Data Mapping
by Using
Business Form Copying M etaphor

Yonggiang Li

The University of Auckland, New Zealand

Copyright 2003 Y onggiang Li

Acknowledgments

I would like to extend my heartfelt appreciation to John Grundy and Robert Amor for
their insight and guidance throughout my master work. | am very grateful for the many

hours that they spent discussing and critiquing my work.

| am especialy grateful to John Grundy for his patient, help and understanding during
my study.

Especialy, | would like to express my gratitude to my family for their support and

encouragement.

Abstract

Data mapping is a necessary process in the integration of applications, and for Web
Services. The present approach to data mapping is either completely hand-coded or
assisted by some mapping tools used by programmers. The development of a data
mapping specification is error-prone, costly and time consuming. However business
analysts have a better understanding of context of data mapping. A mapping tool, which
can support the business analysts to specify the mapping and generate the mapping

specification implementation, can help to avoid problems.

We designed and prototyped a mapping tool by using a business form copying
metaphor, a spreadsheet-styled end-user programming environment, alowing the
business analysts to define mapping specifications by visual and direct manipulation. In
the mapping tool, a form-based metaphor gives a concrete representation for high-level
abstracted source and target business data models for source and target data schemas;
the users can get immediate feedback after the mapping specification is finished for
each field or all fields; a code generator can generate different mapping specification
implementations. An initial evaluation on the prototype shows that this tool have good

support for an end user.

Table of Contents

Chapter 1 Introduction

1.1 MOUIVALTON. ...ttt 1
1.2 Objectives of the RESEAIChcoeeveieiicecceee e 5
IR/ 1= 1 0700 (o] oo V20T 6
1.4 0verview Of the THESIS. ..o 6
Chapter 2 Related WOIK ..o 8
2.1 INEFOAUCTION. ...ttt e e 8
2.2 MaAPPING TOOIS...c.uiiuieiectice et neereennas 9
225 N 1 1 9

2.2.2 N X ettt e aeeneas 10

2.2.3 0rion Symphonia SYySteMcoeierereieeeeeeee e 11

2.2.4 S0NIC SYIUS STUTIO ... 12

2.2.5 DA JUNCLION ...ttt 13

2.3 ENd-USEr Programmingcccoereereereeiesesesesesiese e sse e seeseeseeeenes 15
2.3.1 Application-specific Languagescccceveeeerieveeiesecsieseeeeenens 15

2.3.2 Programming by Demonstration.............cccccecveveveeresecsieseeeeenens 15
2.3.3Visual Programming........ccccceeceieeieesieeieeseseesieseesiesseessesseeeeseens 16

2.3.4 Natural Programmingccccceeeieeieeseeieeseseesieseeseeseesnesseeee e 17

2.4 SOftware USBDITITYcc.ooiiiieeeeee s 20
2.5 SUMMIIY ...eei ittt et e e be e e st e e s nba e e sane e e nraeesaree s 22
Chapter 3 System RequirementS ANalYSIS........coovcveieiieieiiesie e 23
N N o= = o TSRO 23

3.2 0Ur APPIrOBCH ...t 31

3.3 Requirements Of OUr SYSEEM..........coviieieiicie e 32
3.4 Main Modules of Our Mapping TOOIccccereerieierieeieeeeeeeee e 35
3.5 SUMMIIY ..ttt b e e st e e rae e e sabe e e nraeesree s 37
Chapter 4 System DESIONcc.ooeieieeeieeeeeee et snas 38
4.1Arcihtecture of the TOOLcvieiiieiee e 38
4.1.1 Possible System Architectures of Our Data Mapping Tool........... 38

4.1.1.1 Standalone ArchiteCture............ccooooevereneneseneeseeseeenn 38

4.1.1.2 Distributed ArchiteCtureccoovveereiinennereisens 40

4.1.2 The System Architecture We ChOOSe............cveererienienienienieeene 43

4.2 Form Visualization DESIGNcoeriiiririnesesie e 47
4.2.1 FOrM RENUENTNGcvieeeerieiesiesie e 48

4.2.2 RefOormatting FOIMccveiueiicie e 51

4.2.3 Importing Sample Data............coceveeieieeieieeeese e 52

4.3 Visual Mapping Specification Environment Designccccceveeveieeieenen. 53
4.3.1 Outlook of Mapping Specification Environment................c......... 54

4.3.2 User Interfacing and Notations for Mapping Specifications........ 57
4.3.2.1 The TYPE SYSLEMocveeieceececeee et 57

4.3.2.2 Mapping SPeCifiCatioNS..........ccccvererereneneseseeseeeeens 64

4.3.2.2.1 Simple Mapping Specifications............cccecevveveeinenens 65

4.3.2.2.2 Complex Mapping Specifications............cc.ccevereereenne 78

4.4 Object-oriented DESIONcoririreeerereee e 88
4.4.1 USEr INLEITACING ..c.vevieeieieesiesiesie e 88

A.4.2 CONVEITEN ...t 90

4.4.3 FOrmM GENEIALOceiviiiierisiieee s 90

4.4.4 COUE GENEIBLONc.eeueeueeneeieeieeieeieeie ettt se e sn e 92

4.4.5 Sequence Diagrams for Some Main Operations...........ccceevvreereeerrereneens 92

S 11 0100V SRR 99
Chapter 5 System Implementation.............cccoccveveiienieieece e 101
5.1 OVErVIeW Of ProtOtYPE.......cciuieiecieceiecie ettt 101

5.2 Language ChOSEN.........ccviieieeeesie ettt 102

5.3 XMLDTD/XML Parsingccoeeeirerueenerieieenesieesesieesessssesesesseesesesseenes 103

531 XML and XML DTD...coucuiiriiieirrieenerieieesesie e 103

5.3.2 DTD Parsing/XML ParSingc..oceoveeereermeeneeeseensesseesseesnses 104

5.4 FOIM GENEIELION.......cveuiieieriiieieseee ettt 107

5.5 Ul Implementation and Mapping SpecifiCations............cccceveveeieeienienenncns 107

5.6 XSLT GENEIBLION.c.eeieiieieieieeeiee ettt seeene s 108

LY T8 . R SR 109

5.6.2 JLEXICUP......eiierieeie ettt 109

5.6.3 Debugging Mapping Specifications..........cccoveveiieeieceeceseenns 112

5.6.4 XSLT Transformation Engine Implementation...............ccc.c..... 113

LA U 010117 SRS 114
Chapter 6 System EVAlULIONccoiiiiirieererese e 115
6.1 Usability EVAlUBLIONcceiueeieiiecececese e 115

6.2 CognitivVe DIMENSIONS.......cc.oiiieieieeeeeeeeee st ee e 116

B.3 EVAIUBLION ...ttt 117

6.3.1 NOtation Of SYSLEMcoiiiiirerieriere s 117

6.3.2 SUD-TEVICES........eriiriiieieriesier e 117

6.3.3 Cognitive dimensions for Main device............cccoceeeeerereneneenne. 117

6.4 Some Improvements on Current Prototypecccccevvrienenieeneneeneseeen 125

6.5 SUMMEIY ..eeiiiiei ettt e ee e sr e e nnre e eares 126
Chapter 7 Conclusions and FUtUr€ WOrKcccccueieieeieiieseceeseeceecie e 127

T L CONCIUSIONS......ccoeeeeeeeeee e e et e e e e e e e e e e e e e e e e e e aeeeeneeeeeeeeaaans

7.2 CONITIDULIONS ...ttt ettt ettt ettt e e st e s e st e s e se et e e s eareeessareeesaanrees

T B FULUIE WOTK ..o e e e e et e e e e e e e e ae e eeeeeeeaaannes

References

vi

Table of Figures

Figure 1.1 Architecture of Transformation System..........cccceevveeiececie s 4

Figure 1.2 Mapping specification devel opment process by using current mapping

TOOIS. .ttt et e e ene s 6
Figure 1.3 Mapping specification development process by using our mapping tool6
Figure 2.1 Xing—A visual language for XML query and reconstruction..................... 12
Figure 2.2 VXT — Visual language for XML transformation.............cccceeeveerenienenennens 13
Figure 2.3 The Mapper for Orion Symphonia Systemccccoeveieeieieciesecieese s 14
Figure 2.4 SOoNiC StYIUS SEUAIOcoveueiiirienieeiesieses e 15
Figure 2.5 Mapping tablesin Data JUNCLION...........cccccceeveieeie e 16
Figure 2.6 Expression Builder in Data JUNCLION............coeieeiieieeiececeeceeee e 16
Figure 2.7 Form/3-a spreadsheet-based visual programming language............ccccuevee. 18
Figure 2.8 HANDS programming €nNVIFONMENTcceeeeieieeieeseeieesreeeesresee e saeens 21
Figure 3.1 A paper-based CS OrdEr ...t 27
Figure 3.2 A paper-based TP OFdErcc.ooeieeiiciece et 28
Figure 3.3 Data mapping between paper-based CS order and TP order...........cccceuenee 29
Figure 3.4 Anintegration model for CS, TP and AH ... 30
Figure 3.5 Orders of the CS and TP which are represented in an XML format............ 31
Figure 3.6 A demo data mapping between objects of CS order and TP order 32
Figure 3.7 A demo data mapping between XML DTDs of CS order and TP order32
Figure 3.8 A high level data mapping process in our mapping toolc.ccecererennene 34
Figure 3.9 FOrm rendering PrOCESS.ccouiiiiieeiieeeeireseesreseestesreessesseesesseeeesreseessesneens 35
Figure 3.10 Main modules of our mapping toOolcceieeieieeie e 38

vii

Figure 4.1 Mapping tool with standalone architecture..............ccceeeieierinininiencnene 41

Figure 4.2 Mapping tool with a4-tiered distributed architecture.............cccccoeevveinnnens 43
Figure 4.3 Mapping tool with a 3-tiered distributed architecture............ccccoovvnnennene 45
Figure 4.4 An intermediate data model of schema of CSorder...........cccccovevvivevienenne. 51

Figure 4.5 The automatically generated form for above tree structure of CS XML

[I PSPPSR 52
Figure 4.6 Rearrange form [ayOUL.............ccoiririiiieie e 53
Figure 4.7 A rearranged CS order fOrmM..........ccoeiiiieie i 54
Figure 4.8 Tool DULtONS @NA MENU........cc.oiiiiieeee e 55
Figure 4.9 CS and TP order forms after the sample dataisimported.............cccceeeuenee 55
Figure 4.10 Visual mapping specification environment of our toolcccccceeeeieeneens 58
Figure 4.11 Apply atypeto aform fieldccccooieieieiecce e 61
Figure 4.12 Apply atype to aform SECHONcccoeieieieieeee e 63

Figure 4.13 Define a new type by using programming by demonstration technique....64

Figure 4.14 Symbols used for illustrating mapping specification............c.ccocevereneenene. 67
Figure 4.15 ONe-t0-0NE Air€CE COPYerververrereerieriereeseeeeeeeeiesre s sre s s e e e see e e 68
Figure 4.16 One-to-one copy by drag-and-dropccceeeeeveieesieseeie e 69
Figure 4.17 One-to-one copy by type-and-select from CS order to TP order 69
Figure 4.18 One-to-0Ne fOrMUIA...........ccoueiiiiieii e 70

Figure 4.19 One-to-one formula non-typed mapping specification from CS order
TO TP OFTEY .. nne s 71

Figure 4.20 One-to-one formula typed mapping specification from CS order to TP

(0] L= OSSP T P SUPT ST P RPN 72
Figure 4.21 One-to-many simple mapping SPeCIfication...........ccooveceeecceeiecieese s 73
Figure 4.22 One-to-many splitting for non-typed from CS order to TP order 74

Figure 4.23 One-to-many splitting for the source-typed from CS order to TP order75

viii

Figure 4.24 One-to-many splitting for the source-typed and target-typed from CS
OFdEr 10 TP OFUEN ...t 76

Figure 4.25 Many-to-one simple mapping Specification...........ccocvevevecceiecieese s, 76

Figure 4.26 Many-to-one combination, non-typed source section and non-typed
target field from CSorder to TP Order........ocvevveieeieceee e 77

Figure 4.27 Many-to-one combination, non-typed source section and typed target
field from CS order tO TP OFdercoveeeieeieseeeere e 78

Figure 4.28 Many-to-one combination, typed source section and typed target field

from CS Order t0 TP OFUES ..o 79
Figure 4.29 Many-to-many mapping SPECITICAION.ccoererereeeeeeeeeereeesese i 80
Figure 4.30 One-to-many complex mapping SPecification Process...........ccuvrererernens 81
Figure 4.31 One-to-many complex data mapping from CS order to TP order 82
Figure 4.32 Many-to-one complex mapping specification process............cccceveeeennene. 83
Figure 4.33 Many-to-one complex data mapping from CS order to TP order 83
Figure 4.34 Many-to-many complex mapping specification..............cccccceveeiveveneennne. 84
Figure 4.35 Combine tWo COHECHIONS..........ccceeiiiiieieceete e 86
Figure 4.36 Many-to-many complex data mapping from CS order to TP order 87
Figure 4.37 Conditional MapPingcccoueiirieiiiieie et este e re e e sreeneens 89
Figure 4.38 Class diagram for user interfaCing...........ccoeeererereneseieeeeeeesesesesee e 91
Figure 4.39 Class diagram Of CONVEIENceviieeieieeie et 92
Figure 4.40 Class diagram Of fOrm generatorcooiirererenenee e 93
Figure 4.41 Class diagram of code generator module...............coovrereneneneneniesieneee 9
Figure 4.42 Sequence diagram of creating aNew ProjeCt........c.ceeereereriererierereseniennens 96
Figure 4.43 Sequence diagram of converting process and form generation.................. 96
Figure 4.44 Sequence diagram for defining one-to-one mapping specification............ 98
Figure 4.45 Sequence diagram of code generation and debugging process.................. 99
Figure 5.1 Implementation structure of Prototype..........ccccvveevevecceece e 104

Figure 5.2 From XML DTD tO fOrm l@ayOutcccoerirerenenenieneseeseeeeeeeeee e 108

Figure 5.3 The code generation PrOCESScccecuieieeireereesresee e sre e see e aesre e nas 111
Figure 5.4 Compiling the mapping SPECIfiCaLiON..........cccierereriereeieee e 111
Figure 5.5 A partial JLex source file for our mapping language............cccccccevevueeuenen. 112
Figure 5.6 A partial CUP program for our mapping language............ccccceveevvevrveneenne. 113

Figure 5.7 Mini XSLT code for splitting Addressin CSform to City in TP order.....114

Figure 6.3 Revising of rearranging elements in the Date section in CS order form....127

Figure 7.1 Non-XML source and target data transformation by an XSLT

transformation ENQINE...........cooeiieieieeie e 134

Table of Tables

Table 4.1The type and description of the classes of user interfacing..........c.ccceeeveneene. 91
Table 4.2 The type and description of the classes of converter...........cccoevvveveceenenne. 92
Table 4.3 The type and description of the classes of form generatorccccueu...e. 93
Table 4.4 The type and description of the classes of code generatorccceeueaeeee. 95
Table 4.5 Meaning of sequence call in creating anew Project.........cccvvvveeeveeeerieeneene. 95
Table 4.6 Meaning of sequence call in converting ProCess...........ccceveeeeveeeeseeeesnene. 97

Table 4.7 Meaning of sequence call in defining one-to-one mapping specification...100

Table 4.8 Meaning of sequence calls in code generation and debugging process.......101

Xi

Chapter 1 Introduction

This chapter gives the motivation and objectives for this research. Thisis followed by a
summary of the approaches taken to satisfy these objectives. The fina section provides

an overview of thisthesis.

1.1 Motivation

Data transformation has been widely used in building automated systems and
integrating heterogeneous systems [Morgenthal 2001] [Swatman 1994] [Amor 1999].
These heterogeneous systems range from the newest systems using an object-oriented
approach with different technologies, such as 2EE and .Net, CORBA and DCOM, to
legacy systems using a data-oriented approach. In these systems, the data may be
exchanged through various technologies, such as copy-and-paste, distributed object
APIs(CORBA, DCOM, .Net), EDI, or web services technologies, such as SOAP, RPC-
XML, etc. The exchanged data can be objects, serialized objects, EDI messages, XML
messages, SOAP messages, and custom data formats. The target data may be in a
different type or format from the source data. In order to make the data from the source
system understood by the target system, transformation from the source data to the
target data is needed. For example, in building a system by using web services
technologies, a XML message from a source needs to be transformed to another XML
message with different data structure [Capeclear.com 2001]; in a health industry, a
patient treatment EDI message encoded in the UB92 protocol from a health provider
must be translated to another treatment EDI message encoded in the 837a protocol
which can be only accepted by a funder’s system [Grundy 2001].

Current developments in data transformation system are programmer-centric.
Traditionally the transformation system is directly hand-coded by a programmer using a
general-purpose programming language, such as C++ or Java. In order to make the

system be able to quickly react on changes of the system, which are caused by the

external environment of system, for example, changes of business partners, upgrading
systems, many efforts have been made to improve the development of the data
transformation system. These include: separating mapping specifications, which are
defined based on the source and target schemas, from the processing unit (see Figure
1.1) to improve the flexibility and maintainability of transformation system; developing
data mapping specifications by using domain specified script languages to avoid
complexity of conventional programming languages and using visual mapping tools to
give the programmer the power of direct-manipulation to define mapping specifications
and generate mapping specification implementations. A combination of all these efforts
greatly improves the development of the transformation system but these efforts are

only aim at professional programmers.

Data Mapping
Specification
Implementation

iy

Source |—N Transformation Target
Data [—/ Engine Data

Figure 1.1 Architecture of Transformation system

In this research, we investigate a mapping tool to help a business analyst, a non-
programmer, to develop the mapping specifications to further improve the devel opment

process of the mapping specifications. Thisis based on following reasons:

A business analyst is the best person to define the mapping specifications. The business
analyst is a person who is responsible for understanding and developing business
processes and procedures at the first stage of software development. They have the
knowledge of what one business’s data structure and semantics mean and how this can
be mapped onto another business’s data. In the beginning of current development of
mapping specifications (see Figure 1.2), it is the business analyst that produce mapping
specifications on a business data model (see Figure 1.2(1)) and describe the business
data mapping to programmers (see Figure 1.2(2,3)) to make them produce the lower
level data mapping specifications implementation, which involves complex computer

data structures and programming knowledge.

A mapping tool supporting the business analyst to produce the mapping specification
implementation can dramatically reduce cost of development of transformation system.
In the mapping tool, the business analyst directly specifies mapping specifications
through a friendly user interface (see Figure 1.3(1,2)), and then the tool takes the
mapping specification to generate mapping specification implementations (see Figure
1.3(3)). In the current development of transformation system, after the business analyst
produces the business data mapping specifications, the programmer either directly
codify the data mapping specifications in an implementation language (see Figure
1.2(4)), or is aided by a mapping tool to textually or semi-visualy to define the
mapping specification in a domain-specified script mapping language (see Figure
1.2(5,6)) and then lets the tool generate the mapping specification implementation (see
Figure 1.2(7)). In most of current mapping tools, data schemas are normally rendered in
agraph [Ceri 1999, or tree format [Grundy 2001][Sonic 2003] [Capeclear 2001], or an
UML model [Amor 1999] corresponding to the specific types of the data schema. This
requires the users of the tools still to have detailed knowledge of data modeling and the
mapping language to define the mapping specification. Although some transformation
tools used a form-based presentation [Erwig 2002], they don’t generate mapping
specification implementations to support the data transformation system architecture we
described in the previous section. So these mapping tools cannot totally avoid a need of
programmer to let the business analyst to directly define the mapping specification. The
further need to have a programmer involved rather than letting the business analyst to
directly produce the data mapping specification implementations makes the cost high of
the development of the mapping specification.

The proposed new tool can dramatically reduce errors of development of transformation
system. During the current development process, errors in the low level mapping
specification may be easily made by either poor communication between the business
analyst and the programmer or mistakes made by the programmer himself. In our new
development process, there is no gap between the business analyst and the programmer

and all above errors are avoided.

Data Mapping
Specification

Data
Mapping
Tool

IF

Data Mapping
Specification
Implementation

!

Source
Data

N
/]

Transformation
Engine

Business Data
Mapping

Business
Analyst

@
=

@

®)
=

Programmer

4)

Target
Data

Data
Mapping
Tool

@)

7

Data Mapping
Specification
Implementation

Source

Data

_—
—/

Transformation
Engine

—

Business
Data

Mapping

(©)

Figure 1.2 Mapping specification development process by using current mapping tools

The new tool can dramatically shorten the lifecycle of development of transformation
system. During the current development process, it needs the whole software
engineering process, which will last a long time, to cope with every change to the
system environment. This includes business data mapping done by the business analyst,
producing mapping specification implementations done by the programmer with a help
of mapping tools, testing, finding bugs and fixing them. The new mapping tool can

eliminate the most of the later stages and make the development much more efficient.

Business
Analyst

)

Target
Data

Figure 1.3 Mapping specification development process by using our mapping tool

Existed techniques and guidelines on end-user programming may enable the dream of
such a mapping tool used by the business analyst come true. Current techniques and
researches on end-user programming [Goodell 1998], such as visual programming
[Burtnett 1999], programming by demonstration [Cypher 1993] and natura
programming [Goodell 1998], utilize a visual approach to provide an end-user, a non-
programmer, a concrete, direct-manipulated programming environment on their
problem domain, to speak their own language, to make use of their existed knowledge,
to fit to their cognitive models to enable them to write program without the professional

programmer background, for example, a spreadsheet program [Nardi 1993].

1.2 Objectives of the Research

The objectives of our research are to develop a mapping tool with visualization of
underlying data model using a high level of abstraction—concrete business forms, and a
visual mapping specification environment, which can be easily learned by business
analysts, non-programmers, to enable them to easily and correctly define their mapping
specifications, The tool can then generate mapping specification implementations

automatically for the transformation system.

In this research, we examine using a business form metaphor to layout complex source
and target data schemas to meaningful business forms. In these forms, elements can be
rearranged and sample data can be imported to make these forms look like true business
forms and fit the user’s mental model. Based on the forms, we examine using a business
form copying metaphor to provide an end-user mapping specification environment, to
which various techniques of end-user programming, such as the spreadsheet-styled,
programming by demonstrations and nature programming, and a type system are
applied to enable the user to mimic business form copying to define mapping
specifications, and finally generate mapping specification implementations. Following
these thoughts, we developed a prototype of the mapping tool in our research. Now it
can take source and target XML DTDs and XML instances to visualize them to forms,

enable an end user to specify mapping specifications visually and generate XSLT code.

1.3 Methodology

In order to achieve the above objectives, the prototyping process in software
engineering [Floyd 1984] and the usability engineering model [Nielsen 1992] were
combined and applied to our research. According to these methodol ogies, the following

steps are conducted in this research:

1. Research features and characteristics of existing mapping tools, including
examining functionality and user interfaces of these systems, and other related
research fields, such as end- user programming and software usability, which

can guide the devel opment of our mapping tool.

2. Study main user requirements and possible architectures for the mapping tool,
design end-user mapping specification environment with a business form copy

metaphor, including an user interface design and an object-oriented design
3. Develop a prototype according to the above design
4. Carry out aninitial usability evaluation on the prototype

5. Provide a set of suggestions for improving the usability of the prototype based

on theinitial evaluation.

1.4 Overview of the Thesis

The following is an overview of remaining chapters in this thesis, briefly summarizing

the topics described in each chapter:

Chapter 2 describes the related works that have been done on the data mapping tool,

end user programming, and software usability fields.

Chapter 3 starts from a business scenario of a manual system and an automatic system
to give the motivation of using a business form copying metaphor for our mapping tool

and then gives main requirements of our mapping tool.

Chapter 4 gives an object-oriented design and user interface design of our mapping tool

according to the system architecture based on requirements of our mapping tool.

Chapter 5 gives details of java implementation prototype for XML-to-XML data
mapping and XSLT code generation.

Chapter 6 discusses the usability of our prototype using a notational evaluation

according to cognitive dimensions framework.

Chapter 7 concludes contributions of this research and gives further improvements of

our mapping tool for future research.

Chapter 2 Related Work

This chapter introduces some related work to this research, and describes features and
characteristics of some existing mapping tools, end-user visual programming

environments and user interface design techniques.

2.1 Introduction

There are three main fields related to our research. They are data mapping/data

transformation, end user programming, and software usability.

The data mapping/data transformation area gives what exactly have been done in our
problem domain, what tools existed and how they work for assisting the users to define
data mapping specification. So we can know the context of our research, find problems

from them and improve them.

The users of our mapping tool are focused on business analysts who may have not any
programming knowledge. Defining mapping specification by them actually falls into
the end user programming field. Through investigating this field in a broad of problem
domains, we get what end user programming languages, techniques and tools exist to
make the programming more easily for professional programmers and end-users to
learn and use, and how they achieve it. Then we can analyze them and apply suitable
end user programming language techniques to designing our mapping specification

environment to achieve high usability.

The software usability study provides us the guidelines for user interface design in
design process of our tool, and techniques and methods for usability evaluation after

implementation of user interface.

2.2 Mapping Tools

Current data mapping/data transformation approaches are programmer-centric. They
include program-based data mapping, script-based data mapping and semi-visual and
visua data mapping.

In the program-based data mapping, the programmers manually codify the mapping
specifications using a conventional programming language, such as C, or C++, or Java.
It takes considerable efforts of expert programmers on design, implementation and
testing.

The introduction of script-based approach dramatically reduces the load of
programming mapping specifications, because in this approach the programmers
manually codify the mapping specifications using a domain-specific script language,
which is much simpler than the conventional programming language, for example, the
XSLT for XML transformation [W3C 1999 XSLT].

Many visual mapping/transformation tools were developed to release the programmer’s
burden in some specific domains. Because the above text-based script-based approach
is still difficult to use. These tools visualize the data model or schema model to a
graph-based presentation, such as XML-GL [Ceri 1993], or a tree-based presentation,
such as Orion Symphonia System [Grundy 2001], Sonic Stylus Studio [Sonic 2003], or
atable-liked presentation, such as Data Junction Integration Map Designer [Data 2003],
or a form-based presentation, such as Xing [Erwig 2002], or UML class diagram, such
as [Amor 1999], or other presentation, such as VXT [Emmanuel 2001] to give a clear
and direct view of the data model, and allow user to direct manipulate the visua
components and semi-visually or visually to define the mapping specifications. Some of

these tools are described in the following sections.

2.2.1 Xing

Xing [Erwig 2002] is a visual language for querying and transforming XML data. The
language is based on a visual document metaphor (see Figure 2.1(1)) and the notion of
document and rules, and targets on the end users. Document patterns can be directly
used as query patterns (see left-hand side of Figure 2.1(2)(3)). Document rules can be

used to restructure query results (see Figure 2.1(4,5)). The language combines a

dynamic form-based interface for defining queries and transformation rules with pattern
matching capabilities.

The form-based query interface gives it ability for the end-users to easily understand
and use. But its XML transformation capability is limited to restructure query results, so
it doesn’t seem to support large and complex XML-to-XML transformation. And also it
doesn’t support using XML DTD to create mapping specification and generate the

mapping specification implementation for the generic transformation model.

bk
hily
hook
honk
vear: | 988

ROyt ule] A ¥
year: RS title: Conercic Mathemalics

title: Conerele Malhematics it Graban

author: Graham

. hily anthor: Knuth
authar: Knuth . hook authar: Patashnik
anthoer; Patashnik | I

article Fand aill books Cocry resuli: all books
vear; 1s @)

title: Lincar Probing and Graphs
auther: Knuth

Journal: Algorithmica book

[title: Conerete Mathematics

Babliography as a Xing expression byils

(1)

ather: Knuth

article
[tillr: Lincar Probing and ':i|u|1||:1|

athor: Kouth

Find all publications of Knuth Quiery result; all publications by Knuth

(3)

Ily by Auithor

bil hook Tithes

i - author
(FTTTH = title title = litles
author tiile i

Flat list of book titles Authors and their publications

(4) (5)

Figure 2.1 Xing—A visual languagefor XML query and reconstruction. Elementsin this
figure are extracted from [Erwig 2002]

222VXT

This application provides a visual |anguage/environment to programmers who want to
specify XML transformations [Emmanuel 2001] (See Figure 2.2). It displays XML
documents and/or their DTD in atreemap-like [Johnson 1991] presentation, from which

it is possible to visually construct selection and extraction rules similar to templates in

10

XSLT. Mapping specifications can be defined visually and then XSLT codes can be
generated according to the mapping specifications. To each rule is associated a
constructor, also specified visually, that tells what should be output when the rule
matches a node in the source document.

