
An Integrated Visual Approach

for Business Process Modelling

A thesis presented in partial fulfilment of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

at the University of Auckland, New Zealand

Lei LI

2010

© 2010 Lei Li
Department of Computer Science, Faculty of Science, The University of Auckland

 II

ABSTRACT

Current approaches to modelling complex business processes fail to scale to large

organizations. Key issues are “cobweb” and “labyrinth” problems exhibited by

conventional box and line metaphors and large numbers of hidden dependencies

introduced by compartment-based modularity. They require long term memory of

users; have restrictions on expressiveness; and lack multiple levels of abstractions

(Schnieders and Puhlmann 2005; Zhu and Grundy et al, 2007). Splitting up diagrams,

even with good tool support, leads to implicit relationships among diagrams and

navigational difficulties (Recker and Niehaves 2008; Grundy and Hosking et al, 2006).

Our earlier work (Anderson and Apperley 1990; Phillips 1995; Li and Phillips et al,

2004) on modelling complex user interfaces and their behaviour with visual dialogue

notations demonstrated that a tree-based overlay structure can effectively mitigate

these complexity problems. In addition, trees support rapid navigation, elision and

automatic layout in ways difficult to achieve with graph-based approaches. This

research is to develop an integrated visual approach for business process modelling. It

includes a novel tree-overlay based visual notation (EML) and its integrated support

environment (MaramaEML) to supplement and integrate with existing visual

modeling solutions.

In EML, complex business architectures are represented as service trees and business

processes are modelled as process overlay sequences on the service trees. By

combining these two mechanisms EML gives users a clear overview of a whole

enterprise system with business processes modelled by overlays on the same view.

MaramaEML is developed using the Eclipse-based Marama framework. It integrates

EML and BPMN to provide high-level business service modelling. It supports

automatic BPEL code generation from the graphical representations and facilitates

process code validation using LTSA. It also provides a distortion-based fisheye and

zooming function to enhance complex diagram navigation ability.

 III

ACKNOWLEDGEMENT

I am in the fortunate position of working and living with many wonderful and

inspiring people. I am delighted to have the opportunity to thank them for their

support, advice and friendship.

First, my sincere gratitude to my supervisors --- John Hosking and John Grundy. I

have received stimulation, motivation, inspiration, optimism, criticism, guidance, and

so many little things that have made my PhD research both a challenging and

rewarding journey. I am more than grateful for being allowed to work with both truly

great academics. I am very proud for having the opportunity to work with them, and

received and taken advantage from it. The thesis would not be there without them to

whom I look up to and whose advice and friendship means much to me.

A very big thanks to my father and mother, who have always believed in me,

encouraged me, critically examined my development, and instilled in me a desire to

identify, exploit, use and expand my skills and abilities. I have come to understand

how important education, ethics and character are in growing up and becoming a

better person.

Very special thanks to my loving Karen and little Teresa. I am very grateful for all the

encouragement, love, support and motivation I have received from you both. You

made me very aware of the importance of the feeling that only family can establish

and which they sustain throughout all obstacles. Family is everything.

Last, but most important, to my grandfather. I know you are watching me in the

heaven. Miss you a lot…

 IV

CONTENTS

ABSTRACT --
--

II

ACKNOWLEDGEMENT --
--------------- III

CONTENTS ---
----------------- IV

LIST OF FIGURES ---
---------------- VII

LIST OF TABLES --
---------------- X

CHAPTER 1 – INTRODUCTION ----------------------------------
--------------- 1

 1.1 Motivation -- 2
 1.2 Research Targets --- 8
 1.3 Thesis Structure -- 9
 1.4 Publications --- 10

CHAPTER 2 – LITERATURE REVIEW --------------------------
-------------- 12

 2.1 Business Process Modelling -- 13
 2.2 Entity-Relationship (ER) Method and ER Diagram ----------------------- 16
 2.3 Data Flow Method and Data Flow Diagrams ------------------------------ 20
 2.4 Workflow Method and BPMN --- 23
 2.5 Integrated Modelling Method and UML ------------------------------------ 26
 2.6 Aspect-Oriented Method and AspectM ------------------------------------- 33
 2.7 Form -Oriented Method and Form Chart Diagram ------------------------ 37
 2.8 Other Domain Specific Modeling Languages ------------------------------ 40
 2.9 Business Process Execution Language -------------------------------------- 41
 2.10 Discussion and Summary --- 46

CHAPTER 3 - ENTERPRISE MODELLING LANGUAGE -----
----------- 51

 3.1 EML Overview -- 51
 3.2 Service Tree Structure -- 54
 3.2.1 Service / Sub-Service -- 54
 3.2.2 Operation --- 59
 3.2.3 Tree Layout --- 62
 3.2.4 Elision --- 66
 3.2.5 Service Reuse --- 68

 V

 3.3 Process Overlay -- 70
 3.3.1 Process Start --- 70
 3.3.2 Process End -- 72
 3.3.3 Data Encapsulation --- 75
 3.3.4 Process Flow --- 75
 3.3.5 Business Process Layer --- 77
 3.4 Exception Handler Overlay --- 80
 3.4.1 Failure Handling Notation --- 81
 3.4.2 Exception Flow --- 83
 3.4.3 Exception Layer -- 85
 3.5 Dependency / Trigger --- 88
 3.5.1 Trigger Flow --- 89
 3.5.2 Trigger Overlay -- 91
 3.6 Iteration -- 92
 3.7 Condition -- 95
 3.8 Summary -- 97

CHAPTER 4 - EML MODELLING TOOL
IMPLEMENTATION -------- 98

 4.1 Introduction --- 98
 4.2 Pounamu EML Tool --- 99
 4.3 Marama EML Tool -- 104
 4.3.1 Structural Backbone --- 106
 4.3.2 Tool Project -- 107
 4.3.3 Metamodel --- 108
 4.3.4 Shapes and Connectors --- 110
 4.3.5 View Types --- 111
 4.3.6 Model Projects --- 113
 4.3.7 Behaviours -- 114
 4.3.8 Service Tree Structure --- 114
 4.3.9 Overlay -- 116
 4.3.10 Code Generation --- 117
 4.3.11 Zoomable View --- 118
 4.3.12 Fisheye View -- 120
 4.4 Integration --- 123
 4.5 Summary -- 125

CHAPTER 5 – CASE STUDY
 5.1 University Enrollment System Example ------------------------------------- 127
 5.2 Service Tree Modeling -- 128
 5.3 Overlay for Processes, Exceptions and Triggers -------------------------- 132

 VI

 5.4 BPMN Integration --- 135
 5.5 BPEL Generation and LTSA Validation ------------------------------------ 140
 5.6 Zoomable and Fisheye Views -- 142
 5.7 Deployment --- 144
 5.8 Summary -- 147

CHAPTER 6 – EVALUATION --- 149
 6.1 Evaluation Mechanisms Overview -- 149
 6.2 Cognitive Dimensions for Early Validation and Design Assistance ---- 150
 6.2.1 Consistency --- 151
 6.2.2 Visibility & Juxtaposability --- 153
 6.2.3 Premature Commitment --- 154
 6.2.4 Hidden Dependencies --- 154
 6.2.5 Error Proneness --- 157
 6.2.6 Abstraction --- 158
 6.2.7 Secondary Notation -- 160
 6.2.8 Closeness of mapping --- 160
 6.2.9 Diffuseness -- 161
 6.2.10 Hard mental operations --- 161
 6.3 Early Evaluation with Experienced Tool Developers --------------------- 162
 6.3.1 Evaluation Environment -- 163
 6.3.2 Brief Evaluation Process --- 166
 6.3.3 Informal Evaluation Results --- 166
 6.3.4 Improvements from the second evaluation ------------------------------- 167
 6.4 Large Formal Evaluation -- 167
 6.4.1 Participant recruitment --- 168
 6.4.2 Evaluation Approach -- 170
 6.4.3 Brief Evaluation Schedule -- 171
 6.4.4 Data Analysis --- 173
 6.4.5 Improvements from the formal evaluation -------------------------------- 177
 6.5 Summary -- 177

CHAPTER 7 – CONCLUSION --- 178
 7.1 Research Output --- 178
 7.2 Future Work --- 180
 7.3 Conclusion --- 183

REFERENCES --- 185
APPENDIX --- 208

 VII

LIST OF FIGURES

Figure 1.1 Part of a BPMN specification of the Enrolment System --------------- 5
Figure 1.2 Using Lean Cuisine to Present Style example --------------------------- 7

Figure 2.1 Enterprise Level Business Process Modelling Framework Overview 15
Figure 2.2 ER Diagram Example --- 17
Figure 2.3 Entity-Relationship Modeler Usage Example --------------------------- 19
Figure 2.4 Data Flow Diagram Example for a Book Order System --------------- 21
Figure 2.5 JUDE Data Flow Diagram Tool --- 22
Figure 2.6 BPMN Example Diagram -- 25
Figure 2.7 WebSphere Business Modeler --- 26
Figure 2.8 Activity Diagram to Model Process Order ------------------------------- 30
Figure 2.9 Eriksson Penker Business Extension Structure -------------------------- 31
Figure 2.10 Sell Books Process using Eriksson Penker Approach ---------------- 32
Figure 2.11 ArgoUML Software Tool --- 33
Figure 2.12 Major Components of Aspect Oriented Modeling -------------------- 34
Figure 2.13 AspectM Notations and XML forms ------------------------------------ 36
Figure 2.14 Athene for Aspect Oriented Modeling ---------------------------------- 37
Figure 2.15 Form Chart Notation Example --- 39
Figure 2.16 Mapping between BPEL and WSDL ------------------------------------ 42

Figure 3.0 The EML meta-model -- 53
Figure 3.1 EML Service / sub-Service --- 54
Figure 3.2 EML Operation -- 60
Figure 3.3 Example EML Tree Structure --- 64
Figure 3.4 (a): Extended Customer Service; ---
 (b): Collapsed Customer Service 67

Figure 3.5 (a): Define a Reusable Service; ---
 (b): Use Reusable sub-Service in Hotel Service 69

Figure 3.6 (a): Process Start without Conditions; ------------------------------------ 71

 VIII

 (b) Process Start with Conditions
Figure 3.7 Process End Notation --- 73
Figure 3.8 (a): A Process Flow with Sequence ID and Data; ----------------------
 (b): A Default Process Flow 75

Figure 3.9 Travel Booking Process Overlay -- 78
Figure 3.10 (a): Failure Handling Notations in Operations; ------------------------
 (b): Failure Handling Notation in Service 82

Figure 3.11 (a): An Exception Flow with sequence ID and Data; ----------------
 (b): A Default Exception Flow 84

Figure 3.12 Hotel Room Booking Exception Handler Overlay -------------------- 86
Figure 3.13 (a): ATrigger Flow with sequence ID and Data; ----------------------
 (b): A Default Trigger Flow 89

Figure 3.14 Make Payment Process with Triggers ----------------------------------- 91
Figure 3.15 (a): Loop in Process Overlay with Single Activity;
 (b): Loop in Trigger Overlay with Two Operations; ------------------
 ©: Loop in Exception Handler Overlay with Three Operations

93

Figure 3.16 Conditions in Process Overlay --- 96

Figure 4.1 The initial exploration of EML using Pounamu ------------------------- 100
Figure 4.2 Construction of the EML metamodel in Pounamu ---------------------- 101
Figure 4.3 Construction of the EML shapes in Pounamu --------------------------- 102
Figure 4.4 Construction of the EML connectors in Pounamu ---------------------- 102
Figure 4.5 Construction of the EML view types in Pounamu ---------------------- 103
Figure 4.6 Construction of the EML event handlers in Pounamu ------------------ 104
Figure 4.7 Tool construction steps using Marama meta-tools ---------------------- 106
Figure 4.8 Creating the EML tool using Marama ------------------------------------ 108
Figure 4.9 Defining EML metamodel in Marama ----------------------------------- 109
Figure 4.10 Defining shapes in Marama -- 111
Figure 4.11 Defining the view type in Marama -------------------------------------- 112
Figure 4.2 The Tree layout in Marama_EML -- 115
Figure 4.3 Process overlays in EML --- 117
Figure 4.4 Zooming commands and zoom view ------------------------------------- 119
Figure 4.55 Selection zoom --- 120
Figure 4.16 Fisheye view of a Diagram in MaramaEML --------------------------- 122
Figure 4.17 EML Integrated Tool Framework --------------------------------------- 123
Figure 4.18 Consistency Mapping Between a BPMN view and a Form Chart
View -- 124

Figure 5.1 University Enrollment System Overall Structure ----------------------- 131
Figure 5.2 Using EML Overlays to Model the Enroll in a Course Process ------- 134
Figure 5.3 BPMN View – Enroll a Course -- 138
Figure 5.4 Using EML and BPMN views to model the same process ------------ 139
Figure 5.5 BPEL Generation and LTSA Code Validation -------------------------- 141

 IX

Figure 5.6 Zoomable View in MaramaEML -- 142
Figure 5.7 Fisheye View in MaramaEML -- 143
Figure 5.8 BPEL Deployment -- 145
Figure 5.9 Hot-deployment of a BPEL process in Apache ODE ------------------ 146
Figure 5.10 Testing process WSDL interface using the Eclipse Web Services
Explorer -- 147

Figure 6.1 Selected EML Notation Examples (before CD) ------------------------- 152
Figure 6.2 Improved Flow Notations (after CD) ------------------------------------- 153
Figure 6.3 Service View Diagram in Early Version of EML ----------------------- 155
Figure 6.4 Property Sheet Example for Travel Planner Service ------------------- 156
Figure 6.5 Service Integration View in Early Version of EML -------------------- 158
Figure 6.6 Form Based Service View in Early version of EML ------------------- 159
Figure 6.7 Tree Layout for the overall Structure ------------------------------------- 159
Figure 6.8 Exception View in Early version of EML ------------------------------- 162
Figure 6.9 A process Overlay on EML Tree in MaramaEML 1.0 ----------------- 163
Figure 6.10 A BPMN Diagram in MaramaEML 1.0 --------------------------------
Figure 6.11 Form Chart Diagram in MaramaEML 1.0 ------------------------------

164
165

Figure 6.12 BPEL Code Generation in MaramaEML 1.0 -------------------------- 166
Figure 6.13 User Performance Diagram --- 175
Figure 6.14 General Quality Feedback Diagram ------------------------------------- 176
Figure 6.15 EML and MaramaEML Usability Rate Summary --------------------- 176

Figure 7.1 MaramaMTE Architecture View -- 182
Figure 7.2 Web Service Composition in ViTABaL-WS ---------------------------- 183

 X

LIST OF TABLES

Table 2.1 Selected of Other Modeling Notations -------------------------------------- 40
Table 2.2 Comparison of Process Modeling Techniques ----------------------------- 47

Table 3.1 Different Service Status --- 57
Table 3.2 Different Operation Status -- 60

Table 6.1 Participants’ IT Background Distribution ---------------------------------- 173
Table 6.2 Participants’ BPM Background Distribution ------------------------------- 173

 1

Chapter 1

INTRODUCTION

There is no doubt that business process plays a very important role in running a

business. A healthy business process is the foundation of the success of an

organization. The realization of all strategic objectives has to rely on business

processes to achieve. Based on the result of a recent CIO survey (Information Week

2009), “streamline or optimize business processes” is the top business priority of

executives. In order to achieve process excellence, people carry out various process

improvement initiatives, such as business process reengineering (BPR) and business

process management (BPM), which have become the fashionable terms nowadays

(Hill and Brinck et al 1994; Jin 2003).

BPM has been defined as “a structured, coherent and consistent way of understanding,

documenting, modeling, analyzing, simulating, executing and continuously changing

end-to-end business processes and all involved resources in light of their contribution

to business success.” (Recker 2008) BPM covers the overall management of

organizations by looking at the lifecycle of their business processes. It is essentially a

consolidated selection of tools and methods from earlier practices such as Business

Process Modeling, Process Re-Engineering, Process Innovation, Process Management

and Process Integration (Box and Cabrera et al 2006; Kramer and Herrmann 2007).

No matter which process improvement initiative people want to conduct, they have to

understand the business processes and perform necessary analyses to design or

redesign the processes. Business process modeling enables a common understanding

and analysis of a business process, while computer simulation is an effective

technology to diagnose business processes, especially when complexity and scope

become issues. Often, as existing processes are modeled and simulated, complex

relationships and behaviors are exposed and evaluated (Jung and Cho 2005; Grundy

and Hosking et al 2006). Over recent decades, business process modeling has

emerged as a popular management approach in Information Technology (IT) and

 2

Business Process Management practice. Both recent and earlier studies support this

statement. Business process modeling has over the last three years continuously been

identified as a top business priority and building business process capability continues

to be a major challenge for senior executives in the coming years. The increasing

global competition and publicized cases of outsourcing and off-shoring have

stimulated demand for business process management and enticed organizations to

increase their engagement in BPM initiatives. A study on the current state of business

process modeling has found that 58% of their 348 respondents’ organizations spent up

to US$500,000 on process modeling in 2005. Roughly 15% of the surveyed

organizations spent between US$500,000 and US$1,000,000 in 2007, and 19% spent

between US$1,000,000 and US$5,000,000. Moreover, 53% of respondents indicated

that their organizations would be increasing process modeling and management

efforts in 2009 (Recker 2008; Recker and Rosemann 2010).

The strengthened interest in business process modeling has triggered substantial

academic and commercial work aiming towards advanced business process

management solutions. Yet, while organizations appear to be well aware of the need

for business process modeling efforts, implementation remains a challenging task.

Indeed, a recent study found that many organizations still struggle with an efficient

modeling approach to discovering, visualizing and documenting their business

processes (Recker and Rosemann 2009; Liu and Grundy et al 2007).

In Section 1.1, we discuss the main motivation of this research. Section 1.2 introduces

the research targets. The structure of the whole thesis is described in Section 1.3. A

list of publications is reviewed at the end of this chapter.

1.1 Motivation

Business process modelling as a way of graphically articulating at least the activities,

events/states, and control flow logic that constitute a business process is seen by many

as a promising solution to the challenge of process discovery and documentation.

Correspondingly, process modelling has over the years risen in attractiveness and is

by now a popular conceptual modelling approach. Process models are created using

process modelling grammars, which specify the syntax and semantics of the graphical

 3

elements in a process model and the rules of how to combine the elements. Due to a

strengthened interest in a more disciplined approach towards Business Process

Management, many organizations have been motivated to make significant

investments in process modelling initiatives. This, in turn, has triggered substantial

related research, especially on those visual modelling approaches that are used for

process modelling. In fact, the ongoing and strengthened interest in modelling for

Business Process Management has over time given rise to a wide range of visual

modelling methods, and consequently, a competitive market is providing a large

selection of visual products for process modelling.

Examples include Entity-Relationship models (Chen. 2002), Data Flow Diagrams,

Flow Charts (Urbas and Nekarsova et al 2005), Scenarios, Use Cases, and Integration

Definition for Functional and workflow Modeling (Eriksson and Penker 2000). Many

types of workflow management systems have been developed to model and

implement enterprise business processes (Pinci and Shapiro 1993; Paussto 2005;

Leymann 2001). Their goal is to specify, enact and evolve business processes using a

high-level visual modeling approach. Using workflow approaches, business processes

are typically modeled as stages, tasks and links. These models are used to control the

execution of software components that comprise an enterprise system. Process

technology can also be used to model processes executed within systems e.g. in

Enterprise Resource Planning (ERP) systems. More recently, a young but rapidly

growing research field, aspect-oriented modeling (AOM) (Barra and Génova et al

2004), has been recognized as a valuable approach for dealing with crosscutting

concerns at early stages of software development (Gokhale and Gray 2005). This

approach is used to analyze a complex system from multiple viewpoints to identify

highly abstract components. Most existing Enterprise visual modeling languages

adopt box-and-line style of diagrams. These generally work well for small to medium

diagrams.

Nevertheless, despite the ongoing proliferation of process modeling languages, only a

few have been widely accepted by practitioner communities. Existing research has

shown that visual process modeling methods differ significantly in their features and

characteristics, such as, for instance, their representational capabilities, their support

for expressing workflow patterns or their support for formal analysis of correctness

 4

criteria (Engels and Erwig 2005; Gamma and Helm et al 1995). Actual practice, on

the other hand, informs us that certain process modeling languages have achieved

higher levels of adoption and dissemination in visual modeling practice than others. In

fact, some available visual modeling languages exist as objects of interest only to

academic scholars (Gottfried and Burnett 1997; Grundy and Hosking et al 2006).

We were asked to model a large university enrolment system as part of a process

improvement exercise (Li and Hosking et al 2007). This is a complex enterprise

system that involves dynamic collaborations among five distinguished parties:

Student, Enrolment Office, Department, Finance Office and StudyLink (the New

Zealand government’s student loan agency).

The main functional requirements are:

(1) Students will use this system to search the course database and apply for

enrolment in target courses; if their application is approved, they need to apply

for a loan from StudyLink;

(2) After receiving student applications, the Enrolment Office checks the

academic conditions with academic Department staff and then informs

Students of the results;

(3) Department staff check the course enrollment conditions and make the final

decision (approve or reject);

(4) For an approved enrolment application, the Finance Office tracks fee payment

and informs the Enrolment Office and Department of any changes. If a Student

applies for a loan, the Finance Office also needs to confirm the student

information with StudyLink.

(5) StudyLink investigates the student information with the university and then

approves (or declines) the loan application.

A conventional Business Process Modelling Notation (BPMN) diagram capturing

some of this enrolment process is shown in Figure 1.1. This illustrates the use of

process stages, “swim lanes”, process flow, etc. when modelling a process.

Unfortunately as the process definition grows, the user must create either massively

complex and unwieldy diagrams or “drill down” into sub-stages, introducing hidden

dependencies and complex navigation (Baker 2002; Recker and Rosemann et al 2009).

 5

 Figure 1.1: Part of a BPMN specification of the Enrolment System
(Li and Hosking et al 2007)

What we require is an enterprise modelling tool that includes a visual language that:

a) can efficiently model distributed complex systems and related collaborations

b) can present multi-level abstraction to assist different process specifications

c) is easy to understand by both business and technology participators

d) addresses the problem of modelling over-complex diagrams among

distributed parties

e) can be integrated effectively with other modelling technologies

f) supports automatic generation from visual models to industry standard code

e.g. BPEL scripts

The corresponding question of the success of process modeling languages has raised

high interest from us. We have conducted studies to investigate the strengths and

weaknesses of specific process modeling languages (a more detailed review can be

found in Chapter 2). We have evaluated various visual modelling languages and

support tools to model such a system. We found that most existing modelling

languages and tools only solve limited design issues. General purpose modelling

languages like UML (Schnieders and Puhlmann 2005) and Petri Nets (Marshall 2004)

have a well-established set of modelling notations and constructs. Though they are

sufficiently expressive to model business scenarios, they are difficult for a business

user to learn and use (fails items c and e above). Domain specific languages like Web

Transition Diagrams (WTD) and T-Web systems (Kornkamol and Tetsuya et al 2003)

are very easy to understand but are limited to the scope of service level composition

and modelling. They are not efficient in presenting multi-level abstractions of

 6

business processes (fail item b). Business oriented frameworks like ARIS (Goel 2006)

and TOVE (Buschmann and Rohnert 1996) are based on a generic and reusable

enterprise data model technology. They also provide a holistic view of process design,

but focus too much on technical processes and efficient software implementations.

Hence, they can result in ambiguity of the models as extra programming knowledge is

required (fails items a, c, d). Some efficient modelling languages like BPMN (BPMI

2010), BioOpera (Pautasso and Alonso 2005), Form Chart (Draheim and Weber 2005)

and ZenFlow (Martinez and Patino 2005) use simple notations to represent processes

and also provide support tools to automatically generate industry standard code like

BPML and BPEL4WS (BPMI 2006). They all use workflow-based box and line

methods to describe the system. Severe cobweb and labyrinth problems appear

quickly using this type of notations to model the enrolment system (Recker and

Rosemann et al 2007). Multi-view tool support has been applied in many such

systems to mitigate this problem but this increases hidden dependencies and requires

long term memory to retain the mental mappings between views (fails item d).

On the other hand, there are a lot of commercial tools available for business process

modelling and simulation, however, despite the increasingly enhanced functionalities,

there are still some obstacles in widely using these tools (Ali 2007; Baeyens 2007).

The common issue is the conflict between usability and flexibility. Typically, the

more flexible functionalities a tool intends to provide, the more difficult to use the

tool will be (Anderson and Apperley 1990; Baker 2002).

Our earlier work (Anderson and Apperley 1990; Phillips 1995; Li and Hosking et al

2004) on modelling complex user interfaces (by Lean Cuisine+) and their behaviour

with visual dialogue notations demonstrated that a tree-based overlay structure can

effectively mitigate these complexity problems. Lean Cuisine+ (Phillips 1994; Li and

Hosking et al 2004) is a graphical notation based on the use of tree diagrams to

describe systems of menus. A menu is viewed as a set of selectable representations

(called menemes) of objects, actions, states, parameters and so on, which may be

logically related or constrained. It has the overlay structure for specifying the

underlying behaviour of event-based direct manipulation interfaces (Phillips, 1994).

Figure 1.2 shows the Lean Cuisine diagram used to describe the Style menu interface.

 7

Figure 1.2: Using Lean Cuisine to Present Style example

(Anderson and Apperley 1990)

Lean Cuisine+ offers a clear, concise, and compact graphical notation for describing

asynchronous aspects of menu-based dialogues, but was developed explicitly for

graphical user interface dialogue description. It does not have any support for business

process modeling. However, the tree-overlay concept is promising to use in the

modeling area. They are familiar abstractions to manage complex hierarchical data for

business modellers and business people; can be easily collapsed and expanded for

scalability; can be rapidly navigated; and can be over-laid by cross-cutting flows and

concern representations.

Hence, the above gap motivates us to develop a novel business process modelling

language and its support environment. This language adopts the tree overlay approach

(from our early research in graphical user interface modelling) to mitigate the

common complexity issue and cobweb/ labyrinth problems in current business

modelling notations. We also aim to develop a software tool to integrate this new

language with some existing notations to provide richer support for the business

process modelling users.

1.2 Research Targets

 8

Base on the requirements from the above real process modeling exercise and the

motivation, the following research targets have been defined:

• Design of a novel modeling language (EML)

We wanted to develop a new modeling language using the tree-overlay

structure to address the cobweb issues in current flow chart based modeling

languages, and help to reduce the common complexity problem in the BPM

domain. The language supports both organizational and process level views

for the system. It should be simple and easy to understand for both business

and technical users.

• Development of a software prototype for the modeling language

(MaramaEML)

We developed a software tool toprovide the modeling capability using EML.

The tool should havethe ability to integrate other modeling languages. It

should allow automatic code generation of standard execution languages from

visual models. It should be efficient to use for both business and technical

users. The software tool also provides some extra visualization support for

over-complexity of diagrams as a complementarity for EML.

• Integration of MaramaEML with other Eclipse-based tools

Eclipse is a multi-language software development environment comprising an

integrated development environment (IDE) and an extensible plug-in system.

It is written primarily in Java and can be used to develop applications in Java

and, by means of various plug-ins, other languages. It is a well used open

source development platform. We want our environment to have the ability to

integrate with other Eclipse-based tools.

• Evaluation of EML and MaramaEML with end users

In order to increase the usability and functionality of the visual notation

(EML) and its support tool (MaramaEML), we wanted to evaluate them with

end users and use the direct feedback to refine our design and development.

We carried out more than one evaluation during the whole development cycle.

 9

1.3 Thesis Structure

Having set our motivation and targets of this research, this thesis describes the

research in seven chapters. Following this introductory chapter, the remaining

chapters are organized as follows:

Chapter 2: reviews visual modeling approaches with a focus on graphical notations.

A broad range of modeling approaches, their visual notations and support

environments are described in this chapter. The chapter ends with a comparison of

these technologies and a summary of our main findings.

Chapter 3: introduces the detailed design of the Enterprise Modelling Language

(EML), describing the visual representations of service tree structure, process overlay

and exception handler; as well as some more advanced constructs such as dependency

/ trigger, iteration and condition. A case study is introduced at this point (Travel

Planner System). This example is used throughout the chapter to illustrate features of

the EML notation.

Chapter 4: describes the implementation of the MaramaEML (EML’s software tool).

The prototype was initially implemented using the Pounamu metatool (Zhu and

Grundy et al, 2007), and then migrated to the Eclipse-based Marama (Grundy and

Hosking et al, 2006) framework, and finally redeveloped using the Marama meta-

tools (Li and Hosking et al 2009). MaramaEML evolves with its meta-modelling

framework, and has gone through a set of improvements during the development

cycles.

Chapter 5: presents a comprehensive case study. We use a complicated example

(University Enrollment System) to demonstrate the main modeling capabilities of

EML and its various support functionalities.

Chapter 6: discusses three different evaluations of EML and MaramaEML. We

carried out different types of evaluations during the language and software

 10

development life cycle to refine the work. The feedback analysis and improvement

discussions are also described in this chapter.

Chapter 7: concludes the thesis. Proposals for future enhancements and extensions

are also considered in this chapter.

1.4 Publications

While pursuing the research described in this thesis until the end of July 2010, the

following refereed papers (not counting in papers in development or under review)

have been published in conference proceedings.

• Li, K.N.L., Hosking, J.G., Grundy, J.C., Li, L. (2009): 'Visualising Event-
based Information Models: Issues and Experiences', Visual Analytics in
Software Engineering, Workshop at 2009 IEEE/ACM Automated Software
Engineering Conference, Proceedings of Visual Analytics in Software
Engineering, Auckland, New Zealand, 16 Nov, 2009

• Li L., Hosking J.G., and Grundy J.C (2008): MaramaEML: An Integrated
Multi-View Business Process Modelling Environment with Tree-Overlays,
Zoomable Interfaces and Code Generation, In Proceedings of the 23th
IEEE/ACM International Conference on Automatic Software Engineering
(ASE 08), L'Aquila, Italy (Best Software Demo Award)

• Li L., Hosking J.G., and Grundy J.C (2007): Visual Modelling of Complex

Business Processes with Trees, Overlays and Distortion-Based Displays, In
Proceedings of the 2007 IEEE Conference on Visual Languages/Human-
Centric Computing (VL HCC 07), Coeur d'Alène, Idaho, U.S.A

• Li L., Hosking J.G, and Grundy J.C (2007): EML: A Tree Overlay-based

Visual Language for Business Process Modeling, Proceeding of 9th
International Conference on Enterprise Information Systems (ICEIS 2007),
13~19, Funchal, Madeira, Portugal

• Grundy, J.C., Hosking, J.G., Li, L and Liu, N (2006): Performance

Engineering of Service Compositions, Proceeding of the 2006 International
Conference of Software Engineering Workshop on Service Oriented Software
Engineering (ICSE-SOSE 06), p26 ~ p32, Shanghai, China

 11

This research has won a significant award in 2008 at the IEEE/ACM International

Conference on Automated Software Engineering, held in Italy. It is one of the top

conferences in the field of Software Engineering with over 200 attendees from all

over the world. The research won the ITI Tech-media Best Software Tool Demo

Award for the demonstration "likely to have the most impact on industrial practice".

The two papers published in 2007 have been nominated for the “Best Research

Papers” award at the Department of Computer Science, the University of Auckland.

 12

Chapter 2

LITERATURE REVIEW

Since the early 1970s many languages, standards, methodologies and software tools for

process modeling have been created. Most attention has been paid to the role business

process modeling plays in the enterprise domain. (Li and Grundy et al 2007) The main

purposes of these process modeling technologies are: enhancing the communication

between stakeholders; analyzing the business requirements for future reference;

generating input for enterprise design processes and helping the domain users to

understand a real enterprise level world using graphical representations (Chappell 2007;

Baeyens 2007).

A vast number of visual technologies have been applied in the business process

modelling domain to capture graphical representations of the major processes, flows and

data stores. Examples include Entity-Relationship models (Chen 2002), Data Flow

Diagrams (Spönemann and Hauke et al 2009), Aspect-oriented Modelling (Gokhale and

Gray 2005), Flowchart Models (Tang and Chen et al 2004), Form Chart Approaches

(Draheim and Webber 2005), Scenarios (Drumea and Popescu 2004), Use Cases (Thone

and Depke et al 2002), Constraint Based Languages (Vlissides and Linton 1989) and

Integration Definition for Functional and Workflow Modelling (Workflow Management

Coalition 1999). Despite their different visual approaches, most of these modelling

technologies and their notations rely on the use of process flow or “workflow” structure

to describe the business processes. In a “workflow” structure, the processes are modelled

as stages, tasks and links to represent the operational aspects (Barrett and Clarke et al

1996). They focus on how systems are structured, who and how perform business tasks,

what the process ordering is, how to manage information transformation, how to track the

tasks, etc (Baker 2002).

 13

Software tools help the designers to model business processes. Integrated development

environments have become more and more important in the business process modeling

domain. Most of the popular visual modeling languages have their own comprehensive

integrated development environments. Most of these tools help business process

designers reduce the amount of code that they need to produce when creating a business

process diagram, and by using these tools, third party integration can be created more

quickly. Software tools can also help to achieve a consistent look and feel, when different

process modelers use the same process modeling tool to design their different enterprise

architectures (Myers 1995a; Bederson and Meyer et al 2000).

In this chapter, we review some essential business process modeling technologies, with a

focus on graphical modeling languages and their support environments. Section 2.1

presents an overview of the process modeling background. A selected range of today’s

enterprise level business process modeling approaches (ER Models, Data Flow Modeling,

Aspect Oriented Modeling, Form Chart Approach, Integrated Modeling and Other

Domain Specific Approaches), the corresponding visual languages (BPMN, UML, ER

Diagram, FormChart, DataFlow Diagram, AspectM and Other Domain Specific

Notations) and their support software tools are reviewed from Section 2.2 to 2.8. The

business execution language will be discussed in Section 2.9. This chapter ends with a

comparison of these technologies and a summary of our main findings.

2.1 Business Process Modelling

Business process modelling (BPM) originally came from the manufacturing industry as a

means of analysing workflows and activities in order to improve product quality and

performance (Baker 2002; Ben-Shaul 1994). Today, the advancements of business

process modelling have also been extended to other enterprise areas. It is a domain

integrating the principles of business processes and process modelling. A business

process is a collection of related, structured activities or tasks that provide one or more

services for a particular or group of stakeholders. A business process can be decomposed

into several sub-processes, which have their own attributes, and are performed in order to

 14

achieve the goals of the main process. Process modelling is a method to increase the

awareness and knowledge of business processes and to deconstruct the complexity of an

enterprise. It is a visual approach to describe how businesses organize and perform their

work (Eriksson 2000; Benatallah and Dumas et al 2003). On an enterprise level, business

process modelling can be used to define information and workflows for a whole

organisation and thus provide a platform for enterprise-wide management of data and

processes. It integrates typical business practices, processes and information flows, data

stores and system functions (IBM 2010; Berndtsson and Mellin et al 1999).

