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Abstract 

 

The thesis demonstrates that visual approaches to modelling event-based systems are more effective 

than traditional textual scripts and code.  We have both investigated existing approaches and 

developed new techniques for visual event-based system integration. We have used domain-specific 

visual languages with different high-level visual metaphors to specify event-handling support and 

provide backend processing tool support for both event integration specification and visualisation of 

event propagation.  

 

We have developed three different visual metaphors for event-based system specification. The first, 

ViTABaL-WS, uses the Tool Abstraction (TA) metaphor to support specification of web services 

composition via higher level data and control flows and generation of BPEL4WS code. The second, 

Kaitiaki, uses an Event-Query-Filter-Action (EQFA) metaphor to allow visual primitives 

composition and java code generation for diagramming tool event handlers. The third, MaramaTatau, 

uses a spreadsheet-like metaphor to construct metamodel formulae visually to specify structural 

dependencies and constraints to be realised at runtime.  

 

We have generalised from these three visual event-driven system metaphors to develop a new, 

generic visual event handling metaphor. From this we have built a novel multi-paradigm hybrid 

metamodelling environment for specifying generic event-based system behaviours. 
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Chapter 1 - Introduction 

 

This chapter discusses the core research, the exploration of three different visual event handling 

metaphors of event-based software development and their generalisation into a generic event 

handling framework. The goals of this research are described, followed by our methodology towards 

the research. The main contributions are then summarised. We outline the thesis organisation at the 

end of this chapter, with a brief description of contents for each chapter. 

 

1.1 Introduction 

The event-driven paradigm is widely used in a range of application domains due to its flexibility for 

constructing dynamic system interactions. This thesis initially focuses on the specification of event 

handling behaviours in three complex types of system: web services and business process 

composition systems, graphical user interface (GUI) systems, and constraint-based metamodelling 

systems. We subsequently propose an integrated visual approach that is generalised from the three 

explored exemplar approaches to specify event handling behaviours. 

 

1.1.1 Events and Event-driven Systems in General 

Events are notifications of state-changes or actions/commands. Typically the event model contains 

events, event generators (event source/notifier), event dispatchers, event consumers (event 

observer/listeners/receivers) and event handlers (reacting programs, often sharing the event listener 

role). An event object may contain almost every concern of an event-based application including the 

event name, event type, event generator, affected objects and other application-specific information.  

Subscription by the event consumers to the event generator is a vehicle to trigger event-based 

communications (MSDN, 2007). 

 

Event-driven systems are ubiquitous in many application domains. They present loosely-coupled 

system behaviour (Grundy et al, 1997). Both the OMG (OMG, 2004) and Sun (Sun, 2005) strongly 

advocate the notion of event-driven systems. Example event-driven systems include GUI design 

systems, distributed systems, database systems and workflow management systems. Such systems all 
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incorporate events of interest, conditions (“filters”) on whether to respond to the event and action(s) 

to run that may modify the system state. Example approaches for specifying event-handling include 

scripting, Event-Condition-Action (ECA) rules, and spreadsheets (single direction constraints).  

 

As an example of an event based system, consider a diagram-based design tool for project 

management, an example use of which is illustrated in Figure 1.1. This consists of a work breakdown 

structure view (rear) and a Pert chart view (front). We have built this tool with the Pounamu meta-

tool along with many other diagram-based design tools (Zhu et al, 2007). Such applications allow 

end users to model complex design problems using visual notations appropriate to the domain.  

 

 ProjectShape 

 

Figure 1.1. Simple event handler effects. 

 

In Pounamu (Zhu et al, 2007) event handlers are typically used to add model/view level constraints, 

complex data mappings, back end data export or import e.g. code generation, and access to remote 

services to support tool integration and extension. Each handler specifies: 

 the event type(s) that causes it to be triggered, e.g. shape/connector addition/modification, 

information model element change, or user action; 

 any event filtering condition that needs to be fulfilled e.g. property value of shape or entity; and  

 the response to make to that event, i.e. action to take, as a set of state changing operations. 
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In the above example, when creating a task icon for the work breakdown structure diagram, several 

values for its properties need to be set by the event handler. These are gathered from a range of 

sources. When the user adds a new ProjectShape, the event handler is fired by the generated 

NewShapeEvent. Information is queried and added to the new shape. This results in the project shape 

being given default values for attributes such as “ProjectID”, “Title”, “Duration”, “TotalCost” and 

“CreationDate” when it is created. Updates to the new shape are reflected in the Pounamu modelling 

view.  Event handlers can also be used to provide automatic layout of shapes for the diagrams. The 

event handlers are defined to respond to a built-in Pounamu NewConnectorEvent. When a user adds 

a specific connector from a parent shape to a sub-shape, an event fires and the event handler locates 

the parent shape with all its sub-shapes, and then aligns the sub-shapes.  

 

In general software systems, communication between components is typically achieved by procedure 

calls. Event-driven systems differ in that event propagations are organised between an event source 

and all its inter-related event sinks. When an event is generated from the event source, the event 

sinks are notified of the incoming events, and corresponding actions are taken based on the 

underlying event handling specification.  

 

1.1.2 Textual vs. Visual Event Handling Specification 

Once an event happens, handling behaviours can be triggered such that the event can be published, 

filtered, transformed, logged, and/or processed. The design and construction of event-driven systems 

can be very difficult due to complex event propagation and reaction behaviours. The currently 

dominant custom code writing approach requires end-users to master a programming language and 

API of the application domain, which is non-suitable for non-programmer end users. An appropriate 

high-level visual specification language and tool support should contribute to making the process less 

stressful (Liu et al, 2005; Zhu et al, 2007). In this thesis we explore existing event handler 

specification approaches and then develop new techniques for visual event-based system integration. 

We have used a variety of domain-specific visual languages with different high-level visual 

metaphors (including Tool Abstraction, Event-Query-Filter-Action and Spreadsheet) to specify event 

handling support and provide backend processing tool support for event integration specification and 

visualisation of event propagation.  

 

Figure 1.2 illustrates the first evidence of advantages of visual event handling (b, c, and d) on top of 

textual scripting (a), as graphic notations are used to make event handling specifications easier to 

understand. Figure 1.2 (a) shows the textual scripting approach used in Pounamu to define an event 
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handler.  Figure 1.2 (b) shows an event handler specification by composing visual primitives.  Figure 

1.2 (c) shows visual specification of event propagations among structural and behavioural 

components of a system. Figure 1.2 (d) shows the specification and visualisation of model-level 

dependencies via unidirectional constraints. We summarise our approaches to event handling 

specification in later sections. 

 

 

 

 

a 

c 

b 

d 

 

 Figure 1.2. Textual vs. visual event handler specifications. 

 

1.1.3 Goals of Research 

Visual approaches, compared to custom code writing, have shown their advantages in minimising 

design and implementation effort and improving understandability of programs (Green and Petre, 

1996; Cox et al, 1997; Grundy and Hosking, 1998; Burnett et al, 2001; Grundy et al, 2006). This 

suggests that a visual language that supports event integration specification is likely to be a positive 

approach for the design and construction of a complex event-based system. Visualisation support 

(tool support) for the event propagations in the running system is also necessary in order to allow 

users to track and control the system execution behaviour (Grundy et al, 1995; Grundy et al, 1997; 

Jin, 2003). Using different high-level visual metaphors for event-handling support and providing 
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backend processing tool support for event integration specification were our main objectives. Based 

on in-depth research on current event handling techniques including custom scripting, constraint-

based programming models and metamodel tool event handling metaphors, our initial goal was to 

develop three exemplar domain-specific visual languages to examine event handler specification 

issues in different domains. The subsequent goal was to generalise from them to a visual metaphor 

and an environment for specifying general event handling integration. In achieving this our aim was 

that the general visual metaphor should be able to adapt the event-based communication model to a 

wide range of application domains, and also support complex and interactive system design and 

implementation. 

 

1.1.4 Methodology 

Our approach to achieving our goals was based around the following methodological steps, repeated 

for each metaphor: 

 We began with literature review of event systems in general and compared major visual event 

handling techniques. The requirements for event handling specifications were identified, together 

with the discovery of advantages and weaknesses of the current event handling techniques. 

 We then focused on problems and issues in existing event-based approaches and tool support and 

selected a choice of metaphor as our target of research focus. 

 We designed event handling support for the selected metaphor addressing an analysed set of 

requirements on the problem domain. 

 We proved our concept for that metaphor by developing prototype systems and examples. 

 We undertook evaluation of our visual language and environment to gauge its effectiveness.  

 

Having examined several metaphors, our next step has been to develop a high-level abstraction of 

these metaphors suitable for a range of application domains. We have initially developed three 

exemplars using such an iterative approach; they are ViTABaL-WS (Liu et al, 2005), Kaitiaki (Liu et 

al, 2005), and MaramaTatau (Liu et al, 2007). We have then generalised the three exemplars into a 

metamodelling environment to support event handling integration. Each of the three exemplars and 

the generalised event handling framework is briefly summarised in the following subsections. 

 

1.1.4.1 Visual Web Services Composition  

One example event-driven problem domain is web services composition. Web services have become 

a popular technology for building distributed systems, but there is a lack of languages and tools to 
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specify web service compositions at high abstraction levels, and from that generate lower-level 

executable process code such as BPEL4WS (IBM, 2003) and visualise, at high abstraction levels, 

running web services. Most approaches provide basic flow-like BPEL4WS editors or similar 

(Srivastava and Koehler, 2003). More abstract approaches (Fensel and Bussler, 2002; Foster et al, 

2003; Tang et al, 2004; Jung and Cho, 2005; Liu et al, 2007) only support limited compositional 

approaches or do not support generation of BPEL4WS or similar executable forms. We have 

developed a new approach for complex web service composition using a high-level metaphor and 

visual language, called ViTABaL-WS (Liu et al, 2005), which uses a “Tool Abstraction” (TA) 

metaphor for describing relationships between service definitions, and multiple-views of data-flow, 

control-flow and event propagation in a modelled process. This supports higher level design views 

for service composition (as shown in Figure 1.2 (b)) that are complementary to current web services 

composition standards. ViTABaL-WS also supports visualisation of running processes to support 

architecture understanding and visual debugging of specified protocols.   

 

1.1.4.2 Visual GUI Editing Event Handling  

The second problem domain that we have focused on is visual design tools. These tools have many 

applications, including software design, engineering product design, e-learning, and data 

visualisation. Pounamu (Zhu et al, 2007) is a meta-tool we have developed for building such visual 

design tools. It incorporates high-level visual specifications of tool metamodels and visual language 

notations allowing non-programmer users to modify aspects of their tools such as appearance of 

icons and view compositions. However, users of visual design tools commonly wish to modify tool 

behaviour (Morch, 1998; Peltonen, 2000) to specify editing constraints, automated diagram and 

model modification, semantic constraints, computation and user interaction alerts.  

 

Most visual design tools are “event driven”, meaning that when a user modifies a diagram in the tool, 

events are generated and can be acted upon to modify other content, enforce constraints, etc. (Grundy 

et al, 1995; Grundy et al, 1996; Zhu et al, 2007; Eclipse, 2007). We have used the event driven 

nature of such tools as a vehicle to provide end users with a domain specific visual language, we call 

Kaitiaki, with which to express both simple and complex event handling mechanisms for their 

diagramming tools via visual specifications (Liu et al, 2005). These include event filtering, tool state 

querying and action invocation as shown in Figure 1.2 (c). We have incorporated this visual language 

into the Pounamu meta-tool to provide end users who have little programming background, a 

mechanism to specify simple or complex actions to take for given event types. 
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1.1.4.3 Visual Relational Formula Specification 

It is increasingly common to use meta-tools to specify and generate domain specific visual language 

tools (Kelly et al, 1996; Ferguson et al, 1999; Ledeczi et al, 2001; Eclipse GMF, 2007). A common 

problem for such meta-tools is specification of model level behaviours, such as constraints and 

dependencies. These often need to be specified using conventional code in the form of event handlers 

or the like. A well-known and one of the most popularly used end user programming tools nowadays 

is the spreadsheet (Burnett et al, 2001; Engels and Erwig, 2005), thanks to its natural tabular and 

one-way constraint metaphors.  Formulae are designed in spreadsheets to allow declarative 

specification of system behaviours and automatic evaluation of them. Our third event specification 

metaphor attempts to adapt the spreadsheet approach to model behaviour specification.  

 

We explored this new formula-based approach, we call MaramaTatau (Liu et al, 2007), within the 

context of a new visual metamodelling environment called Marama (Grundy et al, 2006), which was 

developed as a successor to Pounamu (Zhu et al, 2007). MaramaTatau was first developed as an 

external plug-in for Marama to facilitate specification of entity/association property setting and 

constraint checking at a model level and later integrated into a meta-toolset for Marama within 

Eclipse, providing a single integrated toolset for both specification and generation of Marama tools. 

Formula construction in MaramaTatau is similar to a spreadsheet but expressed at a type rather than 

instance level as shown in Figure 1.2 (d). Formulae are all interpreted as one way constraints realised 

at a model instance level. Error and to-do list critics provide notification to the user of constraint 

violations. Visualisations of formula effects are achieved via runtime visual debugging and master-

details tabular model instances data views. 

 

1.1.4.4 Generic Event Handling Specification 

Based on the in-depth exploration of the three problem domains and the three corresponding visual 

languages, i.e. ViTABaL-WS, Kaitiaki and MaramaTatau, we have developed a generalised 

metaphor and a language/framework that can provide support for generic event integration 

specification. By abstracting from the three exemplars, a general metamodel representation that 

combines atomic primitives (either shared or non-shared) extended by the three visual languages is 

defined. This common model supports multiple metaphoric views in the style of the three exemplars 

and will support generation to a range of underlying implementation technologies for execution or 

interpretation (OCL (OMG, 2003), RuleML (RuleML Initiative, 2006), stylesheets etc.). 
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1.2 Contribution of Research 

We have investigated thoroughly visual language metaphors suitable for specifying event handlers, 

addressed existing problems and applied examples to demonstrate the metaphors and prove concepts. 

 

We have developed ViTABaL-WS, a hybrid visual programming environment for design and 

implementation of complex interactions and data exchanges among web service components. This 

exemplar tool is implemented using the Pounamu meta-tool. ViTABaL-WS uses the TA paradigm to 

express complex web service compositions. It provides code generation to BPEL4WS for 

deployment and execution from generated process models.  An interactive visual debugger animates 

running service compositions in ViTABaL-WS by instrumenting debug service calls into the 

generated BPEL4WS. A conference paper titled “A Visual Language and Environment for 

Composing Web Services” was co-authored with Professor John Hosking and Professor John 

Grundy and presented in Proceedings of the 2005 ACM/IEEE International Conference on 

Automated Software Engineering. 

 

We have developed Kaitiaki, a visual language and proof of concept support environment for 

specifying diagramming tool event handlers. This uses a metaphor of generating event, tool state 

queries, filters over query results and state changing actions, with dataflow between these building 

blocks. The support environment allows users to compose handlers from these constructs and relate 

them to concrete diagramming tool objects. A debugger uses the visual notation to step through a 

specification, animating constructs and affected diagram objects. We have added this tool to the 

Pounamu meta-diagramming tool and specified and generated event handlers for example tools, 

demonstrating the feasibility of the approach. A conference paper titled “A Visual Language and 

Environment for Specifying Design Tool Event Handling” was co-authored with Professor John 

Hosking and Professor John Grundy and presented in Proceedings of the 2005 IEEE International 

Conference on Visual Languages/Human-Centric Computing. Another improved conference paper 

titled “A Visual Language and Environment for Specifying User Interface Event Handling in Design 

Tools” was presented in Proceedings of the Eighth Australasian User Interface Conference in 2007.  

 

We have developed MaramaTatau, an approach for constraint/dependency specification in a domain-

specific visual language meta-tool. This borrows much from techniques used to support the 

spreadsheet metaphor, but in a situation with less concreteness. MaramaTatau augments the Marama 

meta-tools‟ metamodel designer, allowing tool developers to specify formulae over metamodels, 
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combined with a one-way constraint system to compute values during tool usage. This allows for 

much simpler specification of dependency and constraint handling within Marama tools, compared to 

both the textual event handlers and Kaitiaki visual event handlers. A conference paper titled 

“MaramaTatau: Extending a Domain Specific Visual Language Meta Tool with a Declarative 

Constraint Mechanism” was co-authored with Professor John Hosking and Professor John Grundy 

and presented in Proceedings of the 2007 IEEE International Conference on  Visual 

Languages/Human-Centric Computing. 

 

We have generalised from the three visual event-driven system metaphors and developed a new, 

generic visual event handling metaphor. From this we have built a novel multi-paradigm hybrid 

metamodelling environment for specifying generic event-based system behaviour that allows escape 

from code. A conference paper titled “Visual Languages for Event Integration Specification” 

presented our research proposal in Proceedings of the 28th International Conference on Software 

Engineering, 2006. 

 

Three other papers supporting this thesis research from motivation to implementation were co-

authored, these include: 

 A journal paper titled “A. Pounamu: a meta-tool for exploratory domain-specific visual 

language tool development”, which was published in Journal of Systems and Software, 

Elsevier, 2007.  

 A conference paper titled “Generating Domain-Specific Visual Language Editors from High-

level Tool Specifications”, which was in Proceedings of the 21st IEEE/ACM International 

Conference on Automated Software Engineering, 2006.  

 A workshop paper titled “Performance Engineering of Service Compositions”, which was in 

Proceedings of the International Workshop on Service-Oriented Software Engineering, 2006.  

 

1.3 Thesis Organisation 

The following chapters are organized as: 

 

Chapter 2 addresses the problems and examples in the field of event handling specification, 

undertakes literature reviews on related work including event-based systems, together with various 

event handling specification and visualisation techniques. 
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Chapter 3 presents an in-depth analysis of problems that motivate our research and describes our 

approach to addressing these problems. 

 

Chapter 4 presents overviews of our approach towards creating a general purpose event handling 

framework. 

 

Chapter 5 describes the tool abstraction metaphor and the ViTABaL-WS approach in addressing 

event-based service-oriented architecture specification and visualisation. 

 

Chapter 6 describes the Event-Query-Filter-Action metaphor and the Kaitiaki approach in addressing 

visual GUI editing event handling specification and visualisation. 

 

Chapter 7 describes the spreadsheet metaphor and the MaramaTatau approach for dependency and 

constraint driven event handling.  

 

Chapter 8 discusses the design of the generalised event handling framework and the issues 

discovered during the generalisation. 

 

Chapter 9 depicts the prototype and implementation of the generalised event handling framework. 

 

Chapter 10 evaluates the generalised event handling framework to address both its effectiveness and 

tradeoffs. 

 

Chapter 11 summarises our achievements and proposes future research directions. 

 

1.4 Summary 

This chapter discussed the core research, the exploration of three different visual event handling 

metaphors and their generalisation into a generic event handling framework. We presented our goals 

and the methodology taken towards this research. We present our detailed research contributions in 

the following chapters.  
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Chapter 2 - Background and Related Research 

 

The event-based communication model is widely used in many application domains, including 

software architecture, graphics and modelling frameworks, workflow management systems, database 

systems, and distributed computing. Event handling specifications are typically written using textual 

forms, which are error-prone and difficult to visualise and debug. A visual form of event handling 

specifications together with tool support is in contrast favourable, but is still sometimes verbose and 

limited in power. This chapter summarises our literature review on event-based systems, focusing on 

their event handling specification and visualisation support. Issues in designing event-based systems 

are explored and common concerns and requirements of event handling specifications are identified, 

which include an expressive language that describes both the static structure and dynamic behaviours 

of event-based systems along with environment support for modelling and tracing event 

propagations. Hybrid visual and textual languages and environments for event-based system 

specifications are of particular interest for us, because they can leverage the advantages of both 

visual and textual approaches 

 

2.1 Event-based Systems 

Event-based systems are different from general software systems based on procedural calls in that an 

event-based system features publish/subscribe relationships and dynamic event propagations among 

event sources and event sinks. Components are interconnected via events and operation calls, shown 

in Figure 2.1, to generate the, so-called, event-based communication. This facilitates loosely coupled 

systems with a collection of independent components to dynamically scale and extend (Grundy et al, 

1997). 

 

Figure 2.1. Basic structure of event-based software systems. (Grundy et al, 1997) 
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The publish/subscribe pattern, also known as observer pattern, specifies that one or more objects are 

registered to observe an event raised by the observed subject (Gamma et al, 1995). Figure 2.2 depicts 

the relationship between subjects and observers in the pattern, where a subject generally maintains a 

collection of observers. This pattern is mainly used in design and implementing event-based systems. 

 

Figure 2.2. The observer pattern. (Gamma et al, 1995) 

 

In event-based systems, an event is the occurrence of an observable activity (either generated 

implicitly by the system or explicitly by the user actions) or a state change in the system that may 

influence the execution of a user program. An event, represented as either an object or a message, is 

broadcast to other components that have indicated an interest in it. The act of selecting the set of 

recipients and posting the event to the recipients is known as event notification. Event notification 

can be broadly categorised as synchronous or asynchronous, with respect to the raiser of the event. If 

raising the event causes the signalling thread to block until it is explicitly resumed by a handler, it is 

termed a synchronous notification. If the thread raises the event but does not block, it is termed an 

asynchronous notification. Delivery of the notification eventually results in the execution of some 

code by its recipient (or an entity designated by the recipient), usually called the event hander 

(Menon el al, 1993).  

 

Meier and Cahill (Meier and Cahill, 2002) identify a classification of major event-based 

communication properties on the event model and event service dimensions. In this section, we 

explore event characteristics and categorise event-based systems based on their major application 

domains, including software architecture, graphical and modelling frameworks, workflow 

management systems, database systems, and distributed computing. We explain the event usage and 
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handling in these problem domains, followed by an indication of the need for a general purpose event 

framework that can support the design and construction of a wide range of event-based systems. 

 

2.1.1 Events in Software Architecture  

An event-driven architecture (EDA) is a method for designing and using systems which propagate 

events among loosely coupled software components and services using the publish/subscribe pattern. 

A system of EDA typically consists of event generators, event consumers, and an intermediary event 

service manager. Figure 2.3 illustrates that an event can be defined as any change in a system, 

platform, component, business, or application process to be published, received, and responded; 

events can be high-level and business-oriented or low-level and technical in character. Building 

systems around an event-driven architecture allows these systems to be constructed in a manner that 

facilitates more responsiveness, since event-driven systems are more normalised to unpredictable and 

asynchronous environments (Hanson, 2005). 

 

Figure 2.3. Event flow across architecture stack (Hanson, 2005). 

 

EDA extends and complements Service-Oriented Architecture (SOA) (Sliwa, 2003) (Hanson, 2005) 

since services can be started by triggers such as an event. SOA focuses on business functions and 

EDA focuses on business events, with mutual unawareness of the loosely coupled event publisher 

and subscriber components (Hoof, 2006). Web service composition is a form of dynamic, 

component-based SOA where web services are “wired together” with messages passing from one to 

another.  

http://en.wikipedia.org/w/index.php?title=Loosely_coupled_software_components&action=edit
http://en.wikipedia.org/wiki/Services
http://en.wikipedia.org/wiki/Service-Oriented_Architecture
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The publish/subscribe pattern is used in the Model-View-Controller (MVC) architecture (Burbeck,  

1992; Sun, 2005), as illustrated in Figure 2.4, where events cause a controller (i.e. event handler) to 

change a model (i.e. data), which triggers all dependent views (i.e. data display) to be automatically 

updated. Thus the consistency between the model and views are maintained.  

 

Figure 2.4.  Model-View-Controller abstraction (Sun, 2005) 

 

The Eclipse‟s Graphical Modelling Framework (GEF) (Eclipse, GEF, 2007) uses an MVC 

architecture to provide the link between an application's model and views. Requests and Commands 

are used in GEF in a similar way to event handlers to encapsulate interactions and their effects on the 

model. Figure 2.5 shows a high-level view of GEF. To enable graphical views to update according to 

a change in a model, an event object needs to be created in the model and fired to notify the change. 

The “EditParts” are the controllers which map models to view representations, listening to model 

events (via the the activate() and deactivate() methods) and updating views accordingly (via 

refreshChildren() and refreshVisuals() methods) to reflect the changes in models.  
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Figure 2.5. The GEF framework (Eclipse, GEF, 2007) 

 

Multiple-view systems generally have the MVC architecture. The underlying communication and 

consistency management between different views of such a system is often enabled by using event-

handling facilities. Examples of multiple-view systems include ViTABaL (Grundy et al, 1995), 

MViews (Grundy and Hosking, 1996), and C2 (Robbins et al, 1998) etc.  

 

The change propagation and response graphs (CPRGs) (Grundy et al, 1996; Grundy et al, 1997) 

approach or variants is commonly used as the underlying implementation architecture of multiple 

view visual environments. CPRGs propagate changes, such as the notification of an icon, as change 

description (event) objects between component objects via relationship objects. Receiving objects 

interpret or store change descriptions appropriately to maintain consistency (Grundy et al, 1997). 

Figure 2.6 illustrates how attribute consistency is maintained between the related “dialog”, “edit 

field” and “caption” components in CPRGs. Change descriptions are generated and propagated to the  

“parts” and “caption-of” relationships, which then interpret the change descriptions and take 

corresponding actions to keep the referential integrity of all the inter-dependent components. 
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Figure 2.6. Maintaining attribute consistency between related components in CPRGs. (Grundy 

et al, 1996) 

 

2.1.2 Events in Graphics and Modelling Frameworks  

The delegate event model is commonly used in building graphical user interfaces (GUIs). This model 

is based on three entities: a GUI control, callbacks, and interfaces. The GUI control is the event 

source which fires events in response to user input. Callbacks are event listeners that receive events 

from the source and run when the events fire. Interfaces describe the protocols by which events are to 

be communicated, transformed or filtered (Sun, 2007; MSDN, 2007). 

 

In the Java AWT event model, multiple event listeners can register to be notified of events of 

multiple types. For an example, a Button in AWT is an event source that can generate a built-in 

ActionEvent. The addActionListener() method can be called on by the Button to add an event 

handler which implements the actionPerformed() method to handle the ActionEvent. Event-

handling code executes in a single thread, called the event-dispatching thread, which “ensures that 

each event handler finishes execution before the next one executes” (Sun, 2007).  

 

The Jazz (Bederson et al, 2000) graphics toolkit allows Zoomable User Interfaces to be created based 

on Java‟s event listener model. User interaction events and diagram modification events are listened 

and responded to by event listeners. An example application that exploits Jazz is the set of highly 

user interactive zoomable views (as shown in Figure 2.7) integrated into a visual language meta-tool 

http://en.wikipedia.org/w/index.php?title=Event_source&action=edit
http://en.wikipedia.org/w/index.php?title=Event_source&action=edit
http://en.wikipedia.org/w/index.php?title=Event_source&action=edit
http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/Protocol_%28object-oriented_programming%29
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(Liu et al, 2004). Enhanced user-oriented view navigation and management features are provided 

based on a set of event handler implementations.  

 

 

Figure 2.7. User interactive zoomable views (Liu et al, 2004) 

 

Many modelling frameworks are “event driven”, meaning when a user modifies a model or view, 

events are generated and can be acted upon to update other content, enforce constraints, etc. The 

Eclipse Modelling Framework (EMF) (Eclipse, 2007) is a framework and code generation facility 

that allows definition of a model in Java, XML, or UML. An EMF model is the common high-level 

semantics shared by them. One specification can generate others with the corresponding 

implementation classes. Every generated EMF class is also a notifier, which sends notifications 

whenever an attribute or reference is changed. Notification observers in EMF are called adapters 

because they are often used to extend the behaviour of the object they are attached to. Adapters are 
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used extensively in EMF as observers and to extend behaviour. An adapter “can be attached to any 

EObject (for example, PurchaseOrder) by adding to its adapter list like this: 

Adapter poObserver = ... 

aPurchaseOrder.eAdapters().add(poObserver); ” (Budinsky et al, 2003) 

Whenever a state change occurs in the interested object, as shown in Figure 2.8, the adapter‟s 

notifyChanged() method will be called to handle the change (Budinsky et al, 2003).  

 

Figure 2.8. Calling the notifyChanged() method. (Budinsky et al, 2003) 

 

2.1.3 Events in Database Systems  

Events and reactive functionalities are used in database systems to support integrity of constraints, 

view maintenance, access control, and transaction management. Triggers, special kind of stored 

procedures, execute automatically in response to an INSERT, UPDATE or DELETE event in a 

database table or view (MSDN, 2007). Reactive mechanisms in active databases are usually centred 

on the notion of Event-Condition-Action (ECA) rules (Kiringa, 2002). An event defines the signal 

that triggers a rule; a condition defines the prerequisite for a rule to execute; and an action defines the 

way to update the system. Gatziu and Dittrich investigated the definition, detection, and management 

of events in the active object-oriented database system SAMOS (Gatziu and Dittrich, 93), where 

events are defined as a part of a rule, and be used in multiple rules.  

 

While the ECA rules can effectively define reactive behaviours in database systems, they require the 

users‟ capability to understand and code in database programming languages.  The ECA rule 

specification and processing are generally separated in database systems. The rule execution is not 

easy to monitor, unless a formal model can be used to abstract rule bases and their relations, 

operations and processes, to reduce the management complexity of a database system (Li et al, 

2002). 
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2.1.4 Events in Workflow Management Systems  

Defined by the Workflow Management Coalition, workflow is “the automation of a business process, 

in whole or part, during which documents, information or tasks are passed from one participant to 

another for action, according to a set of procedural rules.” As depicted in Figure 2.9, a workflow 

process defines “various process activities, procedural rules and associated control data used to 

manage the workflow during process enactment” (Workflow Management Coalition, 1999).  

 

Figure 2.9. WfMC Process Definition Meta-Model. (Workflow Management Coalition, 1999) 

  

A Workflow Management System (WFMS) is a system that “defines, creates and manages the 

execution of workflows through the use of software, running on one or more workflow engines, 

which is able to interpret the process definition, interact with workflow participants and, where 

required, invoke the use of IT tools and applications” (Workflow Management Coalition, 1999). 

Workflow Management Systems are often event-driven. An occurrence of a particular internal or 

external condition to a WFMS is regarded as an event that causes rules to trigger and responding 

delegating actions to be taken. Examples of WFMS include Process WEAVER (Fernstrom, 1993), 

Oz (Ben-Shaul, 1994), Serendipity (Grundy et al, 1998), jBPM (Koenig, 2004) and BizTalk 

(Chappell and Associates, 2007) etc. Such environments often facilitate event-based work 

coordination, task automation, and system integration. These events are associated with larger system 

components, compared to the graphical and database events mentioned previously. 
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2.1.5 Events in Distributed Computing  

Events and notifications are commonly seen in distributed interactive applications, where distributed 

user actions are events to which the applications react. A distributed event system generally involves 

the object that registers interest in an event, the event generator and the remote event listener (Sun, 

2005). In describing the distributed event-based communication, the event model can be categorised 

as: peer-to-peer (e.g. Java distributed event model), mediator (e.g. CORBA event channel), and 

implicit model where objects subscribe to event types instead of other objects or mediators (Meier 

and Cahill, 2002).     

 

(b) 

(a) 

 

Figure 2.10. Jini
TM

 Distributed Events Specification (Sun, 2005) 

 

Distributed event-based programs can be implemented in Jini
TM

 (Sun, 2005) by allowing “an object 

in one Java
TM

 virtual machine (JVM) to register interest in some event occurring in an object in some 

other JVM, perhaps running on a different physical machine, and to receive a notification when an 

event of that kind occurs” (Sun, 2005). An event can be generated and passed to a remote event 
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listener which is physically located differently over the network. Notification filters and notification 

multiplexing/de-multiplexing mechanisms are also introduced, as illustrated in Figure 2.10, to be 

used to help minimise network traffic. Notification multiplexing (as shown in Figure 2.10 (a)) 

enables the filter to receive a notification and forward it to each of the objects that had registered its 

interest in the event notification. Notification de-multiplexing (as shown in Figure 2.10 (b)) enables 

the filter to receive a set of events that the object is interested in and deliver them to the object.  

 

OMG defines a set of event service interfaces that enable publish/subscribe communications between 

objects. There are two roles defined for objects: the supplier (i.e. event generator) role and the 

consumer role. The Event Service facilitates anonymous suppliers/consumers, decoupled 

asynchronous communication, group communication among suppliers and consumers, abstraction for 

distribution, and abstraction for concurrent event handling. Suppliers and consumers establish 

communications via CORBA requests. Event channels are intermediaries that allow asynchronous 

communications between multiple suppliers and consumers (OMG, 2004). Figure 2.11 illustrates 

channel component and passing of events among multiple suppliers and consumers. 

 

 

Figure 2.11.  Event Channel with Multiple Suppliers and Consumers (OMG, 2004) 

 

Message-Oriented Middleware (MOM) systems offer message-based anonymous and asynchronous 

communication mechanisms. Sun‟s Java Beans (Sun, 2007) are based on the reactive paradigm. 

Figure 2.12 (a) shows a simple Message-Driven Bean (MDB) example, where the application client 

sends messages to the message queue, and the Java EE server delivers the messages to the instances 

of the message-driven bean, which then processes the messages (Sun, 2007). Microsoft Message 

Queuing (MSMQ) is also based on the MOM model. Figure 2.12 (b) shows the MSMQ queue‟s 
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communication model, where queues store messages from a client and forward them to the service. 

Using such a MOM model ensures high availability of communications in distributed systems 

(MSND, 2007).  

 

(a) 

(b) 

 

Figure 2.12. (a) A Simple MDB Application (Sun, 2007), (b) MSMQ model. (MSDN, 2007) 

 

Other applications of events in distributed systems include JEDI (Gugola et al, 2001) which is an 

object-oriented infrastructure that supports the development and operation of event-based systems 

especially distributed workflow management systems, and the web services eventing (Box at el, 

2006) specification which describes a protocol allowing event-based communication between web 

services.  

 

2.1.6 General Purpose Event Frameworks 

Since events are commonly used in many application domains, it seems desirable to have a general 

purpose event framework that can support the design and construction of a wide range of event-based 

systems. Such a framework should allow reuse of design and implementation thus saves a huge 

amount of the development effort and time. Though there exist many frameworks for high-level 

event modelling, they generally lack identified support for event handling specification.  

 

Barrett et al defined a generic framework for event-based system integration, named the EBI 

framework (Barrett et al, 1996). It defines a flexible object-oriented reference model for both the 

static and dynamic specification of event-based systems. Participants in the EBI framework 

communicate via four types of components: registrars, routers, message transforming functions 

(MTFs), and delivery constraints (DCs). Participants are interacting software modules as either 

informers or listeners. Registrars establish communication relationships among participants. Routers 
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deliver messages among participants. MTFs transform messages in transit. DCs control the delivery 

of messages against some rules. Figure 2.13 depicts the EBI framework components; the left figure 

shows the component interaction relationships, and the right figure shows the abstract data types of 

the framework components. 

 

 

 

Figure 2.13. The EBI framework: Relationships between components (left) and framework 

metamodel (right). (Barrett et al, 1996) 

 

Yeast (Krishnamurthy and Rosenblum, 1995) is a general purpose platform for specifying distributed 

event-based applications. Systems are constructed in Yeast via a high-level language with predefined 

object classes and attributes to support specification and matching of event patterns. Yeast supports a 

rich collection of client commands that allow users to interactively query and manage the status of 

their specifications. Furthermore, security of all client interactions is ensured. Rapide (Rapide Design 

Team, 1997) is an architecture description language that supports systems to be constructed via 

architecture definitions. It uses event-based simulations to find event sequences, causalities and 

constraint violations. Complex Event Processing (CEP), an application of Rapide concepts, assists in 

understanding of a distributed enterprise system by organising the activities of the system in an event 

abstraction hierarchy. ZOOM (Jia et al, 2005) provides an event model processed by an event-driven 

framework to bind the structural, behavioural and UI models of a software specification together.  

 

Though there exists many high-level event specification frameworks, there is still a lack of a state-of-

the-art framework for generic event handling specification. Most of the above event specification 

frameworks support custom event handlers; they neither exploit compositional primitives (such as 
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queries, filters, actions, and constraints) as reusable event handler building blocks, nor support 

tracing and visualising event propagations between them. 

 

2.2 Event Handling Specification and Visualisation Techniques 

Event handling plays an important role in event-based systems. All of the above systems need a way 

to handle the receipt of an event, i.e. need to take some action in response to it. The major kinds of 

event handling responses from the above systems include broadcasting events, regenerating events, 

and consuming events according to ECA rules. There are various techniques for specifying event 

handlers, including custom code writing, flow-based approaches, declarative programming, visual 

programming and hybrid approaches. Among these approaches, some are easy to use, some require 

developers to have expertise of programming languages, and some provide both static structure and 

dynamic behaviour views of an event handler. In this section we briefly examine the most common 

approaches used for specifying event handling in different applications.  

 

2.2.1 Custom Code Writing 

Custom code writing is typically the most commonly used way to design and construct an event-

based system (Grundy et al, 1995; Jin, 2003; Zhu et al, 2007). Users have full and flexible control 

over the behaviour that needs to be specified in an event handler. However, it requires the user to be 

a competent programmer, and a great deal of time needs to be invested on concerns such as language 

syntactic details rather than focusing on the conceptual problem of the system. In some 

circumstances, due to the lack of visualisation support, it is often very hard to debug code when the 

application becomes sophisticated. Therefore, the quality of the resulting application can not be 

guaranteed. Problems of maintenance, reusability and extensibility of the application arise as well 

(Jin, 2003). 

 

Examples of reactive systems configured by writing custom code include the following: frameworks, 

such as Suite (Dewan and Choudhary, 1991), Meta-Moose (Ferguson et al, 1999), and Unidraw 

(Vlissides and Linton, 1989) which require modifications to the tool‟s code, with an edit-compile-run 

cycle; some Tcl/Tk-based tools may be modified while in use (Welch and Jones, 2003), but this 

requires use of the Tcl programming language; and Pounamu (Zhu et al, 2007) supports direct 

modification via an API at runtime (as shown in Figure 2.14 (a)). However, usually only 

programmers familiar with the tool architecture can make such modifications. Many end users of 

such tools are not programmers and have difficulty in using textual, programmatic scripting 

languages to tailor their design tools (Zhu et al, 2007).  
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A common alternative approach supporting run-time modification is scripting. This is supported, for 

example, by Amulet (Myers, 1997) (as shown in Figure 2.14 (b)) and Peltonen‟s UML tool 

(Peltonen, 2000). MetaEdit+ (Kelly et al, 1996) also provides a custom scripting language for report 

generation while GME (Ledeczi et al, 2001) uses OCL (OMG, 2003) as a scripting language for 

constraint specification. These again require the knowledge of scripting languages thus are difficult 

for non-programmer users to understand and use (Green and Petre, 1996; Zhu et al, 2007). 