The visuaization of XML DTD and visual mapping specification environment in VXT
make the user of the tool to directly manipulate the visual element to define the simple
and complex mapping specification. But the abstraction of the visual presentation for
XML DTD and the underlying XSLT transformation model in VXT isin the same level
as that of textual XML DTD and XSLT, i.e. visual notations amost one-to-one
mapping to XML DTD and textual XSLT. So it requires the user have knowledge of
underlying XML, XML DTD and XSLT.

i e1 a0 el 2l |

Fia Opiam Hilp

« 100

“uaeh | Hrdkgakoa | aPuE

| T E s & | &

| ol B T B

§ - am = .

e eabink 1] IR =
L et s -:ll :I-' F -

Pl el o) o - 4 4
- L

Comiboad rithmwrk B 4
i~ = £

NTH (oirad Vo b onaian Wadvid)
Qoo

= i T XML Transformatian

T v s g nibia

Figure2.2 VXT - Visual language for XML transformation. This figure comesfrom
http://www.xr ce.xer ox.com/competencies/contextual-computing/vtm/apps.html#vxtApp

2.2.4 Orion Symphonia System

The Orion Symphonia system is a commercial EDI and XML transformation system. A

mapper inside the system separates transport-level information from the source and

11

michaelee
Note
Accepted set by michaelee

michaelee
Note
Completed set by michaelee

michaelee
Note
Accepted set by michaelee

michaelee
Note
Accepted set by michaelee

target schema and renders them to a tree-like data structure (see Figure 2.3). The users
can use drag-and-drop to wire the source and target segment, record and field to define
the mapping specification. But formulae and functions need to be input in text in the
text field at the bottom of the window.

The tree-based representation is not easy for the business analyst to understand the
semantic mean of data because it’s different from the business analyst’s mental model
of data. Textually building the formulae and functions makes it difficult for the end-

user to use because it need the user to know the syntax of the text language.

E‘%Mappet V1.0 [_[O]:
File Edit Window Compile

proc main

| PatientMessage PatientM e I main r PVisitMessage PVisitMessage |
-| PatientRecord PatientRecord nap ¥ PIDField int

IDField int o H MedRecluField int |
-I PatientNameRecord PatientNameRecord | PnameField String
LnaweField String ®/;{, DateOfBirthField String|
I FnaweField String - h PaddrezsFreld String |
map
-I PatientDOERecord PatientDOBRecord = T—VisitSegment VisitSegment |
: ===
qmd = { VisitCodeField String |
=

-I PatientiddressRecord PatientiddressRecord {”/ ¥isithateField String |

StreetField String

{
i
-| Responsibleloctoriegqment Ee
=
i
1

AttendingDoctoriegment Atte
=

CountryField String

PrimaryTreatmentsSegment Py
=

OtherTreatmentsieguent Othe

1=

-I PatientWisitsSemment PatientWVisitsSecment |

I-l <VizitRecord VisitRecords |

VisitInfoRecord VisitInfoRecord |

1=

Treatmentsieqment TreatmentsSeqment |

[4]

| »

TreatmentsSegment

Figure 2.3 The Mapper for Orion Symphonia System. Thisfigure originates from
[Grundy 2001]

2.2.5 Sonic Stylus Studio

The Sonic Stylus Studio is a commercial XML transformation system. In its mapper,
like Orion Symphonia system, the source and target data or schemas are rendered to a
tree-like presentation. The user can use drag-and-drop to connect source and target
fieldsto visually define smple copy relations. The user can visually insert XSLT build-

12

michaelee
Note
Accepted set by michaelee

michaelee
Note
Accepted set by michaelee

in functions and connect source and target fields to the functions arguments to define
the merging and splitting operations (see Figure 2.4). But the user needs to textually
define their own functions in java language and complex mappings need to be defined

directly in textual XSLT code. This makes the tools also not suitable for the business

analyst to use.
mail. dtd | mail dtd |
=l-g mai I ~E
..... @ ref ref @
..... Iu date Iﬂ
----- & recipient --- TSRy EEEEEE Jecipient g -
----- E Segfjer ----- --_”-E;D}'—é‘;t— CETl ¢e;de:E -----

i subjech—— = ubject & -
Bl & testbody \\. Fh_a. r") textbody & -2
E‘.li'i. N subject o .lhE
[Iu cite ____—__‘_———_ ke Iﬂ

Figure 2.4 Sonic130 Stylus Studio

2.2.6 Data Junction

Data Junction supports a variety of data transformations, such as database, XML, €tc.
The source and target schemas are rendered to both a tree-like and table-based
visualization (see Figure 2.5). The tree-like visualization represents the data relation
and the table is for listing data element for the user to be ready for formula definition
and browse. The drawback of the visualization is that it makes the user often switch
between the two views to get the context of the data elements. Again the tree view is

not easy for the end-user to understand the data context.

The mapping specification for a target field is expressed as a formula or a set of
procedures, which contain the source field(s). The simple copy relation between the
source and target field can be defined using drag-and-drop operation between cells of
source and target table. Other mapping specifications can be built through an expression
builder, a visual programming environment, by clicking on operator icons, statement
icons and tree nodes to form text code, and sometimes inserting some text code in
proper position among existed text code. Although this prevents some syntax errors
caused when users just textualy type the expressions, it still needs the user having

knowledge of syntax of the programming language.

13

michaelee
Note
Accepted set by michaelee

michaelee
Note
Marked set by michaelee

michaelee
Note
Accepted set by michaelee

michaelee
Note
Completed set by michaelee

ﬁ AL &l Source Fields
Source Fisld Source Hecod | Type Size i=l
k|t [rslllextbady s | [mailkesibaody Fecard]]
2 [zl Jlextbody el Recoid]
3 cite [mailltexibody]p [|Chasscter |18
4 date dabe Chaacter |18
5 date rad Recond 1]
B P [mailltextbody]p [|[Chasacter |16
7 recipient izl Record 1]
8 recipient recipeent Chasactes |16
4q red rinal Abribute 15
10 zenider rival Recod o]
11 zender sender Character |16
12 subject izl Recond (1]
13 | subect subject Characier |16 ~|
(5 PAML)AK T atoet Fields -|
Target Field Mame | Target Fiecosd | Target Pastd Expressian !
1 [mailtextbody]p [rnail]bextbody = E
2 [mailltexibody mail = F
3 cite [l bestbodp]p =For each index in Records] Trsd]testbody™] !
4 dale dste =0atel) [
5 date mail E F
E o [rail bestbody]p]
7 recipiesni mail = i
g recipiesn recipiemnt =R ecards["sendes’"|.Fields"sender] [
3 ref mail = £
10 sender mail = i
11 sends sErider =R ecards["mail".Fields["recipient’’] i
12 subject mail = i
13 subject subiject ="FRe: " & Aecods["subject™]. Fields["subject 1]
Figure 2.5 Mapping tablesin Data Junction
E Exprezzion Builder _ O]

File Edit Yiew Toole Expressions
== % || |ea| @] o] 2| |%%% O | E[=]

Records (" [mail'!texthody]p™)
Next index

For each index in Records("[mail]textbody™).Fields("[mail!texthody] =~

.Fields("p™) ok,

LCancel

L|;| Help |

[()] ana| or | et [Lke |~ |] Fien

arne |

Lole] 8] oo fel

- recipient

i gender

- subject
[mailltextbaody
[rmailltextbady]p

& Flows Control and Functions
- Flov Contral

- LAl Functions:

i File

Date/Time

If...Then.. Else

On Ermmor GoTo

On Errar Resume Mest
Rezume

Rezums Mext

Retum

Select Caze..End Select -
4| »

For counter = start to end [Step incr]
statement block
Mext counter

|L [

R

E spreszion language construct used for executing one or ﬂ

mare statements, & fiwed number of timesz, See andine

help for more details. _|
.

Figure 2.6 Expression Builder in Data Junction

2.3 End-user programming

“End-user Programming (EUP) is that when end-users, who have not necessarily been
taught how to write code in conventional programming languages, write computer
programs, for example, spreadsheet users who write formulas and macros” [Cypher
1993]. There are a wide variety of end-user programming techniques for different

professions, tasks, and users. Many fall into the categories below [Goodell 1998].
Application-specific Languages
Programming By Demonstration
Visual Programming

Natural Programming

2.3.1 Application-specific Languages

An application-specific language is a script language, for example, JavaScript,
VBScript, Unix Shell Script, which is a small, simple programming language whose
vocabulary is specificaly tailored to the objects and actions of a particular application
domain and targets on more serious end users, such as Web page authors and network
administrators [Goodell 1998]. The hope is that such a language will not be too
difficult for end users to learn. “The basic failing of scripting is that it is still
programming. That is, 1) users have to learn the arcane syntax and vocabulary
conventions of the language, and 2) they have to learn the standard computer science

concepts of variables, loops and conditionals.”[Cypher 1993]

2.3.2 Programming by Demonstration

Programming by demonstration is a technique for teaching the computer new behaviour
by demonstrating actions on concrete examples. In this approach, normaly a visual
direct-manipulated metaphor is provided for a user to interact with. The system records
the interactions and writes a program that corresponds to the user's actions and then
generalizes the program to make it be able to work with other similar examples [Cypher
1993].

15

Programming by demonstration is largely used for automating repetitive activities.
These activities include iterative activities, such as renumbering along list when a new
entry is inserted in the middle, and periodic activities, such as backing up recently
changed files [Cypher 1993]. The key to success of programming by demonstration is
using right example to make the correct inferences and generalize the program [Cypher
1993].

2.3.3 Visual Programming

Visual programming uses multi-dimension to convey semantics. It uses concrete
instances, direct-manipulation, explicit notations and immediate visual feedback to
make programming more accessible to some particular audience, and to improve the

correctness and speed with which people perform programming tasks [Burtnett 1999].

Forms/3 [Hays 1995] is a general purpose, declarative, spreadsheet-based visual
programming language. Its goal is to provide computational and expressive power in a

language featuring a simple, concrete programming style with immediate feedback.

(=] Testl (] Test]
HRTRX F 1 TTE —
L R (tnlist opnt (235 67890}
9 e Borsaoniel 9
PRADID] OFTION T RADID | CPTION
Hs} [Grltet dopot (12347800 Q)
30 [then vertical 30
f {inlist iput (4568 00))
19 then vertical «Q
5Q ‘) —_—
EQ R (inlist ioput (234564 9)) EQ
|then horizontal
Q ‘ Q9
EQ if (inlist input (134567890) BQ
Q [then vertical 1Q
5 [F (inliet npnt (2 € 6 0)) i
0 bt et 0
input input
if (inlist input (235689 10)
|then horizontal
E Hide I
vertical Ih“E 08 S
Ecopy Del].l IDopv De].ll

Figure 2.7 Form/3-a spreadsheet-based visual programming language. These two figures
originates from [Wilcox]

Programming in Forms/3 follows the spreadsheet paradigm (see Figure 2.7). The
programmer uses direct manipulation to place cells on forms, and then defines a

formula for each cell. Such a formula may include constants, references to other cells,

16

or references to the cell's own value at a previous moment in time. Cells are referenced

by clicking on them. A program's calcul ations are determined by these formulas.

The most successful end-user programming system to date is the spreadsheet, due in
part to its familiar and effective metaphor of financial tables [Nardi 1993].

But it also has drawbacks. In the early spreadsheet program, there is no explicit
connection between a cell and the cells its formula refers to. This causes a hidden-
dependence problem. It’s very risk to alter a spreadsheet cell. Modern spreadsheets
have improved this by containing tools to analyse dependencies [Blackwell 2002].
Spreadsheets may often contain faults [Panko 1998]. The reason of the problem is
spreadsheet programmers seem to have overconfidence in the correctness of their
spreadsheets [Brown 1987] [Wilcox 1997]. “A possible cause of this overconfidence
may be related to... that too much feedback and responsiveness, as featured in the
immediate visual feedback of values in spreadsheet languages, can actually interfere
with people’s problem-solving ability in solving puzzles [Gilmore 1995] [Svendsen
1991], atask with much in common with programming.” [Rothermel 2000] A “What
You See Is What You Test”(WY SIWYT) methodology was introduced to tackle this
problem [Rothermel 1 998] and positive results were got [Rothermel 2000].

2.3.4 Natural Programming

Natural programming [Myers 1998] is a project leaded by Brad A. Myers, Human-
Computer Interaction Institute, School of Computer Science, Carnegie Mellon
University. The researchers have been trying to develop a more natural programming
language, which is different from conventional programming languages, and provides

the users much easier and more natural way to learn and use it to develop programs.

The following are some quoted results for guiding the design of a new programming
system surveyed and observed by [Pane 1996] [Myer 1998]. They are very helpful for

guiding our mapping specification environment devel opment:

One way to ease the entry into programming is to capitalize on the beginner’s
knowledge about the world. Many languages are based on a metaphor, which
should be drawn from a concrete real-world system that is familiar to the user
audience [Smith 1994].

17

When they are stumped, beginners will attempt to transfer knowledge from
other domains even if they are not appropriate [Hoc 1990]. This is a problem
when the language uses words and symbols in ways that are different from
English or math. For example, "AND" is often read to mean "THEN" asin: "We
went to the store and bought milk," whereas in computers, AND is aways used
between two things that must both be true at the same time. People often use
"AND" when a computer would require the use of "OR," as in: "All people
whose names begin with 'A' and 'B' should be in the first line." Another
problematic example isthat "a= a+3" makes no sense if read as in mathematics.

These kinds of features should be avoided in the new language.

A very low-level language with many simple primitives requires the user to
synthesize higher-level operations. This is one of the great difficulties in
progranming [Lewis 1987]. When there are many different choices, more
planning is required, and this increases the likelihood of backtracking and
revision, which slows the programmer [Gray 1987]. Therefore, the language

should provide high-level operations.

The object-oriented style seems to be harder to learn for novice programmers,
and a full inheritance hierarchy has been shown to be too complex for novices,
but a fixed two-level inheritance hierarchy is understandable [Pausch 1992].

Much of the control was expressed in an "event language" (also called the
"production language") style, with rules to control behaviours. This result is
already reflected in some of today's end-user programming languages. The
event-based style used by Visual Basic, Lingo for Director, and HyperTalk for
HyperCard, is a form of rule-based style, since the code is of the form "if this

event happens, then execute this code."

The students preferred to express the general case first, and then later modify it
with exceptions. For example, "When you encounter a ghost, the ghost should
kill you. But if you get a little pill you can eat them." This is in contrast to
conventional languages that generally require the conditional to be set up in
advance using "ANDs," "NOTs" and "ORs," forcing the user to think about all

the cases first, and resulting in a complicated Boolean expression.

18

Iterations were usually expressed implicitly, by operating on sets of objects. For
example, "When PacMan eats all of the yellow balls he goes to the next level."
Thisis instead of using any form of iteration or explicit counting, as would be

required in most programming languages.

Participants did not construct complex data structures and traverse them, but
instead performed content-based queries to obtain the necessary data when
needed. For example, instead of maintaining a list of monsters and iterating
through the list checking the color of each item, they would say “al of the blue

monsters.”

Participants often drew pictures to sketch out the layout of the program, but
resorted to text to describe actions and behaviors.

Fhir e wiith T osT sectar i Sorges
Hiz lha s thés much secher: ¥
A1l e hees have celeched; 45

_uuu

.IW
ICRITCTI
5

=

[*.u-l:.

Figure 2.8 HANDS programming environment. Thisfigure originates from [Pane 2002]

HANDS [Pane 2002] is a natural programming environment for children (see Figure 8)
based on the above observations. It represents the computation as a metaphor in which a
character sits at a table and manipulates cards that hold the program's data and are

familiar, concrete, persistent, and visible. This familiar model avoids the need for

19

beginners to learn the traditional von Neumann machine model of computation. Cards
can expand to accommodate any size of data, storage is always initialized, and types are
enforced only when necessary, such as when performing arithmetic. It uses an event-
based style of programming, and provides queries and aggregate operators to allow
more concise high-level expressions for tasks that require the assembly of many
primitives in other languages. HANDS directly supports queries for content-based data
retrieval. HANDS uniformly permits all operations that can be performed on single
objects to also be performed on lists of objects, including the lists returned by queries.
Study shows that features of these have a significant positive effect on usability [Pane
2002].

2.4 Softwar e Usability

There are some general principles and heuristics [Nielsen 1994] in the field of Human
Computer Interaction. They can be applied to programming system design. [Pane

20024] gives these terms very good explanation shown as following:

simple and natural dialog — user interfaces should be simplified, and should
match the user’s task in as natural a way as possible, such that the mapping

between computer concepts and user concepts becomes straightforward.

speak the user’s language — the terminology in user interfaces should be based
on the user’s language, instead of using system-oriented terms or attaching non-

standard meanings to familiar words.

minimize user memory load — the system should not force the users to memorize

too many things.
consistency — the same command or action should always have the same effect.

feedback — the system should continuously inform the user about what it is

doing and how it isinterpreting the user’sinput.

clearly marked exits — the system should offer the user an easy way out of as

many situations as possible, including ways to undo.

shortcuts — the system should make it possible for experienced users to perform

frequently used operations quickly.

20

good error messages — the system should report errors politely in clear language,
avoid obscure codes, use precise rather than vague or general explanations, and

include constructive help for solving the problem.

prevent errors — where possible, the user interface should be structured to avoid

error situations.

help and documentation — the help system and documentation should provide a
quick way for users to find task-specific information when they are having a
problem.

Cognitive Dimensions of Notations framework [Green 1996] gives useful evaluation
criteria when we design and evaluate programming systems. [Pane 2002a] gives these

dimensions very good explanation shown as following:

viscosity — the system should not resist change; it should not require many user
actions to accomplish one small goal.

visibility — the information needed by the programmer at any particular time

should be visible or very easy to access.

premature commitment — the system should not force the user to go about the
job in a particular order, or make a decision before the needed information is
available.

hidden dependencies — important links between entities should be visible.
role expressiveness — the purpose of an entity should be readily apparent.

error proneness — the notation should protect against slips and errors.

closeness of mapping — the system’s operations should closely match the way
users think about problem solutions.

secondary notation — the system should allow the programmer to communicate

additional information with comments, typography, layout, etc.
progressive evaluation — the system should permit users to test partial programs.

diffuseness — small goals should not require extraordinarily long solutions or
large amounts of screen space.

21

provisionality — the system should allow the user to sketch out uncertain parts of

their solution.

hard mental operations — none of the system’s operations should require great

mental effort to use.
consistency — similar notations should mean similar things, and vice versa.

abstraction management — the system should provide a way to define new
facilities or terms that allow the user to express ideas more clearly or succinctly,
but it should not force usersto use this capability right from the start.

These factors are sometimes in conflict, so improving the system along one dimension
can result in reduced performance on another. Tradeoffs are necessary, and in making
these tradeoffsit is useful to consider cognitive models and observations from empirical

studies.

2.5 Summary

Most existing mapping/transformation tools have poor data schema visualization and
poor mapping specification environment to support a business analysis. The low—level
graph-, tree-, table-like and UML class diagram presentations, and textualy or semi-
visually defining mapping specifications require that users of these tools must have a
data modeling and programming background. In order to provide the end user support,
our tool needs to overcome these problems by making use of existing techniques on end
user programming, and findings on end user problem-solving behaviors, and applying
usability design principles and heuristics throughout the development of our tool. It’s
important to provide the user a concrete, direct-manipulated environment which can
make use of the user’s previous knowledge and match to their cognitive problem-

solving model.

22

Chapter 3 System Requirements Analysis

This chapter starts from areal life scenario to describe data transformation in a manual
and an automatic system. Then a motivation of using form-based business copying

metaphor for our system is discussed. Finally requirements of our system are described.

3.1 A Scenario
Let’s consider the following business scenario of data transformation:

Comobile Solutions (CS) Ltd is a retailer for selling PDAs and their accessories.
TotalPDAs (TP), AllHandhelds (AH) are wholesalers for distributing PDAs and their
accessories. In the beginning, CS orders goods from TP. But later CS shifts to AH
because AH provides better service and technical support. CS has its own order
generation system to generate orders, which contain information of supplier and order
items, when its inventory is below a certain amount. Because orders, which contain
information of purchaser and order items, used in AH and TP are different from CS, CS
has to transform its orders from its own format to one of its supplier’s before sending

these ordersto its suppliers.

In following section, we first describe the scenario, in which CS orders goods from TP
in a manual and automatic system respectively, and then the scenario, in which CS

changesits supplier from TP to AH in the manual and automatic system respectively.

CSorders goods from TP

In the manual system, the order is represented in a physical form format, such as paper-
based form, or electronic form, e.g. Access form or HTML form, which can be shown
on computer screen. There is a data entry person, who could be in either side of source
and target and is in charge of the data transformation. In our case, we suppose that the

person in CSinterpreters the meaning of fields in source and target form and finds the

23

context of them, then manually copies the data from source to target. Then the order is
manually sent to TP from CS through mail, fax, email etc. Figure 3.1 shows a paper
based order form of CS. The TP order form, which is different from the CS order, is
shown on Figure 3.2. Figure 3.3 shows how the data in the order form of are manually

mapped and copied to the order form of TP. It includes following business data
mapping:
One-to-one direct-copy: ThisCompany TCName in order of CS directly copied
to Customer Name field in target form (see Figure 3.3(1)).

One-to-many splitting: Address of CSis splitted to three parts to Street, Suburb,
City, State, Zipcode and Country fields in target form (see Figure 3.3(2)).

Many-to-one combining: Year, Month and Day fields in CS are combined to
Date field in target form (see Figure 3.3(4)).

One-to-many: Telephone numbers in one Telephone field in CS are splitted to a
group of individual telephone numbers which are copied to telephone fields in
target form, but formats of number are changed (see Figure 3.3(3)).

Many-to-one: Individual fax number in a group of fax number is combined and

then it is copied to afax field in target (see Figure 3.3(5)).

Many-to-Many conditional: Orderltems in target form are recategourized by
manufacturer (see Figure 3.3(7)). For each Orderltem, if the manufacturer name

is same, copy the record to the same category (see Figure 3.3(6)).

24

Comobile Solutions Ltd

00 Queen Street, Auckland, New Zealand
Tel: 0064(9)123 4567, 0064(9)123 4576 Fax: 0064(9)123 4578 0064(9)123 4587
Email: comob@comob.com

Date Order Form

Day: 04 Month: 03 Year: 2003 Order No: 20030304001

Supplier Information

Supplier ID: SPLO01 Supplier Address:

supplier Name: TotalPDAsLtd 123 Great South Road
Telephone: 0064(9)543 4321, 0064(9)543 4322, Penrose

Auckland
Fax: 0064(9)543 4310

New Zealand

0064(9)543 4312

Order Items

Category: PDA

Name Manufacturer M odel Qty Price
Pam Pam Inc. Tungsten W 3 1199.00
Pam Palm Inc. Tungsten T 3 899.00
Palm Palm Inc. M515 5 599.00
Palm Palm Inc. Zire 10 199.00
Clie Sony SJ33 5 299.00
Clie Sony NX70V 3 1099.00
Category: ~ ACCESSOries
Name Manufacturer M odel Qty Price
Screen Protector Brando TungstenT 3 19.00
Screen Protector Brando M5XX 10 19.00
PDA Case CoverTec TungstenT 3 99.00
PDA Case CoverTec MB5XX 10 89.00

Figure 3.1 A paper-based CSorder

25

TotalPDAs Ltd
123 Great South Road, Auckland, New Zealand
Tel: +64-9-543-4321 +64-9-543-4322 Fax: +64-9-543-4310, +64-9-543-4312
W ebsite: http://www.totalPdas.co.nz Email: totalpdas@totalpdas.co.nz
Order Form
Date; 04/03/2003 Order No: 20030304001
Customer ID: CSTMO010 Customer Address:
Street: 00 Queen Street
- Comobile Solutions Ltd
Customer Name: Suburb:
Telephone: +64-9-123-4567 City: Auckland
+64-9-123-4576 State:
Zipcode:
Fax: +64-9-123-4578, 64-9-123-4587 Country: New Zealand
M anufacturor: Palm Inc.
Item Name M odel No. Qty Price
Palm M515 5 599.00
Palm Tungsten T 3 899.00
Palm Tungsten W 3 1199.00
Palm Zire 10 199.00
M anufacturor: Sony
Item Name M odel No. Qty Price
Clie SJ33 5 299.00
Clie NX70V 3 1099.00
M anufacturor: CoverTec
Item Name M odel No. Qty Price
PDA cases PCTungstenT 3 99.00
PDA cases PCM5XX 10 89.00
M anufacturor: Brando
Item Name M odel No. Qty Price
Screen protector SPTungstenT 3 19.00
Screen protector SPM5XX 10 19.00

Figure 3.2 A paper-based TP order

26

27

Supplier Information .
Supplier 1D:_SPL001 Supplier Address:

Supplier Name: TotalPDAs Ltd 123 Great South Road

Telephone: 00BA(9)543 4321, 0064(9)543 4322, Penrose
Auckland
Fax: 0064(9)543 4310
0064(9)543 4312 New Zealand

Order Items

Category: PDA

e Manufacturer Modet

Palm W_, - T‘u‘ngstenw

Palm / Paninc. \ Tungsten T

Palm \ Palm Inc. / M515

Pam @mw
Clie (som---- 1"

Clie Son)d
Category: Accessories (7)
Name Manufactuter Model. - -- -"Q'\S/".- Price
Screen Protector 6ando>__- - TungstenT 3 19.00
Screen Protector [\8rando, j M5XX 10 19.00
PDA Case Cove 99.00
PDA Case CoverTey MB5XX 10 89.00

Fax:

Paii Inc.

+64-0-123-4578, 64-9-135-4567

TotalPDAs Ltd
Road, Auckland, New Zealand
-4322~Eax: +64-9-543-4310, +64-9-543-4312
Pdas.co.nz Emaiklotalpdas@totalpdas.co.nz

Country:

New Zealand

Order Items

Manufacturor's- "
Iterh Name Model No. Sty Price,
Pam . 509.00 _.~"
--1899.00
Tungsten W 3 1199.00
Pdm e, Zire 10 |19000
Manufacturor: Sy
Item Name Model No. Qty Price
"""" Glie___ SI33 5 299.00
clie e NX70V 3 1090.00
Manufacturor:___ CoverTec
-~ . Item Name Model No. Qty Price
PDA G-, _ PCTungstenT 3 99.00
PDAcases s, PCM5XX 10 89.00
Manufacturor: _ Brando
Item Name Model No. Qty Price
Screen protector SPTungstenT 3 19.00
Screen protector SPM5XX 10 19.00

Figure 3.3 Data mapping between paper-based CSorder and TP order

one-to-one simple
many-to-one simple

one-to-many simple

- one-to-one complex

many-to-one complex

- one-to-many complex

27

28

In the automatic system, the orders are represented in an electronic format. The order
can be a set of related objects, or an XML message, or an EDI message. Figure 3.5
shows the orders of the CS and TP which are represented in an XML format. Thereisa
computerized transformation system (see red boxes on Figure 3.4), which takes the
order data from the CS as an input and mapping specification implementation between
the CS and TP, and transforms them to conform the data format required by the TP. The
data mapping specification implementation needs to be defined in the development
stage. At beginning of the current development, a business analyst gives the business
data mapping which just like the figure shown on Figure 3.3. Then a data modeler and
programmer will design and implement the mapping based on the source and target data
schemas. Figure 3.6 and Figure 3.7 show alow-level demo view of data mapping from
the data modeler and the programmer perspective. Figure 3.6 shows the mapping
between the source and target data schemas that are expressed in UML, and underlying
data are objects. Figure 3.7 shows the mapping between the source and target data
schemas that are expressed in XML DTD, and underlying data are XML files. From
the figures we can see that different types of data message have different types of data
schemas. The data schemas are complex and the mapping between them is far more
complex. The definition of the mappings specification has to be implemented by a
programmer who has data modeling and programming knowledge, even with help from
a data mapping tool.