Our study shows that successful business process models in general serve two main

purposes well (business and technical). On the business side, the models can be used for

different levels of organizational activities. Examples include refining the scope of the

project, business requirements analysis, adapting best business practices, risk

management, enterprise system design, end user training, supply chain management,

knowledge management and business simulation (Box and Cabrera et al 2006; BPMI

2010). On the technical side, the models can also be integrated into wider domains.

Examples include groupware collaboration, process automation, software engineering,

data and system integration, and transaction management (Chakravarthy and

Krishnaprasad et al 1994; Chappell 2007). Most of these integrations and collaboration

work rely on the conversions between graphical models and textual execution

specifications.

From a detailed level, each business process is a collection of activities designed to

produce a specific output for a particular stakeholder or business group. It implies a

strong emphasis on how and what work has been done within the enterprise. A process is

a specific ordering of work activities across time and place, with beginning, end, and

clearly defined inputs and outputs (ebPML 2002; Buchmann and Bornhövd et al 2004).

From a conceptual level, a typical business process includes at least some activities,

events, states, control and data flow logic. Based on those, the user also can add extra

information regarding the enterprise level resources, external stakeholders, performance

 15

metrics, communication plans etc. The foundation of business process modeling is made

up of four core parts: visual modeling methodologies; visual modeling notations;

software tools (visual editors); and textual description languages. Figure 2.1 depicts an

overview of the enterprise level business process modeling framework.

Enterprise Level
Business Process
Modeling

…

Activities

Events
Control Logic

…

Data Integration
Stakeholders
Conditions

Visual Modelling
Methodologies

Visual Notations

Software Tools Textual Languages

--Entity Relationship
--Data Flow
--Flow Chart
--Aspect Oriented
--Etc.

--BPEL
--WS-CDL
--BPQL
-- Etc.

BPMN --
EML --
UML --

BioOpera --
Etc. -- Enterprise)Level)

Business)Process)
Modeling)

WebSphere --
MaramaEML --

Google WAVE --
JOpera --

Etc. --

Figure 2.1: Enterprise Level Business Process Modelling Framework Overview

 16

2.2 Entity-Relationship (ER) Method and ER Diagram

ER modelling technology (Chen 2002; Hartmann and Sebastian et al 2009; Cohen 2006)

describes structures of databases on a conceptual level. It is a way to graphically

representing the logical relationships of entities (or objects) in order to create a database

structure. The ER modeling technique can also be used to describe business processes

(i.e. an overview and classifications of individual processes and their relationships).

In ER modeling, the structure for a database is portrayed as a diagram, called an entity-

relationship diagram (or ER diagram). It uses a graphical approach to breakdown a

system into its grammatical parts. Entities are rendered as points, polygons, circles, or

ovals. Relationships are portrayed as lines connecting the points, polygons, circles, or

ovals. Any ER diagram has an equivalent relational table, and any relational table has an

equivalent ER diagram. ER diagramming is an invaluable aid to engineers in the design,

optimization, and debugging of database programs (Chen 2002; Cox and Smedley et al

1997; Dewan and Choudhary 1991).

In the business process domain, entities are the equivalent of business nouns, such as

employees, departments, products, or networks. An entity can be defined by means of its

properties, called attributes. Relationships are the equivalent of verbs or associations,

such as the act of purchasing, the act of repairing, being a member of a group, or being a

supervisor of a department (IBM 2010; Conway and Audia et al 2000). A relationship

can be defined according to the number of entities associated with it, known as the degree

(BPMI 2009; Costagliola and Deufemia et al 2002).

 17

Figure 2.2: ER Diagram Example (Thalheim 2009)

Figure 2.2 is an ER diagram example of an enterprise structure and constraints (including

departments, projects, and staff). In this example, a department has administrative and

technical staff. The technical staff can only be allocated to projects and those projects are

always organized into phases. Phases can have other phases as pre-requisites and can also

be pre-requisite for other phases. The information about the staff’s dependents should

also be stored, and only one single department is associated to a staff member. The

technical staff can work in more than one project; however non-researchers, who are all

technical staff, can participate in only one single project at a time.

The ER approach also covers data modeling quite well. In the example shown in Figure

2.2, the departments have department-id, name, and location. The staffs have id, name,

address, telephone-numbers and date-of-birth. All the projects cover project-id, start-date,

aims and its phases. For researchers, their list of publications and qualifications are

modeled in the diagram, and for technical staff, their qualifications are represented.

 18

There are three main components in an ER diagram:

• Entity - a person, object, place or event for which data is collected. The entity is

represented by a rectangle and labeled with a singular noun. In the example

shown in Figure 2.2, if we consider the information system for the whole

organization, entities would include not only Departments, but also Project and

Staff and so on.

• Relationship - an interaction between entities. A relationship may be represented

by a diamond shape, or more simply, by the line connecting the entities. In either

case, verbs are used to label the relationships. In the example above, the

department runs a project, so the word "runs" defines the relationship between a

department and the project(s) they run.

• Constraint - the data collected about the entities. The three main constraints are:

one-to-one, expressed as 1:1; one-to-many, expressed as 1:M; and many-to-many,

expressed as M:N.

The Entity-Relationship (ER) Modeler (Embarcadero 2010; Coupaye and Roncancio et al

1999) is a modeling tool for ER diagrams. It allows the user to create, explore, detail, and

modify diagrams of the relationships and objects of a system. Changes made to an ER

diagram can be automatically mapped to other associated diagrams. Manipulating the

resulting diagrams will alter the relationships and objects of other corresponding

diagrams. If the business uses databases, a diagram can be extracted from an existing

database, and its schema objects can quickly draw for modification by the ER Diagram

Generator. This tool helps to reduce the development time and improve the understanding

of relationships of a process.

 19

Figure 2.3: Entity-Relationship Modeler Usage Example (Embarcadero 2010)

Figure 2.3 provides a usage example of the Entity Relationship Modeler software. The

model node browser at the left side presents all objects within a diagram in a tree

containing all relationships, tables, views and notes. The tree can be expanded or

collapsed to display more detailed information such as Indexes and Constraints. The

sheet view (in the middle) shows the diagram contents in independent views for manual

or automatic layout. This is the drawing area of the ER Diagram. Objects can display on

more than one sheet at a time. Object properties pane (at the bottom) displays, in non-

editable form, the properties of the selected object(s). The overview window (at right

side) presents a bird’s eye view of the current sheet, allowing fast navigation with a

draggable and resizeable zoom rectangle. The rectangle indicates what portion of the

diagram is currently being viewed.

 20

2.3 Data Flow Method and Data Flow Diagrams

A data flow diagram (DFD) is a graphical representation of the "flow" of data through an

enterprise organization (Gatziu and Dittrich 1993; Spönemann and Hauke et al 2009;

Chakravarthy and Krishnaprasad et al 1994). It can also be used for visualization of

processes. On a DFD, data items flow from an external data source or an internal data

store to an internal data store or an external data sink, via an internal process.

In the business process domain, data flow diagrams are used to describe how the system

transforms information. They define how information is processed and stored and

identify how the information flows through the processes. We can use them to model the

relationships among the business processes within an organization to external systems,

external organizations, customers and other business processes (Grosse and Yves et al

2009; Recker 2010b; IBM 2010).

Figure 2.4 shows a data flow modeling example for a book order system. A typical data

flow diagram has four main components:

• Process - the manipulation or work that transforms data, performing

computations, making decisions (logic flow), or directing data flows based on

business rules. A process receives input and generates some output. Process

names (simple verbs and dataflow names, such as “Receive Order” or “Collect

Payment” in the example shown in Figure 2.4) usually describe the

transformation, which can be performed by people or machines. Processes can be

drawn as circles or a segmented rectangle on a DFD, and include a process name

and process number.

• Store - where a process stores data between processes for later retrieval by that

same process or another one. Files and tables are considered data stores. Data

store names (plural) are simple but meaningful, such as “Customers,” “Orders,”

and “Invoices” as shown in Figure 2.4. Data stores are usually drawn as an

 21

ellipse, rectangle or magnetic disk and labeled by the name of the data storage

area it represents, though different notations do exist.

Figure 2.4 Data Flow Diagram Example for a Book Order System

(Moreira and Twan et al 2010)

• Flow - the movement of data between entities, processes, and data stores. The

flow portrays the interface between the components of the data flow diagram. The

flow of data in a diagram is named to reflect the nature of the data used and these

names should also be unique within a specific diagram (e.g. “billing information”

or “customer names” in Figure 2.4). Data flow link is represented by an arrow,

where the arrow is annotated with the data name.

• Terminator - the source or destination of data. The source in a diagram

represents these entities that are outside the context of the system. They either

provide data to the system (referred to as a source) or receive data from it

(referred to as a sink). They are often represented as rectangles (a diagonal line

 22

across the right-hand corner means that this terminator is represented somewhere

else in diagram). Terminators are also referred to as agents, entity, or source/sink.

Figure 2.5 provides a screenshot of the JUDE Data Flow Diagram tool in use (JUDE

2010). The right side of the figure shows the main working area of this tool. Users can

create their model using data flow diagram components. At the left side of the screen, a

tree browser is shown. It allows the user to have an overview and navigate through a

project. All elements of the system are visible and accessible through the browser .A

double-click on the desired element (diagram name) brings up the appropriate drawing on

the screen.

Figure 2.5: JUDE Data Flow Diagram Tool (JUDE 2010)

The user can use this tool to create data flow diagrams, which includes common DFD

components e.g. external entity, process box, data store, data flow etc. We also can export

 23

the hierarchical DFD data to Excel. The tool is based on a combination of the traditional

data flow diagram and control flow diagram notations. It enables graphical representation

of hierarchical and parallel flows and the event-driven transitions between them.

The data flow diagram (approach) focuses on only one view of a system — the function-

oriented view. If we are modeling a system in which data relationships are more

important than functions, an entity-relationship diagram approach will work better.

Alternatively, if the time-dependent behavior of the system dominates all other issues,

then a state transition diagram (approach) will be better.

2.4 Workflow Method and BPMN

Workflow modelling (Workflow Management Coalition 1999; Zapletal and Wil et al

2009; Tang and Chen et al 2004; Felfernig and Friedrich et al 2003) is concerned with the

automation of procedures where documents, information or tasks are passed between

participants according to a defined set of rules to achieve, or contribute to, an overall

business goal. Workflow based business process modelling is concerned with the

assessment, analysis, modelling, definition and subsequent operational implementation of

the core business processes of an organisation (or other business entity). Although not all

business process related activities result in workflow implementations, workflow

technology is often an appropriate solution as it provides separation of the business

procedure logic and its IT operational support, enabling subsequent changes to be

incorporated into the procedural rules defining the business process. Conversely, not all

workflow implementations necessarily form part of a business process exercise, such as

implementations to automate an existing business procedure.

BPMN (BPMI 2010; OMG 2009; Recker 2010) is a recently proposed workflow based

process modeling language, the development of which has been based on the revision of

other grammars including UML (Peltonen 2000), IDEF (Shin and Chankwon et al 2005),

ebXML (Bex and Wouter et al 2010), RosettaNet (Dogac and Yusuf et al 2002), LOVeM

(Gamma and Helm et al 1995) and EPCs (Dehnert 2003). The development of BPMN

 24

stemmed from a general demand for more standardization in the area of business process

management and sought to satisfy the demands related to the graphical description of

business processes.

BPMN was originally incepted as a graphical grammar to complement the BPEL (IBM

2009) standard. This is the primary reason the BPMN specification contains details about

the mapping capabilities between BPMN and BPEL. Due to the proposed mapping

capabilities of BPMN to BPEL, the grammar has a technical focus. However, it has been

the intention of the BPMN designers to develop a modelling grammar that can be applied

for typical business modelling activities as well. This is why the specification document

differentiates the BPMN constructs into a set of core graphical elements and an extended

specialized set. The motivation behind this differentiation was to provide an intuitive

basic notation that could be used to depict the essence of business processes in very easy

terms whilst at the same time yielding the capacity to support complex process scenarios

and formal requirements.

The complete BPMN specification defines thirty-eight distinct grammar constructs plus

attributes, grouped into four basic categories of elements, viz., Flow Objects, Connecting

Objects, Swimlanes and Artefacts. Flow Objects, such as events, activities and gateways,

are the most basic elements used to create Business Process Diagrams (BPDs) (Effinger

and Johannes 2010). Connecting Objects are used to inter-connect Flow Objects through

different types of arrows. Swimlanes are used to group activities into separate categories

for different functional capabilities or responsibilities (e.g., different roles or

organisational departments). Artefacts may be added to a diagram where deemed

appropriate in order to display further related information such as processed data or other

comments. Figure 2.6 provides an example of a BPMN diagram. It shows a simple

payment process in which customers can pay an invoice by cash, cheque or credit card.

 25

Figure 2.6 BPMN Example Diagram (BPMI 2010)

After its official release in 2004, BPMN was put forward as a standard proposal to the

Object Management Group and its ratification as an official standard was carried out

during 2006 and 2007. Led by these standardization efforts, BPMN has encountered

significant momentum in popularity and dissemination, as indicated by the growing

numbers of related tool and service providers as well as of organizations that have

already adapted their process modeling environments to incorporate BPMN.

Figure 2.7 is a screenshot of the WebSphere (IBM 2010) Business Modeler for BPMN. It

provides functions for business process analysis as well as modeling tool capabilities

BPMN. By using the software, users are allowed to make informed decisions before

deployment through advanced simulation capabilities based on modeled and actual data.

The system also provides code generation capabilities for languages such as business

process execution language (BPEL) (IBM 2009), Web Services Description Language

(WSDL) (W3C 2001) files and XML Schema Definitions (XSDs) (Bex and Wim et al

2005).

 26

Figure 2.7: WebSphere Business Modeler (IBM 2010)

2.5 Integrated Modelling Method and UML

The Unified Modelling Language (UML) is a general-purpose visual modelling language

that is used to specify, visualize, construct, and document the artifacts of a system (Thone

and Depke et al 2002; Barra and Génova et al 2004; Foster and Uchitel et al 2003). It

uses an integrated modeling method, which combines four modeling techniques: data

modeling, workflow modeling, object modeling, and component modeling. So it can be

used with most of the processes, e.g. business processes, logical components, process

activities, programming language statements, database schemas and reusable software

components etc.. It has nine different diagrams to model a system. They represent

multiple views of a system. These diagrams are:

 27

• Use case diagram: The use case diagram is used to identify the primary elements

and processes that form the system. The primary elements are termed as "actors"

and the processes are called "use cases." The use case diagram shows which

actors interact with which use case.

• Class diagram: The class diagram is used to refine the use case diagram and

define a detailed design of the system. The class diagram classifies the actors

defined in the use case diagram into a set of interrelated classes. The relationship

or association between the classes can be either an "is-a" or "has-a" relationship.

Each class in the class diagram may be capable of providing certain

functionalities. These functionalities are termed "methods" of the class. Apart

from this, each class may have certain "attributes" that uniquely characterize the

class.

• Object diagram: The object diagram is a special kind of class diagram. An object

is an instance of a class. This essentially means that an object represents the state

of a class at a given point of time while the system is running. The object diagram

captures the state of different classes in the system and their relationships or

associations at a given point of time.

• State diagram: A state diagram, as the name suggests, represents the different

states that objects in the system undergo during their life cycle. Objects in the

system change states in response to events. In addition to this, a state diagram also

captures the transition of the object's state from an initial state to a final state in

response to events affecting the system.

• Activity diagram: The process flows in the system are captured in the activity

diagram. Similar to a state diagram, an activity diagram also consists of activities,

actions, transitions, initial and final states, and guard conditions.

• Sequence diagram: A sequence diagram represents the interaction between

different objects in the system. The important aspect of a sequence diagram is that

 28

it is time-ordered. This means that the exact sequence of the interactions between

the objects is represented step by step. Different objects in the sequence diagram

interact with each other by passing "messages".

• Collaboration diagram: A collaboration diagram groups together the

interactions between different objects. The interactions are accompanied with

numbers in order to help to trace the sequence of the interactions. The

collaboration diagram helps to identify all the possible interactions that each

object has with others.

• Component diagram: The component diagram represents the high-level parts

that make up the system. This diagram depicts, at a high level, what components

form part of the system and how they are interrelated. A component diagram

depicts the components culled after the system has undergone the development or

construction phase.

• Deployment diagram: The deployment diagram captures the configuration of the

runtime elements of the application. This diagram is by far the most useful when a

system is built and ready to be deployed.

Since version 2.0, UML has provided a rich set of behavioral models which are very

useful in modeling the processes, activities, people and information critical to every

business (Barra and Génova et al 2004; Gugola and Nitto et al 2001). The main new

features include:

• Sequence diagram constructs and notation based largely on the ITU Message

Sequence Chart standard, adapted to make it more object-oriented.

• Decoupling of activity modelling concepts from state machines and the use of

notation popular in the business modelling community.

 29

• Unification of activity modelling with the action modelling added in UML

version 2.0, to provide a more complete procedural model.

• Contextual modelling constructs for the internal composition of classes and

collaborations. These constructs permit both loose and strict encapsulation and the

wiring of internal structures from smaller parts.

• Repositioning of components as design constructs and artifacts as physical entities

that are deployed.

When we use UML to model an enterprise level business process, we can divide the

whole process into two parts: a structural, "static" part and a behavioral, "dynamic" part.

Generally, only seven diagrams from the UML family will be used to model a business

process.

• Static Part: describes the structural aspects of the enterprise system. The static

part defines what parts the enterprise system and a business process are made up

of. It includes use case diagrams and class diagrams

• Dynamic Part: describes the behavioral features of a system; for example, the

ways a system behaves in response to certain events or actions are the dynamic

characteristics of a system. It includes object diagrams, state diagrams, activity

diagrams, sequence diagrams and collaboration diagrams. Figure 2.8 shows an

activity diagram example for the “Product Ordering” business process.

 30

Figure 2.8: Activity Diagram to Model Process Order

(Schnieders and Puhlmann 2005)

Instead of using the traditional UML diagrams structure to model business processes, the

Eriksson-Penker Business Extension provides an alternative way to model business

process using UML concepts (Eriksson and Penker 2000). It uses the notations (instead of

diagrams) from the UML library, and makes some extensions in the business process

modeling area. Figure 2.9 shows the general structure of this approach. In this structure:

• Supply link from object Information. A supply link indicates that the information

or object linked to the process is not used up in the processing phase. For

example, order templates may be used over and over again to provide new orders

of a certain style – the templates are not altered or exhausted as part of this

activity.

• Input link from object Resource. An input link indicates that the attached object or

resource is consumed in the processing procedure. For example, as customer

orders are processed they are completed and signed off, and typically a unique

resource (order) is only used once.

 31

Figure 2.9: Eriksson Penker Business Extension Structure

(Eriksson and Penker 2000)

• Goal link to object Goal. A goal link indicates the attached object to the business

process describes the goal of the process. A goal is the business justification for

performing the activity.

• Object flow link to object Output. An output of one business process may feed

into another process, either as a requested item or a trigger to initiate new

activities.

• Object flow link from event Event. An object flow link indicates some object is

passed into a business process. It captures the passing of control to another entity

or process, with the implied passing of state or information from activity to

activity.

• Goal link to Process. A Goal link indicates the attached object to the business

process describes the goal of the process. A goal is the business justification for

performing the activity.

Figure 2.10 represents a “Sell Books example” using the Eriksson Penker approach.

 32

Figure 2.10: Sell Books Process using Eriksson Penker Approach

(Eriksson and Penker 2000)

There are a tremendous number of software tools that have been developed for UML.

Examples include StarUML, Acceleo, ArgoUML, BOUML, Eclipse (Eclipse 2010)

UML2 Tools etc. Figure 2.11 presents an ArgoUML (Tigris 2010) interface. The top left

side is a hierarchical view of the current project file. It includes all the key components

and related files. The top right side of the screen is the editor for the selected part of the

project, in this case a class diagram. This is also the main working area for the diagram.

The bottom left side is the designer's "to do" list. It includes a list of future tasks, which is

grouped by different priorities. The bottom right side of the screen is the details of the

selected object in the diagram or the selected "to do" item. It can also be switched to

display the detailed information for properties, documentation, check list, tagged values,

stereo type, constraints, source and presentation etc.

 33

Figure 2.11: ArgoUML Software Tool (Tigris 2010)

2.6 Aspect-Oriented Method and AspectM

Aspect'Oriented(Programming((AOP)(provides(a(strategy(for(dealing(with(emergent(
entities(that(crosscut(modularity((Barra and Génova et al 2004; Grundy and Hosking et

al 2006; Ballal and Michael 2009; Kienzle and Wisam et al 2009).(AOP(recognizes(that(
crosscuts(are(inherent(in(most(systems(and(are(generally(not(random.(“Crosscut”(is(a(
common(frame(that(two(or(more(modelling(components(can(connect(with(each(
other(and(provide(their(contribution.(The(goal(of(AOP(is(to(provide(new(language(
constructs(that(allow(a(better(separation(of(concerns(for(these(aspects.(An(aspect(is(a(
piece(of(code(that(describes(a(recurring(property(of(a(program(that(crosscuts(the(

 34

software(application((i.e.,(aspects(capture(crosscutting(concerns).(AOP(supports(the(
programmer(in(cleanly(separating(components(and(aspects(from(each(other(by(
providing(mechanisms(that(make(it(possible(to(abstract(and(compose(them(to(
produce(an(overall(system.(
(
Traditional business process modelling notations define modularization elements, such as

process and activities, but have less interest to crosscutting concerns. When these

concerns are mixed at several places of a same process or at different processes of a given

model, it raises the complexity of the model. In contrast, aspect oriented approach for

business process modelling models crosscutting concerns, coding concerns that are not

localized within modular boundaries.

Figure 2.12: Major Components of Aspect Oriented Modeling

(Kienzle and Wisam et al 2009)

Aspect Oriented Modelling (Kienzle and Wisam et al 2009; Ballal and Michael 2009;

Meier and Cahill 2002; Hanson 2005) allows developers to define additional dimensions

of separation based on system-specific concerns. In an AOM approach, aspects localize

concern solutions that crosscut views described by different diagrams in a system model.

The separation of crosscutting elements is a characteristic that is common to Aspect

 35

Oriented Programming and Aspect Oriented Modelling, but differences between the

artifacts (models versus code) can give rise to differences in techniques. For example, at

the code level there is a single representation of functionality (the source code), while a

model can describe a system from multiple views using different diagrams. The views

can be non-orthogonal, for example, a UML sequence diagram that describes how a set of

class instances interact to accomplish a task crosscuts the class diagram view of a system.

In the Aspect Orient Modelling approach, aspects describe solutions that crosscut UML

models.

Figure 2.12 shows the major components of an aspect oriented modelling approach. The

aspect oriented architecture model of a system consists of a primary model, aspect

models and the bindings used to instantiate them in the application context, and

composition directives that determine how the instantiated aspect models are composed

with the primary model to produce a composed architecture model. It presents logical

views of the system architecture. The Model Analysis component in this figure is

responsible for analyzing the composed model to identify errors and to determine the

extent that dependability objectives are met.

AspectM (Dantas and Walker et al 2008) is an extensible aspect oriented modelling

language that provides a mechanism called metamodel access protocol for allowing a

modeller to extend the metamodel and define a new join point mechanisms. A modeller

can easily construct domain-specific AOM languages. In AspectM, an aspect can be

described in either a diagram or an XML (eXtensible Markup Language) format.

AspectM is defined as an extension of the UML metamodel. Figure 2.13 shows the

AspectM diagram notations and the corresponding XML formats. Generally, the syntax

of AspectM has two aspects: an ordinary aspect and a component aspect. A component

aspect is a special aspect used for composing aspects. However, we can use simply the

term aspect when we need not to distinguish between an ordinary aspect and a component

aspect. An aspect can have parameters for supporting generic facilities. By filling

parameters, an aspect for a specific purpose is generated. Using these kinds of aspects, a

set of transformation steps can be described as a generic software component.

 36

Figure 2.13: AspectM Notations and XML forms (Dantas and Walker et al 2008)

 37

Figure 2.14 is a software tool for Aspect Oriented Modeling. It is an open source MDSD

framework implemented in Java and integrates a number of tool components. This tool

supports arbitrary import model formats, metamodels, and output code formats. oAW is

integrated into Eclipse and provides various plugins that support model-driven

development. It contributes to and reuses components from the Eclipse Modeling Project.

Figure 2.14: Athene for Aspect Oriented Modeling (Dantas and Walker et al 2008)

2.7 Form -Oriented Method and Form Chart Diagram

The FormOriented method is a technique for business systems (Draheim and Webber

2005). It defines the semantic class of systems called submit/response style applications,

under which typical enterprise systems and web applications can be subsumed.

Applications in this class are characterized by their type of user interface. The user of a

submit/response style application fills out an electronic form, submits it to the system and

 38

receives a response page with data and new forms. The user then submits data, partly

under usage of the previously received data and so forth.

The form-oriented approach models such a submit/response style application as a

bipartite state machine, which alternates between presenting a page to the user and

processing the data submitted by the user. This bipartite state machine is depicted in the

key artefact of Form-Oriented Analysis, the form chart.

A form chart is a visual notation for the form-oriented approach. In this notation, the user

interface is set in relation to an analysis model consisting of persistent and session data.

The connection is established through a data dictionary. Pages can offer collections of

objects and the user can select objects from the collection and pass them back. No

primary keys are passed across the state transition dataflow. Rich annotation of the state

transition diagram is represented by dialogue constraints. It is given in the dialogue

constraint language DCL (Suzuki 1992). In the Form-Oriented approach the

responsibility for the system functionality is not artificially delegated to participating

objects. Instead system functionality is modelled in a procedural style and technically

delegated to the class representing the parameter list.

Figure 2.15 shows the form chart basic notational elements. The user interaction with the

system, called dialogue in the following, is a sequence of interchanging client states and

server states. A client state presents information to the user and offers several capabilities

of entering and submitting data. The client state is called client page in the following. By

submitting data the dialogue changes into a server state. In the server state submitted data

is processed and depending on the current core system state the generation of a new client

page is triggered, i.e. the server state is left automatically. Submitting data is conceptually

like calling a method, the data being an actual parameter. The server state is called server

action in the following. The transition to a client page is again considered the sending of

a message, this time executed automatically from the server.

 39

Figure 2.15: Form Chart Notation Example (Draheim and Weber 2005)

In above example, the transitions from client pages to server actions, page/server

transitions for short, host two kinds of constraints, namely enabling conditions and client

output constraints. An enabling condition specifies under which circumstances this

transition is enabled, based on the state during the last server action. The enabling

condition may depend on the current dialogue history. The data submitted from a client

page is constrained by the client output constraint. Server actions host server input

constraints. They are server action preconditions in an incompletely specified system;

they must be transformed to other conditions. Transitions from server actions to client

pages, called server/page transitions for short, host flow conditions and server output

constraints. The flow conditions specify for each outgoing transition, under which

condition it is actually chosen. The server output constraint determines which information

is presented on the client page that follows in the sequel. The client input constraint is a

constraint on the information on the client page, which is independent from the server

page. The constraints in the form chart are written in OCL (OMG 2003).

Due to the simplicity of the notation, Form Chart diagram does not have its domain

specific software available. Lots of drawing program can be used to create Form Chart

diagrams (e.g. Microsoft Visio), but as a common shortage, these tools have no code

generation function to share the underlay structure with other systems.

 40

2.8 Other Domain Specific Modeling Languages

Domain'Specific(Modelling((DSM)(is(about(using(Domain'Specific(Languages((DSLs)(

with(the(expressive(power(gained(from(notations(and(abstractions(aligned(to(a(

specific(problem(domain((Liu(and(Grundy(et(al(2007;(Repenning and Sumnet 1995;

Tolvanen 2006; Vlissides and Linton 1989; Grundy and Hosking et al 2006).(It(raises(

the(level(of(abstraction(to(highlight(the(key(concerns(of(the(domain.(Typically,(DSM(

relies(on(graphical(representations(of(the(domain(abstractions,(as(opposed(to(the(

textual(form(of(a(traditional(DSL.(Also,(a(program(in(a(DSL(is(usually(given(a(fixed(

interpretation,(but(a(model(in(a(DSM(may(have(multiple(interpretations((e.g.,(one(

interpretation(may(synthesize(to(C++,(and(a(different(interpretation(may(synthesize(

to(a(simulation(engine).(

(

A(Domain'Specific(Visual Language((DSVL)(is(capable(of(removing(the(designer(from(

being(tied(to(specific(notations(like(the(UML.(In(domain(specific(modelling(using(a(

DSVL,(a(design(engineer(describes(a(system(by(constructing(a(visual(model(using(the(

terminology(and(concepts(from(a(specific(domain.(Analysis(can(then(be(performed(

on(the(model,(and(then(the(model(can(be(synthesized(into(an(implementation(

(Wordsworth 1992; Smith 1990; Robbins and Medvidovic et al 1998).(

(

A(large(number(of(domain(specific(modelling(notations(have(been(created(to(support(

business(process(modelling.(However,(the(modelling(methods(are(based(on(one(or(

more(of(the(above(seven(approaches.(Table(2.1(provides(a(list(of(selected(notations(

and(their(backend(modelling(approaches.(

(

(

(

(

(

(

(

 41

(
Notation' Main'Focus' Modelling'

Methods'

Proponents'

Web Transition

Diagrams (WTD)'

Describe overall

behavior of general

Web applications or

Web services'

Form(based(
interface(+(Data(
Flow(

Jamroendararasame

and Suzuki et al

(2003);'

JOpera Visual

Composition

Language

Visual composition
of Web Services

Data(Flow(+(Work(
Flow(

Pautasso (2009);

Pautasso and

Alonso (2003);

ZenFlow Composition and
execution of web
service

Work(flow(Martinez and Patino

(2005)

Extended Enterprise

Modeling Language

Enterprise
Modelling

Work(flow(+(Multi'
Layer(Structure(

Krishnamurthy and

Rosenblum (1995)

Object Process

Diagram

Object Process
Modelling

Integrated(
Modeling(

Dori (2002); Sturm

and Dori (2003)

Semantic Modeling

Notation

Process Modelling Work(Flow(Jung and Cho

(2005)

Business Object

Notation

System Modelling Work(Flow(Paige and Ostroff

(1999)

Table 2.1 Selected of Other Modeling Notations

2.9 Business Process Execution Language

Business Process Execution Language (BPEL) is a textual language for specifying

business process behavior based on Web Services (IBM 2009). It is becoming the

standard “execution” language that business process notations are compiled to. Business

processes can be described in the following two ways:

• An executable business process models the actual behavior of a participant in a

business interaction.

 42

• Business protocols, in contrast, use process descriptions that specify the mutually

visible message exchange behavior of each of the parties involved in the protocol,

without revealing their internal behavior. The process descriptions for business

protocols are called abstract processes.

BPEL is used to model the behavior of both executable and abstract processes. The scope

includes:

• Sequencing of process activities, especially Web Service interactions

• Correlation of messages and process instances

• Recovery behavior in case of failures and exceptional conditions

• Bilateral Web Service based relationships between process roles

The BPEL process model is layered on top of the service model defined by WSDL. It is

the notion of peer-to-peer interaction between services described in WSDL (W3C 2001).

A business process defines the interaction between a process instance and its partners. To

define business processes, BPEL describes a variety of XML (Bex and Wouter et al

2010) elements, such as:

• Partners: The actors in a business transaction

• Containers: The messages that need to be transmitted

• Operations: The type of Web services that are required

• Port types: The connections that are required for operations

 43

Figure 2.16: Mapping between BPEL and WSDL (IBM 2009)

Figure 2.16 shows a relation mapping between the BPEL process definition and WSDL.

In most cases, a BPEL program serves as a server-side service that is invoked by a client

request. When a new request to a BPEL service arrives, a new instance of a BPEL

program is created and further client interactions with the BPEL server are assigned to

the created BPEL process until all interactions are complete. Then the BPEL process

exits and disappears from the BPEL server. A BPEL business process contains two kinds

of activity: a basic activity and a structured activity. A basic activity performs its

intended purpose without containing further activities (e.g., assign, empty, receive, reply,

invoke, etc.). However, a structured activity contains other activities (e.g. flow, sequence,

if, while, etc.).

Basic activities include:

• Do nothing <empty> - This is the simplest basic activity in BPEL, which does

nothing and so acts as an identity element in the program algebra. Sometimes it is

used to consume a fault of a fault handler if there is no action for the fault. It is

both a left and right identity for sequential composition.

 44

• Assignment <assign> - This is another basic activity, which copies the value of

an expression to a variable. In some case, a shared variable between parallel

processes is protected if the assignment activity is inside a scope with attribute

isolated = true.

• Receive activity <receive> - The purpose of a receive activity is to hold a

business process waiting to receive messages from a communication channel (a

partner link). A new message received from the channel will invoke the BPEL

server to create a process instance of the BPEL program.

• Reply activity <reply> - The reply activity is paired with the receive activity; a

reply activity without a corresponding receive activity will make the process

throw a fault on reaching the end of the business process. A reply will not affect

the state of a business process.

• Invoke activity <invoke> - The invoke activity is used to call a web service

provided by a partner through a partner link. A partner link can be considered a

channel to communicate with the web service described in the WSDL file. The

type of the link is also defined in the WSDL file. As a web service can perform

different kinds of operation defined in the WSDL file, the name of the operation

must be declared when a service is called. An input variable is required to be

passed to the service as parameter of the operation. Another variable that can be

passed to the service is the output variable. It is an optional variable, if an output

variable y is defined in the service call, the program counter will stop and wait for

the answer y before going to the next counter. On the contrary, if the output

variable of a web service call is omitted, the call is asynchronous (the program

counter will go to the next counter immediately after the service is called).

• Throw activity <throw/> - A throw activity is used to throw a specific fault in

an immediately enclosing scope. If a throw happens in a scope, the remaining

activities of the scope are not executed and the throw will be handled by the fault

 45

handler, if the fault handler can handle the fault; otherwise the scope is completed

unsuccessfully, and the compensation handler instance of the scope will not be

installed. The fault propagates to the outer scope if the fault handler of the current

scope cannot catch the throw or a rethrow activity is executed.

Structure activities include:

• Sequence activity <sequence> - BPEL allows a collection of activities to be

executed in sequential order through activity sequence. For example, a semi-colon

(;) can used to separate the different activities. These activities will be executed

sequentially from the left to right.

• Flow activity <flow> - To improve the performance, processes are allowed to

present in parallel if there is no interference between them. The parallel processes

inside a Flow activity can be basic activities or structured activities.

• Scope-based compensation statement - In a BPEL scope, a compensation

handler is a piece of program to undo a completed process step (scope). A

compensation handler instance will be created and installed after a scope has been

completed successfully. When a completed scope is to be undone, the installed

instance of the compensation handler of the scope can be invoked by using

compensateScope <name of scope>: a piece of program is executed to

compensate the undoing scope and the instance of the compensation handler of

the scope is uninstalled. In some cases, all completed scopes are needed to roll

back; then compensate is used to invoke all installed compensation handler

instances.

• Compensation within repeatable constructs - In some cases, a scope with

associated compensation handler is enclosed in a repeatable construct, e.g.