 

(a) (b) 

 

Figure 2.14. (a) Pounamu event handler designer (Zhu et al, 2007); (b) Amulet constraint 

scripting (Myers, 1997) 

 

2.2.2 Declarative Approaches 

Declarative programming models allow users to define “what” rather than “how”.  They provide 

another way of specifying event handling using relationships between data as opposed to control 

flow (Burnett and Ambler, 1992). Examples include rule-based, functional and constraint-based 

programming models. Declarative approaches allow users to ignore the implementation details, but 

instead concentrate on the problem semantics of the event handler by specifying relationships 

between objects, or conditions guarding the state transition of an object (Jin, 2003).  Declarative 

systems usually have an embedded runtime engine to automate the evaluation of these relationships 

or conditions. Details are provided in the following subsections.  

 

2.2.2.1 Rule-based Specification 

Rules as a declarative modelling technique can be integrated into an existing object-oriented 

modelling technique (e.g. UML) to specify behaviour on data models such as formulating 
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constraints, handling events, deriving new attribute values and modelling strategies in business and 

engineering. Rules provide a useful level of abstraction, allowing the designer to focus on important 

behaviour (Taentzer, 1999).   

 

Rule-based specifications are widely used in artificial intelligence systems for modelling intelligent 

behaviours, such as learning, searching, and problem-solving in computer-aided design and 

configuration (Jin, 2003). In rule-based systems, users can compose a rule with actions, 

preconditions and post-conditions; a rule interpreter evaluates the conditions against a knowledge 

base and executes the matched actions. An example of rule-based systems is AP5 (Cohen, 2006), 

which allows users to "program" at a more "specificational" level, in other words, focus more on 

what the user wants the machine to do and less on the details of how. With regard to event-based 

systems, rule-based modelling technique can be used to specify the preconditions and postconditions 

of a particular event or multiple event occurrences (Jin, 2003). Rule-based systems are easy to 

understand, and suitable for small-scale, static problem domains. However, the rule-based paradigm 

is not suitable for modelling large-scale, dynamic software systems. Rule-based systems are limited 

in their expressiveness, optimization is only based on heuristics, and they are limited with regard to 

reasoning solutions (Felfernig et al, 2003). Rule interpretations are generally computation intensive, 

which limits the performance and real-time response (Jin, 2003).  

 

Most rule-based approaches exemplify “Event-Condition-Action” based languages where the user 

specifies an event of interest; conditions (“filters”) when the action(s) should be run in response to 

the event; and action(s) to run to modify the tool‟s state. Other Event-Condition-Action rule-based 

languages have been developed for a variety of domains, including building and tailoring design 

tools (Costagliola et al, 2002; Ledeczi et al, 2001; Lewicki and Fisher, 1996), user interface event 

handling (Berndtsson et al, 1999; Jacob, 1996), process modelling (Grundy et al, 1998), database rule 

handling (Matskin and Montesi, 1998) and middleware for event detection and composition 

(Buchmann et al, 2004). Figure 2.15 shows a rule graph (Matskin and Montesi, 1998) that represents 

a particular active rule with three types of nodes: event nodes, condition nodes and action nodes. 

Event nodes correspond to events which switch on active rules. Condition nodes correspond to 

conditions to be checked in order to trigger rules. Action nodes represent actions performed by rules. 

Directed edges on rule graph connect event node with conditional node and condition node with 

action node. 
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Figure 2.15. Rule graph (Matskin and Montesi, 1998) 

 

Reaction RuleML (Paschke et al, 2006) is an XML-based language for reaction rules. It 

“incorporates different kinds of reaction rules from various domains such as active-database ECA 

rules and triggers, forward-directed production rules, backward-reasoning temporal-KR 

event/action/process logics, event notification, messaging, active update, transition and transaction 

logics” (Paschke et al, 2006) (as illustrated in Figure 2.16).  These rules can be specified globally, 

with other derivation rules or integrity constraints, or locally, nested within other derivation or 

reaction rules. Different rule processing styles are incorporated such as actively pulling or detecting 

events by monitoring, passively listening to events, and reasoning events and actions‟ effects. 

 

 

Figure 2.16. Reaction RuleML (Paschke et al, 2006) 
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The above mentioned rule-based approaches often suffer from use of inappropriate, textual rule-

based languages which are not suitable for end users. They rely on many abstract concepts like 

control structures and variables.  They have limitations on the expressive power of the languages; 

difficulties in visualising and debugging learned rules; and limitations of reconfiguration power, 

including compile-time rather than run-time changes (Ledeczi et al, 2001; Costagliola et al, 2002; 

Liu et al, 2007).  

 

2.2.2.2 Functional programming  

Functional programming is a declarative programming paradigm that places emphasis on the 

application of functions rather than state changes. It features higher-order functions, non-strict 

semantics (lazy evaluation), data abstraction, equations, pattern matching, and strong typing (Hudak, 

1989). Haskell (Haskell, 2007) is a popular general purpose functional programming language used 

to date. 

 

Higher-order functions treat functions as values and give them the same first class status. This makes 

the function the primary abstraction mechanism over values (Hudak, 1989). Higher-order functions 

are very efficient for calculating values associated with lists, where, for example, they can be applied 

to every member of a list and return an updated list. For example, the function map (*2) 

[1,2,3,4] returns [2,4,6,8](Haskell, 2007). 

 

The language Z (Wordsworth, 1992) is a well-known approach to formal specification. It specifies 

systems as functions. Z uses a state machine model to describe a “system as an automaton with a 

state from a potentially infinite state space and a state transition function” (Weber, 2003). It is 

declarative rather than procedural, because the system state is determined by values taken by 

variables, and operations are expressed by relationship between preconditions and post-conditions. 

Variable declarations and related predicates are encapsulated into schemas. Complex specifications 

are facilitated by schema calculus via composition. 

 

Vital (Hanna, 2002) is an interactive graphical environment that uses a functional programming 

language in a spreadsheet with direct data display. It allows graphical display of data structures in a 

format defined by a datatype indexed stylesheet. Figure 2.17 shows an exemplar family tree 

stylesheet. It supports demand-driven evaluation of values by the action of the user scrolling around 

an unbounded workspace. 

http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Program_state
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Figure 2.17. A family tree (Hanna, 2002) 

 

Functional programming languages are terse, clear, expressive and powerful; however they may still 

be error-prone in specification due to their high abstraction gradient. Supplementing them with visual 

representations could potentially make them easier to visualise, debug and understand (Kelso, 2002).  

 

2.2.2.3 Constraint-based Specification 

Constraints are presented in many user interface applications to specify object relationships and 

runtime enforcement. Garnet (Myers, 1990) is a constraint-based user interface toolkit facilitating 

visual layout constraints and consistency maintenance. Figure 2.18 shows an example of Garnet‟s 

code-based constraint specification. Model-integrated computing (Ledeczi et al, 2001) uses 

metamodelling to define domain-specific modelling languages and generate design environments 

enforcing model-level constraints.  

 

Figure 2.18. The line stays attached to the box and circle even when they move. Below the 

graphic is the code to define the constraints on the line. (Myers, 1990) 
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The Abstraction-Link-View paradigm (ALV) (Hill, 1992) is an approach similar to the MVC 

(Burbeck, 1992; Sun, 2005) architecture in the sense that it manages consistency between model and 

views. In addition, AVL introduced the use of link objects (as shown in Figure 2.19) to connect and 

constrain multiple user interface views and a single shared abstraction. Constraints are specified in a 

structured manner in link objects, so the views can ignore the shared abstraction and vice versa. 

 

 

Figure 2.19. Basic ALV architecture. (Hill, 1992) 

 

Form Chart (Weber, 2002) uses bipartite transition diagrams to define states of client and server, and 

transitions from client pages to server actions. Dialogue Constraint Language (DCL) is used in Form 

Charts. DCL is an extension of OCL (OMG, 2003) and defines special-purpose constraint types 

which are used to annotate state transition constraints. Figure 2.20 illustrates the use of an enabling 

condition constraint to specify under which circumstances this transition is enabled, and that of a 

client output constraint to specify the data submitted from a client page. 

 

 

Figure 2.20. Form chart notational elements (Weber, 2002) 
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Constraints do not necessarily need to be specified as code. MetaEdit+ (Tolvanen, 2006) allows 

constraints to be specified and visualised in the graphical metamodel using a wizard-like approach. 

Figure 2.21 shows its visual editor for adding constraints to graphs.  

 

Figure 2.21. Adding constraints. (Tolvanen, 2006) 

 

Constraints are usually enforced via a constraint solver, which acts as a back-end engine to 

automatically interpret and check the constraints against the model. Alloy (MIT, 2006) is a 

declarative language for structural modelling. Complex structural constraints and behaviour can be 

specified based on first-order logic using Alloy and solved by the Alloy Analyser, which is a 

constraint solver.  

 

Though constraint-based languages are powerful in specifying object relationships, usually they need 

an efficient constraint solver to interpret and enforce the constraints. Limitations of the constraint 

solver mean that some constraints are not possible to express (Jin, 2003). Complex constraint may be 

hard to specify and visualise for the end users. Debugging of constraints is also hard.  

 

2.2.3 State-based Formalisms 

State information is necessary to be represented in system models, as states are the concerns of both 

the structural and behavioural aspects of a system. Various state-based formalisms are used in 

specifying system workflows. We describe Petri Nets, Finite State Machine, and Event and Time 

graphs in this section. 

 

2.2.3.1 Petri Nets 

The Petri net is a powerful modelling formalism widely used in analysing and simulating workflows 

and distributed systems described in Section 2.1. It uses a terse set of graphical symbols to specify 
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system structure and behaviour. The language notation consists of places, transitions and directed 

arcs. Places (graphically represented as ellipses) represent data. Transitions (graphically represented 

as rectangles) represent activities. Arcs (graphically presented as arrows) connect places with 

transitions to represent activities‟ inputs/outputs, prerequisites/consequences, or state changes. An 

arc can have an associated expression to describe how the state of the Petri net changes. 

 

Petri nets have been used in modelling reactive systems. PUIST (Li et al, 1997) uses a Petri net 

notation for specifying the static form and dynamic behaviour of graphical user interfaces. Both 

hierarchical and recursive compositions of GUI components can be specified using this visual 

formalism. Palanque et al considered defining interface places as a subset of places to represent the 

interface between the system being modelled and its environment (Palanque et al, 1993). Each event 

is directly modelled in the system by the deposit of a token in an interface place. An incoming event 

may trigger different actions in the system, as depicted in Figure 2.22.  

 

Figure 2.22. Modeling a reactive system with Petri nets. (Palanque et al, 1993) 

 

2.2.3.2 Finite State Machines  

Behaviour can be represented as a finite state machine (FSM) with a set of states, inputs, transitions 

and actions. A state stores information; an input supplies data; a transition describes a state change 

from one to another; and an action triggers a transition (Wagner et al, 2006). There are two 

representations of FSMs: state transition diagram and state transition table (Drumea and Popescu, 

2004; Wagner et al, 2006). Figure 2.23 shows an example of graphical representations of them. 

http://en.wikipedia.org/wiki/State_%28computer_science%29
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(a) 

(b) 

 

Figure 2.23. (a) State transition diagram. (b) State transition table. (Drumea and Popescu, 

2004) 

FSMs are good at representing states of an event detection process in a reactive system, but it is not 

possible to identify participating event occurrences and event consumption modes or to extract the 

structure of a composite event (Berndtsson and Mellin, 1999), thus they are not ideal for representing 

event handling. 

 

2.2.3.3 Event and Time Graphs 

Event graphs can be viewed as directed acyclic graphs with nodes and leaves. An event graph uses a 

time line to represent the event history, nodes to represent event operators, leaves to represent 

primitive events, and arcs to represent a connection between a node and its two children. Event 

graphs make it easy to determine the structure of composite events. Hence, they support 

understanding of the state perspective (Berndtsson and Mellin, 1999). Figure 2.24 shows the 

detection of the composite event E6 for recent event consumption mode using an event graph.  

 

Figure 2.24. An event graph (Berndtsson and Mellin, 1999) 
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Although event occurrences are visually presented, their role (indicator or terminator) in the event 

detection process is not explicitly visualised. These must be inferred manually by the user, by 

looking at the event history, participating event occurrences and event operators shown in the event 

graph. One potential solution to this is to use event graphs in combination with time graphs, since 

time graphs can visualize initiators and terminators (Berndtsson and Mellin, 1999). The use of time 

graphs to visualise composite events and event consumption models was introduced by Chakravarthy 

et al (Chakravarthy et al, 1994).  A time graph uses a time line to represent the event history, which 

presents the semantics of composite events. Each event occurrence in the event history is marked in 

order of occurrence on the time line. Each time interval depicts the detection of a composite event for 

a given event consumption mode and includes one initiator, zero or more participating primitive 

events, and one termination event.  Figure 2.25 depicts the detection of a composite event using a 

time graph for four event consumption modes: recent, chronicle, continuous, and cumulative.   

 

Figure 2.25. A time graph (Berndtsson and Mellin, 1999) 

 

The advantage of using time graphs is that it is possible to see which event instances participate and 

their role in the detection of a composite event. However, time graphs do not provide any 
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information concerning the structure of the composite event, e.g. event operators are missing. Thus, 

time graphs support understanding of the outcome perspective and need to be used together with 

additional information which describes the structure (Berndtsson and Mellin, 1999). 

 

State-based approaches in general usually ignore the structural elements of a system and focus on 

representing runtime changes. This results in isolating dynamic behaviour specifications from the 

static structure which is the backbone of the system. Another disadvantage is that state-based 

approaches convey many low level details, especially when rendering a highly concurrent system, a 

large number of states need to be presented, which raises scalability issues (Kraemer and Herrmann, 

2007). 

 

2.2.4 Flow-based Approaches 

Flows can be used to effectively represent dependencies between states and activities based on 

execution sequence or conditions. We describe two flow-based approaches: workflow and dataflow.  

 

2.2.4.1 Workflow 

As described in the Section 2.1.4, workflow supports procedural designs via the execution order and 

dependencies of activities. It includes definitions of sequence, parallelism and synchronization, 

decision making, split and merge, loop, start, terminate and cancel an activity. Usually this leads to a 

significant amount of additional control to be included in a model, thus making large systems 

difficult to understand and communicate. Workflow metaphors are typically used in much recent 

research on system composition. Simple workflows are, however, insufficient to describe the 

integration and co-ordination of complex system. For example, conditional execution is needed; 

some links are sequential data-flow from one to another; some asynchronous; services may subscribe 

to events; conversion of messages may be needed; and so on. Examples include BPEL4WS (IBM, 

2003), BPML (ebPML, 2002), and jBPM (Koenig, 2004). Many are described as “business process 

modelling languages”. Different composition languages support different levels of abstraction, fault-

recovery, transaction modelling, and component inter-relationships. Most are textual scripts that are 

interpreted at run-time by workflow or business process flow engines, for instance, BPEL4WS 

processes are interpreted by the BPWS4J (IBM, 2002) engine as shown in Figure 2.26. Such textual 

scripts are often challenging to read, error-prone to write, and reusability can be limited.  
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WSDL 

BPEL4WS 

 

Figure 2.26. BPEL4WS specification and deployment using BPWS4J, 

adapted figure (Liu et al, 2005) 

 

Serendipity (Grundy and Hosking, 1998) exploits a set of visual components to model work 

processes, work plans and history for a particular project in the Serendipity environment. These 

include process stage, artefact, tool and role representations. It has in addition the Visual Event 

Processing Language (VEPL) to permit visual specification of arbitrary event handling and event-

triggered rules in process modelling. VEPL includes two basic constructs, filters and actions, which 

receive events from stages, artefacts, tools or roles, or other filters and actions. Filters match received 

events against user-specified criteria, passing them onto connected filters and actions if the match 

succeeds. When actions receive an event, they carry out one or more operations in response to the 

event (Grundy and Hosking, 1998).    Figure 2.27 describes the basic modelling capabilities of 

VEPL. Figure 2.28 shows a simple event-handling view that illustrates the use of VEPL for inter-

stage work coordination. 
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Notational symbol Example Description 

M a d e  C u r r e n t
 

A filter definition. Filters receive events (from process stages, artefacts, 

tools, roles, other filters or actions) and if the event matches the defined 

selection criteria for the filter, the event is passed onto the connected filters 

and/or actions. A filter or action reused from a template filter/action 

definition has its name in italics. 

N o t i f y  R o l e

 

An action definition. Actions receive events (from process stages, artefacts, 

tools, roles, filters or other actions) and respond to the event by performing 

some action (which often generates other events). Actions can pass on 

events to other filters and/or actions. 

M a d e  C u r r e n t

N o t i f y  R o l e

 

An event flow into/from a filter or action. Events may be process stage 

enactment events, artefact update events, tool events, some event caused by 

a role (i.e . user), or an event generated by an action. For example, if Made 

Current decides an enactment event flowing into it means a process stage 

has been made the current enacted stage, then the Notify Role action is 

invoked to notify another user about this event. 

j o h n

M a d e B y

n a m e

 

Usage flow into a filter or action. These specify parameters of the 

filter/action. For example, the MadeBy filter is parameterised by a role 

name which it uses to decide whether some event was caused by a particular 

role. In the example, that role name is instantiated to "john"  by the usage 

connection to the role process model component. 

Figure 2.27. Basic modelling capabilities of VEPL. (Grundy and Hosking, 1998) 
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Figure 2.28. Multiple event processing, stage coordination and external process interfacing 

(Grundy and Hosking, 1998) 

 

2.2.4.2 Data flow diagram 

A data flow diagram is a directed graph that describes the flow of data between system components. 

It supports hierarchical decomposition of processes into sub-diagrams, which however, cannot be 

reused in different specifications (Weber, 2003). InterCONS (Smith, 90) and ConMan (Haeberli, 

1988) are domain-specific visual dataflow languages which has certain primitives associated with 

user interactions (e.g. buttons, sliders). These primitives accept interactive input events and generate 

integer outputs, which can be routed into other dataflow nodes for further calculation (Burnett and 

Ambler, 1992). Besides UI primitives, Prograph (Cox et al, 1989) provides generality by facilitating 

dataflow connectibility to the low-level Macintosh Toolbox, allowing direct access and manipulation 

of the various Macintosh data structures, but this leaves the realm of high-level programming to do 

so (Burnett and Ambler, 1992); an example is illustrated in Figure 2.29, where Prograph uses iconic 

symbols to represent data and actions. The Biopera Flow Language (Pautasso, 2003) is a generic 

visual flow language for coordinating software components. It focuses on data flow, execution 

sequence and fault handling and all can be specified with a simple visual syntax. However it lacks 

modelling capability for event subscription and various other service relationships like call-backs. 

The visual syntax is verbose as both data and data bindings must be specified. 
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Figure 2.29. Prograph method implementation. (Cox et al, 1989) 

 

The main disadvantage of flow-based approaches in general is that “Cobweb and Labyrinth problems 

appear quickly” when modelling a complex system. End users have to “deal with either very 

complex diagrams or many cross-diagram implicit relationships” (Li et al, 2007). 

 

2.2.5 Programming by Demonstration (Programming by Example) 

Programming by Demonstration (PBD) or Programming by Example (PBE) is a technique that 

allows unskilled users to perform actions interactively to demonstrate the desired behaviour of a 

system, and programs can then be generalised from the recorded actions (Myers, 1997). PBD 

approaches have been used to specify behavioural constraints in some systems, often together and 

most notably in children‟s programming environments such as KidSim (Smith et al, 1995) and 

Agentsheets (Repenning and Sumnet, 1995). Alice (Conway et al, 2000) is an authoring tool for 

scripting and prototyping 3D object behaviours. Object state and behaviour are specified via user 

scripts, which are executed to demonstrate how objects respond to user interactions. Figure 2.30 

shows the Alice environment that supports programming by demonstration via user interactions. 
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Figure 2.30. The Alice Authoring Environment (opening scene tab). (A) The Add Object button 

presents a gallery of 3D objects. (B) The Object Tree, a PHIGS-like tree of hierarchical objects 

(C) Camera controls allow the user to drive around the scene. (D) The Undo button provides 

infinite animated undo. (E) The Alice Command Box for evaluating single lines of Alice script. 

(F) The Script tab reveals a simple text editor where the user writes scripts that control the 

objects in the scene. (Conway et al, 2000) 

 

PBD approaches are generally limited in specification power. They put the burden of programming 

tasks on the user, which is generally not desirable as the changes made by the user are error-prone 

and hard to control (Sheth, 1994). 

 

2.2.6 Visual Approaches vs. Textual Approaches 

Scripting and declarative approaches normally adopt a textual representation, which generally 

presents difficulties for system visualisation and debugging. Visual programming languages and 
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environments (Graphical notations and tools) can be used to simplify the development process. 

Visual approaches, as opposed to custom code writing/scripting, have advantages such as allowing 

concrete representations of concepts, minimising design and implementation effort, improving 

understandability, expressiveness in both static and dynamic specification and visual debugging 

running event-based systems (Hirakawa and Ichikawa, 1992; Cox et al, 1997; Conway et al, 2000; 

Burnett et al, 2001; Zhu et al, 2007). Visual languages and environments such as the previously 

illustrated Serendipity (Grundy and Hosking, 1998) tend to be more readily understandable by end 

users than many textual, rule-based languages. 

 

It has been a long running debate as to whether pure visual approaches have limitations in 

expressiveness, while some tasks can simply be expressed in a terse and concise way using text 

(Schiffer and Frohlich, 1994; Gottfried and Burnett, 1997; Neag and Tyler, 2001; Costagliola et al, 

2004). For large complex systems, one single paradigm may not be effective enough to address all 

aspects or concerns. Combining multiple complementary paradigms in an environment could 

significantly lift the specification power. 

 

Vista (Schiffer and Frohlich, 1994) is a visual multi-paradigm programming environment that 

combines object-oriented programming with signal flow and dataflow for the construction of reactive 

and transformational systems. It avoids visual overload by permitting text input whenever useful. 

HANDS (Myers et al, 2004) also uses similar approaches.  

 

Forms/3 (Burnett et al, 2001) is a general purpose, declarative form-based language and environment 

that support procedural abstraction, data abstraction and graphics output in the spreadsheet paradigm.  

The spreadsheet paradigm provides a declarative approach to programming, characterised by a 

dependence-driven and direct-manipulation working model. A form in Forms/3 is a collection of 

cells or groups of cells called matrices and abstraction boxes. The programmer can directly 

manipulate and define formulae for the cells. A formula is a side-effect-less functional expression 

that calculates values based on inherent dependencies. Forms/3 combines the use of visual 

representation of text for formulae and graphics for direct manipulation with concrete, immediate 

feedback. Programming with events in Forms/3 is no different than any other kind of programming, 

since events are treated as simple values and vice versa. This allows a visual, high-level approach to 

event-based programming (Burnett et al, 2001). Figure 2.31 illustrates the language in use. 
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Figure 2.31. A portion of a Forms/3 form (spreadsheet) that defines a primitiveCircle. The 

primitiveCircle in cell newCircle is specified by the other cells, which define its characteristics. 

A user can view and specify formulas by clicking on the formula tabs attached to the bottom 

right of each cell. Radio buttons and popup menus are equivalent to cells with constant 

formulas. (Burnett et al, 2001) 

 

Combining multiple paradigms such as declarative programming and visual programming in a 

system specification can expedite the system construction process, given that good usage of each 

paradigm allows separation of modelling concerns and merging them to achieve a system solution 

(Burnett and Ambler, 1992). The development process can be less intensive and less error-prone 

compared to using a single programming model (Jong, 1997). 

 

2.3 General Issues and Requirements 

Our research aims to provide a general purpose framework for event handling integration.  From an 

analysis of the above related work, which includes various event handling specification and 

visualisation techniques in event-based systems, we can derive the strengths and weaknesses of each 

at a high-level, as illustrated in Table 2.1. Textual/Scripting approaches provide the user with flexible 

control in extending system behaviours, but are not suitable for end users due to the difficulty of 
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visualising and understanding their specifications. Declarative semantics of rule-based and 

constraint-based modelling techniques allow the user to specify the relations between components 

and declarative approaches usually provide system-level support to automate their execution and 

maintenance, but runtime visualisation of the behaviour execution is usually suppressed (Jin, 2003). 

State-based approaches allow easy analysis of system runtime changes and simulations, but system 

structural details are usually under represented. Flow-based techniques enable high-level 

specification of inter-communications among system components, but usually fail to present the 

structural and behavioural details at the same time for runtime visualisation.  Program by 

demonstration approaches focus on dynamic behavioural changes and visualisations, however they 

are generally limited in specification power. A hybrid visual and textual approach that takes all the 

advantages of the above individual approaches can potentially possess more capabilities for 

effectively specifying event-based systems. 

 

Technique Static structure 

specification  

Dynamic behaviour 

specification 

Runtime visualisation 

Textual/Scripting × × × 

Declarative √ √ × 

State-based × √ √ 

Flow-based √ √ × 

Program by demonstration × √ √ 

Hybrid visual and textual √ √ √ 

Table 2.1. Comparison of event handling specification and visualisation techniques 

 

The issues in the above explored specification and visualisation approaches to event-based system 

integration need to be  addressed properly in our work, in order to provide a feasible event handling 

framework for a wide range of event integration support. This led to the following set of 

requirements for our event handling integration framework: 

 An expressive language that describes both the static structure and dynamic behaviours of 

event-based systems is needed. The language should have the ability to compose building 

blocks and models for reuse.  

 Collaborative use of textual and visual notations in multiple views of different levels of 

abstraction should be allowed to accommodate the specification needs. The framework 
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should have the advantage of ease of use for novice users but also expressive power for 

experienced tool developers (Grundy et al, 1998). 

 A canonical event handling model that is easy to extend is required as the fundamental 

framework infrastructure. 

 The framework should allow users to add event propagation and event handling behaviour to 

running tools in a fast and easy way. 

 Environment or software tool support for specifying event handling, tracing event 

propagations and visualising results using graphical structures is needed. The visualisations 

need to incorporate both the static system dependency structure and the dynamic event 

handling behaviour of running event-based systems. 

 Event-based system executions are highly time related, and many phenomena may occur in a 

very short time (and conversely, there can be large gaps between clusters of events). A real-

time visualisation would be too fast as it may prevent users from actually seeing all the 

phenomena he/she is interested in (Coupaye et al, 1999). Step-by-step visualisation that is 

interactively controlled by the user is thus required. 

 

2.4 Summary 

The aim of this research is to explore existing event-based systems for their event handling and 

visualisation support and then design a general purpose event handling framework. In this chapter, 

we conducted a literature review of related work in this field, which includes event handling 

specification techniques and visualisation support for design and construction of event-based 

systems. We have compared the existing approaches and identified the strengths and weaknesses of 

each together with general issues relevant to the event-based programming paradigm. These form the 

basis for our further research development to achieve our research goal.  
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Chapter 3 - Motivation 

 

This chapter describes the motivation of this thesis. We start with an introduction to the Pounamu 

(Zhu et al, 2007) project, and then describe various evaluations performed on Pounamu. A key 

feature of Pounamu is the use of “event handlers” to allow tool developers to specify handling of 

various events for user interfaces and for models. The current event handler definer in Pounamu 

requires the user to write Java code fragments to compose the handler.  The user has to be familiar 

with the Pounamu API to complete even a simple event handler specification task. One of our 

primary motivations for this research was to replace such textual Java code scripts with more 

appropriate and powerful visual tool support for event handler specification.  

 

3.1 Overview of Pounamu 

Domain-specific visual language tools have become important in many domains of software 

engineering and end user development. However building such tools is very challenging with a need 

for multiple views of information and multi-user support, the ability for users to change tool diagram 

and metamodel specifications while in use, and a need for an open architecture for tool integration. 

Pounamu is a meta-tool for realising such visual design environments (Zhu et al, 2007).  

 

Figure 3.1 shows the main components of Pounamu. Users initially specify a meta-description of the 

desired tool via a set of visual specification tools. These define: 

 The appearance of visual language notation components, via the “Shape Designer”, which has 

shape and connector variants;  

 Views for graphical display and editing of information, via the “View Designer”;  

 The tool‟s underlying information model as metamodel types, via the “Metamodel Designer”; 

and 

 Event handlers to define behaviour semantics, via the “Event Handler Designer”, which has 

textual variants.  

 

Tool projects are used to group individual tool specifications.  
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Pounamu Meta-tool Application 

Modelling Tools Specification Tools 

 
Shape Designer 

Meta-model 

Designer 

Event handler 

Designer 

View Designer 

Modelling Views 

 

 

 

Model Entity instances 

Tool Specifcations 

– XML documents 
Plug-ins 

Event 

Handlers 

Web Services 

APIs 
Tool specification 

projects (XML) 
Modelling 

projects (XML) 
 

Figure 3.1. The Pounamu approach. (Zhu et al, 2007) 

 

Having specified a tool or obtained someone else‟s tool project specification, users can create 

multiple project models associated with that tool. Modelling tools allow users to create modelling 

projects, modelling views and edit view shapes, updating model entities. Pounamu uses an XML 

representation of all tool specification and model data, which can be stored in files, a database or a 

remote version control tool. Pounamu provides a full web services-based API which can be used to 

integrate the tool with other tools, or to remotely drive the tool.  

 

3.1.1 Tool Specification 

Figure 3.2 (a) shows an example of the Pounamu shape designer in use. On the left a hierarchical 

view provides access to tool specification components and models instantiated for that tool. In the 

centre are visual editing windows for displaying tool specification components and model instances. 

Here, a shape is defined representing a generic UML class icon. To the right is a property editing 

panel supplementing the visual editing window. General information is provided in a panel at the 

bottom.  

 

Figure 3.2 (b) shows a UML class diagramming tool, which uses the shape icon defined in Figure 3.2 

(a) to model a “person” class, and two subclasses “student” and “staff”. The same shape specification 

could be reused for other modelling tools associated with the same (e.g. a class element in a package 

diagram) or different metamodel elements. 
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(a) 

(b) 

 

Figure 3.2. Pounamu in use: (a) specification of a visual notation shape element and (b) 

modelling using this shape in a UML class diagram tool. (Zhu et al, 2007) 

 

The Shape Designer allows visual elements (generalised icons) to be defined. These consist of Java 

Swing panels, with embedded sub-shapes, such as labels, single or multi-line editable text fields 

(with formatting), layout managers, geometric shapes, images, borders, etc. For example, the icon in 

Figure 3.2 (a) consists of a bordered, filled rectangular panel, with three sub-shapes, a single line 

textfield for the name, and two multi-line textfields for the attribute and operation parts of the class 

icon. The property sheet pane (right) allows names and formatting information to be specified for 

each shape component. Fields that are to be exposed to the underlying information model are also 
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specified using a property sheet tab. Form-based interface can also be defined by using a single shape 

specification defining the whole form. 

 

The Connector Designer allows specification of inter-shape connectors, such as the UML 

generalisation connector shown in Figure 3.3. The tool permits specification of line format, end 

shapes, and labels or edit fields associated with the connector‟s ends or centre. 

 

 

Figure 3.3. Example of the Connector designer. (Zhu et al, 2007) 

 

The underlying tool information model is specified using the metamodel designer, shown in Figure 

3.4. This uses an Extended Entity Relationship (EER) model as its representational metaphor. This 

was chosen because the representation is simple and hence accessible to a wide range of users. For 

example, the metamodel in Figure 3.4 contains two entities representing a UML class and UML 

object, each with properties for their names attributes and methods, class type etc. An “instanceOf” 

association links class and object entities and an “implements” association links classes. The 

metamodel tool supports multiple views of the metamodel, allowing complex metamodels to be 

presented in manageable segments. 
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Figure 3.4. Example of the metamodel designer. (Zhu et al, 2007) 

 

The View Designer, shown in Figure 3.5, is used to define a visual editor and its mapping to the 

underlying information model. Each view type consists of the shape and connector types that are 

allowed in that view type, together with a mapping from each such element to corresponding 

metamodel element types. Menus and property sheets for the view editor and view shapes can also be 

customised using this tool. For example, Figure 3.5 shows the specification of a simple UML class 

diagramming tool, consisting of UML class icon shapes, and generalisation connectors. Figure 3.5 

shows that the “classshape” icon maps to the class metamodel entity type, and their selected 

properties map as shown. Mappings supported in this tool are limited to simple 1-1 mappings of 

elements (single or multi-valued) between view instance and information model instance. More 

complex mappings can be specified using event handlers as described below. Multiple view types 

can be defined, each mapping to a common information model. For example, other view types for 

sequence diagrams or package diagrams can be defined for the simple UML tool.  
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Figure 3.5. Example of the view designer. (Zhu et al, 2007) 

 

The Event Handler Designer is used to define complex behaviour to a tool using an Event-Condition-

Action (ECA) model (Kiringa, 2002; Liu et al, 2005). It allows tool designers to choose predefined 

event handlers from a library or to write and dynamically add new ones as Java plug-in components. 

Event handlers can be used to add:  

 view editing behaviour e.g. “if shape X is moved, move shape Y the same amount”;  

 view and model constraints e.g. “all instances of entity Z must have a unique Name property”;  

 user-defined events e.g. “check model is consistent when user clicks button”;  

 event-driven extensions e.g. “generate C# code from the design model instance information”; and  

 environment extension plug-ins e.g. “initialise the collaboration plug-in to support synchronous 

editing of a shared Pounamu diagram by multiple users”. 

  

Event handler code must be developed using Java. A comprehensive API provides access to the 

underlying Pounamu modelling tool representation, permitting complex querying and manipulation 

of tool data. A simple example of an event handler being developed is shown in Figure 3.6. Event 

handler code is compiled on the fly as the tool is specified or when a tool project is opened.  
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Figure 3.6. Example of the event handler designer. (Zhu et al, 2007) 

 

3.1.2 Tool Usage 

Pounamu automatically and incrementally implements tools as they are specified using the Pounamu 

metatools. This means tools may be tested and evaluated incrementally as they are being developed, 

avoiding the compile cycle issues noted earlier and creating a live environment. Generation of the 

tool happens automatically and immediately following specification of any view editor associated 

with the tool or when a saved tool project is opened. This provides powerful support for rapid 

prototyping and evolutionary tool development. Changes to a tool specification may, of course, result 

in information creation or loss in the open or saved modelling projects e.g. when adding or deleting 

properties or types. Users can create model views using any of the specified view editors. Reuse is 

supported by allowing shapes, connectors, metamodel elements, and event handlers to be easily 

imported from other tools or libraries. Multiple tool specification projects may be open when 

modelling, with specification of parts of the modelling tool coming from different tool specification 

projects, supporting layered tool development. 

 

Each view editor provides an editing environment for diagrams using the shapes and connectors it 

supports. Consistency between multiple views is implicitly supported via the view mapping process 

with no programming required to achieve this, unless complex mappings are required that need event 

handlers to implement them. 
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(1) 

(2) 

(3) 

 

Figure 3.7. Example modelling tool usage. (Zhu et al, 2007) 

 

Figure 3.7 shows the simple UML class diagramming tool in use. View (1) shows a simple class 

diagram. The user has created a class diagram view from the available view types, added two UML 

class shapes and an association connector, and set various properties for these, including their 

location and size. View (2) shows another class diagram included in the same project model, reusing 

the “Customer” class information. Changes to either view, e.g. addition of a method or change of the 

class name, are reflected through to the other view. View (3) shows a simplified object diagram 

view, including an object of class “Order”. Changes to the class name are automatically reflected in 

this view and only methods defined or inherited by a class may be used in the message calling. The 

latter is controlled by event handlers managing the more complex consistency requirements. 

 

Having defined a simple tool, and experimented with its notation, additional behaviour can be 

incrementally added using event handlers to implement more complex constraints. Examples 

include: 

 type checking, e.g. UML associations must be between classes;  

 model constraints, e.g. UML class attributes must have unique names for the same class;  

 layout constraints and behaviour, e.g. auto-layout of a UML sequence diagram view when edited;  
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 more complex mappings, e.g. changes to class shape method names automatically modifying 

method entity properties in the modelling tool information model; or  

 back end functionality, e.g. generating C# skeleton code from model instances.  

 

These handlers can be generic for reuse (e.g. a generic horizontal alignment handler) or specific to 

the tool. As with other meta specification components, adding or modifying a handler results in “on 

the fly” compilation of handler code and incorporation of that code into any executing tool instances. 

 

As noted above, back end functionality can be implemented by event handlers. In addition, as all tool 

and model components are represented in XML format, it is straightforward to implement back end 

processing using XSLT or other XML-based transformation tools. This approach can allow back 

ends to be developed independently of the editing environment enhancing modularisation. An 

additional approach for implementing back end functionality is via Pounamu‟s web services-based 

API. This exposes Pounamu‟s model representation, modelling commands, menu extension 

capability, etc, permitting tight and dynamic integration of third party tools, and other Pounamu 

environments. This API has been used, for example, to implement peer to peer based synchronous 

and asynchronous collaboration support between multiple Pounamu environments, to implement 

generic GIF and SVG web-based thin client interfaces, to implement interfaces for mobile device 

deployment, and to integrate a Pounamu based process modelling tool with a process enactment 

engine (Zhu et al, 2007). 

 

A wide range of exemplar domain-specific visual language tools have been developed with 

Pounamu, some of which are illustrated in Figure 3.8. These include (Zhu et al, 2007): 

 A full UML tool supporting all UML diagram types. This also provides an import/export 

facility using the XML Model Interchange (XMI) standard allowing models to be imported 

from and exported to other XMI-compliant UML tools. A code generator takes XMI models 

from Pounamu and generates Java code that can be further extended by a programming 

environment. 

 A circuit design tool (Figure 3.8 (a)) providing a CAD-like tool for circuit design. 

 A statistical survey design tool SDLTool (Figure 3.8  (b)). SDLTool provides multiple views 

describing statistical processes, data and analysis steps. This is used by statisticians to design, 

enact and process complex statistical surveys. 
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 A software process modelling and enactment tool IMAL (Figure 3.8 (c)). IMAL provides 

multiple users multiple workflow modelling diagrams. These software process models can be 

enacted by the tool to help support work co-ordination by multiple developers. External tools 

are invoked via Pounamu‟s web service support to provide complex rule processing and 

XML document display and update. Pounamu itself is invoked by a workflow engine via 

Pounamu‟s web services API to support dynamic visualisation of enacted work processes. 

