
 
 

 
 
 
 
 
 
 
 
 

Empirical Studies of Structural Phenomena  
Using a Curated Corpus of Java Code  

 
 
 
 
 
 

by 
 
 

Hayden P. Melton 
B.E.(Hons), Software Engineering 

 
 
 
 
 
 
 
 

Submitted in fulfilment of the requirements for the degree of 
 

Doctor of Philosophy  
 
 
 
 
 
 
 
 
 
 
 

Deakin University 
 

May 2017 
 
 
 
 



 
 

 
 
 



 
 

 
 



i 
 

Abstract 
 
Empirical studies of structural phenomena are performed using a curated corpus of 

Java code that was conceived, designed and evolved by the author for the purposes of 

conducting this research. What is found is that long dependency cycles involving 

many source files are quite prevalent in real-world Java software, despite much 

advice in the instructional literature on object-oriented design to avoid them. 

Approaches are proposed to quantify the extent of dependency among the source 

files in such cycles, including schemes for classifying such dependencies on the basis 

of their pathology (e.g., whether two classes are intrinsically dependent on one 

another), and schemes to quantify their connectedness. Specific refactoring 

techniques are proposed for breaking these cycles, and a tool inspired by the poka-

yoke paradigm in manufacturing is proposed to ensure cycles are not created by 

software engineers in the first place. As for the cause of cycles (and large transitive 

dependencies in general), further empirical studies are performed in an attempt to 

link the use of non-private static members to them, and to quantify the extent to 

which default implementations of interfaces—which may be associated with large 

transitive dependencies—appear in dependency injection schemes. The thematic 

contributions of the work are (1) that empirical studies of just structural attributes 

(and not external quality attributes) of software can provide us with new and useful 

insights into the practice of software design that may in turn help to focus efforts in 

the areas of tool support and empirical validation of design principles. And (2), that a 

carefully curated corpus of real software is needed to ensure these insights are 

convincing. The more concrete contributions of this work are its results relating to 

cycles, the corpus it yielded that is now publicly available and in wide-use, and the 

various tools developed along the way. 
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Chapter 1 Introduction 
 
It is widely accepted that software structure (as it manifests in source code) affects 

software quality [Dij68][Par72][SMC74][Lak96][Boo91][Ber93][FP96]. The need to 

obfuscate code as an anti-piracy measure is perhaps the best example of this. By 

rearranging the program’s structure by removing otherwise descriptive names of 

classes and methods, altering the structure of looping and conditional constructs and 

so on, as obfuscation tools do, the program being obfuscated becomes essentially 

incomprehensible to a human being [CN09]. This makes it nearly impossible for a 

person with nefarious intentions (e.g., to steal parts of the program for use in other 

programs, or to circumvent parts of the code intended to check for license files) to 

reverse engineer an obfuscated program to these ends. 

 

Where things are less well agreed, with respect to software structure, is the precise 

relationship that specific structural phenomena in source code (e.g., coupling and 

cohesion, visibility of a module’s functions, and so on) have on specific software 

quality attributes, such as maintainability, understandability, reusability, and so on 

[FP96]. In the software measurement community the former are often referred to as 

internal attributes, and the latter are often referred to as external attributes.1 Some 

researchers—especially in the empirical software engineering community—hold the 

view that the only empirical studies worth doing are those that take measurements of 

internal attributes and seek to correlate those with measurements of external 

attributes [Par03]. 

 

It is my position that the work in the publications described herein demonstrates that 

this view held by some in the empirical software engineering community is short-

sighted, and that we can advance knowledge in the field through carefully conducted 

empirical studies of just internal attributes. Before I argue my position in this 

however, I first describe the genesis of this work. 

 

                                                
1 Fenton and Pfleeger define internal attributes as “those that can be measured purely in terms of the 
product, process or resource itself. In other words, an internal attribute can be measured by examining 
the product, process or resource on its own, separate from its behavior” and external attributes as 
“those that can be measured only with respect to how the product, process or resource relates to its 
environment. Here, the behavior of the process, product or resource is important, rather than the entity 
itself.” [p.74,FP96]. 
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1.1 The Genesis of this Work 
 

Upon my graduating (with First Class Honours) from the University of Auckland 

with the Bachelor of Engineering in Software Engineering I took a job as a software 

engineer at a large—at least by New Zealand standards—locally-owned software 

company. My experiences at this company were, unequivocally, the impetus for the 

research in this thesis. 

 

What struck me as a very serious problem, during my almost year long stint at this 

software company, was how difficult it was, as a software engineer, to make changes 

to the software products they developed. Whether I was fixing a bug, adding a new 

feature, or trying to refactor some code, it was seldom immediately clear which 

source files I needed to edit to accomplish each task. I felt as if I spent a lot of time 

trying to figure out which source files I needed to edit for each change, and after I 

had figured out which those were, I was left to wondered why the code had been 

structured the way it had, and not in a different and “better” way. 

 

The experience I had at this software company was in stark contrast to that which I 

had while completing programming course work at the University of Auckland. I am 

not saying that the course work at the University of Auckland left me ill-prepared to 

work as a professional software engineer, but I am saying that the experience dealing 

with code in industry was quite different. While University assignments often 

involved modifying code written by academic staff with PhDs in Computer Science, 

that had small code bases, and had generally well thought out designs, real code 

bases in industry were much, much larger and perhaps as noted by Foote and Yoder 

had evolved in unforeseen ways over many years, leaving them poorly structured and 

therefore unnecessarily difficult for the software engineers working on them to 

implement new features and to fix bugs [FY97]. 

 

My initial view, in dealing with the code bases of several products at this company 

was that their designs were too “highly coupled”. Even a seemingly trivial new 

requirement, or seemingly trivial bug, would require quite extensive investigation of 

which source files required modification, and usually there were a slew of such files 

per bug or requirement. At this time, as a recent graduate, I had only a fairly informal 

view of coupling that I later learned to be consistent with that of Fowler’s view on it: 
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that two source files are coupled if changing one necessitates a change in the other 

[Fow01]. The problem was that it was not entirely clear to me what structural 

attributes, as they manifest in source code, caused two or more source files to be 

coupled with respect to change. And this was even after taking course work 

involving the teaching of Design Patterns, Object-Oriented Design, and so on, as an 

engineering student at the University of Auckland. 

 

After almost a year at this company, I ended up being awarded a scholarship to 

undertake PhD research, and would end up leaving it to rejoin the University of 

Auckland this time as a PhD candidate in Computer Science, with the goal of trying 

to find answers to the questions I had from my experience in industry on coupling as 

it manifests in source code, and coupling as it relates to two or more files being 

modified in relation to the fix for a single bug, or implementation of a single feature. 

This was not exactly the final direction of the research—and the importance of 

describing what was tried in one’s research but did not work is duly noted2—so I will 

do so below. 

 

My initial idea for relating coupling as it manifests in source code (for now let’s call 

this “structural coupling”) to coupling as it manifests as groups of source files being 

changed together to fix bugs or implement new features (also for now let’s call this 

“change coupling”), was to download a version control repository for a Java project 

from the open source project hosting website SourceForge. From the project’s 

inception, to its most current revision, I would then repeatedly check out files by 

their timestamp and commit comment in order to infer change coupling (groups of 

files changed together would likely have the same commit comment, and 

approximately the same timestamp). In order to infer structural coupling I would 

compile the code after each such checkout and run a tool to analyze the Java 

bytecode to infer various forms of structural coupling among the classes in the 

project’s source files, so I would know the state of various forms of structural 

coupling (which may have changed due to the checkout) in the program prior to the 

next modification of its source code. 

 

                                                
2 See http://www.deakin.edu.au/students/research/your-thesis-and-examinations/thesis-structure-
options, section 9 
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There are many different forms of structure coupling in object-oriented software like 

Java: Bidve and Khare review the various frameworks that have been proposed over 

the years to categorize these many forms of coupling in object-oriented systems 

[BK12]. My initial approach instead of building a tool to measure coupling myself, 

was to look for existing tools that were in the public domain and leverage those. In 

that way, by collecting a large number of different forms of coupling from such 

tools, I could try and identify certain forms of structural coupling that were 

correlated with changes. Most of the tools I found though, operated on Java byte-

code (and not Java source-code, because the former is generally easier to analyze) so 

after each checkout I also had to (re)compile the project’s source code. 

 

My investigations had shown, with the computing resources available to me at the 

time (namely an Intel Pentium 4 3.2 GHz with 1GB of RAM desktop computer, the 

standard provided to each graduate student in Computer Science by the University of 

Auckland at the time), that recompiling the entire code base after each check out was 

going to take far too long, if I wanted to analyze the entire multi-year check-in 

history of the project. I postulated I might only have to recompile the classes whose 

source code had actually changed after each check out, but to my surprise in 

researching the matter I found a work by Lagorio showing that due to the 

complexities of the name-binding rules in Java, one must actually recompile not only 

the files that were changed in the check-in, but also all files that might, based off 

names appearing in their source, have transitive compilation dependencies on the 

files changed in the check-in [Lag04]. 

 

I set about to conduct an experiment on the latest revision of one of the SourceForge 

projects I had downloaded—a popular file sharing application implementing the 

BitTorrent protocol called Azureus—and to my surprise found that a single change in 

almost any source file in the Azureus code base required, according to Lagorio’s 

algorithm, recompilation of almost its entire code base. Having expected to only 

have to recompile a few other source files in the project if any given source file was 

altered, I resolved to determine why this might be. I then also wondered if this 

problem of having to recompile almost all source files after each change might also 

true of the other Java projects on SourceForge.  
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So in attempting to perform the study I had initially intended—i.e., to correlate forms 

of “structural coupling” with “change coupling”—I had stumbled upon a problem 

where the structure of some Java projects required that their entire code bases be 

recompiled after each change. This was the starting point for my actual research, as 

opposed to my initial intended research, and as I found the answer to one question, 

naturally led to another. And this is how the research progressed. One might 

characterize it as being “curiosity driven”. In the commentary of each of the 

publications in this research provided in this chapter I describe the path of this 

research and the connection between the publications by identifying the question 

each publication seeks to answer, and explaining why the answer to that question 

naturally leads to another question which is answered in a subsequent publication. 

 

1.2 Open Issues in Software Structure 
 

In the interests of keeping the preceding discussion high-level I have so far alluded to 

software structure (and the concepts it subsumes such as coupling, internal attributes, 

and so on) without actually defining it (or them). In this section I define them and 

explain why, despite structure being an active topic of research in the field of 

software engineering for over 50 years now—the earliest significant reference I can 

find discussing software structure is that of J.C. Emery from 1962 [Eme62]—

controversies relating to them persist. 

 

1.2.1 The Meaning of Structure 
 

According to the Oxford English Language Dictionary the structure of a thing is “the 

arrangement of and relations between the parts or elements of something complex”. 

Software is certainly complex and comprises interrelated parts. As Bass et al. discuss 

in their book on Software Architecture, a software system has not just one but rather 

a plurality of structures, and the specific manifestation of structure of interest is 

dependent on one’s goal in assessing that structure [BCK98]. For instance, in 

assessing the performance of a software system, where that system is geographically 

distributed and connected by bandwidth constrained network links, an appropriate 

structure to analyze might be one where the “relations” are network connections, and 

the “parts” are the separate process comprising that system that communicate over 
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those network connections. Similarly, if one is interested in structure as it relates to a 

bug where the wrong value has been written to a global variable the “parts” might be 

the statements in code that either directly or transitively cause data to be written to 

that variable, and “relations” might be the flow of data through these statements 

towards the global variable of interest. The analysis pertaining to this form of 

structure is often referred to a program slicing [Tip95]. 

 

Sometimes, with reference to the definition of structure, the precise nature of the 

“relation” among the parts is less clear. Earlier I described a technique whereby code 

obfuscation tools made code effectively incomprehensible by replacing descriptive 

class and method names with nonsensical ones. For instance, the classes “JavaLexer” 

and “JavaParser” in a program for compiling Java code might be renamed “A” and 

“B”, respectively. Is merely renaming identifiers in this manner this a structural 

change? The answer is “yes” because a there is a relationship between these two 

classes, implied by their respective names, deriving from the concepts in the domain 

(metrics seeking to exploit these relationships among words in identifiers have been 

proposed by Stein et al. [SEG+06], and others). Textbooks on compilers describe the 

process of lexing occurring before the process of parsing, so from these names alone 

(assuming they accurately describe the functionality of their respective classes) one 

can determine a “happens before” relationship, which may aid in a maintenance task 

such as adding new keywords and constructs to a programming language or fixing a 

bug. Indeed, Anslow et al. [ANMT08] have done some work done along these lines 

in the area of studying the English names in identifiers that appear in the Qualitas 

Corpus. 

 

If it is accepted that there are many manifestations of structure in the context of 

software systems, what is the ongoing the controversy in this area of research to 

which I have alluded? One answer is that there is still no consensus on which specific 

attributes of structure affect which specific attributes of software quality. And certain 

studies have shown that it may be more complicated than this even, because there 

may be additional factors such as choice of programming language paradigm [Hat98] 

and programmer experience [USH+16][AS04] that play a significant role 

determining the specific relationship between an attribute of code, and a software 

quality attribute. Another answer is that there is no consensus on the methods by 

which we should seek to establish a relationship between a structural attribute and an 
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external quality attribute. Finally—and perhaps most fundamentally of all—the 

precise nature of many widely-discussed concepts thought to be structural attributes 

(such as coupling) remains contentious. 

 

1.2.2 Linking Structural Attributes to External Attributes 
 

On the issue of linking structural attributes of source code to software quality 

attributes such as maintainability, testability, reusability and so on, consider a study 

by Arisholm and Sjoberg [AS04]. In this study the authors conduct an experiment 

where the effort to perform maintenance tasks is measured—some subjects being 

asked to make changes to a program with a centralized control structure, and some 

other subjects being asked to make the same changes to essentially the same program 

except with a delegated control structure. What the study finds is that less 

experienced subjects find the former style of control structure easier to work on, and 

more experience participants find the latter style of control structure easier to work 

on. This does seem to indicate that other factors in addition to structure may play a 

significant role in determining external quality attributes such as maintainability.  

 

A more recent study by Uesbeck et al. seeks to link a relatively new language feature 

in C++, namely Lambda Functions (or simply “lambdas”), to maintainability when 

compared to using an older feature: iterators [USH+16]. What it finds—perhaps 

unsurprisingly—is that experience has a major effect on completion time for such 

maintenance tasks, whether lambdas or iterators are used. The newer language 

feature, lambdas, however, are found to be more burdensome with respect to 

maintenance efforts. 

 

What, from a practical perspective though, do the results of the study of Arisholm 

and Sjoberg and separately the study of Uesbeck et al. tell us though? That a 

software company with less experienced staff—perhaps because they are not willing 

to pay for experienced ones, or perhaps because the experienced ones don’t stay long 

because they are eventually poached by other companies willing to pay them more 

highly—should implement their software using only a centralized control pattern? Or 

that universities should do a better job teaching their graduates the delegated control 

style? And that universities (and employers, by way of on the job training) are doing 

a poor job of teaching the concept of lambdas? 
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Parnas is fairly critical of the types of studies performed in empirical software 

engineering, along the lines of that performed by Arisholm and Sjoberg and 

separately by Uesbeck et al., though he does not mention these studies explicitly (his 

publication precedes these) [Par03]. Essentially, he argues that not much can be 

learned from watching poorly trained subjects perform software engineering work, 

because, by definition they are poorly trained. If the delegated control style is 

“better” than the centralized style, software engineers should simply be better trained 

to use it. He further argues, essentially, that it should not be necessary to show a style 

to be better via an experiment involving subjects, and that if there are good, rational 

arguments for why it is better, we should accept them. He notes, himself having 

received formal training as an electrical engineer, that no study has ever been 

conducted to prove the usefulness of Ohm’s law in designing circuits, but the 

electrical engineering community widely accepts that it is a useful technique for 

doing so. 

 

Parnas also notes that he himself did not conduct any empirical study of his seminal 

work on Information Hiding, and intimates that the simple example of two 

differently structured Key Word In Context (KWIC) programs in this work is 

sufficient to show his theory to be sound [Par72]. 

 

Why is it then that many in the empirical software engineering community are so 

adamant that the studies of the form undertaken by Arisholm and Sjoberg (and 

Uesbeck et al) are the only true way to show connection between internal attributes 

of software and external quality attributes? Fenton and Pfleeger shed some light on 

this, arguing that many of the tools, techniques and technologies adopted by the 

software engineering community have been so on the basis of hype, marketing and 

folklore (as opposed to adoption on the basis of results from a scientific study, like 

what might happen in say adoption of a new drug) [FP96]. An empirical study by 

Hatton on defect density of object oriented programming compared to the older style 

of procedural programming seems to illustrate this point [Hat98]. 

 

Hatton’s study on defect density of the two programming paradigms—although 

published several years before Parnas’ work criticizing studies performed in the field 

of empirical software engineering—seems to be the rebuttal of Parnas’ criticisms. 
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Hatton intimates that while the rational arguments for why object-orientation better 

reflect the way we as humans think about the world—and therefore may be a more 

natural way for software engineers to express those thoughts in source code—the 

empirical evidence for defect density and time taken to perform corrective 

maintenance was higher in the objected-oriented system as compared to the 

procedural one. 

 

Interestingly, arguments for adoption of technologies by hype, marketing, folklore (if 

one is aligned with the views of many in the empirical software engineering 

community) or by rational argument (if one is more aligned with Parnas’ views) 

persist, even to the present day. The following quote is excerpted from the 

introductory chapter of recent book by Odersky et al. on the Scala programming 

language [OSV16]: “Fewer lines of code mean not only less typing, but also less 

effort at reading and understanding programs and fewer possibilities of defects”. 

While one can appreciate Odersky wanting to evangelize the programming language 

he has created, without (at the very least) elaboration on these claims they do seem 

facile, and indeed very reminiscent of those that Hatton describes were used to 

justify the adoption of object-oriented programming. To be sure, facile is exactly the 

right word to describe the argument in this quote, because while Scala may indeed 

result in a reduction of lines of code, the complexities of its type system, program 

flow constructs and so on, may actually make it more difficult to understand and 

more susceptible to the introduction of subtle bugs.  

 

All of this leads us to the question of which is the right approach: that of Parnas, or 

that of those in the empirical software engineering community like Arisholm and 

Sjoberg? The work of Kitchenham et al. seems to suggest that there is merit in both 

approaches, and that they are not mutually exclusive [KDJ04]. Kitchenham et al. 

borrow the same-named concept from the field of medicine and apply it to software 

engineering to come up with Evidence-Based Software Engineering. This approach 

seeks to amalgamate expert opinion (e.g., the rational arguments in the style of 

Parnas’), with results of empirical studies (e.g., the results of Arisholm and Sjoberg) 

by, among other things, critically weighting evidence in terms of its credibility. The 

approach, as promising as it might seem at first sight, is as noted by Kitchenham et 

al. not without its critics, even in other fields where it has existed for quite some 

time. And sometimes, like in the case of a three-wheeled vehicle as a compromise 
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between a car and a motorbike, the outcome is the worst of both alternate 

possibilities—it being both less stable than a car, and less agile than a motorbike. 

 

Given the above my conclusion for this section is that there is not a consensus on the 

method by which one should attempt to show a connection between a structural 

attribute, and a software quality attribute (such as maintainability, reusability, 

understandability and so on). 

 

1.2.3 The Nature of Structural Attributes 
 

On the issue of the nature of widely-discussed structural attributes such as coupling 

consider the following. In one of the more recent treatments of coupling, Fowler says 

of it, that two things are coupled if changing one necessitates changing the other 

[Fow01]. He further notes that two things might be coupled even if there is 

seemingly no dependency (as far as the compiler or execution of the program is 

concerned) between them. The example he uses is when code that would otherwise 

belong in a well-factored, single method, is instead duplicated throughout the 

program. Any maintenance task to fix a bug in that code would involve modifying 

that code in each of the source files it appears, and by Fowler’s definition, this would 

imply all those source files were coupled to one another.  It is worth noting, Fowler’s 

definition of coupling is not just an anomaly, many authors use the term this was as 

indicated in the survey paper of Kagdi et al. [KCM07]. Indeed the IEEE Standard 

Glossary of Software Engineering Terminology [IEE90] defines coupling as “the 

manner and degree of interdependence between software modules” and Fowler’s 

view of it does seem consistent with this. 

 

Where things are inconsistent with respect to this view of coupling though, is in the 

literature on software measurement (see, e.g., Fenton and Pfleegers’ book, and 

additional references therein [FP96]). This literature seems to exclusively define 

coupling as an internal attribute of software. An internal attribute of a thing is one 

that can be measured from knowledge of the thing alone. An external attribute of a 

thing is one that’s measurement necessitates knowledge not only of the thing itself, 

but knowledge of the environment in which the thing exists. The classic example of 

an external attribute of software is reliability, because it depends not only on the 

correctness of the software’s implementation, but also on the specific features of it 
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utilized by its user, the hardware on which it runs, and any software in the stack (e.g., 

the compiler, the operating system and so on) on which it depends. 

 

There are many reasons why Fowler’s definition of coupling is not consistent with it 

being an internal attribute of software. One is that whether coupling exists between 

two or more modules depends on the specific bug being fixed or requirement being 

implemented. Although not mentioned by Fowler, this is abundantly clear in Parnas’ 

seminal work—which modules change in his KWIC program depend on which one 

of the future requirements he enumerated is considered. Those future requirements 

do not manifest in the source code of the program. Further, Parnas’ KWIC program 

is very simple3,  and it has been my observation that in real-software there are 

oftentimes several choices of source files that can be modified to implement a given 

requirement. A professional software engineer will evaluate each such choice and the 

risks associated with it (e.g., the risk of introducing a regression when considering 

generalizing existing code vs. that of leaving the existing code as-is and writing less 

invasive additional code that may involve some degree of duplication to implement a 

new feature). In this respect, coupling as it is defined by Fowler is an external 

attribute because it depends not only on the specific future requirement, but also on 

the expert judgment of a software engineer implementing it especially in the cases 

where that feature can be implemented in the code in a plurality of distinct ways. 

 

It is certainly true that the definition of words can change over time (so much so that 

this is a topic of study known as semantic change in the field of Linguistics), but the 

works of Fowler, and those cited by Fenton and Pfleeger, and separately those cited 

by are Kagdi et al. are all contemporaneous to one another. It follows then that there 

is no consensus of the precise nature of coupling. This is a problem, because as 

Wand and Weber have noted, we cannot expect the state of knowledge in a field to 

advance quickly if the fundamental concepts and terms in that field (like coupling) 

remain poorly defined [WW90]. Eden and Kazman too, similarly caution us on the 

dangers of fundamental terms becoming “mere platitudes” in the field of software 

engineering [EK03].   

 

                                                
3 This is not a criticism of Parnas’ work—likely, and appropriately, the KWIC program was 
deliberately selected as a simple example for pedagogical reasons. 
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Given the discussion above on the controversies that exist in the area of software 

structure, how might we address them? It is my position—and that taken in this 

work—that measurement of just internal attributes of real software systems is an 

excellent starting point for addressing these controversies.  

 

1.2.4 The Case for Measuring Just Structural Attributes 
 

It is widely accepted that measuring a thing forces us to formalize our otherwise only 

intuitive notions of that thing, and that measurement is a key part of science [FP96]. 

By actually measuring the various forms of coupling that exist and are meaningful, 

we can see that it is perhaps best described as a general concept with many different 

manifestations rather than an internal or external attribute of software. In order to 

perform the kind of empirical studies of coupling many in the empirical software 

engineering community want to see, besides measuring the external quality attribute, 

we must also be able to measure the thing present in source code we are attempting 

to correlate with that—so this approach is not really inconsistent with those efforts. 

Further, a careful reading of study of Parnas’ seminal work on information hiding 

reveals he too was using measurement to make his argument [Par72]. In particular, 

for two different designs of the KWIC program, he counts (i.e., measures) the 

number of modules that would require changing for each of the requirements under 

consideration—a smaller number of modules changed being superior to a larger 

number changed. It follows then that my approach to measuring internal attributes is 

not really inconsistent with the views of Parnas either. 

 

One of the insights of the research contained herein, that might also go some way 

toward addressing the controversies described above is the introduction of the notion 

of activities [MT07e]. An activity may help us to “bridge the gap” between a thing 

that exists in source code, and an external quality attribute. For instance, the activity 

of recompilation after a change in Java (and in C++) involves recompiling all the 

source code that transitively depends on the one that was modified. It therefore 

makes no sense to try and empirically link transitive compilation dependencies to 

number of files requiring to be recompiled. As another example, if our approach to 

(i.e., activity for) reuse is to copy a source file without modifying editing it, to ensure 

it will compile in the new system we also need to copy all the other source files on 

which it transitively depends. Again, there is no sense in empirically establishing a 
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link between compilation dependencies and the files that need to be copied, because 

it exists in our definition of the activity. There are many more examples in this vein 

described in the works contained herein, and I term recompilation and this specific 

form of reuse (and the others) activities. 

 

When there is a sound theoretical link between a thing in source code, and what I 

have termed an activity, it does not make sense to empirically validate that link. 

What does make sense though, is to empirically determine the relevance of that 

activity to the external software quality attributes. So, for the recompilation activity, 

to what extent are software developers waiting on recompilation when maintaining a 

system? Is the “copy source code without modification from one system to another” 

activity the appropriate approach to reuse? Relating to Parnas’ seminal work too 

[Par72], is minimizing the number of modules requiring change empirically linked to 

reduced effort for making that change? (In large part, it is the sound theoretical link 

to these so-called activities that ultimately caused me to focus my efforts in this 

research on compilation dependencies among source files, and not on other perhaps 

more sophisticated forms of coupling where there is no sound theoretical link to any 

such activity). 

 

1.2.5 Summary 
 

To summarize: despite software structure being an active research area in software 

engineering for over 50 years, many controversies persist relating to the precise 

nature of fundamental terms in it such as coupling, and the methods by which we 

should seek to show connection between structural attributes of source code and 

external software quality attributes. In a manner that is not inconsistent with the 

otherwise opposing views on the methods by which such connections should be 

shown, I propose measurement of just internal attributes in real software systems, 

with a particular focus on those that have sound theoretical connections to activities, 

which themselves may subsequently be shown to be connected to external software 

quality attributes. 
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1.3 Overview of the Publications (Chapters) in this Research 
 

This is a PhD by Prior Publication, so the body of this dissertation comprises the 

publications that have resulted from the research. I have elected to include the 

publications verbatim (except for formatting changes which were required to meet 

thesis submission requirements), as they were accepted for publication by the 

referees at each of their various venues. In this section I provide a short overview of 

each publication, and explain how together they form a coherent body of work. 

Where there are coauthors on a publication my specific contribution to that 

publication is as described in the mandatory coauthor declaration forms appearing in 

this thesis immediately prior to each publication (chapter). 

 

1.3.1 First Publication [MT06] 
 

In Chapter 2 Identifying Refactoring Opportunities by Identifying Dependency Cycles 

[MT06] I describe a tool Jepends that I built that infers compilation dependencies 

among Java source files in Java projects without necessarily requiring them to be in a 

state such that they can compile. This tool is important for large scale, multi-project 

studies because as I discovered when gathering projects for what became the 

Qualitas Corpus (see Chapter 11) the steps to build a Java project vary greatly from 

project to project. In addition to inferring the dependencies among the source files of 

a project using an algorithm derived from Lagorio’s [Lag04], the tool collects 

various metrics about those source files and the dependencies among them.  

 

I further describe how I use to tool to collect some simple metrics from a handful of 

open source Java applications, reporting specifically on Tomcat and Azureus. I show 

that the transitive closure of the inward and outward compilation dependencies 

across source files in Azureus are quite different from those in Tomcat, whereas the 

distribution of other metrics such as direct dependencies look quite similar. I show 

that the difference in the distributions of the transitive closure of compilation 

dependencies in Azureus relative to that in Tomcat, is due to the existence of cycles 

in the dependency graphs of Azureus.  

 

By counting simple cycles—or actually a sampling thereof—I demonstrate in 

Azureus that it is possible to identify source files using these metrics as candidates 
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for specific forms of refactoring, if the goal is to break dependency cycles among a 

program’s source files. I review some of the literature that advises against 

dependency cycles. To my knowledge this was the first, albeit very small-scale, 

empirical investigation of (compilation) dependency cycles among source files in 

Java. 

 

This paper leads into the next with the speculation that the distribution of some 

metrics might be invariant from project to project, while the distribution of others 

might vary from project-to-project. Which are those that might be invariant, and 

why? The works of Wheeldon et al. [WC03] and Marchesi et al. [MPST04] on the 

existence of power laws in certain metric distributions in Java and Smalltalk 

respectively are identified in the related work section of this paper and indeed this is 

the focus of the next paper.  

 

The claimed contributions of this paper are the tool Jepends itself for inferring 

compilation dependencies among a project’s source files, that the tool can also be 

used to detect and count cycles and direct and transitive compilation dependencies 

among Java source files (ignoring redundant import statements), and that those 

metrics can be used to identify candidate Java classes for extract-interface 

refactorings (which is demonstrated on the code base of Azureus), This paper was 

awarded best paper at the conference in which it appeared. 

 

If one were to retrospectively ascribe a research question (RQ) that this paper sought 

to answer that question might reasonably be stated as follows: 

RQ1: Can compilation dependencies among a Java project’s source files (only) 

be quickly and accurately computed without external libraries, build scripts and 

so on, and if so what observations can one make about those compilation 

dependencies in real-software? 

1.3.2 Second Publication [BFN+06] 
 

In  Chapter 3 Understanding the Shape of Java Software [BFN+06] my coauthors 

and I seek to understand which metrics might be invariant from Java one project to 

another in terms of their distributions, and which might be project-specific. It is the 

first significant work published that made use of a sizeable curated corpus of Java 

software that came to be known as the Qualitas Corpus. Among other contributions 
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to the paper, I conceived and developed this corpus and my coauthors acknowledge 

so in the paper of Chapter 11. 

 

In the paper we find that just because a distribution of a metric appears to be fat- or 

long- tailed, it doesn’t necessarily mean that it obeys a power law (as had previously 

been found by Wheeldon and Counsel [WC03]); other types of probability 

distributions might statistically fit just as well or even better. We explain in detail 

why our use of a sizeable, curated corpus of Java software might yield better results 

than non-curated corpora where others have found only power laws, and posit from 

our findings that the distributions of some metrics might, in real software, be 

unavoidable regardless of how they are designed. 

 

In terms of the contribution of this work—it has subsequently been cited by over 170 

papers and there is insufficient space to describe them all here—two particularly 

important works stand out. One is by Hatton where theories for the causes of power 

laws in software are proposed, and where he conducts an empirical study very 

reminiscent of ours except across a slew of programming languages [Hat09]. The 

other is a PhD thesis by Taube-Schock where he seemingly concludes by analyzing 

the same corpus that high coupling is unavoidable “all systems in the corpus are 

scale-free and that that property results in high coupling”, and that high coupling 

may not necessarily be a bad thing despite instructional literature on software design 

to the contrary [TS12]. 

 

If one were to retrospectively ascribe a research question (RQ) that this paper sought 

to answer that question might reasonably be stated as follows: 

RQ2: In real Java software, which structural metrics seemingly have 

distributions that are invariant from project-to-project, and among those with 

invariant distributions are they really powerlaws? 

 

1.3.3 Third Publication [Mel06] 
 

In Chapter 4 On the Usage and Usefulness of OO Design Principles [Mel06] I 

espouse the benefits of studies of just internal attributes of real software systems in a 

corpus of such. Overall I argue that although such studies by themselves cannot, by 

definition, draw empirical connections to external quality attributes, they can help us 
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in very meaningful ways. In particular, by alerting practitioners which structural 

phenomena actually manifest in the systems they work on; to help focus costly 

research effort on structural phenomena that are thought to be detrimental but that are 

widespread in real software, to generally be more scientific in our methods 

(measurement of a thing forces us to formalize our otherwise intuitive understanding 

of it [FP96]). 

 

The PhD thesis of Oyetoyan has proven my views in this paper valid [Oye15]. He 

heavily cites my works described in this document as justification for going to the 

trouble of performing empirical studies of cycles he performed in an attempt to show 

connections between them and external attributes such as maintainability and 

change-proneness. Others too (including Oyetoyan) have used these studies to justify 

the cost and time of building tools to help break cycles [CALN16]. 

 

Also in this paper I mention the benefits of making the curated Java corpus I had 

developed widely available. Again, this came to fruition and is discussed in Chapter 

11, with the corpus now in wide use, and a thing of study in its own right (see e.g., 

the work of Terra et al. [TMVB13] where the objective is to make the corpus’ source 

code automatically compile, and that of Dietrich et al [DSST17] where the objective 

is to make software in the corpus automatically execute). 

 

This was a Doctoral Symposium paper and allowed me to solicit feedback on the 

direction of research. The paper, although short, describes the goals of this entire 

body of research, and the approach taken to it (and why I chose to focus mainly on 

transitive compilation dependences as opposed to other perhaps more exotic forms of 

coupling), and identifies some gaps in the pre-existing body of research that justifies 

this body of research’s existence. I elected to include this paper in this body of this 

thesis for these reasons, and so that in Chapter 12 (where I conclude this work) I 

could reflect upon the extent to which the goals were achieved and extent to which 

the approach was successful. 

 

It is perhaps strange to ascribe a research question to this paper since it was a  

Doctoral Symposium paper and not a research paper per se, but for the purposes of 

consistency the research (meta-) question this paper sought to answer might 

reasonably be stated as follows: 
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RQ3: What is the intended approach, goals, and outcomes of this PhD research?  

 

 

1.3.4 Fourth Publication [MT07a] 
 

In Chapter 5 The CRSS Metric for Package Design Quality [MT07a] I describe how 

transitive dependencies among classes may have a detrimental effect on 

dependencies among the packages that comprise a software system. The design 

advice on avoid cycles at the package level is more prevalent than that at the class 

level. In essence, I observe that if the classes comprising an application have large 

transitive dependencies, then the packages comprising that application cannot be 

both of reasonable size and free of cycles. 

 

Using my class reachability set size (CRSS) metric, I show that transitive 

compilation dependencies in several real-world Java applications in the Corpus 

preclude them from having a good package structure (without even having to analyze 

the package structure of those applications), no matter how those classes are 

rearranged among packages. I identify some specific refactoring techniques 

(specifically, dependency injection and a registry of singletons) that might be used to 

break these large transitive dependencies. Specific examples of these refactorings on 

the codebases of Eclipse and Azureus are walked through, and the effects on the 

transitive dependencies as a result of these specific refactorings are measured. 

 

In reviewing some of the citations of this paper, it seems fair to say that it ignited 

interest in refactoring to break dependencies among packages—something that had 

previously received very little attention (see e.g., Laval’s PhD thesis which 

subsequently cites my work [Lav11]).  The CRSS metric proposed by me in this 

paper has also subsequently been studied by Oyetoyan as part of his PhD research 

[Oye15]: initially in an attempt to correlate it with an external quality attribute 

[OCC14], and later to extend the work in this paper notably reusing and extending 

the Jepends tool itself, and improving upon the refactoring techniques identified by 

me [OCTN15]. 

 

In this paper, relating to those two specific techniques I identify for breaking 

transitive dependencies—and crucially both of which ultimately require an interface 
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to be extracted from an implementation—I coin the phrase “the problem of 

instantiation”.  This alludes to the fact that the implementation of an  interface has to 

be instantiated somewhere, and that if it is also instantiated in the class using the 

interface then  the transitive dependencies induced by the implementation  (that are 

likely “larger” than those induced by just the extracted interface) are not actually 

broken.  This key insight is essentially what led to the papers of Chapters 6, 9 and 10, 

as described below. 

 

With respect to the paper of Chapter 6 [MT07b], the findings in this CRSS paper led 

me to question to what extent do cycles contribute to large CRSS values, and what 

type of cycles should we be measuring? Further, to what extent do cycles appear in 

the public (cf. private) parts of classes? That of course affects the extent to which 

extract-interface based refactorings will be successful at reducing transitive 

dependencies.  

 

With respect to the paper of Chapter 9 [MT07d], the findings of the CRSS paper and 

this problem of instantiation led me to the question: how else, apart from 

instantiating a class, might one cause a transitive dependency on things in its 

implementation? The answer to that is through the use of non-private static members 

(i.e., methods and fields).  The question addressed in the paper of Chapter 9 is to 

what extent to statics “cause” cycles, and therefore potentially large transitive 

dependencies. 

 

With respect to the paper of Chapter 10 [YTM08], I sought to answer the question, if 

dependency injection is so widely-used (and the trade literature at the time seemed to 

indicate it was), why do so many real-world programs have such large transitive 

dependencies among their source files? My coauthor and I sought to answer that by 

investigating both the extent to which dependency injection is used, and the extent to 

which referencing a “default implementation” in the client class may have been the 

cause of transitive dependencies on things appearing in the implementation being 

present in that client class. 

 

If one were to retrospectively ascribe a research question (RQ) that this paper sought 

to answer that question might reasonably be stated as follows: 
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RQ4: In a corpus of real Java software what do the distribution of transitive 

dependencies among source files look like, and what are the implications in 

terms of software design quality of these distributions? 

 

 

1.3.5 Fifth Publication [MT07b] 
 

In Chapter 6 An Empirical Study of Cycles Among Classes In Java [MT07b] I 

perform the first truly in-depth study of compilation dependencies among classes in 

real world Java applications, using a very mature version of my curated Java corpus, 

which by this time also included some commercial software. Compilation 

dependencies are categorized by their pathology—some being worse (and/or harder 

to break) than others. In combination with this, a minimum edge feedback set 

approach from graph theory is used to try and quantify the strength of connection in a 

strongly connected component of Java source files. The effects cycles have on 

certain activities (e.g., integration test ordering, reuse at the level of source code, 

recompilation, and so on) are described in detail. 

 

If just a single paper could be used to prove my thesis—that carefully conducted 

empirical studies of just internal attributes can advance knowledge in our discipline 

in a meaningful way—this would be that paper. The novelty of this paper is its very 

thorough (i.e. careful) treatment of the internal attribute of “cycles” in the 

compilation dependency relation among source files. The treatment is thorough, in 

part, because cycles are studied in a corpus of 78 real-world Java projects, that were 

deliberately chosen to vary along a number of dimensions to achieve some 

representativeness of Java projects in general. Those dimensions were: open or 

closed-source, the domain, their origin, their size, and so on. Of the 78 projects, 22 

had multiple versions which allowed a “longitudinal” study of cycles, from release-

to-release in those projects. 

 

The treatment is also thorough because the origins of the design principle “avoid 

cycles” are traced back through the literature, and in doing so the specific arguments 

for why cycles are “bad” are identified. Those arguments are espoused in the paper 

and by doing so meaningful measurements of cycles that relate to the activities in 

these arguments could be derived. For instance, rather than counting simple cycles, 
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those arguments led me to realize strongly connected components were more 

appropriate to measure. Further, the size of a strongly connected component alone 

does not indicate the number of dependencies that need to be broken to break that 

cycle—that led me to the edge feedback set metric. Further still, within the edge 

feedback set metric, inheritance relationships are harder to break than other types of 

relationships so in calculating the size of that metric with a view to estimating effort 

to break cycles, that form of dependency was excluded from the edge feedback set. 

 

Finally, cycles among different dependency relations are computed with a view to 

distinguishing cycles that exist due to inherent relationships among the entities being 

modeled in the domain (e.g., the mutual relationship between a node and an edge in a 

directed graph), from unnecessary or “bad” cycles. The way this is achieved is by  

distinguishing cycles that appear in the public interfaces of a class from those that 

appear elsewhere (e.g., in the private implementation details of the class).  

 

What is found in the paper is that of the projects in the corpus comprising enough 

classes to support such a cycle, about 45% have a cycle involving at least 100 classes 

and around 10% have a cycle involving at least 1,000 classes.  What is also found in 

the longitudinal-style study is that strongly connected components tend to grow in 

size in subsequent releases of the same project. What is further found is that cycles 

appearing in the interfaces of classes tend to be much smaller than those appearing in 

their implementations, which is implies extract-interface style refactorings may be 

quite successful at breaking large cycles and reducing transitive dependencies. 

 

The impact of this paper is highlighted by the 80+ citations it has received, and the 

subsequent work in the exact same area it seems to have inspired: at least two PhD 

theses on Cyclic Dependencies in Java [Sha13] [Oye15] and at least one Masters 

thesis on the same [AM13]. 

 

Some questions this paper naturally raises that lead into the subsequent publications 

are: How, instead of having to break cycles, might software engineers avoid creating 

them in the first place? And, what is it that causes a software engineer (perhaps only 

inadvertently) to create a cycle in the first place? These questions are addressed in 

the papers of Chapters 7 and 9. 
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If one were to retrospectively ascribe a research question (RQ) that this paper sought 

to answer that question might reasonably be stated as follows: 

RQ5: In a corpus of real Java software to what extent do cyclic dependencies 

exist and evolve over time, and in terms of software design quality what are 

reasonable metrics for measuring this? 

 

 

1.3.6 Sixth Publication [MT07c] 
 

In Chapter 7 JooJ: Real-time Support for Avoiding Cyclic Dependencies [MT07c] I 

argue that the best way to break cycles might be to avoid creating them in the first 

place. I suggest that the reason that these cycles might come to existence in the first 

place is because a software engineer working on a system is not cognizant of the 

overall structure of the system each time s/he makes modifications to individual 

source files, and that this might inadvertently lead to their introduction. 

 

I describe a novel plugin I built for the Java IDE Eclipse that analyzes an entire 

application for cycles as code is being written, statement-by-statement, so as to 

provide immediate feedback to a software engineer when a cycle is created. I 

demonstrate, using the corpus, that the plugin can provide real-time feedback in 

Eclipse when run on a modest desktop computer at the time, even when running on 

an application comprising 11,000 Java source files. 

 

The need for the tool described in this paper is largely justified by the widespread 

existence of large cycles in Java software that I found in [MT07b]. The arguments 

for why such a tool improves upon the current state of the art (which were batch-

style tools) are, as described in the paper, that: (1) code is more resistive to change 

after it has been written, (2) changing other people’s code is hard and (3) as per the 

poka-yoke approach to manufacturing pioneered by car manufacturer Toyota it is 

best to fix or prevent mistakes as close as possible to the task that creates them (in 

this case that “task” is unwittingly writing a new line of code that induces a cyclic 

dependency). 

 

Others too have cited this work agreeing there is need for better tool support to break 

cycles. Examples include the PhD thesis of Laval on tool support for breaking cycles 



23 
 

among packages [Lav11], and the recent work of Caracciolo et al. where it is noted 

“Unfortunately, detecting cycles is only half of the work. Once detected, cycles need 

to be removed and this typically results in a complex process that is only partially 

supported by current tools. We propose a tool that offers an intelligent guidance 

mechanism to support developers in removing package cycles. Our tool, Marea, 

simulates different refactoring strategies and suggests the most cost-effective 

sequence of refactoring operations that will break the cycle” [CALN16]. 

 

One of the main themes of the JooJ paper is proof that it can operate on a large 

project in real-time. What is very interesting is that nine years later, despite advances 

in computing consistent with Moore’s Law, the ability of tools like this to operate in 

real-time remains a concern. Again, quoting from the work of Caracciolo et al “Our 

approach [to identifying the specific refactoring based on a custom profit function] 

has been validated on multiple projects and executes in linear time.”[CALN16] 

 

If one were to retrospectively ascribe a research question (RQ) that this paper sought 

to answer that question might reasonably be stated as follows: 

RQ6: Is it computationally feasible to perform whole-program analysis to 

identify cyclic dependencies in Java code, as that code is being written, in a 

manner that is tightly integrated with existing Integrated Development 

Environment (IDE) features? 

 

 

1.3.7 Seventh Publication [MT07e] 
 

In Chapter 8 Towards Assessing Modularity [MT07e] I describe the problems with 

the term modularity much like how in this introductory chapter I have described the 

problems with the term coupling. The page limit was quite severely constrained for 

this workshop, so the paper is very short, but it nevertheless makes several important 

points that relate back to arguments made in this introductory chapter about needing 

agreement on the definitions of things. At the time I wrote this I was not brave 

enough to say that modularity is neither an internal attribute nor an external one, but 

rather just a general concept (like coupling). All the arguments I have made about 

coupling in this chapter began with my thinking in this modularity paper, and indeed 

this paper introduces the term “activity”. 
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In short, I argue that modularity is not well-defined in the field of software 

engineering. My position is that modularity is the extent to which a thing comprises 

independent parts. Merely increasing the number of parts (e.g., by splitting one of a 

program’s class’ into two) does not necessarily increase the extent to which the thing 

is modular, because those parts also have to be independent of one another. 

 

This leads to my next point that whether two parts can be considered independent or 

not depends on the specific activity one is undertaking or perspective from which one 

is assessing modularity. Two such parts may be independent from the perspective of 

say unit testing, but not from say the perspective of verbatim reuse of source files. 

Put another way, by simply saying “modularity is improved” by this new 

programming language feature, or design technique is neither helpful nor meaningful 

(yet it continues to occur even in publications in this calendar year, 2016). The 

specific perspectives from which modularity is improved need to be carefully 

articulated or we risk the term becoming a mere platitude (the dangers of such 

platitudes are as previously discussed and cited in this introductory chapter 

[WW90][EK03]).   

 

I also point out that modularity, though often talked about only as a “good” thing 

(e.g., “our goal is to always to increase modularity”), may not always be as such. For 

instance, and as pointed out in the paper, it may be harder to change a system that 

comprises too many independent parts, because finding the right part to change may 

prove more difficult than in a system with fewer parts. This view is entirely 

consistent with that of Baldwin and Clark who argue in their highly cited book that 

designing for modularity is like a buying a kind of financial instrument known as an 

option [BC00]. There is a cost to buy that derivative contract (option), but at some 

point in the future it may (or may not) provide a savings greater than its cost (in 

option vernacular, its “premium”). In software engineering terms, as Parnas has 

intimated, designing our software now for possible future changes costs money now 

but if those changes do actually happen we will save money and time in the future 

[Par94].  
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It is perhaps strange to ascribe a research question to this paper since it was more of a 

position paper and not a research paper per se, but for the purposes of consistency the 

research question this paper sought to answer might reasonably be stated as follows: 

RQ7: Does it make sense to reason about modularity without a clear definition 

of it, and even with such does it make sense to do so in isolation without 

reference to a specific activity? 

 

1.3.8 Eighth Publication [MT07d] 
 

In Chapter 9 Static members and cycles in Java software [MT07d] I perform yet 

another empirical study on the curated corpus to collect empirical evidence to 

support my theory that cycles may be caused by the “overuse” of static members 

(i.e., non-private static methods and non-private static fields) in Java. In this study I 

am careful to control for so-called confounding factors such as class size by 

stratifying the dataset along two dimensions: presence or absence of static members 

and size of class (big or small).  

 

What I find in this study is that both at the application- and corpus-level the results 

generally seem to support the contention that classes that are accessed statically are 

more likely to be involved in cycles than those that are not. For the four hypotheses 

tested in the study (all using the χ2 test) I obtained only three statistically significant 

negative results. For the hypothesis pertaining to edges due to access of static 

members appearing in cycles, only six applications of the 81 examined had a 

negative result. 

 

This paper is the only one that I am aware of that attempts to correlate these two 

internal attributes with one another (statics and cycles) to gather evidence support a 

theory that one such internal attribute causes another. It would seem to provide 

evidence that the anecdotal design advice about generally avoiding static members 

because they are the “globals” in the object-oriented paradigm is sound. 

 

If one were to retrospectively ascribe a research question (RQ) that this paper sought 

to answer that question might reasonably be stated as follows: 

RQ8: Is the use of non-private static members in Java projects a probable cause 

of dependency cycles among classes in those projects? 
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1.3.9 Ninth Publication [YTM08] 
 

In Chapter 10 An empirical study into use of dependency injection in Java [YTM08], 

my coauthors and I investigate another structural phenomena that may cause both 

large transitive dependences and/or cycles—the use of appearance of the default 

implementations of an interface in the nullary constructor of classes that had 

otherwise seemingly been designed to implement dependency injection. Dependency 

injection, as the phrase is used in this paper, refers to the passing of an 

implementation of one class into another through a formal parameter declared as a 

supertype of the former in the latter’s constructor(s). The paper traces the origins of 

dependency injection and reviews the arguments for the effects it has on quality 

attributes. 

 

The paper uses what is effectively a program slicing tool built on top of other tools 

(specifically Jimple, Soot and Indus) by my coauthor Yang to detect instances of 

dependency injection in a version of the Qualitas Corpus. It does so by way of 

constructing use-def chains which trace through a program the origin of an 

assignment to a variable. What is found by using this tool to analyze the corpus is 

that dependency injection is not as widely used as might otherwise have been 

inferred by reading the trade literature on it (at least in terms of the projects in the 

corpus studied). In many applications it is not used at all. In some ways, its lack of 

use makes the second part of the study—the extent to which it is used with a default 

implementation—moot as far as this default implementation causing large transitive 

dependencies. 

 

One conclusion from this work that relates specifically to breaking cycles and 

reducing transitive dependencies is that refactoring an existing code base to make 

wider-use of dependency injection may be an effective technique for doing so. This 

is because dependency injection was not found to be widely-used, and because my 

other study found cycles aren’t as big in just the public interfaces of classes as in 

their implementations [MT07b]. 
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If one were to retrospectively ascribe a research question (RQ) that this paper sought 

to answer that question might reasonably be stated as follows: 

RQ9: Is dependency injection widely-used in real Java projects, and if so is it 

used in a manner that would reduce transitive compilation dependencies? 

 

 

1.3.10 Tenth Publication [TAD+10] 
 

In the final paper of Chapter 11 The Qualitas Corpus: A Curated Collection of Java 

Code for Empirical Studies [TAD+10] my coauthors and I describe the corpus I had, 

quoting from the paper, originally “conceived and developed” during my time as an 

PhD candidate at the University of Auckland. The paper describes the design of the 

corpus so as to make its content readily accessible to other researchers for replication 

studies, to lower their barriers to entry for performing their own empirical studies 

and so on. The history, current organization of the corpus and the specific reasoning 

that led to these things is all described. 

 

Besides what is explicitly described in this paper, the evolution of the corpus is 

implicit in the publications described above that use it. Almost all of the design 

decisions relating to the corpus were made exclusively by me and I became strongly 

influenced by the work of Hunston in Corpus Linguistics in making those decisions 

[Hun02]. In short, I chose the projects for their corpus to vary along many 

dimensions (size, domain, origin, open or closed-source) so some degree of 

representativeness could be claimed. I also added multiple versions of a number of 

the projects in the corpus for the purposes of performing longitudinal studies of how 

the structure of those projects had evolved over time. 