<while>, <repeatUntil>. The result is called a Compensation Handler Instance

Group. A compensation handler instance group contains the same number of

compensation handler instances as the number of successfully completed scopes

 46

in the repeatable construct. “If an uncaught fault occurs while executing the

compensation handler instance within the instance group, all running instance will

be stopped and the remaining handler instances will be uninstalled” (Dehnert

2003).

There are three core BPEL components: BPEL Designer, Process Flow Template and

BPEL Engine. In a typical BPEL scenario, a business expert/analyst of a company would

use the BPEL Designer (a Graphical User Interface) and define the business process. A

business process, for example, could be a 'Purchase Order' business scenario. Web

services needed for this scenario would be included in the flow that uses the designer.

Once the business expert defines the business process flow, a process logic template

containing the process flow logic would be generated by the Designer in the background.

At runtime, this process template would be executed by the BPEL Engine.

• BPEL Designer - a Graphical User Interface used to define a business process

that would be independent of the underlying applications. It is intuitive for the

Business experts to define the process without requiring in-depth technical

knowledge. It generates the BPEL process flow logic template.

• Process Flow Template - adheres to the BPEL specification. It captures the

business process flow logic. It is generated from the BPEL designer at design time

and executed by the BPEL Engine at runtime.

• BPEL Engine - executes any process flow template compatible to the BPEL

standard. Functionalities include the invocation of the Web services, mapping of

the data content, error handling, transactionality, security, and so on. Typically,

the BPEL Engine would be integrated within an Application Server.

2.10 Discussion and Summary

 47

To adequately describe a business process, many forms of information must be integrated

into a process model. Information that people want to extract from process models are

what is going to be done, who is going to do it, when and where it will be done, how and

why it will be done, and who is dependent on its being done. Process modeling languages

are different in the extent to which their constructs highlight the information that answers

these different questions. The differences result from the various source domains (e.g.

process or software engineering etc.), as well as the visual methods used.((In(this(
chapter,(we(have(reviewed(a(broad(range(of(visual(modelling(methods,(their(
modelling(languages(and(the(software(tools.(The(analysis(summary(is(represented(in(
table(2.2.(
(
(

48

!
ERD

$
D
FD
$
BPM

N
$

U
M
L$

AO
M
$

Form
$Chart$

W
TD

$
JO
pera$

ZenFlow
$

Process!M
odelling!

√!
√!

√!
√!

√!
√!

√!
√!

√!

Sub!Process!M
odelling!

×!
×!

√!
√!

×!
×!

×!
√!

√!

Organizational!Structure!M
odelling!

×!
×!

√!
√!

×!
×!

×!
×!

×!

Logical!Behavioural!M
odelling!

√!
×!

√!
√!

×!
×!

×!
×!

×!

Data!Encapsulation!
√!

√!
√!

√!
√!

√!
√!

√!
√!

Data!M
odelling!

√!
×!

×!
×!

×!
×!

×!
×!

×!

Error!H
andling!M

odelling!
×!

×!
√!

√!
×!

×!
×!

√!
√!

Easy!to!Understand!and!Learn!
√

√
√

×
×

√
√

√
√

Functional!Perspective!M
odelling!

×
×

√
√

×
×

×
√

×

General!Purpose!
×!

×!
×!

√!
×!

×!
×!

×!
×!

Distinguish!Internal!and!External!

Events!

×
×

×
×

×
×

×
×

×

DS!Softw
are!Tool!Support!

√!
√!

√!
√!

√!
×!

√!
√!

√!

M
ultiFView

!Support!
×!

×!
×!

√!
×!

×!
×!

×!
×!

M
ultiFView

!Integration!
×!

×!
×!

×!
×!

×!
×!

×!
×!

M
ulti!Layer!Structure!

×!
×!

√!
√!

√!
√!

√!
√!

×!

Code!Generation!
×!

×!
√!

√!
√!

×!
√!

√!
√!

Third!Party!Integration!
×!

×!
√!

√!
×!

×!
×!

×!
×!

Table$2.2:$C
om

parison of Process M
odeling T

echniques

 51

Chapter 3

ENTERPRISE MODELLING LANGUAGE

This chapter introduces the syntax of the Enterprise Modelling Language (EML),

describing the visual representation of service tree structure (Section 3.2), process

overlay (Section 3.3) and exception handler (Section 3.4), as well as some advanced

constructs such as dependency / trigger (Section 3.5), iteration (Section 3.6) and

conditions (Section 3.7). A simple case study is introduced at this point (Travel

Planner System), with a rather comprehensive one placed in Chapter 5. This example

will be used throughout section 3.2 to 3.7 to illustrate the features of the EML

notation.

3.1 EML Overview

As we have discussed in Chapter 2 (Literature Review), there have been many visual

languages in the area of process modelling. These kinds of languages provide a formal

(or semi-formal) mechanism for the definition of business processes. A key element

of such languages is that they are optimized for the operations and inter-operations of

business process management systems. Such an optimization for software operations

renders them less suited for direct use by humans to design, manage, and monitor

business processes. Visual modeling languages have both graph and block structures,

and they utilize the principles of formal mathematical models. This technical

underpinning provides a foundation for business process execution to handle the

complex nature of both internal and business-to-business (B2B) interactions, taking

advantage of the benefits of using visual representations (Grundy and Mugridge et al

1998; Hanna 2002).

 52

Business people are very comfortable with visualizing business processes in a

flow-chart format (Draheim and Weber 2005). Most of the existing visual process

modeling languages have been based on adaptations and variations of flow-chart

based graphical notations and formalisms (e.g. BPMN (OMG 2009), Petri-Nets

(Palanque and Bastide et al 1993), State Charts (Urbas and Nekarsova et al 2005) etc).

Also within the UML community, business processes are usually modeled using

Activity diagrams, for which the underlying semantics have been upgraded to Petri

Nets in the current UML 2.0 proposals (Barra and Génova et al 2004). The advantage

of these approaches lies in the accurate description of the workflow of a process,

where a large number of constructs are devoted to describing the partial order of the

services composing the process, in order to support various branching and

synchronization patterns.

However, given the nature of its complexity, a complex business process could be

organized in a potentially complex, disjointed, and unintuitive way that is hard to

model by a single pure flow-chart based visual methodology. The deficiencies of such

a visual modeling approach include:

• the lack of an efficient way to reduce the complexity and enhance the

scalability of large business diagrams

• the prevalence of “cobweb” and “labyrinth” layouts (Recker and Indulska

2007) in large processes, requiring long term memory use or multi-view

support which introduces many hidden dependencies

• lack of multiple levels of abstraction support

• most of them only emphasize on process modeling, missing the capability to

model system functional architecture.

The language we describe in this chapter, Enterprise Modeling Language (EML),

attempts to address such limitations by modeling processes primarily by a novel tree

overlay structure. The principal goal that directed the design of our Enterprise

Modeling Language was to provide a simple, intuitive and executable visual notation

 53

to support rapid, user-friendly development of business processes. In this new

approach, complex business architectures are represented as service trees and business

processes are modeled as process overlay sequences on the service trees. By

combining these two mechanisms, EML gives users a clear overview of a whole

enterprise system with business processes modeled by overlays on the same view.

Nevertheless, our approach does not exclude existing modeling notations. We aim to

incorporate them into our EML support tool while providing additional richer,

integrative views for enterprise process modeling. The objective of EML is to support

business process management by both technical users and business users by providing

a novel tree overlay based notation that is intuitive to business users yet able to

represent complex process semantics.

«interface»
Service

«interface»
Operation

«interface»
Process

+service1

+operations*

+service

1

+sub-services*

+process

1

+services

*

+process

1

+operations

*

+process

1

+sub-processes*

«interface»
Normal Process

«interface»
Exception Handler

«interface»
Trigger

Figure 3.0: The EML meta-model

An excerpt of the high-level EML meta-model is provided in Figure 3.0. The main

meta-model entities include Service, Operation and Process. The major relationships

between them include that Service is composed of Services (as sub-services) and

Operations; Process involves Services and Operations and coordinates flows among

them; Process may have sub-processes; and Process has three specializations in our

language: Normal Process (termed simply as Process in the thesis), Exception Handler

 54

and Trigger. The meta-model elements are mapped to their visual representations in a

distinctive but consistent way. A Service is represented by a service tree; a Process is

represented as an overlay cross-cutting Operations in the service tree(s); and each type

of Process has its own specific overlay configuration (Process overlay, Exception

Handler overlay and Trigger overlay) under a uniform representation.

3.2 Service Tree Structure

Information about customer needs, technical composition of services, and service

performance is fundamental to effective business process management. Service

modelling is a structured approach to utilizing this information to improve the way

services are delivered. Consistent application of service modelling provides the

automation of processes and timely access to information. Service modelling

represents a comprehensive, up-to-date overview of the enterprise system, and in the

context presenting both business processes and requirements engineered from the

needs to manage process resources.

We chose to represent a hierarchical decomposition of services and sub-services that

make up an Enterprise application as trees. The decomposition of services into

sub-parts is a standard approach in most service-oriented systems (Feng and Lee 2010;

Hill and Brinck et al 1994; Haeberli 1988). We felt that a tree-based visualisation of

these hierarchical decompositions would provide users with a natural way of

organising related services and their sub-services.

3.2.1 Service / Sub-Service

A Service is a configuration of technology designed by organizational networks to

deliver to satisfy the needs, wants, or aspirations of customers (Feng and Lee 2010;

Hanna 2002; Hudak 1989). In EML, a Service is a compound operation group that is

 55

defined by a list of other activities (sub-services or operations). A Sub-service is a

graphical object within a service tree, but it also can be�opened up” to show another

sub-service (either Embedded or Independent). Services and sub-Services share the

same shape notation in EML, a small circle. The user can pre-define different colours

(as shown in Figure 3.1) to distinguish different groups of services / sub-services. All

the services and sub-services also have an open centre so that pre-defined EML

enhancement function icons can be included within the shape to help identify the extra

functions (e.g. Elision, Reuse etc.). The name of the service / sub-service is placed

outside the circle boundary and positioned arbitrarily around the notation (normally at

the bottom or right side of the service / sub-service node).

Figure 3.1: EML Service / sub-Service

Figure 3.1 shows three different service nodes in EML. The Travel Planner Service

node is pink in colour and its name tag appears at the bottom of the node. Two

sub-services “Customer sub-Service” and “Agent sub-Service” use green and yellow

colour respectively to distinguish their appearance, and their name tags are placed at

the right side of the node.

In EML a service has five different execution states, they are:

• Un-executed / Skipped (the default state, when the service is not invoked or is

skipped)

• Finished (the service has completed successfully)

• Failed (errors were detected when the service was last executed)

 56

• Aborted (the service is killed in the middle of execution)

• Other (other unexpected states)

Table 3.1 lists all the service statuses in a normal service tree and when it is used with

the three types of overlays. The concept of visual overlay comes from Lean Cuisine

(Anderson and Apperley 1990), a graphical user interface notation. An overlay is an

individual process\task or a group of related processes\tasks that is represented as a

visual layer on top of the base diagram. In the Human Computer Interaction area,

Lean Cuisine and its overlay technique has been proved as a good practice to

represent multi-tasks structure (Anderson and Apperley 1990; Phillips 1995; Li and

Phillips et al 2004). Hence we decided to adopt this approach to the business process

modelling area.

The difference between the states is visually represented by the type / colour of the

boundary and the status icon in the centre of the notation shape. A normal service tree

(without overlays) has only the Un-executed status. The Un-executed / Skipped state

shares the same style among all the three overlays. In this state, the boundary of the

service uses a single line and the colour is the same as the service centre area. As to

the Finished state, the boundary of the service is still a single line but the colour is

changed to blue (in Process Overlay), green (in Exception Overlay) or red (in Trigger

Overlay). The visual representation of the Failed state is the same across the three

overlays. The fill colour is set to white and a green question mark appears in the

centre of the service node. The boundary is changed to broken line for the Aborted

state and the line colour is set specific to an overlay (blue in Process, green in

Exception and red in Trigger). A star icon in the centre of the service node is used to

identify the other unexpected states. Consistent colours specific to overlays are set on

the icons to distinguish the overlay types.

 57

Execution States Service Tree Process

Overlay

Exception

Overlay

Trigger

Overlay

Un-executed /

Skipped

Finished N/A

Failed N/A

Aborted N/A

Others N/A

Table 3.1: Different Service Status

The common attributes of an EML service node include:

Attributes Description

Id This is a unique Id that identifies the service / sub-service node

from other objects within the EML diagram.

Documentation Textual description of the Service / sub-Service node.

Name The name of the Service / sub-Service

Tree A Tree must be identified for the service / sub-service to identify

its location. There may be multiple trees listed if the Service /

sub-Service node is a Reusable node.

Parent Service If the node is a sub-Service node, then the Id of its parent service

must be identified. There may be more than one parent service Id

listed if this sub-Service node is a Reuse node.

Child Service If the node has sub-Services, then its children’s service Ids must

be identified.

Operations This area records the Operations directly inside this Service or

sub-Service. Indirect Operations (operations belonging to this

Service’s sub-Services) are not included here.

 58

Service Type The service type must be Service or Sub-Service

Status A Service / sub-Service’s status can be Un-executed / Skipped,

Finished, Failed, Aborted and Other.

Input The Input attribute defines the data requirements for input to the

Service / sub-Service. Zero or more Input data specifications

may be defined that are required for the Service / sub-Service to

be performed.

Output The Output attribute defines the data format of the outputs from

the

Service / sub-Service. Zero or more Outputs may be defined. At

the completion of the each Service / sub-Service, more than one

of the Outputs may be produced. The implementation of the

Service / sub-Service determines which set of data will be

produced.

Loop Type A service loop type can be None, Single Service Loop, Two

Services Loop and More than Two Services Loop. Its default

setting is None, but may be changed to others. Please refer to the

Iteration section for details.

Actors One or more Actors may be entered. The Actors attribute defines

the human resource that will perform the Service / sub-Service.

The Actors could be in the form of a specific individual, a group,

or an organization.

User Defined

Rules

The user can define Rules attributes for the Services /

sub-Services. A rule is an expression that defines the relationship

between services, sub-services, operations and their data. That is,

if the services / sub-services are instantiated with a specified data

or operation, then the appointed services / sub-services or

operations must produce the specified output data or execute

predefined processes. Zero (default value) or more Rules may be

 59

entered.

Extend

Properties

The user can define additional properties of a service or

sub-service. These Properties are “local” to the services /

sub-services and are only for use within the processing of the

specified service. The fully delineated names of these properties

are �<Service name>.<sub-Service name>.<property name>”

(e.g., “Travel Planner. Customer. User Defined Property”).

Elision Type The Elision type of a Service / sub-Service must be Collapse or

Expand

Reuse Status This attribute indicates the Reuse status of a Service or

sub-Service. It must be True (Reusable) or False (Not Reusable).

The default setting is False.

Reuse Id If a Service or sub-Service is reusable, this is a unique Id that

identifies the node in the Reuse Library.

3.2.2 Operation

An Operation is an atomic activity that is included within a Service. An Operation is

used when the function in the Service is broken down to a finer level of Process

Model detail. Operations are the leaf nodes of the Service tree. A square shape (with

orthogonal corners) represents an atomic operation inside a service (the operation and

service are connected by a tree branch). The user can use different fill colours in

operations to distinguish different operation groups; a light grey is used by default.

The Operations also have an open centre so that EML pre-defined enhancement

function icons can be included within the shape to integrate other functions (e.g.

Exception Handler). The name of the Operation is placed outside the rectangle

boundary positioned arbitrarily around the notation (normally at the bottom or right

side of the node). A normal Operation square is drawn with a single thin black line.

But in certain circumstances (e.g. Single Loop Operation, in Process overlay, in

 60

Dependency Trigger etc.), EML changes the boundary style to represent additional

information.

Figure 3.2 shows three Operation nodes and different name tag positions in EML. The

Send Book Request node, which belongs to the Customer Service node in Figure 3.1,

is in the default light grey colour and its name tag appears at the right side of the node.

Check Enquires is an operation of the Agent Service node. It uses a dark yellow colour

and its name appears at the bottom of the rectangle. The Make Payment operatio is in

red with its name at the left side of the shape. All of them have single thin black line

boundary, which means they are all in the normal working status (i.e. no loops,

processes or triggers are applied on these operations).

Figure 3.2: EML Operation

Like the Service, an Operation also has five different states as listed in Table 3.2. The

colouring, bordering and fill icon conventions are identical to service nodes.

Execution States Service Tree Process

Overlay

Exception

Overlay

Trigger

Overlay

Un-executed /

Skipped

Finished N/A

Failed N/A

Aborted N/A

Others N/A

Table 3.2: Different Operation Status

 61

The common attributes of an EML operation node are:

Attributes Description

Id This is a unique Id that identifies the Operation node from other

objects within the EML diagram.

Documentation The text documentation of the Operation node.

Name The name of the Operation.

Tree A Tree must be identified for the Operation to identify its

location. There may be multiple trees listed if the operation node

belongs to a Reusable service / sub-service.

Service A Service Id must be identified for the Operation to identify its

location. There may be multiple services listed if the operation

node belongs to a Reusable service / sub-service.

Operation Type An operation type can be Receive, Send, User, Script, Abstract,

Manual, Reference and None.

Input The input data of the Operation (possibly none). This indicates

that the data will be received at the start of the operation, after

the availability of any defined Input. A corresponding outgoing

Flow may be shown on the diagram. In order to reduce the

complexity of the diagram, we are using the data encapsulation

in EML.

Output The delivery of this output marks the completion of the

Operation. It can be none if required. A corresponding incoming

flow may be shown on the diagram. In order to reduce the

complexity of the diagram, we are using the data encapsulation

in EML.

Status An Operation’s status can be Un-executed / Skipped, Finished,

Failed, Aborted and Other.

Loop Type An operation loop type can be None, Single Operation Loop,

 62

Two Operations Loop and More than Two Operations Loop. Its

default setting is None, but may be changed to others. Please

refer to the Iteration section (Section 3.6) for more detailed

information.

Actors One or more Actors may be entered. The Actors attribute defines

the human resource that will perform the Operations. The Actors

could be in the form of a specific individual, a group, or an

organization.

Script If the operation type is a script. It may include a script that can

be run when the Operation is performed. If a script is not

included, then the Operation will act equivalent to an Operation

Type of None.

Implementation This attribute specifies the technology that will be used by the

Actors to perform the Operation. The value can be a Web

Service, Application, Other or Unspecified.

3.2.3 Tree Layout

EML uses a tree layout to represent the basic structure of a service. We chose to use

trees as they are familiar abstractions for managing complex hierarchical data for

business modellers and business people; they can be easily collapsed and expanded to

provide scalability; they can be rapidly navigated; and they can be over-laid by

cross-cutting flows and representations of concerns. Earlier work on modelling

complex user interfaces and their behaviour with tree-based overlays demonstrated

these benefits (Li and Phillips et al 2004; Philips and Scogings 1998a).

All the Services, sub-Services and Operations are organized in a hierarchical based

tree structure to model the system. The connection among these three components

relies on the functional relationship between each other. The basic rules are:

 63

• An Enterprise system must have at least one Service Tree.

• Every service tree must have only one Service node. It may (or may not)

include an arbitrary number of sub-Service nodes.

• A Service node is always at the top of the single service tree structure. It must

include at least one Operation node (directly or indirectly). It may include an

arbitrary (possibly zero) number of sub-Services.

• A sub-Service is contained inside a Service or sub-Service node. It must

include at least one Operation (directly or indirectly) and may have an

arbitrary (possibly zero) number of sub-Services.

• An Operation is the leaf node of the service tree. It cannot include any Service,

sub-Service or other Operation.

64

Figure 3.3: E
xam

ple E
M

L
 T

ree Structure

 65

Figure 3.3 shows a complex, fully-expanded overview of an EML tree modeling a

Travel Planner service. A Travel Planner is a web service-based enterprise system to

help users to organize trips. Customers use the client application to submit itinerary

enquiries to a travel agent. The agent service receives the requests and communicates

to travel providers (Airline, Hotel etc.) to find out a suitable booking.

• A Travel Planner is a Service node in the tree. It has three sub-Services

(Customer Service, Agent Service and Provider Service).

• There are six Operations inside Customer sub-Service (Send Book Request,

Consider Itineraries, Send Confirm Information, Make Payment, Cancel

Booking and Receive Invoice).

• The Agent sub-Service includes another three sub-Services (Prepare

Itineraries, Payment Control and Product Booking) and two Operations

(E-mail Out and Print). There are also lists of different Operations or

sub-Services in the above three sub-Services.

• The Provider sub-Service has a multi-level hierarchical sub-Service tree

structure. It has Airline and Hotel sub-Services at the first level, and the

Airport Collaboration sub-Service is embedded in Airline sub-Service (level

two). The Immigration sub-Service is inside Airport Collaboration

sub-Service at level three. Meanwhile, it also includes another bottom level

sub-Service Landing Port Arrangement. There are twenty eight Operations

involved in this multi-levels sub-Service tree.

The common attributes of an EML tree include:

Attributes Description

Id A unique Id that distinguishes the service Tree from other Trees.

Version The Version number of the Tree.

Name A textual name for the service Tree.

Creation Date The date when this version of the Tree was created.

 66

Modification

Date

The date on which this version of the Tree was last modified.

Operation Type An operation type can be Receive, Send, User, Script, Abstract,

Manual, Reference and None.

Documentation The textual description of the Tree.

Processes A Service Tree contains zero or more business processes. Their

Process IDs are recorded here.

Dependency A Service Tree contains zero or more Dependencies. Their

Dependency IDs are recorded here.

Exception

Handler

A Service Tree contains zero or more Exception Handlers. Their

Exception Handler IDs are recorded here.

Service A Service Tree contains only one Service. Its Service ID is

recorded here.

Sub-Services A Service Tree contains zero or more sub-Services. Their

sub-Services IDs are recorded here.

Operations A Service Tree contains one or more Operations. Their

Operation IDs are recorded here.

3.2.4 Elision

In order to mitigate the complexity of the diagram, we use symbols inside each

service to identify the elision level of the service visualisation. As we adopted a

tree-based visualisation of service decompositions, a collapse/expand elission

mechanism is a natural way to provide complexity management. Most users are

familiar with such an approach due to its commonality on graphical user interfaces

and desktop user interfaces.

In EML a Service or sub-Service can be in a collapsed (elided) mode that hides its

details (see Figure 3.4 (b)) or in an expanded mode that shows its details within the

 67

view of the service in which it is contained (see Figure 3.4 (a)). The collapsed and

expanded forms of the Service / sub-Service objects are distinguished by two markers.

A minus (-) symbol indicates all activities in the service have been expanded. A plus

(+) symbol indicates that part or all of the sub-tasks (services and operations) are

elided.

The marks are positioned at the centre of the Service / sub-Service circle shape. Every

Service / sub-Service in the diagram has an elision attribute value (Elision Type) to

provide users with the freedom to control the size of the diagram via elision of

selected parts. The elision function only applies to the Services or sub-Services and

cannot be used on Operations.

Figure 3.4 (a): Extended Customer Service; (b): Collapsed Customer Service

Figure 3.4 (a) shows an extended Customer sub-Service branch in the Travel Planner

example. All the operations (Send Book Request, Consider Itineraries, Send Confirm

Information, Make Payment, Cancel Booking and Receive Invoice) under this

sub-Service are expanded for the user to get a complete view. The centre of Customer

sub-Service node displays a minus (-) symbol. Figure 3.4 (b) presents the collapsed

 68

situation for the same service node (all the operations belongs to this sub-Service are

hidden). The plus (+) symbol appears in the centre of Customer sub-Service.

3.2.5 Service Reuse

Most service-oriented systems support some form of service packaging and reuse

(BPMI 2010; IBM 2009). EML also supports service reuse to reduce structural

complexity and to increase modelling efficiency. In EML we chose to represent

reusable components using a separate tree. This preserves the overall approach of

tree-based decompositions adopted for EML and allows one service tree to reuse

elements in another, reuseable service tree.

The user pre-defines its structure and saves it in a library. Reusable components have

a unique ID for future usage. The user can easily attach a reusable component to any

branch of an EML tree. The reusable services share the same attributes of Service /

sub-Service (in Section 3.2.1). But their “Reuse Status” is “True” and “Reuse ID” is a

unique number beginning with “R” (e.g. R1). If a reusable service is attached to the

EML tree branch, the “Elision Type” attribute will be automatically set as “Collapse”.

However, the user can change it to “Extend”.

The Reusable Service shares the same basic shape of the Service / sub-Service, a

circle with an open centre so that Reuse ID can be placed within the circle to indicate

variations of the services in the reuse library. The elision symbol’s position is moved

to the bottom of the Reuse ID. The circle must be drawn with a single black thin line

and the centre part must be in white. The name of the Reusable Service is placed

outside the circle boundary and positioned arbitrarily around the node (normally at the

bottom or right side of the service / sub-service node).

 69

Figure 3.5 represents a Reusable Service’s definition and usage example in the Travel

Planner case study. From the Travel Planner Service Tree example in Figure 3.3, we

find that the Airline sub-Service and Hotel sub-Service have several identical

operations under their tree branch (e.g. Change Booking, Inform Customer, Special

Price and Cancel Booking). In order to reduce the redundancy, we combine these

common operations together as a new Reusable sub-Service. Figure 3.5 (a) defines

this reusable sub-service (Common Booking Functions). It includes four commonly

used Operations and the elision type is “Extend”. The Reuse ID at the centre of the

circle is called R1. Figure 3.5 (b) demonstrates the usage of this Reusable Service

(Common Booking Functions) in the Hotel and Airline services. The user directly

attaches R1 service node to both tree branches. The elision status of this “Common

Booking Functions” service has been changed to “Collapse” automatically.

Figure 3.5 (a): Define a Reusable Service;
 (b): Use Reusable sub-Service in Hotel Service

 70

3.3 Process Overlay

A Business Process is a collection of interrelated tasks performed within a company

or organization, which solves a particular issue. A fundamental part of business

process modelling is the representation of flow between stages. We chose to use an

approach of “overlays” to represent different kinds and instances of process flow in

EML. This choice was based on the successful adoption of the overlay concept in

earlier modelling efforts for the user interface domain (Philips 1993; Li and Phillips et

al 2004). While EML is a very different domain of modelling, the success of tree

overlays in Lean Cuisine+ leads us to adopt a similar approach for business process

flow modelling in EML.

In EML each business process is represented as an overlay on the basic tree structure

or an orchestration between different service trees. In a process layer, users have the

choice to display a single process or collaboration of multiple processes. By

modelling a business process as an overlay on the service tree, the designer is given a

clear overview of both the system architecture and the process simultaneously.

Processes can be elided mitigating the cobweb problem commonly existed in

flow-based visual notations. In EML, a Business Process may contain more than one

separate sub-Process. Each Process may have its own Sub-Processes or share (Reuse)

sub-Processes with other Processes. The individual sub-Processes are independent,

but could have data connection with others.

3.3.1 Process Start

The Process Start notation indicates where a particular Process will start. In EML, a

Process Start icon starts the flow of the Process, and thus, will not have any incoming

Process Flows. A rectangle (with orthogonal corners) represents a Process Start. The

 71

outline and fill colours for this shape are both blue. The notations also have an open

centre so that the process names and start conditions can be included within the shape.

The name of the process is placed in the centre of rectangle boundary and the font is

white. An annotation (double sided arrow) for start conditions may appear at the

bottom of the shape.

Figure 3.6 (a): Process Start without Conditions; (b) Process Start with

Conditions

Figure 3.6 shows two Process Start notations for the Travel Booking Process. In (a),

the icon is a blue rectangle with only a white process name in the centre of the shape.

This means the system can start the Travel Booking Process without any conditions.

There is an additional white double sided arrow in the bottom of the Process Start

shape in Figure 3.6 (b). This notation means that the Travel Booking Process will be

started only when specified conditions are satisfied. The start condition can be a

single message, certain time or a more complex set of requirements.

The common attributes of a Process Start notation include:

Attributes Description

Id A unique Id that distinguishes the Process Start notation from

other notations.

Name The textual name of the Process.

Start Conditions The conditions to start this Process, the value of conditions can

be:

• None (no icon appears in the notation): This process can

be started without any conditions.

 72

• Predefined condition description (Double Sided Arrow),

could be:

1. Message: only one (or more) specified messages

can start this Process

2. Time: The process starts at a certain time

3. Process Id: This is a sub-Process of some other

process. This process will start only when its

parent process is complete.

4. Others: the complex start condition spefication.

The process will start only when a list of user

predefined conditions is satisfied.

Sub-Process If this process has sub-processes, record their process IDs.

Otherwise, the value is None.

Parent-Process If this process has Parent-processes, record their process IDs.

Otherwise, the value is None.

Data This area is used to represent the incoming data from other

processes. It can be none if there is no data communication.

3.3.2 Process End

The Process End notation defines the result that is a consequence of a Process Flow

ending. In some circumstances, multiple types of results that can be defined in Process

End stage. The Process End notation indicates that a process will end and there is no

outgoing Process Flow that connects from a Process End icon. A Process End notation

is a rounded corner rectangle with both outline and fill colour being red. The notations

also have an open centre so that the end results can be included within the shape. The

description of the result is placed in the centre of rectangle boundary in white font. If

there are multiple consequences belonging to the same Process End, a white quad

arrow icon is placed in the centre of the shape.

 73

Figure 3.7 shows the different aspects of the Process End notation (with different

consequences). Figure 3.7 (a) is a Process End notation in a normal end condition

without further information transfer. A white key word End appears in the centre of

the red rounded-corner rectangle. If a process is required to send messages in its

normal ending state, the key word Message will be used to replace End (as shown in

(b)). Figure 3.7 (c) shows that the process terminates with errors and (d) means the

process is cancelled by the user. If the end of one process leads to the start of another,

the name of the new process will be represented in the shape. Figure 3.7 (e) shows

this; the Make Payment Process will start immediately after the existing process

finishes. If the process leads to other complex results, a quad arrow appears in the

Process End icon (as shown in (f)). The complex consequences could be several user

pre-defined rules, a list of complex conditions or an integration of some results from

the process. The end of this process will result in all of these consequences.

Figure 3.7: Process End Notation

The common attributes of a Process End notation include:

 74

Attributes Description

Id A unique Id that distinguishes the Process End notation from

other notations.

End Type A process end type must be Normal, Massage, Error, Cancel,

Link to another process or Other Complex Consequences

Message If the Process End leads to a Message sending, then the Message

content must be supplied. It can be None if the notation is another

type.

Error If the Process ends in an error on this flow, then the error

information must be supplied. It can be None if the notation is

another type.

Cancel If the Process is cancelled, then the output information must be

supplied. It can be None if the notation is another type.

Sub-Process

Name

If the Process End leads to another Process the name of the new

sub-Process must be supplied. It can be None if the notation is

another type.

Sub-Process ID If the Process End leads to another Process, then the ID of the

new sub-Process must be supplied. It can be None if the notation

is another type.

Sub-Process

Data

If the Process End leads to another Process, then the data to be

communicated to the new sub-Process must be supplied. It can be

None if the notation is another type or there is no data

communicated to the new process.

Complex Results If the Process End leads to multiple consequences, all the

relevant results will be listed here. It can be None if the notation

is another type.

 75

3.3.3 Data Encapsulation

In order to enhance the readability and reduce diagram complexity, EML does not use

“Data Flow”. All the data communicated between services, operations and processes

are encapsulated in the flows, service nodes and operation nodes. By using this

mechanism, the user can focus on the business process itself while complex data

details are hidden behind it. However, the user can always obtain (and show) this

information from the notation’s data attributes. It provides a more flexible and clearer

view to the business processes and service structures.

3.3.4 Process Flow

A Process Flow is used to show the order of operations that will be performed in a

Process. Each Process Flow has only one source and one target. The source and target

must be retrieved from the following set of Process Objects: Process Start, Process

End, Operations, Services / sub-Services, and Conditions. A process flow edge from

node A to node B is used to show that operation B cannot start until operation A has

reached a certain execution state associated with the edge. Examples of such states are:

finished (by default), failed (when an error is detected during the execution of the

task), aborted (after a user has killed the task), skipped (when the operation has been

skipped) or other (other unexpected states) etc. The state is visually represented by the

color of the operation (or service / sub-service) boundary positioned at the tail of the

process flow edge or the exception handler icon in the center of the target notation

shape. This makes it easy to follow, at runtime, whether a process flow dependency

has been activated.

A Process Flow is a line with a solid arrowhead drawn in blue color. Each flow has a

unique process sequence ID and the user can show or hide this at any time. The

encapsulated data for the process flow is hidden by default. But the user can change it

to visible if required. If the process flow is a default path (normally connects to a

 76

condition), a dot icon will appear at the start of the flow. Figure 3.8 (a) represents a

typical Process Flow with its Process Sequence ID (E1.1) on top of the flow and the

communication data (Booking Request) under the flow. However, the default setting

for the sequence ID and Data are all invisible. Figure 3.8 (b) is a default process flow

where the sequence ID and data are hidden. A blue dot marker is shown at the

beginning of the flow line. The start condition ID of this flow (C1) appears at the

beginning of the process flow.

!

Figure 3.8 (a): A Process Flow with Sequence ID and Data; (b): A Default

Process Flow

The common attributes of a Process Flow include:

Attributes Description

Id A unique Id which distinguishes the Process Flow notation from

other notations.

Name A textual name for the Flow.

From Identifies the incoming object of this Process Flow

To Identifies the outgoing object of this Process Flow

Flow Start

Condition ID

If the flow has a start condition, record its unique condition ID

here

Flow Start

Conditions

The start conditions of the flow. This can be None if there are no

start conditions.

Sequence ID A unique ID that distinguishes the process sequence for this flow.

Data An optional attribute that identifies the encapsulated data package

that is being sent. It can be None if there is no data

 77

communication.

Default Status If it is a default flow, set the value to True. Otherwise, the value

is False

Iteration If the process flow is involved in a loop, set the value to be true.

Otherwise, the value is false

Loop Times The loop times in the process. The value is an integer (from 0 to

any positive number).

Loop Start

Conditions

The start conditions of the loop.

Loop Start

Condition ID

The unique loop start condition ID.

Loop End

Conditions

The end conditions of the loop.

Loop End

Condition ID

The unique loop end condition ID.

3.3.5 Business Process Layer

Figure 3.9 shows a Travel Booking Process in an EML process overlay. Only process

related services and operations are shown; other, unrelated services have been elided

(e.g. Payment Control Service, Airport Collaboration Service). The process starts

(blue rectangle) with a client side application passing a request message to the Send

Book Request operation of the Customer Service. The Agent Service receives the

request through the Check Enquires function, and uses its Request Itineraries

operation to check availability information with the Airline and Hotel services. The

agent requests flights and rooms with a list of parameters. There are iterations (dashed

double arrowheads links) between Request Itineraries, Check Available Seats and

Check Available Rooms (please refer to Section 3.5 for detailed information). When

the agent finds that both the air ticket and the hotel room are available on the

 78

requested date (end condition C1 & C2), it terminates the loop and sends the client a

report generated by the Send Itineraries operation. The customer Considers Itineraries

and Sends Confirm Information to the Agent Service. The agent receives this

information and then Makes Booking. After both of the Book Tickets and Book Room

operations are successfully completed, the agent calls Make Payment Process (Figure

3.14) to ask for the payment and end the existing process (Rounded Rectangle).