Processing Unit |—| Client

. TotalPDA
Integrate Agent :

Data Mapping
Specification

Comobile

Solutions
:

Integrate Agent :

AllHandhelds

Figure 3.4 An integration model for CS, TP and AH

28

29

<?xml version="1.0"?>
<IDOCTYPE ComobileOrder SYSTEM “ComobileOrder.dtd">
<ComobileOrder OrderNo = "20030304001">
<ThisCompany>
<TCName>Comobile Solutions Ltd</TCName>
<TCAddress>00 Queen Street, Auckland, New Zealand</TCAddress>
<TCTel>0064(9)123 4567, 0064(9)123 4576</TCTel>
<TCFax>0064(9)123 4578</TCFax>
<TCFax>0064(9)123 4587</TCFax>
</ThisCompany>

<Date>
<Day>04</Day>
<Month>03</Month>
<Year>2003</Year>
</Date>

<Supplier SupplierID="SPL001">
<Name>TotalPDAs Ltd</Name>
<Address>
<Street>123 Great South Road</Street>
<Suburb>Penrose</Suburb>

<City>Auckland</City>
<Country>New Zealand</Country>
</Address>
<Tel>0064(9)543 4321, 0064(9)543 4322 </Tel>
<Fax>0064(9)543 4310 </Fax>
<Fax>0064(9)543 4312 </Fax>
</Supplier>
<Orderltems>
<Category>
<CategoryName>PDA</CategoryName>
<Orderltem>
<PartName >Palm</PartName>
<Manufacturer>Palm Inc.</Manufacturer>
<Model>Tungsten W</Model>
<QTY>3</QTY>
<Price>1199.00</Price>
</Orderltem>
<Orderltem>
<PartName >Palm</PartName>
<Manufacturer>Palm Inc.</Manufacturer>
<Model>Tungsten T</Model>
<QTY>3</QTY>
<Price>899.00</Price>
</Orderltem>
<Orderltem>
<PartName >Palm</PartName>
<Manufacturer>Palm Inc.</Manufacturer>
<Model>M515</Model>
<QTY>5</QTY>
<Price>599.00</Price>
</Orderltem>
<Orderltem>
<PartName >Palm</PartName>
<Manufacturer>Palm Inc.</Manufacturer>
<Model>Zire</Model>
<QTY>10</QTY>
<Price>199.00</Price>
</Orderltem>
<Orderltem>
<PartName >Clie</PartName>
<Manufacturer>Sony</Manufacturer>
<Model>SJ33</Model>
<QTY>5</QTY>
<Price>299.00</Price>
</Orderltem>
<Orderltem>
<PartName >Clie</PartName>
<Manufacturer>Sony</Manufacturer>
<Model>NX70V</Model>
<QTY>3</QTY>
<Price>1099.00</Price>
</Orderltem>
</Category>
<Category>

<CategoryName>Accessories</CategoryName>

<Orderltem>
<PartName >Screen Protector</PartName>
<Manufacturer>Brando</Manufacturer>
<Model>TungstenT</Model>
<QTY>3</QTY>
<Price>19.00</Price>

</Orderltem>

<Orderltem>
<PartName >Screen Protector</PartName>
<Manufacturer>Brando</Manufacturer>
<Model>M5XX</Model>
<QTY>10</QTY>
<Price>19.00</Price>

</Orderltem>

<Orderltem>
<PartName >PDA Case</PartName>
<Manufacturer>CoverTec</Manufacturer>
<Model>TungstenT</Model>
<QTY>3</QTY>
<Price>99.00</Price>

</Orderltem>

<Orderltem>
<PartName >PDA Case</PartName>
<Manufacturer>CoverTec</Manufacturer>
<Model>M5XX</Model>
<QTY>10</QTY>
<Price>89.00</Price>

</Orderltem>

</Category>
</Orderltems>
</ComobileOrder>

<?xml version="1.0"?>
<IDOCTYPE TotalPDAsOrder SYSTEM "TotalPdasOrder.dtd">
<TotalPDAsOrder OrderNo = "20030304001">
<ThisCompany>
<TCName>TotalPDAs Ltd</TCName>
<TCAddress>
<TCStreet>123 Great South Road</TCStreet>
<TCSuburb>Penrose</TCSuburb>
<TCCity>Auckland</TCCity>
<TCState></TCState>
<TCZipcode></TCZipcode>
<TCCountry>New Zealand</TCCountry>
</TCAddress>
<TCTel>+64-9-543-4321 </TCTel>
<TCTel>+64-9-543-4322 </TCTel>
<TCFax>+64-9-543-4310, +64-9-543-4312</TCFax>
<[ThisCompany>

<Date>04/03/2003</Date>

<Customer CustomerlD="CSTM010">
<Name>Comobile Solution Ltd</Name>
<Address>
<Street>00 Queen St</Street>
<Suburb></Suburb>
<City>Auckland</City>
<State></State>
<Zipcode></Zipcode>
<Country>New Zealand</Country>
</Address>
<Tel>+64-9-123-4567</Tel>
<Tel>+64-9-123-4576</Tel>
<Fax>+64-9-123-4578, 64-9-123-4587</Fax>
<Fax>0064(9)543 4312 </Fax>
</Customer>

<Orderltems>
<Manufacturer>

<ManufacturerName>Palm Inc</ManufacturerName>

<Orderltem>
<ltemName>Palm</ItemName>
<ModelNumber>Tungsten W</ModelNumber>
<QTY>3</QTY>
<Price>1199.00</Price>

</Orderltem>

<Orderltem>
<ItemName>Palm</ltemName>
<ModelNumber>Tungsten T</ModelNumber>
<QTY>3</QTY>
<Price>899.00</Price>

</Orderltem>

<Orderltem>
<ltemName>Palm</ItemName>
<ModelNumber>TungstenW</ModelNumber>
<QTY>3</QTY>
<Price>1199.00</Price>

</Orderltem>

<Orderltem>
<ltemName>Palm</ItemName>
<ModelNumber>Zire</ModelNumber>

<QTY>10</QTY>
<Price>199.00</Price>
</Orderltem>
</Manufacturer>
<Manufacturer>

<ManufacturerName>Sony</ManufacturerName>
<Orderltem>
<ItemName>Clie</ltemName>
<ModelNumber>SJ33</ModelNumber>
<QTY>5</QTY>
<Price>299.00</Price>
</Orderltem>
<Orderltem>
<ltemName>Clie</ltemName>
<ModelNumber>NX70V</ModelNumber>

<QTY>3</QTY>
<Price>1099.00</Price>
</Orderltem>
</Manufacturer>
<Manufacturer>
<Manufacturer dor
<Orderltem>
< Protector
<ModelNumber>TungstenT</ModelNumber>
<QTY>3</QTY>
<Price>19.00</Price>
</Orderltem>
<Orderltem>
< Protectol
<ModelNumber>M5XX</ModelNumber>
<QTY>10</QTY>
<Price>19.00</Price>
</Orderltem>
</Manufacturer>
<Manufacturer>

<ManufacturerName>CoverTec</ManufacturerName>
<Orderltem>
<ItemName>PDA Case</ltemName>
<ModelNumber>TungstenT</ModelNumber>
<QTY>3</QTY>
<Price>99.00</Price>
</Orderltem>
<Orderltem>
<ltemName>PDA Case</ltemName>
<ModelNumber>M5XX</ModelNumber>

<QTY>10</QTY>
<Price>89.00</Price>
</Orderltem>
</Manufacturer>
</Orderltems>
</TotalPDAsOrder>

Figure 3.5 Ordersof the CSand TP which arerepresented in an XML format

29

30

-manufactured by

-receives 0.* Company
I /-eerrﬁnyName : String
1 |-companylD : String 1
) Order __—ssies -from |.companyTejephone : String| ~ -Supplied by
-to Company [lerNumber : int| - == 1TBMpanyF: ecto
-receives __ 0.* - /-dme) Bt Paryfekplector
-companyID : Stri / 2 String it B
1 |-comanytame : Sti e PR pemimmeTTTT 1
Order - , M P 1
- M - company Telephond - Ved manfactured by 1 -belongs to
rorderr\gmm— -companyFax : String - -~~~ 1 | -belongsto
-date : Date o . 1 -is located at
. suoplicd b Address
1 -belongs to PP d [steet : String
[=Suburb : String
=Gty : String
[oity : S
-State : String
-zipcode : int
[country : String
1x -has * -supplies
" 1.* -has
Orderltem | pejongsto -contains Part I *
.qty.u.‘qt_ . Orderltem _ ~belongs to Part
-price -float. - i ~[PartName : String |
- - f-modelNpimber : String| -supplies

—— one-to-one simple
—— many-to-one simple

one-to-many simple

Comobile Solutions

one-to-one complex
many-to-one complex -makes

one-to-many complex

TotoalPDA

*

Figure 3.6 A demo data mapping between objects of CS order and TP order

<?xml encoding="UTF-8"?>
<IELEMENT ComobileOrder (ThisCompany,Date,Supplier,Orderitems)>
<IATTLIST ComobileOrder OrderNo 1D #REQUIRED>

<IELEMENT ThisCompany (TCName,TC,

ress, TCTe, TCFaxt)>

<IELEMENT TCName (#PCDATA)>
<IELEMENT TCAddress (#PCDATA)>
<IELEMENT TCTel (#PCDATA)>
<IELEMENT TCFax (#PCDATA)>

<IELEMENT Date (Day,M
<IELEMENT Day (#PCD;
<IELEMENT Month (#PCDATA)>
<IELEMENT Year (4PCDATA)>

h,

ar)>

<IELEMENT Supplier (Name,Address, Tel,Fax*)>
<IATTLIST Supplier SupplieriD 1D #REQUIRED>

<IELEMENT Name (#PCDATA)>

<IELEMENT Address (Street,Suburb,City, Country)>
<IELEMENT Street (#PCDATA)>

<IELEMENT Suburb (#PCDATA)>

<IELEMENT City (#PCDATA)>

<IELEMENT Country (#PCDATA)>

<IELEMENT Tel (#PCDATA)>
<IELEMENT Fax (#PCDATA)>

<IELEMENT Orderltems (Category)+>

<IELEMENT Category (CategoryName,Orderltem+)>
<IELEMENT CategoryName (#PCDATA)>
<IELEMENT Orderltem (PartName, ManufacturerMade!,

<IELEMENT PartName (#PCDATA)> I~
<IELEMENT Manufacturer (#PCDATA)>
<!ELEMENT Model (#PCDATA)>
<IELEMENT QTY (#PCDATA)>
<!IELEMENT Price (#PCDATA)>

Comobile Solutions

.| <'BLEMENT TCSuburb (#PCDATA)>

<?xml encoding="UTF-8"?>
<IELEMENT TotalPDAsOrder (ThisCompany,Date, Customer,Orderltems)>
<IATTLIST TotalPDAsOrder OrderNo 1D #REQUIRED>

<IELEMENT ThisCompany (TCName, TCAddress, TCTel+TCFax)>

<IELEMENT TCName (#PCDATA)>
<IELEMENT TCAddress (TCStreet, TCSuburb, TCCity, TCState, TCZipcode, TCCountry)>
<!ELEMENT TCStreet (PCDATA)>

<IELEMENT TCCity (#PCDATA)>

<IELEMENT TCState (#PCDATA)>
LEMENT T€Zipcode (#PCDATA)>

ENT-TCCouptry (#PCDATA)>

<IELEMENT Address (Street,Stburb,]
<IELEMENT Street (#PCDATA)>
<IELEMENT Suburb (#PCDATA)>
<IELEMENT City (#PCDATA)>
<!ELEMENT State (#PCDATA)>
<IELEMENT Zipcode (#PCDATA)>
<IELEMENT Country (#PCDATA)>

<IELEMENT Tel (#PCDATA)>
<IELEMENT Fax (#PCDATA)>

LEMENT Orderltems (Manufacturer)+>
e
{-<IELEMENT-Mant

Orderl Y

TR "
<IELEMENT-ManugactarerName (FPEDATA)>__
<IELEMENT Orderltérm(ttegsNameé ;ModgINumber, QT¥-Price)>

<IELEMENT ItemName (#PCDATA)>
<IELEMENT ModelNumber (#PCDATA)>
<IELEMENT QTY (#PCDATA)>
<IELEMENT Price (#°CDATA)>

TotoalPDA

one-to-one simple
—— many-to-one simple

one-to-many simple

---- one-to-one complex

- many-to-one complex

one-to-many complex

Figure 3.7 A demo data mapping between XML DTDs of CSorder and TP order

30

31

CSchanged its supplier from TP to AH

Due to differences between format orders of AH and TP, a mapping of business data
from CSto AH is also different from the one from CSto TP.

In the manual system, the data entry person needs to remap the fields in order of CSto
fields in order of AH and copy the data from source to target in the same when he/she
did for order forms from CS to TP. Normally there is aimost no time consumed and

extra cost on the change.

In the automatic system, a renewed data mapping specification implementation needs to
be developed according to the changed mapping of business data and fed into the
transformation system. Development of renewed data mapping specification
implementation follows the same software engineering process as that from the CS to
TP. It needs a lot amount of work to complete the mapping specifications with great
possihilities of errors and cost of money and time as we described in introduction

chapter.

3.2 Our Approach

We wished to show that it is possible to let the business analyst define the data mapping
specifications by developing a mapping tool to mimic the form copying process in the

manual system,

From above scenario, we can see that meaning of structure and semantics of field
between concrete order forms are easy for the clerk to understand. This makes copying
data from one field in the source form to one in the target form to be direct and explicit
because the clerk has knowledge of business process. That’s reason why there is almost

no time consumed and cost when business environment changes in the manual system.

From the previous chapter, we know that “‘one way to ease the entry into programming
is to capitalize on the beginner’s knowledge about the world. Many languages are based
on a metaphor, which should be drawn from a concrete real-world system that is
familiar to the user audience [Smith 1994]”. According to this, in our mapping tool, we
use a concrete order presentation similar to one in the manual system to visualize
complex computer data schemas and import the data instance in the form to make it

more concrete. This concrete and high-level abstract presentation hides the complexity

31

32

of the data schemas, and falls into a business analyst’s problem domain which is easy
for he/she to understand. In the mean while, based on the form-based metaphor, a
spreadsheet-styled visual programming language and other end user programming
techniques are used to let the users to define the most of mapping specifications just
like copying form data in the manual system and defining formula in a spreadsheet
without having a professional programming background. The spreadsheet is the most
successful end-user programming system to date [Nardi 1993] and it also falls into the
business analyst’s cognitive model of problem solving. After the mapping
specifications are defined, the tool will generate a mapping specification
implementation. See Figure 3.8.

1. Analyst imports meta-

data from source and target
enterprise systems i \
4. Datatransformation ~ ——>| Metadataeg, 2. Defaullt business form
implementation generated XML DTDs layouts generated.
from specification Analyst can rearrange
layout to better-reflect
E—;i%:' actual business forms.
i Samm|
—1
il | —
o> 3. Analyst specifies 1:1, 1:n, m:1 group | |E—
<xslapply-templates...> and field correspondencesi.e. specifies E—

<nst.> how to “copy” data from one form to
the other

. =

Figure 3.8 A high level data mapping processin our mapping tool. Thisfigure originates
from [Li 2002]

Our approach here is using the business form copying metaphor in our mapping tool to
allow business analysts directly define the data mapping specifications and generate of

data mapping specifications implementations.

3.3 Requirements of Our System

According to the above approach, the architecture of transformation system mentioned

in the first chapter, and considering the end user problem-solving behaviors, genera

32

33

principles and heuristics on usability and cognitive dimensions for visual programming
described in the previous chapter, main requirements of our mapping tool is described

asthe following.

Need to support form visualization for multiple data schemas

The system should be able to automatically convert different data schemas, such as
XML DTD, XML schema, EDI message, UML for object model, ER model, which are
stored at anywhere on a loca area network and the Internet, to a form-based
presentation (see Figure 3.9 (1)). The form is one of the most common artifacts used in
real world and is most familiar to the business analyst. The concreteness, directness and
explicitness of form make the business analyst understand the data context at his best
without knowing underlying technologies. It is aso needed that our system should be
architected flexible enough to process the different data schemas so that different
processing units for converting data schemas to form-based presentation can be plugged
in. When importing a data schema, the users select the kind of the data schema, and the

system then choose a correspondent processing unit for it.

@)

Figure 3.9 Form rendering process

Business form presentation can be customizable

The user can further modify layout of auto-generated form to make it close to real form
to fit more his/her own taste, i.e. user can re-layout the form elements to make it more
understandable for himself/herself (see Figure 3.9 (2)).

33

34

Be able to mapping by sample data

The system can import sample data to the business form presentation (see Figure 3.9
(3,4)). The sample data not only give the user a better understanding of the data type
and format of form fields, but also enable the user to utilize the programming by
demonstration technique to operate on the concrete data to define program, and

furthermore give the user immediate feedback for debugging.

Need a visual business form copying environment

It should be able to be used by a business analyst and give him/her a concrete, direct-
manipulated, explicit visual environment to mimic business form copying to define
mapping specifications and get immediate feedback. The environment should satisfy
most usability requirements we described in the previous chapter. The environment
should cover al respects of business data form copying, i.e. following relationsin field-

, section-, collection-level with or without condition we will detail |ater:

One-to-one, e.g. company name in order of CS directly copied to Customer

Namefield in target form.

One-to-many, e.g. TCAddress of CSis splitted to three parts to Sreet, Suburb,
City, State, Zipcode and Country fields in target form; Telephone numbers in
one telephonefield in CSare splitted to a group of individual telephone numbers
which are copied to telephone fields in target form, but formats of number are

changed.

Many-to-one, e.g. Year, Month and Day fields in CS are combined to Date field
in target form; individual fax number in a group of fax number is combined and

thenitiscopied to afax field in target.

Many-to-many, eg. Orderltems in target form are recategourized by
manufacturer. For each Orderltem, if the manufacturer name is same, copy the

record to the same category.

34

35
Need to support code generation

The system should have capability to generate different mapping specification
implementation according to user mapping specification. The user can get either XSLT,
or java or other language mapping specification implementation depending on what the
user’s need. It also requires our system should be architected flexible enough so that

different code generation module can be plugged in.

Need testing and debugging support

The system should be able to take sample source data to produce the target data. This
includes two levels:

The individual field in the target form. In order to test and debug the mapping
specification on the fly, after the user defining mapping specification on one
field in target form, the system can take the sample data in source fields, and

transform them to target data by using a transformation engine. For example,

The whole target data. After the user completing mapping specification on the
whole target form, the system can take the sample source file, and produce a

target file by using atransformation engine.

Through above produced target data, the user is able to know if the defined mapping
specification is correct and if not, the user can analyze the result to find where the
problem is. Sample source data process and output data process units should be
architected flexible enough to deal with various data formats

3.4 Main Modules of Our Mapping Tool

Figure 3.10 shows the main modules of our system according to the above

reguirements. The main functions of each module are described as following:

35

36

ul

| Source Form | | Target Form

Mappng
Specification
Environment

—
—) Converters
—

Target Instance I—

Intermediate
Data

Form
Generator

Mapping
Specification

Target Schema

Source Instance

Target Instance
(optional)

Figure 3.10 Main modules of our mapping tool

ul

Source Schema

1

Code Generator

|

Mapping
Specification
Implementation

1

Transformation
Engine

The Ul module is responsible for interacting with the users. It accepts information of

source and target data schema and instance, and commands of file, editing, generating

code, etc, from the users and invokes actions. It presents form presentations of the

source and target schemas and instances generated from a form generator. It enables the

user to re-arrange the form layout. Based on the generated source and target forms a

concrete, direct-manipulated mapping specification environment is provided for the

user to interact with it to define the mapping specifications by mouse clicking, drag-

and-drop, and finally presents mapping specification results to the users.

Converters

It accepts commands from the Ul, imports source and target data schemas and their

instances, and then converts them to an intermediate data structure for form generator.

36

37
Form generator

It takes intermediate data from the converter, automatically generates forms and imports

sample data to the forms. The user can rearrange elementsin the forms.

Code generator

It accepts the mapping specifications defined by the user and generates a required

mapping specification implementation.

Transformation engine

It accepts the generated mapping specification implementation from the code generator
module and source data instance, and produces target data instance. Data in the target

instance will be shown on the target data form for debugging and testing purpose.

3.5 Summary

Letting the business analyst to define data mapping specifications requires that our
mapping tool should be end-user-oriented, i.e. this tool should render the complex
underlying data schemas to a meaningful presentation to end-users, provide them a
powerful mapping specification environment to define the complex mapping
specifications without knowing programming, and generate the mapping specification
implementations. In order to provide a user-friendly interface to make use of the user’s
domain knowledge, we decided to investigate using a business form metaphor to
represent the underlying data schemas, and provide business form copying metaphor—a
spreadsheet-styled end-user programming environment—for the business analysts to
define mapping specifications and debugging them. Based on these requirements, the
main modules of our tool are identified. All of these will guide our later development.

37

38

Chapter 4 System Design

In this chapter, we first select the architecture of our system, then give the user interface
design for form rendering and mapping specifications, finally the static and dynamic

specifications of object-oriented design of our system are described.

4.1 Architectur e of the Tool

Software architectures have been identified as a critical design concern when bridging
the gap between system requirements and implementation, particularly in large,
complex software system [Kramer 1997]. Software architecture is the structure of the
components of a program or system, their interrelationships, and principles and
guidelines governing their design and evolution over time. It provides a clear and well-

defined level at which to describe, understand, and analyze system designs.

4.1.1 Possible System Ar chitectures of Our Data M apping T ool

According to the main requirements we described in the previous chapter and
uncertainty of requirements on budget of project, number of users, actual environment
the mapping tool will run on, etc., we first consider our mapping tool as a standalone

system and as a distributed system in a general way and then discuss them later.

4.1.1.1 Standalone Architecture

The standal one architecture of our mapping tool, which is actually 2-tiered, is shown on
Figure 4.1. In this architecture, all the modules of the system we described in previous
chapter are in a single application, which is the first tier. In the second tier, it’s the
storage of input files and output files. The schema files and the instance data can be

loaded from the local storage or anywhere on the Internet; the output files for mapping

38

39

specification implementation and target instance can aso be placed to the local storage

or anywhere on the Internet.

Ul
Mappng
Source Form | | Target Form Specification
Environment
4
@ Form ®) !
Generator 1st Tier

]

Converters 3) Intermediate Mapping
Data Specification

) Code Generator —

Transformation (6)
Engine

Target Instance |L ®)
Mapping
Target Schema Specification
Implementation
()]
—| Source Instance
2nd Tier

Target Instance
(optional)

Source Schema

Figure 4.1 Mapping tool with standalone ar chitecture

The processes for mapping specification in the standal one architecture are described as

following:

The Ul module is responsible for accepting commands, such as new, open, save, etc,
and inputs about types and locations of schema files and instance data from the users,
and sending them to corresponding converter modules (see Figure 4.1 (1)). The
converter module accepts the information from the Ul module, loads the schema file or
instance data (see Figure 4.1 (2)), and then converts it to a unique intermediate data (see
Figure 4.1 (3)). The form generator module accepts schema objects or/and instance
objects with the intermediate data structures (see Figure 4.1 (4)), processes them and
generates the forms or/and fills the instance data into the generated form. Then mapping

39

40

specification environment, which consists of the Ul and the generated forms, accepts
the users’ instructions to build mapping specification (see Figure 4.1 (5)). When the
mapping specification for one target field is finished, it will be sent to a code generator
modul e to produce the mapping specification implementation (see Figure 4.1 (6)). The
implementation and source instance are then fed to transformation engine module (see
Figure 4.1 (7)) to output the target instance (see Figure 4.1 (8)). The target instance will
be loaded to the converter module, then through the form generator module to show the
instance data in the target form to the users who can determine the correctness of the
mapping specification through the feedback. After the mapping specification for all
target fields is finished, through the same process, the mapping specification
implementation for the whole source will be produced and the target instance will be
output. All of these results will be sent to and shown on mapping specification

environment

4.1.1.2 Distributed Architecture

The distribute architecture uses a client-server model in which client sends a request to
server and server gets the request, processes the request and then sends back a result to
client. For our mapping system, the distributed system can be a 3-tierd or a 4-tiered

architecture that are described in following sections.

4-tiered architecture

Figure 4.2 shows the 4-tiered architecture. The first tier is the client application, which
is mainly for interacting with the users and sends the user requests to a server in next
tier. It consists of a Ul, a form generator and a mapping specification environment,
which is based on the Ul and the generated source and target forms. The second tier isa
distribute server, which accepts requests from the client application and interprets them
and directs or distributes them to correspondent applications in next tier, and then gets
the replies from next tier, sends them back to the client application. The third tier
consists of various converters for transferring different schema and data instance to the
intermediate data structure, code generators for generating different mapping
specification implementation from abstract mapping specification, and transformation

engines for transferring source instance to target instance according to the mapping

40

41

specification implementation. These converters, code generators, and transformation
engines can be run on different machines. The fourth tier is the storage of the source
and target schema files, source and target data instance, and mapping specification

implementation.

ul

Mappng
1) Source Form | | Target Form Specification 1st Tier
Environment

® [

Form Mapping
Generator Specification

T I
[8) I
| A

Distributor Server 2nd Tier

(2) ®

4 .
—) Converters (4) Integr::;ﬂate Code Generator —

3) Transformation 3rd Tier
Engine

l

©

Target Instance |L (1)
Mapping
Target Schema Specification —
Implementation
—| Source Instance (10) AthTier

Target Instance
(optional)

Source Schema

Figure 4.2 Mapping tool with a 4-tiered distributed architecture

The data processing in the 4-tiered architecture is described as following.

The client application accepts the new project command and inputs about types and
locations of schema files and instance data from the users, and sending them to loader

server in second tier (see Figure 4.2 (1)).

The distribute server accepts the information from the loader client, and distributes
them to correspondent convertersin the third tier (See Figure 4.2 (2)). It acts asa bridge

between the client application and different processing unitsin the next tier.

41

42

Each converter gets input from the loader server and interprets them, then loads the
schema file or data instance (see Figure 4.2 (3)) and converts it to the intermediate data
structure, and sent it to back to the distribute server (see Figure 4.2 (4)), which will get
al the messages from the converters, combine them together and send them back to the

client application (see Figure 4.2 (5)).

The form generator module in the client application takes the intermediate data for the
schemas as inputs to generate forms, and takes the intermediate data for the instances as

inputs to fill the instance datainto the forms (see Figure 4.2 (6)).

The users interact with the mapping specification environment, which consists of the Ul
and the generated forms, to specify the mapping specification for each target field.
Once the mapping specification for one target field is finished, the environment sends
the message of the mapping specification to the distribute server (see Figure 4.2 (7)).
The distribute server then redirects it to a correspondent code generator for generating

mapping specification implementation (see Figure 4.2 (8)).

The code generator accepts its input from the distribute server and generates the
required mapping specification implementation which then is sent to the transformation

engine (see Figure 4.2 (9)).

The transformation engine accepts the mapping specification implementation and
source instance, and output the target instance (see Figure 4.2 (10~11)). Then the target
instance is loaded to the converter to produce the intermediate data, and then the
intermediate data is sent back to the client application through the distribute server for
feedback to the users.

After the mapping specification for the all target fields is completed, the mapping
specification implementation and the transformed target instance will be sent back to

the client application the same way as above.

3-tiered architecture

In the 3-tiered architecture, the first tier is a combination of the first and the second tiers

in the 4-tiered (see Figure 4.3). In order to make each client to know the latest address

42

43

of processing unit in the second tier, a database server or file is needed to serve at the
third tier for the client to request or load. The data processing in the 3-tiered is almost
the same as that in the 4-tiered except the client needs to request for the address

information.

Ul

Mappng
Source Form | | Target Form Specification
Environment 1st Tier

) Lo

1) Form Mapping
Generator Specification

e 1

Distributor

(1a)

Yl

(2)
— Converters “ Intermediate
— Code Generator —
— Data

€) Transformation
Engine

2nd Tier

(9)

Target Instance fl (1)
Mapping
Target Schema Specification k—
Implementation

10

—| Source Instance (19
3rd Tier

Target Instance
(optional)

Processing Unit

Address Server

Figure 4.3 Mapping tool with a 3-tiered distributed architecture

4.1.2 The System Architecture We Choose

For the standal one system, the users need to install the whol e application, which may be
in aremovable disk or CD, or downloaded from the Internet, to the users’ local machine
and run it. The application also can be a Java applet running in the Internet Browser.
The users specify locations of the source and target schemas and instances, which can
be on local machine or network, or somewhere in the Internet. After the data is loaded,
the whole mapping specification processing will happen on the local application. The

application only serves one user a one time.

44

For the distributed system, the users only need to install alightweight client application,
which may be in a removable disk or CD, or downloaded from the Internet, to the
users’ local machine and run it. The client application also can be a Java applet running
in the Internet Browser. The users specify locations of the source and target schemas
and instances, which can be on local machine or network, or somewhere in the Internet.
After the data is loaded, the most of the mapping specification processing, such as
converting schemas and instances to intermediate data, code generation, transformation
from the source instance to the target result, will happen on the distributed processing
units, which are scattered on the network or the Internet. Many clients can share the

distributed processing units at the same time.

In the following, we compare the standalone architecture, 4-tiered and 3-tiered
distributed architectures each other in terms of performance, complexity, reliability,
scalahility, flexibility extensibility and maintainability.

Performance

The standal one architecture makes all modules of the program in a single application.
All modules are so tightly coupled each other that make the whole processing from
inputting data to getting the result very fast. For the same type of source and target

schema /instance, the correspondent converter has to processing them one by one.