 

I made the decision to distinguish between classes appearing in a project’s actual 

source code versus being depended on as third party libraries to avoid “double 

counting” of classes between applications. The way I achieved that was to manually 

inspect each project and record with it the list of Java package prefixes that contained 

its source (vs. those packages that contained external code). Initially I had only 

downloaded each project’s source code but later on it became clear to me that I 

should download both source code and binaries, because (1) some forms of analysis 

were easier to perform on Java byte code than on source and (2) because I wanted to 
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verify the correctness of my Jepends source code-analyzing tool by comparing its 

output to another such tool I built to read such dependencies out of the byte code 

using Apache BCEL and (3) because it was too time consuming to figure out the 

build process specific to each project which oftentimes involved editing an Ant 

script, downloading the right versions of external jars and so on. 

 

Some other interesting design decisions are also worth mentioning. One was my 

decision to include more than one project from the same domain—for instance 

Netbeans and Eclipse. Since both those applications are Integrated Development 

Environments, what that sometimes allowed was comparisons to be made about 

whether structural phenomena detected might be inherent to the domain, or not. 

 

Judging from its 170+ citations, the contribution of this paper was largely as 

intended—it is mostly cited by other researchers using the corpus to do their own 

empirical studies of structural attributes. What is very interesting though, is that there 

is also at least one work where the contribution of it is to corpus itself—modifying 

the artifacts in the corpus so they could be successfully compiled from their source 

code [TMVB13].This paper was awarded best paper at the conference in which it 

appeared.  

 

If one were to retrospectively ascribe a research question (RQ) that this paper sought 

to answer that question might reasonably be stated as follows: 

RQ10: What were the specific considerations, issues and limitations 

encountered when designing the Qualitas Corpus and what is the case for other 

researchers making future use of it in their empirical studies? 

 

 

1.3.11 On the Connections between the Publications 
 

To restate the connections of the papers to one another: the initial “cycles” paper 

[MT06] led to the insight that some metric distributions were seemingly the same 

between Java projects and others were different. These insights led to three papers: 

the “shape” paper [BFN+06] which examines distributions that are similar between 

projects and the CRSS paper [MT07a] and the in-depth “cycles” paper [MT07b] 

which both examine metric distributions that are different among projects. Also as a 
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result of the initial “cycles” paper the benefits of performing studies of just internal 

attributes became clear to me and those were espoused in my doctoral symposium 

paper [Mel06]. Following on from the in-depth “cycles” paper [MT07b], I wondered 

about the causes of cycles which led to the tool paper for avoiding cycles [MT07c] 

and the “statics” paper investigating their relationship with non-private static 

members [MT07d]. In describing all the arguments for why cycles were bad in the in 

depth “cycles” paper it occurred to me that there was an intermediate step involving 

an activity between cycles and external quality attributes, and that is described in this 

introductory chapter (in the context of coupling) and also in the “modularity” paper 

[MT07e]. Further, in wondering on the cause of and large transitive dependencies 

[MT07a] cycles I wondered if default implementations in dependency injection were 

responsible for them and for large transitive dependencies, and that led to the 

dependency injection paper [YTM08]. Finally, after gradually evolving the corpus, 

and repeatedly using it in many of my studies, it had become a thing in its own right 

worthy of discussion, and that led to the “corpus” paper [TAD+10]. 

 

1.4 Organization of this Dissertation 
 

In this introductory chapter I have motivated this research and given an overview of 

it. As noted earlier, the body (i.e., Chapters 2-11) of this dissertation comprise the 

published papers that have resulted from this research. The papers are presented in 

chronological order, by date of publication, verbatim as they were accepted for 

publication by the referees (except for changes to formatting and bibliographic 

references, which have been consolidated to all use the same style). In the final 

chapter of this dissertation—Chapter 12 Conclusions and Future Work—I review the 

contributions of this work, its significance and relevance, I evaluate its outcomes in 

terms of my stated goals for it, I self-identify some possible criticisms of it, and I 

discuss future directions of this work, which despite the many works it has led to, 

there are still many. 
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Chapter 2 Identifying Refactoring Opportunities by 
Identifying Dependency Cycles 

 

The purpose of refactoring is to improve the quality of a software system by 

changing its internal design so that it is easier to understand or modify, or less prone 

to errors and so on. One challenge in performing a refactoring is quickly determining 

where to apply it. We present a tool (Jepends) that analyses the source code of a 

system in order to identify classes as possible refactoring candidates. Our tool 

identifies dependency cycles among classes because long cycles are detrimental to 

understanding, testing and reuse. We demonstrate our tool on a widely-downloaded, 

open-source, medium-sized Java program and show how cycles can be eliminated 

through a simple refactoring. 

 

2.1 Introduction 
 

Refactoring is defined as “the process of changing a software system in such a way 

that does not alter the external behaviour of the code yet improves its internal 

structure” [FBB99]. Refactoring is most appropriate for software systems whose 

existing (internal) design is hard to understand, hard to modify and prone to errors 

and so on. By refactoring such a software system we alter its design to make it easier 

to understand, modify and less prone to errors. As such, refactoring is regarded as an 

important technique for improving software quality during a system’s maintenance 

phase. 

 

There are several challenges in performing a refactoring. One is to identify 

characteristics of a design that make it hard to understand, modify or test etc. Fowler 

produces a list of these characteristics which he refers to as ‘bad smells in code’ or 

simply smells. Examples of smells include large classes, long parameter lists, feature 

envy and data classes. Many of these smells have a large degree of subjectivity in 

their interpretation. For instance, how large is too large for a class? How do we 

justify (in the case of the feature envy smell) if one method is ‘more interested’ in 

another class than in that which it is defined? This leads us to the second challenge in 

performing a refactoring—identifying where to perform it. 
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Since many smells have a large degree of subjectivity or variety in their 

interpretation it is difficult to (reliably) automatically detect where to apply a 

refactoring. Much refactoring therefore relies upon the slow and tedious task of 

manually inspecting code. It would be beneficial to be able to reliably automatically 

detect where refactorings could be applied. To this effect we have identified a 

particular structure in a system’s source code that can be automatically detected, and 

has a detrimental effect on the system’s understandability, testability and reusability. 

The structure we have identified is long dependency cycles between classes in the 

system. 

 

Long cycles among classes in Java programs create problems for developers because 

it is difficult to isolate any class in the cycle. Anyone wanting to understand any 

class in the cycle effectively has to understand every class in the cycle. This has 

implications for the cost of maintenance. Anyone wanting to test any class, 

effectively has to test every class. And anyone wanting to lift a class for reuse in 

another system, ends up having to lift every class in the cycle. This suggests software 

with cycles in the compilation dependency graph may be more costly to maintain 

than those without, which gives motivation for detecting and removing cycles. 

 

Of course detecting and removing cycles would not be so interesting if they did not 

exist in “real software”, or they were “mostly harmless”. This leads into the 

contributions of this paper. One contribution is to show that cycles do exist in real 

software. We have done this by examining several widely-downloaded, open-source 

Java applications. In order to determine the prevalence of cycles we have built a tool 

to detect them — this is another contribution. Since we detect cycles from source 

code and not from byte code we have had to develop an algorithm for computing 

name bindings that is of little burden to implement, unlike a fully-fledged Java 

compiler that by its very nature has to compute name-bindings and requires 

significant effort to implement—another contribution. The final contribution is 

showing how dependency cycles detected by our tool can be used as the starting 

point for refactoring. 

 

The paper is organised as follows. In section 2 we motivate our work by discussing 

in more detail why cycles can create problems for software developers. We then 

discuss the literature related to our work in section 3. Section 4 presents the 
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algorithm we use to create the compilation dependency graph. Section 5 discusses 

Jepends and section 6 shows the results of applying Jepends to a medium sized open 

source Java application. Section 7 discusses how the results of the analysis can be 

used to identify opportunities for refactoring, and finally section 8 presents our 

conclusions. 

 

2.2 Motivation 
 

Cycles in compilation dependency graphs (CDGs) have implications in 

understanding, testing, and reusing classes in the cycle. But are they really so bad? 

The simplest cycle is one involving two classes that depend on each other. It is very 

easy to find examples of such cycles – consider java.lang.Class and 

java.lang.reflect.Method, from the Java API for example. It is hard to 

argue this cycle is ‘bad’ because of the natural parent-child type relationship between 

a class and its methods. This relationship is represented at the source code level by 

Class providing a Method[] getDeclaredMethods() method and 

Method providing a Class getDeclaringClass() method. Breaking this 

cycle would involve terminating the parent’s reference to its children or the 

children’s reference to its parent, both of which are necessary relationships in order 

to provide usable Method and Class objects. 

 

It would be tempting to simply declare 2-class cycles “good” and everything else 

bad, but we suspect “good” 3- class cycles can also be found, and so the question 

would then be at what size do cycles become “bad”? The ‘necessary relationship’ 

argument stated above is an appealing criteria, and may be a correct one, however it 

has the problem, from our point of view, that it is difficult to detect violations of it 

through mechanical analysis. While it may be difficult to state categorically that a 

cycle of a certain size is bad, we would argue that it would be hard to argue that a 

large cycle, of size 50 for example, is something to be entirely happy with. We feel 

certain that it would be useful to know that cycles of that size (or larger) exist in our 

software, since that would provide a candidate for refactoring. 

 

Large cycles in the CDG may indicate another problem. As we discuss in the next 

section, a number of authors have suggested that cycles of subsystems (groups of 
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classes with coherent functionality) are bad. If we have a group of closely related 

classes (and so coherent functionality) then we would tend to want to understand, 

test, and reuse them as a unit. As we argued above, cycles within such classes may 

not be such a problem. However cycles between subsystems suggests that the 

subsystems are in fact not so coherent, and so again may indicate candidates for 

refactoring. The larger the cycle in a CDG, the larger the likelihood that the cycles 

cross subsystem boundaries. For example, if there is cycle of size 50, but all 

subsystems have fewer than 50 classes, then it must be that there is a cycle between 

subsystems. 

 

Our goal then is to construct and analyse CDGs, and identify cycles, in particular 

large cycles. 

 

 

2.3 Background 
 

There has been a considerable amount of work done in analysing dependencies of 

different kinds. We mention only the most directly relevant here. 

 

Graphs are a natural representation of computer programs well-suited for program 

analysis and transformation. Existing work in graph representations of programs is 

diverse. One dimension of this diversity is the context in which program entities are 

considered. Program entities may be considered dynamically—from the runtime state 

of the executing program, or statically—from the source code or an intermediate 

representation of it. Another dimension of work in graph representation of programs 

is the purpose for which the graph is used. Purposes include, but are not limited to, 

identifying violations of design heuristics, change propagation analysis, reverse 

engineering, reducing compilation time, and runtime performance optimisation. The 

work most relevant to this paper relates to identifying violations of design heuristics. 

 

The earliest work in the area of runtime performance optimisation using graphs is by 

Kuck. Kuck introduces a program dependency graph in order to determine 

statements that can be executed in parallel in a (Fortran-like) program [KMC72]. 
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Program dependency graphs have also been used in order to analyse change 

propagation. The term ‘ripple effect’ is often used describe how a change can 

propagate[Bla01]. In essence, a change to the code of one module can have an effect 

on the data that is passed into other modules. This is of concern during software 

maintenance because a change to one module that may naively seem isolated could 

cause a regression fault in another. 

 

In terms of reducing compilation time the graph representation typically comprises 

source files as vertices and compilation dependencies as directed edges. Yu et al. 

identify false dependencies as a cause of long compilation times and use a 

‘partitioning’ operation on the graph in order to determine redundant #include 

statements [YDFM03]. Cockerham uses a graph of dependencies amongst Ada 

source files in order to infer those files that can be compiled in parallel [Coc89]. 

Assuming multiple processors are available for the compilation, its time is reduced. 

Lague et al. generate a graph of dependencies between C/C++ source files through 

processing their #include statements [LLLB+98]. This graph is used for reverse 

engineering in the sense that Lague et al. want to recover the layered architecture of 

the telecommunications system under study from its implementation (source files). 

 

Several recent studies have profiled the overall characteristics of dependencies 

among classes in object oriented systems. Wheeldon et al. profiled the distributions 

of 5 different types of dependencies (e.g. inheritance, aggregation) in several large 

Java applications [WC03]. Marchesi et al. profiled the distributions of in-degrees and 

out-degrees for nodes in the class relationship graphs of 4 Smalltalk applications 

where the relationship took into account potential method invocations and 

superclasses [MPST04]. The authors of both studies found power laws in these 

distributions. Furthermore they speculated that these distributions are common across 

all large object oriented systems and that such distributions may be useful for 

predicting design complexity as a system grows and measuring the effects of 

refactorings on software quality. We also consider relationship graphs, however we 

concentrate on distributions related to the transitive closure of the relationships. 

 

Work with compilation dependencies is usually associated with incremental 

compilation. Determining what needs to be recompiled when one source file is 

changed is non-trivial in Java. Lagorio has developed an algorithm for sound 
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cascading recompilation in Java [Lag04] that deals with these issues. Lagorio’s 

algorithm is sound in that its output is guaranteed to have the same effect as 

recompilation of the whole program. We have adapted Lagorio’s algorithm to 

identify the relationships we are interested in. 

 

Discussion in the literature of the consequences of dependency cycles is limited. 

Booch makes the observation that a CDG should be a directed acyclic graph as early 

as 1984, but provides no justification for it [Boo87, p.567]. Szyperski also observes 

“…can introduce cyclic dependencies and threaten organizational structure” 

[SGM02]. 

 

In terms of dependency cycles between subsystems Riel [Rie96] provides a heuristic 

that states the model of the application should never be dependent on the user 

interface of that application. Presumably this heuristic aims to eliminate a 

dependency cycle between the model and view of the application. 

 

Martin gives the Acyclic Dependency Principle (ADP), namely “the dependency 

structure between packages must be a directed acyclic graph” (our emphasis) where 

packages are defined similarly to subsystems but with an emphasis on reusability 

[Mar96b]. As we argued in the previous section, long cycles in the CDG may 

indicate that the ADP has been broken. 

 

The most comprehensive discussion we found of dependency cycles among 

subsystems in object oriented software is given by Lakos. Lakos argues for the 

acyclic property on the basis that cyclic dependencies inhibit understanding, testing 

and reuse: “once two components are mutually dependent, it is necessary to 

understand both in order to fully understand either” [Lak96,p.185]. 

 

Hautus has developed a tool to detect cycles between packages in Java applications 

and support removing them [Hau02]. His tool differs from ours in that it assumes 

classes are correctly organized into subsystems by the use of Java packages. The 

metrics his tool computes are far less comprehensive than ours and as far as we can 

tell his tool does not prioritize classes based on some notion of their need for 

refactoring. 
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2.4 Algorithm 
 

We have developed an algorithm for inferring compilation dependencies between 

Java source files in an application. While this may seem at first thought trivial, it is 

not. As noted by Lagorio the rules for name binding (i.e. binding identifiers in Java 

source code to their corresponding program entities such as classes, methods, 

variables) are complicated. This is “because the dot notation is used to name many 

different kinds of things (types, packages, fields and so on), its semantics is context 

dependent and tricky” [Lag04]. 

 

Suppose we are presented with the dotted name (e.g., a.b.C in a Java source file. 

As stated in section 6.5 of the Java Language Specification the following happens to 

the name: “First, context causes a name syntactically to fall into one of six 

categories: PackageName, Type- Name, ExpressionName, MethodName, 

PackageOrType- Name, or AmbiguousName. Second, a name that is initially 

classified by its context as an AmbiguousName or as a PackageOrTypeName is then 

reclassified to be a PackageName, TypeName, or ExpressionName. Third, the 

resulting category then dictates the final determination of the meaning of the name 

(or a compilation error if the name has no meaning)”. There is a long set of rules for 

determining the name binding in each of the syntactic classifications. One option 

would be to implement all these rules in a program to infer dependencies. The other 

option is to find a heuristic based algorithm that is simpler to implement. 

 

Fortunately there is a relatively simple (heuristic) algorithm for inferring 

dependencies between Java source files—it is described in Lagorio’s work in sound, 

cascading recompilation in Java[Lag04]. Lagorio’s algorithm actually detects a 

superset of the actual dependencies of a source file. We have adapted Lagorio’s 

algorithm so that it minimises the number of spurious dependencies detected, and 

ignores some compilation dependencies that are of little consequence to the 

developer’s view of the system’s class. The final output of our algorithm is a CDG 

whose vertices are source files and whose (directed) edges are compilation 

dependencies. The CDG is built up by processing the names, import statements and 

package declaration in each source file in order to determine a set of fully qualified 

type names to which that source file may refer. This set is subsequently used to infer 
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dependencies between source files by comparing the type names in it to those 

declared by other source files in the application. 

 

A simplified version of our algorithm can be expressed as follows: Let the source 

files in the application be denoted S1, S2, S3, …, Sn. The output of the algorithm is an 

adjacency list representation of the program’s compilation dependency graph of the 

form Si	→	Ri’	where Ri’	is set of source files that Si	directly “refers-to”, that is, those 

source files contain the declarations of types used in Si. 

 

Firstly consider names in Java that are used to refer to program entities such as 

methods, types, variables etc. A name can be simple, that is consist of a single 

identifier, or qualified, that is, consists of a sequence of 2 or more identifiers 

delimited by “.” characters. We will express a name in the form e1. e2. e3. e4... ek	

where ej	represents an identifier. 

 

In order to construct Ri’	we first compute Ri	by combining, in a particular way, the 

names in the body of Si	that might refer to types with those appearing in the Si’s 

package declaration and import statements. Ri	is the set of fully qualified class names 

to which Si	may refer. In Java fully qualified type names uniquely identify types 

within a program. 

 

Let onDemands(Si)	be the set of names used in import-on-demand statements in Si, as 

well as the package name that Si	belongs to. Import-on-demand statements are 

imports ending with a ‘.*’. Let singleType(Si) be the set of names used in single-type-

import statements in Si. Single-type-import statements are imports that do not end 

with a ‘.*’. Let body(Si)	be the set of names that could refer to types in the body of Si. 

Then:” 
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And so: 

 
	

Let T	be the set of all types declared in S1,…,Sn, then Ri’	=	declaringSources(Ri	∩	T	)	

where declaringSources takes a set of type names and returns a set containing the 

source files in which the types are declared. 

 

This presentation of the algorithm has been simplified by not taking into account all 

of the issues due to Java’s rules for shadowed names, obscured names, and nested 

types. Lagorio discusses these issues in full detail[Lag04]. 

 

We illustrate the algorithm using the following source file. 
1: //file S1 

2: package a.b; 

3: import x.*; 

4: import y.Z; 

5: class MyClass { 

6:  private A a = new A(); 

7:  public void doStuff() { 

8:    B b = new C(); 

9:    a.exec(); 

10:   System.out.println(); 

11: } 

12:} 

 

The different sets in the algorithm are: 
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It is worth noting that there were names in the body of the source that did not appear 

in body(S1). Particularly a on line 6 does not appear because its context makes it a 

variable name, thus its name cannot refer to a type. Method declarations/calls such as 

.exec() (9), doStuff() (7) and .println() (10) do not appear because 

their context identifies them as methods. The a on line 9 does not appear because we 

can infer from the source file that it cannot refer to a type: it is in the scope of a 

declared field. 

 

It is also worth noting that many of the names in each source file’s R	will identify 

types that are not declared in the application’s other source files. Lagorio refers to 

these names as ghost dependencies. Since we are not interested in ghost 

dependencies we cull them from each source file’s R	in order to get a new set R’. To 

know which names to cull we build up a map from type to source file of all the types 

declared across all the source files in the application. This allows declaringSources 

to be computed. 

 

The key difference between our algorithm and Lagorio’s is in the construction of the 

refers to set, R. We minimise the number of entries in R	by resolving names to 

variables and types inside a source file where allowed by the Java Language 

Specification (JLS)[Gos00, Chapter 6]. We remove ghost dependencies from R. We 

do not add single-type-import statements to R	whose types are not used in the body 

of the source file (contrary to the example above). While ignoring redundant single-

type-imports is not sound in cascading recompilation, it is a minor concern in 

program analysis where we found it was causing many superfluous dependencies 

between source files. 

 

2.4.1 Benefits 
 

It is in many ways beneficial to infer dependencies from a system’s source files and 

not its compiled code (i.e. byte code). While inferring a class’s dependencies from its 

byte code is trivial (one can simply look at the fully qualified class names appearing 

in the class file’s constant pool) the process of compiling source files to byte code is 

seldom straight-forward for a newly downloaded application. It can involve having 

to track down external libraries, modify build scripts for the local environment and 
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so on. Furthermore if something is preventing the system from compiling (e.g. an 

unresolved reference or syntax error) then no dependencies can be computed. 

Downloading the application in its compiled form doesn’t help much either because 

it then becomes difficult to determine which classes correspond to sources and which 

classes have originated from external libraries. 

 

A major benefit of our algorithm is that it is specifies a simpler means of inferring 

dependencies between source files than the way in which a compiler goes about 

inferring these dependencies. For instance our algorithm is unconcerned with 

statement reachability checking, type checking and static context checking, whereas 

a compiler must perform these steps. As a consequence of the omission of such steps 

our algorithm should be faster at inferring dependencies between Java source files 

than a compiler. Even compared to the subsystem of a compiler whose purpose is to 

compute name bindings our algorithm is superior in that the compiler’s subsystem is 

complicated to implement because it must implement the pages upon pages of rules 

discussed in section 6.5 of the Java Language Specification. Furthermore, again 

unlike a compiler, our algorithm does not require references to any external jar files 

used by an application in order to infer dependencies between sources. 

 

Another benefit our algorithm is that it could be easily adapted to infer compilation 

dependencies between source files in other Java-like languages such as C#. The 

simplicity of the algorithm is such that it can be implemented in a few hundred lines 

of code assuming one starts with an off the shelf parser for the target language. 

 

2.4.2 Limitations 
 

While the algorithm we have described avoids much of the work performed by a 

compiler, which by its very nature has to infer dependencies, there are situations 

where it could detect spurious dependencies. Consider the following example in 

illustration of this. 

 

1: package pack; 

2: import x.*; 

3: class Example { 

4:  A a = new A(); 
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5: } 

 

Computing R	for this source file yields {pack.A, x.A}. Assume that in the 

application’s source files both types are declared. The JLS states that the types are 

resolved using the implicit package import in preference to import-on-demand 

statements (section 6.5.5) so in reality Example only depends on pack.A. Our 

algorithm (incorrectly) infers that Example depends on both pack.A and x.A.We 

expected this type of situation would be very rare. For a medium-sized Java 

application called Azureus we detected this situation, where two classes had the same 

simple name, and manually inspected all incidences of it in offending source files’ 

texts. Of the 30 occurrences of conflicting names none caused erroneous references. 

In each case both classes were actually referenced in the source file’s text: one using 

its fully qualified name and the other using its simple name in conjunction with a 

single-type- import. 

 

Another way our algorithm could infer an erroneous reference is if a variable name 

was interpreted as a class name. This is analog to a potential problem stated in the 

JLS where a variable name could obscure a simple type name. Fortunately the 

convention of naming classes with an initial uppercase letter and naming variables 

with an initial lowercase letter minimizes this type of conflict (see JLS section 6.8). 

In all the systems we ran our tool on during its development we casually observed 

source files had obeyed this coding standard, almost certainly eliminating all 

erroneous references that could be generated in this way. 

 

One final point to note is that in the general case our algorithm does not infer a direct 

dependency between a class that uses an inherited field or method, and the class that 

defines that field/method. Consider a class A using a field defined in its superclass’s 

superclass C. Our algorithm detects an indirect dependency between A and C 

through A’s superclass. In this particular example a Java compiler would infer a 

direct dependency from A on C, and this would be written to A’s binary class file 

(see JLS 13.4.7). Briand et al’s framework for measuring coupling more thoroughly 

addresses this issue [BDW99]. 
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2.5 Jepends 
 

An implementation of the algorithm described in section 4 has a number of practical 

benefits in terms of the kinds of analysis we are interested in. In particular, it does 

not require that the source code be in a deployable (or even buildable) state. This 

avoids problems with source files not being available or organised incorrectly, 

dealing with external jar files or other subsystems, or configuration issues. 

 

We have implemented the algorithm as part of our tool Jepends. Jepends uses the 

results of the algorithm to build up the compilation dependency graph, and then 

analyses the graph in various ways. Jepends can compute a suite of sets for each of 

the application’s source files: Refers-to — the R’	set i.e., the other sources referred 

to directly by the names in the given source file; Refers-to-tc — the transitive 

closure of refers-to; Referred-to-by — the inverse of refers-to; Referred-to-by-tc 

— the transitive closure of referredto- by; Cycles-thru — a subset of all simple 

cycles (no repeated vertices) that a given source file participates in. The size of the 

refers-to and referred-to-by sets give the out-degrees and in-degrees of the 

corresponding vertex in the compilation dependency graph. The transitive closure 

relations determine what source files either require or are required by a given file 

during the compilation process. Currently Jepends outputs dependency profiles as 

text files that can be imported into tools such as Excel for sorting, graphing and 

further analysis. Table 1 shows part of the output, in this case the top four classes 

when sorted by Cycles-thru. The TC columns are the transitive-closure version of the 

column to the left. The fact that the numbers are the same for all classes in these 

columns is discussed in the next section. 

 

 
Table 1: Part of the output by Jepends. Class names have been elided. 

 

The fact that Cycles-thru is a subset of all the simple cycles a given source file 

participates in requires further explanation. Efficiently finding all the simple cycles a 

given node in a directed graph participates in is a difficult problem[AYZ94]. One 

approach to finding all simple cycles (that is easily implemented in Java) is to find all 
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simple paths between each pair of nodes the graph and determine which of these 

paths also correspond to a simple cycle. A simple path corresponds to a simple cycle 

if there exists an edge in the graph from the 

terminal node in the path to the initial node in the path. Several different paths can 

correspond to the same simple cycle and this is easily detected by checking that the 

paths contain the same nodes, and that these nodes occur in the same order (when 

they are arranged into a cycle). 

 

Unfortunately finding all simple paths between all pairs of nodes is infeasible with 

respect to time for a graph of any decent size. Our approach is to keep track of all the 

simple cycles source files participate in that are encountered during the course of the 

depth first searches to construct the Refers-to-tc set of each node. In this regard 

Cycles-thru is a sample of the total cycles that pass through a node. More importantly 

it shows that a given node participates in at least this many simple cycles. 

 

2.6 Results 
 

In this section we demonstrate Jepends by using it on Azureus, an open-source 

application that provides peerto- peer file sharing[Azu05]. Azureus is written in Java 

1.4 and release 2.3.0.0 comprises 1913 Java source files with approximately 114000 

lines of non-comment source statements. Azureus are uses the Standard Widget 

Toolkit for its user interface (like Eclipse), and has no automated unit test suite. 

 

We came across Azureus because it frequently appears on Sourceforge’s top 10 lists 

for number of downloads and development activity. Our end-user experience of 

Azureus is that it is easy to use, stable and feature-rich. This is atypical of our end-

user experience with other peer-to-peer file-sharing applications. It also raises the 

question ‘Is Azureus’s internal design indicative of its positive end-user 

experience?’. 

 

Figures 1 and 2 show the distribution of set sizes in the referred-to-by and refers-to 

relations. In the figures, the x-axis is the size of the sets and the y-axis is the number 

of classes that have a given sized set. So figure 1 says that about 1800 classes have 

refers-to-by sets of size between 0 and 19. Both distributions show that small values 
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are extremely common whereas large values are very rare. This is reminiscent of the 

power law relationships found by Marchesi et al[MPST04]. 

 

Figures 3 and 4 respectively show the distributions of the set sizes for refers-to-tc 

and referred-to-by-tc. The distributions in figures 3 and 4 are of particular interest. 

Both distributions show two distinct clusters: from 0-99 and 1000-1199 for referred-

to-by-tc distribution, and from 0-99 and 1300-1499 in the refers-to-tc distribution. 

These seem to be very odd distributions—in the case of referred-to-by-tc, this says 

that between 1000 and 1199 classes depend (transitively) on nearly 1400 other 

classes.Furthermore, the distributions indicate no classes depend on (for example) 

500 other classes. It is very much that classes depend on only a few classes (fewer 

than 100) or most of the classes. 

 

Figure 1: Azureus’ referred-to-by distribution 

 

Figure 2: Azureus’ refers-to distribution 
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Figure 3: Azureus’ refers-to-tc distribution 

 

Figure 4: Azureus’ referred-to-by-tc distribution 

 

The question then is, is this distribution somehow characteristic of all applications, or 

somehow peculiar to Azureus. If it is peculiar to Azureus, then the presence of such 

distributions may tell us something about the nature of Azureus’ design. We used our 

tool to examine the distribution of these relations in other systems such as Tomcat 

5.5.9, Eclipse 3.0 and Netbeans 3.6 and found some clustering, but overall large 

valued clusters were less common than small valued clusters as exemplified by 

Tomcat’s refers-to-tc distribution in Figure 5. 

 

Now the question is, why does Azureus have such odd distributions? Is it just some 

particular characteristic of the application that is not related to the design, or is it 

indicative of some, possibly bad, design characteristic?  

 

In fact, such distributions indicate the possible presence of long cycles. To see this, 

consider the distribution in Figure 3. The right-hand cluster indicates that of the 

approximately 1900 source files in Azureus, about 1000 of them depend (either 

directly or transitively) on 1300 or more other source files. The left-hand cluster 
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indicates that the remaining 900 or so source files in the application depend on 

between 0 and 99 other source files. In fact the 900 source files in the left-hand 

cluster cannot depend on any in the right-hand cluster because of the transitivity. If a 

source file in the left-hand cluster depended on one in the right-hand cluster, it would 

depend on all the source files the latter depended on, which we know is 1300 or 

more, and so that source file should have been in the right-hand cluster. 

 

Files in the right-hand cluster can refer to files in the left-hand cluster, but since there 

are at most 900 in the left hand cluster that means every file in the right-hand cluster 

must refer to at least one other file in the right-hand cluster, meaning there must be 

cycles within the right-hand cluster. The length of the cycles depends on the internal 

structure of the CDG, however we get hints by looking at the raw output of Jepends 

as shown in Table 1. As noted earlier, the values of the TC columns for the classes 

shown are all the same. This means that with transitive closure they all have the same 

set of classes that they depend on or are depended on, which could be explained by 

all of the classes belonging to a cycle. 

 

It was the appearance of the odd distributions for Azureus compilation dependencies 

and other applications that led to our interest in cycles, and the introduction of cycle 

profiling to Jepends. If we use Jepends to profile the distribution of lengths of unique 

simple cycles we get the graph as shown in Figure 6. Note that because vertices in 

the graph can participate in more than one unique cycle, the sum of the frequencies is 

greater than the number of source files. The graph shows that there are a large 

number of long cycles in Azureus. Indeed 75% of the cycles in involve more than 50 

nodes. Now the question is how we can use this information to identify possibilities 

for refactoring, which we discuss in the next section. 
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Figure 5: Tomcat’s refers-to-tc distribution 

 

Figure 6: Azureus’ simple cycle length distribution 

 

2.7 Refactoring 
 

In this section we will explain how the analysis by Jepends can be used to indicate 

starting points for refactoring and measure the effect a refactoring on dependencies. 

The data in table 1 comes from Azureus and, as mentioned earlier, shows the top 4 

classes when files are sorted by the number of cycles in which they participate. 

 

Based on this data, we surmise that breaking the cycles through 

COConfigurationManager may greatly reduce the total number of (long) 

cycles in the system. A technique for breaking all cycles through 

COConfigurationManager would be to extract an interface from it and 

replace all existing references to its implementation with the extracted interface. In 

order to avoid a dependency on the interface’s implementation, we would have to 

further refactor the classes referencing COConfigurationManager not to 

create a new instance of, or statically depend on, its implementation. 
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While the ‘extract interface’ refactoring would definitely reduce the number of 

cycles in a system the overall effect on design quality by repeatedly performing this 

refactoring is dubious. The repeated use of the refactoring would dramatically 

increase the total number of source files in the system and the existence of the 

interfaces defined in these files would be justified on the basis of reducing cycles 

alone. 

 

A refactoring whose justification can be more strongly argued is more subtly 

indicated by the data in table 1. The name COConfigurationManager suggests 

that its class is involved in something to do with configuration, potentially belonging 

to a configuration subsystem. Upon inspection of this class’s source we find that it is 

the Façade into the configuration subsystem. The configuration subsystem is 

responsible for loading and saving user configurable parameters used 

throughoutAzureus’s code (e.g. the directory to which files download, and the 

maximum download and upload rates). These parameters are saved to flat text files 

so they can remain persistent between executions of Azureus. 

 

It is hard to believe that functionality as primitive as saving and reading properties 

from disk should transitively depend on 1373 other classes. We think that in a better 

design for the configuration subsystem would depend only on the threading 

subsystem and the logging subsystem. These two subsystems are themselves 

primitive and probably should not depend on any other source files in Azureus. By a 

brief code inspection we identified 5 classes relating to threading: AEMonitor, 

AEMonSem, AERunnable, AESemaphore, AEThread. These classes were 

mixed up with other utility-type classes in the 

org.gudy.azureus2.core3.util package. In the logging subsystem 

(comprising its own package) we found 4 source files: ILoggerListener, 

LGAlertListener, LGLogger, LGLoggerImpl. Since the configuration 

subsystem (again in its own package) contains 13 files we would expect 

COConfigurationManager to transitively refer-to no more than 22 other files 

(=5+4+13). In any case this is an order of magnitude less than its current 

1373. 
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The point of this discussion is to support our claim that the analysis provided by 

Jepends provided very valuable insight into the current design of Azureus, and so 

provided a useful starting point for the refactoring process. 

 

2.8 Conclusions 
 

In this paper we have discussed how data from the automated analysis of source code 

can be used to identify opportunities for refactoring. We have developed an 

algorithm based on work by Lagorio on incremental compilation, that allows 

compilation dependency graphs to be created for an application. We have 

implemented this algorithm in Jepends, which also analyses the resulting graph. We 

have provided canonical examples of refactorings indicated by running Jepends over 

the open-source Java application Azureus. 

 

Many characteristics of the distributions of dependencies we found in Azureus’ 

source are not unique to Azureus. We have seen similar distributions in a number of 

other applications that we have analysed. However we have also seen different 

distributions (such as Tomcat’s). The fact that different distributions are possible 

suggest that it may be possible to get a sense of the quality of the design by profiling 

these distributions. We are completing the analysis of these other applications to 

better understand the relationship between different profiles and design quality. 

 

Jepends and the algorithm it is based on are Java specific. However the principles 

behind their development are not language specific. We intend to widen the scope of 

Jepends in order to carry out large-scale studies on commercial software. 
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Chapter 3 Understanding the Shape of Java Software 
 

Large amounts of Java software have been written since the language’s escape into 

unsuspecting software ecology more than ten years ago. Surprisingly little is known 

about the structure of Java programs in the wild: about the way methods are grouped 

into classes and then into packages, the way packages relate to each other, or the way 

inheritance and composition are used to put these programs together. We present the 

results of the first in-depth study of the structure of Java programs. We have 

collected a number of Java programs and measured their key structural attributes. We 

have found evidence that some relationships follow power-laws, while others do not. 

We have also observed variations that seem related to some characteristic of the 

application itself. This study provides important information for researchers who can 

investigate how and why the structural relationships we find may have originated, 

what they portend, and how they can be managed. 

 

3.1 Introduction 
 

Much of software engineering has focused on how software could or should be 

written, but there is little understanding of what actual software really looks like. We 

have development methodologies, design principles and heuristics, but even for a 

well-defined subset of software, such as that written in the Java programming 

language, we cannot answer simple questions such as “How many methods does the 

typical class have?” or even “Is there such a thing as a ‘typical class’?” 

 

What we would really like to know about software is “Is it good?” that is, does it 

have quality attributes such as high modifiability, high reusability, high testability, or 

low maintenance costs. We believe current methodologies lead to good software, but 

without knowing what good software looks like, we cannot know that the 

methodologies are actually working. We are left with circular arguments of the form 

“The methodologies are good because the software is good, and the software is good 

because the methodologies are good.” Understanding the shape of existing software 

is a crucial first step to understanding what good software looks like. 
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Just as biologists classify species in terms of shape and structure and ecologists study 

the links and interactions between them, we have been collecting a body of software 

and analysing its abstract form. We remove semantics and focus on the network of 

connections where information flows between components. Just as biologists (and 

other scientists) seek to understand the characteristics of the population under study, 

so too would we like to know such basic features as the distributions of the software 

structures we find. 

 

Of specific interest are recent claims that many important relationships between 

software artifacts follow a ‘power-law’ distribution (e.g. [WC03]). If this were true, 

it would have important implications on the kinds of empirical studies that are 

possible. One issue is the fact that a power-law distribution may not have a finite 

mean and variance. If this is the case, the central limit theorem does not apply, and so 

the sample mean and variance (which will always be finite, because the sample size 

is finite) cannot be used as estimators of the population mean and variance. This 

would mean that basing any conclusions on sample means and variances without 

fully understanding the distribution would be questionable at best. 

 

In this paper, we extend past similar studies in two ways. First, we examine a much 

larger sample than previous studies. We have analysed a corpus of Java software 

consisting of 56 applications of varying sizes, and measured a number of different 

attributes of these applications. Second, we consider distributions other than those 

following a power-law. We find evidence that supports claims by others of the 

existence of power-law relationships, however we also find evidence that some 

distributions do not appear to obey a power-law. Furthermore, whether or not a 

relationship follows a power-law appears to depend on an identifiable characteristic 

of the relationship, namely, whether or not the programmer is inherently aware of the 

size of the relationship at the time the software is being written. We also see 

variations between applications. We speculate that this may be due to some 

characteristic in the application’s design, that is, some property of the design is 

reflected in the distribution of some measurements. 

 

The rest of the paper is organised as follows. In Section 2, we discuss the motivation 

for our study. Section 3 describes in detail the salient features of our study, namely 

the corpus we use and the metrics we gather. In Section 4 we give the analysis of our 
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results, and in Section 5 we give our interpretation of this analysis. Section 6 

discusses the most relevant related work, and we give our conclusions in Section 7. 

 

3.2 Motivation and Background 
 

Software systems are now large, complex, and ubiquitous, however surprisingly little 

is known about the internal structures of practical software systems. A large amount 

of research has studied how software ‘ought’ to be written, how it ‘should’ be 

structured. Many rules, methodologies, notations, patterns and standards for 

designing and programming such large systems [GHJV95] [Kru00] [Obj04] have 

been produced. Psychological models have been constructed of the programming 

process [ES84][Wei85]. Quantitative models of software have been designed to 

predict the effort required to produce a system, measure the development rates of 

software over time (process metrics) or measure the volume of software in a system 

and its quality (product metrics)—see e.g. [FP96][Jon86][PV03]. But we know very 

little about the large-scale structures of software that exists in the real world. 

 

With the methodologies, notations, and other advice that has been developed, we 

should be able to say something about the software that results if such advice is 

followed. However the conditional is key—until recently there was very little work 

done in determining even if the advice that has been offered is actually been taken. 

There is some evidence that common advice is not being followed. For example, a 

number of people have advised against creating cycles of dependencies in software, 

but recent evidence suggests that not only do programmers regularly introduce 

cycles, but they are often very large [MT06]. 

 

One consequence of much of the advice offered with respect to object-oriented 

design is what we call the Lego Hypothesis, which says that software can be put 

together like Lego, out of lots of small interchangeable components 

[PNFB05][SGM02]. Software constructed according to this theory should show 

certain kinds of structure: components should be small and should only refer to a 

small number of closely related components. 
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In fact, we don’t know whether or not this is true, because we lack models describing 

the kinds of large structures that exist in real programs. There are no quantitative, 

testable, predictive theories about the internal structures of large scale systems, or 

how those structures evolve as programs are constructed [BJ03][Hee03].While 

design patterns, rules, metrics and so on, can give guidance regarding developing 

program structure, they cannot predict the answers to questions about the large-scale 

structure that will result, such as: in a program of a given size, how many classes or 

methods will exist? How large will they be? How many instances of a each class will 

be created? How many other objects will refer to any given object? We need answers 

to these kinds of questions in order to be able understand how large scale software is 

actually organised, built, and maintained in practise. 

 

Recently there has been an interest in looking for power-law relationships in 

software. A distribution of the number of occurrences Nk of an event of size k is a 

power-law if it is proportional to k raised to some power s. A common method used 

to detect possible power-laws is to rank the event sizes by how often they occur, and 

then plot N vs. the rank on logarithmic scales. A distribution following a power-law 

will appear as a line with slope s. 

 

Studies of computer programs have considered both static [VCS02][VS03][WC03] 

and dynamic [NB03][PNB04][PNFB05] relationships, in different forms of software 

as diverse as LISP, visual languages, the Linux kernel, and Java applets[CG77] 

[NB01] [NB03] [PNB04] [PNFB05] [SFCMV02] [VS03], and the design of Java 

programs[DH99][VCS02][VS03]. The conclusions from these studies is that power-

laws appear to be quite common. 

 

Our work follows from Wheeldon and Counsell, who examined a number of inter-

class relationships in Java source code, namely Inheritance, Interface, Aggregation, 

Parameter Type, and Return Type in three Java systems: the core Java class libraries, 

Apache Ant, and Tomcat [WC03]. We attempted to reproduce the Wheeldon and 

Counsell study, and found examples of their metrics that, for some applications, did 

not appear to obey a power-law. One example is shown in Figure 1 (which appears 

again, with full explanation, as Figure 3). This figure shows a plot organised as 

described above —it is a log-log plot of frequency of occurrence of different values 
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of a particular metric. The data in this figure seems to have a distinct curve to it. Had 

we plotted this on a normal scale, we would see something like a power-law curve, 

except ‘truncated’ at the high end. This figure casts some doubt as to whether the 

distribution shown is a power-law. 

 

Figure 1 A distribution that does not appear to obey a power-law. Open circles are 
data, solid line is best fit power law distribution. 

 
Our experience raised two questions. The first is, do the relationships others have 

studied really obey a power-law? While the evidence provided is compelling to the 

naked eye, there is little analytical support. In this paper, we will provide such an 

analysis to support our claims. The second question is, are the studies representative 

of software in general. This is not a question that can be answered easily due to the 

scale involved, however, our study involves a much larger corpus than other studies, 

and so provides better support for our claims. 

 

3.3 Method 
 

3.3.1 Gathering the Corpus 
 

The corpus consists of 56 applications whose source code is available from the web. 

Many of the applications were chosen because they have been used in other studies 

(e.g., [GM05][GPV01][PNFB05]), although comparison to these other studies isn’t 

possible as version numbers were not always provided. Also, we weren’t always able 

to acquire all applications used in those other studies. Further applications were then 

added to the corpus based on software that we were familiar with (e.g. Azureus, 

ArgoUML, Eclipse, NetBeans). Finally we identified popular (widely down-loaded) 
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and actively developed open-source Java applications from various web-sites, 

including: developerWorks4, SourceForge5, Freshmeat6, Java.net7, Open Source 

Software In Java8 and The Apache Software Foundation9. Figure 2 gives an 

indication of the distribution of the size of the applications, measured in terms of the 

number of top-level classes. Appendix B gives more details of contents of the corpus 

we used. 

 

Figure 2 Distribution of application size in Corpus. 

 

3.3.2 3.2 Metrics 
 

There are a number of variables that must be taken into account when carrying out 

this kind of research. In the interests of allowing others to reproduce and extend our 

results, we discuss our choices in detail. 

 

Any Java program makes some use of the Standard API, and so there is a question of 

how much the Standard API is counted when doing the analysis. For example, when 

counting the number of methods per class, should the number of methods in the 

java.lang.String	class be counted, or should the number of methods that use String	as 

a parameter or return type be counted? This type is so heavily used that measuring its 

use seems likely to distort the results, and so it would seem reasonable to not 

consider it. However there are also less frequently used types, such as 

                                                
4 http://www-128.ibm.com/developerworks/views/java/downloads.jsp 
5 http://sourceforge.net/ 
6 http://freshmeat.net/ 
7 http://community.java.net/projects/ 
8 http://java-source.net/ 
9 http://apache.org/ 
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java.util.jar.Pack200, that seem less likely to distort the results and so maybe should 

be counted. It is not clear where to draw the line. 

 

In this analysis we have chosen to consider only the human editable aspect of an 

application’s construction, that is, the source code that is under the control of the 

application developers. For this reason, when metrics have been computed, we have 

considered only those classes declared in the source files of the application. Uses of 

the Standard API (and indeed any other API used but not constructed for the 

application) are not considered. In the descriptions below, the phrase “in the source” 

will reinforce this choice. 

 

Note that in the case where the application is the JDK/JRE, it is the Standard API 

being analysed. All the metrics have been computed from the byte code 

representation of ‘top-level’ classes, that is, classes that are not contained within the 

body of another class or interface [Gos00, chapter 8]. Relationships relating to inner 

classes are merged with their containing class. To restrict the analysis to only those 

classes in the application’s source code, names discovered in the byte code were 

filtered according to package names of packages in the source code. Note that this 

means our analysis is limited to those applications that use a package structure. 

 

We used two methods to carry out the analysis. One method applied to the byte code 

directly, using the Byte Code Engineering Library (BCEL)10. The other applied 

javap, a Java byte code disassembler that outputs representations of classes in a plain 

text format. From this, we were able to extract information about the structure of 

fields, methods, and opcode instructions, which we used to build a meta model of 

each application as a nested collection of the basic types ‘package’, ‘class’, ‘method’, 

and ‘field’. These collections gave us a simple source for calculating metrics we 

were interested in. When byte code is generated, some information (particularly type 

information) is thrown away. This means some of our results will not match a similar 

analysis done directly on the source code. We discuss this point in more detail when 

we present the metrics. 

 

                                                
10 http://jakarta.apache.org/bcel 
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Many of the metrics we use come from Wheeldon and Counsell, as indicated in the 

list below, and we use their naming scheme where possible [WC03, Figures 8-10]. 

Due to the difficulty in interpreting their descriptions [WC03, Figure 1] we give 

more detailed definitions here, with a more formal treatment in Appendix A. We will 

use the abbreviations given below. Where the abbreviation does not match the 

Wheeldon and Counsell names, we indicate the phrase on which they are based. 

 

Our definitions assume that there is only one top-level [Gos00] type declaration per 

source file (.java	file). That is, we explicitly rule out the following situation, where 

two classes are declared in the same file (or compilation unit). 

	

//	A.java	containing	two	class	declarations	

public	class	A	{	...	}	

class	B	{	...	}	

 

The main reason for making this assumption is that it simplifies the definitions. 

However, compiling the file A.java	above will yield two files, A.class	and B.class. 

Since there is no requirement that a class be declared to be public, even when it is the 

only class in a compilation unit, there is no way to tell from looking at B.class that it 

was generated from the same source file as A.class. 

 

In the following description, we occasionally need to distinguish between when a 

name refers to a class and when it refers to an interface. When no distinction is 

necessary, we will say the name refers to a type. 

 

Number of Methods nM	(WC) For a given type, the number of all methods of all 

access types (that is, public, protected, private, package private) declared (that is, not 

inherited) in the type. 

 

Number of Fields nF	(WC) For a given type, the number of fields of all access types 

declared in the type. 

 

Number of Constructors nC	(WC) For a given class, the number of constructors of 

all access types declared in the class. Note that since the measurements are taken 
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from the byte code, this is guaranteed to be at least 1. If no constructor is specified, 

the Java compiler automatically generates a default public nullary constructor that is 

included in the byte code. 

 

Subclasses SP	— Subclass as Provider (WC) For a given class, the number of top-

level classes that specify that class in their extends	clause. 

 

Implemented Interfaces IC	—Interface as Client (WC) For a given class, the 

number of top-level interfaces in the source that are specified in its implements	

clause. For a given interface, the number of top-level interfaces in the source that are 

specified in its extends	clause. 

 

Interface Implementations IP	—Interface as Provider (WC) For a given interface, 

the number of top-level classes in the source for which that interface appears in their 

implements clause. Note that when an inner class implements a given interface, it is 

the top-level class that contains it that is counted. 

 

References to class as a member AP	— Aggregate as Provider (WC) For a given 

type, the number of top-level types (including itself) in the source that have a field of 

that type. 

 

Members of class type AC	—Aggregate as Client (WC) For a given type, the size of 

the set of types of fields for that type. 

 

References to class as a parameter PP	— Parameter as Provider (WC) For a given 

type, the number of top-level types in the source that declare a method with a 

parameter of that type. 

 

Parameter-type class references PC—Parameter as Client (WC) For a given type, 

the size of the set of types used as parameters in methods for that type. 

 

References to class as return type RP—Return as Provider (WC) For a given type, 

the number of top-level classes in the source that declare a method with that type as 

the return type. 
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Methods returning classes RC	—Return as Client (WC) For a given type, the size of 

the set of types used as return types for methods in that type. 

 

Depends on DO	For a given type, the number of top-level types in the source	that it 

needs in order to compile.	The intent is to count all top-level types from the source 

whose	names appear in the source for the type. There are some rare	situations (when 

only methods from parent classes are called on	the object) where the types of local 

variables are not recorded	in the byte code. Our experience is that this happens 

sufficiently	rarely to have no effect on the results.	

 

Depends On inverse DOinv	For a given type, the number of type implementations in 

which	it appears in their source.	

 

Public Method Count PubMC	The number of methods in a type with public access 

type.	

 

Package Size PkgSize	The number of types contained direction in a package (and not	

contained in sub-packages).	

 

Method size MS	The number of byte code instructions for a method. Note that	this is 

not the number of bytes needed to represent the method.	

 

3.4 Results 
 

We have applied the 17 metrics described in the previous section to 56 applications 

from our corpus. This has yielded more data than can be conveniently shown here, so 

instead we have done some preliminary analysis based on various assumptions as to 

what the distribution of the data is, and present the results of analysis. 

 

3.4.1 Analysis 
 
The raw data consists of a number for each ‘element’ (method, top-level class, 

package) in each application. The first step was to group all values by application, 
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count the number of occurrences of each value and record that in order of value. The 

primary goal of our analysis was then to determine whether the resulting distribution 

obeyed a power-law. 