The double-sided arrow in the Process Start indicates that the process needs to start

with a condition. In this example, the Process Start condition is the arrival of Booking

Request Message. This message condition is hidden inside the Process Start notation.

The process name inside the Process End notation means that the successful end of

this process will lead to the start of a new process (Make Payment Process). All the

process sequence IDs have been hidden since there is only one process in the diagram

(however, the user can make them visible especially when more than one processes

appear simultaneously).

Figure 3.9: Travel Booking Process Overlay

 79

There are two types of execution states included in this example:

(1) The finish status (by default). In this state, the boundaries of the operations

have been changed to a blue colour. It means that this process step is

completed successfully.

(2) The failed status. In this state, a green question mark appears in the centre of

the operation shape (e.g. in Request Itineraries, Book Tickets and Book Room

operations). It means that the process step with this operation is not complete

normally.

The common attributes of a Business Process Layer include:

Attributes Description

Id A unique Id that distinguishes this Process from processes.

Name A textual name for the process.

Version The Version number of this Process Diagram.

Author The author of this Process Diagram.

Language The language in which text is written. The default is English.

Service Trees An EML Process may contain one or more service trees. The IDs

of the Service trees are recorded here.

Documentation The process may have optional text documentation to describe it.

Process Type The type must be Process or sub-Process

Process State The Status of a Process is determined when the Process is being

executed. The full list of states include: None, Ready, Active,

Finish, Failed, Aborting, Aborted, Skipping, Skipped,

Cancelling, Cancelled and Other

Process Flows Identifies all of the Process Flows (IDs) that are contained within

the Process.

Operations Identifies all of the Operations (IDs) that are contained within

the Process.

Dependency Identifies all of the Dependency Triggers (IDs) that are

 80

contained within the Process.

Exceptions Identifies all of the Exception Handlers (IDs) that are contained

within the Process.

Sequences The sequence of all the notations, flows, operations,

dependencies and exceptions.

3.4 Exception Handler Overlay

In EML, an exception handler is another overlay mechanism designed to handle the

occurrence of some condition that changes the normal process flow of execution. The

condition is called an exception. Modelling failure-handling behaviour is an important

requirement for a visual modelling language, as exceptions are common when running

processes in a distributed environment. Raising an exception is a useful way to signal

that the process or operation could not execute normally, for example when its input

parameters are invalid (e.g. empty message or wrong date format) or when a resource

it relies on is unavailable (no spare rooms available anymore, or the customer cannot

pass the credit check). In systems without exceptions, the process would need to

return some special error code and abort itself. However, this simple solution is

sometimes not adequate to tackle the complex business process problem. The users

often require a comprehensive and flexible method to cope with exceptions.

A common way to solve the exception problem in most existing process modelling

languages is based on a rollback method. The current state is saved in a predefined

location and execution switches to a predefined handler. Depending on the situation,

the handler may later resume execution at the original location, using the saved

information to restore the original state. For example, BPMN has an important notion:

business transactions. A transaction here means a collection of activities that must be

performed "atomically" – all must complete successfully – or else the system must be

"rolled back" to its initial state, as if none of them had ever occurred.

 81

However, one of the major problems for this approach is its scalability. In this

exception handling method, all the resources performing each part of the transaction

must be "locked" until the transaction either commits or rolls back. As the process

size becomes bigger, business transactions become too long to be able to lock the

resources, making it very hard to roll back to the initial state.

On the other hand, for a complicated process, a single approach is usually not

sufficient to model exception handling. Using travel booking as an example, consider

that you are booking a trip to Europe online. Neither the airline nor the hotel can

guarantee either price or availability until you actually book specific dates with a

credit card. After we successfully reserved hotel rooms, we found that the air tickets

on the required date are no longer available. The traditional business transaction will

cancel all the air ticket and hotel booking and roll back to the start stage and rebook

all the itineraries again. Obviously, this is not the best solution. The exception handler

should have the ability to negotiate alternative solutions with the users. For example,

if the economy class tickets are sold out, in addition to normal transactions, the

exception handler may ask the users whether they want to purchase an available

business class ticket or use their air points to upgrade. For this reason, we designed

the exception handler overlay in EML. Instead of rolling back, an exception handling

layer is constructed to model transaction error handling in much more details.

3.4.1 Failure Handling Notation

A failure handler annotation is a green question mark in the middle of an operation or

service. Despite the original state of an operation or service, as soon as an exception

handler occurs in it, the related operation or service’s fill colour must be changed to

white and the boundary set to a single line. If the user removes the handling notation,

the operation or service changes to its original state automatically. This annotation is

used to specify a transaction failure. Users can establish several start conditions in the

properties to discriminate between different kinds of failures and activate appropriate

 82

exception handlers. Figure 3.10 shows two different usage situations of the failure

handler annotation. Figure 3.10 (a) shows the exception handler in Book Tickets and

Special Price operations. It represents there are one or more exception handling

solutions relating to the operations. The users can check the detailed information

about these handlers in the exception layer. Figure 3.10 (b) shows the failure handling

notation in the elided Airline Service node. If a failure handling notation appears in a

service node, it means that at least one operation or sub-service in this service has an

exception handler.

Figure 3.10 (a): Failure Handling Notations in Operations;

 (b): Failure Handling Notation in Service

In the same service tree, the exception handling notation will only appear either in a

service node or in its operations. For example, because the Book Tickets operation is

inside Airline Service, in Figure 3.10 (a) when the Airline Service tree is expanded,

the user will see the failure handling notations in Book Tickets and Special Price

operations (and there is no green question mark in Airline Service node). However, if

we collapse the Airline Service tree (as in Figure 3.10 (b)), all the operations and

 83

sub-services inside this Airline Service will be hidden. In this case, the users will only

find a green question mark in the service node to represent all the exception handlers

in its operations and sub-services. In this case the elision symbol (+) is replaced by

failure handling notation (green question mark).

The common attributes of a Failure Handler annotation include:

Attributes Description

Id A unique Id that distinguishes the Failure Handling notation from

other notations.

Name A textual name for the exception handler.

Start Condition

List

The start conditions that discriminate different kinds of failures

and activate appropriate exception handlers. An operation failure

handler annotation needs to have at least one start condition. The

value can be None if the Failure Handler is in a service.

Exception

Handler List

Matchning the start conditions, a list of corresponding exception

handlers must be defined here. An operation failure handling

notation need to have at least one exception handler. The value

can be None if the Failure Handler is in a service.

Sub Exceptions Records the exception handler IDs of a Service’s operations and

sub-services. The value can be None if the Failure Handler is in

an operation.

Data Used to specify the incoming data from other processes. It can be

none if there is no data communication.

3.4.2 Exception Flow

An exception flow is used to show the sequencing between operations that the

exception handler will perform. Each exception flow has only one source and one

 84

target. The source and target must be retrieved from the available set of the

Operations or Services / sub-Services. An Exception Flow is a green line with a solid

arrowhead. Each flow has a unique exception handler sequence ID which the user can

show or hide any time. The encapsulated data for the exception flow is hidden by

default. But the user can change it to visible if required. Five different exception

handling execution states are visually represented by the colour of the Operation and

Service / sub-Service boundary positioned at the tail of the exception flow edge or the

exception handler and status icon in the center of the target notation shape. Figure

3.11 (a) represents a typical Exception Flow with its Exception Sequence ID (E1.1) on

top of the flow and the communication data (Available Ticket Info) under the flow.

However, the default setting for the sequence ID and Data are all invisible. If an

exception flow is a default flow, a green dot mark appears at the beginning of the line

(as shown in Figure 3.11 (b)). The start condition of the flow (C1) appears at the

beginning of the exception flow.

Figure 3.11 (a): An Exception Flow with sequence ID and Data;

(b): A Default Exception Flow

The common attributes of a Process Flow include:

Attributes Description

Id A unique Id that distinguishes the Exception Flow notation from

other notations.

Name A textual name for the Flow.

From Identifies the incoming object of this Exception Flow.

To Identifies the outgoing object of this Exception Flow.

Flow Start If the flow has a start condition, record its unique condition ID

 85

Condition ID here.

Flow Start

Conditions

The start conditions of the flow which can be None if there are no

start conditions.

Sequence ID A unique ID that distinguishes the exception handler sequence for

this flow.

Data An optional attribute that identifies the encapsulated data package

that is being sent. It can be None if there is no data

communication.

Default Status If it is a default flow, set the value to True. Otherwise, the value

is False.

Iteration If the exception flow is involved in a loop, set the value to be

true. Otherwise, the value is false.

Loop Times The loop times in the exception handler. The value is an integer

(from 0 to any positive number).

Loop Start

Conditions

The start conditions of the loop.

Loop Start

Condition ID

The unique loop start condition ID.

Loop End

Conditions

The end conditions of the loop.

Loop End

Condition ID

The unique loop end condition ID.

3.4.3 Exception Layer

Figure 3.12 shows a hotel room booking exception handler layer. Instead of simply

calling Cancels Booking and rolling back, we use EML exception overlay to model a

more complete exception solution. If the Hotel finds that all standard rooms on the

required date have been booked out, it sends a negotiation message (Change to

 86

Luxury Room) back to the travel agent. The Agent Service Modifies Booking, Changes

Itineraries (previous travel plan), makes a new itinerary and sends to the Customer

Service. The customer receives the latest updated travel plan and Considers

Itineraries. When they make the final decision, the Customer Service then sends

Confirm Information to the Agent Service again. If the user Accepts the hotel’s

suggestion, the process will lead to Make Booking again. Otherwise (Refuse), the

customer informs the agent to Cancel Booking. The Agent Service asks the Hotel

Service to Cancel Booking.

The green diamond icon after Send Confirm Information is used to represent the

conditions. Please refer to Section 3.7 for a more detailed description. The Accept

decision is a default option. A dot shape attached at the start of the Accept exception

flow is used to represent the default attribute. Since the Refuse decision is an

alternative path, the result (Cancel Booking) of this exception flow remains in the

Un-executed status. Meanwhile, the default decision result (Make Booking) is in the

Finished status.

Figure 3.12: Hotel Room Booking Exception Handler Overlay

 87

There are another three exception handling icons in Special Price and Request

Itineraries operations and Airline Service. The user defines the detailed exception

handler processes in different layers, but they can combine them with this example

handler in the same layer if desired. Even for the same exception handling notation,

the user can define several different exception layers by their start conditions. So in

EML, the exception handling is much more than a simple roll back mechanism. It is

an individual process or even a complicated integration of alternative processes. The

exception handling overlay is an individual overlay based on the same service tree

structure as conventional processes. EML has the freedom to allow the user to define

them in a single layer (as shown in Figure 3.12) or combine them with the process and

trigger overlays to generate an integrated overview of the system (as to be shown in

Chapter 5).

The common attributes of an Exception Layer include:

Attributes Description

Id A unique Id that distinguishes this exception layer from other

overlays.

Name A textual name for this exception layer.

Version The Version number of this exception handler.

Author The author of this exception handler.

Language The language in which text is written. The default is English.

Service Trees An EML exception handling layer may contain one or more

service trees. The Service trees’ ID’s are recorded here.

Documentation The process may have optional text documentation to describe it.

Exception

Handler Status

The Status of an exception handler is determined when the

handler is being executed. The full list of states include: None,

Ready, Active, Finish, Failed, Aborting, Aborted, Skipping,

Skipped, Cancelling, Cancelled and Others.

Start Conditions The start conditions of this exception handler.

 88

Exception Flows Identifies all of the Exception Flows (IDs) that are contained

within the overlay.

Operations Identifies all of the Operations (IDs) that are contained within

the exception overlay.

Dependency Identifies all of the Dependency Triggers (IDs) that are

contained within the exception overlay.

Exceptions Identifies all of the other Exception Handlers (IDs) that are

contained within this exception overlay.

Sequences The sequence of all the notations, flows, operations,

dependencies and exceptions.

Parent Processes An exception hander may be used by several different processes.

The parents IDs are recorded here.

3.5 Dependency / Trigger

It is important to know if a specific event occurs or a condition is met. Events and

conditions are referred to as dependency relationships. In some cases, we can also

treat internal (system) exceptions as triggers. BPMN does not distinguish the internal

and external dependency. They are all represented as flows in the diagram. It

increases the complexity of the diagram. An EML trigger layer can be used to solve

dependency problems. A trigger overlay is another layer in EML which is specially

used to model system internal dependencies. Since EML uses a multi-layer structure,

users can choose to combine the trigger layer with the process layer (as in Figure 3.14)

or separate them by using different views to reduce diagram complexity.

In general, a trigger is a special case of a process. The major difference between a

process and a trigger is the actor. A process is performed by a user; the sequence and

result of a process are normally variable. A trigger is enacted by the system itself

(automatically). Because it is an internal system dependency, the trigger execution

 89

order and outcomes (for the same trigger condition) are usually unalterable. Thus

another benefit to use the trigger overlay in EML is to support internal dependency

process reuse. As long as a trigger is defined, it can be automatically reused in all

different processes and exception handlers.

3.5.1 Trigger Flow

A trigger flow is used to show the sequence that a system trigger (or internal

dependency) will be performed. Each exception flow has only one source and only

one target. The source and target must be from the set of the Operations or Services /

sub-Services. Similar to process and exception flows, an Exception Flow is a line with

a solid arrowhead, but colored red. Each flow has a unique trigger sequence ID and

the user can show or hide this at any time. The encapsulated data for the trigger flow

is hidden by default, but the user can change it to visible if required. Again, five

different system trigger execution status are visually represented by the color of the

operation and service / sub-Service boundary positioned at the tail of the trigger flow

edge or the exception handler and status icon in the center of the target notation shape.

Figure 3.13 (a): ATrigger Flow with sequence ID and Data; (b): A Default

Trigger Flow

Figure 3.13 (a) shows a typical Trigger Flow with its Trigger Sequence ID (T1.1) on

top of the flow and the communication data (Cancel Room Booking Info) under the

flow. However, the default setting for the sequence ID and Data are all invisible. If a

trigger flow is a default flow, a red dot mark appears at the beginning of the line (as

shown in Figure 3.13 (b)). The start condition of the flow (C1) appears at the

beginning of this trigger flow.

 90

The common attributes of a Trigger Flow include:

Attributes Description

Id A unique Id that distinguishes the Trigger Flow notation from

other notations.

Name A textual name for the Flow.

From Identifies the incoming object of this Trigger Flow.

To Identifies the outgoing object of this Trigger Flow.

Flow Start

Condition ID

If the flow has a start condition, record its unique condition ID

here.

Flow Start

Conditions

The start conditions of the flow. It can be None if no start

conditions.

Sequence ID A unique ID that distinguishes the trigger sequence for this flow.

Data An optional attribute that identifies the encapsulated data package

that is being sent. It can be None if there is no data

communication.

Default Status If it is a default flow, set the value to True. Otherwise, the value

is False.

Iteration If the trigger process flow is involved in a loop, set the value to

be true. Otherwise, the value is false.

Loop Times The loop times in the trigger. The value is an integer (from 0 to

any positive number).

Loop Start

Conditions

The start conditions of the loop.

Loop Start

Condition ID

The unique loop start condition ID.

Loop End

Conditions

The end conditions of the loop.

Loop End

Condition ID

The unique loop end condition ID.

 91

3.5.2 Trigger Overlay

Figure 3.14 illustrates the Make Payment Process example with trigger flows. It

follows the Travel Booking Process example from Figure 3.9. When the user

successfully books air tickets and hotel rooms from Travel Booking Process, the

Agent Service starts to Request Payment using Payment Control service. The agent

sends the payment request to Customer Service, and the customer then Makes

Payment. If the agent Receives Payment within three days (default option), then it

sends the invoice by E-mail to the customer. The customer Receives the Invoice and

the whole process ends. However, if the agent Payment Control service doesn’t

receive the payment in three days, it Cancels the Booking using Product Booking

service. This operation triggers two extra operations automatically: Cancel Booking in

Airline Service (T1.1) and Hotel Service (T1.2). In this example, we integrate the

trigger with the process overlay. However, the user can hide the trigger and define it

in a different layer to reduce the diagram complexity. The Cancel Booking trigger

itself is reusable. So for any other processes, an exception handler or trigger can be

directly reused by linking the flow to the operation and filling in a trigger start

condition.

 92

 Figure 3.14: Make Payment Process with Triggers

The common attributes of a Trigger Layer include:

Attributes Description

Id A unique Id that distinguishes this trigger from other processes.

Name A textual name for this trigger.

Version The Version number of this trigger.

Author The author of this trigger.

Language The language in which text is written. The default is English.

Service Trees An EML trigger layer may contain one or more service trees.

The Service trees’ IDs are recorded here.

Documentation The process may have optional text documentation to describe it.

Start Conditions The start conditions of this trigger.

Trigger Flows The Trigger Flows (IDs) that are contained within the overlay.

Operations The Operations (IDs) that are contained within the trigger

overlay.

Dependency The Dependency Triggers (IDs) that are contained within the

trigger overlay.

 93

Exceptions The other Exception Handlers (IDs) that are contained within

this trigger overlay.

Sequences The sequence of all the notations, flows, operations,

dependencies and exceptions.

Invoker IDs A trigger may be used by several different processes, exception

handlers or other triggers. The invokers’ IDs are recorded here.

3.6 Iteration

EML supports specification of process iteration at different levels. The iteration flow

is visually represented by broken lines. BPMN uses a loop icon in a task to represent

iteration. However, if the user wants to represent the iteration between multiple tasks,

he has to use extra components (e.g. pool and group etc.) to model it. In EML, we

represent iterations occurring in different overlays by using the same visual method

(styled lines), and use different process specific colours to distinguish them. This

increases the consistency of the notation and reduces the modelling complexity of the

diagram. For example, the iteration in a process overlay is modelled by changing the

process flow from a solid line to a dashed line (as shown in Figure 3.15 (a)). For an

exception handler, a solid exception flow is changed to a broken line flow (as shown

in Figure 3.15 (c)), and likewise for trigger flows (as shown in Figure 3.15 (b)).

Figure 3.15 (a): Loop in Process Overlay with Single Activity;

(b): Loop in Trigger Overlay with Two Operations;

 94

(c): Loop in Exception Handler Overlay with Three Operations

There are three types of loops:

1. A single activity loop is represented as a single arrowhead dashed line whose

source and target are same operation (or service/sub-service). Attributes in

the dashed flow control the iteration (e.g. loop times, start and complete

conditions, input/output data etc.). Check Enquires in Figure 3.15 (a) is a

single activity loop example in process overlay. The Prepare Itineraries

service inside travel Agent Service uses this iteration to check all the travel

related enquiries from the Customer Service (e.g. all the available travel dates,

special air tickets, possible hotel room promotions etc.). The loop keeps

working until an end condition C1 (all the enquiries have been answered) is

satisfied.

2. Loops of two operations (or services / sub-services), use a dashed line with

two arrowheads. Figure 3.15 (b) shows the iteration of the Modify Booking

and Check Available Rooms operations in the trigger overlay. When the

Agent Service received the room booking application from the Customer

Service, they need to check whether the suitable hotel room is available on

customer required date. The customer normally sends a list of preferred date

and room type for the room booking. The Agent Service starts from the

highest preference date and room type to the lowest preference date and room

type. The process loops until a termination condition C2 is met (finds the

suitable room on required date or there is no suitable room available on all

the preferred dates).

3. If a loop involves more than two operations (or services / sub-services), a

single arrowhead dashed line guides direction, linking different operations or

services in a closed circuit. Figure 3.15 (c) represents an iteration example

among three different operations in exception handler overlay. The agent Sets

 95

Travel Date based on customer’s requirements, then Check Available Rooms

from the hotel and Check Available Seats from the airline. If it cannot find

room and air ticket on same date, the agent then Reset Travel Date and start

search again. The loop keeps working among these three operations until

there are room and air tickets both available on the required date, or if it

cannot find them on one of the other customer preferred dates (C3).

The attributes of the iterations are combined in all the flow objects. Please check

process flow, exception flows and trigger flows’ attributes for more detailed iteration

related information.

3.7 Conditions

Conditions are modelling elements that are used to control how flows interact as they

converge and diverge within a process, exception handler or trigger. The term

“Conditions” implies that there is a gating mechanism that either allows or disallows

passage through the gate. The traditional diamond shape has been widely accepted as

a visual representation for condition (in flow chart diagram). Hence we decide to

adopt similar approach in our EML. When the flows arrive at a condition, they can be

merged together on input and/or split apart on output as the condition mechanisms are

invoked. To be more descriptive, a condition is actually a collection of �Logical

Gates.” There are different types of conditions (as described below) and the behaviour

of each type of conditions will determine the approach for the continuation of

incoming flows.

In EML, a condition shape is a diamond. The fill colour of the condition is based on

the overlays. If a shape is used in a process layer, it appears in blue. However, if it is

 96

in an exception handler or trigger overlay, then the colour becomes green or red. All

conditions have an open centre so that the condition type icons can be included within

the shape to help distinguish the condition groups (e.g. OR, AND, XOR or OTHERS).

Figure 3.16 lists all the condition types in EML process overlay. Figure 3.16 (a) is the

default setting of a condition. It is used to represent OR relationships between the

incoming flows. The AND relationship is represented by a “&” sign in the middle of

the diamond shape (as shown in Figure 3.16 (b)). In Figure 3.16 (C), a “X” icon

appears in the condition shape, it means the XOR relationship. If the user defines any

extra complex conditions, a white quad arrow is used to represent them.

Figure 3.16: Conditions in Process Overlay

The common attributes of a Condition include:

Attributes Description

Id This is a unique Id that distinguishes this condition from other

notations.

Overlay A condition can be used in Process, Exception Handler or Trigger

Overlays.

Condition Type A condition type can be OR, AND, XOR or Others.

 97

Language This holds the language in which text is written. The default is

English.

Incoming Flows All the incoming flow IDs.

Incoming

Conditions

If there are Multiple incoming Flows, Incoming Conditions

expression must be set in here. This will consist of an expression

that can reference incoming Flows and (or related Data).

Outgoing Flows All the outgoing flow IDs.

Start Conditions The start conditions of this trigger.

Outgoing

Conditions

If there are Multiple outgoing Flows, Outgoing Conditions

expression must be set here. This will consist of an expression

that can reference (outgoing) Flows and (or Data).

Pre-Defined

Conditions

If the condition type is OTHERS, list all the user defined

conditions in here.

3.8 Summary

In this chapter we have described EML, a novel business process modelling language

based on tree hierarchies and tree overlay metaphors. The service architectures are

represented as trees and the business sequences are modelled as process overlays on

the service trees. By combining the above two mechanisms EML gives users a clear

overview of a whole enterprise system while all the business processes are modelled

by overlays on the same view. It successfully weaves service-oriented and

process-oriented methods into the same visual language.

EML uses a multilayer structure to model business processes, exception handlers and

dependency triggers in different levels. This approach potentially reduces the

complexity of business processes. Our objective with EML is to develop an easy to

understand visual specification mechanism for both business and technical users. It

will mitigate the limitations of existing visual modelling notations and bridge the gap

 98

between business design, implementation and integration. The long term contribution

for this research is to apply our novel EML notation to maximize the simplicity and

efficiency of enterprise process integration, and to automatically map to and from

business process execution environments. Our approach does not exclude existing

modelling notations. We aim to incorporate them into our EML support tool while

providing additional richer, integrative views for enterprise process modelling.

 98

Chapter 4

EML MODELLING TOOL
IMPLEMENTATION

We have developed an Eclipse-based integrated design environment, MaramaEML

for creating EML specifications. This IDE provides a platform for efficient visual

EML model creation, inspection, editing, storage, model driven code generation, and

integration with other diagram types. A distortion-based fisheye and zooming function

has also been implemented to enhance MaramaEML’s navigability for complex

diagrams. MaramaEML also facilitates BPEL code to be automatically generated

from graphical EML representations and map it to LTSAS for validation.

In this chapter we describe the implementation of our EML modelling tool prototype.

The prototype was initially implemented using the standalone Pounamu metatool

(Zhu and Grundy et al, 2007), and then migrated to the Eclipse-based Marama

(Grundy and Hosking et al, 2006) framework, and finally redeveloped using the

Marama meta-tools (Li and Hosking et al 2008), which support easy tool structure

specification using a visual approach, and tool behaviour implementation via

Marama’s APIs and the Java programming language.

4.1 Introduction

The EML tool was originally created using the Pounamu metatool (Zhu and Grundy et

al, 2007), which is a standalone meta-modelling environment. Various case studies

and evaluations have been conducted on Pounamu to prove its meta-modelling

concept and to unveil its limitations (Grundy et, al 2008; Zhu and Grundy and

 99

Hosking et al 2006). These research results bootstrapped the development of the

Marama framework (Grundy and Hosking et al 2006), which was created using the

Eclipse framework exploiting its EMF and GEF plug-ins (Eclipse 2009). Marama

addressed various identified limitations of Pounamu. At an early stage of Marama

development, we could use Marama as an Eclipse-based editor to facilitate graphical

rendering of end user models based on our Pounamu-specified tools. As Marama

evolved, a set of meta-tools, including a metamodel definer, a shape designer and a

view type composer, were developed to allow Marama to be independent of Pounamu.

The EML tool has been rebuilt and upgraded with enhanced features using this

meta-toolset.

Below we describe each of these tool iterations. In the first iteration using Pounamu,

we generated a user-friendly modelling environment for EML. In the second iteration

using Marama, we created MaramaEML as an improved EML modelling

environment leveraging Eclipse and its plug-ins for better model and diagram

management and user experience.. In the subsequent iteration using the Marama

meta-tools, we focused on re-specification and re-generation of MaramaEML to

incorporate BPEL generation and LTSA-based verification (Uchitel and Robert et al

2003) of EML-modelled business processes.

4.2 Pounamu EML Tool

Pounamu (Zhu and Grundy et al 2007) is a standalone meta-modelling tool that allows

quick construction of end user visual modelling environments. The initial exploratory

EML tool icons, metamodel and views were all visually specified using Pounamu,

with behaviour extensions implemented in Pounamu as Java snippets. Pounamu

allowed fast development of the EML tool to prove its basic modelling concepts.

Figure 4.1 shows an exemplar EML model created in the Pounamu generated EML

environment using the tree structure and process overlays. The basic tree diagram is

 100

represented in (a) and all the tree nodes of EML diagram elements are organized in (b).

The user can either select an element from the tree diagram (a) or from the Pounamu

tree editor (b) to process future property editing. Progress outputs are shown in (c).

Figure 4.1: The initial exploration of EML using Pounamu

The construction of the EML tool in Pounamu comprised the following four iterative

steps.

Firstly, we defined a meta-model containing entity types and relationship types, with

optional key/non-key attributes. As shown in Figure 4.2, entity and relationship types

were defined in a metamodel view, with properties set via a property sheet. The

meta-model entities and associations are defined in Pounamu’s metamodel editor (a),

and they are also organized in a tree structure in the manager tree window (b). When

the user selects a entity or association from (a) or (b), they can modify the proprieties

in the property window (c).

(a)

(b)

(c)

 101

Figure 4.2: Construction of the EML metamodel in Pounamu

We then defined a set of icons - shapes and connectors, to visually represent the

meta-model elements. As shown in Figure 4.3 and 4.4, each shape (Figure 4.3) or

connector (Figure 4.4) was defined in its own view. Complex visual properties were

set via a property sheet and the changes were reflected on the icon immediately. For

shape definitions (Figure 4.3), the user can define the basic shape properties (in (b))

for each component (e.g. oval, rectangle, polygon etc.), and the result will be shown

in the main window (a). For connector definitions (Figure 4.4), the user defines the

properties (line colour, text colour, connector start and end shapes etc.) for the

connectors in (b), the reactive editing result will be directly shown in (a).

(a)

(c)

(b)

 102

Figure 4.3: Construction of the EML shapes in Pounamu

Figure 4.4: Construction of the EML connectors in Pounamu

We then defined different “view types” by bringing together required meta-model

elements and visual icons and creating mapping relationships between them. A view

(a)

(b)

(a)

(b)

 103

type is a diagram type in Pounamu made up of meta-model entities, associations,

shapes, connectors and event handlers (specifying dynamic constraints and editing

behaviours). As shown in Figure 4.5, view elements and mappings were added using a

form-based diagram. The user normally starts by selecting meta-model entities and

associations from (a), and then maps them to visual icons in (b), and finally specifies

mappings of model properties to visual properties in (c).

Figure 4.5: Construction of the EML view types in Pounamu

We then defined “event handlers” to react to = model or diagram changes. Event

handlers in Pounamu provide flexible behaviour specifications for a tool. As shown in

Figure 4.6, handler snippets were added in a form-based editor. Compile-time

checking of the code was performed when an event handler was registered. To define

an event handler, the user needs to select the event handler (ExpandCollapseTree)

node from the Manager tree window (e), and then add into the form-based editor

import statements (a), action codes (b), helper methods (c) and the description (d).

(a)

(b)

(c)

 104

Figure 4.6: Construction of the EML event handlers in Pounamu

4.3 Marama EML Tool

We then rebuilt our Pounamu-based tool using an initial Marama editor prototype in

Eclipse. This provided an Eclipse-hosted version of our EML modelling tool using

Eclipse views, editors, graphical modelling tools, data management and editing

controls.

The final EML prototype we developed was defined using the Marama meta-tools

(Grundy and Hosking et al 2006). The structural aspects were constructed visually

using the Marama diagramming-based editors. The behavioural aspects were

constructed programmatically as extensible Marama event handlers. End user tools

can be specified using Marama meta-tools in the following steps (Li and Hosking et al

2009) as shown in Figure 4.7:

(a)

(b)

(c)

(d)

(e)

 105

1) Create a tool project using the Marama Tool Project Wizard.

2) Specify the tool metamodel including entity and association types and their

attributes, sub-typing relations and OCL constraints.

3) Create shapes/connectors to represent metamodel entity/association types.

4) Compose a view type by specifying shapes, connectors, entities, associations,

view-model mappings and visual constraints

5) The initial tool project can be used for defining the structure of end user domain

models.

6) – 7) Though further event propagations and event handlers can be specified

visually using ViTABaL-WS (Grundy and Hosking 1995) and Kaitiaki (Liu and

Grundy et al 2005) views, programming with Java using Marama API was

necessary due to incomplete development of Marama’s visual event handlers.

8) The event handlers are inserted into model project instances to take effect.

In the following section, we elaborate in more detail on the implementation of

MaramaEML using the Marama meta-toolset.

 106

Marama meta-tools

Tool project

 1. Create a
tool project

User requests

Marama meta-tools

Metamodel

Marama meta-tools

Shapes and connectors

Marama meta-tools

View type

Marama meta-tools

Data repository

2. Create a
metamodel

3. Create
shapes and
connectors

4. Create a
view type

Marama

Model project and
diagrams

5. Generate
visual modeling

environment

Marama meta-tools

Event propagations

Marama meta-tools

Visual event handler

6. Specify event
propagations

7. Specify event
handler

Marama meta-tools

Source code repository

8. Execute event handler
on model project

Figure 4.7: Tool construction steps using Marama meta-tools (Li 2007)

4.3.1 Structural Backbone

Marama meta-tools support diagramming-based tool specifications using three definer

views: the Metamodel Definer view, the Shape Designer view, and the View Type

Definer view. The Metamodel Definer is used to define the metamodel of a tool,

including entity types, association types, attributes, constraints and model level event

handlers. The meta-model is the underlying data structure of the end user tool. The

Shape Designer is used to construct shape and connector icons via drag-and-drop and

 107

property specifications. The shapes and connectors are the iconic representations of

the backbone model data. The View Type Definer is used to compose the view

elements and the mapping relationships between meta-model elements and the

shapes/connectors.

4.3.2 Tool Project

The EML tool was initially created using the Marama Tool Project wizard, as shown

in Figure 4.8. The tool project was created with placeholders for the meta-model

specification, requiring the definition of the meta-data for the EML language, and

then filled in with addition of visual shape designs and view type composition. The

EML tool was developed in an iterative way. We could create additional meta-model

and iconic elements at any stage once the basic tool project had been established.

Where complexities were needed, we defined event handlers on top of the structural

backbone using the Marama APIs.

 108

Figure 4.8: Creating the EML tool using Marama.

4.3.3 Metamodel

The EML metamodel is an Extended Entity Relationship (EER) model that consists of

a range of entity types, with refined attributes and association types. Constraints were

added in the form of OCL expressions. Figure 4.9 shows part of the EML metamodel

specification that includes the Service and Operation entity types, related by the

Service_Operation association type. In this example, the user defines the service and

operation entities and association in (a), and for each of them, they can modify the

detailed properties in (b). The green circles in entity shapes are the formulas that are

used to describe the derived or preset values of the attributes. Their detailed contexts

and OCL expressions are represented in (c).

The entity types (Service and Operation) were created by selecting and drag-dropping

 109

an EntityShape from the Palette tool. The name of the entity type is defined using the

Properties view. A number of attributes are placed into an entity type. In Marama, an

attribute can be specified as a key, constraining the uniqueness of its value in a model

instance; it also has a name and type.

The association type (Service_Operation) were created by selecting and

drag-dropping an AssociationShape from the Palette tool, and then from the

Properties window, we selected the association ends and their multiplicities, which

were used to constrain the connection (whether two entities could be connected via

this particular association given their types and the number of such existing

connections) of the runtime model elements. The association type could also have

attributes if needed.

Figure 4.9: Defining EML metamodel in Marama.

(a)

(b)

(c)

 110

A variety of OCL constraints were added into the EML metamodel. They were

represented in the form of formulae, the green circle nodes in the diagram. Each

formula has its context (the entity/association or attribute where the constraint is

residing) and expression (the OCL expression). The Formula View at the bottom of

Figure 4.9 lists the formulae placed on various attributes of the Service and Operation

entity types. The common ‘Set{}’ expression constrains an attribute to a list of

predefined values. The full EML metamodel is described in Chapter 3 (Enterprise

Modelling Language).

We have later integrated a BPMN and a Form Chart view to allow their notations to

coordinate with EML in MaramaEML. For such integration, we had to add relevant

BPMN and Form Chart meta-model elements (e.g. the process, task, object and

sequence flow notations of BPMN; the page, action and transition notations of the

Form Chart) into the existing EML meta-model. The construction process of those

meta-model elements is the same as what we explained above.

4.3.4 Shapes and Connectors

The visual representations of the EML meta-model elements (and those of the BPMN

and Form Chart elements) were designed using Marama shapes and connectors.

Figure 4.10 shows a Shape Designer view that contains several shapes (Service,

Operation, Name, ProcessStart and ProcessEnd) and connectors (ProcessFlow and

TreeBranch).

The shapes were created by selecting and drag-dropping a ShapeShape from the

Palette tool first as the base container, and then fill in with labels, text fields or text

areas. Various visual properties including the colour, layout and display text were set

via the Properties view.

 111

The connectors were created in a similar manner, but needed to connect two shapes.

