Visual Languages

for Event Integration Specification

Karen Na-Liu Li

A thesis submitted in fulfilment of the requirements
for the degree of Doctor of Philosophy in Computer Science,
The University of Auckland, 2007.






Abstract

The thesis demonstrates that visual approaches to modelling event-based systems are more effective
than traditional textual scripts and code. We have both investigated existing approaches and
developed new techniques for visual event-based system integration. We have used domain-specific
visual languages with different high-level visual metaphors to specify event-handling support and
provide backend processing tool support for both event integration specification and visualisation of

event propagation.

We have developed three different visual metaphors for event-based system specification. The first,
ViTABaL-WS, uses the Tool Abstraction (TA) metaphor to support specification of web services
composition via higher level data and control flows and generation of BPEL4WS code. The second,
Kaitiaki, uses an Event-Query-Filter-Action (EQFA) metaphor to allow visual primitives
composition and java code generation for diagramming tool event handlers. The third, MaramaTatau,
uses a spreadsheet-like metaphor to construct metamodel formulae visually to specify structural

dependencies and constraints to be realised at runtime.

We have generalised from these three visual event-driven system metaphors to develop a new,
generic visual event handling metaphor. From this we have built a novel multi-paradigm hybrid

metamodelling environment for specifying generic event-based system behaviours.



Acknowledgements

I would like to express my endless thanks to my supervisors, Professor John Hosking and Professor
John Grundy, for their enthusiasm in knowledge sharing and continuous support on both the thesis
and my career development. During the many years of collaboration, | have learned from them a
positive way to think, a diligent way to do, an innovative way to invent, and a generous way to give.
| believe these are the factors that will drive me to a success in the near future.

My warm thanks to my parents for their love, high expectation, encouragement and support. It is now

the time to reward them all my love and support.

My tearful thanks to my husband, Richard Lei Li, for his sweet love and care. His “intrusion” in my
life (May 2005) made this research ever hardly progress in a year but traded surprisingly for a life
ever since full of romance and joy. Many thanks to Richard for being always smart, proactive,

hardworking, and most importantly, being with me in managing a wonderful life for all our family.

Accidentally once, I found these words on web, “Life itself cannot give you joy unless you really
will it. Life just gives you time and space, it's up to you to fill it”, and the words have been

surrounding me always to remind me what | want and how I do.



To Mum and Dad,

Thank you for giving me all the gift, encouragement and support. They make this achievement, and |

am sure many future achievements, possible.






Contents

ABSTRAGCT .oceereeerertesseeieseesessessssesessesessssssssessssesssassssssssessessssssssssessssesssassssssessssesssassssassssssesssassssssessssesssassssssassnnes 1
ACKNOWLEDGEMENTS ....uticerttretererereesnesessesessessssssssssesessessssssssssessssessssssssssesssssssssssssssesesssssssssssssessssssssassssssasssns ]
LIST OF FIGURES.....uttieteiertiesterenreressesssstesessesesssessssesessesessnessssesssssssssnessssessssssssssessssessssssssssessssesssssessssessssessssnesss Vi
LIST OF TABLES.....teeeeereeteesterenresesntsssnteseseesesnsessssessssesessnessssesessessssnessssessssssesssessssesssssssssnessssesssssssssnessssenssnnessn IX
CHAPTER 1 - INTRODUCTION ciiiictiiiietenienreiiessseisssasessessssssesssssssssssessessassssessasessessasassessasssssssasssssssnssss -1-
T.1 INTRODUCTION ..ccueiiiiitteeee e e uttteeeeeeeeauaebeteeeeeesauuste e e eeeeee s aass bt e e eeeesaaasbeaeeeeesaaanbeaeeeeeeaaanbaeeeeeeeesannssnaaaeeeesenannraneeas -1-
1.1.1  Events and Event-driven SyStems in GENEIaAL.........ccoioioiiiiiieieeeeeee ettt -1-

1.1.2  Textual vs. Visual Event Handling SPeCIfiCation ...........coooevirerieieeeee e -3-

1.1.3  GOAIS OF RESEAICN ...ttt ettt s et se e s santenessesenensen -4-

IO S |V T o [o] (oo |2 Ot -5-

1.2 CONTRIBUTION OF RESEARCH.......ccutiiiiiiiiiiiiiiiie ittt sttt a e s ba e e s ha e s ba e e saa e s sba e e s aaessan e e sbaeesnnee e -8-
1.3 THESIS ORGANISATION ....cceietiiauunrtteeeseaniunteteeeeeaaaaustereeeeeessassaetaeeesssaaansseaaeesssaaansaaeeeessasassaseeeesessannssnaeaeesesannsnrenees -9-
Ti4  SUMIMARY ....ooiiiiiiiiiiiitee e e e e ettt e e e e e e s e bttt e e e e e e s uas bt eeeeeesaaasba et eeeeea s anbe et eeeeeesaasbe et eeeeee s s babaeeeeeesaaasnbaeaeeeesennnreaeeas -10-
CHAPTER 2 -BACKGROUND AND RELATED RESEARCH ....ccovviiiiiiiiiiinieinnsssnessnesssssssssessssenss -11-
2.1 EVENT-BASED SYSTEMS......oiiiuiiiiiiiiiiiiitiiitttesiee ettt e siaessia e e saa e e saa e e saa e e saa e e sab e e sab e e s ab e e s aa e e sab e e s ab e e sab e e saa e e sabeesabeesabeesnbeesars -11-
211 Events in SOftWare ArCHITECIUIE.......c.eoveieieeeeeieeee ettt sttt sttt aens -13-

2.1.2  Events in Graphics and Modelling FrameWOrKS...........cccccereieereniriireieirieieesieieeseeee st -16 -

2.1.3  EVENtS iN DAtAbase SYSEMS. .......eeeeuieieieiesee ettt ettt ettt st eee ettt et e be et ebe et eneeens -18-

2.1.4  Events in Workflow Management SYSEEMS.........coeeieieieierieeiese ettt ettt st -19-

2.1.5  Events in Distributed COMPULING........ccvevierierieiistietieieiee e s ettt te sttt et e et este e ssseseensesesens -20-

2.1.6  General PUrpose EVENt FrAMEWOIKS........cccocveiiruieeieieieiestistist ettt tete st ste st ettt te e ste e sseesesnnensenens -22-

2.2 EVENT HANDLING SPECIFICATION AND VISUALISATION TECHNIQUES .........c.crttrteueriereentrtestenestessenestessenessessenessesseneesessenees -24-
2.2.1  CUSLOM COUE WIITING. .. cuteteieeietirieieierieitetesiet ettt sttt sttt sttt sttt st sae st anen -24 -

2.2.2  DecClarative APPIOBCNES........c.ccerieuiriirieiteiiriet ettt sttt ettt sttt sttt sttt enen -25-

2.2.3  State-based FOIrMALISMS. ........ccui ittt ettt et et saeebe e eneeens -31-

224 FloW-Dased APPIOACIES. ......c.oii ettt ettt sttt -35-

2.25  Programming by Demonstration (Programming by EXample)........ccccevevvvvrveieieieeseeeceeeeieieins -39-

2.2.6  Visual Approaches vs. Textual APPrOACNES.........ccccvevvevvevieeiietieieieietetesee ettt e ae e e s e e e ere e e esesesens -40 -

2.3 GENERAL ISSUES AND REQUIREMENTS .........cutrtiuteutstentenestensentatesseneetesseneasessesesseseesessesseneesessenessensenessesseneesesseneesessenees -42-
2.8 SUMMARY .....uitinietintetettsteneeuesteseesestestese st e seseste st ese et e s e es e e b e e eseebessene ek e s e eneebeseene ek e s e en e ek e b ene ek e nseneebe st entebesbeneebeneeneas -44 -
CHAPTER 3 - MOTIVATION. it cttitetctticstsssts e sesessssasssesee s sassssassssssesssassssassssssesssnssssassssssesssassssasssssness -45 -
3.1 OVERVIEW OF POUNAMU. ......oueuiitinitiiteiettstentettstestetesteseesesteseesestessesesbesaeseebeseeseebessenesbesseseebensenesbesteneetessenesbeseaneas -45-
T8 00 A o T IS o =T o= o ST -46 -

312 TOO  USAQE.. ettt ettt ekttt ettt ettt b ettt enen -51-

3.2 EVALUATIONS OF POUNAMU .....uiiiiiiiiiiieeiiiiitteeeseseiitetteeessesaatetteeeesssasbataeeessesanssstaaeeesssanssnsaaaeesssnsasnsaaaeesssnsannnns -55-
321 Large GroUP EXPEIIMENTS. .....ccui ettt ettt sttt ettt ettt et te bttt e st et et e stestesseebeeneeanenens -55-

3.2.2  Developers of Large APPIICALIONS..........cc.eiueiirereeeeieee ettt sttt -57-



3.2.3  Usability of Substantial Tools Constructed UsSing POUNAMU..........cccecvevierivrerierieieieiesiesess e -57-

3.3 ANALYSIS OF EVALUATION RESULTS ....coieiiieiiieieiiieieieieeeeeeeeeeeeeee e e e e e e e e e e e e e e e e e e e e e e aeeeeeeeeeeeeeeeeeeeseeaeeeaeaeaeaeeeaaaaeeeeeeesaneeeens -58-
B4 SUMMARY ....oiiiiieieeeeeeeeeeeeeeeeeeeee e et e e e e e e e e e e e eeee e et aeasaeaeaeeeaeeeeaeaaaaaeaaaaaeaeaaaesaeetateeeeeaaaeeeaeeaeeeeeeaaeeeeeaeeeaeaeeaeeeeaeeaeaaaaaees -59-
CHAPTER 4 - OVERVIEW OF OUR APPROACH. ... ecccrrcrtreerrenniennnesnssessesssssssesssssssesssessesssssssssssssssnns -60 -
0 S 1V 2T o U Ton 1T PP -60-
8.2 VITABAL-WS ...ttt ettt e e e e et e e e e e e e e sttt aeeeeeeeesetbabaeaaeeesaaasssaaasaeesasssasaaeseeeeeasssasseaeeeesasraseeaeeneans -62-

L T (€Y 17 Y (PSP PPPPP -64-
Q.4 IVIARAMATATAU. ... .ciiittiiiiee et etettit i ere e et etttaua e eeeetttataa s aeeeaaetataaeaeeeeaetssassseeeessssssnsseteseesssssseseeeesesssnsnsseeeeessssnnneseens -65-

L I €131 337V K £ 1 [ ] N IRt -66-
B.6  SUMMARY ....coiiiiiiiiiiiiiiieieieieeeeeee ettt ee e ettt ettt eteteeete e et et e tetateteeeteteteeeateeeeeeteeeeeeeteeteeeeeeeeteeeeeeteeeeeeeeeeeseteseseeeeeeereterererene -67-
CHAPTERS5 - VISUAL WEB SERVICES COMPOSITION....cctttrreeeeeereeeennnncceereeeesnnssseceeseeessnnssssssessasssnnns -68 -
5.1 INTRODUCTION 1uiieieieeiieeeeeeeeeeeieeeeeeeeeeeseeeseeeseeasasasasasasasasesasasesesessseseseseseseseseseseseseseseseseseseseseseeeseseeseesseeeesesesesesennens -68-
5.2 IVIOTIVATION cteeeieeeeeeeeeeeee e e eeeeeeeeseseeeseseeeaeseeeeesesesesaaeaaaasesasesasesesesesesssesesesseesesesesesesessseseeesesseesesseeeeseseeeeeseneeeseneennns -70-
5.3 REQUIREMENTS . eiitieieieieieieieeeseeeieseseeesesesesesesesasesasesesssssssssesesesesesssesesssssesesssesesssesesesssssesesesessessesseeesseseeesesesessseseenens -71-
5.4 RELATED WORK iieieieieiiiiiiieieieieieiesseeieeeeesesesesesesesesasasesssssesesesssesssesssssssssesssesssssesesssssssessssnsssssssnsnsesseesseseseseseseseeens -71-
5.5 IMIETAPHOR «.ieeeeeieieieeeeeeeeeeeseeeeeseeeseessesesesesesesesesesesasasesasesesesasssesesesssssssssesssesesssesessssssseseeenenseseenseseesenseeeeseseneseseenns -74-
5.6 INOTATION «.uiiiiiieieeeeeieiittteeeeessestiateeeeeesssutetaeeeessessasstaaeeesssassnsbaseeaessasnssasaeaessssanssnsaeasesssansssseeesesssnsssssnneesssnnannnen -75-
5.7 LOAN APPROVAL EXAMPLE ....ettiiiiieiititteteeesssittttetesssasueratteesssssassraseeeessssssssanaeesssssassssseeesessssssssseesesssnssssssseeesssnsnnnnes -78-
5.8  DESIGN AND IMPLEMENTATION cteteeeeeieeeeeeeeeeeieeeeeeeeeseeeseeaseeesesaseseseseseseseessesesesesssesesesssesesssesesesesesesesesesssssesessseseseesens -86-
5.0 DISCUSSION. e ieieieieieteeeieeeeeeeeeeeee e et e eeeeeeeeeeeeeeeeeaeasaeesaeesaeaeasasasasasasesaseseseeeseseseseseseseseeeseseseeeseseeeeeeeeeeeseeeeeseseeeeesenennens -87-

Lo IS R Vo | [V o 11 [ IO UR RSOt -87-

5.9.2  Strengths QN LIMITATIONS .........cccveeeveeeieiesitieeiteeeetteeseeeseeesteeesseaetsaeesteeesseesstsseasssesseseassssassssasssssssssasesenns -89 -

5.10 SUMMARY e etetee ettt ettt ettt ettt ettt et et e e e e e e e e et e e et e e e e e e e e e e e e e e aeaaaaeeaeeaaeeeaeaaaaaeeeaaeeeaeeaeaeteaeaeteeeeeteeeeeeeteeeeeeeeeeeeeeeeeeens -90-
CHAPTER 6 - VISUAL GUI EDITING EVENT HANDLING ...t ccccieerreteeecceesieeeeennsseeeessesesnnsssssssssssesnnns -91-
6.1 INTRODUCTION ....ciiiiiiiiiiieieieieieieeeseieeeeeeeseseseesseeesesesesaaaaeeasesaseseseseseseseeesesssesesssesesesesssesesesesseesesseeesseseeeeeseseesseneenens -91-
(<30 2 1Y/ [0 117 1 (o S EUPP R PUPPRN -92-
6.3 REQUIREMENTS ....ceiiiiiiiiieieieieieieeeeeeeaesesesasesesesasasesssasesssssesesesssssssesssssssssesssesesssssssssssssssessnssssseensssessesssesesssessseseneees -95-
B.4 IVIETAPHOR.......uutiiiiiiiiiiietteeeeessesitteeeeesssautttaeatessasssastaaeeesssasssbesaeeessassstasaaasssssassssaeesesssanssnseeeeesssnnsssenaeesssnnnnsnen -95-
6.5 INOTATION .....uiiiiiiiiieeeieiititeeeeeesettteeeeeeeseataraeeeessaassastaaeeeessasssbesaeaessassssanaaaessssanssssaeaeesssnsssnsseeeesssnsssssnneesssnnansnen -96-
6.6  EXAMPLE OF KAITIAKI SPECIFICATIONS.....cciiiiieeeeeieeeeeeeeeeeeeeeeeieeeeeeeeeeeeeeeseeeeeeeseeeteeeeeeeeeeeeeeatesatesaeeeeeseaesseseeesesaeeaeeens -100-
6.7 DYNAMIC VISUALISATION OF EVENT HANDLERS .....ccoiiiiiiiiiiieeeieieeeeeee ettt ettt ettt ettt e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e -103-
6.8  DESIGN AND IMPLEMENTATION ....oiiiiiiieieiieeieieieieeeeeieeeeeeeeeseseeeeeeeeeeeaeeeaeeeeeteesaeteaeeesesesesseeseseteseseseseseeesessseseseseeenenes -104 -
6.9  DISCUSSION AND EVALUATION .....ciiiiiiieieieiiieieieieeeee e eeeeeeee e e ee s e e e e e e e e e s e s e s e e e s e eeeeaeaeeeeeaeaeeeaesesesesessseneseseesseeeeeeeseeeeseens -105-
6.10 SUIMMARY ..ttt a e e e e e e e e aaaaaaaes -107 -
CHAPTER 7 - VISUAL RELATIONAL FORMULA SPECIFICATION ..uciiiiirieeeeecccerneeennnnesceeeeeennannes -109 -
7.1 INTRODUCTION ....iiiieieeiieiiieieieieeeeeseseseseseseseeesesasasesesasasaaasesasesesesesssesesesssseesssesesssesesessseseseseeeseseeeeeseesseseseseseeeeenenns -109-
7.2  FROMPOUNAMU TO IMIARAMA .....oiiiieieieieeeeeee ettt e et e et e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eaeaeaeeaaeeaeeaeaaeeaeeananeeneens -110-
7.3  BACKGROUND AND IMIOTIVATION ....ciiiieieieieieieieieieieieeeieeeieeeeeseseeesesesesesesesesesesesesseesesssssssesssenesssssessssessesessssssesessenes -116-
7.8 IMIARAMATATAU. ..coiiiiiitiiteeet et eseiteteeeeeeesettareeeeesesasbaraeaeeessassassaaaeeessassssseaetesssassssseaeeesssassssseneeesssnssssssnseesesnnsnnses -118-
7.5 CASE STUDY ..cieeeiiiiieieeeieieeeeeeeeeeeeeeeee e e e e e e e e e e e e e e eeeeeaeeeaeaeeaaeeaaseaeaeaesaaaeasasaeeeesasasaeeeeseseeeeeeeeeseeeeeeeeeeeeeeeeeeeeeeeseeeeneenes -123-
7.6 IIVMIPLEMIENTATION ....oiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeaeaeeeaaasasaeasaeeeeseseseeeseseseeeeeeeseseeeeeeeeeseeeeeeeeeeseeeeseseseeeseeesenes -128-
7.7 EVALUATION ..ociieiiiiiieeeieeeeeeeeeee e e e e e e e e s e e e e e e e s e e e s e e e e eeesesaaeseaaeeaasasasaaasaaasasaseaseesesesesesssesesseeseseseseseseseseseeeseeeeeseseeeesnenns -129-
7.8 SUMMARY ....ociiiiiiiiiiiieiieieieieieee e e e e ee e e e e s e s e s e e e e e e et e s e s aeesaaeteaateaaaataeaaetaaaseseaaaateeaeeteeeeaaeteseseseaeteteseeeseseteneeeseeeeeneeeeenenes -131-
CHAPTER 8 - DESIGN OF THE GENERALISED EVENT HANDLING FRAMEWORK.......cccccevveeene. -132-
3% R |V (o] 1177 4 To ] N [ USSR -132-
8.2 BACKGROUND ....ceiiiiiieiiiiiieieieieeeseieeeaeseeesesesesesasasasesasasaaasesasesesesssesesesesesssesssesesssesesesssssesesesesessseeessessesesesesesessnenns -134-



8.3  REQUIREMENTS FOR GENERALISATION.........0ccuvieteeeteeereeiseesesresseesseesseeseesseesseessessessseesessesssssseesseesseensesssesssssssensenns
8.4 GENERALISATION ....coeiiiiiieieeeeeeieieeeieeeeeseeeeaeeeesesasasasasaeaeaeasasaseseseeeseseseseseseseseseseseseseseseseeesessseseeeeeeeseeeeeseeeseeeseeesenes
8.4.1  VITABAL-WS BUIlAING BIOCKS.......c.eiuiieiiriiieiriesieeeeseeeee ettt
8.4.2  Kaitiaki BUIIAING BIOCKS ........ccueeuieeieeieieeese ettt
8.4.3  MaramaTatau BUilding BIOCKS ...........cuoriiiiiieiieeeeeee ettt
8.4.4  Generalised Marama IMELA-T00IS ..........cveveeruieeeieeeeeieetieeteeettecte ettt ett et eeveeve et e et eeveesvsesseeseearenaes
8.4.5  Program ViISUAIISALION ...........ccceeveuieieieiisiestietiettet ettt te et ettt et eetesteetsevsetsesseseaseeseetsassessesseasenns
8.4.6  FrameWOrK EVOIULION .......ccvveoveevieeieeieceeecteeeteee ettt ettt et et e ettt eevseseeseeaseeaes
8.5 SUMMARY ....oiiiiiiiiiiieicieeeeeieeeeeeeee e e e e e e e e e s e e e s e e e s e s e e e e e e e e e e e e et esetesasaaesesasesesesesesesesesesesesesseseeseseneseseneseeeeeeeeeeeneneneeeeenes

CHAPTER 9

-PROTOTYPE OF THE GENERALISED EVENT HANDLING FRAMEWORK..............

9.1 INTRODUCTION ....ceeetiiiiuunrtnteeeeeaaunreeeeeeeaeaannrereeeeeseaannnnreeeeesesaasnnreeeeesssannereneeeee s annnneeeeeseaannnneneeessaannnnaneeeeesanannnen
9.2 STRUCTURE SPECIFICATION ....cceeiiiuuttunteeeeaaianrereeeeesesaunereeeeesesasnereeeeesssasnsreneeesesasnsneneeesesannnnneneeesssannnnnaneeesssannnnnen
9.2.1  MArama TOOI PrOJECL.......ccveeieieetieiieeeeese sttt st s et et estestessesneenenasensenes
9.2.2  Marama Metamodel DEFINEN........ccveveieieeeeeieeee ettt sttt st e e
9.2.3  Marama ShAPE DESIGNEN ......c.ceuerieuerierieierierieieeiest ettt ettt sttt sttt sttt sae et s st et sseateteste e etesseseeiens
9.2.4  Marama VIeW TYPE DEFINET .......ccueeiiieerieieeeieseeeset ettt sttt
9.25  Marama Model Project and Marama Diagram...........cceeererereeieieieie ettt
9.3 BEHAVIOUR SPECIFICATION.....ceiiiuuuttttteeeeaaaautttteeeeesasauueeteeeesesasseeeeeeesesaaneseeeeeseaaansseeeeesesaannsseneeessaanansreneeasssannnnnen
0.3.1  MaramaTatau FOIMUIAE. ........cocvveirierieieiesieeetes ettt sttt sttt sttt st testeseeaesteeesens
9.3.2  VITABAL-WS EVENt Propagations .........ccecevuierieeierieiesiesiestistestsestesessesesssesssssesssssessessesssssssssssssssssenns
9.3.3  Kaitiaki Visual EVENt HANGIETS...........ccvevieieriieiieeieeieeee sttt sttt st sne e
0.3.4  ESCAPING 10 COUR ....cuemeeerienieiteteteeste sttt ettt ettt ettt ettt s st et ss et etesse st eaenaeaeeaens
9.4 PROTOTYPE IMPLEMENTATION .....cveveutetetesestetesessesseseesessesessassesessessesessessesessensesessansesessensesessessesessansesessessesessansens
9.5 SUMIMARY .....eeiiititet ettt et e e ettt e e e e e s bttt e eeeeea s uae et e eeeeeaa s ae e et eeeeeean bbbt e et e e e eaanebeeeeeeeeaannnbeeeeeeeeaaannraneeeeeeeaannrae

CHAPTER 10

- EVALUATION OF THE GENERALISED FRAMEWORK .....ccccivntiinninsnnenineiieninanes

10.1 INTRODUCGTION ....uuiiiitieeiiieeeetteeeett e e ettt e ettt eeetaaeesannesesaneesssnasssnnsesstaneesssnnsessnnesssaneesssnesessnnsesssnneessnneessnnnnes
10.2 EVALUATION TECHNIQUES ......ccuuuiiiitieeeitueeettieeeetteeettteeesatneesssneeessnnresstnneesssnsessnnsesssnneesssnessssnnsessnneesssnneeessnenes

10.2.1
10.2.2
10.2.3
10.2.4

COGNILIVE DIMEBNSIONS .....eitiieeteeieeeee ettt ettt ettt et sa e e sb e e tesaeeat et et e tesbesaeeaeeaeeneennas
Evaluation against the REQUITEMENTS..........coieieieiee ettt
Large ENG USEE SUIVEY ...c.vevieeieeieeieiietesttettetete et te sttt et e e saeste e e tasta e st esaessessessassaasesssssaessessesans
Small Experienced USer GroUP StUAY.........cceeverreieierieriisiesiietieieiesiestese st eveesetesieste e snseseese e

10.3 FURTHER CONTINUOUS EVALUATION PLAN .....uuuuuuuiiiuiutiinieiunnnnnnnnaanannnnnnannnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnn
10.4 SUIMIMARY ...ovtiiiiiiiiittitiieeeeereettttiiaeeeersesrtaaaseeeressranaaseessssstannesessssssnsnntesessssssnsnnsesessssssssneseeessssssnnesesssssssnnnnns

CHAPTER 11

- CONCLUSIONS AND FUTURE RESEARCH......cccvnviiitiiininneneeieeisenenseesseessaees

11.1 RESEARCH CONTRIBUTIONS AND CONCLUSIONS.........uuuuuuuunnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnsssnnnsnsnsnnnsnnnnnnnnnsnnnnnnnnnne
11.2 FUTURE RESEARCH ......uuuuuuuuuuuuuununununnnnnennnennnnnnnnnnnnnnnnnnnnnnnnnnnsnssnssnsnssssssssnnsssnsnsnsssnnnsnsssnsnnnsnnnssnnnnsnnnsnnnnnnnnnnnnnnn
11.3 SUIMIMARY ..ovttiieiiiiiitiiieeeeeteetttt e eeeeseestaaaseeeresstaaaateessssstaanesesessssrannsesesssssssannsesesesssssannseeesessssnnnesesesssssnnnnns

REFERENCES



List of Figures

Figure 1.1. Simple eVent NanaIer BFFECLS. ... ....ooi i bbb bt nn e e -2-
Figure 1.2. Textual vs. visual event handler SPECITICAtIONS. ......c.cceveiiiiiiie e -4 -
Figure 2.1. Basic structure of event-based software systems. (Grundy et al, 1997) .......c.cccveriinineinneiseee s -11-
Figure 2.2. The observer pattern. (Gamma et al, 1995) ........ccoiiiiiiiiiiiieiie et -12 -
Figure 2.3. Event flow across architecture stack (Hanson, 2005). ........coiiiiiiiiiiie e -13-
Figure 2.4. Model-View-Controller abstraction (SUN, 2005) .........cciiiiiiiiiiieieiere et -14 -
Figure 2.5. The GEF framework (EClipse, GEF, 2007) .......uotiiiiiiirie ittt -15-
Figure 2.6. Maintaining attribute consistency between related components in CPRGs. (Grundy et al, 1996) ............... -16 -
Figure 2.7. User interactive zoomable views (Liu et al, 2004) ........ccoceieiiiieeieieiese e -17 -
Figure 2.8. Calling the notifyChanged() method. (Budinsky et al, 2003)........c.ccceeeieriniiiienieeeiere e -18 -
Figure 2.9. WFfMC Process Definition Meta-Model. (Workflow Management Coalition, 1999) ..........cccceovvviriiicnnnnns -19-
Figure 2.10. Jini™ Distributed Events Specification (SUn, 2005) ............cccereverrererceisrensissesesssessesssssesssesssssessessensoos -20-
Figure 2.11. Event Channel with Multiple Suppliers and Consumers (OMG, 2004) ........ccccereiiereienenereneneesenenens -21-
Figure 2.12. (a) A Simple MDB Application (Sun, 2007), (b) MSMQ model. (MSDN, 2007) .......cccceeereienereinnerienens -22 -
Figure 2.13. The EBI framework: Relationships between components (left) and framework metamodel (right). (Barrett et
L, 1996).... ettt E £ bR £ bR £ R R e £ h R e £ bRt £ b e R e £ bRt £ eE e R e £ bRt e b e R e bRt b e b et -23-
Figure 2.14. (a) Pounamu event handler designer (Zhu et al, 2007); (b) Amulet constraint scripting (Myers, 1997) ....- 25 -
Figure 2.15. Rule graph (Matskin and Montesi, 1998) ..........ccuiiiiiiiiiiiiiseieie et -27 -
Figure 2.16. Reaction RuleML (Paschke et al, 2006) ...........ccuiieiiriirieiieitisiesiiei et be bbb e -27 -
Figure 2.17. A family tree (HanNa, 2002).........cccveieiiiieieitesiesieeiestese et e st e e e aestesbe e sreesae s eseeseestesreaneeseenseseesrenns -29-
Figure 2.18. The line stays attached to the box and circle even when they move. Below the graphic is the code to define
the constraints on the line. (MYErs, 1990) .......cccitiiriiiiiiieie ettt bbbttt be e -29-
Figure 2.19. Basic ALV architecture. (Hill, 1992) ........ccociiiiiiii it -30-
Figure 2.20. Form chart notational elements (Weber, 2002) ..........ccoceiiirriiiiniieieneiesie et -30-
Figure 2.21. Adding constraints. (TOIVANEN, 2008) ...........couiirieiiirieiii st sr e sre et eb e e sb e sb e e arenreneas -31-
Figure 2.22. Modeling a reactive system with Petri nets. (Palanque et al, 1993) .......ccccoeiiiiiiiniieis s -32-
Figure 2.23. (a) State transition diagram. (b) State transition table. (Drumea and Popescu, 2004) ..........ccccocerervnerennas -33-
Figure 2.24. An event graph (Berndtsson and Mellin, 1999)..........coiiiiiiiiiiii s -33-
Figure 2.25. A time graph (Berndtsson and Mellin, 1999) ........ccciiiiiiiiiee e e -34-
Figure 2.26. BPEL4WS specification and deployment using BPWSAJ, ........ccooiiiiiiiiieiieeeee e -36 -
Figure 2.27. Basic modelling capabilities of VEPL. (Grundy and Hosking, 1998).........cccccccveiiiierienenisieceseeiese e -37-
Figure 2.28. Multiple event processing, stage coordination and external process interfacing (Grundy and Hosking, 1998) -
38 -
Figure 2.29. Prograph method implementation. (CoX et al, 1989)........cccoeiiiiiiiiiiiiii e -39-

Figure 2.30. The Alice Authoring Environment (opening scene tab). (A) The Add Object button presents a gallery of 3D
objects. (B) The Object Tree, a PHIGS-like tree of hierarchical objects (C) Camera controls allow the user to drive
around the scene. (D) The Undo button provides infinite animated undo. (E) The Alice Command Box for
evaluating single lines of Alice script. (F) The Script tab reveals a simple text editor where the user writes scripts
that control the objects in the scene. (Conway et al, 2000) ........ccocereiiireieieee e -40 -

Figure 2.31. A portion of a Forms/3 form (spreadsheet) that defines a primitiveCircle. The primitiveCircle in cell
newCircle is specified by the other cells, which define its characteristics. A user can view and specify formulas by
clicking on the formula tabs attached to the bottom right of each cell. Radio buttons and popup menus are

equivalent to cells with constant formulas. (Burnett et al, 2001) ........cccceiiriiieieiiiiie e -42 -
Figure 3.1. The Pounamu approach. (Zhu et al, 2007) ..ot - 46 -
Figure 3.2. Pounamu in use: (a) specification of a visual notation shape element and (b) modelling using this shape in a

UML class diagram tool. (Zhu et al, 2007) ......ooeiiiiiiiieie e et n e - 47 -
Figure 3.3. Example of the Connector designer. (Zhu et al, 2007) ........ccooiieiiiiiiiie e -48 -

Vi



Figure 3.4. Example of the metamodel designer. (Zhu et al, 2007) ........coeiiiriiiiiiiie e -49 -

Figure 3.5. Example of the view designer. (Zhu et al, 2007) ........ccooeiiiriiieieei bbb -50 -
Figure 3.6. Example of the event handler designer. (Zhu et al, 2007) ........coceiiriiiiii e -51-
Figure 3.7. Example modelling tool usage. (Zhu et al, 2007) ......c..ooiiiiiiiieiieieere e -52-
Figure 3.8. Examples of Pounamu DSVL tools. (Zhu et al, 2007) .......cocoiiiiiiiiiee e -54 -
Figure 3.9: Problems identified in 2004 and 2006 SUIVEYS........c.ciueiiiiieiieiesieeeeieseesieseestesessesseessessessessessesssssssssessessesses - 56 -
Figure 4.1. ViTABAL-WS editing iN POUNGMU. .....coveiiiiiiiiiieiie ettt sb et sb et -63 -
Figure 4.2 Kaitiaki STONYDOAIT. .......cviiiiiiii bbbt b e et b e et b e bbbt b e e b e b e - 65 -
Figure 4.3 MaramaTatau editing iN IMBIaMA. ........ccoeiiiiiiiiiei et b et b et b e et eb e b e b sn e ebesrenea - 66 -
Figure 4.4. Event integration specification in Marama meta-toolS. ..........cccoiiiiiiiiiiiici e -67 -
Figure 5.1: Conceptual model of the [0an approval PrOCESS. ........ccoiiiiiriiiiirieese bbb -70 -
Figure 5.2: Web SErVICE COMPOSITION. ....c.viiiitiieiiitiiieiiiie ettt b et b e et b e bbb e et et st e ebesbeseebenrenea -72-
Figure 5.3: Various web service toolies and their interfaces involved in the loan approval process. ..........cccoevvienenns - 80 -
Figure 5.4: Composed Loan APPIOVEr WED SEIVICES. ........cviiriiiiirieiite ettt st er e sb et ebesn e sbenrenea -82-
Figure 5.5: Generating WSDL and BPEL4WS specifications from our ViTABaL-WS model. ...........ccoccoiiniinicnenns -84 -
Figure 5.6: Dynamic visualization of @ VITABAL-WS MOEL...........cccoiiiiiiiiiiiiicieieese e -85-
Figure 5.7: Design of our VITABAL-WS T00]. ......c..ooiiiiiiiiie e et - 86 -
Figure 6.1. Example of a diagram-based deSign T00]. ..ot -93-
Figure 6.2. Example of event handler textual SPeCifiCation. ..........coeiiiiiiiiiiiiii e -94 -
Figure 6.3. The Kaitiaki EQFA MELAPNOT. ..o bbb -96 -
Figure 6.4. Example of addition of @ NEW SUD-PAJE. ......cociiiiiiiic e -100 -
Figure 6.5. Specifying a layout constraint eVent NANAIET. ............cooiiiiiiiii e -101 -
Figure 6.6. An example of a reusable VISUBI QUENY. ........coo it -101 -
Figure 6.7. Visualising execution of a visual event handler. ... -103 -
Figure 6.8. Extensions to Pounamu (NIghIIGNTed)..........ooiiiiiiii e -104 -
Figure 6.9. Compiling a visual eVENt haNAIEr. ..........coeiiii i e sne -105 -
Figure 7.1. The Marama approach to realising Eclipse-based visual language tools. (Grundy et al, 2006) ................. -111 -
Figure 7.2. The architecture of Marama. (Grundy et al, 2006) ..........ccceriririiieiieiere e -112 -
Figure 7.3. Implementation of Marama. (Grundy et al, 2008)............ccoerireiiiiieiee e -115-
Figure 7.4. MaramaTatau VIiSUI NOTATION. .......c.eiiiiiiiie ettt et be e -119-
Figure 7.5. (1) Model instantiation view and (2) model INStaNCE VIEW.........c.cceiueiiriiieiiiie e -122 -
Figure 7.6. FOrMUIA AEDUQG VIBW. .....cuveiiiiiie ettt ettt e et e st et et et et e enaese e e e tesaesbesteeneeneeneeneennens -123 -
Figure 7.7. A MaramaMTE architeCtUIE VIEW .......cc.oiuiiiieieiieceeie e e e e e ettt st e e se e e saesbestesna e e eeeneennens -124 -
Figure 7.8. Handler code implementing CONSIFAINT. ...........ccoiiririiiinieeie e -125 -
Figure 7.9. MaramaMTE model behaviour SPECITICALION. .........ccviiiiiiiiicie e -126 -
Figure 7.10. Using formulae to CONSErain ENTITIES. ......coieiieiieriee i -128 -
Figure 7.11. The initial architecture of Marama meta-tools. (adapted from Figure 7.2) .......ccccoorenvininnineneicnee -129 -
Figure 8.1. A general purpose event handling frameWOrK. ..........ccooiiiii i -133-
Figure 8.2. Relationship between patterns in the pattern language. (Roberts and Johnson, 1996) ...........cccccevevveiennne -135-
Figure 8.3. Merging CPRGs organisation, ViTABaL event propagation and Serendipity event filtering/action. (Grundy et

LI TSRS - 136 -
Figure 8.4. ViTABaL-WS event propagation definer in Marama meta-tools............ccoveriieninniniencisee e - 140 -
Figure 8.5. Kaitiaki event handler specification (a) and its runtime execution effect (D). ........ccccoverriiiniiniiiiiee -142 -
Figure 8.6. The Marama Meta-tools approach. (Adapted from (Grundy et al, 2006)).........c.ccoeiererrienensieneneeseee -145 -
Figure 8.7. Unified event handling in MaramaTatau and ViTABaL-WS using KaitiaKi............cc.ccoceoninnininiicnennn - 146 -
Figure 8.8. Event propagation definition in ViTABaL-WS and event handler definition in Kaitiaki. ...........c..c........ - 147 -
Figure 8.9. Marama Meta-tools Event Handling Abstraction Framework............ccccoiiiiiniiiiiinenc e - 147 -
Figure 8.10. Marama EMF SPECITICALION. .......vcviiiiiiiii ettt sttt st be e ne e e e e e neennen -148 -
Figure 8.11. Common event handling MOEL. ...........cooiiii i -153 -
Figure 8.12. MVC 0f Marama Meta-t00IS.........c.coviiiiiiiie ettt ae s be e ne e e e eeneennen -154 -
Figure 8.13. Metamodel definer in Marama Meta-t00IS..........oceiiiriiiiise e - 155 -
Figure 8.14. Shape designer in Marama Meta-t00IS. ..........ccviireieiirie e e - 156 -
Figure 8.15. View type definer in Marama Meta-to0lS. .........cooeiiiriiiiiei e - 156 -
Figure 8.16. MaramaTatau integration in View Type DefiNer. ........ccoi i - 158 -

vii



FIQUIe 8.17. VISUAI DEDUGUET. ..ottt bbbttt b ettt b ettt b ettt b ettt b b -159 -

Figure 8.18. Visual debugging MaramaTatau fOrmMUIBE. ..........ccooiriiiiiiiie e -160 -
Figure 8.19. Visual debugging a Kaitiaki eVent NANGIEr............ccoiiiiiiice e -161 -
Figure 9.1. Overview of tool creation with Marama meta-toolS. .........ccccviviieiieieierc e - 164 -
Figure 9.2. Tool creation in Marama MEta-t00IS..........cccviiviiiieiiciescse e et re e e e nne - 167 -
Figure 9.3. Association type specification in Marama meta-to0IS. .........c.cciireiiiiiei i -168 -
Figure 9.4. Attribute specification in Marama mMeta-toolS. ... -169 -
Figure 9.5. Sub-typing in Marama MEeta-toOIS. ..........cccoiiiiiiiee e - 169 -
Figure 9.6. Generation of Metamodel XML files in Marama meta-tools. ..........ccocereiiiensiinenciseee e -170 -
Figure 9.7. Shape and connector design with concrete viewers in Marama meta-tools............ccccoeveienennieneneienenes -171-
Figure 9.8. Exporting visual properties in Marama mMeta-too0IS............cooiiiiiiiiiiiiic e -174 -
Figure 9.9. View Type Definer in Marama Meta-t00IS. ..........cooiriiriiiri i - 175 -
Figure 9.10. A diagram (view) of a Marama mOdel PrOJECL. .......cc.ooiiiiiiiieiieie e - 177 -
Figure 9.11. The Model Instances view associated with a Marama model Project..........ccccvevveieverieviesinsieceeieseseniens - 177 -
Figure 9.12. Runtime tool behaviour (i.e. derived value updates) enabled using Marama meta-tools. ..............cccceei.. -179 -
Figure 9.13. MaramaTatau behaviour SPECITICALION .........cccviiviicieiire e see -181 -
Figure 9.14. Visual formula specification via clicks and highlightS ...........ccocooeiiiiiii -184 -
Figure 9.15. Indication of erroneous formula COMPIlALION ........ccoieriiiiiiiii e -185 -
Figure 9.16. AddiNg USEE FUNCLIONS. ........eiiiiiieeieiie ettt bbbt b et b e bbb n bt -185 -
Figure 9.17. Defining VIEW tYPe TOMUIAS ......c..oiiiiiiie bbb - 187 -
Figure 9.18. A ViTABaL-WS event propagation VIBW ..........c.ccurerieirerieineniee et sre et -189 -
Figure 9.19. Kaitiaki event handler SPECITICALION. ..........ccoiiiiiiiee e -191 -
Figure 9.20. The custom code writing approach in Marama to define event FIOwS. .........cccoovviiiiiiiiiiiieiiceee e -193-
Figure 9.21. Marama handler RIEIArCNY ..........ooviiiii et b et e b e -193-
Figure 9.22. Registering a handler to the metamodel or a view type in Marama meta-tools..............ccoovveiiiiniiicnns -195 -
Figure 9.23. The component structure of Marama Meta-to0IS. .........cccvvviiiieciieie e -196 -
Figure 10.1. Minimal task COMPIELION. ........ccoiiiiiic bbb - 207 -
Figure 10.2. Problems identified in the SUNVEY. ..o e - 208 -
Figure 10.3. Proposed improvements/extensions in the SUMVEY. .........ccociiiiiiieieiene et - 209 -
Figure 11.1. Outline of using MaramaTorua. (Huh et al, 2007) ........cooiiriiiiieie e - 216 -

viii



List of Tables

Table 2.1. Comparison of event handling specification and visualisation teChNIQUES ...........ccooereiiiininienicereie e -43 -
Table 5.1: VITABAL-WS NOLAtION OVENVIBW. .......veiiiireiiriieieisrecris sttt -78-
Table 6.1. Kaitiaki language Key VISUal CONSIIUCTS. .........uivireiiiiiie ettt st st e e e e nre e -97 -
Table 6.2. Overview of Kaitiaki reusable building BIOCKS. .........ccoiiiiiiii e -99 -
Table 8.1. Building blocks defined for VITABEL-WS. ..o e -139-
Table 8.2. Building blocks defined for KaitiaKi. ..o e -141 -
Table 8.3. Building blocks defined for MaramaTataU. ...........cccoeriiriririneeieee e -144 -
Table 10.1. The evaluation methods adopted by the Marama meta-toolS. ..........ccceoririiiiineine e -201-






Chapter 1 - Introduction

This chapter discusses the core research, the exploration of three different visual event handling
metaphors of event-based software development and their generalisation into a generic event
handling framework. The goals of this research are described, followed by our methodology towards
the research. The main contributions are then summarised. We outline the thesis organisation at the

end of this chapter, with a brief description of contents for each chapter.

1.1 Introduction

The event-driven paradigm is widely used in a range of application domains due to its flexibility for
constructing dynamic system interactions. This thesis initially focuses on the specification of event
handling behaviours in three complex types of system: web services and business process
composition systems, graphical user interface (GUI) systems, and constraint-based metamodelling
systems. We subsequently propose an integrated visual approach that is generalised from the three

explored exemplar approaches to specify event handling behaviours.

1.1.1 Events and Event-driven Systems in General

Events are notifications of state-changes or actions/commands. Typically the event model contains
events, event generators (event source/notifier), event dispatchers, event consumers (event
observer/listeners/receivers) and event handlers (reacting programs, often sharing the event listener
role). An event object may contain almost every concern of an event-based application including the
event name, event type, event generator, affected objects and other application-specific information.
Subscription by the event consumers to the event generator is a vehicle to trigger event-based
communications (MSDN, 2007).

Event-driven systems are ubiquitous in many application domains. They present loosely-coupled
system behaviour (Grundy et al, 1997). Both the OMG (OMG, 2004) and Sun (Sun, 2005) strongly
advocate the notion of event-driven systems. Example event-driven systems include GUI design

systems, distributed systems, database systems and workflow management systems. Such systems all

-1-



incorporate events of interest, conditions (“filters”) on whether to respond to the event and action(s)
to run that may modify the system state. Example approaches for specifying event-handling include

scripting, Event-Condition-Action (ECA) rules, and spreadsheets (single direction constraints).

As an example of an event based system, consider a diagram-based design tool for project
management, an example use of which is illustrated in Figure 1.1. This consists of a work breakdown
structure view (rear) and a Pert chart view (front). We have built this tool with the Pounamu meta-
tool along with many other diagram-based design tools (Zhu et al, 2007). Such applications allow

end users to model complex design problems using visual notations appropriate to the domain.

view_type_WES_0

2702405 10.28.09

1.1
Title

] 0 ] 0

27A02A05 10:28:14 27A2AG 10:20:07

2FA2A5 10:28:29

4 |

Figure 1.1. Simple event handler effects.

In Pounamu (Zhu et al, 2007) event handlers are typically used to add model/view level constraints,

complex data mappings, back end data export or import e.g. code generation, and access to remote

services to support tool integration and extension. Each handler specifies:

e the event type(s) that causes it to be triggered, e.g. shape/connector addition/modification,
information model element change, or user action;

e any event filtering condition that needs to be fulfilled e.g. property value of shape or entity; and

¢ the response to make to that event, i.e. action to take, as a set of state changing operations.



In the above example, when creating a task icon for the work breakdown structure diagram, several
values for its properties need to be set by the event handler. These are gathered from a range of
sources. When the user adds a new ProjectShape, the event handler is fired by the generated
NewShapeEvent. Information is queried and added to the new shape. This results in the project shape
being given default values for attributes such as “ProjectID”, “Title”, “Duration”, “TotalCost” and
“CreationDate” when it is created. Updates to the new shape are reflected in the Pounamu modelling
view. Event handlers can also be used to provide automatic layout of shapes for the diagrams. The
event handlers are defined to respond to a built-in Pounamu NewConnectorEvent. When a user adds
a specific connector from a parent shape to a sub-shape, an event fires and the event handler locates

the parent shape with all its sub-shapes, and then aligns the sub-shapes.

In general software systems, communication between components is typically achieved by procedure
calls. Event-driven systems differ in that event propagations are organised between an event source
and all its inter-related event sinks. When an event is generated from the event source, the event
sinks are notified of the incoming events, and corresponding actions are taken based on the

underlying event handling specification.

1.1.2 Textual vs. Visual Event Handling Specification

Once an event happens, handling behaviours can be triggered such that the event can be published,
filtered, transformed, logged, and/or processed. The design and construction of event-driven systems
can be very difficult due to complex event propagation and reaction behaviours. The currently
dominant custom code writing approach requires end-users to master a programming language and
API of the application domain, which is non-suitable for non-programmer end users. An appropriate
high-level visual specification language and tool support should contribute to making the process less
stressful (Liu et al, 2005; Zhu et al, 2007). In this thesis we explore existing event handler
specification approaches and then develop new techniques for visual event-based system integration.
We have used a variety of domain-specific visual languages with different high-level visual
metaphors (including Tool Abstraction, Event-Query-Filter-Action and Spreadsheet) to specify event
handling support and provide backend processing tool support for event integration specification and

visualisation of event propagation.

Figure 1.2 illustrates the first evidence of advantages of visual event handling (b, c, and d) on top of
textual scripting (a), as graphic notations are used to make event handling specifications easier to
understand. Figure 1.2 (a) shows the textual scripting approach used in Pounamu to define an event

-3-



handler. Figure 1.2 (b) shows an event handler specification by composing visual primitives. Figure
1.2 (c) shows visual specification of event propagations among structural and behavioural
components of a system. Figure 1.2 (d) shows the specification and visualisation of model-level
dependencies via unidirectional constraints. We summarise our approaches to event handling

specification in later sections.

YisualEvertHandlerd l a

Pleaze specify the everts this visual handler will responzse to it Title

[~ NewShapeEvert [+ MewCaonnectorEvent [~ RemoveShapeEvent MNewSha Duration  TotalCost
=k

[V RemoveCornectorEvent | MoveShapeEvent [~ ResizeShapeEvent Creation Date
+

[ ChangePropertyEvert [ al | | shapeType | b
shdpe

Plesze import any class you want here l

hatne value
java.util.*; i setProps
B i ! R,

Pleaze input the action code here

if (entities.contains (entity)) A
selectedlcon. setColor(jave.awt.Color.blue) ;

elze
selectedIcon. setColor(jave.avt.Color. red) 270205 10:16:09

v
e mlerral G el 'I|
1[ [

arocessinput C Trpe d

name String key
]

messagel

| ‘Whole

operstion numParts ink nonkey O
UperaﬁﬂnDQ volurne double nonkey ®
- rice double nonke: i
messaged Web service1 L i Rk .
big boolean nonkey Q | Part
Eperationz partsList MultiLinesText nonkeyO area double nankey
Weh service? | depth double nonkey
velume double nonkey
operation3 | ciistdouble nonkey
markup double nonkey
tata store big boolean nonkey

Figure 1.2. Textual vs. visual event handler specifications.

1.1.3 Goals of Research

Visual approaches, compared to custom code writing, have shown their advantages in minimising
design and implementation effort and improving understandability of programs (Green and Petre,
1996; Cox et al, 1997; Grundy and Hosking, 1998; Burnett et al, 2001; Grundy et al, 2006). This
suggests that a visual language that supports event integration specification is likely to be a positive
approach for the design and construction of a complex event-based system. Visualisation support
(tool support) for the event propagations in the running system is also necessary in order to allow
users to track and control the system execution behaviour (Grundy et al, 1995; Grundy et al, 1997;

Jin, 2003). Using different high-level visual metaphors for event-handling support and providing

-4 -



backend processing tool support for event integration specification were our main objectives. Based
on in-depth research on current event handling techniques including custom scripting, constraint-
based programming models and metamodel tool event handling metaphors, our initial goal was to
develop three exemplar domain-specific visual languages to examine event handler specification
issues in different domains. The subsequent goal was to generalise from them to a visual metaphor
and an environment for specifying general event handling integration. In achieving this our aim was
that the general visual metaphor should be able to adapt the event-based communication model to a
wide range of application domains, and also support complex and interactive system design and

implementation.

1.1.4 Methodology

Our approach to achieving our goals was based around the following methodological steps, repeated

for each metaphor:

e We began with literature review of event systems in general and compared major visual event
handling techniques. The requirements for event handling specifications were identified, together
with the discovery of advantages and weaknesses of the current event handling techniques.

e We then focused on problems and issues in existing event-based approaches and tool support and
selected a choice of metaphor as our target of research focus.

e We designed event handling support for the selected metaphor addressing an analysed set of
requirements on the problem domain.

e We proved our concept for that metaphor by developing prototype systems and examples.

e We undertook evaluation of our visual language and environment to gauge its effectiveness.

Having examined several metaphors, our next step has been to develop a high-level abstraction of
these metaphors suitable for a range of application domains. We have initially developed three
exemplars using such an iterative approach; they are ViTABaL-WS (Liu et al, 2005), Kaitiaki (Liu et
al, 2005), and MaramaTatau (Liu et al, 2007). We have then generalised the three exemplars into a
metamodelling environment to support event handling integration. Each of the three exemplars and

the generalised event handling framework is briefly summarised in the following subsections.

1.1.4.1 Visual Web Services Composition
One example event-driven problem domain is web services composition. Web services have become

a popular technology for building distributed systems, but there is a lack of languages and tools to

-5-



specify web service compositions at high abstraction levels, and from that generate lower-level
executable process code such as BPEL4WS (IBM, 2003) and visualise, at high abstraction levels,
running web services. Most approaches provide basic flow-like BPEL4WS editors or similar
(Srivastava and Koehler, 2003). More abstract approaches (Fensel and Bussler, 2002; Foster et al,
2003; Tang et al, 2004; Jung and Cho, 2005; Liu et al, 2007) only support limited compositional
approaches or do not support generation of BPEL4WS or similar executable forms. We have
developed a new approach for complex web service composition using a high-level metaphor and
visual language, called ViTABaL-WS (Liu et al, 2005), which uses a “Tool Abstraction” (TA)
metaphor for describing relationships between service definitions, and multiple-views of data-flow,
control-flow and event propagation in a modelled process. This supports higher level design views
for service composition (as shown in Figure 1.2 (b)) that are complementary to current web services
composition standards. ViTABaL-WS also supports visualisation of running processes to support
architecture understanding and visual debugging of specified protocols.

1.1.4.2 Visual GUI Editing Event Handling

The second problem domain that we have focused on is visual design tools. These tools have many
applications, including software design, engineering product design, e-learning, and data
visualisation. Pounamu (Zhu et al, 2007) is a meta-tool we have developed for building such visual
design tools. It incorporates high-level visual specifications of tool metamodels and visual language
notations allowing non-programmer users to modify aspects of their tools such as appearance of
icons and view compositions. However, users of visual design tools commonly wish to modify tool
behaviour (Morch, 1998; Peltonen, 2000) to specify editing constraints, automated diagram and

model modification, semantic constraints, computation and user interaction alerts.

Most visual design tools are “event driven”, meaning that when a user modifies a diagram in the tool,
events are generated and can be acted upon to modify other content, enforce constraints, etc. (Grundy
et al, 1995; Grundy et al, 1996; Zhu et al, 2007; Eclipse, 2007). We have used the event driven
nature of such tools as a vehicle to provide end users with a domain specific visual language, we call
Kaitiaki, with which to express both simple and complex event handling mechanisms for their
diagramming tools via visual specifications (Liu et al, 2005). These include event filtering, tool state
querying and action invocation as shown in Figure 1.2 (c). We have incorporated this visual language
into the Pounamu meta-tool to provide end users who have little programming background, a

mechanism to specify simple or complex actions to take for given event types.

-6-



1.1.4.3 Visual Relational Formula Specification

It is increasingly common to use meta-tools to specify and generate domain specific visual language
tools (Kelly et al, 1996; Ferguson et al, 1999; Ledeczi et al, 2001; Eclipse GMF, 2007). A common
problem for such meta-tools is specification of model level behaviours, such as constraints and
dependencies. These often need to be specified using conventional code in the form of event handlers
or the like. A well-known and one of the most popularly used end user programming tools nowadays
is the spreadsheet (Burnett et al, 2001; Engels and Erwig, 2005), thanks to its natural tabular and
one-way constraint metaphors. Formulae are designed in spreadsheets to allow declarative
specification of system behaviours and automatic evaluation of them. Our third event specification

metaphor attempts to adapt the spreadsheet approach to model behaviour specification.

We explored this new formula-based approach, we call MaramaTatau (Liu et al, 2007), within the
context of a new visual metamodelling environment called Marama (Grundy et al, 2006), which was
developed as a successor to Pounamu (Zhu et al, 2007). MaramaTatau was first developed as an
external plug-in for Marama to facilitate specification of entity/association property setting and
constraint checking at a model level and later integrated into a meta-toolset for Marama within
Eclipse, providing a single integrated toolset for both specification and generation of Marama tools.
Formula construction in MaramaTatau is similar to a spreadsheet but expressed at a type rather than
instance level as shown in Figure 1.2 (d). Formulae are all interpreted as one way constraints realised
at a model instance level. Error and to-do list critics provide notification to the user of constraint
violations. Visualisations of formula effects are achieved via runtime visual debugging and master-

details tabular model instances data views.

1.1.4.4 Generic Event Handling Specification

Based on the in-depth exploration of the three problem domains and the three corresponding visual
languages, i.e. ViTABaL-WS, Kaitiaki and MaramaTatau, we have developed a generalised
metaphor and a language/framework that can provide support for generic event integration
specification. By abstracting from the three exemplars, a general metamodel representation that
combines atomic primitives (either shared or non-shared) extended by the three visual languages is
defined. This common model supports multiple metaphoric views in the style of the three exemplars
and will support generation to a range of underlying implementation technologies for execution or
interpretation (OCL (OMG, 2003), RuleML (RuleML Initiative, 2006), stylesheets etc.).



1.2 Contribution of Research

We have investigated thoroughly visual language metaphors suitable for specifying event handlers,

addressed existing problems and applied examples to demonstrate the metaphors and prove concepts.

We have developed ViTABaL-WS, a hybrid visual programming environment for design and
implementation of complex interactions and data exchanges among web service components. This
exemplar tool is implemented using the Pounamu meta-tool. ViTABaL-WS uses the TA paradigm to
express complex web service compositions. It provides code generation to BPEL4WS for
deployment and execution from generated process models. An interactive visual debugger animates
running service compositions in ViTABaL-WS by instrumenting debug service calls into the
generated BPEL4WS. A conference paper titled “A Visual Language and Environment for
Composing Web Services” was co-authored with Professor John Hosking and Professor John
Grundy and presented in Proceedings of the 2005 ACMI/IEEE International Conference on

Automated Software Engineering.