 

 
(a) – Circuit Designer 

(b) – Statistical survey designer (c) – Process modelling 
 

Figure 3.8. Examples of Pounamu DSVL tools. (Zhu et al, 2007) 

 

Pounamu has also been used as a rapid prototyping tool in a range of industrial applications to assist 

in the design of visual notations and interfaces for client companies. These applications include: a 

business form designer; a business enterprise modelling tool; a project management tool with Gantt 

and work breakdown schedule views; and a web services composition tool. In each case the client 

companies were able to rapidly explore and evaluate a variety of alternative notational approaches 

with a low level of investment, hence allowing them to lower the risk of development. 
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3.2 Evaluations of Pounamu 

Evaluating a metatool such as Pounamu is not a straightforward task due to the multiple points of 

view involved (tool developer, end user of developed tool, usability, utility, etc). As a starting point 

for the research in this thesis, we undertook an evaluation of Pounamu to estimate its strengths and 

weaknesses. Our approach has been to evaluate Pounamu at several levels and through a variety of 

mechanisms. These include:  

1. Two large group experiments, spaced nearly two years apart, where participants 

(approximately 45 in each case) constructed a domain specific visual language tool and were 

then surveyed. Our aim in each case was to use the feedback to help improve the tool, and 

significant enhancement was undertaken between the two experiments. 

2. Qualitative feedback, in the form of experience reports, from a smaller number of developers 

who used Pounamu to develop more substantial applications, such as the ones in Figure 3.8. 

These were used to assess whether perceptions altered as more substantial applications (with, 

for example, more complex back end integration requirements) were developed. 

3. Small end user and cognitive dimensions evaluations (undertaken by the developers) of 

substantial applications developed using Pounamu. These were used to evaluate whether end 

users found Pounamu generated tools to have good usability characteristics. Many of these 

have also been reported in detail elsewhere. 

 

3.2.1 Large Group Experiments 

In each experiment around 45 participants, who were graduate-level students, were asked to 

construct a domain-specific visual language tool of their own choosing, but with at least a minimal 

set of required components, such as numbers of icons, views, handlers, etc so that tools with a 

realistic level of complexity were designed and constructed. Participants were given two weeks 

elapsed time (i.e. alongside other obligations) to complete application development; they were then 

surveyed using a set of open ended questions to qualitatively elicit strengths and weaknesses of 

Pounamu to construct the desired domain-specific visual language tool. The surveys, one undertaken 

in August 2004 (46 participants) and the second in May 2006 (45 participants), emphasised 

elicitation of weaknesses as their primary intention was to provide feedback to be used in improving 

Pounamu, hence the responses observed tended to describe generic strengths of Pounamu, with more 

detail on specific weaknesses.  
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Generic strengths emphasised by respondents in both surveys included: the rapidity with which tools 

were able to be constructed; the extensibility and customisability of the generated tools; the low 

learning curve needed to use Pounamu effectively; and the usefulness of being able to update tool 

definitions on the fly as iterative development was undertaken.   
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Figure 3.9: Problems identified in 2004 and 2006 surveys 

 

Figure 3.9 charts the number of responses concerning identified weaknesses in each survey 

aggregated into three categories (classified based on the commonality of the open ended survey data) 

and subcategorised as “major”, i.e. a significant weakness, or “minor”, i.e. an issue causing irritation 

but not significantly affecting functionality. General weaknesses identified in the first experiment 

focused on issues of: stability of the software; inconsistency of the interface compared to other tools; 

lack of documentation, particularly for the API; difficulty of event handler specification; and weak 

error handling, all of which might be expected of the, at that stage, proof of concept prototype. Issues 

of stability, documentation, event handler specification and error handling were largely addressed in 

changes made to the system before the second experiment, which showed much less concern by 

participants on these issues. For each category the number of major problems identified was 

significantly lower in the second survey. Many minor usability issues were also identified by 

participants, such as the size of text fields for entering Java code for event handlers, some clumsiness 

around specification of icons, and the response time for some elements of functionality. The second 

experiment showed increased concern by participants in such issues, primarily, we speculate, 
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because a lack of concern over major issues permitted them to focus more readily on more minor 

limitations of the meta-tool. Most issues identified concerned usability of the tool specification 

components, with very few issues concerns with the usability or efficacy of the generated tools 

themselves, nor of the representational power of the metamodel.  

 

A key feature for us is the efficacy of our evaluation-cycle based quality improvement approach 

which has demonstrated significantly enhanced user perception of Pounamu following attention to 

issues raised in the first large-scale user evaluation. 

 

3.2.2 Developers of Large Applications  

A smaller group of 8 developers have used Pounamu to develop more substantial applications, 

typically as an element of a larger research project, and over an extended period (several months at 

least). In each case, the developers provided detailed comments on the efficacy of Pounamu as part 

of a wider ranging implementation report. These qualitative comments were summarised and 

categorised in a similar manner to the large experiments. The small number of participants makes for 

less depth in the results, however, they are sufficient to assess any significant change in perception 

with increased application size. The general strengths identified were the same as for the large group 

experiments, but with more emphasis on the speed of development and the extendibility and 

customisability of the generated tools. Far fewer weaknesses were identified; familiarity with 

Pounamu appears to have mitigated many of minor difficulties identified in the large group 

experiments. Some issues around stability and performance were identified by those using Pounamu 

in its early stage of development, in common with the first group experiment, but those using later 

versions did not report the same issues. In summary, our results suggest that developers using 

Pounamu to construct larger applications are somewhat more favourably inclined than those 

developing small applications as in the former case the benefits of efficiency of construction 

significantly outweigh minor usability issues. 

 

3.2.3 Usability of Substantial Tools Constructed Using Pounamu 

For many of the exemplar systems described earlier (and others) the developers have carried out a 

combination of survey-based end user evaluations of the application visual language environments 

and cognitive dimensions-based evaluations of the visual environment interaction and information 

presentation features. These evaluations have each been reported as described in (Zhu et al, 2007).  
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3.3 Analysis of Evaluation Results 

The above evaluations implicated that while specifying static modelling structure using Pounamu 

saves a huge amount of time, specifying behavioural extension, particularly for more complex 

modelling tools, adds an over welcoming cost overhead.  

 

The event hander specification for Pounamu provided a good vehicle for adding dynamic modelling 

behaviour such as model/diagram constraints, but at the same time, it required Pounamu users to be 

familiar with Pounamu APIs as well as Java APIs. Without thorough understanding of these, even 

simple event handlers can be difficult to implement. Both the learning time and the requirements of 

users‟ programming competency are not desirable, since Pounamu‟s target end users are ideally not 

intended to be programmers. 

 

Pounamu supported a limited set of built-in events including model semantic events and low-level 

visual events. It should facilitate customised event definitions to be integrated together with the built-

in events, such as user-defined call, change, signal and time events.  

 

A library event handler could be added to a tool in an “all-or-nothing” style. Pounamu did not 

support reuse of event handler code modules. It should support parameterised code modules, as well 

as allow expert users to add new condition and action building blocks to Pounamu‟s event handler 

library for reuse in defining complex event handlers. 

 

It was hard to track and debug the event handling behaviour in Pounamu as there was no utility to 

support step-by-step visualisation of program flow, nor an indication of affected state changes. 

Providing mechanisms for debugging the handler code was a highly prioritised task. 

 

Also many Pounamu tools and extensions include some common building blocks for event handling 

specification. These could be generalised from a range of event-based applications to a common 

model representation.  

 

To eliminate the need of non-trivial programming, we propose using visual approaches to specify 

event handlers. A visual event handler definer would provide a high-level visual specification for 

building both simple and complex event handling functionality for Pounamu tools from a set or 
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reusable building blocks, and thus reduce the need for end users to use the complex API-dependent 

Java coding of constraints for tools. 

 

3.4 Summary 

We have described Pounamu, a meta-tool for specifying and implementing multiple-view multiple-

notation diagramming tools. Pounamu has been used to develop a broad range of domain-specific 

visual language applications both for academic/research use and industrial purposes and over a large 

end user base. We have collected the evaluation results of Pounamu and its generated tools. The most 

major concern for Pounamu users, particularly those developing large Pounamu tool applications, 

was event handler specification. This was because it requires using complex API-dependent Java 

coding which is not suitable for our target end users. This has motivated the work described in the 

remainder of this thesis, which investigates various visual metaphors for event integration 

specification. 
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Chapter 4 - Overview of Our Approach 

 

This chapter describes our approach to designing and prototyping a generic event integration 

framework. This involves developing three exemplar notations/tools and generalising from them to 

develop a new, generic visual event handling metaphor.  

 

4.1 Introduction 

Our approach is to adopt the Three Examples pattern from the Evolving Frameworks Pattern 

Language (Roberts and Johnson, 1996) as a path to developing a generic event integration 

specification framework. This pattern suggests choosing two applications that are similar and one 

that is a little removed. The examples should be explored in either succession or parallel and from 

which common reusable abstractions should be identified. We have explored three limited-domain 

exemplars in succession, in which the first two both use a dataflow like icon and connector approach 

to event handling specification, whereas the third is quite different as it uses a declarative approach. 

A general metamodel representation that combines atomic primitives (either shared or non-shared) 

extended by the three examples is then defined.  

 

One increasingly common example event-driven problem domain is web services composition. Web 

services have become a popular technology for building distributed systems, but there is a lack of 

languages and tools to specify web service compositions at high abstraction levels, generate lower-

level executable process code such as BPEL4WS (IBM, 2003), and visualise, at high abstraction 

levels, running web services. Most approaches provide basic flow-like BPEL4WS editors or similar 

(Srivastava and Koehler, 2003; Thone et al, 2002). More abstract approaches (Fensel and Bussler, 

2002; Foster et al, 2003) only support limited compositional approaches or do not support generation 

of BPEL4WS or similar executable forms. We describe a new approach for complex web service 

composition using a high-level metaphor and visual language called ViTABaL-WS (Liu et al, 2007). 

This supports higher level design views for service composition that are complementary to current 

web services composition standards.  
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The second problem domain that we focus on is visual design tools. These tools have many 

applications, including software design, engineering product design, E-learning, data visualisation, 

and tourism. Pounamu (Zhu et al, 2007) is a metatool for building such visual design tools. It 

incorporates high-level visual specifications of tool metamodels and visual language notations 

allowing end users to modify aspects of their tools such as appearance of icons and view 

compositions. However, commonly end users also wish to modify tool behaviour (Morch, 1998; 

Peltonen, 2000) to specify editing constraints, automated diagram modification, semantic constraints, 

and computation. Several approaches have been used to support reconfiguration of diagramming 

tools, including direct modification via an API (Kelly et al, 1996), scripting (Myers, 1997), 

programming by demonstration (Smith et al, 1995), and Event-Condition-Action rule based 

languages (Costagliola et al, 2002; Ledeczi et al, 2001). Pounamu currently uses the first approach. 

Many end users of such tools are not programmers and do not wish to learn or use textual, 

programmatic scripting languages to tailor their design tools. 

 

Most visual design tools are “event driven”, i.e. when a user modifies a diagram, events are 

generated and can be acted upon to modify other diagram content, enforce constraints, etc. We have 

used the event-driven nature of such tools as the basis for an end user domain specific visual 

language, Kaitiaki (Liu et al, 2005), with which to express both simple and complex event handling 

mechanisms via visual specifications for their diagramming tools. These include event filtering, tool 

state querying and action invocation.  

 

MaramaTatau (Liu et al, 2007), our third exemplar, uses a more declarative approach to extend 

behaviour specification of visual design tools. The focus is to better model relationships in a tool‟s 

metamodel definition. This includes constraining relationships via connector types mapping and 

multiplicities, and specifying formulae for calculating property values and enforcing constraints.  

Formula construction is similar to a spreadsheet but expressed at a type rather than instance level. 

Formulae are all interpreted as one way constraints with Java event handler code generated and 

realised at a model instance level. Error and to-do list critics provide notification to the user. 

Visualisations of formula effects are achieved via runtime visual debugging and master-details 

tabular model instances data views.  

 

Based on the in-depth exploration of the three preceding visual event-based metaphors, our overall 

aim is to generalise to a metaphor and a language/framework that can provide support for generic 

event integration specification. The generalised approach should incorporate compositional 
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primitives as building blocks together with a variety of different communication relationships 

between them. It also should contain mapping/integration schemes to support interchange between 

the three approaches. 

 

As stated above, our aim is to generalise from three exemplars to produce a generic event handling 

specification visual language and supporting environment. In the remainder of this chapter we 

provide an overview of each exemplar before over-viewing directions for their generalisation. 

 

4.2 ViTABaL-WS 

Our aim for the first exemplar was to develop a metaphor to effectively describe the composition of 

web services and support the development of a visual language and modeling environment. The web 

services compositional relationships can be very complex and a range of compositional building 

blocks are required. We chose to use the “Tool Abstraction” (TA) paradigm (Grundy et al, 1995) as 

our metaphor for web service compositions and to support reasoning about different relationships 

between compositional primitives. The TA paradigm is a message propagation-centric approach 

describing interconnections between “toolies” (the encapsulation of functions) and “abstract data 

structures” (ADSs: the encapsulation of data) which are instances of “abstract data type” (ADTs: 

typed operations/messages/ events). Connection of toolies to other toolies and ADSs is via typed 

ports. The TA paradigm supports modeling data flow, control flow and event flow relationships. 

Reusability, extensibility and expressiveness are key advantages possessed by TA. 

 

ViTABaL (Grundy et al, 1995) is a hybrid visual programming environment for designing and 

implementing TA-based systems. It uses the TA paradigm to compose systems by integrating, and 

coordinating toolies and ADS components. TA paradigm appeared to us to be well suited for the web 

services composition domain by permitting specification of an abstract model involving a series of 

coordinated invocations to web services operations. Accordingly we adapted this earlier work to 

develop a new visual language and environment, ViTABaL-WS, which specialises the ViTABaL 

visual composition language to the domain of web services composition. It supports modelling of 

both event-dependency and dataflow in designing complex web service compositions. Figure 4.1 is a 

ViTABaL-WS diagram illustrating examples of compositional primitives in the Tool Abstraction 

paradigm. Toolies (web services, shaded green ovals) encapsulate data processing and interact with 

each other through both direct and indirect operational invocations using shared data structures 

(message ADT instances: rectangular, shaded icons); and event-driven dependencies indicating state 
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changes to a Data Store ADS (data storage service).  A system of typed input and output ports on 

toolie and ADS services provide message sources and sinks. Services are wired together using these 

ports with ports supporting only certain kinds of connection and message ADTs. Messages generated 

by a service output port are distributed to connected web service input ports. Many interconnection 

schemes are supported including one-way flow, request-response, asynchronous flow, and subscribe-

notify. Additional controls support conditional flow, dynamic type checking, synchronisation, 

iteration etc. 

 

 

Figure 4.1. ViTABaL-WS editing in Pounamu. 

 

The specified web services are linked together by composition rules enforced in the ViTABaL-WS 

tool. ViTABaL-WS supports generation of WSDL and BPEL4WS from its abstract composition 

model. We use the Business Process Execution Language for Web Service Java Run Time 

(BPWS4J) as the deployment engine for generated BPEL4WS processes. A deployed process is 

provided with a SOAP interface and a WSDL file, and thus can be invoked by a requesting web 
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service client. BPWS4J is tightly integrated with ViTABaL-WS: a ViTABaL-WS process can be 

directly deployed and step-by-step visualisation of its execution can be obtained, with running 

process state information shown in ViTABaL-WS diagrams. 

 

4.3 Kaitiaki 

The Pounamu meta-tool provides a textual code-based event handler specification tool unsuitable for 

end users. We wanted to replace this with one using a visual language suitable for non-programmer 

end users. To develop this replacement visual language, Kaitiaki, and its specification tool we carried 

out an analysis of Pounamu event handlers from a wide range of tools to identify key constructs used 

to specify different tool behaviours. All had aspects of (1) specifying the event(s) of interest; (2) 

querying the tool state in various ways; (3) filtering event/query results and making decisions; and 

(4) performing state changing actions on filtered objects. We also looked at the metaphors used in 

existing rule-based and event-condition-action event handler specification tools to see how these 

manifested the behavioural specifications and how suitable these were for end users. From this 

analysis and survey, we developed a set of key requirements and design approaches for our new 

Kaitiaki visual event handler designer: 

 A need to represent key “building blocks” of state query, data filtering and state modification 

(actions).  

 A need to represent event objects and their attributes; various objects from the Pounamu tool 

state (both view and model); and query results (typically collections of Pounamu state objects). 

 A need to represent “data” propagation between event, query, filter and action representations. 

 A need to represent iteration and conditional data flow.  

 

The metaphor used by Kaitiaki is an Event-Query-Filter–Action (EQFA) model conceptually 

interpreted as: an end user selects an event type of interest; adds queries on the event and Pounamu 

tool state (usually diagram content or model objects that triggered the event); specifies conditional or 

iterative filtering of the event/tool state data; and appropriate state-changing actions to be performed. 

Complex event handlers can be built up in parts and queries, filters and actions can be parameterised, 

and reused. Ordering is handled by dependency analysis in the code generator. Domain specific tool 

icons are also incorporated into the visual specification of event handling as placeholders for the 

Pounamu state, to annotate and make the language more expressive (as shown in Figure 4.2). Step-

by-step visualisations of EQFA element invocation and data propagation are supported for 

incremental development and debugging of visual event handler specifications. 



- 65 - 

 

                                
            

                 

1 

2 

3 

 
Event-Query-Filter-Action 

 

Figure 4.2 Kaitiaki storyboard. 

 

4.4 MaramaTatau 

We adopt a spreadsheet-like metaphor to construct metamodel formulae as another approach to 

specifying visual design tool event handling. A formula is constructed by clicking on entity-

relationship metamodel elements (i.e. entity type, association type, and attribute) in a metamodel 

view and a list of library provided functions as shown in Figure 4.3. Formulae can be attached to an 

element in the metamodel and detached or removed from it. Context and dependency relationships 

regarding a constructed formula are automatically inserted/updated reacting to user‟s clicking 

actions. Constraints on clicks are also enforced to complement design time semantics. Users can 

choose to show or hide selected formulae in the view. Consistency between a visual formula and the 

corresponding textual entity-relationship formula is maintained. Cycle detections are possible while a 

formula is constructed and de-cycle options at design time are provided to aid error handling. 

 

We adopt the same runtime visualisation technique (i.e., visual debug and step into) as in ViTABaL-

WS and Kaitiaki to visualise formula effects, with a complementary tabular display of instance 
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values as in a spreadsheet. Master-details of related data are shown in the spreadsheet with 

formulated columns non-editable and non-interpreted formulae shown by tool-tips. 

 

Spreadsheet-like formula  

 

Figure 4.3 MaramaTatau editing in Marama. 

 

4.5 Generalisation 

We have generalised from the above three exemplar approaches and developed a metaphor and a 

language and provided tool support for generic event integration specification. By abstracting from 

the three exemplars, a general metamodel representation that combines atomic primitives (either 

shared or non-shared) extended by the three visual languages were defined. This common model 

supports multiple metaphoric views in the style of the three exemplars and will support generation to 

a range of underlying implementation technologies for execution or interpretation (OCL (OMG, 

2003), RuleML (RuleML Initiative, 2006), stylesheets etc.). As shown in Figure 4.4, a ViTABaL-

WS view (a) is used to specify high-level event propagations between components; a Kaitiaki view 

(b) is used to specify high-level event handling performed by the event consumer component; a 

MaramaTatau view (c) is used to specify high-level dependency/constraints among components. The 
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combination of the three metaphoric views allows seamless event integration specification and 

execution in the Marama (Grundy et al, 2006) environment.  

 

 
(c) 

(a) 

(b) 

 

Figure 4.4. Event integration specification in Marama meta-tools. 

 

4.6 Summary 

We have overviewed three exemplar visual event-driven system metaphors to specify event-handling 

support; they are Tool Abstraction in ViTABaL-WS, Event-Query-Filter-Action in Kaitiaki and 

Spreadsheet in MaramaTatau. We have also overviewed a generalisation from the three exemplars to 

produce a generic high-level visual event handling metaphor with a visual environment for 

specifying event-based system integration. In the following chapters, we will address each of the 

metaphors, including the generalisation, in more detail including elaboration with examples. 
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Chapter 5 - Visual Web Services Composition  

 

The first problem domain that we focus on towards generating a generic event handling framework is 

web services composition. This chapter elaborates the metaphor used in this application domain with 

examples. It is largely based on the ViTABaL-WS (Liu et al, 2005) paper in Proceedings of the 2005 

ACM/IEEE International Conference on Automated Software Engineering. 

 

Implementing complex web service-based systems requires tools to effectively describe and co-

ordinate the composition of web service components. We describe a new domain-specific visual 

language called ViTABaL-WS and its prototype design tool to support modelling complex 

interactions between web service components. ViTABaL-WS uses a Tool Abstraction metaphor for 

describing relationships between service definitions, and multiple-views of data-flow, control-flow 

and event propagation in a modelled process. The tool supports the generation of Web Service 

Description Language and Business Process Execution Language definitions from a ViTABaL-WS 

model and directly deploys a generated process model to a workflow engine. Our approach supports 

specification of both fine-grained, detailed views and more abstract views of business process 

protocols, message exchange rules and sequencing, and service invocation. ViTABaL-WS also 

supports visualisation of running processes to support architecture understanding and visual 

debugging of specified protocols.   

 

5.1 Introduction 

Web services are reusable, extensible, platform- and language-independent components that are used 

over web protocols. An abstract definition of a web service contains two parts: messages and 

operations (W3C, 2001), each service is described using the Web Services Description Language 

(WSDL). Running web service operations are bound to ports and run on a host. Web services 

composition is an approach that integrates individual services to make up a web service-based 

distributed system. Web services composition combines several existing, published web services and 

in turn potentially becomes a new web service itself. A web service composition language (either 

textual or visual) is needed to specify a composite web service, using existing service components 
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defined in or looked up from a services registry. The composed web service can then be described 

using WSDL, registered and invoked, and thus added to the network as a new web service 

component. One common web service composition language is the Business Process Execution 

Language for Web Services (BPEL4WS (IBM, 2003)), an XML-based service composition 

language. It describes web services compositions, or orchestration, by defining a set of service 

partnerships and structured invocation schemes. It also supports specifying concurrency and 

transaction failure recovery schemes for composed web service components. 

 

While web services have recently become a popular new technology for building distributed systems, 

there is a lack of languages and tools to specify web service compositions at high levels of 

abstraction, generate lower-level executable process code such as BPEL4WS, and visualise, at high 

abstraction levels, running web service processes. Most current approaches provide basic flow-like 

BPEL4WS editors or similar (Srivastava and Koehler, 2003; Thone et al, 2002). More abstract 

approaches (Fensel and Bussler, 2002; Foster et al, 2003) only support limited compositional 

approaches or do not support generation of BPEL4WS or similar executable forms.  

 

We describe a new approach for complex web service composition using a high-level metaphor and 

visual language. Our approach supports higher level design views for service composition that are 

complementary to current web services composition standards. We aim to visually represent 

processes‟ control-flow, data-flow and event subscription using this metaphor so as to make web 

services design and implementation easier and less error-prone. To this end we applied a Tool 

Abstraction paradigm (Garlan et al, 1992; Grundy and Hosking, 1995) to web services composition, 

characterising different kinds of services (data retrieval, data processing, fault handling, etc) and 

their interaction (data flow, control flow, event subscribe/notify, synchronised, etc). We then 

designed a visual language for describing web service co-ordination and built a proof of concept 

environment that supports modelling with this language. BPEL4WS specifications are generated 

from our model which can be run in a 3rd party web service orchestration engine to implement the 

specified web service composition. Events are sent back to the modelling environment and used to 

animate the composition and allow fine-grained developer control of the running web service for 

debugging and analysis. 

 

We firstly provide a motivation for this research and a survey of related work. We introduce the Tool 

Abstraction metaphor and our visual language based on Tool Abstraction for specifying web service 

composition. We describe our proof of concept modelling tool with a simple example and discuss its 
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design and implementation. We present results of evaluating our tool, its strengths and limitations, 

and areas for future research. 

 

5.2 Motivation 

Consider a simple loan approval process, as used in the description of IBM‟s Business Process Web 

Service for Java (BPWS4J) process execution tool (IBM, 2002). This loan approval process is 

composed of two main web services: a Loan Assessor web service and a Loan Approval web service. 

As illustrated in Figure 5.1, when a loan request is received, the new Loan Approval process firstly 

needs to determine whether the requested amount of the loan is under one thousand dollars or not. If 

the amount is under one thousand dollars, the Loan Assessor web service is invoked; otherwise the 

Loan Approver web service is invoked. After the Loan Assessor web service is invoked, the process 

continues by determining whether the risk for the request is low or high: if the risk is high, the 

control flows to the Loan Approver web service; otherwise an approval message is generated as the 

response to the user‟s loan request. Additional web services might also be used e.g. to provide Loan 

Assessment Criteria (from a persistent storage mechanism), and to record a Loan Approval Audit 

trail (storing the loan and approval information in a persistent form for later reporting). Relationships 

between services in such business process models can become very complex: some send messages 

and wait for replies; some send messages and continue execution; some provide data while others 

consume it; synchronisation between concurrently executing services may be needed; service failure 

may occur and needs to be handled appropriately; and transactional behaviour may be required over 

services. 

 

 

Loan Approval process 

 

 

Loan Approval request 

IN 

Invoke 

Loan Approver 

WS 

Loan Approval response 

OUT 

Invoke 

Loan Assessor 

WS 

 

 Request<1000  Request>=1000 

 Risk=‟low‟ 

 Risk! =‟low‟ 

Loan Assessment 

Criteria WS 
Loan Approval 

Audit WS 

Criteria Query 

Loan Data 

 

Figure 5.1: Conceptual model of the loan approval process. 
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5.3 Requirements 

Specifying such a composition of existing web services to form a new, reusable web service is the 

role of web service composition languages, such as BPEL4WS (IBM, 2003). BPEL4WS is an XML-

based standard for composing web services to implement business processes that provides a set of 

structural activities to specify data manipulation, sequence of service invocation and fault handling. 

Since BPEL4WS is a textual script-based language interpreted by a process flow engine, it inherits 

the drawbacks of using non-visual techniques, particularly for potential non-programmer users such 

as business analysts (Pautasso and Alonso, 2005). These include an abstract XML-encoded 

specification language that is difficult to read, error-prone specifications that are run-time checked, 

and difficulty in debugging a running specification. It would be highly beneficial to users if a visual 

modelling language and tool support were provided to specify web service composition models and 

generate high-quality BPEL4WS from the model. Our work is motivated by these needs. Such a 

language and tool should meet the following requirements: 

 A visual metaphor for composing web services that fits users‟ mental models of service 

interaction; 

 The visual language for composition must be able to specify: web service interfaces, i.e. abstract 

message types and operations; variables; and different types of connections (i.e. data flow, 

control flow, and event flow) between web services in a process; 

 A support tool should permit modelling of specifications using the metaphor/visual language; 

generation of WSDL and BPEL4WS (or other executable business process modelling languages), 

and easy deployment of generated process models using 3rd party process engines, such as 

BPWS4J; 

 The support tool should permit visualization of running systems by annotating high-level visual 

specification views from events generated by the process engine, to support debugging of 

compositions and to assist understanding of others‟ specifications. 

 

5.4 Related Work 

Web service composition is a form of dynamic, component-based architecture. A service description 

in WSDL publicises the web service‟s messages, operations and ports, as in Figure 5.2. Web services 

are “wired together” with messages from one passed to another to build a composition. These web 

service compositions are commonly called “business processes” or “workflows” (IBM, 2003; 

Pautasso and Alonso, 2003; Srivastava and Koehler, 2003; Wirtz, 1993). Workflow metaphors are 

typically used in much recent research on web services composition. Simple workflows are, 
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however, insufficient to describe the integration and co-ordination of web service components as 

service composition may be quite complex (Benatallah et al, 2003; Fensel and Bussler, 2002). For 

example, in Figure 5.2 conditional execution is needed; some links are sequential data-flow from one 

to another; some asynchronous (such as storage of loanInfo); services may subscribe to events (such 

as loanInfo storage events); conversion of messages may be needed (such as approvalInfo to loanInfo 

for storage); and so on. 

 

 

loanAssessorWS: 

messages: loanRequest; 

  approvalInfo; loanInfo 

operations: approve, … 

riskAssessmentWS: 

messages: loanRequest;  

  riskAssessment 

operations: check, store,… 

loadApprovalAuditWS: 

messages: loanInfo; loanAdded 

operations: store, subscribe, … 

convert 

loanRequest 

loanInfo 

loanAdded 

event 

approvalInfo 

Risk = acceptable; 

loanRequest 
>$1000 

 

Figure 5.2: Web service composition. 

 

A variety of languages to specify web service composition have been developed. Many are described 

as “business process modelling languages”, although most web service composition languages, being 

executable, are quite low-level. Examples include the Business Process Execution Language for Web 

Services (BPEL4WS) (IBM, 2003), the Business Process Modelling Language (BPML) (Baker, 

2002), and jBPM (Baeyens, 2007). Different web service composition languages support different 

levels of abstraction, fault-recovery, transaction modelling, and service inter-relationships. Most are 

textual scripts that are interpreted at run-time by workflow or business process flow engines. Such 

textual scripts are often challenging to read, error-prone to write, and reusability can be limited. 

 

Various visual modelling notations have been developed to support web service composition. Using 

UML with various extensions is common.  UML state-charts can be used to specify implementation 

aspects of a service composition (Benatallah et al, 2003). These incorporate event handling schemes 
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where states represent services, transitions are constrained by Event-Condition-Action rules, and an 

occurrence of an event fires a transition to execute a target action. An argument is that state-charts 

are based upon finite automata and ECA rules which are easy to comprehend. However this approach 

provides no means to explicitly specify data flow among services and is cumbersome to use for 

service compositions. UML-WSC (Thone et al, 2002) uses class diagrams with stereotypes to model 

static structure and activity diagrams to model dynamic aspects of web service compositions. Service 

states call operations from components and transform states perform structural transformation on 

messages. This is limited to modelling request-response and one-way operations only, and lacks fault 

handling and partner roles. 

 

Message Sequence Charts (MSCs) are compiled into a Finite State Process notation (FSP) to 

concisely describe and reason about concurrent programs (Foster et al, 2003). This technique 

provides a high-level metaphor but not web service composition language generation. Petri-Nets 

have been used to model both offline analysis tasks, such as web service composition, and online 

execution tasks, such as deadlock determination (Hamadi and Benatallah, 2003; Narayanan and 

Mcllraith, 2002). These approaches describe the capabilities of web services in terms of a first-order 

logic language. Service descriptions are encoded in an extended Petri-Net formalism with typed arcs, 

hierarchical control, durative transition, parameterization, typed (individual) tokens and stochasticity. 

While Petri-Nets are a powerful formalism they are a very general approach, can not be applied to all 

web service compositions, such as modelling abstract web service interfaces and data flow, and don‟t 

provide a visual language easily understood by target end users (Pautasso and Alonso, 2005). 

 

Biopera Flow Language (Pautasso and Alonso, 2003) is a generic visual flow language for 

coordinating software components, with a development tool tailored for web service composition. 

This focuses on data flow, execution sequence and fault handling and all can be specified with a 

simple visual syntax. However it lacks modelling capability for event subscription and various other 

service relationships like call-backs. The visual syntax is verbose as both data and data bindings must 

be specified. Web Service Modelling Framework (Fensel and Bussler, 2002) is a methodology for 

describing and developing web services and their compositions. The integration framework defines a 

conceptual model for the web services integration (complex web services) and provides services for 

mediating differences in data structures and message exchange patterns among services. 

 

Many current approaches to modelling web service compositions lack full modelling capability: i.e. 

are not able to model all types of operations (one-way, request-response, solicit-response, 
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notification). A common drawback is that a web service interface can not be fully expressed; some 

model web services operations only; and some can not model invocation constraints in control flow. 

Most of them use static binding rather than event-based mechanisms to integrate services. Many 

cannot separate or combine control-flow and data-flow for modelling. 

 

5.5 Metaphor 

We wanted a metaphor to effectively describe the composition of web services and support the 

development of a visual language and modelling environment. As described in Section 5.2, these 

compositional relationships can be very complex and a range of compositional building blocks are 

required. We chose to use the Tool Abstraction (TA) paradigm (Garlan et al, 1992, Grundy and 

Hosking, 1995) as our metaphor for web service compositions and to support reasoning about 

different relationships between compositional primitives. The TA paradigm is a message 

propagation-centric approach describing interconnections between “toolies” (the encapsulation of 

functions) and “abstract data structures” (ADSs: the encapsulation of data) which are instances of 

“abstract data types” (ADTs: typed operations/messages/ events). Connection of toolies to other 

toolies and ADSs is via typed ports. The TA paradigm supports modelling data flow, control flow 

and event flow relationships. Reusability, extensibility and expressiveness are key advantages 

possessed by TA (Garlan et al, 1992). 

 

ViTABaL (Grundy and Hosking, 1995) is a hybrid visual programming environment previously 

developed for designing and implementing TA-based systems. It uses the TA paradigm to compose 

systems by integrating, and coordinating toolies and ADS components. We have found that the TA 

paradigm is well suited for web services composition domain by specifying an abstract model 

involving a series of co-ordinated invocations to web services operations. We adapted the earlier 

work to develop a new visual language and environment, ViTABaL-Web Services (ViTABaL-WS).  

ViTABaL-WS specialises the ViTABaL visual composition language to the domain of web services 

composition. It supports modelling of both event-dependency and dataflow in designing complex 

web service compositions. Figure 5.3 and Figure 5.4 show ViTABaL-WS diagrams illustrating 

examples of compositional primitives in the Tool Abstraction paradigm. Toolies (web services - 

shaded, green ovals) encapsulate data processing and interact with each other through both direct and 

indirect operational invocations using shared data structures (message ADT instances: rectangular, 

shaded icons); and event-driven dependencies indicating state changes to a Data Store ADS (data 

storage service).  A system of typed input and output ports on toolie and ADS services provide 
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message sources and sinks. Services are wired together using these ports with ports supporting only 

certain kinds of connection and message ADTs. Messages generated by a service output port are 

distributed to connected web service input ports. Many interconnection schemes are supported 

including one-way flow, request-response, asynchronous flow, and subscribe-notify. Additional 

controls support conditional flow, dynamic type checking, synchronization, iteration etc. 

 

The specified web services are linked together by composition rules enforced in the ViTABaL-WS 

tool. ViTABaL-WS supports generation of WSDL and BPEL4WS from its abstract composition 

model. We use the Business Process Execution Language for Web Service Java Run Time 

(BPWS4J) as the deployment engine for generated BPEL4WS processes. A deployed process is 

provided with a SOAP interface and a WSDL file, and thus can be invoked by a requesting web 

service client. BPWS4J is tightly integrated with ViTABaL-WS, so that a ViTABaL-WS process can 

be directly deployed and step-by-step visualisation of process execution can be obtained, with 

running process state information shown in the ViTABaL-WS diagrams. 

 

5.6 Notation 

ViTABaL-WS defines a visual notation to specify data flow, control flow and dynamic event flow in 

a web service composition process. It also provides constructs for distinguishing different kinds of 

web services, synchronisation, fault handling, message splitting/ composition, dynamic type 

checking, sub-process composition, and various control flow models.  

 

ViTABaL-WS includes various toolie representations, including data processing services, sub-

processes, type checking and fault handling toolies. Data storage/retrieval services are represented by 

data store Abstract Data Structures. We use the tool abstraction paradigm‟s ADTs to represent typed 

web service interaction: data being sourced from, sinked to and transmitted between web services; 

event messages; and other kinds of toolie interaction. Web service operations are explicitly specified 

by ports attached to toolies and ADSs, Web service compositions are thus constructed from toolies, 

ports, message ADTs and ADSs.  

 

Table 5.1 overviews elements in the ViTABaL-WS visual notation. Each toolie specifies a web 

service interface as a part of the process model. Interaction is via data and control-flow dependencies 

and event propagations. ViTABaL-WS is not only able to specify basic control-flow elements such 

as dependencies, decisions, fault handling, iterations and concurrent executions in a process model, 
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but also, using the Tool Abstraction paradigm, it can specify event propagations between services, 

producing event-driven compositions. A mix of data-flow, control-flow and event-driven interaction 

between services is possible. 

 

Element Visual Representation Semantics 

Message ADT  
 

WS data 

Data Store ADT instance 

 

 

Data Store WS 

Partner/Performer/Role 

 

Coordinating service 

Fault handler 

 

Exception/fault solution 

Toolie  

 

Processing WS; process activity, 

Atomic activity 

Port  binding (attached to WS toolies) 

 
Generic operation 

 

One-way operation 

 
Request-response operation 

 
Notification operation 

 
Solicit-response operation 

Dynamic type checking 

 

Type checking and transformation 

Sub-process  

 

Complex-activity 

Data manipulation  

 

Assign/Copy data value 
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Iteration 

 

 

For/while/until 

Partner Link  

 

Partner/Performer coordinating 

Data flow 

 
Input/output flow 

 
Parameter flow 

 

Split message - parameter 

decomposition 

 

Merge message 

Control flow 

 
Transition 

 

Conditional Branching 

 
Asynchronous flow 

 

Control Dependency 

 
Concurrency - Parallel execution 

 
Initiate 

 
Wait-for 

 Iterate 

Broadcast 

  
One-way communication 

Request 
 

Request-response communication 

Listen_before  
 

Solicit-request communication 

Listen_after 
 

Notification communication 
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Subscribe notify 
 

Event registration 

Callback 
 

Event callback 

Table 5.1: ViTABaL-WS notation overview. 

 

ViTABaL-WS permits multiple views for complex processes and sub-processes, allowing a service 

in one process to invoke via ADS messages and ports another service or a sub-process. Different 

views allow both static specification of web service interfaces and dynamic specification of 

messages between processes in different views, with consistent references managed by the 

specification environment. Orthogonal views allow different kinds of interaction e.g. event-driven 

and data-flow, to be modelled separately if desired. 