 

Some of the distributions derived from our analysis of software structure look like 

straight lines when plotted with logarithmic scales on both axes. This is the hallmark 

of a power-law distribution, which is interesting because of its ‘scale-free’ properties, 

which we will describe below. Any other distribution will not be exactly a straight 

line in such a plot. 

 

Not all the plots look exactly straight. Some have a sort of curve to them. We can 

respond by either saying that we do not care, as they are nearly straight, at least for 

part of the range, or we can say that they really are not power-laws at all, and are 

characterised by some other distribution. Secondly, even if it ‘really’ is a power-law, 

because the data is noisy and because there is a finite sample size and a finite range 

of ‘sizes’, a power-law curve won’t exactly fit the data, especially at large values of 

the metric. This also means that some alternative distributions might be made to fit 

the data just as well—we might not be able to discriminate, even for the plots that 

look pretty straight. 

 

Our approach is to take the data, and do rigorous best-fits to several different 

distributions, and see first whether it is reasonable to fit a power-law, second whether 

a power-law is more reasonable than the others, third whether the data can be divided 

into two or more groups according to which distribution fits ‘best’. 

 

3.4.1.1 Power-Law 
 

In general a power-law distribution has the form [21]: 

 
where α is a positive constant and we assume x to be non-negative. In our case, x is 

the value of the metric as defined in the previous section. If α < 1 there must be a 

finite maximum value of x, in order for the distribution to be normalisable. If α > 1, 

normalisability requires that the minimum value of x not be equal to zero. For α ≤ 2 

the mean of the distribution is infinite (assuming there is no upper cutoff in x). When 
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α > 2 the mean is proportional to the small-x cutoff. For α ≤ 3 the variance is also 

infinite. One consequence of this fact is that the central limit theorem doesn’t hold 

for such distributions, so the mean and variance of a sample (which will always be 

finite) cannot be used as estimators for the population mean and variance. 

 

A distribution is said to be scale free if [21]: 

 
where g does not depend on x. This means the relative probability of occurrence of 

‘events’ of two different sizes (bx and x) depends only on the ratio b, and not on the 

‘scale’ x. One of the reasons for the interest in power-laws is that they possess this 

scale-free property. If we can show that the distributions we see in our analysis of 

software obey a power-law, we can say that there is no characteristic size (where 

‘size’ might mean in-degree, for example) to the components. A scale-free 

distribution such as a power-law would contradict the Lego Hypothesis. 

 

While an idealised power-law distribution might be strictly scale-free, for the 

distributions we encounter in real systems this can only be approximately true. The 

data in our studies only occurs at discrete, integer values of x. This imposes a small-

size cutoff on x — the smallest value of x we measure is 1. There is also a large-size 

cutoff of x, as the programs in the corpus are of finite size. Nevertheless, we are still 

interested in power-laws. The scalefree property (2) may still hold over a limited 

range. We can never say for certain that a distribution is a power-law – because we 

are always dealing with measured data that involve some noise, and also finite size 

effects — but we might be able to say that it is approximately a power-law, well 

characterised by a power-law over a large range, or more likely to be a power-law 

than something else. 

 

3.4.1.2 Other Candidates 
 

Given our experience with plots such as that shown in Figure 1, we are interested in 

distributions that are close to power-laws, but resemble the curves we have seen. 

Two other distributions which have some credibility as ‘natural’ distributions are: 
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Log-normal distribution. Power-laws and log-normals look the same at low values of 

‘x’ (i.e., at the high frequency end), but the tail is ‘fatter’ for a power-law. For 

continuous x a log-normal probability density function is defined as: 

 

 
while for discrete values of x, the normalisation will be more complicated, and the 

distribution is of absolute probability, not probability density. Note that our data is 

not ranked, so it is usually, but not necessarily monotonically decreasing with x: 

sometimes the smallest value of x does not have the highest frequency. Log-normal 

distributions can reproduce this pattern, but to fit a power-law we must treat this 

‘turnover’ as a statistical anomaly. 

 

Stretched exponential. This is known to occur in natural distributions [LS98] (it is 

the same as the two-parameter Weibull distribution [Wei51] which is used to model 

electrical component failure probabilities): 

 
Again, this is the continuous x version of the distribution. The form is the same in the 

discrete case, but the normalisation is different. A stretched exponential looks just 

like a power-law for small values of x, but has a sort of exponential behaviour for 

large x. 

 

Both of these (depending on the choice of parameters) are slightly curved on a log-

log plot, so they are likely to be good fits to the data we have that is not exactly 

straight. Neither has the long tail characteristic of a power-law, so the curves drop off 

sharply at the right hand side of a log-log plot. 

 

The distinguishing features of power-laws are therefore ‘straightness’ in the log-log 

domain, and not dropping off as fast as the others for large values of x. This is 

sometimes called a ‘fat tail’ or ‘long tail’, in contrast with the ‘truncated tail’ evident 

in Figure 1. One potential problem is that the data is poorest in this tail region—our 

best statistics will be at the non-tail end. 
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3.4.1.3 Weighted Least Squares Fits 
 

Fitting a distribution to data means choosing the parameters of the distribution so that 

it is ‘closest’ to the data. One way to do this is to minimise the sums of the squares of 

the differences between the data values and the distribution values. 

Suppose the data takes value hi at xi, where i runs from 1 to k, the number of data 

points. If the value of the distribution at xi is given by f(α, β, xi), where α and β are 

the parameters of the distribution, we want to choose α and β so that the residual: 

 
is as small as possible. 

 

Weighted least squares fitting is where we use this method but allow for different 

uncertainties in different data points by introducing a weight to each square in the 

sum: 

 
wi should reflect how much uncertainty there is in the value of a 

data point. We set wi = 1/hi. Thus 

 
 

Figure 3 AC distribution and fitted curves for Eclipse. Open circles are data, solid 



70 
 

line is best-fit power-law, dashed line is best-fit log-normal and dotted line is best-fit 
stretched exponential. 

 

Figure 4. AP distribution and fitted curves for NetBeans. 
 

3.4.1.4 Uncertainty and Confidence Intervals 
 

If f is the ‘true’ distribution, we would have E[hi] = f(α, β, xi) where E[z] denotes the 

expected value of z. Expanding each term in (7) and neglecting higher terms we find 

 
And 

 
We have assumed hi is binomially sampled from a distribution with mean f/N, where 

N is the sample size, N = Σihi. 

 

This gives us a way to estimate how good our fit is. We have effectively a 

distribution for Q, based on our assumption that the data follows the candidate 

distribution f. We can then choose a Confidence Interval (CI) for Q, and if the value 

for Q that we actually find from our fitting procedure actually falls within this range, 

we can take this as evidence for our assumption about f. 
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Figure 5. PC distribution and fitted curves for Eclipse. 

 

For example, if the distribution is ‘really’ the one we have fitted, we would expect Q 

to be within 1.64σ of E[Q], where σ =√(Var[Q]), 90% of the time. E[Q] ± 1.64σ is 

called a 90% confidence interval (CI), and if the minimum value of the residual Q 

that we do get falls within this range, we say that the distribution fits the data at the 

90% CI. (This is not the same as saying that “we are 90% sure the distribution is 

right.”) 

 

3.4.1.5 4.1.5 Fitting the data 
 

In the current study, the minimisation of equation (7) was done numerically, with f(α, 

β, xi) replaced by each of the three distributions (1), (3) and (4) in turn. The raw data 

is in the form of frequencies occurring at integral values of x. Note that the 

normalisation of these distributions at discrete values differs from the normalization 

of a continuous distribution, and it is important to take this into account. This 

normalisation depends of course on the parameter values. The log normal and 

stretched exponential distributions each have two parameters, while the power-law 

distribution is defined by a single parameter. A second parameter could be 

introduced by allowing the constant of normalisation to vary (in a log-log plot, a 

power-law appears as a straight line, with slope given by the single parameter, α, also 

known as the ‘exponent’. The ‘offset’ of the line is given by the normalisation 

constant, so fitting an offset parameter is equivalent to fitting the normalisation 

constant). We found that the fit was very similar when the fit was done with only a 
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single parameter (calculating the normalisation explicitly), returning very similar 

exponent values and residuals. 

 

The aim of this exercise is mainly to establish the plausibility of the different 

distributions fitting the data, therefore we do not give uncertainties in the fitted 

parameters, or speculate on the interpretation of, for example, different fitted power-

law exponents. 

 

Table 1 shows a small excerpt from the results of the fit process. This shows the 

estimated parameters for each of the three distributions using the full datasets: a_pow	

is for power-law, m_log and s_log	are for log-normal, and a_str	and b_str	are for the 

stretched exponential. The next three columns show the residuals for each of the 

fitted curves, tot_cnt	is the sum of the frequencies, and the last column is the number 

of data points. 

 

Recall that the expected value for the residuals is k − 1 and the variance is k − 2. This 

means, for the first row of Table 1 (the AC metric) the 90% confidence interval 

would be 25 ± 8.03 (1.64 ×√ 24), and so we can conclude that the log-normal 

distribution fits the data at the 90% CI, but the other two distributions do not. 

 

 

Figure 6. nF distribution and fitted curves for JRE. 
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Figure 3 shows an example of a plotted dataset with fitted curves (and is the same as 

Figure 1). This figure is a log-log plot of the number of types (y-axis) having a given 

number of fields (x-axis), that is, the AC metric, for Eclipse. The best-fit for a power-

law is shown as a solid line, the best fit for the log-normal is shown as a dashed 

curve, and the best fit for the stretched exponential is a dotted curve. In this case, 

there is a pronounced curve in the data, and in fact the log-normal has a much better 

fit than the power-law. Figures 4-15 show a representative sample of fitted curves for 

different metrics and different applications. The parameters and residuals for these 

curves are shown in Table 2. 

 

3.4.1.6 Summarising the results 
 

For each metric of each program in the corpus, the fits were done first to the whole 

set of available data, then the number of points was reduced by removing 5, 10, 15, 

or 20 percent of the data points (or ‘cuts’) from both ends—that is, using only the 

‘middle’ 90, 80, 70, or 60 percent of the non-zero data points. The residuals for each 

fit were then compared for the three distributions. We checked whether each fit was 

consistent with the data at 95%, 90%, 80% and 60% confidence intervals, and then 

the power-law fit was compared to the best (residual closest to the expected value) of 

the other two fits. Each metric for each program could then be classified at each CI 

with ‘flags’ as follows: 

 a Power-law residual is within the CI and both other residuals outside CI.  

 b Power-law residual within CI and one or both of the other residuals within CI. 

 c Log normal and/or stretched exponential residual within CI, but power-law 

residual outside CI. 

 d None of the residuals within CI. 

 x No data. 

 

Roughly speaking, this order (ignoring x) represents decreasing support for the 

distribution of the data being a power-law. While b does not rule out a power-law, 

the fact that it fits one of the other candidate distributions indicates more doubt than 

a indicates. Since we chose our other candidate distributions to be close to power-

law, a d suggests that not only do we not have a power-law, but we do not even have 

something close. 
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Table 1 The estimated parameters for the three distributions for arguuml-0.18.1 for 
the full dataset. 

 

 

 
Table 2 Fitted parameters for applications and metrics shown in plots. 

 

 



75 
 

Figure 7 nM distribution and fitted curves for JRE. 

 

Figure 8 nC distribution and fitted curves for JRE. 
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Table 3 Quality of fit at Confidence Interval 80% for full dataset: a–good fit only to 
power-law, b–good fits to more than one curve, c–good fit only to other curves, d–no 

good fits. Applications are ordered by increasing size (number of classes). 
 



77 
 

 
Figure 9 SP distribution and fitted curves for JRE. 

 

 
Figure 10 IC distribution and fitted curves for JRE. 
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Figure 11 IP distribution and fitted curves for NetBeans. 

 

 

 
Figure 12 PP distribution and fitted curves for NetBeans. 

 

 

 
Figure 13 IP distribution and fitted curves for Openoffice. 
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Figure 14 IC distribution and fitted curves for Eclipse. 

 

 
Figure 15 RC distribution and fitted curves for Compiere. 

 

 
Figure 16 MS distribution and fitted curves for Tomcat. 
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Table 3 shows these results for the 80% CI and using complete datasets (0% cuts). In 

this table, the applications are ordered in increasing size, as measured by number of 

classes. The four groups are: applications with fewer than 200 classes, applications 

with fewer than 500 classes, applications with fewer than 1000 classes, and those 

with more than 1000 classes. To aid comprehension, we use different typefaces for 

the entries. 

 

For the moment, we will just note patterns and trends, and leave interpretation and 

discussion to the next section. The first thing to note (other than the sheer size), is 

that, while all values are represented, b (multiple distributions have good fits) is quite 

prominent. The next point is that a (good fit only to power-law) is relatively rare. 

 

Looking at individual metrics for the larger applications (last category), we note that 

AC, PC, and RC tend to have c and d, indicating lack of support for them having a 

power-law distribution, whereas their opposites, AP, PP, and RP, as well as SP, tend 

to have a and b. In almost all cases, however, there are exceptions for individual 

applications. IC and IP show the opposite trend, with IC having mainly a and b and 

IP having mainly c and d. 

 

It must be kept in mind that Table 3 represents only 5% of the results of the curve 

fitting (which itself represents a summarization of the original data)—there are the 

other CIs and cuts. What the results show for the other cuts and CIs is what one 

would expect. As the cut size increases, meaning the highest and lowest frequency 

data (where most of the variation occurs) is removed, we get better fits for all three 

distributions (that is, tending toward b). Similarly, as the CI is increased, it also 

becomes easier to get a good fit. 

 

We chose to show the 80% CI as it seemed the most representative. The 60% CI is 

not that different from what is shown in Table 3, and all of the differences are what 

one would expect —more d’s (no good fits) at 60% than at 80% or tending toward b 

when going from 60% to 80%. 
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Figure 17 MS distribution and fitted curves for Tomcat after a 5% cut. 

 

 

 
Figure 18 MS distribution and fitted curves for Eclipse. 
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Figure 19 MS distribution and fitted curves for Eclipse after a 5% cut. 

 

To finish this section, we show a few more fitted curves. In this case, Figures 16-19, 

we show various MS distributions. These are interesting as they have many more 

data points than the others, being based on methods not types. We also show the 

effect of applying a 5% cut. 

 

3.5 Discussion 
 

3.5.1 Interpretation 
 

Recall that several of our metrics measure 5 inter-type relationships—Inheritance 

(SP), Aggregation (AC and AP), Parameter (PC and PP), Return (RC and RP), and 

Interface (IC and IP). The ‘C’ variant of the metric for a relationship measures the 

‘client’ end and ‘P’ the ‘provider’ end. Or, if the code were represented as a directed 

graph with types as vertices and the different relationships as edges, then ‘C’ would 

be the out-degree and ‘P’ the in-degree for each relationship of each vertex. We note 

that out-degree is impacted by decisions made with respect to the type represented by 

the vertex, whereas in-degree is the result of decisions made with respect to other 

types. 

 

In the previous section, we noted that AC, PC, and RC distributions tended not to 

have good fits to a power-law, but AP, PP, RP, and SP did. From the comments 

above, this suggests out-degree distributions are not power-laws but in-degree are. 
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The distributions we are seeing for the ‘C’ metrics tend to be truncated at the high-

value (low-frequency) end. A person changing the code for a class is inherently 

aware of its outward dependencies (e.g. the number of types it uses or the number of 

interfaces it implements), but they are not inherently aware of the number of classes 

that subtype it or call methods on it. They therefore have less control over the latter 

than they do over the former. Furthermore, we believe there is a tendency is to avoid 

(consciously or subconsciously) ‘big things’, whether due to difficulty of 

management (e.g., methods with many parameters) or simply through training 

(“Don’t write big classes!”). This suggests that ‘C’ relationships are more likely than 

‘P’ relationships to have ‘truncated’ curves. We can generalize this to hypothesise 

that any metric that measures something that the programmer is inherently aware of 

will tend to have a ‘truncated’ curve, that is, not be a power-law. 

 

The nF, nM, and PubMC, distributions are explained by our hypothesis. They are all 

aspects of a type description that the developer is inherently aware of, and all tend 

not to have support for power-laws. 

 

Unfortunately our hypothesis does not explain the IC and IP distributions. We 

believe that the main cause of the poor fits for the IP distributions is the small 

datasets (no more than 11 data points, and see for example Figure 13). This, 

however, does not explain IC (e.g., Figures 10 and 14). nC also suffers from having 

small datasets, which might explain the results we see. DO and DOinv are related—

DO is the ‘client’ end, and DOinv the ‘provider’. However in this case there is not a 

strong distinction between the two, both being c and d. The DO relationship is 

effectively including all of AC, PC, RC, and IC, as well as types used for local 

variables. This would mean that the behaviour of IC noted above would oppose the 

behaviour of the others, which may explain the results. We do know that types used 

for local variables (or rather, not used in the published interface) do account for 

significant dependency structures [MT07b]. 

 

MS, with few exceptions (all small applications), does not fit any distribution at the 

80 CI. However, at 90 CI and above, there are good fits to all of them. Our 

hypothesis would suggest this should be a truncated curve (the size of the method 

being a decision made as it is written) but it would seem that there is too much noise 

to be sure. 
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There is another important point to make. There is quite noticeable variation on the 

degree of fit between different applications. This raises an interesting question: if a 

given relationship (metric) does follow a particular distribution, why do we not see 

this distribution for all applications, how is it that this variation exists? 

 

Two answers spring to mind. The first is that different applications come from 

different domains, and it is possible that different domains have different 

distributions. For example, NetBeans and OpenOffice often have different values 

(usually c vs d or a vs d). NetBeans is an IDE, whereas OpenOffice is an office suite, 

and in fact is really several applications wrapped as one. We picked these two 

because they were both originally Sun products. That said, Compiere is ERP and 

seems somewhat different in nature than, for example, Openoffice, and yet the 

distributions seem mainly similar. 

 

Another answer is that there is another thing that is potentially quite different (and 

much harder to see) between the applications—their design. If we are seeing 

different distributions due to different designs, if we could understand how aspects of 

the design related to the kind of distribution exhibited, there is the potential for 

developing a quantitative measure for design quality. Having such a measure could 

have tremendous impact on how software is developed in the future. 

 

Of course before this can happen, we must understand (presuming such a relationship 

exists) which distribution corresponds to a good design and which does not. It is not 

obvious that, for example, the power-law distribution is found in ‘good’ designs—it 

could just as easily be the opposite! Our results do not provide much advice either 

way. This does, however, suggest an extremely interesting avenue for future 

research. 

 

3.5.2 Threats to Validity 
 

The most likely threat to the validity of our conclusions is the corpus we used. It 

consists entirely of open-source applications of small to medium size. Some 

applications originated from commercial organisations, but it is not obvious that the 
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IBM and Sun-donated code is typical of closed-source code. Other studies have 

suggested there is little difference between open-source and closed-source software 

[MT07b], but we cannot say whether or not this is true here. While we cannot claim 

that our corpus represents a random sample of Java software, our situation is no 

different than corpora used in applied linguistics. Hunston describes a number of 

ways corpora may be reasonably used [Hun02]. Our corpus is what she describes as a 

reference corpus, which are often used as base-line for further studies. Thus, a 

random sample is not necessary in order to produce an valid result. Our results hold 

for what is in our corpus: whether or not they hold for other collections will in itself 

be of interest. 

 

So we cannot say for sure how representative our corpus is of Java software in 

general, or even open-source software in particular. Nevertheless, the commonality 

we have seen across all of the applications we analyse gives us confidence that our 

conclusions will hold generally. 

 

A similar issue is that our corpus consists only of Java applications. It is possible we 

may see different distributions when looking at other languages such as C# or C++. 

While there appears nothing obviously different between Java and languages such as 

C# or C++ with respect to our study, they do share the property of having static type 

checking, so while we may see no differences for such languages, we may see 

differences in languages, such as Smalltalk, that do not have static type checking. 

 

A property of the software we have studied that we have not addressed in our study 

is the manner in which the software was created. Our hypothesis is based on the lack 

of global view a developer has of the application being developed. Recently, there 

has been a significant increase in the use of sophisticated Integrated Development 

Environments (IDE) such as Eclipse, and one characteristic of these IDEs is that they 

provide a better view of the source code than has been available in the past. The use 

of such IDEs may affect the shape of the distributions we have been investigating. 

We believe most of the code in our corpus was written before the advent of such 

IDEs, but some of the variation we see may be due to how the code was written. 

Again Smalltalk may show differences as it has always had an IDE. 
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As noted earlier, because we measure from byte code, there is some information 

from the source code not available to us. The circumstances for which this is the case 

seem to be such that this will be rare. 

 

3.6 Related Work 
 

As with many other things, Knuth was one of the first to carry out empirical studies 

to understand what code that is actually written looks like [Knu71]. He presented a 

static analysis of over 400 FORTRAN programmes and dynamic analysis of about 

25 programs. His main motivation was compiler design, with the concern that 

compilers may not optimise for the typical case as no-one knew what the typical case 

was. His analysis was at the statement level, counting such things as the number of 

occurrences of an IF	statement, or the number of executions of a given statement. 

 

Collberg et al. have carried out a study of 1132 Java programs[CMS04]. These were 

gathered by searching for jar	files with Google and removing any that were invalid. 

Their main goal was the development of tools for protection of software from piracy, 

tampering, and reverse engineering. Like Knuth, they argued that their tools could 

benefit by knowing the typical and extreme values of various aspects of software. 

Consequently, their interest is in the low-level details of the code with a view toward 

future tool support or language design. 

 

Although their interest is in low-level details, Collberg et al. do gather a number of 

similar statistics to ours, such as number of classes per package, number of fields per 

class, number of methods per class, size of the constant pool, and so on. However 

comparison with their results is problematic, as they appear to include all classes 

referred to in an application, whereas we only consider classes that appear in the 

application source. 

 

Gil and Maman analysed a corpus of 14 Java applications for the presence of micro 

patterns, patterns at the code level that represent low-level design choices [GM05]. 

They found that 3 out of 4 classes matched one of the 27 micro patterns in their 

catalogue, and just over half of the classes are catalogued by just 5 patterns. This is a 
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form of structural analysis, however it focuses on individual classes, rather than at 

the application level as we have done. 

 

As already mentioned, Wheeldon and Counsell have performed a similar analysis to 

ours. They looked at JDK 1.4.2, Ant 1.5.3, and Tomcat 4.0. They computed the 12 

metrics as noted in section 3 and concluded that what they were seeing were power-

laws. There are some differences between their work and ours. Most notably is how 

the metrics were computed. Wheeldon and Counsell used a custom doclet to extract 

the relevant information, which limited them to just the information available from 

the Javadoc comments. Also, they were not specific as to what choices they made for 

the variables discussed in section 3. 

 

We believe the inconsistency between Wheeldon and Counsell’s conclusions and 

ours is due to our more extensive corpus. Our original intention was to reproduce 

their study and, we thought, results. The ‘truncated-curve’ distribution only really 

became apparent in the repetition across multiple applications. In fact, their figure 

2(b) appears to have something of a curve to it. Our work does, however, add 

significant evidence to support their hypothesis that there are regularities that are 

common across all non-trivial Java programs. 

 

3.7 Conclusion 
 

We have studied the hypothesis that the distribution of a number of metrics on 

object-oriented software obey a power-law. We did so over a larger sample size than 

has been considered by past similar studies, and applied analysis techniques to 

characterise how closely each distribution obeyed a power-law. We have presented 

our method and analysis in what we hope is sufficient detail to allow our studies to 

be reproduced with confidence. 

 

What we found was that while there were distributions for which there was good 

evidence for a power-law, there are a number for which there was little evidence that 

a power-law exists. This is in contrast with what earlier studies have suggested. We 

hypothesise that any metric that measures a relationship that the programmer is 

inherently aware of will tend to have a ‘truncated’ curve, that is, not be a power-law. 
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Of particular interest is the fact that some applications frequently differed for some 

metrics from the other applications, indicating that some attribute of the 

application’s code can affect the resulting distribution. This finding has potentially 

tremendous implications. If the distribution does depend on either design quality or 

domain, then knowing the distribution of a ‘good’ design would provide a much 

sounder foundation for developing software than currently exists. As open-source 

applications make extensive use of version control and bug-tracking systems, we 

believe the data necessary for such studies as correlations between distribution and 

prevalence of defects will be possible. 

 

There remains much work to be done. Further studies are needed to determine how 

representative our findings are. This means expanding the studies to other (especially 

larger) applications, to applications developed in other environments, such as closed-

source, to other domains (for example, real-time software is not represented in our 

corpus at the moment), and to other languages. 

 

We need to be able to explain why we see some distributions in some applications 

for some metrics and not others. For example, we need models that explain how 

these distributions arise. In the case of power-law distributions, there is no theory to 

explain why we should see such scale-free structures in software. Two main 

hypothetical mechanisms have been put forward [Bar02] to account for the origin of 

scale-free network structure in other domains: growth with preferential 

attachment[BA99], in which existing nodes link to new nodes with probability 

proportional to the number of links they already have, and hierarchical growth 

[Wei85] in which networks grow in an explicitly self-similar fashion. Additionally 

arguments from optimal design have been proposed[VCS02][SFCMV02]. It is still 

far from clear, however, what (if any) fundamental theory might account for the 

ubiquity of the phenomenon in software. 

 

Ultimately, we need to understand the relationship between large-scale structures 

found in software, and quality attributes such as understandability, modifiability, 

testability, and reusability. We believe this study is an important step toward that 

goal. 
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Appendix B: Corpus details 

This appendix provides the details of the part of the corpus used in this study.We use 

the standard naming scheme for each application, which typically includes some kind 

of version identification. The domain comes from our assessment based on the 

application documentation. We identify where we acquired the source code. The 

column “O/C” refers to whether the application can be considered open or closed 

source (all applications used here are open source). The column “V” identifies where 

we have multiple versions (we only used the latest version in this study). Finally, any 

notes that seem relevant are provided. 
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Chapter 4 On the Usage and Usefulness of OO Design 
Principles 

 

4.1 Introduction 
 

There is a plethora of instructional literature on object-oriented (OO) design 

[Lak96][Ber93]. This literature describes how OO systems should be structured, yet 

we have very little knowledge of how they are actually structured. In other words, 

we have very little idea of the extent to which software developers in industry follow 

the “design principles” proposed in this literature. Casual observation would suggest 

that many design principles are not widely followed in the construction of “real” 

software systems [FY97]. In this paper I explain why we would like to know with 

greater certainty the extent to which developers of OO software follow design 

principles, and how we might go about determining this. 

 

We would like to know the extent to which software developers follow specific 

design principles so we can: 

 
Better align research in software engineering with problems actually faced by 

practitioners. Engineering is about applying scientific and mathematical principles 

to practical ends. It follows that research in software engineering ought to focus on 

solving problems actually faced by practitioners. Unfortunately the perception of 

many practitioners is that research is not relevant to them [Par94]. One way we can 

improve the perception of software engineering research is to study the artefacts 

produced by practitioners. More specifically, by performing empirical studies of real 

software systems we can determine design principles that are not widely followed by 

practitioners. Such studies can then be used to convince practitioners of the relevance 

of tools, techniques, and educational material purporting to improve software 

structure. 
 

Better study the effect of design principles on software quality. While it is widely 

accepted that the design principles presented in the literature lead to systems that are 

better (e.g., cheaper to maintain, less prone to error, easier to understand and so on) 

the reality is that we have little idea about the efficacy of these principles. In other 
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words, seldom has there been empirically established a relationship between a design 

principle and a specific attribute of software quality [FP96, p.80]. A reason we lack 

knowledge of this nature lies in the (typically high) cost and difficulty associated 

with performing convincing empirical studies to expose such relationships. To get 

the best “bang for our buck” in performing such studies we ought to concentrate on 

design principles that are not widely followed. It is knowledge of these design 

principles that would be most useful to practitioners because, in a sense, practitioners 

have already accepted the overhead (and benefits) of applying design principles that 

are already in wide use. 

 
Be more scientific in our research. There is a lack of “science” in the field of 

software engineering—many decisions made in industry are made solely on the basis 

of fashion, folklore or hype [FP96]. Research in software engineering also lacks 

“science”. Tichy [Tic98] cites two studies that compare publications in computer 

science to publications in other science disciplines. Both studies found that a 

substantially higher proportion of publications in computer science lacked empirical 

(scientific) data to support the claims they made than in the other disciplines. By 

studying the extent to which design principles are evident in real software systems, 

we can be more scientific. We can begin to characterise a population that is of 

interest to us (i.e., the world’s software systems). Other science disciplines have 

gained useful insights from characterising populations (e.g., in medicine obesity has 

been correlated with diabetes). 

 

4.2 Approach 
 

The approach I have taken in determining the extent to which developers follow 

certain design principles is to study their output—source code. In this respect I have 

attempted to build up a large, representative sample of software systems which I 

refer to as a software corpus. At the time of writing the corpus I have built up 

comprises 78 different Java systems, though it is growing as others in the research 

group to which I belong find applications to add to it. The systems in the corpus have 

been deliberately chosen to vary greatly in size, maturity and problem domain. 

Additionally the systems vary in where they have been sourced (e.g. Sourceforge, the 
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Apache Software Foundation, various universities, companies) and whether they are 

open- or closed-source. 

 

So far the corpus comprises only software written in Java because (1) Java is widely 

used and taught, (2) it is (relatively) easy to analyse because of its bytecode 

representation, (3) there is a large amount of accessible Java software available 

(more than C# because Java has been around longer). I have concentrated only on 

Java (1) because of the overhead for me, personally, to build tools to analyse code 

spanning multiple programming languages; and (2) to leave open the opportunity for 

others to build up corpora of other languages, and perform parallel studies of design 

principles in these languages. 

 

I have built tools to infer different forms of static dependencies (cf. dynamic or 

runtime dependencies) among the classes of Java applications. The specifics of these 

tools, the metrics they collect and some results from running them over the corpus 

are described in other works[MT06][MT07b]. To summarise the relevant findings, 

many of the applications in the corpus have many source files that transitively 

depend on many other source files. If we plot a histogram of these transitive 

dependencies then many applications in the corpus have a distribution reminiscent of 

that shown in Figure 1(a) [6]. This is almost invariably due to a dependency structure 

among all an application’s source files resembling that shown in Figure 1(b). 

 

 

Figure 1 Histogram and corresponding directed graph showing transitive 
dependencies among an application’s source files. 

 
 

Design Principles. The design principles to which the transitive dependencies 

pertain are described in the context of the OO paradigm in Lakos’ book [Lak96]. 

These principles are couched in terms of directed graphs, the nodes of which 
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represent source files and edges of which represent compilation dependencies. In 

order to illustrate these principles consider the graphs of three different systems 

shown in Figure 2. Assuming that the designs of these systems are comparable which 

has the best structure? 

 

Figure 2 Source file dependency graphs of three comparable software systems. 

 

Lakos [Lak96, ch.4] argues that the system represented by Figure 2(c) has the best 

structure because it has 4 source files that are “totally decoupled” (i.e., depend on no 

other source types) [Ber93]. This means these source files can (1) be thoroughly 

tested in isolation from the rest of the system, (2) each be reused verbatim in another 

system independently from any other source files in the original system, (3) each be 

understood in isolation, entirely independently from any other source files in the 

system, and (4) can each be developed by separate people, concurrently and entirely 

independently of each other. The other systems, 2(a) and 2(b), have fewer source 

files that are totally decoupled (zero and one, respectively). Additionally there are 

more topological orderings of 2(c) than 2(b) (2(a) has no topological ordering) which 

means there are more orders to proceed in building, (integration) testing and 

incrementally understanding it. 

 

If we try to characterise the shapes of the three systems in Figure 2 we might 

characterise 2(a) as cyclic, since all the source files transitively depend on one-

another so are cyclically dependent; 2(b) as tall, since when it has a greater height 

than 2(a) and 2(c) when its nodes are arranged on top of one another; and 2(c) as flat 

since it has a flatter structure than 2(b). Lakos’s design principles stated in terms of 

“shape” are avoid dependency cycles among source files [Lak96, p.185], and favour 

a flatter rather than taller graph [Lak96, p.196]. 

 

4.3 Goals 
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I have already collected data that shows the design principles proposed by Lakos are 

not widely followed by Java developers[MT06][MT07b]. This was one of my goals, 

my remaining goals are described here. 

 

Empirically establish a relationship between these principles and 
understandability. I want to concentrate on linking these design principles to 

understanding because (1) I believe the rational arguments linking them to reuse, 

testing and buildability (see [Lak96] [Ber93]) are relatively strong in comparison and 

(2) understandability is a more fundamental attribute of software quality than 

others—in order to do almost anything to a software system (e.g., reuse, test, modify, 

etc) a developer must possess some level of understanding of it. I intend to go about 

establishing such a link by performing a controlled experiment or correlation using 

fault data from a release history. For the controlled experiment I will ask subjects to 

make modifications to a system with a tall, cyclically dependent structure and 

compare the effort of doing so to modifying a system with the same functionality but 

with a flatter, acyclic structure. This experimental setup derives from that used by 

Arisholm et al. [AS04]. The rationale for the fault correlation is that classes involved 

in cycles or with large transitive dependencies are more difficult to understand so are 

more susceptible to faults when they are changed. 

 
Evaluate ways of disseminating my results to practitioners. Much research in 

software engineering is not presented in a way that is accessible to practitioners 

[Par94]. In order to address this I have begun to disseminate my results back to 

developers of specific applications in the corpus via mailing lists. The response so far 

has been mixed, but in the case of Azureus (a Sourceforge-hosted project) the data I 

collected led to some useful discussion and immediate refactoring. There was also 

useful discussion on the ArgoUML mailing list and an intent to improve the structure 

over time. 

 

Make the Java corpus widely-accessible. A list of all the open-source applications 

in the corpus is available at http://www.cs.auckland.ac.nz/~hayden/corpus.htm. 

While this list enables others to locally replicate a significant proportion of our 

corpus, it is of limited use because (1) it does not contain data we used to mark-up 

the corpus (e.g. distinguish classes defined in source files from externally-defined 
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classes) and (2) it doesn’t reduce the considerable amount of work involved in the 

downloading each of the application and getting it into a uniform structure suitable 

for automated analysis. What we really need is a large, widely-accessible, 

documented corpus so researchers can share data and replicate each other studies. 
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Chapter 5 The CRSS Metric for Package Design Quality 
 

Package design is concerned with the determining the best way to partition the 

classes in a system into subsystems. A poor package design can adversely affect the 

quality of a software system. In this paper we present a new metric, Class 

Reachability Set Size (CRSS), the distribution of which can be used to determine if 

the relationships between the classes in a system preclude it from a good package 

design. We compute CRSS distributions for programs in a software corpus in order 

to show that some real programs are precluded in this way. Also we show how the 

CRSS metric can be used to identify candidates for refactoring so that the potential 

package structure of a system can be improved. 

 

5.1 Introduction 
 

The classes in an object-oriented software system can be partitioned into groups, or 

subsystems [WBWW90, p.135]. These subsystems serve to provide a higher-level 

view of the key abstractions in the system than that which is represented by 

individual classes [Boo91]. In large-scale software systems, comprising thousands of 

classes, subsystems are absolutely essential [Lak96][Boo91][CY91][Mar96b]. They 

help us to avoid information overload — a result of the limits on the human mind’s 

information-processing capacity [CY91]. They facilitate a vocabulary that developers 

of a system can use in communication [CY91][Boo91]. They allow managers to 

determine a partial ordering of development activities with respect to time, that 

allows for parallelism in development effort [Mey95][Lak96][Mar96b]. Finally, they 

have a significant impact on the system’s quality particularly with respect to 

reusability and testability [Lak96][Mar96b][SGM02]. 

 

One of the challenges in partitioning classes into subsystems is that for any given set 

of classes there are many possible ways to partition them [Mar96b]. The choice of 

partitionings is strongly influenced by the classes that make up the system because it 

is the relationships between these classes that cause relationships between the 

partitions in a given partitioning. It follows that relationships between partitions can 

be altered by moving classes between partitions (repartitioning) or by altering the 

source code of these classes to break their relationships with other classes. 



101 
 

 

Package design is the area concerned with determining the ‘best’ way to partition 

classes into subsystems[Mar96b]. The question addressed in this paper is “do the 

relationships between the classes in a system preclude them from a ‘good’ 

partitioning?”. In order to answer this question we must determine what constitutes a 

‘good’ partitioning. One contribution of this paper is a careful discussion of how 

partitioning (or package design) purportedly affects the external quality attributes of 

reusability and testability. In the case where the relationships between classes in a 

system do preclude them from a good partitioning we also provide advice on how to 

improve this situation through a refactoring strategy. 

 

We define a metric, Class Reachability Set Size (CRSS), which we use in order to 

determine if the relationships between the classes in a system preclude them from a 

good package design. This metric counts, for a given class, all the other classes in the 

system’s source code that it transitively depends-on for its compilation. In this way 

the metric takes into account the whole system, not just individual classes from 

selected subsystems. We show how the distribution of the CRSS values for all of the 

classes defined in system is useful for answering our question. We present empirical 

evidence to support this claim. 

 

Our use of the CRSS metric is to determine whether design principles proposed by 

others can be met by an existing class structure, that is, we provide an operational 

means to check conformance to these design principles. However, the CRSS metric 

says nothing about whether the design principles themselves are correct, that is, 

following the principles lead to a higher quality design than not following them. In 

fact, we have found very little empirical evidence to support any design principles. 

We consider this a serious lack in software engineering research. We believe this is 

due to the difficulty in operationally checking conformance, and so believe that 

developing metrics such as CRSS to be a promising approach to understanding the 

structure of software. 

 

The remainder of this paper is organised as follows. In Section 2, we survey the 

package design principles proposed in the literature. Section 3 discusses in detail 

how these package design principles impact testability and reusability. We then 

present the CRSS metric in Section 4. In Section 5 we present an empirical study on 
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the use of CRSS on a corpus of Java software systems. In Section 6, we demonstrate 

a new refactoring strategy that uses CRSS and one other metric in order to identify 

classes for refactoring so the package design quality can be improved. We discuss 

related work in Section 7 and conclude with Section 8. 

 

5.2 Background 
 

5.2.1 Package Design 
 

Programming languages such as Java, C++ and Ada support a higher-level of 

organisation through the package construct. Packages allow classes to be organised 

into named abstractions more generally referred to as subsystems. Within a system 

there may be subsystems at several levels of abstraction [Lak96] [WBWW90] 

[CY91] [Boo91]. In this respect the subsystems at a given level of abstraction can 

themselves be partitioned into new subsystems representing a higher-level 

abstraction. 

 

Package design is ultimately about organising classes into subsystems. In this respect 

programming languages without the package construct can still allow the level of 

abstraction provided by subsystems. Subsystems can be realised without the use of 

packages by arranging source files into separate (file system) directories, the names 

of which identify these subsystems. Alternatively, or additionally, subsystems can be 

realised through multiple class declarations in a single source file[Lak96]. 

 

Many authors have identified principles for package design but have referred to it 

using different terms. Lakos, for instance, uses the term physical design to 

collectively refer to his principles for package design [Lak96, p.97]. Martin uses the 

term package design [Mar96b]. Earlier work in package design often does not give it 

an explicit name but uses terms such as class category [Boo91], clusters [Mey95], 

subject areas [CY91], domains [SM92] and subsystems [Boo87] to refer to its 

fundamental units. Our review of the package design literature has identified two 

flavours of design principles. First are those that relate to the formation of classes 

into individual packages. Second are those that relate to properties of the directed 
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graph formed by the dependencies between the packages at a given level of 

abstraction. 

 

5.2.1.1 Package Formation 
 

The package construct, at least in Java, is a recursive structure in that it contains 

classes and/or other packages. It is the recursive nature of a package that allows it to 

represent subsystems at different levels of abstraction. A given package can represent 

a subsystem at a higher level of abstraction than the subsystems represented by the 

packages it contains. The principles of manageable size, stand-alone, cohesive, and 

encapsulation have been proposed to guide package design. We address the first two 

in this paper. 

 

Manageable Size. The number of items (packages or classes) contained by a 

package should not exceed a given limit. Coad et al. identify Miller’s paper on ‘the 

magic number seven, plus or minus two’ [Mil56] as the basis for this principle 

[CY91, p.107]. Essentially Miller’s paper states that the short-term memory of a 

human can hold 5-9 things at a time. Based on Miller’s work it could be argued that 

for package to be quickly understood (using our short-term memory) it should 

contain 5-9 other packages or classes. Other authors differ on this limit, but 

nevertheless identify the need for a limit to a package’s size. Lakos identifies 500 to 

1000 lines of code (LOC) for a component (low-level subsystem), and 5000-50000 

LOC or a few dozen components per package (higher-level subsystem) [Lak96, 

p.481]. Meyer states a cluster should contain 5-40 classes and be able to be 

developed by 1-4 people and entirely understood by a single person [Mey95, p.51]. 

 

For the purposes of this paper we will not specify a particular limit for package size 

other than to say that such a limit should exist, and that the limit can be stated in 

terms of number of classes directly or indirectly contained by a package. The limit 

may be dictated by company policy, personal preference, or some other mechanism. 

All of our arguments apply to any limit on package size, so long as the limit exists. 

 

Stand-alone. A package should be stand-alone in that it should have minimal 

dependency on other packages [Lak96, p.147]. A given package depends on another 

if its classes cannot be compiled without some of the latter’s classes. The notion of 
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compilation dependency among packages is important because we want to be able to 

lift packages from one program for deployment in another. In this way we can reuse 

code without having to modify its textual content to remove dependencies. The 

stand-alone property of a package is also important for understandability, testability, 

and the extent to which parallel development effort can occur across packages in a 

system [Lak96, p.149-202]. 

 

5.2.1.2 Graph Properties 
 

The principle that a package should be stand-alone leads to more package design 

principles when it is applied to all the packages in a system. These principles are 

auxiliary in that certain characteristics of what we refer to as Package Dependency 

Graphs (PDGs) imply that a system’s packages are not stand-alone. If a system’s 

PDG contains cycles, or is ‘taller’ rather than ‘flatter’, then the packages that 

comprise the system cannot be as stand-alone as their flat, acyclic analogs. 

 

A PDG is a directed graph representing all the packages in a system’s source code at 

a given level of abstraction as nodes, and compilation dependencies between these 

packages as directed edges. Packages have compilation dependencies on each other 

due to the underlying dependencies between the classes that they contain (both 

directly and indirectly through their subpackages). We say package A depends on 

package B if any class directly or indirectly contained by A depends on any class 

directly or indirectly contained by B. We will present a formal definition of what it 

means for a class to depend on another in Section 4. Also, since packages may exist 

at different levels of abstraction in a system, a system may have several PDGs. 

 

 

Figure 1: Cyclic, tall and flat PDGs 
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The graphs in Figure 1 are PDGs. We can reasonably compare them to one another 

because they comprise the same number of subsystems (vertices) and the same 

number of dependencies (edges) (except (a), which has an extra edge). The purpose 

of these PDGs is to illustrate that tall and cyclic graphs cannot comprise packages 

that are stand-alone, so PDGs should be flat and acyclic. Consider firstly any 

package from the cyclic PDG 1(a). In order to deploy this package in another 

program we also have to copy with it all the other packages in the graph. Even 

though the package itself directly depends on only one other package, this other 

package also depends on another to compile. The process goes on for the transitive 

closure of the dependency so at least in terms of deployment the stand-alone property 

of a package can be considered on the basis of transitive dependencies. 

 

The argument is similar for the tall graph of Figure 1(b) the top-most package 

requires all other packages in order for it to be deployed in another system. The tall 

graph of (b) is better than in the cyclic graph of (a) because packages towards the 

bottom of the graph transitively depend on fewer and fewer other packages. The flat 

graph of Figure 1(c) is better than the tall and cyclic graphs because it has the most 

packages that can be deployed with the minimal number of other packages, so each 

package is more ‘stand-alone’. 

 

One problem with the PDGs of Figure 1 is that they are not indicative of real designs 

because real designs tend to have more direct dependencies between packages and 

tend to have more ‘layers’. Lakos claims that a PDG that forms a balanced binary 

tree (see Figure 2) is a good reference point with which compare real designs[Lak96, 

p.187], although he notes that real designs are not nearly so regular. In terms of 

deployment, leaves of the tree are the most stand-alone since they depend on no other 

packages. More than half of the packages in a balanced binary tree depend on no 

other packages. One quarter of the packages in such a tree can be deployed with just 

two other packages, and so on. 
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Figure 2: Balanced Binary Tree PDG 

 

This discussion of design principles for PDGs has justified these principles in terms 

of the packages in a graph being stand-alone so that they can be deployed in other 

systems. There are more reasons other than deployment for ensuring that PDGs are 

flat, acyclic graphs. These are more complicated and are discussed in the following 

section. 

 

5.3 Effects on Quality 
 

The motivation for any design principle, whether it relates to classes (e.g. group 

related logic and data together), object interactions (e.g. design patterns) or packages 

is that the application of the principle will improve the quality of software system in 

some way. With regard to package design the claim is that allocating classes to 

packages according to the package design principles described above will result in a 

system of higher quality than if classes were allocated to packages in a more ad-hoc 

fashion. In this section we present a discussion of how the manageable size and 

stand-alone package design principles clearly relate to reusability and testability. 

 

5.3.1 Reusability 
 

Reusability is defined as “the degree to which a software module or other work 

product can be used in more than one computer program or software system” (IEE 

1990). One can reuse things of a conceptual nature such as software architecture 

descriptions and design patterns, or things of a more ‘binary’ nature such as 

procedures, classes and modules [SGM02]. The literature on package design claims 

improved reusability on the basis of reusing the functionality implemented in the 

source code of one program in another. This relates to quality because reusing code 

from one program in another can lead to reduced development effort and fewer 
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defects since the reused code has been ‘proven’ in the context of its original program 

[GJC92].  

 

Code reuse involves copying source files (and the libraries that they depend on) from 

one program to another, without having to modify the textual content of these source 

files. Compare this to code copying where text is copied from one program to 

another, usually meaning the copier has to modify the text to make it work in his 

environment and the copied code eventually diverges so much from the original that 

it becomes unrecognisable. This is a problem because the copier of the code becomes 

responsible for its implementation and it is no longer possible to easily integrate new 

versions of the code from its origin system following bug fixes and enhancements 

made by the owner of the code [Mar96b]. 

 

Packages are inherently related to code reuse because a class is not the fundamental 

unit of deployment [Mar96b][Lak96][SGM02]. It would be unusual for a single class 

copied from one program to be able to be compiled in the context of another 

program. Chances are that the class would depend on other classes appearing in its 

methods return types and parameters, as well as in the bodies of its methods’ 

implementations. If the class performed some domain-specific function then it is 

likely that at least some of the classes it depends on would also be defined in other 

source files of the original program (as opposed to classes defined in the 

programming language’s API). In this way whole packages should be copied 

[Mar96b], not individual source files each containing a single class. 

 

In terms of package design, packages that are standalone (and of a manageable size) 

lend themselves to reuse because we have to copy fewer packages (and classes) from 

one system to the other. While the sheer number of the packages copied is of concern 

because it increases the amount of code in the system that needs to be understood and 

can contain bugs, it is not the main problem. Rather the problem is that many of the 

packages are not likely to be strictly necessary for the given package to provide its 

functionality, or as Lakos [Lak96, p.14] states “in order for a … subsystem to be 

reused successfully, it must not be tied to a large block of unnecessary code”. This is 

where flatter, acyclic graphs come in. 
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Figure 3: Flattening a tall PDG with the DIP 

 

Tall or cyclic PDGs are not well suited towards reuse and many such graphs can be 

transformed to become flatter and acyclic through class refactoring and splitting 

packages into an ‘implementation’ and an ‘interface’. Martin’s Dependency 

Inversion Principle (DIP) shows how a tall graph can be transformed into a flat 

graph [Mar96a]. Figure 3 illustrates the transformation proposed by Martin. The 

individual packages in Figure 3 have an improved potential for reuse because the 

‘implementation’ packages are more flexible. They are more flexible because they 

can be used with different implementations of the other packages. For instance the 

Mechanism Implementation package in 3(b) can now be used with different 

implementations of the Utility interface. This also means that the reliability of 

the packages in 3(b) is improved because we do not have to deploy the 

implementation packages in another system if we do not want them. For instance we 

can deploy Mechanism’s implementation in a new system without having to copy 

Utility’s implementation into the system. Not having to copy the Utility 

implementation can improve the reliability of the new system because Utility 

implementation cannot be a further source of bugs if it does not exist in the system. 

 

5.3.2 Testability 
 

Testability is often defined as the ease at which software can be made to demonstrate 

faults through testing [BCK98, p.88]. Package design purports improved testability 

by demonstrating faults through execution driven by automated unit tests (as opposed 

to execution driven by a user) [Lak96]. 

 

We define an automated unit test as a piece of code that exercises another piece of 

code, and automatically compares the expected effect of that execution to the actual 

effect in order to report success or failure of that test. This type of testing is 
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particularly useful for regression testing i.e. identifying faults that have been caused 

by unintended effects of a modification to a system outside its apparent scope. 

 

Flat, acyclic PDGs have subsystems that lend themselves well to automated unit 

testing for reasons similar to why they lend themselves to reuse. If a subsystem in a 

PDG depends on an interface rather than an implementation we can more easily test 

it using stubs (or mock objects, as they are more popularly referred to nowadays). 

Stubs increase controllability and observability during testing [Bin99, p.980]. In 

terms of controllability we can implement a stub to exercise the boundary values and 

special cases for the given subsystem’s interactions with the package it depends 

upon. This is essential when these special cases occur as a result of nondeterministic 

behaviour, or are difficult to set up, or are difficult to trigger (e.g. an out-of-disk-

space error) or have callback functions [TH02] in the dependee package’s actual 

implementation. 

 

Flat, acyclic PDGs with stand-alone components of a manageable size are also more 

cost effective to unit test because they can be tested in ‘isolation’ [Lak96]. This 

relates back to testing a subsystem using stubs, rather than the actual 

implementations it depends on at runtime. The rationale for this claim is that testing 

in isolation means that stubs and test cases are created just to test the functionality 

provided by the component itself. This means that the complexity of the test reflects 

the complexity of the component. Reducing the complexity of the test is important 

because units tests are also code which costs money to produce. A further advantage 

of testing in isolation is that the tests provides a small but comprehensive example 

illustrating the use of that subsystem, helpful to someone wanting to reuse it [Lak96]. 

 

5.3.3 Other Quality Attributes 
 

Other claims have been made regarding the effect of package design principles on 

quality. Coad and Booch imply package design improves buildability by facilitating 

a vocabulary that developers of a system can use in communication [CY91][Boo91]. 