We have developed Kaitiaki, a visual language and proof of concept support environment for
specifying diagramming tool event handlers. This uses a metaphor of generating event, tool state
queries, filters over query results and state changing actions, with dataflow between these building
blocks. The support environment allows users to compose handlers from these constructs and relate
them to concrete diagramming tool objects. A debugger uses the visual notation to step through a
specification, animating constructs and affected diagram objects. We have added this tool to the
Pounamu meta-diagramming tool and specified and generated event handlers for example tools,
demonstrating the feasibility of the approach. A conference paper titled “A Visual Language and
Environment for Specifying Design Tool Event Handling” was co-authored with Professor John
Hosking and Professor John Grundy and presented in Proceedings of the 2005 IEEE International
Conference on Visual Languages/Human-Centric Computing. Another improved conference paper
titled “A Visual Language and Environment for Specifying User Interface Event Handling in Design

Tools” was presented in Proceedings of the Eighth Australasian User Interface Conference in 2007.

We have developed MaramaTatau, an approach for constraint/dependency specification in a domain-
specific visual language meta-tool. This borrows much from techniques used to support the
spreadsheet metaphor, but in a situation with less concreteness. MaramaTatau augments the Marama

meta-tools’ metamodel designer, allowing tool developers to specify formulae over metamodels,

-8-



combined with a one-way constraint system to compute values during tool usage. This allows for
much simpler specification of dependency and constraint handling within Marama tools, compared to
both the textual event handlers and Kaitiaki visual event handlers. A conference paper titled
“MaramaTatau: Extending a Domain Specific Visual Language Meta Tool with a Declarative
Constraint Mechanism” was co-authored with Professor John Hosking and Professor John Grundy
and presented in Proceedings of the 2007 IEEE International Conference on  Visual

Languages/Human-Centric Computing.

We have generalised from the three visual event-driven system metaphors and developed a new,
generic visual event handling metaphor. From this we have built a novel multi-paradigm hybrid
metamodelling environment for specifying generic event-based system behaviour that allows escape
from code. A conference paper titled “Visual Languages for Event Integration Specification”
presented our research proposal in Proceedings of the 28th International Conference on Software

Engineering, 2006.

Three other papers supporting this thesis research from motivation to implementation were co-
authored, these include:

e A journal paper titled “A. Pounamu: a meta-tool for exploratory domain-specific visual
language tool development”, which was published in Journal of Systems and Software,
Elsevier, 2007.

e A conference paper titled “Generating Domain-Specific Visual Language Editors from High-
level Tool Specifications”, which was in Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering, 2006.

e A workshop paper titled “Performance Engineering of Service Compositions”, which was in

Proceedings of the International Workshop on Service-Oriented Software Engineering, 2006.

1.3 Thesis Organisation

The following chapters are organized as:

Chapter 2 addresses the problems and examples in the field of event handling specification,
undertakes literature reviews on related work including event-based systems, together with various

event handling specification and visualisation techniques.



Chapter 3 presents an in-depth analysis of problems that motivate our research and describes our

approach to addressing these problems.

Chapter 4 presents overviews of our approach towards creating a general purpose event handling

framework.

Chapter 5 describes the tool abstraction metaphor and the ViTABaL-WS approach in addressing

event-based service-oriented architecture specification and visualisation.

Chapter 6 describes the Event-Query-Filter-Action metaphor and the Kaitiaki approach in addressing

visual GUI editing event handling specification and visualisation.

Chapter 7 describes the spreadsheet metaphor and the MaramaTatau approach for dependency and

constraint driven event handling.

Chapter 8 discusses the design of the generalised event handling framework and the issues

discovered during the generalisation.

Chapter 9 depicts the prototype and implementation of the generalised event handling framework.

Chapter 10 evaluates the generalised event handling framework to address both its effectiveness and

tradeoffs.

Chapter 11 summarises our achievements and proposes future research directions.

1.4 Summary

This chapter discussed the core research, the exploration of three different visual event handling
metaphors and their generalisation into a generic event handling framework. We presented our goals
and the methodology taken towards this research. We present our detailed research contributions in

the following chapters.

-10 -



Chapter 2 - Background and Related Research

The event-based communication model is widely used in many application domains, including
software architecture, graphics and modelling frameworks, workflow management systems, database
systems, and distributed computing. Event handling specifications are typically written using textual
forms, which are error-prone and difficult to visualise and debug. A visual form of event handling
specifications together with tool support is in contrast favourable, but is still sometimes verbose and
limited in power. This chapter summarises our literature review on event-based systems, focusing on
their event handling specification and visualisation support. Issues in designing event-based systems
are explored and common concerns and requirements of event handling specifications are identified,
which include an expressive language that describes both the static structure and dynamic behaviours
of event-based systems along with environment support for modelling and tracing event
propagations. Hybrid visual and textual languages and environments for event-based system
specifications are of particular interest for us, because they can leverage the advantages of both
visual and textual approaches

2.1 Event-based Systems

Event-based systems are different from general software systems based on procedural calls in that an
event-based system features publish/subscribe relationships and dynamic event propagations among
event sources and event sinks. Components are interconnected via events and operation calls, shown
in Figure 2.1, to generate the, so-called, event-based communication. This facilitates loosely coupled
systems with a collection of independent components to dynamically scale and extend (Grundy et al,
1997).

Event propagation Event propagation

Operation

Call

Figure 2.1. Basic structure of event-based software systems. (Grundy et al, 1997)

-11 -



The publish/subscribe pattern, also known as observer pattern, specifies that one or more objects are
registered to observe an event raised by the observed subject (Gamma et al, 1995). Figure 2.2 depicts
the relationship between subjects and observers in the pattern, where a subject generally maintains a

collection of observers. This pattern is mainly used in design and implementing event-based systems.

Subject

* .
Observer (ObserverCollection) registerObsenver(observer)

notify() unregisterObserver(observer)
notifyObservers()

ConcreteObserverA ConcreteObserverB notifyObservers() :
: . for observer in ObserverCollection
t t
By noAky) call observer.notify()

Figure 2.2. The observer pattern. (Gamma et al, 1995)

In event-based systems, an event is the occurrence of an observable activity (either generated
implicitly by the system or explicitly by the user actions) or a state change in the system that may
influence the execution of a user program. An event, represented as either an object or a message, is
broadcast to other components that have indicated an interest in it. The act of selecting the set of
recipients and posting the event to the recipients is known as event notification. Event notification
can be broadly categorised as synchronous or asynchronous, with respect to the raiser of the event. If
raising the event causes the signalling thread to block until it is explicitly resumed by a handler, it is
termed a synchronous notification. If the thread raises the event but does not block, it is termed an
asynchronous notification. Delivery of the notification eventually results in the execution of some
code by its recipient (or an entity designated by the recipient), usually called the event hander
(Menon el al, 1993).

Meier and Cahill (Meier and Cahill, 2002) identify a classification of major event-based
communication properties on the event model and event service dimensions. In this section, we
explore event characteristics and categorise event-based systems based on their major application
domains, including software architecture, graphical and modelling frameworks, workflow
management systems, database systems, and distributed computing. We explain the event usage and

-12 -



handling in these problem domains, followed by an indication of the need for a general purpose event

framework that can support the design and construction of a wide range of event-based systems.

2.1.1 Eventsin Software Architecture

An event-driven architecture (EDA) is a method for designing and using systems which propagate
events among loosely coupled software components and services using the publish/subscribe pattern.
A system of EDA typically consists of event generators, event consumers, and an intermediary event
service manager. Figure 2.3 illustrates that an event can be defined as any change in a system,
platform, component, business, or application process to be published, received, and responded;
events can be high-level and business-oriented or low-level and technical in character. Building
systems around an event-driven architecture allows these systems to be constructed in a manner that
facilitates more responsiveness, since event-driven systems are more normalised to unpredictable and

asynchronous environments (Hanson, 2005).

Sophcaon Aapication 1

I

B{ms‘- [(somn] (senice 2] (Serice3) (Servce 2] ([ Senice ) ]

Business IEVOMS

Y 4
Component | Events
4 v

R e e e e 3
Component ! - s
it l'lz-. Commponent 1 ‘[f:! ' Component 2 _ l Component 3 l&il

Y —

Platorm I Events I
v

o (oviect 1) (oviect 2) ((Object 3) ((Obsect 4] [ Object 5]
»
I System | Events I
4 — v - . s
sta;ee',“ [ [_Operating Syster | [ Network J [ Devices J |

Figure 2.3. Event flow across architecture stack (Hanson, 2005).

EDA extends and complements Service-Oriented Architecture (SOA) (Sliwa, 2003) (Hanson, 2005)
since services can be started by triggers such as an event. SOA focuses on business functions and
EDA focuses on business events, with mutual unawareness of the loosely coupled event publisher
and subscriber components (Hoof, 2006). Web service composition is a form of dynamic,
component-based SOA where web services are “wired together” with messages passing from one to

another.

-13-


http://en.wikipedia.org/w/index.php?title=Loosely_coupled_software_components&action=edit
http://en.wikipedia.org/wiki/Services
http://en.wikipedia.org/wiki/Service-Oriented_Architecture

The publish/subscribe pattern is used in the Model-View-Controller (MVC) architecture (Burbeck,
1992; Sun, 2005), as illustrated in Figure 2.4, where events cause a controller (i.e. event handler) to
change a model (i.e. data), which triggers all dependent views (i.e. data display) to be automatically

updated. Thus the consistency between the model and views are maintained.

Model

* Encapsulates application state

* Responds to state gueries

* Exposes application
functionality

« Nofifies views of changes

( > /
View View Salection Controller
« Renders the models » Defines a.pplic_alic-n behaviar
» Requests updates from models * Maps user actions to
» Sends user gesturestocontroller "1 1 1 1 1 | model updates

* Allows controller to select view User Gestures * Selects view for response
» One for each functionality

Method Invocations

(1 0 Events

Figure 2.4. Model-View-Controller abstraction (Sun, 2005)

The Eclipse’s Graphical Modelling Framework (GEF) (Eclipse, GEF, 2007) uses an MVC
architecture to provide the link between an application's model and views. Requests and Commands
are used in GEF in a similar way to event handlers to encapsulate interactions and their effects on the
model. Figure 2.5 shows a high-level view of GEF. To enable graphical views to update according to
a change in a model, an event object needs to be created in the model and fired to notify the change.
The “EditParts” are the controllers which map models to view representations, listening to model
events (via the the activate () and deactivate () methods) and updating views accordingly (via

refreshChildren () and refreshvisuals () methods) to reflect the changes in models.

-14 -



Interaction
Boundary
(]

Event Handlers

Actions L
+ Canvas
W X g
d 4

+ Menus Tools
+ Toolbars
« Keybindings

User Input

figure ‘ figure ‘

—— -

figure figure figure ‘

.

Figure 2.5. The GEF framework (Eclipse, GEF, 2007)

Multiple-view systems generally have the MVC architecture. The underlying communication and
consistency management between different views of such a system is often enabled by using event-
handling facilities. Examples of multiple-view systems include ViTABaL (Grundy et al, 1995),
MViews (Grundy and Hosking, 1996), and C2 (Robbins et al, 1998) etc.

The change propagation and response graphs (CPRGs) (Grundy et al, 1996; Grundy et al, 1997)
approach or variants is commonly used as the underlying implementation architecture of multiple
view visual environments. CPRGs propagate changes, such as the notification of an icon, as change
description (event) objects between component objects via relationship objects. Receiving objects
interpret or store change descriptions appropriately to maintain consistency (Grundy et al, 1997).
Figure 2.6 illustrates how attribute consistency is maintained between the related “dialog”, “edit
field” and “caption” components in CPRGs. Change descriptions are generated and propagated to the
“parts” and “caption-of” relationships, which then interpret the change descriptions and take

corresponding actions to keep the referential integrity of all the inter-dependent components.

-15 -



nam= ["name dialog"}

drag dialeg
{dinleg)

Enter your name:  imas_s=emes (_ parts )

Enter your age:  (ae_peees) /’.; ™~

||l=_|l| | v Ll

- 1. | =dit fi=ld -""f
Ok Cancel /

r"-ca.pt:l.-:ln -:hf “‘

H nam= [nam=_prompt}
:k\ value {"Enter your nam=:
caption
- x

Rendering CRDG Components

Figure 2.6. Maintaining attribute consistency between related components in CPRGs. (Grundy
et al, 1996)

2.1.2 Events in Graphics and Modelling Frameworks

The delegate event model is commonly used in building graphical user interfaces (GUIs). This model
is based on three entities: a GUI control, callbacks, and interfaces. The GUI control is the event
source which fires events in response to user input. Callbacks are event listeners that receive events
from the source and run when the events fire. Interfaces describe the protocols by which events are to
be communicated, transformed or filtered (Sun, 2007; MSDN, 2007).

In the Java AWT event model, multiple event listeners can register to be notified of events of
multiple types. For an example, a Button in AWT is an event source that can generate a built-in
ActionEvent. The addAactionListener () method can be called on by the Button to add an event
handler which implements the actionPerformed () method to handle the ActionEvent. Event-
handling code executes in a single thread, called the event-dispatching thread, which “ensures that

each event handler finishes execution before the next one executes” (Sun, 2007).

The Jazz (Bederson et al, 2000) graphics toolkit allows Zoomable User Interfaces to be created based
on Java’s event listener model. User interaction events and diagram modification events are listened
and responded to by event listeners. An example application that exploits Jazz is the set of highly

user interactive zoomable views (as shown in Figure 2.7) integrated into a visual language meta-tool

-16 -


http://en.wikipedia.org/w/index.php?title=Event_source&action=edit
http://en.wikipedia.org/w/index.php?title=Event_source&action=edit
http://en.wikipedia.org/w/index.php?title=Event_source&action=edit
http://en.wikipedia.org/wiki/Observer_pattern
http://en.wikipedia.org/wiki/Protocol_%28object-oriented_programming%29

(Liu et al, 2004). Enhanced user-oriented view navigation and management features are provided

based on a set of event handler implementations.

view bype_Class Diagram_2 ] view bype_Class Diagram_1  view tyvpe_Class Diagram_Cwerview ]

Fadar Wiew Zoomable Yiew Focal Yiew

T
e o Fricad |

o et [T Tr] Tom

[Ty T I T =
el

=TTy  prick
[ e

Coa i xa =7 [ caur

| - T
|5|:+ L fara
e b | [ndcda] -

Split Wiews

Faprae Cwa el 1l
[r— hinarms
roar —

[un:m.m.

Il anrann

views bype_Class Diagram | view type_UseCase Diagram |

Figure 2.7. User interactive zoomable views (Liu et al, 2004)

Many modelling frameworks are “event driven”, meaning when a user modifies a model or view,
events are generated and can be acted upon to update other content, enforce constraints, etc. The
Eclipse Modelling Framework (EMF) (Eclipse, 2007) is a framework and code generation facility
that allows definition of a model in Java, XML, or UML. An EMF model is the common high-level
semantics shared by them. One specification can generate others with the corresponding
implementation classes. Every generated EMF class is also a notifier, which sends notifications
whenever an attribute or reference is changed. Notification observers in EMF are called adapters
because they are often used to extend the behaviour of the object they are attached to. Adapters are

-17 -



used extensively in EMF as observers and to extend behaviour. An adapter “can be attached to any

EODbject (for example, PurchaseOrder) by adding to its adapter list like this:

Adapter poObserver = ...
aPurchaseOrder.eAdapters () .add (poObserver) ; ” (Budinsky et al, 2003)
Whenever a state change occurs in the interested object, as shown in Figure 2.8, the adapter’s

notifyChanged () method will be called to handle the change (Budinsky et al, 2003).

Adapter

O

adapfennoﬂ'fyChanged(f

PurchaseOrder

Figure 2.8. Calling the notifyChanged() method. (Budinsky et al, 2003)

2.1.3 Events in Database Systems

Events and reactive functionalities are used in database systems to support integrity of constraints,
view maintenance, access control, and transaction management. Triggers, special kind of stored
procedures, execute automatically in response to an INSERT, UPDATE or DELETE event in a
database table or view (MSDN, 2007). Reactive mechanisms in active databases are usually centred
on the notion of Event-Condition-Action (ECA) rules (Kiringa, 2002). An event defines the signal
that triggers a rule; a condition defines the prerequisite for a rule to execute; and an action defines the
way to update the system. Gatziu and Dittrich investigated the definition, detection, and management
of events in the active object-oriented database system SAMOS (Gatziu and Dittrich, 93), where

events are defined as a part of a rule, and be used in multiple rules.

While the ECA rules can effectively define reactive behaviours in database systems, they require the
users’ capability to understand and code in database programming languages. The ECA rule
specification and processing are generally separated in database systems. The rule execution is not
easy to monitor, unless a formal model can be used to abstract rule bases and their relations,
operations and processes, to reduce the management complexity of a database system (Li et al,
2002).

-18 -



2.1.4 Events in Workflow Management Systems

Defined by the Workflow Management Coalition, workflow is “the automation of a business process,
in whole or part, during which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules.” As depicted in Figure 2.9, a workflow
process defines “various process activities, procedural rules and associated control data used to

manage the workflow during process enactment” (Workflow Management Coalition, 1999).

Workflow Process Definition =~ f-------- S — —————
ay refer fo [m———— - f
comsisis af | (Sub)Process |
miay ineluds e - | il N _D_EflEEIEIl -
A2 il B ~
| fmmmmmamm——.
System & | Workflow "% 4 Workflow Process o implemented | Atomic :
Environmental [ RelevantData  H Activity a3 | Activity |
Activity [y S
Dﬂ.tﬂ - -|__||_t 1 === =====-= |
is performed ' - ==l I
Y A T — [ Loop |
. ¢ iy fimvoke from A b o f
Ray ke &
11
Workflow Workflow Transition
Participant Application Information
Specification Deeclaration *
=+ ¥ J_ i -
p4 Ty use 111c111d1r1g
A I - A - 4 loop control
& > &
:-rm;:?rqfsrsucs
Organisational
Model

Figure 2.9. WfMC Process Definition Meta-Model. (Workflow Management Coalition, 1999)

A Workflow Management System (WFMS) is a system that “defines, creates and manages the
execution of workflows through the use of software, running on one or more workflow engines,
which is able to interpret the process definition, interact with workflow participants and, where
required, invoke the use of IT tools and applications” (Workflow Management Coalition, 1999).
Workflow Management Systems are often event-driven. An occurrence of a particular internal or
external condition to a WFMS is regarded as an event that causes rules to trigger and responding
delegating actions to be taken. Examples of WFMS include Process WEAVER (Fernstrom, 1993),
Oz (Ben-Shaul, 1994), Serendipity (Grundy et al, 1998), jBPM (Koenig, 2004) and BizTalk
(Chappell and Associates, 2007) etc. Such environments often facilitate event-based work
coordination, task automation, and system integration. These events are associated with larger system
components, compared to the graphical and database events mentioned previously.

-19 -



2.1.5 Events in Distributed Computing

Events and notifications are commonly seen in distributed interactive applications, where distributed
user actions are events to which the applications react. A distributed event system generally involves
the object that registers interest in an event, the event generator and the remote event listener (Sun,
2005). In describing the distributed event-based communication, the event model can be categorised
as: peer-to-peer (e.g. Java distributed event model), mediator (e.g. CORBA event channel), and

implicit model where objects subscribe to event types instead of other objects or mediators (Meier

and Cahill, 2002).

@

YN

1, Motification filter
registers interest in a

_gjd of event

Y

2, Eemote event

Remote
ovent
generator

generator returns
event registration

3. Eemote event
generator fires a
remote evernt to
indicate that the kind
of event occuired

|

Mot ification

4, Motificaton
filter fires

fi lter
(registrant)

N

event
[forwards the
notification
to

Object | 2. Object Y fﬂEE-__ Mot ification

Y

an evert

(b)

4, Motification
filter notifies the
registrant that

| Degistrant

filter

all of the kinds
of events hawve
occuired

Figure 2.10. Jini™ Distributed Events Specification (Sun, 2005)

Distributed event-based programs can be implemented in Jini™ (Sun, 2005) by allowing “an object
in one Java™ virtual machine (JVM) to register interest in some event occurring in an object in some
other JVM, perhaps running on a different physical machine, and to receive a notification when an

event of that kind occurs” (Sun, 2005). An event can be generated and passed to a remote event

-20 -




listener which is physically located differently over the network. Notification filters and notification
multiplexing/de-multiplexing mechanisms are also introduced, as illustrated in Figure 2.10, to be
used to help minimise network traffic. Notification multiplexing (as shown in Figure 2.10 (a))
enables the filter to receive a notification and forward it to each of the objects that had registered its
interest in the event notification. Notification de-multiplexing (as shown in Figure 2.10 (b)) enables

the filter to receive a set of events that the object is interested in and deliver them to the object.

OMG defines a set of event service interfaces that enable publish/subscribe communications between
objects. There are two roles defined for objects: the supplier (i.e. event generator) role and the
consumer role. The Event Service facilitates anonymous suppliers/consumers, decoupled
asynchronous communication, group communication among suppliers and consumers, abstraction for
distribution, and abstraction for concurrent event handling. Suppliers and consumers establish
communications via CORBA requests. Event channels are intermediaries that allow asynchronous
communications between multiple suppliers and consumers (OMG, 2004). Figure 2.11 illustrates

channel component and passing of events among multiple suppliers and consumers.

. . IRRN e
Pushfupplier | /
\-, PP i / “-\ Pushfupplier /|
consumer | i > . i -

[ | \~ supplier
" \ PP

! PushConsumer b,

%,
%

j.-' 1pu5h{'.on.t—'.uluer

/ , 4
! || avenr channel f

/ | P
’ \ /Pushsupplier
\Puahgupplier'-, PP I' 4
'| I II ] i
/ 1 1 nnliar
consumer | | '. [ | \ supplie
/ ' "™ Ypushconsumer,
/ 'PushConsumer._ 4 S LLRILE .

Figure 2.11. Event Channel with Multiple Suppliers and Consumers (OMG, 2004)

Message-Oriented Middleware (MOM) systems offer message-based anonymous and asynchronous
communication mechanisms. Sun’s Java Beans (Sun, 2007) are based on the reactive paradigm.
Figure 2.12 (a) shows a simple Message-Driven Bean (MDB) example, where the application client
sends messages to the message queue, and the Java EE server delivers the messages to the instances
of the message-driven bean, which then processes the messages (Sun, 2007). Microsoft Message
Queuing (MSMQ) is also based on the MOM model. Figure 2.12 (b) shows the MSMQ queue’s

-21-



communication model, where queues store messages from a client and forward them to the service.
Using such a MOM model ensures high availability of communications in distributed systems
(MSND, 2007).

i A Application

(@) Java EE Server . contract
Client S
*

-] Service

I i

Sends Delivers

MDB Instances

p|  Target Queue <

Application EJB I
Clert Container - )
\ ] Store

Figure 2.12. (a) A Simple MDB Application (Sun, 2007), (b) MSMQ model. (MSDN, 2007)

Other applications of events in distributed systems include JEDI (Gugola et al, 2001) which is an
object-oriented infrastructure that supports the development and operation of event-based systems
especially distributed workflow management systems, and the web services eventing (Box at el,
2006) specification which describes a protocol allowing event-based communication between web

services.

2.1.6 General Purpose Event Frameworks

Since events are commonly used in many application domains, it seems desirable to have a general
purpose event framework that can support the design and construction of a wide range of event-based
systems. Such a framework should allow reuse of design and implementation thus saves a huge
amount of the development effort and time. Though there exist many frameworks for high-level
event modelling, they generally lack identified support for event handling specification.

Barrett et al defined a generic framework for event-based system integration, named the EBI
framework (Barrett et al, 1996). It defines a flexible object-oriented reference model for both the
static and dynamic specification of event-based systems. Participants in the EBI framework
communicate via four types of components: registrars, routers, message transforming functions
(MTFs), and delivery constraints (DCs). Participants are interacting software modules as either

informers or listeners. Registrars establish communication relationships among participants. Routers

-22 -



deliver messages among participants. MTFs transform messages in transit. DCs control the delivery
of messages against some rules. Figure 2.13 depicts the EBI framework components; the left figure
shows the component interaction relationships, and the right figure shows the abstract data types of

the framework components.

MetaType

registery <Jegister / *
Registrar

Type Object

Informer Listener Attribute  Operation
(Participant) (Participant)
Router
MTFs Message
Reglatrar Router  Participant  Delivery Constraint

Informer Liatener

Figure 2.13. The EBI framework: Relationships between components (left) and framework
metamodel (right). (Barrett et al, 1996)

Yeast (Krishnamurthy and Rosenblum, 1995) is a general purpose platform for specifying distributed
event-based applications. Systems are constructed in Yeast via a high-level language with predefined
object classes and attributes to support specification and matching of event patterns. Yeast supports a
rich collection of client commands that allow users to interactively query and manage the status of
their specifications. Furthermore, security of all client interactions is ensured. Rapide (Rapide Design
Team, 1997) is an architecture description language that supports systems to be constructed via
architecture definitions. It uses event-based simulations to find event sequences, causalities and
constraint violations. Complex Event Processing (CEP), an application of Rapide concepts, assists in
understanding of a distributed enterprise system by organising the activities of the system in an event
abstraction hierarchy. ZOOM (Jia et al, 2005) provides an event model processed by an event-driven

framework to bind the structural, behavioural and Ul models of a software specification together.

Though there exists many high-level event specification frameworks, there is still a lack of a state-of-
the-art framework for generic event handling specification. Most of the above event specification

frameworks support custom event handlers; they neither exploit compositional primitives (such as

-23-



queries, filters, actions, and constraints) as reusable event handler building blocks, nor support

tracing and visualising event propagations between them.

2.2 Event Handling Specification and Visualisation Techniques

Event handling plays an important role in event-based systems. All of the above systems need a way
to handle the receipt of an event, i.e. need to take some action in response to it. The major kinds of
event handling responses from the above systems include broadcasting events, regenerating events,
and consuming events according to ECA rules. There are various techniques for specifying event
handlers, including custom code writing, flow-based approaches, declarative programming, visual
programming and hybrid approaches. Among these approaches, some are easy to use, some require
developers to have expertise of programming languages, and some provide both static structure and
dynamic behaviour views of an event handler. In this section we briefly examine the most common

approaches used for specifying event handling in different applications.

2.2.1 Custom Code Writing

Custom code writing is typically the most commonly used way to design and construct an event-
based system (Grundy et al, 1995; Jin, 2003; Zhu et al, 2007). Users have full and flexible control
over the behaviour that needs to be specified in an event handler. However, it requires the user to be
a competent programmer, and a great deal of time needs to be invested on concerns such as language
syntactic details rather than focusing on the conceptual problem of the system. In some
circumstances, due to the lack of visualisation support, it is often very hard to debug code when the
application becomes sophisticated. Therefore, the quality of the resulting application can not be
guaranteed. Problems of maintenance, reusability and extensibility of the application arise as well
(Jin, 2003).

Examples of reactive systems configured by writing custom code include the following: frameworks,
such as Suite (Dewan and Choudhary, 1991), Meta-Moose (Ferguson et al, 1999), and Unidraw
(Vlissides and Linton, 1989) which require modifications to the tool’s code, with an edit-compile-run
cycle; some Tcl/Tk-based tools may be modified while in use (Welch and Jones, 2003), but this
requires use of the Tcl programming language; and Pounamu (Zhu et al, 2007) supports direct
modification via an API at runtime (as shown in Figure 2.14 (a)). However, usually only
programmers familiar with the tool architecture can make such modifications. Many end users of
such tools are not programmers and have difficulty in using textual, programmatic scripting
languages to tailor their design tools (Zhu et al, 2007).

=24 -



A common alternative approach supporting run-time modification is scripting. This is supported, for
example, by Amulet (Myers, 1997) (as shown in Figure 2.14 (b)) and Peltonen’s UML tool
(Peltonen, 2000). MetaEdit+ (Kelly et al, 1996) also provides a custom scripting language for report
generation while GME (Ledeczi et al, 2001) uses OCL (OMG, 2003) as a scripting language for
constraint specification. These again require the knowledge of scripting languages thus are difficult

for non-programmer users to understand and use (Green and Petre, 1996; Zhu et al, 2007).

YisualEvertHandler0 l (a)

Objectz Edit View Windows Break/Trace Interacters

Please specify the events this visual hander will rezpanze ta

[~ MewShapeEvent v MewConhectorEvert [~ RemmoveShapeEves [3 Tepecting: irs 735>
Inskance eflire>

IV RemoveConrectorEvert | MoveShapeEvert | ResizeShapeEyen | |[Part oftorsated objs*
Elotz: Eorted by name.

[ ChangePropertyEvent [ al 23 [ ol

HEIGHT [eenztrainkt =#WEE¥ 0x20e02e) 123
HIT THRESHOLD 0

THACTIVE COMMBNDE :<Line M3 Inaotive 734>
INFUT 1 :<And Gate 701>

Plegse import any class you want here

] i o
java.util. *; | oeor prace -3
ﬂ IN_VALUE |constraint =gieliEViiCRinty

[EFT |censtraint =*HEE* 0x20ed7e) i1l
LINE_STYLE :Am Blaok

OUTEUT 1 :40r Gabe 717>

OUTFUT FLACE :1
if{entities.containa (entity)) TOF {constraint =WREB¥ 0x20e0Z¢) 163

Please Input the action code here Dependencies of constraint out walue anim 0x158fdd
in slot IN VRLUE of<fire 733>
INFUT 1 ofdiire 733> = <ind Gate 701>
VALUE of#hnd Gate 701» = 1
Contains Constraint and walue 0z158254
INFUT 1 of<Bnd Gate 701> = Gire 1216
VALUE of<fire 1216» =1
INFUT 2 of<hnd (Gake 701> = <Hire 1225
VALUE of<Hire 1226> =1

selectedIcon, setColor(jave. awt,Color.blue); VALUE :1
VIEIELE :1

elze

selectedlcon. setlolor(jave. awt.Color. red);

fhnnbna'l-ihn’\l |

Figure 2.14. (a) Pounamu event handler designer (Zhu et al, 2007); (b) Amulet constraint

scripting (Myers, 1997)

2.2.2 Declarative Approaches

Declarative programming models allow users to define “what” rather than “how”. They provide
another way of specifying event handling using relationships between data as opposed to control
flow (Burnett and Ambler, 1992). Examples include rule-based, functional and constraint-based
programming models. Declarative approaches allow users to ignore the implementation details, but
instead concentrate on the problem semantics of the event handler by specifying relationships
between objects, or conditions guarding the state transition of an object (Jin, 2003). Declarative
systems usually have an embedded runtime engine to automate the evaluation of these relationships

or conditions. Details are provided in the following subsections.

2.2.2.1 Rule-based Specification
Rules as a declarative modelling technique can be integrated into an existing object-oriented

modelling technique (e.g. UML) to specify behaviour on data models such as formulating

-25-



constraints, handling events, deriving new attribute values and modelling strategies in business and
engineering. Rules provide a useful level of abstraction, allowing the designer to focus on important
behaviour (Taentzer, 1999).

Rule-based specifications are widely used in artificial intelligence systems for modelling intelligent
behaviours, such as learning, searching, and problem-solving in computer-aided design and
configuration (Jin, 2003). In rule-based systems, users can compose a rule with actions,
preconditions and post-conditions; a rule interpreter evaluates the conditions against a knowledge
base and executes the matched actions. An example of rule-based systems is AP5 (Cohen, 2006),
which allows users to "program™ at a more "specificational” level, in other words, focus more on
what the user wants the machine to do and less on the details of how. With regard to event-based
systems, rule-based modelling technique can be used to specify the preconditions and postconditions
of a particular event or multiple event occurrences (Jin, 2003). Rule-based systems are easy to
understand, and suitable for small-scale, static problem domains. However, the rule-based paradigm
is not suitable for modelling large-scale, dynamic software systems. Rule-based systems are limited
in their expressiveness, optimization is only based on heuristics, and they are limited with regard to
reasoning solutions (Felfernig et al, 2003). Rule interpretations are generally computation intensive,

which limits the performance and real-time response (Jin, 2003).

Most rule-based approaches exemplify “Event-Condition-Action” based languages where the user
specifies an event of interest; conditions (“filters”) when the action(s) should be run in response to
the event; and action(s) to run to modify the tool’s state. Other Event-Condition-Action rule-based
languages have been developed for a variety of domains, including building and tailoring design
tools (Costagliola et al, 2002; Ledeczi et al, 2001; Lewicki and Fisher, 1996), user interface event
handling (Berndtsson et al, 1999; Jacob, 1996), process modelling (Grundy et al, 1998), database rule
handling (Matskin and Montesi, 1998) and middleware for event detection and composition
(Buchmann et al, 2004). Figure 2.15 shows a rule graph (Matskin and Montesi, 1998) that represents
a particular active rule with three types of nodes: event nodes, condition nodes and action nodes.
Event nodes correspond to events which switch on active rules. Condition nodes correspond to
conditions to be checked in order to trigger rules. Action nodes represent actions performed by rules.
Directed edges on rule graph connect event node with conditional node and condition node with

action node.

-26 -



No department - no emplovees

Tom 15 manager of empty deparfment

Employee with salary 30K is manager

o

-

[ -dap[dname=0)] ]

-amip[dname=T1]

bt F'

e

[ -gmp[dname=0] ]

empty condition

=dep]dnzme=D, mgr=tom]

[—eu:p[namef[f.iume=I}:ia'.=‘3:]

+dep[doame=0. mer=17]

.,,|

8

b)

Figure 2.15. Rule graph (Matskin and Montesi, 1998)

Reaction RuleML (Paschke et al, 2006) is an XML-based language for reaction rules. It
“incorporates different kinds of reaction rules from various domains such as active-database ECA
rules and triggers, forward-directed production rules, backward-reasoning temporal-KR
event/action/process logics, event notification, messaging, active update, transition and transaction
logics” (Paschke et al, 2006) (as illustrated in Figure 2.16). These rules can be specified globally,
with other derivation rules or integrity constraints, or locally, nested within other derivation or
reaction rules. Different rule processing styles are incorporated such as actively pulling or detecting

events by monitoring, passively listening to events, and reasoning events and actions’ effects.

Reaction RuleML

——

——

Active Databases

Production Rule
Systems

Rule-Based Event Notification
Systems / Distributed Complex
Event Processing

——————
KR Event/ Action/
Transition / Process
Logic Systems

* Transient Events

* ECA Paradigm

* Global Active Rules

[ Trigger (EA Rules)

* Complex Event Algebra

" Implicit Sequence of
Knowledge Updates
* CA Rules

[ Event / Action Messages
- Inbound [ Outbound

- Enterprise Service Bus

* (Agent) Conversation

- Protocols

" Event/ Action Axioms
* Reasoning on Effects /
Transitions

- fluents / states / processes
- akin to e.g. state machines,

- Performatives (e.g. FIPA ACL)

petri-nets or pi-calculus

Figure 2.16. Reaction RuleML (Paschke et al, 2006)

-27-



The above mentioned rule-based approaches often suffer from use of inappropriate, textual rule-
based languages which are not suitable for end users. They rely on many abstract concepts like
control structures and variables. They have limitations on the expressive power of the languages;
difficulties in visualising and debugging learned rules; and limitations of reconfiguration power,
including compile-time rather than run-time changes (Ledeczi et al, 2001; Costagliola et al, 2002;
Liu et al, 2007).

2.2.2.2 Functional programming

Functional programming is a declarative programming paradigm that places emphasis on the
application of functions rather than state changes. It features higher-order functions, non-strict
semantics (lazy evaluation), data abstraction, equations, pattern matching, and strong typing (Hudak,
1989). Haskell (Haskell, 2007) is a popular general purpose functional programming language used
to date.

Higher-order functions treat functions as values and give them the same first class status. This makes
the function the primary abstraction mechanism over values (Hudak, 1989). Higher-order functions
are very efficient for calculating values associated with lists, where, for example, they can be applied
to every member of a list and return an updated list. For example, the function map (*2)

[1,2,3,4] returns [2, 4, 6, 81 (Haskell, 2007).

The language Z (Wordsworth, 1992) is a well-known approach to formal specification. It specifies
systems as functions. Z uses a state machine model to describe a “system as an automaton with a
state from a potentially infinite state space and a state transition function” (Weber, 2003). It is
declarative rather than procedural, because the system state is determined by values taken by
variables, and operations are expressed by relationship between preconditions and post-conditions.
Variable declarations and related predicates are encapsulated into schemas. Complex specifications

are facilitated by schema calculus via composition.

Vital (Hanna, 2002) is an interactive graphical environment that uses a functional programming
language in a spreadsheet with direct data display. It allows graphical display of data structures in a
format defined by a datatype indexed stylesheet. Figure 2.17 shows an exemplar family tree
stylesheet. It supports demand-driven evaluation of values by the action of the user scrolling around

an unbounded workspace.

-28 -


http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Program_state

data Person = Unknown | Person {nhame:: String} | Parents {father:: Person, name:: String, mother:: Person}

M =  +—F— [Ahelstan I
fathar nama mather
—+— | Edward the Elder [ —T— |Ecawn |
fathar nama mothar
—+—  [Alfred the Great | —1— [Ealhswith daughter of Ethelred |
father name mother

| Ethelwulf | —t— | Osburh |
tather name mother

| Oslac, The Royal Cupbearer |

Figure 2.17. A family tree (Hanna, 2002)

Functional programming languages are terse, clear, expressive and powerful; however they may still
be error-prone in specification due to their high abstraction gradient. Supplementing them with visual

representations could potentially make them easier to visualise, debug and understand (Kelso, 2002).

2.2.2.3 Constraint-based Specification

Constraints are presented in many user interface applications to specify object relationships and
runtime enforcement. Garnet (Myers, 1990) is a constraint-based user interface toolkit facilitating
visual layout constraints and consistency maintenance. Figure 2.18 shows an example of Garnet’s
code-based constraint specification. Model-integrated computing (Ledeczi et al, 2001) uses
metamodelling to define domain-specific modelling languages and generate design environments

enforcing model-level constraints.

—
T

(create-instance ‘myline arrow-line
(:x1 (formula (gv circlel :right)))
(:¥1 (formula (gv circlel :center-y)))
(:x2 (formula {gv box1 :left)))

(:¥2 (formula (gv box 1 :center-y})))

Figure 2.18. The line stays attached to the box and circle even when they move. Below the

graphic is the code to define the constraints on the line. (Myers, 1990)

-29 -



The Abstraction-Link-View paradigm (ALV) (Hill, 1992) is an approach similar to the MVC
(Burbeck, 1992; Sun, 2005) architecture in the sense that it manages consistency between model and
views. In addition, AVL introduced the use of link objects (as shown in Figure 2.19) to connect and
constrain multiple user interface views and a single shared abstraction. Constraints are specified in a

structured manner in link objects, so the views can ignore the shared abstraction and vice versa.

Shared
Abstraction

Link | [Link]

-

|viw|.|\aaw|

Figure 2.19. Basic ALV architecture. (Hill, 1992)

Form Chart (Weber, 2002) uses bipartite transition diagrams to define states of client and server, and
transitions from client pages to server actions. Dialogue Constraint Language (DCL) is used in Form
Charts. DCL is an extension of OCL (OMG, 2003) and defines special-purpose constraint types
which are used to annotate state transition constraints. Figure 2.20 illustrates the use of an enabling
condition constraint to specify under which circumstances this transition is enabled, and that of a

client output constraint to specify the data submitted from a client page.

e
. server on inol o client
\lnput constraint. o gow © input constraint
i i WO
enabling client @ flow condition i corver
condition transition name output constraint output constraint b
source name target name m
server/page transition

- age/server transition .
client page P ) client page
pag server action pag

Figure 2.20. Form chart notational elements (Weber, 2002)

-30-



Constraints do not necessarily need to be specified as code. MetaEdit+ (Tolvanen, 2006) allows
constraints to be specified and visualised in the graphical metamodel using a wizard-like approach.

Figure 2.21 shows its visual editor for adding constraints to graphs.

Y Graph Constraints Tool

In each graph of this type, these constraints apply:

Multi_query may be in ak most 1 From role ~
Mote may be in at most 1 From role
Open may be in at most 1 From role

Add Constraint For:

| QCcurrence

[ Edit ] [ Delete ] ’ Close ]

Figure 2.21. Adding constraints. (Tolvanen, 2006)

Constraints are usually enforced via a constraint solver, which acts as a back-end engine to
automatically interpret and check the constraints against the model. Alloy (MIT, 2006) is a
declarative language for structural modelling. Complex structural constraints and behaviour can be
specified based on first-order logic using Alloy and solved by the Alloy Analyser, which is a

constraint solver.

Though constraint-based languages are powerful in specifying object relationships, usually they need
an efficient constraint solver to interpret and enforce the constraints. Limitations of the constraint
solver mean that some constraints are not possible to express (Jin, 2003). Complex constraint may be

hard to specify and visualise for the end users. Debugging of constraints is also hard.

2.2.3 State-based Formalisms

State information is necessary to be represented in system models, as states are the concerns of both
the structural and behavioural aspects of a system. Various state-based formalisms are used in
specifying system workflows. We describe Petri Nets, Finite State Machine, and Event and Time

graphs in this section.

2.2.3.1 Petri Nets
The Petri net is a powerful modelling formalism widely used in analysing and simulating workflows
and distributed systems described in Section 2.1. It uses a terse set of graphical symbols to specify

-31-



system structure and behaviour. The language notation consists of places, transitions and directed
arcs. Places (graphically represented as ellipses) represent data. Transitions (graphically represented
as rectangles) represent activities. Arcs (graphically presented as arrows) connect places with
transitions to represent activities’ inputs/outputs, prerequisites/consequences, or state changes. An

arc can have an associated expression to describe how the state of the Petri net changes.

Petri nets have been used in modelling reactive systems. PUIST (Li et al, 1997) uses a Petri net
notation for specifying the static form and dynamic behaviour of graphical user interfaces. Both
hierarchical and recursive compositions of GUI components can be specified using this visual
formalism. Palangue et al considered defining interface places as a subset of places to represent the
interface between the system being modelled and its environment (Palanque et al, 1993). Each event
is directly modelled in the system by the deposit of a token in an interface place. An incoming event
may trigger different actions in the system, as depicted in Figure 2.22.

T2

Figure 2.22. Modeling a reactive system with Petri nets. (Palanque et al, 1993)

2.2.3.2 Finite State Machines

Behaviour can be represented as a finite state machine (FSM) with a set of states, inputs, transitions
and actions. A state stores information; an input supplies data; a transition describes a state change
from one to another; and an action triggers a transition (Wagner et al, 2006). There are two
representations of FSMs: state transition diagram and state transition table (Drumea and Popescu,

2004; Wagner et al, 2006). Figure 2.23 shows an example of graphical representations of them.

-32-


http://en.wikipedia.org/wiki/State_%28computer_science%29

INPUTT ! ACTIONT

@

INPUTY £
ACTIONI

INPUT2/ ACTIONZ

()

Cuarrent Input Next Action
state state
STATE1 INPUT1 STATE2 | ACTION]
STATE1 INPUT2 STATEI ACTION4
STATE2 INPUT2 STATElLl | ACTION2
STATE2 INPUT1 STATE2 | ACTION3

Figure 2.23. (a) State transition diagram. (b) State transition table. (Drumea and Popescu,
2004)

FSMs are good at representing states of an event detection process in a reactive system, but it is not
possible to identify participating event occurrences and event consumption modes or to extract the
structure of a composite event (Berndtsson and Mellin, 1999), thus they are not ideal for representing

event handling.

2.2.3.3 Event and Time Graphs

Event graphs can be viewed as directed acyclic graphs with nodes and leaves. An event graph uses a
time line to represent the event history, nodes to represent event operators, leaves to represent
primitive events, and arcs to represent a connection between a node and its two children. Event
graphs make it easy to determine the structure of composite events. Hence, they support
understanding of the state perspective (Berndtsson and Mellin, 1999). Figure 2.24 shows the

detection of the composite event E¢ for recent event consumption mode using an event graph.

fime

¥
(%]

Figure 2.24. An event graph (Berndtsson and Mellin, 1999)

-33-



Although event occurrences are visually presented, their role (indicator or terminator) in the event
detection process is not explicitly visualised. These must be inferred manually by the user, by
looking at the event history, participating event occurrences and event operators shown in the event
graph. One potential solution to this is to use event graphs in combination with time graphs, since
time graphs can visualize initiators and terminators (Berndtsson and Mellin, 1999). The use of time
graphs to visualise composite events and event consumption models was introduced by Chakravarthy
et al (Chakravarthy et al, 1994). A time graph uses a time line to represent the event history, which
presents the semantics of composite events. Each event occurrence in the event history is marked in
order of occurrence on the time line. Each time interval depicts the detection of a composite event for
a given event consumption mode and includes one initiator, zero or more participating primitive
events, and one termination event. Figure 2.25 depicts the detection of a composite event using a

time graph for four event consumption modes: recent, chronicle, continuous, and cumulative.

time
| | | | | | )
1 2 1 1 2 2 2
[ ] [ ] - - e ) e . g " [ 3 [ "
Recent
L 00 N
2 [ [] i
Chronicle
L[] I
2 I [ i
Continwouns
L[] N ||
: 10 N
Cumulative
01 @ § W
|:| Initiator I fﬂ”ﬁ:?:ﬁi::f;;ge o I Terminaior _ ?Eceh?;i?;;tnet:d

Figure 2.25. A time graph (Berndtsson and Mellin, 1999)

The advantage of using time graphs is that it is possible to see which event instances participate and

their role in the detection of a composite event. However, time graphs do not provide any

-34 -



information concerning the structure of the composite event, e.g. event operators are missing. Thus,
time graphs support understanding of the outcome perspective and need to be used together with

additional information which describes the structure (Berndtsson and Mellin, 1999).

State-based approaches in general usually ignore the structural elements of a system and focus on
representing runtime changes. This results in isolating dynamic behaviour specifications from the
static structure which is the backbone of the system. Another disadvantage is that state-based
approaches convey many low level details, especially when rendering a highly concurrent system, a
large number of states need to be presented, which raises scalability issues (Kraemer and Herrmann,
2007).

2.2.4 Flow-based Approaches
Flows can be used to effectively represent dependencies between states and activities based on

execution sequence or conditions. We describe two flow-based approaches: workflow and dataflow.

2.2.4.1 Workflow

As described in the Section 2.1.4, workflow supports procedural designs via the execution order and
dependencies of activities. It includes definitions of sequence, parallelism and synchronization,
decision making, split and merge, loop, start, terminate and cancel an activity. Usually this leads to a
significant amount of additional control to be included in a model, thus making large systems
difficult to understand and communicate. Workflow metaphors are typically used in much recent
research on system composition. Simple workflows are, however, insufficient to describe the
integration and co-ordination of complex system. For example, conditional execution is needed;
some links are sequential data-flow from one to another; some asynchronous; services may subscribe
to events; conversion of messages may be needed; and so on. Examples include BPEL4WS (IBM,
2003), BPML (ebPML, 2002), and jBPM (Koenig, 2004). Many are described as “business process
modelling languages”. Different composition languages support different levels of abstraction, fault-
recovery, transaction modelling, and component inter-relationships. Most are textual scripts that are
interpreted at run-time by workflow or business process flow engines, for instance, BPEL4WS
processes are interpreted by the BPWS4J (IBM, 2002) engine as shown in Figure 2.26. Such textual

scripts are often challenging to read, error-prone to write, and reusability can be limited.

-35-



WSDL

<message name="approvalbessage"s
<part name="accept" type="x=d: string"/
</messages

“portType narme="loanApproval PT"=
<operation name="approve"=
<input message="loandef. creditinformationMessage"/=

<DL|tpL|t message="tns: appru\-’alMessage'a'BM Business Process E ion Language for Web Services Java Runtime Admin Tool - Microsoft Internet Explorer B ==
" " Fle Edt View Favorites Help a
=fault name—" loanProcessFault Q- © - 1 B @ Dsorsr Foroene: @rosie @ 2-2 & - JE 3
message="loandef lnanRequestErrorbe = * mCERE
<foperations Google - <] Gosearchieh - @ | G0 boded 3 st

<fportType=

Configure
Processes

Deploy
Un-deploy

<recelve name= "receiwve” partmerlink="cusf
porcType="loanipproval PT"
operation="approwve’
variable="request”
createlnstance="yes">
<!-links-->

</receilves

<invoke namesinvokeapprover™ parthnerLirnks
portType="loandpprovalPT"
operation="approve"
inputWariable="regquest"

IBM Business Process Execution Language for Web Services Java

Runtime

if fvevive.w3.0rg/ 2001/ XMLSchema”

//schemas.xmlisoap.org/wsdl /">
="http://localhost:2080/bpyesj-

acation="http:/ /localhost:8080/bpws4j-

&

-samples/YiTABaLWS/loanapproval/loandefinitions.wsdl' />
] Pt i sy

oval g =
sport="http:/ /schemas.xmisoap.org/soap /http" />

output¥ariahl e="approval Info™>
< l=links-=>

</invoke>

<invoke name="invokeaszsessor” partnerlink="assessor”
portType="riskAssesanent PT"
operati on="check"™
inputWVariable="request”
output¥ariable="riskkssessment" >

<i-links-->
BPEL4WS

</inwvoke>

Figure 2.26. BPEL4WS specification and deployment using BPWS4J,
adapted figure (Liu et al, 2005)

Serendipity (Grundy and Hosking, 1998) exploits a set of visual components to model work

processes, work plans and history for a particular project in the Serendipity environment. These

include process stage, artefact, tool and role representations. It has in addition the Visual Event

Processing Language (VEPL) to permit visual specification of arbitrary event handling and event-

triggered rules in process modelling. VEPL includes two basic constructs, filters and actions, which

receive events from stages, artefacts, tools or roles, or other filters and actions. Filters match received

events against user-specified criteria, passing them onto connected filters and actions if the match

succeeds. When actions receive an event, they carry out one or more operations in response to the

event (Grundy and Hosking, 1998).

Figure 2.27 describes the basic modelling capabilities of

VEPL. Figure 2.28 shows a simple event-handling view that illustrates the use of VEPL for inter-

stage work coordination.

-36 -



Notational symbol Example

Description

Made

Cucrk

Qorior D

Made Cur

rent

MadeBY

A filter definition. Filters receive events (from process stages, artefacts,
tools, roles, other filters or actions) and if the event matches the defined
selection criteria for the filter, the event is passed onto the connected filters
and/or actions. A filter or action reused from a template filter/action
definition has its name in italics.

An action definition. Actions receive events (from process stages, artefacts,
tools, roles, filters or other actions) and respond to the event by performing
some action (which often generates other events). Actions can pass on
events to other filters and/or actions.

An event flow into/from a filter or action. Events may be process stage
enactment events, artefact update events, tool events, some event caused by
arole (i.e . user), or an event generated by an action. For example, if Made
Current decides an enactment event flowing into it means a process stage
has been made the current enacted stage, then the Notify Role action is
invoked to notify another user about this event.

Usage flow into a filter or action. These specify parameters of the
filter/action. For example, the MadeBy filter is parameterised by a role
name which it uses to decide whether some event was caused by a particular
role. In the example, that role name is instantiated to "john" by the usage

connection to the role process model component.

Figure 2.27. Basic modelling capabilities of VEPL. (Grundy and Hosking, 1998)

-37-



mi:modell —complex Tilters zl

I ml.1:designer I

w | design changes ’

1] =4

T rrole

uses I::\.l’]

’ — _
- ’ R PR Symch_‘conousfditsﬂ}

01

ER Medellex finished design editz—with Lal
) +[E
% [ +FE) LLE la - [ *E)
fuov, [H Add Frrity & FaliFolas C
| | [ ml .2 ocoders EE —
@ | : | Lt l imp lament changes [ 70 editsowitho g =§
& . Table Decigrnexs
role
= - - £ . -
Hotify Schemm Affected Y- finish coding
(RAHDY
I tested coxrect

— —
Seek Cliant prro\jjpga_\‘ ml .4 :project manoger ]
s appro'\'\td__-___l npprove chonges J

Figure 2.28. Multiple event processing, stage coordination and external process interfacing
(Grundy and Hosking, 1998)

2.2.4.2 Data flow diagram

A data flow diagram is a directed graph that describes the flow of data between system components.
It supports hierarchical decomposition of processes into sub-diagrams, which however, cannot be
reused in different specifications (Weber, 2003). InterCONS (Smith, 90) and ConMan (Haeberli,
1988) are domain-specific visual dataflow languages which has certain primitives associated with
user interactions (e.g. buttons, sliders). These primitives accept interactive input events and generate
integer outputs, which can be routed into other dataflow nodes for further calculation (Burnett and
Ambler, 1992). Besides Ul primitives, Prograph (Cox et al, 1989) provides generality by facilitating
dataflow connectibility to the low-level Macintosh Toolbox, allowing direct access and manipulation
of the various Macintosh data structures, but this leaves the realm of high-level programming to do
so (Burnett and Ambler, 1992); an example is illustrated in Figure 2.29, where Prograph uses iconic
symbols to represent data and actions. The Biopera Flow Language (Pautasso, 2003) is a generic
visual flow language for coordinating software components. It focuses on data flow, execution
sequence and fault handling and all can be specified with a simple visual syntax. However it lacks
modelling capability for event subscription and various other service relationships like call-backs.

The visual syntax is verbose as both data and data bindings must be specified.

-38-



[ Index Index/Sort 1:1 Inder/Build ualue list 11

PP RPLI AL LA LSS LLSLSIASISI P A IS SIS
1]
e x

Delete

Vo '
% /Build value list :ﬁ LRI A A ST AT LTI AL A A A LA AAALII S
B e A

(a) (b)

Figure 2.29. Prograph method implementation. (Cox et al, 1989)

The main disadvantage of flow-based approaches in general is that “Cobweb and Labyrinth problems
appear quickly” when modelling a complex system. End users have to “deal with either very

complex diagrams or many cross-diagram implicit relationships™ (Li et al, 2007).

2.2.5 Programming by Demonstration (Programming by Example)

Programming by Demonstration (PBD) or Programming by Example (PBE) is a technique that
allows unskilled users to perform actions interactively to demonstrate the desired behaviour of a
system, and programs can then be generalised from the recorded actions (Myers, 1997). PBD
approaches have been used to specify behavioural constraints in some systems, often together and
most notably in children’s programming environments such as KidSim (Smith et al, 1995) and
Agentsheets (Repenning and Sumnet, 1995). Alice (Conway et al, 2000) is an authoring tool for
scripting and prototyping 3D object behaviours. Object state and behaviour are specified via user
scripts, which are executed to demonstrate how objects respond to user interactions. Figure 2.30

shows the Alice environment that supports programming by demonstration via user interactions.

-39-



I 3441 Prorms " Sasd 1 Oagurs 184 hamaa

Figure 2.30. The Alice Authoring Environment (opening scene tab). (A) The Add Object button
presents a gallery of 3D objects. (B) The Object Tree, a PHIGS-like tree of hierarchical objects
(C) Camera controls allow the user to drive around the scene. (D) The Undo button provides
infinite animated undo. (E) The Alice Command Box for evaluating single lines of Alice script.
(F) The Script tab reveals a simple text editor where the user writes scripts that control the
objects in the scene. (Conway et al, 2000)

PBD approaches are generally limited in specification power. They put the burden of programming
tasks on the user, which is generally not desirable as the changes made by the user are error-prone
and hard to control (Sheth, 1994).

2.2.6 Visual Approaches vs. Textual Approaches
Scripting and declarative approaches normally adopt a textual representation, which generally

presents difficulties for system visualisation and debugging. Visual programming languages and

-40 -



environments (Graphical notations and tools) can be used to simplify the development process.
Visual approaches, as opposed to custom code writing/scripting, have advantages such as allowing
concrete representations of concepts, minimising design and implementation effort, improving
understandability, expressiveness in both static and dynamic specification and visual debugging
running event-based systems (Hirakawa and Ichikawa, 1992; Cox et al, 1997; Conway et al, 2000;
Burnett et al, 2001; Zhu et al, 2007). Visual languages and environments such as the previously
illustrated Serendipity (Grundy and Hosking, 1998) tend to be more readily understandable by end
users than many textual, rule-based languages.