 

5.7 Loan Approval Example 

To illustrate our ViTABaL-WS visual web service composition language in use, we use the loan 

approval business process model example from Section 5.2 (IBM, 2003). Two main web services 

(loan approver service and loan assessor service) need to be coordinated to synthesise a new process 

service (loan approval service) which is then exposed to other web service clients. The composite 

process defines roles performed by all participating services, i.e. “loan approver” service fulfils an 

“approver” role and “loan assessor” service fulfils an “assessor” role. 

 

This exemplar comprises two main information processing toolies (suffixed by “PT”): 

loanApprovalPT and riskAssessmentPT. The input and output message types to these processing 

toolies we characterise as ADTs consumed or produced by the processing toolies. We may 

additionally characterise key fault handling and dynamic type checking behaviours associated with 

these toolies. 

 

Figure 5.3 shows some of the toolie specifications used in the loan approval process. Figure 5.3 (a) 

and (b) show the interfaces for the loanApprovalPT and riskAssessmentPT processing toolies. An 

abstract web service interface is visually represented using input/output dataflow links, parameter 

decomposition links, and transition links to support association of a toolie‟s web service port types 

and message ADSs. We attach operations to a port type to represent the port bindings of a web 

service. For example, in the “loan approver” web service definition in Figure 5.3 (a) the 

“loanApprovalPT” toolie has one port providing an “approve” operation with 
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“creditInformationMessage” as input message type (indicated by a data flow link with the arrow 

pointing to the operation) and “approvalMessage” as output message type (indicated by a data flow 

link with the arrow pointing out of the operation). The approvalMessage contains one message part, 

“accept” (shown by the parameter decomposition link). In the case of an error occurring when the 

toolie is invoked, the operation “approve” transits to the “loanProcessFault” fault handler (via a one-

way operation link) which generates a fault message of type “loanRequestErrorMessage”. The 

“loanApprovalPT” toolie may also invoke a “loanApproval Audit” ADS (via another on-way 

operation link) to record an audit trail of loan approvals. Toolies may provide multiple ports for other 

toolies to bind too. Bindings may be data flow in/out, subscribe/notify event-based interaction, one-

way asynchronous invocation, bi-directional synchronous invocation and so on. Toolies may also 

have more than one fault handler for operations. 

 

Multiple views are used to specify toolie interfaces (Figure 5.3 (a) and (b)), complex message 

decomposition (Figure 5.3 (c)) and toolie usage contexts (Figure 5.3 (d)). A toolie‟s interface can be 

collapsed to just show its port types for other client toolies to bind to, as in Figure 5.3 (d).  
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(b) 

(c) 

(d) 

(a) 

 

 

Figure 5.3: Various web service toolies and their interfaces involved in the loan approval 

process. 
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A business process model is built up by composing web service toolies using appropriate link types. 

Figure 5.4 (a) shows the basic loan approval process. Note other overlapping views can be defined to 

add extra information about a process model e.g. extra: toolie links driven by event notification of 

asynchronous message flow; fault handling; message data storage/retrieval and so on. The “loan 

approver” process defined in Figure 5.4 (a) expresses the following semantics: the “loan approver” 

service receives a loan request. The process‟ control flows to a decision point, which retrieves the 

value of the amount of the loan requested. The conditional is specified by labelling the outgoing 

links with an XPath expression specifying the comparison (including retrieval of appropriate 

message content, in this case 

  “bpws:getVariableData('request','amount')&gt;=1000” or  

“bpws:getVariableData('request','amount')&lt;1000”;  

 

These expressions, as can be seen, are long and work is needed in our tool implementation to express 

them in a more satisfactory way, e.g. as a tooltip). If the requested amount is less than $1,000 the 

process control invokes the “risk assessment” service, else it flows back to invoke the “approve” 

operation of the “loan approval” service. The “risk assessment” service takes the loan request as 

input and decides if the loan is a low risk. It retrieves loan criteria information from the 

“loanAssessmentCriteria ADS” to be used in the assessment task. If the risk is low the loan is 

approved, otherwise the process model invokes the “approve” method in the “loan approval” service 

to do a more thorough check. Both toolies invoke data storage activity on the 

“loanApprovalAuditADS” to record an audit trail of approvals. Once a loan is either approved or 

rejected, an approvalInfo message is constructed and returned to the invoking client. 

 

Another example is shown in Figure 5.4 (b), illustrating a different approach to the audit trail, with 

asynchronous flow from the generated “approvalInfo” message via an adapter converting its format 

to the “loanApprovalAudit” service and the generation of a “loanAddedEvent” notification 

subscribed to by a “print audit trail” service. 

 

In a ViTABaL-WS process model we use variables of particular message types to specify message 

flow from one toolie port to one (or more) others. Each toolie process may be stateful with state 

information stored in such variables. In a composition model an abstract process toolie interface may 

have additional constructs added, such as dynamic type checking and message storage interfaces, and 

extra control flows and event propagations for a more advanced process model specification. 
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(a) Process definition - loanApproval 

(b) Alternative audit trail  

      process flow 

 

Figure 5.4: Composed Loan Approver web services. 
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ViTABaL-WS automatically numbers operations to specify an invocation sequence of component 

web services. The operation numbered zero is the initial task to instantiate the process model and the 

process is terminated with a reply to its client. Transition links can also specify an implicit order of 

invocation, with transition dependency constraints specified along with the transition links. 

 

In order to execute our web service process model we needed to translate our model into BPEL4WS. 

A BPEL4WS composition specification contains XML records specifying web services receiving 

messages, the service being invoked and reply message being generated (i.e. constructs <receive>, 

<reply>, <invoke>, <assign> etc). The ViTABaL-WS model contains TA-based modelling 

constructs that can be mapped onto BPEL4WS constructs.  Processing and data storage/retrieval 

toolies map onto web services, with ADTs in ViTABaL-WS mapping onto BPEL4WS messages. 

Toolie ports map onto BPEL4WS ports with typing from ADT messages. Fault toolies and links to 

ports map onto BPEL4WS fault handlers. Synchronisation control, asynchronous message flow and 

subscribe/notify relationships in ViTABaL-WS map onto BPEL4WS process model script code to 

implement these behaviours. Concurrent operations in ViTABaL-WS map onto concurrently run 

BPEL4WS service invocations. Type checking toolies, conditional execution and iteration map onto 

BPEL4WS script to carry out these operations. 

 

For example Figure 5.5  shows a pair of toolie and port binding visual constructs being mapped to an 

<invoke> construct in BPEL4WS if the service is not the request receiving service, otherwise, it is 

mapped to BPEL4WS <receive> and <reply> constructs. The ViTABaL-WS visual links for 

service invocations and conditional flow/iteration are mapped to BPEL4WS script and links 

specifying these control flows. The interface for the loanApprovalPT toolie is mapped onto a 

generated WSDL interface specification for the service, which is used by the generated BPEL4WS 

process model specification composing an instance of this service in the Loan Approval process. 

Figure 5.5 also shows BPWS4J deployment view of the composed process. 

 

We use the BPWS4J engine to deploy and debug our generated BPEL4WS models, though any 

BPEL4WS-compliant engine could be used. ViTABaL-WS allows the user to deploy a generated 

process model to the engine. The engine checks the host/port specified for each web service in the 

generated BPEL4WS model has the specified service active. Once a process is deployed, it is 

assigned a service address by BPWS4J so that it can be called by a client. A web service invocation 

message sent to this service address (host/port) will now invoke our running loan approval process. 
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Deployment via BPWS4J 

 

WSDL 

BPEL4WS  

Figure 5.5: Generating WSDL and BPEL4WS specifications from our ViTABaL-WS model. 
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(1) (2) 

(3) (4) 
 

Figure 5.6: Dynamic visualization of a ViTABaL-WS model. 

 

Figure 5.6 shows a running loan approval process (slightly different model to that of Figure 5.4, but 

similar functionality). The user has asked ViTABaL-WS to generate and deploy a process model 

then asked ViTABaL-WS to send the running process a loan request of $100 dollars from a client 

which returns an approval reply to the client. Messages recording the web service invocations in the 

process are sent out by each request/reply/invoke step calling a special debug web service 

implemented by ViTABaL-WS itself. The ViTABaL-WS visual modelling client receives and 

interprets these BPEL4WS message requests and highlight elements in the ViTABaL-WS views, 
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providing a dynamic visualisation. The dynamic visualisation includes service invocation (by 

flashing the service representation node); invocation path into the service (by highlighting the path). 

The user can double-click on a link or message and see its contents as XML. The traditional “debug 

and step into” metaphor is used to support step-by-step visualisation. During each step of service 

execution, the states of all variables (messages) in the process are displayed in a debugging panel. 

Sub-processes invoked in the process are visualised similarly. 

 

In Figure 5.6, after receiving the request message, the loanApprovalPT passes a riskAssessment 

message to the riskAssessmentPT (1). The risk is checked (2) and then the loan approved (3). The 

final process state highlights the request/reply service (node darkened) and the entire invocation path 

(4). XML messages flowing from/into a stage can be viewed in a property view or via a tool tip. 

 

5.8 Design and Implementation 

ViTABaL-WS was implemented using Pounamu, which has been introduced in Chapter 3. We 

specified, in Pounamu, a metamodel defining ViTABaL-WS visual language constructs and 

constraints between them, and the graphical notations that are used to visually represent the syntax of 

the language in each view type. We specified two different kinds of view editors: one for individual 

web service interface definition, and the other for process definition when composing web service 

components. The ViTABaL-WS environment allows separation of process logic into data-flows or 

control-flows, and allows users to define views at different abstraction levels for processes and sub-

processes and orthogonal views at the same level for a process. The ViTABaL-WS code generator 

has been implemented via specialised Pounamu modelling view plug-ins. 

 

 XML 

Java plug-in code 

generator 

BPEL4WS 

WSDL 
Deployment 

tool 

BPWS4J 

Engine 

Pounamu modeling tool 

   

   

    

6. Visualization of 

running process 

1. save model 

2. read model 

3. generate 

4. read 

5. 

Web 

services 

 

Figure 5.7: Design of our ViTABaL-WS tool. 
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Figure 5.7 illustrates the high-level design of our ViTABaL-WS environment. Model views are 

specified using a Pounamu-generated modelling tool with model data stored in an XML format (1). 

The WSDL and BPEL4WS code generators are plug-ins to the Pounamu-implemented tool. The 

code generators read model view information from the backend XML files (2), and generate WSDL 

and BPEL4WS specifications (3). These are derived from the individual web service interface views 

and composite process model views. WSDL and BPEL4WS XML namespace generation is 

automated. 

 

Import from other service definitions is automatically handled so that the user need not worry about 

namespace conflicts. Once code generation is complete, the services and process are deployed, with 

no need for the user to view or modify any of the generated BPEL4WS code (4). Extra ViTABaL-

WS debugger web service calls are automatically instrumented into the generated process model. 

The BPWS4J engine may be started directly from ViTABaL-WS to deploy and invoke process 

models (5). When services execute, debug service messages are sent to ViTABaL-WS for 

visualisation and user controlled step-through via the visual model views (6). 

 

The ViTABaL-WS debugging web service was developed using Java and deployed to the web server 

using Apache Axis. WSDL for this service is retrieved from the server page and packaged into 

generated BPEL4WS processes. Generated BPEL4WS web service invocations are wrapped with a 

pair of debug web service invocations to the start and end ports of the debug service. This also 

provides access to the XML content of messages sent to/returned from each web service to be 

displayed in ViTABaL-WS. When development of a ViTABaL-WS process is complete, an 

optimised BPEL4WS specification without the debugging service calls is generated. 

 

5.9 Discussion 

5.9.1 Evaluation 

We have carried out three evaluations of our environment: a Cognitive Dimensions (Green and Petre, 

1996) evaluation, a user evaluation, and a revisit of the requirements expressed in Section 5.3.  

 

Cognitive Dimensions provides a framework for us (the DSVL designers) to assess usability 

characteristics of visual languages and their supporting tools using a set of “dimensions”. By 

examining our environment against the set of Cognitive Dimensions, we understand both the strength 

of the environment design and the trade-off to mitigate. The dimensions in italics below are 
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addressed for ViTABaL-WS being those most pertinent for this environment. Our target user group 

are experienced web service developers hence we have chosen a system with medium abstraction 

gradient. Our primitive visual elements represent a broad range of tool abstraction paradigm 

components and links which provides a higher level of abstraction than pure BPEL4WS service 

request/reply/invoke constructs which arguably provides better closeness of mapping for our target 

user group. We have chosen a relatively verbose visual formalism, but the language has a core set of 

constructs which allow a relatively good understanding to be obtained through knowledge of only a 

terse subset of constructs. 

 

Our current mapping tool has limited juxtaposability as multiple views can‟t be open side by side. 

Thus complex compositions spread over several views/sub-process models may be difficult to 

navigate and users may lose their context when reading a specification creating hidden dependencies. 

This is addressed in our generic event handling framework which will be discussed in Chapter 8-10.  

 

Users tend to layout their compositions from top to bottom to give an indication of flow in the form 

of secondary notation, though ViTABaL-WS imposes no interpretation of positioning of icons in the 

diagrams. The usual viscosity problems occur when diagrams need to be arranged to insert additional 

elements. Progressive Evaluation is well supported as users can deploy and check execution of 

specifications at any time with feedback provided at the same abstraction level using debug views. 

 

An informal user evaluation was carried out with several users familiar with the concepts of web 

services and web service composition. We explained and demonstrated to the users the problem 

domain of our visual language and its supporting environment and asked them to perform a simple 

web services composition task. We used three questionnaires focusing on usability, expressiveness 

and overall capabilities of ViTABaL-WS to obtain feedback, summarized as follows: 

 The TA metaphor is easy to understand for advanced users familiar with visual 

notations/metaphors; but it takes much more time/effort for others to understand. 

 The visual language is very expressive to specify web services interfaces and composition. 

However it is insufficient for specifying dynamic service lookup and invocation.  

 It would be helpful to provide intermediate abstraction level specification views to allow more 

detailed specification to mitigate the abstraction gradient. Other possible improvements would 

include the visual representation of looping and synchronization. 
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 The environment needs to provide a means to explain to the user the correct use of notations and 

generate feedback indicating improper use of notations. 

 

The requirements expressed initially are addressed effectively, given that we have an expressive 

visual language and proper runtime visualisation support for web services composition tasks. 

Comparing the generated BPEL4WS process models to hand-coded models (our adopted approach to 

web services composition prior to ViTABaL-WS), we find that generation of WSDL and BPEL4WS 

reduces some areas of error-proneness given a quality abstract model. It automatically resolves xml 

tagging constraints and namespace references, often error-prone in hand-coded BPEL4WS. 

However, ViTABaL-WS is not as expressive as BPEL4WS for specifying dead-path-elimination, 

message correlations and transaction rules/expressions. 

 

5.9.2 Strengths and Limitations 

From our three evaluations we conclude that ViTABaL-WS provides a generally effective 

environment for web service composition. The TA paradigm used as the compositional metaphor 

allows expression of complex web service interactions at a higher level of abstraction than languages 

like BPEL4WS and most existing BPEL4WS generation tools, which usually provide abstractions 

directly related to BPEL4WS constructs. We can generate from our ViTABaL-WS specifications 

complete, executable BPEL4WS models which can be deployed to and run directly from the 

environment using a BPEL4WS engine. A visual debugger dynamically highlights stages and links 

in the ViTABaL-WS model providing an interactive debugging and visualisation mechanism with no 

need change to the BPEL4WS engine. 

 

There are some weaknesses with the use of the general purpose TA paradigm. While it provides an 

abstract and consistent way to express web service compositions, we found users wanting to express 

compositions in a notation closer to their target domain (i.e. closeness of mapping requires 

improvement). E.g. enterprise business systems analysts may not find the paradigm intuitive when 

they think of composing services to form a new business process model. Addition/use of BPML 

constructs is likely to improve this. In addition, the choice of icons to represent different types of 

elements in ViTABaL-WS is arbitrary and based on the previous work with the TA paradigm. Users 

may find redefining iconic appearance more closely linked to their actual purpose would make 

composition models easier to read and understand. Our ViTABaL-WS tool is currently weak at pre-

BPEL4WS generation analysis, only enforcing simple type and inter-view consistency checks. More 



 - 90 - 

complete model checks for concurrency control, transaction management, dead-lock conditions, etc 

would improve generated code. 

 

5.10 Summary 

We have developed ViTABaL-WS, a hybrid visual programming environment for design and 

implementation of complex interactions and data exchanges among web service components. It is an 

exemplar tool implemented using the Pounamu meta-tool. ViTABaL-WS uses the TA paradigm to 

express complex web service compositions. It provides code generation to BPEL4WS and uses the 

BPWS4J engine to deploy and execute generated process models.  An interactive visual debugger 

animates running service compositions in ViTABaL-WS by instrumenting debug service calls into 

the generated BPEL4WS. 

 

This is the first of the three exemplars used to generalise our generic event handling framework. The 

second exemplar to be described in the next chapter is event handling in visual design tools. It uses a 

similar dataflow like icon and connector approach to event handling specification.  
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Chapter 6 - Visual GUI Editing Event Handling 

 

The second problem domain that we focus on towards generating a generic event handling 

framework is event handling in visual design tools. This chapter elaborates the metaphor used in this 

application domain with examples. It is largely based on the Kaitiaki (Liu et al, 2005) paper in 

Proceedings of the 2007 Australasian Conference on User Interfaces. 

 

End users often need the ability to tailor diagramming-based design tools and to specify dynamic 

interactive behaviours of graphical user interfaces. However most want to avoid having to use textual 

scripting languages or programming language approaches directly. Our ViTABaL-WS approach 

specifies high-level tool abstractions, but is not a good approach for GUI event handling metaphor, 

due to its lack of discrimination of end user objects from abstract queries and state-changing actions, 

and structured data flow in between. As our second exemplar, we describe a new visual language for 

user interface event handling specification targeted at end users. Our visual language provides end 

users with abstract ways to express both simple and complex event handling mechanisms via visual 

specifications. These specifications incorporate event filtering, tool state querying and action 

invocation. We describe our language, its incorporation into the Pounamu (as described in Chapter 3) 

meta-tool environment, examples of its use and results of evaluations of its effectiveness. 

 

6.1 Introduction 

Visual design tools have many applications, including software design, engineering product design, 

E-learning and data visualisation. In Pounamu, for example, high-level visual specifications of tool 

metamodels and visual language notations allow end users to modify aspects of their tools such as 

appearance of icons and composition of views. However, both our own and other researchers‟ 

experiences indicate that many end users also wish to modify tool behaviour (Morch, 1998; Peltonen, 

2000) and reconfigure user interaction with their design tool. This includes: specifying editing 

constraints, e.g. diagram element layout; automated diagram modification, e.g. auto-add or resize of 

elements; semantic constraints, e.g. allowing connection of only certain typed elements; automatic 
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computation, e.g. calculating an attribute value from the values of connected diagram element 

attributes; and well-founded user interactions, e.g. alerting users to invalid input. 

 

Many end users of such tools are not programmers and do not wish to learn or use complex textual 

scripting languages to tailor their design tools in these ways. Most approaches for design tool 

tailoring, however, use just such techniques (Smith et al, 1995; Lewicki and Fisher, 1996; Peltonen, 

2000). Some tools support limited configuration via preferences and wizards. But these severely limit 

the tailoring possible (Morch, 1998). Programming by example has been used for end user 

configuration, but is limited in power and it is often hard to visualise and modify specifications learnt 

(Cypher, 1993; Smith et al, 1995). 

 

Most visual design tools are “event driven”, meaning when a user modifies a diagram in the tool, 

events are generated and can be acted upon to modify other diagram content, enforce constraints, etc. 

We have used the event-driven nature of such tools as a vehicle to provide end users with a domain 

specific visual language, Kaitiaki, with which to specify behaviours for their tools. We have added 

this visual language to the Pounamu meta-tool providing end users with little programming 

background, a mechanism to detect events and specify actions to take. We first motivate our work 

and survey related research, then outline our approach and its design and implementation. We finish 

with an evaluation and conclusions.   

 

6.2 Motivation 

Consider a diagram-based design tool for web site and GUI specification, an example of such is 

illustrated in Figure 6.1. This consists of a web site map view (rear) and a web form view (front). We 

have built this tool with the Pounamu meta-tool as have many other diagram-based design tools (Zhu 

et al, 2007). Such applications allow end users to model complex design problems using visual 

notations appropriate to the domain. As many users of our tools are not programmers, providing 

ways of specifying behavioural changes is more challenging.  
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Figure 6.1. Example of a diagram-based design tool. 

 

A variety of approaches have been used to support reconfiguration of diagramming tools. 

Frameworks, such as Suite (Dewan and Choudhary, 1991), Meta-Moose (Ferguson et al, 1999) and 

Unidraw (Vlissides and Linton, 1989) require modifications to the tool‟s code, with an edit-compile-

run cycle. Some Tcl/Tk-based tools may be modified while in use (Welch and Jones, 2003), but this 

requires use of the Tcl programming language. MetaEdit+ (Kelly et al, 1996) and GME (Ledeczi et 

al, 2001) provide API based code integration facilities, but code must be pre-compiled. Usually only 

programmers familiar with the tool architecture can make such modifications.  

 

A common alternative approach supporting run-time modification is scripting. This is supported, for 

example, by Amulet (Myers, 1997) and Peltonen‟s UML tool (Peltonen, 2000). MetaEdit+ also 

provides a custom scripting language for report generation while GME uses OCL as a scripting 

language for constraint specification. These are difficult for non-programmer users to understand and 

use. Pounamu uses this approach, with event handlers specified using textual Java fragments 

accessing a defined API and compiled on-the-fly. Figure 6.2  shows a Pounamu event handler for a 

web site design tool. This is a powerful mechanism for extending Pounamu and very sophisticated 
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event handling behaviour has been implemented with it. As we reported in Chapter 3, while end 

users have been very complimentary of Pounamu‟s visual design tools, they have been less 

complimentary about the event handler specification as it requires programming skills and 

knowledge of the Pounamu API even for simple handlers. 

 

 

 

Figure 6.2. Example of event handler textual specification. 

 

Programming by demonstration and rule-based approaches have been used to specify behavioural 

constraints in some systems, often together and most notably in children‟s programming 

environments such as KidSim (Smith et al, 1995) and Agentsheets (Repenning and Sumnet, 1995). 

Most rule-based approaches exemplify “Event-Condition-Action” based visual languages where the 

user specifies an event of interest; conditions (“filters”) when the action(s) should be run in response 

to the event; and action(s) to run to modify the tool‟s state.  

 

Other Event-Condition-Action rule-based languages have been developed for a variety of domains, 

including building and tailoring design tools (Costagliola et al, 2002; Ledeczi et al, 2001; Lewicki 
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and Fisher, 1996), user interface event handling (Berndtsson et al, 1999; Jacob, 1996), process 

modelling (Grundy et al, 1998) and database rule handling (Matskin and Montesi, 1998). However 

these approaches often suffer from use of inappropriate, textual rule-based languages for end users; 

reliance on many abstract concepts like control structures and variables; limitations on expressive 

power of the languages; difficulty in visualising and debugging learned rules from demonstration by 

the user; and limitations of reconfiguration power, including compile-time rather than run-time 

changes. 

 

6.3 Requirements 

Given the problems noted above, we wanted to replace Pounamu‟s textual, Java code-based event 

handler specification tool with one using a visual language suitable for non-programmer end users. 

To develop this replacement visual language, Kaitiaki, and its specification tool we carried out an 

analysis of Pounamu event handlers from a wide range of tools to identify key constructs used to 

specify different tool behaviours. All had aspects of (1) specifying the event(s) of interest; (2) 

querying the tool state in various ways; (3) filtering event/query results and making decisions; and 

(4) performing state changing actions on filtered objects. We also looked at the metaphors used in 

existing rule-based and event-condition-action event handler specification tools to see how these 

manifested the behavioural specifications and how suitable these were for end users. From this 

analysis and survey, we developed a set of key requirements and design approaches for our new 

Kaitiaki visual event handler designer: 

 A need to represent key “building blocks” of state query, data filtering and state modification 

(actions).  

 A need to represent event objects and their attributes; various objects from the Pounamu tool 

state (both view and model); and query results (typically collections of Pounamu state objects). 

 A need to represent “data” propagation between event, query, filter and action representations. 

 A need to represent iteration and conditional data flow. 

 

6.4 Metaphor 

The metaphor used by Kaitiaki is thus an “Event-Query-Filter–Action” (EQFA) model. This is 

articulated as “When this event happens, I want these changes made to these things”. This is loosely 

based on the Serendipity event handling language which has been successfully used by end users in 

the process enactment domain to express similar kinds of event-driven behavioural models (Grundy 

et al, 1998). The key visual constructs of our language are representations of events, tool objects, 
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queries on a tool‟s object state, state changing actions (including primitives relevant to common 

event handler requirements), and data flow links between these.  

 

Event of interest 

Event property(s) 

Tool state e.g. 

Diagram changed 

Query over state e.g. 

all items in Diagram 

Filter of objects e.g. 

only particular type Objects 

Action 1: 

Move objects 

Action 2: change 

colour of all objects 

Filtered Objects 

 

Figure 6.3. The Kaitiaki EQFA metaphor. 

 

A Kaitiaki event specification is conceptually of the form outlined in Figure 6.3. An end user selects 

an event type of interest; adds queries on the event and Pounamu tool state (usually diagram content 

or model objects that triggered the event); specifies conditional or iterative filtering of the event/tool 

state data; and then appropriate state-changing actions to be performed on target tool state objects.  

 

Complex event handlers can be built up in parts and queries, filters and actions can be parameterised, 

and reused. Ordering is handled by dependency analysis in the code generator. Domain specific tool 

icons are also incorporated into the visual specification of event handling as placeholders for the 

Pounamu state, to annotate and make the language more expressive. 

 

6.5 Notation 

The design of our Kaitiaki visual language focuses on supporting modularity and explicitly 

representing data propagation. We have avoided using abstract control structures and adhered to a 

dataflow paradigm to reduce the user‟s cognitive load. An overview of the main constructs of 

Kaitiaki is shown in Table 6.1 with an example Kaitiaki event handler view shown in Figure 6.5. 

From this we see the visual form of the constructs described in the previous section, i.e. events, 

filters, tool state queries, and actions plus iteration over collections of objects, dataflow input and 

output ports and connectors, and concrete iconic forms.  



 - 97 - 

 

Event representation 
 

Abstract Pounamu state 

representation 

 Single Data Element 

Collection of Data 

Elements 

 

Filter 

 

Query on a tool‟s state 

 

State changing action 

 

Iteration 

 

Data propagation link  

Data flow ports in and out 
 

Concrete specification of Pounamu 

model elements (state) 

  etc. 

Table 6.1. Kaitiaki language key visual constructs. 

 

A single event or a set of events is the starting point for a Kaitiaki event handler specification. From 

this event various data flows out (event type, affected object(s), property values changed etc). 

Queries, filters and actions are parameterized with data propagated through incoming connectors. 

Multiple flows are supported with multiple dataflow connectors pointing to/from a visual construct. 

Queries retrieve elements and output one or more data elements; filters select elements from their 

input; actions apply operations to elements passed to them. 

 

Queries and actions are invoked immediately when their actual data parameters are available (data 

push). If no related data dependency is specified, i.e. no data input parameter flows to the constructs, 

then queries and actions are invoked on demand when all other parameters to a subsequent flow 

element have a value (data pull).  
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Table 6.2 shows some of the predefined primitives for these constructs. These define the core 

vocabulary for our domain specific language, providing a base set of operations useful for diagram 

and diagram element manipulation. Typically this involves locating or creating elements, setting 

their properties, relocating/aligning them, and connecting them.  

 

State querying 

 

Obtain a named property value of a 

shape 

 

 

Obtain all the shapes in the 

modeller panel 

 

Obtain all connectors in the 

modeller panel 

 

Obtain all connectors connected to a 

shape 

Data filtering 

 

Select shapes of specified type from 

set or test type of single data 

element input 

 
Select a given connector type 

 

Select all shapes that are connected 

to a particular shape (i.e. connector 

source) 
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Select all shapes that are connected 

from a particular shape (i.e. 

connector target) 

 
Filter on a not null value 

 
Filter on an expression value 

State modification 

 

Set a list of name-value pair 

properties for a shape 

 

Set a value to a named property 

 

Set a list of values to a named 

property 

 

Move a shape by an offset to a 

location 

 

Horizontally/vertically align a shape 

with other aligned shapes 

 

Create a new shape 

 

 

Create a connector of a specified 

type and connect two shapes using 

the connector 

Table 6.2. Overview of Kaitiaki reusable building blocks. 



 - 100 - 

6.6 Example of Kaitiaki Specifications 

To construct a visual event handler specification a user identifies the target affected shape, view or 

model entity. She specifies the event(s) the event handler should respond to, and then adds building 

blocks to the handler specification. The concrete representations of Pounamu data, such as the shape 

icons, allow her to relate her queries, filters and actions to concrete objects in Pounamu. Basic elision 

support allows the user to show and hide concrete icons, queries, filters and actions to help manage 

larger specifications. To better illustrate the expressiveness of Kaitiaki, we use an event handler 

example defined for the web site design tool shown in Figure 6.1. The web site map view (of a 

simple model like eBay) supports a hierarchical breakdown of web pages for sub-page management. 

It requires several layout constraints to be enforced. 

 

 
 

Figure 6.4. Example of addition of a new sub-page. 

 

When creating a page icon for the web site map diagram, several values for its properties need to be 

set. These are gathered from a range of sources. An event handler is needed to implement one of the 

layout constraints. Users need to be able to create a new page by a right-click on an existing page; 

the newly created page is made a child of the existing page and a link is drawn between the old and 

new pages. The new sub-page and all other sub-pages belonging to this parent are aligned and 
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repositioned upon arrival of the new page. Figure 6.4 shows the effect of this event handler when a 

new sub-page is added to the selected.  

 

Figure 6.5. Specifying a layout constraint event handler. 

 

Figure 6.6. An example of a reusable visual query. 
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The event handler specification for this task is shown in Figure 6.5 which demonstrates the use of 

predefined Kaitiaki primitives (e.g. create, align and set property and connect shapes). It also 

demonstrates package and reuse of queries and actions. The modelling constructs contained in this 

event handler specification include a user defined trigger event (a context-menu event) called 

“AddNewPage” which has the selected (i.e. Parent) “Shape” flowing from it; a query, 

“getSubPages” (a packaged query) that locates existing sub-pages of the currently selected page 

shape (“parent” as propagated to the query); four actions, the “newShape” action creates the new 

page shape; the “alignH” action does a horizontal alignment (with a user specified vertical distance 

in between) of the new page shape with the other existing sub-pages; the “setProps” primitive then 

sets default properties for the newly created page shape; and the “connect” primitive creates a 

connector of the “SubPage” connector type and connects the new page  shape with its parent shape 

using the connector, now the event handler leads to a final stage, i.e. the end of the event handler 

specification. 

 

Data sourced from outputs of “source” entities flows through data propagation links to act as input to 

“sink” entities. Each of the data propagations is statically checked for type compatibility of their data 

sender and consumer. Also incorporated in the event handler example are some end-user target tool 

icons, e.g. one on the flow from the “AddNewPage” event to the connect action annotates the flow to 

visually indicate the type of shape (page) on the flow. Another on the flow from the “setProps” 

action annotates the flow to indicate that the state change (which sets defaults values) results in 

modifications to a page shape (the new sub-page). Shadowed icons, such as the one on the 

“subpages” flow from “getSubPages”, indicate multiplicity in the result. These optional annotations 

do not affect the semantics and thus are examples of secondary notation augmenting the specification 

(although their types are checked). They include generic titles (“ParentPage”, “NewSubPage”, etc) to 

emphasise the reusability of the event handler for other page shapes. 

 

Figure 6.6 shows the packaged “getSubPages” query, which is composed of a number of primitives. 

We explicitly specify start (data flow in) and end (data flow out) ports for a package. Starting with a 

parent shape flowing in from the start to the “connectedFrom” filter, the “getShapes” query which 

gathers all available shapes (via data pull) is invoked. The “PageShape” filter selects all shapes that 

are of the “PageShape” type. The “connectedFrom” filter then selects only those that are connected 

from the specified parent shape. The end flow of the composed query indicates that on termination, 

this query flows out the set of sub-pages of the parent page. This query is invoked in the event 
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handler in Figure 6.5, but can be reused by other event handlers. Actions and filters can similarly be 

specified and reused. 

 

6.7 Dynamic Visualisation of Event Handlers 

A consequence of introducing a visual language to generate Pounamu event handler code from visual 

specifications is the need to support their incremental development and debugging. To this end we 

have developed a visual debugger which dynamically annotates an event handler specification view 

for a fired event. The viewer exploits the dataflow between event handler building blocks to update a 

visualisation of event handler execution in its own view. 

 

 

 

Figure 6.7. Visualising execution of a visual  event handler. 

 

The dynamic visualisation of an event handler execution includes the visualisation of EQFA element 

invocation (by flashing the corresponding node in the graph) and the visualisation of data 

propagating path to the next construct (by highlighting the dataflow path). The traditional “debug and 

step into” metaphor is used and step-by-step visualisation controlled by menu command. As seen in 

Figure 6.7, when the “Step Into” button is clicked, the next element to be invoked and the data 

propagation path are highlighted and handler execution pauses. The user can then step into the next 
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element, abort the handler or inspect data values on a propagation path. The final state of the event 

handler execution highlights all the invoked constructs (nodes coloured in green) and the entire data 

propagation path. The states of the propagated data are able to be displayed in the debugging state 

information panel. 

 

6.8 Design and Implementation 

We have implemented an environment for Kaitiaki as an extension to Pounamu. As shown in Figure 

6.8, the main components added to Pounamu to generate Pounamu event handling code and visualise 

a running event handler include: Pounamu views and model for specifying visual event handler 

models; XML-based representation and storage for both library and user-defined queries and actions; 

and the visual debug viewer. 

 

We have developed form-based specifiers for queries and actions to allow 

reconfiguration/modification of existing library code modules and creation of new ones by expert 

users. These are added to the library of reusable building blocks so end users can visually add them 

to specifications. Query/Action XML DTDs have been defined for Pounamu and XML data files are 

used for saving to and loading from a library of queries and actions. Visual Kaitiaki nodes are 

integrated with code modules by the code generator. There is strong coupled mapping of visual 

components and code components, thus component-based code generation from a specification is 

achieved. The visual links (connectors) instantiate the visual entity components as they are required 

i.e. initialise query/action modules and invoke them as needed. The independent use of component-

based visual and code components increases the modularity and reusability of the programming 

constructs. 

 Pounamu Meta-tool 

Meta-tools 

Meta-tool Editors 

e.g. shape, view, 

meta-model definers 

Visual event 

specification tool  

XML Tool 

Specifications 

XML 

query/action 

Specification 

Event Handler 

Java Code Code Generation 

Views 

Models 

 

Figure 6.8. Extensions to Pounamu (highlighted). 
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<method> 

public Vector getSubPages (PounamuShape parent) { 

     //code module 

} 

public void connect(PounamuShape parent, PounamuShape child, String connectorType) { 

     //code module 

} 

</method> 

 

<code>Vector subPages = getSubPages(parent);</code> 

 

Figure 6.9. Compiling a visual event handler. 

 

The code generator first performs a model (dependency) analysis and then sets module properties 

obtained from the visual model. It buffers code for creating event instance and query/action 

invocation, and finally writes the completed event handler code to an XML file. Figure 6.9 shows an 

example of this translation for the “AddNewPage” specification. Data propagation links instantiate 

actual method calls to target queries or actions, generating the <code> XML construct in the 

Pounamu event handler XML. Each query and action extracts the reusable, parameterised code from 

the component. Parameter values are substituted and XML is generated for the <method> construct 

of Pounamu in the event handler XML. 

 

6.9 Discussion and Evaluation 

We have carried out a Cognitive Dimensions (Green and Petre, 1996) investigation of our visual 

event specification language and prototype environment to gauge its effectiveness.  
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Our target user group are inexperienced Pounamu users. We have chosen a system with a low-to-

medium abstraction gradient. Abstractions introduced are visual iconic constructs and data flow 

between them. These abstractions support query/action composition allowing users to specify 

Pounamu data queries and state changing actions as discrete, linked building blocks in the language. 

We have chosen a terse visual formalism which should allow a relatively good understanding to be 

obtained. The dataflow metaphor and visual constructs used as primitives in Kaitiaki increases its 

comprehensibility compared to the Java-based version. Kaitiaki constructs map onto the basic 

features of our EQFA metaphor, which provides high closeness of mapping for our target user group. 

Concrete representation of Pounamu data elements is supported too. The metaphor is related to the 

way Pounamu supports event processing and mixes abstract and concrete constructs. The initial 

abstractions require hard mental operations but are mitigated by concrete domain objects.  

 

Kaitiaki allows secondary notation to be used to layout, resize and annotate items in the view with 

iconic and textual labels. End user domain icons (i.e. concrete representation of Pounamu data 

elements) can be added to mitigate the abstraction of a visual event handler specification, to increase 

its readability and understandability. Modifying an event handler specification is by direct 

manipulation and a user can change one module without affecting the rest of the specification. 

However, it still has viscosity problems – that is the nature of dataflow systems – the user typically 

has to do a bit of rearranging (e.g. connector removal and reattachment, icon shuffling) to insert an 

element. 

 

The existing Java-based Pounamu event handler designer is very error-prone for both novice and 

experienced users due to reliance on API knowledge and Java coding. Kaitiaki reduces some areas of 

error proneness by hiding API details and using data flow and visual constructs. However, as the 

specification is still an abstraction users can still specify faulty behaviour. Kaitiaki allows 

progressive evaluation of a visual event handler specification even when it is partially complete. 

Modifications to event handlers take effect immediately after re-registration in an end user tool. The 

visual debugger allows a user to step through a handler‟s elements and view data, which is not 

supported by the Java code based event handler. The current tool has reasonable visibility and 

juxtaposability. Information for each element of an event handler is readily accessible. The 

visualisation of a running event handler is juxtaposed with the modelling view that triggers its 

execution. But conversely that does not happen when the user is designing the event handler – the 

user has to switch between the views. Hidden dependency is introduced in both Pounamu and its 

specified tools to manage consistency in multiple views, e.g. between view and shape specifications 
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and the event handler specification. 