For distributed architecture, there are three main factors downgrading its performance.
The first is the communication between the client and server. The communication in
our system involves the client application with distribute server, distribute server with
processing units, code generator and transformation engine in the 4-tiered, and the
client application with processing units, code generator and transformation engine in
the 3-tiered. The second is the message parsing and producing. Each application in the
system need to build messages from objects and send them back and forth, and parse
messages to objects for further processing within application. The third is sharing the

processing units. Each processing unit may process data from many clients.

On another hand, the distribute system can convert each schema or each instance in a
separated parallel process by adding more distributed server and processing units, i.e.

the schemas and instances can be processed simultaneously. This may make the

45

converting schemal/instance to the intermediate data in distributed system faster than
that in the standalone.

Complexity

The system with distributed architecture invol ves communication protocols for message
transfer between the client application and the distributed server, the distributed server
and processing units. Also inside these applications, the messages need to be parsed to
objects for further processing, and built from objects for data exchange. Other issues
like loading balance among processing units, and different operation environments. All
these will make the system with distributed architecture more complex than the
standal one architecture, although using XML technologies will simplify the process of

integration of these applications.

The 4-tiered architecture is more complex than the 3-tiered, because the distributor in
the 3-tiered is separated from the client application as an independent application—
Distribute Server—in the 4-tiered. The distribute server needs to dea with

communication and parse messages from both 1% and 3 tiers.

Reliability

The system with distributed architecture needs the network to make their applications
communicate each other. The problem with the main network path will cause poor
reliability of the system. On the other hand, the distribution of the process units could
make the system still work with failures of connection to some units, or breakdown of
some units. For the standalone system, athough there is no network problem, but
malfunction with only one module in the runtime will cause the whole system crashes.
With the improvement of the reliability of network, the reliability of the distribute
system will get better reliability than the standalone system.

Extensibility
Both architectures can support extension of processing additional data schemas and

instances or using different converters to processing the same data schema and instance,

if the modules and patterns are properly designed. But with the distributed architecture,

45

46

extension can be just happened in the individual application, but with the standalone
system, the extension has to be made on the whole application, even just one of the

modules inside the application is extended.

Scalability

In the distributed architecture, the distribute server in 4-tiered can accept all client
requests, and optimize the utilization of the processing units in next tier according to the
load of next tier processing unit. But the distribute server may cause the bottleneck
when too many clients connect to it. Additional paralel distribute server could be a
solution for the bottleneck. In the 3-tiered, a bottleneck may happen on the processing

units because of the unbalanced loading from the unorganized client applications.

In the standalone system, all the users just run the program on their local machine, and

there is no bottleneck problem when the number of user increases.

Flexibility

The system with distributed architecture is more flexible than one with standalone
architecture. In distributed architecture, each application can be replaceable, upgraded
without influencing other applications in the development time, even in the runtime
when there are multiple servers for the same function. With the standalone system, the

whole system hasto be replaced or upgraded by a new system.

Maintainability
In the standalone system, any changes of the module in the system cause the whole

application to be upgraded. It needs to maintain the upgrade for a large number of the

users. It istroublesome for both the devel oper and the user.

But in the distributed system, changes on the processing units will not affect the client
application. Upgrading for the very limited number of units is very easy to be
maintained. In the 4-tired, the changes on distribution functionality only affect the

distribute server, not like that the changes of distributor causes that the entire client

46

47

applications need to be changed and every individual client application need to be
upgraded in the 3-tiered.

From above analysis, each system has its advantages and disadvantages in terms of in
terms of performance, complexity, reliability, scalability, flexibility extensibility and
maintainability. The choice of architecture needs to consider the specific requirements

on these aspects and other non-functional requirements of the mapping tool.

The standalone rather than the distributed architecture is chosen for later

implementation based on following considerations:

The main focus of our research is to investigate if we can develop a data
mapping system that can be used by a non-programmer. The important part is
the user interface that presents mapping data to a form and provides the way in
which the user defines the mapping specification. The standalone architecture
provides enough of this ability for me to investigate. So using the standalone
application makes us focus on the main issue of our research and avoid the

complexity of distributed system.

Limitation of research time forces author to choose the simpler architecture so

that it can be developed as quick as possible.

4.2 Form Visualization Design

To make the users understand the data and their relations in the data schemas without
knowing the detail of complex technical terms of data schema, and achieve the best
form visualization, we first decide to remove the data, which are the technical termsin
the data schemas, for example, the namespace, element and attribute tagsin XML DTD,
from the form visualization, and only extract the data with business meaning and its
relations from the data schemas and then present them on the visual form metaphor;
second, we provide a capability for the users to rearrange the automatically generated
form to make it more like a real business form; third, the users can import the schema
instance to fill the sample data into the form fields to make the form more meaningful

to them. We describe all the details in the following sections.

47

48

4.2.1 Form rendering

An intermediate data model is used as an input of the form generator. In order to make
the form generator independent of various data schemas, such as UML for objects,
XML DTD, EDI schema, these schemas need to be parsed and converted to an
intermediate data model before they are taken into the forma generator.

In this intermediate data model, the technical terms are removed and the semantic of
elements with business meaning and their relations are retained as those in their origina
schema but represented in a unified format. The intermediate data model uses a tree-
liked hierarchical data structure represented by XML document objects, because the
XML document objects can be easily processed by using current XML technologies,
and make the system flexible for future extensions. In order to get the intermediate
model, we first convert these data schemas to labeled graphs introduced in [Milo 1998].
But these graphs still have alot of technical terms such as object reference nodes, data
type nodes, inheritance relations, and different presentations for cardinality of node. It
is very hard for the end user to understand these terms on a form-based presentation.
These graphs may contain cyclic structure, which is difficult to be visualized on the
form presentation. So we further build a tree structure to eliminate these object
reference nodes, data type nodes; unify the different presentation of cardinality by using
a relation node labeled “zeroOrMore”, or “oneOrMore”, or “oneOrZero”, or “or” for
choice; reorganize nodes with a inheritance relation by removing the super class node
and moving its child nodes as child nodes of its sub-class node; present recursive
relation by adding a child node with alabel like “continue with <recursive node name>
here” to the node, which refers to a recursive node. There is a map that stores the nodes

in the tree structure and their correspondent nodes in the labeled graphs model.

The CS order schemas in XML DTD (see Figure3.7) and UML class diagram (see
Figure 3.6) can be converted to the unified intermediate data model which structure is
shown Figure 4.4. In the figure, there is a root node with edges and its child nodes. For
XML messages, the root node corresponds to the root element of XML DTD. For
objects schema represented by UML, the root node needs to be selected by the user.
The red non-leaf nodes stand for the cardinality of its child node(s), it and other non-
leaf nodes and leaf nodes represent data elements. The form generator takes the

intermediate data model as its input and generates the forms.

48

49

ComobileOrder

) T

ThisCompany Date Supplier Orderltems

/NN PARN N~ |

TCName TCAddress TCTel ZeroOrMore ~ Day — Month vear Name SupplierlD Address Tel ZeroOrMore OneOrMore

TCFax Fax Category

— N\

OneOrMore CategoryName

Orderltem

I N

PartName Manufacturer Model QTY Price

Figure 4.4 An intermediate data model of schema of CS order

The automatically generated form from the above intermediate data model is shown as
Figure 4.5. The notation in the visual form for the above intermediate data mode is

described as following:

A non-leaf node

A panel is used to represent a non-leaf node, not including the relation node. The name
of the node-leaf node is shown on the border of panel. See Figure 4.5 (1) for
ThisCompany node. The children of the node are rendered as visual components inside

the panel. The panel is called a section or group in the form.

A leaf node

A labeled text field is used to visualize the leaf node. In the labeled text field, the label
is used to represent the leaf node name and the text field to represent its value, which
will be imported from an instance of the schema. See Figure 4.5 (2) for TCAddress of
ThisCompany. The labeled text field is called afield in the form.

A relation node

Relation node is a non-leaf node which name is zeroOrOne, or zeroOrMore, or
oneOrMore, or or. A black bold font is used for the name of a node with an oneOrMore
relation (see Figure 4.5 (4)); agray bold font for the name of a node with a zeroOrMore

relation (see Figure 4.5 (3)); a gray font for the name of a node with a zeroOrOne

49

50

relation. A group of radio buttons with the names of node are used to represent the “or”

relation. The field and section with zeroOrMore or zeroOrMore are a collection field
and a collection section respectively.

Figure 4.5 The automatically generated form for abovetree structureof CSXML DTD

50

51

4.2.2 Reformatting Form

From above automatically generated form, we can see that the form looks very naive.
It’s better for the user to rearrange the layout of form to make it more intuitive or like
an actual business form without changing the structure of underlying data. The system
provides the capability for the user to select any fields or sections and move them to a
proper position within their parent’s section panel, or resize the fields or sections within
their parent’s section, to re-layout the form. Figure 4.6(1) (3) show how to resize afield
and a section respectively. The user first selects the Day field or Date section by
clicking a mouse button on it, then move the mouse to the corner of the selection box
until aresize curser (it’sred in figure) shows up, then drag the mouse to proper position
(see blue arrow line) then release the mouse button to finish resizing. Figure 4.6(2)
shows how to move Month field. The user first selects the Month field by clicking a
mouse button on it, then move the mouse to the border of selection box until a move
curser (it’s red in figure) shows up, then drag the mouse to proper position (see blue
arrow line) then release the mouse button to finish moving. Figure 4.7 shows the CS

order form after the automatically generated CSorder form in Figure 4.5 is rearranged.

[a Cu
,,,,,,,,,,,,,,,,,,,,,,,,,,,,
* '} [} [
o i ow] i
Hrrrasrer —— £ LAy
ity ﬂ [
iae] |

Erry {4
#
L e L
[o
ot @
brrsrrassrrresrans o

- i

(2) Move the Month field

B A o B A i o Al ol o

HE=

Duy[monn| Ve

R EEREEEFEEFEEEEEEEETE,
Le)

AT LR LRS LR LAY
B b

FRFFSFFRSFPFRRFRPFRIFERIFFRIFFS PRSI FRRFFIFES I'H

(3) Resize the Date Section
Figure 4.6 Rearrange form layout

51

52

Emace Crsten F o
CosmobilaiCrdar
TrasaCormaey
[
*TCHm—— |
o S R
TEAddrmza|
TCTel 1oy
[
l:'ll'l'i_ W"‘“l L L Crere]
ELpphe
[T £ pplierli
Beticiraas
aras| Saits]
iy Counke
Ted i
Crisritnm
L slegory
ooy ianm
ST e
Wi
=] By h-u[

Figure4.7 A rearranged CSorder form

4.2.3 Importing Sample Data

Sample data from an instance of schema can be imported into the source or target form.
The sample data can make the user understand not only meaning and semantics of form
field but also the data format and type. Furthermore, the sample data aso can be used
for programming by demonstration and debugging purpose later on. In order to show
sample data, the user can just click on a show-source-data-button or show-target-data-
button (see Figure 4.8) to show the data directly in text fields in the source or target
form if the user has already imported the schema with its instance. Otherwise, after the
user clicks on the button, afile chooser will pop up for opening the instance file. After
the instance file is opened, the data will show on the form. Figure 4.9 shows CS order
form and TP order form after show-source-data-button and show-target-data-button are
pressed.

52

53

& DataMapping
generate-code-buttan File Edit |Wiew Function Formcel Tool Help

show-target-data-button '—,,
g new-cel-button J 0O = J5) Show Source Data Alt+S

4T Show Target Data Al+T
Source Daterr—rorger oo T T

& DataMapping

File Edit Wiew “Functiory FormCgl Teol Help &DataMapping
i) Y / File Edit ‘Wiew Function | FormCell Tool Help
D&l oor B

delete-cell-button [hewr Callection Farm Cell
[#] delete Form Cell

/ " \ J 0= 5 0 & [Mew Form Cell

Source Data | Target Data b

show-source-data-button

new-collection-cell-button

1|—Source Data Form

& DataMapping

File Edit View Function FormCell | Tool Help

:J 0 = @ @ EET| Ot sier GEnerate ¥SLT Code Alk+d r

- U [I

Figure 4.8 Tool buttons and menu

Source Cwia Form Tt Desin Fioam

ot ToalPCL Sy dar

ThisCompmny Tras oy

D LY PR RE ST " e T — "

ETCris|Comctae Schsions Lid H AV Chde Tl e Lid| :
’f!!!i!!r!!!i!}f’!!i!!f.f!.fi.f.if.f: ‘IFII‘IJI"IFII‘IJf!I‘II‘IJ:

TEANEAE0 Cuamn Srant, Suckiond, Bew Tasisnd ==

TCEeA130 Camal South Moad | ToSubsbfreruse

Tl 08 2 4550, QDA) 467 "5:|H+IE!?II."J 4ETE mdr TeEinte]

E E— T Brcoda) TECEumtrylriewy Tessral

Dy (1 Manth oz bl k] ey]

l\cu{l.g...g.g};;_‘-. TP 310, #64-8-5434312

Syl

L mppp— Creeeloo0aranda0!
MarvelToniCins Lt Suonder {1001

Currtomer

Aahilress Mersel- oo Satien Lid Curtome k=S Ta0

S 2T Great South Rowd 4 WasE
frzz h Subrtle "

—_—
'fl'fﬁumu oty ey it Bnﬂlhl s 51 edrat

PrTTEE—— - T
THDEAE)54] 4321, DS IT4T 4202 Pl ned)543 4310 Chlecidand 5
pcoe| ".'ﬂ""\ilﬂ'n Dt
Cwderkems .
roaleginy Vel b4. 3.1 20458 Pl 475, B4-9-1 254530
n'_ulwum-EE
QT
Ordeem Fhsrtariune
[MBI T et 7 e
N
lrasischeren ¢ e) .
Rerakirne Fam et d e T ngrt e AT
aref) Fricel| 1900 _
an Pricef 150 00

Figure4.9 CSand TP order forms after the sample dataisimported

4.3 Visual Mapping Specification Environment Design

The visual mapping specification environment should provide a user a concrete, direct-

manipulated environment which can make use of the user’s previous knowledge and

53

54

match their cognitive model of problem solving to make. In the following sections, we
make use of existing end user programming techniques, findings on end user problem-
solving behaviors from researches on end user programming, and usability principles
on user interface design, and apply them to our mapping specification environment

design.

4.3.1 Outlook of M apping Specification Environment

Our visual mapping specification environment is a spreadsheet-styled programming
environment, which is shown on Figure 4.10. The spreadsheet-styled environment is
actually form-based user interface, so it is consistent with our business form
presentation for underlying data schemas. It consists of a source and target form area
(see Figure 4.10 (1)), an intermediate form area (see Figure 4.10 (2)), an operation
selection area (see Figure 4.10 (3)), and a formula display area (see Figure 4.10 (4)).

Source and target forms area

This area consists of both source and target forms. All the sections and fields in the
form are selectable by clicking mouse on them. Each selectable field in both source and
target forms is treated like a cell of spreadsheet. The user can define the mapping
specifications by either drag-and-drop, i.e. first selecting a source field and then
dragging it to a target field, or type-and-select, i.e. first selecting a target field and then
building formula or procedure by first entering equal symbol and then selecting the
source field from the source form or intermediate form area, or selecting an operation

from the operation area. We will give the samples |ater.

The intermediate form area

When defining some complex mapping specifications, sometimes we need to use some
intermediate results. We can do it by creating an intermediate field, which also a cell of
spreadsheet, to get one of the intermediate results, and then refer to the field from a
target field or another intermediate field. This intermediate field is not a part of the
source and target forms. It is used separately as a variable for defining the mapping

specifications for its target field. Now the environment supports the intermediate field

54

55

and an intermediate collection of field. This is the methodology of divide-and-conquer,
in which a complex problem is divided into several small problems. We will give

examples later.

The operation selection area

In this area, there are alot of common used operations for mapping specifications listed
by using a tree structure to categorize these operations. The operations including
operations on strings, such as substring_before, concatenate, etc, numbers, such as
round, ceil etc, the fields in the forms, such as sum, position etc, and logical statements,
such asiif, while etc. These operations are pre-defined and can be reused by just clicking

on the desired operation nodes.

The formula display area

This area provides a way for defining, displaying, editing, and deleting mapping

specification for current selected cell in target or intermediate form area.

55

56

£ pataMapping & x|

File Edit ‘iew Function FormCell Tool Help

D e pomior s

Source Data | Target Data Mapping |

Operstions | Tree I Source Data Form | N Target Data Form -
| | Operations . ;
D-Easring (2) Gl ~TotalPDAsOrder
N i} ThisCompany {1) B
e (I e — ThsConpany
""" sullring be' #TCMame|Camakile Salutions Ltd ’ |
) TCH
------ ® substring st f,,,,,l,,,,,,,,,,,,,,,,,,,,,,,,!- atmE|TotalPDAs Lid
o - S_ul_asiring TCAddressIDD GQueen Street, Auckland, Mew Zealand TCAddress
E= C:mb'”'”g TCStrest]123 Great South Road | TCSUbLb[Penrase
; concat TcTelfagoy125 4567, 0064(9)1 23 4576 TCFax|o0B4(aN 23 4578 ||
[others TeCityfauckiand TCState
------ # starts with
...... * string length Date TCZipcodeI TCCountrleeW Zealand
------ * string Dayﬁ MDMhIDS ear|2003 Orclerho[20030304001
------ # normaliz spa TCTEI|+B4-9-543-4321 TCFaxI431D, +64-9-543-4312
------ # translate ~Supplier
------ # containg
Namehma,pms Ltd SupplierlDISPLDD'] Datelumarzuus Orgerhio|20030304001
] calculation N
;| format Address QUi
-] fields street|1 P ——— Suburblpenme NameIComobile Solution Ltd CUSTD"“E”D|CSTMU1 0
B[] calculati
L] calculation Address

Ci‘tyl.&uckland CoumrvINew Fesland StreetIDD Queen St Suburbl
T9||UB4(9J543 4321, D0B4(9)543 4322 Faxloos4(9)543 4310 CﬂylAuckland Smel

-] boolean Ij Countr I
N poce ¥|Mevy Zealand
1 generate boolear | | LI I Ll
| testing ﬂ
= | logical statement
| condttional (2)
#® ifthen
ifthen else ;I
Comobile Solutions Ltel =]
(4)
=

Figure 4.10 Visual mapping specification environment of our tool

57

4.3.2 User Interfacing and Notationsfor Mapping Specifications

As we described above, the environment of mapping specification of our tool is a
spreadsheet-styled end user programming environment. We design the environment to

make it as a business form copying metaphor through following ways:

By using the spreadsheet-styled programming environment makes the user use it like
the way he/she uses Microsoft Excel [Microsoft 2003 Excel] or Forms/3 [Hays 1995],
i.e. selecting the target field and defining a formula for it. A spreadsheet is the most
successful end-user programming environment in the business world [Nardi 1993]. It
can make use of the business analyst previous domain knowledge and problem-solving
skill.

Built-in high-level operations, which are quite frequently reused in mapping
specifications, are provided to avoid the user to synthesize them from many simple
primitives [Lewis 1987]. These operations are listed on a panel and the user can select

them for use by just clicking on them.

According to that an end user prefers to express the general case first, and then later
modify it with exceptions [Pane 1996] [Myer 1998], in our mapping tool, when the user
defines mapping specification by using drag-and-drop, a default copying operation
without conditions is applied. The user can add conditions for the default operation at

|ater time.

Based on the spreadsheet-styled programming environment, a type system is
introduced, and the user can apply a type to form fields and sections to make most of
format conversions, splitting and combining mapping specifications to be defined just
through a drag-and-drop operation. Applying a type to form fields and sections is not

compulsory.

In the following, we detail how the mapping specifications are defined in our mapping

tool.

4.3.2.1 The Type System

The type system is used to define and apply type and format on the value of the form

field, and the section in the form. Some common used types, such as date, time, person

57

58

name, address, number, telephone and their formats are built-in the system. The users
can also define their own types and add to the system by using a programming by
demonstration [Cypher 1993] technique. But the users are not forced to apply the types

to the form fields and sections; they do it at their convenient.

Apply a typeto aformfield

Figure 4.11 shows processes for applying the type to ThisCompany.TCAddress field in
CS order form. To apply the type to the form field, the users first select the field, right
click the mouse to show the popup menu, select the properties (see Figure 4.11(1));
then a type dialog box shows up; the users select proper type and format for the form
field, then click OK (see Figure 4.11(2)). After the type is applied to the form field, if
there is more than one attribute in the type, thereis ared plus sign showing on the right
of the form field (see Figure 4.11(3)). When the red plus is clicked, there is a pop-up
sub-form, which contains the attributes of the type and sample data, and the plus sign
changes to minus sign (see Figure 4.11(4)). If the users click on the minus sign, the

pop-up sub-form disappears and the minus sign will change to plus sign.
Apply a typeto aformfield

Figure 4.12 shows processes for applying the type to Customer.Address section in TP
order form. To apply the type to the form section, in the beginning, the procedures are
the same as applying the type to the form field. The users first select the field, right
click the mouse to show the popup menu, select the properties (see Figure 4.12(1));
then a type dialog box shows up; the users select proper type for the form field, then
click OK (see Figure 4.12(2)). Then the following steps are different from applying the
type to the form field. If one of names of the attribute in the type doesn’t match any
name of child of the section, adialog box will show up to let the users map the attribute
to afield in the section. If the name of the attribute in the type is the same as the |abel
of the field in the section, the mapping will automatically be done by the system (see
Figure 4.12(3)). After finishing the mapping, the users click on the OK button. A red
star shows on the right corner of the section to indicate a type being applied to the
section (see Figure 4.12(4)).

58

59

—ComakileOrder

~ThisCompahy

TCNameIComobile Solutions Lid

e

‘Tesddressfd 1000 10 -
rr s rrsres, Decompose
SubWiew

TCTEII-SE?, O0G4(EY1
Bach
TCFax|nns4(9)1 234 ek

(1) Select TCAddress field, right click mouse, choose
propetties from the pop-up menu.

Data Type ~ Type Format

Cate Street, Suburh, City, State,
Mumber Steet, Suburkb, City, Countrey
Fersonklatne Steet, Suburb, City

Steet, Suburb, City, Zipcode

ipcode, Courtry

Cancel |

[2) Type =election dialog box shows up, choose data type and format, click on OK button

TCAddress|id, 1000, Mew Zealand =)

31 Red plus sign shovws on the right side
of TCAddress field, click on the plus sign.

~ComohileCrder

~ ThizCaompany

TCNameIComobile Solutions Lid
TCAddressImﬂ, 1000, Mew Zealand =

{00 Gueen sreet

FF o F FE T EEEELLES)

¥
4
Y

LT T F T FFTF TS

(41 A sub-form shows up, and the plus sign changes to the minus
sign. Click on the minus sign, it returns to the (3) state.

Figure4.11 Apply atypetoaform field

59

60

All the types applied to the form field and sections can be modified and removed.

Applying type to the fields and sections in the form can make the mapping specification

for the fields and sections much easier than no typing at al. We will seeit |ater.

Define a type

If atype that is frequently used but are not built in the system, the user can define it by
demonstrating on a concrete sample data and then system will generate a new type
which can be used by the user at later time. Now the type definition only applies to a
type with attributes which type is primitive type. Figure 4.13 shows procedures to
define a new type by using programming by demonstration technique. The user just
need to create new sub-elements and select text from the field string and drag and drop
it to the correspondent cell of sub-element (see Figure 4.13 (2~6)). After you push the
Add Type button, the system will generalize what you did, form a type and add to the
system for later use. We can see from Figure 4.13(8), after TCAddress is assigned to
Address type, generalized program is applied to the sample data of the TCAddress field
and a sub-form with sample data is generated. We can check the type manager to see if
the Address typeis there ready for use at later time (see Figure 4.13 (10)).

60

61

[Feict Acdrrs Bk, right cRck mouse, chogie (1 Type selection dinlog bos thoees up, choose dein bype, chok on O biin
ot s Trm 1 Popel ManU.

[0 b becix Tor Wve affribube 5 O o Uyl msbching Chdosn of thee s#chion shows i, If thame & child
RSl B B Sclnny fhae BAn A3 1) e OF STELES N DD, T groorie ol sulomalically makch Ml e,
Ciherwioe, & sl mapping i= reeced | CBok Ok Bulkon b Tinih the malcring.

(40 A, ghar gin hcres: on e right 08 O e Addries sechion o ndcele
e A 1a A,

Figure4.12 Apply atypeto aform section

61

62

rl’l’l’l’l’l’l”l’l”l’l’"

L

Properties
TCTEII.SE?, 0084 o hview

Back

TCFaxIDDE4(QJ1 Mk

(115elect TCAddress Field and right click
mouze, shortcut menu shoves up, select
Decampozer.

& Decomposer _|

~Field

X

TCAddress IIIIZI Gueen Street, Auckland City, Auckland, 1000, Mews Zealand

~Decompoze

Type NamelAddress

Ma I Marme of Su...| Expected RI Actual Resultl

1 Etrest | |

Remdee

iad

Define

Type Forrat Add Type

i

0724 Cancel |

[ZiDecampozer dialog box showes up. Input type name in Type Mame field. Acdd
click on add button, and input Street in the first ine and the zecond calumn

& Decomposer il
~Field

TCAddress) Auckland City, Auckland, 1000, Mew: Fesland
~Decompoze N,

Twpe Namel.ﬂ.ddress

Ma IName of Su...l Expect&:l Resurtl Actual |

Acied
1 |street | - | |

Rermave

Define

di

Type Format Add Type

L

Ok Cancel |

[3) Select "00 Cueen Street” and drag and drop to the first rowe and the third
calumn.

Figure 4.13 Define a new type by using programming by demonstration technique

63

TCAddress IJD Gueen Street, Auckland City, Auckland, 1000, Mew Zealand

Decompose
Type NamelAddress
(i s] I Mame of Su...I Expected Result I Actual ... I
1 |Street |DE| Ciugen Street | |
Drefire
Type Format Add Type |
Ok, Cancel |
[4iMowy wee finish the Street definition. Click on Add button again to add more
Subelement.
@; Decomposer ﬂ
~Field
TCAddress [10 Queen Street, m Auckiand, 1000, New Zesland
~Decompose \1
Type Namel.ﬂ\ddress

Ma |Name of Su...I Expected R urtI Actual I Add |

1 Street 00 Gueen %e_g
2 Suburk Femaove |
Define |

Type Forrmat Add Type |

QK Cancel |

(5) Input "Suburk” inthe second rowe and the second column. And select
"Suckland City" fram the TCAddress field, add drag and drop it to the cell
belossy 00 Queen Strest”

& Decomposer

Field

TCAddress: IIIEI Queen Street, Auckland City, Auckland, 1000, Mew Fealand

~Decompose

Tvpe NamelAddress

e I Marne of Su_. | Expected R | Actual Resurtl
Street 00 Queen St...

Suburk Auckland City Remove |
City Avckland

Fipcode 1000 Define |
Caountry

Mew Zealand

Al

& Q| k| —

Type Formst|Street, Suburb, City, Zipoode, Cnur‘rtr\,n'l

Addﬁme |

Ok | Cancel | \

(B Repeat the above procedures to define the City, Zipcode and Country . And
Then click Add Type button to add the type and click on OK button,

Figure 4.13 (Continued)

Gerrrrssarsess sy,
aTCAddreSSId, 1000, Mewy ealand
A EEFFFEFTEFFEEFEFTFFFFF S
(77 After click Ok button. The new type of Address is created
and apply to the TCAddress field.

rl”"ll””’l”"l”"f

[
:TCAddrESS id, 1000, Mewy Zealand

[3Click onthe expanding button | the sub-form shows up

'1111111111111111111111

ITCAddresshd, 1000, Mew, ™
S rrrrrrrrrrrrrs Decompose
SubView

TCTBlI-SB?, 0064790123 4
Back
TCFaxIDDB4(9j1 23 4578 p[=rAs

(9] Click on the collapse button and right click on the
TCAddress to show the shortcut menu, select Properties.

[«

Data Type—————————— [Type Format

Street, Suburk, City, Zipcode, Courtry

Ok | Cancel |

(107 & type manager dislog box shows up. We can see our newy Address type is stored in
the system ready for later use.

Figure4.13 (Continued)

4.3.2.2 Mapping Specifications

In order to make clear of mapping specification on the business form copying
metaphor, in following sections, we will use some symbols to present the mapping
relations. These symbols are described as following:

65

Figure 4.14 (1) shows the symbol of form field. The square stands for the form field.
Inside the squares, there is a triangle or circle(s). The different shape of these little
widgets stands for different value in thefield. The different outline color of the triangle
or circle stands for a difference of the label of field. The blue color of widget (Figure
4.14 (1)d) stands for the type of the value in the field being defined. The multiple
widgets in the field (Figure 4.14 (1)e) stand for the data in the field consisting of

multiple data elements.

Figure 4.14 (2) shows the symbol of form section, which contains many form fields
and/or section(s). The blue square (Figure 4.14 (2)c) stands for the type of the section
being defined.