It has been a long running debate as to whether pure visual approaches have limitations in
expressiveness, while some tasks can simply be expressed in a terse and concise way using text
(Schiffer and Frohlich, 1994; Gottfried and Burnett, 1997; Neag and Tyler, 2001; Costagliola et al,
2004). For large complex systems, one single paradigm may not be effective enough to address all
aspects or concerns. Combining multiple complementary paradigms in an environment could

significantly lift the specification power.

Vista (Schiffer and Frohlich, 1994) is a visual multi-paradigm programming environment that
combines object-oriented programming with signal flow and dataflow for the construction of reactive
and transformational systems. It avoids visual overload by permitting text input whenever useful.

HANDS (Myers et al, 2004) also uses similar approaches.

Forms/3 (Burnett et al, 2001) is a general purpose, declarative form-based language and environment
that support procedural abstraction, data abstraction and graphics output in the spreadsheet paradigm.
The spreadsheet paradigm provides a declarative approach to programming, characterised by a
dependence-driven and direct-manipulation working model. A form in Forms/3 is a collection of
cells or groups of cells called matrices and abstraction boxes. The programmer can directly
manipulate and define formulae for the cells. A formula is a side-effect-less functional expression
that calculates values based on inherent dependencies. Forms/3 combines the use of visual
representation of text for formulae and graphics for direct manipulation with concrete, immediate
feedback. Programming with events in Forms/3 is no different than any other kind of programming,
since events are treated as simple values and vice versa. This allows a visual, high-level approach to

event-based programming (Burnett et al, 2001). Figure 2.31 illustrates the language in use.

-4] -



primitiveCircle

/ 0 € SOLID
/ \ radius
[ | & o DASH
“ “
\ b 4 v DOUBLE ~DASH
- S _'_/'
. 1
newCircle thickness @ linestyle

BLACK NHITE

Hide |
lineforeColor lineBackColeor
form Help]

Cut Cell RHITE BLACK |
fillForeColor fillBackColor

FALSE ] [IHLSE
lir.eSt.ipple dazhPattern |5

Figure 2.31. A portion of a Forms/3 form (spreadsheet) that defines a primitiveCircle. The
primitiveCircle in cell newCircle is specified by the other cells, which define its characteristics.
A user can view and specify formulas by clicking on the formula tabs attached to the bottom
right of each cell. Radio buttons and popup menus are equivalent to cells with constant
formulas. (Burnett et al, 2001)

Combining multiple paradigms such as declarative programming and visual programming in a
system specification can expedite the system construction process, given that good usage of each
paradigm allows separation of modelling concerns and merging them to achieve a system solution
(Burnett and Ambler, 1992). The development process can be less intensive and less error-prone
compared to using a single programming model (Jong, 1997).

2.3 General Issues and Requirements

Our research aims to provide a general purpose framework for event handling integration. From an
analysis of the above related work, which includes various event handling specification and
visualisation techniques in event-based systems, we can derive the strengths and weaknesses of each
at a high-level, as illustrated in Table 2.1. Textual/Scripting approaches provide the user with flexible

control in extending system behaviours, but are not suitable for end users due to the difficulty of

=42 -



visualising and understanding their specifications. Declarative semantics of rule-based and
constraint-based modelling techniques allow the user to specify the relations between components
and declarative approaches usually provide system-level support to automate their execution and
maintenance, but runtime visualisation of the behaviour execution is usually suppressed (Jin, 2003).
State-based approaches allow easy analysis of system runtime changes and simulations, but system
structural details are wusually under represented. Flow-based techniques enable high-level
specification of inter-communications among system components, but usually fail to present the
structural and behavioural details at the same time for runtime visualisation. Program by
demonstration approaches focus on dynamic behavioural changes and visualisations, however they
are generally limited in specification power. A hybrid visual and textual approach that takes all the
advantages of the above individual approaches can potentially possess more capabilities for

effectively specifying event-based systems.

Technique Static structure  Dynamic behaviour  Runtime visualisation

specification specification

Textual/Scripting X X x
Declarative N N X
State-based X N N
Flow-based N N x

Program by demonstration X N N
Hybrid visual and textual v N N

Table 2.1. Comparison of event handling specification and visualisation techniques

The issues in the above explored specification and visualisation approaches to event-based system
integration need to be addressed properly in our work, in order to provide a feasible event handling
framework for a wide range of event integration support. This led to the following set of
requirements for our event handling integration framework:

e An expressive language that describes both the static structure and dynamic behaviours of
event-based systems is needed. The language should have the ability to compose building
blocks and models for reuse.

e Collaborative use of textual and visual notations in multiple views of different levels of

abstraction should be allowed to accommodate the specification needs. The framework

-43 -



should have the advantage of ease of use for novice users but also expressive power for
experienced tool developers (Grundy et al, 1998).

e A canonical event handling model that is easy to extend is required as the fundamental
framework infrastructure.

e The framework should allow users to add event propagation and event handling behaviour to
running tools in a fast and easy way.

e Environment or software tool support for specifying event handling, tracing event
propagations and visualising results using graphical structures is needed. The visualisations
need to incorporate both the static system dependency structure and the dynamic event
handling behaviour of running event-based systems.

e Event-based system executions are highly time related, and many phenomena may occur in a
very short time (and conversely, there can be large gaps between clusters of events). A real-
time visualisation would be too fast as it may prevent users from actually seeing all the
phenomena he/she is interested in (Coupaye et al, 1999). Step-by-step visualisation that is

interactively controlled by the user is thus required.

2.4 Summary

The aim of this research is to explore existing event-based systems for their event handling and
visualisation support and then design a general purpose event handling framework. In this chapter,
we conducted a literature review of related work in this field, which includes event handling
specification techniques and visualisation support for design and construction of event-based
systems. We have compared the existing approaches and identified the strengths and weaknesses of
each together with general issues relevant to the event-based programming paradigm. These form the

basis for our further research development to achieve our research goal.

-44 -



Chapter 3 - Motivation

This chapter describes the motivation of this thesis. We start with an introduction to the Pounamu
(Zhu et al, 2007) project, and then describe various evaluations performed on Pounamu. A key
feature of Pounamu is the use of “event handlers” to allow tool developers to specify handling of
various events for user interfaces and for models. The current event handler definer in Pounamu
requires the user to write Java code fragments to compose the handler. The user has to be familiar
with the Pounamu API to complete even a simple event handler specification task. One of our
primary motivations for this research was to replace such textual Java code scripts with more

appropriate and powerful visual tool support for event handler specification.

3.1 Overview of Pounamu

Domain-specific visual language tools have become important in many domains of software
engineering and end user development. However building such tools is very challenging with a need
for multiple views of information and multi-user support, the ability for users to change tool diagram
and metamodel specifications while in use, and a need for an open architecture for tool integration.
Pounamu is a meta-tool for realising such visual design environments (Zhu et al, 2007).

Figure 3.1 shows the main components of Pounamu. Users initially specify a meta-description of the

desired tool via a set of visual specification tools. These define:

e The appearance of visual language notation components, via the “Shape Designer”, which has
shape and connector variants;

e Views for graphical display and editing of information, via the “View Designer”;

e The tool’s underlying information model as metamodel types, via the “Metamodel Designer”;
and

e Event handlers to define behaviour semantics, via the “Event Handler Designer”, which has

textual variants.

Tool projects are used to group individual tool specifications.

-45 -



Pounamu Meta-tool Application

Specification Tools Modelling Tools
Shape Designer Modelling Views
I:I\
Meta-model
Designer ——
Event handler Event
Designer [ Handlers
View Designer ‘EI

\ \ / Model Entity instances

Tool Specifcations Plug-ins
— XML documents

-
— R — Web Services
Tool specification Modelling APls
projects (>XML) projects (XML)

Figure 3.1. The Pounamu approach. (Zhu et al, 2007)

Having specified a tool or obtained someone else’s tool project specification, users can create
multiple project models associated with that tool. Modelling tools allow users to create modelling
projects, modelling views and edit view shapes, updating model entities. Pounamu uses an XML
representation of all tool specification and model data, which can be stored in files, a database or a
remote version control tool. Pounamu provides a full web services-based API which can be used to

integrate the tool with other tools, or to remotely drive the tool.

3.1.1 Tool Specification

Figure 3.2 (a) shows an example of the Pounamu shape designer in use. On the left a hierarchical
view provides access to tool specification components and models instantiated for that tool. In the
centre are visual editing windows for displaying tool specification components and model instances.
Here, a shape is defined representing a generic UML class icon. To the right is a property editing
panel supplementing the visual editing window. General information is provided in a panel at the

bottom.

Figure 3.2 (b) shows a UML class diagramming tool, which uses the shape icon defined in Figure 3.2
(a) to model a “person” class, and two subclasses “student” and “staff”’. The same shape specification
could be reused for other modelling tools associated with the same (e.g. a class element in a package

diagram) or different metamodel elements.

-46 -



Pounamu  Help

Pounamu: Model things with your own tool

Manager Tree | Taal lcons ]

| clazzshape ]

! .p.Dunamu
142" tool projects
- UMLToal

Lo tetareal
@ connector_creator
Loy implements
---. handler_definer
B meta_mocel_definer
- E-V meta madel view O
B views_type_definer
Lot classdiagram

Properties l exported props]

(a)

| nEame

attribute
method

| stroke

shapes

connectors

model_event_hanhdlers

Marager Tree ] Tool Icons]

clazs=sdiagram_0 ]

- @ association type
-~ associstion type 0
. V’ implements
=@ visw _type_definer
: claz=sdiagram
ocdel projects
¢ Using_UMLTool
EIl/ rrodeld
E|. clazsdiagratm
E|l/ classdiagram_0
E|. entity
' E|. class

E|. ass0ciation
=@ implements

- @ view type 0

P P

----- v claz=fperson
o " classiStaif

Lew EIaSS$3‘tuder‘r

----- v implerments_1
Lyt implements_2

(b)

i

r Please specify properties here—

| type

Fectangle %

| rlineColar ———

I

| fillColar

—

| rling*isible

model props: | visual props ]

—MWisikble model props

person
name
age
gettame
gethoe

Staft

department
itle

getDepartment
getTitle

B R

| [attribute: Multilines Teoxt

id
progranme

et ID
qetProgramnmne

~hatme: String —

studert

id
Whrogramme L
getlD
getFrogramme

student

S

Jﬂ
| 3 ol

fiagram | wigw type DI

| rmethochuttiLinesText ——

“Inwisible model props—————————

2

weneral | undo st | redo st |

4

& the neswy model project named project] using UMLTool has been crestedd
9: the new event triggering visual handler named YisualEventHandlerD iz being configured
100 Compiling E pounamutoals\UML Toolhandler swizualhandier s\eventtriggeringhandlers\visualEvertHandler019 java finished successiully!

4 1]

elcome to use Pounatnu

Figure 3.2. Pounamu in use: (a) specification of a visual notation shape element and (b)

modelling using this shape in a UML class diagram tool. (Zhu et al, 2007)

The Shape Designer allows visual elements (generalised icons) to be defined. These consist of Java

Swing panels, with embedded sub-shapes, such as labels, single or multi-line editable text fields

(with formatting), layout managers, geometric shapes, images, borders, etc. For example, the icon in

Figure 3.2 (a) consists of a bordered, filled rectangular panel, with three sub-shapes, a single line

textfield for the name, and two multi-line textfields for the attribute and operation parts of the class
icon. The property sheet pane (right) allows names and formatting information to be specified for
each shape component. Fields that are to be exposed to the underlying information model are also

-47 -



specified using a property sheet tab. Form-based interface can also be defined by using a single shape

specification defining the whole form.

The Connector Designer allows specification of inter-shape connectors, such as the UML
generalisation connector shown in Figure 3.3. The tool permits specification of line format, end

shapes, and labels or edit fields associated with the connector’s ends or centre.

implements l | ﬂ
textColar
basicStroke
fant
AeBhCcDdEeFiCy |
start=hape
| — |
endshape
— -
zhapes cohnectors | model_event_handlers startLabel
rnodel_uzer_handlers ] vizual_event_handlers -
vizual_uzer_handlers ] meta_tnodel_views ] viewy_types ] | | ¥

Figure 3.3. Example of the Connector designer. (Zhu et al, 2007)

The underlying tool information model is specified using the metamodel designer, shown in Figure
3.4. This uses an Extended Entity Relationship (EER) model as its representational metaphor. This
was chosen because the representation is simple and hence accessible to a wide range of users. For
example, the metamodel in Figure 3.4 contains two entities representing a UML class and UML
object, each with properties for their names attributes and methods, class type etc. An “instanceOf”
association links class and object entities and an “implements” association links classes. The
metamodel tool supports multiple views of the metamodel, allowing complex metamodels to be

presented in manageable segments.

-48 -



ey
meta model vieww 0 ﬂ

The current sttributes list

behsviour: MultiLinesText nonkey

name: String: nonkey

property: MultiLinesText nonkey

| Clazss

attribute:MultiLinesTextnonkey Instancet
method:MultiLinesText:nonkey

name:String:key

| 2]
Ao or delete attribute here
| Ohject :
implemerts E:rlbute name name
property:MultiLinesTextnonkey b o IW_‘

hehaviourMultiLinesText:nonkey
name:String:key
L

= g key or not key

I 4

label.String:key
Tadd | eete |
Kl I;l_‘ | Bl

Figure 3.4. Example of the metamodel designer. (Zhu et al, 2007)

The View Designer, shown in Figure 3.5, is used to define a visual editor and its mapping to the
underlying information model. Each view type consists of the shape and connector types that are
allowed in that view type, together with a mapping from each such element to corresponding
metamodel element types. Menus and property sheets for the view editor and view shapes can also be
customised using this tool. For example, Figure 3.5 shows the specification of a simple UML class
diagramming tool, consisting of UML class icon shapes, and generalisation connectors. Figure 3.5
shows that the “classshape” icon maps to the class metamodel entity type, and their selected
properties map as shown. Mappings supported in this tool are limited to simple 1-1 mappings of
elements (single or multi-valued) between view instance and information model instance. More
complex mappings can be specified using event handlers as described below. Multiple view types
can be defined, each mapping to a common information model. For example, other view types for

sequence diagrams or package diagrams can be defined for the simple UML tool.

=49 -



claszdiagram l nbjeu:tdiagram]
Enitity Type l Azzociation Type ] Wigual Evert Handler ] Wigual Uzer Hancler )
Pleaze select allowed meta model types
add to ==
lirik: == Femove
ohject
YR
Please map meta model types and icons
clazsshape frapping ==
glueshape
linkshape =< Femove
ohjectzhape
vpeshape
Pleaze map properties here
clazs:clazzshape (* sribite |attribute j : )
& method method ]|
* name |name ﬂ i
4 | »

Figure 3.5. Example of the view designer. (Zhu et al, 2007)

The Event Handler Designer is used to define complex behaviour to a tool using an Event-Condition-

Action (ECA) model (Kiringa, 2002; Liu et al, 2005). It allows tool designers to choose predefined

event handlers from a library or to write and dynamically add new ones as Java plug-in components.

Event handlers can be used to add:

view editing behaviour e.g. “if shape X is moved, move shape Y the same amount”;

view and model constraints e.g. “all instances of entity Z must have a unique Name property”;
user-defined events e.g. “check model is consistent when user clicks button”;

event-driven extensions e.g. “generate C# code from the design model instance information”; and
environment extension plug-ins e.g. “initialise the collaboration plug-in to support synchronous

editing of a shared Pounamu diagram by multiple users”.

Event handler code must be developed using Java. A comprehensive APl provides access to the

underlying Pounamu modelling tool representation, permitting complex querying and manipulation

of tool data. A simple example of an event handler being developed is shown in Figure 3.6. Event

handler code is compiled on the fly as the tool is specified or when a tool project is opened.

-50 -



YizuslEvertHand el

Pleaze specify the everts thiz vizual handler wil response to ok
| MewShapeEvent [+ MewZonnectorEvert | RemoveShapeEvent

v RemoveConnectorEvent [ MoveShapeEvert [ ResizeShapeEvent

| ChangePropertyEvent [ =l

Pleaze itnport any class you want here

Java.util. ¥ ; o
4 Pl

Pleasze input the action code here

if(entities. contains(entity)) i
selectedIcon.sectlColor(jave.awt.Color.blue) ;
elze
selectedIcon.secColor(jave.awt.Color.red) ;
Faoamlrrral- 1-1:1-|"|| B
g el

Figure 3.6. Example of the event handler designer. (Zhu et al, 2007)

3.1.2 Tool Usage

Pounamu automatically and incrementally implements tools as they are specified using the Pounamu
metatools. This means tools may be tested and evaluated incrementally as they are being developed,
avoiding the compile cycle issues noted earlier and creating a live environment. Generation of the
tool happens automatically and immediately following specification of any view editor associated
with the tool or when a saved tool project is opened. This provides powerful support for rapid
prototyping and evolutionary tool development. Changes to a tool specification may, of course, result
in information creation or loss in the open or saved modelling projects e.g. when adding or deleting
properties or types. Users can create model views using any of the specified view editors. Reuse is
supported by allowing shapes, connectors, metamodel elements, and event handlers to be easily
imported from other tools or libraries. Multiple tool specification projects may be open when
modelling, with specification of parts of the modelling tool coming from different tool specification

projects, supporting layered tool development.

Each view editor provides an editing environment for diagrams using the shapes and connectors it
supports. Consistency between multiple views is implicitly supported via the view mapping process
with no programming required to achieve this, unless complex mappings are required that need event

handlers to implement them.

-51-



classdiagram_0 model props I visual props

(1) = Yisihle model props

attribute: MuliLinesText

- — orderID
Order | customer e classdiagram_1| model props | visual props i
arderlD customerlD (2) s Wisible model props
Customer
" HAEED attribute MultiLinesText
prepared gethddress( customerlD
cancel( getEmail) address accountiumber
creditRate
- gethddressd
getEMaill method: MutiLines Text
-
4 \ » etCreditRate ()
TR
classdiag 0bjec1diagram_2|
= narme: String
3 ‘ CorpersteCustomer | PersonalCustomer
borperateCustovr
accountMumber ane -]
p— - mcreditRate 4 occupation Invisible model props
:OrclerErtryiincow
W\ﬂ _______ gethccountMumberg gethgel)
getCreditRate) getOccupation(
-
1:prepare
[arep: ‘| | 3
clazsdiagram | Objectdiagram 1 >
Deliveryttem
--------------------------- s
4 | »
classdisgram  objectdiagram 1 b

Figure 3.7. Example modelling tool usage. (Zhu et al, 2007)

Figure 3.7 shows the simple UML class diagramming tool in use. View (1) shows a simple class
diagram. The user has created a class diagram view from the available view types, added two UML
class shapes and an association connector, and set various properties for these, including their
location and size. View (2) shows another class diagram included in the same project model, reusing
the “Customer” class information. Changes to either view, e.g. addition of a method or change of the
class name, are reflected through to the other view. View (3) shows a simplified object diagram
view, including an object of class “Order”. Changes to the class name are automatically reflected in
this view and only methods defined or inherited by a class may be used in the message calling. The

latter is controlled by event handlers managing the more complex consistency requirements.

Having defined a simple tool, and experimented with its notation, additional behaviour can be
incrementally added using event handlers to implement more complex constraints. Examples
include:

e type checking, e.g. UML associations must be between classes;
e model constraints, e.g. UML class attributes must have unique names for the same class;

¢ layout constraints and behaviour, e.g. auto-layout of a UML sequence diagram view when edited,;

-52 -



e more complex mappings, e.g. changes to class shape method names automatically modifying
method entity properties in the modelling tool information model; or

e back end functionality, e.g. generating C# skeleton code from model instances.

These handlers can be generic for reuse (e.g. a generic horizontal alignment handler) or specific to
the tool. As with other meta specification components, adding or modifying a handler results in “on

the fly” compilation of handler code and incorporation of that code into any executing tool instances.

As noted above, back end functionality can be implemented by event handlers. In addition, as all tool
and model components are represented in XML format, it is straightforward to implement back end
processing using XSLT or other XML-based transformation tools. This approach can allow back
ends to be developed independently of the editing environment enhancing modularisation. An
additional approach for implementing back end functionality is via Pounamu’s web services-based
API. This exposes Pounamu’s model representation, modelling commands, menu extension
capability, etc, permitting tight and dynamic integration of third party tools, and other Pounamu
environments. This API has been used, for example, to implement peer to peer based synchronous
and asynchronous collaboration support between multiple Pounamu environments, to implement
generic GIF and SVG web-based thin client interfaces, to implement interfaces for mobile device
deployment, and to integrate a Pounamu based process modelling tool with a process enactment
engine (Zhu et al, 2007).

A wide range of exemplar domain-specific visual language tools have been developed with
Pounamu, some of which are illustrated in Figure 3.8. These include (Zhu et al, 2007):

e A full UML tool supporting all UML diagram types. This also provides an import/export
facility using the XML Model Interchange (XMI) standard allowing models to be imported
from and exported to other XMI-compliant UML tools. A code generator takes XMI models
from Pounamu and generates Java code that can be further extended by a programming
environment.

e A circuit design tool (Figure 3.8 (a)) providing a CAD-like tool for circuit design.

e A statistical survey design tool SDLTool (Figure 3.8 (b)). SDLTool provides multiple views
describing statistical processes, data and analysis steps. This is used by statisticians to design,

enact and process complex statistical surveys.

-53-



e A software process modelling and enactment tool IMAL (Figure 3.8 (c)). IMAL provides
multiple users multiple workflow modelling diagrams. These software process models can be
enacted by the tool to help support work co-ordination by multiple developers. External tools
are invoked via Pounamu’s web service support to provide complex rule processing and
XML document display and update. Pounamu itself is invoked by a workflow engine via

Pounamu’s web services API to support dynamic visualisation of enacted work processes.

eletrical baizc_0 ]

(a) — Circuit Designer »—627

1 I .
|~ 1| VT_PM_AddOnProcess | model props | visuatpraps | 4]
- Samle ~ [ || vistoe mode props
il 10:Siring
—
designysd
WS visio wiew xml For this entity artefact:String
design the add-on  save this entiy [pesgnvsa
description MutLinesText
1 esign the add-on
& 2 Code Add-on 4 »
i 0 Stratum Coder code java
DeliveryPoirt InpUtsMUILines Tesxt
Shralify ICreator
RndSel 500 cade the add-on stare
= simpleFlow
3 Test Add-on
= Tester testoc noneSng
s word [Design Add-on

Test Add-on

Simpleflow

’ 2 ’m
v | (c) - Process modelling P 7}

Figure 3.8. Examples of Pounamu DSVL tools. (Zhu et al, 2007)

‘ ‘

(b) — Statistical survey designer

Pounamu has also been used as a rapid prototyping tool in a range of industrial applications to assist
in the design of visual notations and interfaces for client companies. These applications include: a
business form designer; a business enterprise modelling tool; a project management tool with Gantt
and work breakdown schedule views; and a web services composition tool. In each case the client
companies were able to rapidly explore and evaluate a variety of alternative notational approaches

with a low level of investment, hence allowing them to lower the risk of development.

-54 -



3.2 Evaluations of Pounamu

Evaluating a metatool such as Pounamu is not a straightforward task due to the multiple points of
view involved (tool developer, end user of developed tool, usability, utility, etc). As a starting point
for the research in this thesis, we undertook an evaluation of Pounamu to estimate its strengths and
weaknesses. Our approach has been to evaluate Pounamu at several levels and through a variety of
mechanisms. These include:

1. Two large group experiments, spaced nearly two years apart, where participants
(approximately 45 in each case) constructed a domain specific visual language tool and were
then surveyed. Our aim in each case was to use the feedback to help improve the tool, and
significant enhancement was undertaken between the two experiments.

2. Qualitative feedback, in the form of experience reports, from a smaller number of developers
who used Pounamu to develop more substantial applications, such as the ones in Figure 3.8.
These were used to assess whether perceptions altered as more substantial applications (with,
for example, more complex back end integration requirements) were developed.

3. Small end user and cognitive dimensions evaluations (undertaken by the developers) of
substantial applications developed using Pounamu. These were used to evaluate whether end
users found Pounamu generated tools to have good usability characteristics. Many of these

have also been reported in detail elsewhere.

3.2.1 Large Group Experiments

In each experiment around 45 participants, who were graduate-level students, were asked to
construct a domain-specific visual language tool of their own choosing, but with at least a minimal
set of required components, such as numbers of icons, views, handlers, etc so that tools with a
realistic level of complexity were designed and constructed. Participants were given two weeks
elapsed time (i.e. alongside other obligations) to complete application development; they were then
surveyed using a set of open ended questions to qualitatively elicit strengths and weaknesses of
Pounamu to construct the desired domain-specific visual language tool. The surveys, one undertaken
in August 2004 (46 participants) and the second in May 2006 (45 participants), emphasised
elicitation of weaknesses as their primary intention was to provide feedback to be used in improving
Pounamu, hence the responses observed tended to describe generic strengths of Pounamu, with more

detail on specific weaknesses.

-55-



Generic strengths emphasised by respondents in both surveys included: the rapidity with which tools
were able to be constructed; the extensibility and customisability of the generated tools; the low
learning curve needed to use Pounamu effectively; and the usefulness of being able to update tool

definitions on the fly as iterative development was undertaken.

25

N
o

]
2
g 15 — (O 2004 Major
4 B 2004 Minor
kS 0 2006 Major
8 10 +— — [0 2006 Minor
IS
>
z

| 1 )

Stability and error handling Modeling Effectiveness Usability/GUI
Problem category

Figure 3.9: Problems identified in 2004 and 2006 surveys

Figure 3.9 charts the number of responses concerning identified weaknesses in each survey
aggregated into three categories (classified based on the commonality of the open ended survey data)
and subcategorised as “major”, i.e. a significant weakness, or “minor”, i.e. an issue causing irritation
but not significantly affecting functionality. General weaknesses identified in the first experiment
focused on issues of: stability of the software; inconsistency of the interface compared to other tools;
lack of documentation, particularly for the API; difficulty of event handler specification; and weak
error handling, all of which might be expected of the, at that stage, proof of concept prototype. Issues
of stability, documentation, event handler specification and error handling were largely addressed in
changes made to the system before the second experiment, which showed much less concern by
participants on these issues. For each category the number of major problems identified was
significantly lower in the second survey. Many minor usability issues were also identified by
participants, such as the size of text fields for entering Java code for event handlers, some clumsiness
around specification of icons, and the response time for some elements of functionality. The second

experiment showed increased concern by participants in such issues, primarily, we speculate,

-56 -



because a lack of concern over major issues permitted them to focus more readily on more minor
limitations of the meta-tool. Most issues identified concerned usability of the tool specification
components, with very few issues concerns with the usability or efficacy of the generated tools

themselves, nor of the representational power of the metamodel.

A key feature for us is the efficacy of our evaluation-cycle based quality improvement approach
which has demonstrated significantly enhanced user perception of Pounamu following attention to

issues raised in the first large-scale user evaluation.

3.2.2 Developers of Large Applications

A smaller group of 8 developers have used Pounamu to develop more substantial applications,
typically as an element of a larger research project, and over an extended period (several months at
least). In each case, the developers provided detailed comments on the efficacy of Pounamu as part
of a wider ranging implementation report. These qualitative comments were summarised and
categorised in a similar manner to the large experiments. The small number of participants makes for
less depth in the results, however, they are sufficient to assess any significant change in perception
with increased application size. The general strengths identified were the same as for the large group
experiments, but with more emphasis on the speed of development and the extendibility and
customisability of the generated tools. Far fewer weaknesses were identified; familiarity with
Pounamu appears to have mitigated many of minor difficulties identified in the large group
experiments. Some issues around stability and performance were identified by those using Pounamu
in its early stage of development, in common with the first group experiment, but those using later
versions did not report the same issues. In summary, our results suggest that developers using
Pounamu to construct larger applications are somewhat more favourably inclined than those
developing small applications as in the former case the benefits of efficiency of construction

significantly outweigh minor usability issues.

3.2.3 Usability of Substantial Tools Constructed Using Pounamu

For many of the exemplar systems described earlier (and others) the developers have carried out a
combination of survey-based end user evaluations of the application visual language environments
and cognitive dimensions-based evaluations of the visual environment interaction and information

presentation features. These evaluations have each been reported as described in (Zhu et al, 2007).

-57 -



3.3 Analysis of Evaluation Results
The above evaluations implicated that while specifying static modelling structure using Pounamu
saves a huge amount of time, specifying behavioural extension, particularly for more complex

modelling tools, adds an over welcoming cost overhead.

The event hander specification for Pounamu provided a good vehicle for adding dynamic modelling
behaviour such as model/diagram constraints, but at the same time, it required Pounamu users to be
familiar with Pounamu APIs as well as Java APIs. Without thorough understanding of these, even
simple event handlers can be difficult to implement. Both the learning time and the requirements of
users’ programming competency are not desirable, since Pounamu’s target end users are ideally not

intended to be programmers.

Pounamu supported a limited set of built-in events including model semantic events and low-level
visual events. It should facilitate customised event definitions to be integrated together with the built-

in events, such as user-defined call, change, signal and time events.

A library event handler could be added to a tool in an “all-or-nothing” style. Pounamu did not
support reuse of event handler code modules. It should support parameterised code modules, as well
as allow expert users to add new condition and action building blocks to Pounamu’s event handler

library for reuse in defining complex event handlers.

It was hard to track and debug the event handling behaviour in Pounamu as there was no utility to
support step-by-step visualisation of program flow, nor an indication of affected state changes.
Providing mechanisms for debugging the handler code was a highly prioritised task.

Also many Pounamu tools and extensions include some common building blocks for event handling
specification. These could be generalised from a range of event-based applications to a common

model representation.
To eliminate the need of non-trivial programming, we propose using visual approaches to specify

event handlers. A visual event handler definer would provide a high-level visual specification for

building both simple and complex event handling functionality for Pounamu tools from a set or

-58 -



reusable building blocks, and thus reduce the need for end users to use the complex API-dependent

Java coding of constraints for tools.

3.4 Summary

We have described Pounamu, a meta-tool for specifying and implementing multiple-view multiple-
notation diagramming tools. Pounamu has been used to develop a broad range of domain-specific
visual language applications both for academic/research use and industrial purposes and over a large
end user base. We have collected the evaluation results of Pounamu and its generated tools. The most
major concern for Pounamu users, particularly those developing large Pounamu tool applications,
was event handler specification. This was because it requires using complex API-dependent Java
coding which is not suitable for our target end users. This has motivated the work described in the
remainder of this thesis, which investigates various visual metaphors for event integration

specification.

-59 -



Chapter 4 - Overview of Our Approach

This chapter describes our approach to designing and prototyping a generic event integration
framework. This involves developing three exemplar notations/tools and generalising from them to

develop a new, generic visual event handling metaphor.

4.1 Introduction

Our approach is to adopt the Three Examples pattern from the Evolving Frameworks Pattern
Language (Roberts and Johnson, 1996) as a path to developing a generic event integration
specification framework. This pattern suggests choosing two applications that are similar and one
that is a little removed. The examples should be explored in either succession or parallel and from
which common reusable abstractions should be identified. We have explored three limited-domain
exemplars in succession, in which the first two both use a dataflow like icon and connector approach
to event handling specification, whereas the third is quite different as it uses a declarative approach.
A general metamodel representation that combines atomic primitives (either shared or non-shared)

extended by the three examples is then defined.

One increasingly common example event-driven problem domain is web services composition. Web
services have become a popular technology for building distributed systems, but there is a lack of
languages and tools to specify web service compositions at high abstraction levels, generate lower-
level executable process code such as BPELAWS (IBM, 2003), and visualise, at high abstraction
levels, running web services. Most approaches provide basic flow-like BPEL4WS editors or similar
(Srivastava and Koehler, 2003; Thone et al, 2002). More abstract approaches (Fensel and Bussler,
2002; Foster et al, 2003) only support limited compositional approaches or do not support generation
of BPEL4WS or similar executable forms. We describe a new approach for complex web service
composition using a high-level metaphor and visual language called ViTABaL-WS (Liu et al, 2007).
This supports higher level design views for service composition that are complementary to current

web services composition standards.

-60 -



The second problem domain that we focus on is visual design tools. These tools have many
applications, including software design, engineering product design, E-learning, data visualisation,
and tourism. Pounamu (Zhu et al, 2007) is a metatool for building such visual design tools. It
incorporates high-level visual specifications of tool metamodels and visual language notations
allowing end users to modify aspects of their tools such as appearance of icons and view
compositions. However, commonly end users also wish to modify tool behaviour (Morch, 1998;
Peltonen, 2000) to specify editing constraints, automated diagram modification, semantic constraints,
and computation. Several approaches have been used to support reconfiguration of diagramming
tools, including direct modification via an API (Kelly et al, 1996), scripting (Myers, 1997),
programming by demonstration (Smith et al, 1995), and Event-Condition-Action rule based
languages (Costagliola et al, 2002; Ledeczi et al, 2001). Pounamu currently uses the first approach.
Many end users of such tools are not programmers and do not wish to learn or use textual,

programmatic scripting languages to tailor their design tools.

Most visual design tools are “event driven”, i.e. when a user modifies a diagram, events are
generated and can be acted upon to modify other diagram content, enforce constraints, etc. We have
used the event-driven nature of such tools as the basis for an end user domain specific visual
language, Kaitiaki (Liu et al, 2005), with which to express both simple and complex event handling
mechanisms via visual specifications for their diagramming tools. These include event filtering, tool

state querying and action invocation.

MaramaTatau (Liu et al, 2007), our third exemplar, uses a more declarative approach to extend
behaviour specification of visual design tools. The focus is to better model relationships in a tool’s
metamodel definition. This includes constraining relationships via connector types mapping and
multiplicities, and specifying formulae for calculating property values and enforcing constraints.
Formula construction is similar to a spreadsheet but expressed at a type rather than instance level.
Formulae are all interpreted as one way constraints with Java event handler code generated and
realised at a model instance level. Error and to-do list critics provide notification to the user.
Visualisations of formula effects are achieved via runtime visual debugging and master-details

tabular model instances data views.

Based on the in-depth exploration of the three preceding visual event-based metaphors, our overall
aim is to generalise to a metaphor and a language/framework that can provide support for generic
event integration specification. The generalised approach should incorporate compositional

-61 -



primitives as building blocks together with a variety of different communication relationships
between them. It also should contain mapping/integration schemes to support interchange between

the three approaches.

As stated above, our aim is to generalise from three exemplars to produce a generic event handling
specification visual language and supporting environment. In the remainder of this chapter we

provide an overview of each exemplar before over-viewing directions for their generalisation.

4.2 ViTABaL-WS

Our aim for the first exemplar was to develop a metaphor to effectively describe the composition of
web services and support the development of a visual language and modeling environment. The web
services compositional relationships can be very complex and a range of compositional building
blocks are required. We chose to use the “Tool Abstraction” (TA) paradigm (Grundy et al, 1995) as
our metaphor for web service compositions and to support reasoning about different relationships
between compositional primitives. The TA paradigm is a message propagation-centric approach
describing interconnections between “toolies” (the encapsulation of functions) and “abstract data
structures” (ADSs: the encapsulation of data) which are instances of “abstract data type” (ADTs:
typed operations/messages/ events). Connection of toolies to other toolies and ADSs is via typed
ports. The TA paradigm supports modeling data flow, control flow and event flow relationships.
Reusability, extensibility and expressiveness are key advantages possessed by TA.

VITABaL (Grundy et al, 1995) is a hybrid visual programming environment for designing and
implementing TA-based systems. It uses the TA paradigm to compose systems by integrating, and
coordinating toolies and ADS components. TA paradigm appeared to us to be well suited for the web
services composition domain by permitting specification of an abstract model involving a series of
coordinated invocations to web services operations. Accordingly we adapted this earlier work to
develop a new visual language and environment, ViTABaL-WS, which specialises the ViTABaL
visual composition language to the domain of web services composition. It supports modelling of
both event-dependency and dataflow in designing complex web service compositions. Figure 4.1 is a
VITABaL-WS diagram illustrating examples of compositional primitives in the Tool Abstraction
paradigm. Toolies (web services, shaded green ovals) encapsulate data processing and interact with
each other through both direct and indirect operational invocations using shared data structures

(message ADT instances: rectangular, shaded icons); and event-driven dependencies indicating state

-62 -



changes to a Data Store ADS (data storage service). A system of typed input and output ports on
toolie and ADS services provide message sources and sinks. Services are wired together using these
ports with ports supporting only certain kinds of connection and message ADTs. Messages generated
by a service output port are distributed to connected web service input ports. Many interconnection
schemes are supported including one-way flow, request-response, asynchronous flow, and subscribe-

notify. Additional controls support conditional flow, dynamic type checking, synchronisation,
iteration etc.

67 Pounamu: Model things with yeur own tosl AR %
Pounamu  Plogns  HEc  Halp

Manager Tree | Toual fcons | lanappeovalProcnss | erthogonaiviewl |
gk |||

lnardgprovaln —
S @ sy riuaes e vies | approvallng

= ADS shaoww 1l For this wiew

i e

rmnre Hrs g

W aD  Gererste BPELAWS code jet VirinpleDiatalreg
E @ Osta M Execute the procosss
v 0s Seart Visual Debiaping Jetviarmbieliated r e e it

= Data_S e
1] EREEmer
Vo Fhap Ik I

W Db St
=l Emply

¥ Emply_L

W Emply X riskAssessmentP]  —

W Emply_4 —
¥ Emply % 3

=il Part

5 @ decision 4 bgrevs el VorinbleDinta{Tisk s sesament’, Fisk el
¥/ decisond P

£k L]

= i Dperatnn_ny T -
pPisnivantd|| 1 5

EXJ] C view bype WSLL  view bypes_Combied_EPELAWS |

oenerdl | undalkst | redaliet |

T G T ——— - T - ¥ Cd
561 dependency 9 has been sarved bo D \poumameimodelsil lsing. WITABAL WIRITABALWS smmpleuseociation chpcisidependncy Zl
363 VITABALWS_seaaple mrol has bees sevnd 1o D ipounasdmedelsUsng_ VT ABALWIWITABALWS_szasple'WiTABSLWS_szampls xml ¥
J |

iesicosme ko use Pounammu

Figure 4.1. ViTABaL-WS editing in Pounamu.

The specified web services are linked together by composition rules enforced in the ViTABaL-WS
tool. VITABaL-WS supports generation of WSDL and BPEL4WS from its abstract composition
model. We use the Business Process Execution Language for Web Service Java Run Time
(BPWS4)) as the deployment engine for generated BPEL4WS processes. A deployed process is
provided with a SOAP interface and a WSDL file, and thus can be invoked by a requesting web

-63 -



service client. BPWSA4] is tightly integrated with ViTABaL-WS: a ViTABaL-WS process can be
directly deployed and step-by-step visualisation of its execution can be obtained, with running

process state information shown in ViTABaL-WS diagrams.

4.3 Kaitiaki

The Pounamu meta-tool provides a textual code-based event handler specification tool unsuitable for
end users. We wanted to replace this with one using a visual language suitable for non-programmer
end users. To develop this replacement visual language, Kaitiaki, and its specification tool we carried
out an analysis of Pounamu event handlers from a wide range of tools to identify key constructs used
to specify different tool behaviours. All had aspects of (1) specifying the event(s) of interest; (2)
querying the tool state in various ways; (3) filtering event/query results and making decisions; and
(4) performing state changing actions on filtered objects. We also looked at the metaphors used in
existing rule-based and event-condition-action event handler specification tools to see how these
manifested the behavioural specifications and how suitable these were for end users. From this
analysis and survey, we developed a set of key requirements and design approaches for our new
Kaitiaki visual event handler designer:
e A need to represent key “building blocks™ of state query, data filtering and state modification
(actions).
e A need to represent event objects and their attributes; various objects from the Pounamu tool
state (both view and model); and query results (typically collections of Pounamu state objects).
e A need to represent “data” propagation between event, query, filter and action representations.

e A need to represent iteration and conditional data flow.

The metaphor used by Kaitiaki is an Event-Query-Filter—Action (EQFA) model conceptually
interpreted as: an end user selects an event type of interest; adds queries on the event and Pounamu
tool state (usually diagram content or model objects that triggered the event); specifies conditional or
iterative filtering of the event/tool state data; and appropriate state-changing actions to be performed.
Complex event handlers can be built up in parts and queries, filters and actions can be parameterised,
and reused. Ordering is handled by dependency analysis in the code generator. Domain specific tool
icons are also incorporated into the visual specification of event handling as placeholders for the
Pounamu state, to annotate and make the language more expressive (as shown in Figure 4.2). Step-
by-step visualisations of EQFA element invocation and data propagation are supported for

incremental development and debugging of visual event handler specifications.

-64 -



model props ] wisual pri
= Visible mode! prnpf Title
creationDate: String
14/02/05 08:55:02 .
NewShapeEvent Duration  TatalCost
description:String h
‘ shype
) Creation Date
1 duration: String A d
0
shapeType
14402405 08:55.02 id:String
1 shipe
tikle:String
- 2 name | value v
Title
model props ] wisual prnps]
= Visible model props
creationCate: String
14/02/05 08:65:02
description: String
duration; String 3
0
— 2i0205 10:46:09
id:String
-
= * Litle:String
. 'V T —

18105 8 S5
-

Figure 4.2 Kaitiaki storyboard.

4.4 MaramaTatau

We adopt a spreadsheet-like metaphor to construct metamodel formulae as another approach to
specifying visual design tool event handling. A formula is constructed by clicking on entity-
relationship metamodel elements (i.e. entity type, association type, and attribute) in a metamodel
view and a list of library provided functions as shown in Figure 4.3. Formulae can be attached to an
element in the metamodel and detached or removed from it. Context and dependency relationships
regarding a constructed formula are automatically inserted/updated reacting to user’s clicking
actions. Constraints on clicks are also enforced to complement design time semantics. Users can
choose to show or hide selected formulae in the view. Consistency between a visual formula and the
corresponding textual entity-relationship formula is maintained. Cycle detections are possible while a

formula is constructed and de-cycle options at design time are provided to aid error handling.

We adopt the same runtime visualisation technique (i.e., visual debug and step into) as in ViTABaL-

WS and Kaitiaki to visualise formula effects, with a complementary tabular display of instance

-65 -



values as in a spreadsheet. Master-details of related data are shown in the spreadsheet with

formulated columns non-editable and non-interpreted formulae shown by tool-tips.

i Marques

[:E Sketching kool

[~ Shapes >
I Entityshape [ Type
B Attribute narne Skring key
B ModelEventHandl. ..
B ModeluserHandle. ..

B Formula | WWhale
B Focus numParts ink nonkey ]
B Associationshape wolurne double nonkey ®
[ Connectors s price double nonkey :’::E |
} AkkrLink big boolean nonkey b | [ Part
| SubbypeLink partsList MulkiLinesText naney{]D area double nonkey
| FormulaLink | depth double nonkesy
| RelationLink srelumne double nonkesy
cdst double nonkey
rmarkup double nonkey
big boolean nonkey

/

1 Formula Construction Yiew 232 Model Instan?{(:onsole Farmula Debugger | Qutline

===Reference-based===

Select a Formula: (B » salf
self . parts- =colleck{cost*{ 1. 0+markup))- =sum{) alllnstances()
===Collection-based===
-=sizel)
-=sum(y

Figure 4.3 MaramaTatau editing in Marama.

4.5 Generalisation

We have generalised from the above three exemplar approaches and developed a metaphor and a
language and provided tool support for generic event integration specification. By abstracting from
the three exemplars, a general metamodel representation that combines atomic primitives (either
shared or non-shared) extended by the three visual languages were defined. This common model
supports multiple metaphoric views in the style of the three exemplars and will support generation to
a range of underlying implementation technologies for execution or interpretation (OCL (OMG,
2003), RuleML (RuleML Initiative, 2006), stylesheets etc.). As shown in Figure 4.4, a ViTABaL-
WS view (a) is used to specify high-level event propagations between components; a Kaitiaki view
(b) is used to specify high-level event handling performed by the event consumer component; a

MaramaTatau view (c) is used to specify high-level dependency/constraints among components. The

- 66 -



combination of the three metaphoric views allows seamless event integration specification and

execution in the Marama (Grundy et al, 2006) environment.

| > (b)

shape FequestShape
dofutolayoutSubshapes
=

shapeddded

processsubshapeAdded

new$\(shape)

N getshapes requestShape
changed_diagram N
R requestShape
getFirstContainsShape
newShape(shape) newshape(shape)
__Re ueskConn
corkains  [ServiceShape d
eﬂ@ # resizeShape (a)
II seryiceShape conneck .
e
@ il (C)

[clientshape ] [SBrverShape] [ObjectShape ] [Sewiceshape ][Requestﬁhape] [DatabaseShape ] TableShape

| 1 ! i
ClientShape_... | |Servershap... [ |ObjectShape_R... | [servicesha...| [Requestshap...| |Dakabaseshap... | | TableShap...

name:name |name:name |name:name id:id id:id |name:name |name:name
' namesnarme 1, [name:name ! i
I i H H H ! i
‘F\pplicatinnclient HAppIicatiDnSer...‘ RemoteChiect | [SErvice Fequest ‘ [atabase | ’E)atahaseTabIe
[CIientServerCnnn ][RequestTab...] [DBConn ] [SBFVBVOhiBCtCUH“ ] [SBI’WCBCU”"' ][Tahle(:onn ] [RequestCnnn ]
! ! H 1 H L i
ClientServe...| |RequestTa...| [PBConn_Ser..| |ServerObjectC...| |ServiceCon...| |TableConn_Da... RequestConn_,..

i i ; ; '= i
|CIientServer | ‘RequestDBTable‘ ‘ServerDatabase | |Server0bject | Cbject Service |DatabaseTabIes‘ ServiceRequests

Figure 4.4. Event integration specification in Marama meta-tools.

4.6 Summary

We have overviewed three exemplar visual event-driven system metaphors to specify event-handling
support; they are Tool Abstraction in ViTABaL-WS, Event-Query-Filter-Action in Kaitiaki and
Spreadsheet in MaramaTatau. We have also overviewed a generalisation from the three exemplars to
produce a generic high-level visual event handling metaphor with a visual environment for
specifying event-based system integration. In the following chapters, we will address each of the

metaphors, including the generalisation, in more detail including elaboration with examples.

-67 -



Chapter 5 - Visual Web Services Composition

The first problem domain that we focus on towards generating a generic event handling framework is
web services composition. This chapter elaborates the metaphor used in this application domain with
examples. It is largely based on the ViTABaL-WS (Liu et al, 2005) paper in Proceedings of the 2005

ACM/IEEE International Conference on Automated Software Engineering.

Implementing complex web service-based systems requires tools to effectively describe and co-
ordinate the composition of web service components. We describe a new domain-specific visual
language called VITABaL-WS and its prototype design tool to support modelling complex
interactions between web service components. ViTABaL-WS uses a Tool Abstraction metaphor for
describing relationships between service definitions, and multiple-views of data-flow, control-flow
and event propagation in a modelled process. The tool supports the generation of Web Service
Description Language and Business Process Execution Language definitions from a ViTABaL-WS
model and directly deploys a generated process model to a workflow engine. Our approach supports
specification of both fine-grained, detailed views and more abstract views of business process
protocols, message exchange rules and sequencing, and service invocation. ViTABaL-WS also
supports visualisation of running processes to support architecture understanding and visual

debugging of specified protocols.

5.1 Introduction

Web services are reusable, extensible, platform- and language-independent components that are used
over web protocols. An abstract definition of a web service contains two parts: messages and
operations (W3C, 2001), each service is described using the Web Services Description Language
(WSDL). Running web service operations are bound to ports and run on a host. Web services
composition is an approach that integrates individual services to make up a web service-based
distributed system. Web services composition combines several existing, published web services and
in turn potentially becomes a new web service itself. A web service composition language (either

textual or visual) is needed to specify a composite web service, using existing service components

-68 -



defined in or looked up from a services registry. The composed web service can then be described
using WSDL, registered and invoked, and thus added to the network as a new web service
component. One common web service composition language is the Business Process Execution
Language for Web Services (BPELAWS (IBM, 2003)), an XML-based service composition
language. It describes web services compositions, or orchestration, by defining a set of service
partnerships and structured invocation schemes. It also supports specifying concurrency and

transaction failure recovery schemes for composed web service components.

While web services have recently become a popular new technology for building distributed systems,
there is a lack of languages and tools to specify web service compositions at high levels of
abstraction, generate lower-level executable process code such as BPEL4WS, and visualise, at high
abstraction levels, running web service processes. Most current approaches provide basic flow-like
BPEL4WS editors or similar (Srivastava and Koehler, 2003; Thone et al, 2002). More abstract
approaches (Fensel and Bussler, 2002; Foster et al, 2003) only support limited compositional

approaches or do not support generation of BPEL4WS or similar executable forms.

We describe a new approach for complex web service composition using a high-level metaphor and
visual language. Our approach supports higher level design views for service composition that are
complementary to current web services composition standards. We aim to visually represent
processes’ control-flow, data-flow and event subscription using this metaphor so as to make web
services design and implementation easier and less error-prone. To this end we applied a Tool
Abstraction paradigm (Garlan et al, 1992; Grundy and Hosking, 1995) to web services composition,
characterising different kinds of services (data retrieval, data processing, fault handling, etc) and
their interaction (data flow, control flow, event subscribe/notify, synchronised, etc). We then
designed a visual language for describing web service co-ordination and built a proof of concept
environment that supports modelling with this language. BPEL4WS specifications are generated
from our model which can be run in a 3rd party web service orchestration engine to implement the
specified web service composition. Events are sent back to the modelling environment and used to
animate the composition and allow fine-grained developer control of the running web service for

debugging and analysis.

We firstly provide a motivation for this research and a survey of related work. We introduce the Tool
Abstraction metaphor and our visual language based on Tool Abstraction for specifying web service
composition. We describe our proof of concept modelling tool with a simple example and discuss its

-69 -



design and implementation. We present results of evaluating our tool, its strengths and limitations,

and areas for future research.

5.2 Motivation

Consider a simple loan approval process, as used in the description of IBM’s Business Process Web
Service for Java (BPWSA4J) process execution tool (IBM, 2002). This loan approval process is
composed of two main web services: a Loan Assessor web service and a Loan Approval web service.
As illustrated in Figure 5.1, when a loan request is received, the new Loan Approval process firstly
needs to determine whether the requested amount of the loan is under one thousand dollars or not. If
the amount is under one thousand dollars, the Loan Assessor web service is invoked; otherwise the
Loan Approver web service is invoked. After the Loan Assessor web service is invoked, the process
continues by determining whether the risk for the request is low or high: if the risk is high, the
control flows to the Loan Approver web service; otherwise an approval message is generated as the
response to the user’s loan request. Additional web services might also be used e.g. to provide Loan
Assessment Criteria (from a persistent storage mechanism), and to record a Loan Approval Audit
trail (storing the loan and approval information in a persistent form for later reporting). Relationships
between services in such business process models can become very complex: some send messages
and wait for replies; some send messages and continue execution; some provide data while others
consume it; synchronisation between concurrently executing services may be needed; service failure

may occur and needs to be handled appropriately; and transactional behaviour may be required over

services.
Loan Approval request Loan Approval response
v L
Loan Approval process IN oUT |e
Request<1000 NQUGSP:lOOO +

Risk! =’low’ Invoke
Loan Approver

WS

Invoke
Loan Assessor
WS

Criteria Query

D Loan Data

<

Risk="low’
Loan Assessment

o Loan Approval
Criteria WS

Audit WS

Figure 5.1: Conceptual model of the loan approval process.

-70 -



5.3 Requirements

Specifying such a composition of existing web services to form a new, reusable web service is the

role of web service composition languages, such as BPEL4WS (IBM, 2003). BPEL4WS is an XML-

based standard for composing web services to implement business processes that provides a set of

structural activities to specify data manipulation, sequence of service invocation and fault handling.

Since BPEL4WS is a textual script-based language interpreted by a process flow engine, it inherits

the drawbacks of using non-visual techniques, particularly for potential non-programmer users such

as business analysts (Pautasso and Alonso, 2005). These include an abstract XML-encoded
specification language that is difficult to read, error-prone specifications that are run-time checked,
and difficulty in debugging a running specification. It would be highly beneficial to users if a visual
modelling language and tool support were provided to specify web service composition models and

generate high-quality BPEL4WS from the model. Our work is motivated by these needs. Such a

language and tool should meet the following requirements:

e A visual metaphor for composing web services that fits users’ mental models of service
interaction;

e The visual language for composition must be able to specify: web service interfaces, i.e. abstract
message types and operations; variables; and different types of connections (i.e. data flow,
control flow, and event flow) between web services in a process;

e A support tool should permit modelling of specifications using the metaphor/visual language;
generation of WSDL and BPEL4WS (or other executable business process modelling languages),
and easy deployment of generated process models using 3rd party process engines, such as
BPWS4J;

e The support tool should permit visualization of running systems by annotating high-level visual
specification views from events generated by the process engine, to support debugging of

compositions and to assist understanding of others’ specifications.

5.4 Related Work

Web service composition is a form of dynamic, component-based architecture. A service description
in WSDL publicises the web service’s messages, operations and ports, as in Figure 5.2. Web services
are “wired together” with messages from one passed to another to build a composition. These web
service compositions are commonly called “business processes” or “workflows” (IBM, 2003;
Pautasso and Alonso, 2003; Srivastava and Koehler, 2003; Wirtz, 1993). Workflow metaphors are

typically used in much recent research on web services composition. Simple workflows are,

-71-



however, insufficient to describe the integration and co-ordination of web service components as
service composition may be quite complex (Benatallah et al, 2003; Fensel and Bussler, 2002). For
example, in Figure 5.2 conditional execution is needed; some links are sequential data-flow from one
to another; some asynchronous (such as storage of loanInfo); services may subscribe to events (such
as loaninfo storage events); conversion of messages may be needed (such as approvallnfo to loanInfo

for storage); and so on.

Risk = acceptable;

loanRequest
loanRequest a

X

>$1000

[

risk AssessmentWS:

messages: loanRequest;
risk Assessment

operations: check, store,...

loanAssessorWs:
messages: loanRequest;

approvallnfo; loaninfo loanAdded
operations: approve, ... /Q event
O O—

/ loaninfo

O
/

approvallnfo

loadApproval AuditWs:
messages: loaniInfo; loanAdded
operations: store, subscribe, ...

Figure 5.2: Web service composition.

A variety of languages to specify web service composition have been developed. Many are described
as “business process modelling languages”, although most web service composition languages, being
executable, are quite low-level. Examples include the Business Process Execution Language for Web
Services (BPEL4WS) (IBM, 2003), the Business Process Modelling Language (BPML) (Baker,
2002), and jBPM (Baeyens, 2007). Different web service composition languages support different
levels of abstraction, fault-recovery, transaction modelling, and service inter-relationships. Most are
textual scripts that are interpreted at run-time by workflow or business process flow engines. Such

textual scripts are often challenging to read, error-prone to write, and reusability can be limited.

Various visual modelling notations have been developed to support web service composition. Using
UML with various extensions is common. UML state-charts can be used to specify implementation

aspects of a service composition (Benatallah et al, 2003). These incorporate event handling schemes

-72-



where states represent services, transitions are constrained by Event-Condition-Action rules, and an
occurrence of an event fires a transition to execute a target action. An argument is that state-charts
are based upon finite automata and ECA rules which are easy to comprehend. However this approach
provides no means to explicitly specify data flow among services and is cumbersome to use for
service compositions. UML-WSC (Thone et al, 2002) uses class diagrams with stereotypes to model
static structure and activity diagrams to model dynamic aspects of web service compositions. Service
states call operations from components and transform states perform structural transformation on
messages. This is limited to modelling request-response and one-way operations only, and lacks fault
handling and partner roles.

Message Sequence Charts (MSCs) are compiled into a Finite State Process notation (FSP) to
concisely describe and reason about concurrent programs (Foster et al, 2003). This technique
provides a high-level metaphor but not web service composition language generation. Petri-Nets
have been used to model both offline analysis tasks, such as web service composition, and online
execution tasks, such as deadlock determination (Hamadi and Benatallah, 2003; Narayanan and
Mcliraith, 2002). These approaches describe the capabilities of web services in terms of a first-order
logic language. Service descriptions are encoded in an extended Petri-Net formalism with typed arcs,
hierarchical control, durative transition, parameterization, typed (individual) tokens and stochasticity.
While Petri-Nets are a powerful formalism they are a very general approach, can not be applied to all
web service compositions, such as modelling abstract web service interfaces and data flow, and don’t

provide a visual language easily understood by target end users (Pautasso and Alonso, 2005).