Another claim is that package design allows managers to determine a partial 

ordering of development activities with respect to time, that allows for parallelism in 

development effort [Mey95][Lak96][Mar96b]. Probably the most contentious claim 

is that package design principles lead to a package structure that makes the software 
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system more understandable. While it is clear that packages provide a higher level of 

abstraction than classes which helps us to avoid information overload [CY91], it is 

less clear whether the ‘interface’ and ‘implementation’-style of packages particular 

to flat, acyclic PDG improve understandability because they seem to increase the 

number of packages in the system (compare Figure 3(a) to (b)). 

 

5.4 Class Reachability Set Size 
 

The Class Reachability Set Size (CRSS) metric is computed from the Class 

Dependency Graph (CDG). A CDG is a directed graph where the vertices are the 

top-level classes defined in the source files of the software system and the edges 

represent compilation dependencies. The CRSS for a class is then the number of 

vertices reachable from the vertex representing that class. 

 

More formally, for a class C, the relation DEPENDS-ON(C)	is the set of classes that 

must be available in order	to compile C	(ignoring those classes referred to by 

redundant	import statements). In practical terms, in Java, it	is the set of .class 

files that must be on the classpath	in order to compile C.java. Another way to think 

about	it is that is the number of distinct types that are referred	to by names that 

appear in C.java. CRSS(C)	is then the	distributions	size of the set representing the 

transitive closure of the	DEPENDS-ON relation as applied to C.	

 

Our interest is in the best possible package structure allowable with respect to 

packages being stand-alone and of manageable size given the relationships between 

the classes in the system. Just considering the measurements given by CRSS for a 

single class is not going to do this. What we need is something that is representative 

of the whole system, not just an individual element of it. Rather than consider 

something like the mean or standard deviation of CRSS, we use the distribution of 

the CRSS values. As we will argue below, it is the shape of this distribution that is 

important in understanding the best potential quality of a package design for the 

system. 

 

Since we are computing CRSS for every class in the system, we need to be clear as 

to which classes’ CRSS values are used in the distribution. We only consider ‘top 
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level’ classes, that is, those that are not nested. Nested classes are not directly 

represented in the distribution, although their DEPENDS-ON set is computed and 

contributes to the CRSS value of their lexically enclosing class. 

 

Nested classes are not represented in the CDG because their use seldom constitutes a 

major design decision [Boo91, p.161]. It is often the case that these classes are not 

visible outside their lexically enclosing top-level class, which means other classes 

cannot depend on them. The classes on which a nested class depends are merged 

with the dependencies of its top-level class in order not to perturb the actual 

dependencies between packages. This is assuming that a nested class belongs to the 

same package as its top-level counterpart, which is certainly true for Java. We also 

consider only classes defined in the source files of a system because these are the 

only classes within the system whose package membership can be altered. Classes 

defined in external libraries are often in binary (vs. source) form, so cannot have 

their package declaration altered. Even if these classes’ sources were available it is 

likely that the developers of a system would be unwilling to take ownership of this 

code in order to improve its package structure. Considering only classes defined in 

source files is consistent with other efforts [Lak96][Boo96b]. 

 

Figure 4: Relationship between PDG structure and CRSS 

 

To get an idea of how the CRSS distribution relates to the structure of a PDG, 

consider again the PDGs shown in Figure 1. If we assume that each package has the 

same number of classes and that every class in a package depends on every other 

class in the same package then we get distributions like those in Figure 4. So, for 

example, if there are n	classes in each package, then every class in a package in 

Figure 1(a) depends on every other class (5n in total) in the system (a total of 5n	
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classes), whereas only the classes in the middle package (a total of n) on the top row 

of Figure 1(c) depends on 3n	other classes.  

 

Figure 4 gives an indication of the kind of distributions we might see corresponding 

to PDGs with different characteristics, but what we need to know is, what does a 

given distribution tell us about the underlying PDG? The main contribution of this 

paper is that, if the CRSS distribution is such that there are ‘many’ classes with a 

‘large’ CRSS value, then the current package structure for this system cannot meet 

Lakos’ model PDG (see Figure 2). Furthermore, and crucially, this situation indicates 

that the class relationships are such that there is no way to partition the classes to 

meet the Lakos model PDG, meaning that the only way to improve the package 

design is to change class relationships. 

 

To see how certain distributions allow us to conclude that the package design is not 

as good as it could be, we need to be more specific about ‘many’ and ‘large’. Rather 

than present the algebraic argument, we will give an indicative concrete example. 

 

Suppose that we have a system with 1000 classes in it, and suppose we have decided 

that a package of ‘manageable size’ would have no more than 50 classes. If the 

package design for this system does not violate the manageable size principle, there 

must be least 20 packages, and for this example we will assume there are exactly 20 

packages of 50 classes each. The question is, how many stand-alone packages can 

there be, given a certain CRSS distribution. 

 

The CRSS distribution we will consider is, 500 of the classes (L) have CRSS values 

of 99 or fewer, and the other 500 classes (R) have CRSS values of 600–699. The 

classes in L	could conceivably be partitioned into 10 (half) stand-alone packages, 

which is roughly consistent with the Lakos model PDG. So consider a class A	in R. It 

transitively depends on 600 or more other classes, and these 600 classes must be 

distributed over more than 12 packages (since 50 classes per package). At most 10 of 

those packages may involve only classes in L, so the package containing A	must 

depend on at least 2 other packages involving classes in R. Since this is true for every 

class in R, every package involving classes from R	must transitively depend on at 

least 2 other packages involving classes from R. There can only be 10 such packages, 
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so this is only possible if there is a cycle in the PDG, which means the any PDG for 

these classes cannot be in line with Lakos’ tree model PDG. 

 

The example given above may seem like an unlikely extreme cases, however, as we 

discuss in the next section, distributions similar to this are more common than one 

might expect. The advantage of the CRSS distribution is that it can be cheaply 

determined, and so quickly provides a reliable indication of the potential quality of 

the package design. Of particular advantage is that the information provided is 

independent of the actual package structure of the system we are measuring (see 

Section 7.1). 

 

5.5 Results 
 

5.5.1 A Software Corpus 
 

We have developed a tool to compute CRSS from Java source files. We ran our tool 

over a corpus of Java software in order to determine the distribution of CRSS values 

in each of its programs. Programs selected for the corpus largely derive from the 

Purdue Benchmark Suite (PBS) used in an empirical study of type confinement 

[GPV01]. Programs in the PBS omitted from our corpus were those whose source 

code was not available. We have replaced these programs with others that we have 

previously used and whose source is freely available on the Internet. 

 

The distributions of CRSS for each of the programs in our corpus are shown in the 

histogram of Figure 5. Being a histogram the horizontal axis shows the ranges of 

values for CRSS and the vertical axis shows the number of classes a given program 

that have that range of values for CRSS. The axis going ‘into’ the page shows each 

of the programs in the corpus, sorted by size, where this is measured in the number 

of top-level classes defined in the program’s source. Again, since Figure 5 is a 

histogram, the heights of the bars for a given program sum to the number of (top-

level source) classes in that program. 

 

Several of the programs in Figure 5 appear to have ‘bad’ CRSS distributions in that a 

large proportion of the classes in these systems have relatively high values for CRSS. 
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We single out Azureus for further discussion because we were initially familiar with 

it from the perspective of an end-user and because there are space constraints on this 

paper. A histogram of CRSS values for Azureus is depicted in Figure 6 for the 

purposes of clarity. 

 

Figure 5: Software Corpus CRSS Distributions 

 

5.5.2 Azureus 
 

Azureus is peer-to-peer file-sharing client for the BitTorrent protocol. It was initially 

brought to our attention because it frequently appears on Sourceforge’s title page in 

the top 10 lists for both downloads and development activity. We have used it and 

found that, at least from a user’s perspective, it is a good piece of software because it 

is stable and easy to use. 
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Figure 6: Azureus CRSS Distribution 

 

The histogram of Figure 6 shows that there are approximately 1900 top-level classes 

defined in Azureus’s source files (the sum of the heights of the bars). Of these 1900 

classes about 900 have CRSS values of between 0 and 99. This means that each of 

these classes transitively depend on between 0 and 99 other classes. The remaining 

two bars combined show that about 1000 classes depend on between 1300 and 1499 

other classes. In fact, the transitive nature of CRSS means that none of the classes in 

the left-hand bar can depend on those in the right-hand bars. If a class from the left-

hand bar depended on one in the right hand bars, it too would depend on 1300-1499 

other classes so itself would have to be in the right-hand bars. 

 

Table 1 shows a small selection of subsystems we have identified in Azureus many 

of which are not reflected in its current package structure. In column 2 of this table 

there is a representative or key class for each subsystem, or one that plays the role of 

Facade. The CRSS value given for the subsystem is computed from this class. As 

indicated in the ‘CRSS’ column of Table 1 each of the subsystems has a key class 

with a large CRSS value (ignore the ‘CRSSrefact’ column for now). This indicates 

that the subsystems depend on a great many other subsystems. Indeed we inspected 

the reachability sets of the classes in Table 1 and found that these key classes are 

actually mutually dependent. This means that the subsystems these key classes 

represent are also mutually dependent and that there must be a cycle among them. 
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Even without the knowledge that the classes of Table 1 are mutually dependent, the 

values in ‘CRSS’ column are still meaningful. For instance, it is hard to believe that a 

seemingly low-level subsystem like logging can depend on 1372 classes. If the 

maximum subsystem size of a logging subsystem’s peers is 50 classes then it must 

transitively depends on at least 28 other subsystems. Continuing under the 

assumption that the maximum subsystem size is 50 classes then we can infer from 

Figure 6 that, irrespective of package structure, there are at least 20 subsystems 

represented in the right-hand bars and that these subsystems must each transitively 

depend on at least 26 other subsystems. The degree to which these subsystems is 

stand-alone is a far cry from Lakos’s balanced binary tree reference model. 

 

 

Table 1: Azureus subsystems 

 

Figure 7: Eclipse CRSS Distribution 

 

5.5.3 5.3 Eclipse 
 

We also collected CRSS values for classes in the open-source IDE Eclipse, version 

3.0.2 for Windows11. The distribution of these CRSS values are shown in Figure 7. 

There are approximately 10700 top-level classes in Eclipse’s source code. Figure 7 

                                                
11Eclipse is not shown in the corpus distribution because its size diminishes the heights of bars in the 
other programs too much. 
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shows a decreasing trend in values for CRSS. Smaller values for CRSS appear to be 

more common than larger values. This is good because it means that dependencies 

between classes in Eclipse do not preclude it from having tree-like package structure. 

The right-most bar in Eclipse’s CRSS distribution comprises only about 100 classes 

each of which transitively depend on 6500-6999 other classes. If the maximum 

package size at some level of abstraction is 500 classes it is feasible that only one 

package in the system transitively depends on 13 other packages. The taller the bar in 

the 6500-6999 the more packages that can potentially transitively depend on 13 other 

packages, thus the less stand-alone the packages that comprise Eclipse would be. 

 

We do not present a table in the style of Table 1 for Eclipse because its size means 

that there are likely to be subsystems at many levels of abstraction. Instead we focus 

on two subsystems we have, in the past, wanted to lift from Eclipse for deployment 

in other programs. The first is Eclipse’s Abstract Syntax Tree (AST) subsystem and 

the second is Eclipse’s Resource Finder subsystem. 

 

Eclipse’s AST subsystem provides an Abstract Syntax Tree representation of a Java 

source file, or a set of Java source files. Other subsystems make use of this 

subsystem e.g. a Refactoring subsystem uses the AST for refactorings such as 

rename class, extract interface, override method. A Source Code Navigation 

subsystem uses this AST to perform operations such as goto declaration, open type 

hierarchy, find referring types. In essence the AST subsystem is a Java compiler 

front-end—it parses Java source code, does name bindings and produces an AST. 

The facade class for Eclipse’s AST is ASTParser. We found that it has a CRSS 

value of 1572, which is we think is unusual because Sun’s own Java compiler (for 

Java 5.0), which includes a back-end for writing ASTs to byte code comprises only 

71 top-level classes. 

 

Figure 8: Resource Finder Subsystem 
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There are several differences between Sun’s Java compiler and Eclipse’s AST 

subsystem that could cause a difference in CRSS values but none of which we think 

explain the magnitude of the difference. The differences are: 

•	Eclipse’s AST subsystem relies on Eclipse project wrapper IJavaProject 

whereas Sun’s gets external libraries, resources and source files off the classpath. 

•	Eclipse’s AST subsystem allows the progress of the parsing and name binding to 

be monitored with IProgressMonitor although Sun’s compiler also has a mode 

in which output messages could be interpreted to gauge the progress of the 

compilation. 

•	The AST node subclasses in Sun’s compiler are public static inner classes 

whereas they are top-level classes in Eclipse’s AST.  

In any case none of these extra functions provided by Eclipse’s subsystem should 

cause it to transitively depend on approximately 1500 more classes, especially since 

Sun’s compiler provides the extra functionality of compiling to byte code. So we 

believe that Eclipse’s AST subsystem could benefit from the type of refactoring 

depicted in Figure 3. 

 

We have found the functionality provided by Eclipse’s Resource Finder subsystem 

very useful when dealing with projects with many resource and source files. The 

Resource Finder dialog can be opened by pressing (ctrl+shift+r) in the IDE. 

This pops up a dialog that works by accepting a regular expression input and finding 

all files in open projects with filenames that match that regular expression. The 

facade class for the Resource Finder subsystem is OpenResourceDialog and 

has a CRSS value of 1945. Lifting 1945 other classes in order to reuse this Resource 

Finder subsystem is impractical considering our code inspections showed that the 

functionality provided by OpenResourceDialog is actually contained within 

only 5 classes. The problem is that OpenResourceDialog transitively depends 

on classes in Eclipse’s model (c.f. view) (as shown in Figure 8(a)) when it should 

depend on some interfaces that are, in turn, passed into the model as shown in Figure 

8(b). 

 

5.6 Refactoring 
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5.6.1 Strategy 
 

We have developed a refactoring strategy based on the Dependency Inversion 

Principle (DIP) [Mar96a] to reduce the number of classes in a system with large 

CRSS values. The strategy uses properties of the CDG to identify candidate classes 

for refactoring. The particular refactoring performed is extract interface, which may 

seem trivial, but we will see that eliminating the dependency on the implementation 

of the extracted interface is tricky. This trickiness occurs because at some point we 

must instantiate an interface with its implementation type—we refer to this as the 

‘problem of instantiation’, which is discussed below. 

 

Performing the extract interface refactoring on a class reduces its clients’ CRSS 

values because the client classes no longer transitively depend on any types used in 

the extracted interface’s implementation. The effectiveness of the extract interface 

refactoring is dependent on many of the types referenced in the interface’s 

implementation not appearing in the signatures of the methods (and possibly fields) 

on the interface. In this way the CRSS value of the extracted interface is likely to be 

smaller than the value of its implementation. The transitive nature of reachability sets 

ensures that the clients of interface are likely to have smaller CRSS now than when 

they referenced what was effectively the interface’s implementation. 

 

It follows that an effective way of reducing the CRSS values of many classes in a 

system is to extract interfaces from classes that are widely referenced and themselves 

have high values for CRSS. This is where the CDG comes in—a class is widely 

referenced if its CDG node has a large in-degree. Thus we identify candidate classes 

for the extract interface refactoring by sorting the list of classes in the system by in-

degree then CRSS. While the extract interface refactoring is fairly simple to perform, 

dealing with client classes that need to instantiate the interface is not. In order to 

instantiate the interface we need to reference the interface’s implementation. If this is 

done through the use of a constructor call e.g. Interface i = new 

Implementation(); we are in the same situation with respect to the client’s 

CRSS as before because the client still depends on the implementation. If this is done 

through reflection e.g. Interface i = Class.newInstance 

("Implementation"); we still have a dependency on the implementation 

though our tool will not detect it and we have lost some of the type-safeness provided 
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by the language. Even if we use a factory class to return an instance of the 

implementation we still have a transitive dependency on the implementation through 

the call to the factory method that instantiates the class. 

 

There are a number of ways of dealing with the problem of instantiation that are 

dependent on the way in which the interface is used. If the interface is instantiated 

only for a field in the client we can pass in the instantiation through the constructor: 
 

public Client { 

  private Interface i; 

  public Client(Interface i) { 

    this.i = i; 

  } 

} 

 

In this way the class that instantiates the client also instantiates the interface’s 

implementation and passes it in through the client’s constructor. The client has no 

reference to the interface’s implementation. This technique is often referred to as 

dependency injection. Unfortunately it can result in more involved refactoring of the 

clients than simply textually replacing all references to the class’s name with its 

extracted interface’s name – sometimes extra parameters have to be added to the 

constructors and clients of the original clients need to be modified to instantiate the 

interface’s implementation. 

 

We concentrate on performing the extract interface refactoring on candidate classes 

that are singletons because there is a means to instantiate these classes that puts little 

refactoring burden onto their clients. The ideal implementation of a singleton object 

through the use of a single static getInstance-type method and a private static 

field holding the instance. In reality we have found that singletons are implemented 

in a variety of ways (e.g., entirely using static methods and/or entirely using static 

fields). The solution we have for the problem of instantiation in the context of 

singletons involves the use of a registry of singletons [GHJV95, p.130]. 
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We illustrate how the burden of refactoring on a singleton’s clients after the extract 

interface refactoring is performed on the singleton is reduced through the use of a 

registry of singletons. We illustrate this refactoring on the class A shown below, 

which gets split into AIFace and AImpl. 

//this is the code pre-refactoring 

public class Client { 

  //inside some method 

  A a = A.getInstance(); 

} 

//this is the code post-refactoring 

public class Client { 

  //inside some method 

  AIFace a = (AIFace)SingletonRegistry.get("A"); 

} 

//this is a registry of singletons 

public class SingletonRegistry { 

  private Map m = new HashMap(); 

  public put(String key, Object value) { 

    m.put(key, value); 

  } 

  public Object get(String key) { 

    return m.get(key); 

  } 

} 

//this line is needed somewhere near the entry 

// point of the application to populate the 

// registry with instances 

singletonRegistry.put("A", new AImpl()); 

 

While we have used this refactoring only on singletons it can in fact be applied to 

non-singleton objects too, by also employing the prototype pattern [GHJV95]. In this 

way the registry of singletons becomes a registry of prototypes. In order to make an 

object a prototype for this purpose we must also add a method to its extracted 

interface (e.g., newInstance) that returns a new instance of the interface. 
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5.6.2 Results 
 

We used our refactoring strategy on Azureus. Since Azureus has a variety of ways of 

implementing singletons e.g. the getInstance-method style, having all static fields, 

having all static methods we identified singletons manually from the list of 

candidates partially shown in Table 2. 

 

Table 2: Candidates for Extract Interface Refactoring 

 

The classes that we actually refactored were LGLogger (1), 

COConfigurationManager (2), Debug (3), FileUtil (4), 

PlatformManager (5), MessageText (6), TorrentUtils (7), 

LocaleUtil (8), DisplayFormatters (9), Direct- ByteBufferPool 

(10). The effect of these refactorings on the CRSS distribution are shown in Figure 9. 

The axis going ‘into’ the page has numbers that correspond to the extract interface 

operations on the listed classes. Each refactoring improved the distribution of CRSS 

as expected and after the 10th refactoring only 400 classes had CRSS values of 1300 

or more and nearly 1300 classes now transitively depended on less than 100 other 

classes. The effects on the subsystems we identified earlier are shown in the ‘CRSS-

refact’ column of Table 1. In the cases where the refactored class was the key class in 

the subsystem (i.e. Debug, COConfigurationManager, MessageText and 

LGLogger) we show the CRSS value for the implementation, not the extracted 

interface since the former has the larger CRSS value. Indeed an inspection of the 

reachability sets of these subsystems now shows that they are no longer mutually 

dependent so could feasibly be arranged into packages without cycles in the PDG. 
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Figure 9: Refactoring Azureus 

 

5.7 Related Work 
 

The work in this paper extends a prior work [MT06] and is also related to work we 

have done looking at dependency cycles among classes in Java software [MT07b]. 

Here we review other work that has been done in metrics for package design. 

Hautus[Hau02] , Lakos  [Lak96] and Ducasse et al.  [DLP05] have each produced 

literature on this topic. 

 

5.7.1 Hautus 
 

The design principle stating a PDG should be a directed acyclic graph itself implies 

a simple metric. This metric classifies a given PDG as being either cyclic or acyclic. 

Unfortunately this metric is of little practical use, because we want to know the 

degree to which a cyclic PDG is cyclic. In this way we can estimate the amount of 

work required to make it acyclic, or determine if a refactoring has made it more or 

less cyclic. Hautus’s PASTA (PAckage STructure Analysis) metric aims to measure 

the degree of ‘cyclicness’ in a PDG. 

 

The PASTA metric is defined for a given package as “the weight of the undesirable 

dependencies between the sub packages divided by the total weight of the 
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dependencies between the sub packages” [Hau02]. The weight of a dependency is 

defined as “the number of references from one package to another”. Hautus does not 

make clear what constitutes a single reference — for instance references can be 

counted at the level of classes so that a class can reference another at most once, or at 

the level of identifiers in the source code of a class so that a class can reference 

another multiple times. The undesirable dependencies are defined as a set of 

dependencies that when removed lead to an acyclic graph. Since there are multiple 

sets of dependencies that can be removed to lead to an acyclic graph the set is chosen 

such that it has the minimal weighted sum of references. 

 

As Hautus’s metric is stated above it applies to a subgraph of a given PDG. The 

subgraph is chosen such that all its vertices are children of a given package in the 

package tree. In order to apply give the PASTA metric a single value for a whole 

program, rather than a single package, Hautus defines the PASTA metric for a whole 

program as “the weight of all desirable dependencies in all package divided by the 

total weight of the dependencies in all packages”. This means that some references 

are counted multiple times since it is the underlying subpackage dependencies that 

gives a package its dependencies. Hautus states that this effect, of counting some 

references multiple times, is deliberate because it means that packages at a higher 

level of abstraction have a greater impact on the metric than those at a lower level of 

abstraction. Hautus then claims that it is more important to remove cycles between 

packages at a high-level of abstraction than cycles between packages at lower levels 

of abstraction. 

 

Hautus’s metric differs from our CRSS metric in that it purports only to measure the 

‘cyclicness’ of a PDG. This relates only to the single design principle that a PDG 

should be acyclic. We have argued that our metric is useful for indicating violations 

of other metrics, particularly stand-alone and manageable size.  

 

Hautus has also produced a tool to collect his metric and support refactoring to 

eliminate cycles between packages. It appears that Hautus’s refactoring technique 

implicitly assumes that classes are correctly partitioned into packages and 

correspondingly that the way to remove cycles is to break dependencies between 

classes. This may not be a good assumption because repartitioning classes into a new 

package structure (especially with the support provided by Eclipse) is a far simpler 
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operation than breaking dependencies between classes. Furthermore Martin claims 

that package design should be a bottom-up process whereby the class relationships 

dictate the formation of packages[Mar96b]. Based on this statement it may be 

possible to use our CRSS metric as a starting point for determining how classes 

should be partitioned into packages. 

 

5.7.2 Lakos 
 

Lakos has identified several metrics for package design quality. The simplest of 

Lakos’s metrics is Cumulative Component Dependency (CCD). CCD is the sums of 

the reachability set sizes for all the nodes in given PDG [Lak96, p.187]. Lakos also 

proposes and average and normalised- version of this metric. We will discuss the 

average version. Average Component Dependency is ACD for a given PDG is CCD 

divided by the number of nodes in that graph. 

 

Tall or cyclic PDGs will tend to have a higher value ACD than flatter, acyclic PDGs 

with stand-alone components [Lak96, p.195]. In this way ACD is useful for 

determining the degree to which a PDG follows the acyclic and flat package desing 

principles. However, it does not take into account the size of a package so cannot be 

used to measure conformance to the manageable-size principle. It also deals with 

packages rather than classes so suffers from the same problem as Hautus’. 

 

5.7.3 Ducasse 
 

Ducasse et al. introduce a number of metrics that could be used for measuring the 

package design quality, though these metrics are dicussed in the context of reverse 

engineering a system[DLP05]. In particular their paper concentrates on collecting 

metrics that can be used in visualisations of different types of dependencies between 

packages so the relationships between these packages can be more quickly and easily 

understood by a developer new to a system. Metrics from Ducasse et al. that could be 

useful for measuring package design quality are Number of Provider Packages (PP), 

Number of Client Packages (CC), Number of Class Clients (NCC) and Number of 

Classes in a Package (NCP). PP and CC correspond to the outdegree and indegree 

respectively of a package in a PDG. These could be used to indicate if a package was 
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stand-alone or alternately excessively coupled to other packages. NCC could be used 

similarly – if many classes depend on a given package it may indicate that these 

classes packages are excessively coupled and not stand-alone. NCP could be used to 

indicate if packages were of a manageable size. 

 

5.8 Conclusions 
 

Package design is believed to have an important effect on reusability and testability, 

as well as other quality attributes. It is therefore useful to know if the relationships 

between classes in a system preclude it from having packages that are stand-alone 

and of a manageable size. In this respect we have developed a simple metric, CRSS, 

that can be used to identify systems whose packages cannot be stand-alone and of a 

manageable size. 

 

One distiguishing feature of our metric is that it is for whole program analysis—not 

just for individual elements of a program. Indeed it is the distribution of CRSS values 

for all the classes defined in the source files of a system that tells us about its best 

potential package structure. 

 

We have presented empirical studies based on a number of open-source systems that 

identify distributions of CRSS that are indicative of package designs that cannot 

comprise packages that are stand-alone and of a manageable size. In order to 

improve the potential package structure of these systems we have shown how our 

CRSS metric can be used to identify good candidates for the extract interface 

refactoring. This refactoring can improve the relationships between classes in a 

system with respect to its potential for a good package structure. 
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Chapter 6 An Empirical Study of Cycles among Classes in 
Java 

 

Advocates of the design principle avoid cyclic dependencies among modules have 

argued that cycles are detrimental to software quality attributes such as 

understandability, testability, reusability, buildability and maintainability, yet 

folklore suggests such cycles are common in real object-oriented systems. In this 

paper we present the first significant empirical study of cycles among the classes of 

78 open- and closed-source Java applications. We find that, of the applications 

comprising enough classes to support such a cycle, about 45% have a cycle involving 

at least 100 classes and around 10% have a cycle involving at least 1,000 classes. We 

present further empirical evidence to support the contention these cycles are not due 

to intrinsic interdependencies between particular classes in a domain. Finally, we 

attempt to gauge the strength of connection among the classes in a cycle using the 

concept of a minimum edge feedback set. 

 

6.1 Introduction 
 

There is a plethora of literature describing how software systems should be 

structured (e.g. Booch [Boo91];Dijkstra [Dij68]; Lakos [Lak96]; Parnas [Par72]; 

Stevens et al. [SCM74]). We are interested in determining the extent to which such 

advice is followed by practitioners of software engineering [Mel06]. Casual 

observations made by luminaries such as Foote and Yoder [FY97]; Parnas [Par96]; 

Wirth [Wir95] and Szyperski [SGM02, p.40] would suggest that it is not widely-

followed. If this is true, then it implies either there is a lot of bad software out there, 

or the advice itself is not useful. Either implication is of concern to software 

engineering researchers. However we cannot rely solely on casual observation. We 

need empirical evidence to support any claim that design advice is generally not 

being followed. In this paper, we present an empirical study examining the use of the 

design principle avoid dependency cycles among modules. 

 

We’d like to know the extent to which “avoid cycles” is followed because its 

advocates have argued that dependency cycles are detrimental to many software 

quality attributes, including understandability, testability, reusability, buildability and 
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maintainability (Kung et al. [KGH+95b]; Lakos [Lak96]; Martin[Mar96b]; Parnas 

[Par96]). Despite this purported detriment, folklore would suggest that this principle 

is not widely-followed: it has been stated (Briand et al.[BLW03]; Hashim et 

al.[HSR05]; Kung et al.[KGH+93]; Winter[Win98]; Lakos [Lak96, p.3]) and implied 

(Binder [Bin99]; Jungmayr [Jun02]; Martin  [Mar96b]) that dependency cycles 

among the classes of Object-Oriented (OO) software systems are common. 

 

To date empirical evidence of the extent to which cycles pervade OO systems is 

somewhat lacking. It rests on differing metrics collected from a handful of mostly 

small Java ([BLW03][HSR05][Hau02]) and C++ [KGH+95b]  applications. To the 

best of our knowledge there has been no large-scale empirical study published of 

dependency cycles in OO software. The main contribution of this paper is thus a 

detailed empirical study of dependency cycles among classes across 78 open- and 

closed-source Java applications. We focus on Java because it is widely used and 

there is a significant amount of Java software generally available. 

 

The remainder of this paper is organised as follows. In Section 2 we motivate the 

study by discussing the ways in which cycles among a program’s organisational units 

purportedly affect specific quality attributes. We identify the types of dependency 

and cycle to which the principle applies. In Section 3 we discuss the method by 

which we conducted our empirical study into the prevalence of cyclic dependencies 

among Java classes. In Section 4 we present the results of our study of cycles among 

the classes of Java applications in a software corpus. In Section 5 we discuss the 

implications of our findings. We draw conclusions and summarise our findings in 

Section 6. 

 

6.2 Motivation 
 

Our motivation for studying dependency cycles in code comes from the amount of 

advice that has been given to avoid them. In this section we review the origins of 

“avoid cycles” and related design principles and present the arguments that have 

been made on the effect cycles have on specific software quality attributes. Finally 

we formalise the notions of cycle and dependency applicable to this study.  
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To the best of our knowledge Parnas was the first to discuss the design principle 

avoid cycles among modules [Par78]12. Parnas argued that when two modules are 

cyclically dependent (i.e., each calls routines declared in the other) neither can be 

tested until both are “present and working.” The consequence then, of long cycles 

involving many modules, according to Parnas, is that “one may end up with a system 

in which nothing works until everything works.” 

 

Over the years there have been other design principles proposed that also have the 

effect of avoiding (or reducing) dependency cycles. Stevens et al. state the design 

principle minimise	coupling	between	modules	Stevens et al.[SMC74]. A design with 

dependency cycles has higher coupling than its acyclic analog (e.g., if modules A	and 

B	are in a cycle then B	has higher coupling than if the only dependency is from A	on 

B). Riel states “Derived classes must have knowledge of their base class by 

definition, but base classes should not know anything about their derived classes” 

[Rie96, p.81]. Disallowing the dependency of a base classes on its derived classes 

prevents a dependency cycle between the base and derived classes. Riel also states 

that “In applications that consist of an object-oriented model interacting with a user 

interface, the model should never be dependent on the interface” [Rie96, p.36]. This 

has the effect of eliminating cycles between the model and user interface because the 

user interface normally depends on the model in any case. Finally Booch [Boo95] 

says “. . . all well structured object-oriented architectures have clearly defined 

layers.” Long dependency cycles have the potential to encompass several layers. 

When this is the case layers are not “clearly defined” because a layer should only 

depend on the layers below it. 

	

6.2.1 Cycles among Classes 
	

Many have discussed cycles in the context of the OO paradigm, but the most 

comprehensive discussion is by Lakos. Lakos states that cyclic dependencies among 

the components	of a C++ program inhibit understanding, testing and reuse [Lak96, 

p.185]. Lakos’ notion of a C++ component	is roughly equivalent to a .java	file in 

                                                
12 Dijkstra (1968) argued for a hierarchical structure more than 10 years prior to Parnas’ discussion of 
cycles, but whether we can interpret Dijkstra’s argument as the origin of the avoid cycles design 
principle is somewhat contentious. After all, there exist structures that are not strictly hierarchical as 
Dijkstra uses the term, but that are acyclic nonetheless (see e.g., Szyperski 2002, p.162). 
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Java. Since there is typically one top-level class per source file in Java we will, for 

the purposes of this section, discuss cycles in terms of (top-level Java) classes. 

	

Understanding. Lakos and Fowler have both argued that cycles are detrimental to 

understanding. Lakos says that in a cyclically dependent system there is no 

reasonable starting point and no piece of the system that can make sense on its own 

[Lak96, p.3]. Fowler says cyclically dependent systems are harder to understand 

“because you have to go around the cycle many times” [Fow01]. We present a more 

precise argument for cycles inhibiting understanding below. 

 

When we look at a class’ source code we want to be able to understand as much of it 

as possible in isolation, without having to look at the source code of other classes in 

the system. Sometimes, however, it is difficult to understand a class in isolation. 

When we cannot understand a class in isolation it is often the case that we look at the 

source code of the classes on which it depends (e.g., calls methods on). If we restrict 

ourselves to understanding a class based only on the classes on which it depends, 

then cycles make understanding a system’s classes more difficult. To see why 

consider the two systems depicted in Fig. 1. Both systems have two classes, X	and Y, 

but differing dependencies (represented by arrows). In order to understand class X	in 

Fig. 1a we (at most) need to examine the source code of X	and Y. In order to 

understand Y we at most need only examine the source code of Y	itself. Compare this 

now to the cyclically dependent system of Fig. 1b where the worst case for 

understanding Y	is examining the source code of both Y	and X. So the argument is that 

understanding the average class of the system depicted in Fig. 1b is more work, and 

therefore more difficult than understanding Fig. 1a. 

	

Figure 1 Classes in two, small, hypothetical systems 

 

From the discussion about Fig. 1 we can glean that in the worst case our strategy for 

understanding a class is transitive. Consider now, class K	of the system depicted in 

Fig. 2a. In order to understand K	we may also have to look at the source code of L. 

But then to understand L	we may also have to look at the source code of M. Since M	
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depends on nothing we should always be able to understand it in isolation. So in Fig. 

2a the worst case for understanding class I	involves looking at the source code for 

itself and for J, K, L, M. For class J	the worst case is looking at the source code of 

itself and classes K, L	and M. The process continues similarly for classes K, L	and M. 

So we may conclude that the average worst case for understanding a arbitrary class 

from the system of Fig. 2a involves looking at the source code of 3 classes 

(=(5+4+3+2+1)/5). Compare this now to the system of Fig. 2b. In this system all five 

classes are involved in one big cycle, so in order understand any single class we may 

have to examine the other 4 classes in the system too. Clearly this is worse than the 

average worst case of Fig. 2a. 

	

Figure 2 Classes in two, larger, hypothetical systems	

	

Testing. There are strong arguments that cyclic dependencies among classes inhibit 

testing	in	isolation	[Lak96, p.161–174] and integration	testing	[Lak96, p.174–

187][BLW03][HSR05][KGH+95b][Bin99, p.983–984]. In terms of testing a class in 

isolation, if two classes are cyclically dependent then it is impossible to test either 

one without the other [Lak96, p.161–174]. If there are many cyclically dependent 

classes in a system then none of the classes in the cycle can be tested truly 

independently (in isolation) from the others. Cyclic dependencies impede integration	

testing	by preventing a topological ordering of classes that can be used as a test order 

[BLW03][KGH+95b][Lak96]. Many researchers have dealt with the problem of 

cyclic dependencies among classes in integration testing by breaking cycles through 

the creation of stubs [BLW03][KGH+95b]. Binder argues that stubs can be 

problematic for a number of reasons [Bin99, p.983] and cites several works 

advocating the outright elimination of cycles from the design of a system. 

	

Reuse. Lakos [Lak96] and Martin [Mar96b] have argued that cycles inhibit the 

verbatim reuse of source code. In this form of reuse source files are copied from one 

program to another, without (1) having to modify the textual content of these source 
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files in order to make them compile in the new environment and (2) introduce stubs 

for classes on which they depend. The crux of the argument is that we want to be 

able to copy as few source files from one application to the other so we can (1) 

reduce the compilation time of our application, (2) reduce the potential search space 

if we need to thoroughly understand the functionality (through inspection of the 

source) provided by the copied files (3) reduce the amount of code that could 

potentially contain bugs. 

	

6.2.2 Cycles among Packages 
	

The package	construct is a feature of some programming languages (such as Java, 

Ada and C++) that allows the subsystem to which a class belongs to be reflected in 

its source code. Dependency cycles among classes can cause dependency cycles 

among packages. To see why consider one desirable property of a package—that it is 

of manageable	size	[Lak96, p.481][Mey95, p.51]. Meyer states that for a package to 

be of manageable size it should contain 5–40 classes and, more fundamentally, it 

should be able to be developed by 1–4 people and entirely understood by a single 

person [Mey95, p.51]. If there is a cycle involving more cycles than the maximum 

size of a package, then there must be a cycle in the package structure as well. 

 

Lakos [Lak96, p.494], Martin [Mar96b] and Fowler [Fow01] state that there should 

be no dependency cycles among the packages of an application. They claim cycles 

among packages inhibit Production	[Mar96b][Lak96,p.512–514], Marketing	[Lak96, 

p.494], Development	[Lak96, p.494][Mar96b] and Usability	[Lak96, 

p.495][Mar96b]. 

	

6.2.3 Meaning of Dependency 
	

In this paper we are interested in the meaning of dependency as it applies to the 

design principle avoid	dependency	cycles	among	modules. If we apply this principle 

to Java in the way Lakos applies it to C++ then we should avoid dependency cycles 

among an application’s .java	source files. (Previously we referred to these .java files 

simply as classes, using the term class	to refer to a top-level class that includes all the 

nested classes it lexically encloses.) Again, deriving from Lakos, the type of 
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dependency to which the principle applies is a static or compilation dependency (cf. 

dynamic or runtime dependencies). We adapt the dependency relations proposed by 

Lakos to Java below. 

 

For a Java source file A: 

•uses(A) is the set of all .java	files that declare types that A	refers to in its text. We do 

not include dependencies in this set (or any of the other sets below) that are due to 

redundant imports because these are superficial and good tool support already exists 

to remove these (e.g., Eclipse’s “clean imports” feature). 

•uses-in-size(A) is the set of all .java	files that declare types on which methods are 

called and fields are accessed in the text of A. Constructor invocations are considered 

as method calls and supertypes of types declared in A	are also included in this set. 

This set is related to that used to compute the CBO metric [BDW99][CK91]. 

•uses-in-name-only(A) =	uses(A) \	uses-in-size(A), that is, those types that are 

referred to in A’s text, but on which no methods are called or fields are accessed. 

•uses-in-the-interface(A) is the set of all .java	files that declare types that appear in 

the interface of A. By interface	we mean the methods and fields that A	declares that 

are accessible from source files other than A	i.e, all fields and methods that are not	

declared private. So this set includes types that appear in the return type, formal 

arguments and thrown exceptions of non-private methods, and the declared types of 

non-private fields. We also include the direct supertypes of the class so that the 

transitive form of uses-in-the-interface	includes all the methods and fields that can 

be called on it (even those types that appear solely in supertypes). 

 

We show the computation of the above relations for the source file of Fig. 3. Note 

that List, Iterator	and Object	correspond to classes in the Java API so do not appear 

in any of the relations’ sets. We ignore types that are declared in external libraries 

(e.g., the Java API) because application developers have no control over cycles 

among these types, and these types are assumed to be tested and correct. All the other 

types used in Fig. 3 are assumed to be declared in the application’s source files. 

 

We will use all these different dependency relations to help distinguish “bad” or 

“unnecessary” cycles from those that cannot be sensibly avoided. Lakos argues that 

some cycles cannot be sensibly avoided due to intrinsic	interdependency	between the 
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real world objects the classes model [Lak96, p.213]. Lakos illustrates intrinsic 

interdependency with a graph modelled with Node	and Edge	classes. Conceptually an 

edge exists to connect a source node to a destination node. It is therefore likely that a 

client of the Edge	class would be interested in the nodes this edge connects. Thus 

Edge provides methods getSrcNode	and getDstNode	that cause a Edge	to depend on 

Node. Clients of Node	are likely to have an analogous requirement meaning Node 

depends on Edge. Thus the conceptual relationships between edges and nodes in a 

graph have caused Edge	and Node	to be cyclically dependent. 
	

Figure 3 Computation of the four dependency relations on a simple Java class 

 

Intrinsic interdependencies cannot be sensibly avoided and, according to Lakos, 

generally manifest themselves as cycles in the uses-in-the-interface	relation. In 

Section 4 we will use cycles in the uses-in-the-interface	relation to give an 

approximate upper bound on cycles due to intrinsic interdependency. We point out 

that this is only an approximation of cycles due to intrinsic interdependency because 

types may inappropriately appear in the interfaces of classes due to poor design 

decisions (e.g., a class from the view of the application appears in a model class 

violating a well-known object-oriented design heuristics[Rie96]). 

 

The uses-in-name-only	relation is important because Lakos argues that a source file 

can be tested, understood and reused independently of any types it transitively uses	

but does not transitively uses-in-size	(recall uses-in-name-only	is defined as uses	\	
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uses-in-size) [Lak96, p.247–256]. We should then be most concerned about cycles in 

the uses-in-size	relation with respect to testing, reuse and understanding. As for the 

uses	relation, this is the dependency we care about with respect to package design—

long cycles in this relation can cause cycles among packages (see Section 2.2). 

 

6.2.4 Meaning of Cycle 
	

There are many types of cycles. A simple	cycle, for instance, is a path with no 

repeated vertices that starts and ends on the same vertex. The types of cycle in which 

we are interested are Strongly	Connected	Components	(SCCs). A SCC is defined as a 

subgraph of a directed graph induced by a maximal set of mutually reachable vertices 

[GY04, p.128]. SCCs are the type of cycle most applicable to our study because all 

the nodes in a SCC are all cyclically dependent on one another. Additionally, SCCs 

provide a higher-level view of simple cycles in a system because a SCC must 

comprise at least one simple cycle, and all nodes in a given simple cycle must appear 

in the same SCC. In our data a SCC is usually a conglomeration of many simple 

cycles interacting in complex, intertwined ways. 

 

In order to illustrate the notion of a SCC consider the directed graph of Fig. 4. The 

vertex sets for the SCCs comprising more than 1 vertex in this graph are: {A, B, C, 

D} and {F, G} and {H, I, J}. For the analysis performed in this paper we represent 

.java source files as vertices and one of the uses, uses-in-size	and uses-in-the-

interface relations as edges. We then measure cycle size in terms of the size of each 

SCC’s vertex set. 

 

In order to determine the extent to which cycles pervade OO systems we ought to 

measure more than just the size of SCCs. This is because the strength of connection 

among the nodes in a SCC can vary greatly. Consider the 3 SCCs of Fig. 5. Each 

SCC comprises 5 vertices but intuitively the strength of connection among the nodes 

in each of the SCCs varies. In the graph of Fig. 5a we can break all cycles by 

removing just one edge. In the graph of Fig. 5b we need to remove at least 5 (logical) 

edges to break all cycles. For the graph of Fig. 5c the minimum number of edges we 

need to remove in order to break all cycles is less obvious, but it is certainly more 

than 5. If these SCCs represented source file dependency graphs of three different 
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systems we would likely be most concerned about the structure of the system in Fig. 

5c with respect to avoid	dependency	cycles	because the breaking all its cycles would 

involve breaking the most dependencies among the source files. 

 

In graph theory a Minimum	Edge	Feedback	Set	(MEFS) is the smallest set of edges 

we need to remove from a graph to break all cycles in it. Skiena notes that 

determining a MEFS for a graph is a NP-complete problem [Ski98], which helps 

explain our difficulty in determining a MEFS for the graph of Fig. 5c. Fortunately 

Eades et al.  [ELS93] present a good heuristic (referred to herein as Eades’ Heuristic) 

for computing an edge feedback set that is close to minimal. We refer to a close-to-

minimal edge feedback set as mEFS. We do not restate this heuristic in its entirety but 

in essence it greedily produces a vertex sequence (v1, v2, ..., vn) that represents a 

topological ordering. The mEFS is then the set of all of the edges that go from right-

to-left in the vertex sequence. In our study we adapt Eades’ heuristic to take into 

account some constraints in our problem domain. We then use the size of the mEFS 

as a measure of the strength of connection among cyclically dependent source files. 

	

6.3 Methodology 
	

In order to measure cycles among classes in object-oriented software systems we 

conglomerated a corpus of Java software and built tools to infer dependencies from 

source code and byte code. In this section we describe our Java corpus and the tools 

we used extract dependencies from Java byte code and source. We also discuss our 

adaptation of Eades’ Heuristic. 

	

6.3.1 Corpus 
	

The applications used in our study are given in the Appendix. They were chosen to 

vary along several dimensions: domain, size, origin and open/closed source. The 

values of these attributes is given in the table in the Appendix: “#Classes” is size 

measured in terms of number of .java	source files; “O/C” indicates whether the 

software is open- or closed-source; and “V” indicates whether we have multiple 

versions (releases) of the software—this is a interesting feature of our corpus, we 

have multiple versions of 22 of the 78 applications in it. “Origin” is the organization 
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or website from which we obtained the software. Some organisation and application 

names have been obfuscated with the letters A-H because intellectual property 

agreements mean we cannot identify them. 
	

	

Figure 4 Graph with SCCs 

 

Figure 5 Three SCCs each with a differing strength of connection among its nodes	

	

In collecting software for our corpus we first amalgamated corpora used in other 

published papers [GM05][GPV01]. All accessible applications from these existing 

corpora were added to ours. Further applications were then added to the corpus based 

on software that we were familiar with (e.g. Azureus, ArgoUML, Eclipse, 

NetBeans). Finally we identified popular (widely downloaded) and actively 

developed open-source Java applications from various websites, including: 

developerWorks13, SourceForge14, Freshmeat15, Java.net16, Open Source Software In 

Java17 and The Apache Software Foundation18. 

	

6.3.2 Tools 
	

We built two tools to infer dependencies between Java classes. One operates on Java 

source code and the other on byte code. The tool that operates on source code is 

described in detail in an earlier paper[MT06]. At the time we analysed company B’s 

                                                
13 http://www-128.ibm.com/developerworks/views/java/downloads.jsp 
14 http://sourceforge.net/ 
15 http://freshmeat.net/ 
16 http://community.java.net/projects/ 
17 http://java-source.net/ 
18 http://apache.org/ 
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software the source code tool was the only one we had and it did not have the 

capability to compute the uses-in-size	relation. Correspondingly the data pertaining 

to this relation is missing for the applications originating from company B. Due to 

licensing restrictions on the Java parser this tool utilises it is not publically available. 

 

The second tool we developed infers dependencies from Java byte code. It is built on 

top of the Byte Code Engineering Library (BCEL)19. We used it to infer 

dependencies for all the remaining applications in the corpus. This tool (including 

source) is available for download20. Briefly, the tool examines the entries in a 

compiled class’ constant_pool	table (see [LY99, ch.4]). The entries in this constant 

pool are often a subset of that class’ source code dependencies. This is because some 

type information can be thrown away during compilation such as the declared types 

of local variables and the types referred to by redundant imports. Additionally 

dependencies may be lost if public	static	final	fields declared as primitive types are 

inlined by Java compiler (see the problem of “inconstant constants” for a more 

detailed discussion of this Gosling et al. [Gos00, ch.13]). The potential loss of 

dependencies by analysing byte code means our results for all the applications not 

originating from company B are actually a lower limit on the cycles among classes in 

the uses-in-size	and uses	relations. 

	

6.3.3 Computing a mEFS 
	

In Section 2.4 we noted that SCC size alone was not enough to characterise the 

extent to which cycles pervade a system, and so we also need to gauge strength of 

connection among the nodes in a SCC with mEFS size. We have adapted Eades’ 

Heuristic to determine a mEFS more suitable for our problem domain. Our 

adaptation of Eades’ Heuristic ensures that edges due to a dependency of a derived 

type on its supertype do not appear in the mEFS. This is because re-factoring to 

break such relationships is more difficult than breaking other types of relationships 

[Jun02]. 

 

                                                
19 http://jakarta.apache.org/bcel/ 
20 http://www.cs.auckland.ac.nz/~hayden/ 
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Our adaptation of Eades’ Heuristic involves performing a stable sort on the vertex 

sequence so that supertypes appear to the left of their subtypes in the sequence. It is 

always possible to sort in this way because there can be no cycles in the supersubtype 

relationship. Since Eades’ Heuristic is non-deterministic—there are no rules to 

discriminate the order nodes in the vertex sequence that equally meet the greedy 

criterion—our adaptation of the heuristic is also non-deterministic. In order to assure 

a good mEFS for our results we ran it 100 times over each SCC, each time forcing 

different permutations inherent in the construction of the vertex sequence as allowed 

by Eades’ Heuristic. We then took the smallest mEFS for our results. 

	

6.4 Results 
	

In this section we present the data we have collected on cyclic dependencies among 

the classes of applications in our corpus. We begin with an overview of results 

showing the proportion of applications in the corpus that have SCCs of growing sizes 

in the dependency graphs of each of the relations (uses, uses-in-size	and uses-in-the-

interface). We then show the break down of an application’s classes into SCCs of 

varying sizes (again for each of the relations) for the latest version of each 

application in the corpus. Next we show, again using a breakdown of classes into 

SCCs, how the cyclic dependencies change over an application’s version history for 

the 22 applications of which we have multiple versions. Finally we show the mEFS 

for the largest SCCs in each of the applications and their versions. 

	

6.4.1 Overview 
	

The plot in Fig. 6 provides the highest level view of the prevalence of cyclic 

dependencies among classes in Java software. The x-axis of this plot represents size 

in number of classes and the y-axis represents the proportion of applications in the 

corpus that are of at	least	this size for the top-most data series (“application size”), or 

have a SCC of at	least	this size for the bottom-three data series. So as not to bias the 

results towards any particular application (recall there are multiple versions of 22 of 

the 78 applications in the corpus) only the latest version of each application is 

considered in this chart. Thus the chart shows the proportion of applications with 



142 
 

cyclic dependencies of growing sizes, and the proportion of applications of growing 

sizes. 

 

We can see from the dependency relation series of Fig. 6 that: 

•For the uses-in-the-interface	relation about 69% of the applications in the corpus 

have a SCC of size >10, about 13% have a SCC >100 and no applications have a 

SCC >1,000. In fact, the largest SCC in this relation is 542 classes. 

•For the uses	relation about 85% of the applications in the corpus have a SCC of size 

>10, about 40% have a SCC >100 and 3% of the applications have a SCC >1,000. In 

fact, the largest SCC in this relation is 2,145 classes. 

•For the uses-in-size	relation about 81% of the applications in the corpus have a SCC 

of size >10, about 36% have a SCC >100 and 3%of the applications have a SCC 

>1,000. In fact, the largest SCC in this relation is 1,909 classes. 