 

An informal evaluation of the visual event handler specification tool has been carried out with 

experienced Pounamu users and some novice users. Feedback suggests the visual specification 

approach is greatly favoured for most event handler specification tasks. We plan a more formal 

evaluation with novice users to better gauge this. 

 

With respect to requirements, our EQFA metaphor captures event generation, state querying, filtering 

and iteration over query results, and state change actions to describe event handler specifications. 

The dataflow metaphor describes the composition of these event specification building blocks and 

seems to map well onto users‟ cognitive perception of the metaphor. Packing complex parts of a 

specification into reusable building blocks allows very complex event handlers to be defined with the 

model. A proof of concept support tool has demonstrated the approach is feasible permitting both 

simple and complex Pounamu event handlers to be defined visually, code to be generated for them 

and visual debugging of them supported. 

 

A potential weakness of Kaitiaki is the abstract representation of all events, queries, filters and 

actions. We have attempted to mitigate this with the addition of concrete iconic representations and 

are experimenting with elision techniques that allow concrete icons and Kaitiaki elements to be 

collapsed into a single meaningful icon.  

 

6.10 Summary 

We have developed a prototype visual language and proof of concept support environment for 

specifying diagramming tool event handlers. This uses a metaphor of generating event, tool state 

queries, filters over query results and state changing actions, with dataflow between these building 

blocks. The support environment allows users to compose handlers from these constructs and relate 

them to concrete diagramming tool objects. A debugger uses the visual notation to step through a 

specification, animating constructs and affected diagram objects. We have added this tool to the 

Pounamu meta-diagramming tool and specified and generated event handlers for example tools, 

demonstrating the feasibility of the approach. 

 

This is the second of the three exemplars used to generalise our generic event handling framework. 

Kaitiaki shares some commonalities with ViTABaL-WS, typically the dataflow used in the 
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specification to describe propagation of event and data. The major difference between Kaitiaki and 

ViTABaL-WS is their abstraction gradients. The generalisation of these two visual languages is 

described in details in Chapter 8. The third exemplar to be described in the next chapter is declarative 

dependency and constraint specification in metamodelling tools. The third exemplar has attempted a 

thoroughly different metaphor from the dataflow like icon and connector approach to event handling 

specification.  
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Chapter 7 - Visual Relational Formula Specification   

 

Our third exemplar towards generating a generic event handling framework is the declarative 

specification of dependencies and constraints in metamodels. This chapter elaborates the metaphor 

used in this application domain with examples. It is largely based on the MaramaTatau (Liu et al, 

2007) paper in Proceedings of the 2007 IEEE Symposium on Visual Languages and Human-Centric 

Computing. 

 

It is increasingly common to use metatools to specify and generate domain specific visual language 

tools. A common problem for such metatools is specification of model level behaviours, such as 

constraints and dependencies. These often need to be specified using conventional code in the form 

of event handlers or the like. Our ViTABaL-WS and Kaitiaki approaches are inefficient for 

specifying such constraints on metamodels. We report our experience in integrating a declarative 

constraint/dependency specification mechanism into a domain specific visual language metatool, 

focussing on the tradeoffs we have made in the notational design and environmental support used. 

The expressive power of the mechanism developed is illustrated by a substantial case study where we 

have redeveloped a complex visual tool for architectural modelling, eliminating conventional event 

handlers. 

 

7.1 Introduction 

It is increasingly common to use metatools to specify and generate domain specific visual design 

tools. Examples of such metatools include MetaEdit+ (Kelly et al, 1996), GME (Ledeczi et al, 2001), 

Eclipse GMF (Eclipse, 2007), and Microsoft DSL Tools (MSDN, 2005) together with the locally 

developed Pounamu (Zhu et al, 2007). High-level visual specifications of tool metamodels and visual 

language notations allow end users to modify aspects of their tools such as appearance of icons and 

composition of views and metamodels.  

 

However, an area that commonly proves difficult for meta-tool designers is the specification of 

model level behaviours, such as constraints, dependencies, element initialisations, calculations, etc. 
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Most approaches for model behaviour specifications use conventional code in the form of event 

handlers or constraint expressions. For example, Pounamu uses Java-based event handlers, GMF and 

GME use textual OCL (OMG, 2003) expressions, and MetaEdit+ uses a combination of constraint 

wizards and external code snippets. The difficulty with all of these approaches is that the resulting 

behavioural specifications are not strongly integrated with the visual metamodel, resulting in a 

variety of, in cognitive dimensions (Green and Petre, 1996) terms, hidden dependency, consistency, 

juxtaposability and visibility issues. 

 

In this chapter we describe MaramaTatau, an extension to the locally developed Marama metatool 

set, which provides the ability to specify behavioural extensions to Marama metamodels. Although, 

like GMF and GME, the behaviours have an OCL formula basis, we have attempted in the 

environment design to mitigate the hidden dependency, consistency and visibility issues noted above. 

In the following section we motivate and background our work in more detail. We then describe our 

new approach, using a simple example to illustrate. A more detailed case study follows, showing the 

reengineering of a previously developed tool, in the process eliminating complex handler code. We 

discuss the implications of our work then summarise the results achieved and proposing further 

work. 

 

7.2 From Pounamu to Marama 

Pounamu, like other meta-tools, provides a set of editing tools that realise its meta-tool specifications 

allowing end users to model using the generated domain-specific modelling tools. However, like 

most other meta-tools Pounamu-generated modelling tools are difficult to integrate with other tools, 

provide their own look-and-feel and do not produce “commercial quality” IDE user interfaces and 

support facilities. They rely on custom code generation, plug-in extension and Computer Supported 

Cooperative Work (CSCW) support mechanisms (Grundy et al, 2006). 

 

Marama has been developed by members of our research group as a set of Eclipse plug-ins that read 

high-level Pounamu meta-tool specifications and realises multi-view, multi-user graphical editors in 

the Eclipse IDE. Grundy et al (Grundy et al, 2006) described the Marama approach, its architecture 

and implementation. We reinstate Marama in this section before we describe the MaramaTatau 

approach, as MaramaTatau is implemented as an extension to the Marama framework. 
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Figure 7.1 shows the approach used to realise Eclipse-based DSVL tools with Marama. A tool 

developer or user creates or modifies a tool specification using the Pounamu meta-toolset (1). This 

specification is written to an XML-encoded format (2), which is read by the Marama Eclipse plug-in 

to configure editing tools (3). On reading a tool specification Marama creates a shared model and one 

or more graphical editors conforming to the Pounamu-generated specification (4). GEF was used to 

realise the graphical editors and EMF to represent model and diagram state. Model and diagram state 

are saved and loaded to XML files or an XML database using the OMG XMI common exchange 

format via EMF‟s built-in capabilities (5). 

 

 

1. Visual language tool 

specification in the 

Pounamu meta-tool 

2. Pounamu saves tool 

specification to XML files 

<< XML >> 

3. Load tool specification 

into Marama plug-in 
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Figure 7.1. The Marama approach to realising Eclipse-based visual language tools. (Grundy et 

al, 2006) 

 

Figure 7.2 shows a high-level architecture view of the Pounamu meta-tool and Marama Eclipse plug-

ins. Pounamu tool specifications represented in XML format are saved to tool projects (1), 

hierarchically organised directories or ZIP archives. Compiled event handlers are stored as Java 
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.class files. Users of Marama locate a desired existing Marama project to open or request a project be 

created via the standard Eclipse resource browser (2). When a project is re-opened or created in 

Marama, the corresponding Pounamu tool specification files are read and loaded into DOM objects 

(3). These are parsed and provide an in-memory representation of the Marama tool configuration. 

This tool configuration is used to configure an EMF-based in-memory model of both model and view 

(diagram) data (the names and properties of all entities, associations, shapes and connectors). It is 

also used to produce the editing controls of Marama GEF-based diagram editors (i.e. the allowable 

shapes and connectors; the rendering of shapes and connectors; the editable attributes of shapes and 

connectors, etc) (4). When a diagram is opened, Marama configures a GEF editor and renders the 

diagram (5). 
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Pounamu Meta-tool 
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Shape Designer 
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Designer 

Event handler 
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Tool 

config. 
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Figure 7.2. The architecture of Marama. (Grundy et al, 2006) 

 

Event handler code is compiled by Pounamu to Java .class files and stored in the tool project 

directory structure or ZIP archive. Marama loads all event handler compiled classes (6) during tool 

configuration load time. However, as these classes were compiled to use the Pounamu editing tool‟s 

API, they are run in a special sandbox within the Marama plug-in inside Eclipse. A set of adapter 

classes look to the compiled event handlers like the Pounamu editor API but map Pounamu API calls 
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onto the Marama Eclipse plug-in APIs (7). When Marama view or model data is updated, the 

Marama EMF objects are wrapped by Pounamu API adaptor objects and events are sent to the loaded 

Pounamu-compiled event handler classes. These can then invoke methods on the wrapping adapter 

classes which are translated into EMF object requests and updates (8). This saves complex 

conversion of Pounamu event handler code into native Marama form (Grundy et al, 2006). 

 

Marama uses EMF‟s XMI save and load support to store and load modelling project data (9). Model 

entity and association instances are written to a .model file, while each diagram and its shape and 

connector data are written to a separate .view file, all managed within the Eclipse resource 

workspace. Alternatively an XML database or object to relational database layer can be used for this. 

Several of these exist for generic EMF model persistency. Stand-alone diagrams can be created and 

used without a model and a subset of all diagrams for a shared model can be opened at one time. 

Consistency is supported between views sharing the same information by immediate update if all 

views are in memory, or differencing and then merging when a view is reloaded (Grundy et al, 

2006).  

 

Marama is realised by reusing a number of Eclipse frameworks to implement a dynamic interpreter 

for the Pounamu-generated DSVL tool specifications. Figure 7.3 illustrates the structure of Marama. 

Tool specifications are loaded from Pounamu XML files into Document Object Model (DOM) 

structures. A set of Marama metamodel classes provide an interface to the tool specifications (1). 

Marama Models use the Eclipse Modelling Framework (EMF) to represent model (entities and 

associations) and view (diagrams, shapes and connectors) data. When creating or re-opening a 

Marama project or diagram, these are configured using the DOM derived Marama meta-tool 

specification objects (2). These define allowed diagram, shape, connector, entity and association 

types, and their attributes and relationship constraints. When rendering a diagram, Marama EditPart 

objects create Marama figure objects based on the Marama meta-tool diagram specifications. Figure 

objects read diagram data and metamodel shape and connector appearance specifications (3) using 

them to instantiate the diagram via draw2d figures, resulting in a rendered diagram in a GEF window 

(4). When selected, properties associated with a shape or connector are displayed, with values 

fetched from the diagram shape/connector and any associated model entity/association, using a 

standard Eclipse property sheet. Edits to a Marama diagram are processed by GEF edit parts (5). A 

set of specialised edit part factory, policy and edit parts have been implemented for Marama editors. 

These generate appropriate figure and outline view renderings and Command objects to modify a 

diagram‟s model state (6). Changes to diagram objects generate EMF Notification events. These are 



 - 114 - 

used to determine appropriate changes to make to the underlying shared model entities and 

associations (7). Updates to model entities and associations also result in generation of EMF events. 

If multiple views contain shapes or connectors sharing the updated model data, the EMF events are 

used to trigger appropriate update of diagram model data. The diagrams are then re-rendered to 

reflect the changes (8). Project and diagram model data is written to and from an XMI format using 

EMF‟s XMI reader/writer support (9). The Pounamu meta-tool compiles Java event handler 

specifications into Java classes that use the Pounamu editing tool APIs. A mechanism was required 

to load compiled Pounamu API-using event handlers into Marama as automatic translation to using 

Marama APIs proved too difficult. A “sandbox” approach was adopted where Pounamu-generated 

event handler objects are dynamically loaded by Marama into a sandbox providing adaptors between 

the Pounamu APIs and Marama APIs, making the handlers think they are running in the Pounamu 

editing tool. EMF Notification objects generated by Marama model and diagram objects are sent to 

Marama objects representing a proxy to the Pounamu event handler objects (10). Marama model and 

diagram object changes are wrapped by PounamuEvent objects and sent to these Pounamu-native 

running event handlers (11). These Pounamu-compiled handlers may then read and update the 

Marama diagram and/or project model data via a set of adaptor classes between Pounamu API calls 

and Marama API calls. These calls result in updates to Marama model and diagram objects as 

appropriate or may invoke other Eclipse tools and plug-ins e.g. the JET code generator. (Grundy et 

al, 2006) 
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Figure 7.3.  Implementation of Marama. (Grundy et al, 2006) 
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To generalise our work on event handling specifications, we have designed a set of Marama meta-

tools to provide a better platform and a vehicle for allowing us to explore event-handling integration. 

Marama meta-tools provide the visual language design environment similar to Pounamu, but with 

designer tools realised as a set of refined Marama editors. Marama meta-tools were initially defined 

using Pounamu, with bootstrapped implementation of a metamodel designer, shape designer and 

view type designer as the “backbone” of the new metamodelling tool.  A complete discussion of the 

Marama meta-tools development is presented in Chapter 8 and 9. 

 

7.3 Background and Motivation  

In our group‟s prior work, a variety of frameworks and metatools have been developed to support 

specification and implementation of multiple view, multiple notation domain specific visual 

language environments (Grundy et al, 1998; Zhu et al, 2007). In each of these platforms the 

developers have struggled to find an appropriate means of specifying behaviour, despite having used 

a variety of approaches. One, used in the JViews framework (Grundy et al, 1998) and Pounamu 

metatool, was escape to code with conventional code accessing tool data structures via an API. This 

mechanism, also used by MetaEdit+ and DSL Tools, while very powerful is also problematic, 

requiring much repetitive coding and thorough end user knowledge of the metatool API. It also has 

significant hidden dependency, visibility and juxtaposability problems due to the differing 

abstraction levels involved. 

 

A second approach, used in the BuildByWire tool (Mugridge et al, 1998), adopts a concrete visual 

specification of interface component constraints for use in the JViews framework. This works well 

for shape and editor constraint specification. Kaitiaki (Liu et al, 2005), described in Chapter 6, uses a 

dataflow metaphor to specify view level behaviour-oriented constraints for the Pounamu metatool. 

This is more abstract than BuildByWire, but uses exemplars of user interface components to make 

the specifications more concrete.  These two metaphors do not, however, extend well for model level 

constraints and dependencies due to the lack of user interface exemplars to “concretise” the model 

level specifications, and the awkwardness of expressing calculations, common in model level 

constraints, using these metaphors. 

 

An increasingly common approach is to express model level constraints as declarative formulae. 

MetaEdit+ uses a combination of wizards to define such constraints and natural language rendering 

to visualise them. GME and GMF both use OCL expressions to specify constraints and 
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dependencies. These latter have the advantage of using a standardised and compact notation (OCL) 

familiar to modellers. These approaches are more successful than “escape to code”, but still involve a 

large notational and semantic separation between the textual constraint formula and the visually 

specified metamodel. GME attempts to bridge this gap by annotating visual model elements to 

indicate constraints apply to them, but editing and understanding a constraint still presents significant 

hidden dependency and consistency issues. 

 

Formulaic constraints and dependencies are common in spreadsheets (Engels and Erwig, 2005; 

Burnett et al, 2001). Spreadsheet formulae permit declarative specification of system behaviours and 

automatic evaluation of them. A highly concrete metaphor is used, however, with the grid structure 

reused for both formula programming and execution, providing good preservation of the end user‟s 

mental map of the application. This approach is thus not immediately adaptable to the domain of 

metamodellers as there is necessarily a separation between the metamodel specification and its end 

user realisation as a set of view editors in a generated application. However, approaches such as 

ClassSheets (Engels and Erwig, 2005) and Forms/3‟s prototype approach (Burnett et al, 2001) 

provide some indication of how aspects of this metaphor could be adapted to suit the metamodelling 

domain. Of particular interest are hidden dependency mitigation approaches, such as dependency 

link views, and the ease of formula construction afforded. 

 

As an adjunct to the redevelopment of Marama, we took the opportunity to address Pounamu‟s 

difficulties in expressing model-level constraints and dependencies. These constraints and 

dependencies are event triggered (e.g. property change event), to be implemented via event handlers. 

Both Pounamu and Marama adopt an extended entity relationship (EER) model as the metamodel 

specification mechanism. The EER model contains definitions of a set of entities, relationships, and 

attributes.  We saw a possibility to extend this simple representation with declarative 

constraint/dependency specifications. We were attracted to a formulaic approach but wanted to 

minimise/mitigate the cognitive dimensions tradeoffs involved. This led to the following set of 

requirements for the constraint representation mechanism: 

 Aim for target end users who are programming literate and familiar with modelling concepts 

 Ability to represent model level constraints, dependency calculations, and initialisations 

 A compact representation 

 Use of a standardised notation familiar to the target end users for accessibility of use  
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 Ability to minimise/mitigate hidden dependency and visibility issues between the constraint 

specification and the visual metamodel specification 

 Ability to rapidly compose constraints 

 Ability to simply visualise execution behaviour 

 

In the next section, we introduce MaramaTatau, our approach to implementing these requirements. 

 

7.4 MaramaTatau 

MaramaTatau is strongly focussed on structural constraints. The primary notation for constraint 

representation in MaramaTatau is declarative OCL expressions, a representation chosen for the 

following reasons: 

 OCL expressions are relatively compact (certainly in comparison to Java event handler code). 

 OCL is specifically designed as a language to express model level constraints. It thus has 

primitives for common constraint expression needs, e.g. navigation of relationships, set and list 

manipulation (including aggregation), and common calculation operations of various types 

(arithmetic, string, boolean). 

 While designed for OO metamodels, OCL is equally applicable to Marama‟s EER metamodels. 

 OCL is a standardised language, likely to be familiar to our intended end users. 

 The quality of OCL implementations is increasing. 

 

Providing an OCL expression editor, similar to those in GME and GMF, covers the first four 

requirements of the previous section. What differentiates our approach, however, is the way we 

address the other requirements. Our approach is to combine the advantages of the textual OCL 

formulae with the ease of formula construction afforded by spreadsheets, together with a lightweight, 

yet robust mechanism to mitigate hidden dependencies. 

 

Figure 7.4 shows the Marama metamodel editor with MaramaTatau extensions. The metamodel 

shown is for a simple aggregate system modeller, comprising wholes and parts, represented by the 

Whole and Part entities (1), both generalising to a Type entity and related by a Whole_Part 

relationship (2). The entities have typed attributes, such “name”, “area”, and “volume”. Below is the 

formula construction view (3). This allows OCL formulae to be selected, viewed and edited. A list of 

available OCL functions (4) is used for formula construction. The formula shown “self.parts-> 
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collect( cost * (1.0 + markup))->sum()” specifies that the “price” attribute of a whole is 

calculated by adding the products of its parts‟ “cost” and “markup” values. 

 

 

5 

4 

1 

2 

3 

6 

 

Figure 7.4. MaramaTatau visual notation. 

 

Also shown in the visual metamodel view are various annotations (5) indicating the presence of 

constraints. Coloured circles placed on attributes or entities indicate that an OCL formula has been 

defined to respectively calculate their value or provide an invariant constraint over them. All of the 

attributes of the Whole entity have such formulae, as do the “volume” and “big” attributes of Part. 

The annotation is coloured differently (red) if the formula is semantically incorrect. Dependency link 

annotations provide more detailed information about a selected formula by connecting its annotation 

to other elements used in the formula. For example the formula for the “price” of a Whole entity is 

selected (selection handles showing). The dependency links show that the price formula is dependent 

on the “cost” and “markup” attributes of the Parts connected to the Whole by the Whole_Part 

relationship. Entities and connection paths that are directly accessible when constructing a formula 

(Whole, Type, Whole_Part) have grey outline borders around them (6, see below). 
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We have carefully defined the interaction between the two views to enhance visibility and minimise 

or mitigate hidden dependency issues. Visibility and hidden dependency issues are addressed by the 

following mechanism: 

 The OCL and metamodel editors are juxtaposed together to improve visibility 

 Simple annotation of the model elements indicates formulae related to them are present and 

whether they are semantically correct. This is similar to the GME constraint annotations.  

 Formulae can be selected via either the metamodel view annotation or from a selection list in the 

OCL view. This means constraints can be navigated to/accessed from either view. Selection in 

one view causes selection in the other. 

 The dependency link annotations in the metamodel view provide, at a glance, more detailed 

understanding of attributes and entities used in the formula.  This visualisation extends beyond 

that of GME, providing a more detailed, constraint specific understanding of dependencies 

involved. The annotations are modified dynamically as formulae are edited maintaining 

consistency between the views. The extra annotations are deliberately made visible only when a 

constraint is selected to minimise clutter, permit scalability, and provide task focussed 

information to the end user. This approach is similar to dependency visualisations provided in 

some spreadsheets, linking cells with formulae to those they depend on, but applied to a graphical 

modelling metaphor rather than a spreadsheet grid. Coloured dependency links and textual 

element references – as done in some spreadsheets – is a straightforward extension to provide 

even finer-grained indication of dependencies. 

 

The rapid composition requirement is addressed by several techniques, also adapted from common 

spreadsheets usage. These assist with hidden dependency and visibility issues. Formula construction 

can be done either textually, via the OCL view, suitable for those highly OCL fluent, or “visually” 

via direct manipulation of the metamodel view and function selection list to automatically construct 

entity, path, and attribute references and function calls. Clicking on attributes in the metamodel view 

places an appropriate reference to that attribute into the formula. Path references are constructed by 

clicking on the relationship and then an attribute in the entity referenced by that relationship. A 

function selected from the list in the OCL view is inserted as a function call into the formula being 

edited, similar to formula selection in spreadsheets. 

 

A difference from spreadsheet formula construction is that when constructing a formula, only certain 

elements are semantically sensible at a particular stage of editing whereas in spreadsheets, any cell 
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may be referenced (circular references excepted).  For example, clicking on a Part attribute, without 

first constructing a relationship reference via Whole_Part, does not make sense. To guide users, grey 

border highlighting indicates entities and relationship links valid to select at a given point in formula 

construction. Should a semantically incorrect formula be constructed, the annotation change in the 

metamodel view provides immediate visual feedback of the error. 

 

Another area of departure from the spreadsheet metaphor is in model instantiation. In spreadsheet 

based systems the metaphor used is both very concrete and live. The very nature of metatools, where 

an abstract conceptual metamodel is defined necessarily separately from the views of that model 

means concreteness must be sacrificed, and hence there is an additional set of hidden dependencies 

and visibility issues, between the metamodel definitions (including the OCL formulae) and the model 

instances, created. In designing MaramaTatau‟s runtime implementation we have introduced several 

mechanisms to mitigate these hidden dependency issues. Liveness, however, is already well 

supported in Marama. Unlike almost all other similar metatools, Marama tool definitions can be 

modified on the fly, with changes immediately reflected in any open tool instances.  

 

Figure 7.5 (1) shows a modelling tool based on the Whole Part metamodel used to edit an example 

model (the icons and connector forms, and view-model mappings are defined separately using other 

Marama metatools). When such a model instance is being manipulated (entities and relationships 

created, property values edited) relevant formulae are interpreted and the derived values assigned to 

their contextual model entity/relationship properties. For example the parts list in the whole1 Whole 

entity, represented as a multi-line list in the visual modelling view, has value [part1,part2] 

constructed using a formula that collects the name of each linked part into a new list. Properties with 

values defined by formulae are not editable by the end user.  

 

In Figure 7.5 (1), only a single Whole Part view is shown. Marama supports specification of tools 

with multiple views and multiple notations; each view being mapped to a common underlying model 

(specified using the metamodel tools). To allow end users to visualise the shared model, a model 

instance view is provided. Figure 7.5 (2) shows an example of this view for the Whole Part model. 

The topmost view contains all entity and relationship types defined in the metamodel view. The same 

element representation is used as in the metamodel specification to minimise/mitigate hidden 

dependency issues between the metamodel specification and model instance view. Note that we have 

chosen not to replicate exactly the same view because a Marama metamodel can itself be specified 

across multiple metamodel views. The model instance view depicts the union of meta elements in all 
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such views, so does not follow exactly the same layout. This is an area we are still experimenting 

with. An alternate approach is to provide a set of model instance views, one for each metamodel 

specification view. 

 

 

1 

2 

 

Figure 7.5. (1) Model instantiation view and (2) model instance view. 
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The table view at the bottom of Figure 7.5 (2) is a spreadsheet like representation of all instances of 

the element type selected in the top view; the Whole entity in the view shown. Each row details 

attribute values for an instance of the selected entity. These rows may be expanded, as shown for the 

first element, to provide details of other elements associated with the chosen element via 

relationships. In the example shown the two Parts associated with the first of the Whole elements are 

detailed. This view thus provides a rapid understanding of model elements and related values.  

 

Formulae for calculated attributes are shown by tooltip when the mouse hovers over such an attribute 

value (as for “price” in Figure 7.5 (2)). This mitigates the hidden dependency between the concrete 

value and its OCL formula. Further mitigation is provided by a formula debugger view (Figure 7.6). 

This provides a dynamic, textual visualisation of formula execution, concurrent with changes 

occurring in the visual views (providing good visibility of behavioural changes). These two features 

together satisfy the final requirement: to simply visualize execution behaviour. 

 

 

Figure 7.6. Formula debug view. 

 

7.5 Case study 

The previous section introduced the notational features of MaramaTatau plus environment support 

mechanisms to mitigate hidden dependency and visibility issues. To evaluate the scalability and 

utility of the approach we present a larger case study reengineering a previously developed Marama 

tool to replace “escape to code” behavioural specifications with MaramaTatau constraints.  

 

MaramaMTE (Grundy et al, 2006) is a complex visual tool for software architecture design and 

performance test-bed generation. It provides a number of notational views, including a structural 

architecture view and a pageflow view for specifying abstract user interface behaviour, all linked to a 

common underlying model. Figure 7.7 is a screen dump of MaramaMTE in use, with a structural 
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architecture view describing a three-tier client-server architecture for a travel planning system 

shown. 

 

Figure 7.7. A MaramaMTE architecture view 

 

In its original form, the implementation of MaramaMTE required a substantial number of java-based 

event handlers to implement various event triggered calculations and constraints. Consider remote 

objects, the rectangular icons containing other icons representing services they provide. For example 

the “bookingService” remote object has associated a “confirmSeat” service. These remote services 

have an “id” attribute which is the concatenation of the “name” of the remote object and the “name” 

of the service (e.g. bookingService.confirmSeat). The handler code implementing this simple 

constraint is substantial. Part of it is shown in Figure 7.8. Much of the code involved is repetitive or 

formulaic, manipulating Marama data structures via its API to access attribute values, calculate 

values, and assign results. 
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Figure 7.8. Handler code implementing constraint. 

 

The screen dump in the centre of Figure 7.9 shows a major portion of the metamodel for the 

reengineered MaramaMTE. A number of formulae have been defined to calculate various attribute 

values. Below an expanded view of the formulae list shows OCL expressions for each constraint 

defined. Above an expanded view of part of the metamodel shows the Service and Remote Object 

entities and the relationship between them plus an OCL formula for the service “id” (formula 8 in the 

list at the bottom). This expression replaces the complex handler code in Figure 7.8. This 

specification is not only much more compact, it is also much easier for the end user to understand 

and reuse.  

 

A range of other constraint expressions are shown in the formula list at the bottom. The first of these 

is an “id” calculation for service requests similar to the remote object service “id” formula. The next 

two initialise attributes representing the types of middleware supported by the test bed generator. 
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These are used in the modeller to constrain the combo-box values selectable by the end user. Those 

for the “remoteObject” and “remoteService” attributes of Request are moderately complex 

conditional expressions, which involve tracing a series of relationship paths to derive the names of 

the remote object and remote service invoking the request. These are thus derived attributes, caching 

values for more convenient use. 

 

 

 
self.object.name.concat('.').concat(name) 

  

Figure 7.9. MaramaMTE model behaviour specification. 
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As mentioned in the previous section, formulae can also be placed on entities to specify entity 

invariant constraints. In Figure 7.10 (a) we have extended the MaramaMTE metamodel with a 

constraint specifying that every service instance must serve at least one service request. This is 

expressed as a constraint on the Service entity, with OCL expression “self.requests-

>size()<>0”, shown in the overlay. 

 

When this formula evaluates false for a service, e.g. the “cancelBooking” service of the 

“bookingService” remote object in Figure 7.10 (b), a constraint violation error is generated. In this 

case a problem marker is generated in the Eclipse Problems view (shown below) to provide the user 

details of the constraint violation. In this case, to solve the identified error, the user needs to add a 

Request entity for the identified service. When this is done, the constraint evaluates to true and the 

constraint error is removed from the Problems view. 

 

The developers of the original MaramaMTE applications were provided with a demonstration of the 

reengineered approach and experimented with using the tool on larger scale modelling examples. 

Subsequent discussions were conducted with them and their feedback was very positive. Combined 

together the attribute calculation and invariant constraint formulae were more than adequate to 

eliminate all event handlers implementing model level constraints in MaramaMTE. The developers 

felt that the compactness and accessibility of the constraint notation and its environmental support 

had made the application as a whole much more easily understood and maintained. The notational 

mechanism also proved to be highly scalable, being unobtrusive when the tool designer‟s focus was 

on understanding metamodel structure, but providing ready ability to focus in and obtain more 

detailed information about particular constraints without losing the metamodel context they are 

situated in. The runtime support has proven more than adequate to allow tool users to comprehend 

the calculations being undertaken and for the tool designer to quickly debug constraints defined.  
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self.requests->size()<>0 

(a) 

(b) 

 

Figure 7.10. Using formulae to constrain entities. 

 

7.6 Implementation 

Adapted from the original Marama architecture described in Section 7.2, Figure 7.11 shows a high-

level architecture view of the Marama meta-tools and Marama Eclipse plug-ins. The MaramaTatau 

extension is implemented to the metamodel designer. 

 

MaramaTatau formulae are stored as XML tags together with other metamodel elements. Formulae 

on the user model are transformed to OCL representations on the Marama EMF model instance. This 
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process is hidden from the user. To realise MaramaTatau we integrated the EMF OCL (Eclipse, 

2006) framework to implement a dynamic compiler and interpreter for MaramaTatau OCL 

specifications. As Marama view or model data is updated, events are sent and interpreted into EMF 

object requests and updates, including triggering and executing relevant compiled OCL expressions.  
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Figure 7.11. The initial architecture of Marama meta-tools. (adapted from Figure 7.2) 

 

7.7 Evaluation 

The case study has demonstrated that the approach we have developed is both effective and scalable, 

and amply meets the requirements we established for it. Informal feedback from the case study 

developers has been positive. For additional feedback, we have used a focus group approach, 

presenting and demonstrating case studies to a small group (less than 10 participants) of experienced 

modellers, to gather qualitative feedback on the MaramaTatau visual notation and environment. 

Participants found MaramaTatau to be easy to understand and efficient to use to manage constraints 

and dependencies. We have performed a much more substantial evaluation (122 participants), similar 

to the one undertaken for the Pounamu tool (Zhu et al, 2007), of the complete Marama environment, 

including MaramaTatau. We have been sufficiently encouraged by our informal evaluations to 
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include MaramaTatau in the publicly released version of our Marama tool (Nikau, 2007). Results of 

this will be presented in Chapter 10. 

 

In developing MaramaTatau, our focus has been on providing a compact and accessible constraint 

representation for Marama, while minimising hidden dependency, juxtaposability and visibility 

issues. To understand other tradeoffs that we have made to achieve our primary aims, it is useful to 

also evaluate MaramaTatau against other cognitive dimensions.  

 

The visual abstractions introduced are visual iconic constructs and data dependency links between 

them. This is quite a terse (low diffuseness) extension to the existing metamodel notation and the 

abstractions are quite low level, providing a simple overview of constraints and dependencies, and 

hence have low abstraction gradient. 

 

Error proneness has been reduced significantly. The existing Marama Java-based Marama event 

handler designer is very error-prone for both novice and experienced users due to its reliance on API 

knowledge and Java coding together with the numerous hidden dependencies with the visual 

metamodel. MaramaTatau reduces error proneness by avoiding API details and directly using 

concepts visible in the metamodel.  

 

The verbosity (high diffuseness) of the textual OCL, due to its many built in functions, does, 

however, present similar opportunities for error as does API mastery. The verbosity also introduces 

some degree of hard mental operations as users must remember what function is appropriate for a 

given purpose. However, the relative familiarity (knowledge of the OCL syntax and experience of 

using it) of OCL with the target end user group, experienced modellers, mitigates this and also means 

good closeness of mapping for them. The compact nature of the representation, point and click 

construction, and automatic construction of the visual model annotations, means viscosity is low. 

 

MaramaTatau allows progressive evaluation of a constraint specification via Marama‟s live update 

mechanism. Modifications to formulae take effect immediately after re-registration in an end user 

tool. A visual debugger allows users to step through a formula‟s interpretation using the same 

abstraction level as they were developed in. By contrast, java event handlers require conventional 

java debuggers and a good knowledge of Marama‟s internal structure. 
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The MaramaTatau entity invariant formulae mechanism provides a rudimentary form of design critic 

(Robbins and Redmiles, 1998). In current work one of our group members is extending this approach 

to provide a more general critic authoring mechanism integrated with the Marama toolset.  

 

7.8 Summary  

We have described an approach for constraint/dependency specification in a domain-specific visual 

language meta-tool. This borrows much from techniques used to support the spreadsheet metaphor, 

but in a situation with less concreteness. The innovation lies in combining well known technologies 

in the form of OCL and spreadsheet interfaces in a simple novel way drawing strength from both 

while mitigating their weaknesses. MaramaTatau augments the Marama meta-tools‟ metamodel 

designers, allowing tool developers to specify formulae over metamodels, combined with a one-way 

constraint system to compute values during tool usage. This allows for much simpler specification of 

dependency and constraint handling within Marama meta-tools, compared to both the textual event 

handlers and Kaitiaki visual event handlers. The approach has some similarity to ClassSheets (Engels 

and Erwig, 2005), but avoids the grid structure of that approach, and provides more mitigation of 

hidden dependencies. It considerably extends the visual metamodel annotation mechanism plus OCL 

expression of GME, providing many additional hidden dependency mitigations. Early developer 

feedback is very positive. 

 

MaramaTatau adopts a thoroughly different metaphor from the dataflow like icon and connector 

approach used in ViTABaL-WS and Kaitiaki to event handling specification. We have generalised 

MaramaTatau together with ViTABaL-WS and Kaitiaki, into a generic event handling framework. 

ViTABaL-WS provides a visual language for the design and construction of tool abstraction action-

event-based architecture. Kaitiaki provides an extensible event-query-filter-action language for 

responding to propagated events. MaramaTatau provides a static Spreadsheet-like dependency and 

constraint mechanism to support specification of state-change event propagation and response. The 

generalisation of these three approaches within the Marama metatool framework provides wider-

ranging support for event-based system design and construction. Chapter 8 – 10 elaborates our 

generalisation approach, the generated event handling framework and its evaluations.  
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Chapter 8 – Design of the Generalised Event Handling Framework  

 

This chapter discusses the design of a general purpose event handling framework by generalising 

from the three exemplar approaches described in early chapters. We aimed to develop a visual 

metaphor and language and to provide tool support for generic event integration specification. Our 

generalisation approach employs the Three Examples pattern of the Evolving Frameworks Pattern 

Language (Roberts and Johnson, 1996). By abstracting from the three earlier, limited-domain 

exemplars, a general metamodel representation that combines atomic primitives (either shared or 

non-shared) extended by the three visual languages is defined. This common model supports 

multiple metaphoric views in the style of the three exemplars and will support generation to a range 

of underlying implementation technologies for execution or interpretation. 

 

8.1 Motivation 

Frameworks provide a set of abstract classes and their collaboration relationships for reusable design 

and implementation of all or part of a software system. Developing a general purpose framework 

usually requires a considerable amount of effort and time investment, but rewardingly the developed 

framework can support fast and easy construction of applications in the problem domain. 

 

ViTABaL-WS was developed for the event-based web services composition domain to provide a 

visual language for the design and construction of tool abstraction action-event-based architecture. 

Kaitiaki was developed for diagramming-based design tools event handling domain to provide an 

extensible event-query-filter-action language for responding to propagated events. MaramaTatau was 

developed to look at general metamodel constraint specifications using OCL with a simple 

spreadsheet-like interface.  There are some similarities identified in our three examples, including a 

set of event handling modules and the representations of data flows and event dependencies among 

their visual building blocks. The similarities can be generalised to a common model representation to 

allow better reuse and easier extension. Based on the in-depth exploration of the three visual event-

based metaphors in their different application domains, we aimed to generalise to a metaphor and 

language for generic event integration specification. 
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Some event handlers can be specified in multiple ways using ViTABaL-WS, Kaitiaki or 

MaramaTatau. Users may choose to use their favoured metaphor and may also combine their 

specifications in multiple ways. We wanted a generalised reusable framework to have the ability to 

model event handling in several ways for the same system, as well as the ability to generate solutions 

from a canonical event model.  

 

Multiple tools are useful for developers in that they provide abstractions for separately and 

progressively modelling a software system using different views and representations. The developers 

can specify the structure and behaviour of a model in parts then integrate them to generate dynamic 

environments with various constraints enforced.  
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Figure 8.1. A general purpose event handling framework. 

 

The generalisation method that we exploit can be illustrated in Figure 8.1. The three visual domain 

models ViTABaL-WS, Kaitiaki and MaramaTatau on the left of Figure 8.1 can be integrated based 

on their metaphorical supplement and their common abstraction and dependency relationship. 

ViTABaL-WS‟s tool abstraction metaphor is used to define high-level abstract data and functions 

and their coordination, where abstract data is further constrained using MaramaTatau‟s spreadsheet 

metaphor, and abstract functions are further refined via Kaitiaki‟s Event-Query-Filter-Action 

metaphor. The integration of the three metaphors is analogous to the desktop Windowing metaphor 

that is associated to the both Folder and Tree metaphors. Similar data could be represented in 

different ways (e.g. Folder and Tree), but maintained in the same highly abstract umbrella 

representation (e.g. Windows). As a consequence, they can generalise to a common event model 

representation (as seen in the middle of Figure 8.1). The canonical event model can then be mapped 
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or adapted to a range of domain model implementation languages to be executed (e.g. BPEL4WS 

(IBM, 2003), OCL (OMG, 2003), RuleML (Paschke et al, 2006) and stylesheet as seen on the right 

of Figure 8.1) using appropriate domain engines. The object-oriented framework is readily extensible 

so more event-based domain models and their dependencies can be added in the future. Our 

immediate next example being planned is the OMG‟s Business Process Modelling Notation (BPMN) 

(OMG, 2006) in the enterprise modelling domain. The new models to integrate can reuse the 

canonical model‟s components through inheritance or composition, and can add more features and 

support to evolve the framework. 

