop on Requirements Engineering: Foundations of

Software Quality REFSQ. 1997.

[124] C. Potts, K. Takahashi, and A.I. Anton. "Inquiry-based requirements analysis."

Software, IEEE, 11(2): p. 21-32. 1994.

[125] M. Poveda-Villalón, M.C. Suárez-Figueroa, and A. Gómez-Pérez, "Validating

ontologies with oops!," in Knowledge Engineering and Knowledge Management.

2012, Springer. p. 267-281.

[126] N. Prat. "Goal formalization and classification for requirements engineering,

fifteen years later". in Research Challenges in Information Science (RCIS), 2013

IEEE Seventh International Conference on. IEEE. 2013.

[127] A. Rago, C. Marcos, and J.A. Diaz-Pace. "Identifying duplicate functionality in

textual use cases by aligning semantic actions." Software & Systems Modeling:

p. 1-25. 2014.

[128] A. Rajan and T. Wahl, "CESAR: Cost-efficient Methods and Processes for

Safety-relevant Embedded Systems". Springer. 2013.

[129] A. Rashid, P. Sawyer, A. Moreira, and J. Araújo. "Early aspects: A model for

aspect-oriented requirements engineering". in Requirements Engineering, 2002.

Proceedings. IEEE Joint International Conference on. IEEE. 2002.

[130] R. Rauf, M. Antkiewicz, and K. Czarnecki. "Logical structure extraction from

software requirements documents". in Requirements Engineering Conference

(RE), 2011 19th IEEE International. IEEE. 2011.

[131] B. Regnell, M. Andersson, and J. Bergstrand. "A hierarchical use case model

with graphical representation". in Engineering of Computer-Based Systems,

1996. Proceedings., IEEE Symposium and Workshop on. IEEE. 1996.

References

 365

[132] C. Rolland and C. Salinesi, "Supporting requirements elicitation through

goal/scenario coupling," in Conceptual Modeling: Foundations and Applications.

2009, Springer. p. 398-416.

[133] C. Rolland, C. Souveyet, and C.B. Achour. "Guiding goal modeling using

scenarios." Software Engineering, IEEE Transactions on, 24(12): p. 1055-1071.

1998.

[134] C. Rolland, G. Grosz, and R. Kla. "Experience with goal-scenario coupling in

requirements engineering". in Requirements Engineering, 1999. Proceedings.

IEEE International Symposium on. IEEE. 1999.

[135] L. Rosenhainer. "Identifying crosscutting concerns in requirements

specifications". in Proceedings of OOPSLA Early Aspects. Citeseer. 2004.

[136] D.T. Ross. "Structured analysis (SA): A language for communicating ideas."

Software Engineering, IEEE Transactions on, (1): p. 16-34. 1977.

[137] D.T. Ross and K.E. Schoman Jr. "Structured analysis for requirements

definition." Software Engineering, IEEE Transactions on, (1): p. 6-15. 1977.

[138] K.S. Rubin and A. Goldberg. "Object behavior analysis." Communications of the

ACM, 35(9): p. 48-62. 1992.

[139] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W.E. Lorensen, "Object-

oriented modeling and design". Vol. 199. Prentice-hall Englewood Cliffs. 1991.

[140] K. Ryan. "The role of natural language in requirements engineering". in

Requirements Engineering, 1993., Proceedings of IEEE International Symposium

on. IEEE. 1993.

[141] V.F. Santander and J.F. Castro. "Deriving use cases from organizational

modeling". in Requirements Engineering, 2002. Proceedings. IEEE Joint

International Conference on. IEEE. 2002.

[142] J. Santos, A. Moreira, J. Araujo, V. Amaral, M. Alférez, and U. Kulesza.

"Generating requirements analysis models from textual requirements". in

Managing Requirements Knowledge, 2008. MARK'08. First International

Workshop on. IEEE. 2008.

[143] K.K. Schuler. "VerbNet: A broad-coverage, comprehensive verb lexicon." 2005.

[144] V.S. Sharma, S. Sarkar, K. Verma, A. Panayappan, and A. Kass. "Extracting

high-level functional design from software requirements". in Software

Engineering Conference, 2009. APSEC'09. Asia-Pacific. IEEE. 2009.

References

 366

[145] M. Shibaoka, H. Kaiya, and M. Saeki, "GOORE: Goal-oriented and ontology

driven requirements elicitation method," in Advances in Conceptual Modeling–

Foundations and Applications. 2007, Springer. p. 225-234.

[146] E. Sikora, M. Daun, and K. Pohl, "Supporting the consistent specification of

scenarios across multiple abstraction levels," in Requirements Engineering:

Foundation for Software Quality. 2010, Springer. p. 45-59.

[147] V. Simko, P. Hnetynka, T. Bures, and F. Plasil. "Formal verification of annotated

use-cases." Charles University in Prague, Tech. Rep, 2. 2012.

[148] A. Sinha, S.M. Sutton, and A. Paradkar. "Text2Test: Automated inspection of

natural language use cases". in Software Testing, Verification and Validation

(ICST), 2010 Third International Conference on. IEEE. 2010.

[149] A. Sinha, A. Paradkar, P. Kumanan, and B. Boguraev. "A linguistic analysis

engine for natural language use case description and its application to

dependability analysis in industrial use cases". in Dependable Systems &

Networks, 2009. DSN'09. IEEE/IFIP International Conference on. IEEE. 2009.

[150] E. Sirin, B. Parsia, B.C. Grau, A. Kalyanpur, and Y. Katz. "Pellet: A practical

owl-dl reasoner." Web Semantics: science, services and agents on the World

Wide Web, 5(2): p. 51-53. 2007.