Figure 4.14 (3) shows the symbol of collections, which can be collection of field or

collection of section.

A] | @ |[000

@ ®) © (@

(1) Form fields

JAN

AN
AN

(@) (b) ©
(2) Form sections

A
A
JAN

(@) (b)
(3) Collections

Figure4.14 Symbols used for illustrating mapping specification
4.3.2.2.1 Smple mapping specifications
In the smple mapping specifications, there are no collection fields and conditions

involved in the mapping specification formula for the target field. They include the

following situations:

One-to-one

65

66

It only involves one target field and one source field. Both fields are not collections.

The formulain the target field only contains only one source field reference.

o Direct copy

This is the simplest mapping specification. The value of the target field is exactly the
same as the value of the source field (see Figure 4.15). We just directly copy the value
in the source field to the target field. The formulain the target field is only the reference
of the mapped source field. For example, the value of Customer.Name field in
TotalPDASs order is a direct copy of the value of the ThisCompany.Name field in CS
order. To specify the mapping, the user can use drag-and-drop to select the source field
and then directly drag and drop it to the target field (see Figure 4.16), or use type-and-
select to select the target field first and enter an equal symbol in the field, then select the
source field and enter return key (see Figure 4.17). When finishing the mapping
specification, we can see that a line between the source field and target field indicates

the direct copy mapping specification.

A specia case for the mapping isto assign a constant value to afield in the target form.
It can be simple done by selecting the target field and type the value in the target text
field.

A=

Figure4.15 One-to-one direct copy

66

67

ThizCompmmy Lel il
P 3)
r‘l':”-‘ll:rl-)bde Lid ¥ M
'-‘J-' FRIFFESEE FEEFE [

(1) Select TCName Beld m source form

ThisCnigary: g mir

T R

T veatiie Sl stinsa-ichit shirmar| ‘
.'f rESErFErEe f*

= rrerrsrrarraereed

{Zpvag TCName to Name Beld n target form

This C oty Customes
. B :
TR ool Solubions Lid Tl | cmobile e cer ThisComparry Tohame ¢
"ff PR FEEEEEEEFPEEEEEFEE P EFEETS

3) Formula shiws on langet fonm after mowse e leased

ThiEComEaTy Cushomer
o ;
T PE————— I —l_gm-:_nm Zchiionss Lid] 5
'l' FHEEEEEEEEEEEEEEEEEEEEEEE ffffl"

{2) Sample mappmy recult shws on target Beld after mosse = chehed again

Figure 4.16 One-to-one copy by drag-and-drop

A A A A A A Ay

TCNameI Comohile Solutions Ltd

(17 Select Marne field in target form and type "="

:Namel=

e rr s s s s d

~ThisCompany —————————————————— “ —Customer

—Customer
[P FII I IV VI IV VIV I IV IITIIIIN

’
fNamel=ComobiIeOrder .ThisCompany.TCName| :

rrr s rr s s s d

TCNameIComobiIe ‘:Iu‘tions Ltd

2} Select TCName field in source farm, formula shows on Name field

~ThisCotrparny —————————————— ‘

rThizCompany ———————————— Customer
(TP TP I I I I I I TN I T IIIIIITIT

TCNameIComobile Salutions Lt I‘ Cp [l melcomobile Solutions Lt :

s Y A AR E A S EE R s E s Essd

(31 Press enter, sample result shows on Mame field in target form

Figure 4.17 One-to-one copy by type-and-select from CSorder to TP order

o Formula

In this mapping specification, the value or format of the value in the source field is
different form one in the target field (see Figure 4.18). The formula for the target field
needs to be defined to transfer the source value to the target value. Thisis normally for
the mathematical calculation, string manipulation and operations for fields, sections.
For example, the value in Street field in Address Section in TP order is a substring of
the value of TCAddress field in ThisCompany Section in the CSorder.

There are two ways to define the mapping specification. The oneis directly defining the
formula using type-and-select when there is no type applied for the source and target

67

68

fields (see Figure 4.18(1)). For above example, the user first selects the target field and
enters equal symbol (see Figure 4.19(1)), and then enters the formula. When there is a
reference to a source field in the formula, the user just click on the source field in
source form. When needing a function, the user can use mouse to browse and select a
desired operation in the operation section (see Figure 4.19(2)), and then following the
instruction on operation dialog box. In our example, a string_before operation is used to
get the string before the first «,” in the address in TCAddress field. Form the dialog box
(see Figure 4.19(3)), we first click on the top Select button to select TCAddress field
from the source form (see Figure 4.19(4)), and then the dialog box is back again (see
Figure 4.19(6)). Click on the combox button, choose “,” from the pop-down list, and
then press OK button (see Figure 4.19(6)). We can see the formula is shown on the
target field (see Figure 4.19(7)). Enter Return, the result of the formulais shown on the
target field, it is exactly the street value! See Figure 4.19(8)). A line between the source
field and the target field indicates the formula mapping specification.

[A =] A |~ e |

(1) Non-typed one-to-one (2) Typed one-to-one

Figure4.18 One-to-oneformula

The other way to define the formula is through first applying type to both the source
field and the target field and then drag-and-drop (See Figure 4.18(2)). Here let’s take a
simple example, the source Date field (format dd/mm/yy) mapping to the target Date
field (format mm/dd/yy). Figure 4.20 shows the procedures of the typed mapping
specification. The users first assign the type to the source form field and the target form
field. See Figure 4.20(1)~(5). Then the users use the drag-and-drop to select source
field, drag the mouse and drop the mouse upon the target form field. See Figure 4.20

(6)~(8).

68

69

it Sowos Dain | Target Cute My |
m—ﬁhmﬁw.mﬁw.w!w | - E m|1-m| _|
|1 et
[1) Salmet Straed Fisld in b taegel fisld snd lype "= S-Zasig
— CES L]
= 1) < g
~Fimidt # savivig ate
| b s
Sl.l:m:rEhl:I.: . T
- oihee
e e
Chwn-l-d_ Salact I- -]
TCwliestrire EResas 1 . - 2] Eakict
It othar, srden Farm | *sbriig- = bt g-a b st g
Rowt = biefon” froam cpesal ain trag in

aparation saction, dalog bis an
Tl hard sitk shows

Wi Dar Sl b B0w SETING & SiTirg TO . SLanstrieeg Ke2Tons A
calranaiion . Flaasza chooxs B mgral sireg fross dels dorrms
_wwmmmmm«mm.

_ox | _cmen |

=y Push "Eelect™ bution te shinw the misen windows to select the
Origanal Saring fiskd

- ABEEE
Tﬂd*'ﬂ*l:lliuemsaruq, AUriing ke Tasand ﬁ ¥
r

) Select TCAddess field in source foem

= Fidkdl
TCAGIwss [0 Duesn Trest, uchland, v Demiarcd L T
g Bt Eubiring Bréme
= s |-
Suboirng Brtome the Dobnctcr] < | .
It otheer, enllew here|
Rl = .
This openalion & bor Jpitting & string bo SubHrng belom & Thiz opexstion s o spiting o = jiring beriore &
chtrinaton, Fraase chooss B originl siring Troms dedm s deliminelon . Ploass chocestte — fronddn ks
vl chrrdalie 1o U STl airing vahat or Combs boo ared clelimiintor fron e sk o contot
|
oH | Canrcel | ﬂtI F

[5:1 TCAAdees fiskl showe on ':'IEII"IH Sl.li'lg 1exl fickl) Select deliminalor =7, Then dick on 0K butlon

WM'ﬁﬁﬂ Fusckiand, ke Doalend | ‘ ‘ ‘?‘E‘lﬂm!ﬂﬁu _bacfran Csmantls Or tis TR Corparmy TCRGARES, || E

[7) Thies fonmika showe onthe Stoed fiskd on target kmn

'I'CAdd'Habﬂ ottty v, Auchiand, e Dealand

{3 Ender redum to get the result

Figure 4.19 Oneto-one formula non-typed mapping specification from CS order to TP
order

69

70

limlimlimliﬂi

i1 Sk saamo ekl riohll cbok inciises, melech phogeries (RO Hop-Le i,
ke o g R BT LR

Dtef 3041 20200 H
2825
i,"m.... Dacompca ‘
[S bl e tewpetd fezddl, right cliok mosse, sedeol Properties fros ooy snen, applang
IE-h SihGg B Wil
BduEs.n 200 H
-

IRSE0T]
B

[SPBO Ire e flek] s the fonme! el ans sppiisd e bye, and thers aoseed pluy S [5/Seiect sooe ek

1 T Pl O Thiib Bkl

A
*H

AN —

& ¥ w
PR Sy

[M the romse o the target Tisid

M:iT‘.'pI l;i'm

VXSt o Dyed e Borm, ol OF bulton

Typ Foammst

A S

iLul:c]

AN 58
Ll

[TLETT]
1naa
1.31.98
Lo L=
el b, 1538
Fonk]

v | (] oew |

[4)Selert proges type and tommesl, press 0K bulion

; "|—f«?-7.?3-3‘i"“"'“‘ i
=

D 25000z 8

Tl ®

Ty P i o upory e gl fiekd | formaln shoves on the barget ek, presr
Feetuam, e resadl alwrvrs in e Bargeld ekl

Figure 4.20 One-to-one for mula typed mapping specification from CS order to TP order

One-to-many

This one-to-many simple specification refers to a splitting operation, in which the value

in one source field is splitted to several partsto target fields. An example of it isthat the

70

71

TCAddress of CSorder is splitted to three parts to Street, Suburb, City, Sate, Zipcode
and Country fieldsin TP order form.

. O | A]
LA = O | [A J=[A]
. O | A]

(1) Non-typed source and target fields (2) Source -field-typed and target-field-non-typed

@@ﬂ

(3) Source-field-typed and target-section-typed

Figure 4.21 One-to-many simple mapping specification

There are three ways to define the mapping specification. Thefirst is no typed field and
no typed section involved (see Figure 4.21(1)). The users just directly define the

mapping specification between the form fields.

Figure 4.22 shows the procedures of defining the mapping specification for the above
example. From the procedures illustrated in the figure, for each target field, the

mapping define processis similar to one-to-one formula simple mapping.

The second way is applying the type to the source field and then using the sub-form of
the source field mapping to target field through one-to-one direct copy mapping. Figure
4.23 shows procedures of defining mapping specification in this way on the same
example as the first way. We can see through applying the type on the source field, the

mapping process becomes much easier.

The third way is applying the type to both the source field and the target section if all
the target fields are within one form section and then mapping the typed source field to
the typed target section through one-to-one formula mapping by drag-and-drop. Figure
4.24 shows procedures of defining mapping specification in this way on the same
example as the former two ways. Again we can see through applying the type on both

the source field and the target section, the mapping process becomes much easier.

71

72

s (Sl oy il

0001 oty Chreet, Aadkiteru Clly, Bckid, 1 (00, v Teaknrl

(1) Cucala a now call by chicking the new-callbution on tha taalbar

Echaiors Lid
0001 Gt Chred, Aicidnnd CRY, @icidand, 1000, hens: Teaiardd

{2) Renans the coll 1o AfterStreat and ingut *=" inthe text fisid of the coll E:;;‘::,’;”"" ator’spandin ar the

(4) Aller rappang specificalion in “subsinmg aller” dialoeg box s ﬂigt:a:m Ii:a'?; result of magping speciicion i shos anthe

finashed , the fonmular ks shown on the SferStreed text field

() Cumer: Eireed, Auckand City, Aurkland, 1000, Mew Zeslnd

KT, DOBA(E1 23 45T

'=
O Chupam Striasd, Aiscidand Clly, anicidnn 1000, oo Tasiard
w

(7] After mapping speclicaton of *subsinng_bebore” dialeg box i finshed , Ihe rmaping specillcaton s shown on Suburb fed Field

Figure 4.22 One-to-many splitting for non-typed from CSorder to TP order

72

73

Ll

- ThaComgay

n-:*;-;uh.h-.-.-s;.m

Tﬂ'-l-F:-:--cu-e'Sou-u--: Lisl

Maschiend Sy

TERRFES{O0 Cropan Ttrwd, Aucbiamd Shy, Auctisnd, 1000, Hew

il 4'.5-‘. MM 2 #95

mmtm 108 hdarwr Pambarad q/

] Endar rsliim , Ihi mEuk s abaen on Subiurh test Fiskd

© T

s S
Mmmw»-.: L 1 '

Auckiand Ciy

T A0 Cumen Eireet, Auckdand Chy, Suckisnd, 1000, hew T

TCTq EET, e 23 L5TR

lﬂﬁiﬂ T3 48TE

L

\1'
>
N

i
E%‘Iﬂ A Cay, Ak, 1000, e Jysim

a Ak, 1000, Hew Toskarl

4l Lo e

[Repeat shove procasses for City, Zipoode, Country field

Figure 4.22 (continued)

~ThisComnpany

~ ComnchileCrdar | W

12T e — TETal| ToFe]

ThiE Ry i -
ﬂll!" —
|mﬂn{m Solutionz|_td L

L) Chok on the s ign on showe Sge, the sub.Torm w4l iissppess, snd sinus sign wllchange (o plos s

1000, Herwy
= m Gﬁﬁ'«riww

Figure 4.23 One-to-many splitting for the source-typed from CS order to TP order

73

74

Trigt Er‘:s;s T .r.n-.u:E
i Sl :
Sohlions L1 : | ;
! '
] o
O '_ﬂ_ﬂ Hl 5
:lwi.'lm] ! Fl
A A i Eourk | i’
] ml ﬁ
FrsresrssrerrsrrsrEsrEsrEarEsrrarrasrarraard

(11 Appty the type to the TSAddress Sisld in souoes fom s Address section in She lerget foms snd use drag-and-dnop bo define The mappng specification
Eeptwrwnn thee TCAGGesS Tl mndd Thee Bckiness: seclion

TrisCampuery [
|C'|—*Zm Lo Lty -""'.:li-'a:' Sulbnay EI
m_,ﬂ—,_/ oo]
| TN, acar T 23] I ﬁ“‘"‘ﬂ

() The ire between thes sounos field snd the tangel seciinn indoales The mapping speciiicalion

Figure 4.24 One-to-many splitting for the sour ce-typed and tar get-typed from CSorder to
TP order

Many-to-one:

This simple specification can be a combining operation, in which severa fields are
combined to one target field, or one target field with a formula, which involves several
source fields. The formula can be the mathematic calculation, or string manipulation, or
format conversion. An example of it is that Year, Month and Day fieldsin CS order are

combined to Date field in target form.

A A

A |=>| O A = @
A A

(1) Source-field-non-typed and target-field-non-typed (2) Source-field-non-typed and target-field-typed

— @

(3) Source-section-typed and target-field-typed

Figure 4.25 M any-to-one simple mapping specification

74

75

There are three ways to define the mapping specification corresponding to one-to-many
simple mapping specification, see Figure 4.25. The first is no typed field and no typed
section involved (see Figure 4.25(1)). The users just directly define the mapping
specification between the form fields. Figure 4.26 shows the procedures of defining the
mapping specification for the above example.

o : Operstorm) 0

mor s e e T

%:"..'mm.,j =) zpamng

wbrirrg balors

) Saleet Dale Sald and e =" & mbairing whar

ey
- Tde
-0
[T = R
raid [@) Balecd *song>combiling»
cancat” frorm operadion tree n
Tl mt" Dt Drewy Tl - CpEratinn SAC1mN; Concatanae
dealog box shows a6 |ef-hand sde
Taea2 I:r Emleci :I =
Tl Eﬂh Dvbe Beliprafy Salact -
Tt F.I" Suhc! =
s e Dote e [=
Teds [seket |-
1| | |
Joints sprversl bed sirings info ones feod siring.
B =
o |_owea |

Z) Click on Select buttan 1o chaoss Date, or Month, or Year fiskd
orenter °F deliminador, then click on 08 bution

Dt
Dufor Morenfss | pemfzons

ool ComobieOmder Cmitre Dy *F ComnbieCrdes Cmie Month =7 ComolsisCrder Dele vear) §
e A P R P

(4] Fonmula shows on Date fiskd on tarpet Sald

o LAt dAAd A A Al AL dAd A ddAd AL d AL LA
mi AI00H
=

[B) Entes Redum and get result

Figure 4.26 Many-to-one combination, non-typed source section and non-typed target
field from CSorder to TP order

The second way is applying the type to the target field and then using the sub-form of
the source field mapping to target field through one-to-one direct copy mapping (see

75

76

Figure 4.25(1)). Figure 4.27 shows procedures of defining mapping specification in this
way on the same example as the first way. We can see that through applying the type on

the target field, the mapping process becomes much easier.

Date |

/
Datel
: 04032003 ’EEI

Py y]

(1) &pply the type to the Date field in the target form

Date |

Dray |04 I earIQDD!\

Ao A

/
#Date /
i e !

NamBITDtaIPDAS Lt

Address

—Eupplier

Strest|1 23 Grest South Road

C'rtvl.&.uckland

Tel| 0549543 4321, D0B4()543 4322 F

(2] Click on the plus sign onthe right side of the Date fizld in the target form to show the sub-farm. Map
the source fields to the fields inthe sub-form by drag-and-drop for the one-to-one direct copy mapping

Date |
{ oo Moo ez B
L4 A AT E T FEFFFFFFT

LAR IS #
g 040372003 /‘EI

rrr s s r sy

(31 After finishing the one-to-one direct copying, click on the minus sign on the right side of the Date
field in the target form, the sub-form dizsappears. The lines betvween the source fields and the target
field indicate the many-to-one mapping specification

Figure 4.27 Many-to-one combination, non-typed source section and typed target field
from CSorder to TP order

The third way is applying the type to both the source section and the target field if all
the source fields are within one form section and then mapping the typed source section
to the typed target field through one-to-one formula mapping by drag-and-drop. Figure
4.28 shows procedures of defining mapping specification in this way on the same
example as the former two ways. Again we can see through applying the type on both

the source section and the target field, the mapping process becomes much easier.

76

77

Date
Dav 04 MDnthIDS Yearlzuua P’I’I’I”’I’l’l’l’l‘

121 Select the Date zection in the source form and drag the mouse to the Date field in the
target form and drop the mouse.

Date
Day|04 MonthIDS YearIQDDS ””””””””

llllllllllllllll

[3) The line between the Date section in the source form and the Date fizld in the target form indicates
the mapping specification.

Figure 4.28 Many-to-one combination, typed source section and typed target field from
CSorder to TP order

Many-to-many

Multiple source fields map to multiple target fields. This is normally for the source
section, which contains multiple fields, map to the target section, which also contains
multiple fields. Amount of the fields in the source section can be the same as, or
different from the amount of the fields in the target section. The source section and the
target section can be typed or non-typed (see Figure 4.29). All of these mapping
specifications can be specified by drag-and-drop from the source section to the target
section no matter that the source and target sections are typed or non-typed. The
difference between the typed and non-typed sections is that the correspondent mapping
fields are ordered in the non-typed (see Figure 4.29(1)(3)(5)(7)(9)(11)), while the
correspondent mapping fields can be non-ordered in the typed (see Figure
4.29(2)(4)(6)(8)(10)(12)). If the fields in the source and target sections are non-typed,
the mapping for the correspondent fields in source and target source is only one-to-one
direct copy (see Figure 4.29(1~6)). If the fields in the source and target sections are
typed, the mapping for the correspondent fields in source and target source can be one-
to-one formula (see Figure 4.29(7~12)). For non-typed section mapping, the users must
rearrange the source or target fields inside its section to make sure the order of the fields

correct.

7

78

(6]
§ ped and target-secti yped tion-typed and target-section-typed
More source-field-non-typed and less target-field-non-typed More source-field-non-typed and less target-field-non-typed
,,,,,,,,,, AN
,,,,,,,,,,,,, AN
§ ©) tion-typed and target-section-typed
typed and targe i typed Less field: ped and More target-field -typed
Less field. typed and more target-field- typed
) ped and target-secti typed (8) Source-section-typed and target-section-typed
source-field-typed and target-field-typed source-field-typed and target-field-typed
A VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV B i ‘ - -
© 1 typed and target-secti typed (10) Source-section-typed and target-section-typed
More source-field-typed and less target-field-typed More source-field-typed and less target-field-typed
| } . -
I - ‘
. 12) s tion-typed and targs ion-typed
(11 t Cli d Less source-field-typed and More target-field -typed

typed and targ typ
Less source-field-typed and more target-field- typed

Figure 4.29 M any-to-many mapping specification

4.3.2.2.2 Complex mapping specifications
A complex mapping specifications involves one or more collection fields or sectionsin

the source form or target form, or a mapping specification with a condition. The

78

79

collection field and section are a form field and a section with zero-or-more, one-or-

more cardinality.

One-to-many

One field in source is splitted to a collection field in target form. For example, value of
TCTel field of ThisCompany in CS order needs to be splitted to multiple records of Tel
field of Customer section in TP order form. When mapping the relation, the users first
need to know how to split the non-collection source field. Normally there are
deliminator to separate the value in the source field to many chunks. So the users need
to identify the deliminator to separate the value to collection of many chunks. Then the
users need to ask if al the chunks are needed to compose the collection of the target
field. If not, the users need to specify the condition to filter chunks. Then the users
need to transform the chuck to the required element of the target collection and finally
sort them in the correct order (see Figure 4.30). The later three steps involve the many-

to-many mapping specification we will discuss later.

(4)§

> > >
> > >

0000] = => =>

Figure 4.30 One-to-many complex mapping specification process

Figure 4.31 shows the procedures to directly split the value in the TCTel field of
ThisCompany in CS order form to multiple records of the Tel field of Customer section
in TP order form. In this mapping, there is no chunk filtering and other transformation

required.

79

80

R E T I T FETTFFEFFITEEFFEFETY

[
:TCTeIIDUB4(9)1 23 4567, 0064(9)1 23 4576 Tell
y

A A R R RS

(17 Select TCTel in Source form

A

[
PTCTENO0E4(9)1 23 4567 , DO -mrui : Tei;

r s s s s s s s s r s rrrrd

(21 Drag the TCTel field to Tel field in target field and drop, following dialog box shows up

Field

TCTel|006409)1 23 4567, O064(9)123 4576

One-to-Caollection-Splitting

Deliminator 'l

If other, enter here

Thiz operation iz for spliting a string to substrings for a
collection under & condition. Please defing the condition
and deliminator from the sample string value or combo box

(a4 | Cancel |

(3] Select deliminator from combokbox or ener deliminator to the lowest text field, then click O button.

TCTel|a06403)1 23 4567, 0064(9)123 4576

R T R R]

(41 A formula iz show on the Tel field in the target form

e
TCTelj0ng4(911 23 4567, 00B4(3)1 23 4576 'Ma'l| 0064(9)1 23 4567 4
brrrrrsrrrrrorssrrrrrsrrrrrrrrrss

(50 Eneter return and the result of the first tem in the collection is shown on the target field

Figure 4.31 One-to-many complex data mapping from CSorder to TP order

Many-to-one:

In the many-to-one mapping specification, values in the collection field in source form
are combined to one value of the field in target form, or one record in a specific position
is extracted from the collection and mapped to one field in target form. For example, all
the records of TCFax field in ThisCompany section in CS order form need to be
combined to one record and mapped to the Fax field of Customer in TP order form. For
the first case in this mapping specification, normally the users need to first filter the
records of the source collection fields, and then convert each of the value to required
format, and then sort them, finally combine them together to the field of target form
(see Figure 4.32). The former three steps involve the many-to-many specification we

will describe later.

80

81

) §

1> >

@ § (©)] §

>>>

2 [000 |

Figure 4.32 M any-to-one complex mapping specification process

Figure 4.33 shows procedures of al the records of TCFax field in ThisCompany section

in CS order form being combined to one record, and mapped to the Fax field of

Customer in TP order form. There are no records filtering and records transformation

involved in this mapping specification.

CL]

170 Enlesct tree TEF o fiedd, erhich is @ oollsct field, incthe soonoe form

ﬁ?rwmmun::m E I """]7

CL R]

{2 HDrmge the ekl vl i B oy thom F o it i the gl Torm, Tobowing diog b 5 shown
[|
Fiaa
TCFanfo0s4 Y 12 A57E

“Ghomse one oplion -
" Comibils collsotion to ore

™ Babiact one inom colleclion

30 Pelect Comberg CoBechon 1o o, el CRCE O M butior, Tollwing dislog box i shovn

o
il
h.-'l-lml:éjl:'!- 45T

colisction-in-one

Dol i atar 'i

W cther, entes hare

&J Cancel

L A e R e T A T N T = =

(3 Fohect chelmanalon Trom Comboboo, o Snier one b W Kesrgal o Tield

ol ot oGl T ookl D cher . Thise Cossnvy . T O " 7]

B

TCFakoosaran s 457 |

() A bl b shorams in e et fiedd i the tanged form

TCF OGN 25 4575, D623 8567

L L L L e

15D ENisr netLrn, A et (he na sl 08 Somhirad COBREHOn Saparslno byt de i

Figure 4.33 Many-to-one complex data mapping from CSorder to TP order

81

82
Many-to-many:

The many-to-many complex mapping specification refers to a collection field in the
source form mapping to a collection field in the target form. In this mapping
specification, normally the users need to first decide the scope of iteration of the source
collection (see Figure 4.34(1)), and then decide if the source collection need to be
filtered to the target collection and how they to be filtered (see Figure 4.34(2)), and then
specify how the data in each of the records in the source collection to be mapped to that
of the target collection (see Figure 4.34(3)), and finally the result of the target collection
may be sorted (see Figure 4.34(4)).The third step is relevant to the individual record
mapping, i.e. smple mapping we have aready discussed. In the following, the
collection-level-related first step, second step and final step are discussed.

3) (4)

v = =

Figure 4.34 M any-to-many complex mapping specification

The many-to-many mapping specification can be defined by both drag-and-drop and
type-and-selected. The scope of iteration of source collection tells where we should
start the collection iteration when there are nested collections in the source form. By
default, when the users drag and drop from afield in a source collection to afield in the
target collection, or from a collection field or a collection section in the source form to a
collection field or a collection section in the target form, or type in a target field in a
collection and select afield in the source collection, if the collection-level mapping has
not be defined yet, the system will automatically define the collection-level mapping as
setting the scope of iteration of source collection to iterating al elements from the root
collection to the leaf collection, no condition or an operation for filtering, and no
sorting. If the default collection-level mapping does not satisfy the users’ need, the

users can further modify the collection-level mapping properties on the collection-level

82

83

mapping properties dialog box on which the nested collections, filters, operations and

sorting for the each collection are listed.

Let take the example of the mapping specification for the ManufacturerName field in
the Manufacturer collection in the TP order form (see Figure 4.36). From the context,
the target collection comes from iterating all the Orderltem in all the categories, and
then finding all not repeated manufacturers and sorting by the manufacturer name. The
Manufacturer field in the Orderltem collection in the CS order form has a grandparent
Category collection. To define the mapping specification, we first start to create a
temporary collection cell named AllManufacurer to collect al the manufacturersin one
collection and then we map the Manufacturer field in the Orderltem collection in the
CS order form to it by drag-and-drop from the later field to former field (see Figure
4.36(1)). The default collection-level mapping and field-level direct copy are defined.
The blue line and red line show the two level mapping (see Figure 4.36(2)). That’s all

we want for this mapping.

Then we create another new collection cell named NoRepeatedManufacturer to collect
no repeated manufacturer names. Apply drag-and-drop again between AllManufacturer
field and the new created field. Default settings are applied to the mapping (see Figure
4.36(2)). But for collection level mapping, we want to apply a collection operation
“Normalize” to delete all the repeated manufactures in the source collection. So double
click on the blue line and edit the diaog box (see Figure 4.36(3)). We uncheck the
default setting, check the Collection Operation check box, select Normalize operation

from the list of the combo box, and click OK button.

Finally we apply drag-and-drop again between the NoRepeatedManufacuturer
collection field and ManufacturerName field in the target form. Default settings are
applied to the mapping (see Figure 4.36(4)). But for collection-level mapping, now we
want to sort the NoRepeatedM anufacturer in ascending order. So double click on the
blue line and edit the dialog box (see Figure 4.36(5)). We uncheck the default setting,
check the Sort by check box, select field we want to sort, click on the ascending radio
box and click OK button. So far, we have finished the mapping specification between
the Manufacturer field in the Orderltem collection in the source form and the
ManufacturerName field in the Manufacturer collection in the target form (see Figure
4.36(6)).

83

84

The top combo box on the collection-level mapping dialog box(see Figure 4.36(3))
lists all the nested source collections for the mapping specification. If the users want to
modify the default scope of the iteration, the users can choose the collection from the

combo box, and then edit the rest of content on the dialog box.

Other many-to-many
It refers to combining two or more collections (see Figure 4.35).