 

The generalisation of the integrated event handling framework requires a variety of specialised 

modules to contribute to the framework capability and complexity. We discuss background and 

related work in the following section and list the set of gathered requirements in Section 8.3. We then 

briefly review the three examples described in the previous three chapters and their main approaches 

and features. The thesis is that the generalisation of these three approaches could provide wider-

ranging support for event-based system design and construction. One element of this is to extend the 

OCL expression language with user-defined function capabilities to provide enhanced expressability. 

  

8.2 Background  

Roberts and Johnson proposed a set of patterns that are used together as a pattern language for 

developing and evolving object-oriented frameworks (Roberts and Johnson, 1996). The patterns are: 

Three Examples, White Box Framework, Black Box Framework, Component Library, Hot Spots, 

Pluggable Objects, Fine-grained Objects, Visual Builder and Language Tools. As illustrated in 

Figure 8.2, these patterns are related to each other with some overlapping usage along the process of 

generalising a framework. 
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Figure 8.2. Relationship between patterns in the pattern language. (Roberts and Johnson, 1996) 

 

According to Roberts and Johnson (Roberts and Johnson, 1996), abstractions can be well developed 

by generalising from concrete examples. The Three Examples pattern suggests that three examples 

should be initially used to establish a framework, and more examples are to be explored to make the 

framework more general. A framework is a reusable design, so we should develop it by looking at 

examples in either succession or parallel and identifying common, reusable abstractions. Then we 

can build a White Box Framework by generalising from the classes in the individual applications. 

Common portions are put in abstract classes, and subclasses can be created by inheritance. A 

collection of concrete classes of exemplar applications accumulate a Component Library for the 

framework. The Component Library begins with all of the concrete classes and in the long run, 

contains only the classes that are reused by several applications. Hot Spots code that changes are 

separated from those that never change and encapsulated within objects whenever possible. In order 

to avoid creating trivial subclasses to be added to the Component Library, we can design adaptable 

subclasses that can be parameterised to create Pluggable Objects. We can continue breaking objects 

into finer granularities (Fine-grained Objects) to make them more reusable. Inheritance can be used 

to organise the Component Library and composition can be used to combine the components into 

applications. A Black Box Framework can then be generated so we can reuse components by 

plugging them together and avoid programming. A Visual Builder can be created to support 

specifying components and their inter-relationship in a graphical way and generating code from it. 

Specialised visualisation tools (Language Tools) can be built to facilitate navigating and inspecting 
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the compositions.  This evolving framework pattern language is used as our basis for generalising the 

event handling framework. 

 

The EASY (Event Abstraction SYstem) framework (Grundy et al, 1996) was a prior attempt to 

generalise a unified event-based software architecture from the synthesis of a set of event handling 

elements defined in CPRGs (Grundy et al, 1996), ViTABaL (Grundy and Hosking, 1995) and 

Serendipity (Grundy and Hosking, 1998). CPRGs can effectively describe state-change events and 

the structural aspects of event-based software architectures. ViTABaL supports visual representation 

of propagations of action events between software components. Serendipity allows event filtering 

and response mechanisms to be specified in a graphical way. EASY unifies the handling of CPRGs‟ 

state-change events and ViTABaL‟s action events by incorporating Serendipity‟s event response 

abilities. The advantages of the three visual languages, including their visual description capabilities 

for both structural aspects and dynamic behaviours of event-based architectures, are combined to 

provide a more general architecture description language that supports wider-ranging event-based 

architecture design and implementation. Figure 8.3 shows an EASY example which has CPRGs‟ 

components and relationships as the backbone, ViTABaL‟s specification of data and toolie 

interconnectivity, and Serendipity‟s specification of event handling using filters and actions. 

 

Figure 8.3. Merging CPRGs organisation, ViTABaL event propagation and Serendipity event 

filtering/action. (Grundy et al, 1996) 
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We aimed to generalise the event integration framework using the evolving framework pattern 

language (Roberts and Johnson, 1996) and following the EASY (Grundy et al, 1996) framework as 

an example.  

The Pounamu metamodelling environment that was used to develop ViTABaL-WS and Kaitiaki has 

many deficiencies as we have seen from Chapter 3.  These include: 

 stability issues and weak error handling 

 inconsistency of user interfaces 

 difficulties in expressing model-level constraints 

 difficulties in specifying event handlers  

 usability issues such as some clumsiness of user interface elements around specification of icons, 

metamodel and views, and also the response time for some elements of functionality 

 

We wanted a better platform to undertake the integration of event handling specifications. With the 

requirements for improving Pounamu, we saw an opportunity with the development of the Marama 

modeller tools to bootstrap development of Marama-based meta-tools. These Marama meta-tools are 

then a vehicle for allowing us to explore event-handling integration. 

 

8.3 Requirements for Generalisation  

A general purpose event handling framework should provide reusable design and implementation for 

a wide-range of event-based applications. In Chapter 2, we have identified some common issues in 

the current event handling specification and visualisation techniques and concluded a set of general 

requirements for our event handling integration framework. Based on the in-depth experiments of 

our three limited-domain exemplars in the previous chapters, we can now elaborate the requirements 

for the framework generalisation: 

 The generalised framework should incorporate compositional primitives as building blocks and 

different communication relationships between them. It also should contain mapping/integration 

schemes as a crossover between ViTABaL-WS, Kaitiaki and MaramaTatau, and possibly other 

limited-domain event handling models in the future e.g. BPMN (OMG, 2006). 

 The common model representation needs to be identified from the specialised modules from 

ViTABaL-WS, Kaitiaki and MaramaTatau. The relationships among the modules need to be 

established so that the modules can collaborate with one another. Duplications need to be 

removed so that the common model is redundancy free. 
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 The generalised framework needs to offer graphical notations in the style of the three metaphoric 

exemplars, together with additional textual notations to allow users to escape to code when 

specifying complex custom behaviours such as code generation. 

 The generalised integrated framework must contain reusable designs to allow users to initialise 

their system and should allow users to specify customised event types, event generators, event 

receivers and event handling building blocks to enhance the extensibility and flexibility of the 

framework.  

 Multiple views of data, event and behaviour representations must be kept consistent at both the 

model and user interface levels to ensure the correctness of generated environments. 

 The generalised framework should support further tool integration via a canonical data/event 

model extension and consistent user interfaces. 

 The generalised framework should provide mechanisms to allow easy navigation from one view 

of the specification to another.  

 Though visual languages are more self descriptive than textual languages, the framework should 

still provide support for detailed documentation of modelling elements.  

 The generalised framework should allow event propagations to be traced and event handling 

results to be visualised in running systems based on a user interactive visual debugging model. 

 

8.4 Generalisation  

In order to derive a suitable common model we need to be able to represent all of the concepts from 

the three examples. We also need a way to map between related concepts in each metaphor. This 

common model supports multiple metaphoric views in the style of the three exemplars and thus is in 

multiple paradigms. In this section, we briefly review (through Sections 8.4.1 to 8.4.3) the event 

propagation model features and the building blocks defined for each of ViTABaL-WS, Kaitiaki and 

MaramaTatau, and then generalise them to a common set of primitives in Section 8.4.4. 

 

8.4.1 ViTABaL-WS Building Blocks 

ViTABaL-WS uses a Tool Abstraction metaphor for describing relationships between service 

definitions. ViTABaL-WS supports modelling of complex interactions between web service 

components, plus code generation and visualization of running systems. Multiple-views of data flow, 

control flow and event propagation are specified for a ViTABaL-WS model. Table 8.1 summarises 

the building blocks defined for ViTABaL-WS. 
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Metamodel Primitives Attributes Semantics 

Toolie  Name Encapsulate data processing and interacts with each 

other through both direct and indirect operational 

invocations using shared data structures (message ADT 

instances) and event dependencies indicating state 

changes to a data store service ADS 

ADS ADT: name 

ADS: message name, type 

Instance of typed operation/messages/events 

Abstract operation port Name  

Sequence number 

Typed input and output ports on toolie and ADS 

services that connect toolies to other toolies and ADSs 

and provide message sources and sinks. Services are 

wired together using these ports with ports supporting 

only certain kinds of connection and message ADTs 

Data store service ADT Name Active data store service 

Role Name A partner that provides or requests a service 

Fault handler Name Composed error/exception handler 

Decision N/A A control flow starting point, following with 

conditional transitions 

Local activity 

- Type checking (TC) 

- Type transformation (TT) 

- Data manipulation (DM) 

Activity name 

TC: isTypeOf  

TT: fromType, toType 

DM: variable, value 

Atomic or composed activity 

Data flow connection  

 

Labels: <<synch>> or 

<<asynch>> indicator, and 

<<transaction>> indicator 

Flows of data to toolie ports and ADSs 

- Input/Output flow links 

- Parameter decomposition links 

Control flow connection  

 

Labels: <<synch>> or 

<<asynch>> indicator, and 

<<transaction>> indicator 

Invocations to toolies 

- Partner link 

- Synchronization/Asynchronous flow  

- Conditional flow 

- Iterative flow 

- Transaction flow 

Event flow connection 

 

Labels: <<synch>> or 

<<asynch>> indicator 

Event dependencies – indicate event subscribe-notify 

between toolies and ADSs 

- One way broadcast 

- Request-response 

- Listen-before 

- Listen-after 

Table 8.1. Building blocks defined for ViTABaL-WS. 
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ViTABaL-WS model views describe the interconnections between toolies and ADSs. These 

interconnections can be annotated with different type of data flow, control flow, and event flow 

connections. Different kinds of subscribe-notify event propagations including one way broadcast, 

request-response, listen-before and listen-after can be used between the connected toolies and ADSs. 

Toolies encapsulate behaviour in that they respond to events to carry out some system function. 

ADSs encapsulate data and respond to events to store, retrieve or modify data (Grundy and Hosking, 

1995) (Liu et al, 2005). 

 

Modified toolies or ADSs broadcast to all their inter-connected components about the change. 

Receiving components interpret the change descriptions and modify their state or execute actions 

accordingly with possible further change descriptions to be generated (Grundy and Hosking, 1995). 

ViTABaL provides an architecture description language for the event-based tool abstraction 

paradigm (Grundy et al, 1996). ViTABaL-WS includes a few more building blocks to control event-

based behaviour by specifying roles, sequences, decisions, type transformations, iterations, and 

transactions. Figure 8.4 shows an exemplar ViTABaL-WS event propagation view (generated in 

Marama meta-tools) that specifies a set of subscribe-notify event propagations between toolies 

(Marama library functions) and ADSs (Marama shared data structures).  

  

 

Figure 8.4. ViTABaL-WS event propagation definer in Marama meta-tools. 
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8.4.2 Kaitiaki Building Blocks 

Kaitiaki provides end users ways to express event handling mechanisms via visual specifications. It 

uses an “Event-Query-Filter-Action” metaphor for describing behaviours for diagramming-based 

design tools and multiple-views of data flow in a modelled process. Kaitiaki supports building up 

complex event handlers in parts, providing the representation of: 

 key “building blocks” of state query, data filtering and state modification, 

 event objects and their attributes, 

 data propagation between event, query, filter and action representations, and  

 iteration and conditional data flow 

 

Table 8.2 summarises the high-level building blocks defined for Kaitiaki. 

 

Metamodel Primitives Attributes Semantics 

Event Event type 

Event generator object  

Property values changed 

A single event or a set of events is the starting 

point for a Kaitiaki event handler specification. 

Single/Collection object Name 

Type  

Value 

Event/tool-state objects/attributes 

Query Parameters (Input)  

Output 

 

Retrieve elements and output single or collection 

object. Parameterised with data propagated 

through incoming connectors. 

Data Filter  Parameters (Input)  

Output 

 

Select elements from their input. Define 

conditional dataflow. Parameterised with data 

propagated through incoming connectors. 

Action (State 

modification) 

Parameters (Input)  

Output 

Apply operations to elements passed to them. 

Parameterised with data propagated through 

incoming connectors. 

Iteration Input: Shape/Connector collection 

Condition: optional 

Iterate through every element in the collection, 

or iterate while a condition is satisfied. 

Data flow ports start and 

end 

N/A Start/end of a composed building block (event, 

query, filter, action) 

Dataflow Labels: <<synch>>or <<asynch>> 

indicator 

Data propagation between event, query, filter 

and action representations  

- Data push when available 

- Data pull on demand 

Table 8.2. Building blocks defined for Kaitiaki. 
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While ViTABaL-WS visually describes only the event-based inter-connections between abstract 

components with the lack of event responses, Kaitiaki‟s events, filters, queries and actions provide a 

visual design level notation for specifying event handling mechanisms. 

(a) 

(b) 

 

 

Figure 8.5. Kaitiaki event handler specification (a) and its runtime execution effect (b). 

 

Kaitiaki provides graphical views for specifying handling of both built-in and customised state-

change and action events via queries, filters and actions. Queries select data from a common model 

repository. Filters apply pattern-matching to incoming data, passing matching data to other 

queries/filters/actions. Actions execute operations which may modify incoming data, display 

information, or generate new events. Concrete end user domain icons can be added to mitigate the 
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abstraction and make the specification more readable. Figure 8.5 shows an exemplar Kaitiaki event 

handler specification (generated in Marama meta-tools) for aligning diagram shapes (a) and its 

runtime execution effect (b). The handler responds to a “shapeAdded” event, filters out the 

“TableShape”, and then aligns the newly added “TableShape” with the existing ones that are queried 

from the diagram. 

 

8.4.3 MaramaTatau Building Blocks 

Marama provides a rich structural notation for specifying tool architecture/metamodel via an entity-

relationship mechanism. MaramaTatau is used to specify value dependencies and modelling 

constraints upon these Marama structural specifications. MaramaTatau was initially designed for 

constraining entity-relationship based metamodels. It has evolved to be usable with any Marama 

view type specifications.  

 

MaramaTatau uses a declarative spreadsheet-like approach to construct metamodel formulae to 

extend behaviour specification of visual design tools including the specification of property-change 

event handling and constraint management. A formula is constructed visually by clicking on entity-

relationship metamodel elements (i.e. entity type, association type, and attribute) and a list of library 

provided functions. Formula construction is similar to a spreadsheet but expressed at a type rather 

than an instance level. The visually specified metamodel level formulae are interpreted in selected 

model views. Table 8.3 summarises the building blocks used in MaramaTatau. 

Metamodel Primitives Semantics 

Reference-based Self Reference to the current instance. 

. Navigate to attribute, association-end and association class 

Entity type Reference to an entity type 

Association Class   Reference to an association class  

Attribute Reference to an attribute  

Association-end (role) Reference to an association-end  

allInstances() Get all instances of an entity type or association class 

Collection-based ->size() Get the number of elements 

->sum() Calculate the sum of all elements 

->collect Collect a number of elements 

->forAll Evaluate a condition to true for each element in a collection 

->iterate Iterate through each element and update an accumulator 

->select Select elements that satisfy a condition 

->reject Reject elements that satisfy a condition 
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->exists Evaluate a condition to true for at least one element  

->notEmpty() A collection is not empty 

->isEmpty() A collection is empty 

->includes The collection includes a particular element 

->includesAll The collection includes all elements in another collection  

->excludes The collection excludes a particular element 

->sortedBy Sort a collection 

->union Union two collections 

->intersection Intersect two collections 

->first() Get the first element in a collection 

->last() Get the last element in a collection 

->at Get an element at a specified index 

->indexOf Get the index of an element 

Criteria indicator | Condition separator 

Arithmetic Function +, -, *, /, ->mod, ->abs(),  

->floor(), ->round(),  

->max, ->min 

Simple mathematics functions 

String function .concat Concatenate strings 

.size() Calculate the length of a string 

.substring Get substring 

.toUpper() Convert to upper case letters  

.toLower() Convert to lower case letters 

Logical Operator =,>,<, <> Comparisons 

Boolean-based not, and, or, xor Boolean operators 

if, then, else, endif  Decision making 

implies Inference  

Type Function .oclIsTypeOf Check the type of an element 

.oclAsType Convert to a type 

Dependency links 
AttrLink 

FormulaLink 

Define context of an attribute and a formula 

 

Extended view type 

functions  

Contains 

Encloses 

Onborder  

User-defined functions 

Define visual shape layout, e.g. a shape is 

contained/enclosed/on border of another shape. User-

defined functions can be added into the library for reuse. 

Table 8.3. Building blocks defined for MaramaTatau. 

 

Value dependencies and modelling constraints are state-change events to be handled in 

MaramaTatau via a uni-directional change-propagation with side-effect extensions to dependent 
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components. Formulae are used to specify executable query/action constraints. Dependency links are 

added to explicitly annotate relationships of inter-dependent elements. Values are propagated from 

sources to dependent targets and interpreted at runtime. Some examples have been demonstrated in 

Chapter 7. 

 

8.4.4 Generalised Marama Meta-tools 

To generalise our work on ViTABaL-WS, Kaitiaki, and MaramaTatau, we have designed a set of 

Marama meta-tools to provide a better platform and a vehicle for allowing us to explore event-

handling integration. Marama meta-tools provide the visual language design environment similar to 

Pounamu (Zhu et al, 2007), but as an open-source Eclipse plug-in with richer support on event-based 

visual behaviour modelling. Figure 8.6 illustrates the Marama meta-tools approach, which is an add-

on to the Marama framework (Grundy et al, 2006) that includes five sub-tools: Metamodel Definer, 

Shape Designer, View Type Definer, Event Propagation Definer and Visual Event Handler Definer. 

The incorporative use of these sub-tools facilitates easy event-based behavioural modelling and 

integration that is unified with system structural modelling.  

 

Marama Application 

 

Marama meta-tools 

 
Metamodel Definer (with MaramaTatau extension) 

Visual Event Handler Definer (Kaitiaki) 

Marama modelling tools 

Modelling Views 

 

 

 
Model Entity Instances 

Event 

Handlers 

Tool Specifications 

– XML documents 

Tool specification 

projects (XML) 

Modelling 

projects (XML) 

Event Propagation Definer (ViTABaL-WS) 

Shape Designer 

 

View Type Definer (with MaramaTatau extension) 

 

 

Figure 8.6. The Marama Meta-tools approach. (Adapted from (Grundy et al, 2006)) 
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Apart from static modelling of entities, relationships, shapes, connectors and mappings, which form 

the backbone of the metamodelling framework in Marama meta-tools, MaramaTatau specifies inter-

dependency of Marama static modelling components by adding formulae over both model and view 

data structures. A one-way constraint system is exploited to compute dependent values at runtime 

during tool usage. ViTABaL-WS specifies event propagations and other inter-connectivity of toolies 

(user or library functions) and their shared ADS pool (Marama structural components). The event 

representations are propagated to the listening toolies which match them to the event patterns they 

respond to, and the response is invoked (Grundy et al, 1996). Kaitiaki specifies detailed toolie 

responses via event propagations through a set of library-defined pattern matching queries, filters and 

actions. 

 

As in the EASY framework (Grundy et al, 1996), Marama meta-tools also permit MaramaTatau 

state-change events and ViTABaL-WS action events to be handled in a unified manner, via event 

response modelling capabilities of Kaitiaki as illustrated in Figure 8.7. A detailed example is 

provided in Figure 8.8, where in the ViTABaL-WS diagram on the left a “shapeAdded” event 

propagates from the data structure “diagram” to the toolie “processSubshapeAdded” which is an 

event handler further defined in the Kaitiaki view on the right.  MaramaTatau state-change events 

can also be handled in this extensible manner, via Kaitiaki specifications. This aims to maintain the 

advantage of MaramaTatau of effective structural dependency and constraints specification, and that 

of ViTABaL-WS and Kaitiaki of visual representation of event propagation and response 

mechanisms, while also providing user-defined behaviour extension of MaramaTatau and integrating 

the three languages to provide unified specifications. 

 

 

MaramaTatau 

Kaitiaki 

ViTABaL-WS 

 

Figure 8.7. Unified event handling in MaramaTatau and ViTABaL-WS using Kaitiaki. 
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Figure 8.8.  Event propagation definition in ViTABaL-WS and event handler definition in 

Kaitiaki. 

(a) 

(b) 

 

 

Marama Meta-tools Event Handling Abstraction Framework 

 

ViTABaL-WS, Kaitiaki and MaramaTatau Mapping Schemas 
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ViTABaL-WS 

Views  

Kaitiaki 

Views  

MaramaTatau 

Integration  

Eclipse EMF, GEF and Marama Framework 

Metamodel, 

Icons, Views 

 

 

ViTABaL-WS 

Views 

 

Query/Update 

Generate Code 

Common Data Structure/ Data Store  

– MaramaEMF model 

 

Generated 

Controller Code 

MaramaTatau 

Views 

Kaitiaki 

Views 

 

MaramaTatau 

Integrated Views 

Marama Meta-tools 

 

Figure 8.9. Marama Meta-tools Event Handling Abstraction Framework. 
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By combining the reusable views and building blocks of ViTABaL-WS, Kaitiaki and MaramaTatau, 

we now have an event handling abstraction framework. Figure 8.9 (a) shows how the event handling 

abstraction framework is integrated in Marama meta-tools. The Marama framework (Grundy et al, 

2006) provides Eclipse-based editors for Pounamu (Zhu et al, 2007) generated domain-specific 

modelling environments. Marama meta-tools are built on top of Marama and provide visual 

languages and tools similar to Pounamu but with advanced event-based system integration. Marama 

meta-tools provide behavioural modelling using the three distinctive yet collaborative metaphoric 

views and generate from them to a common model implemented in the event handling abstraction 

framework which in turn accesses class libraries and then interprets them to query and update 

Marama EMF model and view representations (as seen in Figure 8.9 (b)).  

 

8.4.4.1 Eclipse Framework, EMF, GEF and Marama Framework 

The Marama framework is built as an Eclipse plug-in using EMF to represent Marama models and 

GEF to render Marama views. Detailed Marama architecture and approach have been introduced in 

Chapter 7. Figure 8.10 shows the Marama EMF representation of its project and diagram elements.  

 

 

Figure 8.10. Marama EMF specification. 
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The Marama framework contains a set of classes, attributes, methods, relationships and events. The 

framework is packaged into three major parts: model, editor and reusable handlers, in the style of a 

model-view-controller based separation of implementation concerns. These reusable framework 

elements support easy creation, modification and extension for building domain-specific modelling 

environments. 

 

8.4.4.2 Marama Meta-tools Event Handling Abstraction Framework  

The event handling abstraction framework provided with Marama meta-tools contains a canonical 

metamodel representation (generic model) of event handling specifications that enables multiple 

behavioural paradigms to be easily integrated into the framework. ViTABaL-WS, Kaitiaki and 

MaramaTatau provide visual languages and tools for event handling specification. ViTABaL-WS is 

used for high-level conceptual modelling of event propagations among Marama components; 

Kaitiaki is used for intermediate level design of event propagations among a set of user or library 

defined queries, filters and actions; MaramaTatau is used for implementation level specification of 

model and view value dependencies and constraints. The three distinctive behavioural modelling 

views are wired together by their underlying model. The generic event handling model generates 

Marama XML, EMF notifications and Java event handlers to be interpreted by the Marama 

framework for dynamic queries and updates of models and views. 

 

The canonical event handling model enables development of general purpose event-based system 

specifications. The metamodel elements from the three visual languages have been combined with 

redundancies removed and some bridging elements added. The component library of the event 

handling abstractions framework is illustrated in Figure 8.11, where mappings of the model elements 

to those used in the three visual languages are also indicated using coloured boxes. It mainly includes 

the relationships between event, event generator, event service, event listener and event handler 

elements. The Event handler is further sub-typed including publish, subscribe-notify, invoke activity, 

generate event, capture event and custom handler. The connectivity types supported in the 

framework include structural generalisation, association and composition, and dynamic control, data 

and event flows. The CompoundActivity interface may take multiple possible roles as event 

generator, event listener or event handler, may contain the ViTABaL-WS, Kaitiaki and 

MaramaTatau building blocks and may be involved in a variety of data manipulation and dynamic 

connectivity operations. 
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Almost all elements in this common model are defined as extensible. Particular hot spots, or places 

in the architecture where adaptations for specific functionality should be made (Roberts and Johnson, 

1996), include: 

 Event 

The framework supports a set of system events together with user-defined custom events to be 

added by either specifying new event details or by sub-typing/composing existing event types. 

 Event handler 

The framework supports a set of system event handler building blocks together with user-defined 

custom event handlers to be added by either specifying new event handler details or by sub-

typing/composing existing event handler building blocks. For examples, the event handler types 

of a GUI system can include additional “UpdateUI” handler, “AutoLayout” handler, 

“PromptMessage” handler etc. 

 Control flows  

Control flows can be stereotypes to specify the transition time requirement (<<synch>> or 

<<asynch>>), the transition sequence (<<1.1.2>>, <<StartWith>>, <<EndWith>>), etc. 

Concurrent transitions do not need to be explicitly modelled. When the condition of a transition 

is met, the transition is invoked immediately.  So when an element is associated with multiple 

transitions, the transitions are concurrent when their conditions are satisfied at the same point of 

time. 

 

The event service receives all notifications (e.g. entity changed) and forward them in a multiplexed 

way (Sun, 2005) to any associated event behavioural views – ViTABaL-WS, Kaitiaki or 

MaramaTatau. Inter-communications of the three behavioural views are monitored by the event 

service and automatically delegated to Marama processing components. 
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     ViTABaL-WS Components      Kaitiaki Components      MaramaTatau Components 

Figure 8.11. Common event handling model. 

This canonical model representation is used to instantiate behaviour specifications in ViTABaL-WS, 

Kaitiaki and MaramaTatau views such as those shown in Figure 8.4 and Figure 8.5. The behaviour 

model instances are analysed at specification time and are used to generate event handler code to be 

executed at runtime. 

 

8.4.4.3 Mapping Schemas  

Each of ViTABaL-WS, Kaitiaki and MaramaTatau has their own strengths in handling events. They 

are mainly complementary to one another instead of overlapping. However, there exists the 

possibility to specify an event handler in multiple ways using ViTABaL-WS, Kaitiaki or 

MaramaTatau, though one specification may not be as efficient as the other, the required event 

handling effect can still be achieved. 
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The connectivity and inter-changeability of the different metaphoric specifications in Marama meta-

tools can facilitate mapping concepts in each metaphor and thus provide effective demonstration and 

model checking. 

 

To allow one specification to generate others with corresponding implementation classes, a set of 

mapping schemas can be defined in MaramaTorua (Huh et al, 2007) to provide interchanging 

mechanisms between ViTABaL-WS, Kaitiaki and MaramaTatau specifications. We are currently 

exploring the mapping specifications to be used for such integration. More details are proposed in the 

Future Research section of Chapter 11. 

 

8.4.4.4 Model, View, Controller  

A sub-model for the event handling building blocks is added on top of the Marama EMF model to 

support specifying event-based manipulations of Marama structural model elements. The behavioural 

sub-model contains the definition of all the generalised canonical event model elements and provides 

a structured way to query and update these element instances. The behavioural sub-model is 

represented in different metaphoric views in the style of ViTABaL-WS, Kaitiaki and MaramaTatau. 

Figure 8.12 illustrates the MVC pattern used in Marama meta-tools to synthesise event-based 

behaviour from multiple views. Model states are manipulated and view representations are 

synchronously rendered by user interactions (via drag/drop, add, select, delete, move etc. menu 

events) on the views. This is managed by a set of central Marama controller commands that delegate 

corresponding actions to the model and views.  

Controller 
Behaviour sub-model 

Instantiate Create tool 

Display Synchronise 

ViTABaL-WS view Kaitiaki view MarmaTatau view 

 

User requests

Update 

 

Figure 8.12. MVC of Marama meta-tools. 
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Visualisation of dynamic event handling behaviour is achieved using a similar MVC approach, 

where runtime behaviour model states are used to animate the associated diagram elements. The user 

has full control of running the animation, stepping into the next invocation of a building block and 

viewing query results or state changes. 

 

8.4.4.5 Metamodel, Icons and Views 

The Metamodel, icons and views are the static modelling capability supported by Marama meta-

tools. The Metamodel includes semantic entities and relationships of a visual language tool (as 

shown in Figure 8.13)); icons provide visual shape and connector representations (as shown in Figure 

8.14); views specify mappings of metamodel elements to visual elements and filtered displays (as 

shown in Figure 8.15). These static components are the backbone of a visual language tool being 

modelled, with the dynamic behaviours to be instrumented using ViTABaL-WS, Kaitiaki and 

MaramaTatau.  

 

 

Figure 8.13. Metamodel definer in Marama meta-tools. 
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Figure 8.14. Shape designer in Marama meta-tools. 

 

 

Figure 8.15. View type definer in Marama meta-tools. 
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8.4.4.6 Event Handling Views  

As shown earlier in Figure 8.4, an Event Propagation Definer (ViTABaL-WS view type) has been 

integrated into the Marama meta-tools to facilitate the specification of model and view instance 

notification schemes, i.e. event propagations (event flows) and responses/handling among 

components through inter-component links to maintain consistency between multiple representations 

and views. For example, a view will be notified of a model property change; connectors are notified 

of a hiding action of a shape. Allowing users to customise event type, event generators and event 

receivers greatly enhances the extensibility and flexibility of Marama meta-tools. EMF notifications 

for Marama tools can also be specified using ViTABaL-WS.  

 

As shown in Figure 8.5, a Marama Handler Definer (Kaitiaki view type) has been integrated into 

Marama meta-tools to facilitate the specifications of model and view event handlers using a high-

level domain specific visual language. High-level event handling specifications are generated to 

Marama event handler code, registered to the generated metamodels. The generated event handler 

code is guaranteed to be syntactically correct. Event handlers are executed on model instances at 

runtime.  

 

MaramaTatau is declarative. The left-hand-side of a formula is the formula context, while the right-

hand-side specifies a constraint/query. The query result is assigned to the formula context. We 

wanted to extend the MaramaTatau language by: 

 Adding user defined functions to collaboratively operate with OCL, and to reuse ViTABaL-WS 

and Kaitiaki building blocks.  

 

MaramaTatau has been extended to be embedded seamlessly into the Metamodel Definer and View 

Type Definer, providing dependency and constraint specifications on both model-level and view-

level semantics. The extended entity-relationship (EER) model allows sub-typing relationships to be 

specified between both entities and associations, with also inheritance of dependencies and 

constraints. Besides supporting declarative OCL-based invariant definitions in MaramaTatau, user-

defined functions (higher-order/compositional functional definition of reusable formula with 

parameters) can be added to extend OCL formulae and provide a powerful yet concise mechanism 

for functional specifications over group objects and to reuse ViTABaL-WS and Kaitiaki building 

blocks. There are two categories of user defined functions: 

 Side-effect-free constraint/query, and 
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 Side-effect action, i.e. an operation for event handling/constraint handling, e.g. abort, skip, or 

“do-something”. 

 

Examples of model formulae have been presented in Chapter 7. Figure 8.16 shows an exemplar View 

Type Definer view with MaramaTatau specified formulae, in which an extended formula 

“encloses(ObjectShape, ServiceShape, ServiceConn)” specifies the enclosure 

constraints of the “ObjectShape” and the “ServiceShape”, which enforces a “ServiceShape” to be 

created inside an enclosing “ObjectShape” and moved together with it. 

 

encloses(ObjectShape, ServiceShape, ServiceConn) 

 

 

Figure 8.16. MaramaTatau integration in View Type Definer. 

 

8.4.5 Program Visualisation 

Marama meta-tools allow users to visualise tool specifications and their executions reusing their 

metaphoric modelling views, to provide system information at the right abstraction level. The 

dynamic visualisation system uses the debugging service instrumentation mechanism (Liu et al 2005) 

initially exploited in ViTABaL-WS to generate low-level tracing events on modelling elements. As 

illustrated in Figure 8.17, the Marama meta-tools framework handles those events by sending the 

event data to appropriate modelling elements and annotates them with colours and state information. 

Marama EMF is the common high-level representation that glues different behavioural views, and 

supplies dynamic state information to the Marama Visual Debugger. A specialised debugging and 
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inspection tool is used to allow execution state of event-based systems to be queried, visualised and 

dynamically modified. The debugger tool provides a common user interface that connects the three 

metaphoric event specification views with an underlying debug model based on the MVC pattern.  

 

The individual “debug and step into” visualisation of ViTABaL-WS, Kaitiaki and MaramaTatau are 

now put together to allow cooperative invocation and step-by-step visualisation of execution results 

at the point of execution of each building block in a particular view. 

 

ViTABaL-WS view Kaitiaki view MaramaTatau view 

 

Visual Debugger interface (controller) 

Debugging model (runtime) 

- Event handler building blocks 

- Previous/Current  states  of 

associated model elements 

Annotate event specification views 
Supply state information 

Marama meta-tools model/views  
Debugging service 

Instrument 

Generate tracing events 

 

Figure 8.17. Visual Debugger. 

 

Figure 8.18 illustrates the visualisation of runtime interpreted formulae on a Marama model. The 

Metamodel Definer view with MaramaTatau formula specifications is juxtaposed with the runtime 

Marama model view. From the Visual Debugger, user has the control over the execution of a formula 

interpretation. Once a formula is interpreted, the affected runtime model element is annotated (with 

the yellow background) to indicate the application of the formula, and meanwhile, the corresponding 

formula node defined in the Metamodel Definer view is annotated in the same manner to show the 

formula specification. 
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Figure 8.18. Visual debugging MaramaTatau formulae. 

 

Figure 8.19 illustrates the similar visualisation of a Kaitiaki event handler execution on a Marama 

model. The Kaitiaki view with event/query/filter/action specifications is juxtaposed with the runtime 

Marama model view. When a user steps into an execution of a Kaitiaki building block, the affected 

runtime model element is annotated and at the same time, the corresponding Kaitiaki node with data 

flow links are annotated in the Kaitiaki view to show the event handler execution status. 

 



 - 161 - 

 

Figure 8.19. Visual debugging a Kaitiaki event handler. 

 

8.4.6 Framework Evolution 

The event handling abstractions framework in Marama meta-tools is both black-box and white-box. 

It provides reuse by both inheritance and composition. Based on the evolving frameworks pattern 

language (Roberts and Johnson, 1996), our framework will be evolved by abstracting from additional 

examples to make the framework more general in the future.  

 

Subsequent exemplars are to be developed based on the white-box framework. Our next planned 

exemplar to be used in generalising more of the event handling abstractions framework is by 

integrating a BPMN view (OMG, 2006) into the Marama meta-tools. We will first examine what 

abstractions from the canonical model‟s component library (as shown in Figure 8.11) can be reused 

(through either inheritance or composition) by the new BPMN model, and then examine what new 

features and support can be added to evolve the framework. 
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The integration of MaramaTorua (Huh et al, 2007) can also provide another view type, with event-

driven mechanisms to allow translation of one event handler view to another (e.g. generating the 

event handlers/formulae to keep view/model consistent from MaramaTorua specifications) to be 

specified internally and automatically without the need to invoke it as an independent non-event-

driven third-party tool. Our generalised model should support new metaphors/models to be further 

sub-typed or composed.   

 

8.5 Summary  

Our research has focussed on providing visual specification and runtime visualisation support for the 

design and construction of complex event-based systems. We have integrated three event handling 

specification languages based on a canonical event model. ViTABaL-WS provides a Tool 

Abstraction language for the design and construction of action-event propagation architectures. 

Kaitiaki provides an extensible Event-Query-Filter-Action language for both action and state-change 

event propagation and handling. MaramaTatau provides a static Spreadsheet-like dependency and 

constraint mechanism to support specification of state-change event propagation and response. A 

synergy of these languages and their generalisation in the Marama meta-tools environment provide 

wider-ranging support for event-based system design and construction.   
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Chapter 9 - Prototype of the Generalised Event Handling Framework  

 

We have implemented the Marama metamodelling environment to support generalised event 

handling abstraction. Multiple views can be provided that use the ViTABaL-WS, Kaitiaki and 

MaramaTatau metaphors, allowing both system structure and behaviour to be modularised vertically 

via partially overlapping views, or horizontally using hierarchical views, similar to the EASY 

(Grundy et al, 1996) framework approach. A ViTABaL-WS-like visualisation allows users to 

examine the execution of event-based architectures. A Kaitiaki-like visualisation allows users to 

reuse or extend the functionality of the language by defining queries, filters and actions using the 

building blocks of the event handling abstractions framework. MaramaTatau-like formulae can be 

added in both metamodels and views to specify structural dependencies and constraints, also 

extensible with user-defined functions. In this chapter we describe and illustrate the key features of 

our prototype. 

 

9.1 Introduction 

As described in Chapter 7, Marama provides a collection of object-oriented classes written in Java 

and Eclipse Modelling Framework. These classes provide abstractions for specifying representation 

of language structure and semantics, with multiple textual and graphical view support that allows 

manipulation of model and view information. 

 

We are motivated by the need for a flexible metamodelling environment as a vehicle to experiment 

with the generalisation of our work to an event handling integration framework, and also to provide 

proof of concept implementation of the set of requirements for the generalised framework described 

in Chapter 8.   

 

We have developed the Marama meta-tools to replace the Pounamu tool specifications, even though 

Pounamu specified tools are still loadable and function within the Marama environment. With this 

extension, Marama integrates the features of both meta-tools and modelling tools. Marama uses the 

Marama Metamodel Definer view to specify the tool metamodel with MaramaTatau formulae for 
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model dependencies and constraints, Marama Shape Designer views to specify tool shapes and 

connectors, Marama View Type Definer views to specify mappings of meta-elements to visual 

representations with MaramaTatau formulae for visual dependencies and constraints, the Marama 

Event Propagation (ViTABaL-WS) definer to specify event propagations among model and view 

components, the Marama Visual Event Handler (Kaitiaki) definer to specify visual event handlers, 

and Marama Diagram views to create model instances or independent views of selected view type. 