	

Figure 6 Proportion of applications in corpus of growing sizes and with SCCs of 
growing lengths on normal-log scale 

 
The distribution of size is shown on the same plot as distribution of SCC sizes 

because in order for an application to have an SCC (in any of the relations) of a given 

size, it must comprise at least that number of classes. We can see from Fig. 6 that 

about 92% of the applications comprise at least 100 top-level, source-defined classes, 

and that 30% of the applications comprise at least 1,000 classes. So combining the 

information size and SCC information we can infer that about 10% (=3%/30%) of 
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applications that are large enough to contain a SCC of size 1,000 in the uses	or uses-

in-size	actually do contain one. 

	

6.4.2 SCC Snapshot Data 
	

In this section we show the breakdown of an application’s classes into SCCs of 

growing sizes for each of the dependency relations. Again, we do this just for the 

latest version of each application in the corpus—applications for which we have 

multiple versions are dealt with in the next section. Each of the bar charts depicted in 

Figs. 7, 8 and 9 can be read as follows. The x-axis represents the application sorted 

alphabetically by name, and the y-axis represents the number of classes in SCCs. The 

stacked bars represent the number of classes involved in SCCs of growing sizes 

(>1,000, >500, >100, >50, >20, >1 and >0). Classes in the bar representing ‘>0’ must 

be in SCCs of size 1, so are not cyclically dependent with any other classes. 

 

Consider the bar for Eclipse in the chart of Fig. 7. The bottom-most bar in Eclipse’s 

stack corresponds to classes involved in SCCs in the uses	relation of size >500. The 

height of this bottom-most bar is about 700. This means about 700 classes are 

involved in SCCs of size >500. In fact, we can deduce that the largest SCC in Eclipse 

must be 700 from this bar because there is no way to split 700 into two parts, both 

>500 in size. The second bar from the bottom in Eclipse’s stack corresponds to 

classes involved in SCCs >100 in size. This bar finishes at about 2,600 on the y-axis 

so we can infer there are about this many classes involved in SCCs >100 in size. 

Additionally we can infer that there are 1,900 (=	2,	600 −	700)	classes involved in 

SCCs >100 and <501 in size. To determine the number of classes in Eclipse involved 

in cycles in the uses	relation we need only determine where the >1 bar finishes (at 

about 5,000 for Eclipse). This means that close to half (=5,000/11,500) of Eclipse’s 

classes are involved in cycles in the uses	relation. Similar analysis can be performed 

on any bar-stack in the following charts. 

	



144 
 

Figure 7 SCCs in uses relation over corpus	

	

Some interesting observations from the chart of Fig. 7 are as follows: 

•Applications C1-5.0.2 and D1-2005 have the largest SCCs in the uses	relation—

both have bars corresponding to ‘>1,000.’ D1 must have a SCC of about 1,900 (since 

there is no way to split 1,900 into two parts both >1,000) and C1 has approximately 

2,100 involved in SCCs >1,000 in size. Though we cannot infer from the graph that 

C1’s SCC is of size 2,100, we checked the raw data its SCC is indeed of this size. 

•Azureus and Hibernate can be singled out for having a large proportion of their 

classes involved in a ‘large’ SCC >500 in size. The chart shows that Azureus has 

about 1,700 classes total and about 800 of these classes are involved in a single SCC. 

Similarly it can be read from the plot that Hibernate comprises about 900 classes and 

700 of these are involved in a single SCC. 

•Eclipse versus NetBeans is an interesting comparison because both of these 

applications come from the same domain and provide similar functionality. Eclipse 

has a SCC of size 700 whereas the largest SCC in Netbeans is not >250. Indeed a 

lower proportion of classes are involved in cycles in Netbeans (2,700 out of 8,400) 

than Eclipse (5,000 out of 11,000). This provides evidence to support the view that 

cycles are not inherent to particular domains. 
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•Some application have a very small proportion of their classes involved in cycles 

(e.g., Columba, B3-2.0.0, James, Open Office, B6-2.5.×	and B10-2.0.×). This 

suggests it is possible, in a practical sense, to largely avoid cycles, even in the uses	

relation. 

	

Figure 8 SCCs in uses-in-size relation over corpus	

	

Figure 8 depicts a chart of the SCCs in the uses-in-size	relation. Although it looks 

similar to the plot of the uses	relation in Fig. 7, many of the applications show a 

reduction (albeit slight) in the number of classes participating in cycles. In some 

sense this is hardly surprising since uses-in-size(x) ⊆	uses(x), by its very definition. 

On the other hand it indicates that some types are not used in-size—rather they are 

used in-name-only. 

 

Some interesting observations from the chart of Fig. 8 are as follows: 

•Hibernate shows a significant difference between the SCCs in the uses	and uses-in-

size	relations. In the uses	relation we observed 700 was the largest SCC yet	in the 

uses-in-size	relation we observe that the largest SCC is only around 300	classes. It is 

tempting to say that this means that types are used in-name-only	extensively in 
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Hibernate, however this is not a valid conclusion since one type	used in-name-only in 

a single class can be that which breaks a large SCC.	

	C1-5.0.2 and D1-2005 both still contain a SCCs >1,000 in size. Many applications 

still contain SCCs >500, >100 and >50 in size. Again, we cannot conclude from this 

that types are not widely used in-name-only. We can conclude from this that types 

are not used effectively used in-name-only (i.e., to break SCCs in the uses relation in 

these applications). 

	

Figure 9 SCCs in uses-in-the-interface relation over corpus 

	

Figure 9 depicts a chart of the SCCs in the uses-in-the-interface	relation. 

Examination of the SCCs in this relation allow us to determine a rough upper-bound 

for cycles in a system due to intrinsic interdependency. If this is a reasonable 

upperbound then the plot of the SCCs in this relation compared to the charts of SCCs 

in the uses	and uses-in-size	seems to show that most cycles are “bad” or 

“unnecessary” cycles. For instance, consider the application D1-2005. In this 

application the largest SCC in the uses	relation is >1,000 classes, but the largest SCC 

in the uses-in-the-interface relation is only >100 classes. Also for this application 

there are far fewer classes involved in cycles in the uses-in-the-interface	relation 

(around 1,300) than in the uses	relation (around 5,000). 
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Some interesting observations from Fig. 9 are as follows: 

•Only one application has a SCC in the uses-in-the-interface	relation >500 in size 

(C1-5.0.2). 

•The largest SCC in the uses-in-the-interface	is dramatically smaller than that of the 

uses	and uses-in-size	relations for most of the applications in the corpus. Consider 

Eclipse and Netbeans in illustration—the largest SCC in Netbeans is <51 (was >100 

in the uses	relation) and the largest in Eclipse is now <501 (was around 700). Even in 

Azureus where the largest SCC was around 800 for the uses relation it is <21 for the 

uses-in-the-interface	relation. 

 

We can infer from the dramatic decrease in SCC size going from either of uses	or 

uses-in-size	to uses-in-the-interface	that types referred to only	in the private parts of 

a class are the major contributor to large SCCs in the uses	or uses-in-size. 

 

6.4.3 SCC Time-series Data 
	

We noted earlier that a feature of our corpus is that it contains multiple versions for 

22 of the 78 applications in it. This allows us to examine how the SCCs in each of 

the dependency relations changed as the application evolved (i.e., had new features 

added, was enhanced, had defects fixed etc). 
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Fig. 10 SCCs in uses relation over time	

	

Figures 10, 11 and 12 show the breakdown of each application into SCCs for each of 

its versions in using the stacked bar graph technique introduced for Figs. 7, 8 and 9. 

We first consider the plot of Fig. 10, which shows how cycles in the uses relation 

change over time. From this chart we can infer: 

•The number of classes comprising an application tend to grow over time. This is 

hardly surprising since in order to add new features to a program we often create new 

classes as well as modify existing ones. 

•The number of classes involved in each of the SCC categories (i.e., >1,000, >500, 

>100, >50, >20, >1) tend to increase for an application over time. That said, consider 

B2 and B5: in the middle of B2’s version history the largest SCC dips from >100 to 

>50 and at the end of B5’s version history dips from >500 to >100. Our discussion 

with company B revealed that at these points in version history both these products 

underwent major re-factorings (or rewrites) to improve their internal structure. A 

consequence of this was reducing the largest SCC. This is particularly interesting 

because developers at the company had no knowledge of cycles during these re-

factorings, yet their improvement of the applications’ designs based on their notion 

of good design also reduced the size of the SCCs. 
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•The size of the largest SCC in ArgoUML also decreased between versions. We 

think that this was due to some re-factoring activity. The change history for 

ArgoUML21 shows that for version 0.17.1 and 0.17.3 (versions between the two 

versions we have of ArgoUML) that the changes were “Removed deprecated 

methods” and “Changed persistence mechanism,” respectively. Removing 

deprecated methods certainly has the potential to remove dependencies as does 

changing the persistence mechanism. 

•There is also a dip in the total number of classes participating in SCCs in Netbeans 

from version 3.6 to 4.0. Again we believe that this may be due to a rewrite of the 

‘project’model for Netbeans 4.0 as stated on its What’s New webpage22: “Projects 

have been completely redesigned in NetBeans IDE 4.0.” 

	Azureus is also worthy of mention because unlike Eclipse, where enhancements 

tend to increase the number of classes participating in cycles of each of the SCC 

groups (i.e., >500, >100, >50 etc), in Azureus the trend is that classes attach  

themselves to largest SCC causing it to grow. This large SCC has a greater potential 

to affect package structure than many small SCCs (see Section 2.2). 

 

Figure 11 shows how cycles in the uses-in-size	relation change over time The trends 

for the cycles in this plot mirror those in the uses	plot of Fig. 10. 

 

Consider the chart of Fig. 12, which shows how cycles in the uses-in-the-interface	

relation change over time. One interesting thing to note from this plot is that there	is 

also a dip in the total number of classes participating in SCCs in Netbeans from	

version 3.6 to 4.0 (as per the uses	relation). There are however no discernible dips	in 

this relation’s SCCs corresponding to those dips in the uses	relation’s SCC for	

applications B2, B5 and ArgoUML. 

	

                                                
21 http://argouml.tigris.org/project_schedule.html 
22 http://www.netbeans.org/community/releases/40/whats-new-40.html 
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Figure 11 SCCs in uses-in-size relation over time	

	

Figure 12 SCCs in uses-in-the-interface relation over time 

 

6.4.4 mEFS Data 
	

In this section we attempt to gauge the strength of connection among the source files 

in a SCC by computing a mEFS using the adaptation of Eades’ Heuristic described in 

Section 3.3. To get a sense as to how much our adaptation affected the result, we 

compare the size of the smallest mEFS returned by our algorithm to that returned by 

Eades’ Heuristic. In Figs. 13 and 14 it appears that the “Eades’ mEFS” series does 

not feature in any of the bars. This is because the best mEFS returned from our 

algorithm was always almost equal in size to that returned by Eades’ Heuristic. 
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When the two mEFS sizes differed the difference was at most one edge. Recall that 

we ran our modified algorithm 100 times, each time forcing a permutation inherent 

in the vertex sequence, and chose the smallest mEFS returned for our results. 

	

Fig. 13 mEFS for largest SCC in uses relation over corpus	

	

Figure 13 shows the largest SCC in each application from the corpus and the mEFS 

size for this SCC. It shows that, in reality, not all SCCs are equally strongly 

connected. 

 

The x-axis on this plot is the application and the y-axis shows the number of classes 

in the SCC as well as the number of edges in the mEFS. The y-axis simultaneously 

represents both number of classes and number of edges but this is a consequence of 

stacking the mEFS size bar on top of the SCC size bar for each application. By 

stacking the bars in this way (and sorting entries on the x-axis by their biggest SCC 

size) we can easily visually compare the sizes of the mEFS sets for similar sizes of 

SCC. 
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Figure 14 mEFS for largest SCC in uses relation over time 

 

Interesting things we can infer from the plot of Fig. 13 are: 

•PMD, JEdit, NetBeans and Jext all have a SCC that is of approximately the same 

size (about 130 classes) yet the sizes of mEFSs for each of the SCCs varies greatly. 

Of these applications PMD has the biggest mEFS so we can surmise that refactoring 

PMD to break up this SCC is probably going to be more work than re-factoring say 

Jext (the application with the smallest mEFS). 

•Glassfish is particularly interesting because it has the smallest mEFS (4) for the size 

of its SCC (128). This means that its SCC is relatively weakly-connected compared 

to the other applications. 

 

Figure 14 shows the growth in the largest SCCs in the uses	relation for each 

application over time. It also shows the corresponding mEFS for each SCC. It is 

interesting because the mEFS size tends to remain constant if the SCC size remains 

constant between an application’s consecutive versions. We thought that it might be 

possible for the SCC to become more “strongly connected” between versions of an 

application if the classes in it had dependencies added. It seems however that usually 

the SCC retains the same strength of among nodes if it does not grow in size. 
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6.5 Discussion 
	

The results in this paper have several interesting implications. Firstly, we saw that for 

any given application the SCCs uses-in-the-interface	relation were typically much 

smaller than the SCCs in both the uses	and uses-in-size	relations. We noted that this 

meant that types appearing only	in the private parts of a class were the major 

contributor to large SCCs in the latter dependency relations. Further investigation is 

required to better understand the mechanisms by which a type can only appear in the 

private part of a class, and not be used, even transitively, in the class’ uses-in	the-

interface relation. 

 

With respect to types appearing only in the private part of a class, at some level we 

should be pleased to observe this phenomenon because a well-designed class hides 

information (its implementation details) from its clients [Boo91, p.45][Lak96, 

p.155]. On the other hand, while these classes may seem well-designed from the 

perspective of information hiding when considered in isolation, their interactions 

with all the other classes in a system, expressed through the transitive closure of their 

dependencies, can inhibit a system’s overall	structure. It follows that OO metrics 

suites should be extended to consider dependency relationships transitively. Existing 

metrics such as those in the CK Metrics [CK91] are seldom computed such that they 

consider dependency transitively. 

 

Secondly, it is argued in the instructional literature that for large-scale software 

systems overall	structure is the most important aspect of organization [Lak96]. 

Despite this we have seen SCCs in the uses	relation involving greater than 1,000 

classes in two large-scale commercial systems (C1 and D1). We see similar SCCs in 

the uses	relation involving greater than 500 classes in 5 other medium to large-scale, 

open and closed source systems. In our discussions with company B, subsequent to 

collecting data from them, we ascertained that two systems, B5 and B10 had to be 

thrown away because their source code had become too unwieldy. These systems had 

a higher proportion of classes involved in (long) cycles than the other systems from 

company B. This is empirical evidence, albeit weak, to suggest cycles are in fact 

detrimental to maintainability. 
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On the other hand, many systems with long cycles are considered state-of-the-art in 

their domains (e.g., Eclipse, JRE, Hibernate and ArgoUML). This has potentially 

interesting consequences. Does it mean that these applications are more difficult to 

test, maintain and understand than they would be without cycles, or that cycles do 

not have a significant effect on these quality attributes after all? Further investigation 

is definitely needed in this area. 

 

Thirdly, the data in this paper provides empirical evidence to support claims that 

have been made by other researchers. Foote et al. for instance claim that the most 

frequently deployed architectural pattern is the Big	Ball	of	Mud: a haphazardly 

structured system whose source code lacks organisation. If we take “haphazardly 

structured” and “lacks organisation” to mean that the structure of the software system 

does not compare favourably with the instructional literature then, at the level of 

overall	structure, we believe that our data is the first empirical evidence to support 

this. 

 

Foote et al. also claim that without intervention (i.e., continuous re-factoring) a 

design can, and will, degrade over time. This is consistent with Lehman’s second 

“law” of software evolution: as a system evolves its complexity increases unless 

work is done to maintain or reduce it” [LRW+97]. Again if we take “degrade” to 

mean that the structure diverges further from the instructional literature then our data 

supports this claim. For most of the applications for which we had multiple versions, 

the number of classes involved in SCCs and the size of SCCs tended to grow. We 

noted that dips in SCC size for several applications (B2, B5, ArgoUML and 

Netbeans) corresponded to major re-factoring efforts. We have no knowledge of 

majoring re-factoring efforts that did not result in a reduction in SCCs, although it is 

a distinct possibility that these may exist. A detailed study of various application’s 

histories with respect to re-factoring and cycles could be an area of future work. 

	

6.5.1 Netbeans vs. Eclipse 
	

One of the most interesting comparisons of applications in our corpus is between 

Netbeans and Eclipse. We can reasonably compare these applications with respect to 

many criteria because both come from the same domain (IDEs), both provide similar 
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functionality and both purportedly have plug-in style architectures. The Netbeans 

team23 claim that the IDE is modular in that the core runtime is a generic desktop 

application that can be used for applications other than IDEs and all of the features of 

the IDE (e.g. the Java code editor) comprise plug-in modules. The Eclipse team24 

similarly claim that “The Eclipse Platform is an IDE for anything, and for nothing in 

particular.” The Java capabilities of Eclipse are all provided through plugin modules. 

 

With respect to cycles we saw the largest SCC in the uses	relation for Netbeans is 

135 and Eclipse is 791. If these cycles are confined within individual modules, which 

they should be because we do not want our modules to be cyclically dependent, then 

we can infer that Eclipse must have a module comprising at least 791 classes, 

whereas it is possible that the biggest module in Netbeans comprises only 135 

classes. Indeed Netbeans tends to have smaller SCCs in the uses	relation than 

Eclipse, which may suggest according our argument about how cycles affect package 

structure in Section 2.2 that Netbeans has finer-grained modules than Eclipse. 

	

6.5.2 Threats to Validity 
	

In Section 3.2 we noted that some type information is lost in the conversion from 

source code to byte code. We noted that this was not problematic for the context of 

this study because it meant that the dependencies (and thus cycles) we were able to 

detect from .class	files were a (non-strict) subset of those appearing among .java 

files. We went on to say the results presented in this paper were thus a lower-bound 

on the actual cycles. In fact, they are a lower bound on cycles for another reason too. 

The dependencies analysed in this paper take into account only compilation 

dependencies. There could be further “logical” dependencies we were unable to infer 

because these were expressed through reflection or dynamic class loading. So, in 

terms of our results, some of the applications we noted as having few cycles (small 

SCCs) may still be poorly designed with respect to cycles if such compilation 

dependencies are being avoided with techniques that are not type-safe. 

 

                                                
23 http://www.netbeans.org/products/platform/howitworks.html 
24 http://www.eclipse.org/whitepapers/eclipse-overview.pdf 
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In this paper we implied that our results show that cycles are common among classes 

of OO systems in use the world today. This assumes that our Java corpus is 

representative of real world OO software. Some OO languages prohibit cyclic 

dependencies (e.g., Component Pascal [SGM02, p.154]) so our results cannot be 

generalised to software written in these languages. Also, we tried to ensure some 

notion of representativeness by selecting applications to vary along several 

dimensions (size, domain, origin and open or closed-source) but have no statistical 

argument to support representativeness. Size is another issue that affects the 

representativeness of our corpus—it comprises only 78 applications when there are 

probably hundreds of thousands of Java programs in the world today (SourceForge 

alone listed over 16,000 projects as being written in Java as at 5 October 2005). 

	

6.6 Conclusions 
	

We have presented the first empirical study on the existence of cyclic dependencies 

in code. Our motivation for carrying out this study was the apparent contradiction 

between the software design literature that advises against having cyclic 

dependencies, and the folklore that suggests that dependency cycles are common in 

software. Our study found large and complex cyclic structures in almost all of the 78 

applications we studied. This provides strong evidence supporting the folklore, at 

least in the context of Java. 

 

Now the question has to be why, with all the advice to the contrary, are cycles so 

prevalent? We note that there is in fact no empirical evidence showing the 

relationship between cyclic dependencies and any software quality attribute and so 

one reason could be that the advice is just wrong. If this is true, then given the 

compelling arguments for this advice, we would have to wonder about other design 

advice that has equally compelling arguments. If the advice is correct, then our study 

suggests there is lots of “bad” software around. 

 

There is still a great deal of research to be done. Our study raises a number of 

questions. Some questions suggested by our study include: do our results hold for all 

Java software; do our results hold for other object-oriented programming languages; 

is there a relationship between cyclic dependencies and the various software quality 



157 
 

attributes mentioned; if cycles are indeed “bad,” then how is it that so much software 

has them; how do we remove or reduce cyclic dependencies; and, how do we avoid 

introducing them in the future? Also, these questions should be asked of all other 

design advice that has been given. 
	

Appendix:	Corpus	Details	
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Chapter 7 JooJ: Real-time Support for Avoiding Cyclic 
Dependencies 

 

The design guideline avoid dependency cycles among modules was first alluded to by 

Parnas in 1978. Many tools have since been built to detect cyclic dependencies 

among a program’s organisational units, yet we still see real applications riddled with 

large dependency cycles. Our solution to this problem is to proactively check for 

dependency cycles as a developer writes code. In this way a cycle can be identified 

and eliminated the moment any fragment of code is written that induces one. This 

approach is analogous to a well-known manufacturing quality assurance technique 

known as poka-yoke. We demonstrate the feasability our ‘realtime checking’ 

approach via an Eclipse plugin we have built called JooJ. 

 

7.1 1 Introduction 
 

Over the years there have been many guidelines proposed for writing effective code. 

Roughly speaking these guidelines fall into three categories — those pertaining to (1) 

style, (2) correctness and (3) design. Style guidelines aim to improve the readability 

of code through consistent naming and formatting (e.g., Code Conventions for the 

Java Programming Language [Sun99]). Correctness guidelines aim to help 

programmers avoid common or subtle errors (e.g., “Class overrides equals() without 

overriding hashCode()”[Blo01]). Design guidelines aim to help programmers make 

decisions about the internal structure of a system (e.g., Riel’s Object-Oriented 

Design Heuristics [Rie96] and Design Patterns [GHJV95]).  

 

There are many tools currently available for checking conformance of Java code to 

style, correctness and design guidelines. We are interested in those that provide 

continuous (or proactive) checking as opposed to those that are run intermittently, at 

a developer’s discretion. The Eclipse Integrated Development Environment (IDE) is 

a good example of a tool that proactively checks Java code against style and 

correctness guidelines. As the developer enters code into Eclipse it is analysed in 

‘real-time’ for problems (e.g., syntax error, unused local variable, unparameterised 

use of a generic type etc). In this way the developer gets immediate feedback about 

some aspects of the quality of his code. The importance of this immediacy is evident 
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in a well-known aphorism: that it’s cheaper to fix problems earlier in the 

development process than later[Pre01, p.197-198]. 

 

While ‘real-time’ code analysis has successfully been implemented by Eclipse (and 

other IDEs) for supporting correctness and style guidelines it seems that there are 

few, if any, tools available that take this approach to supporting design guidelines at 

the level of source code. We believe one reason for this is that often it is 

computationally more expensive to analyse code for design guidelines than to do so 

for style and correctness guidelines. This is because many design guidelines, 

especially the one in which we are interested in, provide advice about structuring of 

the whole system and cannot be determined solely through the analysis of a single 

source file. 

 

Another reason why design guidelines may not be supported through real-time code 

analysis is that it is often difficult to determine a satisfactory measure for a design 

guideline from source code. In the case of module cohesion, for instance, there have 

been numerous metrics presented that can be automatically computed from source 

code (see [BDW98] for example) yet none is widely accepted or even used by 

practitioners. Fortunately the design guideline in which we are interested does not 

suffer from this measurement problem.  

 

In this paper we present a tool we have developed to determine the feasibility of 

proactively supporting the design principle avoid dependency cycles among modules 

through real-time source code analysis. Our tool, JooJ (pronounced “Joo-jay”), has 

been developed as a plugin for Eclipse. It transparently extends the style and 

correctness checking already provided by Eclipse. 

 

The remainder of the paper is organised as follows. In Section 2 we review the 

design principle JooJ supports and discuss the motivation for JooJ. In Section 3 we 

give an overview of JooJ’s expected user interface and features. In Section 4 we 

discuss some of the details of JooJ’s implementation. In Section 5 we evaluate the 

performance of JooJ in terms of time and space. In Section 6 we review other cycle-

detecting and real-time analysis tools. Finally, in Section 7, we draw conclusions 

from this work. 
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7.2 Background and Motivation 
 

Software design guidelines guide the decisions developers make about the internal 

structure of a system. They help us to structure a system in a way that makes it easy 

to understand, test, modify, reuse and so on. The design guideline relevant to this 

paper is avoid dependency cycles among modules. Dependencies among the source 

files of an application are a natural consequence of modularisation. In dividing a 

program up into modules we break it up into more manageable parts, but these parts 

must collaborate in order to provide the functionality of the system as a whole. It is 

these collaborations that cause dependencies. 

 

7.2.1 Impact of Cycles 
 
Parnas was the first to discuss the effect dependency cycles among a program’s 

modules might have on software quality attributes[Par78]. He argued that when two 

modules were cyclically dependent neither could not be tested, build or reused 

independently of the other. When there are long dependency cycles encompassing 

many modules Parnas argued that we might end up with a system where no single 

part of the works until all the rest of it works. 

 

The most comprehensive work on cycles in the context of the Object-Oriented (OO) 

paradigm is by Lakos. He states that cycles among the source files of C++ programs 

inhibit understanding, testing and reuse[Lak96, p.185], and that cycles among 

packages inhibit development, marketing, usability, production and reliability[Lak96, 

p.494-495]. 

 

Other design guidelines also support the “avoid cycles” guideline. For instance, Riel 

states “Derived classes must have knowledge of their base class by definition, but 

base classes should not know anything about their derived classes”[Rie96, p.81]. 

Disallowing the dependency of a base classes on its derived classes prevents a 

dependency cycle between the base and derived classes. Stevens et al. state the 

design guideline minimise coupling between modules. A design with dependency 

cycles has higher coupling than its acyclic analog (e.g., if modules A and B are in a 

cycle then B has higher coupling than if the only dependency is from A on B). Booch 

says “…all well structured object-oriented architectures have clearly defined 



166 
 

layers”[Boo95]. Long dependency cycles make it difficult to divide a system’s 

classes into clearly defined layers, where classes in a given layer can only depend on 

others in lower layers. 

 

If a cyclic dependency exists, then the question arises as to how to remove it. This 

must involve removing a dependency, and so breaking a collaboration, but which 

one? Lakos provides some advice on deciding which dependency to break but this 

advice often relies on characteristics of the problem domain (e.g., this object is more 

“primitive” than that). Many OO design guidelines also provide advice. For example, 

if one class is “a part of” another, then the other must always depend on it, whereas 

any dependency by the part on the whole is not always necessary. Similarly, a 

subclass must always depend on its parent, but a parent should not depend on any of 

its children. In a model-view-controller design, the view must depend on the model, 

but the model of an application should not depend on its view[Rie96, p.36]. What 

this means is that it does not make sense to remove some dependencies, so we must 

provide some means to manage such dependencies, a point we return to in Section 3. 

 

7.2.2 Definition of Cycle 
 

We have adapted Lakos’ work with cycles in C++ to Java [MT07b]. For simplicity 

of explanation, we assume all “top-level” classes are declared in separate .java 

source files. This means that for a class A, A.java and A.class refer to the same 

entity, and we will use these interchangeably. There are several subtle variations on 

the definition of “dependency”, particularly with regard to differences between Java 

5 and its predecessors. These variations are discussed in our adaptation of Lakos’ 

work[MT07b]. Our tool can cope with each of these, and it is sufficient for our 

presentation to use the simplest: A class A DependsOn a class B if it needs B.class 

on the classpath in order to compile. 

 

7.2.3 Prevalence of Cycles 
 

Our main motivation for providing tool support to avoid dependency cycles comes 

from an empirical study we performed [MT07b]. The results of this study indicate 

that not only do cycles exist in many Java applications, but they are often large and 
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complex. In our study we analysed a corpus of 78 real, open- and closed-source Java 

applications and found that: 

• Two commercial applications each had a single long cycles involving over 2000 

top-level Java classes. 

• Eight out of the 78 applications had single long cycle involving over 500 classes. 

• Two popular, widely-downloaded, open source projects (Azureus and Hibernate) 

had more than half their classes involved in one big cycle. 

• Close to 40% of the applications in the corpus had a single cycle involving more 

than 100 classes. 

 

These results astonished us. They support a claim made by Foote et al. that the most 

frequently deployed software architecture is the Big Ball of Mud (Foote & Yoder 

2000). They also justify the large amount of research that has been done on stubbing 

to break dependency cycles for integrating testing [HSR05],[BLW03] [Bin99, p.980-

985]. More importantly these results strongly motivate the need for a tool to help 

prevent cycles ever appearing in source code. If we could prevent cycles appearing in 

a system’s source code, as advocated by Lakos [Lak96] and others[Bin99, p.984], 

then there would be no need for stubbing — an activity Binder identifies as 

potentially risky, expensive, difficult, and inadequate in the presence of large 

complex cycles [Bin99,p.983-984]. 

 

7.2.4 The Need for Real-time Feedback 
 

There are already many tools for supporting avoid dependency cycles in Java (e.g. 

ByeCycle, Classycle, Dependency Finder, PASTA tool, JDepend, Lattix LDM, see 

Section 6). The majority of these tools take a batch-style type approach to supporting 

these principles. The prevalence of dependency cycles in real-world Java software 

indicates that either these tools are ineffective or software developers do not care 

much about avoiding dependency cycles. The sheer number of these (mostly free) 

tools makes it difficult to believe the other alternative: that developers ‘just don’t 

know’ about their existence.  

 

The problem with batch-style tools is that they do not allow problems to be fixed at 

the same time they are created. Two important reasons why cycle-causing code is 

hard to change retrospectively are: 
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Code is more resistive to change after it has been written. Imagine we are oblivious 

to a cyclic dependency induced by a statement we have just written. Without tool 

support this is likely because there is no way to tell if a statement induces a cyclic 

dependency simply by looking at a single source file — yet this is the way we edit 

and view source files, one at a time. We then write more statements that depend on 

the initial cycle-inducing one (and possibly inducing more cycles themselves). 

Eventually we get around to running our cycle detecting tool and discover the cycle. 

We are now faced with the task of figuring out how to change or move that statement 

(and its dependent statements) to break the cycle, and all the while not inducing new, 

different cycles. 

 

The alternative is that we are informed as soon as we write a statement inducing a 

cycle. Instead of continuing we can remove the cycle at that point in time (for 

example by escalating [Lak96,p.215-228] that statement to a new or existing higher-

level class). The effort involved in making changes to remove the cycle is now 

limited to dealing with just one statement. 

 

Changing other people’s code is hard. Imagine that another developer wrote the 

cycle inducing statements, but neglected to run or take notice of the output from our 

batch-style cycle tool. Now we have to change his code. We may introduce a bug in 

doing so if we fail to understand all the pre- and post-conditions of his code. We 

have to spend comparatively more time working out what someone else’s code does. 

If we cannot understand the code or feel the risk regression from improving its 

structure is too high we may leave the code as it is. Over time the cycle may grow 

and grow until it encompasses most of the classes in the system, then the system will 

have to be thrown away and rewritten from scratch. Indeed cycle growth and 

throwing systems away are phenomena we have reported [MT07b]. 

 

Consider now the possibility that developers ‘just don’t care’ about avoiding 

dependency cycles, or that it is a very low priority. As Foote et al. state “[software] 

architecture frequently takes a back seat to more mundane concerns such as cost, 

time-to-market, and programmer skill” [FY97]. We argue real-time, integrated tool 

support for avoiding dependency cycles can make developers care, and help ensure 

design principles do not take a back seat to more ‘mundane’ concerns. 
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Before we (the authors) started using Eclipse (3.1.1) we were unaware of variable 

declarations in a class that were unused, or variables whose values were assigned by 

never read from, or unused private methods. Now when we write code, we are 

immediately informed by Eclipse of these problems (and others) through yellow 

squiggly underlines of individual statements. Slowly but surely we started taking 

heed of this feedback as we coded. Continuous ‘micro-refactorings’ to eliminate 

these problems are now part of our personal coding styles. We suspect that there is a 

psychological force that drives us to fix statement with yellow squiggly lines under 

them. We must, of course, fix statements with red squiggles beneath them because 

these are compilation errors. (We note that in the mid-90’s Microsoft Word was 

changed to include continuous checking of spelling and grammar and that again, with 

this feature, we are compelled to get rid of the squiggles as soon as they appear). 

 

7.2.5 Wider Perspectives 
 

The notion of preventing problems before they occur, or early in the production 

process, has been around for a long time in the manufacturing industry. In the 1960s 

an engineer at Toyota called Shigeo Shingo used the term poka-yoke, which means 

‘mistake-proofing’, to describe this approach to quality assurance. A poka-yoke 

device aims to prevent potential quality problems before they occur or rapidly detects 

them as they are introduced [Pre01, p.214-215]. Pressman [Pre01, p.215] states that 

an effective poka-yoke device exhibits the following characteristics: (1) it is simple 

and cheap, (2) it is part of the process and (3) it is located near the process task where 

the mistakes occur. Indeed it can be argued that Eclipse’s style and correctness 

guideline checking is an effective poka-yoke device because it brings checking closer 

to the activity of typing out code than batch-style tools. It also rapidly detects 

problems as they are created. The effectiveness of our tool, JooJ, can be argued in a 

similar fashion. 

 

7.2.6 Applicability 
 

It has been claimed that avoiding dependency cycles among modules is most 

applicable to large-scale software systems [Mar96b][Lak96]. Martin define large in 
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the context of C++ as 50,000 LOC or more (Martin 1996) and Lakos defines large as 

in the same context as having “hundreds of header files” [Lak96, p.11]. The question 

we try to address here is to what proportion of the world’s Java software is our tool 

applicable? 

 

A distribution of size in terms of number of classes in the Java corpus of a previous 

work [MT07b] is shown in Figure 1. The x-axis represents the number of .java files 

in a system and the y-axis represents the proportion of applications in the corpus that 

comprise at least that many .java files. So from this chart we can see that about 30% 

of the applications in the corpus comprise at least 1000 .java files. About 15% 

comprise at least 2000 .java files. If the corpus used to generate this plot is 

representative sample of real-world Java software, and we define large as 1000 .java 

files, then the support provided by JooJ is applicable to around 30% of the world’s 

Java software. 

 

 
Figure 1: Distribution of application size across 78 Java applications 

 

If we do not consider the corpus to be a representative sample of real-world Java 

software then consider what Fayad et al. have to say: “While a 100,000 source line 

program was a significant undertaking 20 years ago, the typical shrink-wrapped 

software product today embodies at least that many lines of code. While it is 

extremely difficult to identify a cost figure, it appears that smaller groups are 

developing larger programs. This suggests that smaller groups need some of the 

software methodologies developed for large-scale projects…” [FLW00]. The 

implication of this is that large-scale software design guidelines are becoming more 
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and more relevant, as even small companies are capable of building large-scale 

software systems. 

 

One final statement from Booch implies we should consider applying large-scale 

software design principles even to small software systems, because it is these 

systems that often grow into larger, unwieldy ones: “…I see in Java a phenomenon 

I’ve seen too many times before: simple systems that work well have a nasty way of 

evolving into big systems that sputter and breakdown and collapse of their own sheer 

weight. Furthermore, try to scale development techniques that work well for simple 

systems and you’ll fail: the sustainable development of large complex systems 

requires fundamentally different techniques than heroic programming efforts offer” 

[Boo96, p.208]. 

 

Lakos expresses a similar view (Lakos 1996, p.xxvi) and indeed this is our view. We 

even have empirical evidence to support the notion that small systems often grow 

into large ones [MT07b]. The argument then is that design guidelines aimed at large-

scale software systems should also be applied to small systems. The point of JooJ is 

to reduce the burden of applying avoid dependency cycles to Java code. 

 

7.3 JooJ 
 

JooJ is a tool to support the design guideline avoid dependency cycles: (1) for new 

and existing Java code; (2) in real-time; (3) in an integrated fashion.  

 

By ‘new and existing Java code’ we mean it supports code that is being written for a 

new system and code that is being written to maintain (e.g., extend or fix bugs) an 

existing system. We overload this phrase by also defining it to mean Java 5 (new) 

and Java 1.4 and earlier (existing). As we will see shortly there are different 

challenges in supporting the design principles for different versions of Java; and for 

new and existing systems. 

 

By ‘in real-time’ we mean that Java code is analysed for the design guideline as it is 

being written. By ‘in an integrated fashion’ we mean that JooJ is an Eclipse plug-in 



172 
 

that transparently extends the style and correctness checking that is already built in to 

Eclipse 3.1.1. 

 

7.3.1 User Interface 
 

JooJ’s user interface (UI) is no different from that of Eclipse’s built-in style and 

correctness checking. This means that using JooJ is non-invasive because Eclipse 

users are already familiar with its UI metaphor. We review the user interface of style 

and correctness checking in Eclipse order to put JooJ’s UI in context. 

 

Figure 2: Style and correctness checking in Eclipse 

 

Figure 2 is a screen dump from Eclipse’s Java editor. Besides the syntax highlighting 

it has several ‘annotations’ that are not available in standard text editors. The first of 

these annotations are the squigglies25 on lines 10, 14 and 15. These squigglies 

indicate that there are problems with the code. The red squiggly on line 15 indicates 

a compilation error—the method ‘foo’ is undefined for type List. The yellow 

squigglies on lines 10 and 14 respectively indicate that references to the generic type 

List<E> should be parameterised and that the field ‘obj’ is never read locally. 

Although not shown in Figure 2 a description of the problem that leads to each 

squiggly appears as a tooltip when the mouse is hovered over it. Also not evident in 

Figure 2, but of particular importance is that the squigglies are continuously 

recomputed as text is typed into the Java editor. 

 

                                                
25 This is the term used for these wavy, coloured underlines in the Eclipse help documents 
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Figure 3: Refactoring suggestions for style and correctness violations in Eclipse 

 

Another annotation evident in Figure 2 is the appearance of lightbulbs icons in the 

left margin on the lines where squigglies occur. Clicking on the lightbulb of line 15 

causes a popup to appear as shown in Figure 3. This popup is referred to in the 

Eclipse documentation as code assist or content assist. The code assist in Figure 3 

presents a list of refactorings that can be performed to correct the problem. In the 

case of line 15 the code assist is suggesting casting the variable reference list to a 

subtype in the hope that a subtype of list’s declared type declares a method foo(). 

The yellow tooltip to the right of the code assist shows the text that will result as a 

consequence of performing the selected refactoring. 

 

The user interface we are building for JooJ is no different to that illustrated above. If 

a statement causes a cyclic dependencies then it gets a squiggly under it. If the 

dependency is in a Strongly Connected Component (SCC) (of size >1) then it gets a 

orange squiggly beneath it. If the dependency is in the Edge Feedback Set (EFS) 

computed by JooJ then it gets a magenta squiggly beneath it. Both SCC and EFS are 

discussed below. 

 

In terms of the lightbulb annotations that provide specific code transformations to fix 

problems we are also currently in the process of extending JooJ to support the 

specific refactorings proposed by Lakos (e.g., escalation, demotion, dumb data, 

manager class etc)[Lak96, ch.5] for breaking cycles. This is actually a difficult 

problem because as we noted in Section 2 it is often the case that a cycle inducing 

statement has many dependent statements in the context of its source file. In order to 

remove the cycle inducing statement we must also move its dependent statements. 

 

7.3.2 SCC and EFS 
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A subgraph S of another (directed) graph G is a Strongly Connected Component 

(SCC) if all of the vertices in S are mutually reachable in G and no additional 

vertices can be added from G to S that meet this criterion. A vertex is considered 

reachable from itself. In the context of our problem the vertices of S are classes that 

are all cyclically dependent, and indeed this is why it is SCCs in which we are 

interested. 

 

A Minimum-Edge Feedback Set (MEFS) is the smallest set of edges that when 

removed from a (directed) graph G cause it to become a Directed Acyclic Graph 

(DAG). Equivalently it makes G a graph with SCCs all of size 1. In the context of 

our problem the MEFS represents the smallest set of dependencies that when 

removed break all cycles. 

 

In JooJ the SCCs are computed using an linear-time algorithm presented Cormen et 

al.[CLR90, p.489]. Its cost (and implementation) is roughly equivalent to two depth-

first searches. Computation of a ‘small’ edge feedback set is done in JooJ using 

linear-time a heuristic proposed by Eades et al[ELS93]. We call the output of Eade’s 

algorithm a mEFS to distinguish it from a MEFS — the computation of which is NP-

complete (Skiena 1998). 

 

7.3.3 Dependency Removal 
 

There are different challenges for eliminating dependency cycles from newly written 

code and code that is part of an existing system. If a system is built from scratch 

using JooJ as a design critic then it is likely that every cycle that appears in the 

system can be eliminated by the developer the instant it appears. 

 

In existing systems however there are often many classes in large SCCs [MT07b]. As 

discussed in Section 2, there are domain-dependent dependencies that should never 

be removed. JooJ maintains an “exclusion set” of dependencies specified by the user 

that are never included in the edge feedback set it computes for each SCC. 

 

To support specification of the exclusion set, and to generally support the user 

understanding the structure of the dependencies, JooJ provides a visualisation of the 
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source types on which a class depends using JUNG26. In the visualisation, types are 

depicted as vertices (labeled with their fully qualified names) and edges represent 

dependencies. Edges are coloured differently depending on their membership—if an 

edge is in the edge feedback set it is magenta, if any other edge participating in a 

SCC it is orange, and other edges are black. A user of JooJ can add to the exclusion 

set by selecting edges in the visualisation. 

 

7.4 High-Level Operation 
 

JooJ is able to detect cycles among the classes defined in an application’s .java files. 

It does not need to deal with classes defined in external libraries (such as the API) 

because if these libraries are truly external their classes cannot have any compilation 

dependencies on the application’s classes. Also, as in previous work[MT07b], JooJ 

only considers dependencies within the body of a class; and the dependencies of 

nested classes and inner classes are merged with their top-level counterparts. In this 

way redundant import statements causing dependency cycles are ignored. This is 

desirable because the dependencies caused by redundant import statements are 

superficial; and Eclipse already has a feature to eliminate these redundant imports. 

 

JooJ models a project’s dependencies with the following data structures: 

• A map from an Eclipse resource identifier (which is stable across Eclipse sessions) 

for a compilation unit to the top-level classes that this compilation unit defines. 

Call this map R, as in resource. 

• A map from fully qualified top-level class names to the fully qualified names of 

that class’s direct supertypes. Call this map S, as in supers. 

• A map from fully qualified top-level class names to the fully qualified names of the 

classes it directly depends on. Call this map D, as in depends on. 

• A map from resource identifier for a compilation unit to the latest filesystem 

timestamp for its corresponding file. Call this map T , as in timestamp. 

• A list of SCCs. 

• The mEFS for the current SCC. 

 

                                                
26 http://jung.sourceforge.net/ 
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During an Eclipse session a project’s .java files are opened in the Java editor, 

examined and modified. As these events occur Eclipse notifies JooJ and it updates its 

internal data structures to keep the dependency data structures consistent with the 

changing .java files. The events and updates they cause are described below. 

 

Startup. When JooJ is attached to a particular project it first determines if it has been 

attached to that project before. If this is the first time the project has been seen by 

JooJ then all of the .java files in the project are turned into ASTs one-by-one and the 

dependency data structures are populated for the first time. This can take several 

minutes, and is discussed further in Section 5. 

 

If JooJ has processed the project before then the dependency data structures are 

loaded from text files stored in the project’s directory (see the shutdown event). 

Sometimes a .java file has been changed outside Eclipse, between Eclipse sessions. 

JooJ detects this situation by comparing the filesystem timestamp of each .java to 

that in R. Changed files have to have their dependencies recomputed as if they were 

modified in an Eclipse session. The types of changes that can happen to a file 

discussed shortly. 

 

File Contents Changed. If a file has been modified then JooJ leverages Eclipse’s 

Java Development Tools (JDT) API to turn a .java file into an Abstract Syntax Tree 

(AST). It then visits the AST in order to determine the modified .java file’s new 

dependencies (i.e., its top level type, its super types and the other source classes it 

DependsOn). There are several different types of changes to a .java file and the way 

they affect the dependency data structures are explained below: 

• Dependencies for compilation unit unchanged. If a file is changed it is possible that 

no new type was added to it, and that no types were added or removed from usage in 

it. We can easily determine this by comparing the supertypes and dependencies of 

the changed class, to that stored in S and D respectively. If they are unchanged we 

need not take any further action except to update the positions of the squigglies in the 

user interface. 

• Dependencies for compilation unit added. If a dependency is added then we need to 

update one or more of the maps. If the dependency is added as a supertype we need 

to update S and D. If the dependency is added in the body of the class then we need 
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to update just D. We also need to update the SCC set if the dependency is not already 

in the class’s SCC. We need to recompute the class’s SCC’s mEFS. 

• Dependencies for compilation unit removed. Update S and D and recompute SCC 

and mEFS. 

• Fully qualified name of top-level type changed. This situation occurs when the 

class’s package is changed, or the top-level type is renamed. In this situation the .java 

file containing the class will eventually have to be renamed or moved directories in 

order for it to compile. Eclipse models the movement/renaming of files as a remove 

and then add event. Thus we discuss this situation under the guise of these events. 

 

File Added. Sometimes a new source file is added to a system. In most cases this 

does not affect the bindings existing files. However if we refer to a type in a source 

file before we create that type then adding a new .java file (and its type) can affect 

the dependencies of other files. So when an new type is added we leverage Eclipse’s 

Java Search facility to find existing references to this type and update the R, D and S 

correspondingly. After this we compute the SCC and mEFS for the newly added 

type. 

 

File Removed. Sometimes a source file is removed from the system. Usually this 

means that a type is removed from the system, unless the same type is declared in 

two different source files. So we examine R to ensure the type has been removed 

from the system (i.e., it isn’t declared in other .java files). If it has been removed we 

update R, S and D to remove all references to the removed type. 

 

File Renamed/Moved. As previously stated Eclipse models this as a removal of a 

file and the addition of a new one. These are the canonical events that JooJ receives 

from Eclipse so the updates to the dependency data structures for this situation have 

already been discussed. 

 

Shutdown. JooJ writes all the dependency maps to the project directory on disk. This 

saves time during the next startup because the dependencies for each .java file do not 

have to be recomputed from scratch. 
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7.5 Evaluation 
 

7.5.1 Performance 
 

Much of the design of Eclipse has been influenced by a desire to make it scalable so 

users can leverage it to develop even large projects comprising thousands source 

files[AL04, p.338]. Scalability is of particular importance to JooJ because the design 

principle it supports is primarily for large scale systems. In this section we evaluate 

the runtime performance of the algorithms implemented by JooJ on 12 open source 

projects ranging in size from 48 to 11,413 .java files. All of these benchmarks were 

done on a machine with fairly modest ‘specs’—an Intel P4 3.2 GHz with 1GB of 

RAM running Windows XP SP2. 

 

We computed these benchmarks by writing a small program to load the dependency 

text files stored by JooJ in each project’s directory into memory. We were then able 

to run the algorithms on the data structures populated with the information from 

these text files. The data structures used were identical to those implemented in JooJ. 

The recorded running time of the algorithms does not include the time taken to load 

the text files. 

 

7.5.1.1 Algorithms  
 

The time taken in milliseconds to compute all the SCCs from the internal data 

structures used by JooJ is shown in the ‘SCC’ column of Table 1. This was computed 

by timing 100 consecutive runs of the algorithm and taking the average. Recalling 

the SCC algorithm previously described we can infer that the cost of this algorithm is 

about the same as the cost of two DFSs. 
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Table 1: Algorithm performance 

 

The time taken in milliseconds to compute the mEFS for all the SCCs in each 

applications dependency graph is shown in the ‘mEFS’ column of Table 1. Again 

this was computed by timing 100 consecutive runs of the algorithm and taking the 

average. Recall that our implementation of this algorithm takes SCCs as input. We 

do not include the time taken to compute these SCCs in this measurement since this 

is already shown in the ‘SCC’ column. 

 

So from the results in the ‘SCC’ and ‘mEFS’ columns of Table 1 we can infer that 

the absolute worst case for computing a class’s SCC and the mEFS for that SCC is 

the sum of these two values. For Eclipse, we could (in the worst case) expect close to 

a 900ms delay after we change a file and its dependencies have been computed 

before we can update the statements in the Java editor with squigglies if they are 

causing cycles. We think that even this worst case delay is acceptable because 

writing code is inherently slow—we find we spend a lot of time staring at the screen 

thinking compared with actual typing. 

 

But the worst case is not the typical case. As we described in Section 4 we do not 

have to recompute a class’s SCC and its mEFS after every change to that class. Many 

times a dependency added to a class is already in the SCC so we can skip computing 

this and only have to compute the mEFS. Furthermore, we do not have to compute 

the mEFS for all SCCs, like we did for the benchmark. We only have to compute the 
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mEFS for the SCC the class is involved in. If the SCC is small (e.g., 50 classes) then 

the mEFS algorithm takes only a few milliseconds, as if it were computing all the 

SCCs for a small application like junit, jgraph, jedit or jung. 

 

7.5.1.2 Data Structures 
 

JooJ maintains a ‘master list’ of strings representing the top-level types declared in 

the application. When the dependency data structures are populated the strings are 

drawn from this ‘master list’ so we can have equality-by- reference semantics for our 

DFS algorithm; and so we can reduce the amount of memory JooJ requires for each 

project. Table 1 shows the space requirements in number of characters for each of the 

applications. This was computed by concatenating all the strings in the ‘master list’ 

for each project and calling length() on it.  

 

The size of Eclipse 3.1’s ‘master list’ is about 600,000 characters (as shown in Table 

1). If we remove this ‘master list’ and allow different instances of the lexically equal 

string then we have found that the space required for the strings in JooJ’s 

dependency data structure for Eclipse can grow to about 6,000,000 characters. So 

maintaining a ‘master list’ can reduce the space demands of JooJ (at least in terms of 

strings) by a factor of 10. In fact, by maintaining a master list of strings it may be the 

overhead of the data structures (i.e., the HashMaps and LinkedLists that dominate 

JooJ’s space requirements for a project. 

 

7.5.1.3 Eclipse API 
 

The SCC and mEFS algorithms are really only half the story when it comes to 

performance. These algorithms operate on adjacency list representations of class 

dependency graphs. The actual dependencies must be computed from the text of 

.java files. In order to do this we leverage Eclipse’s JDT. We use the JDT to create 

ASTs and use bindings in order to resolve a name to the type to which it refers. It is 

well-documented in the Eclipse API that bindings are expensive (time and space-

wise) to create. But we must recompute the bindings for a .java file each time it is 

changed so we need to know how long this takes. 
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Figure 4: Time to create ASTs for a sample of .java files 

 

Figure 4 shows the time taken to create an AST from a .java file using Eclipse’s 

ASTParser class. The files were chosen at random from Ant — we couldn’t easily 

select a hodgepodge of files from different applications because a source file requires 

the context of its application in order to compile (and compute bindings). The x-axis 

of the graph represents the size of the class in non-comment source statements (found 

by counting ‘;’ and ‘{’ characters not in comments). The y-axis represents the time 

taken (ms) to construct an ASTParser instance, create an AST, and visit the ASTs 

bindings to determine its dependencies. 