Figure 4.35 shows procedures for combining two collections each of which only
contain a field. The first filtering step, the third converting step and the fourth sorting
step have been described in previous sections. The second step is combination of filter
collections. It can be performed by selecting all the filtered collection fields, and then

dragging and dropping them to atarget collection field.

) % (©) §

O0|0|00O
O|0|0|0|0|O

&
>|>>

> B>

Figure 4.35 Combine two collections

85

\
i

1% Creole n nerey collection cel, and renane o ilan dschorer . Salect banufacherer fleid b the souce fore, drag and drop souss on e newr crested Ao fnchrer ikl

Model|Turgatin W

L L

T, THhE te g il med 0 Bhre T

UL The syson vl derta s for sach By ERCTER T et DB BICEON, SEND VAL IR &
i conllctican-farl rulalion e b Ml PHIBEON. Cramte snother nera oolisction oel, renemes {30 Mo apenabsdvisndsolnss . Mo was st wint fhers i no repeatsd bsrafscures e

thiis colection . Cesg mrd drop lhe mouze from the ilvandach rer ikl to otepestedidensiaches fisld. The sysienwill dedsst for sach b ensiacheer recond, copy by eshes i
Hoftepesledbsmisciuner. The bue ne e Dl B Beabveen the bt ekl sl B Collenlone- ke relalionn sl Teeld-eved nedalior My, vt ool olell o Hie e e ool

th i,

Ciodeghion | & Bvmnmaciner -

[Fer
 Fordnch

Ll bl

" First
¢ Lasd

ot Fron [om0
Fomml sma| [

Turgalen

13800

F.. yantion | Hormadre -

Mames [ek |
_on | _omen |

(0 A colbetish-ironl propiting Seog o EhdwE up, Utk I citiul Filter chisth B, ind Shick tha Cobacan Cnamilon chatk BIu, CRodd MNarTeiD SoInaih 1

ARsdsraifncturer godsction. Prsss fhe O Dulton

IRy

WW

arvF

Frice: 153 00

[The bl e bertween e ABdanuischer Tiokd and Molteposindvienstscheer Sekd shmes te nee connecionders reiation, Thens s sicon on the e zhirees e coleckn kel
rebalion vehich s the cobeslion operlon on e Sounce Tiskd . Bow bet's drag snd deop the souse rom the Hoftegentedvsn.sschuner fiskd {o the Merufechrerhisss el in e

MruiTaohaes seolon wieoh is 8 Collsction. Defed opsssionon e collsction kvl snd fekd il e sppbed bo iz mappieg. The blus e snd reed ine show: e mspping

Figure 4.36 Many-to-many complex data mapping from CSorder to TP order

85

86

Lt [e—————— |

oo i-u-porvH—-IP‘[l:— T Faay |

—— -
 For saoh w—— [
= First |Fessssarasaad

Pt [i, LT pp—— = Ut

. - Nadalunbarn Mungdan by

TR P T s J-___.a-"- " Posiion : From: | I= I |

arlE Erice) = I Conmion _Selact | fiee
[Colection Operation | -

i e
[l
= =t iy |r-oﬂ=-mc-:-ﬁw Calari |.__]

_ov | _cuen |
&y Dioulblles ook mlmmnbﬁmumﬂupeummmn IrEIImmlmwﬂl—:tﬂ_lmcoﬁdmhﬂmnmﬂe:mbﬂc showoup. Unckaok the

Filtwr Gl becoss e CHoiech o B et L' e e, T St buttons i wCtived . Pobis oo Sabech Enulion o el T wisnbed ek oo B fon, Sebict o dection o1 v scring
Pracss O BURSA

rrmagany
Crierene
':H!wﬂéhﬂ
,,,,,,,,,,,,,,,,,,,,,,,,,
derttem echratoref s e ‘
......................... £
Pt &b, “ﬂ-ﬂ!'lTu'-gslh'l [e
T Pk ook T hn W
Mnrusiachurer [fum e E
Ty, Pmll 154 00
arvf h-::jB; B ¥
=
=

i A A Al o a0 P B
L Fmppate dldanaactur b |D'unh¢
A Al A i o 0 Al o 8 A Bl 0

) Trabrm i & isiah Ry thas hasla i hastvssan I SRR pamln AR TRcUnsr Ttk s Blan sach marhiarmss Ttk indiening e colekmdns ting nikm

Figure 4.37 (continued)

Conditional mapping

For the above smple and complex mapping specifications, they may be mapped
conditionally. The conditions we provide are If-Then, If-Then-Else and If-Elself-...-
Else.

If one field or section has different formula definition when different conditions are
satisfied, the conditional mapping needs to be defined by type-and-select. That is,
choose the target field and type “=" sign, and then select the proper conditional
operation from the operation area. Then the condition dialog box shows up. Figure 4.37
shows a dialog box for If-Then-Else mapping definition. Now we start build the
condition expression and formulae when the condition is true and false by type-and-
select. To do this, the users type numbers, or mathematical symbols, or some logical
symbols. When needing the operations or afield reference, the users press Select button
to select the field or operations from the mapping specification environment. When
definition of the expression or the formulae is finished, the result of the expression or

the formulae will show following the “=" sign beside the Select button.

86

87

[|
Fiakd
If Thisin
| T
The| Lt =
Ei Smiact =

Thits: Dpralion 6 iT L Hae slalemagnd
it witer @ Conalicn in B Treld

i il e T Bk i o Coorcliion i trus
P i i EL T i W COnestion () Talee

_ox | owen |

Figure 4.37 Conditional mapping

Sometimes there are cases that we have already know the context and want to add a
condition to them, for example, when the formula of field and section has already be
defined, we want to add a condition to the formula, or in the case of the many-to-many
filtering, we want to add a condition to filter the source collection to the target

collection.

87

88

4.4 Object-oriented Design

According to the requirements of our mapping tool, we have identified the main
components of our system, which are Ul, converters, a form generator, code generator
and transformation engines, and have selected 2-teried architecture for our system. In
the following sections, a documentation of the object-oriented design for the standal one
system is presented. It includes the main class diagrams of the main modules, and

sequence diagrams for main operations.

4.4.1 User Interfacing
The user-interfacing module is responsible for
Providing the interface to the users,

Accepting the users’ commands, such as creating a new project, save project,
creating new operation, generating implementation code etc, and invoking other
correspondent modul es etc;

Getting information about source and target schemas and instance from the

users’ input;

Letting the user customize the form

Letting the user define the mapping specification
Its class diagram is shown on Figure 4.38.

The type and description of the classes of client application are summarized in Table
4.1.

88

89

Ul Operation
Action
+addForm()
+mouseClicked() +actionPerformed()
+drawConnectionLine()| 1 . o ronTab!
perationTable
*1_‘ 1 1
1 1
CommandManager MappingManager Type
:ge\g,?() +process()
+SZVE() +oneToOne()
+oneToMan
+generateCode() +manyToOnye(()) TypeTable
+generateForm() 1 +manyToMany()
+getintermediateData()
EditArea
DS
SubStringBeforeDialog
+setOwner()
+keyPressed()
+getText()
+setText() !
<<interface>> | ConcatDialog

1
1

<<interface>>
TextOwner

OperationDialog

+addSelectedComponent()

IfThenElseDialog

Figure 4.38 Class diagram for user interfacing
Class Description

ul For_providi ng a user interface for the user of application,
get input from the user
For processing user commands, such as file command:

CommandM anager new, open, save;, edit command: cut, copy, paste; tool
command: generate code; etc.

wpingwage B ephrg P woeloore

TextOwner Interface to define the owner of the EditArea

EditArea ?pr;c Itfaldcl;t ig:]ea which can create, edit, delete mapping

Operation For defining the operation

OperationTable Table which contains operation objects

Type For defining the type

TypeTable Table which contains type objects

DS For data structure

OperationDialog Interface for operation dialog box

ConcatDial og Dialog box for concatenating strings

SubstringDialog Dialog box for splitting string

IfThenElseDialog Dialog box for if-then-else condition statement

Action Abstract class

Table4.1The type and description of the classes of user interfacing

89

90
4.4.2 Converter

A converter module is responsible for source and target schemas and instances, convert
them to the intermediate data structure. It contains the schema parser and instance
parser. In order to make the system not depend on the certain parser, a
ConverterFactory classis used to serve the purpose.

Its class diagram is shown on Figure 4.39.

Converter

+loadFile()
+convert()

1
1

<<interface>>
Parser

+parse()

InstanceParser| |SchemaParser| |parserFactory]

+parse() +parse() +getParser()

Figure 4.39 Class diagram of converter

The type and description of the objects of converter are summarized in Table 4.2.

Class Description

Converter A thread for process client requests

ParserFactory A factory which produce the different parsersfor schemas

Parser Interface for various parser

SchemaParser A parser for parsing a schema file to an intermediate data
structure

InstanceParser A paser for parsing an instance to an intermediate data
structure

Table 4.2 Thetype and description of the classes of converter

4.4.3 Form Generator

It isresponsible for taking an intermediate data model from the converter, automatically
generates forms and imports sample data to the forms. Its class diagram is shown on
Figure 4.40.

90

91

FormGenerator

+generateForm ()
+generateSchemaForm ()
+importinstanceData()

1
0..*

1 DataModel

1

+getRoot()

TreeNode

i

SchemaDataModel| |InstanceDataModel

+addChild()

+getName()

+removeChild()
+getChildNodes()

1
1

DataForm

<

DataFormElement

+mouseClicked()
+setValue()

1. +getValue()

+getFormula()
+setFormula()

Aﬁlé

BorderedPanel

LabeledTextField LabeledRadioButtonTextField

+keyPressed()
+actionPerformed()| |+actionPerformed()

+keyPressed()

Figure 4.40 Class diagram of form generator

The type and description of form generator are summarized in Table 4.3.

Class Description

FormGenerator Generate dataform
For defining common intermediate tree structure which

DataModel stores and processes information about data schema and
data instance, is a super class of Schema DataModel and
InstanceDataM odel

TreeNode For defining attributes and behaviour of node which is a
basic node of tree structure of DatalM odel

SchemaDataModel _For def|_n|ng tree structure which stores and processes
information about data schema
For defining common tree structure which stores and

InstanceDataM odel processes information about data instance

DataForm A panel which is a form element and contains form

elements

DataFormElement

Abstract class for form elements

BorderedPanel A form element, a panel which has a border
LabeledTextField A form element, a text field which has alabel
L abel edRadioButtonTextField A form element, a text field which has a label and a radio

button

Table 4.3 Thetype and description of the classes of form generator

92

4.4.4 Code Generator

A code generator accepts the definition of mapping specification, to generate the
required mapping specification implementation, and then sends the generated mapping
specification implementation and a source instance as inputs of transformer to generate
the target result.

Its class diagram is shown on Figure 4.41.

1 CodeGenerator

+getTreeModel()
+generatelntermediateCode ()|

1

-sourceTreeModel
TreeModel
1
1
+getRoot()
-IntermedianCodeTreeMpdel ICodeGenerationTransformerFactor,
1 -resultintermedianCode
TreeNode 1 +getCodeTransformer()
+addChild() IntermedianCodeGenerator TransformerFactor
+deleteChild() 1
+getMappingDefination(] ”
-generate() 1 +getTransformer()
+getChildNodes() . 9
getName() +generatelntemediateCode()
1 Parser
1

+parse()
ICodeTransformer| 1
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Target
Tranformation Code ASTNode
+transform()

j +generatelntermediateCode()|

: +getChildNodes
XSLT, Java, RIM Source Transformer Target 9 0
Code Generation Instance f--eef e Instance

transformation script +transform()

ExpNode ExpListNode StmtListNode StmtNode
VariableNode| | ConstantNode] IfThenNode WhileNode

Figure4.41 Class diagram of code generator module

The type and description of the objects of code generation server are summarized in
Table 4.4.

4.4.5 Sequence Diagrams for Some Main Operations
Create a new project

Figure 4.42 shows a sequence diagram of creating a new project.

92

93

Classes Description
CodeGenerator For generating the mapping specification implementation
TreeModel For defining common intermediate tree structure which stores
and processes information about the mapping specification
TreeNode For defining attributes and behaviours of node which is a basic

element of tree structure in TreeModel

Intermedi ateCodeGenerator

For generating an intermediate code from mapping
specification which isin aintermediate tree structure

Parser For parsing user-defined mapping specification for atarget field

CodeTransformer For transforming an intermediate mapping specification to a
finally mapping specification implementation

Transformer For transforming an source instance to target instance according
to the mapping specification implementation

M essageParser For parsing message from |oader server

CodeTransformerFactory A factory class for producing different transformer intermediate
code to finally mapping specification implementation

TransformerFactory A factory class for producing different transformers for
transforming a source instance to a target instance

ASTNode An abstract syntax tree node

ExprNode An abstract class for AST node for expression

ExprListNode AST node for expression list

StmtNode An abstract class AST node for statement node

StmtListNode AST node for statement node

VariableNode An expression node for variable

ConstantNode An expression node for constant

IfThenElseNode An statement node for if-then-el se statement

WhileNode An statement node for while statement

Table 4.4 Thetype and description of the classes of code generator

The detailed sequence called is described in Table 4.5.

Sequence

Description

actionPerformed()

The users give the new command action

new()

CommandAction call the commandManager new function to
create new tabbed panels

createSourcel nfor TabbedPanel ()

Create source data information tabbed panel

createT argetlnfor TabbedPanel ()

Create target data information tabbed panel

createM appingTabbedPanel ()

Create mapping tabbed information tabbed panel

addNewCreatedT abbedPanel ()

Add the above new created tabbed panel to the Ul

Table 4.5 M eaning of sequence call in creating a new project

93

94

—o D S O T e P

w
|

i
1
i
I

L

i H
AT BRI

Figure 4.42 Sequence diagram of creating a new proj ect

Convert a schema and Generate aform

Figure 4.43 shows a sequence diagram of converting a schema and generating aform.

instanc: Daahiodel

form Generator

arserfacto

zocket

new 0 KAdion

]

—
=1 m
E :
|||||||||||||||||||||||||||||||||||| |—|.III..IIIIIW|| - M|IIIII—|I||||.|||||
= a z
2 [c =
= [T 5
£ 5.2 E
a e . o= - S=F s F----- -
B k]
: N
i T
||||||||||||||||||||||||||||||||||||| [t 11— ————}----------
bl
B |ommmme oo o | e

convertar

commandhianager

T

1

|

1

I

|

I

|
L

|

1

|

1

|

r.[i]

get Parsem)
p

i
|
ge‘tlnherrnedi;mDaiaO
H
1
|
|
i

action Perormed)

Figure 4.43 Sequence diagram of converting process and form generation

94

95

The detailed sequence called is described in Table 4.6.

Sequence

Description

ActionPerformed()

The users press on the OK button of the source data information
panel OK button and invoke the actionPerformed() function

GetIntermediateData()

The actionPerformed call the commandManager to invoke the
converter’s getintermediateData () function to produce the
intermediate data

Getlnput () Converter calls the schemaSocket or instanceSocket input read()
operation to read the message of schema or the instance

LoadFileg() Converter calls itself loadFile() to load a schema file or an instance
from the location the users specified

Read() Converter read the content of the schema or instance from 10

GetParser() Converter calls parser factory to produce a parser for the certain
schema or instance

Parse() Converter calls the parser to parsing the message of schema or the
instance to aintermediate tree structure

GenerateForm() CommandManager calls formGenerator generateForm() operation to
generate form

GetRoot() FormGenerator calls schemaDataModel getRoot() to get schemaroot
tree node

GenerateSchemaForm() FormGenerator calsits generateSchemalForm() operation to generate
form

GetRoot() FormGenerator calls instanceDataM odel to getRoot() to get instance

root tree node

importlnstanceData()

FormGenerator calls its importinstanceData() operation to fill in the
instance datain the form

AddForm()

Command manager call Ul addForm() operation to add the generated
form to main windows

Table 4.6 Meaning of sequence call in converting process

Define a one-to-one copy mapping specification

Figure 4.44 shows a sequence diagram of defining a one-to-one copy mapping
specification.

The detailed sequence called is described in Table 4.7

95

96

B
.u._D.‘UI
sEz
Fe7,
gBE3
sk
k] & mome
=
=
i [B e S 3
E
H o
mj
=
m
3 |- e e e e S |
m
E = L)
5 3
b
5 3
A T SR et) S |
E 3
&
m 5,
L0
o
m | 2| §
§ St
= I I | e e i et S el C ety i el Rtk Htaas |
0| 3 x =3
| 2 2 [}
o
- o gl E| E S E
E 2 2 2 b
£ 3 L L _ il
= m = m
B[RS — 3 S Sl e - E—— 1
= z 5 o o 3| 3|3 g
|l = =21 3 E El & =
=] o a .mv c
i S| § il £ i = &
@ | @ 2 N =
2| 2 % B | 5| 5 £
El E =2 B B
m m
5l - ————[esE=3 L= = ——C—— — X —-——-—-——-——- ——]

Figure 4.44 Sequence diagram for defining one-to-one mapping specification

96

97

‘ transformer

‘ code Transtormer

astRootodel

astChildHodel

astRootHode]

‘ root Tree Mode

‘iCodeGenemor

| code Generator

)

II-IEI)JI

transfmi)

getTransformer)

et Code Transfrme

generstelnermediate Code

i_;_:g

1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
1
|7
genergte temediate Code ()
1
1
1
1
I
i
generate termediate Codel)
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
i
1
1
L
1
1
|
generate htemediate Code()
1
H
|
1
'
T
1
I
I
1
I
1
1
|
1

==1-

Figure 4.45 Sequence diagram of code generation and debugging process

97

98

Sequence Description

MouseClicked() The user clicks on one target field, the field mouseClick() operation is
invoked

MouseClicked() Call back Ul mouseClicked()

SetOwner() The Ul calls the editArea setOwner() operation to set the owner of the
editAreato the target form item

KeyPressed() The user enters “=" invoking editArea keyPressed() operation to make
the editArea to a select mode in which the user is alowed to a select
form field from the source form, target form, or self-defined form, then
apath reference in the formulain editAreawill point to that field

KeyPressed() Call back Ul KeyPressed()

SetText() Set the editAreatext as the text in the form field

MouseClicked() The user clicks on desired source form item, the form item
mouseClick() operation in invoked

MouseClicked() Call back Ul mouseClicked()

Process() The Ul calls mappingManager process() operation to give the next
response according to cardinality of the source and target form item.
For one-to-one mapping, the mappingManager will just add the path
reference to the source form item in the formulain the target form item

SetText() Update the formulain the target form field

SetText() Update the formulain the editArea

ActionPerformed() After the formula definition is finished, press return to invoke following
action

ActionPerformed() Call back Ul actionPerformed()

SetOwner() The Ul calls the editArea setOwner() operation to set the owner of the
editAreato the current selected target form item

GetFormulaValug() Call commandManager to get the formula value

SetVaue() The editArea calls the previous target form item setVaue() operation to

show the result on the form item field

DrawConnectionLing()

The editArea calls the Ul drawConnectionLine() operation to draw the
connection line between the current target form field and source form
fields which have a formula association with the target form field

Table 4.7 M eaning of sequence call in defining one-to-one mapping specification

Generate code

Figure 4.45 shows a sequence diagram of code generation process after the user gives a

code generation command.

The detailed sequence called is described in Table 4.8.

98

99

Sequence Description

GetTreeModel () CodeGenerator calls itself function to get the targetTreeModel
which contains target structure and mapping specifications

Generate() CodeGenerator cals intermediate code generator—
iCodeGenerator—generate() function with target tree mode as a
parameter to generate the intermediate code

GetRoot() Get the root tree node by calling target tree model getRoot()
function

Generatel ntermediateCode() Call internal function to generate intermediate code by taking the
root tree node as a parameter

GetName() Get the root name

GetM appingDefinition() Get the mapping specification of the root node

Parse() Parse the root mapping specification to get the AST

Generatel ntermediateCode() Generate intermediate code for the AST

GetChildNodes() Get the child node of root node of AST

Generatel ntermediateCode() Generate intermediate code for the child node

GetChildNodes() Get the child node of the above child node

Gneratel ntermediateCode() Generate intermediate code for the child node

... Recursively until the leaf node is reached

GetChildNodes() Get the child node of root node of treeModel
Generatel ntermediateCode() Generate the intermediate code for the child node
GetName() Get the name of the child node of treeM odel
GetM appingDefinition() Get the mapping specification of the child node
Parse() Parse the mapping specification to get the AST
Generatel ntermediateCode() Generate intermediate code for the AST
... Recursively until the leaf node of the treeModel is reached
GetCodeTransformer() Get the intermediate code transformer
Transform() Transform the intermediate code to the required mapping

specification implementation

GetTransformer() Get the transformer for transforming source data instance to
target datainstance

Transform() Transforming source data instance to target data instance

Table 4.8 M eaning of sequence callsin code generation and debugging process

4.5 Summary

Through converting various schemas to a graphs data structure, and further removing
technical items and rebuild a intermediate tree structure with business data and its
relations, we present a concrete, understandable business form to the business analyst.

Sample data importing and re-layouting capability make the form metaphor more

99

100

meaningful to the business analyst. A visual spreadsheet-styled mapping specification
environment utilizes the business analyst’s previous knowledge and problem solving
skill. In the mean while, with help by programming by demonstration technique, high-
level mapping operations and a type system, the business analysts directly manipulate
concrete form elements and data to define the mapping specification without being
bothered by programming primitives. Most of simple and complex mapping
specifications are designed be able to be directly and easily defined by drag-and-drop
and type-and-select. But there is the cost for the high-level abstraction: the system will
be very complex in order to deal with the mapping between the high-level objects and
low-level objects; the user interface development will become very complicated; the
designer have to consider very high-level mapping operation case, otherwise the high-
level mapping operations will be not enough when mapping specifications get more
complex. Architecture and OOD aims to produce a usable system with good flexibility,
maintainability and extensibility. We have chosen a 2-tiered system for our prototyping
because of its simplicity. Both the OOD and Ul design help us to develop a correct
system in the implementation stage.

100

101

Chapter 5 System | mplementation

A proof-of-concept prototype is developed based on the requirements and design in
previous chapters. In this chapter, the details of our prototype implementation are
described.

5.1 Overview of Prototype

In our prototype implementation, Java is chosen as an implementation programming
language because of its plenty of resources and platform independence. XML DTDs
[W3C 2000 XML] are used as the source and target schemas due to a popularity of
XML [W3C 2000 XML] in system developments and integrations nowadays. An XSLT
[W3C 1999 XSLT] is used as our mapping specification implementation language
corresponding to the XML-to-XML transformation. They are detailed in the followed

sections.

The whole implementation structure of our prototype is shown on Figure 5.1. In this
implementation, source and target XML DTD schema files and their XML instance
files are parsed to objects with aDOM structure by the DTD parser and the XML parser
respectively. Then the objects are fed to the form generator to generate Java Swing
forms. The users interact with the mapping specification environment to define the
mapping specification. After mapping specification for one field in target form is
finished, the mapping specification is sent to the XSLT code generator to produce
partial XSLT transformation code. The XSLT code and source XML file then are sent
to the XSLT transformation engine to produce the partial target XML instance, then the
target instance data is sent back to form for the users to check if the mapping
specification is correct. After the entire mapping specification is defined, a XSLT code
generator produces the final XSLT transformation code and a target XML instance is
produced by XSLT transformation engine. Both of them are sent back to mapping

specification environment for feedback to the users.

101

102

ul
Mappng
| Source Form | | Target Form Specification
Environment

—) Converters Intermediate Form Mapping
Data Generator Specification

i)

| Target XML i XSLT Generator
Target XML DTD |
Mapping
L Target Specificatiqn
XML (optional) Implementation
—| Source XML l— XSLT
Transformation
Engine

—| Source XML DTD |

Figure5.1 Implementation structure of prototype

5.2 Language Chosen

Theoretically many languages, such as C++, C# [Microsoft 2003 .NET], Delphi
[Borland 2003 Delphi] and Python [Python 2003] etc, can be used as an implementation
language for our design of our mapping tool. Java language is chosen based on
following considerations:

There are a lot of free Java resources available, including standard Java API-
Java2SE [Sun 2003 J2SE], XML parsing API, XML transformation engine
[Apache 2003], Java lexical analyzer, and Java parser etc. The free resources not
only provide free use of the API but also the source code, which makes code

extension or modification very easy.

Platform independent. Considering the users of our prototype in the evaluation
stage may have different operation systems, such as Windows, Unix, Linux,
MacOS, we decided that Java is the best choice. By using Java, we can write it
once and run it anywhere. But program developed by using Delphi can only be
used in MS Windows. C++ code is platform-dependent. Theoreticaly C#

102

103

program can be platform-independent, but it can only be used in MS Windows
.Net platform [Microsft 2003 .NET] in current time.

The most proficient programming language for author.

Borland JBuilder [Borland 2003 JBuilder], a Java I DE, which provides powerful
GUI builder to make user interface development very efficient, is available in

the university computer lab.

A simple, elegant, pure object-oriented programming language which suits for

the object-oriented design of our mapping tool.

The JBuilder with Sun Java 2 SDK1.4 [Sun 2003 J2SE], which integrates the Java™
APl for XML Processing (JAXP) [Sun 2003 JAXP], is used as an IDE for prototype

development.

5.3 XML/XML Parsing

53.1 XML and XML DTD

XML (Extensible Markup Language) is the meta-language defined by the World Wide
Web Consortium (W3C) [W3C 2000 XML] that can be used to describe a broad range
of hierarchical mark up languages. XML makes use of tags and attributes and defines
only the structure of the document and does not define any of the presentation
semantics of that document. It is a set of rules, guidelines, and conventions for
describing structured data in a plain text, editable file. Using a text format instead of a
binary format allows the programmer or even an end user to look at or utilize the data

without relying on the program that produced it.

XML isincreasingly used as a communication mediator in recent system integration,
because it is simple and text-based, and provides a platform-independent and language-

independent application integration methodology [Morgenthal 2001].

With increasing use of XML technologies, al the types of data mapping, such as
objects, database, EDI etc, can be eventually transferred to a XML data-mapping
domain. There are a lot of researches on how to transfer objects, database and their

schemasto XML and its schema, and then transfer the XML to the objects or records of

103

104

database. A lot of related tools have been being developed [Skogan 1999] [Fong 2001].
From author’s point of view, this makes XML data mapping will be a core part of other
types of data mapping in the future. This is why we focus attention on XML data
mapping in our prototyping.

In a schema of XML, we define the structure of an XML document, its elements, the
data types of the elements and associated attributes, and most important, the
parent/child relationships among the elements. The schema is used for not only
validation XML, documentation and but also querying support, data binding and guide
editing. There are two common schemas used for XML document are the XML DTD
and XML Schema [W3C 2000 XML Schema].

The DTD is the validation scheme that is defined as part of the XML 1.0 specification.
The DTD provides some basic capabilities for limiting the type and number of elements
within a document. It also allows the document author to control the names and, to
some extent, the contents of element attributes. But it does not alow authors any
control over the character content of elements, making it a poor choice for sophisticated
applications. A DTD isitself not an XML document. Due to above limitations of DTD,
the XML Schema standard was developed. The XML Schema provides much finer
control over the placement and contents of elements within a document and itself

actually a XML document.

Based on that the DTD has a longer history and more stable standardization while the
standard schema specification put forward by the W3C is still a candidate proposal, we
chose the DTD as the first schema of XML in our prototyping. But we believe that by
using XML Schema, our prototyping implementation and definition of mapping
specification would be benefit from the XML Schema being actually a XML document

and its more rich data types.

5.3.2DTD Parsing/XML Parsing

The first thing of implementation of our prototype is XML DTD and XML parsing.
According to the design, we need to parse both XML DTD and XML instance to an
intermediate data structure. There are two types of XML parsing, one objects-based
such as DOM (Document Object Model) [W3C 2002] and another event-based such as
SAX (Simple API for XML) [saxproject 2002].

104

105

DOM is a set of interfaces defined by the W3C DOM Working Group [W3C 2002]. It
describes facilities for a programmatic representation of a parsed XML document.
DOM is away of looking at atree of XML data, and a group of APIs for reading and
manipulating it. These APIs are common among DOM-compliant applications, so what

works in one environment should work in another.

SAX isan XML processing method that was created by the members of the XML-DEV
mailing list to solve problems that DOM just didn't solve. It provides an event-driven
interface to the process of parsing an XML document. An event driven interface
provides a mechanism for a “callback” notification to application’s code as the
underlying parser recognizes XML syntactic constructions in the document. Rather than
looking at an XML file as one giant lump of data that must be digested all at once, SAX
looks at it as a stream of events, each of which carries information. Once this stream
starts flowing, an application can examine it as it goes by and react accordingly,
eliminating the need to store a huge amount of data that may never be needed.