 

 
Marama meta-tools 

Tool project 

 1. Create a 

tool project 

User requests

Marama meta-tools 

 
Metamodel  

 

Marama meta-tools 

 
Shapes and connectors  

 

Marama meta-tools 

 
View type 

 

Marama meta-tools 

Data repository 

 

      

2. Create a 

metamodel 

3. Create 

shapes and 

connectors 

4. Create a 

view type 

Marama  

Model project and 

diagrams 

      

5. Generate 

visual modeling 

environment 

Marama meta-tools 

 
Event propagations  

 

Marama meta-tools 

 
Visual event handler  

 

6. Specify event 

propagations 

7. Specify event 

handler 

Marama meta-tools 

Source code repository 

                                  

 
 

8. Execute event handler 

on model project 

 

Figure 9.1. Overview of tool creation with Marama meta-tools. 
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A tool project created using Marama meta-tools packages a tool definition that comprises the tool 

metamodel, shapes and connectors, view types, dynamic event propagators and handlers. The 

backend XML files of the tool, metamodel, shapes and connectors, view types, and constraints are 

generated into the tool project data repository. Visual event propagation and event handler 

specifications are generated into Java code in the tool project source code repository. A model 

project can be instantiated using the tool definition which automatically generates a modelling 

environment in Marama. The model project contains the definitions of the tool metamodel and its 

instance diagrams. The tool dependencies, constraints and dynamic event-based behaviours specified 

by MaramaTatau, ViTABaL-WS and Kaitiaki are realised at runtime in model instances. Figure 9.1 

illustrates the tool creation process using Marama meta-tools. The following steps are involved in 

creating a tool with both structural and behavioural modelling capabilities: 

 

(1) The user creates a tool project using the Marama Tool Project Wizard. This wizard will 

guide the user through an empty tool project creation, allowing the user to enter a name 

for the tool and the preferred storage location. A tool XML file is automatically generated 

into the tool project data repository. A Metamodel Definer view is automatically provided 

with the newly created tool project.  

(2) The user can define the tool metamodel by specifying entity and association types and 

their attributes, sub-typing relations and formulae for defining value dependencies and 

constraints. Metamodel XML files are automatically generated into the tool project data 

repository.  

(3) The user can create a Shape Designer view (or multiple views) by using the Marama 

Shape Designer Wizard. A visual editor for creating/modifying shapes and connectors is 

loaded. The user can visually construct the shape representation for a metamodel entity 

type, and a connector representation for a metamodel association type. Shapes and 

Connector XML files are automatically generated into the tool project data repository. 

(4) Having the metamodel and visual representations, the user can then create a View Type 

(or multiple views) by using the Marama View Type Definer Wizard. A View Type 

definer editor is loaded so that the user can define the view type specific shapes, 

connectors, entities, associations, view-model mappings and formulae for defining visual 

representation constraints. The view type XML file is automatically generated into the 

tool project data repository. 

(5) The tool project now has static modelling capabilities and can be used to instantiate 

model project instances using the specification.  
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(6) The user can add further a ViTABaL-WS view (or multiple views) by using the Marama 

Event Propagation Definer Wizard. Event propagations can be specified to facilitate 

specification of an event-based tool architecture. Event handler Java code is automatically 

generated into the tool project‟s source code package. 

(7) The user can further add a Kaitiaki view (or multiple views) by using the Marama Visual 

Event Handler Definer Wizard. An event handler can be specified visually by composing 

a set of library building blocks. Event handler Java code is automatically generated into 

the tool project‟s source code package. 

(8) The event handler Java code is executed dynamically on model project instances. 

 

In Section 9.2 and 9.3, we extend the MaramaMTE architecture design and performance test-bed 

generation tool, the complex example used  in both Chapter 7 and 8 to describe and illustrate in detail 

the key facilities of the Marama meta-tools.  

 

9.2 Structure Specification  

Structural elements (including metamodel entity and association types, shapes and connectors, and 

view type elements) of a modelling tool specification form the backbone of the tool.  In the following 

subsections, we illustrate how to use the Marama meta-tools to build structural elements to generate 

a modelling tool. 

 

9.2.1 Marama Tool Project 

Marama provides a wizard (Marama Tool Project wizard) for creating a modelling tool project. As 

shown in Figure 9.2, a short cut menu called “Marama Tool Project” brings up the tool creation 

wizard. A tool project contains the definitions of a metamodel, shapes and connectors, and view 

types. The backend XML files of the metamodel, icons and view types are generated into the tool 

project folder. A metamodel definer view is automatically generated with the tool creation. Shape 

designer and view type definer views need to be created by using their own wizards.  
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Figure 9.2. Tool creation in Marama meta-tools. 

 

9.2.2 Marama Metamodel Definer  

Marama adopts an Extended Entity-Relationship paradigm for its metamodelling. Entity types, 

association types and attributes of a tool specification are defined in a Marama Metamodel Definer 

view. MaramaTatau formulae can be specified to constrain metamodel elements and compute 

dependent values. 

 

An entity type can be created by dragging and dropping an EntityShape from the editor palette. We 

name the entity type by changing the name property of the EntityShape from the Properties view.  

An association type can be created by dragging and dropping an AssociationShape from the editor 

palette. We name the association type by changing the name property of the AssociationShape from 

the Properties view. Association end types and association end multiplicities must also be specified. 

As seen in the Properties view of the ServiceRequests AssociationShape in Figure 9.3, the user needs 

to select an “end1” (e.g. Service)  entity type and an “end2” (e.g. Request) entity type; two relation 

links are automatically added between the Service entity type and the association type and between 

the association type and the Request entity type. The user can also add to the relation links a role 

name for each association end entity type. This constrains that only the ServiceRequests association 

type can be used to relate the Service and Request entity types. The user then selects 

“end1Multiplicity” (e.g. 1) and “end2Multiplicity” (e.g. * representing many) to define the allowed 

number (one-to-many, many-to-one, and many-to-many) of Service and Request instances that can 

be connected via ServiceRequests associations.  
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A metamodel validation process generates error messages against any association type that omits 

property settings for the association end types or multiplicities. We use association types to constrain 

connectivity based on the entity types and their multiplicities. Such an association type specification 

prevents users from creating invalid connections between entity instances in the runtime model. The 

Marama runtime modelling environment automatically removes any association instances that 

violate the constraints, e.g. if the user adds a ServiceRequests association between a Service entity 

and a Database entity, the association will be automatically removed from the model, because such 

an association is only allowed to connect a Service entity to a Request entity as it is defined in the 

metamodel. This facility is needed to automate model checking and enforce valid model 

specifications. 

 

 

 

Figure 9.3. Association type specification in Marama meta-tools. 

 

The user may add a number of attributes to an entity type or association type by dragging and 

dropping an Attribute from the editor palette to a parent shape containing location. The “name”, 

“iskey” and “type” property of the attribute need to be specified. Figure 9.4 shows an example of 

Attribute properties specification. Both the “iskey” and the “type” property of the attribute can be 

selected from a dropdown list of values. Marama meta-tools support six basic built-in attribute types, 
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they are String, MultilinesText, int, double, boolean and Object types. The available metamodel 

entity types are also included and can be used as attribute types. 

 

 

 

Figure 9.4. Attribute specification in Marama meta-tools. 

Marama supports sub-typing entity types and association types. The sub-typing relationship is 

established by adding a SubtypeLink connector from a child to a parent meta-element. The subtype 

elements inherit all attributes defined in their parents. Figure 9.5 shows that the ObjectService and 

ServerObject association types are the subtypes of the LabelledAssociation association type, and thus 

inherit all of its attributes. 

 

 

 

Figure 9.5. Sub-typing in Marama meta-tools. 
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Saving the metamodel diagram (a Marama Metamodel Definer view instance) from the Eclipse 

Workbench tool bar or right clicking on the “Register the Model Type” context menu equally 

generate backend XML files for this metamodel (as shown in Figure 9.6). The metamodel XML files 

are generated into the tool project folder. Refreshing the folder shows the generated folders and files. 

 

 

 

Figure 9.6. Generation of Metamodel XML files in Marama meta-tools. 

 

9.2.3 Marama Shape Designer 

Shapes and connectors are visually designed in Marama Shape Designer views. A Shape Designer 

view (or multiple views) can be created using the Marama Shape Designer Wizard. We can design 

multiple shapes and connectors in a Shape Designer view. An abstract shape/connector design is 

accompanied by a concrete viewer instance for immediate design feedback. Figure 9.7 shows a set of 

shape designs on the left of the view, and their corresponding concrete viewers on the right of the 

view. 

 



 - 171 - 

Shape 

design 

Concrete 

viewer 

 

 

Figure 9.7. Shape and connector design with concrete viewers in Marama meta-tools. 

 

The ShapeShape tool from the palette is used to create owning (base/container) shapes. Each owning 

shape instance is provided with a shape viewer to visualise the shape design. A “name” property 

needs to be assigned for a ShapeShape as its identifier.  

 

The LabelShape, TextFieldShape, TextAreaShape and the ShapeShape tool (reusing shape designs) 

from the palette are used to create sub shapes of an owning shape. A sub-shape is automatically 

assigned a unique identifier (the name property) when it is added to an owning shape with the 

specified container layout constraint (e.g. null layout, flow layout, vertical layout, border layout and 

grid layout). A ShapeShape can be created as a sub-shape as well as an owning shape. A ShapeShape 

can be moved into an owning shape to become a sub-shape or moved out of an owning shape to 

become standalone. 

 

There are a number of visual properties that we can set to change the shape‟s look: 

 

ShapeShape  fillColor – the filled colour of a shape 

 shapeOpaque – either the shape is opaque or transparent. The shapeOpaque 
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property must be set to true in order to show  the filled colour 

 lineColor – the colour of the border of a shape 

 lineVisible – either the border is visible or not 

 type –  four shape types are supported, they are Rectangle, Rounded 

Rectangle, Oval,  and Rombus 

 stroke – the border line style, e.g. dashed, thickened etc. 

 layoutManager – five types of layout are supported, they are null layout, 

flow layout, vertical layout, border layout and grid layout. 

LabelShape  background and foreground colour  

 border – five types of label border styles are supported, they are empty 

border, line border, etched border, shared raised bevel, shared lowered 

bevel. 

 enabled - either enable or disable the label editing 

 opaque – either the label is opaque or transparent 

 horizontalAlignment and verticalAlignment – the label‟s content layout  

 text – the text content of the label 

 font – the font of the text 

 imageResource – an open file dialog used to locate an image resource 

TextFieldShape  background and foreground colour  

 border – as per LabelShape 

 enabled – as per LabelShape 

 opaque – as per LabelShape 

 horizontalAlignment and verticalAlignment – as per LabelShape 

 text – as per LabelShape 

 font  – as per LabelShape 

TextAreaShape  background and foreground colour  

 border – as per LabelShape 

 enabled – as per LabelShape 

 opaque – as per LabelShape 

 multiLinesText – multiple lines of text content 

 font  – as per LabelShape 
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The Connector tool from the palette is used to design connectors. Each connector instance is 

provided with a connector viewer to visualise the connector design. A name property needs to be 

assigned for a Connector instance as its identifier.  

 

There are a number of properties that we can set to change a connector‟s look: 

 

Connector  basicStroke – the connector‟s line style, e.g. dashed, thickened etc. 

 startShape – the start arrow shape, one of the nine arrow types can be 

selected, they are no shape, half open, full open, half closed empty, half 

closed fill, full closed empty, full closed fill, diamond empty and diamond 

fill 

 endShape – the end arrow shape 

 lineColor – the connector‟s line colour 

 showStartLabel, showMiddleLabel and showEndLabel – options to show a 

label at the start/middle/end portion of a connector 

 startLabelContents, middleLabelContents and endLabelContents – set the 

multiple lines of content to the start/middle/end label of the connector 

 textColor – the colour of the label text 

 font – the font of the label text 

 

A number of shape and connector properties can be exported. Exported properties are those that can 

be mapped to metamodel properties and set at runtime in instances of a shape or connector by the 

user. We have added an Exported Properties view that is in the same style of the Eclipse Properties 

view but used to set exported visual properties. The Exported Properties view can be loaded by 

selecting the Eclipse menu Window  Show View  Exported Properties. With the Exported 

Properties view in focus and a shape/sub-shape or a connector selected, the view shows the selected 

icon‟s properties list. Entering an exported property name makes the property exported.  Figure 9.8 

shows the process of exporting the text property of a label sub-shape using “name” as the exported 

property‟s name. 
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Figure 9.8. Exporting visual properties in Marama meta-tools. 

 

Saving the Marama Shape Designer diagram from the Eclipse workbench tool bar generates backend 

XML files for the shapes and connectors being designed in the Marama Shape Designer view 

instance.  The icon XML files are also generated into the tool project folder.  

 

9.2.4 Marama View Type Definer 

Mappings of metamodel entity types and shapes, metamodel association types and connectors, and 

properties of them are specified in a Marama View Type Definer view.  A view type can be 

dependent on a metamodel, or standalone. MaramaTatau formulae can be applied to add 

interconnectivity and constrain visual layout of view elements. 

 

Using the Marama View Type Definer wizard, the user can create a View Type Definer view for an 

existing project. As shown in the example ArchitectureDiagram view type of the MaramaMTE tool 

in Figure 9.9, the ViewShape tool from the palette is used to add shapes to the view type. The 

ViewConnector tool from the palette is used to add connectors to the view type. Available shapes 

and connectors for the tool project are automatically loaded and selectable to map to a view shape or 

view connector. The user needs to set the name property of a view shape or view connector by 

selecting it from a dropdown list in its properties window.  

 

The ViewEntity tool from the palette is used to add entity types to the view type. The 

ViewAssociation tool from the palette is used to add association types to the view type. Available 
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entity types and association types for the tool project are also automatically loaded and selectable to 

map to a view entity or view association. The user needs to set the name property of a view entity or 

view association by selecting it from a dropdown list in its properties window. 

 

The ViewMapping tool from the palette is used to add mappings of meta-elements and icons to the 

view type. Existing icons (view shapes and view connectors) and meta-elements (view entities and 

view associations) from the view type diagram are automatically loaded and selectable for setting the 

mappings.  

 

With a ViewMapping shape selected in the editor, the user can set the “iconName” property of the 

ViewMapping shape by selecting an item from its property dropdown list. Similarly, the user can set 

the “metaElementName” property of the view mapping shape.  Mapping links are automatically 

added between the view shape/connector, view mapping shape and the view entity/association. The 

“name” property of the view mapping shape is automatically set as its “iconName” property value 

followed by an underscore and followed by the “metaElementName” property value. 

 

 

 

Figure 9.9. View Type Definer in Marama meta-tools. 

Property mappings between a view shape and a view entity or between a view connector and a view 

association are specified in the Property Mapping view. We have added a Property Mapping view 

that is in the same style of the Eclipse Properties view but used to specify property mappings. The 
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Property Mapping view can be loaded by selecting the Eclipse menu Window  Show View  

Property Mapping. Property mappings can be added by selecting an icon property from the 

dropdown list to map to a metamodel element property in the Property Mapping view, as shown in 

Figure 9.9. 

 

Saving the Marama View Type Definer diagram from the Eclipse Workbench tool bar generates the 

backend XML file for the view type.  The view type XML file is generated into the tool project 

folder.  

 

9.2.5 Marama Model Project and Marama Diagram 

The user can create a model project based on a selected modelling tool definition using the Marama 

Model Project wizard. A model project contains a model instance with multiple view instances. 

Views can be created using the Marama Diagram wizard, in a similar style to other Eclipse-based 

wizards. Both the model and view instances can be changed via user interaction. A diagram (view) 

instance contains all the visual element (e.g. shapes and connectors) creation tools that are defined in 

its view type in the tool project. As per the mappings of visual elements and model elements 

specified in the view type, a shape/connector instance in the diagram automatically generates a 

model entity/association, with appropriately mapped property values. Unmapped visual/model 

properties of a visual/model element are persisted independently. Figure 9.10 shows an example 

ArchitectureDiagram view – a view instance of a TravelPlanner model which is created using the 

MaramaMTE tool. It contains a set of diagram element creation tools such as the ClientShape visual 

element type, an instance of which maps to an instance of the ApplicationClient model element type. 

Creating a ClientShape instance e.g. “TravelPlanner1”, as shown in Figure 9.10 generates an 

ApplicationClient instance with the same “name” property set as “TravelPlanner1” (because the 

“name” property is a mapped property). 

 

The model project contains a model (file extension “.model”) file, which stores the runtime model 

state. A view of this model can be used to display the entity types and association types as per the 

tool‟s metamodel specification. An associated/embedded Model Instances view can be loaded by 

selecting the Eclipse menu Window  Show View  Model Instances. The Model Instances view 

can then be used to display auxiliary model element information for a selected entity/association 

type. As seen in Figure 9.11, when the ApplicationClient entity type is selected from the model in the 

model project, the Model Instances view displays all instances of this entity type as master-details 

tabular records. Based on the diagram created in Figure 9.10 , an instance of the ApplicationClient 
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entity type, called “TravelPlanner1”, has been created, hence the record of this instance displays in 

the Model Instances view. All its associated entities are also displayed as sub-records to this. 

Expanding the parent record displays all of its related sub-records underneath it.  

 

Figure 9.10. A diagram (view) of a Marama model project. 

 
 

Figure 9.11. The Model Instances view associated with a Marama model project. 
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9.3 Behaviour Specification 

Behaviour specification adds dynamic features such as interactions and constraints to the structural 

elements of a modelling tool.  Behaviours can be specified in a number of ways in the Marama meta-

tools, via: 

 MaramaTatau formulae on metamodels or view types. 

Specifying behaviour using MaramaTatau formulae is easy and efficient in a similar manner to a 

spreadsheet system. As described in Chapter 7 and 8, it allows definition of value dependencies 

and constraints on structural elements of a Marama metamodel. Hidden dependencies are 

mitigated in various ways when specifying formulae. 

 ViTABaL-WS visual event propagations. 

Specifying behaviour using ViTABaL-WS allows visual definition of event propagations 

between shared model data structures and functions. As described in Chapter 5 and 8, an event-

based architecture can be visually defined for a modelling tool in an efficient way using 

ViTABaL-WS. 

 Kaitiaki visual event handlers.  

As described in Chapter 6 and 8, Kaitiaki allows visual specification of event handler behaviour 

by composing instances of a set of pre-defined building blocks via dataflow. End user domain 

icons can be added to mitigate Kaitiaki‟s abstraction and make a graphical event handler 

specification easy to understand. 

 Escaping to code. 

Escaping to code is also allowed to enable behaviour specification via flexible coding with Java 

APIs that are not black-box supported in the Marama meta-tools event handling framework. 

 

In this section, we use further the MaramaMTE (Grundy et al, 2006) tool example to explain where 

the user would want to use each of the above behaviour specification approaches. 

 

9.3.1 MaramaTatau Formulae 

The MaramaMTE tool can be used to model detailed software architecture. Figure 9.12 demonstrates 

MaramaMTE in use modelling a partial architecture for a travel planner system. The diagram 

includes a flights web service (“AirNZFlightsWS”) which provides a finding flights (“findFlights”) 

service. The flights web service has a relationship to a database (“AirNZFlightsDB”) which contains 

three database tables: “flights”, “seats” and “passengers”. A request (e.g. “selectFlights”) that is 

made to the finding flights service can be specified with dynamic properties, based on the following 
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request kind: “CORBA Call”, “RMI Call”, “DB Update”, “DB Select”, and “HTTP Request”. A 

request‟s “remoteServer” and “remoteObject” properties can be set based on a selected request kind. 

As Figure 9.12 illustrates, if the “requestKind” is set to “DB Select” in Step 1, the “remoteServer” 

property can be set by selecting one of the available database servers (currently only 

“AirNZFlightsDB”) in the property list box in Step 2, and then the “remoteObject” property can be 

set by selecting one of the available database tables in the property list box in Step 3. The 

information set in the diagram is used to generate a performance test-bed for the system in a later 

stage.  

 

 

Step 3 

Step1 

Step 2 

 

Figure 9.12. Runtime tool behaviour (i.e. derived value updates) enabled using Marama meta-

tools. 

It would ordinarily require significant coding in order to achieve such value-dependent runtime 

behaviour. However, this can be easily resolved by using MaramaTatau, as terse OCL expressions 
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(or user-defined functions) can be applied effectively on the metamodel (or view types) of the tool, 

and with MaramaTatau‟s support, derived property value updates and constraint checks will 

automatically take place based on the evaluated formula results. 

 

9.3.1.1 Declarative OCL Formulae for Setting Properties and Checking Constraints 

As already described in Chapter 7, MaramaTatau facilitates specifying property dependencies as 

declarative OCL invariants. To achieve the value-dependent runtime behaviour as described in 

Figure 9.12, we just need to specify three formulae: 

 

 The formula,  

Request.requestKind=Set{‘RMI Call’, ‘CORBA Call’, ‘HTTP Request’, 

‘DB Select’, ‘DB Update’} 

defines that the “requestKind” property of a Request entity can be any value from the set “{„RMI 

Call‟, „CORBA Call‟, „HTTP Request‟, „DB Select‟, „DB Update‟}”.  

 

 The formula, 

Request.remoteServer=if requestKind='DB Select' or requestKind='DB 

Update' then Dabtabase.allInstances()->collect(name) else 

ApplicationServer.allInstances()->collect(name) endif 

defines that if the “requestKind” property is  “DB Select” or “DB Update”, the “remoteServer” 

property of a Request entity can be any value from a set which is calculated by obtaining all the 

Database entity names, otherwise,  all the ApplicationServer entity names.  

 

 The formula,  

Request.remoteObject=if requestKind='DB Select' or requestKind='DB 

Update' then DabtabaseTable.allInstances()->collect(name) else 

RemoteObject.allInstances()->collect(name) endif  

defines that if the “requestKind” property is  “DB Select” or “DB Update”, the “remoteObject” 

property of a Request entity can be any value from a set which is calculated by obtaining all the 

DatabaseTable entity names, otherwise, all the RemoteObject entity names accordingly.  

 

.  
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Figure 9.13. MaramaTatau behaviour specification 

 

A formula can be placed on an attribute/entity/association by dragging and dropping a Formula node 

from the palette on the left of a metamodel diagram. A formula has two major properties, context and 

expression. The context records the attribute/entity/association to which the formula is attached. The 

expression stores the formula text, which can be directly entered using the Properties view or semi-

automatically generated by clicking on metamodel diagram elements and functions listed in the 

Formula Construction View. As shown in Figure 9.13, a formula node is placed on the 

“remoteServer” attribute of the “Request” entity. The Formula Construction View can be loaded by 

selecting the Eclipse menu Window  Show View  Other …  MaramaEditor  Formula 

Construction View. 

 

9.3.1.2 Visual Formula Specification and Semantic Highlighting 

MaramaTatau formulae can be specified either visually by clicking on entity/association/attribute 

elements on a metamodel diagram or shape/connector elements on a view type diagram joined by 

functions from the given function list, or textually by directly entering formula text to the expression 

property of a formula node.  
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When a formula is visually specified, the diagram generates visual semantic highlights, where 

relevant entities/associations/attributes/association-ends are highlighted at each user‟s focus point in 

specifying the formula. This dynamic support guides the user towards a semantically correct 

specification, as shown in Figure 9.14. In Step 1, the user selects a formula node from either the 

diagram or the Formula Construction View.  The semantic highlights at this point of formula 

selection include the Request entity type, the ServiceRequests association type and the 

requestedService association end role that implies the Service entity type. Clicking on an un-

highlighted diagram element may indicate the invalidity of the formula specification. In Step 2a, the 

user selects “self” and “.” from the function list, and then clicks on the requestedService association 

end role on the diagram which triggers the Service entity type with its linked association and 

association end role elements to be highlighted at the selection point. In Step 2b, the user continues 

clicking on the “.” reference from the function list and then the “name” attribute of the Service entity 

type. A formula link is automatically generated pointing from the formula context (i.e. the “id” 

attribute of the Request entity type) to the attribute of its dependency (i.e. the “name” attribute of the 

Service entity type). After a sequence of clicks on the diagram elements and functions from the 

function list, in Step 2c, the user finishes constructing the formula.  

 

The formula is syntactically checked in the MaramaTatau environment when it is being constructed, 

with a visual indication of any syntax error in the Formula Construction View until the formula is 

specified as being error free. If a formula is problematic, i.e. either syntax or semantically incorrect, 

the formula node is turned to red (as shown in Figure 9.15). Correcting the formula specification will 

turn the formula node into the normal mode. When the user has finished constructing a formula, i.e. 

when the user saves the diagram, the formula is compiled. 

 

We are planning, in future work, to implement mutual synchronisation for the visual and textual 

specifications, to allow synchronised visual and textual editing, in other words, updating the formula 

via textual input will create the same visual highlighting effects in the diagram. 
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Step 1: select a 

formula node 

 

 

 

Step 2a: click on diagram 

elements and function list 
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Step 2b: click on diagram 

elements and function list 

 

 

 

Step 2c: click on diagram 

elements and function list 

 

 

Figure 9.14. Visual formula specification via clicks and highlights 
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Figure 9.15. Indication of erroneous formula compilation 

 

9.3.1.3 Extended Formulae with User-defined Operations 

Marama meta-tools support user-defined operations to be used in formulae. The user-defined 

operations can produce side-effects to user models. To define a custom operation, the user clicks on 

the “Add or remove a function” context menu from the function list of the Formula Construction 

View, and a mirrored Marama workspace editor pops up for the user to add custom operation code, 

as shown in Figure 9.16. All Marama APIs are accessible to be used in the implementation of a 

custom operation.  

 

 

Figure 9.16. Adding user functions 
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User-defined operations must conform to the following rules: 

 A Notification parameter must be defined as the first parameter of an operation in order to 

facilitate event notifications and event-condition-action responses.  

 The rest of the parameters must be of String type to represent a shape type, connector type, 

entity type or association type. 

 

There are currently three predefined operations in the library that are frequently reused in view types 

to define diagram elements layout. They are:  

 

Method name Parameters Side effect 

onBorder  Notification notification 

 String owningShapeType 

 String subShapeType 

 String subshapeConnector 

Enforce an on-border layout constraint 

for a pair of shapes, i.e. a sub-shape is 

attached to the border of an owning 

shape. Moving the owning shape causes 

the sub-shapes to move together. 

enclosed  Notification notification 

 String owningShapeType 

 String subShapeType 

 String subshapeConnector 

Enforce an enclosure layout constraint 

for a pair of shapes, i.e. a sub-shape is 

enclosed inside an owning shape. 

Moving the owning shape causes the 

sub-shapes to move together, but the 

enclosed shape may be moved within 

the parent shape. 

contains  Notification notification 

 String owningShapeType 

 String subShapeType 

 String subshapeConnector 

Enforce a containment layout constraint 

for a pair of shapes, i.e. a sub-shape is 

contained and vertically aligned with 

other sub-shapes inside an owning 

shape. Moving the owning shape causes 

the sub-shapes to move together. 

 

The user can define custom operations to be added to the library in a similar style. Upon completion 

of implementing an operation, the list of all available user-defined operations is updated; the user can 

then use the new operation in a formula composition.  

 



 - 187 - 

The list of user-defined operations presented in the Formula Construction View is specialised for 

view type specifications. A formula for the view type is added and specified in a similar way to the 

metamodel formulae, i.e. via drags and drops, and clicks on diagram elements and functions, but 

instead of being attached to a particular diagram element, it can be located anywhere on the diagram. 

As shown in Figure 9.17, the example formula, “contains(ServiceShape, RequestShape, 

RequestConn)”, has been constructed using the user-defined “contains” operation. Dependency 

links are automatically generated as a consequence of user‟s click actions to compose a formula. But 

notice that the actual arguments provided to the “contains” operation call exclude the Notification 

object and only include the remaining matching arguments. 

 
 

Figure 9.17. Defining view type formulas 

 

The example formula in Figure 9.17 defines that a set of RequestShapes can be contained and 

vertically aligned in a ServiceShape. Moving the ServiceShape means that all the contained 

RequestShapes move together with it. This formula is translated and generated to a visual event 

handler as: 
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package 

nz.ac.auckland.cs.marama.userdirectory.tools.MaramaMTE.handlers.visualhandlers.ev

enttriggeringhandlers; 

import org.eclipse.emf.common.notify.Notification; 

import nz.ac.auckland.cs.marama.helper.MaramaVisualHandlerHelper; 

public class Formula2 extends MaramaVisualHandlerHelper { 

 public void notifyChanged(Notification notification) { 

  contains(notification,"ServiceShape","RequestShape","RequestConn"); 

 } 

 public String getName() { 

     return "Formula2"; 

 } 

} 

 

Figure 9.12 also demonstrates the runtime reflection of this formula, where the ServiceShape named 

“findFights” and the RequestShape named “selectFlights” are constrained by this containment 

layout.   

 

All view type formulae are generated into view level event handlers in the same manner, which 

immediately take effect on the view instances at runtime. 

 

9.3.2 ViTABaL-WS Event Propagations 

Apart from the reusable built-in events from the Marama library, the user may want to define tool-

specific events and specify responses to them. Neither Kaitiaki nor MaramaTatau is suitable for 

implementing this task, but ViTABaL-WS is effective for specifying user-defined action events and 

responses.  

 

Visual event propagations in ViTABaL-WS notation can be defined using the Marama Event 

Propagation Definer. Figure 8.8. shows user-defined events and their notifications among various 

Marama event handling toolies and structural components. This example defines that when an 

“ArchitectureDiagram” instance is deleted from a MaramaMTE model project, all the mapped view 

data are deleted from other views of the model project, and all the mapped model data are deleted 

from the model project, so that the views and the model are still synchronised with consistent data.  

 

Three Marama structural components are involved in this ViTABaL-WS specification, they are:  

1. diagram – the deleted diagram of a model project 
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2. views – all the multiple views of the model project 

3. modelProject – the model project instance created using the MaramaMTE tool 

 

A condition is added to this ViTABaL-WS process initially. Only an “ArchitectureDiagram” instance 

is concerned. The process goes to the end stage if the diagram being deleted is not of the 

“ArchitectureDiagram” type. The “processDiagramData” toolie generates a “diagramDeleted” event 

to be propagated to the “deleteMappedViewData” toolie and the “deleteMappedModelData” toolie, 

which define the event handling responses. A further “viewUpdated” event is propagated from the 

“deleteMappedViewData” toolie to the “views” data structure, and a “modelUpdated” event is 

propagated from the “deleteMappedModelData” toolie to the “modelProject” data structure. The 

toolies‟ responses generate side-effects on the shared data structures. The “views” and 

“modelProject” data structures are “synchronised” with each other via the propagation of the 

“synchronised” action event. 

 

 

Figure 9.18. A ViTABaL-WS event propagation view 

 

Consistent with the user interfaces of MaramaTatau, the palette tools in the Marama Event 

Propagation Definer can be used to create instances of the ViTABaL-WS building blocks. The visual 

specification is compiled into the following Java code for execution. 
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package 

nz.ac.auckland.cs.marama.userdirectory.tools.MaramaMTE.handlers.visualhandlers.ev

enttriggeringhandlers; 

import org.eclipse.emf.common.notify.Notification; 

import nz.ac.auckland.cs.marama.helper.MaramaVisualHandlerHelper; 

import nz.ac.auckland.cs.marama.model.diagram.MaramaDiagram; 

 

public class diagramDeleted extends MaramaVisualHandlerHelper { 

   public void notifyChanged(Notification notification) { 

  setEnabled(false); 

  MaramaDiagram diagram = getDiagram(); 

  if (diagram.getViewType().getName().equals("ArchitectureDiagram")){ 

    processDiagramData(new CustomEvent("diagramDeleted"),  

     deleteMappedViewData(new CustomEvent("viewUpdated"), views)); 

    processDiagramData(new CustomEvent("diagramDeleted"),  

     deleteMappedModelData(new CustomEvent("modelUpdated"),  modelProject)); 

     new CustomEvent("synchronized", views, modelProject); 

       } 

  setEnabled(true); 

   } 

   public String getName() { 

       return "diagramDeleted"; 

   } 

} 

 

9.3.3 Kaitiaki Visual Event Handlers 

There are usually many common activities that are reused when defining visual event handlers, such 

as querying diagram state, filtering diagram elements and changing the state of an element or a list of 

elements. Kaitiaki features a set of such reusable modules (building blocks) and provides the ability 

to compose event handlers using a domain-specific dataflow metaphor – the Event-Query-Filter-

Action metaphor. Kaitiaki is more suitable than MaramaTatau and ViTABaL-WS to define visual 

event handlers as by using these existing building blocks and the dataflow based Event-Query-Filter-

Action metaphor, specifications are easier to develop and understand.  

 

Visual event handlers in Kaitiaki notation can be defined using the Marama Visual Event Handler 

Definer, to handle either Marama built-in events or user-defined action events specified in 

ViTABaL-WS views. The previously presented Figure 9.12 also demonstrates the runtime execution 
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effect of a Kaitiaki event handler for aligning diagram shapes, where a “TableShape” is added and 

then aligned with the existing “TableShapes” that are queried from the diagram.  

 

Figure 9.19 illustrates how this Kaitiaki event handler is specified. The handler responds to a 

“shapeAdded” event; it filters out the “TableShape”, and then uses the “alignV” action building 

block to align the newly added “TableShape” with the existing ones that are queried from the 

diagram, via the “getDiagram” and “getDiagramShapes” query building blocks, followed by the 

“shapesType” filter building block to filter out the “TableShape” shapes. A visual component is 

added by dragging and dropping a Kaitiaki building block type (e.g. shape_action, shape_filter etc.) 

from the palette tool, and the name of the component can be selected from the drop down list of 

available library building blocks of that type. A domain specific shape (an end user tool icon) can be 

added by dragging and dropping a shape_domainshape tool from the palette, and the shape‟s 

appearance is dynamically updated when the user selects a shape type from the drop down list of 

previously defined shapes. Domain shapes mitigate the abstract Kaitiaki specification and make the 

visual language easier to understand.  

 

 

Figure 9.19. Kaitiaki event handler specification. 
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The Kaitiaki visual event handler is compiled into the following Java code for execution. 

 

package 

nz.ac.auckland.cs.marama.userdirectory.tools.MaramaMTE.handlers.visualhandlers.ev

enttriggeringhandlers; 

import org.eclipse.emf.common.notify.Notification; 

import nz.ac.auckland.cs.marama.helper.MaramaVisualHandlerHelper; 

import nz.ac.auckland.cs.marama.helper.QueryLibrary; 

import nz.ac.auckland.cs.marama.helper.FilterLibrary; 

import nz.ac.auckland.cs.marama.helper.ActionLibrary; 

 

public class alignShapes extends MaramaVisualHandlerHelper { 

 public void notifyChanged(Notification notification) { 

     setEnabled(false); 

     if (shapeAdded(notification)!=null){  

             ActionLibrary.alignV( 

                FilterLibrary.shapeType(shapeAdded(notification),   

                  new String("TableShape")),   

                FilterLibrary.shapesType( 

                  QueryLibrary.getDiagramShapes 

                   (QueryLibrary.getDiagram(shapeAdded(notification))),  

                    new String("TableShape"))); 

      } 

     setEnabled(true); 

 } 

 public String getName() { 

     return "alignShapes"; 

      } 

} 

 

9.3.4 Escaping to Code  

Although MaramaTatau, ViTABaL-WS and Kaitiaki facilitate easy and effective visual event 

handling specification by their modelling capabilities and library support, there are still domain-

specific event-based behaviours that can not be specified fully using them. For example, 

MaramaMTE generates performance test-beds, and the complex domain-specific code that needs to 

be generated is not able to be specified by MaramaTatau, ViTABaL-WS or Kaitiaki. The user needs 

to escape to code to implement such freely customisable event handler behaviours. Therefore, the 

previous Marama support for event handling based on custom code writing is still necessary. The 
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user needs to code within the context of Marama EMF and its implementation. Figure 9.20 shows a 

Marama code editor (a.k.a. the Eclipse Java editor) with Java code implementing the performance 

test bed code generation. 

 

 

Figure 9.20. The custom code writing approach in Marama to define event flows. 

 

Marama incorporates event notifications and event handlers. Model handlers are used to specify 

reactions to model events (e.g. entity/association changes), whereas visual handlers are used to 

specify reactions to visual view-based events (e.g. shape/connector changes). Both model and visual 

handlers are sub-typed further by specialising them to event triggering and user triggering (via user 

menu-click action) natures. In summary, Marama handlers are categorised into model handlers and 

visual handlers and their sub-types as seen in the tree hierarchy in Figure 9.21 below. 

 

Figure 9.21. Marama handler hierarchy 
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A model event/user handler is defined as a subclass of MaramaModelHandler (in package 

nz.ac.auckland.cs.marama.model.events) and saved as a Java file in the corresponding 

directory (i.e. eventtriggeringhandler/usertriggeringhandler directory). 

 

public class AModelEventHandler extends MaramaModelHandler { 

public void notifyChanged(Notification notification) { 

 /** Reaction code goes here. */ 

} 

public String getName() { 

       return "A model event handler"; // handler name/description     

      } 

} 

 

A visual event/user handler is defined in the same way but extends MaramaVisualHandler (in 

package nz.ac.auckland.cs.marama.model.events). 

 

public class AVisualEventHandler extends MaramaVisualHandler { 

public void notifyChanged(Notification notification) { 

 /** Reaction code goes here. */ 

} 

public String getName() { 

       return "A visual event handler"; //handler name/description  

    } 

} 

 

Events are notified by the event generators and propagated to all the event handlers at runtime. The 

method “public void notifyChanged(Notification notification)” contained in the 

Marama handler code receives all the event notifications and implements the reaction behaviour for a 

filtered event or list of events. The user-defined handler code being called from the 

“notifyChanged” method can include events of interests, queries of model/diagram states, filters 

on a collection of data, and state changing actions on Marama objects. Figure 9.20 contains a model 

user handler (a model handler reacting to a user‟s menu-click action). So the “notifyChanged” 

handler code is fired whenever the user right clicks on a context menu item named “Generate Test 

Bed Code” from a view of a MaramaMTE model instance, and as it is being implemented in the 

handler method, both the server side test bed code and the client side simulation code are generated 

based on the runtime model information. 
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A model event/user handler must be first defined in a Marama Metamodel Definer view by dragging 

and dropping a ModelEventHandler/ModelUserHandler icon from the palette to the metamodel 

diagram as seen in Figure 9.22, and then coded as a handler class and saved in the corresponding 

handlers‟ folder of the tool‟s source code repository. The name of the diagram handler icon and that 

of the Java class must be consistent in order to get the handler registered and fired correctly. Visual 

event/user handlers are all defined in a similar way but in a Marama View Type Definer view. 

 

 

 

Figure 9.22. Registering a handler to the metamodel or a view type in Marama meta-tools. 