Each shape/connector in design has an accompanied concrete viewer to the right hand

side. The viewers show immediately the runtime effect of the design, i.e. the exact

representation that will appear in the end users’ models.

Various properties were exported using the Exported Properties view. To export a

property, we just need to define an exported name for an existing shape/connector

property. The purpose of exporting a property is to allow end users to modify it at

runtime for a model instance, and allow their mapping to meta-model properties. Non

exported properties are hidden from both the user and the underlying model.

Figure 4.10: Defining shapes in Marama.

4.3.5 View Types

 112

A Marama view type is used to specify the composition of a view (shapes and

connectors) and the mapping from meta-model elements to those shapes and

connectors. The one-to-one mapping (yellow rectangle) of a shape (rounded green

rectangle) to an entity type (green rectangle) and that of a connector (rounded pink

rectangle) to an association type (pink rectangle), together with all of the

corresponding property mappings were defined to compose the EML view type as

shown in Figure 4.11. There we see, for example, the Service shape mapped to the

Service entity type, the Operation shape mapped to the Operation entity type, and the

ProcessFlow connector mapped to the ProcessStart_ProcessEnd association.

Figure 4.11: Defining the view type in Marama

An entity/association type was added by selecting and drag-dropping a

ViewEntity/ViewAssociation from the Palette to the diagram, and then the name of an

entity/association type was selected from the Properties window. We were able to do

this because Marama queried the user-defined metamodel and loaded the available

elements into the property sheet.

 113

A shape/connector was added in the similar way, by selecting and drag-dropping a

ViewShape/ViewConnection from the Palette to the diagram followed by selecting

the name of the shape from the Properties window.

A mapping was added by selecting and drag-dropping a ViewMapping from the

Palette to the diagram first, followed by selecting a shape/connector and an

entity/association type from the Properties window. Mapping links were automatically

generated into the diagram to connect the mapped elements. Once a mapping

relationship was set up, further mapping of properties between the mapped elements

were selected via the PropertyMapping view (shown in the bottom window of Figure

4.11).

By using the Marama framework, multiple linked views associated with an underlying

meta-model can be created. The multiple view technology allows multiple visual

language notations to be integrated to be used for flexible and interchangeable model

specifications. We wanted to provide EML with the ability to allow users to choose to

use their preferred notation to model their systems flexibly, i.e. using the BPMN and

Form Chart specifications, so we provided their linked notational views in

MaramaEML. The same implementation as described above has been carried out to

define the BPMN and Form Chart views with their relevant meta-model elements,

shapes and connectors, and mappings in between.

4.3.6 Model Projects

The above EML tool definitions allowed Marama to automatically generate an EML

modelling environment with structural modelling capabilities. End users can now

start modelling (i.e. creating EML model instances) using the EML notation in the

generated environment.

A model project needs to be created to package an end user model. Marama provides

 114

a wizard for creating model projects in an easy way, allowing the end user to select an

available tool project so that the modelling environment based on that tool can be

generated.

Once the model project is set up, the end user can create diagrams using the Marama

Diagram wizard, and then create domain models by selecting and drag-dropping the

EML elements from the Palette into the diagram, followed by domain property

settings.

While constructing the structural backbone of the EML tool was a simple visual

experience using Marama, adding dynamic behaviours for the EML tool was a

non-trivial task. Marama does support visual behaviour specification in various ways

(Liu 2007), but those techniques were not fully available at the stage of the EML tool

development. We had to resort to code to implement behaviours such as the automatic

Tree Structure layout, showing/hiding Process Overlay and code generation.

4.3.7 Behaviours

Marama provides extension points for tool behaviour specifications. These extension

points are known as event handlers. Marama uses the EMF notification mechanisms

to generate events for any change in its models and diagrams. Tool developers can use

the Marama APIs to catch or filter the generated events. User defined procedures can

handle various built-in event handler types, such as the new shape/connector added

event, shape/connector resize/move/delete event, entity/relationship property change

event, and the user action event type, i.e. the right click action on context menus.

4.3.8 Service Tree Structure

An event handler for the EML tree layout was defined for the root/leaf and

parent/child shapes to respond to. When a shape is added to an EML modelling view,

 115

the location of the shape is analysed and then corresponding reacting behaviours are

executed to automatically layout the shape based on whether the shape is created as a

child of a parent shape or is standalone. This event handler catches the new shape

added event and responds with a tree layout algorithm. We have developed a

algorithm to calculate the vertical and horizontal space between all the nodes in this

tree structure. When the user adds a new service or operation node under a service

node, the positions of all previous nodes are recalculated and updated to maintain the

tree layout; tree branches are rebuilt too.. All the name spaces that belong to the nodes

are automatically moved as well. Figure 4.12 shows an exemplar EML tree structure

in MaramaEML.

Figure 4.12: the Tree layout in Marama_EML

A sub-tree can be moved to a standalone location to become an independent tree or to

a parent shape location to become a migrated child. This is implemented as an event

handler to react to a shape move event. When a shape is moved, all its subsequent

descendents are retrieved and moved together as a whole when reacting to the event.

 116

4.3.9 Overlay

The overlays of process models on a tree structure were firstly defined as normal

elements, including the Process Starts, Process Flows and Process Ends as the basis,

with Trigger and Exception Flows as complements. Iterations can be defined for each

Process/Trigger/Exception Flow via iterative property settings. Multiple process

overlays can be modelled in the same diagram, and they are distinguished from one

another using unique process identifiers (each process-related element has an ID

property showing which process it is belonging to). Process overlays can be shown or

hidden, selected and deleted , to react to the user’s interaction. These were

implemented as user triggered event handlers (reacting to right click actions on

context menus). The context menus added by implementing the process overlay event

handlers include the show/hide all process overlays, delete all process overlays,

select/show process [name] while hiding other processes, and delete process

[name].In addition, an Eclipse ViewPart implementation called “EML Processes

View” provides the user with a more straightforward way (juxtaposed display with the

diagram, as shown in Figure 4.13) to view all the processes overlaid in a diagram, also

allowing selection of a particular or a subset of processes to display in the diagram.

In the implementation of process overlays, all the elements of an EML diagram are

walked through to identify their notation type and properties. Elements related to

process overlays are collected and distinguished using a Hashtable data structure,

where they are traversed through and analysed to supply on-demand interactive

display of multiple process overlays.

 117

Figure 4.13: Process overlays in EML

4.3.10 Code Generation

Saving an EML model from the Eclipse workbench or clicking a context menu called

generate BPEL from EML will both generate BPEL code to a user’s environment. The

code generation facility was implemented as both embedded runtime behaviour in

Marama (by adding to the Marama API) and a user triggered event handler. It uses the

Marama API calls to query user-defined modelling elements and perform mapping

code generation to the file system.

The algorithm used for generating BPEL is straightforward, containing a traversal of

the EML nodes using a Hashtable data structure and analysing the types and

properties of the EML elements to permit mapping to the corresponding BPEL code

structure. As multiple processes can be defined in one EML diagram via process

overlays, multiple BPEL process files can be generated. Basic one-to-one mapping of

EML elements to BPEL constructs is achievable, for instance, an EML Service maps

 118

to a BPEL PortType; an EML Operation maps to a BPEL Operation; an EML

ProcessFlow maps to a BPEL Link; an EML ExceptionFlow maps to a BPEL

Compensation Handler; an EML TriggerFlow maps to a BPEL Event Handler. The

code generator buffers the diagram analysis results, i.e. the XML code snippets

contributing to the final BPEL processes definition, and finally outputsthe XML files.

However, generating complete and executable BPEL code requires additional diagram

properties (e.g. input and output data, conditions, error message etc.) to be present

over and above the basic EML modeller. This required us to re-engineer the EML

language prototype to add these properties to EML elements.

A trial generation of BPEL from EML’s complementary BPMN views has also been

implemented using MaramaTorua (Huh and Grundy et al 2007), which is a locally

developed visual mapping tool allowing user-defined mappings from one language

schema to another. The trial was successful, demonstrating the ease of code

generation by visual specification via the mapper without the need of a backend code

generator from EML. Our next step is to explore a similar mechanism in generating

BPEL from EML with the hypothesis that the process will be equally straightforward.

4.3.11 Zoomable View

Zooming functions (Singh and Mitra et al 2004), including zoom in, zoom out, zoom

fit and selection zoom are implemented as both toolbar commands on the Eclipse

Workbench (a) (as seen on the top part of Figure 4.14). In addition, we have added an

Eclipse PageBookView, which listens to user’s diagram selection events, and renders

a ‘Radar’ zoom view (b) for the whole EML diagram accordingly (as seen at the

bottom left part of Figure 4.14).

 119

Figure 4.14: Zooming commands and zoom view

The “zoom in” function zooms in the entire EML diagram by a predefined scaling

factor. The “zoom out” function zooms out the entire EML diagram by the same

scaling factor. The “zoom fit” function provides the very best view of the EML

diagram fitting all elements in the available screen space with an automatically

adjusted scaling factor. The “selection zoom” function allows user to select a square

area of the diagram and zoom into the selected part. The “Radar” zoom view

accompanies the EML diagram, providing a thumbnail as well as an indication of

visible items inside the screen boundary and those outside of the boundary of the

EML diagram. As shown in Figure 4.15, while the EML diagram is zoomed in

showing the selected elements as the focus, the “Radar” zoom view also indicates the

selection boundary. Continuous zooming based on an existing zooming status is also

allowed.

(a)

(b)

 120

Figure 4.15: Selection zoom

This implementation is integrated with the Marama API. We have provided an

additional package inside the MaramaEditor plug-in to manage the zooming functions

while still exploiting the existing Marama code base. The package includes zooming

interfaces, various zooming actions, Marama diagram mouse trackers, and viewing

areas. MaramaEditor is then configured to enable these zooming features using its

zoom manager.

4.3.12 Fisheye View

The fisheye view function (Gansner and Yehuda et al 2004) in MaramaEML provides

a way to render a small focused display of a large EML tree structure. While the

amount of information created by the user increases, the viewing space of

MaramaEML remains relatively small and thus has a limitation. The idea is to present

a large amount of EML diagram data to users in a way that is searchable, and getting

information is not too timely of a task.

We implemented a fisheye view function by providing a local context against a global

context. This is a focus and context visual technique which can often be referred to as

 121

a “distortion based display’.

Three major attributes have been developed in our implementation to achieve the

fisheye function: Focal point, Distance from focus (D (.,x)[D(.,.)=0]) and Degree of

Interest (importance, resolution: DOI (x)).

A point of interest has to be defined so that the interaction with the focus, meaning

what is going to be the global context, can be determined. The “distance from focus”

concept determines the distance from my point of interest (focus) to some point x.

Examples of “Distance from focus” could be the distance from the centre of a service

node or operation node to the centre of another service or operation node, or from a

root node directory to the lower level of leaves node on the EML tree structure.

Longer distances lead to smaller sizes of the shapes.

Degree of Interest (DOI) is another concept in the fisheye view implementation. For a

user at any given point of interaction within a system, he/she is not going to be

interested in the entire system all of the time. For a particular purpose, it is necessary

to determine how interested a user is in an application on the system. As a result, DOI

would help the software to represent parts of the EML tree structure that are of most

interest to the user in great detail, while the other parts that will not used often would

be in less detail. A higher degree of interest is indicated by a higher value.

The implementation of DOI is composed of a static component and the dynamic

component. The static component is either the priori importance or the global

importance of the element relative to every other object in the system. For the user,

the global importance is how a tree node is used more than another tree node in the

EML diagram. The dynamic component creates a relationship between the user’s

interest and the importance of an item depending on the latest interactions on the tree.

The DOI is assigned to every element in the EML diagram, and a node is selected as

the central focus point. It is important to notice that if the point of interest changes,

 122

then the DOI must be recalculated for every node.

Figure 4.16: Fisheye view of a Diagram in MaramaEML

Figure 4.16 shows a fisheye view example based on the EML tree structure. The

mouse pointer is the default Focal Point, the DOI of the certain part of the tree

structure is based on the Distance of Focus. A shorter distance will lead to higher

value of DOI, thus, the shape will be represented as a larger size. The longer distance

brings a lower value of DOI, which leads to smaller sized shapes. As the mouse

moves, the DOI value and shape size of the tree nodes are changed dynamically. The

fisheye function has also been applied to the process, trigger and exception overlays

of the EML trees and BPMN diagrams in the MaramaEML environment.

 123

4.4 Integration

The Eclipse DOM XML parsing APIs were primarily used for integrating EML with

other modelling technologies. As Marama generates both XML and XMI backend for

model and diagram interpretation, and it provides APIs for parsing XML in an easy

way, we were able to easily integrate the EML tool and its generated user models with

a relatively low amount of effort. We have developed an integrated support tool for

EML to supplement its functionality with other mainstream notations.

Figure 4.17 shows an overview of the integrated framework. It allows the user to

construct and manage EML (a), BPMN (b) and Form-Chart (c) diagrams and

automatically generates executable BPEL code (d). It thus builds a strong relationship

with industry business process modelling standards.

Eclipse based Enterprise Modeling Integration Platform

Figure 1: Enterprise Integration Framework

(a) EML View (b) BPMN View
(c) Form Chart View

(d) BPEL
Code

L1

L2

L3

 Figure 8: EML Integrated Tool Framework

We define three layers for this multi-layer framework; visual (L1), tool (L2) and code

(L3) layers. In general, it is sufficient for the user to use the visual layer to model

enterprise processes. By using corresponding schema, the tool layer facilitates

Figure 4.17: EML Integrated Tool Framework

 124

automatic code generation and maps between the visual notations of level 1. Figure

4.17 shows an example of mapping between EML, Form Chart and BPMN that is

achieved through BPEL code at the back-end.

This framework provides a good launch pad to enhance the integration and generation

ability of different notations. By using the XML-based BPEL code as a middleware, a

single notation can be integrated effectively with other modelling technologies. It

provides users with a real multi-view function for enterprises, as they can have views

based on different notations, and all the views are automatically kept consistent. This

integration approach provides multi-level framework support for flexible and broad

integration of complex enterprise system models.

Model-View-Controller is the underlying pattern that we have adopted for

implementing this EML integrated tool (Buschmann and Meunier et al 1996).

Semantic consistency of the three views is implemented using Java event handlers.

Model views are checked on-the-fly for consistency violations after each model

modification. There are primary underlying mappings defined in this software as

crossovers between the EML and BPMN server-side specification, and also between

client-side service calls and server-side definitions. Event logs are kept and used as

Figure 4.18: Consistency Mapping Between a BPMN view and a Form Chart
View

(a)
(b)

(c)

 125

resources to trace model changes and corresponding consistency updates of the three

views.

Figure 4.18 demonstrates a run time automatic mapping example between BPMN (a)

and Form-Chart views (b). We have used BPMN to model a server side process of an

E-mail voting system and a Form-Chart to model the client side. When a user changes

the property name from BPMN view (“SendE-mail to User”), they can use the

“Update Client Model” function to build the mapping to the Form-Chart view

automatically. All changes they have made are automatically recorded in a

“propertyChange.log” file (c).

A locally developed mapping tool VMLPlus, has also been used to specify complex

mappings between the EML and BPMN notation. Users can select and link elements

from visual schemas of the two notations. This allows deeper level mappings to be

specified facilitating more complete consistency updates, including types and

attributes.

Performance simulation (Grundy and Hosking et al 2006) is also incorporated in the

integrated EML support environment, facilitating cost-effective tests of the integrated

specifications using random data and visualisation of test results using the same

design-level specification views.

4.5 Summary

In this chapter, we have discussed a set of implementation issues for MaramaEML

and its early prototype, Pounamu version of the software. The implementation of

EML has been an iterative process, with continuous support of progressing meta-tools.

Though we needed to migrate EML from Pounamu to the Marama, this did not take

up a lot of effort, as the underlying themes of Pounamu and Marama have major

commonalities. The constructions of the structure backbone of EML were easy and

 126

efficient in both Pounamu and Marama, however, those of the behaviour extensions

required massive amount of work. In order to add onto Marama and define end user

tool interactions, we had to exploit the Marama APIs which requires well-established

and detailed knowledge of the underlying framework infrastructure. The Zooming and

Fisheye view functions have been developed as a plug-in for Marama to extend the

scalability and usability of MaramaEML.

 127

Chapter 5

CASE STUDY

We were asked to model a large university enrolment system (including sixteen

services and fifty six functions) as a part of a process improvement exercise. In this

chapter, we use this complicated example to demonstrate the main modeling

capabilities of EML and various support functionalities provided by the EML

environment. In section 5.1, the enrollment system is briefly introduced. The service

tree modeling example is described in section 5.2.Section 5.3 covers the multi-

overlays structure for processes, exceptions and triggers. The multi-view support

function is discussed in section 5.4, and the automatic code generation and validation

are presented in section 5.5. Section 5.6 describes the zoomable and fisheye view

support in the MaramaEML environment.The final code deployment is reported in

section 5.7.

5.1 University Enrollment System Example

The university enrolment system is a complex enterprise system that involves

dynamic collaborations among five distinguished parties: Student, Enrolment Office,

Department, Finance Office and StudyLink (the New Zealand government’s student

loan agency).

The main functional requirements are:

• Students will use this system to search the course database and apply for

enrolment in target courses; if their application is approved, they may want to

apply for a loan from StudyLink;

• After receiving student applications, the Enrolment Office checks the

academic conditions with academic Department staff and then informs

Students of the results;

 128

• Department staff check the course enrollment conditions and make the final

decision (approve or reject);

• For an approved enrolment application, the Finance Office tracks fee payment

and informs the Enrolment Office and Department of any changes. If a Student

applies for a loan, the Finance Office also needs to confirm the student

information with StudyLink.

• StudyLink investigates the student information with the university and then

approves (or declines) the loan application.

5.2 Service Tree Modeling

The system decomposition process focuses on how to break down the system to

identify its structure and behaviour. Once we identify the domain specific structure

and behaviour, the modelling grammar (e.g. BPMN, EML etc.) can be applied to

represent the analysis and design concepts. We have reviewed prior system

decomposition criteria and models. The following four principles have been adapted

to our decomposition process:

• Minimality: For every subsystem at every level in the overall structure of the

system, we try to keep the redundant state at the lowest possible level. All the

states must be reachable.

• Determinism: For every event at every level in the overall structure of the

system, we only model it either as an external event or a well-defined internal

event. When states that lead to two or more post-states, the guard conditions

need to be considered (to specify the appropriate path).

• Losslessness: Hereditary and emergent states are preserved in the

decomposition. The inferences must not be lost when breaking a system into

several jointed subsystems.

 129

• Weak Coupling and Strong Cohesion: Models should have minimal external

interactions and high internal integration.

Figure 5.1 shows a complex, fully-expanded overview of an EML tree modelling the

university enrolment service. The student service, university service, and StudyLink

are sub-services (represented as ovals) of the university enrolment service. The

university service includes five embedded services (enrolment office, finance office,

credit check, department and communication). The rectangle shapes represent atomic

operations inside the service. The StudyLink service also includes a detailed four

layer sub-service structure.

There are six major functions in Student Service (Search Course Database, Apply

Enrollment, Apply Loan, Make Payment, Modify Enrollment and Receive

Information) and six in the Enrolment Office (Receive Application, Check Academic

Records, Approve Application, Reject Application, Modify Application and Check

Other Conditions). The Finance Office has five direct functions (Request Payment,

Receive Payment, Modify Payment, Send Invoice and Confirm with StudyLink) and

five indirect functions (Verify Student, Credit Check, Update Information,

Scholarship Pay Back and Inform Changes) via its sub-service (Credit Check).

StudyLink owns four different levels of direct and indirect services and operations.

More specific details are:

Level 1 (Direct Services):

• Loan Approval Service (includes another three levels of sub-services and six

direct operations - Check University Payment, Approve Loan, Decline Loan,

Update Amount, Send Payment and Inform User)

• Loan Payback Service (has six operations - Check Amount, Receive Payment,

Setup Monthly Payment, Update Information and Send Receipt)

• Communication Service (has four reusable operations - Print, E-mail, Phone

and Fax)

 130

Level 2 (Indirect Services & Operations):

• Student Account Management Service (this service is embedded in the Loan

Approval Service; it has two sub-services and seven direct operations - Crate

Account, Modify Information, Delete Account, Append Account, IRD Check,

Income Information and Inform Changes)

Level 3 (Indirect Services & Operations):

• Interest Calculation Service (this service is embedded in the Student Account

Management Service;t has one sub-service and four direct operations - Add

Interest, Reduce Interest, Inform Student and Special Rate)

Level 4 (Indirect Services & Operations):

• Interest Free Approve Service (this service is embedded in the Interest

Calculation Service; it has five direct operations - Check Student State,

Approve Interest Free, Decline Interest Free, Update Loan DB and Inform

Other Department)

EML supports service reuse to reduce structure complexity and increase modelling

efficiency. A reusable component is represented in a separate tree. The user pre-

defines its structure and saves it in a library. Reusable components have a unique

name for future usage. The user can easily attach a reusable component to any branch

of an EML tree. In this figure (Figure 5.1), we define the Communication Service as a

reusable component (at the left bottom), reused by the University Service and

StudyLink Service.

 131

Figure 5.1: University Enrollment System Overall Structure

 132

Even in this complex model the EML diagram still provides a clear structural view. In

an EML-modelled enterprise system, major services are represented as separate trees.

In order to mitigate the complexity of the diagram, we use symbols inside each

service to identify the elision level of the service visualisation. A minus (-) symbol

indicates all activities in the service have been expanded (e.g. all the services in

Figure 5.1). A plus (+) symbol indicates that part or all of the sub-tasks (services) are

elided (e.g. the Loan Payback service, Student Account Management service and

Credit Check Service in Figure 5.2). Every notation in the diagram can be elided and

expanded to give users freedom to control the diagram size and complexity. Each tree

element has a set of detailed properties e.g. service type, status, input, output, loop,

condition, and rule etc.

5.3 Overlay for Processes, Exceptions and Triggers

A fundamental part of business process modelling is the representation of flow

between stages. In EML each business process is represented as an overlay on the

basic tree structure or an orchestration between different service trees. In a process

layer, users have the choice to display a single process or collaboration of multiple

processes. The user can select Show/Hide EML Process ((a) in Figure 5.2)/ Exception

((b) in Figure 5.2)/ Trigger ((c) in Figure 5.2) Flow functions to view or hide overlays.

When a Show/Hide Flow function is selected, a detailed flow list is brought to the

screen for further selection. By double clicking the process names in the list, the user

can choose to view one (or more) appointed process or all of them. Similar operations

apply to the Exception and Trigger Flows.

By modelling a business process as an overlay on the service tree, the designer is

given a clear overview of both the system architecture and the process simultaneously.

Processes can be elided as a way to mitigate the cobweb problem commonly seen in

flow-based visual notations.

For example P1.1 to P1.17 in Figure 5.2 shows the Enrol in a Course process on the

University Enrolment Service tree. The process starts with a process name followed

by a process flow (blue arrow) representing the sequence. Each flow has a sequence

number; for a complex process, users can use this to model concurrency /

 133

synchronization. Involved operations or services have bold outline borders to help

identify the track. Data is bound to a process flow to flow in or out of operations. In

this process, the student uses Search Course DB to select the suitable course and

Applies Enrolment. The enrolment officer Receives Application and checks this

student’s Academic Records with the Department. As soon as the Department Reports

the student’s record and Approves the course Application, the enrolment officer will

Check other Related Conditions and ask the finance officer to Request the Payment.

The student then Applies Loan and StudyLink Checks University Payment

information with the Finance Office and decides if it Approves or Declines the Loan.

If the university receives a payment from StudyLink, the finance officer confirms the

enrolment and Sends the Invoice to the student.

EML supports specification of process iteration at different levels.

(1) A single activity loop is represented as a dashed outline border. Attributes

control the iteration (e.g. loop times, start and complete conditions,

input/output data etc.). Check Other Conditions in Figure 5.2 is a single

activity loop example. After the department approves the course

enrolment application based on academic record, the enrolment office uses

this function to repeat all the other related conditions (e.g. available seats

in class, test time conflict, tutorial group assignment etc.).

(2) A loop with two operations is represented using a dashed line with two

arrowheads. Process P1.13 in Figure 5.2 shows iteration of the Check

University Payment and Confirm with StudyLink operations. When

StudyLink received the student loan application, they need to check all

course related information with the university (e.g. student status, course

fee amount, start and end date etc.). The process loops until a termination

condition is met (all the information has been confirm).

(3) If a loop involves more than three operations, a single arrowhead dashed

line guides direction, linking different operations or services in a closed

circuit.

 134

Figure 5.2: Using EML Overlays to Model the Enroll in a Course Process

It is important to know if a specific event occurs or condition is met. Events and

conditions are referred to as dependency relationships. In some cases, we can also

treat internal (system) exceptions as triggers. An EML trigger layer can be used to

solve dependency problems. T1 in Figure 5.2 shows how dependency information can

be passed from one part of a process to another if a normal process flow is

insufficient. The red single arrowhead trigger connector (T1) represents the

dependency. In this example, when the Finance Office Requests the Payment from the

student, they also need to Check student’s Credit. If the student has a scholarship, the

requested payment amount may be changed. The user can define trigger conditions as

attributes at each end of the connecter to control the dependency. The start and end

 135

point of a trigger can be a service, operation or process. Since EML uses a multi-layer

structure, users can choose to combine their triggers with the process layers (as in this

example) or separate them, using different views to reduce complexity.

The EML’s exception overlay is used to model errors in transactions. A failure

handling notation (question mark in the middle of an operation or service) specifies a

transaction failure. Users can set up a start condition to discriminate different kinds of

failures and activate appropriate exception handlers. An exception handling layer is

constructed to model transaction error handling in detail. For example, Figure 5.2

shows the Enrol a Course process with two exception handlers overlaid. When the

Department staff checks the student’s academic record, an error handler is added to

the operation (question mark in Report Student Records). If the student’s previous

academic record doesn’t satisfy the course prerequisite, the application will be

declined , which will drive the exception handler to carry out an alternative process

(negotiate an alternative course with the student). A second exception hander is on the

Check University Payment operation. If the student loan application cannot be fully

confirmed by the Finance Office, the alternative is to Decline Loan Application and

Inform the Student. Two green connectors (E1.1~E1.2) represent the exception flow.

The diamond shape in the above figure (Figure 5.2), attached to the boundary of

Check Other Condition, is used to express a conditional flow. If the other course

related conditions (e.g. an exam clash with another course) cannot be fully satisfied

(Fail), the student will be informed to Modify Enrolment. Symbol C1 is an annotation

used to describe such a conditional flow execution. Here, it may be a possible non-

clashed exam time=table for the student to reference. If the student Passes the

checking, the enrolment officer will then Approve the Application.

5.4 BPMN Integration

Due to the complexity of business processes, a single modelling notation is usually

insufficient to satisfy all modelling needs. MaramaEML allows other business process

modelling notations to be integrated to collaborate with EML to facilitate modelling

of different structural and behavioural aspects. The integration of the BPMN notation

 136

has been discussed in detail in Chapter 4 (MarmaEML, EML modelling tool

implementation chapter).

For instance, in EML, data are bound to process flows via textual properties so as to

reduce diagram complexity. However, sometimes a user may require this kind of

information to be presented directly in the diagram. BPMN diagrams can represent

well the internal flow sequence of data , but this kind of flow-based approach can

easily cause diagram cobweb problems. An ideal solution is to provide the user with

access to both diagram types. Our MaramaEML support tool includes linked BPMN

and EML views.

Figure 5.3 shows a BPMN view for the “Enroll a Course” process. The Student,

Enrolment Office and Department are described in three pools. Detailed process steps

are:

• The Student “Applies Enrolment” by sending a message ([1] I want to enrol

this Course) to Enrolment Office.

• The Enrolment Office “Receives the Application” and “Check Academic

Record” with the Department by sending a message ([2] Please Check this

student’s Academic Record).

• The Department staff “Receive the Request” and check student’s academic

records. If the student passes the record checking, the staff “Reports Back” to

the Enrolment Office by sending a message ([3] This student can enrol).

• The Enrolment Office “Receives the Feedback” and “Approves the Enrolment

internally” by sending “Approve Form memo” to the Department.

• The Enrolment Office also requires the student to “Check the Exam Impact

Information” by asking “[5] does the exam time impact?”

 137

• The Student “Receives the Request” and “Sends the Date Checking Request”

to Department asking exam date information ([6] what’s the exam date for this

course?)

• The Department “Receives the Date Checking Request” and check the course

related exam date and time information for the student.

• If there is no impact, the Department “Sends internal Mail” to the Enrolment

Office asking ([7] Prepare the Payment Invoice) for the student.

• Then, the Department “Send Feedback” to the students, and telling the student

([8] there is no exam time impact for this course, and I will inform the finance

officer at Enrolment Office to prepare the payment invoice for you).

• The Student “Receives the Feedback” and “Sends a Message” to the

Enrolment Office saying ([9] I need a payment invoice for this course).

• The Enrolment Office “Receives the Message” and “Send Invoice” back to the

student and saying ([10] here is your invoice).

• The Student “Receives the Invoice” and the make the payment. The enrolment

process finish.

Figure 5.4 shows the multi-view collaboration between an EML view (a) and a

BPMN view (b) to model the same enrolment process. From the EML view the user

can obtain a clear service architecture and the process sequence, and from the BPMN

view, he can also see the data transformation.

 138

Figure 5.3: BPMN View --- Enroll a Course

 139

Figure 5.4: Using EML and BPMN views to model the same process

 140

5.5 BPEL Generation and LTSA Validation

We use MaramaEML to generate Business Process Execution Language (BPEL) code

and coordinate processes in a workflow engine. It allows us to export and integrate

our EML structure with other BPEL compatible environments. To support code

generation and process model validation we have developed a BPEL code generator

and integrated an LTSA engine (Foster and Magee et al 2003) into MaramaEML to

verify the correctness of EML models. As shown in Figure 5.5, the EML process layer

(a) has been automatically compiled to executable BPEL code (b). Our code generator

performs model dependency analysis and maps EML model constructs to structured

BPEL activity constructs. The LTSA engine then verifies the correctness of the

generated BPEL code. It compiles the BPEL code generated from EML specifications

and displays the results in (d). If there is no compilation error, a LTS diagram

(Labelled Transition System) is presented (c).

To generate the BPEL code, the user needs to:

1. Move the mouse to the EML tree structure area (a)

2. Right click the mouse to call the popup menu (e)

3. Select “Generate BPEL4WS from EML” function from the popup menu

• The BPEL code will be automatically generated and displayed in area

(b)

To verify the code, the user needs to:

1. Change view to “LTSA Perspective” from (h)

2. Open target BPEL code in area (b)

3. Select the Process Name in area (h)

4. Right click the process name in (h) to call the popup menu (g)

5. Select “Compile” function from (g)

• The output from validation appears in (d)

• The final LTS view appears in (g)

 141

Figure 5.5: BPEL Generation and LTSA Code Validation

 142

5.6 Zoomable and Fisheye Views

The EML’s novel tree overlay structure has reduced the modeling complexity at a

visual methodological level. However, due to the nature of enterprise complexity,

sometimes the views can still be very large. At a technical level, in order to enhance

EML’s diagram navigability and understandability a zooming (radar view function)

and a distortion-based fisheye zooming function would be helpful. We have

developed those to add some complementary navigation support in EML.

Figure 5.6 Zoomable View in MaramaEML

 143

Figure 5.6 shows an EML zooming view (a). The user draws a “Radar square” (blue

square) in the tree overview area (b). While the user moves the blue radar square, the

components in area (a) (represented at the normal size) are moved to focus

accordingly. By using this function, the user can have an overview of the whole tree

structure, and in the mean time, be able to navigate to the detailed parts.

Figure 5.7 Fisheye View in MaramaEML

Figure 5.7 shows an EML fisheye view (a). The user draws a “fisheye area” (blue

square) in area (b). Components in the blue square are represented in area (a) at a

bigger size (Department Sub-tree), with the rest distorted with the degree of shrinkage

increasing with the distance from the fisheye area. While the user moves the blue

 144

radar square, the components in area (a) are moved accordingly to focus. In this

example, the starting shrinkage degree is 2. At any stage, the user can change the

value by selecting from the pull down menu.

By using the fisheye view, the user can have the freedom

• To show an area of interest quite large and with details

• To show other areas successively smaller and in less details

• To smoothly integrate local details and global context by repositioning and

resizing elements.

5.7 Deployment

There are several ways to deploy Business Process Execution Language (BPEL)

definitions generated from EML visual process specifications. BPEL deployment

engines are more commonly seen in Integrated Development Environments (IDEs)

rather than in a standalone existence. Major IDEs include IBM’s WebSphere Studio

Application Developer, Microsoft’s BizTalk server, and Eclipse’s BPEL plug-in.

BPEL processes can be assembled using IBM’s WebSphere Studio Application

Developer, and then deployed on WebSphere Integration Test Server. BPEL4WS

specifications can be imported to the Microsoft’s BizTalk server, and deployed to run

in a production environment. BPEL processes can be copy-pasted and validated in an

Eclipse BPEL project with automatically compiled WSDL interfaces and executed

using its integrated Apache Orchestration Director Engine (ODE).

The above solutions introduce many overheads to deploy the BPEL processes

generated by EML, including installation and coordination with different IDEs, with

also compatible version requirements. After evaluating the feasibilities, we decided to

use one of the two standalone BPEL execution engines: the Apache ODE and the

IBM’s PEWS4J, with the later deprecated as IBM has retired the project.

The Apache ODE implements the Web Services Business Process Execution

Language (WS-BPEL) V2.0. Apache ODE executes BPEL processes, enabling their

communications with other web services via passing of messages. Apache ODE

 145

supports hot-deployment of BPEL processes. Deploying a business process in Apache

ODE requires the BPEL files (*.bpel, describing the process sequence, operation

invocation and message passing), WSDL files (*.wsdl, describing message types, port

types, bindings and services for the process) and a deployment descriptor file

(deploy.xml, an extra file that EML needs to generate so as to use Apache ODE to

deploy the processes). These files need to be wrapped in an arbitrary folder and copy-

pasted into the Apache ODE’s processes deployment directory in Apache Tomcat (i.e.

the TomcatInstalledDirectory/webapps/ode/WEB-INF/processes directory). The

deployment starts automatically when Tomcat is running and a deployment file is

generated, as shown in figure 5.8 and 5.9.

Figure 5.8 BPEL Deployment

 146

Figure 5.9 Hot-deployment of a BPEL process in Apache ODE

An example of EML generated process specification contains the following files

which are needed for Apache ODE deployment:

1. BPEL

2. WSDL

3. Deployment descriptor file

Before a BPEL process can invoke a Partner (other service), it needs to first define a

PartnerLink to reference the Partner's WSDL interface. Furthermore, each BPEL

process needs to define a PartnerLink that represents itself which points to its own

WSDL interface. For every BPEL process, it must have at least one PartnerLink that

describes itself. If the process invokes other services, each of those services would

require a PartnerLink definition. These can be inferred from EML’s service trees and

process overlays, so no explicit modelling of partnerlinks are required.