 

There are 3 series on the graph that correspond to three options in using ASTParser. 

The first series ‘no bindings’ shows the amount of time taken to create an AST 

without bindings. This is a baseline so we can see how much bindings actually cost. 

The next series shows what we term‘single bindings’ because it uses the ASTParser 

in a way appropriate only for a single compilation unit (using the setSource and 

getAST methods). The next series ‘batch bindings’ shows the performance of the 

ASTParser when it is to parse just a single file in ‘batch’ mode (by calling the 

createASTs method). Interestingly using batch mode for a single file appears to be 

much slower than using it for a single compilation unit. This was not stated in the 

API, and indeed we only discovered the single compilation unit mode late in the 

development of JooJ. 
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Figure 5: Distribution of AST creation times with and without bindings 

 

Figure 5 is another view of the data in Figure 4. In this plot the x-axis represents time 

(ms) to create the AST under each of the conditions. The y-axis represents the 

proportion of .java files from our sample that will have parsed within the given time. 

So we can see from this plot that using single bindings about 80% of source files will 

have parsed within 100ms. Almost 100% of source files will have parsed within 

200ms. 

 

There are some issues in collecting the data of Figures 5 and 4 that necessitate further 

discussion. Firstly Eclipse maintains a Least Recently Used (LRU) cache of a 

project’s resources[AL04, p.338]. In order to ensure we were not measuring the time 

to load a resource from disk into memory we creating consecutively created 10 ASTs 

for each of the files but only measured the time taken to process the last 9. In this 

way we could be fairly sure that the .java file’s contents was cached in Eclipse for 

our measurements. This is a reasonable thing to do because JooJ operates on the file 

a programmer is editing, which necessarily must be already in memory. 

 

Finally, when JooJ is first attached to a project it must compute the bindings 

(dependencies) for all of the .java files in that project. We determined that doing this 

for Ant takes close to 25 seconds. This equates to an average of 36ms per file. The 

next time we attached JooJ to Ant it took less than 1s to load the text files on disk 

into memory and compare the time stamps of the loaded .java files to those JooJ 

wrote to disk when our Eclipse session was last terminated. 
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7.6 Related Work 
 

7.6.1 ByeCycle 
 

ByeCycle27 is a tool that is very similar to JooJ in that it checks for cycles among 

classes in ‘real-time’. However the primary feature of ByeCycle is a visualisation of 

the cycles a class is involved in. Also the granularity of its updates appears to be 

limited to when a file is saved or loaded, not as code is keyed in. 

 

We have used ByeCycle and found JooJ offers several advantages over it. JooJ 

allows the dependencies that create a cycle to be related back to their corresponding 

statements in the source code. JooJ also determines all cyclic dependencies among 

classes whereas ByeCycle condenses classes outside the current class’ package into 

packages. In this way it appears that only the packages on which the class directly 

depends are analysed meaning ByeCycle does not perform whole program analysis. 

Presumably this is due to the screen real estate available for visualisation of cycles. 

 

Also JooJ computes a mEFS and uses this to aid a developer decision where in the 

source code to break a cycle. Finally JooJ computes both definitions of DependsOn 

[MT07b] (one for Java 1.4 and below, and one for Java 5) meaning it allows 

‘necessary cycles’ (i.e. those expressing intrinsic interdependency) to be expressed in 

a type-safe fashion. 

 

7.6.2 Design Level Tools 
 

There are several tools available that do ‘real-time’ checking of a UML design. 

ArgoUML [RHR98] may well have been the first of these tools. It provides several 

types of design critics pertaining to correctness, completeness, optimisation, 

alternatives, evolvability, presentation, experience and organisation that are 

continually evaluated against a design. A ‘todo’ list continuously updated by these 

critics with suggestions for the improvement of a design. 

 

                                                
27 http://byecycle.sourceforge.net/ 
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Egyed  [Egy06]has also produced a tool UML/Analyser that checks the consistency 

of UML diagrams against one-another in ‘real-time’. One of the motivators for his 

tool is that apparently the consistency critics in ArgoUML are not able to keep up 

with an engineer’s changes to a large UML model. Both Egyed’s tool and ArgoUML 

differ from JooJ in that that operate at the design phase, rather than the coding (or 

implementation) phase. 

 

7.6.3 Batch-style Cycle Tools 
 

There are a plethora of other batch-style cycle checking tools for Java. Classycle28 

searches for cyclic dependencies among the classes of a Java application by 

analysing bytecode. This is problematic because the system has to be in a compilable 

state for it run. JooJ does not require this because Eclipse’s bindings work even in 

the presence of many forms of compilation errors. 

 

JDepend29 analyses .class files in order to find cycles among packages. Again this 

tool operates on bytecode files. Also it does not detect SCCs, only cycles found 

during a DFS: “cyclic dependency detection may not report all cycles reachable from 

a given package. The detection algorithm stops once any given cycle is detected”. 

Hautus’s Package Structure Analysis (PASTA) tool (Hautus 2002) is also geared 

towards finding cycles among packages. It provides a visualisation of the package 

structure and tries to, much like JooJ, identify the smallest set of dependencies 

required to break all cycles among packages. Again it should be noted there cycles 

among packages do not necessarily imply cycles among classes so these tools solve 

slight different problems. In a sense finding cycles among classes is a more 

fundamental problem because if there are large SCCs of classes then there cannot be 

an acyclic package structure[MT07a]. 

 

Lattix LDM  [SJSJ05] is another Eclipse plugin we have discovered similar to JooJ. 

It allows detection of cycles and allows specification of the ‘dominance’ relation 

among packages. It differs from JooJ in that abstracts away from the actual source 

code with a table known as a Dependency Structure Matrix (DSM). Allowable and 

undesirable dependencies are shown in this matrix at apparently at the granularity of 
                                                
28 http://classycle.sourceforge.net/ 
29 http://www.clarkware.com/software/JDepend.html 
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the package rather than class. It also appears that this tool does not do real-time 

checking (a press release states it can be “automatically synchronized with every 

build”) and the UI appears to take over from the Java editor where code is typed. We 

think JooJ is a more effective poka-yoke device on the basis that it detects problems 

more quickly and at the activity that creates them (coding, not doing a software 

build). 

 

7.7 Conclusions 
 

We believe there should be real-time support for design guidelines that apply to the 

whole program. We have demonstrated the feasibility of doing so for the avoid 

dependency cycles design guideline by developing JooJ, an Eclipse plugin that 

provides real-time notification of violations of this guideline. In a broader context 

JooJ can be thought of as a poka-yoke approach to software quality assurance 

because it aims to prevent and detect violations of software design guideline, as or 

before they occur. 

 

While we have established the feasibility of real-time cycle detection, determining its 

usability, that is, whether programmers will actually avoid dependency cycles, will 

require a higher quality implementation than the prototype we currently have. 

Producing such an implementation is currently underway. We would also like to 

expand JooJ to support other design principles that also require whole program 

analysis. 
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Chapter 8 Towards Assessing Modularity 
 

8.1 Introduction 
 

It’s noted in this workshop’s call for papers that despite the emergence of a large 

number of “modularisation techniques” (e.g., aspects, design patterns, and so on), 

there are no standard approaches or “rules of thumb” for assessing the benefits and 

drawbacks of using these techniques in the construction of real software systems. In 

this paper we argue that the first step in assessing such techniques should be to 

determine their effect on modularity. Only then can we be sure that they have even 

been correctly classified as “modularisation techniques”. 

 

To determine the effect of a technique on a system’s modularity we first need to 

agree on what modularity actually means. Despite modularity being a concept in 

software design for almost 50 years [Pre01], we still don’t have a single, precise, 

widely-accepted definition for it [Fen94]. A consequence of this is that the claims 

that have been made about the effect of a technique on modularity (let alone other 

software quality attributes) are cryptic, and moving targets for systematic 

validation—any attempt to disprove them can be derailed by the claimants changing 

their favoured definition of modularity. 

 

Most software engineering textbooks discuss modularity, but usually only in terms of 

its expected benefits and specific modularisation techniques; relatively few actually 

define it. The implication of this is that the dictionary definitions of modularity 

suffice for its meaning in software. Modularity is the extent to which something is 

modular, and many dictionaries define modular as constructed with standardized 

units for flexibility and variety in use30. We think the dictionary definition isn’t 

particularly suitable for software because it’s not clear (1) what “standardised” 

means; (2) what constitutes an increase in modularity: more standardisation, more 

flexibility, more variety of uses, or some combination of the above; and (3) if 

“flexibility” and “variety in use” entirely, or even accurately, describe the rationale 

for making a software system modular. 
                                                
30 www.dictionary.com 
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Some software-specific definitions for modularity are surveyed by Booch [Boo91, 

p.49-53]. On closer inspection the “definitions” Booch surveys aren’t really 

definitions at all though—just like what’s said in most textbooks, they’re discussions 

of its benefits and techniques for achieving it. Booch’s own definition, that 

modularity is the property of a system whose modules are cohesive and loosely-

coupled, is problematic too because cohesion and coupling are themselves only 

loosely-defined. 

 

8.2 Definition, Usage and Assessment 
 

The definition of modularity we advocate is the degree to which something 

comprises discrete (or independent) parts [IEE90]. It’s a good definition because it’s 

concise, yet it doesn’t mislead or constrain us in the particular rationale we have for 

making a system modular. It also makes clear what constitutes an increase in 

modularity: an increase in the number of parts that can be considered independent 

from one another. 

 

The flipside of this definition is that we must be careful in our usage of the term 

modularity by always specifying a perspective. A system that comprises parts that 

can be considered independent from one perspective (e.g., unit testing) may not 

comprise parts that can be considered independent from another (e.g., verbatim reuse 

of source files)31. 

 

The definition we advocate is superior to many in that it makes no judgement on the 

“goodness” of modularity. Contrary to what’s implied by most of the literature, a 

system that’s modular with respect to say change, does not necessarily mean changes 

made to it will require less effort—as noted by Fenton, modularity is an internal 

quality attribute [Fen94]. All we can say of such a system is that changes will be 

confined to relatively few modules. If a system is too modular [Pre01], then the 

                                                
31 The need to discuss modularity with reference to a specific perspective is also noted by Meyer 
[Mey95]. Unfortunately he claims that no single, concise definition of modularity is possible and goes 
on to define it from five perspectives that he considers total, thus unnecessarily constraining our 
perspectives on it. 



190 
 

effort required to make a change might be higher because the sheer number of parts it 

comprises might make finding the appropriate part to change more difficult. 

 

To demonstrate an approach to assessing the effect a technique has on modularity 

consider two design principles that pertain to the overall structure of a system: (1) 

avoid dependency cycles among source files and (2) favour a “flatter” rather than 

“taller” source file dependency graph32. The application of these design principles in 

shown in Figure 1: in (a) neither of the design principles has been followed, in (b) 

only “avoid cycles” has been followed, in (c) both have been followed because its 

structure is both acyclic and “flatter” rather than “taller”. 

 

Figure 1. Source file dependency graphs of three different software systems. 
 

Lakos argues why following these principles leads to systems that are easier to 

understand, test, and reuse [Lak96]. Although he makes no mention of modularity in 

his arguments, the way in which they’re couched closely relates to the definition of 

modularity we advocated earlier. Thus, from certain perspectives, these design 

principles can be accurately classified as “modularisation techniques”. 

 

The crux of all of Lakos’ arguments is that following the design principles leads to 

systems whose individual parts (source files) transitively depend on fewer other 

source files. A source file’s transitive compilation dependencies play an important 

role in the extent to which we can consider it independently from the other source 

files in a system in verbatim reuse, understanding, testing in isolation and 

integration testing [Lak96]. We do not have the space to espouse the arguments for 

all of the activities mentioned so concentrate only on doing so for verbatim reuse of 

source files [Lak96]. 

 

                                                
32 In our recent work we’ve been looking at these principles from an empirical perspective [MT07b]. 
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Verbatim reuse of source files is about deploying a source file from one system in the 

context of another without (1) modifying its text to eliminate any of its dependencies 

or (2) introducing stubs to artificially satisfy its dependencies. To ensure a source file 

successfully compiles in the context of the new system we must also deploy all the 

source files on which it depends, and all the source files on which the others depend, 

and so on. So to reuse a source file in this way we have to deploy all the other source 

files on which it transitively depends. If we look at the system of Figure 1(a) there 

are no source files we can reuse independently of any of the others; in (b) there’s one 

that can be reused entirely independently of all the others; in (c) there’s four. 

Furthermore, to reuse the average source file from (c) we’d have to deploy fewer 

other source files than for the average source file in (b), and in turn from (c). So 

according to both of these criteria, which are essentially two simple metrics for 

modularity, and with respect to this form of reuse, (c) is more modular than (b), 

which in turn, is more modular than (a). 

 

Though we can rank the systems of Figure 1 by modularity from the perspective of 

verbatim reuse, this ranking does not necessarily match that we’d get if we ranked 

the systems by the external software quality attribute of reusability. This is a 

criticism of the position we’ve taken in this paper—nothing can be said from it on 

the effect of a technique on external software quality attributes, which are the things 

we really care about. Fenton et al. argue criticizing the measurement of internal 

product attributes (such as modularity) for not initially being shown to be predictors 

of external quality attributes is not helpful though, because without good measures of 

internal attributes we have little hope of subsequently developing models for such 

prediction [FM96]. 

 

8.3 Conclusion 
 

In this paper we’ve argued that our first step in assessing a “modularisation 

technique” should be in determining if it is even correctly classified as such. We’ve 

advocated a specific definition of modularity to allow us to do this, and have shown 

the definition to be practical by demonstrating an approach for assessing the effect 

two design principles have on it. 
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Chapter 9 Static Members and Cycles in Java Software 
 

The static modifier is a convenient way to make class members “global” in object-

oriented software systems. Given this, we wondered if static members significantly 

contribute to the long dependency cycles among the classes that we observed in a 

previous empirical study of Java software. In this paper, we examine 81 open source 

Java applications. We find empirical evidence that classes that declare a non-private 

static field or method that is accessed from within another class are likely to be 

involved in dependency cycles. 

 

9.1 Introduction 
 

It is generally accepted in the software engineering community that software 

structure strongly impacts software quality attributes such as understandability, 

maintainability, reusability, and testability. Much of the advice about how to write 

“good” software is couched in terms of how to structure it (e.g., [Par72] [Par79] 

[Lak96]). Our interest is in better quantifying this supposed impact. As a first step, 

we have been looking at how real software systems are actually structured 

[BFN+06][MT07b]. Now we are interested in identifying causes of different 

structural phenomena. In this paper, we investigate the extent to which static 

members of classes contribute to cyclic structures in software. 

 

We are interested in looking into the causes of dependency cycles because many 

authors have presented compelling arguments for how cycles are detrimental to 

specific software quality attributes, including understandability, testability, 

reusability, buildability and maintainability [Par79] [KGH95b] [Lak96] [Mar96b] 

[RBP+91] . Despite this purported detriment, in a recent empirical study we found 

that long dependency cycles are common among the classes of both open-source and 

commercial Java systems [MT07b]. This leaves us to wonder, with all the advice to 

the contrary, why and how cycles get created. If we could identify aspects of 

software development that increase the tendency of cycles being created, then we 

could better mitigate those factors and so reduce cycles in software. 
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Languages such as C++, Java, and C# have the concept of a static member. Such 

members are shared across all instances of a class. Programmatically we can access 

static members through the name of the class; there is no need to obtain a specific 

runtime instance of that class in order to access them. In a sense, this means it’s 

easier to access a static member than a non-static one, from an arbitrary point 

in a system’s source code. This “ease of access” is what makes us wonder if static 

members play a significant role in the creation of cyclic dependencies among classes. 

The study we present in this paper is a first attempt to investigate this hypothesis in 

the context of Java software. 

 

The rest of the paper is organised as follows. In the next section, we expand upon the 

discussion above as to why there might be a relationship between cycles and static 

members. Section 3 gives the details of how we carried out our study, the results of 

which are presented in Section 4. We conclude with Section 5. 

 

9.2 Background and Motivation 
 

In our prior empirical study we looked at cycles among classes in several different 

dependency relations [MT07b]. The two dependency relations relevant here are the 

USES and USES-IN-THE-INTERFACE relations. The USES relation captures a 

class’ entire compilation dependencies. The USES-IN-THE-INTERFACE relation 

captures the compilation dependencies a class has that are visible to its clients (i.e., 

the types that appear in the return types, formal parameters and throws clauses of its 

non-private methods, the declared types of its non-private fields, and its direct 

supertypes). From a conceptual perspective the USES-IN-THE-INTERFACE is 

meant to reflect cycles that are difficult to avoid, or cannot be sensibly broken (see 

[MT07b]). A finding of our study was that, for almost all of the applications 

examined, cycles in the USES-IN-THE-INTERFACE relation were smaller, and 

involved far fewer classes than cycles in the USES relation. We noted that this meant 

that types appearing only in the private part of a class, and not even transitively in the 

class’ USES-IN-THE-INTERFACE relation, must contribute significantly to a class’ 

participation in cycles. 
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Figure 1. Java code to illustrate some ways that a type can appear only in the private 
part of a class and not even transitively in its USES-IN-THE-INTERFACE relation. 

 
In order to see some ways in which a type may appear only in the private part of a 

class, and not in that class’ USES-IN-THE-INTERFACE relation (even transitively) 

consider the Java code in Figure 1. Below this Java code we show the computation of 

the USES-IN-THE-INTERFACE and its transitive closure(*) for class A. We can see 

A depends on several types that do not appear in the transitive closure of its USES-

IN-THE-INTERFACE relation: D, E and F. The dependency on D is ultimately due 

to a type-cast, the dependency on E is due to the access of a static method, and the 

dependency on F is ultimately due to instantiating this type via new. 

 

Our primary interest is in determining the extent to which the access of static 

members (fields and methods) contribute to cycles but we will also briefly look, in 

later sections, at the extent to which object instantiation (i.e., the use of new) and 

type casts play a part in cycles. We concentrate on static members because there is a 

simple theory for why classes with non-private static members might be more likely 

to be involved in cycles, and also because of the negative connotations the static 

modifier has in the software design community. Static members are a convenient 

way of making things “global”, and the widely-held belief is that “global is bad”. 

Rather than make things global, conventional wisdom is that we should design the 

components of a software system around the principle of “information hiding” 

[Par72]. 
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There’s a growing feeling in object-oriented programming circles that static 

members are overused. Kerievsky’s claim is that the Singleton pattern is overused, 

and since its typical implementation involves using a static field and/or method 

it can be argued that ultimately its static members that are overused. Kerievsky 

reports that Cunningham has said that while the notion of singularity is an important 

aspect of software design, the use of Singleton “seems to have grown out of 

proportion”. Kerievsky reports that Beck too, has said of Singletons, “they give you a 

good excuse not to think carefully about the appropriate visibility of an object”. 

Kerievsky himself has implied that Singletons are overused by coining the term 

“Singletonitis” to refer to the condition where a developer is addicted to using 

Singleton [Ker04]. Because cycles are thought to be detrimental to several specific 

software quality attributes [Par79][KGH95b][Lak96][Mar96b][RBP+91], a 

correlation between static members and cycles provides additional evidence that 

static members are also “bad”. 
 

9.3 Methodology 
 
Given that static members are seemingly so easy to access from anywhere in a 

system’s source code, and that long cycles among classes usually are not due to 

dependencies appearing in the public parts of a class alone (i.e., in the USES-IN-

THE-INTERFACE relation), we would like to quantify the extent to which the 

access of these members contribute to dependency cycles among the classes of a 

system. Our hypotheses for this empirical study of static members and cycles are 

thus: 

H1 Classes that are accessed statically are more likely to be involved in dependency 

cycles than classes that are not accessed statically. 

H2 There are dependencies in the cycles that are due to access of static members. 

 

The second hypothesis, H2, requires some further explanation. Figure 2 is the 

dependency graph of a small software system, comprising 9 classes. In this 

dependency graph 3 classes are accessed statically, and 6 are not accessed statically. 

Also, 6 classes appear in a dependency cycle; 3 are not involved in any dependency 

cycles. If there was an equal likelihood of classes that were accessed statically 

appearing in cycles as classes that were not accessed statically appearing in cycles 

then we would expect only 2 class that is accessed statically in this system to be 
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involved in a cycle. This is because 6/9	classes are involved in cycles, and 3 classes 

are accessed statically, and 6/9	×	3	=	2. So in this system, classes that are accessed 

statically are overrepresented in cycles, i.e., the likelihood of a randomly selected 

statically accessed class appearing in a cycle in this system is higher than that of a 

randomly selected class that is not statically accessed. This supports H1. The 

problem is—and this is where H2 comes in—that none of the edges (dependencies) 

due to static access are actually contributing to the cycle, i.e., these edges do not 

appear on the cycle’s path. This means our causal explanation for why classes that 

are accessed statically are more likely to become involved in cycles is not supported, 

thus illustrating the need for the second hypothesis. 

 

Figure 2. Dependency graph of a small software system. 

 

In order to test our hypotheses, and as per our prior empirical study of cycles, we 

collected metrics from an (ever growing) corpus of Java software. For this paper we 

used 81 applications—a superset of those open source applications used in our prior 

study. Unfortunately we were not able to use the closed source applications from our 

prior study because of particulars in the intellectual property agreements we had for 

them. As we are continually adding to (and updating) our corpus of Java software, in 

this paper we used some more recent versions of the open source applications than in 

our prior study of cycles, however all the cycle data has been regenerated for the 

versions used in this paper. A list of the applications used in this study is shown in 

Tables 6 and 7. In the following subsections, we describe the specific metrics we 

collected, and the statistics and visualisations we used to show that access of static 

members contributes to cycles. 
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9.3.1 Metrics 
 

As per our prior study of cycles we define a class to be involved in a cycle if it 

participates in a non-trivial Strongly Connected Component (SCC) in the program’s 

dependency graph. The dependency graph to which we refer is the same as was used 

in our prior study—it involves only top-level classes defined in the application’s 

source files (the dependencies of nested classes are merged with their top level 

counterpart’s), and does not include edges due to redundant import statements. We 

refer the reader to our prior study [MT07b] for the rationale for this particular 

dependency graph and considering SCCs, and not say, simple cycles. In addition to 

whether or not a class participates in a non-trivial SCC, we can quantify the size of 

the cycle it participates in with the metric of number of nodes (classes) in the SCC to 

which it belongs. 

 

In this paper, we say that a class is “accessed statically” if it declares a non-private 

(i.e., public, protected or default access) static method or field that is 

accessed from within the source code of a different class (i.e., a different node in the 

program’s dependency graph). It is relatively easy to determine if a class is accessed 

via a call to a static method or reference to a static field through analysis of Java 

bytecode. We extended the tool we used in our prior study of cycles, Jepends-

BCEL33, to determine static access in this way. It was fairly easy to do because there 

are special instructions in byte code that pertain to static members: they are 

represented in Byte Code Engineering Library (BCEL)34 by the classes: 

INVOKESTATIC, PUTSTATIC and GETSTATIC. Similarly we looked at 

dependencies due to instantiation (i.e., the use of new) which is represented in the 

BCEL model of byte code instructions with the NEW class. 

 

We will see in Section 3.5 that we controlled for size, since class size could be a 

confounding factor in the participation of classes that are accessed statically in 

cycles. In order to do this we also collected the number of methods a class actually 

declares (cf. inherits). We counted constructors as methods, and only declared 

methods because this was most-closely aligned the BCEL object model of a Java 

class. We could have collected other measures of size such as number of byte code 

                                                
33http://www.cs.auckland.ac.nz/˜hayden/software.htm 
34http://jakarta.apache.org/bcel/ 
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instructions, number of lines of code (from source code), number of fields and so on, 

but it is unlikely that this would have affected our results much. A study by Bieman 

et al. across 5 Java applications found that number of lines of code, number of 

methods and number of fields were all strongly correlated with one another 

[BSW+03]. 

 

9.3.2 Statistics 
 

In order to test H1, we made extensive use of the χ2	test, which is useful for 

determining if an observed distribution is different from an expected one. In order to 

compute the expected distribution of values we used the null hypothesis. The null 

version of H1 implies it’s equally likely that classes that are accessed statically 

appear in cycles as classes that are not accessed statically. Under the null hypothesis, 

the proportion of statically accessed classes in cycles would be the same as the 

proportion of classes involved in cycles from the total. Analogous calculations are 

done for all other combinations of static access and cycle participation. We used 

Excel’s CHITEST function to calculate the probability that the difference between 

the expected and observed populations was due to chance. If the probability was 

significant at the 0.05 or 0.01 levels we had to look at the direction of the inequality 

between the expected and observed values to see if our hypothesis was supported or 

not. In some cases we could not apply the χ2	test because statisticians have argued 

that it should only be applied when all values in the expected population are ≥	5. 

This means we could not compute the probability of the difference being due to 

chance using the χ2	test, so have some blank results. 

 

9.3.3 Testing H1 at the Application-level 
 

To initially test H1 at the application level we broke down an application’s classes on 

the basis of static access, and further broke them down on the basis of cycle 

participation. This breakdown for Eclipse is shown in Table 1. The expected values 

come from the null hypothesis—that statically accessed classes have the same 

likelihood of appearing in cycles as classes that are not statically accessed. So, based 

on the null hypothesis, to compute the number of statically accessed classes that we 

would expect to appear in a cycle we multiply the proportion of an applications 
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classes we observed to participate in cycles (=	(1029+3971)/11415	) by the number 

of classes that are accessed statically (=1029+778). This yields 791.5. The other 

expected values are similarly computed. 

 

Table 1. Static access and cycle participation for Eclipse. 
 

Applying the χ2	test to data in Table 1 gives a probability of 1.90×10−32. So we can 

reject the null hypothesis, at both the 0.05 and 0.01 levels of significance. Looking at 

the direction of the inequality, we see that more statically accessed classes actually 

appear in cycles than we would expect, so we can conclude that our data supports our 

hypothesis at these levels of significance. 

 

9.3.4 Testing Class Size and Cycle Participation at the Application-
level 

 

El Emam et al. criticise a large body of prior work on metrics for not taking into 

account the potentially confounding effect of class size on a metrics validity 

[EEBGR01]. Particularly they argue that while metrics like CBO appear to be 

correlated with fault proneness, the effect disappears when class size is controlled 

for. We want to see if large classes are more likely to appear in cycles than small 

ones. It certainly seems that this would be possible, since large classes would likely 

have more distinct dependencies on other classes than other classes, so would be 

more likely to participate in a cycle than a small class. 

 

In order to test the large class hypothesis at the application level, we split classes 

about the median number of methods they declare, into small and large classes. Our 

aim was to get the most even split of classes between large and small so as to have 

the best chance of getting a significant result with the Chi-Squares test. This meant 

that sometimes we split on strictly less than the median, other times it meant splitting 

on less than or equal to the median. To see why consider the following data sets: 

{1,2,2,2,2,3,3,4}	and {1,2,2,3,3,3,3,3,5}. In the former the most even split comes 



202 
 

from less than or equal to the median (which is 2). In the latter, the most even split of 

values between large and small comes from strictly less than the median (which is 3). 

 

Table 2. Class size and cycle participation for Eclipse. 

 

Table 2 shows the breakdown of classes by size, and subsequently by cycle 

participation for Eclipse. In order to compute the expected values once again we 

assume that large and small classes have the same probability of appearing in cycles, 

so to compute the expected value for a large class appearing in a cycle we multiply 

the observed total number of large classes (=3059+2472) by the observed proportion 

of Eclipse’s classes appearing in cycles (=	(3059+1941)/11415) to yield 2422.7. 

Applying the Chi-squared test to this data gives a probability of 1.01×10−124, which is 

significant at both the 0.05 and 0.01 levels. Additionally the direction of the 

inequality means that, for Eclipse, large classes are more likely to appear in cycles, 

so it supports our class size hypothesis. 

 

9.3.5 Testing H1 at the Application-level while Controlling for Size 
 

The approach we take for controlling for size involves stratifying on class size as 

described by El Emam et al[EEBGR01]. Table 3 shows the participation of classes 

accessed statically in cycles for only the large classes in Eclipse. We can see in this 

table that 5531 classes were considered large when we divided them up in the way 

described in Section 3.4. To calculate the expected values in this table we calculated 

proportions based on the population of large classes only. So to calculate the 

expected number of statically accessed classes appearing in cycles for this dataset, 

we multiply the total number of large, statically accessed classes (=838+322) by the 

proportion of large classes appearing in cycles (=	(838+2221)/5531) which yields 

641.6. Applying the χ2 test to this data gives a probability of 1.09×10−36	which is 

significant at the 0.01 level. Since the direction of the inequality supports our 
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hypothesis, we can conclude that the effect of static access on cycle participation still 

holds for large classes in Eclipse. 

 

Table 3. Static access and cycle participation considering only large classes for 
Eclipse. 

 

We can perform a similar analysis for small classes in Eclipse. This is shown in 

Table 4. Applying the χ2	test to this data gives a probability of 0.266 so we cannot 

reject the null hypothesis. Thus we cannot be certain that the difference between the 

expected and observed populations is not due to chance. 

 

 
Table 4. Static access and cycle participation considering only small classes for 

Eclipse. 
 

9.3.6 Testing H2 at the Application-level 
	

In order to test H2 we generated stacked bar graphs for each application of the form 

used in our prior study of cycles[MT07b]. In this type of graph a system’s classes are 

shown on the basis of their participation of cycles (SCCs) of growing sizes. Figure 3 

shows the involvement of the Java Runtime Environment’s (JRE’s) classes in cycles 

when various dependency relations are considered. The bar-stack marked “I” shows 

cycles when only edges due to the USES-IN-THE-INTERFACE relation are 

considered; that marked “I+T” shows cycles when only edges due to both the USES-

IN-THE-INTERFACE and access of static members are considered; that marked 

“I+N” shows cycles when only edges due to the USES-IN-THE-INTERFACE and 

instantiation are considered; that marked “I+T+N” shows cycles when only edges 

due to the USES-IN-THE-INTERFACE and access of static members and 
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instantiation (i.e., the use of new) are considered; finally the bar-stack marked “A” 

shows cycles when all edges in the dependency graph are considered (i.e., cycles in 

the USES relation). 

 

Figure 3. Cycles in JRE for different kinds of dependencies 
 

From the graph of Figure 3 we can conclude that edges due to access of static 

members do contribute to both cycle size and number of classes participating in 

cycles in the JRE. This is because the bar-stack marked “I+T” is taller than that 

marked “I”. The fact that the bar-stack marked “I+N” is shorter than that marked 

“I+T+N” also provides further evidence that edges due to static access are contribute 

to cycles in the JRE, because if we ignore these edges and only consider those due to 

new and USES-IN-THE-INTERFACE then cycles are smaller and fewer classes are 

involved in cycles. So for the JRE we can conclude that edges due to access of static 

members contribute to cycle size and cycle participation. 

 

9.3.7 Testing Hypotheses at the Corpus-level 
 

Besides testing the hypotheses at the application-level we can also test them at the 

corpus-level. This involves looking at the number of applications that have classes 

with a certain feature (e.g., static-access or large) being over or under-represented in 

cycles when compared to the entire population of an application’s classes. Table 5 

demonstrates how we can apply the χ2	test to this data. If the null hypothesis were 

true we would expect that half of the applications would have the feature (marked 

“X” in the table) over-represented in cycles, and half of them not to have the feature 

over-represented in cycles. Since there are 81 applications in the corpus studied, this 

gives two expected values of 40.5. Observed values are shown in the table as i and j. 

We can then apply the χ2	test to this table. 
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Table 5. Cycle participation for classes statically accessed in cycles across all 
applications in the corpus. 

 

9.4 Results 
	

9.4.1 Application-level Results 
 

The application-level results are shown in Table 7. The “size” column gives the size 

of the application in terms of number of top-level classes defined in its source files; 

the “in cycle” column shows the number of classes that participate in cycles; the 

“access%” column shows the percentage of the application’s classes that are 

accessed statically; the “static”, “large”, “large+static” and “small+static” columns 

show the probability of the difference between the expected and observed being due 

to chance as computing from using the χ2	test for each of the application-level 

hypotheses described in Section 3. We marked up entries in the four rightmost 

columns with “*”, “**” if the data supported our hypothesis at the 0.05 and 0.01 

levels, respectively; and with “†” if we could reject the null hypothesis, but the 

direction of inequality went against our hypotheses. Blank entries indicated that we 

could not apply the χ2	test because the expected values contained an entry less than 5. 

 

For the hypothesis that statically accessed classes are more likely to be involved in 

cycles: 23 of the applications supported the it 0.01 level, 3 supported it at the 0.05 

level, and for 1 application we could reject the null hypothesis at the 0.05 level but 

the direction of inequality went against our hypothesis. For the hypothesis that large 

classes are more likely to be involved in cycles: 34 of the applications supported it at 

the 0.01 level, 3 supported at the 0.05 level, none went against it at the 0.05 or 0.01 

levels. For the hypothesis that small, statically accessed classes are more likely to be 

involved in cycles than small classes: 9 supported it at the 0.01 level, 1 went against 

it at the 0.05 level For the hypothesis that large, statically accessed classes are more 

likely to be involved in cycles than large classes: 17 supported it at the 0.01 level, 3 

supported at the 0.05 level, 1 went against it at the 0.05 level. 
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The applications that had no significant results for any of the hypotheses, either 

because the χ2	test could not be applied, or because the results were not significant at 

the either at the 0.05 level or 0.01 level are shown in Table 6. Most of the 

applications in this table are small in size (total number of classes) so it is 

unsurprising that their results were insignificant or that the χ2	test could not be 

applied to them. 

 

Table 6. Applications without any significant results 
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Table 7. Applications with at least one significant result. 
 

9.4.2 Corpus-level Results 
 

Table 8 shows the number of applications in the corpus with classes that are accessed 

statically over-represented in cycles, regardless of whether the over-representation 

was significant or not at the application level as determined by the χ2	test. The 

probability yielded by applying the χ2	test to this corpus-level data is 1.77×10−6. This 

means at the 0.01 level we can reject the null hypothesis, and looking at the direction 

of the inequality we see it supports our hypothesis, that at the corpus-level, a 

randomly selected application’s classes that are accessed statically seem to be more 

likely to be involved in cycles than those not accessed statically. 
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Table 8. Cycle participation for classes statically accessed in cycles across all 
applications in the corpus. 

 

Table 9 shows the number of applications in the corpus with classes that are large 

and over-represented in cycles. The probability yielded by applying the χ2	test to this 

data is 5.54×10−11. This means at the 0.01 level we can reject the null hypothesis, and 

looking at the direction of the inequality we see it supports our hypothesis, that at the 

corpus-level, a randomly selected application’s classes that are large seem to be more 

likely to be involved in cycles than those that are small. 

 

Table 9. Cycle participation for large classes in cycles across all applications in the 
corpus. 

 

Table 10 shows the number of applications in the corpus with classes that are both 

large and statically accessed overrepresented in cycles. The probability yielded by 

applying the χ2	test to this data is 1.47×10−5. This means at the 0.01 level we can 

reject the null hypothesis, and looking at the direction of the inequality we see it 

supports our hypothesis that, at the corpus-level, a randomly selected application’s 

classes that are both large and statically accessed seem to be more likely to be 

involved in cycles than those that are just large. 

 

Table 10. Cycle participation for only large classes statically accessed in cycles 
across all applications in the corpus. 

 

Table 11 shows the number of applications in the corpus with classes that are both 

small and statically accessed overrepresented in cycles. The probability yielded by 
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applying the χ2	test to this data is 0.74. This means at we cannot reject the null 

hypothesis. 

Table 11. Cycle participation for only small classes statically accessed in cycles 
across all applications in the corpus. 

 

9.4.3 Edges Results 
 

As shown in the stacked bar graphs of Figure 4, most of the applications showed an 

increase in the number of classes participating in cycles from when edges due to the 

USES-IN-THE-INTERFACE to when edges due to both the USES-IN-THE-

INTERFACE and access of static members were considered. Applications that did 

not show a change were Antlr, Drawn(*), DrawSWF, FitJava, Informa, Jaga(*), 

James(*), Jeppers(*), JFreeChart, JHotDraw, JParse, JRefactory, JUnit, OSCache(*), 

SableCC, Trove(*). Those marked with (*) also indicate there was no difference in 

cycle participation when going considering the access of static members in addition 

to USES-IN-THE-INTERFACE and new. What this means is that with respect to 

cycle participation, edges due to static access contribute in some way to cycle 

participation in all but 6 small applications from the corpus. This is strong support 

for H2. 

 

Also worth noting is the difference in heights between the bars marked “I+T+N” and 

“A”. The difference in heights can be explained by the use of casts as illustrated 

earlier in Figure 1. In SableCC, for instance, there is a big difference in heights 

between the “I+T+N” and “A” bars. We have looked at the relevant code and found 

that this is indeed due to an unusual implementation of the visitor pattern that makes 

extensive use of type casts. 
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Figure 4. Participation of edges due to different forms of dependency in cycles. 
 

9.5 Discussion and Conclusions 
 

Both the application- and corpus-level results generally seem to support the 

contention that classes that are accessed statically are more likely to be involved in 

cycles than those that are not. For the four hypotheses we tested using the χ2	test we 
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obtained only 3 statistically significant negative results. For the hypothesis pertaining 

to edges due to access of static members appearing in cycles, only 6 applications 

of the 81 examined had a negative result. 

 

One interesting finding from our attempt to control for size, was that, at the corpus-

level, small classes seemed to have about the same chance of appearing in cycles as 

small classes that were accessed statically. Similarly, at the application-level, far 

fewer applications had statistically significant results that supported this hypothesis 

when only small classes were considered, than when only large classes were 

considered. 

 

Another interesting thing we were able to do in this paper was to be able to include 

applications in an analysis that did not, on their own, have statistically significant 

results with the χ2	test. We were able to look at the direction of inequality between 

the expected and observed populations, and incorporate that into a corpus-level 

analysis. Many empirical studies of code do not do this level of analysis, because 

they do not examine a large enough corpus of software for the results at this level to 

be significant. Rather they concentrate only on application-level analysis. 

 

Figure 5. Distribution of proportion of an application’s classes that are accessed 
statically across the corpus. 

 

In terms of the proportion of classes accessed statically, Figure 5 shows a cumulative 

frequency distribution of this for all the applications in the corpus. 80 of the 81 

applications in the corpus have >0% of their classes accessed statically, about 52 

have >10% of their classes accessed statically, and so on as shown in this figure. We 

found this distribution surprising, given that the use of the static modifier is 

considered to be “bad” by many people in the object-oriented programming 

community. Kerievsky surveys some ways in which the static modifier can be 
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eliminated from a design in his discussion of “Singletonitis”[Ker04]. The distribution 

quantifies the extent to which non-private static members are used in real designs. 

 

In terms of future work, we’d like to know why the effect of statics on cycle 

participation only appears to be stronger for large classes than smaller ones. We’d 

also like to see if over time static members that are not involved tend to become 

involved in cycles. This could be done via a controlled experiment where 

programmers are asked to modify a design with many static members and one 

without, or by doing longitudinal program analysis on many subsequent releases of a 

program. 

 



213 
 

Coauthor Declaration Chapter 10 [YTM08]  

 



214 
 

 



215 
 

Chapter 10 An Empirical Study into Use of Dependency 
Injection in Java 

 

Over the years many guidelines have been offered as to how to achieve good quality 

designs. We would like to be able to determine to what degree these guidelines 

actually help. To do that, we need to be able to determine when the guidelines have 

been followed. This is often difficult as the guidelines are often presented as 

heuristics or otherwise not completely specified. Nevertheless, we believe it is 

important to gather quantitative data on the effectiveness of design guidelines 

wherever possible. 

 

In this paper, we examine the use of “Dependency Injection”, which is a design 

principle that is claimed to increase software design quality attributes such as 

extensibility, modifiability, testability, and reusability. We develop operational 

definitions for it and analysis techniques for detecting its use. We demonstrate these 

techniques by applying them to 34 open source Java applications. 

 

10.1 Introduction 
 

Design principles [Rie96][GHJV95][Mar96a][Mar96b][SMC74] influence the 

internal structure of a software system. Particularly, they guide the decisions we 

make as developers about the organization of the entities in a system’s source code. 

These decisions are inherent to the activity of programming— for instance, in adding 

some particular functionality to a system should we write the code as a new method, 

generalise an existing method, create a whole new class, or some combination of the 

above? Design principles help us to choose the “best” option. 

 

Design principles are important because we believe that the internal structure of a 

system, as reflected in its source code, affects its maintainability, understandability, 

testability, modifiability, performance and so on, that is, its software quality 

attributes [Par72][SMC74][BJ95]. Thus the “best” decision we can make in 

organising source code entities (i.e., methods, classes, packages etc) is the one that 

most improves the attributes of software quality that are important for a particular 

system. In order to determine which is “best”, we need to be able to quantify the 
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benefit due to the application of any given design principle. We need to understand 

what the trade-offs are and how different design principles interact. 

 

We can determine the benefit achieved by applying a design principle by applying it 

and measuring the change to all the quality attributes. Measuring quality attributes is 

difficult enough but by itself does not tell us what the benefit is if we cannot be sure 

that the design principle has been applied correctly (or at all). Without reliable and 

objective means to determine when a design principle has been applied, we cannot be 

sure what caused the effects on quality attributes we observe. 

 

A difficulty in reliably and objectively determining the use of most design principles 

is that they usually are not expressed in an operational manner. We believe that 

developing operational definitions of design principles is a necessary step in 

empirical validating their use. In this paper, we look at developing an operational 

definition for the the design principle sometimes known as Dependency Inversion 

Principle (DIP) [Mar96a] and carry out an empirical study of its use. 

 

We think the DIP is worthy of further study because its proponents argue its 

application leads to systems that are more extensible [Mar96a][JF88][SGN04], 

testable [Mar96a][MFC01][TH02][Lak96, p.388],modifiable [Mar96a] [Lak96, 

p.330] and reusable [Mar96a][JF88]. In the work described in this paper we discuss a 

specific structural form of the DIP—what Fowler terms Dependency Injection (DI) 

[Fow04]. We have developed an operation definition for DI, developed a tool that 

measures the use of DI according to our definition, and have applied the tool to 34 

open source Java applications. 

 

The rest of the paper is organised as follows. In section 2, we summarise the 

arguments for using DI, in particular the anticipated benefits having classes designed 

by applying the DI principle. From this, in section 3, we determine the structural 

characteristics of code that result from such an application, which leads to the 

definitions of four structural forms representing possible DI use. From this we 

develop our analysis techniques. In section 4 we present the results of our study and 

discuss our interpretation of these results in section 5. Section 6 then presents our 

conclusions. 
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10.2 Background 
 

The phrase Dependency Inversion Principle was first coined by Martin in 1996 

[Mar96a] although the concept it represents has been discussed by many others under 

the guise of different names. Fowler [Fow05] dates the concept back to Johnson and 

Foote’s discussion of Inversion of Control (IOC) [JF88]in 1988, and he notes that 

Sweet also alludes to it in 1985 with the more “colourful” phrase the Hollywood’s 

Law [Swe85]. Lakos [Lak96, ch.6] also discusses the DIP under the guise of 

insulation. 

 

While the DIP is easily stated at a conceptual level, defining it concretely, in terms of 

entities in Java source code, is less straightforward. A conceptual statement of the 

DIP is that by Martin: “High-level modules should not depend upon low-level 

modules. Both should depend upon abstractions” [Mar96a]. If we glean the examples 

given by Martin we might take this to mean that in Java a class should depend on 

interface or abstract types, not concrete types, although there are some benefits that 

accrue even with concrete types. 

 

Besides the issue of whether we should depend on interface, abstract or concrete 

types we must deal with the “problem of instantiation” [MT07a], or as the Gang of 

Four state “you have to instantiate concrete classes (that is, specify a particular 

implementation) somewhere in your system” [GHJV95, p.18]. This is another 

challenge in concretely stating, and measuring the DIP — we need to know the 

mechanism by which concrete classes are instantiated and passed in to their DIP 

exhibiting clients. 

 

There are actually many ways to instantiate and pass in concrete classes to those 

exhibiting the DIP. Fowler identifies the Dependency Injection and Service Locator 

approach [Fow04]. In this work, we concentrate on the Dependency Injection form of 

the DIP. In the Dependency Injection (DI) form of the DIP, as it is discussed by 

Fowler [Fow04], the object assigned to the field of a class is passed in through one of 

that class’ constructors or methods. A simple illustration of dependency injection is 

as follows: 

 

class A { 
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  B b; 

  public A(B b) { 

    this.b = b; 

  } 

  //... 

} 

 

In the above code example A is exhibiting dependency injection because the object 

that gets assigned to its field ‘b’ is passed in as a parameter in A’s constructor. We 

will, for the moment, avoid a discussion of whether B should be an interface type, 

abstract type or concrete type. The key observation is that A does not depend on a 

particular implementation of B. Particularly, when clients instantiate A, they get to 

specify the particular subtype of B to be assigned to ‘b’ at runtime. This can have 

beneficial consequences to several software design quality attributes. 

	

10.2.1 Effects on Quality 
 

It has been argued that Dependency Injection affects many quality attributes, in 

particular extensibility, testability, and reusability. 

 

Extensibility can be defined as “the ease with which a system or component can be 

modified to increase its storage or functional capacity”[IEE90]. In the above snippet 

A is arguably more extensible because it can be used with different implementations 

of B without modifying the source code of A. Indeed this is why DI is used at the 

“plug-points” of application frameworks [JF88][SGN04]. 

 

Testability can be defined as “the degree to which a system or component facilitates 

the establishment of test criteria and the performance of tests to determine whether 

those criteria have been met”[IEE90]. Dependency Injection supports the use of 

mock objects to help unit test a class [MFC01][TH02]. Mock objects can be used to 

both provide control and observe the class under test. 

 

Reusability can be defined as “the degree to which a software module or other work 

product can be used in more than one computer program or software 

system”[IEE90]. Dependency injection can improve reuse by (1) improving 
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flexibility and (2) breaking transitive dependencies. DI can improve flexibility 

because different implementations can be used with the class we want to reuse, 

improving the degree to which that class can be used in multiple situations, as 

discussed above in extensibility. Dependency injection can reduce the number of 

classes we have to deploy in the context of a new system by breaking transitive 

dependencies. This is important because to effectively reuse a class it should not be 

tied to a large block of unnecessary code [Lak96, p.14]. If a class we reuse depends 

on a class type, from the perspective of reuse, it also transitively depends on any 

types that appear in the private part of that class type. If the type it depends on is an 

interface type then it does not transitively depend on any private parts of that 

interface’s implementation. 

 

10.3 Characterising Dependency Injection 
	

10.3.1 Definitions 
 

In the Dependency Injection form of the DIP the value assigned to a class’ field is 

passed in through a setter or constructor, rather than created within the class. We can 

use this as the basis for an operational definition for DI. For each field in a class, we 

determine what values are assigned to the field and where those values came from. If 

they do not come from outside the class, then that is inconsistent with the intent of DI 

(although we identify one special case below). We have identified 4 forms of DI for 

fields in Java code, which we define below. 
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Figure 1. Examples of the forms of DI 

 

 

10.3.1.1 Constructor No Default (CND) 
 

The only object a field in a class can be assigned comes through the parameter of the 

class’ constructors. That is, the only objects a field is assigned are passed in from 

outside the class, through the class’ constructor(s). Class CNDeg in Figure 1 shows 

an example. 

 

Rationale: In the above code the only way an object can be assigned to field ‘b’ is by 

passing that object through the constructor. This means CNDeg can be tested with a 

mock object of supertype B. Similarly, CNDeg is potentially more extensible 

because it can be used with different implementations of B. If B is an interface type 

it means that CNDeg can be reused in another system independently from any 

implementations of B. 

 

10.3.1.2 Method No Default (MND) 
 

The object a field in a class can be assigned comes through the parameter of one of 

either the constructor, or the class’ non-private methods. That is, the only objects a 

field is assigned are passed in from outside the class, through the class’ non-private 

methods(s). Class MNDeg in Figure 1 shows an example. 
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Rationale: The above code is similar to that given for CND, except the object ‘b’ is 

assigned is passed in through a setter method. The use of a setter method allows the 

object assigned to the field to change over the object of the lifetime purporting 

improved flexibility over CND. On the other hand it is also possible we forget to 

assign an object to field ‘b’ (not possible in CND), and this will likely cause 

a NullPointerException at runtime. Which is better is subject to some 

debate. Beck recommends the constructor based approach[Bec97], saying it is 

immediately clear what a class requires when it is instantiated, and furthermore it is 

impossible to instantiate the class without passing in the field’s objects. However, a 

recent empirical study by Stylos and Clarke seems to contradict Beck’s argument. 

Their study found that that programmers found it easier to pass references through 

setter methods rather than constructors [SC07]. Consequently we have chosen to 

measure both forms Apart from this the reusability, testability and extensibility are 

the same as CND. 

 

10.3.1.3 ConstructorWith Default (CWD) 
 

The object assigned to a field can be passed in through a constructor but this does not 

happen exclusively. The field is also assigned a “default” object from within the 

class. Class CWDeg in Figure 1 shows an example. 

 

Rationale: The above code is similar to that given for CND, except there is a default 

implementation of B referenced in it. This potentially hinders reusability because we 

must now deploy B and BImpl in order to compile CWDeg in the context of a new 

system. We must also deploy anything BImpl depends on—we could end up 

copying a very large chunk of code in this transitive fashion. That said, CWD has no 

significant difference in flexibility, extensibility and testability than in CND, and 

furthermore users of such classes do not have the burden of having to provide an 

implementation for B for every use of CWDeg. 

 

10.3.1.4 Method With Default (MWD) 
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The object assigned to a field can be passed in through a constructor or non-private 

method but this does not happen exclusively. The field is also assigned a “default” 

object from within the class. Class MWDeg in Figure 1 shows an example. 

 

Rationale: This situation is analogous to CWD—reuse is inhibited because a 

concrete type (BImpl) is referred to in the body of MWDeg. 