 

9.4 Prototype Implementation 

Marama was implemented mainly using the Eclipse EMF plug-in for modelling component class 

generation and the Eclipse GEF plug-in for diagram component rendering. Eclipse UI, SWT and 

JFACE packages were also used to provide Marama with menus, toolbars, and a set of Eclipse views 

including Properties view, Outline view, Problems view, etc., and some Eclipse views were extended 

with Marama domain-specific features (such as the various tool creation wizards, Model instances 

view, Formula Construction view and Visual Debugger) to provide Marama with a rich set of user 

interface components that are consistent with the Eclipse environment. Marama meta-tools were 

implemented inside Marama using the same plug-in libraries. 
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We used Pounamu to specify the meta-metamodel for Marama meta-tools, i.e. the modelling 

elements of the Metamodel Definer, Shape Designer, View Type Definer, Kaitiaki Visual Event 

Handler Definer and ViTABaL-WS Event Propagation Definer. These components are realised in 

Marama editors using consistent graphic modelling interfaces and packaged to synthesise the set of 

Marama meta-tools.  

 

The prototype implementation was heavily based on the Model-View-Controller pattern. Data 

representation of entities, associations, shapes, connectors, views, properties and events together with 

interactive controller command objects were implemented as an Eclipse plug-in named 

“MaramaModel”; Eclipse-based graphical representations of model instances were implemented as a 

model dependent plug-in named “MaramaDiagram”. Reusable library operations were defined in 

another model dependent plug-in named “MaramaBasicHandlerLibrary”. Marama meta-tools used 

the existing Marama APIs, and as an outcome they extended the Marama class library with the 

addition of event-based behaviour abstractions. 

 

Marama Tool Specifications 

- Entity and association types 

- Shape and connector types 

- View types 

- Events and handlers  

Marama Visual Components 

- Shapes, connectors, diagrams, 

dialogs, figures, views 

Marama APIs 
- Metamodel 

- Diagram 

- Properties 

- Events  

- Helper methods 

Marama Meta-tools  

Marama Data 

- Project, entity, association instances 

- View, shape, connector instances 

Eclipse GEF, UI, SWT, 

JFACE Libraries 

Java File IO Libraries W3C XML DOM Libraries 

Marama Handlers 

- MaramaModelHandlers 

- MaramaVisualHandlers 

Eclipse EMF Library 

 

Figure 9.23. The component structure of Marama meta-tools. 

 

Figure 9.23 illustrates the component structure with which Marama meta-tools are implemented. 

Based on Pounamu‟s implementation, the Java API for XML and W3C Document Object Model 

(DOM) framework were used in Marama meta-tools for representing tool specification data as in-
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memory XML data structures. Marama meta-tool instances map to Marama EMF diagram instances 

with shapes and connectors as property sources. Modelling tools specified using Marama meta-tools 

are persisted as XML files that are automatically generated on a save of the modelling view 

instances. These XML files are read by model projects using DOM parsing. The Java file IO APIs 

are used for tool specification data storage and retrieval to/from the XML format. The XML-based 

repository enables easy exchange and integration with other tools. 

 

Various code generators have been implemented to analyse diagram and model elements and 

translate visual programs into Marama Java programs with appropriate APIs and reusable user 

library method calls. The code generation processes are hidden from the user in order to hide their 

complexity. From the user‟s perspective, the visual programs are executed as efficiently as textual 

Java programs, with the advantages of easy and efficient specification and visualisation. The 

implemented canonical event handling framework allows inter-communication of fine-grained 

modules to be used crossing over different event handler specifications.  

 

Both ViTABaL-WS and Kaitiaki should perform static consistency checks to ensure a specification 

is semantically correct before generating code for execution but this has yet to be implemented. The 

checks have however been implemented for MaramaTatau. Consistency checks should include 

checking event propagations are handled by appropriate event responses in receiving components, 

and ensuring event arguments are passed in the correct type and order, as described in the EASY 

framework (Grundy et al, 1996).  

 

9.5 Summary  

We have developed the Marama meta-tools as a vehicle for exploring integrated event handling 

specification. We initially constructed the structural modelling facilities in Marama meta-tools to 

support modelling with generated domain-specific visual modelling environments. The structural 

modelling views include a Metamodel Definer that allows visual definition of the tool metamodel 

(entity types and association types), a Shape Designer that allows visual construction of shapes and 

connectors, and a View Type Definer that allows visual composition of view elements and visual-to-

model mappings. We then extended this metamodelling environment by adding event-based 

behaviour modelling facilities using a set of unified techniques, with the integration of 

MaramaTatau, ViTABaL-WS and Kaitiaki. MaramaTatau allows visual construction of formulae in a 

spreadsheet-like style to specify model and view value dependencies and constraints. ViTABaL-WS 
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allows event-based architecture to be defined for the modelling tool, enabling specification of event 

propagations and responses. Kaitiaki allows composition of event handlers using a set of visual 

building blocks and hiding code complexity from the user. The reusable building blocks created by 

each of the three approaches can be used in an interleaved way collaboratively in the Marama meta-

tools environment, since they are generalised to a canonical event model and unified to be used 

flexibly by the integrated environment.  
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Chapter 10 - Evaluation of the Generalised Framework 

 

Following our initial prototype development, we have conducted both developer-based and end user-

based evaluations of the Marama meta-tools to test their usability and effectiveness for specifying 

event-based system integration with the aim of identifying potential problems. The evaluation results 

have been sufficiently positive for us to release the Marama meta-tools as a publicly accessible 

toolset following a number of enhancements to address tool stability. 

 

10.1 Introduction 

It is not a straightforward task to evaluate a substantial environment/toolset such as the Marama 

meta-tools, as it involves multiple points of views of tool developer, end users of developed tool, 

usability, utility, etc. (Zhu et al, 2007). Most formal usability evaluation approaches are limited to 

understanding the effect of one or two variables (Dillon, 2001; Hartson et al, 2003). Controlling for 

variability is an almost impossible undertaking when assessing the usability of a large environment. 

Formal evaluation for this type of system is hard. This means we have had to adopt a variety of less 

formal, but overlapping approaches to obtain usability and efficacy data.  

 

We have evaluated Marama meta-tools at several levels and through a variety of mechanisms in a 

similar way that evaluations of the Pounamu metatool were conducted (Zhu et al, 2007). These 

include:  

 We, the designers, conducted a cognitive dimensions (Green and Petre, 1996) evaluation 

focusing on the event handling specifications. The use of three distinct metaphors together in the 

system has increased the initial learning curve of the Marama meta-tools, but provided effective 

event handler specifications by addressing identified concerns and allowing tool designers to 

escape from writing conventional code. 

 We, the designers, conducted an evaluation of the Marama meta-tools against the requirements 

established in the research background and motivation in Chapter 3 and 4, and elaborated in the 

meta-tools design in Chapter 8. 



 - 200 - 

 A large number of graduate-level student end users (novice short-term research task-oriented 

users) were involved in an extensive usability study. In the experiments, 122 participants 

constructed a domain specific visual language tool of their choice, but with a minimum set of tool 

features that had to be included in their tool, and were then surveyed. The participants were 

allowed to work either individually, in pairs, or in a team of 3-5. The aim of the experiment was 

to provide a substantial, realistic tool development situation and obtain qualitative information on 

user perceptions of the toolset and task completion data (whether the minimum feature set was in 

fact implemented). The experiments evaluated whether end users found the Marama meta-tools 

easy and effective for generating their chosen domain specific visual language tool. We aimed to 

use the end users‟ feedback to improve the Marama meta-tools, and significant enhancement was 

undertaken after the experiments. 

 A smaller number of developers (experienced long-term research goal-oriented users) in our 

research team, who used Marama meta-tools to develop more substantial applications, provided 

qualitative feedback in the form of experience reports. The advanced applications being 

developed or integrated with Marama meta-tools include a generic mapping tool, a health care 

visual modelling environment, a business process integration tool, an architecture 

modelling/mapping tool, and a design critiquing system. These qualitative feedback reports were 

used to assess whether our perceptions of the Marama meta-tools needed to be altered for more 

experienced user groups, and whether additional requirements were needed (e.g. more complex 

back end integration requirements). 

 

We describe the evaluation criteria that we used and the results that we obtained in Section 2. 

Evaluations need to be conducted iteratively after every progress has been made to improve Marama 

meta-tools. We describe our continuous evaluation plan in Section 3, and then summarise this 

chapter. 

 

10.2 Evaluation Techniques  

Marama meta-tools have been evaluated based on the following main techniques: the Cognitive 

Dimensions, the previously established requirements, and the usability from both novice and 

experienced end users‟ point of view. Table 10.1 shows the evaluation methods being used versus 

what information we intended them to provide to us. 
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Evaluation method Expected information to obtain 

Cognitive dimensions Cognitive dimensions allow us to understand usability tradeoffs and 

hence where mitigations need to be placed. 

Evaluation against the requirements The requirements established in the research can be used as the 

benchmark for evaluating the functional utility of the Marama meta-tools. 

Large end user survey The large study allows us to understand qualitative end user usability 

perceptions and quantitative task completion data. 

Small experienced user group study The small study allows us to continuously collect qualitative experienced 

user perceptions and additional requirements as needed. 

Table 10.1. The evaluation methods adopted by the Marama meta-tools. 

 

10.2.1 Cognitive Dimensions 

We have conducted a Cognitive Dimensions investigation for each of ViTABaL-WS, Kaitiaki and 

MaramaTatau individually as described previously in Chapter 5, 6 and 7 respectively. Each of the 

three languages and environments feature easy and effective specifications with some dimensional 

tradeoffs where we have placed effort to provide mitigations (e.g. to minimise hidden dependency 

issues in MaramaTatau). In this section, we describe a cognitive walkthrough from the end users‟ 

perspective for the Marama meta-tools focusing on the event handling integration. Using Cognitive 

Dimensions, some points in particular highlight Marama meta-tools suitability, while others are 

indicative of negative tradeoffs that have been made. 

 

The Marama meta-tools provide users with facilities to define their own domain-specific visual 

language environment. Both the static structure and dynamic behaviours can be flexibly defined 

using either the existing component library or their customised extensions, but their use requires an 

understanding of several moderately complex metaphoric abstractions and the way they can interact. 

Thus Marama meta-tools have a relatively high abstraction gradient. The Marama meta-tools allow 

users to mix abstractions to specify a visual design system. High-level abstractions (via visual 

building blocks and their compositions) are used to model both static and dynamic aspects of a 

system, while low-level abstractions (via property settings and escape to code) are used to model 

detailed structural constraints and visualise runtime debugging information. This seamless mixture 

provides flexibility for Marama meta-tools to be used by both novice and experienced developers. 

The primitive elements in Marama meta-tools represent a broad range of components from the Tool 

Abstraction, Event-Query-Filter-Action, and Spreadsheet paradigms, and communication 

relationships between them.   The visual metaphors and visual constructs used increase 

comprehensibility compared to the textual code-based behaviour specifications. The Marama meta-
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tools offer low diffuseness in that they provide a terse extended Entity-Relationship language to 

specify metamodels, a terse set of notations for shapes and view type constructions, however we 

have chosen a verbose multi-paradigm formalism in the integrated event handling specification.  

 

The abstractions used in Marama meta-tools require some hard mental operations for novice users. 

The initial learning curve of Marama meta-tools is high for users who are not familiar with 

metamodelling approaches, but this is not our target end user group. Marama meta-tools‟ languages 

and visual metaphors need to be learned, and the learning process typically requires access to the 

provided documentation and exemplar tools. Once the Marama meta-tools approach is initially 

learned, users can benefit greatly from its support for fast and easy prototype generations. Premature 

commitment is required when using the Marama meta-tools. Design is supported in an interactive 

way with dynamic graphical visualisations provided by the Marama meta-tools. However, the user 

typically has to describe the structural parts before the behavioural; otherwise the user does not have 

metamodel components that can be referenced when doing the behavioural side. This is not a major 

issue though as it is a natural progression for software designers. The Marama meta-tools support 

rapid prototyping to prove both the structural and behavioural design concepts.  

 

Marama meta-tools‟ structural and behavioural constraint model fits closely to conventional 

metamodelling concepts and the Model-View-Controller architectural pattern. Closeness of mapping 

is thus high for our target end users and especially for current users of Eclipse, as Marama meta-tools 

make use of a collection of Eclipse-based views to display integrated information. Close mappings of 

tool specifications with domain concepts are easily achieved, as the Marama meta-tools provide 

users with the flexibility to define custom domain-specific concepts and elements. However, the 

existing GUI elements are a little constraining in this regard, requiring additional types of component 

such as buttons, sound and video etc. 

 

Consistency is well managed in the Marama meta-tools. Though the different view types support 

specification of a distinguished modelling aspect of a visual language environment, the interfaces 

provide a consistent look and feel. ViTABaL-WS, Kaitiaki and MaramaTatau each provide terse 

language syntax, as well as presenting close interconnectivity. While they are indeed based on a 

generalised common event handling model representation, users will not feel they are individually 

irrelevant, and can easily establish relationships between them. The visual notations used in the 

different behavioural modelling views are consistent subsets of a common representation: Rectangles 

represent data, Circles represent constraints, and Connections represent relationships. 



 - 203 - 

Error-proneness has been reduced in comparison with conventional code writing in some areas; 

typically the code generation from visual specifications eliminates syntax errors and some semantic 

errors. Once Marama meta-tools‟ step-by-step metamodelling approach is understood and followed, 

it is not error-prone for structural modelling. Static checking of structural elements is performed 

before a runtime modelling environment is generated and indications of an incorrect structural 

specification are presented to the user. Visual behaviour specifications in ViTABaL-WS and Kaitiaki 

are potentially error-prone at this stage as they directly generate Java code without performing 

compile-time checking first. Implementation of static type checking for these metaphors is important 

future work. 

 

The Marama meta-tools have minimal hidden dependencies in constructing formulae and constraints. 

The support for multiple views introduces hidden dependencies, especially when certain behaviour is 

specified using a set of mixed ViTABaL-WS, Kaitiaki and MaramaTatau elements. To mitigate this, 

we are exploring using a generated Dependency view to indicate source and target behaviour 

elements dependencies, allow cascading changes and provide easy navigation mechanisms between 

these interdependent elements. 

 

Progressive evaluation is well supported. Marama meta-tools allow tool specifications to be 

evaluated at any stage. Partially completed specifications can be executed as well. View type 

extensions for both structural and behavioural aspects can be added into a Marama tool at any stage, 

and previously specified elements can be freely used or updated with new features. 

 

Marama meta-tools specification is well structured, with every component performing a unique set of 

tasks (Role-expressiveness), e.g. the metamodel components define visual language semantics and 

constraints; the shape components define visual representations of metamodel elements; the view 

type components compose view elements and their dependencies on the model; the event 

propagation components define the event-based relationship between model or view elements; and 

the event handling components define dynamic interactive behaviour. 

 

The Marama meta-tools make use of layout, colour, and domain specific tool icons as secondary 

notations to enhance the syntax and semantics being conveyed from both structural and behavioural 

specifications. The set of Marama editors used in Marama meta-tools provide easy modification via 

consistent graphical user interfaces. Changing an element in one view does not affect all other 

elements unless dependency is specified for consistency management. However, the usual viscosity 
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problems occur for all the diagram types in Marama meta-tools when diagrams need to be arranged 

to insert additional elements. Provision of automatic layout support could potentially alleviate this (at 

both model and metamodel levels). Providing such facilities is left for future work. 

 

Marama is an Eclipse plug-in; this provides Marama with good mechanisms to support visibility and 

juxtaposability. Marama editors can be freely juxtaposed side-by-side to allow simultaneous 

visualisations of different views of concern. Marama meta-tools behavioural specification views can 

especially be juxtaposed with Marama modelling views for debugging purposes.  

 

10.2.2 Evaluation against the Requirements 

The set of requirements established in Chapter 8 were our benchmark for evaluating the functional 

utility of the Marama meta-tools.  These requirements have all been met. In the following we 

describe how each of the requirements has been addressed in the design and implementation of the 

Marama meta-tools 

 

The generalised Marama meta-tools framework incorporates compositional primitives as event 

handling building blocks and allows composition relationships between them. The framework 

contains reusable designs to allow users to initialise their system and specify customised event types, 

event generators, event receivers and event handling building blocks to enhance the extensibility and 

flexibility of the framework. The framework supports tool integration via a canonical data/event 

model extension and consistent user interfaces. 

 

Graphical notations are offered in the style of the three metaphoric exemplars – ViTABaL-WS, 

Kaitiaki and MaramaTatau, to allow easy and effective event handling specifications and 

visualisations. Marama meta-tools allow specification of event generators, events, and event 

receivers using ViTABaL-WS, specification of view-level event handling behaviours using Kaitiaki, 

and specification of model-level and view-level structural constraints using MaramaTatau. The 

integration of the three languages enables Marama meta-tools to handle complex events in a 

straightforward way. Textual notations are also permitted so that users can escape to conventional 

code when specifying complex custom behaviours such as code generation. Both the visual 

languages and the textual languages can be documented thoroughly in the Marama meta-tools 

environment. 
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Multiple views of data, event and behaviour representations are kept consistent in both the model and 

user interface level to ensure the correctness of generated environments. Multiple views can be easily 

navigated from one to another.  

 

The underlying Marama framework provides the support to realise Marama models together with 

views and dynamic behaviour when an instance of a tool specified using the Marama meta-tools is 

realised. In a runtime modelling environment, MaramaTatau formulae and ViTABaL-WS specified 

event propagations can be traced and Kaitiaki event handling results can be visualised based on a 

user interactive visual debugging model in a step-by-step fashion. 

 

With regards to the quality of service, Marama meta-tools is a proof of concept toolset which 

provides good levels of abstraction from high-level conceptual design to low-level implementations. 

Visual languages exploiting easy-to-understand metaphors are used to simplify the behavioural 

specification tasks. Users can still escape to code when complex custom tasks need to be 

implemented. The integrated meta-tools environment provides design guidance support especially in 

validation of the specifications. The toolset has proof of concept stability issues needing to be 

addressed. The issues are suggested from the user data in the next section. 

 

Marama has good scalability. The framework provides well structured extensibility via multiple 

views and by separating concerns of modelling structure from behaviour, as well as integrating them 

at runtime in a seamlessly unified manner. The framework is readily extensible with the addition of 

additional generic or domain specific building blocks. 

 

Developing prototypes using Marama meta-tools takes considerably less time than implementing 

them using a programming language from scratch. The behavioural models generate Java code which 

is executed as efficient as code implementations. 

 

10.2.3 Large End User Survey 

In the user evaluation experiments, 122 participants, who were fourth year Computer Science or 

Software Engineering students, were asked to construct a Domain-Specific Visual Language (DSVL) 

tool of their own choice, but with at least a minimal set of required components (so that tools with a 

realistic level of complexity were designed and constructed) similar to the set of tasks defined in the 

Pounamu evaluation experiments (Zhu et al, 2007), including: 

 At least three metamodel entity types and appropriate associations 
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 At least three different iconic shapes, possibly of differing complexity (of the shape image) 

 At least two different shape connectors 

 At least two different view types, i.e. that show different kinds of information within the view 

types 

 A few simple formulae and/or event handlers managing things like diagram layout, editing 

constraints, model (entity) constraints, mock code generation, data import, etc. 

 

Preparatory training lectures were provided on:  

1. General DSVL design concepts, including Cognitive Dimensions  

2. General introduction to meta-tools and metamodelling concepts  

3. Specific introduction to Marama and the Marama meta-tools 

 

Students were also provided with a demonstration-based tutorial and an online user manual. Three 

exemplar tools were provided to be used in Marama directly. They are the simple Whole-Part 

aggregate modeller presented in Chapter 7, a simple UML tool and the complex MaramaMTE tool 

presented in Chapter 7-9.  

 

Participants were then given three weeks elapsed time (while they were working alongside other 

commitments) to complete the prototype development together with a survey report containing a set 

of open ended questions to qualitatively elicit strengths and weaknesses of the Marama meta-tools in 

constructing their desired DSVL tool. Their experiments and survey reports were collected and 

analysed. These participants had used many software tools, though few for metamodelling similar to 

Marama and Pounamu (Zhu et al, 2007). We believe their previous experience had little influence on 

their experiences and expectations. 

 

Sixty-five tool instances were created (due to the fact that the participants worked either individually, 

in pairs, or in a team of 3-5), among which fifty were based on the existing application areas (having 

been explored using the Pounamu tool) from the provided references in the task description and other 

web references. These included software process modelling, software architecture design, aspect-

oriented design, design pattern modelling, entity-relationship modelling, data mapping specification 

and statistics design tool. Fifteen tools were based on the participants‟ exploratory development of 

new DSVLs of their own design, including a wizard creation tool, a DHTML web development tool, 
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an online banking tool, an enterprise reporting tool, a family tree navigation tool, a restaurant 

management tool, and a university degree modelling tool. 

 

Figure 10.1 charts the total number of developed tools and the statistics for the minimal task 

completion (as defined previously, comprising a basic set of metamodel, notation, view and event 

handling elements). The task completion data is positive showing that tools with realistic level of 

complexity (usable tools with both static and dynamic features) can be designed and constructed 

using the Marama meta-tools in a short period of time (three weeks working alongside other 

commitments). 

Minimal Task Completion Data
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Figure 10.1. Minimal task completion. 

 

The participants responded in the survey that the Marama meta-tools were suited to develop the end 

user tools in general, but there were still a lot of improvements to make. General strengths 

emphasised in the survey included: the rapidity of constructing DSVL tools; the simple approach in 

defining tool data structures and behaviour models; the consistent user interface and the ease of 

creation and management of multiple views; the low effort and minimum hidden dependency needed 

to constrain end user model and views effectively; the extensibility and customisability of the 

generated tools; and the usefulness of being able to sub-type to define reusable metamodel elements 

and generation of association constraints.   
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Figure 10.2 charts the number of responses concerning identified weaknesses in three categories (i.e. 

Stability and Error Handling, Model Effectiveness, and Usability/GUI) and 2 subcategories (i.e. 

“major” significant weakness, or “minor” issues causing irritation but not significantly affecting 

functionality, as per the style of the Pounamu survey (Zhu et al, 2007). General weaknesses 

emphasised in the survey included: the steep learning curve of the Marama meta-tools; the lack of 

API documentation (users need to have access to API documentation for very complex event 

processing) and comprehensive user manual; the stability and the ineffective error handling in the 

prototype; the lack of support for copy/paste specifications; the limited number of reusable building 

blocks for behavioural specifications; and the difficulty of defining complex formulae due to 

unfamiliarity with OCL. Some significant stability errors in the Marama meta-tools were also 

reported during the experiments and were immediately corrected with continuous updates being 

released during the course of the experiment. The survey result shows the bulk of the issues being in 

the area of minor stability and minor usability, which were expected of a software prototype at its 

early proof of concept stage. 

 

Figure 10.2. Problems identified in the survey. 

 

Figure 10.3 charts the number of distinct suggestions concerning the improvements/extensions of the 

Marama meta-tools. This gives us insight into what are missing and what the end users found hard to 

do with the Marama meta-tools. Major suggestions are on the Usability side, targeting the Marama 

meta-toolset as robust open source software, which should encompass comprehensive 
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documentation, automated researching and registration, progress tracking, automatic layout, print to 

file, copy/paste and undo/redo etc. support. Typical suggestions on Modelling Effectiveness include 

providing an n-nary association type in the metamodel definer, adding more wizard/dialog support 

for tool/model creation, and providing more comprehensive event handler building blocks for reuse. 

Typical suggestions on Stability and Error Handling include supporting automatic backup and 

version control, allowing rollback transactions to a previous stable state, and providing user friendly 

error messages. 

 

Figure 10.3.  Proposed improvements/extensions in the survey. 

 

10.2.4 Small Experienced User Group Study 

A set of substantial applications have been developed in our research team, using or integrated with 

the Marama meta-tools. The developers provided qualitative feedback in the form of experience 

reports, which were used to assess whether our perceptions of the Marama meta-tools needed to be 

altered, and whether additional requirements were needed. 

 

A generic mapping tool, MaramaTorua (Jun et al, 2007) has been developed using Marama and later 

integrated with the Marama meta-tools to provide generic mapping specification support (including 

model transformations). It has been successfully used in translating BPMN to BPEL4WS code, and 

importing old Pounamu tool specifications into the Marama meta-tools equivalent. The developer of 
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MaramaTorua found that Marama meta-tools were substantially easier to use than Pounamu (which 

he had had significant previous experience with). He felt the consistent views provided for modelling 

both the static and dynamic aspects of the system were beneficial and the toolset was approaching 

the quality of a typical commercial software tool.  

 

A health care visual modelling environment, a business process integration tool and an architecture 

modelling/mapping tool have also been generated using the Marama meta-tools environment. 

Qualitative feedback from those experienced long-term research goal-oriented users suggested that 

Marama meta-tools provide a good structural and behavioural modelling and constraining 

mechanism, while, consistent with the large end user survey, improvements can be made by making 

the framework robust and error-free.  

 

A design critiquing prototype (Ali, 2007) is under development as an extension to the Marama meta-

tools. The developer found that the Marama meta-tools‟ modelling concept was initially hard to 

grasp; the Model-View-Controller pattern made it even more difficult to understand; and it is a bit 

confusing as the extended entity-relationship metamodelling style was partially overlapping with the 

UML notation, while specifying correct OCL formulae also needed a big effort.   

 

While some event handling building blocks can be used effectively to compose event-based 

behaviour specifications, all the expert developers needed to escape to code (i.e. use the original 

custom code writing approach) to define complex backend code generation and user interface 

extensions (particularly for complex layouts). This indicates to us that the Marama meta-tools need 

to be further generalised from more examples so that it can provide support for a wider-range of 

event-based system specifications. The integration of MaramaTorua with the Marama meta-tools 

(outside the scope of this thesis) is one example addressing these experienced modeller concerns. 

MaramaTorua can be used for moderately complex code generation and model-model transformation 

support reducing the need to escape to code in such situations. A new project, also outside the scope 

of this thesis work, is looking at providing a generic layout specification tool for Marama views. This 

will build on the three metaphors described here but provide additional layout specific building 

blocks. 
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10.3 Further Continuous Evaluation Plan 

Substantial efforts have been taken to improve the Marama meta-tools based on these evaluation 

results. The Marama meta-tools have been made more stable and more resistant to incorrect 

specifications so that a generated DSVL tool can be error-free for use. Some unnecessarily required 

user specifications, such as an event triggering handler for interpreting formulae and enforcing 

constraints, have been replaced by automations enabled by the Marama meta-tools.  

 

A set of JUnit-based test suites are under development. They will be used to perform automatic 

testing on the Marama meta-tools. This will remove much of the effort of the developers in 

undertaking white box, black box, unit, integration and system testing, and allow more focus to be 

placed on end user usability studies. 

 

Our evaluation approach has demonstrated its effectiveness in eliciting weaknesses of a software 

prototype, so we are reusing the approach to conduct iterative evaluations on the Marama meta-tools.  

However, from the previous evaluation results, we found that the major barrier for users to 

effectively use the Marama meta-tools was the initial steep learning curve. To remove this barrier, 

we plan to provide the end users with more interactive, story-telling examples in a video-format 

tutorial so that they learn the Marama meta-tools in a more constructive way. We plan to follow the 

set of guidelines for developing such videos suggested by Plaisant and Shneiderman (Plaisant and 

Shneiderman, 2005). 

 

10.4 Summary  

The Marama meta-tools have been evaluated using a variety of approaches: Cognitive Dimensions, 

previously established requirements, and substantial formal and informal usability studies. The 

evaluation results are positive in accepting the integrated approach for event handling specifications 

but indicate many minor improvements are needed to improve the usability of the Marama meta-

tools. While the Marama meta-tools are being improved, we will be conducting similar evaluations 

to see how effective such improvements are. This is a similar approach to the longitudinal study we 

undertake with the Pounamu metatool (Zhu et al, 2007). We plan to take an iterative approach in 

solving the existing problems in the Marama meta-tools and will examine additional metaphors and 

visual languages to evolve the framework.  
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Chapter 11 - Conclusions and Future Research 

 

Research contributions of this thesis include design and proof of concept development of: ViTABaL-

WS using the Tool Abstraction (TA) metaphor to describe event propagations between abstract 

components; Kaitiaki using the Event-Query-Filter-Action (EQFA) metaphor to specify event 

handling behaviour; and MaramaTatau using the Spreadsheet metaphor to specify structural 

dependencies and constraints to be realised at runtime. The three visual languages and metaphors 

have also been generalised in the Marama meta-tools environments, unifying the event-based 

behaviour specifications for a wide range of system behaviour modelling support. In this chapter we 

elaborate on these achievements and propose future work. 

 

11.1 Research Contributions and Conclusions 

We have investigated three exemplar visual event-driven system metaphors to specify event-handling 

support: Tool Abstraction in ViTABaL-WS; Event-Query-Filter-Action in Kaitiaki; and Spreadsheet 

in MaramaTatau. We have generalised from the three exemplars and developed a generic high-level 

visual event handling metaphor and built a proof of concept visual environment for specifying event-

based system integration. 

 

ViTABaL-WS was initially designed to support modelling complex interactions between web service 

components. It uses a Tool Abstraction metaphor for describing relationships between service 

definitions, and multiple-views of data-flow, control-flow and event propagation in a modelled 

process. It supports specification of both fine-grained, detailed views and more abstract views of 

business process protocols, message exchange rules and sequencing, and service invocation, together 

with generation of Web Service Description Language and Business Process Execution Language 

definitions from a ViTABaL-WS model for direct deployment. ViTABaL-WS also supports 

visualisation of running processes for architecture understanding and visual debugging of specified 

protocols.  ViTABaL-WS‟s event propagation abstraction model has been generalised in the Marama 

meta-tools environment to facilitate implementation of complex event-based interactions and data 

exchanges among structural and behavioural components.  
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End users usually want to specify dynamic interactive behaviour associated with their graphical user 

interfaces but want to remove the need of having to code these in low level textual programming 

languages. Our ViTABaL-WS approach specifies high-level tool abstractions, but is not a good 

approach for GUI event handling, due to its lack of discrimination of end user objects from abstract 

queries and state-changing actions, and structured data flow between them. Kaitiaki is a visual 

language for user interface event handling specification targeted at end users. It provides end users 

with abstract ways to express both simple and complex event handling mechanisms via visual 

specifications. These specifications use a metaphor of generating events, tool state queries, filters 

over query results and state changing actions, with dataflow between these building blocks. The 

support environment allows users to compose handlers from these constructs and relate them to 

concrete diagramming tool objects. A debugger uses the visual notation to step through a 

specification, animating constructs and affected diagram objects. Kaitiaki‟s event handling 

abstraction model has been generalised in the Marama meta-tools environment to facilitate 

implementation of complex event handling behaviours by composing a set of reusable graphical 

building blocks. 

 

A meta-tools approach is commonly used to specify and generate domain specific visual language 

tools. Specifications of model level behaviours, such as constraints and dependencies, are however 

very difficult to specify in existing meta-tools. These often need to be specified using conventional 

code in the form of low level event handlers or the like. Our ViTABaL-WS and Kaitiaki approaches 

are inefficient for specifying such constraints on metamodels. We integrated MaramaTatau, as a 

declarative constraint/dependency specification mechanism into the Marama meta-tools. 

MaramaTatau borrows much from techniques used to support the spreadsheet metaphor, but in a 

situation with less concreteness. It combines challenged technologies in the form of OCL and 

spreadsheet interfaces in a simple yet novel way drawing strength from both while mitigating their 

weaknesses. MaramaTatau augments the Marama meta-tools‟ metamodel designer, allowing tool 

developers to specify formulae over metamodels, combined with a one-way constraint system to 

compute values during tool usage. This allows for much simpler specification of dependency and 

constraint handling within Marama tools, compared to both the textual event handlers and Kaitiaki 

visual event handlers. MaramaTatau is generalised together with ViTABaL-WS and Kaitiaki into a 

generic event handling framework in the Marama meta-tools. 

 

By abstracting from the three earlier, limited-domain exemplars, a general metamodel representation 

that combines atomic primitives (either shared or non-shared) extended by the three visual languages 
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is defined. We have developed the Marama meta-tools with this common model to support multiple 

metaphoric views in the style of the three exemplars for event handling integration. With ViTABaL-

WS‟s focus on providing a visual language for the design and construction of tool abstraction action-

event-based architecture, Kaitiaki‟s focus on providing an extensible event-query-filter-action 

language for responding to propagated events, and MaramaTatau‟s focus on providing a declarative 

spreadsheet-like specification mechanism for model/view level dependencies and constraints, the 

generalisation of these three approaches within the Marama meta-tools framework provides wide-

ranging support for event-based system design and construction.  

 

The generalised Marama meta-tools have been evaluated thoroughly to test their usability and 

effectiveness for specifying event-based system integration. The evaluation results are positive in 

accepting the integrated approach for event handling specifications but indicate many minor 

improvements are needed to improve the usability of the Marama meta-tools. We have released the 

Marama meta-tools as a publicly accessible toolset following a number of enhancements to address 

tool stability. 

 

11.2 Future Research 

Marama meta-tools framework is still at the prototype stage.  We aim to continually develop it to be 

a robust open source software system to be freely used by interested researchers and organisations. A 

large range of possible future work directions exist developing from such a platform. 

 

More complete checking of behaviour models, particularly for ViTABaL-WS and Kaitiaki, could 

catch errors in the specification before code generation and realisation.  

 

Users must currently manually layout ViTABaL-WS and Kaitiaki composition models and automatic 

layout of views would in some cases be useful, especially when they become large. Automatic layout 

may be useful to improve a user‟s ability to show/hide/collapse parts of a specification to manage 

size and complexity. 

 

Programming by example extensions would be useful in every view of the Marama meta-tools to 

allow users to make changes to an exemplar modelling tool view and add/remove building blocks 

to/from it.  
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A more complex view specification tool is under development, which allows many-to-many 

mappings between view shapes and connectors and model entities and associations to be specified 

using formulae. This will again make it easier for tool developers to build more complex view-model 

mappings without resorting to using complex event-driven handlers.  

 

We plan to extend the MaramaTatau language by adding higher-order functions (HOF) (especially 

the “map” and “accumulate” functions seen in functional programming languages like Haskell 

(Haskell, 2007http://www.haskell.org/)). For an example of the “map” HOF, we could specify 

UnconnectedShape = map (TestNoConnection, listOfShapes) 

where  

TestNoConnection(MaramaShape): Boolean = if 

MaramaShape.getSourceConnections().size()==0 and  

MaramaShape.getTargetConnections().size()==0 then true else false 

endif 

 

The map (Function, Collection) function applies the Function to each item in the 

Collection to produce the map function result (in this example another Collection of 

MaramaShape instances being unconnected). 

 

We could also extend the MaramaTatau language by adding function compositions, i.e. using a 

function as a parameter to another function, another HOF ability. This facilitates reuse of formulae 

and existing library functions in function compositions. We have attempted to add user defined 

functions (e.g. compositional functional definition of reusable formula with parameters) to 

collaboratively operate with OCL. We can extend MaramaTatau to reuse ViTABaL-WS and Kaitiaki 

specifications either partially or completely, to allow both side-effect-less constraint/query, and side-

effect action to be specified in formulae. To this end, hidden dependencies will be an issue that 

requires mitigation. A new high-level generalisation dependency view could be useful to 

indicate/annotate cascading references in dependent views. 

 

Run-time monitoring of the Marama meta-tools for performance analysis could be supported via the 

visual debugging sub-system. The visual debugger could be further enhanced with “watch” controls 

so that the user can choose to trace a certain event and its response instead of debugging the entire 

behavioural specification.  

 

http://www.haskell.org/
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The Marama meta-tools are to be evolved by abstracting from more domain-specific examples, such 

as BPMN (OMG, 2006). The Marama meta-tools‟ event handling abstraction model can be specified 

in the MaramaTorua (Huh et al, 2007) mapping tool to facilitate generation to a wide range of 

implementations for interpretation.  
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Figure 11.1. Outline of using MaramaTorua. (Huh et al, 2007) 

 

To allow one specification to generate others with corresponding implementation classes, a set of 

mapping schemas can be defined in MaramaTorua (Huh et al, 2007) to provide interchanging 

mechanisms between ViTABaL-WS, Kaitiaki and MaramaTatau specifications. MaramaTorua is 

integrated with the Marama meta-tool and its generated translators can be used directly within new 

Marama tools to support model integration, translation, and code and script generation. Figure 11.1 

illustrates the MaramaTorua approach in specifying mappings. This involves the following steps of 

tasks: 

(1) Users import XML schemas (either manually created or automatically generated from the 

Marama meta-tools) into MaramaTorua to provide the source and/or target data format 

specifications.  



 - 217 - 

(2) Users can define their own schema using MaramaTorua‟s schema editor or an existing 

Eclipse schema editor.  

(3) A schema can also be generated using a remote web service link to the Microsoft schema 

inference engine.  

(4) Once the schemas are imported into MaramaTorua, users can specify mappings between 

the source schema and target schema elements. The mapping specifications can be either 

simple so that users can copy a source data item to a target item, or complex so that users 

need to iterate over the source collection filtering on specified data item values and create 

new target data structures.  

(5) On completion of the inter-schema mapping specification, a translator can be generated. 

MaramaTorua reuses a set of mapping functions to synthesise a data translator 

implementation.   

(6) Other translator implementation languages (e.g. Eclipse ALT or pure Java code) can also 

be used. Users can test the translator by executing it with example source data files 

loaded into MaramaTorua.  

 

Many other Marama extensions are being developed. These include a distributed environment with 

thin client user interfaces and web service back-end, collaborative support for concurrent team work, 

sketch-based user interfaces and automatic translations to formal Marama model and views. Once 

these extensions are fully developed, we will integrate them into the Marama meta-tools thus making 

the framework more fully-functioned.   

 

11.3 Summary 

The research has focussed on providing visual specification and runtime visualisation support for the 

design and construction of complex event-based systems. We have integrated three event handling 

specification languages based on a canonical event model. ViTABaL-WS provides a Tool 

Abstraction language for the design and construction of action-event propagation architectures. 

Kaitiaki provides an extensible Event-Query-Filter-Action language for both action and state-change 

event propagation and handling. MaramaTatau provides a static Spreadsheet-like dependency and 

constraint mechanism to support specification of state-change event propagation and response. A 

synergy of these languages and their generalisation in the Marama meta-tools environment provide 

wide-ranging support for event-based system design and construction.   
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