[151] I. Sommerville, "Software engineering—9th ed. p. cm." 2011, McGraw-Hill

Companies Inc., New York.

[152] I. Sommerville and P. Sawyer, "Requirements engineering: a good practice

guide". John Wiley & Sons, Inc. 1997.

[153] J.M. Spivey, "Understanding Z: a specification language and its formal

semantics". Cambridge University Press. 1988.

[154] S. Supakkul and L. Chung. "Integrating FRs and NFRs: A use case and goal

driven approach." framework, 6: p. 7. 2005.

[155] A. Sutcliffe. "Scenario-based requirements engineering". in Requirements

engineering conference, 2003. Proceedings. 11th IEEE international. IEEE. 2003.

[156] A.G. Sutcliffe, N.A. Maiden, S. Minocha, and D. Manuel. "Supporting scenario-

based requirements engineering." Software Engineering, IEEE Transactions on,

24(12): p. 1072-1088. 1998.

[157] W. Taggart Jr and M.O. Tharp. "A survey of information requirements analysis

techniques." ACM Computing Surveys (CSUR), 9(4): p. 273-290. 1977.

References

 367

[158] C. Treude, M. Robillard, and B. Dagenais. "Extracting development tasks to

navigate software documentation." 2015.

[159] A.C. Uselton and S.A. Smolka, "A compositional semantics for Statecharts using

labeled transition systems," in CONCUR'94: Concurrency Theory. 1994,

Springer. p. 2-17.

[160] A. Van Lamsweerde. "Requirements engineering in the year 00: A research

perspective". in Proceedings of the 22nd international conference on Software

engineering. ACM. 2000.

[161] A. Van Lamsweerde. "Goal-oriented requirements engineering: A guided tour".

in Requirements Engineering, 2001. Proceedings. Fifth IEEE International

Symposium on. IEEE. 2001.

[162] A. Van Lamsweerde. "Goal-oriented requirements enginering: a roundtrip from

research to practice [enginering read engineering]". in Requirements Engineering

Conference, 2004. Proceedings. 12th IEEE International. IEEE. 2004.

[163] A. Van Lamsweerde. "Requirements engineering: from system goals to UML

models to software specifications." 2009.

[164] A. Van Lamsweerde and L. Willemet. "Inferring declarative requirements

specifications from operational scenarios." Software Engineering, IEEE

Transactions on, 24(12): p. 1089-1114. 1998.

[165] A. Van Lamsweerde, R. Darimont, and E. Letier. "Managing conflicts in goal-

driven requirements engineering." Software Engineering, IEEE Transactions on,

24(11): p. 908-926. 1998.

[166] M.Y. Vardi, "An automata-theoretic approach to linear temporal logic," in Logics

for concurrency. 1996, Springer. p. 238-266.

[167] K. Verma and A. Kass, "Requirements analysis tool: A tool for automatically

analyzing software requirements documents". Springer. 2008.

[168] J.B. Warmer and A.G. Kleppe. "The Object Constraint Language: Precise

Modeling With Uml (Addison-Wesley Object Technology Series)." 1998.

[169] K. Watahiki and M. Saeki. "Combining goal-oriented analysis and use case

analysis." IEICE TRANSACTIONS on Information and Systems, 87(4): p. 822-

830. 2004.

References

 368

[170] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer. "Scenario usage in system

development: a report on current practice". in Requirements Engineering, 1998.

Proceedings. 1998 Third International Conference on. IEEE. 1998.

[171] N. Weston, R. Chitchyan, and A. Rashid. "A framework for constructing

semantically composable feature models from natural language requirements". in

Proceedings of the 13th International Software Product Line Conference.

Carnegie Mellon University. 2009.

[172] K. Wiegers and J. Beatty, "Software requirements". Pearson Education. 2013.

[173] J. Woodcock, P.G. Larsen, J. Bicarregui, and J. Fitzgerald. "Formal methods:

Practice and experience." ACM Computing Surveys (CSUR), 41(4): p. 19. 2009.

[174] X. Xiao, A. Paradkar, S. Thummalapenta, and T. Xie. "Automated extraction of

security policies from natural-language software documents". in Proceedings of

the ACM SIGSOFT 20th International Symposium on the Foundations of

Software Engineering. ACM. 2012.

[175] E. Yu. "Modelling strategic relationships for process reengineering." Social

Modeling for Requirements Engineering, 11: p. 2011. 2011.

[176] E. Yu and J. Mylopoulos. "Why goal-oriented requirements engineering". in

Proceedings of the 4th International Workshop on Requirements Engineering:

Foundations of Software Quality. 1998.

[177] E.S. Yu. "Modeling organizations for information systems requirements

engineering". in Requirements Engineering, 1993., Proceedings of IEEE

International Symposium on. IEEE. 1993.

[178] E.S. Yu. "Towards modelling and reasoning support for early-phase requirements

engineering". in Requirements Engineering, 1997., Proceedings of the Third

IEEE International Symposium on. IEEE. 1997.

[179] K. Yue. "What does it mean to say that a specification is complete?". in Proc.

IWSSD-4, Fourth International Workshop on Software Specification and Design.

1987.

[180] P. Zave. "Classification of research efforts in requirements engineering." ACM

Computing Surveys (CSUR), 29(4): p. 315-321. 1997.

[181] D. Zowghi and V. Gervasi. "On the interplay between consistency, completeness,

and correctness in requirements evolution." Information and Software

Technology, 45(14): p. 993-1009. 2003.

References

 369

[182] D. Zowghi and C. Coulin, "Requirements elicitation: A survey of techniques,

approaches, and tools," in Engineering and managing software requirements.

Springer. p. 19-46. 2005