Biopera Flow Language (Pautasso and Alonso, 2003) is a generic visual flow language for
coordinating software components, with a development tool tailored for web service composition.
This focuses on data flow, execution sequence and fault handling and all can be specified with a
simple visual syntax. However it lacks modelling capability for event subscription and various other
service relationships like call-backs. The visual syntax is verbose as both data and data bindings must
be specified. Web Service Modelling Framework (Fensel and Bussler, 2002) is a methodology for
describing and developing web services and their compositions. The integration framework defines a
conceptual model for the web services integration (complex web services) and provides services for

mediating differences in data structures and message exchange patterns among services.

Many current approaches to modelling web service compositions lack full modelling capability: i.e.

are not able to model all types of operations (one-way, request-response, solicit-response,

-73-



notification). A common drawback is that a web service interface can not be fully expressed; some
model web services operations only; and some can not model invocation constraints in control flow.
Most of them use static binding rather than event-based mechanisms to integrate services. Many

cannot separate or combine control-flow and data-flow for modelling.

5.5 Metaphor

We wanted a metaphor to effectively describe the composition of web services and support the
development of a visual language and modelling environment. As described in Section 5.2, these
compositional relationships can be very complex and a range of compositional building blocks are
required. We chose to use the Tool Abstraction (TA) paradigm (Garlan et al, 1992, Grundy and
Hosking, 1995) as our metaphor for web service compositions and to support reasoning about
different relationships between compositional primitives. The TA paradigm is a message
propagation-centric approach describing interconnections between “toolies” (the encapsulation of
functions) and “abstract data structures” (ADSs: the encapsulation of data) which are instances of
“abstract data types” (ADTs: typed operations/messages/ events). Connection of toolies to other
toolies and ADSs is via typed ports. The TA paradigm supports modelling data flow, control flow
and event flow relationships. Reusability, extensibility and expressiveness are key advantages
possessed by TA (Garlan et al, 1992).

VIiTABaL (Grundy and Hosking, 1995) is a hybrid visual programming environment previously
developed for designing and implementing TA-based systems. It uses the TA paradigm to compose
systems by integrating, and coordinating toolies and ADS components. We have found that the TA
paradigm is well suited for web services composition domain by specifying an abstract model
involving a series of co-ordinated invocations to web services operations. We adapted the earlier
work to develop a new visual language and environment, ViTABaL-Web Services (ViTABaL-WS).
VIiTABaL-WS specialises the ViTABaL visual composition language to the domain of web services
composition. It supports modelling of both event-dependency and dataflow in designing complex
web service compositions. Figure 5.3 and Figure 5.4 show ViTABaL-WS diagrams illustrating
examples of compositional primitives in the Tool Abstraction paradigm. Toolies (web services -
shaded, green ovals) encapsulate data processing and interact with each other through both direct and
indirect operational invocations using shared data structures (message ADT instances: rectangular,
shaded icons); and event-driven dependencies indicating state changes to a Data Store ADS (data

storage service). A system of typed input and output ports on toolie and ADS services provide

-74 -



message sources and sinks. Services are wired together using these ports with ports supporting only
certain kinds of connection and message ADTs. Messages generated by a service output port are
distributed to connected web service input ports. Many interconnection schemes are supported
including one-way flow, request-response, asynchronous flow, and subscribe-notify. Additional
controls support conditional flow, dynamic type checking, synchronization, iteration etc.

The specified web services are linked together by composition rules enforced in the ViTABaL-WS
tool. VIiTABaL-WS supports generation of WSDL and BPEL4WS from its abstract composition
model. We use the Business Process Execution Language for Web Service Java Run Time
(BPWSA4J) as the deployment engine for generated BPEL4WS processes. A deployed process is
provided with a SOAP interface and a WSDL file, and thus can be invoked by a requesting web
service client. BPWS4] is tightly integrated with ViTABaL-WS, so that a ViTABaL-WS process can
be directly deployed and step-by-step visualisation of process execution can be obtained, with

running process state information shown in the ViTABaL-WS diagrams.

5.6 Notation

ViTABaL-WS defines a visual notation to specify data flow, control flow and dynamic event flow in
a web service composition process. It also provides constructs for distinguishing different kinds of
web services, synchronisation, fault handling, message splitting/ composition, dynamic type

checking, sub-process composition, and various control flow models.

ViITABaL-WS includes various toolie representations, including data processing services, sub-
processes, type checking and fault handling toolies. Data storage/retrieval services are represented by
data store Abstract Data Structures. We use the tool abstraction paradigm’s ADTs to represent typed
web service interaction: data being sourced from, sinked to and transmitted between web services;
event messages; and other kinds of toolie interaction. Web service operations are explicitly specified
by ports attached to toolies and ADSs, Web service compositions are thus constructed from toolies,
ports, message ADTs and ADSs.

Table 5.1 overviews elements in the ViTABaL-WS visual notation. Each toolie specifies a web
service interface as a part of the process model. Interaction is via data and control-flow dependencies
and event propagations. ViTABaL-WS is not only able to specify basic control-flow elements such

as dependencies, decisions, fault handling, iterations and concurrent executions in a process model,

-75 -



but also, using the Tool Abstraction paradigm, it can specify event propagations between services,

producing event-driven compositions. A mix of data-flow, control-flow and event-driven interaction

between services is possible.

Element Visual Representation Semantics
Message ADT message WS data
Data Store ADT instance
Datastare Data Store WS
Partner/Performer/Role Coordinating service
=1t
Fault handler [ fault handler J Exception/fault solution

Processing WS; process activity,

Toolie toolie
Atomic activity
(o) Generic operation
\/@' One-way operation
-1 - - g - -
(o Notification operation

T . .

. Ca Solicit-response operation
Dynamic type checking [ bype_checking j Type checking and transformation
Sub-process zubprocess Complex-activity

Data manipulation / assign / Assign/Copy data value

-76 -




Iteration

teration
Enter Condition
Exit Condition

For/while/until

Partner Link

Mame

\ toalie

Partner/Performer coordinating

Input/output flow

Parameter flow

Split message - parameter

Data flow . .
decomposition
[ Merge message
transition conction o
% | Transition
7
Conditional Branching
_— — — - — [> Asynchronous flow
Control flow | > Control Dependency
4 h Concurrency - Parallel execution
inffiate
—————————— > | Initiate
it-f .
e LY Wait-for
7
O | lterate
Broadcast o
} One-way communication
Request { } Request-response communication
N
7

Listen_before

A

Solicit-request communication

Listen_after

Notification communication

-77 -




subzcribe-notity
Subscribe notify é _________ Event registration

callback
Callback é ————————— ) Event callback

Table 5.1: ViTABaL-WS notation overview.

VIiTABaL-WS permits multiple views for complex processes and sub-processes, allowing a service
in one process to invoke via ADS messages and ports another service or a sub-process. Different
views allow both static specification of web service interfaces and dynamic specification of
messages between processes in different views, with consistent references managed by the
specification environment. Orthogonal views allow different kinds of interaction e.g. event-driven

and data-flow, to be modelled separately if desired.

5.7 Loan Approval Example

To illustrate our ViTABaL-WS visual web service composition language in use, we use the loan
approval business process model example from Section 5.2 (IBM, 2003). Two main web services
(loan approver service and loan assessor service) need to be coordinated to synthesise a new process
service (loan approval service) which is then exposed to other web service clients. The composite
process defines roles performed by all participating services, i.e. “loan approver” service fulfils an

“approver” role and “loan assessor” service fulfils an “assessor” role.

This exemplar comprises two main information processing toolies (suffixed by “PT”):
loanApprovalPT and riskAssessmentPT. The input and output message types to these processing
toolies we characterise as ADTs consumed or produced by the processing toolies. We may
additionally characterise key fault handling and dynamic type checking behaviours associated with

these toolies.

Figure 5.3 shows some of the toolie specifications used in the loan approval process. Figure 5.3 (a)
and (b) show the interfaces for the loanApprovalPT and riskAssessmentPT processing toolies. An
abstract web service interface is visually represented using input/output dataflow links, parameter
decomposition links, and transition links to support association of a toolie’s web service port types
and message ADSs. We attach operations to a port type to represent the port bindings of a web
service. For example, in the “loan approver” web service definition in Figure 5.3 (a) the

“loanApprovalPT” toolie has one port providing an “approve” operation with

-78 -



“creditinformationMessage™ as input message type (indicated by a data flow link with the arrow
pointing to the operation) and “approvalMessage” as output message type (indicated by a data flow
link with the arrow pointing out of the operation). The approvalMessage contains one message part,
“accept” (shown by the parameter decomposition link). In the case of an error occurring when the
toolie is invoked, the operation “approve” transits to the “loanProcessFault” fault handler (via a one-
way operation link) which generates a fault message of type “loanRequestErrorMessage”. The
“loanApprovalPT” toolie may also invoke a “loanApproval Audit” ADS (via another on-way
operation link) to record an audit trail of loan approvals. Toolies may provide multiple ports for other
toolies to bind too. Bindings may be data flow in/out, subscribe/notify event-based interaction, one-
way asynchronous invocation, bi-directional synchronous invocation and so on. Toolies may also

have more than one fault handler for operations.
Multiple views are used to specify toolie interfaces (Figure 5.3 (a) and (b)), complex message

decomposition (Figure 5.3 (c)) and toolie usage contexts (Figure 5.3 (d)). A toolie’s interface can be

collapsed to just show its port types for other client toolies to bind to, as in Figure 5.3 (d).

-79 -



(a) I approvalblessage I

credltlnfnrmatlnnr-.ﬂessag
accept I

approve

loanApprovalPT

I loanRequestErrormessage I

oanApproyalia.

(b) Iriskﬁssessmenthﬂessagel

Icreditlnfnrmatinnh.ﬂessageI —

rish I

check

riskAssessmentPT

oanApprovalsu. ]

IlnanRequestEerrMessageI

oansssessmen. ).

(C) | craditinformationhessage l ||DanRequestErrurMessageI

| drstname | | lastname | | amount |
(d)

appr-:-'-.-'.er ASSESSTOr
Iu:uan.&pp&all_inﬂype risk.&s?ﬁs{nﬂ_inﬂype
loanApprovalPT riskAssessmentPT

Figure 5.3: Various web service toolies and their interfaces involved in the loan approval

process.

-80 -



A business process model is built up by composing web service toolies using appropriate link types.
Figure 5.4 (a) shows the basic loan approval process. Note other overlapping views can be defined to
add extra information about a process model e.g. extra: toolie links driven by event notification of
asynchronous message flow; fault handling; message data storage/retrieval and so on. The “loan
approver” process defined in Figure 5.4 (a) expresses the following semantics: the “loan approver”
service receives a loan request. The process’ control flows to a decision point, which retrieves the
value of the amount of the loan requested. The conditional is specified by labelling the outgoing
links with an XPath expression specifying the comparison (including retrieval of appropriate
message content, in this case
“bpws:getVariableData ('request', "amount') &gt;=1000" or

“bpws:getVariableData ('request', "amount') &1t;1000”;

These expressions, as can be seen, are long and work is needed in our tool implementation to express
them in a more satisfactory way, e.g. as a tooltip). If the requested amount is less than $1,000 the
process control invokes the “risk assessment” service, else it flows back to invoke the “approve”
operation of the “loan approval” service. The “risk assessment” service takes the loan request as
input and decides if the loan is a low risk. It retrieves loan criteria information from the
“loanAssessmentCriteria ADS” to be used in the assessment task. If the risk is low the loan is
approved, otherwise the process model invokes the “approve” method in the “loan approval” service
to do a more thorough check. Both toolies invoke data storage activity on the
“loanApprovalAuditADS” to record an audit trail of approvals. Once a loan is either approved or

rejected, an approvallnfo message is constructed and returned to the invoking client.

Another example is shown in Figure 5.4 (b), illustrating a different approach to the audit trail, with
asynchronous flow from the generated “approvallnfo” message via an adapter converting its format
to the “loanApprovalAudit” service and the generation of a “loanAddedEvent” notification

subscribed to by a “print audit trail” service.

In a ViTABaL-WS process model we use variables of particular message types to specify message
flow from one toolie port to one (or more) others. Each toolie process may be stateful with state
information stored in such variables. In a composition model an abstract process toolie interface may
have additional constructs added, such as dynamic type checking and message storage interfaces, and

extra control flows and event propagations for a more advanced process model specification.

-81-



(a) Process definition - loanApproval Cor ]

getvariableDatz! e l:nurrt'j

riskAssessment

riskAssessmentP]  ————| oo |

iableDatal riskAzsEsasmen

| (b) Alternative audit trail

| approvallnfo
process flow

@ approve

loanApprovalPT

| loaninfo |

asynchrnl‘nnus florwe

i loanData

criterisg query

|Iuan.ﬂ.ddedEvent | | TaultMessage |

subscriﬁe-n:ltify

oanAssessmen. ]

~J’
printAuditTrailPT

Figure 5.4: Composed Loan Approver web services.

-82-




ViTABaL-WS automatically numbers operations to specify an invocation sequence of component
web services. The operation numbered zero is the initial task to instantiate the process model and the
process is terminated with a reply to its client. Transition links can also specify an implicit order of

invocation, with transition dependency constraints specified along with the transition links.

In order to execute our web service process model we needed to translate our model into BPEL4WS.
A BPEL4WS composition specification contains XML records specifying web services receiving
messages, the service being invoked and reply message being generated (i.e. constructs <receive>,
<reply>, <invoke>, <assign> etc). The ViTABaL-WS model contains TA-based modelling
constructs that can be mapped onto BPEL4WS constructs. Processing and data storage/retrieval
toolies map onto web services, with ADTs in ViTABaL-WS mapping onto BPEL4WS messages.
Toolie ports map onto BPEL4AWS ports with typing from ADT messages. Fault toolies and links to
ports map onto BPEL4WS fault handlers. Synchronisation control, asynchronous message flow and
subscribe/notify relationships in ViTABaL-WS map onto BPEL4WS process model script code to
implement these behaviours. Concurrent operations in ViTABaL-WS map onto concurrently run
BPEL4WS service invocations. Type checking toolies, conditional execution and iteration map onto
BPEL4WS script to carry out these operations.

For example Figure 5.5 shows a pair of toolie and port binding visual constructs being mapped to an
<invoke> construct in BPEL4WS if the service is not the request receiving service, otherwise, it is
mapped to BPEL4AWS <receive> and <reply> constructs. The ViTABaL-WS visual links for
service invocations and conditional flow/iteration are mapped to BPEL4WS script and links
specifying these control flows. The interface for the loanApprovalPT toolie is mapped onto a
generated WSDL interface specification for the service, which is used by the generated BPEL4WS
process model specification composing an instance of this service in the Loan Approval process.
Figure 5.5 also shows BPWS4J deployment view of the composed process.

We use the BPWS4J engine to deploy and debug our generated BPEL4WS models, though any
BPEL4WS-compliant engine could be used. ViTABaL-WS allows the user to deploy a generated
process model to the engine. The engine checks the host/port specified for each web service in the
generated BPEL4WS model has the specified service active. Once a process is deployed, it is
assigned a service address by BPWS4J so that it can be called by a client. A web service invocation

message sent to this service address (host/port) will now invoke our running loan approval process.

-83-



6 Pounamu: Mode things with your own taol

BEX]

Pounamu  Plugins Misc  Help

Manager Tree | Tool lcons |

loan-approval loanapprover | loanassessor | loandefinitions

8/ partnelink 0

+ partnerink_t
S ——
@ enity
b sovethis view

remove this view

plit_and_merge
 Split_and_merge_0
- @ fauit_hander

toolie

v toolefloandpprovalP T
—-@ operation_name

+ operation_name $approve
Data_Store

Lo Data S

=)

=@ Ar_ shor o forths view

Generate WSDL code

+ fault_handierfloanProcessF

E

approvalitess age

-
creditinformationies sage

apprave

loanApprovalPT

«—

@ assouiation
= @ input_output_flow
+ input_output_Flow_0
ed/ input_output_Flow_L
v input_output flow_4
= @ parameter_flow
V parameter_flow_0
Loa parameter flow 1
@ port_tindng

loanRequesiErorilessage I

loanapprovalau

[

</message=

<foperation=
</pontTypes

& Pounamu: Model things with your own tool

Joe

Pounamu  Plugins  Misc  Help

F loandpprovalfn
(@ ently

KIj]

Manager Tree | ToalTcons | ‘ loandpprovaProcess | orthagonaienl

Al

rename tis view

save this view

remove this view

@ Dats M
Ly/nd
@D d

Execute the pracess
Start Visual Debugging

/0 Sepio

show sl for this view

Generate BPEL4WS code

essment

L4/ Data_Stc
@ Epty
Lo/ Enpty_1
V Enpty_3
LV Epty
o/ Enipty 9
O@fat
-/ Rattgae
L/ Patiche
@ Rake
@ Splt_and_me
(5@ decision
Lo/ dedisiont
©/ deriiont
F1-@ fauk_hander
L/ Fallt_har
=@ toolie
L/ tocliedlos
*V/ todlegis
EJ-@ operation_na

ablDets

JVarEDt (! Zn;w: T

JetVaribleDats(fe

riskAssessn. 91

3

[panAssEssmen.

bpws.gefVarisbleDetafiskbssessmet, tiskJ=lon

ssbssmen

Erequ:est " /.

N

<output message="tns: approv:
=fault name="loanProcessFau
message="loandef loanRequ

WSDL

<message name="approvaltlessage" =
<part name="accept" type="xsd:string"/

<partType name="loanfpprovalPT"»
<gperation name="apprave"=
<input message="loandef creditinformationfMessage"f=

@ IBM Business Process Execution Language for Web Services Java Runtime Admin Tool - Microsoft Internet Explorer

File Edt ‘Yiew Favorites

Qe - ) |ﬂ g] ,h /._7 Search \i\?Fawntes @ redn £ ['jf\" ; RN

Tools  Help

B@'

adiess (€] hitpofiacahost: hml [v] BJso  toks >
Google - | | Gpseathweb - gD | Bhoblocked | auorl | options 9
-~
IBM Business Process Execution Language for Web Services Java .
. L
Runtime =
ey
Configure <?xml version="1.0" encading="UTF-8" 7> el
[ — ~ <definitions targetMamespace="http:/ /tempuri.org/services/loan-approval’
#mins: soap="http://schemas.xmlsoap.org/wsdl/soap/" smins: :sd="http:/ /www.w3.0rg/2001/XMLSchema"
#mins: tns="http:/ftempuri.org/services/loan-approval"
J HIMIN{ETBM Business Pracess Exculion Language for Web Services Java Runtime Kdmin Tool - Microsofl Intetnel Explorer | 8=
List *m}” Fe Bk Vew Favontes Toos e *
Amin: " "
amind Qe - @ - (2] [@ @ P preor= @t @ 3-5 & -
CIMPY sesess [0 rtgespocabos Sceaspwetadminindes: it B ”
sal Google « | | @b seachweb - g | Bhoboded f [ cprions P
Deploy <imp -
sa IBM Business Process Execution Language for Web Services Java
<imp
loc Runtime E
~<b
Un-deploy < ;: Configure Process (hitp:/'tempuri org/ services/loan- approvaljloan. approval deployed
Processes
— <0 Expemnal WSDL = [click heve]

 operatior q|
4 view type WL view type_Combined BPEL4WS

generd | unda st edolit |

562:dependency B bas esn savd to D poncannndel Using ViTABaLWEITABALWS evunplessociaion, oojrts ependency
363 VTABALWS s xapls el has been saved to D ipownarmlenodelUsing ViTABaLWEIVITABALWS exatapleWiTABaLWS exaruple.nl
q

<recelive name= "receive” partnerliy
portType="loankpproval PT"

operation="approve’
variable="reguest”
createlnstance="yes">

<'-links-->
<jfreceives

<invoke names"invokeapprover™ party
portType="1loanhpprovalPT"™

operation="approwve"

input¥ariahle="regquest"”

Un-deploy

outputVariable="approval Info":

€ l=link s-->
</finvoke>

<inwoke name="invokeassessor” partnerlink="assezsor”

poreType="riskAszezament PT"
operation=“check”

inputVariable="request"”

outputVariable="riskAssessuent'=

<1-links-->
< /invokes

A |

Chanaels

- Apache Axis
SOAP Addrese: hirp:/localhost SOS0 bpwsdj axisengine
SOAP Actioa TRI
Method Namespace URIe

o hitp://tempuri.org services loan- approvaléloan

pproval U i

ettt

BPEL4WS

Deployment via BPWS4J

Figure 5.5: Generating WSDL and BPEL4WS specifications from our ViTABaL-WS model.

-84 -



approvallnfo arror - | approvalinfg | error
-request

s e

approve @

approve 0

loanApprovalPT

getvariab eData('request',

check @

/ riskAssessmentP1

loanApprovalPT

“geti ariah eData('reques‘t', e

check Q

riskAssessmentP1

bnourt')’ oL’

2

=k ="l sk il="low!

(1) (2
| approvallnfo | ortar
u L

approve o approve

loanApprovalPT loanApprovalPT

i tiskAssessment - | | 1
getvatnbleData(regquest’| Enourt'y getval ARleData(request’| Fmount’)
L getvariab eDatar reque st o s

“gety ariab eData('request', s

check @ check @
/ riskAssessmentP1 / riskAssessmentP1
by ariableDatalriskAzsessment', ek I=ow b ariableDatalriskAssessment’, sk ="ow'

Danlssessmen. - leDsta(risk X zesem OANASSESEMEN. | leDatalriskEdsessm

(3) (4)

Figure 5.6: Dynamic visualization of a ViTABaL-WS model.

Figure 5.6 shows a running loan approval process (slightly different model to that of Figure 5.4, but
similar functionality). The user has asked ViTABaL-WS to generate and deploy a process model
then asked ViTABaL-WS to send the running process a loan request of $100 dollars from a client
which returns an approval reply to the client. Messages recording the web service invocations in the
process are sent out by each request/reply/invoke step calling a special debug web service
implemented by ViTABaL-WS itself. The VIiTABaL-WS visual modelling client receives and
interprets these BPEL4AWS message requests and highlight elements in the ViTABaL-WS views,

-85-



providing a dynamic visualisation. The dynamic visualisation includes service invocation (by
flashing the service representation node); invocation path into the service (by highlighting the path).
The user can double-click on a link or message and see its contents as XML. The traditional “debug
and step into” metaphor is used to support step-by-step visualisation. During each step of service
execution, the states of all variables (messages) in the process are displayed in a debugging panel.

Sub-processes invoked in the process are visualised similarly.

In Figure 5.6, after receiving the request message, the loanApprovalPT passes a riskAssessment
message to the riskAssessmentPT (1). The risk is checked (2) and then the loan approved (3). The
final process state highlights the request/reply service (node darkened) and the entire invocation path

(4). XML messages flowing from/into a stage can be viewed in a property view or via a tool tip.

5.8 Design and Implementation

VIiTABaL-WS was implemented using Pounamu, which has been introduced in Chapter 3. We
specified, in Pounamu, a metamodel defining VIiTABaL-WS visual language constructs and
constraints between them, and the graphical notations that are used to visually represent the syntax of
the language in each view type. We specified two different kinds of view editors: one for individual
web service interface definition, and the other for process definition when composing web service
components. The ViTABaL-WS environment allows separation of process logic into data-flows or
control-flows, and allows users to define views at different abstraction levels for processes and sub-
processes and orthogonal views at the same level for a process. The ViTABaL-WS code generator

has been implemented via specialised Pounamu modelling view plug-ins.

Pounamu modeling tool / XML \ 2. read model
> 1. save model ~
Java plug-in code
generator
7 )
Web 6. Visualization of 3. generate g—
services running process
4. read WSDL
P BPWS4J Deployment - S
> Engine o0l BPEL4WS
«1 5.
>

Figure 5.7: Design of our ViTABaL-WS tool.

- 86 -



Figure 5.7 illustrates the high-level design of our ViTABaL-WS environment. Model views are
specified using a Pounamu-generated modelling tool with model data stored in an XML format (1).
The WSDL and BPEL4WS code generators are plug-ins to the Pounamu-implemented tool. The
code generators read model view information from the backend XML files (2), and generate WSDL
and BPEL4WS specifications (3). These are derived from the individual web service interface views
and composite process model views. WSDL and BPEL4WS XML namespace generation is

automated.

Import from other service definitions is automatically handled so that the user need not worry about
namespace conflicts. Once code generation is complete, the services and process are deployed, with
no need for the user to view or modify any of the generated BPEL4WS code (4). Extra ViTABaL-
WS debugger web service calls are automatically instrumented into the generated process model.
The BPWS4J engine may be started directly from ViTABaL-WS to deploy and invoke process
models (5). When services execute, debug service messages are sent to ViTABaL-WS for

visualisation and user controlled step-through via the visual model views (6).

The VITABaL-WS debugging web service was developed using Java and deployed to the web server
using Apache Axis. WSDL for this service is retrieved from the server page and packaged into
generated BPEL4AWS processes. Generated BPEL4WS web service invocations are wrapped with a
pair of debug web service invocations to the start and end ports of the debug service. This also
provides access to the XML content of messages sent to/returned from each web service to be
displayed in ViTABaL-WS. When development of a ViTABaL-WS process is complete, an

optimised BPEL4WS specification without the debugging service calls is generated.

5.9 Discussion
5.9.1 Evaluation
We have carried out three evaluations of our environment: a Cognitive Dimensions (Green and Petre,

1996) evaluation, a user evaluation, and a revisit of the requirements expressed in Section 5.3.

Cognitive Dimensions provides a framework for us (the DSVL designers) to assess usability
characteristics of visual languages and their supporting tools using a set of “dimensions”. By
examining our environment against the set of Cognitive Dimensions, we understand both the strength

of the environment design and the trade-off to mitigate. The dimensions in italics below are

-87-



addressed for ViTABaL-WS being those most pertinent for this environment. Our target user group
are experienced web service developers hence we have chosen a system with medium abstraction
gradient. Our primitive visual elements represent a broad range of tool abstraction paradigm
components and links which provides a higher level of abstraction than pure BPELAWS service
request/reply/invoke constructs which arguably provides better closeness of mapping for our target
user group. We have chosen a relatively verbose visual formalism, but the language has a core set of
constructs which allow a relatively good understanding to be obtained through knowledge of only a

terse subset of constructs.

Our current mapping tool has limited juxtaposability as multiple views can’t be open side by side.
Thus complex compositions spread over several views/sub-process models may be difficult to
navigate and users may lose their context when reading a specification creating hidden dependencies.
This is addressed in our generic event handling framework which will be discussed in Chapter 8-10.

Users tend to layout their compositions from top to bottom to give an indication of flow in the form
of secondary notation, though ViTABaL-WS imposes no interpretation of positioning of icons in the
diagrams. The usual viscosity problems occur when diagrams need to be arranged to insert additional
elements. Progressive Evaluation is well supported as users can deploy and check execution of

specifications at any time with feedback provided at the same abstraction level using debug views.

An informal user evaluation was carried out with several users familiar with the concepts of web

services and web service composition. We explained and demonstrated to the users the problem

domain of our visual language and its supporting environment and asked them to perform a simple

web services composition task. We used three questionnaires focusing on usability, expressiveness

and overall capabilities of ViTABaL-WS to obtain feedback, summarized as follows:

e The TA metaphor is easy to understand for advanced users familiar with visual
notations/metaphors; but it takes much more time/effort for others to understand.

e The visual language is very expressive to specify web services interfaces and composition.
However it is insufficient for specifying dynamic service lookup and invocation.

e It would be helpful to provide intermediate abstraction level specification views to allow more
detailed specification to mitigate the abstraction gradient. Other possible improvements would

include the visual representation of looping and synchronization.

-88 -



e The environment needs to provide a means to explain to the user the correct use of notations and

generate feedback indicating improper use of notations.

The requirements expressed initially are addressed effectively, given that we have an expressive
visual language and proper runtime visualisation support for web services composition tasks.
Comparing the generated BPEL4WS process models to hand-coded models (our adopted approach to
web services composition prior to ViTABaL-WS), we find that generation of WSDL and BPEL4WS
reduces some areas of error-proneness given a quality abstract model. It automatically resolves xml
tagging constraints and namespace references, often error-prone in hand-coded BPEL4WS.
However, VIiTABaL-WS is not as expressive as BPEL4WS for specifying dead-path-elimination,

message correlations and transaction rules/expressions.

5.9.2 Strengths and Limitations

From our three evaluations we conclude that ViTABaL-WS provides a generally effective
environment for web service composition. The TA paradigm used as the compositional metaphor
allows expression of complex web service interactions at a higher level of abstraction than languages
like BPEL4WS and most existing BPEL4WS generation tools, which usually provide abstractions
directly related to BPELAWS constructs. We can generate from our ViTABaL-WS specifications
complete, executable BPEL4AWS models which can be deployed to and run directly from the
environment using a BPEL4WS engine. A visual debugger dynamically highlights stages and links
in the ViTABaL-WS model providing an interactive debugging and visualisation mechanism with no
need change to the BPEL4WS engine.

There are some weaknesses with the use of the general purpose TA paradigm. While it provides an
abstract and consistent way to express web service compositions, we found users wanting to express
compositions in a notation closer to their target domain (i.e. closeness of mapping requires
improvement). E.g. enterprise business systems analysts may not find the paradigm intuitive when
they think of composing services to form a new business process model. Addition/use of BPML
constructs is likely to improve this. In addition, the choice of icons to represent different types of
elements in ViTABaL-WS is arbitrary and based on the previous work with the TA paradigm. Users
may find redefining iconic appearance more closely linked to their actual purpose would make
composition models easier to read and understand. Our ViTABaL-WS tool is currently weak at pre-

BPEL4WS generation analysis, only enforcing simple type and inter-view consistency checks. More

-89 -



complete model checks for concurrency control, transaction management, dead-lock conditions, etc

would improve generated code.

5.10 Summary

We have developed ViTABaL-WS, a hybrid visual programming environment for design and
implementation of complex interactions and data exchanges among web service components. It is an
exemplar tool implemented using the Pounamu meta-tool. ViTABaL-WS uses the TA paradigm to
express complex web service compositions. It provides code generation to BPEL4WS and uses the
BPWS4J engine to deploy and execute generated process models. An interactive visual debugger
animates running service compositions in ViTABaL-WS by instrumenting debug service calls into
the generated BPEL4WS.

This is the first of the three exemplars used to generalise our generic event handling framework. The

second exemplar to be described in the next chapter is event handling in visual design tools. It uses a

similar dataflow like icon and connector approach to event handling specification.

-90 -



Chapter 6 - Visual GUI Editing Event Handling

The second problem domain that we focus on towards generating a generic event handling
framework is event handling in visual design tools. This chapter elaborates the metaphor used in this
application domain with examples. It is largely based on the Kaitiaki (Liu et al, 2005) paper in

Proceedings of the 2007 Australasian Conference on User Interfaces.

End users often need the ability to tailor diagramming-based design tools and to specify dynamic
interactive behaviours of graphical user interfaces. However most want to avoid having to use textual
scripting languages or programming language approaches directly. Our ViTABaL-WS approach
specifies high-level tool abstractions, but is not a good approach for GUI event handling metaphor,
due to its lack of discrimination of end user objects from abstract queries and state-changing actions,
and structured data flow in between. As our second exemplar, we describe a new visual language for
user interface event handling specification targeted at end users. Our visual language provides end
users with abstract ways to express both simple and complex event handling mechanisms via visual
specifications. These specifications incorporate event filtering, tool state querying and action
invocation. We describe our language, its incorporation into the Pounamu (as described in Chapter 3)

meta-tool environment, examples of its use and results of evaluations of its effectiveness.

6.1 Introduction

Visual design tools have many applications, including software design, engineering product design,
E-learning and data visualisation. In Pounamu, for example, high-level visual specifications of tool
metamodels and visual language notations allow end users to modify aspects of their tools such as
appearance of icons and composition of views. However, both our own and other researchers’
experiences indicate that many end users also wish to modify tool behaviour (Morch, 1998; Peltonen,
2000) and reconfigure user interaction with their design tool. This includes: specifying editing
constraints, e.g. diagram element layout; automated diagram modification, e.g. auto-add or resize of

elements; semantic constraints, e.g. allowing connection of only certain typed elements; automatic

-91-



computation, e.g. calculating an attribute value from the values of connected diagram element

attributes; and well-founded user interactions, e.g. alerting users to invalid input.

Many end users of such tools are not programmers and do not wish to learn or use complex textual
scripting languages to tailor their design tools in these ways. Most approaches for design tool
tailoring, however, use just such techniques (Smith et al, 1995; Lewicki and Fisher, 1996; Peltonen,
2000). Some tools support limited configuration via preferences and wizards. But these severely limit
the tailoring possible (Morch, 1998). Programming by example has been used for end user
configuration, but is limited in power and it is often hard to visualise and modify specifications learnt
(Cypher, 1993; Smith et al, 1995).

Most visual design tools are “event driven”, meaning when a user modifies a diagram in the tool,
events are generated and can be acted upon to modify other diagram content, enforce constraints, etc.
We have used the event-driven nature of such tools as a vehicle to provide end users with a domain
specific visual language, Kaitiaki, with which to specify behaviours for their tools. We have added
this visual language to the Pounamu meta-tool providing end users with little programming
background, a mechanism to detect events and specify actions to take. We first motivate our work
and survey related research, then outline our approach and its design and implementation. We finish

with an evaluation and conclusions.

6.2 Motivation

Consider a diagram-based design tool for web site and GUI specification, an example of such is
illustrated in Figure 6.1. This consists of a web site map view (rear) and a web form view (front). We
have built this tool with the Pounamu meta-tool as have many other diagram-based design tools (Zhu
et al, 2007). Such applications allow end users to model complex design problems using visual
notations appropriate to the domain. As many users of our tools are not programmers, providing

ways of specifying behavioural changes is more challenging.

-92-



Kaitiald_webUIHandIer] Kaitiaki_webll Kaitiaki_sitemapHandIer]

HOME

| Kaitiakj_sitemap] Kaitiaki_sitemapHandler Kaitiaki_weblI Kaitiaki_webUIHandIer] Kaitiaki_getSubPages]

| *****0il Painting ITEM Mo.: 0000001
Buy Sell Account . Seller inforrmstior:

Current bid: US § 182

SelleriD: **+001
Image Titne eft: 1 hour 22 minutes

Feedback score: 100% postive

Histary: 11 bids
Read feedback comments

[ - Your maxinum bid: US §
Ask seller a guestion
Place Bid |
Product description:

Categaries

Shipping, payment details and return policy
Resources

| [tern Location: Ontario, Canada Payment methods:
Shipping cost LS §40 -Credit card
Shipping insurance: US §3 Reguired -Personal check
Ships to; worldwide -Maoney order

Figure 6.1. Example of a diagram-based design tool.

A variety of approaches have been used to support reconfiguration of diagramming tools.
Frameworks, such as Suite (Dewan and Choudhary, 1991), Meta-Moose (Ferguson et al, 1999) and
Unidraw (Vlissides and Linton, 1989) require modifications to the tool’s code, with an edit-compile-
run cycle. Some Tcl/Tk-based tools may be modified while in use (Welch and Jones, 2003), but this
requires use of the Tcl programming language. MetaEdit+ (Kelly et al, 1996) and GME (Ledeczi et
al, 2001) provide API based code integration facilities, but code must be pre-compiled. Usually only

programmers familiar with the tool architecture can make such modifications.

A common alternative approach supporting run-time modification is scripting. This is supported, for
example, by Amulet (Myers, 1997) and Peltonen’s UML tool (Peltonen, 2000). MetaEdit+ also
provides a custom scripting language for report generation while GME uses OCL as a scripting
language for constraint specification. These are difficult for non-programmer users to understand and
use. Pounamu uses this approach, with event handlers specified using textual Java fragments
accessing a defined APl and compiled on-the-fly. Figure 6.2 shows a Pounamu event handler for a

web site design tool. This is a powerful mechanism for extending Pounamu and very sophisticated

-03-



event handling behaviour has been implemented with it. As we reported in Chapter 3, while end
users have been very complimentary of Pounamu’s visual design tools, they have been less
complimentary about the event handler specification as it requires programming skills and

knowledge of the Pounamu API even for simple handlers.

RemoveshapesndConnector ] PositionMewT ask, | MewZonneckorConskrainks
ResizeCaonstraints snapToPlace

Please specify the events this visual handler will response to

| MewshapeEwvent I MewConneckorEvent [ RemovesShapeEwvent
[ RemoveConnectorEvent v MoveshapeEvent | ResizeShapeEvent
| ChangePropertyEvent

Please import any class vou want here

import Jjawva.awkt. ¥z =
Kl .
Please input the action code here

MoweShapeEvent event = (MoweshapeEwvent)e; ﬂ
PounamuPanel movedPanel = event.getcihape(): 2

modellerPanel = getPanel():

int offsety¥ = movedPanel.get¥ () 3VERTSPACE

int offseti = movedPanel.getX()3HORZ3PACE ; -
4 | 3

Please input the helper methods code here

final int VERTSFACE 70:
final int HORZZFPACE 70
ModellerPancel modellerPanel;

PR

e

Please briefly describe this handler here

snapToPlace =
4 i
visual_event_handlers | visual_user_handlers J meta_model_views ] wiew_types
shapes | COnnEecLor ] model_event_handlers ] model_user_handlers

Figure 6.2. Example of event handler textual specification.

Programming by demonstration and rule-based approaches have been used to specify behavioural
constraints in some systems, often together and most notably in children’s programming
environments such as KidSim (Smith et al, 1995) and Agentsheets (Repenning and Sumnet, 1995).
Most rule-based approaches exemplify “Event-Condition-Action” based visual languages where the
user specifies an event of interest; conditions (“filters”) when the action(s) should be run in response

to the event; and action(s) to run to modify the tool’s state.

Other Event-Condition-Action rule-based languages have been developed for a variety of domains,

including building and tailoring design tools (Costagliola et al, 2002; Ledeczi et al, 2001; Lewicki

-94 -



and Fisher, 1996), user interface event handling (Berndtsson et al, 1999; Jacob, 1996), process
modelling (Grundy et al, 1998) and database rule handling (Matskin and Montesi, 1998). However
these approaches often suffer from use of inappropriate, textual rule-based languages for end users;
reliance on many abstract concepts like control structures and variables; limitations on expressive
power of the languages; difficulty in visualising and debugging learned rules from demonstration by
the user; and limitations of reconfiguration power, including compile-time rather than run-time

changes.

6.3 Requirements

Given the problems noted above, we wanted to replace Pounamu’s textual, Java code-based event

handler specification tool with one using a visual language suitable for non-programmer end users.

To develop this replacement visual language, Kaitiaki, and its specification tool we carried out an

analysis of Pounamu event handlers from a wide range of tools to identify key constructs used to

specify different tool behaviours. All had aspects of (1) specifying the event(s) of interest; (2)

querying the tool state in various ways; (3) filtering event/query results and making decisions; and

(4) performing state changing actions on filtered objects. We also looked at the metaphors used in

existing rule-based and event-condition-action event handler specification tools to see how these

manifested the behavioural specifications and how suitable these were for end users. From this

analysis and survey, we developed a set of key requirements and design approaches for our new

Kaitiaki visual event handler designer:

e A need to represent key “building blocks™ of state query, data filtering and state modification
(actions).

e A need to represent event objects and their attributes; various objects from the Pounamu tool
state (both view and model); and query results (typically collections of Pounamu state objects).

e A need to represent “data” propagation between event, query, filter and action representations.

e A need to represent iteration and conditional data flow.

6.4 Metaphor

The metaphor used by Kaitiaki is thus an “Event-Query-Filter—Action” (EQFA) model. This is
articulated as “When this event happens, I want these changes made to these things”. This is loosely
based on the Serendipity event handling language which has been successfully used by end users in
the process enactment domain to express similar kinds of event-driven behavioural models (Grundy
et al, 1998). The key visual constructs of our language are representations of events, tool objects,

-905-



queries on a tool’s object state, state changing actions (including primitives relevant to common

event handler requirements), and data flow links between these.

Action 1:

Tool state e.g. Move objects
Diagram changed

. /

Event of interest Query over state .g. Filtered Objects
\ / all items in Diagram /
Event property(s) \ Filter of objects e.g.

Objects  ——1 only particular type

Action 2: change
colour of all objects

Figure 6.3. The Kaitiaki EQFA metaphor.

A Kaitiaki event specification is conceptually of the form outlined in Figure 6.3. An end user selects
an event type of interest; adds queries on the event and Pounamu tool state (usually diagram content
or model objects that triggered the event); specifies conditional or iterative filtering of the event/tool

state data; and then appropriate state-changing actions to be performed on target tool state objects.

Complex event handlers can be built up in parts and queries, filters and actions can be parameterised,
and reused. Ordering is handled by dependency analysis in the code generator. Domain specific tool
icons are also incorporated into the visual specification of event handling as placeholders for the

Pounamu state, to annotate and make the language more expressive.

6.5 Notation

The design of our Kaitiaki visual language focuses on supporting modularity and explicitly
representing data propagation. We have avoided using abstract control structures and adhered to a
dataflow paradigm to reduce the user’s cognitive load. An overview of the main constructs of
Kaitiaki is shown in Table 6.1 with an example Kaitiaki event handler view shown in Figure 6.5.
From this we see the visual form of the constructs described in the previous section, i.e. events,
filters, tool state queries, and actions plus iteration over collections of objects, dataflow input and

output ports and connectors, and concrete iconic forms.

-96 -



Event representation EventType

Single Data Element

Abstract Pounamu state

Collection of Data

representation Elements

Filter FilterMame

Query on a tool’s state

. . Actiontame
State changlng action -
for-gach

Iteration

Data propagation link ,')
Data flow ports in and out i %
Concrete specification of Pounamu HOME

model elements (state)
etc.

Table 6.1. Kaitiaki language key visual constructs.

A single event or a set of events is the starting point for a Kaitiaki event handler specification. From
this event various data flows out (event type, affected object(s), property values changed etc).
Queries, filters and actions are parameterized with data propagated through incoming connectors.
Multiple flows are supported with multiple dataflow connectors pointing to/from a visual construct.
Queries retrieve elements and output one or more data elements; filters select elements from their

input; actions apply operations to elements passed to them.

Queries and actions are invoked immediately when their actual data parameters are available (data
push). If no related data dependency is specified, i.e. no data input parameter flows to the constructs,
then queries and actions are invoked on demand when all other parameters to a subsequent flow

element have a value (data pull).

-97-



Table 6.2 shows some of the predefined primitives for these constructs. These define the core
vocabulary for our domain specific language, providing a base set of operations useful for diagram
and diagram element manipulation. Typically this involves locating or creating elements, setting

their properties, relocating/aligning them, and connecting them.

State querying

shape

Obtain a named property value of a
name getFrop
shape

propSalue

Obtain all the shapes in the

modeller panel

shapes

Obtain all connectors in the

modeller panel

connectors

shape

getShapeConnectars Obtain all connectors connected to a

shape

connectors

Data filtering

Select shapes of specified type from

shapeType set or test type of single data

element input

connectorType Select a given connector type
shape
Select all shapes that are connected
connectedTo . .
shapes I to a particular shape (i.e. connector

source)

shape=s

-08 -



=hape

~4 Select all shapes that are connected
shapes — > I sennectedfrom from a particular shape (i.e.
é, connector target)
=hape=
fwall Filter on a not null value
true Filter on an expression value

State modification
=hape

name walue %
sotProps Set a list of name-value pair
I R properties for a shape
=

narme
=etProp=
) - Set a value to a named property
walue
narme ‘é’
valles > setListProp Set a list of values to a named
S property

A— xv Move a shape by an offset to a

<
shape —D moveBy d— detta dettary SRS —D

L
I

shapes—> {— shapes Horizontally/vertically align a shape
with other aligned shapes

T

location

nesa Zhape
type —{> F Create a new shape

Create a connector of a specified

type and connect two shapes using

SennestarType ™ the connector

Table 6.2. Overview of Kaitiaki reusable building blocks.

-99-



6.6 Example of Kaitiaki Specifications

To construct a visual event handler specification a user identifies the target affected shape, view or
model entity. She specifies the event(s) the event handler should respond to, and then adds building
blocks to the handler specification. The concrete representations of Pounamu data, such as the shape
icons, allow her to relate her queries, filters and actions to concrete objects in Pounamu. Basic elision
support allows the user to show and hide concrete icons, queries, filters and actions to help manage
larger specifications. To better illustrate the expressiveness of Kaitiaki, we use an event handler
example defined for the web site design tool shown in Figure 6.1. The web site map view (of a
simple model like eBay) supports a hierarchical breakdown of web pages for sub-page management.

It requires several layout constraints to be enforced.

stemap | Kaitiaki_sitemapHandler | Kaitiaki_webUI | Kaitiaki_webUIHandler | Kaitiaki_getSubPages ]ls‘temapWKa‘tiaH_SitemaPHa“db’ Kaitiaki_weblT | Kattiaki_weblLlIHandler | Kaitiski_getSubPages

HOME HOkE

I | |

Buy Sell Account Comunity Help

Buy Sell Account Coniunity
[} [

map ko an existing entity
wig xrl For this entity
save this entity Fegistration

Regis  remove this entity From this view

remove this entity from this model

bring to front /

push to back

forward one level /
\

Cater  down one level

Debug Event Handler
AddnewPage -

N
*

Resources

Figure 6.4. Example of addition of a new sub-page.

When creating a page icon for the web site map diagram, several values for its properties need to be
set. These are gathered from a range of sources. An event handler is needed to implement one of the
layout constraints. Users need to be able to create a new page by a right-click on an existing page;
the newly created page is made a child of the existing page and a link is drawn between the old and

new pages. The new sub-page and all other sub-pages belonging to this parent are aligned and

- 100 -



repositioned upon arrival of the new page. Figure 6.4 shows the effect of this event handler when a

new sub-page is added to the selected.

parent ParentPage
AddblewPage
MeweSubPage
parent
SubPage
getSubPages SOULCe
subPages :
@ .

SubPages

rarget

name | value

Mew SubFage
- zetProps

Figure 6.5. Specifying a layout constraint event handler.

get=hapes
ParentPage
PageShape
AllPages SubPages
connectedFrom .

Figure 6.6. An example of a reusable visual query.

-101 -



The event handler specification for this task is shown in Figure 6.5 which demonstrates the use of
predefined Kaitiaki primitives (e.g. create, align and set property and connect shapes). It also
demonstrates package and reuse of queries and actions. The modelling constructs contained in this
event handler specification include a user defined trigger event (a context-menu event) called
“AddNewPage” which has the selected (i.e. Parent) “Shape” flowing from it; a query,
“getSubPages” (a packaged query) that locates existing sub-pages of the currently selected page
shape (“parent” as propagated to the query); four actions, the “newShape” action creates the new
page shape; the “alignH” action does a horizontal alignment (with a user specified vertical distance
in between) of the new page shape with the other existing sub-pages; the “setProps” primitive then
sets default properties for the newly created page shape; and the “connect” primitive creates a
connector of the “SubPage” connector type and connects the new page shape with its parent shape
using the connector, now the event handler leads to a final stage, i.e. the end of the event handler
specification.

Data sourced from outputs of “source” entities flows through data propagation links to act as input to
“sink” entities. Each of the data propagations is statically checked for type compatibility of their data
sender and consumer. Also incorporated in the event handler example are some end-user target tool
icons, e.g. one on the flow from the “AddNewPage” event to the connect action annotates the flow to
visually indicate the type of shape (page) on the flow. Another on the flow from the “setProps”
action annotates the flow to indicate that the state change (which sets defaults values) results in
modifications to a page shape (the new sub-page). Shadowed icons, such as the one on the
“subpages” flow from “getSubPages”, indicate multiplicity in the result. These optional annotations
do not affect the semantics and thus are examples of secondary notation augmenting the specification
(although their types are checked). They include generic titles (‘“ParentPage”, “NewSubPage”, etc) to
emphasise the reusability of the event handler for other page shapes.

Figure 6.6 shows the packaged “getSubPages” query, which is composed of a number of primitives.
We explicitly specify start (data flow in) and end (data flow out) ports for a package. Starting with a
parent shape flowing in from the start to the “connectedFrom” filter, the “getShapes” query which
gathers all available shapes (via data pull) is invoked. The “PageShape” filter selects all shapes that
are of the “PageShape” type. The “connectedFrom” filter then selects only those that are connected
from the specified parent shape. The end flow of the composed query indicates that on termination,

this query flows out the set of sub-pages of the parent page. This query is invoked in the event

-102 -



handler in Figure 6.5, but can be reused by other event handlers. Actions and filters can similarly be

specified and reused.

6.7 Dynamic Visualisation of Event Handlers

A consequence of introducing a visual language to generate Pounamu event handler code from visual
specifications is the need to support their incremental development and debugging. To this end we
have developed a visual debugger which dynamically annotates an event handler specification view
for a fired event. The viewer exploits the dataflow between event handler building blocks to update a

visualisation of event handler execution in its own view.

Kaitiaki_sitemnap | kaitiaki_siterapHandler | Kaitiaki_webUI | Kail »  property panel .ﬁ

debugging wview ]

HOME il

parent
| AddrlewPage

| MeveSubPage
parent

By Sell Account
getSubPages
subPages

Fegistration
| SubPages
Categaries
| -
[ 4] | ﬂ_‘
Stake Info
AddrewwPage Event Fired
L REEENREEs Pounamushape Page$l. 1
[«

S04 | WiTABaL-WS g ajkizki | MaramaFormula

Figure 6.7. Visualising execution of a visual event handler.

The dynamic visualisation of an event handler execution includes the visualisation of EQFA element
invocation (by flashing the corresponding node in the graph) and the visualisation of data
propagating path to the next construct (by highlighting the dataflow path). The traditional “debug and
step into” metaphor is used and step-by-step visualisation controlled by menu command. As seen in
Figure 6.7, when the “Step Into” button is clicked, the next element to be invoked and the data

propagation path are highlighted and handler execution pauses. The user can then step into the next

- 1083 -



element, abort the handler or inspect data values on a propagation path. The final state of the event
handler execution highlights all the invoked constructs (nodes coloured in green) and the entire data
propagation path. The states of the propagated data are able to be displayed in the debugging state

information panel.

6.8 Design and Implementation

We have implemented an environment for Kaitiaki as an extension to Pounamu. As shown in Figure
6.8, the main components added to Pounamu to generate Pounamu event handling code and visualise
a running event handler include: Pounamu views and model for specifying visual event handler
models; XML-based representation and storage for both library and user-defined queries and actions;

and the visual debug viewer.

We have developed form-based specifiers for queries and actions to allow
reconfiguration/modification of existing library code modules and creation of new ones by expert
users. These are added to the library of reusable building blocks so end users can visually add them
to specifications. Query/Action XML DTDs have been defined for Pounamu and XML data files are
used for saving to and loading from a library of queries and actions. Visual Kaitiaki nodes are
integrated with code modules by the code generator. There is strong coupled mapping of visual
components and code components, thus component-based code generation from a specification is
achieved. The visual links (connectors) instantiate the visual entity components as they are required
i.e. initialise query/action modules and invoke them as needed. The independent use of component-
based visual and code components increases the modularity and reusability of the programming

constructs.

Pounamu Meta-tool

Visual event Meta-tools

specification tool -
Meta-tool Editors
| Models | e.g. shape, view,
- meta-model definers
| Views |
XML l

XML Tool

uery/action
i Specifications

Specification

Event Handler

| Code Generation I Java Code

v

Figure 6.8. Extensions to Pounamu (highlighted).

- 104 -



<code>Vector subPages = getSubPages (parent);</code>

parent FarEmFage

AddiewPage

MewZubPage
parent

SubPage
getSubPages SourCe
subPag 3

SubPage
<method>

public Vector getSubPages 4 imuShape parent) {
//code module

target

}

public void connect (PounamuShape parent, PounamuShape child, String connectorType) {
//code module

}

</method>

Figure 6.9. Compiling a visual event handler.

The code generator first performs a model (dependency) analysis and then sets module properties
obtained from the visual model. It buffers code for creating event instance and query/action
invocation, and finally writes the completed event handler code to an XML file. Figure 6.9 shows an
example of this translation for the “AddNewPage” specification. Data propagation links instantiate
actual method calls to target queries or actions, generating the <code> XML construct in the
Pounamu event handler XML. Each query and action extracts the reusable, parameterised code from
the component. Parameter values are substituted and XML is generated for the <method> construct

of Pounamu in the event handler XML.
6.9 Discussion and Evaluation

We have carried out a Cognitive Dimensions (Green and Petre, 1996) investigation of our visual

event specification language and prototype environment to gauge its effectiveness.

- 105 -



Our target user group are inexperienced Pounamu users. We have chosen a system with a low-to-
medium abstraction gradient. Abstractions introduced are visual iconic constructs and data flow
between them. These abstractions support query/action composition allowing users to specify
Pounamu data queries and state changing actions as discrete, linked building blocks in the language.
We have chosen a terse visual formalism which should allow a relatively good understanding to be
obtained. The dataflow metaphor and visual constructs used as primitives in Kaitiaki increases its
comprehensibility compared to the Java-based version. Kaitiaki constructs map onto the basic
features of our EQFA metaphor, which provides high closeness of mapping for our target user group.
Concrete representation of Pounamu data elements is supported too. The metaphor is related to the
way Pounamu supports event processing and mixes abstract and concrete constructs. The initial

abstractions require hard mental operations but are mitigated by concrete domain objects.

Kaitiaki allows secondary notation to be used to layout, resize and annotate items in the view with
iconic and textual labels. End user domain icons (i.e. concrete representation of Pounamu data
elements) can be added to mitigate the abstraction of a visual event handler specification, to increase
its readability and understandability. Modifying an event handler specification is by direct
manipulation and a user can change one module without affecting the rest of the specification.
However, it still has viscosity problems — that is the nature of dataflow systems — the user typically
has to do a bit of rearranging (e.g. connector removal and reattachment, icon shuffling) to insert an

element.

The existing Java-based Pounamu event handler designer is very error-prone for both novice and
experienced users due to reliance on APl knowledge and Java coding. Kaitiaki reduces some areas of
error proneness by hiding API details and using data flow and visual constructs. However, as the
specification is still an abstraction users can still specify faulty behaviour. Kaitiaki allows
progressive evaluation of a visual event handler specification even when it is partially complete.
Modifications to event handlers take effect immediately after re-registration in an end user tool. The
visual debugger allows a user to step through a handler’s elements and view data, which is not
supported by the Java code based event handler. The current tool has reasonable visibility and
juxtaposability. Information for each element of an event handler is readily accessible. The
visualisation of a running event handler is juxtaposed with the modelling view that triggers its
execution. But conversely that does not happen when the user is designing the event handler — the
user has to switch between the views. Hidden dependency is introduced in both Pounamu and its

specified tools to manage consistency in multiple views, e.g. between view and shape specifications

- 106 -



and the event handler specification.

An informal evaluation of the visual event handler specification tool has been carried out with
experienced Pounamu users and some novice users. Feedback suggests the visual specification
approach is greatly favoured for most event handler specification tasks. We plan a more formal

evaluation with novice users to better gauge this.

With respect to requirements, our EQFA metaphor captures event generation, state querying, filtering
and iteration over query results, and state change actions to describe event handler specifications.
The dataflow metaphor describes the composition of these event specification building blocks and
seems to map well onto users’ cognitive perception of the metaphor. Packing complex parts of a
specification into reusable building blocks allows very complex event handlers to be defined with the
model. A proof of concept support tool has demonstrated the approach is feasible permitting both
simple and complex Pounamu event handlers to be defined visually, code to be generated for them

and visual debugging of them supported.

A potential weakness of Kaitiaki is the abstract representation of all events, queries, filters and
actions. We have attempted to mitigate this with the addition of concrete iconic representations and
are experimenting with elision techniques that allow concrete icons and Kaitiaki elements to be

collapsed into a single meaningful icon.

6.10 Summary

We have developed a prototype visual language and proof of concept support environment for
specifying diagramming tool event handlers. This uses a metaphor of generating event, tool state
queries, filters over query results and state changing actions, with dataflow between these building
blocks. The support environment allows users to compose handlers from these constructs and relate
them to concrete diagramming tool objects. A debugger uses the visual notation to step through a
specification, animating constructs and affected diagram objects. We have added this tool to the
Pounamu meta-diagramming tool and specified and generated event handlers for example tools,

demonstrating the feasibility of the approach.