 147

A deployed process is provided with a SOAP interface and a WSDL file, and thus can

be invoked by a requesting web service client. We can use the Eclipse Web Services

Explorer tool (as shown in 5.10) to test the deployed process. This Eclipse plug-in can

be started by right-clicking the process WSDL file and selecting to open Web

Services ! Test with Web Services Explorer. Using the Web Services Explorer

interface, the user can select a process operation and enter some input message to

invoke the operation. Web Service clients can also be generated using the Eclipse’s

Web Services Generate Client tool in the Eclipse environment to communicate with

the business processes.

Figure 5.10 Testing process WSDL interface using the Eclipse Web Services

Explorer

5.8 Summary

We have described a University Enrolment System example in this chapter. We have

used our evolving Pounamu and Marama meta-tools to develop the EML modelling

environment. We specified the EML domain-specific visual language notation and

meta-model and generated Eclipse-based editors from these to realise the basic

support environment. The tree layout, overlays and distortion-based displays are all

 148

implemented as complex visual event handlers. The integration of EML with the

BPMN notation, the code generation of BPEL, and the integration of the LSTA

engine were implemented through event-driven, meta-model and model level data

queries and updates.

 149

Chapter 6

EVALUATION

Evaluation has played a very important role in the entire EML and MaramaEML

design and implementation process. Three different kinds of evaluation methods have

been applied to the visual modeling language and its support tool as we progressed on

the research project. We continuously used the results from these evaluations to refine

the functionality, usability and other related quality attributes of the language and

environment. This chapter describes the evaluation approach taken for EML and

MaramaEML. An overview of the evaluation approaches is introduced in section 6.1.

The first evaluation, using a cognitive dimensions walkthrough, is described in section

6.2. In section 6.3, we describe a second informal evaluation with a small number of

experienced domain experts (the target users have Software Engineering and/or

Computer Science backgrounds). A large formal end user evaluation and a statistical

analysis of its results are reported in section 6.4.

Our formal end user evaluation (titled “A Visual Language and Support Tool for

Business Process Modeling”) was approved by University of Auckland Human

Participants Ethics Committee (reference number 2007/178).

6.1 Evaluation Mechanisms Overview

Rather than simply evaluating MaramaEML once the design was completed the

approach we have taken has been to use a variety of evaluation approaches during the

design and implementation and make improvements to the language and toolset by

analyzing the evaluation outcomes. To do this we conducted three different

evaluations for EML and MaramaEML. These evaluations spanned from the early

language design stage to the ultimate software tool release phase. The targeted users

included EML designers, computer science and software engineering domain experts

and business end users.

 150

The first round of evaluation was an extensive cognitive dimensions (CD) analysis

(Green and Peter 1996) which was used to guide the early design and implementation

of EML. It was undertaken by the EML designer with closeness of mapping and

hidden dependency mitigation emphasised. A list of related CD design guidelines and

trade-off principles were applied to an early version of EML. The visual language was

improved as a result of analysing the CD outcomes.

The second evaluation was a small scale task-based end-user evaluation of an early

released version. A group of Computer Science and Software Engineering tool design

experts were selected to perform this evaluation and provide their professional

feedback. The objective was to professionally assess how easy it was to learn to use

MaramaEML and how efficiently it could solve the diagram complexity problem. We

refined our software tool and modelling language based on the feedback from this

evaluation.

The third evaluation was a large formal end user evaluation of the most recent release.

More than thirty end users with different backgrounds were selected for this

evaluation. The results suggest that MaramaEML is very straightforward to use and

understand. Users feel the tree overlay method greatly reduces the complexity of

modelling business processes compared to using only the conventional BPMN views.

The automatic code generation and multi-view collaboration mechanisms were seen

as enhancing the modelling strength. The zooming and fisheye function was seen as

being very easy to use and increasing the tool’s navigation ability. We made a final

round of visual language and software tool improvements guided by the feedback

obtained.

6.2 Cognitive Dimensions for Early Validation and Design Assistance

Applying Psychological principles to Computer Science has been an active area of

research since the 1970s (Green and Peter 1996). Psychology of Programming, as a

filed, was established in 1987 to coordinate research in the areas of cognitive

psychology in software development.

 151

The Cognitive Dimensions (CDs) of Notations approach (Green and Peter 1996) is a

popular, psychologically based, heuristic framework initially created by Thomas

Green and Marian Petre that is designed for quickly and easily evaluating a visual

language environment. It sets out a small vocabulary of terms designed to capture the

cognitively relevant aspects of structures, and shows how they can be traded off

against each other. They are not intended to provide a rigorous analysis, but instead

give the designer a rough idea of some of the human factor issues inherent in the

system. They allow the designer to get a general feel for the characteristics of the

system before or instead of running expensive usability tests. From there, the designer

can come up with potential tests and changes that will improve the system (Dillon

2001; Hartson and Andre et al 2003; Recker and Rosemann et al 2009). Microsoft has

applied cognitive dimensions, to their C# and .NET development tools (Chappell

2007).

We use the CD approach to help design our Enterprise Modelling Language. The

cognitive dimensions take a complete view of a visual environment, covering both the

visual notation and its environmental support. The notation is the textual or graphical

view into the programming structure. The environment is the way the notation is

manipulated by end users. The system is defined as both the notation and the

environment. There are 13 dimensions, each representing an aspect of the system

which has an impact on the ability of users to work with it. Not all of them are of

strong relevance to EML and its integrated support environment. Ten most relevant

dimensions were chosen for our analysis task and the results of investigating them

against our MaramaEML support environment are described below. For each of the

dimensions, we discuss its definition and then its relevance to EML.

6.2.1 Consistency

Consistency (similar semantics are expressed in similar syntactic forms) refers to the

“guessability” of a system. Given knowledge of some of the system structure, how

much of the rest can be guessed? The simplicity brought about by consistency is

because there are not that many types of definitions, expressions, etc. to learn.

 152

• Before CD Evaluation

Figure 6.1 lists the most commonly used notational elements in an early

version of EML. As it shows, this version of EML notations comprised a set of

dis-similar semantic elements. For example, data flow, control flow, action

flow and trigger all use different connection shapes and colours. The process

execution conditions (successful finish, failed and aborted) are represented in

different shapes outside the service or task icon.

Actor

Data Set

Condition

Successful

Finish

Failed

Aborted

Service

Task

Constraint

Action
Focus

Assign

Delay

ForEach

Data Flow

Control Flow

Trigger

Action

Transition

Figure 6.1 Selected EML Notation Examples (before CD)

• After CD Evaluation

To enhance consistency, based on the CD results, we changed all the process,

trigger and exception flows into the same shape and used different colours to

separate them. Figure 6.2 represents the improvements of the flow notations

after the CD analysis. The process execution conditions have been integrated

into the service or task node. In the improved version of the EML notations,

the data and control flows have been combined into the process flow (blue line

with single arrowhead). The exception flow (original Action Transition) is a

green line with a single arrowhead. The trigger flow is a red line with a single

arrowhead. Please refer to chapter 3 for a complete list of the new EML

 153

notations. The new EML underlying structural tree provides a consistent

framework on which similar semantic operations (standard process flow,

triggers and exceptions) are overlaid using similar syntactic forms (flow,

distinguished by colour).

Figure 6.2 Improved Flow Notations (after CD)

6.2.2 Visibility & Juxtaposability

Visibility & Juxtaposability (ability to view components easily): A system with low

visibility makes it cognitively difficult to bring related structures into view.

Juxtaposability refers to the ability to view objects side-by-side. These dimensions

primarily focus on an editing environment.

• Before CD Evaluation

The early version of EML was based on pen and paper. It didn’t have a

software tool to support it. The visibility and juxtaposability (based on paper)

were both very poor. It didn’t have multi-view support functions with the

language.

• After CD Evaluation

In order to enhance the visibility and juxtaposability, a software tool to support

EML modelling was required. Thus, we developed an Eclipse based EML

support tool - MaramaEML. In MaramaEML different modelling notation

views can be juxtaposed. The zooming and fisheye viewer supports a high

degree of visibility within EML views, even for very large diagrams. Please

see chapter 4 (software tool implementation chapter) for more detailed

description of the support environment.

 154

6.2.3 Premature Commitment

Premature commitment (constraint on the order of doing things): When drafting a

thesis structure in a paper with a pen, you need to make sure to leave enough room for

the detailed bullet points between the headings. This is an example of premature

commitment, where the user is required to make decisions when not ready.

• Before CD Evaluation

The user could only use EML to model a system by pen and paper. We didn’t

have software to support the multi-notational modelling function (e.g. EML &

BPMN). Even for EML itself, there was not much freedom to transfer between

views, processes and different layers based on paper. As soon as the structure

was drafted, it was very hard to make any changes.

• After CD Evaluation

The user has considerable freedom to model a business process using any

EML, BPMN and Form-Chart notation via the EML’s new software tool

MaramaEML. In the EML view, the user can freely traverse through the tree

structure view and the business process, triggers and transaction layer, or even

integrate them together. Chapter 5 has detailed case study to demonstrate the

above features. However, the user needs to define the business tree structure

first and then construct process overlays.

6.2.4 Hidden Dependencies

Hidden dependencies (important links between entities are not visible): Hidden

dependencies are relationships between objects in the system that are implicit and

difficult to uncover. The cognitive dimensions are meant to be evaluated in terms of

both the notation and the environment used to manipulate that notation.

 155

• Before CD Evaluation

The early version of EML had strong hidden dependencies. Figure 6.3

represents a service view diagram example in the early version of EML. It

mainly modeled the communication between the database and the service. In

this example, all of the customer, agent and airline services try to connect with

the airline database to gather the information, and the agent also tries to check

the customer database to verify the user’s credit information. As the example

shows, all the communications among the three parties were automatically

hidden, and the database structure and theinformation inside were also

invisible to the user.

Figure 6.3 Service View Diagram in Early Version of EML

• After CD Evaluation

By default some dependencies are still hidden, e.g. data bound to the process flows,

and trigger and exception flows are normally not shown in a process layer. However,

most information is readily accessible via property sheets in MaramaEML. The

propriety window and the multi-language modelling support can represent these kinds

Actor

Service

Database

Data Flow

 156

of abstractions with MaramaEML’s tool support. It is possible to show all the

dependencies in the same layer if required.

Figure 6.4: Property Sheet Example for Travel Planner Service

Figure 6.4 shows a screen dump of the Travel Planner service’s property sheet in

MaramaEML. It covers a list of dependencies for this service node. In this example,

the actor of this service is “Travel Agent”. The travel planner service has two child

services (“Hotel Booking” and “Air Ticket Booking”). The documentations related to

this node are “Customer Database” and “Booking Database”. The elision type is

“Extend”, and there is “None” expended properties for this service. The fillColour for

the service notation is “RGB{192,192,192}”, and lineColour for the notation

boundary is “RGB{0,0,0}”. The location (on the screen) of this service node is “207,

61”.

In this booking process, the input of the service is “Client ID” and the ID for this node

is “Service 1”. The name of the service is “Travel Planner”. “More than Two Service

 157

Loop” is shown in the loop type. There are three operations in this service (“Client

Credit Check”, “Available Room Check” and “Available Airline Search”). The

service sends “Booking Request” to the other services or operations as the output.

“Enterprise Service” is the parent service of travel planner. This service node has not

been reused. So the reuse status is “False” and the reuse ID is “N/A”. The type is

“Service” and it has the sign. The size of the shape is “40, 40”. The status of this

service is “Other”.

6.2.5 Error Proneness

Error proneness (the notation invites mistakes and the system gives little protection)

• Before CD Evaluation

The early version of EML had several areas of error proneness. Figure 6.5

represents a service integration view example in the early version of EML. It

describes the booking air ticket process. Three web service nodes

(CheckDepartureDate Service, CheckDeparturePlace Service and

CheckAvailableSeat Service) talk to the Airline Database and then make the

final decision (book the ticket or cancel the booking). In this example, there

was no connecter constraint to limit the connections. Basically, the user can

use any connecter to link any notations.

• After CD Evaluation

In order to reduce error proneness, the new software tool MaramaEML

enforces connectivity constraints and provides design feedback to users on the

correctness of notational usage. A list of extra building constraints have been

added into the EML design rules. The EML notation has become simpler and

better defined with high level business modelling graphical representations.

 158

Figure 6.5: Service Integration View in Early Version of EML

6.2.6 Abstraction

Abstraction (types and availability of abstraction mechanisms): The abstraction

gradient represents whether users are required to learn abstractions before effectively

using the system and whether they are allowed to use abstractions if they want to.

• Before CD Evaluation

Early versions of EML used a mixed form and tree overlay based metaphors.

The user had to use tree layout to represent the overall structure (as shown in

Figure 6.7) and use form layout (as shown in Figure 6.6) to represent the

detailed information inside each service and task node. By doing this, it

provided both visual metaphors to the user at the same time. But it also

required a high abstraction gradient due to the need to learn both notations and

relate them together.

 159

Figure 6.6: Form Based Service View in Early version of EML

Figure 6.7 Tree Layout for the overall Structure

• After CD Evaluation

In order to enhance the abstraction ability, we decide to use the tree layout in all

modelling situations. The solid tree layout is very easy for the user to understand

providing minimal abstraction gradient for the target end-users. Please refer to

Chapter 3 (Enterprise Modelling Language Chapter) for detailed layout description in

EML. The refined EML is a high level process modelling language but the metaphors

it uses are very business-oriented and tailored for the enterprise domain.

Tasks

Error Handle
Service Name

 160

6.2.7 Secondary Notation

Secondary notation (extra information in means other than formal syntax): In EML,

we integrate shapes, colours, text descriptions and tree layout structure together to

convey information.

• Before CD Evaluation

By using pen and paper, the user can easily extend the notation in the diagram

to convey extra information.

• After CD Evaluation

In MaramaEML, sketch annotations can also be added to diagrams to convey

extra information.

6.2.8 Closeness of mapping

Closeness of mapping (closeness of representation to domain): EML uses a tree

metaphor to represent the service construction. This hierarchical structure is a natural

way to model business structure and users are familiar with using it to model complex

organizational hierarchies. Business processes are constructed using a flow-based

overlay metaphor on top of the tree structure providing good closeness of mapping to

process sequencing.

• Before CD Evaluation

The early version of EML tree did not have any elision function. The tree

overlay (e.g. in Figure 6.7) had to represent all the nodes in one screen. When

the system became complicated, it was very hard for the user to understand the

whole structure, as the notational approach was not scalable.

• After CD Evaluation

In order to solve this problem, an elision function has been added in the new

EML system (please see Section 3.2.4 in Chapter 3 for detailed notation

elision description). A minus (-) symbol indicates that all activities in the

 161

service have been expanded. A plus (+) symbol indicates that part or all of the

sub-tasks (services and operations) are elided. The elision techniques allow

users to focus on one process at a time, minimising their cognitive load and

maximising the ability to relate the diagram to the actual business process

being examined.

6.2.9 Diffuseness

Diffuseness (verbosity of language): How many symbols or how much space does the

notation require to produce a certain result or express a meaning?

• Before CD Evaluation

The early version of EML used several different notations, including the tree

and form metaphors (as showed Figure 6.6 and 6.7), and a large number of

notational elements (as shown in Figure 6.1). The language was thus verbose,

and added extra leaning efforts for the users.

• After CD Evaluation

The refined EML evidently reduced the number of notational elements to a

large extent and eliminated the form based metaphor. The tree overlay

becomes the only metaphor in the language. The new EML uses a terse set of

language elements and hence it is easy to learn.

6.2.10 Hard mental operations

Hard mental operations (high demand on cognitive resources): How much hard

mental processing lies at the notational level, rather than at the semantic level? Are

there places where the user needs to resort to fingers or penciled annotation to keep

track of what’s happening?

• Before CD Evaluation

Figure 6.8 shows an exception handler example in the early version of EML.

The constraint and service structure are represented using the same form based

layout. The exception handler was described in the same manner as the

 162

execution state. This was very confusing for the end user, requiring hard

mental operations to distinguish them.

Figure 6.8: Exception View in Early version of EML

• After CD Evaluation

In the refined EML, different states and components of a business process are

well discriminated through the use of the tree-based hierarchy, process

overlay, dependency trigger and different layers of exception handlers. The

complexity of a business process has been successfully reduced in the EML

multi-layer structure through its elision and overly techniques.

6.3 Early Evaluation with Experienced Tool Developers

One important result from the CD analysis was the demand for a software support tool

for EML. After we completed the first version of MaramaEML, we selected a group

of Computer Science and Software Engineering experts to carry out a task-based end-

user evaluation of the refined EML and an early version MaramaEML prototype. The

objective was to assess how easy it is to learn to use EML and its support tool and

Constraints

Task Name

Error Handle

 163

how efficiently it can solve the diagram complexity problem. This was an informal

evaluation and the result was used to refine the MaramaEML design.

6.3.1 Evaluation Environment

We used the refined version of EML (2.0) and an early prototype of the software tool

MaramaEML (version 1.0) to perform this round of evaluation. The main focus was

on the functionality. Although it was fully featured for most of the functions, the

shape definitions were quite simple. However, the results were promising. The main

functions of this version of MaramaEML included:

• EML tree and process overlay modelling ability.

Figure 6.9 shows an E-mail Voting process overlay (green) example on an

EML tree (black tree). The system provides an individual modelling function

for the EML tree layout, process and trigger overlays in area (a). The EML

shape and connector tools are listed in area (b) and (c). The user can directly

drag and drop a selected component into the EML diagram. All business

process overlays are recorded as a textual list in a supporting window (d).

Figure 6.9: A process Overlay on EML Tree in MaramaEML 1.0

(a)
(b)

(c)

(d)

 164

• Basic BPMN modelling ability.

MaramaEML 1.0 also provided individual modelling support for BPMN.

Figure 6.10 shows an E-mail Voting example in a BPMN diagram. As we

mentioned, this version of software mainly focussed on functionalities instead

of a “polished” user interface design. The shapes provided in the BPMN view

were thus limited, but the tool covers most commonly used BPMN

components e.g. Pool, Task, Process. In this example, the BPMN diagram is

modelled in (a); its shapes and connectors are in (b) and (c). The properties of

each component are managed in (d).

Figure 6.10: A BPMN Diagram in MaramaEML 1.0

• Form Chart Modelling ability.

Form Chart diagrams could also be created in MaramaEML 1.0. Figure 6.11

shows an E-mail voting web submission example in a form chart diagram.

Again, the main modelling diagram is shown in (a). The shape components

and connectors are listed in (b) and (c). Detailed property information can be

found and updated in (d).

(a)

(b)

(c)

(d)

 165

Figure 6.11 Form Chart Diagram in MaramaEML 1.0

• BPEL code generation

Automatic BPEL code generation was implemented as an event handler in

MaramaEML 1.0. This supports code generation directly from EML and

BPMN diagrams (as shown in Figure 6.12). Detailed BPEL4WS code is

represented in (a), and area (b) prints out a list of generation records for future

debugging purposes.

(a)

(b)

(c)

(d)

 166

Figure 6.12: BPEL Code Generation in MaramaEML 1.0

6.3.2 Brief Evaluation Process

At the beginning of the evaluation, EML and MaramaEML were briefly introduced to

the participants and they were then asked to perform several predefined modelling

tasks. The tasks were divided into three difficulty levels: simple, medium and

complex. Participants were asked to repeat the same task in two different

environments (pen and paper based EML modelling and software tool-based

integrated EML and BPMN modelling). The whole process was monitored side by

side and user was interviewed informally at the end of the evaluation.

6.3.3 Informal Evaluation Results

Feedback suggested EML and MaramaEML were very straightforward to use and

understand. The users greatly favoured the tree overlay method for reducing the

complexity of business processes compared to using only conventional BPMN views.

They found it very valuable to have a tree overlay based modelling language as a

supplement to overcome the shortcomings of exiting business process notations. The

multi-view collaboration is a useful approach to enhance the modelling strength. The

(a)

(b)

 167

fisheye zooming function is easy to use and significantly increases the navigation

ability.

Several limitations and potential improvements were identified in our evaluations.

These included:

• a need for more detailed mapping traceability

• a need to provide an integrated environment for the three modeling languages

(EML, BPMN and Form Charts)

• a need to improve visual quality for EML and BPMN views

• a need to verify the BPEL code to guarantee its execution quality

• a need to enhance the scalability for MaramaEML (coping complex and large

modeling diagrams)

6.3.4 Improvements from the second evaluation

Based on the evaluation feedback, we have developed MaramaEML 2.0, which

addresses all the limitations identified in the previous section. These include:

• A text based log file has been created in the new system to enhance system

traceability

• All three modeling views (EML, BPMN and FormChart) have been integrated

into the same development environment

• A Labeled Transition System Analyser engine has been integrated into

MaramaEML 2.0 to verify generated BPEL code. If the code passes the

validation, it will provide an extra LTSA graphical view for the system

• New shapes and layouts have been developed to improve the visualisation

quality of EML and BPMN

• Zooming and fisheye view functions have been added to MaramaEML 2.0 to

enhance visualisation scalability

6.4 Large Formal Evaluation

Following these improvements, EML 2.0 and MaramaEML 2.0 were more formally

evaluated. It is challenging to perform this type of evaluation. Firstly, it is difficult to

 168

establish a sufficient number of end users. An ideal evaluation would involve

selecting a group of random users from a relevant population. However, in this real

world, these kinds of end users are often busy. Secondly, evaluating a “big”

environment such as MaramaEML is problematic. All we can hope to get is a general

impression of task completion performance and qualitative impressions of usefulness

and usability. The main objective is to prove that the concept is worth pursuing

further.

6.4.1 Participant recruitment

Participants for this kind of formal evaluation are typically volunteers. Hence,

strategies should be considered to increase to a maximum degree the recruitment

response rate from the target user population. The following methods are typically

applied in this kind of evaluation to enhance participant numbers (Dillon 2001):

• Minimize costs of completion. Questionnaires should be short, and easy and

convenient to complete. Clear instructions should be given, together with

completion guidelines, and key parts of the evaluation should provide

definitions and additional help. Base on this guideline, the following work

hase been done:

o Simple and clear questionnaires have been designed and reviewed. The

questions are mostly mixed up with multiple-choice and diagram

drawing questions.

o A clear paper based instruction has been attached with the

questionnaires.

o A PDF version of instruction is also available online.

o A short, face to face tutorial has been run at the beginning of the

evaluation.

o Some help functions have been designed in the software.

o I stayed during the evaluation to answer potential questions.

• Maximize benefits. It is important to show to a potential target user that there

are benefits for him or her to become involved in this evaluation. This can be

 169

achieved by following a number of simple advices, such as showing positive

regard, saying thank you, asking for advice, giving tangible rewards, etc. the

following work has been done base on this guideline:

o A group thank-you E-mail has been sent to the potential end user group

pre evaluation

o A formal thank-you letter has been delivered to all the participants

after the evaluation

o I bought a MP3 player. All the evaluation participants have entered

into a draw to win it.

• Build trust via working with key influential people in organizations. People

are more willing to accept an evaluation request if influential, managerial or

other authoritative individuals comply with it. The following work has been

done as per this guideline:

o I have asked a wide range of academic staff in Computer Science and

Software Engineering departments to help send the evaluation

invitation.

o I have used the Center for Software Innovation newsletter function to

send out the evaluation invitation to all our industry partners

o I have made several evaluation invitation presentations in the

Computer Science and Software Engineering courses.

• The initial contact letter (often via E-mail) stresses the usefulness of the

evaluation to the organization, emphasized its importance to both research and

practice and kindly ask the organization about their willingness to participate

in the evaluation. The following methods have been performed as per this

guideline:

o A group E-mail has been sent out to all potential academic and

industry participants (one month before the evaluation).

o Follow-up E-mails and reminders have been sent out to the potential

academic and industrial participants (one week before the evaluation).

o A formal evaluation invitation has been published on front page of the

Computer Science department website.

 170

o A formal evaluation invitation has been published on the front page of

the Electrical and Computer Engineering department website

o A formal evaluation invitation has been published on the front page of

the Center for Software Innovation website

In summary, we have done every possible approach to increase the number of

participants. The evaluation ran from August 2, 2007 ~ August 9, 2007. Over this one

week period, a total of 38 end users agreed to take part. Eliminating 6 absences, we

had a total of 32 usable participants covering Computer Science, Software

Engineering and Business backgrounds.

6.4.2 Evaluation Approach

This evaluation involved both survey base and task performance. Detailed Formal

Evaluation Schedule, Evaluation Questionnaire Example (Version 1, 2 & 3), Consent

Form, University Ethics Approval Form and explanation sheets are attached as

appendices.

• Survey Design

Survey design concerns the strategy for answering the questions or testing the

hypotheses that stipulated the selection of the evaluation in the first place. It

may be distinguished alongside three dimensions: time, unit of analysis and

data analysis strategy (Hartson and Andre et al 2003).

1) Time: survey designs can either be cross-sectional or longitudinal,

dependent on whether they exclude or include explicit attention to the

time dimension. Given our evaluation does not contain special time

consequences elements, a classical cross-sectional survey design is

deemed appropriate.

2) Unit of Analysis: the unit of examination may be at an individual,

group, departmental, social or organizational level. Alternatively, it

may also involve an application system, portfolio, method, technique

or other items from business elements. In our research, the unit of

 171

analysis is the process modeler working with EML and BPMN process

modeling languages.

3) Data Analysis Strategy: A wide variety of analysis approaches can be

associated with survey data. We have adopted a value based data

analysis approach (Rapide Design Team 1997) to gather the

information for task completion, general quality feedback and usability

quality attribute rate.

• Sampling Procedures

Sampling concerns the drawing of individual entities from a population of

interest in such a way as permit generalization about the phenomena of interest

from the sample to the population of concern. The most crucial element of a

sampling procedure is the choice of the sample frame, which should be

representative of the population. Our evaluation sampling procedure is based

on group separation quota sampling and systematic sampling strategies to

guarantee data quality.

• Data Collection

The choice of a data collection method, such as mail questionnaire, telephone

interview, face-to-face interview or web based survey is significant because it

has impacts on the quality and cost of the data collected. In order to guarantee

the data’s correctness, we decide to use face-to-face interviews and side-by-

side operation observation to gather first-hand information for the final

analysis.

6.4.3 Brief Evaluation Schedule

The whole evaluation took approximately two hours in total. The end users were

separated into different groups to evaluate the usefulness of the visual language and

support environment. This comprised eleven steps:

 172

Step 1: Evaluation Schedule Introduction

Step 2: EML & BPMN Introduction

Participants were briefly introduced to EML (Enterprise Modelling Language)

and BPMN (Business Process Modeling Notation), and some working

examples were explained (including a Travel Booking system)

Step 3: nDeva++ Introduction

The target modeling example was introduced (nDeva++, a web-based

University Enrolment System)

Step 4: Download EML Tool, User Guide and EML introduction slides from the

website

Step 5: Modelling Task 1

Participants were divided into two groups.

Group 1 is asked to model nDeva++ overall structure using EML

Group 2 is asked to model nDeva++ system use BPMN

Step 6: Modelling Task 2

Group 1 Participants are asked to add an “Enrol in a Paper” task process using

EML

Group 2 Participants are asked to add an “Enrol in a Paper” task process using

BPMN

Step 7: Modelling Task 3

All the participants are asked to save their work in the computer and use the

other language to repeat Step 5 ~ 6 again (group 1 participants now use

BPMN, and group 2 EML).

Step 8: Modelling Task 4

All the participants were asked to try show / hide tasks and trigger functions,

show / hide tree component functions.

 173

Step 9: Modelling Task 5 (10 minutes)

Participants were asked to try the fisheye view and zooming functions, code

generation and validation functions and explore other support functions in

MaramaEML

Step 10: Answer the Questionnaire (30 minutes)

Participants were mixed and then divided into three new groups. Group one

was asked to complete Questionnaire 1 (General Usability Abilities

Questionnaire) and group two & three were required to answer Questionnaire

2 & 3 (Cognitive Dimensions Walkthrough Questions)

Step 11: Submit the Consent Forms and Questionnaires

6.4.4 Data Analysis

• Participant Backgrounds

IT Background Percentage

No IT background 5%

Job training IT experience 5%

Formal Computer Science education

background

35%

Formal Software Engineering

education background

45%

Other 5%

Unspecified 5%

Table 6.1: Participants’ IT Background Distribution

Business Process Modeling Background Percentage

Know BPM well 5%

Does not have BPM experience 30%

Self-learnt BPM techniques 60%

Other 5%

Table 6.2: Participants’ BPM Background Distribution

 174

The user background coverage for this evaluation was reasonable broad (as

shown in Table 6.1 and Table 6.2). We had 10% of the participants who didn’t

have any formal IT background, however 5% of them had some informal job

related IT training experiences. Nearly 30% didn’t have BPM process

experiences. 60% learned BPM by themselves. We also have 80% IT experts,

35% are from Computer Science and 45% Software Engineering. 5% didn’t

specify their IT background, and 5% of comes from other backgrounds.

• Task Completion

Overall, 97% of the participants completed their tasks in 2 hours’ time.

Considering 30% of them don’t have business process modeling experience,

this is a very successful result. However, 3% of the participants could not

complete their tasks or gave up during the evaluation.

• User Performance

Figure 6.13 shows the user performance analysis results. We have collect all

the answers from the participants and compare them with the model answers.

20% of the participants did an “Excellent” job using software and EML to

complete the tasks. 36% were rated “Very Good” and 27% “Good”. This leads

to an 83% fine performance rating in total (by using MaramaEML and EML).

7% had poor quality answersr, and 10% at an average level.

 175

User Performance

Excellent
20%

Very good
36%

Good
27%

Average
10%

Poor
7%

Excellent

Very good

Good

Average

Poor

Figure 6.13 User Performance Diagram

• General quality for EML and MaramaEML

We had very positive feedback on the perceived quality of the language and

support tool (as shown in Figure 6.14). 27 out of 32 participants think the

overall quality of EML is positive. 3 out of 32 think it negative and 2 were not

sure.

For the software tool, 24 out of 32 participants were positive about the general

quality. 6 out of 32 were negative; and 2 were unsure.

 176

Figure 6.14 General Quality Feedback Diagram

• General usability data

Figure 6.15: EML and MaramaEML Usability Rate Summary

The usability results for EML and MaramaEML are also promising. Figure 6.15

shows averaged result summaries from our questionnaires. The “EML Tree Structure

Usefulness” received the highest average score (4.8 out of 5). Most participants

believe that using a tree overlay structure as a modeling approach will strongly

0 5 10 15 20 25 30

EML

MaramaEML

General Quality Feedback

Unsure
Negative
Positive

4

4.8
4.5

4
3.5

3.8

0

1

2

3

4

5

Average Score

EML and MaramaEML General Usability Rate

EML General Modelling Ability

Tree Structure Usefulness

Overlay Usefulness

MaramaEML Usability

MaramaEML Efficiency

MaramaEML Scalbility

 177

enhance the modeling ability. The “overlay usefulness” and “EML General Modeling

Ability” received averages of 4.5 and 4 out of 5 respectively. However, the two lowest

results come from MaramaEML’s Scalability and Efficiency. The problem was

caused by the unresponsive computing speed of the software tool (when zooming a

large, complex diagram), and the need for better control of information hiding.

6.4.5 Improvements from the formal evaluation

The latest version of MaramaEML has been released (version 3.0) with improvements

based on the suggestions from the 3rd round of the formal evaluation. An improved

zooming and fisheye view function has been built in it to enhance the scalability.

6.5 Summary

In this chapter, we have introduced three rounds of evaluations of EML and

MaramaEML. Each round had a different testing focus and the results in each case

have been used to improve the overall quality of EML and MaramaEML.

A positive outcome from conducting these cycles of evaluations and improvements is

that MaramaEML 3.0 has been demonstrated at the 23rd IEEE/ACM Automated

Software Engineering Conference in L’Aquila, Italy (ASE 2008), and received the

“Best Demo Award” from that conference.

 178

Chapter 7

CONCLUSION

The overall aim of the research presented in this thesis was the design and

implementation of Enterprise Modelling Language (EML) and its software support

tool (MaramaEML). During the research a wide range of visual modeling methods,

their visual notations and the support software have been reviewed and compared for

the strengths and weaknesses. Bases on the findings, we have designed a novel

business process modeling notation using tree overlay structure. An Eclipse-based

software tool has been developed to support the modeling capability for EML, and

provide extra integration functions. Three rounds of evaluations have been conducted

during the development to inform and refine the design.

7.1 Research Output

All the research targets explained in Chapter 1 have been achieved. The design of a

novel tree overlay based visual modeling language (EML) has been completed (please

refer to Chapter 3 for detailed information). It has successfully mitigated the

complexity issue and cobweb problem in traditional flow chart based diagrams. The

multi-layer structure of the language provides a flexible solution to support both

organizational and process level views for the system. Majority of the users find the

new language easy to learn and use, without requiring a deep learning curve or formal

programming background (feedback gathered from the evaluation). The language has

a strong modeling ability for enterprise level business process services, processes and

sub-processes, operations, exception handler, as well as some advanced constructs

such as dependency, trigger, interation and condition.

The software tool for EML has been developed (MaramaEML). Please refer to

Chapter 4 for detailed information about the tool implementation. The software tool

supports creating, inspection, editing and storage of EML. It also provides the ability

 179

to generate BPEL code from EML models automatically. A LTSA engine has been

integrated into MaramaEML for the BPEL code validation. The software tool also

integrates a BPMN view, and it has the multi-view support function for both BPMN

and EML. Being Eclipse based, and with the ability to generate BPEL code,

MaramaEML has strong potentials to integrate third party tools, especially Eclipse

based software environments. Together with the EML’s multi-overlay and elision

functionalities to reduce the complexity, MaramaEML also includes a distortion based

fisheye view and a zooming view to enhance the overall scalability.

Three rounds of evaluations have been carried out (Cognitive Dimensions

Walkthrough, informal domain expert evaluation and formal large end user

evaluation). Please refer to Chapter 6 for detailed evaluation information. We have

continuously used the results from these evaluations to refine the functionality,

usability and other related quality attributes of the EML and MaramaEML.

A list of refereed publications has been generated during the research (please refer to

Chapter 1.4 for detailed information). The work has received “Best Software Tool

Demo Award” at ASE 08, in Italy, and two of the papers have been nominated as

“Best Research Paper of the year” in the Department of Computer Science, the

University of Auckland.

The EML and MaramaEML have been included as formal lecture materials (as a good

example of business process modeling notation and software tool) for a fourth year

Software Engineering course (at Electrical Computer Engineering Department) and a

first year postgraduate Computer Science course (at Computer Science Department) at

the University of Auckland.

The EML and MaramaEML have been applied in real business consulting work for

Sofismo Limited (www.sofismo.ch/), a Switzerland ICT consulting firm (for their

finance and banking modeling project).

 180

7.2 Future Work

Several improvements and extensions could be made to the EML and MaramaEML to

increase their flexibility and functionality. These include:

• Extra UML View Support: During our end user evaluation, we have received

strong demands for adding a UML view into the framework. An additional

UML view can be added in MaramaEML via the multi-view support.