 

10.3.1.5 Completeness 
 

There are a number of ideas that have been labelled “dependency injection” or 

something similar (as we will mention further below). As this is the first study of its 

kind, we have chosen not to try to capture all possible variations. Instead, we have 

limited our study to these relatively simple forms of DI. We believe these forms are 

representative of the presentations of DI in the literature, in particular, in the trade 

press and tutorials likely to be accessible to developers. As such, we believe that if 

there is widespread adoption of DI, then the forms we have identified should be 

prevalent. 

	

10.3.2 Practical Considerations 
 

The definitions above give the general structures that indicate the use of DI. There 

are, however, some consequences and practical issues that require further discussion. 

In this study, we require that types of fields be nonconcrete (that is, either interfaces 

or abstract classes). This means the use of any concrete type for a field rules out that 

class as using DI. As discussed earlier, from the point of view of, for example, 

testing, such fields might be considered an acceptable form of DI and so we intend to 

look at such forms in future work. 

 

The creation of concrete values (that is, calls to a constructor) also rule out the class 

as using DI provided the creation occurs outside the class’ constructor (since creation 

of concrete values within a constructor could indicate one of the “default” cases). It 

is also possible that concrete values can be assigned to fields, even though they are 

not created in the class. For example, a parameter of concrete type can be assigned to 

the field. Such definitions rule out the class from using DI. 
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The use of constructors of arrays depends on the base types of the arrays — if the 

result requires the use of concrete values then it rules out the use of DI, otherwise it 

is neutral. 

 

A value assigned as a result of a method invocation on another class also rules out 

the use of DI, as in the general case we cannot be sure what the type of that value 

will be. The use of a service locator is a special case that we believe can be 

identified, and we will consider this in future work. 

 

One last form of field definition that we must consider is the assignment of null to 

a field. This form of defining a value for a field does not impact use of DI and so is 

ignored. 

 

We also ignore fields that are of primitive type, or of type from the Java Standard 

API (“built-ins”), in that their presence did not impact our classification of a class. 

We ignore fields of primitive types since there is no opportunity for a developer to 

allow alternative implementations to be provided for such fields. It could be argued 

that the object wrapper types, such as java.lang.Boolean 

could have been used instead, however this choice has other issues, being both final 

classes and types supplied by the Standard API. In the case of types from the 

Standard API, there is the opportunity to use appropriate interfaces (e.g., 

java.util.List) or abstract classes (e.g., java.io.Reader). However there 

are also classes for which there is no convenient interface or abstract parent (e.g., 

java.lang.String) meaning, again, the developer has no alternative. This is 

also something we wish to consider further in future work, that is, whether these 

built-in types support are being used to provide DI. 

 

Final types, that is types that cannot have subtypes (classes declared “final” in Java), 

cannot be used for DI, and so their presence disqualifies a class from using DI.We 

also note that, should we consider classes with fields of concrete types to be 

acceptable for using DI, final types would still be a problem. If we consider built-in 

types further, final types such as String might have to be treated specially. 
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10.3.3 Measurement 

10.3.3.1 Analysis Procedure and Algorithm 
 

The analysis of dependency injection in application code is performed by extending a 

part of our existing tool [YTB05], which operates on Jimple – a static single 

assignment typed 3-addressed intermediate representation of Java bytecode from the 

Soot framework [VRCG+99]. It also utilises static analysis features of the Indus 

project [Ind], which is based on Soot. The tool is limited to Java 1.4 source code. 

 

The overall measurement actually comprises several steps. The first step is to analyse 

the source (represented in Jimple) for “use-def” information and generate a graph 

data-structure comprising the usage/definition sites and data flows among them. The 

algorithm for computing this employs standard inter-procedural data flow analysis 

techniques such as those found in the slicing literature (e.g. [AH03]), and in 

particular the data- and object-flow analyses that Indus provides, as described in 

[Ran02]. The precision of the analysis is thus dependent on the underlying 

techniques, which deal with well-known issues such as polymorphism and array 

aliasing to a certain extent. 

 

The aim of the analysis for each field of a class is to determine all of its possible 

definition values. In the simplest case, the definition of a field is a direct assignment, 

e.g. field := value. But it is usually the case that the value is in turn defined 

through a preceding statement, and so on, which effectively results in a chain of 

definitions, thus referred to as use-def chains, that eventually affect the value of the 

original field. 
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Figure 2. Non-trivial assignment examples 

 
 

Figure 3. data-flow graph 
 

Whereas in the examples we have shown so far, the definitions of fields have been of 

a simple nature (direct assignments), there are many instances where the value is 

defined through indirect means, as illustrated in figure 2, thereby requiring an 

analysis along use-def chains. Here, field b is defined through a parameter to the 

method setB, which is called locally by both of A’s constructors. The first 

constructor simply passes down its parameter ba to setB. The second constructor 

on the other hand additionally calls getDefault, which constructs and returns a 

concrete value that is then passed to setB. 

 

To obtain the definitions of each field, the tool applies a depth-first traversal 

algorithm on a graph representing statements and data flows between them. This 

graph, for a given class C, is constructed such that: 



226 
 

•its vertices represent statements within the “boundary” of C (we define this as any 

program element contained in C or its superclasses) 

•edge exists from v1 to v2 iff both data and control flow exist from a value used in 

v2 to value used in v1, i.e. the direction of the edge is opposite to that of data/control 

flow. 

 

The algorithm begins traversing from the statements (vertices) that directly assign a 

value to any field of C, then follows the edges until either all vertices have been 

visited or no more vertices can be visited. During the traversal, the algorithm records 

each parameter value or concrete value it encounters. Figure 3 demonstrates this 

process being applied class A in figure 2 – note that parameter passing are shown as 

implicit statements to clarify the data flow. In this example, the algorithm begins 

from the source vertex labelled 1 (the assignment statement) and traces along the 

edges to eventually reach vertices numbers 4 (concrete value) and 6 (parameter to 

A’s constructor). These vertices represent the definition sites of b that are relevant to 

DI and hence are recorded. 

 

For each definition site, the following are recorded: 

• the name and type of the field that is being defined 

• the class that it belongs to 

• location (class, method and line number) of the definition 

• the type of the value defining the field 

• The nature of definition: ‘is the value from a parameter? Or a concrete value? Or is 

it through some other means?’ 

 

The above details are aggregated for each class and used to determine the class’s 

conformance to the DI definitions outlined previously. 

 

10.3.3.2 Scope of Analysis 
 

It is worth noting that we are deliberately limiting the use-def analysis to within the 

boundary of each given class. This effectively reduces the search space for the 

analysis, thereby improving performance. Also in the interest of the forms of 

dependency injection under investigation, analysing within classes is sufficient in 
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obtaining the necessary results. However in the future we could extend the tool by 

tracking the use-def chain further to outside the boundary to cater for more system-

wide forms of DIP such as service locators. 

 

A consequence of our decision is that many of the issues that face other forms of data 

flow analysis, such as inheritance, polymorphism, aliasing, and the like do not apply 

to our analysis. For example, if a subclass of A from figure 2 directly assigns to the 

field b, then in our analysis that assignment will be treated as if b were a field of the 

subclass (as indeed it is). 

 

An issue with polymorphic calls in data flow analysis is not being sure which code 

can actually be executed. However, since we regard values assigned to fields as the 

result of any method invocation to rule out the use of DI, the fact that the method 

invocation might be polymorphic is irrelevant. 

 

Object aliasing is when two or more references (pointers) refer to the same runtime 

instance. Aliasing can present a problem because it allows the state of one object to 

be changed from multiple syntactic locations. We are only concerned as to where any 

object that is assigned to a field originated, specifically inside or outside of the class 

boundary. The state of that object, or how that state might change, is therefore not 

relevant to that determination. 

 

 

10.4 Results 
 

We have analysed a subset of a Java Corpus we have compiled [BFN+06] [MT07b] 

[TAD+10] consisting of open-source java applications, looking for evidence of the 

use of DI. Of the 34 applications in our study, 17 could be classified as true 

applications, in that they are intended to be deployed as is, whereas the other 17 were 

designed with the intent that they be embedded within other applications. For some it 

is difficult to draw the line, as some frameworks come with ready-made useful 

applications as examples (e.g., JMeter) and some applications provide APIs to allow 

programmatic customisation (e.g., JFreeChart). Our reason for classifying 
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applications this way was the hypothesis that we would see more use of DI in 

systems intended to be embedded, in particular, frameworks. 

 

Table 1. Number of classes meeting each DI definition 

 

We classified each class in an application according to the definitions given in 

section 3 and determined the totals for each category for each application. The results 

are shown in Table 1. The application name includes the version number we 

analysed. The Type column shows our classification of applications into those 

intended to be embedded (Emb) versus those that can be deployed stand-alone (App). 

The next column shows the size of the application in terms of number of top-level 

classes. The third column shows the number of top-level classes that appear in the 

analysis. 

 

Classes that were not analysed include classes with no fields (e.g., interfaces, classes 

with only static methods), or subclasses whose only fields are those inherited from 
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ancestors and do not directly assign to them. In some cases, the difference is quite 

surprising (ArgoUML for example), and is worth further study. 

 

The columns CND, MND, CWD, MWD show the number of classes in the 

application obeying the different forms of DI as discussed in section 3.1. The Not 
column gives the number of classes analysed that have some form of field 

assignment that means they cannot be using DI as we have defined it. The P column 

shows classes that contain only fields that are of primitive type and the B column 

shows classes that contain only fields that are of a type from the Standard API or a 

primitive type. We report these separately as we cannot classify them in the 4 DI 

categories, and, since we ignore the effect of fields of primitive and built-in types, we 

felt it was mis-leading to classify such classes as not using DI. The last column 

shows the number of classes meeting one of sets of the DI criteria as a proportion of 

those classes that are “eligible” to meet the criteria, that is, the proportion of N− P	− 

B. 

 

Of the 34 applications we analysed, 5 have no classes that meet our criteria and a 

further 5 had only 1 class (classified as CND in all cases). All applications that had 

any class meeting the criteria had classes classified as CND, only two applications 

(jaga and spring framework) had fewer CND classes than some other 

category, and for only two further applications (jfreechart and 

picocontainer) where there fewer (and only just) CND classes that all other DI 

categories put together. The application with the most classes satisfying at least one 

DI form was hibernate (84) with the next largest number being that for spring 

framework (72). 

 

The application with the highest proportion of eligible classes meeting one of the sets 

of DI criteria is picocontainer, with 12 applications overall having almost one 

quarter of their classes meeting the criteria. 

 

10.5 Discussion 
 

In this section we attempt to develop conclusions based on our data. Our goal is to 

determine to what degree DI is being used. The main issue in doing this, however, is 
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determining intent. The structures we measure, while they may be consistent with the 

use of DI, may also be developed without intending to use DI or indeed without the 

knowledge of DI. Determining intent from source code is difficult. The rationale for 

decisions, particularly design decision, cannot be divined from code, and often is not 

provided in what documentation there may be available. Since this is the first study 

of its kind, we have no baseline on which to make some comparisons, and so some of 

our statements are necessarily speculative. 

 

The overall sense is that DI is not being widely applied. There is no obvious 

difference between Emb and App type applications. Of the applications that had a 

small number of classes appearing to use DI, several of those classes appeared to 

meet the requirements only by accident, that is, a 

false positive. 

 

An example of a likely false positive is JagBlockViewer in jag. This is the 

only class that meets any of our criteria in this application, and it is documented as 

being a test class. It seems unlikely that DI was intended to be used in this case. 

Another example is Node in sablecc, which is classified as MND. This is an 

abstract class whose sole field is of its own type, that is, Node, which suggests it is 

unlikely to have been designed with DI in mind. This application also has a single 

class classified as CND, namely ParserException, an exception class. 

 

For other applications with small numbers, it is more difficult to rule out the use of 

DI, but we think it unlikely that anyone familiar with DI would deliberately use it so 

few times. For example ant has four classes classified as CND. They are all in the 

same package (org.apache.tools.ant.taskdefs), a package that has more 

than 70 classes, including more than 25 that are eligible to meeting DI criteria but 

which do not. While it is conceivable that no other classes meet ID criteria due to the 

nature of the application, we think it is unlikely, and so suspect that the four classes 

that do, so do accidentally. 

 

One possible explanation for small numbers is that the relevant classes were not 

developed with DI in mind, but in order to support a design pattern. Many common 

implementations of design patterns, especially the original set [GHJV95], use DI-like 
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structures to achieve their goal. We speculate that someone not familiar with DI but 

implementing a design pattern would thus create classes that meet our definitions. 

 

An example of this is JHotDraw. JHotDraw has a number of classes (about 26%) 

meeting the criteria, but looking at the classes we find many instances of classes with 

names involving “Command”, “Handle”, “Visitor”, “Listener”, and “Enumerator”. 

These names suggest these classes were designed not so much with DI in mind, but a 

consequence of the respective design patterns.  

 

In fact, given JHotDraw’s history, DI was almost certainly intended, but it does 

illustrate the fact that since some design patterns implementations do mimic the DI 

patterns we study, it is conceivable that developers create classes without being 

aware of DI. This raises the issue of whether design patterns should be taught 

without reference to the underlying principles that make the patterns effective. 

 

Determining whether the numbers we see are indicative of high or low use of DI is 

difficult without studying each and every class. The application junit provides a 

useful case study, being small enough for it to be feasible to do exactly that. On the 

surface, 4 of 28 classes seems a small number of classes to be using DI, and given 

Junit’s development history we might expect to see DI used extensively. In fact, one 

class (TestDecorator) appears the consequence of a design pattern, and one 

class (FailureRunView) has a sufficiently complex “setter” method that we 

wonder whether DI was intended. That said, none of the classes classified as not 

involving use of DI could easily be changed to do so. We are left with the conclusion 

that either DI was not a significant consideration when designing Junit, or the level 

of use that we have measured is in fact indicative of good use of DI. Further study is 

needed in this regard. 

 

The results for spring framework [Jos07], hibernate [Red06], and 

picocontainer [HT07] are of particular interest as all three have been described 

as being based around DI. That their results are three of the top four proportions (the 

4th being the relatively small application junit) suggests that our methods for 

analysing software for use of DI are sound. 
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10.5.1 Threats to Validity 
 

As already discussed, divining intent from code is problematic, and our conclusions 

must be interpreted in that light. 

 

As we have indicated above, we believe there are false positives, meaning our results 

may overstate the actual usage of DI. 

 

We have not considered service locators, mainly to limit the scope of the study to 

something that can be done in a reasonable amount of time. As we said earlier, our 

choice of DI structures was motivated by the material describing DI commonly 

available to developers. It would be very interesting indeed if the use of service 

locators was significantly higher than the structures we have studied. 

 

Whether there are false negatives in our study is a matter of definition. There is some 

debate within the industry as to what is “proper” use of DI, or even whether DI is a 

concept separate from other concepts, such as design patterns. 

 

Indeed, it has been suggested that what we are calling DI, is really just a particular 

Design Pattern. Rather than argue the point, we can only observe that Fowler, 

Martin, and others clearly consider DI as a distinct concept, and that alone makes it 

worthy of study. 

 

Our decision to ignore fields with types from the Standard API needs to be revisited. 

It is conceivable that a number of classes containing just fields of such types may be 

a consequence of using DI. 

 

Finally, how widely applicable our results are depends on the representativeness of 

our corpus. We do cover a variety of domains, although limitations of our analysis 

tools means we have been somewhat limited in the size of application we can 

consider. Nevertheless, we believe our results do indicate a significant trend, 

although it remains to be seen how widespread it is. 

 

10.6 Conclusions 
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Dependency Injection is widely touted in the trade literature as a way to improve the 

structure of code. We have presented the analysis of 34 open-source Java 

applications for the evidence of the use of Dependency Injection. This represents the 

first study of this kind. To do so, we have identified four patterns of code structure 

that are consistent with DI use and developed analysis tools to recognise these 

structures. 

 

Our conclusion is that, while there are individual pockets, there is not a great deal of 

evidence to suggest widespread use of DI. Why there is so little use of DI is a matter 

of conjecture. It may be that the benefits resulting from its use are not as good as 

claimed. It is possible that other mechanisms, such as service locators, are being 

used. The most likely explanation is that it is simply not taught as a matter of course 

in software design courses and so consequently is not that well known as a design 

principle. 

 

The measurements we have obtained provide a useful starting point for developing a 

benchmark for DI use, however we see our main contribution as being the fact that 

we can make the measurements at all. Having an operational definition of DI means 

we can now more reliably do studies on the actual benefits of using this design 

principle. 

 

There is ample future work to be done. As we have mentioned, we would like to 

determine how to measure the use of service locators. We would also like to make 

our tool more accessible. It grew out of other research we are doing and its current 

form is one that is sufficient to prove the concept but not useful for distribution. 

Ultimately we would like to carry out studies to quantify the benefits of using 

dependency injection. 
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Chapter 11 The Qualitas Corpus: A Curated Collection of 
Java Code for Empirical Studies 

 

In order to increase our ability to use measurement to support software development 

practise we need to do more analysis of code. However, empirical studies of code are 

expensive and their results are difficult to compare. We describe the Qualitas Corpus, 

a large curated collection of open source Java systems. The corpus reduces the cost 

of performing large empirical studies of code and supports comparison of 

measurements of the same artifacts. We discuss its design, organisation, and issues 

associated with its development. 

 

11.1 Introduction 
 

Measurement is fundamental to engineering, however its use in engineering software 

has been limited. While many software metrics have been proposed (e.g. [CK94]), 

few are regularly used in industry to support decision making. A key reason for this 

is that our understanding of the relationship between measurements we know how to 

make and quality attributes, such as modifiability, understandability, extensibility, 

reusability, and testability, that we care about is poor. This is particularly true with 

respect to theories regarding characteristics of software structure such as 

encapsulation, inheritance, coupling, and cohesion. Traditional engineering 

disciplines have had hundreds or thousands of years of experience of comparing 

measurements with quality outcomes, but central to this experience is the taking and 

sharing of measurements and outcomes. In contrast there have been few useful 

measurements of code. In this paper we describe the Qualitas Corpus, infrastructure 

that supports taking and sharing measurements of code artifacts. 

 

Barriers to measuring code and understanding what the measurements mean include 

access to code to measure and the tools to do the measurement. The advent of open 

source software (OSS) has meant significantly more code is now accessible for 

measurement than in the past. This has led to an increase in interest in empirical 

studies of code. However, there is still a non-trivial cost to gathering the artifacts 

from enough OSS projects to make a study useful. One of the main goals of the 
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Qualitas Corpus is to substantially reduce the cost of performing large empirical 

studies of code. 

 

However, just measuring code is not enough. We need models explaining the 

relationship between the measurements and the quality attributes, and we need 

experiments to validate those models. Validation does not come through a single 

experiment—experiments must be replicated. Replication requires at least 

understanding of the relationship between the artifacts used in the different 

experiments. In some forms of experiments, we want to use the same artifacts so as 

to be able to compare results in a meaningful way. This means we need to know in 

detail what artifacts are used in any experiment, meaning an ad hoc collection of 

code whose contents is unknown is not sufficient. What is needed is a curated 

collection of code artifacts. A second goal of the Qualitas Corpus is to support 

comparison of measurements of the same artifacts, that is, to provide a reference 

corpus for empirical studies of code. 

 

The contributions of this paper are: 

• We present arguments for the provision of a reference corpus of code for empirical 

studies of code. 

• We identify the issues regarding performing replication of studies that analyse Java 

code. 

• We describe the Qualitas Corpus, a curated collection of Java code that reduces the 

cost and increases the replicability of empirical studies. 

 

The rest of the paper is organised as follows. In the next section we present the 

motivation for our work, which includes inspiration from the use of corpora in 

applied linguistics and the limited empirical studies of code that have been 

performed. We also discuss the use of reference collections in other areas of software 

engineering and in computer science, and discuss the need for a curated collection of 

code. In section III we discuss the challenges faced when doing empirical studies of 

code, and from that, determine the requirements of a curated corpus. Section IV 

presents the details of the Qualitas Corpus, its current organisation, immediate future 

plans, and rationale of the decisions we have taken. Section V evaluates the Qualitas 

Corpus. Finally we present our conclusions in section VI. 
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11.2 Motivation and Related Work 
 

The use of a standard collection of artifacts to support study in an area is not new, 

neither in general nor in software engineering. One area is that of applied linguistics, 

where standard corpora are the basis for much of the research being done. Hunston 

[Hun02] opens her book with “It is no exaggeration to say that corpora, and the 

study of corpora, have revolutionised the study of language, and of the applications 

of language, over the last few decades.” Ironically, it is the availability of software 

systems support for language corpora that has enabled this form of research, whereas 

researchers examining code artifacts have been slow to adopt this idea. While the 

goals of applied linguistics research are not exactly the same as ours, the similarities 

are close enough to warrant examining how corpora are used in that field. Their use 

of corpora is a major motivation for the Qualitas Corpus. We will discuss language 

corpora in more detail in section III. 

 

11.2.1 Empirical studies of Code 
 
To answer the question of whether a code corpus is necessary, we sample past 

empirical studies of code. By “empirical study of code” we mean a study in which 

the artifacts under investigation consist of source code, there are multiple, unrelated, 

artifacts, and the artifacts were developed independently of the study. This rules out, 

for example, studies that included the creation of the code artifacts, such as those by 

Briand et al. [BWDP00]or Lewis et al. [LHKS91], and studies of one system, such as 

that by Barry [Bar89]. 

 

Empirical studies of code have been performed for at least four decades. As with 

many other things, Knuth was one of the first to carry out empirical studies to 

understand what code that is actually written looks like [Knu71]. He presented a 

static analysis of over 400 FORTRAN programs, totaling about 250,000 cards, and 

dynamic analysis of about 25 programs. He chose programs that could “run to 

completion” from job submissions to Stanford’s Computation Center, various 

subroutine libraries and scientific packages, contributions from IBM, and personal 

programs. His main motivation was compiler design, with the concern that compilers 

may not optimise for the typical case as no-one knew what the typical case was. The 

programs used were not identified. 
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In another early example, Chevance and Heidet studied 50 COBOL programs also 

looking at how language features are used [CH78]. The programs were also not 

identified and no details were given of size. 

 

Open source software has existed for several decades, with systems such as Unix, 

emacs, and TEX. Their use in empirical studies is relatively recent. For example, 

Miller et al. [MFS90] studied about 90 Unix applications (including emacs, TEX, 

LATEX, yacc) to determine how they responded to input. Frakes and Pole [FP94] 

used Unix tools as the basis for a study on methods for searching for reusable 

components. 

 

During the 1990s the number of accessible systems increased, particularly those 

written in C++, and consequently the number of studies increased. Chidamber and 

Kemerer applied their metrics to two systems, one had 634 C++ classes, the other 

had 1459 Smalltalk classes [CK94]. No further information on the systems was 

given. 

 

Bieman and Zhao studied inheritance in 19 C++ systems, ranging from 7 classes to 

922 classes in size, with 2744 classes in total [BZ95]. They identified the systems 

studied, but did not identify the versions for all systems. 

 

Harrison et al. applied two coupling metrics to five collections of C++ code, 

consisting of 96, 197, 113, 61, and 12 classes respectively [HCN98]. They identified 

the systems involved but not the versions studied. 

 

Chidamber et al. studied three systems, one with 45 C++ classes, one with 27 

Objective C classes, and one identifying 25 classes in design documents [CDK98]. 

They were required to restrict information about the systems studied for commercial 

reasons. 

 

By the end of the millennium, repositories supporting open source development such 

as sourceforge, as well as the increase in effectiveness of Internet search systems, 

meant a large number of systems were accessible. This affected both the number of 

studies done, and often their size. A representative set of examples include one with 
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3 fairly large Java systems [WC03], a study of 14 Java systems [GM05], and a study 

of 35 systems, from several languages including Java, C++, Self, and Smalltalk 

[PNFB05]. 

 

Two particularly large studies were by Succi et al. [SPD+05] and Collberg et 

al[CMS04]. Succi et al. studied 100 Java and 100 C++ applications. The Java 

applications ranged from 28 to 936 classes in size (median 83.5) and the C++ 

applications ranged from 30 to 2520 classes (median 59). The actual applications 

were not identified. Collberg et al. analysed 1132 Java jar files collected from the 

Internet. According to their statistics they analyse a total of 102,688 classes and 

12,188 interfaces. No information was given as to what applications were analysed. 

 

The studies described above suggest that there is interest in doing studies that involve 

analysing code and the ability to do such studies has significantly advanced our 

knowledge about the characteristics of code structure. There are several issues with 

these studies however. The first is that none of these studies use the same set of 

systems, making it difficult to compare or combine results. Another is that because 

full details of the systems analysed are not provided, we are limited in our ability to 

replicate them. A third issue is that it is not clear that even the authors are fully aware 

of what they have studied, which we discuss further below. Finally, while the authors 

have gone to some effort to gather the artifacts needed for their study, few others are 

able to benefit from that effort, meaning each new study requires duplicated effort. 

The Qualitas Corpus addresses these issues. 

 

11.2.2 Infrastructure for empirical studies 
 

Of course the use of standard collections of artifacts to support research in computer 

science and software engineering is not new. The use of benchmarks for various 

forms of performance testing and comparison is very mature. One recent example is 

the DaCapo benchmark suite by Blackburn et al. [BGH+06], which consists of a set 

of open source, real world Java applications with non-trivial memory loads. Another 

example of research infrastructure is the New Zealand Digital Library project, which 

provides the technology for the creation of digital libraries and is publicly available 

so that others can use it [WCA96]. 
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There are also some examples in Software Engineering. One is the Software-artifact 

Infrastructure Repository (SIR) [DER05]. The explicit goal of SIR is to support 

controlled experimentation in software testing techniques. SIR provides a curated set 

of artifacts, including the code, test suites, and fault data. SIR represents the kind of 

support the Qualitas Corpus is intended to provide. We discuss SIR’s motivation in 

the section III. 

 

Bajracharya et al. describe Sourcerer, which provides infrastructure to support code 

search [BNL+06]. At the time of publication, the Sourcerer database held 1500 real-

world open source projects, a total of 254,049 Java classes, gathered from 

Sourceforge. Their goals are different to ours, but it does give an indication as to 

what is available. Finally, we must mention the Purdue Benchmark Suite. This was 

described by Grothoff et al. in support of their work on confined types [GPV01]. It 

consisted of 33 Java systems, 5 with more than 200 classes, and a total of 46,165 

classes. At the time it was probably the largest organised collection of Java code, and 

was the starting point for our work. 

 

11.2.3 The need for curation 
 

If two studies that analyse code give conflicting reports of some phenomena, one 

obvious possible explanation is that the studies were applied to different samples. If 

the two studies claimed to be analysing the same set of systems, we might suspect 

error somewhere, although it could just be that the specific versions analysed were 

different. In fact, even if we limit our sample to be from open source Java systems, 

there is still room for variation even within specific versions, as we will now discuss. 

 

In an ideal world, it would be sufficient for a researcher to just analyse what was 

provided on the system’s download website. However, it is not that simple. Open 

source Java systems come in both deployable (“binary”) and source versions of the 

code. While we are interested in analyzing the source code, in some cases it is easier 

to analyse the binary version. However, it is frequently the case that what is 

distributed in the source version is not the same as what is in the binary version. The 

source often includes “infrastructure” code, such as that used for testing, code 

demonstrating aspects of the system, and code that supports the installation, building, 

or other management tasks of the code. Such code may not be representative of the 
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deployed code, and so could bias the results of the study. In some cases, this extra 

code can be a significant proportion of what is available. For example, 

jFin_DateMath version R1-0.0 has 109 top-level non-test classes and 38 JUnit test 

classes. If the goal of a study is to characterize how inheritance is used, then the 

JUnit classes (which extend TestCase) could bias the result. Another example is 

fitjava version 1.1, which has 37 top level classes, and, in addition, 22 example 

classes. If there are many example classes, which are typically quite simple, then 

they would bias the results in a study to characterise some aspect of the complexity 

of the system design. 

 

Another issue is identifying the infrastructure code. Different systems organise their 

source code in different ways. In many cases, the source code is organised as 

different source directories, one for the system source, one for the test infrastructure, 

one for examples, and so on. However there are many other organisations. For 

example, gt2 version 2.2-rc3 has nearly 90 different source directories, of which only 

about 40 contain source code that is distributed in binary form. 

 

The presence of infrastructure code means that a decision has to be made as to what 

exactly to analyse. Without careful investigation, researchers may not even be aware 

that the infrastructure code exists and that a decision needs to be made. If this 

decision is not reported, then it impacts other researchers’ ability to replicate the 

study. It may be possible to avoid this problem by just analysing the binary form of 

the system, as this can be expected to represent how the system was built. 

Unfortunately, some systems do include infrastructure code in the deployed form. 

 

Another complication is third-party libraries. Since such software is usually not 

under the control of the developers of the system, including it in the analysis would 

be misleading in terms of understanding what decisions have been made by 

developers. Some systems include these libraries in their distribution and some do 

not. Also, different systems can use the same libraries. This means that third-party 

library use must be identified, and where appropriate, excluded from the analysis, to 

avoid bias due to double counting. 

 

Identifying third-party libraries is not easy. Some systems are deployed as many 

archive (jar) files, meaning it is quite time-consuming to determine which are third-
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party libraries and which are not. For example, compiere version 250d has 114 

archive files in its distribution. Complicating the identification of third-party libraries 

is the fact that some systems have such libraries packaged along with the system 

code, that is, the library binary code has been unpacked and then repacked with the 

binary system code. This means excluding library code is not just a matter of leaving 

out the relevant archive file. 

 

Some systems are careful to identify what third-party systems are included in the 

distribution (eclipse for example). However usually this is in simple text document 

that must be processed by a human, and so some judgement is needed. 

 

Another means to determine what to analyse might be to look at the code that 

appears in both source and binary form. Since there is no need for third-party source 

to be distributed, we might reasonably expect it would only appear in binary form. 

However, this is not the case. Some systems do in fact distribute what appears to be 

original source of third-party libraries (for example compiere version 250d has a 

copy of the Apache Element Construction Set35  that differs only in one class and that 

only by a few lines). Also, some systems provide their own implementations of some 

third-party libraries, further complicating what is system code and what is not. 

 

In conclusion, to study the code from a collection of systems it is not sufficient to 

just analysis the downloaded code, whether it is binary or the original source. 

Decisions need to be made regarding exactly what is going to be analysed. If these 

decisions are not reported, then the results may be difficult to analyse (or even fully 

evaluate). If the decisions are reported, then anyone wanting to replicate the study 

has, as well as having to recreate the collection, the additional burden of accurately 

recreating the decisions. 

 

If the collection is curated, that is, the contents are organised and clearly identified, 

then the issues described above can be more easily managed. This is the purpose of 

the Qualitas Corpus. 

 

 

                                                
35 http://jakarta.apache.org/ecs 
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11.3 Designing a Corpus 
 

In discussing the need for the Software-artifact Infrastructure Repository (SIR), Do 

et al. identified five challenges that need to be addressed to support controlled 

experimentation: supporting replicability across experiments; supporting aggregation 

of findings; reducing the cost of controlled experiments; obtaining sample 

representativeness; and isolating the effects of individual factors[DER05]. Their 

conclusion was that these challenges could be addressed to one degree or other by 

creating a collection of relevant artifacts. 

 

When collecting artifacts, the target of those artifacts must be kept in mind. 

Researchers use the artifacts in SIR to determine the effectiveness of techniques and 

tools for testing software, that is, the artifacts themselves are not the objects of study. 

Similarly, benchmarks are also a collection of artifacts where they are not the object 

of study, but provide input to systems whose performance is the object of study. 

While any collection of code may be used for a variety of purposes, our interest is in 

the code itself, and so we refer to our collection as a corpus. 

 

Corpora are now commonly used in linguistics and there are many used in that area, 

such as the International Corpus of English[Eng10]. The development of standard 

corpora for various kinds of linguistics work is an area of research in itself. Hunston 

says the main argument for using a corpus is that it provides a reliable guide to what 

language is like, more reliable than the intuition of native speakers [Hun02, p20]. 

This applies to programming languages as well. While both research and trade 

literature contain many claims about use of programming language features, code 

corpora could be used to provide evidence for such claims.  

 

Hunston lists four aspects that should be considered when designing a corpus: size, 

content, representativeness, and permanence. Regarding size, she makes the point 

that it is possible to have too much information, making it difficult to process it in 

any useful way, but that generally linguistics researchers will take as much data as is 

available. For the Qualitas Corpus, our intent is to make it as big as is practical, given 

our goal of supporting replication. 
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According to Hunston, the content of a corpus primarily depends on the purpose it 

used for, and there are usually questions specific to a purpose that must be addressed 

in the design of the corpus. However, the design of a corpus is also impacted by what 

is available, and pragmatic issues such as whether the corpus creators have 

permission from the authors and publishers to make the contents available. The 

primary purpose that has guided the design of the Qualita Corpus has been to support 

studies involving static analysis of code. The choice of contents is due to the large 

number of open source Java systems that are available. 

 

The representativeness of a corpus is important for making statements about the 

population it is a sample of, that is, the generalisability of any conclusions based on 

its study. Hunston describes a number of issues that impact the design of the corpus, 

but notes that the real question is how the representativeness of the corpus should be 

taken into account when interpreting results. The Qualitas Corpus supports this 

assessment by providing full details of where its entries came from, as well as 

metadata on such things as the domain of an entry. 

 

Finally, Hunston notes that a corpus needs to be regularly updated in order to remain 

representative of the current usage, and so its design must support that. 

 

11.4 The Qualitas Corpus 
 

The current release is 20100719. It has 100 systems, 23 systems with multiple 

versions, with 495 versions total. The full distribution is 9.42GiB in size, which is 

32.8GiB once installed. It contains the source and binary forms of each system 

version as distributed by the developers (section IV-B). The 100 systems had to meet 

certain criteria (section IV-C). These criteria were developed for the first external 

release, one consequence of which is that some systems that were considered part of 

the corpus previously now are not as they do not meet the criteria (section IV-I). 

There are questions regarding what things are in the corpus (section IV-E). The next 

release is scheduled for the end of October 2010 (section IV-J). 
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Figure 1. Organisation of Qualitas Corpus. 

 

As discussed previously, the main goals for the corpus are that it reduces the costs of 

studies and supports replication of studies. These goals have impacted the criteria for 

inclusion and the corpus organisation. 

 

11.4.1 Organisation 
 

The corpus contains of a collection of systems, each of which consists of a set of 

versions. Each version consists of the original distribution (compressed) and two 

“unpacked” forms, bin and src. The unpacked forms are provided in order to reduce 

the costs of performing studies. The bin form contains the binary system as it was 

intended to be used, that is, Java bytecode. The src form contains everything in the 

source distribution. If the binary and source forms are distributed as a single archive 

file, then it is unpacked in src and the relevant files are copied into bin. There is also 

a metadata directory that contains detailed information about the contents of the 

version and a file .properties that contains information on specific attributes of the 

version (section IV-D). 
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Figure 2. Systems in the Qualitas Corpus. 

 

The original distribution is provided exactly as downloaded from the system’s 

download site. This serves several purposes. First, it means we can distribute the 

corpus without creating the bin and src forms, as they can be automatically created 

from the distributed forms, thus reducing the size of the corpus distribution. Second, 

it allows any user of the corpus to verify that the bin and src forms match what was 

distributed, or even create their own form of the corpus. Third, many distributions 

contain artifacts other than the code in the system, such as test and build 

infrastructure and so we want to keep these in case someone wishes to analyse them 

as well. 

 

We use a standard naming convention to identify systems and versions. A system is 

identified by a string that cannot contain any occurrence of “-”. A version is 

identified by <system>-<versionid>, where <system> is the system name, and 

<versionid> is some system-specific version identifier. Where possible, we use the 

names used by the original distribution. So far, the only case where we have not been 

able to do this is when the system name contains “-”, which we typically replace with 

“_”. 

 

Figure 1 shows an example of the distribution for ant. There are 19 versions of ant, 

from ant-1.1 to ant-1.8.0. The original distribution of ant-1.8.0 consists of apache-

ant-1.8.0-bin.zip, containing the deployable form of ant, which is unpacked in bin, 

and apache-ant-1.8.0-src.zip containing the source code, unpacked in src. 
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Figure 3. Distribution of sizes of systems (y is log scale). 

 

Table 1: Domains Represented in the Corpus 

 

11.4.2 Contents 
 

Figure 2 lists the systems that are current represented in the corpus. Figure 3 gives an 

idea of how big the systems are, when listing the latest version of each system in the 

current release in order of number of top-level types (that is, classes, interfaces, 

enums, and annotations). Note that the y-axis is on a log scale. Table I shows the 

representativeness of the corpus in terms of domains represented and number of 

systems in each domain. 

 

For the most part, the systems in the corpus are open source and so the corpus can 

contain their distributions, especially as what is in the corpus is exactly what was 

downloaded from the system download site. One exception to this is jre. The license 

agreements for the binary and source distributions appear to not allow their inclusion 
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in the corpus. Since jre is an interesting system to analyse, we consider it part of the 

corpus however corpus users must download what they need from the Java 

distribution site. What is provided by the corpus for jre is the metadata similar to that 

for other systems. 

 

11.4.3 Criteria for inclusion 
 

Currently, the criteria for a system to be included in a release of the corpus are as 

follows: 

 

1) In the previous release We do not want to remove things from a release that was 

in a previous release. This allows people to have the latest release and yet still be 

able to reproduce studies based on previous releases. While we intend to continue to 

distributed previous releases, we assume most people would prefer not to have to 

juggle multiple versions of the corpus. 

 

2) Written in Java The choice of Java is due to both the amount of open source code 

available (far more than C# at the moment, although perhaps not as much as C++) 

and the relative ease with which it can be analysed (unlike, for example, C++). 

Should the opportunity arise, other languages will be added, but doing so is not a 

priority at the moment. 

 

3) Distributes both source and binary forms One advantage with Java is that its 

“compiled” form is also fairly easy to analyse, easier than for the source code in fact 

(section IV-E), however there are slight differences between the source and binary 

forms. Having both forms means that analysis results from the binary form can be 

manually checked against the source. 

 

In order for it to make sense to have both source and binary forms, the binary form 

must really be the binary form of the source. It is expensive (in time) to download 

source and then compile it as every project has a different build technology (e.g. ant, 

bat files, uses eclipse infrastructure) that takes significant effort to understand. We 

have made the decision to simply take what is distributed by the developers, and 

assume that the binary form is from the source that is distributed. For this reason, we 
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only include systems that do actually distribute both forms in a clearly identifiable 

way. 

 

This rules out, for example, systems whose source are only available through a 

source control system. While in theory it should be possible to extract the source 

relevant to a given binary release, being confident that we can extract exactly the 

right versions of each file is sufficiently hard that we just avoid the problem at the 

moment. In the future we hope to relax this, at least for systems where the relevant 

source version is clearly labelled. 

 

4) Distribute binary forms as a set of jar files The binary form of systems included 

in the corpus must be bundled as .jar files, that is, not .war, .ear, etc, and not 

unbundled .class files. This is solely due to the expectations of our tools for 

managing the corpus and doing analysis using the corpus. This criterion will 

probably be the first to completely go away. 

 

5) Available to anyone independent of the corpus This criterion is intended to 

avoid ephemeral systems that crop up from time to time, or systems that are only 

known to us that cannot be acquired by other researchers. This allows the possibility 

of others to independently check the decisions we have made. This is the hardest one 

to meet, as we cannot be sure when development will stop on some system. Some 

systems we used (and analysed) before the first external release of the corpus have 

suffered this fate, and so are not in the corpus. In fact we already have the situation 

where the version of a system we have in the corpus is now apparently no longer 

available, as the developers only appear to keep (or make available at least) the most 

recent versions. Due to criterion 1, we have chosen to keep these, even though they 

may not now be available to everyone. 

 

6) Identifiable contents As discussed in section II-C, it is not always easy to 

determine what the contents of a system are. If there is uncertainty regarding the 

contents of a system, we do not include it. For example, the binary form of netbeans 

has 400+ jar files. Trying to determine what is relevant and what is not has proven to 

be a challenge that we are still struggling with, and so it is not in the corpus (yet). 

These criteria were developed to simplify the management of the corpus. Eventually 

we hope some of them will be relaxed (e.g. 2 and 4) or will have less impact (e.g. 6). 
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11.4.4 Metadata 
 

As part of the curation process we gather metadata about each system version, and 

we will continue to improve what metadata is provided (section IV-J). The corpus 

provides this metadata in part to resolve the issues discussed in section II-C. Ideally 

we would like have the exact specification as to what the developers consider to be 

“in” the system however it is a very time consuming process to get such information 

and it is not clear that even the developers would necessarily agree amongst 

themselves. Instead, we follow these two principles: 

 

• Do not include something in a given system if it could also appear in some other 

system in the corpus. This will avoid (or at least reduce) double-counting of code 

measurements that are done over the entire corpus. 

 

• Make some decision about what is in a system and document it. This means that 

even if the decision is not necessarily the best, others trying to reproduce a given 

analysis will know what actually was analysed. One place where metadata is kept is 

in a .properties file (see Figure 1). This file is formatted so that it can be easily 

managed using java.util.Properties. 

 

For example, the decision we have made regarding what is identified as being in a 

given version of a system is recorded in the sourcepackages field of the .properties 

file. This is a space-separated list of prefixes of packages of Java types. Any type 

whose fully-qualified name has one of the listed package prefixes as a prefix of the 

name is considered a type that was developed for the system, and everything else is 

considered as being a library type. For example, for azureus-3.0.3.4, its 

sourcepackages value is “org.gudy.com.aelitis”, indicating that types such as com. 

aelitis.azureus.core.AzureusCore and org.gudy.azureus2.core3.util.FileUtil are 

considered part of that version of azureus, whereas org.pf.file.FileUtil (which is 

distributed in with azureus) would not. 

 

Other metadata we keep in .properties includes the release date of the version, notes 

regarding the system and individual versions, domain information, and where the 
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system distribution came from. The latter allows users of the corpus to check corpus 

contents for themselves. 

 

The most significant development in the latest release has been the addition of 

significantly more metadata. We have improved the domain identification to use a 

more rigorous classification system (as shown in table I). We now also list, for every 

.java file in src and every .class file found in an archive in bin, the actual location of 

the file, plus information regarding how the Java type these files corresponds to is 

classified in the corpus. 

 

Figure 4 shows an example of the data provided. It shows three entries for ant-1.8.0 

(out of 2786). The first and third entries show that there are both .class (column 2) 

and .java files (column 3) corresponding to the Java types 

org.apache.tools.zip.ZipEntry and org. apache.tools.zip.ZipExtraField. The middle 

entry, for org.apache.tools.zip.ZipEntry, does not have data in column 2 indicating 

that while there is source code for it, it is not part of the ant deployment. Column 4 

indicates whether the entry corresponds to a type identified as being in the system 

(that is, matches the sourcepackages value), with 0 indicating it does. Column 5 

provides a summary of what forms the type exists in the corpus (0 meaning it is in 

both src and bin, 1 for bin only, and 2 for src only). The next column indicates 

whether or not the entry is for a type that is considered “distributed”. Such types 

should also occur in bin, so this information can be used to identify non-public 

types—types that are declared in files with different names. Such types would be 

recorded as being not distributed but in bin. The remaining columns show whether 

types are public or non-public, number of physical lines of code, and the number of 

non-commented non-blank lines. 

 

The information shown in Figure 4 is provided in a tab separated file, along with 

scripts that do basic analysis and which can be extended by users of the corpus. 

 

Figure 4. Metadata for system version content details for ant-1.7.1. Some names have 

been elided for space. 
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11.4.5 Issues 
 

Given the goal of replication of studies, the biggest challenge we have faced is 

clearly identifying the entities, as discussed in section II-C. There are, however, other 

issues we face. One is that systems change their name, such as the system that used 

to be called azureus now being called vuze. This creates the problem of whether the 

corpus entry should also change its name, meaning corpus users would have to be 

aware of this change when comparing studies done on different releases of the 

corpus, or maintaining the old name in the corpus. We have chosen the latter 

approach. 

 

Another issue is what to do when systems stop being supported or otherwise become 

unavailable. One example of this issue is jgraph, which is no longer open source. 

Since we keep the original distribution as part of the corpus, there should be no 

problem with simply keeping such systems in the corpus. While we target systems 

we hope will be long-lived for inclusion in the corpus, we cannot guarantee that the 

systems will in fact continue to exist. Already there are a number of systems in the 

corpus that no longer appear to be actively developed (e.g., fitjava, jasml, jparse—

see section IV-J). For now we will just note the status of such systems. 

 

11.4.6 Content Management 
 

Following criterion 1, a new release of the corpus contains all the versions of systems 

in the previous release. There are however some changes between releases. If there 

are errors in a previous release (e.g. missing or wrong metadata, misnamed systems 

or versions, problems with installation) then we will fix them, while providing 

enough information to allow people to determine how much the changes may affect 

attempts to reproduce previous studies. 

 

We have developed processes over time to support the management of the corpus. 

The two main processes are for making a new entry of a version of a system into the 

corpus, and creating a distribution for release. In the early days, these were all 
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manual, but now, with each new release, scripts are being developed to automate 

more parts of the process. 

 

11.4.7 Distributing the Corpus 
 

To install the copy one acquires a distribution for a particular release. The release 

indicates the decision point as to what is in the corpus and so is used for 

identification in studies (section IV-H). A given distribution of a release provides 

support for particular kinds of studies. For example, one distribution contains just the 

most recent version of each system in the corpus. For those interested in just 

“breadth” studies, this distribution is simpler to deal with (and much smaller to 

download). As the corpus grows in size we anticipate other distributions will be 

provided. 

 

Releases are identified by their date of release (in ISO 8601 format). The full 

distribution uses the release date, whereas any other distribution will use the release 

date annotated to indicate which distribution it is. For example, the current release is 

20100719 and the distribution containing only the most recent versions of systems is 

20100719r. 

 

11.4.8 Using the Corpus 
 

The corpus is designed to be used in a specific way. A properly-installed distribution 

has the structure described in section IV-A. If every study is performed on the 

complete contents of a given release, using the metadata provided in the corpus to 

identify the contents of a system (in particular sourcepackages, section IV-D), then 

the results of those studies can be compared with good confidence that comparison is 

meaningful. Furthermore, what is actually studied can be described succinctly by just 

by indicating the release (and if necessary, particular distribution) used. 

 

There is, however, no restriction on how the corpus can be used. It has been quite 

common, for example, to use a subset of its contents in studies. In such cases, in 

addition to identifying the release, we recommend that either what has been included 

be identified by listing the system versions used, or what has been left out be 
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similarly identified. If systems not in the corpus are also used in a study, then not 

only do the system versions need to be identified, but some discussion regarding how 

the issues described in section II-C have been resolved, and, ideally, some indication 

as to how others can acquire the same system code distributions. 

 

11.4.9 History 
 

The Qualitas Corpus was initially conceived and developed by one of us (Melton) for 

Ph.D. research during 2005. Many of the systems were chosen because they have 

been used in other studies (e.g., [GPV01][GM05][PNFB05]) although not all were 

still available. In its first published use (the work was done in 2005 but published 

later) there were 21 systems in the corpus [MT07a]. 

 

The original corpus was used and added to by members of the University of 

Auckland group over the next three years, growing from 21 systems initially. It was 

made available for external release in January of 2008, containing 88 systems, 21 

systems with multiple versions, a total of 214 entries. As noted earlier, some of the 

systems that were originally in the corpus and used in studies before its release did 

not meet the criteria used for the external distributions. By the end of 2008, there 

were 100 systems in the corpus. Since then, development of the corpus has focused 

on improving the quality of the corpus, in particular the metadata. 

 

As the corpus has developed it has undergone some changes. The main changes have 

been in terms of the metadata that is maintained, however there has also been a 

change in terminology. Initially, the terminology used was that the corpus contained 

“versions” of “applications”, however “application” implied something that 

functioned independently. This created confusion for such things as jgraph or 

springframework, which are not useful by themselves. We now use “versions” of 

“systems”. 

 

11.4.10 Future Plans 
 
Our plans for the future of the corpus include growing it in size and 

representativeness (section V), making it easier to use for studies, and providing 

more “value add” in terms of metadata. As noted earlier, the next release is planned 
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for late October 2010. The main goals for this release are to add new systems and to 

add the latest version of each of the existing systems. 

 

One consequence of those outside the University of Auckland group using the corpus 

has been suggestions for systems to add. These will be the main candidates for new 

systems to be added. We will mainly consider large systems for this release. In the 

past such systems have typically been very expensive to process, however the scripts 

that produce the metadata described above will reduce that cost, making it easier to 

grow the corpus this way. This should allow us to, for example, include systems with 

complex structures such as netbeans. 

 

Another consequence of people using the corpus is the need to perform studies 

different to what we originally envisaged. One example of this is that some studies 

need to have a complete deployable version of a system (e.g. for dynamic analysis). 

As we originally were only thinking of doing static analysis, we did not by default 

include third-party libraries in the corpus. We have now begun developing the 

infrastructure to provide versions that are deployable. As there are more users of the 

corpus, more information (such as measurements from metrics) about the systems in 

the corpus is being gathered. We would like to include some of these measurements 

as part of the metadata in the future. 

 

11.5 Discussion 
 

The Qualitas Corpus has been in use now for 5 years, and has been made externally 

available for just over 2 years. There have been over 30 publications describing 

studies based on its use (see http://www.cs.auckland.ac.nz/~ewan/corpus for details ). 

Increasingly, the publications are by researchers not connected to the original 

development group. It is in use by about 15 research groups spread across 9 

countries. It is being used for Ph.D., Masters, and undergraduate research. Some of 

the users have started contributing to the development of the corpus, as evidenced by 

the author list of this paper. 

 

Looking at how the corpus has been used, primarily it has been used to reduce the 

cost for developing experiments. It is difficult to determine the cost of the 
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development of the corpus since early on it was done as an adjunct to research, rather 

than the main goal. However it is certainly more than 1000 hours and could easily be 

double that. Any user of the corpus directly benefits from this effort. Some users 

have in fact used the corpus merely as a starting point and added other systems of 

interest to them. In some cases, those other systems have been commercial systems, 

allowing relatively cheap comparison between commercial and open source code. 

 

There has been less use of the ability to replicate experiments or compare results 

across experiments. Given that the corpus has only been available relatively recently, 

this is perhaps not surprising. Once other measurements and metadata become part of 

the corpus itself, we hope this will change. 

 

As Do et al. note, use of infrastructure such as the Qualitas Corpus can be both of 

benefit and can introduce problems [DER05]. They note that misuse by users who 

have not followed directions carefully can be a problem, as we have also 

experienced. An example of where that can be a problem with the corpus is not using 

the sourcepackages metadata to identify system contents, meaning it is not clear 

which entities have being studied. 