In our tool, the schema data structure is frequently visited and its size won’t increase
with increasing of data of its XML instance. So parsing the schema data to objects with
the DOM structure is better than the SAX stream. Parsing an XML instance to the
DOM structure will consume more memory when the XML instance gets larger. But in
order to easily manipulate elements and attributes in the XML instance, in our
implementation, we just ignore the memory consumption problem and parse the XML

instance to objects with the DOM structure.

There are alot of XML parsersimplemented by Java. Sun JAXP [Sun 2003 JAXP] uses
a factory class to enable applications to parse and transform XML documents
independent of a particular XML processing implementation. Depending on the needs
of the application, developers have the flexibility to swap between XML processors
(such as high performance vs. memory conservative parsers) without making
application code changes. So Sun JAXP with default Apache Xerces 1.44 XML parser
[Apache 2000] was used as our XML parser.

Because XML DTD isnot an XML file, so it should have its own parser. The parser of
XML DTD in Apache Xerces 1.44 is only for internal XML validation and can’t be
called by external program, a parser for XML DTD, named DTDParser which is mostly

105

106

modified from the internal parser of Xerces, is developed by author. The parser parses a
XML DTD file to objects with DOM structure shown as Figure 5.2(1).

=) slemenilad
e LT]
e L]
=] I

50 TSt T =] o v i |
& opckmant =) G
& i = 1509

R[] =Jen
& jop Sk vk =

& WaBamand
. b * TpEknmont
& tigElariar e
= e : ‘o (2)
B G i g = TEE ik
& bk - e
- hge & WpELTRL
® tngBenien | '::"“
]
* bpa |20 -
v S Fex
namn -] Thisirer rowre
o by » TpEkiEnt —
- # TCRdwmes
I —— * kopkmant i
* bpa B TCTA
=) i sk - B TP
drfwiTo 5 bpa =L Pde
1 LT R & rome ¥ oy
() # nlrrand & b & Wonkh
-l e B Ve
L F-L] Suppler
¥ Rare
-] Ariiremn
<2xml encoding="UTF-8"?> DOM struture e
<IELEMENT ComobileOrder (ThisCompany, upplier,Orderltems)> § Far
<IATTLIST ComobileOrder OrderNo ID #R > -
<IELEMENT ThisCompany (TCName, TGAddress, TCTel, TCFax)> H-L Crerite e
= Cabwgr
<IELEMENT TCName (#PCDATA)> ok Sy £ eabarry
<IELEMENT TCAddress (#PCDATA | —— & Calagerane
<IELEMENT TCTel (#PCDATA)> 3L faceaiam
<IELEMENT TCFax (#PCDATA)> T # Pathans
<IELEMENT Date (Day,Month, Yéar)> T & Vvt
<IELEMENT Day (#PCDATA)> & Mo
<IELEMENT Month (#PCDATAf> & O
<IELEMENT Year (#PCDATAY)] o] -
& Prim
<IELEMENT Supplier (Name Address, Tekfax)> TP
<IATTLIST Supplier SupplierlD 1D #REQUIRED> L L
<IELEMENT Name (#PCDATA)> Dk Tree struture
<IELEMENT Address (Street,Suburb,City, Country)> Bl
<IELEMENT Street (#PCDATA)>
<IELEMENT Suburb (#PCDATA)> Morrs|
<IELEMENT City (PCDATA)>
<IELEMENT Country (4PCDATA)> wl (3)
<IELEMENT Tel (#PCDATA)>
<IELEMENT Fax (#PCDATA)> Fanyler
<IELEMENT Orderltems (Category)+> el
SdREr
<IELEMENT Category (CategoryName Orderltem+)>
<IELEMENT CategoryName (#PCDATA)> S
<IELEMENT Orderltem (PartName Manufacturer,Model QTY, Price)>
Ll
<IELEMENT PartName (#PCDATA)> =
<IELEMENT Manufacturer (#PCDATA)>
IELEMENT Model (#PCDATA)>
<IELEMENT QTY (#PCDATA)> iy
<IELEMENT Price (#PCDATA)>

Comobile Solutions XML DTD L

Form

Figure5.2 From XML DTD to form layout

106

107

5.4 Form Generation

Form Generator accepts the DTD objects with DOM structure and converts to a Java
TreeModel which then is rendered to JTree for a tree view and a form view which is
rendered by Java Swing components, such as JPanel, JLabel and JTextField etc (see
Figure 5.2(2,3)). The structure of TreeNodes in the TreeModel is corresponding to
DOM structure of the XML DTD except the nodes for attribute. An attribute in the
DTD is a tree node with the same parent of the element the attribute belongs to in the
TreeModel. In order to make good communication between form elements and
TreeNodes, and TreeNodes and DTD DOM objects, two Hashtables are created for
them. Thus operations on a form element are very easily mapped to the corresponding
DTD DOM object.

When importing XML instance data to the form, because of the similarity of the
structure of the treeModel and XML instance DOM model, the form generator traverses
the tree in the treeModel and XML instance DOM model simultaneously, and fills the
values that are got from the corresponding elements or attributes in the XML instance
DOM model in the form. For collection nodes, only first child’s value in the XML
instance is imported to the corresponding form field(s).

5.5 Ul Implementation and M apping Specifications

Java provides the AWT [Sun 2003 JFC] and Swing [Sun 2003 JFC] API for windowing
user interface development. They are all based on the Model-View-Controller (MVC)
architecture. All Swing components are lightweight Components while the AWT
components are heavyweight. For a component to qualify as lightweight, it cannot
depend on any native system classes, also called "peer" classes. In Swing, the
components do not depend on any peer classes for their view. The Swing library
supports a cross-platform look-and-feel that remains the same across all platforms
wherever the program runs. But the AWT library doesn’t. The MV C-based architecture
alows the lightweight Swing components to be replaced with different data models and
views. The Swing library provides an API that gives more flexibility than the AWT API
in controlling user interface widgets and determining the look-and-feel of applications,
because of its high-level abstraction. Considering that our prototype may be running on

different platforms, in order to keep the user interface consistent when it runs on

107

108

different platforms, Java Swing 2.0 is used as a main API for our user interface

development.

For the form visualization, we use a JavaBean container as the base of form. A non-leaf
form item is not only a JavaBean container and but also a JavaBean. A leaf form itemis
a JavaBean. The properties, such as font style, border types, etc. of the JavaBean can be
easily modified according to the notation of form visualization for different nodes. And

aso the form items can be easily resized and moved.

A connection line between elements in the source and target forms is drew on the the
same layer as the forms. A connection line between type sub-forms, and source and
target forms are draw on the same layer as sub-forms. The line type is determined by
number of source fields and target fields node, and the type of the root node of the
abstract syntax tree (AST) produced from a mapping specification in the target field.
After the mapping specification in target field is defined, the system will parse the
mapping specification to generate XSLT code and then produce the target source and
show the value on the target field. At this time, the line type is defined and system

draws the line between the elements of source and target.

Swing’s complexity on repainting different panel layer causes bugs on drawing
connection lines between form items, and drawing a small button for collapsing and

expanding type sub-forms.

5.6 XSLT Generation

Corresponding to XML, an XSLT (XSL Transformations) is used as our mapping
specification implementation. An XSLT code generator is coded to generate an XSLT
code. The XSLT code generator first traverses the target tree model to generate the
XSLT document. In order to get the value of each generated target element, the code
generator extracts the mapping specification from the node in the tree model, and parses
the mapping specifications to generate the code. We expect that the generated XML-
based XSLT code can be further input to a XSLT transformation engine as an XML
source instance. Then with different XSLT code, the transformation engine can produce
different mapping specification implementation. The code generation process is shown

on Figure 5.3.

108

109

XSLT
Transformation

J

W;Lemwﬁ: XSLT Code XSLT Transformer Transform Other Transformation
viapping Generator Code Code
Specification

Figure 5.3 The code generation process

56.1XSLT
XSLT describes a language for transforming XML documents into other XML
documents or other text output. It was defined by the W3C. XSLT itself is XML

documents.

5.6.2 JLex/CUP

The definition of mapping specification in each target fields is expressed in formulae or
procedures in atext format that has certain lexicon and grammar defined by author. In
the code generation process, the mapping specification is filtered by a lexical analyzer

to tokens and then parsed to abstract syntax tree by a parser. And then a traversal of the

abstract syntax tree is needed to generate XSLT code. The parser is built by using JLex
[Berk 2003] and CUP [Hudson 1999], which are most familiar to the author (see Figure
5.4). JLex and CUP hoth are free available.

CUP Source File

JLex Source File

XSLT Code

Mapping .
Specification %> Lexical Analyzeré> Token :> Parser %> ASTTree %> forVaLtjgl-o_lttgégee:Ierated

Figure 5.4 Compiling the mapping specification

JLex is a generator of lexical analyzer. JLex takes a JLex source file and compiles it
into a Java implementation of lexical analyzer. The JLex source file for our mapping

language is shown on Figure 5.5.

109

110

Figure5.5 A partial JLex sourcefilefor our mapping language

package relationParser;

import java.io.*;
import java_cup.runtime.*;

%%
%public
Y%type Symbol
Ychar
%{
public Symbol token(int tokenType) {
System.out.printin("Obtain token " + sym.terminal_name(tokenType)
+"\" + yytext() +"\");
return new Symbol(tokenType, yychar, yychar + yytext().length(), yytext());
}
%}
%init{
yybegin(NORMAL);
%init}
Y%eofval{
System.out.printin("Reach $END");
return new Symbol(sym.EOF, yychar, yychar + yytext().length(), "SEND");
Y%eofval}
intconst = ([0-9]+)
octDigit = ([0-71)
hexDigit = ([0-9a-fA-F])
escchar = (\([ntbrfva\\\"\?]|{octDigit}+|[xX]{hexDigit}+))
schar = (M™\"\n\n][{escchar})
charconst = (\{schar}\')
stringconst = (\"{schar}*\")
ident = ([A-Za-z_][A-Za-z0-9_]*(:[A-Za-z_][A-Za-z0-9_]*)?)
realnumber = ([0-9]\.[0-9]+)
space = [(\9)]
newline = (\r\n[\r\n)

Y%state NORMAL ERROR
%%

<NORMAL>{newline} {}

<NORMAL>{space} {}

<NORMAL>"(" { return token(sym.LEFT); }
<NORMAL>")" { return token(sym.RIGHT); }
<NORMAL>or { return token(sym.OR); }
<NORMAL>and { return token(sym.AND); }
<NORMAL>not { return token(sym.NOT); }
<NORMAL>"<" { return token(sym.LT); }
<NORMAL>">" { return token(sym.GT); }
<NORMAL>"<=" { return token(sym.LE); }
<NORMAL: { return token(sym.GE); }
<NORMAL>' { return token(sym.EQ); }
<NORMAL>"<>" { return token(sym.NE); }
<NORMAL>"+" { return token(sym.PLUS); }
<NORMAL>- { return token(sym.MINUS); }
<NORMAL>"*" { return token(sym.TIMES); }
<NORMAL>"/" { return token(sym.DIVIDE); }
<NORMAL>% { return token(sym.MOD); }
<NORMAL>return { return token(sym.RETURN);}
<NORMAL>if { return token(sym.IF);}
<NORMAL>then { return token(sym.THEN);}
<NORMAL>while { return token(sym.WHILE);}
<NORMAL>else { return token(sym.ELSE);}
<NORMAL>"=" { return token(sym.ASSIGN);}
<NORMAL>do { return token(sym.DO);}
<NORMAL>for { return token(sym.FOR);}
<NORMAL>upto { return token(sym.UPTO);}
<NORMAL>downto { return token(sym.DOWNTO);}
<NORMAL>"}" { return token(sym.SEMICOLON);}
<NORMAL>":" { return token(sym.COLON);}
<NORMAL>, { return token(sym.COMMA);}
<NORMAL>"T" { return token(sym.LEFTSQ);}
<NORMAL>"T" { return token(sym.RIGHTSQ);}
<NORMAL>"{" { return token(sym.LEFTCURLY);}
<NORMAL>"}" { return token(sym.RIGHTCURLY);}
<NORMAL>"" {return token(sym.DOT);}
<NORMAL>true { return token(sym.BOOLVALUE); }
<NORMAL>false { return token(sym.BOOLVALUE); }

<NORMAL>{intconst} { return token(sym.INTVALUE); }
<NORMAL>{charconst}{ return token(sym.CHARVALUE); }

<NORMAL>{stringconst} { return token(sym.STRINGVALUE); }
<NORMAL>{ident} { return token(sym.IDENT); }
<NORMAL>{realnumber} { return token(sym.REALVALUE);}
<NORMAL>. {

yybegin(ERROR);
return token(sym.ERROR);

}
<ERROR>"" {
yybegin(NORMAL);
I return token(sym.SEMICOLON);
}
<ERROR>. {}
<NORMAL>"//" * 8]

110

111

CUP is a parser generator. It takes a CUP program and generates a Java program that
will parse input that satisfies that grammar and produce an abstract syntax tree. The
CUP program for our mapping language is shown on Figure 5.6.

start with Program;

Program::=
Exprexpr

{
RESULT = expr;
3

StmtList:stmtList

RESULT = stmtList;

3

COLON IDENT:ident LEFT FormalParamList:paramList RIGHT ASSIGN StmiList:stmtList

¢
RESULT = new FunctionDeciNode(ident, paramList, stmtList);
3

COLON IDENT:ident ASSIGN StmtList:stmtList
RESULT = new FunctionDeciNode(ident, stmtList);
3

FormalParamList:=
FormalParamList:paramList COMMA IDENT:ident

paramList.addElement(ident);
RESULT = paramList;

3

IDENT:ident

¢

FormalParamListNode paramList = new FormalParamListNode();

paramList.addElement(ident);
RESULT = paramList;

B
StmtList::=
StmtList:stmtList Stmt:stmt
stmtList.addElement(stmt);
RESULT = stmiList;
3
|
Stmt:stmt
StmtListNode stmiList = new StmtListNode();
stmtList.addElement(stmt);
RESULT = stmiList;
B
Stmt::=

SEMICOLON

¢
RESULT = new NullStmtNode();
B

Path:path ASSIGN Expr:expr2 SEMICOLON

RESULT = new AssignStmtNode(path, expr2);
3

RETURN Expr:expr SEMICOLON

{
RESULT = new ReturnStmtNode(expr);
3

LEFTCURLY StmtList:stmtList RIGHTCURLY

RESULT = new CompoundStmtNode(stmtList);
3

IF Expriexpr THEN Stmt:stmt1

RESULT = new IfThenStmtNode(expr, stmt1);
3

IfThenElseStmt:stmt

{
RESULT = stmt;
B

WHILE RelExpr:expr DO Stmt:stmtl

{
RESULT = new WhileStmtNode(expr, stmtl);
3

DO Stmt:stmtl WHILE RelExpr:expr SEMICOLON

RESULT = new DoStmtNode(stmt1, expr);
3

FOR IDENT:ident ASSIGN Expr:exprl UPTO Expr:expr2 DO Stmt:stmt

RESULT = new ForUpStmtNode(ident, exprL, expr2, stmt);
3

FOR IDENT:ident ASSIGN Expr:exprl DOWNTO Expr:expr2 DO Stmt:stmt

RESULT = new ForD: exprL, expr2,stmt);
3

error SEMICOLON

RESULT = new ErrorStmtNode();
3

error RIGHTCURLY

¢
RESULT = new ErrorStmtNode();
3

Figure5.6 A partial CUP program for our mapping language

111

112

5.6.3 Debugging M apping Specifications

We designed two stages to debugging mapping specifications, the first is every time
when the mapping specification for one target field is finished and it gives users an
immediate feedback whether the mapping specification is correct, The second is for all

the defined mapping specifications after the users give an code generation command.

For the first one, we only take the mapping specification in the individual field, and
compile it to generate a mini XSLT code. This avoids from traversing all the target
data structure and transformation of the whole source XML document, and makes the
debugging process very fast. In order to reuse the code generator that takes the whole
target tree structure as a parameter, when producing the mini XSLT code, we build a
temporary mini tree model which only contains the target field node, and take it to the
code generator as the target tree structure. The coder generator will take the sample
source data, the temporary mini tree model and formula defined in the target field to
generate mini XSLT code. The sample of the generated mini XSLT code for splitting
Address in CSform to City in TP order is shown on Figure 5.7. Then the mini XSLT
code and source XML data are fed in a XSLT transformation engine to produce a mini
XML target data. Finally the data shows on the target form.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmins:xs|="http://mww.w3.0rg/1999/XSL/Transform">
<xsl:template match="/">
<City>
<xsl:variable name="AfterSuburb">
<xsl:variable name="afterStreet">
<xsl:value-of select="substring-after(ComobileOrder/ThisCompany/TCAddress, ',')"/>
</xsl:variable>
<xsl:value-of select="substring-after($afterStreet, ',)"/>
</xsl:variable>
<xsl:value-of select="substring-before($AfterSuburb, '')"/>
</City>
</xsl:template>
</xsl:stylesheet>

Figure5.7 Mini XSLT codefor splitting Addressin CSform to City in TP order

For the second one, all the mapping specifications so far are compiled and XSLT code
is produced by code generator, and then the whole XML document is transferred by the
XSLT transformation engine and the results are shown on the target form to the user.
This gives the user the whole picture of debugging the mapping specifications so far.
The partial XSLT code for transfer CSorder to TP order is shown on Figure 5.8.

112

113

B fratantapoieg i =]
Fis Edt View Pundtion Pomcall Tool Halp

lDE P o®B

Source Dot | Teroet Dats | Magging %LT Code |
 MAEas _':-J
< Custamers
Rk
exvaliwalus-af Aslsces"Camobile0rda e/ ThisCoupary TOHamE" />
oy
CRddEay s
cErrRaTs
cxmlivalue-of seleces”mibstring-before [Comohd ledirder ThisCompany TChddre=s, ', *]%/>
L e |)
£ SHibER
<xalivarishle names"afverScreet”>
crdlivelus=of avlect="pulatring=alter (Comoblle0odet A ThE sCompany TCAGCwas, °, "I "5
£ el swar i b e
<kslivalue-of seleces™mibscring-before[§aftecfcreen, ', ')75
© il
£01TYs
cxalivariahle newes"afoerSuburk™s
CRALIVEELBlele DaEe-TaltarItorat
exalivaloa-af ssleces”mbErring-ateer (Comiblladrder Thisloapany /TCARdTeas, *,)70
cfe=lovarinhies
<alivelug=0L atlact="substring=-alCec (FaktocIToast, ',"]™ =
/el warinh e
xalivalue-of melecoe”mbstring-before [GafterSuburh, ', ')"
SICALE.
CETALE i
£ lipmndes
CRal:veriable naea-"alCarCity™
evalivarianls names"afrerSbueh ™
xmlivariahle names"afcerScrestc™s
<ralivalug=0L Felect="sbrtring=-alter (ComoblleRodel 7 ThisComp Y TCAG IS, "')"0
C/melvarianles
mlivalus-of selecoe”sbscring-afoer (fafcerStresc, ', %)%
SlEElzvecind Ral
eualivalns-of aslacea"mbarring-afesr (Faftapdubarh, ', 0]% 0
/Eslrvacinh iek
<ralivalug=9l aslect="subatiing-beloce[IntiecCity, °,')"15 J;]
]

| |

Figure5.8 Thepartial XSLT code for transfer CSorder to TP order

5.6.4 XSLT Transformation Engine Implementation

Again here by using JAXP API, we can isolate our application from the interna
implementation details of a given Transformer. For the Transformer, there is an abstract
Factory class with a static newlnstance() method that instantiates a concrete Factory
which wraps the underlying implementation. These newlnstance() methods use system

property settings to determine which implementation to instantiate.

Apache Xaan [Apache 2003] is used as a Transformation Engine in our
implementation. Xalan provides high-performance XSLT stylesheet processing. Xalan
fully implements the W3C XSLT and XPath [W3C 1999 X Path] recommendations.

113

114

5.7 Summary

By using Java as programming language, we implemented a flexible standalone data-
mapping prototype according to our design. The prototype supports generating a XSLT
mapping specification implementation for XML-to-XML transformations by using
XML DTD asiits source and target schema to define mapping specifications by an end
user. Some simple mapping specifications and a few complex mapping specifications
are supported by simply drag-and-drop and type-and select at this stage. A type system
now is under way. The difficulties here are complex interactions between underlying
data structures and user interface, mapping between different layers of data model made

by the high level abstraction of operations and data model

114

115

Chapter 6 System Evaluation

In this chapter, the usability of system implemented in the previous chapter is
evaluated. Because of limited available research time, a notational evaluation based on

cognitive dimensions framework is discussed mainly.

6.1 Usability Evaluation

Usability refers to the characteristic of how easy it is to learn and to use a system.
Usability can be defined as the extent to which the users can use a system to achieve
their goals with effectiveness, efficiency and satisfaction in specified context and

environment [Nielsen 1994].

To achieve better usability, there are two key principles of designing for usability. The
one is early and continual evaluation, and the other one is iterative design and
development [Nielsen 1994]. Prototyping provides a good model for evaluation and
then the feedback from the evaluation can be used for further iterations of the design.
The evaluation steps enable the designers to incorporate feedback from the users to

their next iterative design until the system reaches an acceptable level of usability.

There are quite a few methods developed for the measurement of effectiveness and
efficiency, such as inspection methods, e.g. Heuristic evaluation [Nielsen 1994],
Cognitive Walkthroughs [Rowley 1992, Wharton 1994, Spencer, R. 2000], guideline
checklists [Wixon 1994, Nielsen 1995], etc, which most time needs HCI specialists and
can be used in the software design and prototyping stage, testing methods, e.g. Think
Aloud protocol [Dumas 1993, Lindgaard 1994, Rubin 1994], co-discovery method,
performance measurement, Question asking protocol [Dumas 1993, Lindgaard 1994,
Rubin 1994] etc, which needs the real users, and observation methods, e.g. video
records, eye-tracking, etc, such as those taken in a usability lab, which may be
particularly useful in giving richer information about users’ performance . In these

methods, the designers need to design a set of standard tasks, and/or checklist, and/or

115

116

guestionnaires for the users to work through with the software and make sure that these
tasks represent what the users want the software to do. It gives the best impression of
how a system would be used in the rea world. The designers can assess the

effectiveness and efficiency on the basis of end results and time taken to achieve then.

Inquiry methods, such as questionnaires [Kirakowski 2003] and surveys [Salant 1994],
are usually used for measurement of satisfaction. Questionnaires are written lists of
questions to distribute to the users. The usersfill out the questionnaires and return them
to the designers. Questionnaires and surveys are often performed before or after the
users work through the prototype system, and are identified to be an efficient way to get

users’ expectations of the system and pick up some usability problems.

It is necessary to take above principles and some usability evaluation methods on our
prototype to get the users feedback and find the problems of our system to make it
achieve better usability. Available research time limits us for taking above methods on
our prototype system at this stage. Instead, we conducted a notation analysis by using

Cognitive Dimensions to evaluate the usability of our system in thisthesis.

6.2 Cognitive Dimensions

Contrary to the above traditional usability evaluation approaches, cognitive dimensions
provide vocabulary for designers or users to talk about the usability of the system in a
broad-brush style rather than lengthy, detailed analysis. It provides a tool for non—-HCI
specialists to evaluate usability of information artifacts [Blackwell 2002].

The cognitive dimensions for visual programming and meaning of each dimension are
already presented in the Chapter 2. In the following section we conduct a designer-led
notational analysis [Blackwell 2002] by using cognitive dimensions for our prototype
system. The steps of the analysis are described as foll owing:

Identify the main notation of the system, describing the media in which the
marks of the notation are expressed and the environment in which it is

mani pul ated.

Identify sub-devices. A sub-device is a part of the main system that can be

treated separately because it has different notation, environment, and medium.

116

117

Consider each notation in terms of the list of dimensions, identifying any
usability problems where the system characteristics on that dimension are

inappropriate to the user activity.

Identify problems and then consider how to improve them.

6.3 Evaluation

6.3.1 Notation of System

The main notation of system is our form-based metaphor, includes primitive form
elements and their groups, different inter-elements links, and formulae in the form
elements. All marks of notations are stored in computer memory and shown on the

computer screen. The environment of the notation system is shown on Figure 4.10.

6.3.2 Sub-devices
Type abstraction management sub-device

The type abstraction management is used for the users to define types and their formats,

delete types and their formats.

Operation abstraction management sub-device

Operation abstraction management is used for the users to define, edit and remove the

operation.

Because the above two sub-devices are not forced for the user to use. We ignore the

cognitive dimensions analysis for these two sub-devicesin thisthesis.

6.3.3 Cognitive Dimensionsfor Main Device
Abstraction gradient

For the form rendering in our system, all the data schemas are abstracted to concrete

business forms. The data and relations in the schema are abstracted to primitive form

117

118

elements, such as labels, text fields, radio boxes, fonts, colors etc, and groups of

primitives (see Figure 4.9).

For the mapping specification, links between fields represent formulae converting

source dataitem(s) and group(s) to target dataitem(s) and groups(s) (Figure 4.19(8)).

All these build-in abstractions make our mapping specification environment more like

the users’ problem domain.

In order to make user easy to convert some data format, such as date, name, address etc,
a type system is introduced. Some data types and their formats are pre-defined in the
system. The users can also builder their own data types for reuse in the future. Also
some common used operations, such as substring_before(), concat(), if then_else, etc,
for data transformation are built in the system. The user can add new function to the

system as well. These abstractions lower the viscosity.

From above analysis, our system is an abstraction—tolerant system which permits but do
not require user-defined abstractions. If the users just don’t define the user-defined

types or operations, there islow abstraction barrier for our system.

Closeness of mapping

Our form-based data transformation tool uses a concrete metaphor—a business form—
to support data mapping specification (see Figure 4.10). Its visua representation thus
maps directly onto business analyst’s (the end users) cognitive model of their problem
domain. The purpose of allowing generated form layout modification is to support even
closer mapping allowing analysts to tailor the generated layout to be closer to the actual

screen and hard-copy business form layouts they are familiar with.

Defining mapping specification can be mostly done by drag-n-drop and then following
instructions of dialog box just like linking the relevant fields in actually hard copy
business forms. Also the mapping specification environment closely maps to a

spreadsheet model, which is very familiar to the business analysis.

118

119

Consistency

Both source and target form representations use the same visual form elements. All
inter-form element links are rendered the same way. The little boxes along the link
discriminate the differences of mapping. Also the form representations are consistent
with the form-based mapping specification environment, because each field in the
forms can be treated as the cell of the spreadsheet-styled programming environment
(see Figure 4.10).

Diffuseness

Compared to other abstract approaches to representing data transformation, our form-
based data mapping tool employs a more verbose visual language that can include
elements not directly used in the mapping process e.g. business form layout groups,
labels, lines and boxes. In contrast, mapping specifications using meta-data renderings
such as trees and entity-relationship diagrams seldom include elements not directly used

in the meta-data mapping specification.

The use of a concrete form-based metaphor in our approach necessitates a less terse
notation to support the desired visual metaphor. But all of these can make our mapping
specification environment closely mapping to the users cognitive model—business
form copying—and make them define the mapping specification without the knowledge

of underlying technologies.

Error-proneness

Typing errors and syntax errors are reduced dramatically by using clicking, selecting,

drag-n-drop on the visual form metaphor and popup dial og boxes.

In order to make the end-users not to be bothered by underlying data model, we ignore
some details of the data model when rendering the data model to the concrete data form,
e.g. the attributes in the XML element are treated as the same as the child elements of
the element. So when we add a new element in the source or target form, it could be

reflected on the underlying data model incorrectly.

119

120

Hard mental operations

For end-users, hard mental operations are greatly reduced by having visualization close
to their cognitive model of inter-business data exchange. The users needn’t to know any
data schema and programming language, memorize key words, functions and syntax
etc. All the users needed, such as the form fields, operations, types, are presented on the
mapping specification environment. The users just need to directly click on them or

browse to find them when the users need them.

Hidden dependencies

Within forms, element groupings are all explicitly represented. All inter-form

dependencies are explicitly represented as links between form elements and groups.

Premature commitment
Commitment for form layout

The users need to decide the position and size of form element when re-layouting the
form elements. For example, the rearrange of the day, month and year fields in CS
form. See Figure 6.1.

Commitment for construction of formula

The users need to decide where they should start when constructing mapping formulae
in target field. Create an intermediate element first or directly define the formula in the
target field? For example, the definition of Suburb field in TotalPDAs target form.
Where do we start? See Figure 6.2.

120

121

('1 J Am-:u-generated Date section (5) Re-zize the Marth field

I

r

(21 Select and move bonth field to slign with the Day field (6} Select the Year field and move it to allign with Month fisld

(3 Date field iz too wide. Select Date and rezize data. (71 Resize the “Year field

(4] Re-zelect Month field and re-position it (8) Re-positon the Year fizld

(50 Select the Date section and resize it.