• Consistency Checking: The current version of MaramaEML includes a basic

consistency checking method between EML views and BPMN views. We are

using an event log to keep the usage records and trace the model changes. If

the user changes the name of a model element in an EML view, an event

handler will check the corresponding mapped notation in a BPMN view and

update the name automatically. However, this approach cannot cope with the

situation requiring complex logical analysis. For example, if the user tries to

delete a node which has several sub-nodes in EML, the system at this stage

will automatically delete all the sub-nodes in an EML view and all the

corresponding nodes in a BPMN view. This solution is insufficient. In the

future, we need to incorporate a more comprehensive way to handle this in

MaramaEML (e.g. link the sub-nodes with other nodes if there is an underlay

relationship between them). We also want to make use of the OCL-based

technique provided in Marama meta-tools (Li, 2007) to define dependency and

consistency constraints in the EML meta-model.

• Special Version Notation for Color Blind User: During the end user

evaluation, we observed that an achromatopsia participant became totally lost

in the overlay integration view. An overlay integration view normally mix

process flows (blue color), trigger flows (red color) and exception flows

(green color) in the same view. With this version of EML, color is a very

important design component to represent and distinguish the information.

However, from the evaluation, we found this important piece of visual

information disappeared when the notation was viewed by a color blind user.

 181

We have done some research after the evaluation. We found that there are four

common types of color people (partially sighted, dyslexia, hearing impaired

and physically impaired), so there is no single and simple solution to amend

this in a short period. Future research is required to design a special version of

EML for this group of users.

• Improve Software Performance: During the end user evaluation, we found

that some users had unresponsive issues with the tool when they were using

the zooming or fisheye view function for large EML trees. However, the users

with higher performance computers did not have this issue. In the future, an

improved zooming and fisheye view algorithm is required to improve the

performance.

• Integration with other Software Tools in the Research Group: Some very

good software tools have been developed in my research group (all based on

the Marama framework). They focus on different areas other than business

process modeling. We are working on possible solutions to integrate our

software tool from the high level business process modeling domain to their

architecture or application level domains. Examples are MaramaMTE and

ViTABal-WS.

o MaramaMTE (Middleware Testing Environment) is a tool for

modelling complex software architectures and generating performance

test beds from these models to assess likely software architecture

performance (Cai and Grundy et al 2007). Figure 7.1 shows an

architecture modelling example with MaramaMTE architecture view.

We are exploring the possibility to integrate software architecture

specification and performance modelling with MaramaMTE via the

Marama platform.

 182

Figure 7.1: MaramaMTE Architecture View

 183

o ViTABaL (Grundy and Hosking 1995) is a hybrid visual programming

environment for designing and implementing event based systems. It

uses the Tool Abstraction paradigm to compose systems by integrating,

and coordinating toolies and abstract data structure components.

ViTABaL-WS, which specializes the ViTABaL visual composition

language to the domain of web services composition, supports

modelling of both event-dependency and dataflow in designing

complex web service compositions. Figure 7.2 shows an example

modeling web service composition using Marama-ViTABaL-WS. We

are looking to integrate via the Marama framework with ViTABaL-WS

to extend our functionally from business process modeling domain to

web service specification domain.

Figure 7.2: Web Service Composition in ViTABaL-WS

7.3 Conclusion

To the best of our knowledge, EML is the first tree overlay structure based visual

language in the area of business process modeling. EML is a novel business process

modelling language based on tree hierarchy and overlay metaphors. Complex business

architectures are represented as service trees and business processes are modelled as

 184

process overlay sequences on the service trees. By combining these two mechanisms

EML gives the user a clear overview of a whole enterprise system with business

processes modelled by overlays on the same view. An integrated support tool for

EML has been developed using the Eclipse based Marama framework. It integrates

EML with existing business notations (e.g. BPMN) to provide high-level business

service modelling. A distortion-based fisheye zooming function enhances complex

diagram navigation ability. MaramaEML can also generate BPEL code automatically

from the graphical representations and map it to LTSAs for validation.

These support functions in MaramaEML, together with the strong modeling capability

of the Enterprise Modeling Language, offer a good way forward for the users of the

business process modeling domain.

 208

Appendix A

RESEARCH PROJECT APPLICATION FORM

Important Information

! Applications will only be accepted on forms dated for the current year.

! Please complete this form in reference to the UAHPEC Users’ Guide 2007, and Frequently

Asked Questions (FAQs) available on the University of Auckland website under Research and
Ethics and Biological Safety Administration.

! Submit one unstapled, single sided, signed copy of the form and all accompanying

documentation to the Research Ethics and Biological Safety Administration, Room 005, Alfred
Nathan House, 24 Princes Street.

! All Participant Information Sheets (PISs) and Consent Forms (CFs) must be submitted on

University of Auckland departmental letterhead which has the full contact address for the
department. These may be on electronic letterheads. Letterheads are available from the
applicant’s department.

! Note: Some faculties have an earlier closing date for the agenda as there are special

requirements, for example, the Faculty of Medicine and Health Sciences requires a signed
Dean’s Signature Sheet, the Faculty of Education has an earlier closing date as it requires
Ethics Advisor sign off.

! Applicants will receive an email acceptance letter with the reference number included. It is

essential to quote this reference number with all communication to UAHPEC and
participants, in their PISs and CFs.

 209

 Reference Number..

University of Auckland Human Participants Ethics Committee (UAHPEC)

R E S E A R C H P R O J E C T A P P L IC A T IO N F O R M (2 0 0 7)

GENERAL INFORMATION

1. PROJECT TITLE: A Visual Language and Support Tool for Business Process Modeling
! !
2. APPLICANT/PRINCIPAL INVESTIGATOR (P.I.)

(This will be the supervisor for a Masters student. Doctoral students submit in their own names but the Supervisors must
sign the form.)

 Name: Lei Li
 Address: Department of Computer Science
 Email address: l.li@cs.auckland.ac.nz
 Phone number: 3737599 ext. 82128

3. NAME OF STUDENT:
 (If applicable)

Email address:
Phone number:
Name of degree and Department:

 4. OTHER INVESTIGATORS:
 Names:
 Organisation:
 Is ethical approval being applied for from another institution? NO

 (If YES, indicate name of the institution and attach evidence.) ………………………………………………………………….

5. AUTHORiSING SIGNATURES:

 HEAD OF DEPARTMENT: ………………...………....…….…………Date:…...……………….…

 HOD name printed: ………………………Department…………………………….…………….
6. APPLICANT’S DECLARATION

The information supplied is, to the best of my knowledge and belief, accurate. I have read the current
University of Auckland Human Participants Ethics Committee User’s Guide 2007. I clearly understand
my obligations and the rights of the participants, particularly in regard to obtaining freely given
informed consent.

Signature of P.I. /Supervisor…............…………………………….……… Date: …………….…...……

Signature of Student:……………………………………………..……… Date: ………………...……
If a student project, including doctorate, signatures of both the Supervisor and the student are required.

 210

SECTION A: PROJECT

1. AIM OF PROJECT:
 a) What is the hypothesis / research question(s)? (State briefly)

Diagrams that model business processes can become very complex and therefore difficult to
interpret. Our hypothesis is that by overlaying the model with a tree structure and providing
appropriate software support that the presentations are less complex and therefore easier to
interpret.

b) What are the specific aims of the project?

The goal of this project is to explore a tree overlay structure-based diagrammatic approach to
business process modeling. These diagrams may ease communication with end users while
retaining rich expressiveness. There is a usability testing component part to the project which
requires human participants, for which ethical approval is sought.

2. RESEARCH BACKGROUND

Provide sufficient information to place the project in perspective and to allow the
significance of the project to be assessed.

Visual business process modeling fulfils an important role to enable high-level specification of
system interactions, improve system integration and support performance analysis. Since the
early 1970s many languages, standards, methodologies and tools for enterprise modeling have
been created. Examples include Entity-relationship models, Data Flow Diagrams, Flow Charts,
Scenarios, Use Cases, and Integration Definition for Functional and workflow modeling.

However, a common difficulty in all of these approaches is an appropriate visual method to
reduce the complexity of large diagrams. Most existing modeling technologies are effective in
only limited problem domains or have major weaknesses when applied to large systems models
e.g. “cobweb” and “labyrinth” problems (with users having to deal with many cross diagram
flows). This raises significant scalability issues: the simple example presented in the above figure
demonstrates this kind of problem. Software tools used to create these models employ multi-
view and multi-level approaches to mitigate this problem. These approaches have achieved some

Traditional worlflow based modeling language example

 (a) (b)

 211

Tree Overlay Based Enterprise Modelling Language and Support Tool Example

success but do not fully solve the problem because using the same notation and flow method in a
multi-view environment just reduces individual diagram complexity, but increases hidden
dependencies. It requires long term memory of the users, as they have to build and retain the
mappings between views mentally. In addition, most existing flow based business modelling
notations lack multiple levels of abstraction support.

In contrast, using a tree structure is an efficient way of representing the hierarchical nature of
complex systems graphically. Trees also support navigation, elision and automatic layout in
ways difficult to achieve with current graph-based approaches. We chose to use trees as they are
familiar abstractions for managing complex hierarchical data; can be easily collapsed and
expanded to provide scalability; can be rapidly navigated; and can be over-laid by cross-cutting
flows and concern representations. Our earlier work on modelling complex user interfaces and
their behaviour with tree-based overlays demonstrated these benefits. We have designed EML
(Enterprise Modelling Language), a novel tree overlay-based visual notation and its integrated
support environment (MaramaEML) to supplement and integrate with existing enterprise level
modelling solutions.

Above figure shows a simple example of an EML tree structure modelling a composite taxi booking
service. The customer management, taxi management, system admin and working schedule services
are sub-services (represented as ovals) of the taxi booking service. The system admin service also
includes an embedded user control service. The rectangle shapes represent atomic operations inside
the service. In an EML-modelled enterprise system, major services are represented as separate trees.
Each business process is represented as an overlay on the basic tree structure or an orchestration
between different service trees. In a process layer, users have the choice to display a single process or
collaboration of multiple processes. By modelling a business process as an overlay on the service tree

 212

structure, the designer is given a clear overview of both the system architecture and the process at the
same time. Processes can be elided mitigating the cobweb problem common in existing flow based
visual notations.

We have developed an integrated design environment (MaramaEML) for creating EML specifications.
MaramaEML aims to provide a platform for efficiently producing EML visual models and to facilitate
their creation, display, editing, storage, code generation and integration with other diagrams. Above
figure shows a screen dump of a MaramaEML model in use with a typical EML tree with a process
overlay. The user produces a Book a Taxi process in (a) using the MaramaEML modeling diagram
tools. To the left of the EML diagram area are the MaramaEML shapes (c) and connectors (d) toolbars.
This provides options relating directly to the construction and editing of EML tree in the central work
area (a). The EML process layer is then compiled to BPEL4WS executable code via code generation
handler in (e). Code is generated by model dependency analysis and translation to structured activity
constructs. MaramaEML aims to provide a platform for the efficient production and navigation of
EML. The tool supports a drag and drop approach and any parts of an EML tree can be directly
selected and moved. Elision and expansion are triggered via popup menu (e).

As a short summary, the highlight of our research is its flexibility in modelling business processes
using different layers. A service-oriented tree structure represents the system functional architecture.
Business process modelling is constructed as an overlay on top of this service tree. By using a multi-
layer structure, an enterprise system can be modelled with a variety of early aspects to satisfy design
requirements. An Eclipse based software tool, MaramaEML has been developed to edit EML diagrams
integrated with existing modelling languages such as BPMN (Business Process Modelling Notation)
and supports automatic generation of industry communication standard ---- BPEL (Business Process
Execution Language) code.

Business process modeling presents unique challenges that a visual language approach may
successfully address particularly issues related to visual methodology overheads between information
technology experts and end users. We have had a foundational paper on this work accepted for
presentation at the 9th ACM International Conference on Enterprise Information Systems to be held in
June 2007 at Portugal. The work proposed here extends that foundational work to include a full
usability study requiring human participants, for which we seek ethical approval.

The proposed usability study will evaluate the effectiveness of this new visual model in practice.
Users’ experience will be recorded in a questionnaire form. All participants will be normal adults who
are information technology or business modelling literate.

3. Describe and discuss the ethical issue(s) arising from this project.!(UAHPEC(expects(applicants(

to(identify(the(ethical(issues(in(the(project(and(explain(in(the(documentation(how(they(have(been(resolved.(A(“Not(
Applicable”(response(is(not(acceptable.(The(application(will(not(be(considered(if(this(is(not(answered(adequately.)(

We do not foresee any potential ethnical issues that could arise from the usability testing. The
applicant is the member of an academic department (Computer Science). He has no influence on
potential participants’ academic outcomes in business process modelling related courses as no
such courses are run in the Computer Science Department. Also there will be no tangible
financial rewards for participants as they will be take part in the usability testing on a strictly
voluntary basis.

SECTION B: PARTICIPANTS

1. What types of people are participating in the research? (Delete those who do not apply).

Normal Adults

 213

2. Explain how many organisations, or departments within the organisations, and
individuals you wish to recruit. (Attach any letter of support you may have had from an organisation.)

Maximum 30 participants.

The user testing will be conducted by a single person (the applicant) over a month with each session
consisting of a maximum of 4 persons using the software tool. The participant size has been chosen to
provide an optimal environment for group interactions considering the limited human resources
available. (If by advertisement/notice attach a

3. How will you identify your potential participants? (If by advertisement or notice, attach a copy)

Industry business modelling specialists, computer science and software engineering students will
be invited to participate. A participant information sheet for Participant Recruitment which will
be used in recruiting participants is attached. The content of the information sheet will be used
for public notices and emails.

4. How and where will potential participants be approached? Explain how you will obtain

the names and contacts of participants. (For example by email, by advertisement, through an agency
holding these details.)

 Email to selected industry representatives and graduate students. We plan to invite around 100
people to participate, selecting up to 30 on a first-come basis.

5. Who will make the initial approach to potential participants? (For example, will the owner of the

database send out letters on behalf of the researcher?)

 By the applicant, Mr Lei Li

6. Is there any special relationship between participants and researchers? (For example, student

or teacher. If YES, explain.)

 NO

7. Are there any potential participants who will be excluded?
 (If YES, explain, and state the criteria for excluding participants.)

 YES

Due to the limited resources, we will recruit no more than 30 participants. This will be done in a
strictly first come, first served basis. Only business process modelling specialists or computer
science and software engineering literate applicants will be recruited, as these are the target end-
users of the software tool under study.

SECTION C: RESEARCH PROCEDURES

There is a need here to fully inform the Committee about all factors relating to the research including, where appropriate, the
researcher’s qualifications to conduct this work (investigation).

1. PROJECT DURATION (approximate dates): From 1/Oct/2003 to 30/Sep/2010

2. Describe the study design. (For example, longitudinal study)

 i) Usability study

ii) Questionnaire

3. List all the methods used for obtaining information. (Attach questionnaires, research instruments,

interview schedule to this application).

 214

I am going to observe, take notes and collect changed diagrams. (maybe video or something)???

4. Who will carry out the research procedures?

 By the applicant (Lei Li) and his supervisors (Prof. John Hosking and Prof. John Grundy)

5. a) Where will the research procedures take place? (Physical location or setting.)

 Computer Science laboratory, The University of Auckland; or
 Industry participants’ company (if required)

 b) If the study is based overseas, which countries are involved? (Provide local contact

information on the PIS(s).

 N/A

c) If the study is based overseas, explain what special circumstances arise and how
they will be dealt with? Explain any special requirements of the country and / or
the community with which the research will be carried out.

 N/A

6. How much time will participants need to give to the research? (Indicate this in the PIS.)

The usability study will observe the participants undertaking their given tasks. At the end of the
testing session the evaluation questionnaires will be filled by the participants. The whole
procedure will take no more than two hours.

7. Does this research include the use of a questionnaire / email? (If YES, attach a copy to this

application.)

 YES

8. Are you intending to conduct the research in (University) class time? (If YES, include advice

from the Course Coordinator giving approval for this to occur.)

 NO

9. Is deception involved at any stage of the research? (If YES, justify its use, and describe the

debriefing procedure.)

 NO

10. Will information on the participants be obtained from third parties? (For example, from

participant’s employer, teacher, doctor etc. If YES, explain, and indicate in the PIS(s).

 NO

11. Will any identifiable information on the participants be given to third parties? (If YES,

explain, and indicate in the PIS).

 NO

12. Provide details on any compensation or reimbursement of expenses, and where

applicable, level of payment to be made to participants. (If payment/koha is offered, explain in the
PIS.)

 All participants are volunteers and they will not be rewarded financially for their participation.

 215

13. a) Does the research involve the administration of any substance (For example, eye-drops or

food) to participants?

 NO

b) Does this research involve potentially hazardous substances? (For example, radioactive
materials)

 NO

SECTION D: INFORMATION AND CONSENT

1. By whom and how, will information about the research be given to participants? (For

example, in writing or verbally – a copy of the information given to prospective participants in the form of a PIS must
be attached to this application.)

Verbally and in writing, Participant Information Sheet for Usability Testing is attached.

2. a) Will the participants have difficulty giving informed consent on their own behalf?

(Consider physical or mental condition, age, language, legal status, or other barriers.)

 NO

b) If participants are not competent to give fully informed consent, who will consent
on their behalf? (For example, parents / guardians)

 N/A

3. Consent should be obtained in writing. Explain and justify any alternative to written

consent.

Consent will be obtained verbally and in writing, the latter using the attached consent form.

4. UAHPEC requires that access to the Consent Forms be restricted to the researcher

and/or the Principal Investigator. Confirm that you intend to do this otherwise, please
explain.

 YES

5. Will Consent Forms be stored by the Principal Investigator, in a locked cabinet, on

University premises?

 YES

6. It is required that Consent Forms be stored separately from data and kept for six years.

Confirm that you intend to do this otherwise please explain.

YES

SECTION E: STORAGE AND USE OF RESULTS

1. Will the participants be audio-taped, video-taped, or recorded by any other electronic

means? (If YES, explain in the PIS and the CF. Consider whether recording is an optional or necessary part of the
research design, and reflect this in the CF.)

 216

 NO

2. a) How will data, including audio, videotapes and electronic data be handled and

stored to protect against unauthorised access? (Explain this in the PIS with details of
storage, possible future use and eventual destruction.)

All resulting observational data (questionnaire feedbacks) will be compiled and will be
kept in a secure locked cabinet within the Department of Computer Science, the
University of Auckland.

b) If the tapes are being transcribed or translated by someone other than the
researcher, explain what arrangements are in place to protect the confidentiality
of participants. (Attach any Confidentiality Agreements to this application.)

 N/A

 c) If recordings are made, will participants be offered the opportunity to edit the

transcripts of the recordings? (In either case, the PIS must inform the participants. Where
participants are asked to make a choice, this should be shown on the CF.)

 No recordings will be made.

d) Will participants be offered their tapes (or a copy thereof)? (In either case, the PIS must
inform the participants. Where participants are asked to make a choice, this should be shown on the CF.)

 No recordings will be made

e) Will data or other information be stored for later use?

 NO

If YES, explain how long the data will be stored and how it will be used. Indicate this
in the PIS. The period data is to be kept will be commensurate to the scale of the research. For peer
reviewed publication or research that might be further developed, the UAHPEC expects six years.

f) Describe any arrangements to make results available to participants, including

whether they will be offered their tapes. Explain this in the PIS. Where participants are asked
to make a choice, this should be shown on the CF.

A summary of the survey results and resulting publications will be made available to
participants on request.

3. a) Are you going to use the names of the research participants in any publication or

 report about the research? The PIS must inform the participants, and be part of the consent
 obtained in the CF.

 NO

b) If you don’t use their names, is there any possibility that individuals or groups
could be identified in the final publication or report? If YES, explain, and describe in the
PIS. This is a problem either when one is dealing with a small group of participants known to a wider public
or when there is to be a report back to participants likely to know each other.

 NO

SECTION F: TREATY OF WAITANGI

 217

1. Does the proposed research impact on Māori persons as Māori? If YES, complete all

questions in this section and attach evidence of consultation from the nominated Māori
Advisor within your Faculty. If NO, go to Section G.

 NO

2. Explain how the intended research process is consistent with the provisions of the

Treaty of Waitangi. Refer to the User’s Guide 2007 for further information.

3. Identify the group(s) with whom consultation has taken place, describe the consultation

process, and attach evidence of the support of the group(s).

4. Describe any on-going involvement the group(s) consulted has / have in the project.

5. Describe how at the end of the project information will be disseminated to participants

and the group(s) consulted at the end of the project.

SECTION G: OTHER CULTURAL ISSUES

1. Are there any aspects of the research that might raise any specific cultural issues, other

than those covered in Section F? If YES, explain. Otherwise go to Section H.

 NO

2. What ethnic or cultural group(s) does the research involve?

3. Identify the group(s) with whom consultation has taken place, describe the consultation

process, and attach evidence of the support of the group(s).

4. Describe any on-going involvement the group(s) consulted has / have in the project.

5. Describe how information will be disseminated to participants and the group(s)

consulted at the end of the project.

SECTION H: CLINICAL TRIALS

1. Is this project a Clinical Trial? (If YES, complete section, otherwise go to Section I. If YES, attach ACC Form A or

B – see Guidelines

 NO

2. Is this project initiated by a Pharmaceutical Company?

 NO

3. Are there other NZ or International Centres involved?

 NO

4. Is there a clear statement about indemnity?

 N/A

5. Is Standing Committee on Therapeutic Trials (SCOTT) approval required?

 N/A

 218

6. Is National Radiation Laboratory approval required? (Attach)

N/A

7. Is Gene Therapy Advisory Committee on Assisted Human Reproduction
(NACHDSE) approval required?

 N/A

SECTION I: RISKS AND BENEFITS

1. What are the possible benefits to research participants of taking part in the research?

Participating in this study may increase their understanding of issues related to and knowledge of
visual languages in the context of a business process modelling.

For industry business process modelling professionals, participating in this study exposes them
to current research in the field and provides an introduction to the university research team.

2. What are the possible risks to research participants of taking part in the research? Make

sure that you have clearly identified or explained these risks in the PIS.

 Nil

3. a) Are the participants likely to experience discomfort (physical, psychological,

social) or incapacity as a result of the procedures? If YES, describe, and explain them
clearly in the PIS(s).

 NO

 b) What other risks are there?

 Nil

c) What qualified personnel will be available to deal with adverse consequences or
physical or psychological risks? Explain in the PIS.

 N/A

SECTION J: FUNDING

1. Do you have or intend to apply for funding for this project? If YES, complete this section and

acknowledge it in the PIS, otherwise proceed to Section J.

 NO

2. From which funding bodies?

 N/A

3. Is this a UniServices Ltd project? If YES, what is the project reference number?

 NO

 219

4. Explain investigator’s and /or supervisor’s financial interest, if any, in the outcome of the
project.

 Nil

5. Do you see any conflict of interest between the interests of the researcher(s), the

participants or the funding body? If YES, explain them.

 NO

SECTION K: HUMAN REMAINS, TISSUE AND BODY FLUIDS

1. Are human remains, tissue, or body fluids being used in this research? If YES, complete this

section otherwise go to Section L. The current Human Tissues Act is currently under review and will be
changed.

 NO

2. How will the material be taken? For example at operation, urine samples, archaeological digs, autopsy.

3. Is the material being taken at autopsy? YES / NO

If the response to Section J. is YES, provide a copy of the information to be given to the Transplant Coordinator, and
state the information that the Transplant Coordinator will provide to those giving consent. Indicate how the material
will be stored/disposed of, and explain how the wishes with regard to the disposal of human remains of the whanau
(extended family) or similar interested persons will be respected.

4. Is material derived or recovered from archeological excavation? If YES, explain how the wishes

of Iwi and Hapū (descent groups), or similar interested persons, or groups, have been respected? YES / NO

5. Will specimens be retained for possible future use? If YES, explain and state this in the PIS.

 YES / NO

6. Where will the material be stored, and how long will it be stored for?

7. a) Will material remain after the research process?
 YES / NO
 b) How will the material be disposed of? If applicable.

 c) Will material be disposed of in consultation with relevant cultural groups?
 YES / NO

8. Is blood being collected? YES / NO

If YES, what volume at each collection, how frequent are the collections, and who is collecting it?

a) Explain how long it will be kept and how it will be stored.

b) Explain how it will be disposed of.

SECTION L: OTHER MATTERS

1. Have you made any other related applications? If YES, supply approval reference number(s).

 NO

2. If there is relevant information from past applications or interaction with UAHPEC, please
indicate and attach.

 NO

 220

2. Are there any other matters you would like to raise that will help the Committee
review your application?

NO

----END OF APPLICATION FORM----

 221

Appendix B

PARTICIPANT INFORMATION SHEET
PARTICIPANT RECRUITMENT

Project title: A Visual Language and Support Tool for Business Process Modelling

Researcher name: Lei Li

To participants:

My name is Lei Li. I am a PhD (Computer Science) student at The University of Auckland conducting human
computer interaction research. I am conducting this study to assess the usability of a visual language and
support tool for business process modelling. I need volunteer participants with a computing or business
process modelling background to comment on the usability of my enterprise modelling language prototype
system. Up to 30 volunteers will be chosen based on the “first in, first selected” rule.

You are invited to take part in this study and your assistance and comments would be greatly appreciated. The
goal of the project is to develop a visual language and its software tool for use in the business process
modelling domain that allows the users to build an enterprise level modeling structure. The hypothesis of this
research is that the usage of a tree overlay-based visual language significantly reduces the complexity of
modelling diagrams and can effectively improve the scalability and collaboration ability with the tool support.
I would like to observe you using the prototype software to complete a set of pre-defined tasks, followed by
filling in a questionnaire about your experience with the prototype system. I will use the study results to
analyse and improve my current PhD research.

The study will take a maximum of one hour. The study can take place at a time convenient to you at the
University of Auckland. For industry participants, we may be able to come to your office if required. We are
unsure of how usable our notation and tool are for the intended audience - professional business users and
business system designers - indeed this is one of the questions that the study hopes to answer. You will not be
paid for attending a testing session and any additional expense for travel and food.

You are free to withdraw from the testing session at any time without giving reasons. Data already recorded
may not be withdrawn. For the university student participants, choosing either to participate, or not participate
in this study will not influence your academic evaluation at the University of Auckland.

A questionnaire will be provided for you to fill in as part of the usability evaluation. The questionnaire will be
held in secure storage for six years and then destroyed. The individual questionnaire responses will be
summarized and analysed and this summary information may be used both to improve our research outcomes
and to report on the findings of the study. A summary of the results of the survey and any resulting
publications will be made available to you on request.

All personal information will remain strictly confidential and no material that could personally identify you
will be used in any report on this study.

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
Auckland
Phone 3737599 ext 82128

 222

This study has received ethical approval from the University of Auckland Ethics Committee.
Please send me a signed Consent Form if you would like to participate in this study. I would like to thank you
in advance for your help in making this study possible. Please contact me in either of the following ways if
you wish to know more about this study.

Contact Information:

Name: Lei Li
Position: PhD student
Address: Department of Computer Science, the University of Auckland, Private Bag 92019, Auckland.
Telephone: 3737599 ext 82128
Email: l.li@cs.auckland.ac.nz

My supervisors are:
Professor John Hosking and Professor John Grundy
Department of Computer Science Department of Electrical Computer Engineering&

Department of Computer Science
The University of Auckland The University of Auckland
Private Bag 92019 Private Bag 92019
Auckland Auckland
john@cs.auckland.ac.nz john-g@cs.auckland.ac.nz

The Head of Department is:
Associate Professor Robert Amor
Department of Computer Science
The University of Auckland
Private Bag 92019
Auckland
trebor@cs.auckland.ac.nz

For ethical concerns contact:
The Chair,
The University of Auckland Human Participants Ethics Committee, Office of the Vice Chancellor
Research Office
Level 2
76 Symonds Street
Auckland
Tel: 373-7599 extn. 87830.

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS COMMITTEE ON
…(date)... TO …(date)…FOR ……(3) YEARS REFERENCE NUMBER 200../…

 223

Appendix C

CONSENT FORM

This Consent Form will be held for a period of six years

Project title: A Visual Language and Support Tool for Business Process Modelling

Researcher name: Lei Li

From Participants:

I have read the Participant Information Sheet, have understood it and I am prepared to take part in the
research. I have had the opportunity to ask questions and have them answered. I understand that I am free to
withdraw at any time and that data already recorded can not be withdrawn.

• I understand that my responses will be recorded in a questionnaire form.

• I understand that the questionnaire responses may be used to review the research

outcomes both to improve the notation and software tool and in publications about the
project.

• I understand that I will not be paid for the time taken to participate in this study.

• I understand that data will be archived or stored for six years and then destroyed.

Name ________________________ Date ______________________

Signature ________________________

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
Auckland
Phone 3737599 ext 82128

 224

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS
COMMITTEE ON …(date)... TO …(date)…FOR ……(3) YEARS REFERENCE NUMBER
200../…

Appendix D

PARTICIPANT INFORMATION SHEET

USABILITY TESTING

Project title: A Visual Language and Support Tool for Business Process Modelling

Researcher name: Lei Li

To Participants:

My name is Lei Li. I am a PhD student at The University of Auckland conducting research in visual methods
to support business process modelling. As a participant of this testing session your feedback will be recorded
in response to a number of questions. The questionnaire you are asked to complete will help us gauge the
efficiency and effectiveness of our research.

While I would appreciate any assistance you can offer me, your participation is voluntary and will have no
effect on your course grade, course participation or commercial benefits in any way.

The questionnaire you are asked to complete is anonymous and none of the information on it will identify you
personally. Once completed your questionnaire information cannot be withdrawn. The individual
questionnaire responses will be summarised and analysed and this summary information may be used both to
improve our research outcomes and to report on the findings of the study. The questionnaire data will be held
in secure storage for six years and then destroyed. A summary of the results of the testing and any resulting
publications will be made available to you on request.

Please contact me in either of the following ways if you wish to know more about this study.

Contact Information:

Name: Lei Li
Position: PhD student
Address: Department of Computer Science, the University of Auckland, Private Bag 92019, Auckland.
Telephone: 3737599 ext 82128
Email: l.li@cs.auckland.ac.nz

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
Auckland
Phone 3737599 ext 82128

 225

My supervisors are:
Professor John Hosking and Professor John Grundy
Department of Computer Science Department of Electrical Computer Engineering&

Department of Computer Science
The University of Auckland The University of Auckland
Private Bag 92019 Private Bag 92019
Auckland Auckland
john@cs.auckland.ac.nz john-g@cs.auckland.ac.nz

The Head of Department is:
Associate Professor Robert Amor
Department of Computer Science
The University of Auckland
Private Bag 92019
Auckland
trebor@cs.auckland.ac.nz

For ethical concerns contact:
The Chair,
The University of Auckland Human Participants Ethics Committee, Office of the Vice Chancellor
Research Office
Level 2
76 Symonds Street
Auckland
Tel: 373-7599 extn. 87830.

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS
COMMITTEE ON …(date)... TO …(date)…FOR ……(3) YEARS REFERENCE NUMBER
200../…

 185

REFERENCES

Ali, N. M. (2007) A Generic Visual Critic Authoring Tool, In Proceedings of the 2007

IEEE Symposium on Visual Languages and Human-Centric Computing, Coeur

d'Alène, Idaho, USA.

Anderson P.S. and Apperley M.D. (1990): An interface prototyping system based on

Lean Cuisine, Interacting with Computers Journal, VOL 2, No 2, 217~226

Apperley M.D. (1988): TaP: A Menu Interface Design Study Using the Lean Cuisine

Notation, Information Engineering Report #88/2, Imperial College, London

Baeyens, T. (2007, May 02) The state of workflow,

http://www.jbpm.org/state.of.workflow.html

Barra, E., Génova, G. and Llorens, J. (2004) An approach to aspect modeling with

UML 2.0. In Proc. 5th Int. Workshop on Aspect-Oriented Modeling, October 2004.

Baker, J. (2002, June 07) Business Process Modelling Language: Automating

Business Relationships, Business Integration Journal, www.bijonline.com

Ballal Rahul, and Michael A. Hoffman (2009) Extending UML for Aspect Oriented

Software Modeling. CSIE, 488-492

Barrett, D. J., Clarke, L. A., Tarr, P.L., and Wise, A.E. (1996) A Framework for

Event-Based Software Integration, ACM Transactions on Software Engineering and

Methodology (TOSEM), pp. 378-421.

Bederson, B., Meyer, J. and Good, L. (2000) Jazz: An Extensible Zoomable User

Interface Graphics Toolkit in Java, In Proceedings of 2000 ACM Conference on User

Interface and Software Technology, ACM Press, pp. 171-180.

 186

Ben-Shaul, I. Z. (1994) Oz: A Decentralized Process Centered Environment.

Technical Report CUCS-024-94, Columbia University Department of Computer

Science, PhD Thesis.

Benatallah, B., Dumas, M., Fauvet, M.C. and Rabhi, F. (2003) Towards Patterns of

Web Services Composition, In Patterns and skeletons for parallel and distributed

computing, Springer.

Berndtsson, B., Mellin, J., and Hogberg, U. (1999) Visualization of the Composite

Event Detection Process, In proceedings of the 1999 International Workshop on User

Interfaces to Data Intensive Systems, IEEE CS Press, pp. 118-127.

Bex Geert Jan, Wim Martens, Frank Neven, and Thomas Schwentick (2005)

Expressiveness of XSDs: from practice to theory, there and back again. WWW, 712-

721

Bex Geert Jan , Wouter Gelade, Frank Neven, and Stijn Vansummeren (2010)

Learning Deterministic Regular Expressions for the Inference of Schemas from XML

Data CoRR abs/1004.2372

Box, D., Cabrera, L.F., Critchley, C., Curbera, F., Ferguson, D., Graham, S., Hull, D.,

Kakivaya, G., Lewis, A., Lovering, B., Niblett, P., Orchard, D., Samdarshi, S.,

Schlimmer, J., Sedukhin, I., Shewchuk, J., Weerawarana, S., and Wortendyke, D.

(2006, January 24) Web Services Eventing (WS-Eventing),

http://www.w3.org/Submission/WS-Eventing/

BPMI (2010, March 18) http://www.ebpml.org/bpml.htm

Buchmann, A., Bornhövd, C., Cilia, M., Fiege, L., Gärtner, F., Liebig, C., Meixner,

M., and Mühl, G. (2004) DREAM: Distributed Reliable Event-based Application

Management, In Web Dynamics, Springer.

Buschmann F, R. Meunier, and H. Rohnert (1996) Pattern-Oriented Software

Architecture. John Wiley and Sons

 187

Budinsky, F., Steinberg, D., Merks, E, Ellersick, R., and Grose, T. (2003) Eclipse

Modeling Framework: A Developer's Guide, Addison Wesley Professional.

Burbeck, S. (1992) Applications Programming in Smalltalk-80(TM): How to user

Model-View-Controller (MVC), http://st-www.cs.uiuc.edu/users/smarch/st-

docs/mvc.html

Burnett, M., Atwood, J., Djang, R.W., and Reichwein, J. (2001) Forms/3: A first-

order visual language to explore the boundaries of the spreadsheet paradigm, Journal

of Functional Programming, 11(2): 155-206.