This is the second of the three exemplars used to generalise our generic event handling framework.

Kaitiaki shares some commonalities with VIiTABaL-WS, typically the dataflow used in the

- 107 -



specification to describe propagation of event and data. The major difference between Kaitiaki and
ViTABaL-WS is their abstraction gradients. The generalisation of these two visual languages is
described in details in Chapter 8. The third exemplar to be described in the next chapter is declarative
dependency and constraint specification in metamodelling tools. The third exemplar has attempted a
thoroughly different metaphor from the dataflow like icon and connector approach to event handling

specification.

- 108 -



Chapter 7 - Visual Relational Formula Specification

Our third exemplar towards generating a generic event handling framework is the declarative
specification of dependencies and constraints in metamodels. This chapter elaborates the metaphor
used in this application domain with examples. It is largely based on the MaramaTatau (Liu et al,
2007) paper in Proceedings of the 2007 IEEE Symposium on Visual Languages and Human-Centric
Computing.

It is increasingly common to use metatools to specify and generate domain specific visual language
tools. A common problem for such metatools is specification of model level behaviours, such as
constraints and dependencies. These often need to be specified using conventional code in the form
of event handlers or the like. Our VIiTABaL-WS and Kaitiaki approaches are inefficient for
specifying such constraints on metamodels. We report our experience in integrating a declarative
constraint/dependency specification mechanism into a domain specific visual language metatool,
focussing on the tradeoffs we have made in the notational design and environmental support used.
The expressive power of the mechanism developed is illustrated by a substantial case study where we
have redeveloped a complex visual tool for architectural modelling, eliminating conventional event

handlers.

7.1 Introduction

It is increasingly common to use metatools to specify and generate domain specific visual design
tools. Examples of such metatools include MetaEdit+ (Kelly et al, 1996), GME (Ledeczi et al, 2001),
Eclipse GMF (Eclipse, 2007), and Microsoft DSL Tools (MSDN, 2005) together with the locally
developed Pounamu (Zhu et al, 2007). High-level visual specifications of tool metamodels and visual
language notations allow end users to modify aspects of their tools such as appearance of icons and

composition of views and metamodels.

However, an area that commonly proves difficult for meta-tool designers is the specification of

model level behaviours, such as constraints, dependencies, element initialisations, calculations, etc.

- 109 -



Most approaches for model behaviour specifications use conventional code in the form of event
handlers or constraint expressions. For example, Pounamu uses Java-based event handlers, GMF and
GME use textual OCL (OMG, 2003) expressions, and MetaEdit+ uses a combination of constraint
wizards and external code snippets. The difficulty with all of these approaches is that the resulting
behavioural specifications are not strongly integrated with the visual metamodel, resulting in a
variety of, in cognitive dimensions (Green and Petre, 1996) terms, hidden dependency, consistency,

juxtaposability and visibility issues.

In this chapter we describe MaramaTatau, an extension to the locally developed Marama metatool
set, which provides the ability to specify behavioural extensions to Marama metamodels. Although,
like GMF and GME, the behaviours have an OCL formula basis, we have attempted in the
environment design to mitigate the hidden dependency, consistency and visibility issues noted above.
In the following section we motivate and background our work in more detail. We then describe our
new approach, using a simple example to illustrate. A more detailed case study follows, showing the
reengineering of a previously developed tool, in the process eliminating complex handler code. We
discuss the implications of our work then summarise the results achieved and proposing further

work.

7.2 From Pounamu to Marama

Pounamu, like other meta-tools, provides a set of editing tools that realise its meta-tool specifications
allowing end users to model using the generated domain-specific modelling tools. However, like
most other meta-tools Pounamu-generated modelling tools are difficult to integrate with other tools,
provide their own look-and-feel and do not produce “commercial quality” IDE user interfaces and
support facilities. They rely on custom code generation, plug-in extension and Computer Supported
Cooperative Work (CSCW) support mechanisms (Grundy et al, 2006).

Marama has been developed by members of our research group as a set of Eclipse plug-ins that read
high-level Pounamu meta-tool specifications and realises multi-view, multi-user graphical editors in
the Eclipse IDE. Grundy et al (Grundy et al, 2006) described the Marama approach, its architecture
and implementation. We reinstate Marama in this section before we describe the MaramaTatau

approach, as MaramaTatau is implemented as an extension to the Marama framework.

-110 -



Figure 7.1 shows the approach used to realise Eclipse-based DSVL tools with Marama. A tool

developer or user creates or modifies a tool specification using the Pounamu meta-toolset (1). This

specification is written to an XML-encoded format (2), which is read by the Marama Eclipse plug-in

to configure editing tools (3). On reading a tool specification Marama creates a shared model and one

or more graphical editors conforming to the Pounamu-generated specification (4). GEF was used to

realise the graphical editors and EMF to represent model and diagram state. Model and diagram state

are saved and loaded to XML files or an XML database using the OMG XMI common exchange

format via EMF’s built-in capabilities (5).

1. Visual language tool
specification in the
Pounamu meta-tool

Editing commands Marama

Gngtb ased N Marama
€ |lors ™~ Plug-ins
-— ¢ i
EMF-based

Other
Maramas \
Collaborative
otner || “oiiome . |41 Editing
Eclipsét] M
plug- Y Diagram
ins EMF-based Differencing
modeil data Eclipse IDE
— Y 5

5. Modelling tool data
saved/loaded as XMI; multi-
user support via plug-ins

»
>

2. Pounamu saves tool
specification to XML files \

Tool spec. | Eclipse
XML IDE

\

Plug-ins

3. Load tool specification
into Marama plug-in

model data | Eclipse IDE

4. Marama dynamically
configures GEF editors; uses
EMF-based model data

Figure 7.1. The Marama approach to realising Eclipse-based visual language tools. (Grundy et
al, 2006)

Figure 7.2 shows a high-level architecture view of the Pounamu meta-tool and Marama Eclipse plug-

ins. Pounamu tool specifications represented in XML format are saved to tool projects (1),

hierarchically organised directories or ZIP archives. Compiled event handlers are stored as Java

-111 -



.class files. Users of Marama locate a desired existing Marama project to open or request a project be
created via the standard Eclipse resource browser (2). When a project is re-opened or created in
Marama, the corresponding Pounamu tool specification files are read and loaded into DOM objects
(3). These are parsed and provide an in-memory representation of the Marama tool configuration.
This tool configuration is used to configure an EMF-based in-memory model of both model and view
(diagram) data (the names and properties of all entities, associations, shapes and connectors). It is
also used to produce the editing controls of Marama GEF-based diagram editors (i.e. the allowable
shapes and connectors; the rendering of shapes and connectors; the editable attributes of shapes and
connectors, etc) (4). When a diagram is opened, Marama configures a GEF editor and renders the

diagram (5).

Eclipse IDE Application

Pounamu Meta-tool
Application

Specification Tools

Shape Designer e — \ :
‘ (5)
AN

Meta-model
Designer (2) /
M Plug-i
Event handler 11 (4) (a(;%r;aEd#o%)m
Designer - Eclipse IDE Uls P 4
\ :
View Designer \1 Eclipse IDE Tool Marama Plug-in
resource —p CONfig. Ly | " EME Model)
management held in -
DOMs Adapter API
Tool Specifcations

(7) 7 ®

Event handler objects
(6) (9) (in sandbox)
/

Java .class files ¥
(event handlers) Marama save files - Eclipse
workspace files (XMI)

Figure 7.2. The architecture of Marama. (Grundy et al, 2006)

— XML documents

Tool specification
projects (XML)

Event handler code is compiled by Pounamu to Java .class files and stored in the tool project
directory structure or ZIP archive. Marama loads all event handler compiled classes (6) during tool
configuration load time. However, as these classes were compiled to use the Pounamu editing tool’s
API, they are run in a special sandbox within the Marama plug-in inside Eclipse. A set of adapter

classes look to the compiled event handlers like the Pounamu editor API but map Pounamu API calls

-112 -



onto the Marama Eclipse plug-in APIs (7). When Marama view or model data is updated, the
Marama EMF objects are wrapped by Pounamu API adaptor objects and events are sent to the loaded
Pounamu-compiled event handler classes. These can then invoke methods on the wrapping adapter
classes which are translated into EMF object requests and updates (8). This saves complex
conversion of Pounamu event handler code into native Marama form (Grundy et al, 2006).

Marama uses EMF’s XMI save and load support to store and load modelling project data (9). Model
entity and association instances are written to a .model file, while each diagram and its shape and
connector data are written to a separate .view file, all managed within the Eclipse resource
workspace. Alternatively an XML database or object to relational database layer can be used for this.
Several of these exist for generic EMF model persistency. Stand-alone diagrams can be created and
used without a model and a subset of all diagrams for a shared model can be opened at one time.
Consistency is supported between views sharing the same information by immediate update if all
views are in memory, or differencing and then merging when a view is reloaded (Grundy et al,
2006).

Marama is realised by reusing a number of Eclipse frameworks to implement a dynamic interpreter
for the Pounamu-generated DSVL tool specifications. Figure 7.3 illustrates the structure of Marama.
Tool specifications are loaded from Pounamu XML files into Document Object Model (DOM)
structures. A set of Marama metamodel classes provide an interface to the tool specifications (1).
Marama Models use the Eclipse Modelling Framework (EMF) to represent model (entities and
associations) and view (diagrams, shapes and connectors) data. When creating or re-opening a
Marama project or diagram, these are configured using the DOM derived Marama meta-tool
specification objects (2). These define allowed diagram, shape, connector, entity and association
types, and their attributes and relationship constraints. When rendering a diagram, Marama EditPart
objects create Marama figure objects based on the Marama meta-tool diagram specifications. Figure
objects read diagram data and metamodel shape and connector appearance specifications (3) using
them to instantiate the diagram via draw2d figures, resulting in a rendered diagram in a GEF window
(4). When selected, properties associated with a shape or connector are displayed, with values
fetched from the diagram shape/connector and any associated model entity/association, using a
standard Eclipse property sheet. Edits to a Marama diagram are processed by GEF edit parts (5). A
set of specialised edit part factory, policy and edit parts have been implemented for Marama editors.
These generate appropriate figure and outline view renderings and Command objects to modify a
diagram’s model state (6). Changes to diagram objects generate EMF Notification events. These are

-113 -



used to determine appropriate changes to make to the underlying shared model entities and
associations (7). Updates to model entities and associations also result in generation of EMF events.
If multiple views contain shapes or connectors sharing the updated model data, the EMF events are
used to trigger appropriate update of diagram model data. The diagrams are then re-rendered to
reflect the changes (8). Project and diagram model data is written to and from an XMI format using
EMF’s XMI reader/writer support (9). The Pounamu meta-tool compiles Java event handler
specifications into Java classes that use the Pounamu editing tool APIs. A mechanism was required
to load compiled Pounamu API-using event handlers into Marama as automatic translation to using
Marama APIs proved too difficult. A “sandbox” approach was adopted where Pounamu-generated
event handler objects are dynamically loaded by Marama into a sandbox providing adaptors between
the Pounamu APIs and Marama APIs, making the handlers think they are running in the Pounamu
editing tool. EMF Notification objects generated by Marama model and diagram objects are sent to
Marama objects representing a proxy to the Pounamu event handler objects (10). Marama model and
diagram object changes are wrapped by PounamuEvent objects and sent to these Pounamu-native
running event handlers (11). These Pounamu-compiled handlers may then read and update the
Marama diagram and/or project model data via a set of adaptor classes between Pounamu API calls
and Marama API calls. These calls result in updates to Marama model and diagram objects as
appropriate or may invoke other Eclipse tools and plug-ins e.g. the JET code generator. (Grundy et
al, 2006)

-114 -



- e Eclipse GEF [
Pounamu Tool Marama XMI project and editors + views |
specification files diagram save files/database =
|| Meta-models (Tool Lo Mg_rtama Diagrams
' ! Specifications) b . _ | | (editors) ()
P 1) \ 1| Eclipse Modelling : [ Eclipse Graphical ()
l Framework (EMF) v __ . ' | Editing Framework
OMG XML L Marama Project (%iﬁ)figgwg\:\?c\:\rlid -4
i DOM objects i I\t/!f_del - prOJ_e(t:_ts, | i - . e
. " o entities, associations | ! i . g T
Lo | o (7)’%_'/—/1‘ ! ! ' - connectors
I I ' | : ! |l \\
o ' < L Ty | L0, ‘- \ S
P Marama — meta- , i Marama Diagram ] i i Marama : Marama Editor Parts
1 : Ei o 1 \ : : | o
Lo tool spectfication DENC) R Model - data for —(g) | Commands— edit parts/policies to
Lo objects L diagrams, shapes, F0) L modify view | 7 2llie falEsig)
Do i ! connectors i i q modify shapes, connectors
b | ! : : ata
: L"""'""""""""""‘I b E '(9) "L'"_J L """""""""""""""""""""""""""""

Marama — Wizards, Views (to create, open
i projects; to view data)

_________________________________________________________

Marama - event handler and
Pounamu API wrapper classes

API event handler objects

Dynamically loaded native Pounamu

Other Eclipse frameworks/plug-ins
e.g. JET code generator

Figure 7.3. Implementation of Marama. (Grundy et al, 2006)

-115-



To generalise our work on event handling specifications, we have designed a set of Marama meta-
tools to provide a better platform and a vehicle for allowing us to explore event-handling integration.
Marama meta-tools provide the visual language design environment similar to Pounamu, but with
designer tools realised as a set of refined Marama editors. Marama meta-tools were initially defined
using Pounamu, with bootstrapped implementation of a metamodel designer, shape designer and
view type designer as the “backbone” of the new metamodelling tool. A complete discussion of the

Marama meta-tools development is presented in Chapter 8 and 9.

7.3 Background and Motivation

In our group’s prior work, a variety of frameworks and metatools have been developed to support
specification and implementation of multiple view, multiple notation domain specific visual
language environments (Grundy et al, 1998; Zhu et al, 2007). In each of these platforms the
developers have struggled to find an appropriate means of specifying behaviour, despite having used
a variety of approaches. One, used in the JViews framework (Grundy et al, 1998) and Pounamu
metatool, was escape to code with conventional code accessing tool data structures via an API. This
mechanism, also used by MetaEdit+ and DSL Tools, while very powerful is also problematic,
requiring much repetitive coding and thorough end user knowledge of the metatool API. It also has
significant hidden dependency, visibility and juxtaposability problems due to the differing

abstraction levels involved.

A second approach, used in the BuildByWire tool (Mugridge et al, 1998), adopts a concrete visual
specification of interface component constraints for use in the JViews framework. This works well
for shape and editor constraint specification. Kaitiaki (Liu et al, 2005), described in Chapter 6, uses a
dataflow metaphor to specify view level behaviour-oriented constraints for the Pounamu metatool.
This is more abstract than BuildByWire, but uses exemplars of user interface components to make
the specifications more concrete. These two metaphors do not, however, extend well for model level
constraints and dependencies due to the lack of user interface exemplars to “concretise” the model
level specifications, and the awkwardness of expressing calculations, common in model level

constraints, using these metaphors.
An increasingly common approach is to express model level constraints as declarative formulae.

MetaEdit+ uses a combination of wizards to define such constraints and natural language rendering

to visualise them. GME and GMF both use OCL expressions to specify constraints and

-116 -



dependencies. These latter have the advantage of using a standardised and compact notation (OCL)
familiar to modellers. These approaches are more successful than “escape to code”, but still involve a
large notational and semantic separation between the textual constraint formula and the visually
specified metamodel. GME attempts to bridge this gap by annotating visual model elements to
indicate constraints apply to them, but editing and understanding a constraint still presents significant

hidden dependency and consistency issues.

Formulaic constraints and dependencies are common in spreadsheets (Engels and Erwig, 2005;
Burnett et al, 2001). Spreadsheet formulae permit declarative specification of system behaviours and
automatic evaluation of them. A highly concrete metaphor is used, however, with the grid structure
reused for both formula programming and execution, providing good preservation of the end user’s
mental map of the application. This approach is thus not immediately adaptable to the domain of
metamodellers as there is necessarily a separation between the metamodel specification and its end
user realisation as a set of view editors in a generated application. However, approaches such as
ClassSheets (Engels and Erwig, 2005) and Forms/3’s prototype approach (Burnett et al, 2001)
provide some indication of how aspects of this metaphor could be adapted to suit the metamodelling
domain. Of particular interest are hidden dependency mitigation approaches, such as dependency

link views, and the ease of formula construction afforded.

As an adjunct to the redevelopment of Marama, we took the opportunity to address Pounamu’s
difficulties in expressing model-level constraints and dependencies. These constraints and
dependencies are event triggered (e.g. property change event), to be implemented via event handlers.
Both Pounamu and Marama adopt an extended entity relationship (EER) model as the metamodel
specification mechanism. The EER model contains definitions of a set of entities, relationships, and
attributes.  We saw a possibility to extend this simple representation with declarative
constraint/dependency specifications. We were attracted to a formulaic approach but wanted to
minimise/mitigate the cognitive dimensions tradeoffs involved. This led to the following set of
requirements for the constraint representation mechanism:

e Aim for target end users who are programming literate and familiar with modelling concepts

e Ability to represent model level constraints, dependency calculations, and initialisations

e A compact representation

e Use of a standardised notation familiar to the target end users for accessibility of use

-117 -



e Ability to minimise/mitigate hidden dependency and visibility issues between the constraint
specification and the visual metamodel specification
e Ability to rapidly compose constraints

e Ability to simply visualise execution behaviour

In the next section, we introduce MaramaTatau, our approach to implementing these requirements.

7.4 MaramaTatau

MaramaTatau is strongly focussed on structural constraints. The primary notation for constraint

representation in MaramaTatau is declarative OCL expressions, a representation chosen for the

following reasons:

e OCL expressions are relatively compact (certainly in comparison to Java event handler code).

e OCL is specifically designed as a language to express model level constraints. It thus has
primitives for common constraint expression needs, e.g. navigation of relationships, set and list
manipulation (including aggregation), and common calculation operations of various types
(arithmetic, string, boolean).

e While designed for OO metamodels, OCL is equally applicable to Marama’s EER metamodels.

e OCL is a standardised language, likely to be familiar to our intended end users.

e The quality of OCL implementations is increasing.

Providing an OCL expression editor, similar to those in GME and GMF, covers the first four
requirements of the previous section. What differentiates our approach, however, is the way we
address the other requirements. Our approach is to combine the advantages of the textual OCL
formulae with the ease of formula construction afforded by spreadsheets, together with a lightweight,

yet robust mechanism to mitigate hidden dependencies.

Figure 7.4 shows the Marama metamodel editor with MaramaTatau extensions. The metamodel
shown is for a simple aggregate system modeller, comprising wholes and parts, represented by the
Whole and Part entities (1), both generalising to a Type entity and related by a Whole_ Part
relationship (2). The entities have typed attributes, such “name”, “area”, and “volume”. Below is the
formula construction view (3). This allows OCL formulae to be selected, viewed and edited. A list of

available OCL functions (4) is used for formula construction. The formula shown “self.parts->

-118 -



collect( cost * (1.0 + markup))->sum()” specifies that the “price” attribute of a whole is

calculated by adding the products of its parts’ “cost” and “markup” values.

[:S Select
7, Marques
[:3 Sketching tool
== Shapes -»
I EntityShape [ Type
B Attribube l name Skring key
B ModelEventHand. ..
B ModeluserHandle. ..
B Forrula | whoale
B Focus numParks ink nonkey @
B AssocizstionShape wolure double nonkey (] 5
) e
P o - price double nonkey ::_:,: i
1‘ AFErLink big boolean nonkey @ | | Part
1‘ SubtypeLink parksLisk MulkiLinesText nanE@ | areadouble nonkey
| FormulaLink depth double nonkey
1‘ RelationLink. Whole_Park walume double nonkey
L/ cast double nonkey
6 rmarkup double nonkey
2 big boolean nonkey
[ Formula Construckion View 23 Model Instances | Console | Formula Debugger | Qutline
===Reference-based===
Seleck a Formula: (& » 3 self
self, parts- =colleck{cost™®( 1,0+markupi)- =sumi) allinstancesy 4
===Cuollection-based===
- =sizel)
- =S

Figure 7.4. MaramaTatau visual notation.

Also shown in the visual metamodel view are various annotations (5) indicating the presence of
constraints. Coloured circles placed on attributes or entities indicate that an OCL formula has been
defined to respectively calculate their value or provide an invariant constraint over them. All of the
attributes of the Whole entity have such formulae, as do the “volume” and “big” attributes of Part.
The annotation is coloured differently (red) if the formula is semantically incorrect. Dependency link
annotations provide more detailed information about a selected formula by connecting its annotation
to other elements used in the formula. For example the formula for the “price” of a Whole entity is
selected (selection handles showing). The dependency links show that the price formula is dependent
on the “cost” and “markup” attributes of the Parts connected to the Whole by the Whole Part
relationship. Entities and connection paths that are directly accessible when constructing a formula
(Whole, Type, Whole_Part) have grey outline borders around them (6, see below).

-119 -



We have carefully defined the interaction between the two views to enhance visibility and minimise
or mitigate hidden dependency issues. Visibility and hidden dependency issues are addressed by the
following mechanism:

e The OCL and metamodel editors are juxtaposed together to improve visibility

e Simple annotation of the model elements indicates formulae related to them are present and
whether they are semantically correct. This is similar to the GME constraint annotations.

e Formulae can be selected via either the metamodel view annotation or from a selection list in the
OCL view. This means constraints can be navigated to/accessed from either view. Selection in
one view causes selection in the other.

e The dependency link annotations in the metamodel view provide, at a glance, more detailed
understanding of attributes and entities used in the formula. This visualisation extends beyond
that of GME, providing a more detailed, constraint specific understanding of dependencies
involved. The annotations are modified dynamically as formulae are edited maintaining
consistency between the views. The extra annotations are deliberately made visible only when a
constraint is selected to minimise clutter, permit scalability, and provide task focussed
information to the end user. This approach is similar to dependency visualisations provided in
some spreadsheets, linking cells with formulae to those they depend on, but applied to a graphical
modelling metaphor rather than a spreadsheet grid. Coloured dependency links and textual
element references — as done in some spreadsheets — is a straightforward extension to provide
even finer-grained indication of dependencies.

The rapid composition requirement is addressed by several techniques, also adapted from common
spreadsheets usage. These assist with hidden dependency and visibility issues. Formula construction
can be done either textually, via the OCL view, suitable for those highly OCL fluent, or “visually”
via direct manipulation of the metamodel view and function selection list to automatically construct
entity, path, and attribute references and function calls. Clicking on attributes in the metamodel view
places an appropriate reference to that attribute into the formula. Path references are constructed by
clicking on the relationship and then an attribute in the entity referenced by that relationship. A
function selected from the list in the OCL view is inserted as a function call into the formula being

edited, similar to formula selection in spreadsheets.

A difference from spreadsheet formula construction is that when constructing a formula, only certain

elements are semantically sensible at a particular stage of editing whereas in spreadsheets, any cell

-120 -



may be referenced (circular references excepted). For example, clicking on a Part attribute, without
first constructing a relationship reference via Whole_Part, does not make sense. To guide users, grey
border highlighting indicates entities and relationship links valid to select at a given point in formula
construction. Should a semantically incorrect formula be constructed, the annotation change in the
metamodel view provides immediate visual feedback of the error.

Another area of departure from the spreadsheet metaphor is in model instantiation. In spreadsheet
based systems the metaphor used is both very concrete and live. The very nature of metatools, where
an abstract conceptual metamodel is defined necessarily separately from the views of that model
means concreteness must be sacrificed, and hence there is an additional set of hidden dependencies
and visibility issues, between the metamodel definitions (including the OCL formulae) and the model
instances, created. In designing MaramaTatau’s runtime implementation we have introduced several
mechanisms to mitigate these hidden dependency issues. Liveness, however, is already well
supported in Marama. Unlike almost all other similar metatools, Marama tool definitions can be

modified on the fly, with changes immediately reflected in any open tool instances.

Figure 7.5 (1) shows a modelling tool based on the Whole Part metamodel used to edit an example
model (the icons and connector forms, and view-model mappings are defined separately using other
Marama metatools). When such a model instance is being manipulated (entities and relationships
created, property values edited) relevant formulae are interpreted and the derived values assigned to
their contextual model entity/relationship properties. For example the parts list in the wholel Whole
entity, represented as a multi-line list in the visual modelling view, has value [partl,part2]
constructed using a formula that collects the name of each linked part into a new list. Properties with

values defined by formulae are not editable by the end user.

In Figure 7.5 (1), only a single Whole Part view is shown. Marama supports specification of tools
with multiple views and multiple notations; each view being mapped to a common underlying model
(specified using the metamodel tools). To allow end users to visualise the shared model, a model
instance view is provided. Figure 7.5 (2) shows an example of this view for the Whole Part model.
The topmost view contains all entity and relationship types defined in the metamodel view. The same
element representation is used as in the metamodel specification to minimise/mitigate hidden
dependency issues between the metamodel specification and model instance view. Note that we have
chosen not to replicate exactly the same view because a Marama metamodel can itself be specified

across multiple metamodel views. The model instance view depicts the union of meta elements in all

-121 -



such views, so does not follow exactly the same layout. This is an area we are still experimenting

with. An alternate approach is to

specification view.

provide a set of model instance views, one for each metamodel

1 whaolePart.maramaToalModel B *diagrami.maramaliagram X e |
% Select
7, Marques
[}: Sketching taol 1
~ shapes » while1 part1
= E = 40.0
I Part 174.4 4.0
Il wwhole .0 - 160.0
Erue 2.0
[ Connectors - part1 LD
k|
1 whaolePart part2 e
whalez
1 partz
14.4 Z.6
.0 4.0
False N - T
parkz 2.0
1.0
False
I Properties 22 | |2 = = O/||Farmula ... |MadelIns... Consale | Formula... | 5= outine 53 T
Property Value B whole. whale1 _
*Madel Elerner B Part.partz_
big true B whole, wholez_
[ whalePart, maramaT oolModel [ *diagram1 maramabiagrarn B model &2
[ Select [ Part [ Type [ Wbl | whole_Part J
[, Marquee name Skring ke name String key name String key
[w\x Sketehing kool area double nonkey numParts ink nonkey
|-=- Shapes #| | depth double nonkey volume double nonkey
[ ErtityShape wolume double nonkey price double nonkey
W Attribute cost double nonkey big boolean nonkey
B ModelEventHandl... rarkup double nonkey part... MultiLing... no..,
B ModeluserHandle. .. big bookean nonkey
M Formula
M Focus
B Associationshape
= Connectors >
} AttrLink
} SubkypeLink
} FarmulaLink
} RelationLink
Consale | Formula Debugger | Qutline
numpParts valumne price big part
Whole.0 Whole.whalel whalel _lself parts- =colleck{cost™(1.0+markupl-=sumi;
name  area depth volume cost markup big
partl 40.0 4.0 160.0 2.0 1.0 true
partz 3.6 4.0 14.4 2.0 1.0 false
+ 2 Whole, 2 whole,whole2 _ wholez 1 14.4 4.0 false [part

Figure 7.5. (1) Model instantiation view and (2) model instance view.

-122 -



The table view at the bottom of Figure 7.5 (2) is a spreadsheet like representation of all instances of
the element type selected in the top view; the Whole entity in the view shown. Each row details
attribute values for an instance of the selected entity. These rows may be expanded, as shown for the
first element, to provide details of other elements associated with the chosen element via
relationships. In the example shown the two Parts associated with the first of the Whole elements are

detailed. This view thus provides a rapid understanding of model elements and related values.

Formulae for calculated attributes are shown by tooltip when the mouse hovers over such an attribute
value (as for “price” in Figure 7.5 (2)). This mitigates the hidden dependency between the concrete
value and its OCL formula. Further mitigation is provided by a formula debugger view (Figure 7.6).
This provides a dynamic, textual visualisation of formula execution, concurrent with changes
occurring in the visual views (providing good visibility of behavioural changes). These two features

together satisfy the final requirement: to simply visualize execution behaviour.

Farmula Consktruckion Yiew | Madel Instances | Caonsale m
|5tepIntD|

Evaluating formula: Part.big=self.wvolume>Z0.0

Part.1l: big=false
Part.3: bhig=true
Evaluating formula: Part.volume=self.area*self.depth
Part.1: wolume=14.4
Part.3: wolume=160.0

Figure 7.6. Formula debug view.

7.5 Case study

The previous section introduced the notational features of MaramaTatau plus environment support
mechanisms to mitigate hidden dependency and visibility issues. To evaluate the scalability and
utility of the approach we present a larger case study reengineering a previously developed Marama

tool to replace “escape to code” behavioural specifications with MaramaTatau constraints.

MaramaMTE (Grundy et al, 2006) is a complex visual tool for software architecture design and
performance test-bed generation. It provides a number of notational views, including a structural
architecture view and a pageflow view for specifying abstract user interface behaviour, all linked to a

common underlying model. Figure 7.7 is a screen dump of MaramaMTE in use, with a structural

-123 -



architecture view describing a three-tier client-server architecture for a travel planning system

shown.

T ArchitectureDiagram. maramabiewType

[:3 Select

+ Marquee

[:% Sketching ol TravelPlannerl . .
airtZFlightsDE

[== Shapes »

M Clientshape

B Cbiectshape rFIightService

B Databaseshape W‘

M TablzShape ;MF.HQF; Flights

B Servershape g

B Serviceshape poisbxte

B ReguestShape selectSeatsj i

[ Connectors -

,L ClientServerConn reserveseaat ‘

4 ServiceConn selectFlightSeat

] TableConn bookingSesvice resarveSeat _‘

| ReguestConn

| PRequestTableConn confirmSeat

] DBConn
| ServerChjectConn

IaramaMTE.maramaToolModel

caonfirm

=8 Exported Prope,.. | Property Mapping | Formula Constr. ..

Bl e T = B RemoteCbject. flightService_
. Value Al E B service.Flightservice  FindFlight_
*todel Elemen +- M Request, findFlight, selectFlights_
i FindFlight selectFlights +- I ppplicationClient, TravelPlannerl
Locakion 186, 145 +- B RemateCbiect.bookingService_
— selectFlights + ! SErvice.bookj_ngService.u:n_nFirmSeat_

0 #3508, maramabiagram &3

) O
Formulae Wiew | Model Instances | Console | o2

Figure 7.7. A MaramaMTE architecture view

In its original form, the implementation of MaramaMTE required a substantial number of java-based
event handlers to implement various event triggered calculations and constraints. Consider remote
objects, the rectangular icons containing other icons representing services they provide. For example
the “bookingService” remote object has associated a “confirmSeat” service. These remote services
have an “id” attribute which is the concatenation of the “name” of the remote object and the “name”
of the service (e.g. bookingService.confirmSeat). The handler code implementing this simple
constraint is substantial. Part of it is shown in Figure 7.8. Much of the code involved is repetitive or
formulaic, manipulating Marama data structures via its APl to access attribute values, calculate

values, and assign results.

- 124 -



[J] Manageservices.java &3
G

public class ManageSerwvices extends SimpleEnclosedShapes |

Atring myOowningShapes[] = { "ObhjectIhape™ }:
3tring mySubshapes[] = { "Iervicelhape™ };

public void setlhiagram(Maramaliagramm diagramm)
{

super.setDiagram (diagram) ;

COwningihapes = myowningihapes:;
Subshapes = mySubshapes;

subshapeConnector = "IerviceConn™:

allowlubshapesonown = true;

S (non-Javadoo)
* [izee org.eclipse.emf.common.notify. AdapterfnotifyChanged (org.eclipse. e
G
o= public void notifyChanged(Motification notification)
super.notifyChangedinotification) ;

4 auto-generate ID for services

MaramaConnection conh = connectionbidded(notification, "SerwviceConn™);

if(isExecuting() %£& conn '= null ££
conh.getTarget () .getihapeType (] .equals ("Servicelhape™) &£&
conh.getTarget () .getPropertyValue ("name™) !'=s nuall)

Si8vyatem.out.printlni"added connection "+connectionidded3ource (oo

Figure 7.8. Handler code implementing constraint.

The screen dump in the centre of Figure 7.9 shows a major portion of the metamodel for the
reengineered MaramaMTE. A number of formulae have been defined to calculate various attribute
values. Below an expanded view of the formulae list shows OCL expressions for each constraint
defined. Above an expanded view of part of the metamodel shows the Service and Remote Object
entities and the relationship between them plus an OCL formula for the service “id” (formula 8 in the
list at the bottom). This expression replaces the complex handler code in Figure 7.8. This
specification is not only much more compact, it is also much easier for the end user to understand

and reuse.
A range of other constraint expressions are shown in the formula list at the bottom. The first of these

is an “id” calculation for service requests similar to the remote object service “id” formula. The next

two initialise attributes representing the types of middleware supported by the test bed generator.

-125 -



These are used in the modeller to constrain the combo-box values selectable by the end user. Those
for the “remoteObject” and “remoteService” attributes of Request are moderately complex
conditional expressions, which involve tracing a series of relationship paths to derive the names of
the remote object and remote service invoking the request. These are thus derived attributes, caching
values for more convenient use.

| RemoteObject | Service
name String key id String kery 5
objectkind String nonkey name String nonkey
bimesToCallink nonkey

flcommitALEnd Skring nankey

|| ObijectService

self.object.name.concat('.").concat(name)

s I

[ architectureDiagram.maramatiewType 1 MaramaMTE ma oolModel 24 1 50a.maramabiagram

[§ Select : | —
7 Marques RemoteObject Service _
[+ Sketching tool ame String key id String key @ idString Eev o
[~ Shapes * ohjectind String nonkey ® name String nonkey : name 5tring nonk.w
W ErtityShape timesToCallint nonkey remc-teSerlver Strfng nonke@
W Attribute commitALERd String norkey temoteCbjact String nonkeds)
remokeservice String nonke(;;]

B ModelEventHandl...
B ModelUserHandle. ..
M Faormula

M Focus

ServetDatabase response String nonkey

sequence String nonkey
requestiind String nonkey [::]

name String key

OhbjectService
W Associationshape hast String nonkey
ServerObject
(= Connectors * serverkind String nonkey [ Database

} AttrLink — niarme Skring key

| Subtypelink [ ApplicationClient hosk String nonkey
} Formulalink

} RelationLink

name String key
host Skring nonkey ClientServer
kindStringnonkey () —_— RequestDBTable
threadsint norkey DakabaseTables -
DakabaseTable —_——
evalFormulas
name String key

Model Instances | Console | Formula Debugger | Outline

il

5 Request.requestkind Set{'RMI Call,'CORBA Call, 'HTTP Request’,'DB Select’,'DE Update's

7 Remote0bject. objectkind Set{'RMI Object’,'COREA Object’,'J5P Page’t

3 Request.remoteObject if requestkind="DE Select’ or requestkind="DE Update' then DatabaseTable. allinstances()- =collectiname) else RemoteObject. allnstances()- >callect{na
4 Request remaoteSetvice if requestkind="DE Select’ or requestkind="DE Update' then Set{} else RemoteObject. alllnstances()- =select{name=self remateCbject) service- =callects
6 ApplicationClient, kind Set{'RMI','CORBA', HTTF'

2 Request. remoteServer if requestkind="DE Select’ or requestkind="DE Update' then Database, alllnskances()- =collect{name) else ApplicationServer alllnstances))- =colleck{name
3 Service.id self.object. name.concat(".").cancat{name)

Figure 7.9. MaramaMTE model behaviour specification.

-126 -



As mentioned in the previous section, formulae can also be placed on entities to specify entity
invariant constraints. In Figure 7.10 (a) we have extended the MaramaMTE metamodel with a
constraint specifying that every service instance must serve at least one service request. This is
expressed as a constraint on the Service entity, with OCL expression «self.requests-

>size ()<>07, shown in the overlay.

When this formula evaluates false for a service, e.g. the “cancelBooking” service of the
“bookingService” remote object in Figure 7.10 (b), a constraint violation error is generated. In this
case a problem marker is generated in the Eclipse Problems view (shown below) to provide the user
details of the constraint violation. In this case, to solve the identified error, the user needs to add a
Request entity for the identified service. When this is done, the constraint evaluates to true and the

constraint error is removed from the Problems view.

The developers of the original MaramaMTE applications were provided with a demonstration of the
reengineered approach and experimented with using the tool on larger scale modelling examples.
Subsequent discussions were conducted with them and their feedback was very positive. Combined
together the attribute calculation and invariant constraint formulae were more than adequate to
eliminate all event handlers implementing model level constraints in MaramaMTE. The developers
felt that the compactness and accessibility of the constraint notation and its environmental support
had made the application as a whole much more easily understood and maintained. The notational
mechanism also proved to be highly scalable, being unobtrusive when the tool designer’s focus was
on understanding metamodel structure, but providing ready ability to focus in and obtain more
detailed information about particular constraints without losing the metamodel context they are
situated in. The runtime support has proven more than adequate to allow tool users to comprehend

the calculations being undertaken and for the tool designer to quickly debug constraints defined.

-127 -



niame Skring key

| RemoteObject

objectkind String nonkesy

@

MaramaMTE. maramaToolModel

4 Marques

[}) Sketching kool

[~ Shapes +
B ClientShape

B Chjectshape

[ Databaseshape

B Tableshape

B Servershape

B Serviceshape

B Requestshape

[ Connectars +
J ClientServerConn

} 3erviceConn

} TableConn

} RequestConn

} RequestTableCann
J DBConn

} ServerobjectConn

Exported Properties | Formula Construckion Yiew

(@)

|

| Service
id Skring ke

niame Skring nonkey

(JI
|
|

|| ServiceRequests J

| Requesk
id Skring ke

niame Skring nonkey

@

b

timesToCall ink nonkey
commitAtEnd String nonkey

self.requests->size()<>0

et String nnnkﬁ'@
Bt String nnnkﬁ'@

ice String nc:nkeo

| ApplicationServer

rarma Shrina lass

[ *s08.maramabiagram &3

ServerDatabase

response String nonkesy
sequence String nonkey

requestkind String nonkey O
=8

Descripkion

1 error, 0 warnings, 0 infos

= b Errors(Li
Canstraint viclated in self.requests- »sizef)<>0

TrawelPlanner 1
AirZFlightsDB
flightService /
FindFlight
selectFlights fights
findSeats
seats
seleckSeats B
reseryeseat
bookingservice selectFlightSeat
reserveseat
confirmSeat
q 7.anceIB.cunkJng />
&l Instances | Consale | Formula Debugger | Outline ﬂ Frablems X }:D ¥ =0
\ Resource Path Location
Jmodel MaramaMTE-TravelPlanner Service.bookingService .cancelBooking ™

P

Figure 7.10. Using formulae to constrain entities.

7.6 Implementation
Adapted from the original Marama architecture described in Section 7.2, Figure 7.11 shows a high-
level architecture view of the Marama meta-tools and Marama Eclipse plug-ins. The MaramaTatau

extension is implemented to the metamodel designer.

MaramaTatau formulae are stored as XML tags together with other metamodel elements. Formulae

on the user model are transformed to OCL representations on the Marama EMF model instance. This

-128 -



process is hidden from the user. To realise MaramaTatau we integrated the EMF OCL (Eclipse,
2006) framework to implement a dynamic compiler and interpreter for MaramaTatau OCL
specifications. As Marama view or model data is updated, events are sent and interpreted into EMF

object requests and updates, including triggering and executing relevant compiled OCL expressions.

Eclipse IDE

 temtstogmramatentos | = oot 5 58

Marama Meta-tools
Application

Specification Tools

Shape Designer

Metamodel _
Designer

(3) Marama P!ug-in
(GEF Editor)

View Designer

Eclipse IDE Tool ¥
resource config. .
\ \ management held in Marama Plug-in
- povs M (EMF Model)
Tool Specifcations Adapter AP

— XML documents

4) 7/ (6)

) _
Event handler objects

Tool specification
projects (XML)

Figure 7.11. The initial architecture of Marama meta-tools. (adapted from Figure 7.2)

7.7 Evaluation

The case study has demonstrated that the approach we have developed is both effective and scalable,
and amply meets the requirements we established for it. Informal feedback from the case study
developers has been positive. For additional feedback, we have used a focus group approach,
presenting and demonstrating case studies to a small group (less than 10 participants) of experienced
modellers, to gather qualitative feedback on the MaramaTatau visual notation and environment.
Participants found MaramaTatau to be easy to understand and efficient to use to manage constraints
and dependencies. We have performed a much more substantial evaluation (122 participants), similar
to the one undertaken for the Pounamu tool (Zhu et al, 2007), of the complete Marama environment,

including MaramaTatau. We have been sufficiently encouraged by our informal evaluations to

-129 -



include MaramaTatau in the publicly released version of our Marama tool (Nikau, 2007). Results of

this will be presented in Chapter 10.

In developing MaramaTatau, our focus has been on providing a compact and accessible constraint
representation for Marama, while minimising hidden dependency, juxtaposability and visibility
issues. To understand other tradeoffs that we have made to achieve our primary aims, it is useful to

also evaluate MaramaTatau against other cognitive dimensions.

The visual abstractions introduced are visual iconic constructs and data dependency links between
them. This is quite a terse (low diffuseness) extension to the existing metamodel notation and the
abstractions are quite low level, providing a simple overview of constraints and dependencies, and

hence have low abstraction gradient.

Error proneness has been reduced significantly. The existing Marama Java-based Marama event
handler designer is very error-prone for both novice and experienced users due to its reliance on API
knowledge and Java coding together with the numerous hidden dependencies with the visual
metamodel. MaramaTatau reduces error proneness by avoiding API details and directly using

concepts visible in the metamodel.

The verbosity (high diffuseness) of the textual OCL, due to its many built in functions, does,
however, present similar opportunities for error as does API mastery. The verbosity also introduces
some degree of hard mental operations as users must remember what function is appropriate for a
given purpose. However, the relative familiarity (knowledge of the OCL syntax and experience of
using it) of OCL with the target end user group, experienced modellers, mitigates this and also means
good closeness of mapping for them. The compact nature of the representation, point and click

construction, and automatic construction of the visual model annotations, means viscosity is low.

MaramaTatau allows progressive evaluation of a constraint specification via Marama’s live update
mechanism. Modifications to formulae take effect immediately after re-registration in an end user
tool. A visual debugger allows users to step through a formula’s interpretation using the same
abstraction level as they were developed in. By contrast, java event handlers require conventional

java debuggers and a good knowledge of Marama’s internal structure.

- 130 -



The MaramaTatau entity invariant formulae mechanism provides a rudimentary form of design critic
(Robbins and Redmiles, 1998). In current work one of our group members is extending this approach

to provide a more general critic authoring mechanism integrated with the Marama toolset.

7.8 Summary

We have described an approach for constraint/dependency specification in a domain-specific visual
language meta-tool. This borrows much from techniques used to support the spreadsheet metaphor,
but in a situation with less concreteness. The innovation lies in combining well known technologies
in the form of OCL and spreadsheet interfaces in a simple novel way drawing strength from both
while mitigating their weaknesses. MaramaTatau augments the Marama meta-tools’ metamodel
designers, allowing tool developers to specify formulae over metamodels, combined with a one-way
constraint system to compute values during tool usage. This allows for much simpler specification of
dependency and constraint handling within Marama meta-tools, compared to both the textual event
handlers and Kaitiaki visual event handlers. The approach has some similarity to ClassSheets (Engels
and Erwig, 2005), but avoids the grid structure of that approach, and provides more mitigation of
hidden dependencies. It considerably extends the visual metamodel annotation mechanism plus OCL
expression of GME, providing many additional hidden dependency mitigations. Early developer

feedback is very positive.

MaramaTatau adopts a thoroughly different metaphor from the dataflow like icon and connector
approach used in ViTABaL-WS and Kaitiaki to event handling specification. We have generalised
MaramaTatau together with ViTABaL-WS and Kaitiaki, into a generic event handling framework.
ViTABaL-WS provides a visual language for the design and construction of tool abstraction action-
event-based architecture. Kaitiaki provides an extensible event-query-filter-action language for
responding to propagated events. MaramaTatau provides a static Spreadsheet-like dependency and
constraint mechanism to support specification of state-change event propagation and response. The
generalisation of these three approaches within the Marama metatool framework provides wider-
ranging support for event-based system design and construction. Chapter 8 — 10 elaborates our

generalisation approach, the generated event handling framework and its evaluations.

-131 -



Chapter 8 — Design of the Generalised Event Handling Framework

This chapter discusses the design of a general purpose event handling framework by generalising
from the three exemplar approaches described in early chapters. We aimed to develop a visual
metaphor and language and to provide tool support for generic event integration specification. Our
generalisation approach employs the Three Examples pattern of the Evolving Frameworks Pattern
Language (Roberts and Johnson, 1996). By abstracting from the three earlier, limited-domain
exemplars, a general metamodel representation that combines atomic primitives (either shared or
non-shared) extended by the three visual languages is defined. This common model supports
multiple metaphoric views in the style of the three exemplars and will support generation to a range

of underlying implementation technologies for execution or interpretation.

8.1 Motivation

Frameworks provide a set of abstract classes and their collaboration relationships for reusable design
and implementation of all or part of a software system. Developing a general purpose framework
usually requires a considerable amount of effort and time investment, but rewardingly the developed
framework can support fast and easy construction of applications in the problem domain.

VITABaL-WS was developed for the event-based web services composition domain to provide a
visual language for the design and construction of tool abstraction action-event-based architecture.
Kaitiaki was developed for diagramming-based design tools event handling domain to provide an
extensible event-query-filter-action language for responding to propagated events. MaramaTatau was
developed to look at general metamodel constraint specifications using OCL with a simple
spreadsheet-like interface. There are some similarities identified in our three examples, including a
set of event handling modules and the representations of data flows and event dependencies among
their visual building blocks. The similarities can be generalised to a common model representation to
allow better reuse and easier extension. Based on the in-depth exploration of the three visual event-
based metaphors in their different application domains, we aimed to generalise to a metaphor and
language for generic event integration specification.

-132 -



Some event handlers can be specified in multiple ways using ViTABaL-WS, Kaitiaki or
MaramaTatau. Users may choose to use their favoured metaphor and may also combine their
specifications in multiple ways. We wanted a generalised reusable framework to have the ability to
model event handling in several ways for the same system, as well as the ability to generate solutions

from a canonical event model.

Multiple tools are useful for developers in that they provide abstractions for separately and
progressively modelling a software system using different views and representations. The developers
can specify the structure and behaviour of a model in parts then integrate them to generate dynamic

environments with various constraints enforced.

A General Purpose
Event Handling Framework

isual domais

models/dependencies Domain model languages

ViTABaL-WS BPELAWS (exec by BPWS4J)

Generalise OCL (exec by Eclipse OCL)

Canonical
event model

Kaitiaki

Relationship

RuleML (exec by RuleML)

MaramaTatau

Stylesheet

Figure 8.1. A general purpose event handling framework.

The generalisation method that we exploit can be illustrated in Figure 8.1. The three visual domain
models ViTABaL-WS, Kaitiaki and MaramaTatau on the left of Figure 8.1 can be integrated based
on their metaphorical supplement and their common abstraction and dependency relationship.
ViTABaL-WS’s tool abstraction metaphor is used to define high-level abstract data and functions
and their coordination, where abstract data is further constrained using MaramaTatau’s spreadsheet
metaphor, and abstract functions are further refined via Kaitiaki’s Event-Query-Filter-Action
metaphor. The integration of the three metaphors is analogous to the desktop Windowing metaphor
that is associated to the both Folder and Tree metaphors. Similar data could be represented in
different ways (e.g. Folder and Tree), but maintained in the same highly abstract umbrella
representation (e.g. Windows). As a consequence, they can generalise to a common event model

representation (as seen in the middle of Figure 8.1). The canonical event model can then be mapped

- 133 -



or adapted to a range of domain model implementation languages to be executed (e.g. BPEL4AWS
(IBM, 2003), OCL (OMG, 2003), RuleML (Paschke et al, 2006) and stylesheet as seen on the right
of Figure 8.1) using appropriate domain engines. The object-oriented framework is readily extensible
so more event-based domain models and their dependencies can be added in the future. Our
immediate next example being planned is the OMG’s Business Process Modelling Notation (BPMN)
(OMG, 2006) in the enterprise modelling domain. The new models to integrate can reuse the
canonical model’s components through inheritance or composition, and can add more features and

support to evolve the framework.

The generalisation of the integrated event handling framework requires a variety of specialised
modules to contribute to the framework capability and complexity. We discuss background and
related work in the following section and list the set of gathered requirements in Section 8.3. We then
briefly review the three examples described in the previous three chapters and their main approaches
and features. The thesis is that the generalisation of these three approaches could provide wider-
ranging support for event-based system design and construction. One element of this is to extend the

OCL expression language with user-defined function capabilities to provide enhanced expressability.

8.2 Background

Roberts and Johnson proposed a set of patterns that are used together as a pattern language for
developing and evolving object-oriented frameworks (Roberts and Johnson, 1996). The patterns are:
Three Examples, White Box Framework, Black Box Framework, Component Library, Hot Spots,
Pluggable Obijects, Fine-grained Objects, Visual Builder and Language Tools. As illustrated in
Figure 8.2, these patterns are related to each other with some overlapping usage along the process of

generalising a framework.

-134 -



Three Examples

White Box Frameworl BElack Box Frameworl

Component Library

Hot Spots

Pluggable Objects

Fine-grained Objects

Visual Builder

Language Tools

»
Time

Figure 8.2. Relationship between patterns in the pattern language. (Roberts and Johnson, 1996)

According to Roberts and Johnson (Roberts and Johnson, 1996), abstractions can be well developed
by generalising from concrete examples. The Three Examples pattern suggests that three examples
should be initially used to establish a framework, and more examples are to be explored to make the
framework more general. A framework is a reusable design, so we should develop it by looking at
examples in either succession or parallel and identifying common, reusable abstractions. Then we
can build a White Box Framework by generalising from the classes in the individual applications.
Common portions are put in abstract classes, and subclasses can be created by inheritance. A
collection of concrete classes of exemplar applications accumulate a Component Library for the
framework. The Component Library begins with all of the concrete classes and in the long run,
contains only the classes that are reused by several applications. Hot Spots code that changes are
separated from those that never change and encapsulated within objects whenever possible. In order
to avoid creating trivial subclasses to be added to the Component Library, we can design adaptable
subclasses that can be parameterised to create Pluggable Objects. We can continue breaking objects
into finer granularities (Fine-grained Objects) to make them more reusable. Inheritance can be used
to organise the Component Library and composition can be used to combine the components into
applications. A Black Box Framework can then be generated so we can reuse components by
plugging them together and avoid programming. A Visual Builder can be created to support
specifying components and their inter-relationship in a graphical way and generating code from it.

Specialised visualisation tools (Language Tools) can be built to facilitate navigating and inspecting

-135-



the compositions. This evolving framework pattern language is used as our basis for generalising the

event handling framework.

The EASY (Event Abstraction SYstem) framework (Grundy et al, 1996) was a prior attempt to
generalise a unified event-based software architecture from the synthesis of a set of event handling
elements defined in CPRGs (Grundy et al, 1996), ViTABaL (Grundy and Hosking, 1995) and
Serendipity (Grundy and Hosking, 1998). CPRGs can effectively describe state-change events and
the structural aspects of event-based software architectures. ViTABaL supports visual representation
of propagations of action events between software components. Serendipity allows event filtering
and response mechanisms to be specified in a graphical way. EASY unifies the handling of CPRGs’
state-change events and ViTABaL’s action events by incorporating Serendipity’s event response
abilities. The advantages of the three visual languages, including their visual description capabilities
for both structural aspects and dynamic behaviours of event-based architectures, are combined to
provide a more general architecture description language that supports wider-ranging event-based
architecture design and implementation. Figure 8.3 shows an EASY example which has CPRGs’
components and relationships as the backbone, ViTABaL’s specification of data and toolie

interconnectivity, and Serendipity’s specification of event handling using filters and actions.

Qo) oot i
Iultuw drag

in mpx]m mmh:.h

(DX}

N G

Figure 8.3. Merging CPRGs organisation, ViTABaL event propagation and Serendipity event
filtering/action. (Grundy et al, 1996)

- 136 -



We aimed to generalise the event integration framework using the evolving framework pattern
language (Roberts and Johnson, 1996) and following the EASY (Grundy et al, 1996) framework as
an example.

The Pounamu metamodelling environment that was used to develop ViTABaL-WS and Kaitiaki has
many deficiencies as we have seen from Chapter 3. These include:

e stability issues and weak error handling

inconsistency of user interfaces

o difficulties in expressing model-level constraints

o difficulties in specifying event handlers

e usability issues such as some clumsiness of user interface elements around specification of icons,

metamodel and views, and also the response time for some elements of functionality

We wanted a better platform to undertake the integration of event handling specifications. With the
requirements for improving Pounamu, we saw an opportunity with the development of the Marama
modeller tools to bootstrap development of Marama-based meta-tools. These Marama meta-tools are

then a vehicle for allowing us to explore event-handling integration.

8.3 Requirements for Generalisation

A general purpose event handling framework should provide reusable design and implementation for

a wide-range of event-based applications. In Chapter 2, we have identified some common issues in

the current event handling specification and visualisation techniques and concluded a set of general

requirements for our event handling integration framework. Based on the in-depth experiments of
our three limited-domain exemplars in the previous chapters, we can now elaborate the requirements
for the framework generalisation:

e The generalised framework should incorporate compositional primitives as building blocks and
different communication relationships between them. It also should contain mapping/integration
schemes as a crossover between ViTABaL-WS, Kaitiaki and MaramaTatau, and possibly other
limited-domain event handling models in the future e.g. BPMN (OMG, 2006).

e The common model representation needs to be identified from the specialised modules from
VITABaL-WS, Kaitiaki and MaramaTatau. The relationships among the modules need to be
established so that the modules can collaborate with one another. Duplications need to be

removed so that the common model is redundancy free.

- 137 -



e The generalised framework needs to offer graphical notations in the style of the three metaphoric
exemplars, together with additional textual notations to allow users to escape to code when
specifying complex custom behaviours such as code generation.

e The generalised integrated framework must contain reusable designs to allow users to initialise
their system and should allow users to specify customised event types, event generators, event
receivers and event handling building blocks to enhance the extensibility and flexibility of the
framework.

e Multiple views of data, event and behaviour representations must be kept consistent at both the
model and user interface levels to ensure the correctness of generated environments.

e The generalised framework should support further tool integration via a canonical data/event
model extension and consistent user interfaces.

e The generalised framework should provide mechanisms to allow easy navigation from one view
of the specification to another.

e Though visual languages are more self descriptive than textual languages, the framework should
still provide support for detailed documentation of modelling elements.

e The generalised framework should allow event propagations to be traced and event handling

results to be visualised in running systems based on a user interactive visual debugging model.

8.4 Generalisation

In order to derive a suitable common model we need to be able to represent all of the concepts from
the three examples. We also need a way to map between related concepts in each metaphor. This
common model supports multiple metaphoric views in the style of the three exemplars and thus is in
multiple paradigms. In this section, we briefly review (through Sections 8.4.1 to 8.4.3) the event
propagation model features and the building blocks defined for each of ViTABaL-WS, Kaitiaki and

MaramaTatau, and then generalise them to a common set of primitives in Section 8.4.4.

8.4.1 VIiTABaL-WS Building Blocks

ViTABaL-WS uses a Tool Abstraction metaphor for describing relationships between service
definitions. VITABaL-WS supports modelling of complex interactions between web service
components, plus code generation and visualization of running systems. Multiple-views of data flow,
control flow and event propagation are specified for a ViTABaL-WS model. Table 8.1 summarises
the building blocks defined for ViTABaL-WS.