 

The main issue with the corpus is its representativeness. For now, it contains only 

open source Java systems. This issue is faced by any empirical study, but any users 

of the corpus must address it when discussing their results. Hunston observes that 

there are limitations on the use of corpora [Hun02]. While the points she raises (other 

than representativeness) do not directly relate to the Qualitas Corpus, they do raise an 

issue that does apply. The code in the corpus shows us what a software developer 

wrote, but what it cannot tell us is the intent of the developer. 

 

11.6 Conclusions 
 

In order to increase our ability to use measurement of code to support software 

development practise we need to do more measurement of code in research. We have 

argued that this requires large, curated, corpora with which to conduct code analysis 

empirical studies. We have discussed the issues associated with developing such 

corpora and how these might impact their design. 



260 
 

 

In this paper we have presented the Qualitas Corpus, a curated collection of open-

source Java systems. This corpus significantly reduces the cost of empirical studies 

of code by reducing the time needed to find, collect, and organize the necessary code 

sets to the time needed to download the corpus. The metadata provided with the 

corpus provides an explicit record of decisions regarding what is being studied. This 

means that studies conducted with the corpus are easily replicated, and the results 

from different kinds of studies are more likely to be able to be sensibly compared. 

 

The Qualitas Corpus is the largest curated corpus for code analysis studies, with the 

current version having 495 code sets, representing 100 unique systems. The next 

release will significantly increase that. The corpus has been successful, in that it is 

now being used by groups outside its original creators, and the number and size of 

code analysis studies has significantly increased since it has become available. We 

hope that it will further encourage replication and sharing of experimental results. 

The corpus will continue to be expanded in content and in provision of metadata, in 

particular its representativeness. 
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Chapter 12 Conclusions and Future Work 
	
 

In this chapter I describe the claimed contributions of this work, I evaluate its 

significance, I identify some possible criticisms of it, and finally I identify some 

directions for future work. 

 

12.1 Contributions of this Work 
 

The contributions of this work fall into roughly two categories: thematic and 

concrete.36 The thematic contributions provide evidence to support or refute various 

general themes in the field of software engineering; the concrete relate to specific 

empirical findings in the papers, and to the delivery of specific novel artifacts, and 

whether the stated goals (per Chapter 4 [Mel06]) of this work were achieved. 

 

Thematically, by virtue of the fact these works have been accepted in refereed 

venues and have become quite widely-cited, it is my claim that my thesis 

statement—that carefully conducted empirical studies of just internal attributes can 

help to advance knowledge in the field of software structure—has to a large extent 

been shown to be true. This is contrary to the views of many in the empirical 

software engineering community who seem to think that the only useful studies are 

those that seek to establish an empirical relationship between internal and external 

software attributes [Par03]. 

 

Also thematically, it is my claim that without the use of a well thought-out, curated 

corpus of Java software, the results in these works would have been far less 

compelling and likely would not have been accepted for publication in the quality of 

venues they ultimately were. My approach to evolving the corpus over the course of 

this research was largely influenced by Hunston’s book on Corpora in Linguistics 

[Hun02]. There is something compelling about results being collected from curated 

corpus that is deliberately constructed so the software in it varies along a number of 

dimensions e.g., domain, size, whether library or application, and that also 

                                                
36 Other authors have categorized the nature of contributions in a manner similar to that I have here 
[BM85]. 
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deliberately varies longitudinally—so for some projects in it, multiple versions are 

present. What is also unique about the curated corpus is it contains both source code 

and compiled binaries so specific causes of a structural phenomenon can be 

examined in the former, and so that tools to analyze the phenomenon can more easily 

be constructed using the latter. What is further useful about the corpus is that the 

actual source code written for a project is distinguished from the external code e.g., 

libraries on which it depends to avoid double counting. Other corpora used prior to 

this work, as referenced in Chapter 11 [TAD+10], generally do not possess these 

properties, and therefore may lead to less compelling results when used as the sample 

of study. 

 

A final theme, relevant to the empirical software engineering community, is that 

measurement is what forces us to formalize what might otherwise be only our fuzzy 

intuition of things [FP96]. It is my claim that this body of work provides evidence to 

support this theme. I do not believe I would have come to the insights on the nature 

of coupling described in the introduction (and on the nature of modularity as in 

Chapter 8 [MT07e]) without going through this process of measuring forms of it. I 

also do not believe I would have had the insight on the formal (lower) limits of 

coupling briefly discussed in future work section below without it. Since, as 

described in the introduction the results of one publication in the body of work 

naturally led to questions that were answered in the next, it is not clear how the body 

of work might otherwise have progressed without the use of measurement. 

 

12.1.1 Retrospectives on the Stated Goals 
 

The stated goals of this work, as described in Chapter 4 [Mel06], were largely 

achieved, though some perhaps not in the exact way I had originally conceived. To 

reiterate, those goals were as follows, and a short retrospective on each is provided: 

• To better align research in software engineering with problems actually faced by 

practitioners. Since all of the studies in this work were performed on real-world 

software systems, and cycles and long transitive dependencies were found to be 

quite prolific among these, if one believes cycles are “bad” (more on this later in 

this section), then it does seem to follow that this research is highly relevant to 

practitioners. The remodularization effort in Java 9 and the US Patent Grant to 

IBM for breaking cyclic dependencies that are both referenced later in this 
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chapter are evidence of this. The body of PhD research conducted subsequently 

by Oyetoyan and described later in this chapter further supports this goal 

[Oye15]. 

• To better study the effect of design principles on software quality. In Chapter 4 

[Mel06] I noted that studies such as the ones I ultimately performed can help us 

to “get the best bang for our buck” by helping us to focus our efforts on problems 

that actually exist in real-world software. Cycles were found to be quite prolific 

in Java software and are often characterized as “bad” in the instructional 

literature on software design [MT07b], therefore it follows that my work should 

help us to focus our research efforts on understanding the effects of these cycles 

(as it has). Again, Oyetoyan’s PhD research which was largely motivated by this 

work confirms this [Oye15]. 

• To be more scientific in our research. It has been said that measurement and 

empiricism are key aspects of science [FP96], and this work certainly embodies 

both of these principles, with a curated corpus of Java software, and extensive 

measurement of the software in that corpus for the purposes of identifying and 

categorizing cycles.  

• To empirically establish a relationship between these [Lakos’ design] principles 

and understandability. Although I was unable to perform empirical studies 

linking cycles to external quality attributes such as understandability (largely due 

to time constraints), the insight that there may be an intermediate step involving 

an activity in performing such a validation is novel. In Chapter 1 I argued to this 

end, that sometimes—as with compilation dependencies among source files—

there are strong theoretical links to activities such as verbatim reuse of source 

code, incremental recompilation of Java source code, and as we shall see in a 

later in this chapter relating to the modularization of a system by packaging of 

classes into jar files—and that it may make more sense to try and relate these 

specific activities to external quality attributes. Further, the PhD research of 

Oyetoyan, which largely takes over where my own PhD research left off, does 

perform some studies that link these cycles (an internal attribute) to external 

attributes such as defect density and change proneness [Oye15].  

• To evaluate ways of disseminating my results to practitioners. I did not perform a 

formal evaluation of any of the approaches I took to disseminating my work to 

practitioners, but I did post to the mailing lists of several projects in the corpus 

my findings on transitive dependencies in them. Occasionally these postings led 
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to constructive conversations on those mailing lists  (see e.g., that on ArgoUML 

where the developers speculate on the cause of cycles with reference to specific 

classes in ArgoUML, and consider deploying my Jepends tool in their nightly 

build process)37. I also setup a webpage describing my work that was not behind 

a “paywall” so practitioners could read it38. Over the years I have had a few 

people contact me over those postings and that webpage—and I am encouraged 

to see Oyetoyan (described below) actually cited that webpage in his PhD thesis 

[Oye15]—but it is hard to very hard to quantify the effects these things had. 

• To make the Java corpus widely-accessible. Before I suspended my PhD at the 

University of Auckland, I copied the latest version of the corpus I had created to 

a shared disk, and explained both verbally and on an internal wikipage how I had 

structured it and the rationale for the various decisions I made in constructing it 

(e.g., why to have meta data on the download location, the source packages, why 

to include both binaries and source code etc) to my supervisor there (Ewan 

Tempero). Various modifications were made to the corpus since then—mostly 

what I would consider to be superficial changes—and ultimately (and pleasingly 

from a personal perspective for me) it was made available to the wider 

community by my supervisor.39 

 

12.1.2 Concrete Contributions 
 

In terms of the concrete contributions of this work, several tools were produced for 

extracting, quantifying and avoiding compilation dependencies among source files in 

Java. One was Jepends, which uses a modified form of Lagorio’s [Lag04] algorithm 

to quickly infer dependencies among a Java project’s source files, even if that project 

is not a compilable state [MT06]. This tool proved very useful for collecting the data 

in a number of the studies in this paper. Another tool that was produced was 

Jepends-BCEL, which examines Java byte-code of a compiled project to infer 

different forms of compilation dependencies among the classes in that project’s 

source (such as Lakos’ uses-in-size, uses-in-the-interface, and uses relations, adapted 

for Java) [MT07b]. That same tool implements Eade’s mEFS algorithm, Tarjan’s 
                                                
37 See e.g., ArgoUML: http://dev.axion.tigris.narkive.com/71EOIDE8/argouml-dev-structure-of-
argouml-oo-design, JMeter: http://www.jmeter-archive.org/Structure-of-JMeter-OO-Design-
td538956.html, JEdit: http://thread.gmane.org/gmane.editors.jedit.devel/9913 Soot: 
https://mailman.cs.mcgill.ca/pipermail/soot-list/2006-June/000706.html , and so on.    
38 https://www.cs.auckland.ac.nz/~hayden/research.htm 
39 http://qualitascorpus.com/ 
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Strongly Connected Component finding algorithm, and was used to collect various 

other metrics for the paper of Chapter 3 [BFN+06]. Most of the source code for the 

Jepends-BCEL tool was made publicly available via my personal webpage at the 

University of Auckland40, and this source code is what was extended by Oyetoyan in 

his own cycle breaking refactoring tool [OCTN15]. 

 

The final tool that was built, and that I claim to be a contribution of this work is JooJ 

the plugin for Eclipse (which I did not make available on the web, but have made 

available to researchers such as Oyetoyan [Oye15] at their request). The aim of this 

tool was largely to show that cycles can be detected in real-time and that feedback 

can be given to a software engineer who may have inadvertently created that cycle, 

in the same way that the Eclipse IDE gives immediate feedback that a line of code 

written by a software engineer contains a compilation error.  

 

Contributions in terms of results are as follows: 

  

Large cycles are common among the classes of Java software, regardless of their 

domain, size and nature (i.e., whether framework or application) [MT07b]. These 

cycles often require removal of many dependencies to break such cycles, as shown 

by the sizes of the approximated minimum edge feedback sets in these cycles. 

Oftentimes as a project evolves over time from one release to the next, cycles grow 

in size and connectedness. In a suite of commercial applications, developed by the 

same company, designs perceived to be “better” by the software engineers at that 

company were the ones without large cycles (perceptions of the design were solicited 

prior to sharing results on cycles with those software engineers). Metrics are 

proposed to distinguish intrinsic dependencies among classes in a domain from 

“unnecessary” ones, and in calculating edge feedback sets certain types of 

dependencies (e.g., inheritance) are excluded due to arguments that they are harder to 

break than others. 

 

Non-private static members may cause cycles, in that it is possible to access such 

members from anywhere in a project’s codebase. Even after controlling for the 

potentially confounding effect of size—larger classes which elsewhere have been 

                                                
40 https://www.cs.auckland.ac.nz/~hayden/software.htm 
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shown to have higher coupling—classes defining non-private static members are 

more likely to participate in cycles than those without static members [MT07d]. The 

use of default implementations in dependency injection, and the general lack in the 

extent to which it is used may also be a cause of large transitive dependencies. 

 

Various refactoring techniques were proposed for breaking cycles, based on the 

examination of real code. They include extracting an interface and either passing the 

implementation into the clients of that interface via dependency injection or via a 

reference to a registry of singletons. Large values for the CRSS metric and large 

numbers of simple cycles through a class may indicate it is a good candidate for 

refactoring [MT07a]. Extract interface forms of refactoring may prove very useful in 

reducing large transitive dependencies because (1) it was found that dependency 

injection is not widely used in Java software [YTM08] and (2) because the cycles in 

the public parts of classes are generally much smaller than those that occur when the 

private parts (implementation) of a class are also considered [MT07b] 

 

A new theory on relating internal attributes to external attributes by introducing an 

intermediary step was proposed. Insights in the “meaning of coupling” and the 

“meaning of modularity” are put forward in Chapter 1 and in Chapter 8 [MT07e] 

casting doubt on them in their long held classifications as internal attributes. It is 

argued that strong connections can be drawn between specific activities and these 

internal attributes, and that a new approach to correlating an internal attribute of code 

with an external quality attribute may be achieved by instead determining the extent 

to which the specific activity (e.g., verbatim reuse of source code) is an effective 

approach to reuse (or other quality attribute). 

 

The curated corpus of Java software I conceived and developed as part of this PhD 

research has been made available to and become widely used by researchers around 

the world.41 It has lowered their barriers to entry in performing empirical studies of 

structural attributes and has improved the reproducibility of their studies. Much like 

in the field of Corpus Linguistics, the Java corpus has become a thing of study unto 

itself (see e.g., [TMVB13] and [DSST17], as discussed in Chapter 1). It is my 

position that many of the works in this thesis would not have been accepted for 

                                                
41 http://qualitascorpus.com/ 
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publication in such prestigious venues, nor would those results and the conclusions 

drawn from them have been as convincing, if the results in those papers were 

presented without the use of this sizeable, carefully curated corpus. 

 

The CRSS metric and corresponding theory about why large values of it imply 

packages can’t be both stand-alone and of manageable size is put forward. 

Interestingly, calculation of the metric does not involve knowledge of what packages 

a class belongs to at all [MT07a]. Distributions of other metrics are examined with a 

view to determining which are invariant between projects and which vary-by-project 

[BFN+06]. Among those that appear invariant in their distribution though they might 

initially appear to follow a power law, statistically speaking, other types of 

distributions might model them just as well. 

 

12.1.3 Revisiting the Research Questions 
 

In this subsection I very briefly—so as to avoid belaboring that which has already 

been said in the introduction and middle chapters, and at times in other sections of 

this conclusions chapter—provide answers to the research questions that were, in the 

introduction, ascribed to each published paper (chapter) in this dissertation. 

 

RQ1: Can compilation dependencies among a Java project’s source files (only) 

be quickly and accurately computed without external libraries, build scripts and 

so on, and if so what observations can one make about those compilation 

dependencies in real-software? 

In Chapter 2 [MT06], I described a tool Jepends that implemented an adaptation of 

Lagorio’s algorithm for inferring dependencies among a Java project’s source files 

even when that project was missing external libraries, build scripts etc. As noted in 

the work the tool ran very quickly, and the computed dependencies were consistent 

with those appearing in the byte code of the corresponding classes, after known 

effects of the compilation process in Java were taken into account. What was found 

relating to transitive and direct compilation dependencies when the tool was run on a 

small number of real Java projects, was that the distribution of direct dependencies 

among classes seemed to be “power-law-ish”, yet the distribution of transitive 

dependencies varied greatly apparently due to the existence of many dependency 

cycles among some projects’ class files. 
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RQ2: In real Java software, which structural metrics seemingly have 

distributions that are invariant from project-to-project, and among those with 

invariant distributions are they really powerlaws? 

In Chapter 3 [BFN+06], a selection of metrics were collected from the corpus of Java 

software and what was found was that although the distribution of many metrics 

(e.g., fan-in, fan-out, number of methods per class, size of methods etc) appeared 

similar in shape regardless of what project they were computed on, the statistics 

showed they may not accurately be described as power laws, but rather just as 

‘truncated-curve’ distributions. The work concludes with the speculation that metrics 

capturing direct (cf. transitive) relationships may follow truncated-curve distributions 

because programmers, working on single source file at a time, are inherently more 

aware of what these metrics capture. 

 

RQ3: What is the intended approach, goals, and outcomes of this PhD research?  

In Chapter 4 [Mel06], the approach, goals and outcomes of this PhD research were 

set forth in this work which appeared in a doctoral symposium venue. The extent to 

which these things were (and were not) achieved is described in the two sections 

preceding this one. 

 

RQ4: In a corpus of real Java software what do the distribution of transitive 

dependencies among source files look like, and what are the implications in 

terms of software design quality of these distributions? 

In Chapter 5 [MT07a], transitive compilation dependencies were calculated over the 

source files in corpus of real Java software. What was found was that in many (but 

not all) Java projects “large” transitive dependencies existed. An argument was put 

forth for why these large transitive dependencies imply poor package structure—

particularly, in the presence of large transitive dependencies packages (or units of 

organization “above” that of classes such as jar files) imply that those packages 

cannot both be of manageable size and exhibit low coupling to one another. Specific 

examples of refactorings in real-software and their ability to reduce transitive 

dependencies were demonstrated. 
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RQ5: In a corpus of real Java software to what extent do cyclic dependencies 

exist and evolve over time, and in terms of software design quality what are 

reasonable metrics for measuring this? 

In Chapter 6 [MT07b], a major study on a large corpus of Java software comprising 

both commercial and open-source projects was performed and what was found—

contrary to the advice reviewed in the software design literature over the past 50 

years—was that long cyclic dependencies are common among the source files of real 

Java software. Metrics were proposed and collected for distinguishing “necessary” 

cyclic dependencies from “unnecessary” or “bad” ones, and for estimating the cost of 

breaking cycles. Cycles were found to grow over time in many projects, consistent 

with anecdotal observations by others on the degradation of a design over time. 

“Necessary” cycles, i.e., those likely expressing intrinsic interdependencies between 

things in the domain model, were found to be much smaller in size than 

“unnecessary” ones. 

 

RQ6: Is it computationally feasible to perform whole-program analysis to 

identify cyclic dependencies in Java code, as that code is being written, in a 

manner that is tightly integrated with existing Integrated Development 

Environment (IDE) features? 

In Chapter 7 [MT07c], a tool JooJ was prototyped to demonstrate that feedback 

could be provided in the IDE Eclipse to alert programmers to lines of code that 

induced cyclic dependencies in real-time as those lines of code were being written. 

Consistent with the real-time feedback Eclipse gives for compilation errors and other 

stylistic errors, “squiggles” were used to identify such lines of code. The corpus of 

Java software was used to demonstrate the scalability of the tool—in particular that, 

even on large projects, the algorithms implemented by the tool could actually provide 

that feedback in real-time. Various techniques such as equality-by-reference, and 

WeakReferences were used in the implementation of the tool’s various 

algorithms to ensure adequate performance.  

 

RQ7: Does it make sense to reason about modularity without a clear definition 

of it, and even with such does it make sense to do so in isolation without 

reference to a specific activity? 

In Chapter 8 [MT07e], it was argued that one cannot reason about modularity 

without reference to the specific activity of one’s interest. Put another way, it is 
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nonsensical to say “modularity is improved” without reference to a specific activity 

such as integration testing, verbatim reuse, and so on. What was shown is that to 

provide a convincing argument about modularity one must identify the things that are 

parts in that activity, what makes them independent of one another in that activity, 

and subsequently the argument must explain why the number of parts and their 

independence from one another has increased in that context. Merely saying, for 

example., modularity has improved, conveys no useful information at all and reduces 

the term modularity to a mere platitude.  

 

RQ8: Is the use of non-private static members in Java projects a probable cause 

of dependency cycles among classes in those projects? 

In Chapter 9 [MT07d], a theory is put forth that non-private static members (i.e., 

methods and fields) cause dependency cycles among source files, because they make 

those members “global”. What was found was that, even after controlling for the 

potentially confounding effect class size, classes defining non-private static members 

are more likely to be involved in cycles than classes without those members, hence 

providing support to the theory. 

 

RQ9: Is dependency injection widely-used in real Java projects, and if so is it 

used in a manner that would reduce transitive compilation dependencies? 

In Chapter 10 [YTM08], noting previously from Chapter 6 [MT07b] that cycles in 

the public interfaces of classes were much smaller than those appearing in the totality 

of the class’ implementation, the question was asked if dependency injection was 

widely-used in Java projects. Analysis was performed on the corpus of Java software 

and results indicate the answer to this question was “no”, even when a weaker form 

of it was considered that would not break transitive dependencies causing cycles. 

That weaker form involved checking to see if, within the class receiving the 

injection, a default implementation of the interface being injected was instantiated by 

way of the new keyword. The implication of this would seem to be that if 

dependency injection were used more in real Java software, cycles may not be as 

prevalent as they currently are. 

 

RQ10: What were the specific considerations, issues and limitations 

encountered when designing the Qualitas Corpus and what is the case for other 

researchers making future use of it in their empirical studies? 
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In Chapter 11 [TAD+10], the manner in which the work of Hunston in the field of 

Corpus Linguistics influenced the  high-level design of what became known as the 

Qualitas Corpus was described. Low-level details such as the arrangement of projects 

into directories, separation of binary and source code, and how versions of the same 

project were stored, along with other metadata such as a project’s source (cf. external 

library) packages were distinguished was also described. Challenges in gathering the 

corpus, making it available to others, and continuing to maintain it were identified. 

As noted in this chapter, and the paper itself, the corpus has become quite widely-

used by researchers at other institutions around the world, so one conclusion of this 

might be that this paper does a good job of describing it and making the case for its 

relevance. 

  

 

12.2 Significance and Relevance of this Work 
 

As shown in the table below, the number of citations of the works appearing as 

chapters in this PhD thesis may help to support its significance and contemporaneous 

relevance. While the passage of time has likely contributed to these citations counts, 

and while some of the publications have appeared in more prestigious venues than 

others, this nevertheless provides evidence of the impact of this PhD research. 

 

What may further be seen as supporting the significance and relevance of this work 

is the number of PhD and Masters theses to which it seems to have either directly or 

indirectly influenced. Perhaps the most significant and connected of these works is 

the PhD thesis of Oyetoyan [Oye15], which itself has resulted in a number of very 

high quality publications at top venues. 
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88 
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87–95. Australian Computer Society, Inc., 2007. 
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International Workshop on, pages 3–3. IEEE, 2007. 

6 
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Ch.9 
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136–145. IEEE, 2007. 

8 
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Hong Yul Yang, Ewan Tempero, and Hayden Melton. An 
empirical study into use of dependency injection in Java. In 19th 
Australian Conference on Software Engineering (aswec 2008), 
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29 
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corpus: A curated collection of Java code for empirical studies. In 
2010 Asia Pacific Software Engineering Conference, pages 336–
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186 

 

 

12.2.1 Oyetoyan’s PhD on Cycles in Java 
 

Oyetoyan, in his PhD research, essentially picks up where my own research off. In 

my research it was found that cycles and large transitive were prevalent in real-world 

Java software, and that it was non-trivial to remove them (non-trivial because it was 
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found that these cycles were not due to say, e.g., redundant import statements in Java 

classes, or the existence of a single simple cycle). In the introductory chapter of 

Oyetoyan’s thesis, he concurs exactly with a major premise of my research that our 

study of cycles should be among the source files comprising the project only (and not 

among classes appearing in external libraries on which that application depends), and 

with the reasons for which I provided thereto. Oyetoyan’s stated goals, again from 

his introductory chapter, are then: “Firstly, to collect empirical evidence of the effect 

of dependency cycles among internally declared types on defects and change rate. 

This can consequently motivate for refactoring of defect-prone cyclic components. 

Secondly, to realize a cycle-breaking decision support system that could assist 

developers and maintenance engineers to refactor dependency cycles and improve 

the structure of the software”. 

 

What Oyetoyan finds in his thesis and the many publications that resulted from the 

research in it is as follows. In a study performed on six “non-trivial” systems that 

defective components are more likely to be “near” cycles; that the majority of defects 

in the systems studied are in or near cycles; that participation in cycles may be a 

predictor of defect-proneness; and that defect density may be correlated with cycles 

[OCC13c]. In the next study, he argues that it is not the number of defects that matter 

per se, but rather the severity (or “criticality”) of those defects [OCC13b]. In this 

“criticality” study he examines two applications and finds that almost all critical 

defects exist in components in or near cycles. In summary, and as articulately 

summarized by Oyetoyan himself, these two studies “indicate that components with 

cyclic relationships are responsible for the largest number and severity of defects and 

defect-prone components.” 

 

The focus of Oyetoyan’s research then begins to move towards refactoring to break 

cycles—something that is also addressed in my own research. In his paper on 

refactoring to reduce defect prone components using information about cycles, he 

proposes measures based on diameter, radius, density, edges and nodes in cycles in 

attempt to “zoom in” on specific components participating in cycles that may be 

more defect prone than others also participating in cycles [OCC13b]. His conclusion 

from this work is that increasing dependencies (either with new components or new 

dependency relationships among existing components) seems to increase defect 

proneness, and that if the reverse is also true (it may or may not be, he just in his own 
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words “hypothesizes”), then refactoring to break cycles may lead to less defect prone 

software. 

 

In his next work Oyetoyan conducts a longitudinal study of four applications and 

makes a number of very interesting and significant findings [OCC14]. He finds in the 

applications under study that there is no evidence of deliberate “cycle-breaking” by 

developers on those systems, as they have evolved, providing evidence to support the 

position better tools and techniques are required for such (a topic in my own 

research). He also finds, related to the CRSS metric proposed in my own research, 

that “The results of this study support pivotal metrics such as CRSS as a metric that 

can be focused for optimization during cycle-breaking refactoring of defect-prone 

components. By minimizing the CRSS values of problematic (defect-prone) 

components that are in cycles, it might be possible to effectively reduce the 

probability of defect propagation to other components”. He additionally finds that 

components that “transition” into cycles become more defect-prone than those that 

transition out of them. 

 

In the next work Oyetoyan (and coauthors) [OFDJ15] attempt to distinguish between 

“bad” and “harmless” cycles and corresponding change proneness, the former being 

much in the style of my own work where in my own empirical study of cycles I 

attempted to distinguish between such using the “uses-in-the-interface” relation, 

described by Lakos [Lak96]. What is found by Oyetoyan in this study of 12 Java 

applications is that classes in cycles are no more change prone than others, but that 

the former have higher change probability. The distinction here is to do with 

approach to measurement: one counting the frequency of changes, the other 

categorizing a component as changed or not changed. What is also found, for the 

way in which “bad” cycles are distinguished using subtype knowledge [Rie96] and 

containment of cycles within a package is that there is no (strong) correlation 

between the change proneness of components in bad cycles versus those in harmless 

ones. 

 

In the final publication resulting from his PhD research Oyetoyan introduces a tool 

for breaking cycles using his prior observations about the correlation of my CRSS 

metric with defect proneness [OCTN15]. The paper indicates Oyetoyan’s tool is built 

on top of my own Jepends-BCEL tool I publicly released during the course of my 
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own research.  The paper is also largely focuses on evaluating the tool by performing 

refactorings on the Azuerus Java project suggested by the tool, the same project used 

in my CRSS paper where I also proposed refactorings. The paper notes a "Significant 

improvement on the strategy employed in Melton and Tempero ... by introducing a 

new metric IRCRSS, to identify CRSS reduction between an interface and its 

implementation. In this way, it is possible to improve the structural quality of the 

code and reduce the refactoring efforts".  

 

On a personal note, Oyetoyan sent me a very kind email in October of 2013 (I was 

not even aware of his work at the time) making me aware of a number of his 

publications and stating that “[my own] work in this field of dependency cycle[s] 

has given [him] quite [a] lot of motivation and background to most of [his] work”. 

Having now read Oyetoyan’s work and he having been awarded his PhD, it is clear 

he has done an excellent job of building on top of that which my own PhD research 

started. 

 

12.2.2 Other Closely-Related PhD and Masters Research 
 

The other major works that seem to have benefitted to varying extents from my own 

research are summarized as follows. Shah’s PhD thesis is on automating the breaking 

of dependencies among classes in Java applications [Sha13]. It uses my work in two 

ways (1) to justify the need for research into dependency breaking noting cyclic and 

large transitive dependencies are commonplace in real-world Java applications 

among classes and packages, and (2) as prior work in the area of identifying 

candidate classes for dependency breaking, and (3) the curated corpus I developed as 

part of my research to validate the forms of refactoring proposed. Shah notes with 

reference to several other datasets for empirical studies of Java code (all previously 

cited by my work): “Among these datasets the Qualitas Corpus turns out to be the 

most comprehensive and widely used dataset”. Shah’s research led to five 

publications in refereed venues between the years 2010 and 2013. 

 

Laval’s PhD thesis is identifying, avoiding and correcting unwanted package level 

dependencies [Lav11]. It also resulted in a number of publications in refereed 

venues. Laval cites my work to explain that the semantics of the software must be 

taken into account when breaking dependencies, to avoid breaking intrinsic 
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dependencies that may exist among objects in the domain. My work on JooJ—the 

tool I created primarily for avoiding the creation of cyclic dependencies in the first 

place—is also cited as related work, and an evaluation is performed between the tool 

built by Laval and my own, to show the improvement of Laval’s algorithms for 

identifying cycles to break, over my own. 

 

Al-Mutawa’s Master’s thesis [AM13] is on classifying cyclic dependencies in Java. 

It makes use of the curated corpus I created as part of my research, and builds 

heavily on top of my research on cycles (in fact, it cites all of my publications). It 

builds on top of my research by using additional concepts from graph theory to 

provide new metrics on the “shape” of connections among classes in cycles. It also 

builds on my work on the CRSS metric and its effect on package design quality by 

studying the extent to which packages contain cycles among classes (it may be better 

for cyclically dependent classes to all belong to the same package; if they are not 

then the package structure will of course be cyclically dependent, as my own 

research notes). Al-Mutawa goes even further with this and looks at the parent-child 

relation among packages—something that was not considered in my own work. 

 

Gonzalez’s Master’s thesis does not cite my work but has an entire chapter entitled 

“Addressing Cycles” [Gon13]. The broader topic of his thesis relates to a change 

propagation metric. Miloš’ PhD thesis investigates networks in different domains—

among those considered are software networks [Mil15]. Miloš investigates in degrees 

and out degrees per the “shape” paper on which I am coauthor [BFN+06], and find 

results consistent with my own on cycles [MT07b]. Schmidt’s PhD thesis is on 

recovering and reestablishing architecture of systems whose designs have 

deteriorated over time [Sch14]. His work cites mine as evidence architectural 

deterioration is commonplace, especially the form where an otherwise layered 

system has become cyclically dependent.  

 

Taube-Schock’s PhD thesis in large part seems to depend on and have been inspired 

by some of the work in my thesis [TS12]. For starters, it uses the Qualitas Corpus 

extensively to test the hypothesis that in real software, high coupling is unavoidable. 

Further, among the studies cited as the starting point for the work is that of Chapter 3 

[BFN+06]. As described earlier in the introduction chapter of this thesis, I noted that 

based off my first paper, the distribution of some metrics by software systems seem 
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to be invariant across them (e.g., in-degrees and out-degrees); others seem to vary by 

system. The former may be unavoidable (from an empirical perspective at least), and 

this is perhaps a key insight that inspired Taube-Schock’s work. 

 

12.2.3 Other Related Works 
 

In terms of individual papers citing the work in this thesis (there are too many to 

review each in detail), some representative and recent ones to further underscore the 

contemporaneity of the research topic are: 

• That of IBM researchers Goldstein and Moshkovich [GM14] on automatically 

breaking cyclic dependencies. IBM was granted a United States Patent protection 

in 2016, serial number US9348583B2, for this work. 

• That of Constantinou et al., noting from my work especially that cycles are 

widespread and that we cannot expect to extract individual components if classes 

long cycles exist among classes [CNKS15]  

• That of Caracciolo et al. noting from my work that cycles are prevalent in real-

software, thereby justifying the tools existence, and describing the improvements 

of their Marea tool on my tools Jepends and JooJ  [CALN16]. This paper seems 

to be expanded upon in Aga’s Master’s thesis which describes the tool’s purpose 

as breaking dependency cycles among packages [AN15]. 

• The PhD thesis of Caracciolo where a whole chapter is devoted to breaking 

dependency cycles, and where my own study is cited as proof such cycles are 

prevalent in medium and large scale software projects, and the tools I build to 

detect and prevent cycles (Jepends and JooJ) [Car16]. 

• Callaú et al. study the extent to which developers use dynamic features of 

Smalltalk in real code [CRTR13]. In their related work section they seem to 

intimate that my paper of Chapter 6 [MT07b] has led to quite a number of other 

studies of just internal attributes that have interesting findings. For instance, the 

rate at which programmers transitioned to using generics, the findings seemingly 

indicating their adoption was dependent on just one or two programmers per 

project. The only earlier paper they cite in the related work is one by Knuth from 

1971, where his interest was largely in compiler optimization based off features 

actually used by programmers.  
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• Assunção et al. are interested in breaking dependency cycles, to minimize 

potential stubbing costs in when conducting integration testing. They cite my 

work as evidence theirs is important, because cycles are widespread in real 

software. [ACVP14] 

• Clarke et al. use a subset of the projects curated corpus in this work, and data 

from my paper of Chapter 6 [MT07b] to investigate a strategy for achieving an 

integration test ordering of classes [CPBK12].  

 

Schiaffonati and Verdicchio identified the 50 most cited papers in the journal 

Empirical Software Engineering from 2003 to 2012 in an attempt to study trends in 

experimentation in the field of software engineering [SV15]. In the top 50, despite 

only having been published in approximately the middle of that period, my paper of 

Chapter 6 appears [MT07b]. 

  

A final word on the contemporaneity of my work: the in-progress PhD research of 

Xiao at Drexel University has led to a number of publications, but one of particular 

interest opens with the following sentence: “Despite decades of research on software 

metrics, we still cannot reliably measure if one design is more maintainable than 

another” [MCK+16]. The same publication collects a “decoupling level metric from 

108 open source and 21 industrial projects (across multiple versions of each project) 

and finds long cycles among files in some of those projects, and makes observations 

about what changes in the code caused changes in the collected metric’s values. The 

approach and even subject matter is highly reminiscence of that in Chapter 6 

[MT07b], though it does not cite it. The point is, that the specific topic, the general 

area of measuring design quality by way of structural attributes of code, and my 

specific approach to all of this remains highly contemporaneous and an active 

research area.  

 

12.2.4 Summary of Impact on Academic Works 
 

To summarize, based on the citations described above, the impact and relevance of 

this work: this work has justified the existence of many of new works, by carefully 

and thoroughly identifying the problems they are attempting to solve (cyclic and 

transitive dependencies, noting some cycles may be “unavoidable” and some may be 
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“bad”, and some cycles are more strongly connected than others), and by showing 

the problem is widespread in real software systems. Works in which this problem is 

relevant span testing, remodularization of otherwise tangled software systems via 

tools and algorithms, and studies of cycles themselves seeking to empirically 

establish connection between them and external software quality attributes, and 

attempting to identify “hotspots” for cycle breaking refactoring using metrics 

proposed in my work. Tangentially, too, this work seems to have spawned a number 

of other papers (e.g., those cited by Callaú et al [CRTR13]) that are similarly 

carefully constructed studies of internal attributes only, and that in many cases were 

performed on the Qualitas Corpus that was developed for my own research. 

 

12.2.5 Potential Impact on Java itself  
 

Besides the aforementioned academic works that cite the publications in this work, 

the industrial relevance of this work also warrant discussion. In the paper of Chapter 

6 [MT07b] I found that the Java Runtime Environment version 1.4 contained classes 

involved in very big strongly connected components: the largest of which contained 

over top-level 900 classes, the second largest of which contained over 700 such 

classes. Oracle—the company that now “owns” Java—seems to have determined 

themselves that these large transitive dependencies are a problem, and is attempting 

to fix them with the new modularity constructs shipping with Java 9, due for release 

in 2017 [BH16]. 

 

The extent to which my work informed Oracle’s decision to modularize Java is 

unclear, but certainly my work was published and in the public domain long before 

any publicly announced initiatives began on this at Oracle or in the Open JDK. 

Indeed on the webpage for Project Jigsaw (the codename for the modularization 

effort in Java) on the OpenJDK website says “The JDK is big and deeply 

interconnected with many undesirable dependencies between APIs and different 

areas of the implementation. We started the JDK modularization effort in mid 2009 

during the development of JDK 7 (emphasis added)” 42. 

 

                                                
42 http://openjdk.java.net/projects/jigsaw/doc/jdk-modularization.html 
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Interestingly, another of my works is particularly relevant to this modularization 

effort in Java too: the one describing the CRSS metric for package design quality 

[MT07a]. In this paper I argued that large transitive dependencies involving many 

classes would preclude a package structures that both are acyclic and reasonably 

sized in terms of the number of classes each package contains. The exact same 

argument applies for Jar files, which is an additional and actually important way 

classes can be organized in Java. One of the goals of the modularization project in 

Java was apparently to reduce the footprint of the JRE, especially for smaller, 

Internet-of-Things (IoT) devices running Java. These devices may have to fetch Jar 

files (cf. packages) from the Internet, as they run, so minimizing the size (in bytes) 

of the things they have to fetch is a goal. Further, these IoT devices tend to be 

memory constrained so that is another reason to minimize the size of the Jars they 

need to fetch, and required at runtime. Just like in package design, larges cycles 

among classes result either in large jars (to contain the cycle) or cycles among Jar 

files themselves, meaning all of them need to be downloaded. 

 

On this topic of the interdependencies among the classes in the Java API Shah, in the 

introductory chapter of PhD thesis, provides his own visualization of dependencies 

among classes and packages in the Java API, further noting that the modularization 

effort of Java given these deep dependencies was so complicated (citing Mark 

Reinhold, chief Java architect) that it was delayed from a release in Java 8 to a 

forthcoming release in Java 9 [Sha13]. This is entirely consistent with my results in 

Chapter 6 [MT07b] published several years earlier on the JRE, showing cycles in the 

uses-in-the-interface relation, the uses-relation, and the minimum edge feedback set 

size. 

 

12.3 Possible Criticisms of this Work 
 

It would be at worst arrogant and at best shortsighted not to self-identify possible 

criticisms of this work of which there are, despite the contributions and significance 

of the work discussed earlier, potentially quite a number. 

 

In the introductory chapter for this thesis, I made the claim that it is indisputable that 

software structure affects external software quality attributes, using code obfuscation 
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as an example to support that claim. A possible criticism of this is that code 

obfuscators result in code that no reasonable human being would actually write. 

Since our interest is in maintaining, understanding, testing (and so on) code that is 

written by actual human beings, as part of the ongoing software development 

process, one might argue that it only the extent to which the structure of code—as 

written by human beings—varies that is relevant, to the extent that variation affects 

external software quality attributes. 

 

The response to that argument lies in works like that of Arisholm and Sjoberg 

[AS04], which was also previously discussed in the introductory chapter. Given 

though, that Arisholm and Sjoberg find that the situation is more complicated than 

just structure affecting software quality attributes—recall that they find the 

experience (i.e., whether expert or novice) of the software engineer performing the 

change determines whether the centralized or delegated control structure is easier to 

maintain—does structure really matter that much? With particular reference to this 

work, do cyclic and large transitive compilation dependencies among source files 

really matter that much when it comes to external quality attributes? 

 

An Economist might provide an argument where the answer to that question is “no”. 

If cycles were so utterly detrimental to software quality, then the software would not 

be able to be modified, maintained, understood and so on, and competition would 

eventually lead to its replacement by another system without cycles, the latter being 

of higher quality (e.g., being able to evolve more quickly to meet the new needs of 

users, without introducing regression faults, and so on). The works contained herein 

that have longitudinal analysis show that some systems with cycles continued to be 

released and developed, and sometimes that the cycles grew in size between releases. 

The conclusion seems to be that cycles, while “bad”, have not proven fatal for many 

real software systems, so in the larger scale of things they might not matter that 

much. This would seem to be consistent with Raccoon’s position that we have come 

far, overall are doing well and continue to make good progress in the field of 

software engineering [Rac97]. Further supporting this would be the view of 

technology venture capitalist Marc Andreesson that  “software is eating the world”—

particularly that it has and continues successfully displace the current ways of doing 

things in many industries (e.g., like how Amazon displaced physical bookstores, how 
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Netflix displaced video rental stores and so on)43. In spite of seemingly much 

software with “bad” structure, it continues to proliferate into and displace traditional 

ways of doing things. 

 

Further—and related to this—it was put to me by an academic who attended a 

seminar on this work, that the prevalence of cycles in real-software may actually 

support the view that the principle of information hiding is successfully applied in 

wide-use by professional software engineers. The argument goes like this: if software 

engineers are able to modify code, without having to be concerned about what code it 

indirectly (transitively) depends on, then the code it does directly depend upon is 

doing a “good job” of hiding the details of its implementation. To this end, an 

empirical study may be required to determine the extent to which transitive (cf. 

direct) dependencies actually influence understandability of code. 

 

Another possible criticism may pertain to transitive dependencies and API usability. 

In a very recent work Fontana et al. [FDW+16] also point out of Azureus (the first 

system downloaded in for research, as described in Chapter 1, and Chapter 2 

[MT06]) that some of the cyclic dependencies in it are due to a reference between an 

abstract type and its subtype, the former providing a reference to its “default 

implementation”. They imply that, in terms of software quality, this might not be so 

bad. Their observation is reminiscent of the discussion in Chapter 10 [YTM08] that 

providing such a default implementation and inducing a cycle might actually 

improve API usability. Further investigation into transitive dependencies (including 

cycles) and their relationship to API usability—which is a very active and ongoing 

field of research [MS16]—may be warranted. 

 

Another possible criticism of this work, that has not been discussed as a threat to 

validity in any of the publications, nor was it ever flagged as such by any of the 

referees of these publications is to do with what uniquely identifies a class in Java. I 

am embarrassed to admit that I only found this out myself in an industry job I had 

subsequent to the work in these papers. In Java—seemingly contrary to what may be 

a widely held belief—a class is not uniquely identified by its fully qualified class 

name. It is instead uniquely identified by the pair of its ClassLoader and its fully 

                                                
43 http://www.wsj.com/articles/SB10001424053111903480904576512250915629460 
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qualified name [LB98]. It is entirely possible, as I found doing some integration 

work of my employers software on a client site, that one can have a 

ClassCastException where the class being cast has the exact same fully 

qualified name as the type of the class it is being cast too (of course, the 

ClassLoaders for those two classes must be different for this exception to occur). 

 

In all of the analysis done in this work, the implicit (but strictly incorrect) assumption 

is that a class is uniquely identified by its fully qualified name alone. In my 

subsequent and recent review of a sampling of projects in the corpus, thankfully, it 

does not appear that many applications in it implement custom ClassLoaders, 

which are needed to achieve the effect I describe above (in the sampling I reviewed, I 

only saw Eclipse using a custom ClassLoader). Therefore I do not believe this 

unaccounted for effect materially affects the results in any of the publications. 

 

Some further criticisms of specific aspects of this work that were recently put to me 

by academic readers are that the JooJ tool of Chapter 7 lacks a usability analysis, 

does not discuss how the tool might work in a collaborative work development 

environment, provides only a fairly superficial discussion of which dependencies 

should be “broken” and which should stay in place e.g., through an “exclusion set” 

specified by the user, and how cycles might be retrospectively broken if the tool was 

used on an existing code base, and so on. These are all valid criticisms in that the tool 

does not address these things. My response to them is two-fold. First, each of these 

issues are major problems unto themselves, and indeed the primary focus of several 

PhD theses has been on how to automatically break cycles and large transitive 

dependencies [Sha13][Lav11]. Some, among the catalogue of ten techniques for 

breaking cycles identified by Lakos [ch.5,Lak96] could perhaps even be automated 

in a future work. Second, the main goal of the paper was to demonstrate that cycles 

could be detected in real-time by way of integrated tool support, because as noted in 

the paper (chapter) it is widely-known in both software engineering (and in 

engineering disciplines in general) that fixing problems earlier in a process easier, 

cheaper and better than fixing them later in that same process. My experiences from 

the works of Chapters 2 and 6 had previously shown that computing cycles, 

resolving compilation dependencies, computing approximate minimum edge 

feedback sets among class files and so on could be computationally expensive on real 
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Java projects, so much so that it was unclear if providing real-time feedback by way 

of “squigglies” in Eclipse would be feasible. 

 

 

12.4 Future Work 
 

Much of what might be considered future work has been undertaken in the works 

that cite this. Relative to the published papers in this work, these citing works are 

future works. Additional directions to take this work remain (and indeed this in itself 

is an additional indicator of contemporaneity of a body of work—that additional 

directions remain open from the body of work for future pursuit) and I shall describe 

some below. 

 

In the introductory text for this work, I noted that with each answer came a new 

question, and this is how the publications in it came to be, and how they are quite 

concretely (cf. thematically) connected. Among the last publications in this work was 

that looking at static members and their relationship to cycles, and that characterizing 

and measuring various forms of dependency injection in Java. These two 

publications, especially when considered with the works of Fowler [Fow01], Stevens 

et al. [SMC74], that of Lakos on the likely shapes of the dependency graphs among 

components [Lak96] and the even recent PhD thesis of Taube-Schock [TB12] lead 

me to ask the question: what are the theoretical lower limits on compilation 

dependency coupling in Java, or any other programming language for that matter? 

 

Both Fowler and Stevens et al. note that the modules of a program must all be 

coupled to one another in some way in order to interact with one another and 

ultimately to be part of the same program, but do not provide much more 

commentary than this. Taube-Schock takes a very empirical approach to answering 

the question in his PhD thesis. Why do my works, especially when considered in the 

light of these ones raise this “theoretical limits” question though? 

 

In the lead up to the “statics” publication [MT07d] I theorized non-private static 

members were one way that a programmer could get hold of a reference to a 

“distant” class and induce a cycle. In the lead up to the “dependency injection” 
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publication I realized that by referencing a default implementation of an interface 

whose implementation was only intended to be “injected” into a class might cause a 

vastly bigger transitive dependency for that class. These two things combined led me 

to realize the fundamental ways (with respect to transitive compilation dependencies 

at least) that a class can transitively depend on others: either it instantiates the class 

(and subsequently calls methods on it/accesses its variables), or it references the class 

statically, or it has a reference to the class passed in through a formal parameter to 

its constructor or other non-private method. If an object is not passed in one of these 

three manners then we cannot invoke its methods or reference its fields within our 

given class, because we would not have a valid reference to it, and therefore it would 

be null. (There is another case too, to do with casting from one type to another, but 

let’s for now ignore this and assume our programs are type safe through the use of 

parameterized types, and so on.) 

 

It would seem to follow then, that a theoretical more formal lower limit on the 

minimum coupling with respect to compilation dependencies, is that from the main 

method of a type-safe Java program, there should exist a directed path to every other 

class if the only compilation dependencies followed are those that are (1) static 

references, (2) appear as types in the declarations of the class’ non-private interface 

and (3) instantiations of objects with the new keyword. Obviously it would be 

possible to empirical validate this with the corpus, and the said future work could 

spend more space explaining all of this. 

 

There may be two important practical implications of this proposed future work on 

formalizing lower limits on coupling. One is that the algorithms used to 

automatically identify dependencies to break in works such as [Lav11][Sha13] might 

focus on the so-called fundamental dependencies (e.g., instantiating an object) over 

the more secondary ones (calling a method on an object, noting the reference to that 

object must have come from somewhere else, first). Another is that properties of this 

lower-limit model may help explain limits that have been empirically observed in 

other forms of run-time coupling because it is largely compile-time dependencies 

that determine (the approximate superset of) run-time ones (see e.g., [DHS15]). 

 

Another future work might be to construct a corpus of say software written in C, and 

determine if cycles are as prevalent in procedure programming languages as what 
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they are in object-oriented ones like Java. Szyperski has said that the features object 

oriented languages make them much more susceptible to dependency cycles 

compared to procedural languages [SGM02], yet I am unaware of any empirical 

studies to confirm this. To date, at least one such inter-language study of metrics 

exists, but it does not consider cycles or transitive dependencies [DOP+16]. Such 

studies may help associate certain programming language features with cycles, in a 

manner similar to how statics were associated with cycles in this work. That, in turn, 

may help inform decisions about what features to include or exclude in the 

programming languages of the future. 

 

Yet another future work, might be to figure out how to express the uses-in-name-only 

technique proposed by Lakos [Lak96] in the context of C++, as a way to “break” 

intrinsic dependency cycles in Java. This technique in C++ involves making a 

forward declaration of a type’s name, rather than importing its header file, so the 

type cannot be used in any substantive way (i.e., no methods called on it, no fields 

accessed on it) in C++. In more modern languages like Java one might attempt to use 

a generic to do the same thing, but with the so-called intrinsic dependency between 

an Edge type (e.g., getSourceNode()) and Node type (e.g., 

getInboundEdges()) it is impossible to instantiate an Edge<T1> with T1 

 as Node, and Node<T2> with T2 as the parameterized Edge type because it 

results in a recursive type declaration (for works dealing with problems highly 

reminiscent of this one see e.g., [SMPN13] [EL16]). Languages with more implicit 

type inference like Scala might have a type system that supports breaking even of 

intrinsic cyclic dependencies as Lakos terms them. It is also worth noting, on this 

specific topic, although a lot of work has been done in tool support for breaking 

cycles or avoiding them, there seems to have been little to none done in 

programming language support for avoiding them (e.g., by forbidding them or 

generating compiler warnings). While Java has good backwards compatibility, there 

is nothing to stop Oracle adding a new optional feature in say the Java compiler, 

turned on by default, that refuses to compile cyclically dependent source files. Such 

an approach is reminiscent of what Hatton has described as “Language Subsetting”, 

where the features available in a language are narrowed for the purposes of 

improving quality attributes [Hat07]. 
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Finally, we now live in a time where “big data” is all the rage. How might things 

associated with the “big data” movement be applied to this work? Consider the 

works of El-Emam et al. [EEBGR01] and my own work empirically linking static 

members to cycles. In both those cases a human being postulated that class size 

might be correlated with coupling, and attempted to control for its confounding effect 

with respect to another structural attribute. It is not far-fetched to imagine that 

machine learning techniques could be used to more automatically identify correlated 

and confounding effects, which in turn might lead us to new insights and theories on 

which structural attributes cause others. Indeed, this would be entirely consistent 

with Hunston’s statement in the field of Linguistics, that besides learning from 

studies of corpora how language is actually used, such studies can also lead us to 

entirely new theories on it [Hun02]. 

. 
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