Burnett, M. and Ambler, A.L. (1992) A Declarative Approach to Event-Handling in

Visual Programming Languages, In IEEE Workshop on Visual Languages, pp. 34-40,

Seattle, Washington.

Cai, R., Grundy, J.C. and Hosking, J.G. (2007) Synthesizing Client Load Models for

Performance Engineering via Web Crawling, IEEE/ACM International Conference on

Automated Software Engineering, Atlanta, USA, Nov 5-9 2007, IEEE CS Press.

Chakravarthy, S., Krishnaprasad, V., Anwar, E., and Kim, S.K. (1994) Composite

Events for Active Databases: Semantics Contexts and Detection, In Proceedings of

the 20th International Conference on Very Large Data Bases.

Chappell, D (2007, April 03) Microsoft and BPM: A Technology Overview,

http://www.microsoft.com/biztalk/solutions/bpm/technicalwhitepaper.mspx

Chen, P. (2002) Entity-relationship modeling Contributions to SE, p296 ~ p310,

Springer-Verlag, NY

Cohen, D. (2006, August 15) AP5 Reference Manual, http://ap5.com/doc/ap5-

man.html

 188

Conway, M., Audia, S., Burnette, T., Cosgrove, D., and Christiansen, K. (2000) Alice:

Lessons Learned from Building a 3D System for Novices, In Proceedings of the

SIGCHI conference on Human factors in computing systems, pp. 486-493.

Costagliola, G., Deufemia, V., Ferrucci, F., and Gravino, C. (2002) The Use of the

GXL Approach for Supporting Visual Language Specification and Interchanging, In

Proceedings of HCC’02, Arlington, Virginia, pp.131-138.

Costagliola, G., Deufemia, V. and Polese G. (2004) A Framework For Modeling and

Implementing Visual Notations with Applications to Software Engineering, ACM

Transactions on Software Engineering and Methodology (TOSEM), Volume 13 Issue

4.

Coupaye, T., Roncancio, C. L., and Bruley, C. (1999) A Visualization Service for

Event-Based Systems, Proc. 15emes Journees Bases de Donnees Avancees, BDA.

Cox, P., Giles, F., and Pietrzykowski, T. (1989) Prograph: A step towards liberating

programming from textual conditioning, 1989 IEEE Workshop on Visual Languages,

Rome, Italy, 150-156.

Cox, P. T., Smedley, T. J., Garden, J. and McManus, M. (1997) Experiences with

Visual Programming in a Specific Domain – Visual Language Challenge ’96, In

Proceedings of the 1997 IEEE Symposium on Visual Languages, pp. 254-259.

Cugola G., Di Nitto E., and Fuggetta A. (1998) Exploiting an event-based

infrastructure to develop complex distributed systems, In Proceedings of the 20th

international conference on Software engineering, Kyoto, Japan, pp. 261-270.

Dantas Daniel S., David Walker, Geoffrey Washburn, and Stephanie Weirich (2008)

AspectML: A polymorphic aspect-oriented functional programming language. ACM

Trans. Program. Lang. Syst. (TOPLAS) 30(3)

Dehnert Juliane (2003) Making EPCs fir for Workflow Management. EMISA Forum

(EMISA) 23(1), 12-26

 189

Dewan, P. and Choudhary, R. (1991) Flexible user interface coupling in collaborative

systems, CHI'91, pp. 41-49.

Dillon, A (2001), Usability evaluation, In W. Karwowski (ed.) Encyclopedia of

Human Factors and Ergonomics, London: Taylor and Francis.

Dogac Asuman, Yusuf Tambag, Pinar Pembecioglu, Sait Pektas, Gokce Laleci,

Gokhan Kurt, Serkan Toprak, and Yildiray Kabak (2002) An ebXML infrastructure

implementation through UDDI registries and RosettaNet PIPs. SIGMOD, 512-523

Draheim D and G. Weber (2005) Form-Oriented Analysis, Springer-Verlag Berlin

Heidelberg

Drumea, A. and Popescu, C. (2004) Finite State Machines and Their Applications in

Software for Industry Control, Electronics Technology: Meeting the Challenges of

Electronics Technology Progress, 27th International Spring Seminar, Vol.1, pp. 25-29.

ebPML (2002, June 06) BPML 1.0 Analysis,

http://www.ebpml.org/bpml_1_0_june_02.htm

Eclipse (2009, August 21) EMF, http://www.eclipse.org/modeling/emf/

Eclipse (2009, August 21) GEF, http://www.eclipse.org/gef/

Embarcadero (2010) http://www.embarcadero.com/products/er-studio

Effinger Philip and Johannes Spielmann (2010) Lifting business process diagrams to

2.5 dimensions. VDA, 75300

Engels, G. and Erwig M. (2005) ClassSheets: Automatic Generation of Spreadsheet

Applications from Object-Oriented Specifications, In Proceedings of the 20th

IEEE/ACM international Conference on Automated software engineering, Long

Beach, CA, USA, pp. 124-133.

 190

Eriksson, H.E. and Penker, M., (2000). Business modeling with UML: business

patterns at work, Wiley

Felfernig, A., Friedrich, G., Jannach, D., Russ, C. and Zanker M. (2003) Developing

Constraint-Based Applications with Spreadsheets. In 18th International Joint

Conference on Artificial Intelligence. Acapulco, Mexico.

Feng Yi-Heng and Lee C. Joseph (2010) Exploring Development of Service-Oriented

Architecture for Next Generation Emergency Management System. AINA Workshops,

557-561

Fensel, D. and Bussler, C. (2002) The web service modeling framework WSMF,

Electronic Commerce Research and Applications, vol. 1, no. 2, pp. 113--137.

Fernstrom, C. (1993) Process Weaver: Adding Process Support to UNIX. In

Proceedings of the Second International Conference of Software Process. Pages 12-26.

Ferguson R., Parrington N., Dunne P., Archibald J. and Thompson J. (1999)

MetaMOOSE-an object-oriented framework for the construction of CASE tools, In

Proceedings of CoSET'99, LA.

Foster, H., Uchitel, S., Magee, J. and Kramer, J. (2003) Model-based verification of

web service compositions, In Proceedings of the 18th IEEE international conference

on automated software engineering, Montreal, Canada.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995) Design Patterns: Elements

of Reusable Object-Oriented Software, Addison-Wesley.

Gansner Emden R., Yehuda Koren and Stephen C. North (2004) Topological Fisheye

Views for Visualizing Large Graphs. INFOVIS, 175-182

Gatziu, S and Dittrich, K.R. (1993) Events in an Active Object-Oriented Database

System, Proc. 1st Intl. Workshop on Rules in Database Systems (RIDS).

 191

Goel A (2006) Enterprise Integration --- EAI vs. SOA vs. ESB, Infosys Technologies

White Paper

Gokhale, A. and Gray J. (2005) An Integrated AOMD Development Toolsuite for

Distributed Real-Time and Embedded Systems, Proc 6th I W- AOM, Chicago

Gottfried, H. J. and Burnett M. M. (1997) Programming Complex Objects in

Spreadsheets: an Empirical Study Comparing Textual Formula Entry with Direct

Manipulation and Gestures, Papers Presented at the Seventh Workshop on Empirical

Studies of Programmers ESP’97.

Green, T. R. G. and Petre, M. (1996) Usability analysis of visual programming

environments: a 'cognitive dimensions' framework. J. Visual Languages and

Computing, 7, 131-174.

Grosse Philippe, Yves Durand and Paul Feautrier (2009) Methods for power

optimization in SOC-based data flow systems. ACM Trans. Design Autom. Electr.

Syst. (TODAES) 14(3)

Grundy, J.C. and Hosking, J.G. (1995) ViTABaL: A Visual Language Supporting

Design by Tool Abstraction, Proceedings of the 1995 IEEE Symposium on Visual

Languages, Darmsdart, Germany, IEEE CS Press, pp. 53-60.

Grundy, J.C. and Hosking, J.G. (1996) Constructing Integrated Software

Development Environments with MViews. International Journal of Applied Software

Technology, vol. 2, no. 3-4, 133-160.

Grundy, J.C. and Hosking, J.G. (1998) Serendipity: integrated environment support

for process modelling, enactment and work coordination, Automated Software

Engineering: Special Issue on Process Technology 5(1), January 1998, Kluwer

Academic Publishers, pp. 27-60.

 192

Grundy, J.C., Hosking, J.G., Li, L. and Liu, N. (2006) Performance engineering of

service compositions, ICSE 2006 Workshop on Service-oriented Software

Engineering, Shanghai, China.

Grundy, J.C., Hosking, J.G., and Mugridge, W.B. (1996) Supporting flexible

consistency management via discrete change description propagation, Software –

Practice and Experience, Volume 26, Issue 9, pp. 1053 – 1083.

Grundy, J.C., Hosking, J.G. and Mugridge, W.B. (1996) Towards a unified event-

based software architecture, in Joint Proceedings of the SIGSOFT'96 Workshops,

1996 International Software Architecture Workshop, Oct 14-15, San Francisco, ACM

Press, 121-125.

Grundy, J. C., Hosking, J. G. and Mugridge, W. B. (1997) Visualising Event-based

Software Systems: Issues and Experiences. In Porceedings of SoftVis97. Adelaide,

Australia.

Grundy, J.C., Hosking, J.G., Zhu N., and Liu N. (2006) Generating Domain-Specific

Visual Language Editors from High-level Tool Specifications, In Proceedings of the

21st IEEE/ACM International Conference on Automated Software Engineering,

Tokyo, Japan, pp. 25-36.

Grundy, J.C., Mugridge, W.B. and Hosking, J.G. (1998a) Visual specification of

multiple view visual environments, In Proceedings of IEEE VL'98, Halifax, Nova

Scotia, Canada, IEEE CS Press, pp. 236-243.

Grundy, J.C., Mugridge, W.B., and Hosking, J.G. (1998b) Static and Dynamic

Visualisation of Software Architectures for Component-based Systems, In

Proceedings of the 10th International Conference on Software Engineering and

Knowledge Engineering, San Francisco, KSI Press, pp. 426-433.

Gugola G, Nitto E, and Fuggetta A. (2001) The JEDI event-based infrastructure and

its application to the development of the OPSS WFMS, IEEE Trans. Software, 2001,

27(9): 827-850.

 193

Haeberli, P. (1988) ConMan: a visual programming language for interactive graphics,

In Proceedings of the 15th annual conference on Computer graphics and interactive

techniques, ACM Press, pp. 103-111.

Hamadi, R. and Benatallah, B. (2003) A petri-net based model for web service

composition, Proc 14th Australasian Database Conference, Adelaide, Australia,

CRPIT Press.

Hanna, K. (2002) Interactive visual functional programmings, Proceedings of the

seventh ACM SIGPLAN international conference on Functional programming ICFP

'02, Volume 37 Issue 9.

Hanson, J. (2005, September 01) Event-driven services in SOA, Java World,

http://www.javaworld.com/javaworld/jw-01-2005/jw-0131-soa.html

Hartson, H. R., Andre, T. S., and Williges, R. C. (2003) Criteria for evaluating

usability evaluation methods, International Journal of Human-Computer Interaction

15(1): 145-181.

Haskell (2007, December 02), http://www.haskell.org/

Hill, R. D. (1992) The Abstraction-Link-View Paradigm: Using Constraints to

Connect User Interfaces to Applications. In Proceedings of the SIGCHI Conference

on Human Factors in Computing Systems, Monterey, California, pp.335-342, ACM

Press.

Hartmann Sven, Sebastian Link and Thu Trinh (2009) Constraint acquisition for

Entity-Relationship models. Data Knowl. Eng. (DKE) 68(10):1128-1155

Hill, R. D., Brinck, T., Rohall, S. L., Patterson, J. F. and Wilner, W. (1994) The

Rendezvous Architecture and Language for Constructing Multiuser Applications.

ACM Transactions on Computer-Human Interaction (TOCHI). Vol. 1, no. 2, pp.81-

125, ACM Press.

 194

Hirakawa, M. and Ichikawa, T. (1992) Advances in Visual Programming, In

Proceedings of the Second International Conference on Systems Integration, pp. 538-

543.

Hoof, J.V. (2006, July 27) how EDA extends SOA and why it is important, http://soa-

eda.blogspot.com/2006/11/how-eda-extends-soa-and-why-it-is.html

Hudak, P. (1989) Conception, evolution, and application of functional programming

languages, ACM Computing Surveys 21 (3): 359-411.

Huh, J., Grundy, J.C., Hosking, J.G., Liu, N. and Amor R. (2007) Integrated data

mapping for meta-tool model integration, transformation and code generation,

working paper, the University of Auckland.

IBM (2010, March 21) Business Processes Web Services for Java,

http://www.alphaworks.ibm.com/tech/bpws4j

IBM (2009, April 09) Specification: Business Process Execution Language for Web

Services Version 1.1, http://www.ibm.com/developerworks/library/ws-bpel/

Inazumi, H. and Omoto, N. (1999) A new scheme for verifying rule-based systems

using Petri nets, 1999 IEEE International Conference on Systems, Man, and

Cybernetics, Volume 1, Page(s):860 - 865 vol.1.

Information Week (2009, May 21): www.informationweek.com

Jacob, R. (1996) A Visual Language for Non-WIMP User Interfaces, In Proceedings

of the 1996 IEEE Symposium on Visual Languages, Boulder, CO, USA, pp. 231-238.

Jamroendararasame K., Suzuki T., and Tokuda T. (2003) A visual approach to
development of Web services providers/requestors. In the 2003 IEEE Symposium on
Visual and Multimedia Software Engineering, pages 251--253

 195

Jia, X., Steele, A., Qin L., Liu, H. and Jones, C. (2005) An Event-Based Framework

for Model Integration, In Proceedings of the 2005 IEEE International Conference on

Electro Information Technology.

Jin, W. (2003) A structured approach to visualising the event handling specification,

Thesis (MSc-Computer Science) – University of Auckland.

Jong E.D. (1997) Multi-paradigm Programming in Large Control Systems, In

Proceedings of the 1997 Joint Workshop on Parallel and Distributed Real-Time

Systems (WPDRTS/OORTS ‘97).

JUDE (2010, July 04): http://jude.change-vision.com/jude-

web/product/professional.html

Jung, M.C. and Cho, S.B. (2005). A novel method based on behavior network for

Web service composition, In Proceedings of the International Conference on Next

Generation Web Services Practices, 22-26 Aug. 2005. Page(s):6 pp.

Kelly, S., Lyytinen, K., and Rossi, M. (1996) Meta Edit+: A Fully configurable Multi-

User and Multi-Tool CASE Environment, In Proceedings of CAiSE'96, LNCS 1080.

Kelso, J. (2002) A Visual Programming Environment for Functional Languages,

Thesis (PhD – Computer Science) – Murdoch University,

http://www.csse.uwa.edu.au/~joel/vfpe/thesis.pdf

Kienzle Jörg, Wisam Al Abed and Jacques Klein (2009) Aspect-oriented multi-view

modeling. AOSD, 87-98

Kiringa, I. (2002) Specifying Event Logics for Active Database, Description Logics

Koenig, J. (2004, June 04) JBOSS jBPM,

http://www.jboss.com/pdf/jbpm_whitepaper.pdf

 196

Kornkamol J., S. Tetsuya, and T. Takehiro, (2003) “A Visual Approach to

Development of Web Services Providers/Requestors”, Proc. of VL/HCC'03,

Auckland, p251~p253

Kraemer, F. A. and Herrmann P. (2007) Transforming Collaborative Service

Specifications into Efficiently Executable State Machines, In Proceedings of the Sixth

International Workshop on Graph Transformation and Visual Modeling Techniques

(GT-VMT 2007).

Krishnamurthy, B. and Rosenblum, D.S. (1995) Yeast: a general purpose event-action

system, In Proceedings of Software Engineering, IEEE Transactions, pp. 845-857.

Ledeczi A., Bakay A., Maroti M., Volgyesi P., Nordstrom G., Sprinkle J., and Karsai

G. (2001) Composing Domain-Specific Design Environments, Computer, 44-51.

Lewicki, D. and Fisher, G. (2006) VisiTile - A Visual Language Development Toolkit,

Proceedings of the 1996 IEEE Symposium on Visual Languages, Boulder, Colorado,

pp. 114-121.

Li, K.N.L., Hosking, J.G., Grundy, J.C. and Li, L. (2009): 'Visualising Event-based

Information Models: Issues and Experiences', Visual Analytics in Software

Engineering, Workshop at 2009 IEEE/ACM Automated Software Engineering

Conference, Proceedings of Visual Analytics in Software Engineering, Auckland,

New Zealand, 16 Nov, 2009

Li L., Hosking J.G., and Grundy J.C (2008): MaramaEML: An Integrated Multi-View

Business Process Modelling Environment with Tree-Overlays, Zoomable Interfaces

and Code Generation, In Proceedings of the 23th IEEE/ACM International

Conference on Automatic Software Engineering (ASE 08), L'Aquila, Italy (Best

Software Demo Award)

 197

Li L., Hosking J.G., and Grundy J.C (2007): Visual Modelling of Complex Business

Processes with Trees, Overlays and Distortion-Based Displays, In Proceedings of the

2007 IEEE Conference on Visual Languages/Human-Centric Computing (VL HCC

07), Coeur d'Alène, Idaho, U.S.A

Li, L., Grundy, J.C. and Hosking, J.G. (2007) EML: A Tree Overlay-based Visual

Language for Business Process Modelling, In Proceedings of the 2007 International

Conference on Enterprise Information Systems, Portugal.

Li, L., Phillips, C.H.E. and Scogings C.J., (2004) Automatic Generation of a

Graphical Dialogue Model from Delphi, Proc of APCHI 2004, Rotorua, p221~p230

Li, X., Marin, J. M. and Chapa, S. V (2002) A Structural Model of ECA Rules in

Active Database, Lecture Notes in Computer Science, in Proceedings of the Second

Mexican International Conference on Artificial Intelligence, Pages 486-493

Li, X., Mugridge W. B. and Hosking G. (1997) A Petri Net-based Visual Language

for Specifying GUIs, In Proceedings of the 1997 IEEE Symposium on Visual

Languages, Isle of Capri, Italy.

Liu, A.F., Chen Z.G.; He H. and Gui W.H. (2007) Treenet: A Web Services

Composition Model Based on Spanning tree, In Proceedings of the 2nd International

Conference on Pervasive Computing and Applications, 26-27 July 2007 Page(s):618 –

623

Liu, N., Hosking, J.G. and Grundy, J.C. (2005) A Visual Language and Environment

for Specifying Design Tool Event Handling, In Proc. VL/HCC’2005, Dallas, Texas,

USA.

Liu, N., Grundy, J.C. and Hosking, J.G. (2007) A Visual Language and Environment

for Specifying User Interface Event Handling in Design Tools, In Proceedings of the

2007 Australasian Conference on User Interfaces, Ballarat, Australia, CRPIT Press.

 198

Liu, N., Hosking, J.G. and Grundy, J.C. (2004) Integrating a Zoomable User

Interfaces Concept into a Visual Language Meta-tool Environment, In Proceedings of

the 2004 International Conference on Visual Languages and Human-Centric

Computing, Rome, Italy, IEEE CS Press.

Liu, N., Hosking, J.G. and Grundy, J.C. (2007) MaramaTatau: Extending a Domain

Specific Visual Language Meta Tool with a Declarative Constraint Mechanism, in

Proceedings of the 2007 IEEE Symposium on Visual Languages and Human-Centric

Computing, Coeur d'Al�ne, Idaho, USA

Liu, N., Grundy, J.C. and Hosking, J.G. (2005) A visual language and environment

for composing web services, In Proceedings of the 2005 ACM/IEEE International

Conference on Automated Software Engineering, Long Beach, California, IEEE Press,

pp. 321-324.

Myers B.A. (1995 a): State of the Art in User interface Software Tools, Reading in

Human-Computer interaction: Toward the Year 2000, Morgan Kaufmann Publishers

Inc, 323~343

Myers B.A. (1995 b): User Interface Software Tools, ACM Transactions on

Computer-Human Interaction. Vol. 2, no. 1, March 1995. 64 ~ 103

Matskin, M. and Montesi, D. (1998) Visual Rule Language for Active Database

Modelling, Information Modelling and Knowledge Bases IX. IOS Press, pp. 160-175.

Marshall C. (2004) Enterprise Modelling with UML. Designing Successful Software

Through Business Analysis, Addison Wesley

Martinez A and M. Patino (2005) “ZenFlow: A Visual Web Service Composition

Tool for BPEL4WS”, Proc of VL/HCC'05, Dallas, P181~P188

 199

Meier, R. and Cahill, V. (2002) Taxonomy of Distributed Event-based Programming

Systems, In Proceedings of the 22nd International Conference on Distributed

Computing Systems Workshop.

Menon, S., Dasgupta, P., and LeBlanc, R.J. (1993) Asynchronous event handling in

distributed object-based systems. In Proc. the 13th Conference on Distributed

Computing Systems, pages 383-390, Pittsburgh, Pennsylvania.

MIT (2006, October 12) The Alloy Analyzer, http://alloy.mit.edu/

Morch, A. (1998) Tailoring tools for system development, Journal of End User

Computing, 10:2, pp. 22-29.

Moreira Orlando, Twan Basten, Marc Geilen and Sander Stuijk (2010) Buffer Sizing

for Rate-Optimal Single-Rate Data-Flow Scheduling Revisited. IEEE Trans.

Computers (TC) 59(2):188-201

MSND (2007, November 14) Create Trigger, http://msdn2.microsoft.com/en-

us/library/aa258254(SQL.80).aspx

MSDN (2007, November 14) Understanding the Event Model,

http://msdn2.microsoft.com/en-us/library/ms533023.aspx

MSDN (2005, February 21) DSL Tools, http://msdn2.microsoft.com/en-

us/vstudio/aa718368.aspx

Mugridge, W.B., Hosking, J.G. and Grundy, J.C. (1998) Drag-throughs and

attachment regions in BuildByWire, Proc. of OZCHI'98, Adelaide, Australia, IEEE

CS Press, pp. 320-327.

Myers, B. (1990) A. Garnet: Comprehensive Support for Graphical, highly Interactive

User Interfaces. IEEE COMPUTER. 23 (11), 71-85.

 200

Myers, B.A. (1997) The Amulet Environment: New Models for Effective User

Interface Software Development, IEEE TSE, vol. 23, no. 6, 347-365.

Myers, B.A., Pane, J.F., and Ko, A. (2004) Natural programming languages and

environments, http://www.acmqueue.org/

Narayanan, S. and Mcllraith, S.A. (2002) Simulation, verification and automated

composition of web services. In Proceedings of the 11th World Wide Web

Conference.

Neag, I. A. and Tyler, D. F. (2001) Combined Visual and Textual Programming

Methodology for Signal-based Automatic Avionics Testing Systems, In Proceedings

of the 20th Conference on Digital Avionics System, 9A5/1-9A5/10 vol.2.

Nikau (2007, July 08) Marama, http://www.cs.auckland.ac.nz/Nikau/marama/

OMG (2009, April 25) BPMN 2.0, http://www.bpmn.org/

OMG (2004, September 17) Event Service Specification,

http://www.omg.org/docs/formal/04-10-02.pdf

OMG (2003, October 07) OCL, http://www.omg.org/docs/ptc/03-10-14.pdf

Palanque, P.A., Bastide, R., Dourte, L. and Sibertin-Blanc, C. (1993) Design of User-

Driven Interfaces Using Petri Nets and Objects, In Proceedings of Advanced

Information Systems Engineering, pp. 569-585, Springer-Verlag.

Paschke, A. (2006) ECA-LP / ECA-RuleML: A Homogeneous Event-Condition-

Action Logic Programming Language, Int. Conf. on Rules and Rule Markup

Languages for the Semantic Web (RuleML’06), Athens, Georgia, USA.

Pautasso, C. and Alonso, G. (2003) Visual Composition of Web Services, Proc IEEE

HCC’03, Auckland, pp. 92-99.

 201

Pautasso, C. and Alonso, G. (2005) The JOpera Visual Composition Language JVLC,

16(1-2):119-152.

Peltonen J. (2000) Visual Scripting for UML-Based Tools. In Proceedings of ICSSEA

2000: Paris, France.

Phillips C.H.E (1992): Extending Lean Cuisine: A Case Study in Reverse Engineering,

School of Information Science, MASSEY University

Philips C.H.E. (1993): Software Support for Lean Cuisine+, PhD Thesis, MASSEY

University, 157~171

Phillips C.H.E. (1994a): Review of Graphical Notations for Specifying Direct

Manipulation Interfaces. Interacting with Computers, 411~431

Phillips C.H.E. (1994b): Serving Lean Cuisine+: Towards a Support Environment,

Proceedings OZCHI94, CHISIG of Ergonomics Soc. of Australia, 41~46

Phillips C.H.E (1995): Lean Cuisine+: An Executable Graphical Notation for

Describing Direct Manipulation Interfaces. Interacting with Computers, 49~71

Phillips C.H.E and Apperley M.D (1990): Direct Manipulation Interaction Tasks: A

Macintosh-Based Analysis, School of Information Science, MASSEY University

Phillips C.H.E and Kemp E. (2001): Extending UML use case modeling to support

graphical user interface design, Proceedings of ASWEC 2001, IEEE, Canberra,

Australia, 48 ~ 57

Phillips C.H.E and Kemp E. (2002): In Support of User Interface Design in the

Rational Unified Process, Proceedings of the Third Australasian User Interface

Conference, Australian Computer Society, 21~27

 202

Phillips C.H.E and McKauge J. (1997): OZCHI’96 Industry Session, Sixth Australian

Conference on Human-Computer Interaction, Department of Computer Science,

University of Waikato

Phillips C.H.E and Scogings C. (1997): Modelling the mock-up: towards the

automatic specification of the behaviour of early prototypes, Interact ‘1997, IFIP,

Chapman and Hall, London, 591~592., Sydney, Australia

Phillips C.H.E and Scogings C. (1998a): Task and Dialogue Modelling: Bridging the

Divide with Lean Cuisine+, Proceedings of the First Australasian User Interface

Conference, IEEE, 81~87

Phillips C.H.E and Scogings C. (1998b): Towards the automatic specification of the

behavior of early prototypes using Lean Cuisine+, Proc of Software Engineering:

Education and Practice (SE:E&P’98), IEEE, Dunedin, January 1998, 238~244

Plaisant, C. and Shneiderman, B. (2005) Show me! Guidelines for producing recorded

demonstrations, in Proceedings of the 2005 IEEE Symposium on Visual Languages

and Human-Centric Computing, Dallas, USA, 171-178.

Rapide Design Team (1997) Program Analysis and Verification Group, Computer

Systems Lab, Stanford University, Guide to the Rapide 1.0 Language Reference

Manuals.

Recker, J. (2010a): Continued Use of Process Modeling Grammars: The Impact of

Individual Difference Factors. European Journal of Information Systems, Vol. 19, No.

1, pp. 76-92.

Recker, J. and Rosemann, M. (2010): The Measurement of Perceived Ontological

Deficiencies of Conceptual Modeling Grammars. Data & Knowledge Engineering,

Vol. 69, No. 5, pp. 516-532.

Recker, J. (2010b): Opportunities and Constraints: The Current Struggle with BPMN.

Business Process Management Journal, Vol. 16, No. 1, pp. 181-201.

 203

Recker, J. and Rosemann, M. (2009): Teaching Business Process Modeling:

Experiences and Recommendations. Communications of the Association for

Information Systems, Vol. 25, No. 32, pp. 379-394.

Recker, J., Rosemann, M., Indulska, M. and Green, P. (2009): Business Process

Modeling: A Comparative Analysis. Journal of the Association for Information

Systems, Vol. 10, No. 4, pp. 333-363.

Recker, J., Young, R., Darroch, F., Marshall, P. and McKay, J. (2009): ACIS 2007

Panel Report: Lack of Relevance in IS Research. Communications of the Association

for Information Systems, Vol. 24, No. 18, pp. 303-314.

Recker, J. and Niehaves, B. (2008): Epistemological Perspectives on Ontology-based

Theories for Conceptual Modeling. Applied Ontology, Vol. 3, No. 1-2, pp. 111-130.

Recker, J (2008): Understanding Process Modelling Grammar Continuance, PhD

thesis, Queensland University of Technology

Recker, J., Rosemann, M. and Krogstie, J. (2007): Ontology- versus Pattern-based

Evaluation of Process Modeling Languages: A Comparison. Communications of the

Association for Information Systems, Vol. 20, No. 48, pp. 774-799.

Recker, J. (2007): A Socio-Pragmatic Constructionist Framework for Understanding

Quality in Process Modelling. Australasian Journal of Information Systems, Vol. 14,

No. 2, pp. 43-63.

Recker, J. and Indulska, M. (2007): An Ontology-Based Evaluation of Process

Modeling with Petri Nets. Journal of Interoperability in Business Information Systems,

Vol. 2, No. 1, pp. 45-64.

Repenning, A. and Sumnet, T. (1995) Agentsheets: a medium for creating domain-

oriented visual languages, Computer, 28, no. 3.

 204

Robbins, J. E., Medvidovic, N., Redmiles, D. F. and Rosenblum, D. S. (1998)

Integrating Architecture Description Languages with a Standard Design Method, In

Proceedings of the 20th International Conference on Software Engineering, Kyoto,

Japan, pp. 209-218.

Robbins, J.E. and Redmiles D.F. (1998) Software architecture critics in the Argo

design environment, J Knowledge-Based Systems 11 (1998) 47-60.

Roberts, D, and Johnson, R. (1996) Evolving Frameworks: A Pattern Language for

Developing Object-Oriented Frameworks, In Pattern Languages of Program Design 3,

Addison-Wesley, Reading, MA.

RuleML Initiative (2006, May 20), http://www.ruleml.org

Schnieders, A. and Puhlmann, F. (2005) Activity Diagram Inheritance. In Proc of the

8th ICBIS, Poland, p3 ~ p15

Schiffer, S. and Fröhlich, J.H. (1994) Concepts and Architecture of Vista – a

Multiparadigm Programming Environment, in Proceedings of the 10th IEEE/CS

Symposium on Visual Languages, St.Lois/USA, pp. 40-47.

Sheth, B.D. (1994) A Learning Approach to Personalized Information Filtering,

Master thesis in Computer Science and Engineering, Massachusetts Institute of

Technology.

Shin Kitae, Chankwon Park, Hyoung-Gon Lee and Jinwoo Park (2005) Efficient

Mapping Rule of IDEF for UMM Application. ICCSA, 1219-1228

Singh Darryl, Mitra Nataraj and Rick Mugridge (2004) ViewPoint: A Zoomable User

Interface for Integrating Expressive Systems. APCHI, 631-635

Sliwa, C. (2003, December 10), Event-driven architecture poised for wide adoption,

Computer World,

http://www.computerworld.com/softwaretopics/software/appdev/story/

 205

Smith, D.C., Cypher, A. and Spohrer, J. (1995) KidSim: programming agents without

a programming language, Communications of the ACM, vol. 37, no. 7, pp. 54 – 67.

Smith, D. N. (1990) The interface construction set, in Visual Languages and

Applications, (T. Ichikawa, E. Jungert, R. Korfhage, eds.), Plenum Pub., NY.

Spönemann Miro , Hauke Fuhrmann, Reinhard von Hanxleden and Petra Mutzel

(2009) Port Constraints in Hierarchical Layout of Data Flow Diagrams. Graph

Drawing, 135-146

Srivastava, B. and Koehler, J. (2003) Web Service Composition - Current Solutions

and Open Problems, ICAPS Workshop on Planning for Web Services, Trento, Italy.

Sun (2005, December 02) Java BluePrints Model-View-Controller,

http://java.sun.com/blueprints/patterns/MVC-detailed.html

Sun (2007, November 30) The J2EETM Tutorial,

http://java.sun.com/javaee/5/docs/tutorial/doc/

Sun (2007, November 30) The JavaTM Tutorials, Lesson: Writing Event Listeners,

http://java.sun.com/docs/books/tutorial/uiswing/events/index.html

Suzuki Masami (1992) A Method of Utilizing Domain and Language specific

Constraints in Dialogue Translation. COLING, 756-762

Taentzer, G. (1999) Adding Visual Rules to Object-Oriented Modeling Techniques, in

Proceedings of Technology of Object-Oriented Languages and Systems (TOOLS’99),

Nancy, France. IEEE Computer Society.

Tang, Y., Chen, L. He, K.T. and Jing, N. (2004). SRN: an extended Petri-net-based

workflow model for Web service composition, In Proceedings of the IEEE

International Conference on Web Services, 6-9 July 2004. Page(s):591 – 599

 206

Thalheim Bernhard (2009) Extended Entity-Relationship Model. Encyclopedia of

Database Systems, 1083-1091

Thone, S., Depke, R. and Engels, G. (2002) Process-oriented, flexible composition of

web services with UML, Proc ER-Wkshp on Conceptual Modeling Approaches for e-

Business, Tampere, Finland, LNCS, 2002

Tigris (2010, April 09) http://argouml.tigris.org/

Tolvanen J. (2006) OOPSLA demonstrations chair's welcome: MetaEdit+: integrated

modeling and metamodeling environment for domain-specific languages, Companion

to the 21st ACM.

Uchitel Sebastián, Robert Chatley, Jeff Kramer and Jeff Magee (2003): LTSA-MSC:

Tool Support for Behaviour Model Elaboration Using Implied Scenarios. TACAS,

597-601

Urbas. L., Nekarsova. L. and Leuchter. S. (2005) State chart visualization of the

control flow within an ACT-R/PM user model, In Proc. IWTMD05, p43~p48.

Vlissides, J.M. and Linton, M. (1989) Unidraw: A framework for building domain-

specific graphical editors, Proc. UIST’89, ACM Press, pp. 158-167.

W3C (2001, May 26), Web Services Description Language (WSDL) 1.1,

http://www.w3.org/tr/wsdl

Wagner, F., Schmuki R., Wagner T. and Wolstenholme P. (2006) Modeling Software

with Finite State Machines: A Practical Approach, Auerbach Publications.

Weber, G. (2003) Semantics of form-oriented analysis, http://www.diss.fu-

berlin.de/2003/72/

Welch, B. and Jones, K. (2003) Practical Programming in Tcl and Tk, Prentice-Hall.

 207

Wirtz, G. (1993) A Visual Approach for Developing, Understanding and Analyzing

Parallel Programs, in Proc IEEE VL’93, IEEE CS Press, pp. 261-266.

Wordsworth, J.B. (1992) Software Development with Z - A Practical Approach to

Formal Methods in Software Engineering, Addison Wesley.

Workflow Management Coalition (1999, October 20) Terminology & Glossary,

http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

Zapletal Marco, Wil M. P. van der Aalst, Nick Russell, Philipp Liegl and Hannes

Werthner (2009) An Analysis of Windows Workflow's Control-Flow Expressiveness.

ECOWS 200-209

Zhu, N., Grundy, J.C., Hosking, J.G., Liu, N., Cao, S. and Mehra, A. (2007) Pounamu:

a meta-tool for exploratory domain-specific visual language tool development,

Journal of Systems and Software 80 (8), Elsevier.