- 138 -



Metamodel Primitives

Toolie

Attributes

Name

Semantics
Encapsulate data processing and interacts with each
other through both direct and indirect operational
invocations using shared data structures (message ADT
instances) and event dependencies indicating state

changes to a data store service ADS

ADS

ADT: name

ADS: message name, type

Instance of typed operation/messages/events

Abstract operation port

Name

Sequence number

Typed input and output ports on toolie and ADS
services that connect toolies to other toolies and ADSs
and provide message sources and sinks. Services are
wired together using these ports with ports supporting

only certain kinds of connection and message ADTs

Data store service ADT Name Active data store service

Role Name A partner that provides or requests a service

Fault handler Name Composed error/exception handler

Decision N/A A control flow starting point, following with

conditional transitions

Local activity
- Type checking (TC)

- Type transformation (TT)

- Data manipulation (DM)

Activity name

TC: isTypeOf

TT: fromType, toType
DM: variable, value

Atomic or composed activity

Data flow connection

Labels: <<synch>> or
<<asynch>> indicator, and

<<transaction>> indicator

Flows of data to toolie ports and ADSs
- Input/Output flow links

- Parameter decomposition links

Control flow connection

Labels: <<synch>> or
<<asynch>> indicator, and

<<transaction>> indicator

Invocations to toolies

- Partner link

- Synchronization/Asynchronous flow
- Conditional flow

- Iterative flow

- Transaction flow

Event flow connection

Labels: <<synch>> or

<<asynch>> indicator

Event dependencies — indicate event subscribe-notify
between toolies and ADSs

- One way broadcast

- Request-response

- Listen-before

- Listen-after

Table 8.1. Building blocks defined for ViTABaL-WS.

- 139 -




VIiTABaL-WS model views describe the interconnections between toolies and ADSs. These
interconnections can be annotated with different type of data flow, control flow, and event flow
connections. Different kinds of subscribe-notify event propagations including one way broadcast,
request-response, listen-before and listen-after can be used between the connected toolies and ADSs.
Toolies encapsulate behaviour in that they respond to events to carry out some system function.
ADSs encapsulate data and respond to events to store, retrieve or modify data (Grundy and Hosking,
1995) (Liu et al, 2005).

Modified toolies or ADSs broadcast to all their inter-connected components about the change.
Receiving components interpret the change descriptions and modify their state or execute actions
accordingly with possible further change descriptions to be generated (Grundy and Hosking, 1995).
ViTABaL provides an architecture description language for the event-based tool abstraction
paradigm (Grundy et al, 1996). ViTABaL-WS includes a few more building blocks to control event-
based behaviour by specifying roles, sequences, decisions, type transformations, iterations, and
transactions. Figure 8.4 shows an exemplar ViTABaL-WS event propagation view (generated in
Marama meta-tools) that specifies a set of subscribe-notify event propagations between toolies
(Marama library functions) and ADSs (Marama shared data structures).

W diagram1.maramaEventPropagation X =8

o Marquee

% Sketching tool

L= 5hapes * processSubshapeadded
B shape_aDS

M shape_datastore

B shape_decision
B shape_emphy
B shape_endstage

doAutolayoutSubshapes

shapeddded

shapgAdded connectignadded

newshape
B shape_exception

B shape_faulthandier
B shape_operation. ..

changed_diagram

M shape port:
-

|.== Connectors *

newshape(shape) newshapelshape)
] conneckor_compo, .,

l conneckor_concur...

} connector_conditi... _
} connector_dataflow omit resizeShaps

} conneckor_ikerati. .

l connector_partne...
} connector_port_b...
l connector_reque...

l connector subscr. .,
w

Figure 8.4. ViTABaL-WS event propagation definer in Marama meta-tools.

- 140 -



8.4.2 Kaitiaki Building Blocks
Kaitiaki provides end users ways to express event handling mechanisms via visual specifications. It
uses an “Event-Query-Filter-Action” metaphor for describing behaviours for diagramming-based

design tools and multiple-views of data flow in a modelled process. Kaitiaki supports building up

complex event handlers in parts, providing the representation of:

e key “building blocks” of state query, data filtering and state modification,

e event objects and their attributes,

e (data propagation between event, query, filter and action representations, and

e jteration and conditional data flow

Table 8.2 summarises the high-level building blocks defined for Kaitiaki.

Metamodel Primitives ‘

Event

Attributes
Event type
Event generator object

Property values changed

Semantics
A single event or a set of events is the starting

point for a Kaitiaki event handler specification.

Output

Single/Collection object Name Event/tool-state objects/attributes
Type
Value
Query Parameters (Input) Retrieve elements and output single or collection
Output object. Parameterised with data propagated
through incoming connectors.
Data Filter Parameters (Input) Select elements from their input. Define

conditional dataflow. Parameterised with data

propagated through incoming connectors.

Action (State
modification)

Parameters (Input)
Output

Apply operations to elements passed to them.
Parameterised with data propagated through

incoming connectors.

Iteration

Input: Shape/Connector collection

Condition: optional

Iterate through every element in the collection,

or iterate while a condition is satisfied.

Data flow ports start and

end

N/A

Start/end of a composed building block (event,

query, filter, action)

Dataflow

Labels: <<synch>>or <<asynch>>

indicator

Data propagation between event, query, filter
and action representations
- Data push when available

- Data pull on demand

-141 -

Table 8.2. Building blocks defined for Kaitiaki.




While ViTABaL-WS visually describes only the event-based inter-connections between abstract
components with the lack of event responses, Kaitiaki’s events, filters, queries and actions provide a

visual design level notation for specifying event handling mechanisms.

3 diagram1.maramabiagram W alignshapes.maramaHandler X = g
[:& Select (a)
I, Marquee
[ Sketching tocl shapeadded
= Shapes -
B shape_action getDiagram
B shape_collection. .. e hepeT
shapeType
B shape_domainshape PR

I shape_endstage

M shape_event :
B shape_Filker GetDiagramshape
) Tableshape

B shape_query

B shape_singleData. .. Tableshape
I shape_startstage

B shape_propertys...
[~ Connectors > @ TableShape K | shaDesTyDel

} comnectar_dataflows

B diagraml.maramabiagrarn [ alignshapes.maramaHandler =8
[% Select
T, Marquee (b)
[ Sketching tool

.= Shapes - [TraveIPIannerl

F

B Objectshape
B Databaseshape
B TableShape

B Servershape
B Serviceshape
B RequestShape

flightService
Conneckars -
= FindFlights
} ClientServerConn g assEngers
selectFlights
} ServiceConn
} TableConn
} RequeshConn
} RequestTableConn
} DBConn
Y 5 SRR

Figure 8.5. Kaitiaki event handler specification (a) and its runtime execution effect (b).

Kaitiaki provides graphical views for specifying handling of both built-in and customised state-
change and action events via queries, filters and actions. Queries select data from a common model
repository. Filters apply pattern-matching to incoming data, passing matching data to other
queries/filters/actions. Actions execute operations which may modify incoming data, display

information, or generate new events. Concrete end user domain icons can be added to mitigate the

- 142 -



abstraction and make the specification more readable. Figure 8.5 shows an exemplar Kaitiaki event
handler specification (generated in Marama meta-tools) for aligning diagram shapes (a) and its
runtime execution effect (b). The handler responds to a “shapeAdded” event, filters out the
“TableShape”, and then aligns the newly added “TableShape” with the existing ones that are queried
from the diagram.

8.4.3 MaramaTatau Building Blocks

Marama provides a rich structural notation for specifying tool architecture/metamodel via an entity-
relationship mechanism. MaramaTatau is used to specify value dependencies and modelling
constraints upon these Marama structural specifications. MaramaTatau was initially designed for
constraining entity-relationship based metamodels. It has evolved to be usable with any Marama

view type specifications.

MaramaTatau uses a declarative spreadsheet-like approach to construct metamodel formulae to
extend behaviour specification of visual design tools including the specification of property-change
event handling and constraint management. A formula is constructed visually by clicking on entity-
relationship metamodel elements (i.e. entity type, association type, and attribute) and a list of library
provided functions. Formula construction is similar to a spreadsheet but expressed at a type rather
than an instance level. The visually specified metamodel level formulae are interpreted in selected

model views. Table 8.3 summarises the building blocks used in MaramaTatau.

Metamodel Primitives Semantics

Reference-based Self Reference to the current instance.
Navigate to attribute, association-end and association class
Entity type Reference to an entity type

Association Class

Reference to an association class

Attribute

Reference to an attribute

Association-end (role)

Reference to an association-end

alllnstances()

Get all instances of an entity type or association class

Collection-based ->size() Get the number of elements
->sum() Calculate the sum of all elements
->collect Collect a number of elements
->forAll Evaluate a condition to true for each element in a collection
->iterate Iterate through each element and update an accumulator
->select Select elements that satisfy a condition
->reject Reject elements that satisfy a condition

- 143 -




->exists Evaluate a condition to true for at least one element
->notEmpty() A collection is not empty

->isEmpty() A collection is empty

->includes The collection includes a particular element
->includesAll The collection includes all elements in another collection
->excludes The collection excludes a particular element

->sortedBy Sort a collection

->union Union two collections

->intersection

Intersect two collections

->first() Get the first element in a collection
->last() Get the last element in a collection
->at Get an element at a specified index
->indexOf Get the index of an element

Criteria indicator

Condition separator

Arithmetic Function

+, -, *, /[, ->mod, ->abs(),

->floor(), ->round(),

Simple mathematics functions

->max, ->min
String function .concat Concatenate strings
size() Calculate the length of a string
.substring Get substring
.toUpper() Convert to upper case letters
.toLower() Convert to lower case letters
Logical Operator => <, <> Comparisons

Boolean-based

not, and, or, xor

Boolean operators

if, then, else, endif

Decision making

implies Inference
Type Function .oclisTypeOf Check the type of an element
.0ClASType Convert to a type
. AttrLink Define context of an attribute and a formula
Dependency links .
FormulaLink
Contains ] ] )
) Define visual shape layout, e.g. a shape is
Extended view type | Encloses .
) contained/enclosed/on border of another shape. User-
functions Onborder

User-defined functions

defined functions can be added into the library for reuse.

Table 8.3. Building blocks defined for MaramaTatau.

Value dependencies and modelling constraints are state-change events to be handled in

MaramaTatau via a uni-directional change-propagation with side-effect extensions to dependent

- 144 -



components. Formulae are used to specify executable query/action constraints. Dependency links are
added to explicitly annotate relationships of inter-dependent elements. Values are propagated from
sources to dependent targets and interpreted at runtime. Some examples have been demonstrated in
Chapter 7.

8.4.4 Generalised Marama Meta-tools

To generalise our work on ViTABaL-WS, Kaitiaki, and MaramaTatau, we have designed a set of
Marama meta-tools to provide a better platform and a vehicle for allowing us to explore event-
handling integration. Marama meta-tools provide the visual language design environment similar to
Pounamu (Zhu et al, 2007), but as an open-source Eclipse plug-in with richer support on event-based
visual behaviour modelling. Figure 8.6 illustrates the Marama meta-tools approach, which is an add-
on to the Marama framework (Grundy et al, 2006) that includes five sub-tools: Metamodel Definer,
Shape Designer, View Type Definer, Event Propagation Definer and Visual Event Handler Definer.
The incorporative use of these sub-tools facilitates easy event-based behavioural modelling and

integration that is unified with system structural modelling.

Marama Application

Marama modelling tools

Metamodel Definer (with MaramaTatau extension) Modelling Views

Shape Designer :l\

View Type Definer (with MaramaTatau extension)

——

Event Propagation Definer (ViTABaL-WS) ] 7 Event

Handlers
Visual Event Handler Definer (Kaitiaki)

Model Entity Instances

Tool Specifications
— XML documents
A

— =
Modelling
projects (XML)

Figure 8.6. The Marama Meta-tools approach. (Adapted from (Grundy et al, 2006))

Tool specification
projects (XML)

- 145 -



Apart from static modelling of entities, relationships, shapes, connectors and mappings, which form
the backbone of the metamodelling framework in Marama meta-tools, MaramaTatau specifies inter-
dependency of Marama static modelling components by adding formulae over both model and view
data structures. A one-way constraint system is exploited to compute dependent values at runtime
during tool usage. ViTABaL-WS specifies event propagations and other inter-connectivity of toolies
(user or library functions) and their shared ADS pool (Marama structural components). The event
representations are propagated to the listening toolies which match them to the event patterns they
respond to, and the response is invoked (Grundy et al, 1996). Kaitiaki specifies detailed toolie
responses via event propagations through a set of library-defined pattern matching queries, filters and

actions.

As in the EASY framework (Grundy et al, 1996), Marama meta-tools also permit MaramaTatau
state-change events and ViTABaL-WS action events to be handled in a unified manner, via event
response modelling capabilities of Kaitiaki as illustrated in Figure 8.7. A detailed example is
provided in Figure 8.8, where in the ViTABaL-WS diagram on the left a “shapeAdded” event
propagates from the data structure “diagram” to the toolie “processSubshapeAdded” which is an
event handler further defined in the Kaitiaki view on the right. MaramaTatau state-change events
can also be handled in this extensible manner, via Kaitiaki specifications. This aims to maintain the
advantage of MaramaTatau of effective structural dependency and constraints specification, and that
of VITABaL-WS and Kaitiaki of visual representation of event propagation and response
mechanisms, while also providing user-defined behaviour extension of MaramaTatau and integrating

the three languages to provide unified specifications.

MaramaTatau VITABaL-WS

\\ /

|

Kaitiaki

Figure 8.7. Unified event handling in MaramaTatau and ViTABaL-WS using Kaitiaki.

- 146 -



diagram

niewchape(shape) newshapeshape)

3

shapeddded /
reques

5

requestshape
QetFirstCantainsshape

nkains  [serviceShape
Y
shapeType

U

o

RequestConn

Figure 8.8. Event propagation definition in ViTABaL-WS and event handler definition in

Kaitiaki.

Marama Meta-tools

Eclipse EMF, GEF and Marama Framework

ViTABaL-WS
Views

Kaitiaki MaramaTatau
Views Integrated Views

Generate [Code

Generated
Controller Code

Query/Update

Common Data Structure/ Data Store
— MaramaEMF model

(b)

Figure 8.9. Marama Meta-tools Event Handling Abstraction Framework.

- 147 -




By combining the reusable views and building blocks of ViTABaL-WS, Kaitiaki and MaramaTatau,
we now have an event handling abstraction framework. Figure 8.9 (a) shows how the event handling
abstraction framework is integrated in Marama meta-tools. The Marama framework (Grundy et al,
2006) provides Eclipse-based editors for Pounamu (Zhu et al, 2007) generated domain-specific
modelling environments. Marama meta-tools are built on top of Marama and provide visual
languages and tools similar to Pounamu but with advanced event-based system integration. Marama
meta-tools provide behavioural modelling using the three distinctive yet collaborative metaphoric
views and generate from them to a common model implemented in the event handling abstraction
framework which in turn accesses class libraries and then interprets them to query and update

Marama EMF model and view representations (as seen in Figure 8.9 (b)).

8.4.4.1 Eclipse Framework, EMF, GEF and Marama Framework
The Marama framework is built as an Eclipse plug-in using EMF to represent Marama models and
GEF to render Marama views. Detailed Marama architecture and approach have been introduced in

Chapter 7. Figure 8.10 shows the Marama EMF representation of its project and diagram elements.

plat
= # project

H mMaramadssociation - = MararmaModelElement

H mMaramanssociations - = MaramaMadelElements

H MaramaEntities - = MaramaModelElements

H MaramaEntity - = MaramatlodelElement

H mMaramaModelElement - = IPropertySource

H mMaramatodelElements

H mMaramaModelProject

E IPropertySource [org.eclipse, Ui, views, properties, IPropertySource ]

ﬂ:] platform: fresource/MaramaiModel)srcfnz)fac) aucklandcs/maramafmodel/properties . ecore

IPropertvSource [org.eclipse.ui.views. properties. IPropertySource]
MaramaCanneckion - = IPrapertySaurce

Maramalbiagram - [ProperbySource

Maramashape - = IPropertySource

Maramasketchedshape

MaramasketchiEroup -= Maramasketchedshape

TimestampedPoink

Paint [org. eclipse. drawzd. geometry . Paink]

Dimension [org.eclipse. draw2d. geometry, Dimension]

ﬂl:j platForm: fresource/Maramalodelfsrcfnz)ac) auckland)cs/marama/model/metamodel . ecore

E
CH=
CN=
el
EN=
N
el

Figure 8.10. Marama EMF specification.

- 148 -



The Marama framework contains a set of classes, attributes, methods, relationships and events. The
framework is packaged into three major parts: model, editor and reusable handlers, in the style of a
model-view-controller based separation of implementation concerns. These reusable framework
elements support easy creation, modification and extension for building domain-specific modelling

environments.

8.4.4.2 Marama Meta-tools Event Handling Abstraction Framework

The event handling abstraction framework provided with Marama meta-tools contains a canonical
metamodel representation (generic model) of event handling specifications that enables multiple
behavioural paradigms to be easily integrated into the framework. ViTABaL-WS, Kaitiaki and
MaramaTatau provide visual languages and tools for event handling specification. ViTABaL-WS is
used for high-level conceptual modelling of event propagations among Marama components;
Kaitiaki is used for intermediate level design of event propagations among a set of user or library
defined queries, filters and actions; MaramaTatau is used for implementation level specification of
model and view value dependencies and constraints. The three distinctive behavioural modelling
views are wired together by their underlying model. The generic event handling model generates
Marama XML, EMF notifications and Java event handlers to be interpreted by the Marama

framework for dynamic queries and updates of models and views.

The canonical event handling model enables development of general purpose event-based system
specifications. The metamodel elements from the three visual languages have been combined with
redundancies removed and some bridging elements added. The component library of the event
handling abstractions framework is illustrated in Figure 8.11, where mappings of the model elements
to those used in the three visual languages are also indicated using coloured boxes. It mainly includes
the relationships between event, event generator, event service, event listener and event handler
elements. The Event handler is further sub-typed including publish, subscribe-notify, invoke activity,
generate event, capture event and custom handler. The connectivity types supported in the
framework include structural generalisation, association and composition, and dynamic control, data
and event flows. The CompoundActivity interface may take multiple possible roles as event
generator, event listener or event handler, may contain the ViTABaL-WS, Kaitiaki and
MaramaTatau building blocks and may be involved in a variety of data manipulation and dynamic

connectivity operations.

- 149 -



Almost all elements in this common model are defined as extensible. Particular hot spots, or places

in the architecture where adaptations for specific functionality should be made (Roberts and Johnson,
1996), include:

Event

The framework supports a set of system events together with user-defined custom events to be
added by either specifying new event details or by sub-typing/composing existing event types.
Event handler

The framework supports a set of system event handler building blocks together with user-defined
custom event handlers to be added by either specifying new event handler details or by sub-
typing/composing existing event handler building blocks. For examples, the event handler types
of a GUI system can include additional “UpdateUI” handler, “AutoLayout” handler,
“PromptMessage” handler etc.

Control flows

Control flows can be stereotypes to specify the transition time requirement (<<synch>> oOr
<<asynch>>), the transition sequence (<<1.1.2>>, <<StartWith>>, <<EndWith>>), etc.
Concurrent transitions do not need to be explicitly modelled. When the condition of a transition
is met, the transition is invoked immediately. So when an element is associated with multiple
transitions, the transitions are concurrent when their conditions are satisfied at the same point of

time.

The event service receives all notifications (e.g. entity changed) and forward them in a multiplexed

way (Sun, 2005) to any associated event behavioural views — ViTABaL-WS, Kaitiaki or

MaramaTatau. Inter-communications of the three behavioural views are monitored by the event

service and automatically delegated to Marama processing components.

- 150 -



winterfacen

Event

_ synch or asynch k
event dispatching

winterfacex nterfa
EventService &;MM::
NotifyListener(in theEvent, in theLisfener)
PropagateEvent(in theEventService) .

winterfaces
winterfaces
EventlListener EventHandler

+GetEvent Types() andleEvent| vent)
+InvokeHandler(in theEvent, in theHandler) [ = 0 thek

- 151 -



winterfaces
Predicate

A

«interfaces
Event

A

«interface»
Data

/™

«interface»
CompoundActivity




«interface»
[~ CompoundActivity

A

dinterfacen
EventFlow

A
winterfaces
GenerateEvent | | ConsumeEvent
A

" | ViTABaL-WS Components 1] | Kaitiaki Components | MaramaTatau Components

Figure 8.11. Common event handling model.

This canonical model representation is used to instantiate behaviour specifications in ViTABaL-WS,
Kaitiaki and MaramaTatau views such as those shown in Figure 8.4 and Figure 8.5. The behaviour
model instances are analysed at specification time and are used to generate event handler code to be

executed at runtime.

8.4.4.3 Mapping Schemas

Each of VITABaL-WS, Kaitiaki and MaramaTatau has their own strengths in handling events. They
are mainly complementary to one another instead of overlapping. However, there exists the
possibility to specify an event handler in multiple ways using ViTABaL-WS, Kaitiaki or
MaramaTatau, though one specification may not be as efficient as the other, the required event
handling effect can still be achieved.

- 153 -



The connectivity and inter-changeability of the different metaphoric specifications in Marama meta-
tools can facilitate mapping concepts in each metaphor and thus provide effective demonstration and

model checking.

To allow one specification to generate others with corresponding implementation classes, a set of
mapping schemas can be defined in MaramaTorua (Huh et al, 2007) to provide interchanging
mechanisms between ViTABaL-WS, Kaitiaki and MaramaTatau specifications. We are currently
exploring the mapping specifications to be used for such integration. More details are proposed in the

Future Research section of Chapter 11.

8.4.4.4 Model, View, Controller

A sub-model for the event handling building blocks is added on top of the Marama EMF model to
support specifying event-based manipulations of Marama structural model elements. The behavioural
sub-model contains the definition of all the generalised canonical event model elements and provides
a structured way to query and update these element instances. The behavioural sub-model is
represented in different metaphoric views in the style of ViTABaL-WS, Kaitiaki and MaramaTatau.
Figure 8.12 illustrates the MVC pattern used in Marama meta-tools to synthesise event-based
behaviour from multiple views. Model states are manipulated and view representations are
synchronously rendered by user interactions (via drag/drop, add, select, delete, move etc. menu
events) on the views. This is managed by a set of central Marama controller commands that delegate

corresponding actions to the model and views.

Create tool Instantiate

Controller Behaviour sub-model

Display Update Synchronise

User requests

[ diagram! aramaE ventPropagation £ = B 5 diagram! maramaEventPropagation = O 2 dagram! maramefven... O dagrant.maramaHander L] malon... X

[y Select [} Select [} select o

15, Marguee 15 Merquee ForeaTd I, Marquee ReroteObiect L]

Iy Shetehing tool Iy Shetching tool [y Sketehingtool name Singley idstringkey ) W:s

+ » name Stringnonkey -

(= Shapes | Shapes * shaps Requestshape (= Shapes obiectind String nonkey O :

I shaps_AD5 mocessubsape... I shape_action H Entitychaps timesToCalintnorkey

I shape_datastore [ shape_callection. ., W Attribute commibAtEnd String nankey

[ shape_decision I shape_empty II B ModelEvertHand...

I shape_enpty M shape_endstage B ModelUserHandle. . ObjectTervice

B shape_endstage shapgAdded I shape_svert reesbhope I Formula Applicationserver

& v [ shape fiter M Fous name Stingkey

(= Connectors * W shape_query W AssociationShape — host Stringnankey

I s I oo st T e wtiteigter ||

L conngckor_concurrenttran, ., B shape_startstage i Attlink. .

| conmector_condtionakrar, .. . . [ shape_propertys... =t - - } subypelink I Doiffonsine 1o H

e ViTABaL-WS VieW |- Kaitiaki view |j.a. | NarmaTatau-view

connector_terativetransition

+ o e ) e e 4 Relatinkk host Strinanonkev Cliertwerver bt

hd >

Figure 8.12. MVC of Marama meta-tools.

- 154 -



Visualisation of dynamic event handling behaviour is achieved using a similar MVC approach,
where runtime behaviour model states are used to animate the associated diagram elements. The user
has full control of running the animation, stepping into the next invocation of a building block and

viewing query results or state changes.

8.4.45 Metamodel, Icons and Views

The Metamodel, icons and views are the static modelling capability supported by Marama meta-
tools. The Metamodel includes semantic entities and relationships of a visual language tool (as
shown in Figure 8.13)); icons provide visual shape and connector representations (as shown in Figure
8.14); views specify mappings of metamodel elements to visual elements and filtered displays (as
shown in Figure 8.15). These static components are the backbone of a visual language tool being

modelled, with the dynamic behaviours to be instrumented using ViTABaL-WS, Kaitiaki and

MaramaT atau.

W *MaramaMTE maramaToolModel X 1 diagram1.maramaShapeType 3 architectureDiagram. maramaiewType

B ModelEventHandl. ..
B ModellserHandle. ..
B Formula

W Focus

[ Associationshape

[-== Connectors -*
} Attrlink

} Subbypelink

} FormulaLink

} RelationLink

ObjectService

ServerObject

| ApplicationClient
name String key
host String nonkey
kind String nonkey
threads ink nonkey

ServerDatabase

| ApplicationServer
name String key
host String nonkey

serverkind String nonkey

ClisntServer

[ Select . | —

{0, Marquee | Remotedhject | Service —

h Sketching tool name String key id String key @ id String ‘.‘BV

(= Shapes # || | objectkind string nonkey name String nonkey i name tring “0”"‘_3?

M EntityShape timesToCallink nonkey erDtBSBr.ver Strfng nonkey

[ Attribute commitAtENd String nonkey remateObject String nonkey
remoteService String nonkey

respanse String nonkey
sequence Skring nonkey

requestkind String nonkey

Database
narme String key
hiosk String nonkey

DatabaseTables

| DatabaseTable
nare String key

RequestDETable

Figure 8.13. Metamodel definer in Marama meta-tools.

- 155 -




e

{7, Marques
[}3 Sketching tool

namne

= Shapes

Mame

[=—name

Mame

B Labelshape

B TextFieldShape
B TextAreashape
B shapeviewer
B sShapeShape

= Connectars *

} SubshapeLink
} Connectar
} RelationLink

} Connectorviewer

Lext

name name

(=348

nanme

Marme

nanne

name

Figure 8.14.

Shape designer in Marama meta-tools.

B visualUserHandler ...

[y Select '
7, Marguee
= Shapes »

T
1
4
i
i
i

B VisusEvertHand ClientShape_..| [58rvershap.. | |objectShape_R... | [Servicesha...| [Requestshap...| |Databaseshap... | | TableShap. ..
B Viewassodiation Iname:name Iname:name Iname:name Ld:id L:I:id Inamne:name Iname:name
= T &ME:Name e Name T

WigwZonneckar |

W ViewEntity i i " i i
@ icrme oo | s ] Fanecen] Bee | et padbse | e
B viewMapping
M Focus [CIientServerConn ][RequestTab...] [DEConn ] [Serverobjectcnnn ] [ServiceConn ][TableConn ] [RequestConn
M Formula i { i i : i i
L= Connectors ’*| CIientSelrve... Reques;:Ta... DEConn_Ser... ServerOlbjectC... ServicéCDn... TableClSnn_Da... RBCILIBSU;ZDI‘II'I_---
} MappingLink.
} Formulalink i T ':I := =‘. T
| | ; i := |
‘ClientSBrVBr ‘ ‘RequestDBTable| |ServerDatabase ‘ ‘Serverobject ‘ ChijectService ‘DatabaseTables‘ ServiceRequests

Figure 8.15. View type definer in Marama meta-tools.

- 156 -



8.4.4.6 Event Handling Views

As shown earlier in Figure 8.4, an Event Propagation Definer (ViTABaL-WS view type) has been
integrated into the Marama meta-tools to facilitate the specification of model and view instance
notification schemes, i.e. event propagations (event flows) and responses/handling among
components through inter-component links to maintain consistency between multiple representations
and views. For example, a view will be notified of a model property change; connectors are notified
of a hiding action of a shape. Allowing users to customise event type, event generators and event
receivers greatly enhances the extensibility and flexibility of Marama meta-tools. EMF notifications
for Marama tools can also be specified using ViTABaL-WS.

As shown in Figure 8.5, a Marama Handler Definer (Kaitiaki view type) has been integrated into
Marama meta-tools to facilitate the specifications of model and view event handlers using a high-
level domain specific visual language. High-level event handling specifications are generated to
Marama event handler code, registered to the generated metamodels. The generated event handler
code is guaranteed to be syntactically correct. Event handlers are executed on model instances at

runtime.

MaramaTatau is declarative. The left-hand-side of a formula is the formula context, while the right-

hand-side specifies a constraint/query. The query result is assigned to the formula context. We

wanted to extend the MaramaTatau language by:

e Adding user defined functions to collaboratively operate with OCL, and to reuse ViTABaL-WS
and Kaitiaki building blocks.

MaramaTatau has been extended to be embedded seamlessly into the Metamodel Definer and View
Type Definer, providing dependency and constraint specifications on both model-level and view-
level semantics. The extended entity-relationship (EER) model allows sub-typing relationships to be
specified between both entities and associations, with also inheritance of dependencies and
constraints. Besides supporting declarative OCL-based invariant definitions in MaramaTatau, user-
defined functions (higher-order/compositional functional definition of reusable formula with
parameters) can be added to extend OCL formulae and provide a powerful yet concise mechanism
for functional specifications over group objects and to reuse ViTABaL-WS and Kaitiaki building
blocks. There are two categories of user defined functions:

e Side-effect-free constraint/query, and

- 157 -



e Side-effect action, i.e. an operation for event handling/constraint handling, e.g. abort, skip, or
“do-something”.

Examples of model formulae have been presented in Chapter 7. Figure 8.16 shows an exemplar View
Type Definer view with MaramaTatau specified formulae, in which an extended formula
“encloses (ObjectShape, ServiceShape, ServiceConn)” specifies the enclosure
constraints of the “ObjectShape” and the “ServiceShape”, which enforces a “ServiceShape” to be

created inside an enclosing “ObjectShape” and moved together with it.

[ MaramaMTE. maramaToolMadel

h Select
I:I+ Marques
Shapes * :
[=-3hap . ] i
I visualUserHandler ... —— L .
DatabaseShap... | | Tableshap. ..
|narne:niarqn§ [name:name
fo i
B viewshape -
B ViewMapping -
B Focus [CIientServerCDnn ][RequestTab...] [DBCDnn ] [ServerObjectConn ] [ServiceConn ][TabIeConn ] [Request(:onn ]
M Formula ! ! : i i i !
i ; ! ] ! i i
[ Connectors * ClientServe... RequestTa... DBConn_Ser... ServerObjectC,., | [ServiceCon... TableConn_Da... RequestConn_,..

| MappingLink.
| FormulaLink

i i : ; " i
|CIientServer ‘ |RequestDBTabIe| |ServerDatabase | |Server0bject | CbjectService ‘DatabaseTabIes| ServiceRequests

Figure 8.16. MaramaTatau integration in View Type Definer.

8.4.5 Program Visualisation

Marama meta-tools allow users to visualise tool specifications and their executions reusing their
metaphoric modelling views, to provide system information at the right abstraction level. The
dynamic visualisation system uses the debugging service instrumentation mechanism (Liu et al 2005)
initially exploited in ViTABaL-WS to generate low-level tracing events on modelling elements. As
illustrated in Figure 8.17, the Marama meta-tools framework handles those events by sending the
event data to appropriate modelling elements and annotates them with colours and state information.
Marama EMF is the common high-level representation that glues different behavioural views, and
supplies dynamic state information to the Marama Visual Debugger. A specialised debugging and

- 158 -



inspection tool is used to allow execution state of event-based systems to be queried, visualised and
dynamically modified. The debugger tool provides a common user interface that connects the three

metaphoric event specification views with an underlying debug model based on the MV C pattern.

The individual “debug and step into” visualisation of ViTABaL-WS, Kaitiaki and MaramaTatau are
now put together to allow cooperative invocation and step-by-step visualisation of execution results
at the point of execution of each building block in a particular view.

Marama meta-tools model/views

!

Visual Debugger interface (controller)

Generate tracing events

Maodel Instances | Problems

Debugging model (runtime)

< > - Even_t handler building blocks
: . - Previous/Current states of
Evaluating formula: Recuest.regquestKind=3et{'RMI Call', .
Request.151: requestKind=[CORBA Call, RMI Call, DB associated model elements

Invoking event handler: moveConnectedShapes
Client3hape: TrawvelPlannerl

. . ] | information
Annotate event specification views Supply statg informatio

[ dagram! maramaEventPropagation 53 = O 5 diagram! maramaEventPropagation = B | ] degraml maramaEven... | [ diagramt.maramsHander
[} Select [y Select [} Select
I, Marcuee £, Merquee g 2} Merruees Remote0biect Sevie O
[}y Sketehing tool [\ Skekching kool [}y Shsteting tool nameStringkey idstringkey @ 5
Tequep
= Shapes * (= 5hapes » (= Shapes * || objectki .
W shape_dD5 processSubshape. B shaps_action st eauedhepe W Entityshape timesTaCal it norkey
B shape_datastore B chape_calection. ., W Attribute et commibALEnd String nonkey
hapsT:
0 g dsn B ey [ were | HsT—" i
I shape_empty B shape_endstage I ModellserHande. . emolzob; | ObledService
B shape_endstage shapeddded B shape_event reqstape W Formula ApplicationServer [iicerie
o v B ships fiter B Focus nameStringkey
5 Connectors * I shaps_cuery ] o o ostzsignoney U
erverObjec r
| connector_composition B shape_singieData, . s 5 Comnectors 7 i T — i
| connestor_concurrentiran. .. B shape_startstage | stk
| connector_condeenatran. .. ViTABaL-WS vi B shape propetys.. Kaitiaki vi | st i
- ypelink @
| ezt I a view 2o aitiaki view  |i atau view
ormulalitk nane Stringkey
connector_iterativetransition

[ o fersiet } conmector_dataflow | ReltionLink host strina nonkes B ] v

> < | )

Figure 8.17. Visual Debugger.

Figure 8.18 illustrates the visualisation of runtime interpreted formulae on a Marama model. The
Metamodel Definer view with MaramaTatau formula specifications is juxtaposed with the runtime
Marama model view. From the Visual Debugger, user has the control over the execution of a formula
interpretation. Once a formula is interpreted, the affected runtime model element is annotated (with
the yellow background) to indicate the application of the formula, and meanwhile, the corresponding
formula node defined in the Metamodel Definer view is annotated in the same manner to show the
formula specification.

- 159 -



\=| moveConnectedshapes. .. =0

8 diagram1.maramaliagram &2 =N W 5 amaEMTE maramaTool.,, X

[ Select [ Select i Fy—

Marques LN Marques ST

o A =an
[y Sketching kool [y Sketching kool ‘eRequests id String key i
narne String nonkey

Shapes » TravelPlanner1 Shapes -
a2 2P a0 remoteServer String nanB'O
B Clientshape I Entityshape

) ) remoteCbject String nDnKB'O
W ObjectsShape W Attribute

remokeService Skring nonke{:)

I Databaseshape B ModelEventHandl... -

B Tableshape B ModelUserHandle rverDatabase response String nonkey

B Servershape B Formula sequence String nonkey

W ServiceShape I Focus requestind String nonkey O
B Requestshape flightservice B AssociationShape

[ Connectaors » FindFlights [-== Connectaors # | Database

} ClientServerConn selectFlights } AttrLink e String key

)} ServiceConn } Subkypelink String nonkey

. TableConn } FormulaLink -

} RequestConn } RelationLink

} RequestTableConn

R tDET abl
} DEConn atabaseTables

) ServerCbjectConn

S — b
< > < >

Model Instances | Problems | ] Visual Debugger 22

Evaluating forwmula: Regquest.id=self.requestediervice.name.concati'. ') . concat [(hame)
Request.151: id=findFlights.zelectFlights

Figure 8.18. Visual debugging MaramaTatau formulae.

Figure 8.19 illustrates the similar visualisation of a Kaitiaki event handler execution on a Marama
model. The Kaitiaki view with event/query/filter/action specifications is juxtaposed with the runtime
Marama model view. When a user steps into an execution of a Kaitiaki building block, the affected
runtime model element is annotated and at the same time, the corresponding Kaitiaki node with data

flow links are annotated in the Kaitiaki view to show the event handler execution status.

- 160 -



[ *diagram1.maramabiagram &2 = O | B maramaMTE.maramaTaal... 5 moveConnectedshapes... &2 =0

[y Select [ Select

{7, Marquee I, Marquee

[ Sketching tool [ Sketehing kool shapeMaved
| Shapes * TravelPlanner 1 |- Shapes #

B Clientshape B shape_action

B objectshape M shape_collection, ..

M shape_empty
B shape_endstage

M DatabaseShape
B Tableshape

B Servershape M shape_event
M Serviceshape M shape_filter EfDutgoingConnectedShape getshapeLocation
>
=0

B Requestshape FlightService B shape_guery
B shape_singleData. ..

== Connectors -* FindFlights —
f shape_starkstage

] ClientServerConn celectFlights Re_ 4

l ServiceConn M shape_propertys...

l TableCaonn |-— Conneckaors #*

] RequestConn } connector_dataflov rminveShapesEy

] RequestTableConn
] DEConn
] ServerchjectConn

Model Instances | Problems N USRI Nl o0 4

Evaluating formula: Reguest.requestEind=3et{'RMI Call','COREL Call', 'HTTF Request','DE Zelect','DE
Fecuest.151: requestKind=[COREL Call, RMI Call, DE Update, DE Zelect, HTTF Request]

Inwvoking event handler: moveConnectedihapes
ClientShape: TravelPlannerl

Figure 8.19. Visual debugging a Kaitiaki event handler.

8.4.6 Framework Evolution

The event handling abstractions framework in Marama meta-tools is both black-box and white-box.
It provides reuse by both inheritance and composition. Based on the evolving frameworks pattern
language (Roberts and Johnson, 1996), our framework will be evolved by abstracting from additional

examples to make the framework more general in the future.

Subsequent exemplars are to be developed based on the white-box framework. Our next planned
exemplar to be used in generalising more of the event handling abstractions framework is by
integrating a BPMN view (OMG, 2006) into the Marama meta-tools. We will first examine what
abstractions from the canonical model’s component library (as shown in Figure 8.11) can be reused
(through either inheritance or composition) by the new BPMN model, and then examine what new

features and support can be added to evolve the framework.

- 161 -



The integration of MaramaTorua (Huh et al, 2007) can also provide another view type, with event-
driven mechanisms to allow translation of one event handler view to another (e.g. generating the
event handlers/formulae to keep view/model consistent from MaramaTorua specifications) to be
specified internally and automatically without the need to invoke it as an independent non-event-
driven third-party tool. Our generalised model should support new metaphors/models to be further

sub-typed or composed.

8.5 Summary

Our research has focussed on providing visual specification and runtime visualisation support for the
design and construction of complex event-based systems. We have integrated three event handling
specification languages based on a canonical event model. ViTABaL-WS provides a Tool
Abstraction language for the design and construction of action-event propagation architectures.
Kaitiaki provides an extensible Event-Query-Filter-Action language for both action and state-change
event propagation and handling. MaramaTatau provides a static Spreadsheet-like dependency and
constraint mechanism to support specification of state-change event propagation and response. A
synergy of these languages and their generalisation in the Marama meta-tools environment provide

wider-ranging support for event-based system design and construction.

- 162 -



Chapter 9 - Prototype of the Generalised Event Handling Framework

We have implemented the Marama metamodelling environment to support generalised event
handling abstraction. Multiple views can be provided that use the ViTABaL-WS, Kaitiaki and
MaramaTatau metaphors, allowing both system structure and behaviour to be modularised vertically
via partially overlapping views, or horizontally using hierarchical views, similar to the EASY
(Grundy et al, 1996) framework approach. A VIiTABaL-WS-like visualisation allows users to
examine the execution of event-based architectures. A Kaitiaki-like visualisation allows users to
reuse or extend the functionality of the language by defining queries, filters and actions using the
building blocks of the event handling abstractions framework. MaramaTatau-like formulae can be
added in both metamodels and views to specify structural dependencies and constraints, also
extensible with user-defined functions. In this chapter we describe and illustrate the key features of

our prototype.

9.1 Introduction

As described in Chapter 7, Marama provides a collection of object-oriented classes written in Java
and Eclipse Modelling Framework. These classes provide abstractions for specifying representation
of language structure and semantics, with multiple textual and graphical view support that allows

manipulation of model and view information.

We are motivated by the need for a flexible metamodelling environment as a vehicle to experiment
with the generalisation of our work to an event handling integration framework, and also to provide
proof of concept implementation of the set of requirements for the generalised framework described
in Chapter 8.

We have developed the Marama meta-tools to replace the Pounamu tool specifications, even though
Pounamu specified tools are still loadable and function within the Marama environment. With this
extension, Marama integrates the features of both meta-tools and modelling tools. Marama uses the

Marama Metamodel Definer view to specify the tool metamodel with MaramaTatau formulae for

- 163 -



model dependencies and constraints, Marama Shape Designer views to specify tool shapes and

connectors, Marama View Type Definer views to specify mappings of meta-elements to visual

representations with MaramaTatau formulae for visual dependencies and constraints, the Marama

Event Propagation (ViTABaL-WS) definer to specify event propagations among model and view

components, the Marama Visual Event Handler (Kaitiaki) definer to specify visual event handlers,

and Marama Diagram views to create model instances or independent views of selected view type.

User requests

6. Specify

propagations

event

Marama meta-tools

Event propagations

Grsezace

o)/

|
1

1

1

1

1

1

[ 1
1
1

/ h
I AV S H
A 1

T

1

1

1

1

1

1

1

1

1

1

I ) 7R
1 / A
1

1

1

1

1

1

Seiuactporbobepss

dhapeniied

3. Create
shapes and

Metamodel

__________________________

__________________________

Marama meta-tools

Visual event handler

=
== —
Co D —famr] II B

=] wiewTypeDiagrami.sxml
= test.xml

5. Generate
vipual modeling
nvironment
Marama
Model  project and

diagrams

8. Execute dvent handler
on modgl project

Figure 9.1. Overview of tool creation with Marama meta-tools.

- 164 -




A tool project created using Marama meta-tools packages a tool definition that comprises the tool
metamodel, shapes and connectors, view types, dynamic event propagators and handlers. The
backend XML files of the tool, metamodel, shapes and connectors, view types, and constraints are
generated into the tool project data repository. Visual event propagation and event handler
specifications are generated into Java code in the tool project source code repository. A model
project can be instantiated using the tool definition which automatically generates a modelling
environment in Marama. The model project contains the definitions of the tool metamodel and its
instance diagrams. The tool dependencies, constraints and dynamic event-based behaviours specified
by MaramaTatau, ViTABaL-WS and Kaitiaki are realised at runtime in model instances. Figure 9.1
illustrates the tool creation process using Marama meta-tools. The following steps are involved in

creating a tool with both structural and behavioural modelling capabilities:

(1) The user creates a tool project using the Marama Tool Project Wizard. This wizard will
guide the user through an empty tool project creation, allowing the user to enter a name
for the tool and the preferred storage location. A tool XML file is automatically generated
into the tool project data repository. A Metamodel Definer view is automatically provided
with the newly created tool project.

(2) The user can define the tool metamodel by specifying entity and association types and
their attributes, sub-typing relations and formulae for defining value dependencies and
constraints. Metamodel XML files are automatically generated into the tool project data
repository.

(3) The user can create a Shape Designer view (or multiple views) by using the Marama
Shape Designer Wizard. A visual editor for creating/modifying shapes and connectors is
loaded. The user can visually construct the shape representation for a metamodel entity
type, and a connector representation for a metamodel association type. Shapes and
Connector XML files are automatically generated into the tool project data repository.

4) Having the metamodel and visual representations, the user can then create a View Type
(or multiple views) by using the Marama View Type Definer Wizard. A View Type
definer editor is loaded so that the user can define the view type specific shapes,
connectors, entities, associations, view-model mappings and formulae for defining visual
representation constraints. The view type XML file is automatically generated into the
tool project data repository.

(5) The tool project now has static modelling capabilities and can be used to instantiate
model project instances using the specification.

- 165 -



(6) The user can add further a ViTABaL-WS view (or multiple views) by using the Marama
Event Propagation Definer Wizard. Event propagations can be specified to facilitate
specification of an event-based tool architecture. Event handler Java code is automatically
generated into the tool project’s source code package.

(7) The user can further add a Kaitiaki view (or multiple views) by using the Marama Visual
Event Handler Definer Wizard. An event handler can be specified visually by composing
a set of library building blocks. Event handler Java code is automatically generated into
the tool project’s source code package.

(8) The event handler Java code is executed dynamically on model project instances.

In Section 9.2 and 9.3, we extend the MaramaMTE architecture design and performance test-bed
generation tool, the complex example used in both Chapter 7 and 8 to describe and illustrate in detail

the key facilities of the Marama meta-tools.

9.2 Structure Specification

Structural elements (including metamodel entity and association types, shapes and connectors, and
view type elements) of a modelling tool specification form the backbone of the tool. In the following
subsections, we illustrate how to use the Marama meta-tools to build structural elements to generate

a modelling tool.

9.2.1 Marama Tool Project

Marama provides a wizard (Marama Tool Project wizard) for creating a modelling tool project. As
shown in Figure 9.2, a short cut menu called “Marama Tool Project” brings up the tool creation
wizard. A tool project contains the definitions of a metamodel, shapes and connectors, and view
types. The backend XML files of the metamodel, icons and view types are generated into the tool
project folder. A metamodel definer view is automatically generated with the tool creation. Shape

designer and view type definer views need to be created by using their own wizards.

- 166 -



=
&

= = Create a Marama Tool Project

Create a Marama Tool Project in the workspace

=4 Do
[ Project... Project name:  MaramaMTE

[ Falder ’
[ File

Mararna Project

Use default Incation

g Impart...

Mararna Ciagram
£ Expart...

Marama Tool Project

& | Refresh Marama Shape Designer
— Marama YiewType Definer

Marama Handler Definer
=/ Untitled Text File

T=F MaramaMTE
=l .project
= MaramamMTE.maramaToolModel

[ Example. ..
% Outiine 52 . Properties

[ Other...

An outling is nok available,

Cancel

Figure 9.2. Tool creation in Marama meta-tools.

9.2.2 Marama Metamodel Definer

Marama adopts an Extended Entity-Relationship paradigm for its metamodelling. Entity types,
association types and attributes of a tool specification are defined in a Marama Metamodel Definer
view. MaramaTatau formulae can be specified to constrain metamodel elements and compute

dependent values.

An entity type can be created by dragging and dropping an EntityShape from the editor palette. We
name the entity type by changing the name property of the EntityShape from the Properties view.

An association type can be created by dragging and dropping an AssociationShape from the editor
palette. We name the association type by changing the name property of the AssociationShape from
the Properties view. Association end types and association end multiplicities must also be specified.
As seen in the Properties view of the ServiceRequests AssociationShape in Figure 9.3, the user needs
to select an “end1” (e.g. Service) entity type and an “end2” (e.g. Request) entity type; two relation
links are automatically added between the Service entity type and the association type and between
the association type and the Request entity type. The user can also add to the relation links a role
name for each association end entity type. This constrains that only the ServiceRequests association
type can be used to relate the Service and Request entity types. The user then selects
“end1Multiplicity” (e.g. 1) and “end2Multiplicity” (e.g. * representing many) to define the allowed
number (one-to-many, many-to-one, and many-to-many) of Service and Request instances that can

be connected via ServiceRequests associations.

- 167 -



A metamodel validation process generates error messages against any association type that omits
property settings for the association end types or multiplicities. We use association types to constrain
connectivity based on the entity types and their multiplicities. Such an association type specification
prevents users from creating invalid connections between entity instances in the runtime model. The
Marama runtime modelling environment automatically removes any association instances that
violate the constraints, e.g. if the user adds a ServiceRequests association between a Service entity
and a Database entity, the association will be automatically removed from the model, because such
an association is only allowed to connect a Service entity to a Request entity as it is defined in the
metamodel. This facility is needed to automate model checking and enforce valid model

specifications.

ArchiteckureDiagram. ... [ MaramaMTE. maramaToalM... &1 . [ S0&.maramabiagram ‘WholePatt maramaToolk. ., el = X =0

Select A B B
h M — | Service /\| Request Bl 5
L, Marques bject ke perty Yalue

i id String ke I ServiceRequests IRrng ey @ 3
Iy Sketching taol id Shring key o endl Service
. Skri ke
[ Shapes # | onkey @ BEUCETE L5 ey ey end1Multiplicicy 1
B ErtityShape L timesToCallint nonkey \/ oteServer tring nonke@ endz Request
W Attribte commitakEnd String nonkey temateObject String nonke@
remateservice String nonke(:)

B ModelEventHandl. .

) nane i
B Hodelsertande... 7OhjectService ServerDatabase respanse String nonkey Sie ggfg;ﬂ:gnsew "
— sequence String nonkey
B Formula [ Applcatiorserver | d -
requestkind String nonl
name String key R ! ! Q
B Associationshape — host String nankey
[~ Connectors # serveriind String nonkey | Database
| AttrLink nare String key
| SubtypeLink 1Client hiost String nonkey
| FormulaLink
| RelationLink by N N
® Client3erver
By T ———r
_— R DETahl
oy DatabaseTables
DatabaseTable
name String key hd
{ ¥ { ¥

Figure 9.3. Association type specification in Marama meta-tools.

The user may add a number of attributes to an entity type or association type by dragging and
dropping an Attribute from the editor palette to a parent shape containing location. The “name”,
“iskey” and “type” property of the attribute need to be specified. Figure 9.4 shows an example of
Attribute properties specification. Both the “iskey” and the “type” property of the attribute can be
selected from a dropdown list of values. Marama meta-tools support six basic built-in attribute types,

- 168 -



they are String, MultilinesText, int, double, boolean and Object types. The available metamodel

entity types are also included and can be used as attribute types.

1 MaramaTE. maramaToolModel 52 = 0\ P
[:3 Select Properky Value
23, Marques | RemoteChject id Remotesbject. name
[:g Sketching toal soame String key : Isker.-'. by
-— - —m u Location 14, 41

[~ Shapes - objectkind String nonkey O — namme
= Entit\,.-'SheEe Size 156, 20
B Attribute I kype
B rModelEventHandl. .. : : PRI ——
B ModelUserHandle. .. ObjectService ink

F I double
B Formula bolear 2
B Focus

B Associationshape

ServerQbject

Figure 9.4. Attribute specification in Marama meta-tools.

== Connectors -

Marama supports sub-typing entity types and association types. The sub-typing relationship is
established by adding a SubtypeLink connector from a child to a parent meta-element. The subtype
elements inherit all attributes defined in their parents. Figure 9.5 shows that the ObjectService and
ServerObject association types are the subtypes of the LabelledAssociation association type, and thus

inherit all of its attributes.

I Formula
B Focus
B Associationshape

[~ Connectors
| AttrLink

| Subtypelink
| FormulaLink.
] RelationLink

B ModelEventHandl. ..
B ModelllserHandle. ..

startLabel String nonkesy
middleLabel String nonkey
endLabel String nonkey

B *MaramaMTE. maramaToolModel X =B
[;3 Select
{7, Marques | RemoteObject | Service (0]

[:E Sketching ool name Skring key icd String key O
L= shapes * objectkind Stringnonkey {09 name String nonkey

B EntityShape timesToCallink nonkey

I Attribute |I| Labelledacenciation commitAtEnd String naonkey

ServerObjeck

I | ObjectService

Figure 9.5. Sub-typing in Marama meta-tools.

| ApplicationClient
name 3kring kew
hiost Skring nonkesy
kind String nonkesy
threads int nonkew

@

- 169 -

| applicationServer
narme Skring ke
hiost Skring nankesy
serverkind Skring nonkesy

ClientServer




Saving the metamodel diagram (a Marama Metamodel Definer view instance) from the Eclipse
Workbench tool bar or right clicking on the “Register the Model Type” context menu equally
generate backend XML files for this metamodel (as shown in Figure 9.6). The metamodel XML files

are generated into the tool project folder. Refreshing the folder shows the generated folders and files.

T Mavigator &2 M B [aramaMTE. maramaToolModel X
= <.==='=> = % Select
=122 MaramaMTE ||, Marguee | RemateOhject " TR 8
== MaramaMTE [+ Sketching taol namme String key
=)= ieans (= Shapes - objectkind String nonkey O
[ connectars

B Entityshape
[ shapes

== metamadel W Attribute
(= assoriationtypes B ModelEventHandl. . :
== entitybypes M ModelUserHandle. .. ObjectSary
[E applicationlient, =ml B Forrula
21 AeplcatinServer. s Reqister the Model Type

£ patabase.xml B Associationshape Hide Formula Dependencies

D DakabaseTable.xml ServerObject
D Remotedbject, xml = Run As

b
D Request. xml 1‘ Attrlink. Debug As 4
2 service.xml } subtypeLink | ApplicationClient Team 3
(= viewtypes } FormulaLink name String kesy Compare With *
I MaramaMTE xml } RelationLink host String nonkey Replace With 3
=l praject kind String nonkesy O S
= MaramaMTE.maramaToolModel threads it nonkey

Figure 9.6. Generation of Metamodel XML files in Marama meta-tools.

9.2.3 Marama Shape Designer

Shapes and connectors are visually designed in Marama Shape Designer views. A Shape Designer
view (or multiple views) can be created using the Marama Shape Designer Wizard. We can design
multiple shapes and connectors in a Shape Designer view. An abstract shape/connector design is
accompanied by a concrete viewer instance for immediate design feedback. Figure 9.7 shows a set of
shape designs on the left of the view, and their corresponding concrete viewers on the right of the

view.

- 170 -



W dizgraml.maramaShapeType X
[:3 Select
I:I+ Marques

[:3 Sketching tool
[~ Shapes » [|™—[name
M Labelshape Fext

B TextFigldshape \ \
B TextAreashape

B shapeviewer
B shapeshape Fecxt
[-= Connectaors -+
} SubshapeLink

} Connector

} RelationLink

} Connectoriiewsr

rarme

——ea|narne

rarme Marne

narne \

name

narne

narne

Figure 9.7. Shape and connector design with concrete viewers in Marama meta-tools.

The ShapeShape tool from the palette is used to create owning (base/container) shapes. Each owning
shape instance is provided with a shape viewer to visualise the shape design. A “name” property

needs to be assigned for a ShapeShape as its identifier.

The LabelShape, TextFieldShape, TextAreaShape and the ShapeShape tool (reusing shape designs)
from the palette are used to create sub shapes of an owning shape. A sub-shape is automatically
assigned a unique identifier (the name property) when it is added to an owning shape with the
specified container layout constraint (e.g. null layout, flow layout, vertical layout, border layout and
grid layout). A ShapeShape can be created as a sub-shape as well as an owning shape. A ShapeShape
can be moved into an owning shape to become a sub-shape or moved out of an owning shape to

become standalone.

There are a number of visual properties that we can set to change the shape’s look:

ShapeShape e fillColor — the filled colour of a shape

¢ shapeOpaque — either the shape is opaque or transparent. The shapeOpaque

-171-



property must be set to true in order to show the filled colour

lineColor — the colour of the border of a shape

lineVisible — either the border is visible or not

type — four shape types are supported, they are Rectangle, Rounded
Rectangle, Oval, and Rombus

stroke — the border line style, e.g. dashed, thickened etc.

layoutManager — five types of layout are supported, they are null layout,
flow layout, vertical layout, border layout and grid layout.

LabelShape

background and foreground colour

border — five types of label border styles are supported, they are empty
border, line border, etched border, shared raised bevel, shared lowered
bevel.

enabled - either enable or disable the label editing

opaque — either the label is opaque or transparent

horizontal Alignment and vertical Alignment — the label’s content layout
text — the text content of the label

font — the font of the text

imageResource — an open file dialog used to locate an image resource

TextFieldShape

background and foreground colour

border — as per LabelShape

enabled — as per LabelShape

opaque — as per LabelShape

horizontal Alignment and vertical Alignment — as per LabelShape
text — as per LabelShape

font — as per LabelShape

TextAreaShape

background and foreground colour

border — as per LabelShape

enabled — as per LabelShape

opaque — as per LabelShape

multiLinesText — multiple lines of text content

font — as per LabelShape

-172 -




The Connector tool from the palette is used to design connectors. Each connector instance is

provided with a connector viewer to visualise the connector design. A name property needs to be

assigned for a Connector instance as its identifier.

There are a number of properties that we can set to change a connector’s look:

Connector

basicStroke — the connector’s line style, e.g. dashed, thickened etc.
startShape — the start arrow shape, one of the nine arrow types can be
selected, they are no shape, half open, full open, half closed empty, half
closed fill, full closed empty, full closed fill, diamond empty and diamond
fill

endShape — the end arrow shape

lineColor — the connector’s line colour

showsStartLabel, showMiddleLabel and showEndLabel — options to show a
label at the start/middle/end portion of a connector

startLabelContents, middleLabelContents and endLabelContents — set the
multiple lines of content to the start/middle/end label of the connector
textColor — the colour of the label text

font — the font of the label text

A number of shape and connector properties can be exported. Exported properties are those that can

be mapped to metamodel properties and set at runtime in instances of a shape or connector by the

user. We have added an Exported Properties view that is in the same style of the Eclipse Properties

view but used to set exported visual properties. The Exported Properties view can be loaded by

selecting the Eclipse menu Window - Show View -> Exported Properties. With the Exported

Properties view in focus and a shape/sub-shape or a connector selected, the view shows the selected

icon’s properties list. Entering an exported property name makes the property exported. Figure 9.8

shows the process of exporting the text property of a label sub-shape using “name” as the exported

property’s name.

- 173 -




B *diagraml.maramashapeType X =0

L Marquee
[:S Sketching tool

. name
(= Shapes > nanme name

M LabelShape bext
B TextFieldshape
B TevhareaShane

h narne narne s
=% Connectars < >

L Z

[ Exported Properties 52 =8
Property Exported Property Mame
foreground
background

Font

border

opaque

enabled
verticaldlignment

I =2 name I

imageResource

Figure 9.8. Exporting visual properties in Marama meta-tools.

Saving the Marama Shape Designer diagram from the Eclipse workbench tool bar generates backend
XML files for the shapes and connectors being designed in the Marama Shape Designer view

instance. The icon XML files are also generated into the tool project folder.

9.2.4 Marama View Type Definer

Mappings of metamodel entity types and shapes, metamodel association types and connectors, and
properties of them are specified in a Marama View Type Definer view. A view type can be
dependent on a metamodel, or standalone. MaramaTatau formulae can be applied to add

interconnectivity and constrain visual layout of view elements.

Using the Marama View Type Definer wizard, the user can create a View Type Definer view for an
existing project. As shown in the example ArchitectureDiagram view type of the MaramaMTE tool
in Figure 9.9, the ViewShape tool from the palette is used to add shapes to the view type. The
ViewConnector tool from the palette is used to add connectors to the view type. Available shapes
and connectors for the tool project are automatically loaded and selectable to map to a view shape or
view connector. The user needs to set the name property of a view shape or view connector by

selecting it from a dropdown list in its properties window.

The ViewEntity tool from the palette is used to add entity types to the view type. The

ViewAssociation tool from the palette is used to add association types to the view type. Available

- 174 -



entity types and association types for the tool project are also automatically loaded and selectable to
map to a view entity or view association. The user needs to set the name property of a view entity or

view association by selecting it from a dropdown list in its properties window.

The ViewMapping tool from the palette is used to add mappings of meta-elements and icons to the
view type. Existing icons (view shapes and view connectors) and meta-elements (view entities and
view associations) from the view type diagram are automatically loaded and selectable for setting the
mappings.

With a ViewMapping shape selected in the editor, the user can set the “iconName” property of the
ViewMapping shape by selecting an item from its property dropdown list. Similarly, the user can set
the “metaElementName” property of the view mapping shape. Mapping links are automatically
added between the view shape/connector, view mapping shape and the view entity/association. The
“name” property of the view mapping shape is automatically set as its “iconName” property value

followed by an underscore and followed by the “metaElementName” property value.

W *4rchitectureDiagram.maramaviewType X

A
{7 Marquee g -
¢ . Outling ) X
[é Sketching kool Cligntshape
T
[ Shapes » \ [ 5 EG
B visualUserHandler. ., e . m—— Property Yalug
M visualEventHandl... 1 Client=hape_ApplicationClint 1 P iconName Clientshape W
. L ||name:name | ) R
B Viewdssaciation - Location I
W ViewConneckor i metaElementhar =3
B ViewEnkity o] I:'I o name
icationClien i
B Viewshape PP E.rnpertles e
ize
B ViewMapping f
w
u X =g
MetaElement Attributes Exported Icon Properties
name name b
host
kind
threads

Figure 9.9. View Type Definer in Marama meta-tools.

Property mappings between a view shape and a view entity or between a view connector and a view
association are specified in the Property Mapping view. We have added a Property Mapping view

that is in the same style of the Eclipse Properties view but used to specify property mappings. The

- 175 -



Property Mapping view can be loaded by selecting the Eclipse menu Window - Show View -
Property Mapping. Property mappings can be added by selecting an icon property from the
dropdown list to map to a metamodel element property in the Property Mapping view, as shown in
Figure 9.9.

Saving the Marama View Type Definer diagram from the Eclipse Workbench tool bar generates the
backend XML file for the view type. The view type XML file is generated into the tool project
folder.

9.25 Marama Model Project and Marama Diagram

The user can create a model project based on a selected modelling tool definition using the Marama
Model Project wizard. A model project contains a model instance with multiple view instances.
Views can be created using the Marama Diagram wizard, in a similar style to other Eclipse-based
wizards. Both the model and view instances can be changed via user interaction. A diagram (view)
instance contains all the visual element (e.g. shapes and connectors) creation tools that are defined in
its view type in the tool project. As per the mappings of visual elements and model elements
specified in the view type, a shape/connector instance in the diagram automatically generates a
model entity/association, with appropriately mapped property values. Unmapped visual/model
properties of a visual/model element are persisted independently. Figure 9.10 shows an example
ArchitectureDiagram view — a view instance of a TravelPlanner model which is created using the
MaramaMTE tool. It contains a set of diagram element creation tools such as the ClientShape visual
element type, an instance of which maps to an instance of the ApplicationClient model element type.
Creating a ClientShape instance e.g. “TravelPlannerl”, as shown in Figure 9.10 generates an
ApplicationClient instance with the same ‘“name” property set as “TravelPlannerl” (because the

“name” property is a mapped property).

The model project contains a model (file extension “.model”) file, which stores the runtime model
state. A view of this model can be used to display the entity types and association types as per the
tool’s metamodel specification. An associated/embedded Model Instances view can be loaded by
selecting the Eclipse menu Window - Show View - Model Instances. The Model Instances view
can then be used to display auxiliary model element information for a selected entity/association
type. As seen in Figure 9.11, when the ApplicationClient entity type is selected from the model in the
model project, the Model Instances view displays all instances of this entity type as master-details
tabular records. Based on the diagram created in Figure 9.10 , an instance of the ApplicationClient

- 176 -



entity type, called “TravelPlanner1”, has been created, hence the record of this instance displays in
the Model Instances view. All its associated entities are also displayed as sub-records to this.

Expanding the parent record displays all of its related sub-records underneath it.

B *diagrarl.maramaliagram X

[,‘@ Select

I:I+ Marquee

[% Sketching tool
== Shapes -
B Clientshape

B ObjectsShape
B Databaseshape
B Tableshape

B Servershape
B ServiceShape
B RequestShape

[TraveIF‘Iannerl

Flights

flightSetwvice ceaks

Fassengers

[ Connectors - FindFlights

selectFlights

ClientServerConn

ServicelZonn

TableConn
RequestConn
RequestTableConn
DEConn
ServerCbjectConn

— A d— d— — a—

Figure 9.10. A diagram (view) of a Marama model project.

O diagram] .maramabiagram

01 model &2

[} Select 4

{2, Marquee
[:3 Sketching bool

[~ Shapes +
B EntityShape

w
= Connectors A
 AttrLink

| ApplicationClisnt
nae Skring key

host String nonkey
kind String nonkey

threads ink nonkey

| Applicationseryer
niame Skring ke
hiast Skring nonkesy

serverkind String nonkey

| Datahase
name Skring ke
host String nonkesy

DatabaseTable

niarme Skring ke

[i£

ApplicationClient, TravelPlannerl

TravelPlanner1

sk

kind

null null

=0

iid
ApplicationClient. 144
host

ke

ApplicationClient, TravelPlannerl_

serverkind

nanie
TravelPlanner1

host

null

kind
null

Figure 9.11. The Model Instances view associated with a Marama model project.

-177 -




9.3 Behaviour Specification

Behaviour specification adds dynamic features such as interactions and constraints to the structural

elements of a modelling tool. Behaviours can be specified in a number of ways in the Marama meta-

tools, via:

e MaramaTatau formulae on metamodels or view types.
Specifying behaviour using MaramaTatau formulae is easy and efficient in a similar manner to a
spreadsheet system. As described in Chapter 7 and 8, it allows definition of value dependencies
and constraints on structural elements of a Marama metamodel. Hidden dependencies are
mitigated in various ways when specifying formulae.

e VIiTABaL-WS visual event propagations.
Specifying behaviour using ViTABaL-WS allows visual definition of event propagations
between shared model data structures and functions. As described in Chapter 5 and 8, an event-
based architecture can be visually defined for a modelling tool in an efficient way using
ViTABaL-WS.

e Kaitiaki visual event handlers.
As described in Chapter 6 and 8, Kaitiaki allows visual specification of event handler behaviour
by composing instances of a set of pre-defined building blocks via dataflow. End user domain
icons can be added to mitigate Kaitiaki’s abstraction and make a graphical event handler
specification easy to understand.

e Escaping to code.
Escaping to code is also allowed to enable behaviour specification via flexible coding with Java

APIs that are not black-box supported in the Marama meta-tools event handling framework.

In this section, we use further the MaramaMTE (Grundy et al, 2006) tool example to explain where

the user would want to use each of the above behaviour specification approaches.

9.3.1 MaramaTatau Formulae

The MaramaMTE tool can be used to model detailed software architecture. Figure 9.12 demonstrates
MaramaMTE in use modelling a partial architecture for a travel planner system. The diagram
includes a flights web service (“AirNZFlightsWS”’) which provides a finding flights (“findFlights”)
service. The flights web service has a relationship to a database (“AirNZFlightsDB”’) which contains
three database tables: “flights”, “seats” and “passengers”. A request (e.g. “selectFlights”) that is

made to the finding flights service can be specified with dynamic properties, based on the following

- 178 -



request kind: “CORBA Call”, “RMI Call”, “DB Update”, “DB Select”, and “HTTP Request”. A
request’s “remoteServer” and “remoteObject” properties can be set based on a selected request kind.
As Figure 9.12 illustrates, if the “requestKind” is set to “DB Select” in Step 1, the “remoteServer”
property can be set by selecting one of the available database servers (currently only
“AirNZFlightsDB”) in the property list box in Step 2, and then the “remoteObject” property can be
set by selecting one of the available database tables in the property list box in Step 3. The
information set in the diagram is used to generate a performance test-bed for the system in a later
stage.

] #diagram1.maramabiagram =3 = B8

[:& Select

{74, Marquee

[;3 Sketching kool

== Shapes - [TravelPIannerl ]
B Clientshape

B bjectshape
B Databaseshape
B Tableshape

B Servershape

B ServicesShape Flights

B FequestShape

| cClientServercConn fselectFlights :
1 ZerviceConn Z
| TableConn
] ReguestConn
| RequestTableconn
] DEConn
| ServerobjectConn
4
FE e = e | L =2 -
(&[5 & EEX: BEEN
operty Value Jperky Value Jperty Yalue
TkMDdEl ElSments o _ *Model Elements *Model Elerments
:_d B i'g:Fllzg4h;s'SEIECchghts id FindFlights, selectFlights i findFlights.selectFlights
acation s = ; 152, 743 152, 243
nanme selectFlights ) e EEliabF,
Feohiact selectFlights :
R remotecbject | fights ________~
remoteServer AirMZFlightsDE ~ PEMOLESErvar 5r|i'3||'t‘-=
H s2aks
requestkin EEEE ~ FEMOLEService remotese.r;'ce
rEsponse CORES Call reguestkind DE Select requeskkin
sequence RMI Call response response
iz DE Update sequence ;n_equence ——
TTP Request Size 84, 20 = :

Figure 9.12. Runtime tool behaviour (i.e. derived value updates) enabled using Marama meta-

tools.

It would ordinarily require significant coding in order to achieve such value-dependent runtime

behaviour. However, this can be easily resolved by using MaramaTatau, as terse OCL expressions

- 179 -



(or user-defined functions) can be applied effectively on the metamodel (or view types) of the tool,
and with MaramaTatau’s support, derived property value updates and constraint checks will

automatically take place based on the evaluated formula results.

9.3.1.1 Declarative OCL Formulae for Setting Properties and Checking Constraints
As already described in Chapter 7, MaramaTatau facilitates specifying property dependencies as
declarative OCL invariants. To achieve the value-dependent runtime behaviour as described in

Figure 9.12, we just need to specify three formulae:

e The formula,
Request.requestKind=Set{ ‘RMI Call’, ‘CORBA Call’, ‘HTTP Request’,
‘DB Select’, ‘DB Update’}

defines that the “requestKind” property of a Request entity can be any value from the set “{‘RMI
Call’, ‘CORBA Call’, ‘HTTP Request’, ‘DB Select’, ‘DB Update’}”.

e The formula,
Request.remoteServer=if requestKind='DB Select' or requestKind='DB
Update' then Dabtabase.allInstances () ->collect (name) else

ApplicationServer.alllInstances()->collect (name) endif
defines that if the “requestKind” property is “DB Select” or “DB Update”, the “remoteServer”
property of a Request entity can be any value from a set which is calculated by obtaining all the

Database entity names, otherwise, all the ApplicationServer entity names.

e The formula,
Request.remoteObject=1if requestKind='DB Select' or requestKind='DB
Update' then DabtabaseTable.allInstances () ->collect (name) else

RemoteObject.allInstances () ->collect (name) endif
defines that if the “requestKind” property is “DB Select” or “DB Update”, the “remoteObject”
property of a Request entity can be any value from a set which is calculated by obtaining all the
DatabaseTable entity names, otherwise, all the RemoteObject entity names accordingly.

- 180 -



B *MaramaMTE.maramaToolMode] X = O E Properties 2 | = |}—:€> = =0
k Select #0 Property Yalue
I:I+ Marquee | Request contexk Request.remoteserver
[ Sketching ool id String key expression  if requestiind="0F Select’ or requestiind="DE Update' then
name Skring nonkey id <
e === * . Location 686, 72
- remaoteServer Strin :
Size 16, 16
B ModelEventHand...
B ModelUserHandle. .. / remoteService String nonkesy
Iﬂ B Formula | response String nonkey
(= Connectors * sequence Skring nonkey
l AttrLink requestkind String nonkey O
} Fubtypelink
} FormulaLink 2
} RelationLink < 3 < 5
Model Instances | [T Formula Construction Yiew 52 = O
===Reference-based=== ~
Select aformula; 2 % self
if requestkind="08 3elect’ or requestkind="DE Update’ then Database. allInstances()
¢ 3 ===Cqllection-based===
- =izl
- =L
- zollect
- =Faorall
- =iterate
- =select
- =reject

Figure 9.13. MaramaTatau behaviour specification

A formula can be placed on an attribute/entity/association by dragging and dropping a Formula node
from the palette on the left of a metamodel diagram. A formula has two major properties, context and
expression. The context records the attribute/entity/association to which the formula is attached. The
expression stores the formula text, which can be directly entered using the Properties view or semi-
automatically generated by clicking on metamodel diagram elements and functions listed in the
Formula Construction View. As shown in Figure 9.13, a formula node is placed on the
“remoteServer” attribute of the “Request” entity. The Formula Construction View can be loaded by
selecting the Eclipse menu Window - Show View - Other ... - MaramaEditor - Formula

Construction View.

9.3.1.2 Visual Formula Specification and Semantic Highlighting

MaramaTatau formulae can be specified either visually by clicking on entity/association/attribute
elements on a metamodel diagram or shape/connector elements on a view type diagram joined by
functions from the given function list, or textually by directly entering formula text to the expression
property of a formula node.

-181 -



When a formula is visually specified, the diagram generates visual semantic highlights, where
relevant entities/associations/attributes/association-ends are highlighted at each user’s focus point in
specifying the formula. This dynamic support guides the user towards a semantically correct
specification, as shown in Figure 9.14. In Step 1, the user selects a formula node from either the
diagram or the Formula Construction View. The semantic highlights at this point of formula
selection include the Request entity type, the ServiceRequests association type and the
requestedService association end role that implies the Service entity type. Clicking on an un-
highlighted diagram element may indicate the invalidity of the formula specification. In Step 2a, the
user selects “self” and “.” from the function list, and then clicks on the requestedService association
end role on the diagram which triggers the Service entity type with its linked association and
association end role elements to be highlighted at the selection point. In Step 2b, the user continues
clicking on the “.” reference from the function list and then the “name” attribute of the Service entity
type. A formula link is automatically generated pointing from the formula context (i.e. the “id”
attribute of the Request entity type) to the attribute of its dependency (i.e. the “name” attribute of the
Service entity type). After a sequence of clicks on the diagram elements and functions from the

function list, in Step 2c, the user finishes constructing the formula.

The formula is syntactically checked in the MaramaTatau environment when it is being constructed,
with a visual indication of any syntax error in the Formula Construction View until the formula is
specified as being error free. If a formula is problematic, i.e. either syntax or semantically incorrect,
the formula node is turned to red (as shown in Figure 9.15). Correcting the formula specification will
turn the formula node into the normal mode. When the user has finished constructing a formula, i.e.

when the user saves the diagram, the formula is compiled.
We are planning, in future work, to implement mutual synchronisation for the visual and textual

specifications, to allow synchronised visual and textual editing, in other words, updating the formula

via textual input will create the same visual highlighting effects in the diagram.

-182 -



% Select

i, Marguee

[z Sketching taol
= Shapes

B EntityShape
W Attribute

B Formula

I Focus

B Associationshape
= Connectors

1 attrLink

| subkypeLink

| FormulaLink

| RelationLink

M ModelEventHandl,
B ModeluserHandle.,

=l

jeck

-

Client

v chart ClientServer
v O

<

Model Instances | ] Formula Construction Yie

Select a Formula:

~
Service ‘ | Reduest 1
. . - id Skring key
id Skring kew .- | ServiceReguests
rarne Skring nonkey requel j name Skring nonkew
re )
tirmesTaCalint nonkey remoteSeryer Skring nol
comritakEnd String nonkey remokeChect String n kﬁ'
remoteService String gonked T
ServerDatabase response Skring nonkisy
— sequence Skring noy
| ApplicationServer
—T— requestKind Stringlnankey ._
narme String key
hiost String nonkey ,
serverkind Skring nonkey | Database
name Skrirg kesy
. rifqgest
N . host String nonkew
databpase
bt
Step 1: select a |
formula node =g

[y Select

|:|+ Marques

h‘ Sketching tool
== Shapes

B EntityShape
I Akkribuke

B Formula

B Focus

B AssociationShape
== Connectors

L AttrLink

L Subbypelink
L Formulalink
+

RelationLink

B ModelEventHandl.
B ModellserHandle.

8

Model Instances

Select a Formula:

self. requestedService

self
allInstances() B
===0ollection-based===
-=sizel)
- =sumi )
- =collect
-=Forall
- =iterate
. . . ) - =select
ord.eclipse.emf.acl.parser . ParserException: MLS missing message: InwalidCd | oo bl
=0
-~
_— T Service ‘ | Request i
plect id String ke
id Strina key & || ServiceRedquests 19 =tring key .'
# | brkey name String nonkey requesl LY name Skring nonkew
- HimesToallink nonkey ’ remoteServer Skring nc-nke'.
commitAEnd String nonkesy remoteObiect String nu:unke'.—
remoteService Skring nonke.-
v ServerDatabase response String nonkew
— sequence String nonkey
| applicationSerer VE d ke
requestkind String non|
name Skring key db i s ¥ .
hosk String nonkey
ject =
B serverkind String nonkesy [ [atabase
namme Skring key
= : reqiyest
Client cerler host Skring nonkey
¥ el ClientServer datapase
v .- RequestDET able =
b
Step 2a: click on diagram —1 b
elements and function list "
| 8= = W o T T \ 8
==¥3Ference—based=== -~
self =
allnstances() B
===0ollection-based===
-=sizel)
- =sumi )
- =collect
-=Forall
- =iterate
. : : o - =select
org. eclipse.emf,ocl.parser . SemanticException: MLS missing message:! Errari e b

- 183 -




[é Select | = : ~
- eques
7, Marquee rjeck | Service ‘ _ : d
[ Sketching kool id String key ] ServiceReques idstringkey .40
= Shapes 2| brkey I :-.'uarne String nonkey Feq name Skring nonkey
B EntityShape timesTocallint nonkesy kJ remoteServer Skring nonke'—
| e cammitatEnd String non remobeObject String nonke'—
B ModslEventHand remoteService Skring nonke.
odelEventHandl. .,
B ModelUserHandle. . ServerDatabase response Stri!ﬁg nonkey
I Formula | ApplicationServer sequence-, Strlng- nonkey
B Focus name String key requestKind Skring nonkey ..
B AssociationShape — . hast String nonkey
=
=~ Connectors |/ serverkind String nonke [ Database
1 Attriink narne String ke
1 SubbypeLink Cliert serler hast String nonkey reqyest
J FormulaLink
L Fsefifiil s kd " ClignkSerer
d ._ RequestDETable —
¥
d =
bt
< . . | &
Step 2b: click on diagram
Model Instances | ] Forrula Construction Wiew 52 elements and function list = 38
o
Relsrereeog -~
Select a formula: self =
self . requestedService . name alllnstances()
===ollection-based===
-=sizel)
- =sumi )
- =collect
-=forall
- =iterate
. ; ; o - =seleck
org.eclipse.emf.ocl.parser. SemanticException: MLS missing message: Errorfl T b
1 MaramaMTE. maramaToolModel 52 = O
h Select | = : -~
= eques
7, Marques vect I Service [ - - 5
[% Sketching kool id String key .— .Id Skring l.i_ei-___---------—_-_:vt_l
= shapes - name String nonkey (=T moame Skring nonkey :
B EntityShape tirmesToCall ink nonkey remotdServer String nonke {1}
B Attribute commitAtEnd String nonkey remobieChject String nonke (D)
B ModelEventHand remaleService String nonked T
odelEventHandl. ..
B ModelUserHandle. . ServerDatabase respinse Skring nonkey
seqlence String nonks
B Formula [ ApplicationServer = wer - g Y
B Focus name String key 4 reqlestKind String nonkey ._
B AssociationShape — . host String nonkey
jec
= Conneckars - serverkind String nonkey | Database
1 AtkrLink name Skring key
} Subbypelink Clignt cerbar hast String nonkey reqyest
| FormulaLink
! Plelgerli ¥ X ClientServer
4 .- | RequestDET able =
)
i bt
- cli i —1 | >
Step 2c: click on diagram
. . =
Mods! Instances elements and function list g
T -~
Select a Formula: / ====Criterifi=== —3
|
self.requestedService. name.concak('.').concat{name) v _
! E|
T
===arithmetic===
+
@
! =

Figure 9.14. Visual formula specification via clicks and highlights

- 184 -




Service
id String kew

name 3kring nonkey

]

timesTaCall ink nonkey

commibAkEnd String nonkesy

| Request
id String key @
name String nonkey
remaokteseryver Skring nu:nnke@
remotesbject String nu:unke@

|| ServiceReguests

rermoteService Skring nu:unke.
response Skring nonkey
sequence Sktring nonkey
requestkind String nonkey @

Figure 9.15. Indication of erroneous formula compilation

9.3.1.3 Extended Formulae with User-defined Operations

Marama meta-tools support user-defined operations to be used in formulae. The user-defined

operations can produce side-effects to user models. To define a custom operation, the user clicks on

the “Add or remove a function” context menu from the function list of the Formula Construction

View, and a mirrored Marama workspace editor pops up for the user to add custom operation code,

as shown in Figure 9.16. All Marama APIs are accessible to be used in the implementation of a

custom operation.

— ) ) =
W Architecturebiagram.mara 8
[ Select (D) ) 25
i3, Marques
[é Skatehing kool [CIientShape ] [ServerShap
dd er-d d Ll
= Shapes - ] ] :
H i File
B visuallserHandler. .. 1 H .
_ n Servershan. | [package nz.ac. auckland.cs.marama. helper; ~
B visualEventHandl. .. (RS RETES poo 2 ’
" - |name:name namename | impork java.util.Ikerstor;
B viewassociation . i import java,util.List;
R 4 ki
B VieswConneckor ! b import nz.ac.auckland. cs.marama.model. diagram MaramaConnection;
. . H i import nz.ac,auckland. cs.marama.model, diagram.Maramashape;
B viewEntity | | " | import nz.ac.suckland. cs.marama.model, events, MaramavisuaHandler ;
. ApplicationClisnt | |App icakionSs
= VIBWShaDB import org.eclipse.drawzd.geometry . Dimension;
. . import org.eclipse. drawzd.geometry. Paint;
= WiewMapping import org.eclipse. drawzd.geometry, Rectangle;
B Focus [CIientServerConn ] [RequestTa import org. eclipse. emf. common. nokify . Motification;
B Formula ; ! -
| * @author Karen Liv
= Connectars * 7 ! ; -
ClientServe, .. RequestTa.. | |
l‘ MappingLink public abstrack class MaramavisualHandlerHelper extends MaramatisualHandler {
5 IaLink . {}Accessible user-defined Functions must start with the "public” keyword
l arrmukatin i i J{Folliowwed by the Function return type {void, String etc,) and
i =. JFalliowed by Ehe Function name and parameters,
H H
H H
L L public woid onBorder{Motification notification, String owningShapeType, String subShapeType, String subshapeConnectar){
EEEe e | if{shapeadded{natification) 1= null && shapeadded{natification). getShapeType(). equals(subShapeType))
FequestDETa processSubshapeCnBorderAdded{owningShapeType, shapeAdded{notification), subshapeConnector);
i delete of constraint connection = delete subshape
if{connectionDeleted{naotification, subshapeConnector) 1= mull &2
< connectionDeleted{notification, subshapeConnector). getSourced) . getShapeType() equalsfowningShapeType))
: processSubshapeDeleted{ connectionDeleted{notification, subshapeConnector).aetTargeb{); ¥
Model Instances
Select a Formula: e Y
fl
===|Iser Defined===
onBorder
encloses
contains .
; Add or remove a Funckion
prink

Figure 9.16. Adding user functions

- 185 -



User-defined operations must conform to the following rules:

e A Notification parameter must be defined as the first parameter of an operation in order to

facilitate event notifications and event-condition-action responses.

e The rest of the parameters must be of String type to represent a shape type, connector type,

entity type or association type.

There are currently three predefined operations in the library that are frequently reused in view types

to define diagram elements layout. They are:

Method name

Parameters

Side effect

onBorder

Notification notification
String owningShapeType
String subShapeType

String subshapeConnector

Enforce an on-border layout constraint
for a pair of shapes, i.e. a sub-shape is
attached to the border of an owning
shape. Moving the owning shape causes

the sub-shapes to move together.

enclosed

Notification notification
String owningShapeType
String subShapeType

String subshapeConnector

Enforce an enclosure layout constraint
for a pair of shapes, i.e. a sub-shape is
enclosed inside an owning shape.
Moving the owning shape causes the
sub-shapes to move together, but the
enclosed shape may be moved within

the parent shape.

contains

Notification notification
String owningShapeType
String subShapeType

String subshapeConnector

Enforce a containment layout constraint
for a pair of shapes, i.e. a sub-shape is
contained and vertically aligned with
other sub-shapes inside an owning
shape. Moving the owning shape causes
the sub-shapes to move together.

The user can define custom operations to be added to the library in a similar style. Upon completion

of implementing an operation, the list of all available user-defined operations is updated; the user can

then use the new operation in a formula composition.

- 186 -




The list of user-defined operations presented in the Formula Construction View is specialised for

view type specifications. A formula for the view type is added and specified in a similar way to the

metamodel formulae, i.e. via drags and drops, and clicks on diagram elements and functions, but

instead of being attached to a particular diagram element, it can be located anywhere on the diagram.

As shown in Figure 9.17, the example formula, “contains (ServiceShape, RequestShape,

RequestConn)”,

has been constructed using the user-defined “contains” operation. Dependency

links are automatically generated as a consequence of user’s click actions to compose a formula. But

notice that the actual arguments provided to the “contains” operation call exclude the Notification

object and only include the remaining matching arguments.

1 MaramaMTE.maramaToolModel B ArchiteckureDiagram, maramaviewType X =08
[ Select i
4, Marquee
.= Shapes
B visualuserHandler..
B visuslEventHandl CIlentShape ServerShap Ob]ectShape R.. SErwceSha RequestShap Dat‘ibESEShaD TabIeShaD

! thand... W W [name:name diid (dhid [name: ‘rrame |name Sme
W viewassaciation name:name ame:name ——
W viewonnectar
- __ - _
W viewshape
W viewMapping
W Focus [CIIentServerConn ][RequestTah...] [DBCu:unn ] [ServerOb]ectConn ] [SerwceCDHn ][TableCnnn ] [RequestConn ]
I Formula / ! : : ! [ !

i i = i i ] .

[— Connectors 5 ClientServe, .. RequestTa... DEConn_Ser. .. ServerObjects, ServiceCon. . TableConn_Da... RequestConn_...

| MappingLink
| FormulaLink

ClientServer ‘ RequestDETable

Ser\-’erDatabase

|Server0b]ect | ObjectService

DatabaseTables

ServiceRegquests

Exported Properties | Property Mapping | Model Instances | Console | Formulae Yiew | ] Formula Construction Wiew &2

Select a formula:

!
]

contains(ServiceShape, Requestshape, RequestConn)

a

===Llser Defined===
onBorder

encloses

conkains
prink

Figure 9.17. Defining view type formulas

The example formula in Figure 9.17 defines that a set of RequestShapes can be contained and

vertically aligned in a ServiceShape. Moving the ServiceShape means that all the contained

RequestShapes move together with it. This formula is translated and generated to a visual event

handler as:

- 187 -



package
nz.ac.auckland.cs.marama.userdirectory.tools.MaramaMTE.handlers.visualhandlers.ev
enttriggeringhandlers;
import org.eclipse.emf.common.notify.Notification;
import nz.ac.auckland.cs.marama.helper.MaramaVisualHandlerHelper;
public class Formula? extends MaramaVisualHandlerHelper ({

public void notifyChanged (Notification notification) {

contains (notification, "ServiceShape", "RequestShape", "RequestConn") ;
}
public String getName () {

return "FormulaZ2";

Figure 9.12 also demonstrates the runtime reflection of this formula, where the ServiceShape named
“findFights” and the RequestShape named “selectFlights” are constrained by this containment

layout.

All view type formulae are generated into view level event handlers in the same manner, which

immediately take effect on the view instances at runtime.

9.3.2 VIiTABaL-WS Event Propagations

Apart from the reusable built-in events from the Marama library, the user may want to define tool-
specific events and specify responses to them. Neither Kaitiaki nor MaramaTatau is suitable for
implementing this task, but ViTABaL-WS is effective for specifying user-defined action events and

responses.

Visual event propagations in ViTABaL-WS notation can be defined using the Marama Event
Propagation Definer. Figure 8.8. shows user-defined events and their notifications among various
Marama event handling toolies and structural components. This example defines that when an
“ArchitectureDiagram” instance is deleted from a MaramaMTE model project, all the mapped view
data are deleted from other views of the model project, and all the mapped model data are deleted

from the model project, so that the views and the model are still synchronised with consistent data.

Three Marama structural components are involved in this ViTABaL-WS specification, they are:

1. diagram — the deleted diagram of a model project

- 188 -




2. views — all the multiple views of the model project

3. modelProject — the model project instance created using the MaramaMTE tool

A condition is added to this ViTABaL-WS process initially. Only an “ArchitectureDiagram” instance
is concerned. The process goes to the end stage if the diagram being deleted is not of the
“ArchitectureDiagram” type. The “processDiagramData” toolie generates a “diagramDeleted” event
to be propagated to the “deleteMappedViewData” toolie and the “deleteMappedModelData” toolie,
which define the event handling responses. A further “viewUpdated” event is propagated from the
“deleteMappedViewData” toolie to the “views” data structure, and a “modelUpdated” event is
propagated from the “deleteMappedModelData” toolie to the “modelProject” data structure. The
toolies’ responses generate side-effects on the shared data structures. The “views” and
“modelProject” data structures are ‘“synchronised” with each other via the propagation of the

“synchronised” action event.

B diagramDeleted. maramaEventPropagation X = B8
), pacges
% Skekching tool kd
& - P
= Shapes L
I shape_ADS diagram. getWiewTypet].getHamel). equals(“architectureDiagram”)

B shape_datastore

I shape_decision

M shape_endstage

el s e
B shape_operation. ..

= Connectars L4 F

F 3
l conneckor_campa. ..
l conneckar_cancur...

o viewlgdated raodelUpdated
l connector_conditi. ..
} connector_dataflow I I
| connector_iterati. . wigws < Ttz | modelProject

1, conneckor_parkne. ..

| conmector_port_b...

] n
-

Figure 9.18. A ViTABaL-WS event propagation view
Consistent with the user interfaces of MaramaTatau, the palette tools in the Marama Event

Propagation Definer can be used to create instances of the ViTABaL-WS building blocks. The visual

specification is compiled into the following Java code for execution.

- 189 -



package
nz.ac.auckland.cs.marama.userdirectory.tools.MaramaMTE.handlers.visualhandlers.ev
enttriggeringhandlers;

import org.eclipse.emf.common.notify.Notification;

import nz.ac.auckland.cs.marama.helper.MaramaVisualHandlerHelper;

import nz.ac.auckland.cs.marama.model.diagram.MaramaDiagram;

public class diagramDeleted extends MaramaVisualHandlerHelper {
public void notifyChanged (Notification notification) {
setEnabled (false) ;
MaramaDiagram diagram = getDiagram() ;
if (diagram.getViewType () .getName () .equals ("ArchitectureDiagram")) {
processDiagramData (new CustomEvent ("diagramDeleted"),
deleteMappedViewData (new CustomEvent ("viewUpdated"), views));
processDiagramData (new CustomEvent ("diagramDeleted"),
deleteMappedModelData (new CustomEvent ("modelUpdated"), modelProject));
new CustomEvent ("synchronized", views, modelProject);
}
setEnabled (true) ;
}
public String getName () {

return "diagramDeleted";

9.3.3 Kaitiaki Visual Event Handlers

There are usually many common activities that are reused when defining visual event handlers, such
as querying diagram state, filtering diagram elements and changing the state of an element or a list of
elements. Kaitiaki features a set of such reusable modules (building blocks) and provides the ability
to compose event handlers using a domain-specific dataflow metaphor — the Event-Query-Filter-
Action metaphor. Kaitiaki is more suitable than MaramaTatau and ViTABaL-WS to define visual
event handlers as by using these existing building blocks and the dataflow based Event-Query-Filter-

Action metaphor, specifications are easier to develop and understand.
Visual event handlers in Kaitiaki notation can be defined using the Marama Visual Event Handler

Definer, to handle either Marama built-in events or user-defined action events specified in

ViTABaL-WS views. The previously presented Figure 9.12 also demonstrates the runtime execution

- 190 -




effect of a Kaitiaki event handler for aligning diagram shapes, where a “TableShape” is added and

then aligned with the existing “TableShapes” that are queried from the diagram.

Figure 9.19 illustrates how this Kaitiaki event handler is specified. The handler responds to a
“shapeAdded” event; it filters out the “TableShape”, and then uses the “alignV” action building
block to align the newly added “TableShape” with the existing ones that are queried from the
diagram, via the “getDiagram” and “getDiagramShapes” query building blocks, followed by the
“shapesType” filter building block to filter out the “TableShape” shapes. A visual component is
added by dragging and dropping a Kaitiaki building block type (e.g. shape_action, shape_filter etc.)
from the palette tool, and the name of the component can be selected from the drop down list of
available library building blocks of that type. A domain specific shape (an end user tool icon) can be
added by dragging and dropping a shape domainshape tool from the palette, and the shape’s
appearance is dynamically updated when the user selects a shape type from the drop down list of
previously defined shapes. Domain shapes mitigate the abstract Kaitiaki specification and make the

visual language easier to understand.

[ diagram1.maramaDiagranm B alignshapes.maramaHandler X = 0O

L Marguee

[:S Sketching ool shapefdded

[ Shapes >

B shape_action
B shape_collection. ..

B shape_domainshape shapeType

B shape_endstage

M shape_ewvert :
B shape_filker AetDiagramShape
, Tabl=Shape

B shape_query

B shape_singleData... TableShape

B shape_startstage

B shape_propertys... /--"'_
[-= Connectars -* \\-_a"gnl"'l_/ TableShape 1 shapesType
| ronnector_dakaflov I—l
n 4 3
2 — L]
— |+, = = ° — =
B3 B . BB 7
[ ] L d
Jperky Walue < Jperky ° | Malue
Locakion 117, 257 | 4 Location € 262, 264
name aligny! - name TableShape -

CbjectShape ~
RequestShape

Servershape
ServiceShape
‘TableShape

Size Size

conneck
deletesShape

deleteShapes W

Figure 9.19. Kaitiaki event handler specification.

-191 -



The Kaitiaki visual event handler is compiled into the following Java code for execution.

package
nz.ac.auckland.cs.marama.userdirectory.tools.MaramaMTE.handlers.visualhandlers.ev
enttriggeringhandlers;

import org.eclipse.emf.common.notify.Notification;

import nz.ac.auckland.cs.marama.helper.MaramaVisualHandlerHelper;

import nz.ac.auckland.cs.marama.helper.QueryLibrary;

import nz.ac.auckland.cs.marama.helper.FilterLibrary;

import nz.ac.auckland.cs.marama.helper.ActionLibrary;

public class alignShapes extends MaramaVisualHandlerHelper {
public void notifyChanged (Notification notification) {
setEnabled (false) ;
if (shapeAdded(notification) !=null) {
Actionlibrary.alignV(
FilterLibrary.shapeType (shapeAdded (notification),
new String("TableShape")),
FilterLibrary.shapesType (
QuerylLibrary.getDiagramShapes
(QueryLibrary.getDiagram(shapeAdded (notification))),
new String("TableShape")));
}
setEnabled (true) ;
}
public String getName () {

return "alignShapes";

9.3.4 Escaping to Code

Although MaramaTatau, ViTABaL-WS and Kaitiaki facilitate easy and effective visual event
handling specification by their modelling capabilities and library support, there are still domain-
specific event-based behaviours that can not be specified fully using them. For example,
MaramaMTE generates performance test-beds, and the complex domain-specific code that needs to
be generated is not able to be specified by MaramaTatau, ViTABaL-WS or Kaitiaki. The user needs
to escape to code to implement such freely customisable event handler behaviours. Therefore, the

previous Marama support for event handling based on custom code writing is still necessary. The

-192 -




user needs to code within the context of Marama EMF and its implementation. Figure 9.20 shows a
Marama code editor (a.k.a. the Eclipse Java editor) with Java code implementing the performance

test bed code generation.

GenerateTestBedCode.java 1.2 X =8

public class GenersateTestBedCode extends MaramaModelHandler | R

private String testBedPath = "D:%\java)leclipseh'runtime-workbench-workspace' ' NarsanaMTE_ Tests";
prirvate 3tring testBedSrc = testBedPath+"hhsro':
private 3tring testBedBin = testBedPath+"%YYhin™;

S 7 (non-Javadoo)
* [lsee org.eclipse.emf.common. notify. AdapterfnotifyChanged (org.eclipse.ewt.common, notify. Hocificat
=/
public void notifyChanged (Notification notification) |
/4 initiaslise code generators

BasicClientGen basicClientGen = new BasicClientGenf() :

PageFlowClientGen pageFlowClientGen = new PageFlowClientGen()
BasicServerGen basicl3erverGen = new BasicSerwverGen()
BasicRemoteChbjectGen basicRemoteChbjectGen = new BasicRemotelhjectGen|() :
BMICCompileScriptGen rmicCompilelcriptGen = new BRMICCompilelcriptGen():

/f generate client application code
3tring path = testBedirc:

List clients = getModel () .findEntities("ipplicationClient™) . .getElements ()
for (Iterator i=clients.iterator(); i.hasNext(l: )
HaramaEntity client = [(MaramaEntitcy) i.nextc():
String code = "r;
if(client.getParentissociation ("Transition™) '= null)
/4 use page flow client code generator
code = pageFlowClientGen.generate (client)
else
/¢ else use services client code generator
code = hasicClientGen.generate (client) ;

Figure 9.20. The custom code writing approach in Marama to define event flows.

Marama incorporates event notifications and event handlers. Model handlers are used to specify
reactions to model events (e.g. entity/association changes), whereas visual handlers are used to
specify reactions to visual view-based events (e.g. shape/connector changes). Both model and visual
handlers are sub-typed further by specialising them to event triggering and user triggering (via user
menu-click action) natures. In summary, Marama handlers are categorised into model handlers and

visual handlers and their sub-types as seen in the tree hierarchy in Figure 9.21 below.

SR anders

== modelhandlers
=% ewenttriggeringhandlers
=% usertriggeringhandlers
== wisualhandlers
=% ewenttriggeringhandlers
=% usertriggeringhandlers

Figure 9.21. Marama handler hierarchy

- 193 -



A model event/user handler is defined as a subclass of MaramaModelHandler (in package
nz.ac.auckland.cs.marama.model.events) and saved as a Java file in the corresponding

directory (i.e. eventtriggeringhandler/usertriggeringhandler directory).

public class AModelEventHandler extends MaramaModelHandler ({

public void notifyChanged (Notification notification) {
/** Reaction code goes here. */

}

public String getName () {

return "A model event handler"; // handler name/description

A visual event/user handler is defined in the same way but extends MaramaVisualHandler (in

package nz.ac.auckland.cs.marama.model .events).

public class AVisualEventHandler extends MaramaVisualHandler {

public void notifyChanged(Notification notification) ({
/** Reaction code goes here. */

}

public String getName () {

return "A visual event handler"; //handler name/description

Events are notified by the event generators and propagated to all the event handlers at runtime. The

2

method “public void notifyChanged (Notification notification)” contained in the
Marama handler code receives all the event notifications and implements the reaction behaviour for a
filtered event or list of events. The user-defined handler code being called from the
“notifyChanged” method can include events of interests, queries of model/diagram states, filters
on a collection of data, and state changing actions on Marama objects. Figure 9.20 contains a model
user handler (a model handler reacting to a user’s menu-click action). So the “notifyChanged”
handler code is fired whenever the user right clicks on a context menu item named “Generate Test
Bed Code” from a view of a MaramaMTE model instance, and as it is being implemented in the
handler method, both the server side test bed code and the client side simulation code are generated

based on the runtime model information.

-194 -




A model event/user handler must be first defined in a Marama Metamodel Definer view by dragging
and dropping a ModelEventHandler/ModelUserHandler icon from the palette to the metamodel
diagram as seen in Figure 9.22, and then coded as a handler class and saved in the corresponding
handlers’ folder of the tool’s source code repository. The name of the diagram handler icon and that
of the Java class must be consistent in order to get the handler registered and fired correctly. Visual

event/user handlers are all defined in a similar way but in a Marama View Type Definer view.

B *MaramaMTE maramaTonlMadel X [ #MaramaMTE maramaToolModel

W ArchitectureDiagram. maramatiewType

h Select Iy Select ()] ] °
..... s DAL
T, Marques | RemoteCbjac +S:ertq:_ee ol :
% Sketching tool name Siringhey [\\3 ching too [CllentShlape ] [Serverlshape] [Ob]ectsrwape ] [Serv:ceslhape ] [RequesltShape] [Databas?shape ] TabIeSIjape
— : = hapes * 7 ] i ] i ] !
[~ shapes # | | objectkind String non B tsuallserHander i ! ) i J ! !
B EntityShape B VisuslEventtand.. Clientshaps_..| |3ervershap... | [Objectshape R... | [ServiceSha, .. | [Requestshap...| |Datshaseshap...| | Tableshap...
., .._ |name:name |name:name |name:name id:id id:id name: name |name:name
Viewissociation i i i name:name |- lname:name 7 i
B ModelEventHandl. B YiewConnector ! } i T i
B ModelserHandle. ., I ViewEntity S — i = : : T
B viewsh |App||cat|onCI|ent ||App\|cat\DnSer..‘| |Remoteobject| Service |Request | |Database | |5atabaseTabIe
M Formula 1evanaps
B Foos B YiewMapping
- B Focus [CIientServerCDnn ][RequestTab‘..] [DBCunn ] [ServerObjectConn ] [SEFViCBCUW ][TableConn ] [RequestC
B AssociationShape B Formul T - T T . i
P . ServerObject] = A /
onneckors i ! : L . :
: |~ Connectars *|| [Clientzerve. .| [RequestTa...| [pBConn Ser... ServerObjectC,., [ [ServiceCon... | | TableConn_Da... Request
} Attrlink } MappingLink
} subkypeLink [ ApplicationClier] | Formulalink | i i | i —
} Farmulalink narne String key | |
| RelationLink host String nankey |C|ientSerVer | |RequestDBTabIe| |ServerDatabase ‘ |Server0bject | ChiectService | |DatabaseTables ServiceF
kind String nonkey
threads ink nankey I olgnchapes
I 1
v
4 >
| Database|able
W m— —
VcenerateTestBedCode | niamne String key
l . i
L >

Figure 9.22. Registering a handler to the metamodel or a view type in Marama meta-tools.

9.4 Prototype Implementation

Marama was implemented mainly using the Eclipse EMF plug-in for modelling component class
generation and the Eclipse GEF plug-in for diagram component rendering. Eclipse Ul, SWT and
JFACE packages were also used to provide Marama with menus, toolbars, and a set of Eclipse views
including Properties view, Outline view, Problems view, etc., and some Eclipse views were extended
with Marama domain-specific features (such as the various tool creation wizards, Model instances
view, Formula Construction view and Visual Debugger) to provide Marama with a rich set of user
interface components that are consistent with the Eclipse environment. Marama meta-tools were

implemented inside Marama using the same plug-in libraries.

- 195 -



We used Pounamu to specify the meta-metamodel for Marama meta-tools, i.e. the modelling
elements of the Metamodel Definer, Shape Designer, View Type Definer, Kaitiaki Visual Event
Handler Definer and ViTABaL-WS Event Propagation Definer. These components are realised in
Marama editors using consistent graphic modelling interfaces and packaged to synthesise the set of

Marama meta-tools.

The prototype implementation was heavily based on the Model-View-Controller pattern. Data
representation of entities, associations, shapes, connectors, views, properties and events together with
interactive controller command objects were implemented as an Eclipse plug-in named
“MaramaModel”; Eclipse-based graphical representations of model instances were implemented as a
model dependent plug-in named “MaramaDiagram”. Reusable library operations were defined in
another model dependent plug-in named “MaramaBasicHandlerLibrary”. Marama meta-tools used
the existing Marama APIs, and as an outcome they extended the Marama class library with the

addition of event-based behaviour abstractions.

Eclipse GEF, Ul, SWT,
JFACE Libraries

/ \ Eclipse EMF Library

Marama Meta-tools Marama Visual Components

- Shapes, connectors, diagrams,
dialogs, figures, views

A 4

Marama Tool Specifications
- Entity and association types
- Shape and connector types A 4

. Marama APls
- View types - Metamodel Marama Data
- Events and handlers \ - Diagram / - Project, entity, association instances
- Properties - View, shape, connector instances
- Events 7'}
- Helper methods

/ Marama Handlers

v - MaramaModelHandlers
Java File 10 Libraries W3C XML DOM Libraries - MaramaVisualHandlers

Figure 9.23. The component structure of Marama meta-tools.

Figure 9.23 illustrates the component structure with which Marama meta-tools are implemented.
Based on Pounamu’s implementation, the Java API for XML and W3C Document Object Model
(DOM) framework were used in Marama meta-tools for representing tool specification data as in-

- 196 -



memory XML data structures. Marama meta-tool instances map to Marama EMF diagram instances
with shapes and connectors as property sources. Modelling tools specified using Marama meta-tools
are persisted as XML files that are automatically generated on a save of the modelling view
instances. These XML files are read by model projects using DOM parsing. The Java file IO APIs
are used for tool specification data storage and retrieval to/from the XML format. The XML-based

repository enables easy exchange and integration with other tools.

Various code generators have been implemented to analyse diagram and model elements and
translate visual programs into Marama Java programs with appropriate APIs and reusable user
library method calls. The code generation processes are hidden from the user in order to hide their
complexity. From the user’s perspective, the visual programs are executed as efficiently as textual
Java programs, with the advantages of easy and efficient specification and visualisation. The
implemented canonical event handling framework allows inter-communication of fine-grained

modules to be used crossing over different event handler specifications.

Both ViTABaL-WS and Kaitiaki should perform static consistency checks to ensure a specification
is semantically correct before generating code for execution but this has yet to be implemented. The
checks have however been implemented for MaramaTatau. Consistency checks should include
checking event propagations are handled by appropriate event responses in receiving components,
and ensuring event arguments are passed in the correct type and order, as described in the EASY
framework (Grundy et al, 1996).

9.5 Summary

We have developed the Marama meta-tools as a vehicle for exploring integrated event handling
specification. We initially constructed the structural modelling facilities in Marama meta-tools to
support modelling with generated domain-specific visual modelling environments. The structural
modelling views include a Metamodel Definer that allows visual definition of the tool metamodel
(entity types and association types), a Shape Designer that allows visual construction of shapes and
connectors, and a View Type Definer that allows visual composition of view elements and visual-to-
model mappings. We then extended this metamodelling environment by adding event-based
behaviour modelling facilities using a set of unified techniques, with the integration of
MaramaTatau, ViTABaL-WS and Kaitiaki. MaramaTatau allows visual construction of formulae in a

spreadsheet-like style to specify model and view value dependencies and constraints. ViTABaL-WS

- 197 -



allows event-based architecture to be defined for the modelling tool, enabling specification of event
propagations and responses. Kaitiaki allows composition of event handlers using a set of visual
building blocks and hiding code complexity from the user. The reusable building blocks created by
each of the three approaches can be used in an interleaved way collaboratively in the Marama meta-
tools environment, since they are generalised to a canonical event model and unified to be used

flexibly by the integrated environment.

- 198 -



Chapter 10 - Evaluation of the Generalised Framework

Following our initial prototype development, we have conducted both developer-based and end user-
based evaluations of the Marama meta-tools to test their usability and effectiveness for specifying
event-based system integration with the aim of identifying potential problems. The evaluation results
have been sufficiently positive for us to release the Marama meta-tools as a publicly accessible

toolset following a number of enhancements to address tool stability.

10.1 Introduction

It is not a straightforward task to evaluate a substantial environment/toolset such as the Marama
meta-tools, as it involves multiple points of views of tool developer, end users of developed tool,
usability, utility, etc. (Zhu et al, 2007). Most formal usability evaluation approaches are limited to
understanding the effect of one or two variables (Dillon, 2001; Hartson et al, 2003). Controlling for
variability is an almost impossible undertaking when assessing the usability of a large environment.
Formal evaluation for this type of system is hard. This means we have had to adopt a variety of less

formal, but overlapping approaches to obtain usability and efficacy data.

We have evaluated Marama meta-tools at several levels and through a variety of mechanisms in a
similar way that evaluations of the Pounamu metatool were conducted (Zhu et al, 2007). These
include:

e We, the designers, conducted a cognitive dimensions (Green and Petre, 1996) evaluation
focusing on the event handling specifications. The use of three distinct metaphors together in the
system has increased the initial learning curve of the Marama meta-tools, but provided effective
event handler specifications by addressing identified concerns and allowing tool designers to
escape from writing conventional code.

o We, the designers, conducted an evaluation of the Marama meta-tools against the requirements
established in the research background and motivation in Chapter 3 and 4, and elaborated in the

meta-tools design in Chapter 8.

- 199 -



e A large number of graduate-level student end users (novice short-term research task-oriented
users) were involved in an extensive usability study. In the experiments, 122 participants
constructed a domain specific visual language tool of their choice, but with a minimum set of tool
features that had to be included in their tool, and were then surveyed. The participants were
allowed to work either individually, in pairs, or in a team of 3-5. The aim of the experiment was
to provide a substantial, realistic tool development situation and obtain qualitative information on
user perceptions of the toolset and task completion data (whether the minimum feature set was in
fact implemented). The experiments evaluated whether end users found the Marama meta-tools
easy and effective for generating their chosen domain specific visual language tool. We aimed to
use the end users’ feedback to improve the Marama meta-tools, and significant enhancement was
undertaken after the experiments.

e A smaller number of developers (experienced long-term research goal-oriented users) in our
research team, who used Marama meta-tools to develop more substantial applications, provided
qualitative feedback in the form of experience reports. The advanced applications being
developed or integrated with Marama meta-tools include a generic mapping tool, a health care
visual modelling environment, a business process integration tool, an architecture
modelling/mapping tool, and a design critiquing system. These qualitative feedback reports were
used to assess whether our perceptions of the Marama meta-tools needed to be altered for more
experienced user groups, and whether additional requirements were needed (e.g. more complex

back end integration requirements).

We describe the evaluation criteria that we used and the results that we obtained in Section 2.
Evaluations need to be conducted iteratively after every progress has been made to improve Marama
meta-tools. We describe our continuous evaluation plan in Section 3, and then summarise this

chapter.

10.2 Evaluation Techniques

Marama meta-tools have been evaluated based on the following main techniques: the Cognitive
Dimensions, the previously established requirements, and the usability from both novice and
experienced end users’ point of view. Table 10.1 shows the evaluation methods being used versus

what information we intended them to provide to us.

- 200 -



Evaluation method ‘ Expected information to obtain

Cognitive dimensions Cognitive dimensions allow us to understand usability tradeoffs and

hence where mitigations need to be placed.

Evaluation against the requirements The requirements established in the research can be used as the

benchmark for evaluating the functional utility of the Marama meta-tools.

Large end user survey The large study allows us to understand qualitative end user usability

perceptions and quantitative task completion data.

Small experienced user group study The small study allows us to continuously collect qualitative experienced

user perceptions and additional requirements as needed.

Table 10.1. The evaluation methods adopted by the Marama meta-tools.

10.2.1 Cognitive Dimensions

We have conducted a Cognitive Dimensions investigation for each of ViTABaL-WS, Kaitiaki and
MaramaTatau individually as described previously in Chapter 5, 6 and 7 respectively. Each of the
three languages and environments feature easy and effective specifications with some dimensional
tradeoffs where we have placed effort to provide mitigations (e.g. to minimise hidden dependency
issues in MaramaTatau). In this section, we describe a cognitive walkthrough from the end users’
perspective for the Marama meta-tools focusing on the event handling integration. Using Cognitive
Dimensions, some points in particular highlight Marama meta-tools suitability, while others are

indicative of negative tradeoffs that have been made.

The Marama meta-tools provide users with facilities to define their own domain-specific visual
language environment. Both the static structure and dynamic behaviours can be flexibly defined
using either the existing component library or their customised extensions, but their use requires an
understanding of several moderately complex metaphoric abstractions and the way they can interact.
Thus Marama meta-tools have a relatively high abstraction gradient. The Marama meta-tools allow
users to mix abstractions to specify a visual design system. High-level abstractions (via visual
building blocks and their compositions) are used to model both static and dynamic aspects of a
system, while low-level abstractions (via property settings and escape to code) are used to model
detailed structural constraints and visualise runtime debugging information. This seamless mixture
provides flexibility for Marama meta-tools to be used by both novice and experienced developers.
The primitive elements in Marama meta-tools represent a broad range of components from the Tool
Abstraction, Event-Query-Filter-Action, and Spreadsheet paradigms, and communication
relationships between them. The visual metaphors and visual constructs used increase

comprehensibility compared to the textual code-based behaviour specifications. The Marama meta-

-201 -



tools offer low diffuseness in that they provide a terse extended Entity-Relationship language to
specify metamodels, a terse set of notations for shapes and view type constructions, however we

have chosen a verbose multi-paradigm formalism in the integrated event handling specification.

The abstractions used in Marama meta-tools require some hard mental operations for novice users.
The initial learning curve of Marama meta-tools is high for users who are not familiar with
metamodelling approaches, but this is not our target end user group. Marama meta-tools’ languages
and visual metaphors need to be learned, and the learning process typically requires access to the
provided documentation and exemplar tools. Once the Marama meta-tools approach is initially
learned, users can benefit greatly from its support for fast and easy prototype generations. Premature
commitment is required when using the Marama meta-tools. Design is supported in an interactive
way with dynamic graphical visualisations provided by the Marama meta-tools. However, the user
typically has to describe the structural parts before the behavioural; otherwise the user does not have
metamodel components that can be referenced when doing the behavioural side. This is not a major
issue though as it is a natural progression for software designers. The Marama meta-tools support

rapid prototyping to prove both the structural and behavioural design concepts.

Marama meta-tools’ structural and behavioural constraint model fits closely to conventional
metamodelling concepts and the Model-View-Controller architectural pattern. Closeness of mapping
is thus high for our target end users and especially for current users of Eclipse, as Marama meta-tools
make use of a collection of Eclipse-based views to display integrated information. Close mappings of
tool specifications with domain concepts are easily achieved, as the Marama meta-tools provide
users with the flexibility to define custom domain-specific concepts and elements. However, the
existing GUI elements are a little constraining in this regard, requiring additional types of component

such as buttons, sound and video etc.

Consistency is well managed in the Marama meta-tools. Though the different view types support
specification of a distinguished modelling aspect of a visual language environment, the interfaces
provide a consistent look and feel. ViTABaL-WS, Kaitiaki and MaramaTatau each provide terse
language syntax, as well as presenting close interconnectivity. While they are indeed based on a
generalised common event handling model representation, users will not feel they are individually
irrelevant, and can easily establish relationships between them. The visual notations used in the
different behavioural modelling views are consistent subsets of a common representation: Rectangles

represent data, Circles represent constraints, and Connections represent relationships.

- 202 -



Error-proneness has been reduced in comparison with conventional code writing in some areas;
typically the code generation from visual specifications eliminates syntax errors and some semantic
errors. Once Marama meta-tools’ step-by-step metamodelling approach is understood and followed,
it is not error-prone for structural modelling. Static checking of structural elements is performed
before a runtime modelling environment is generated and indications of an incorrect structural
specification are presented to the user. Visual behaviour specifications in ViTABaL-WS and Kaitiaki
are potentially error-prone at this stage as they directly generate Java code without performing
compile-time checking first. Implementation of static type checking for these metaphors is important

future work.

The Marama meta-tools have minimal hidden dependencies in constructing formulae and constraints.
The support for multiple views introduces hidden dependencies, especially when certain behaviour is
specified using a set of mixed ViTABaL-WS, Kaitiaki and MaramaTatau elements. To mitigate this,
we are exploring using a generated Dependency view to indicate source and target behaviour
elements dependencies, allow cascading changes and provide easy navigation mechanisms between

these interdependent elements.

Progressive evaluation is well supported. Marama meta-tools allow tool specifications to be
evaluated at any stage. Partially completed specifications can be executed as well. View type
extensions for both structural and behavioural aspects can be added into a Marama tool at any stage,

and previously specified elements can be freely used or updated with new features.

Marama meta-tools specification is well structured, with every component performing a unique set of
tasks (Role-expressiveness), e.g. the metamodel components define visual language semantics and
constraints; the shape components define visual representations of metamodel elements; the view
type components compose view elements and their dependencies on the model; the event
propagation components define the event-based relationship between model or view elements; and

the event handling components define dynamic interactive behaviour.

The Marama meta-tools make use of layout, colour, and domain specific tool icons as secondary
notations to enhance the syntax and semantics being conveyed from both structural and behavioural
specifications. The set of Marama editors used in Marama meta-tools provide easy modification via
consistent graphical user interfaces. Changing an element in one view does not affect all other

elements unless dependency is specified for consistency management. However, the usual viscosity

- 203 -



problems occur for all the diagram types in Marama meta-tools when diagrams need to be arranged
to insert additional elements. Provision of automatic layout support could potentially alleviate this (at

both model and metamodel levels). Providing such facilities is left for future work.

Marama is an Eclipse plug-in; this provides Marama with good mechanisms to support visibility and
juxtaposability. Marama editors can be freely juxtaposed side-by-side to allow simultaneous
visualisations of different views of concern. Marama meta-tools behavioural specification views can

especially be juxtaposed with Marama modelling views for debugging purposes.

10.2.2 Evaluation against the Requirements

The set of requirements established in Chapter 8 were our benchmark for evaluating the functional
utility of the Marama meta-tools. These requirements have all been met. In the following we
describe how each of the requirements has been addressed in the design and implementation of the

Marama meta-tools

The generalised Marama meta-tools framework incorporates compositional primitives as event
handling building blocks and allows composition relationships between them. The framework
contains reusable designs to allow users to initialise their system and specify customised event types,
event generators, event receivers and event handling building blocks to enhance the extensibility and
flexibility of the framework. The framework supports tool integration via a canonical data/event

model extension and consistent user interfaces.

Graphical notations are offered in the style of the three metaphoric exemplars — ViTABaL-WS,
Kaitiaki and MaramaTatau, to allow easy and effective event handling specifications and
visualisations. Marama meta-tools allow specification of event generators, events, and event
receivers using ViTABaL-WS, specification of view-level event handling behaviours using Kaitiaki,
and specification of model-level and view-level structural constraints using MaramaTatau. The
integration of the three languages enables Marama meta-tools to handle complex events in a
straightforward way. Textual notations are also permitted so that users can escape to conventional
code when specifying complex custom behaviours such as code generation. Both the visual
languages and the textual languages can be documented thoroughly in the Marama meta-tools

environment.

- 204 -



Multiple views of data, event and behaviour representations are kept consistent in both the model and
user interface level to ensure the correctness of generated environments. Multiple views can be easily

navigated from one to another.

The underlying Marama framework provides the support to realise Marama models together with
views and dynamic behaviour when an instance of a tool specified using the Marama meta-tools is
realised. In a runtime modelling environment, MaramaTatau formulae and ViTABaL-WS specified
event propagations can be traced and Kaitiaki event handling results can be visualised based on a
user interactive visual debugging model in a step-by-step fashion.

With regards to the quality of service, Marama meta-tools is a proof of concept toolset which
provides good levels of abstraction from high-level conceptual design to low-level implementations.
Visual languages exploiting easy-to-understand metaphors are used to simplify the behavioural
specification tasks. Users can still escape to code when complex custom tasks need to be
implemented. The integrated meta-tools environment provides design guidance support especially in
validation of the specifications. The toolset has proof of concept stability issues needing to be
addressed. The issues are suggested from the user data in the next section.

Marama has good scalability. The framework provides well structured extensibility via multiple
views and by separating concerns of modelling structure from behaviour, as well as integrating them
at runtime in a seamlessly unified manner. The framework is readily extensible with the addition of
additional generic or domain specific building blocks.

Developing prototypes using Marama meta-tools takes considerably less time than implementing
them using a programming language from scratch. The behavioural models generate Java code which

is executed as efficient as code implementations.

10.2.3 Large End User Survey

In the user evaluation experiments, 122 participants, who were fourth year Computer Science or
Software Engineering students, were asked to construct a Domain-Specific Visual Language (DSVL)
tool of their own choice, but with at least a minimal set of required components (so that tools with a
realistic level of complexity were designed and constructed) similar to the set of tasks defined in the
Pounamu evaluation experiments (Zhu et al, 2007), including:

e At least three metamodel entity types and appropriate associations

- 205 -



e At least three different iconic shapes, possibly of differing complexity (of the shape image)

e At least two different shape connectors

e At least two different view types, i.e. that show different kinds of information within the view
types

e A few simple formulae and/or event handlers managing things like diagram layout, editing

constraints, model (entity) constraints, mock code generation, data import, etc.

Preparatory training lectures were provided on:
1. General DSVL design concepts, including Cognitive Dimensions
2. General introduction to meta-tools and metamodelling concepts

3. Specific introduction to Marama and the Marama meta-tools

Students were also provided with a demonstration-based tutorial and an online user manual. Three
exemplar tools were provided to be used in Marama directly. They are the simple Whole-Part
aggregate modeller presented in Chapter 7, a simple UML tool and the complex MaramaMTE tool

presented in Chapter 7-9.

Participants were then given three weeks elapsed time (while they were working alongside other
commitments) to complete the prototype development together with a survey report containing a set
of open ended questions to qualitatively elicit strengths and weaknesses of the Marama meta-tools in
constructing their desired DSVL tool. Their experiments and survey reports were collected and
analysed. These participants had used many software tools, though few for metamodelling similar to
Marama and Pounamu (Zhu et al, 2007). We believe their previous experience had little influence on

their experiences and expectations.

Sixty-five tool instances were created (due to the fact that the participants worked either individually,
in pairs, or in a team of 3-5), among which fifty were based on the existing application areas (having
been explored using the Pounamu tool) from the provided references in the task description and other
web references. These included software process modelling, software architecture design, aspect-
oriented design, design pattern modelling, entity-relationship modelling, data mapping specification
and statistics design tool. Fifteen tools were based on the participants’ exploratory development of

new DSVLs of their own design, including a wizard creation tool, a DHTML web development tool,

- 206 -



an online banking tool, an enterprise reporting tool, a family tree navigation tool, a restaurant

management tool, and a university degree modelling tool.

Figure 10.1 charts the total number of developed tools and the statistics for the minimal task
completion (as defined previously, comprising a basic set of metamodel, notation, view and event
handling elements). The task completion data is positive showing that tools with realistic level of
complexity (usable tools with both static and dynamic features) can be designed and constructed
using the Marama meta-tools in a short period of time (three weeks working alongside other

commitments).

Minimal Task Completion Data

60

c 50
(@)
=
2
Q.
40
g @ tool
B metamodel
@)
~ O shapes
- 30
< O connectors
- B view types
g 20 O formulae/event handlers
£
0
Existing DSVLs New DSVLs

Tool Category

Figure 10.1. Minimal task completion.

The participants responded in the survey that the Marama meta-tools were suited to develop the end
user tools in general, but there were still a lot of improvements to make. General strengths
emphasised in the survey included: the rapidity of constructing DSVL tools; the simple approach in
defining tool data structures and behaviour models; the consistent user interface and the ease of
creation and management of multiple views; the low effort and minimum hidden dependency needed
to constrain end user model and views effectively; the extensibility and customisability of the
generated tools; and the usefulness of being able to sub-type to define reusable metamodel elements

and generation of association constraints.

- 207 -



Figure 10.2 charts the number of responses concerning identified weaknesses in three categories (i.e.
Stability and Error Handling, Model Effectiveness, and Usability/GUI) and 2 subcategories (i.e.
“major” significant weakness, or “minor” issues causing irritation but not significantly affecting
functionality, as per the style of the Pounamu survey (Zhu et al, 2007). General weaknesses
emphasised in the survey included: the steep learning curve of the Marama meta-tools; the lack of
APl documentation (users need to have access to APl documentation for very complex event
processing) and comprehensive user manual; the stability and the ineffective error handling in the
prototype; the lack of support for copy/paste specifications; the limited number of reusable building
blocks for behavioural specifications; and the difficulty of defining complex formulae due to
unfamiliarity with OCL. Some significant stability errors in the Marama meta-tools were also
reported during the experiments and were immediately corrected with continuous updates being
released during the course of the experiment. The survey result shows the bulk of the issues being in
the area of minor stability and minor usability, which were expected of a software prototype at its

early proof of concept stage.

Identified Problems

100

a0

g

Bl

G0

O Major
E hinor

a0

40

30

Number of Eesponses

20

10

Stakility and Error Handling Modeling Effectiveness Uzaklity izUl
Problem Category

Figure 10.2. Problems identified in the survey.

Figure 10.3 charts the number of distinct suggestions concerning the improvements/extensions of the
Marama meta-tools. This gives us insight into what are missing and what the end users found hard to
do with the Marama meta-tools. Major suggestions are on the Usability side, targeting the Marama

meta-toolset as robust open source software, which should encompass comprehensive

- 208 -



documentation, automated researching and registration, progress tracking, automatic layout, print to
file, copy/paste and undo/redo etc. support. Typical suggestions on Modelling Effectiveness include
providing an n-nary association type in the metamodel definer, adding more wizard/dialog support
for tool/model creation, and providing more comprehensive event handler building blocks for reuse.
Typical suggestions on Stability and Error Handling include supporting automatic backup and
version control, allowing rollback transactions to a previous stable state, and providing user friendly

error messages.

Proposed Improvements/Extensions

a0

g

7o

g0

a0

O Mumbker of suggestions

40

30

Number of suggestions

20

10
a

Stabilty and Error Handling  Modeling Effectiveness Ulzahlity isUl

Category

Figure 10.3. Proposed improvements/extensions in the survey.

10.2.4 Small Experienced User Group Study

A set of substantial applications have been developed in our research team, using or integrated with
the Marama meta-tools. The developers provided qualitative feedback in the form of experience
reports, which were used to assess whether our perceptions of the Marama meta-tools needed to be

altered, and whether additional requirements were needed.

A generic mapping tool, MaramaTorua (Jun et al, 2007) has been developed using Marama and later
integrated with the Marama meta-tools to provide generic mapping specification support (including
model transformations). It has been successfully used in translating BPMN to BPEL4WS code, and

importing old Pounamu tool specifications into the Marama meta-tools equivalent. The developer of

- 209 -



MaramaTorua found that Marama meta-tools were substantially easier to use than Pounamu (which
he had had significant previous experience with). He felt the consistent views provided for modelling
both the static and dynamic aspects of the system were beneficial and the toolset was approaching

the quality of a typical commercial software tool.

A health care visual modelling environment, a business process integration tool and an architecture
modelling/mapping tool have also been generated using the Marama meta-tools environment.
Qualitative feedback from those experienced long-term research goal-oriented users suggested that
Marama meta-tools provide a good structural and behavioural modelling and constraining
mechanism, while, consistent with the large end user survey, improvements can be made by making

the framework robust and error-free.

A design critiquing prototype (Ali, 2007) is under development as an extension to the Marama meta-
tools. The developer found that the Marama meta-tools’ modelling concept was initially hard to
grasp; the Model-View-Controller pattern made it even more difficult to understand; and it is a bit
confusing as the extended entity-relationship metamodelling style was partially overlapping with the
UML notation, while specifying correct OCL formulae also needed a big effort.

While some event handling building blocks can be used effectively to compose event-based
behaviour specifications, all the expert developers needed to escape to code (i.e. use the original
custom code writing approach) to define complex backend code generation and user interface
extensions (particularly for complex layouts). This indicates to us that the Marama meta-tools need
to be further generalised from more examples so that it can provide support for a wider-range of
event-based system specifications. The integration of MaramaTorua with the Marama meta-tools
(outside the scope of this thesis) is one example addressing these experienced modeller concerns.
MaramaTorua can be used for moderately complex code generation and model-model transformation
support reducing the need to escape to code in such situations. A new project, also outside the scope
of this thesis work, is looking at providing a generic layout specification tool for Marama views. This
will build on the three metaphors described here but provide additional layout specific building
blocks.

-210 -



10.3 Further Continuous Evaluation Plan

Substantial efforts have been taken to improve the Marama meta-tools based on these evaluation
results. The Marama meta-tools have been made more stable and more resistant to incorrect
specifications so that a generated DSVL tool can be error-free for use. Some unnecessarily required
user specifications, such as an event triggering handler for interpreting formulae and enforcing

constraints, have been replaced by automations enabled by the Marama meta-tools.

A set of JUnit-based test suites are under development. They will be used to perform automatic
testing on the Marama meta-tools. This will remove much of the effort of the developers in
undertaking white box, black box, unit, integration and system testing, and allow more focus to be

placed on end user usability studies.

Our evaluation approach has demonstrated its effectiveness in eliciting weaknesses of a software
prototype, so we are reusing the approach to conduct iterative evaluations on the Marama meta-tools.
However, from the previous evaluation results, we found that the major barrier for users to
effectively use the Marama meta-tools was the initial steep learning curve. To remove this barrier,
we plan to provide the end users with more interactive, story-telling examples in a video-format
tutorial so that they learn the Marama meta-tools in a more constructive way. We plan to follow the
set of guidelines for developing such videos suggested by Plaisant and Shneiderman (Plaisant and
Shneiderman, 2005).

10.4 Summary

The Marama meta-tools have been evaluated using a variety of approaches: Cognitive Dimensions,
previously established requirements, and substantial formal and informal usability studies. The
evaluation results are positive in accepting the integrated approach for event handling specifications
but indicate many minor improvements are needed to improve the usability of the Marama meta-
tools. While the Marama meta-tools are being improved, we will be conducting similar evaluations
to see how effective such improvements are. This is a similar approach to the longitudinal study we
undertake with the Pounamu metatool (Zhu et al, 2007). We plan to take an iterative approach in
solving the existing problems in the Marama meta-tools and will examine additional metaphors and

visual languages to evolve the framework.

-211-



Chapter 11 - Conclusions and Future Research

Research contributions of this thesis include design and proof of concept development of: ViTABaL-
WS using the Tool Abstraction (TA) metaphor to describe event propagations between abstract
components; Kaitiaki using the Event-Query-Filter-Action (EQFA) metaphor to specify event
handling behaviour; and MaramaTatau using the Spreadsheet metaphor to specify structural
dependencies and constraints to be realised at runtime. The three visual languages and metaphors
have also been generalised in the Marama meta-tools environments, unifying the event-based
behaviour specifications for a wide range of system behaviour modelling support. In this chapter we
elaborate on these achievements and propose future work.

11.1 Research Contributions and Conclusions

We have investigated three exemplar visual event-driven system metaphors to specify event-handling
support: Tool Abstraction in ViTABaL-WS; Event-Query-Filter-Action in Kaitiaki; and Spreadsheet
in MaramaTatau. We have generalised from the three exemplars and developed a generic high-level
visual event handling metaphor and built a proof of concept visual environment for specifying event-
based system integration.

ViTABaL-WS was initially designed to support modelling complex interactions between web service
components. It uses a Tool Abstraction metaphor for describing relationships between service
definitions, and multiple-views of data-flow, control-flow and event propagation in a modelled
process. It supports specification of both fine-grained, detailed views and more abstract views of
business process protocols, message exchange rules and sequencing, and service invocation, together
with generation of Web Service Description Language and Business Process Execution Language
definitions from a ViTABaL-WS model for direct deployment. ViTABaL-WS also supports
visualisation of running processes for architecture understanding and visual debugging of specified
protocols. VITABaL-WS’s event propagation abstraction model has been generalised in the Marama
meta-tools environment to facilitate implementation of complex event-based interactions and data

exchanges among structural and behavioural components.

-212 -



End users usually want to specify dynamic interactive behaviour associated with their graphical user
interfaces but want to remove the need of having to code these in low level textual programming
languages. Our VIiTABaL-WS approach specifies high-level tool abstractions, but is not a good
approach for GUI event handling, due to its lack of discrimination of end user objects from abstract
queries and state-changing actions, and structured data flow between them. Kaitiaki is a visual
language for user interface event handling specification targeted at end users. It provides end users
with abstract ways to express both simple and complex event handling mechanisms via visual
specifications. These specifications use a metaphor of generating events, tool state queries, filters
over query results and state changing actions, with dataflow between these building blocks. The
support environment allows users to compose handlers from these constructs and relate them to
concrete diagramming tool objects. A debugger uses the visual notation to step through a
specification, animating constructs and affected diagram objects. Kaitiaki’s event handling
abstraction model has been generalised in the Marama meta-tools environment to facilitate
implementation of complex event handling behaviours by composing a set of reusable graphical

building blocks.

A meta-tools approach is commonly used to specify and generate domain specific visual language
tools. Specifications of model level behaviours, such as constraints and dependencies, are however
very difficult to specify in existing meta-tools. These often need to be specified using conventional
code in the form of low level event handlers or the like. Our ViTABaL-WS and Kaitiaki approaches
are inefficient for specifying such constraints on metamodels. We integrated MaramaTatau, as a
declarative constraint/dependency specification mechanism into the Marama meta-tools.
MaramaTatau borrows much from techniques used to support the spreadsheet metaphor, but in a
situation with less concreteness. It combines challenged technologies in the form of OCL and
spreadsheet interfaces in a simple yet novel way drawing strength from both while mitigating their
weaknesses. MaramaTatau augments the Marama meta-tools’ metamodel designer, allowing tool
developers to specify formulae over metamodels, combined with a one-way constraint system to
compute values during tool usage. This allows for much simpler specification of dependency and
constraint handling within Marama tools, compared to both the textual event handlers and Kaitiaki
visual event handlers. MaramaTatau is generalised together with ViTABaL-WS and Kaitiaki into a

generic event handling framework in the Marama meta-tools.

By abstracting from the three earlier, limited-domain exemplars, a general metamodel representation

that combines atomic primitives (either shared or non-shared) extended by the three visual languages

-213 -



is defined. We have developed the Marama meta-tools with this common model to support multiple
metaphoric views in the style of the three exemplars for event handling integration. With ViTABaL-
WS’s focus on providing a visual language for the design and construction of tool abstraction action-
event-based architecture, Kaitiaki’s focus on providing an extensible event-query-filter-action
language for responding to propagated events, and MaramaTatau’s focus on providing a declarative
spreadsheet-like specification mechanism for model/view level dependencies and constraints, the
generalisation of these three approaches within the Marama meta-tools framework provides wide-

ranging support for event-based system design and construction.

The generalised Marama meta-tools have been evaluated thoroughly to test their usability and
effectiveness for specifying event-based system integration. The evaluation results are positive in
accepting the integrated approach for event handling specifications but indicate many minor
improvements are needed to improve the usability of the Marama meta-tools. We have released the
Marama meta-tools as a publicly accessible toolset following a number of enhancements to address

tool stability.

11.2 Future Research

Marama meta-tools framework is still at the prototype stage. We aim to continually develop it to be
a robust open source software system to be freely used by interested researchers and organisations. A
large range of possible future work directions exist developing from such a platform.

More complete checking of behaviour models, particularly for ViTABaL-WS and Kaitiaki, could

catch errors in the specification before code generation and realisation.

Users must currently manually layout ViTABaL-WS and Kaitiaki composition models and automatic
layout of views would in some cases be useful, especially when they become large. Automatic layout
may be useful to improve a user’s ability to show/hide/collapse parts of a specification to manage

size and complexity.
Programming by example extensions would be useful in every view of the Marama meta-tools to

allow users to make changes to an exemplar modelling tool view and add/remove building blocks
to/from it.

- 214 -



A more complex view specification tool is under development, which allows many-to-many
mappings between view shapes and connectors and model entities and associations to be specified
using formulae. This will again make it easier for tool developers to build more complex view-model

mappings without resorting to using complex event-driven handlers.

We plan to extend the MaramaTatau language by adding higher-order functions (HOF) (especially
the “map” and “accumulate” functions seen in functional programming languages like Haskell

(Haskell, 2007http://www.haskell.org/)). For an example of the “map” HOF, we could specify

UnconnectedShape = map (TestNoConnection, listOfShapes)

where

TestNoConnection (MaramaShape) : Boolean = if
MaramaShape.getSourceConnections () .size ()==0 and
MaramaShape.getTargetConnections () .size ()==0 then true else false

endif

The map (Function, Collection) function applies the Function to each item in the
Collection to produce the map function result (in this example another Collection of

MaramaShape instances being unconnected).

We could also extend the MaramaTatau language by adding function compositions, i.e. using a
function as a parameter to another function, another HOF ability. This facilitates reuse of formulae
and existing library functions in function compositions. We have attempted to add user defined
functions (e.g. compositional functional definition of reusable formula with parameters) to
collaboratively operate with OCL. We can extend MaramaTatau to reuse ViTABaL-WS and Kaitiaki
specifications either partially or completely, to allow both side-effect-less constraint/query, and side-
effect action to be specified in formulae. To this end, hidden dependencies will be an issue that
requires mitigation. A new high-level generalisation dependency view could be useful to

indicate/annotate cascading references in dependent views.

Run-time monitoring of the Marama meta-tools for performance analysis could be supported via the
visual debugging sub-system. The visual debugger could be further enhanced with “watch” controls
so that the user can choose to trace a certain event and its response instead of debugging the entire

behavioural specification.

-215-


http://www.haskell.org/

The Marama meta-tools are to be evolved by abstracting from more domain-specific examples, such
as BPMN (OMG, 2006). The Marama meta-tools’ event handling abstraction model can be specified
in the MaramaTorua (Huh et al, 2007) mapping tool to facilitate generation to a wide range of

implementations for interpretation.

] R h
1 Eclipse IDE : MS Schema
| ! Inference server
; ! MaramaTorua | 3. Infer
XS !
\i\‘ - : \ schema
1. Import ! ource | II
XML ! schema ! xml xsd
Schema ! \E\A o
——————————————————————————— XL >
MaramaTorua 2. Define Source Target
Schema or infer schema schema
View Mapping P from XML data
1iew Mapping Progress 6. Load file(s) MaramaTorua
translator and
Source 4f 94— Target source data : :
A= fi . 4. Specify mappings
LS A Hle(s); run between schema items
I transaltor to
Source Target roduce target
Data & Xalan DagtJa E)lata ﬁles(s)g
" +Java a MaramaTorua
code !
. \ 5. Gder][erate Schema mapping view(s)
—— ata
xslt, Java, ...
’ > translator(s
il sl | (%) T3
| -— Source | —fF = Target
- schema +—_—3—% schema
Sourcf \ arget ‘ %
] . /.. R
Semi-automatic Library of
Schema mapping model mapping agents functions
MaramaTorua

Figure 11.1. Outline of using MaramaTorua. (Huh et al, 2007)

To allow one specification to generate others with corresponding implementation classes, a set of
mapping schemas can be defined in MaramaTorua (Huh et al, 2007) to provide interchanging
mechanisms between ViTABaL-WS, Kaitiaki and MaramaTatau specifications. MaramaTorua is
integrated with the Marama meta-tool and its generated translators can be used directly within new
Marama tools to support model integration, translation, and code and script generation. Figure 11.1
illustrates the MaramaTorua approach in specifying mappings. This involves the following steps of
tasks:

(1) Users import XML schemas (either manually created or automatically generated from the
Marama meta-tools) into MaramaTorua to provide the source and/or target data format

specifications.

- 216 -



(2) Users can define their own schema using MaramaTorua’s schema editor or an existing
Eclipse schema editor.

(3) A schema can also be generated using a remote web service link to the Microsoft schema
inference engine.

4) Once the schemas are imported into MaramaTorua, users can specify mappings between
the source schema and target schema elements. The mapping specifications can be either
simple so that users can copy a source data item to a target item, or complex so that users
need to iterate over the source collection filtering on specified data item values and create
new target data structures.

(5) On completion of the inter-schema mapping specification, a translator can be generated.
MaramaTorua reuses a set of mapping functions to synthesise a data translator
implementation.

(6) Other translator implementation languages (e.g. Eclipse ALT or pure Java code) can also
be used. Users can test the translator by executing it with example source data files

loaded into MaramaTorua.

Many other Marama extensions are being developed. These include a distributed environment with
thin client user interfaces and web service back-end, collaborative support for concurrent team work,
sketch-based user interfaces and automatic translations to formal Marama model and views. Once
these extensions are fully developed, we will integrate them into the Marama meta-tools thus making

the framework more fully-functioned.

11.3 Summary

The research has focussed on providing visual specification and runtime visualisation support for the
design and construction of complex event-based systems. We have integrated three event handling
specification languages based on a canonical event model. VIiTABaL-WS provides a Tool
Abstraction language for the design and construction of action-event propagation architectures.
Kaitiaki provides an extensible Event-Query-Filter-Action language for both action and state-change
event propagation and handling. MaramaTatau provides a static Spreadsheet-like dependency and
constraint mechanism to support specification of state-change event propagation and response. A
synergy of these languages and their generalisation in the Marama meta-tools environment provide

wide-ranging support for event-based system design and construction.

-217 -



References

Ali, N. M. (2007) A Generic Visual Critic Authoring Tool, In Proceedings of the 2007 IEEE

Symposium on Visual Languages and Human-Centric Computing, Coeur d'Aléne, Idaho, USA.

Baeyens, T. (2007) The state of workflow, http://www.jbpm.org/state.of.workflow.html

Baker, J. (2002) Business Process Modelling Language: Automating Business Relationships,

Business Integration Journal, http://www.bijonline.com

Barrett, D. J., Clarke, L. A., Tarr, P.L., and Wise, A.E. (1996) A Framework for Event-Based
Software Integration, ACM Transactions on Software Engineering and Methodology
(TOSEM), pp. 378-421.

Bederson, B., Meyer, J. and Good, L. (2000) Jazz: An Extensible Zoomable User Interface Graphics
Toolkit in Java, In Proceedings of 2000 ACM Conference on User Interface and Software
Technology, ACM Press, pp. 171-180.

Ben-Shaul, 1. Z. (1994) Oz: A Decentralized Process Centered Environment. Technical Report
CUCS-024-94, Columbia University Department of Computer Science, PhD Thesis.

Benatallah, B., Dumas, M., Fauvet, M.C. and Rabhi, F. (2003) Towards Patterns of Web Services
Composition, In Patterns and skeletons for parallel and distributed computing, Springer.

Berndtsson, B., Mellin, J., and Hogberg, U. (1999) Visualization of the Composite Event Detection

Process, In proceedings of the 1999 International Workshop on User Interfaces to Data
Intensive Systems, IEEE CS Press, pp. 118-127.

-218 -


http://www.jbpm.org/state.of.workflow.html
http://www.bijonline.com/

Box, D., Cabrera, L.F., Critchley, C., Curbera, F., Ferguson, D., Graham, S., Hull, D., Kakivaya, G.,
Lewis, A., Lovering, B., Niblett, P., Orchard, D., Samdarshi, S., Schlimmer, J., Sedukhin, 1.,
Shewchuk, J., Weerawarana, S., Wortendyke, D. (2006) Web Services Eventing (WS-
Eventing), http://www.w3.org/Submission/WS-Eventing/

Buchmann, A., Bornhévd, C., Cilia, M., Fiege, L., Gértner, F., Liebig, C., Meixner, M., Mihl, G.
(2004) DREAM: Distributed Reliable Event-based Application Management, In Web

Dynamics, Springer.

Budinsky, F., Steinberg, D., Merks, E, Ellersick, R., and Grose, T. (2003) Eclipse Modeling

Framework: A Developer's Guide, Addison Wesley Professional.

Burbeck, S. (1992) Applications Programming in Smalltalk-80(TM): How to user Model-View-

Controller (MVC), http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

Burnett, M., Atwood, J., Djang, R.W., Reichwein, J. (2001) Forms/3: A first-order visual language to
explore the boundaries of the spreadsheet paradigm, Journal of Functional Programming, 11(2):
155-206.

Burnett, M. and Ambler, A.L. (1992) A Declarative Approach to Event-Handling in Visual
Programming Languages, In IEEE Workshop on Visual Languages, pp. 34-40, Seattle,
Washington.

Chakravarthy, S., Krishnaprasad, V., Anwar, E., Kim, S.K. (1994) Composite Events for Active
Databases: Semantics Contexts and Detection, In Proceedings of the 20th International

Conference on Very Large Data Bases.

Chappell, D. and Associates (2007) Microsoft and BPM: A Technology Overview,

http://www.microsoft.com/biztalk/solutions/bpm/technicalwhitepaper.mspx

Cohen, D. (2006) AP5 Reference Manual, http://ap5.com/doc/ap5-man.html

-219 -


http://www.w3.org/Submission/WS-Eventing/
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://www.microsoft.com/biztalk/solutions/bpm/technicalwhitepaper.mspx
http://ap5.com/doc/ap5-man.html

Conway, M., Audia, S., Burnette, T., Cosgrove, D., and Christiansen, K. (2000) Alice: Lessons
Learned from Building a 3D System for Novices, In Proceedings of the SIGCHI conference on

Human factors in computing systems, pp. 486-493.

Costagliola, G., Deufemia, V., Ferrucci, F., Gravino, C. (2002) The Use of the GXL Approach for
Supporting Visual Language Specification and Interchanging, In Proceedings of HCC’02,
Arlington, Virginia, pp.131-138.

Costagliola, G., Deufemia, V. and Polese G. (2004) A Framework For Modeling and Implementing
Visual Notations with Applications to Software Engineering, ACM Transactions on Software
Engineering and Methodology (TOSEM), Volume 13 Issue 4.

Coupaye, T., Roncancio, C. L., Bruley, C. (1999) A Visualization Service for Event-Based Systems,

Proc. 15emes Journees Bases de Donnees Avancees, BDA.

Cox, P., Giles, F., Pietrzykowski, T. (1989) Prograph: A step towards liberating programming from
textual conditioning, 1989 IEEE Workshop on Visual Languages, Rome, Italy, 150-156.

Cox, P. T., Smedley, T. J., Garden, J. and McManus, M. (1997) Experiences with Visual
Programming in a Specific Domain — Visual Language Challenge *96, In Proceedings of the

1997 IEEE Symposium on Visual Languages, pp. 254-259.
Cugola G., Di Nitto E., Fuggetta A. (1998) Exploiting an event-based infrastructure to develop
complex distributed systems, In Proceedings of the 20th international conference on Software

engineering, Kyoto, Japan, pp. 261-270.

Dewan, P. and Choudhary, R. (1991) Flexible user interface coupling in collaborative systems,
CHI'91, pp. 41-49.

Dillon, A (2001), Usability evaluation, In W. Karwowski (ed.) Encyclopedia of Human Factors and

Ergonomics, London: Taylor and Francis.

- 220 -



Drumea, A. and Popescu, C. (2004) Finite State Machines and Their Applications in Software for
Industry Control, Electronics Technology: Meeting the Challenges of Electronics Technology

Progress, 27" International Spring Seminar, Vol.1, pp. 25-29.

ebPML (2002) BPML 1.0 Analysis, http://www.ebpml.org/bpml_1 0 june 02.htm

Eclipse (2007) EMF, http://www.eclipse.org/modeling/emf/

Eclipse (2006) EMF OCL plug-in, http://www.eclipse.org/modeling/mdt/downloads/?project=ocl

Eclipse (2007) GEF, http://www.eclipse.org/gef/

Engels, G. and Erwig M. (2005) ClassSheets: Automatic Generation of Spreadsheet Applications
from Object-Oriented Specifications, In Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, Long Beach, CA, USA, pp. 124-133.

Felfernig, A., Friedrich, G., Jannach, D., Russ, C. and Zanker M. (2003) Developing Constraint-
Based Applications with Spreadsheets. In 18" International Joint Conference on Artificial

Intelligence. Acapulco, Mexico.

Fensel, D. and Bussler, C. (2002) The web service modeling framework WSMF, Electronic
Commerce Research and Applications, vol. 1, no. 2, pp. 113--137.

Fernstrom, C. (1993) Process Weaver: Adding Process Support to UNIX. In Proceedings of the

Second International Conference of Software Process. Pages 12-26.

Foster, H., Uchitel, S., Magee, J. and Kramer, J. (2003) Model-based verification of web service
compositions, In Proceedings of the 18th IEEE international conference on automated software
engineering, Montreal, Canada.

Ferguson R., Parrington N., Dunne P., Archibald J., Thompson J. (1999) MetaMOOSE-an object-
oriented framework for the construction of CASE tools, In Proceedings of CoSET'99, LA.

-221-


http://www.ebpml.org/bpml_1_0_june_02.htm
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/mdt/downloads/?project=ocl
http://www.eclipse.org/gef/

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995) Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley.

Gatziu, S, Dittrich, K.R. (1993) Events in an Active Object-Oriented Database System, Proc. 1st Intl.
Workshop on Rules in Database Systems (RIDS).

Gottfried, H. J. and Burnett M. M. (1997) Programming Complex Objects in Spreadsheets: an
Empirical Study Comparing Textual Formula Entry with Direct Manipulation and Gestures,
Papers Presented at the Seventh Workshop on Empirical Studies of Programmers ESP’97.

Green, T. R. G. and Petre, M. (1996) Usability analysis of visual programming environments: a

‘cognitive dimensions' framework. J. Visual Languages and Computing, 7, 131-174.

Grundy, J.C., Hosking, J.G. (1995) ViTABaL: A Visual Language Supporting Design by Tool
Abstraction, Proceedings of the 1995 IEEE Symposium on Visual Languages, Darmsdart,
Germany, IEEE CS Press, pp. 53-60.

Grundy, J.C. and Hosking, J.G. (1996) Constructing Integrated Software Development Environments
with MViews. International Journal of Applied Software Technology, vol. 2, no. 3-4, 133-160.

Grundy, J.C. and Hosking, J.G. (1998) Serendipity: integrated environment support for process
modelling, enactment and work coordination, Automated Software Engineering: Special Issue

on Process Technology 5(1), January 1998, Kluwer Academic Publishers, pp. 27-60.

Grundy, J.C., Hosking, J.G., Li, L. And Liu, N. (2006) Performance engineering of service
compositions, ICSE 2006 Workshop on Service-oriented Software Engineering, Shanghai,
China.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B. (1996) Supporting flexible consistency

management via discrete change description propagation, Software — Practice and Experience,
Volume 26, Issue 9, pp. 1053 — 1083.

-222 -



Grundy, J.C., Hosking, J.G., Mugridge, W.B. (1996) Towards a unified event-based software
architecture, in Joint Proceedings of the SIGSOFT'96 Workshops, 1996 International Software
Architecture Workshop, Oct 14-15, San Francisco, ACM Press, 121-125.

Grundy, J. C., Hosking, J. G. and Mugridge, W. B. (1997) Visualising Event-based Software

Systems: Issues and Experiences. In Porceedings of SoftVis97. Adelaide, Australia.

Grundy, J.C., Hosking, J.G., Zhu N., and Liu N. (2006) Generating Domain-Specific Visual
Language Editors from High-level Tool Specifications, In Proceedings of the 21% IEEE/ACM

International Conference on Automated Software Engineering, Tokyo, Japan, pp. 25-36.

Grundy, J.C., Mugridge, W.B. and Hosking, J.G. (1998) Visual specification of multiple view visual
environments, In Proceedings of IEEE VL'98, Halifax, Nova Scotia, Canada, IEEE CS Press,
pp. 236-243.

Grundy, J.C., Mugridge, W.B., and Hosking, J.G. (1998) Static and Dynamic Visualisation of
Software Architectures for Component-based Systems, In Proceedings of the 10th International
Conference on Software Engineering and Knowledge Engineering, San Francisco, KSI Press,
pp. 426-433.

Gugola G, Nitto E, and Fuggetta A. (2001) The JEDI event-based infrastructure and its application to
the development of the OPSS WFMS, IEEE Trans. Software, 2001, 27(9): 827-850.

Haeberli, P. (1988) ConMan: a visual programming language for interactive graphics, In Proceedings
of the 15th annual conference on Computer graphics and interactive techniques, ACM Press,

pp. 103-111.

Hamadi, R., Benatallah, B. (2003) A petri-net based model for web service composition, Proc 14th

Australasian Database Conference, Adelaide, Australia, CRPIT Press.

Hanna, K. (2002) Interactive visual functional programmings, Proceedings of the seventh ACM

SIGPLAN international conference on Functional programming ICFP '02, Volume 37 Issue 9.

- 223 -



Hanson, J. (2005) Event-driven services in SOA, Java World,

http://www.javaworld.com/javaworld/jw-01-2005/jw-0131-soa.html

Hartson, H. R., Andre, T. S., and Williges, R. C. (2003) Criteria for evaluating usability evaluation
methods, International Journal of Human-Computer Interaction 15(1): 145-181.

Haskell (2007), http://www.haskell.org/

Hill, R. D. (1992) The Abstraction-Link-View Paradigm: Using Constraints to Connect User
Interfaces to Applications. In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems, Monterey, California, pp.335-342, ACM Press.

Hill, R. D., Brinck, T., Rohall, S. L., Patterson, J. F. and Wilner, W. (1994) The Rendezvous
Architecture and Language for Constructing Multiuser Applications. ACM Transactions on
Computer-Human Interaction (TOCHI). Vol. 1, no. 2, pp.81-125, ACM Press.

Hirakawa, M. and Ichikawa, T. (1992) Advances in Visual Programming, In Proceedings of the

Second International Conference on Systems Integration, pp. 538-543.

Hoof, J.V. (2006) how EDA extends SOA and why it is important, http://soa-
eda.blogspot.com/2006/11/how-eda-extends-soa-and-why-it-is.html

Hudak, P. (1989) Conception, evolution, and application of functional programming languages,
ACM Computing Surveys 21 (3): 359-411.

Huh, J., Grundy, J.C., Hosking, J.G., Liu, N., Amor R. (2007) Integrated data mapping for meta-tool
model integration, transformation and code generation, working paper, the University of
Auckland.

IBM (2002) Business Processes Web Services for Java,

http://www.alphaworks.ibm.com/tech/bpws4j

IBM (2003) Specification: Business Process Execution Language for Web Services Version 1.1,

http://www.ibm.com/developerworks/library/ws-bpel/

- 224 -


http://www.javaworld.com/javaworld/jw-01-2005/jw-0131-soa.html
http://www.haskell.org/
http://soa-eda.blogspot.com/2006/11/how-eda-extends-soa-and-why-it-is.html
http://soa-eda.blogspot.com/2006/11/how-eda-extends-soa-and-why-it-is.html
http://www.cs.berkeley.edu/~jcondit/pl-prelim/hudak89functional.pdf
http://en.wikipedia.org/wiki/Association_for_Computing_Machinery
http://www.alphaworks.ibm.com/tech/bpws4j
http://www.ibm.com/developerworks/library/ws-bpel/

Inazumi, H. and Omoto, N. (1999) A new scheme for verifying rule-based systems using Petri nets,
1999 IEEE International Conference on Systems, Man, and Cybernetics, Volume
1, Page(s):860 - 865 vol.1.

Jacob, R. (1996) A Visual Language for Non-WIMP User Interfaces, In Proceedings of the 1996
IEEE Symposium on Visual Languages, Boulder, CO, USA, pp. 231-238.

Jia, X., Steele, A., Qin L., Liu, H. and Jones, C. (2005) An Event-Based Framework for Model
Integration, In Proceedings of the 2005 IEEE International Conference on Electro Information

Technology.

Jin, W. (2003) A structured approach to visualising the event handling specification, Thesis (MSc-
Computer Science) — University of Auckland.

Jong E.D. (1997) Multi-paradigm Programming in Large Control Systems, In Proceedings of the
1997 Joint Workshop on Parallel and Distributed Real-Time Systems (WPDRTS/OORTS “97).

Jung, M.C. and Cho, S.B. (2005). A novel method based on behavior network for Web service
composition, In Proceedings of the International Conference on Next Generation Web Services

Practices, 22-26 Aug. 2005. Page(s):6 pp.

Kelly, S., Lyytinen, K., and Rossi, M. (1996) Meta Edit+: A Fully configurable Multi-User and
Multi-Tool CASE Environment, In Proceedings of CAISE'96, LNCS 1080.

Kelso, J. (2002) A Visual Programming Environment for Functional Languages, Thesis (PhD —
Computer Science) — Murdoch University, http://www.csse.uwa.edu.au/~joel/vfpe/thesis.pdf

Kiringa, I. (2002) Specifying Event Logics for Active Database, Description Logics

Koenig, J. (2004) JBOSS jBPM, http://www.jboss.com/pdf/jbpm_whitepaper.pdf

Kraemer, F. A. and Herrmann P. (2007) Transforming Collaborative Service Specifications into
Efficiently Executable State Machines, In Proceedings of the Sixth International Workshop on
Graph Transformation and Visual Modeling Techniques (GT-VMT 2007).

- 225 -


http://www.ieeexplore.ieee.org.ezproxy.auckland.ac.nz/xpl/RecentCon.jsp?punumber=10610
http://www.ieeexplore.ieee.org.ezproxy.auckland.ac.nz/xpl/RecentCon.jsp?punumber=10610
http://www.ieeexplore.ieee.org.ezproxy.auckland.ac.nz/xpl/RecentCon.jsp?punumber=10610
http://www.csse.uwa.edu.au/~joel/vfpe/thesis.pdf
http://www.jboss.com/pdf/jbpm_whitepaper.pdf

Krishnamurthy, B., Rosenblum, D.S. (1995) Yeast: a general purpose event-action system, In

Proceedings of Software Engineering, IEEE Transactions, pp. 845-857.

Ledeczi A., Bakay A., Maroti M., Volgyesi P., Nordstrom G., Sprinkle J., and Karsai G. (2001)

Composing Domain-Specific Design Environments, Computer, 44-51.

Lewicki, D. and Fisher, G. (1006) VisiTile - A Visual Language Development Toolkit, Proceedings
of the 1996 IEEE Symposium on Visual Languages, Boulder, Colorado, pp. 114-121.

Li, L., Grundy, J.C. and Hosking, J.G. (2007) EML: A Tree Overlay-based Visual Language for
Business Process Modelling, In Proceedings of the 2007 International Conference on Enterprise

Information Systems, Portugal.

Li, X., Marin, J. M. and Chapa, S. V., A Structural Model of ECA Rules in Active Database, Lecture
Notes in Computer Science, in Proceedings of the Second Mexican International Conference on
Artificial Intelligence, Pages 486-493, 2002.

Li, X., Mugridge W. B. and Hosking G. (1997) A Petri Net-based Visual Language for Specifying
GUIs, In Proceedings of the 1997 IEEE Symposium on Visual Languages, Isle of Capri, Italy.

Liu, A.F., Chen Z.G.; He H., Gui W.H. (2007) Treenet: A Web Services Composition Model Based
on Spanning tree, In Proceedings of the 2nd International Conference on Pervasive Computing
and Applications, 26-27 July 2007 Page(s):618 — 623

Liu, N., Hosking, J.G. and Grundy, J.C. (2005) A Visual Language and Environment for Specifying
Design Tool Event Handling, In Proc. VL/HCC’2005, Dallas, Texas, USA.

Liu, N., Grundy, J.C. and Hosking, J.G. (2007) A Visual Language and Environment for Specifying
User Interface Event Handling in Design Tools, In Proceedings of the 2007 Australasian

Conference on User Interfaces, Ballarat, Australia, CRPIT Press.

- 226 -



Liu, N., Hosking, J.G. and Grundy, J.C. (2004) Integrating a Zoomable User Interfaces Concept into
a Visual Language Meta-tool Environment, In Proceedings of the 2004 International

Conference on Visual Languages and Human-Centric Computing, Rome, Italy, IEEE CS Press.

Liu, N., Hosking, J.G. and Grundy, J.C. (2007) MaramaTatau: Extending a Domain Specific Visual
Language Meta Tool with a Declarative Constraint Mechanism, in Proceedings of the 2007
IEEE Symposium on Visual Languages and Human-Centric Computing, Coeur d'Alene, Idaho,
USA

Liu, N., Grundy, J.C. and Hosking, J.G. (2005) A visual language and environment for composing
web services, In Proceedings of the 2005 ACM/IEEE International Conference on Automated

Software Engineering, Long Beach, California, IEEE Press, pp. 321-324.

Matskin, M. and Montesi, D. (1998) Visual Rule Language for Active Database Modelling,
Information Modelling and Knowledge Bases 1X. 10S Press, pp. 160-175.

Meier, R. and Cahill, V. (2002) Taxonomy of Distributed Event-based Programming Systems, In
Proceedings of the 22" International Conference on Distributed Computing Systems
Workshop.

Menon, S., Dasgupta, P., and LeBlanc, R.J. (1993) Asynchronous event handling in distributed
object-based systems. In Proc. the 13th Conference on Distributed Computing Systems, pages

383-390, Pittsburgh, Pennsylvania.

MIT (2006) The Alloy Analyzer, http://alloy.mit.edu/

Morch, A. (1998) Tailoring tools for system development, Journal of End User Computing, 10:2, pp.
22-29.

MSND (2007) Queues Overview, http://msdn2.microsoft.com/en-us/library/ms733789.aspx

MSND (2007) Create Trigger, http://msdn2.microsoft.com/en-us/library/aa258254(SQL .80).aspx

- 227 -


http://alloy.mit.edu/
http://msdn2.microsoft.com/en-us/library/ms733789.aspx
http://msdn2.microsoft.com/en-us/library/aa258254(SQL.80).aspx

MSDN  (2007)  Understanding the Event  Model, http://msdn2.microsoft.com/en-

us/library/ms533023.aspx

MSDN (2005) DSL Tools, http://msdn2.microsoft.com/en-us/vstudio/aa718368.aspx

Mugridge, W.B., Hosking, J.G. and Grundy, J.C. (1998) Drag-throughs and attachment regions in
BuildByWire, Proc. of OZCHI'98, Adelaide, Australia, IEEE CS Press, pp. 320-327.

Myers, B. (1990) A. Garnet: Comprehensive Support for Graphical, highly Interactive User
Interfaces. IEEE COMPUTER. 23 (11), 71-85.

Myers, B.A. (1997) The Amulet Environment: New Models for Effective User Interface Software
Development, IEEE TSE, vol. 23, no. 6, 347-365.

Myers, B.A., Pane, J.F., and Ko, A. (2004) Natural programming languages and environments,

http://www.acmqueue.org/

Narayanan, S. and Mcllraith, S.A. (2002) Simulation, verification and automated composition of web

services. In Proceedings of the 11th World Wide Web Conference.

Neag, I. A. and Tyler, D. F. (2001) Combined Visual and Textual Programming Methodology for
Signal-based Automatic Avionics Testing Systems, In Proceedings of the 20" Conference on
Digital Avionics System, 9A5/1-9A5/10 vol.2.

Nikau (2007) Marama, http://www.cs.auckland.ac.nz/Nikau/marama/

OMG (2006) BPMN 1.0, http://www.bpmn.org/

OMG (2004) Event Service Specification, http://www.omg.org/docs/formal/04-10-02.pdf

OMG (2003) OCL, http://www.omg.org/docs/ptc/03-10-14.pdf

- 228 -


http://msdn2.microsoft.com/en-us/library/ms533023.aspx
http://msdn2.microsoft.com/en-us/library/ms533023.aspx
http://msdn2.microsoft.com/en-us/vstudio/aa718368.aspx
http://www.acmqueue.org/
http://www.cs.auckland.ac.nz/Nikau/marama/
http://www.bpmn.org/
http://www.omg.org/docs/formal/04-10-02.pdf
http://www.omg.org/docs/ptc/03-10-14.pdf

Palanque, P.A., Bastide, R., Dourte, L. and Sibertin-Blanc, C. (1993) Design of User-Driven
Interfaces Using Petri Nets and Objects, In Proceedings of Advanced Information Systems

Engineering, pp. 569-585, Springer-Verlag.

Paschke, A. (2006) ECA-LP / ECA-RuleML: A Homogeneous Event-Condition-Action Logic
Programming Language, Int. Conf. on Rules and Rule Markup Languages for the Semantic
Web (RuleML’06), Athens, Georgia, USA.

Pautasso, C. and Alonso, G. (2003) Visual Composition of Web Services, Proc IEEE HCC’03,
Auckland, pp. 92-99.

Pautasso, C. and Alonso, G. (2005) The JOpera Visual Composition Language JVLC, 16(1-2):119-
152.

Peltonen J. (2000) Visual Scripting for UML-Based Tools. In Proceedings of ICSSEA 2000: Paris,

France.

Plaisant, C. and Shneiderman, B. (2005) Show me! Guidelines for producing recorded
demonstrations, in Proceedings of the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing, Dallas, USA, 171-178.

Rapide Design Team (1997) Program Analysis and Verification Group, Computer Systems Lab,
Stanford University, Guide to the Rapide 1.0 Language Reference Manuals.

Repenning, A. and Sumnet, T. (1995) Agentsheets: a medium for creating domain-oriented visual

languages, Computer, 28, no. 3.

Robbins, J. E., Medvidovic, N., Redmiles, D. F. and Rosenblum, D. S. (1998) Integrating
Architecture Description Languages with a Standard Design Method, In Proceedings of the

20th International Conference on Software Engineering, Kyoto, Japan, pp. 209-218.

Robbins, J.E. and Redmiles D.F. (1998) Software architecture critics in the Argo design environment,
J Knowledge-Based Systems 11 (1998) 47-60.

- 229 -



Roberts, D, and Johnson, R. (1996) Evolving Frameworks: A Pattern Language for Developing
Obiject-Oriented Frameworks, In Pattern Languages of Program Design 3, Addison-Wesley,
Reading, MA.

RuleML Initiative (2006), http://www.ruleml.org

Schiffer, S. and Frohlich, J.H. (1994) Concepts and Architecture of Vista — a Multiparadigm
Programming Environment, in Proceedings of the 10th IEEE/CS Symposium on Visual
Languages, St.Lois/USA, pp. 40-47.

Sheth, B.D. (1994) A Learning Approach to Personalized Information Filtering, Master thesis in

Computer Science and Engineering, Massachusetts Institute of Technology.

Sliwa, C. (2003), Event-driven architecture poised for wide adoption, Computer World,

http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,81133,00.html

Smith, D.C., Cypher, A. and Spohrer, J. (1995) KidSim: programming agents without a
programming language, Communications of the ACM, vol. 37, no. 7, pp. 54 — 67.

Smith, D. N. (1990) The interface construction set, in Visual Languages and Applications, (T.
Ichikawa, E. Jungert, R. Korfhage, eds.), Plenum Pub., NY.

Srivastava, B., Koehler, J. (2003) Web Service Composition - Current Solutions and Open Problems,

ICAPS Workshop on Planning for Web Services, Trento, Italy.

Sun (2005) EV - Jini™ Distributed Events Specification,

http://java.sun.com/products/jini/2.1/doc/specs/html/event-spec.html

Sun (2005) Java BluePrints Model-View-Controller, http://java.sun.com/blueprints/patterns/MVC-
detailed.html

- 230 -


http://www.ruleml.org/
http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,81133,00.html
http://java.sun.com/products/jini/2.1/doc/specs/html/event-spec.html
http://java.sun.com/blueprints/patterns/MVC-detailed.html
http://java.sun.com/blueprints/patterns/MVC-detailed.html

Sun (2007) The J2EE™ Tutorial, http://java.sun.com/javaee/5/docs/tutorial/doc/

Sun (2007) The Java™ Tutorials, Lesson: Writing Event Listeners,

http://java.sun.com/docs/books/tutorial/uiswing/events/index.html

Taentzer, G. (1999) Adding Visual Rules to Object-Oriented Modeling Techniques, in Proceedings
of Technology of Object-Oriented Languages and Systems (TOOLS’99), Nancy, France. IEEE
Computer Society.

Tang, Y., Chen, L. He, K.T. and Jing, N. (2004). SRN: an extended Petri-net-based workflow model
for Web service composition, In Proceedings of the IEEE International Conference on Web
Services, 6-9 July 2004. Page(s):591 — 599

Thone, S., Depke, R. and Engels, G. (2002) Process-oriented, flexible composition of web services
with UML, Proc ER-Wkshp on Conceptual Modeling Approaches for e-Business, Tampere,

Finland, LNCS, 2002

Tolvanen J. (2006) OOPSLA demonstrations chair's welcome: MetaEdit+: integrated modeling and

metamodeling environment for domain-specific languages, Companion to the 21st ACM.

Vlissides, J.M. and Linton, M. (1989) Unidraw: A framework for building domain-specific graphical
editors, Proc. UIST’89, ACM Press, pp. 158-167.

W3C (2001), Web Services Description Language (WSDL) 1.1, http://www.w3.org/tr/wsdl

Wagner, F., Schmuki R., Wagner T. and Wolstenholme P. (2006) Modeling Software with Finite
State Machines: A Practical Approach, Auerbach Publications.

Weber, G. (2003) Semantics of form-oriented analysis, http://www.diss.fu-berlin.de/2003/72/

Welch, B. and Jones, K. (2003) Practical Programming in Tcl and Tk, Prentice-Hall.

Wirtz, G. (1993) A Visual Approach for Developing, Understanding and Analyzing Parallel
Programs, in Proc IEEE VL’93, IEEE CS Press, pp. 261-266.

-231-


http://java.sun.com/javaee/5/docs/tutorial/doc/
http://java.sun.com/docs/books/tutorial/uiswing/events/index.html
http://www.ieeexplore.ieee.org.ezproxy.auckland.ac.nz/xpl/RecentCon.jsp?punumber=9185
http://www.ieeexplore.ieee.org.ezproxy.auckland.ac.nz/xpl/RecentCon.jsp?punumber=9185
http://www.ieeexplore.ieee.org.ezproxy.auckland.ac.nz/xpl/RecentCon.jsp?punumber=9185
http://www.w3.org/tr/wsdl
http://www.diss.fu-berlin.de/2003/72/

Wordsworth, J.B. (1992) Software Development with Z - A Practical Approach to Formal Methods

in Software Engineering, Addison Wesley.

Workflow Management Coalition (1999) Terminology & Glossary,
http://www.wfmc.org/standards/docs/TC-1011 term glossary v3.pdf

Zhu, N., Grundy, J.C., Hosking, J.G., Liu, N., Cao, S. and Mehra, A. (2007) Pounamu: a meta-tool
for exploratory domain-specific visual language tool development, Journal of Systems and
Software 80 (8), Elsevier.

- 232 -


http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