Figure 6.1 Rearrange elementsin Date section in CSorder form

121

122

ThisCampany j T
: - Street|00 Queen Strec
TCNameIComoblle Solutions Lt
Suburbl
TCAddreSSIDD Gueen Street, Auckland City, Auckland, 1000, Mews Zealand
Ci‘tyl
TCTell 567, O06409)123 4576 LI
Az i
L3
= ACUFESS
ThisCamparny |
. - StreetIDD Gueen Street
TCNameIComoblle Solutions Ltc @
:Suburb =
TCAddreSSIDD Gueen Street, Auckland City, Auckland, 1000, Mew Fealand Vrrrrrrrrrrrsfrrrrrrrrrrrrrrrrrrrrrs
it LY
TCTel| 567, D0G409)1 23 4576 Ral Kl » | _’[

Figure 6.2 Where do we start when define the Suburb mapping specification?

Progressive evaluation

The formula definition can be immediately compiled to generate mapping specification
implementation. The implementation and source instance are then fed to transformation
engine to get the target instance. Then data in the results are shown on corresponding
form elements in the target form. This makes the users be able to check if individual

formula definition for each target field is correct or not.

Provisionality

When rearrange the layout of the form and constructing the formula, the users can try
different possibilities. If there is something wrong, it’s difficult for the users to go back
to their original state and try again. They have to manually do the reverse operations
they have done to restore the system to its original state. For example, after the users
changed the layout of the day, month and year fields from 1 to 2 by resizing and
moving each field. If they want to back to the state 1, they have to do all the reverse

operations to go back.

122

123
Role-expressiveness

Concrete representations are used for all form elements that denote their role. Enclosure
of elements by groups provides an additional role specification, that of the elements’

relationship to othersin the group.

Secondary notation

The business analyst can reorganize automatically generated form layouts, creating
their own cognitively meaningful business form representation using form element
layout, appearance and grouping. Our tool supports the use of this secondary notation
relating to form element layout as it is cognitively important to the user and has
meaning in terms of the grouping of form elements. The form layout and appearance
has no effect on generated mapping code but regrouping or retyping form elements

does.

No unstructured form annotations are currently supported though this may be a useful

addition allowing end users to make notes against form s and form element links.

Viscosity
Modifications on our mapping tool include modifying form elements for change of data
schema and modifying the formula defined in the target field.

Now the mapping tool cannot support the small changes of the data schema. Because
the schema-to-form process is not bi-directional, it is impossible to directly add
elements or regroup elements to reflect the change of data schema. When the data
schema changes, a new project needs to be created to load the changed data source or
target schema. Thus the whole mapping specifications need to be redefined from
beginning and we can’t reuse the mapping specification we have done before. For

example,

Modifying formula takes many steps. If aformulafor atarget field needs to be changed,
the user needs to trace paths of creation of formula and then directly modify the formula
on the text-based expression except functions in the formula. For a function in the
formula, the user needs to double-click on the function text to invoke the dialog box for
the operation to edit it.

123

124

Visibility & Juxtaposability

The form-based mapper has explicit inter-form element links providing a good
visibility, but the links between form elements and element groups to the underlying
meta-model is hidden. When the user modifies form layout e.g. by adding or
rearranging grouping, this linkage is blurred and is not visible in the visual form-based

visualization or tree-based structure views.

A formula and the result of the formula for only one target field are visible
simultaneously. The users have to click on target fields one by one to see their formula
and can’t view the formula definition of all the target fields simultaneoudly. It’s
impossible for the users to compare some formula definition in different form fields at

onetime.

Two views are supported in our tool: a concrete form-based visualization and tree-based
structure visualization, which are viewed side-by-side. Sub-views are currently
supported by using the tree-based view, or right clicking on the selected form elements
and then selecting the “sub-view” menuitem, to select a portion of the form for display,

but multiple views displayed simultaneously are not currently supported.

6.4 Some I mprovements on Current Prototype

According to above evaluation, following improvements are supposed. Some of the

improvements may conflicts to others.

Abstraction gradient

It’s better to add more build-in types and operations in the system in development time

to minimize possibility of end users directly defining types and operations.

Error-proneness

See viscosity for solving errors when adding elements into form to reflect the change of

the schema.

124

125

Premature commitment

Commitment for form layout

We may automate resizing a field according to another field position or the size of

section in which the field is. See Figure 6.3.

Diate: Diate
Dayl Day Marth ear
Momhl
\r‘earl
(1) Auto-generated Date section (31 Select and move the Year field, Month field size decreases
accroding tothe position of the Year field. The Year field size
Date decresses according to the size of the Date section
Dayl Manth
Date
Yearl
Da\;l Month ear
(2] Select and move the month figld, Date fizld size decreases (#4) Select and Res.ize the Dat'? section, the Year fisld size
according to the posttion of the Morith field decreases according to the size of Date section

Figure 6.3 Revising of rearranging elementsin the Date section in CS order form

Commitment for construction of formula

See Provisionality bellow.

Provisionality

Keep the history of user’s action so that the users can try the different layout of form

and definition of the formula, and then easily come back to origina state where they

started the try by using “undo” command.

125

126

Secondary notation

Add unstructured annotations for the users to put comments on the mapping
specification. This will increasing the viscosity, because when the mapping

specification is changed, we may need to change the unstructured annotations.

Viscosity

When schema changes, |et the users load changed schema to the system produce aform
representation (Form1), and then compare it to the form of previous schema (Form 2),
which mapping specifications are already defined, then the users can drag-n-drop the
changed form elements from Form 1 to the Form 2. The program can get the underlying
data model element corresponding to the form element in Forml, then create the same

data element in the underlying data model corresponding to the Form 2. Through this

we can reuse the previous data mapping specification to our changed data schemas.

Visibility & Juxtaposability

Make a formula definition box with each form eement, not share a common box, to

make the users view the formulafor al form elements simultaneously.

Use multiple windows to display the mapping specification environment in paralel to
make the users be able to refer to the mapping specification they have already defined

while defining new mapping specification.

6.5 Summary

From the above evaluation results, we conclude that our mapping tool have a good
support for the end user, because of its closely mapping to the user’s problem domain,
low hard mental operations, high level abstraction on data schemas, operations and
types, and low abstraction barrier. And also it has a consistent user interface from form
presentations of data schemas to spreadsheet-styled mapping specification environment,
low hidden dependence and good progressive evaluation. But some difficulties of the

tool on modification and exploratory activities need to be improved.

126

127

Chapter 7 Conclusions and Futurework

7.1 Conclusions

This research has identified some of the main problems with current data
transformation systems and their development process. These include the involvement
of programmers increasing errors of mapping specifications, and the associated increase
in the cost and time of development of these systems. Current mapping tools mainly
focus on supporting professional programmers or data modelers. We have argued that a
business analyst is the best person to define mapping specifications. This is because
they know the business processes and the context of use of business data. In order to
eliminate the involvement of programmers, a new mapping tool should provide better

end-user support for such business analysts.

This research has analyzed the system requirements for a data mapping tool for end-
users—the business analysts. Due to the business analyst having no knowledge of
complex data schemas or a programming background, our mapping tool needs to
provide a visua presentation to hide the complex underlying data structures. It also
must provide a visual mapping specification environment to give the user a direct
manipulation interface to define mapping specifications. It must generate the mapping
specification implementation and give the users immediate feedback for debugging

pUrposes.

This research has led to the design and implementation of ajava prototype of the form-
based mapping tool based on the 2-tiered architecture due to its simplicity. It uses a
business form metaphor to represent the complex underlying data structures to a
concrete, meaningful business form. The user can import the source and target instance
to the form and make the form more concrete and more understandable. The user can
also further customize the automatically generated forms to fit their cognitive model of
forms. A business form copying metaphor, i.e. a form-based/spreadsheet-styled

mapping specification environment, is provided to utilize the business analyst’s

127

128

previous domain knowledge and problem-solving skill. It supports the end-users to
define the most of oneto-one, oneto-many, many-to-one and many-to-many
conditional or unconditional mapping specifications on field-, section-, collection-level
by direct manipulating source and target form elements and concrete data sample
through drag-and-drop, type-and-select. A type system is introduced to further simplify
defining the mapping specification. After the mapping specification for one element in
the target form is finished, the system can automatically produce the result in the target
form for debugging purpose, and generate the mapping specification implementations
on demand. All of these efforts make our mapping tool get ready for a business analyst

to define mapping specifications and produce mapping specification implementations.

The java implementation of prototype supports a XSLT mapping specification for data
from XML to XML transformations, which are very popular in today’s system
development and integration practices. This is due to its simplicity and platform
independence. The source and target XML DTDs are parsed into DOM tree structures
and these are used to automatically generate the form rendered by Java Swing. Form
elements can be rearranged through resizing and moving the elements. Data in the
source and target XML instances can be imported to the form. A built-in type system
allows the users to apply a type to a form field or section to simplify mapping
operations. When generating XSLT code, our tool traverses the target data structure,
and then parses the mapping specification with the nodes to a abstract syntax tree by a
parser generated by JLex and CUP and finally generates the mapping specification
implementation by traversing the abstract syntax tree. A built-in XSLT transformer can
transform a source XML instance to a target XML instance according to mapping
specification defined and give immediate feedback to the user for debugging after each
field-, section-, collection-level mapping specification is finished.

This research also conducted an initial evaluation on the prototype in a broad-brush
manner through a notational and visual tool analysis by using the cognitive dimensions
framework. Through this analysis, positive usability results are obtained for most of the
key dimensions, but some usability problems of the prototype are identified. These
include: not supporting changes to data schemas, no unstructured notation support for
the user to make comments on the mapping specification, no history records saved for
the user to easily explore possibilities and go back to a previous specification, the

premature commitment when the user rearrange the form elements, and no multi-views

128

129

support for displaying the mapping specification definition simultaneously for
comparison and reference. Possible improvements for these are suggested. The
cognitive dimensions analysis is helpful to evaluate some usability aspects of system to
identify problems where the system characteristics on that dimension are inappropriate

to the user activity and consider design maneuvers to adjust that dimension.

Through al the above work, we can conclude that this research results in a new way—
business form-based data mapping specification by the end-users—in data
transformation area. The initial prototype has provided the user a concrete business
form metaphor with high level abstraction on the complex underlying data structure and
a form-based/spreadsheet styled mapping specification environment to mimic the end-
users’ mental model to assist them to define simple mapping specifications and some of

complex mapping specifications.

7.2 Summary of Main Contributions

This work has produced the following contributions to the field of data mapping
systems:

Identification of a set of requirements for an end-user (business analyst)
supporting data transformation specification environment. These include the use
of a business analyst-focused metaphor for representing complex data and data
correspondences, and generation of mapping implementations from these high-

level descriptions.

Design of a form-based representational metaphor for complex business data
and a form field copying-based metaphor for specifying data transformations
between these business form elements. This approach provides a more concrete
and business-centric view of data and data transformations for business analysts

to work with.

Implementation of a proof-of-concept prototype of this form-based data
mapping environment. This has included the import and visualization of
complex business data using a business forms representation; the specification

of data mappings between business form elements using drag-and-drop

129

130

programming-by-example; and generation of XSLT-based data transformation

implementations from these specifications.

Analysis of the potential usability advantages and disadvantages of our
prototype data mapping environment using the cognitive dimensions
framework. This has identified a number of strengths and weaknesses with the

prototype tool.

7.3 FutureWork
A number of areas exist in which we can improve the design and prototype

implementation of the form-based mapping tool:

Further improve the usability of prototype for the future evaluation according to the

findings made by cognitive dimensions analysis. The improvements include:

Adding support for reuse of some of mapping specifications when a data
schema changes. Through importing the changed data schema and visualizing it
to a form, the user can compare it with the origina form and find the
differences. Then the user can take proper actions, such as drag-and-drop,
deleting, renaming, to invoke the system to change the underlying original data

schema to be the same as the changed data schema.

Adding unstructured notation support for the user to make comments on
mapping specifications. Add a text box associated with the desired form field on
the top layer of the panel for the user to input notes for the mapping

specification in the form field.

Saving history records for the user to easily explore possibilities and go back to
a previous state. Add each incremental mapping specification to a collection to
keep the history of operations, then the user can go back or forward to switch

among them by just clicking on aback or aforward button.

Providing automatically resizing a field and section to minimize the premature
commitment when the user rearranges form elements. When afield or section is

resized or moved, the system can check the position of elements in its parent

130

131

section, and adjust the size of the elements to fit the position of the moved

element.

Providing multi-views to display the mapping specification definition
simultaneously for comparison and reference. Use multiple external or internal
frames to make the user be able to open new windows to display mapping
specifications in parallel, or add a formula definition box on each form element
to shown its mapping specifications other than al the form elements sharing one

text area to show the definition of mapping specifications.

We should conduct further usability evaluations on the current prototype to get more
feedback from HCI experts and actual users. We will then redesign the interface of our
mapping tool based on this feedback to achieve iterative improvement on the current
user interface design of the mapping tool. Because current our prototype isin aprimary
stage, we are planning to first use continual evaluation by using inspection method
performed by computer science graduates who have some experiences on HCI to
identify some usability problems with our user interface design to iteratively improve
the design and our prototype. Then we will use survey/questionnaire method to let the
real users—the business analysts—use our tool to perform the real world data mapping
specifications and get the feedback from them. Our mapping tool is am to enable the
end user who has no programming knowledge to define mapping specification, their
experience on the tool and whether they are satisfied with the tool are the most valuable
feedback for evaluating and improving the tool.

Investigate the possibility of directly importing the scanned business forms or some
electronic forms, such as HTML forms, Microsoft Access forms, etc. to provide the
end-users an exact business form metaphor. This will then not to require the user to
rearrange the form layout, and avoid the premature commitment on customizing form
layout. The idea we have is that we can first directly import the scanned forms or
electronic forms or reconstruct the forms from the scanned forms [Casey 1992] [Lam
1993] [Mao 1996] [Tang 1993] [Atalay 1999] and then automatically mapping the
elements in the underlying data schemas and data instances to the pre-printed fields in

the imported forms or reconstructed forms.

Investigate automatic mapping for simple mapping specifications by using imported

sample data. Through traversing the source and target data structure, the system

131

132

compare the sample data value in the source and target instances, if there is a sample
data from source, which equals to, or contains, or is part of a sample data in the target,
the system can initially automatically define the mapping as one-to-one copy, or
splitting, or combining. Then the user can further investigate correctness of the

mapping specifications and modify them.

Extend the code generation to generate more mapping specification implementations
based on the generated XML-styled XSLT code by using XML transformation
approach, i.e. further transforming the XSLT code through a XSLT transformation
engine to produce the Java, or other mapping specification implementation according to

an XSLT-to-Java or X SLT-to-other mapping specification.

ul

Mappng

Source Form | | Target Form Specification

Environment

|

Mapping
Specification

XSLT Generator

Mapping
Specification
Implementation

i | 3 Converters
i

- !

Target To-Target: i

Instance Instance -
Converter !

|

Target To-XML-DTD .

Schema Converter m
Target ‘

Instance
(optional)

Intermediate Form
Data Generator

Target
XML(optional)

Converter i

XSLT
Transformation @
Engine

Converter [T

Source To-XML-DTD |
Schema Converter

XSLT

To-Target-
Source |\ To-XML % Source % Target
Instance :o Converter XML :o Transformation XML Instance

Engine Converter

Target
Instance

1=

L

Figure 7.1 Non-XML source and target data transformation by an XSLT transformation
engine

Support non-XML transformation by using an XSLT transformation engine. The author
believes that the current prototype can form a core part of mapping tool to generate
XSLT mapping specification implementation from non-XML data schemas and their
instances. The architecture of the system is shown on Figure 7.1. In order to achieve
that, at first, the non-XML data schemas and their instance need to be converted to
XML DTD presentations and XML instances [Skogan 1999][Fong 2001] (see Figure
7.1(1)). Then we take the converted XML DTD and XML instances as inputs of our
prototype and define the mapping specification to generate the XSLT transformation
code. And then the XSLT transformation code is fed to XSLT transformation engine

132

133

(see Figure 7.1(2)) to trandate the source XML instance converted from the non-XML
source instance (see Figure 7.1(3)) to target XML instance (see Figure 7.1(4)). Finally
the target XML instance is converted to the required non-XML target instance (see
Figure 7.1 (5)).

133

134

Refer ences

Amor, R., Hosking, J.G. and Mugridge, W.B. (1999). “ICAtect-11: A Framework for the
Integration of Building Design Tools.” Automation in Construction 8 (3) (1999)
pp. 277-289.

Apache Software Foundation (2003) “Xalan-Java verson 251”7
http://xml.apache.org/xalan-j/index.html. Last access on June 8, 2003.

Apache Software Foundation (2000) “Xerces-Java Parser Readme.”
http://xml.apache.org/xerces-j/. Last access on June 8, 2003.

Atalay, Volkan, Erhan Ardlan (1999). “An SGML Based Viewer for Form Documents.”
ICDAR 1999: 201-204.

Berk, E. J. and C. Scott Ananian (2003),
http://www.cs.princeton.edu/~appel/modern/java/JLex/. Last access on June 8,
2003.

Blackwell, Alan, Thomas Green (2002). “Cognitive Dimensions of Notations. A
tutorial.” Presented at IEEE Symposia on Human-Centric Computer (HCCO02),
Washington DC, September 2002.

Borland Software Corp (2003). “Delphi”, http://www.borland.com/delphi/. Last access
on June 8, 2003.

Borland Software Corp (2003). “Jbuilder.” http://www.borland.com/jbuilder/. Last
access on June 8, 2003.

Brown, P. and J. Gould (1987). “Experimental study of people creating spreadsheets.”
ACM Trans. Office Info. Sys., 5(3):258-272, July 1987.

134

135

Burnett, Margaret (1999). “Visua Programming.” In Encyclopedia of Electrical and
Electronics Engineering (John G. Webster, ed.), John Wlley & Sons Inc., New
Y ork, 1999.

capeclear.com (2001). “CapeStudio technical overview.”
http://www.capecl ear.com/products/whitepapers/ CapeStudio Product Overview.

pdf. Last access on June 8, 2003.

Casey, R., Ferguson, K. Mohiuddin, and E. Walach (1992). “Intelligent forms
processing system.” Machine Vision and Applications, 5:143-155, 1992.

Ceri, S., S. Comai, E. Damiani, P. Fratemali, S. Paraboschi, and L. Tanca (1999).
“XML-GL: a graphical language for querying and restructuring XML
documents.” 8" WMV conference, 1999.

Cypher, Allen, Daniel C. Halbert, David Kurlander, Henry Lieberman, David Maulsby,
Brad A. Myers, and Alan Turransky (1993). Watch What | Do: Programming by
Demonstration. The MIT Press.

Data Junction Corporation (2003). “Integration Studio.” www.datajunction.com . Last

access on June 8, 2003.

Dumas, JS, and Redish, Janice (1993) “A Practical Guide to Usability Testing.” Ablex,
Norwood, NJ, ISBN 0-89391-991-8.

Emmanuel Pietriga, Jean-Yves Vion-Dury, Vincent Quint (2001). “VXT: a visua
approach to XML transformations.” In_Proceedings of the 2001 ACM Symposium
on Document engineering, ACM Press New York, NY, USA, Pages 1 to 10.

Erwig, Martin (2002), “Xing: A Visua XML Query Language.”
Journal of Visual Languages and Computing, Vol. 13.

Floyd, (1984) “A Systematic Look at Prototyping.” In Budde, R. et a (Eds.),
Approaches to Prototyping, Springer-Verlag.

Fong, J., Pang, F. and Bloor, C. (2001). “Converting Relational Database into XML
Document.” 1st International Workshop on Electronic Business Hubs, Germany,
September 2001.

135

136

Gilmore D.(1995). “Interface design: Have we got it wrong?’ In K. Nordby, D.
Gilmore, and S. Arnesen, editors, INTERACT’95. Chapman and Hall, London.

Goodéll Howie (1998). “Methods of End-User Programming.”
http://www.cs.uml.edu/~hgoodel [/EndUser/methods.htm. Last access on June 8,
2003.

Gray, W. and J. R. Anderson (1987). “Change-Episodes in Coding: When and How Do
Programmers Change Their Code.” Empirical Sudies of Programmers. Second
Workshop. G. M. Olson, S. Sheppard and E. Soloway. Norwood, NJ, Ablex: 185-
197.

Green, T.R.G. and Petre, M. (1996). “Usability Anaysis of Visual Programming
Environments:A 'Cognitive Dimensions Framework.” Journal of Visual
Languages and Computing 7(2): 131-174.

Grundy, J.C., Mugridge, W.B., Hosking, J.G. and Kendall, P. (2001). “Generating EDI
Message Trandations from Visual Specifications.” In Proceddings of the 2001

|IEEE Automated Software Engineering Conference, San Diego, CA, 26-28 Nov
2001, |IEEE CS Press.

Hays, J.G. and Burnett, M.M. (1995). “A Guided Tour of Forms/3.” Oregon State
University: Dept. of Computer Science Technical Report 95-60-6.

Hoc, J-M. and A. Nguyen-Xuan (1990). “Language Semantics, Mental Models and
Analogy.” Psychology of Programming. J.-M. Hoc, T. R. G. Green, R. Samurcay
and D. J. Gilmore. London, Academic Press. 139-156.

Hudson, Scott, Frank Flannery, C. Scott Ananian (1999). “CUP Parser Generator for
Java.” http://www.cs.princeton.edu/~appel/modern/java/ CUP/. Last access on
June 8, 2003.

Kramer, J. and Magee, J. (1997). “Distributed Software Architectures.”
http://www.ixs.uci.edu/pub/icse97/program/tutorials. Last access on June 8,
2003.

Johnson, B., and Shneiderman, B. (1991). “Treemaps. a space-filling approach to the
visualization of hierarchical information structures.” Proceedings of the 2nd
Intemutional 1EEE Visualization Conference, San Diego, pages 284-291, 1991.

136

137

Kirakowski, Jurek (2003). “Questionnaires in Usability Engineering: A List of
Frequently Asked Questions (3rd Ed.).”
http://www.ucc.ie/hfrg/resources/gfagl.html. Last access on June 8, 2003.

Lam, S., L. Javanbakht, and S. Srihari (1993). “Anatomy of a form reader.” Proc. 2™
Intl. Conf. On Document Analysis and Recognition, 2:506-509, 1993.

Lewis, C. and G. M. Olson (1987). “Can Principles of Cognition Lower the Barriers to
Programming?’ Empirical Sudies of Programmers. Second Workshop. G. M.
Olson, S. Sheppard and E. Soloway. Norwood, NJ, Ablex: 248-263.

Li, Yonggiang, John C. Grundy, Robert Amor, John G. Hosking (2002). “A Data
Mapping Specification Environment Using a Concrete Business Form-Based
Metaphor.” |EEE Symposia on Human Centric Computing Languages and
Environments 2002: 158-

Lindgaard, G. (1994). Usability Testing and System Evaluation: A Guide for Designing
Useful Computer Systems. Chapman and Hall, London, U.K. ISBN 0-412-
46100-5.

Mao, J., M. Abayan, and K. Mohiuddin (1996). “A model based form processing
subsystem.” Proc. 13" Intl. Conf. On Pattern Recognition, 2:691-695, 1996.

Microsoft Corporation (2003). “Microsoft Excel.”
http://www.microsoft.com/office/excel/evaluation/quide.asp. Last access on June
8, 2003.

Microsoft Corporation (2003). “Microsoft Visual C#.”
http://msdn.microsoft.com/vesharp/. Last access on June 8, 2003.

Microsoft Corporation (2003). “Microsoft .NET.” http://www.microsoft.com/net/ . Last

access on June 8, 2003.

Milo, T., and S. Zohar (1998). “Using Schema Matching to Simplify Heterogeneous
Data Trandation.” In Int. Conference on Very Large Data Bases(VLDV), New
Y ork.

Morgenthal, J.P. (2001). “XML: The New Integration Frontier.” EAIl Journal, Feb.

2001, www.eaijournal.com.

137

138

Myers, Brad (1998). “Natural Programming: Project Overview and Proposal.” Carnegie
Mellon University School of Computer Science Technical Report, no. CMU-CS-
98-101 and Human Computer Interaction Institute Technical Report CMU-HCI|-
98-100. January, 1998.

Nardi, B. A. (1993). A Small Matter of Programming: Perspectives on End User
Computing. Cambridge, MA, The MIT Press.

Nielsen, J. (1992). “The usability engineering life cycle” IEEE Computer 25, 3
(March), 12-22.

Nielsen, J. (1994). “Heuristic Evaluation.” Usability Inspection Methods, J. Nielsen and
R.L. Mack. New Y ork, John Wiley & Sons: 25-62.

Nielsen, Jakob (1995). “Usability Inspection Tutorial.” 1995, CHI '95 Proceedings

Pane, J. F. and B. A. Myers (1996). “Usability Issues in the Design of Novice
Programming Systems.” Pittsburgh, PA, Carnegie Mellon University. CMU-CS-
96-132.

Pane, J. F., B.A. Myers, and L.B. Miller (2002). “Using HCI Techniques to Design a
More Usable Programming System.” In proceedings of |EEE 2002 Symposia on
Human Centric Computing Languages and Environments (HCC 2002),
Arlington, VA, September 3-6, 2002, pp 198-206.

Pane, J. F. (2002a). A Programming System for Children that is Designed for
Usability, CMU-CS-02-127, May 3, 2002

Panko, R. (1998). “What we know about spreadsheet errors.” J. End User Comp., pages
15021, Spring 1998.

Pausch, R., M. Conway, et al. (1992). “Lesson Learned from SUIT, the Simple User
Interface Toolkit.” ACM Transactions on Information Systems, 10(4): 320-344.

Rothermel, K. J., L. Li, C. DuPuis, and M. Burnett (1998).”What you see is what you
test: A methodology for testing form-based visual programs.” In The 20" Intl.
Conf. Softw. Eng., pages 198-207, Apr. 1998.

Rothermel, K. J.,, C. R. Cook, M. M. Burnett, J. Schonfeld, T. R. G. Green, and G.
Rothermel (2000). “WYSIWYT Testing in the Spreadsheet Paradigm: An

138

139

Empirica Evaluation.” Proceedings of the 22nd International Conference on
Software Engineering, June, 2000, pages 230-239.

Rowley, David E., and Rhoades, David G (1992). “The Cognitive Jogthrough: A Fast-
Paced User Interface Evaluation Procedure.” CHI 92 Proceedings, (May 3-7,
1992): 389-395.

Rubin, Jeffrey (1994). Handbook of Usability Testing, John Wiley and Sons, New
York, NY ISBN 0-471-59403-2.

Python.org (2003). “Python.” http://www.python.org/. Last access on June 8, 2003.

Salant, Priscilla, and Dillman, Don A.(1994). How to Conduct Your Own Survey, John
Wiley & Sons, New York, NY, ISBN: 0471012734.

saxproject.org (2002). “Simple API for XML (SAX).” http://www.saxproject.org/. Last

access on June 8, 2003.

Skogan, David (1999). “UML as a Schema Language for XML based Data
Interchange.” In Proceedings of the 2nd International Conference on The Unified
Modeling Language (UML'99), 1999.

http://citeseer.nj.nec.com/david99uml.html .

Smith, D. C., A. Cypher, et a. (1994). “KidSim: Programming Agents Without a
Programming Language.” Communications of the ACM. 37(7): 54-67.

Sonic Software Corporation (2003). http://www.sonicsoftware.com. Last access on
June 8, 2003.

Spencer, Rick (2000). “The streamlined cognitive walkthrough method.” CHI 2000
Proceedings, (April 1 - 6, 2000): Pages 353-3509.

Sun Microsystem Corp (2003). “Java APl for XML Processing (JAXP).”

http://java.sun.com/xml/jaxp/index.html. Last access on June 8, 2003.

Sun Microsystems Corp (2003). “Java 2 Platform, Standard Edition (J2SE).”
http://java.sun.com/j2se/1.4.1/. Last access on June 8, 2003.

Sun Microsystems Corp (2003). “Java Foundation Classes: Cross-Platform GUIs &
Graphics.” http://java.sun.com/productg/jfc/. Last access on June 8, 2003.

Svendsen G.(1991). “The influence of interface style on problem-solving.” Intl. J. Man-
Machine Sudies, 35:379-397.

139

140

Swatman, P.M.C., Swatman, P.A., Fowler, D.C. (1994). “A model of EDI integration
and strategic business reengineering.” Journal of Strategic Information Systems,
vol.3, no.1, March, 1994, pp.41-60.

Tang, Y., C. Yan, M. Cheriet, and C Suen (1993). Automatic analysis and
under standing of form documents, Pages 625-654, 1993.

W3C (1999). “XSL Transformations (XSLT) Version 1.0.” http://www.w3.org/TR/xdlt.
Last access on June 8, 2003.

W3C (1999). “XML Path Language (XPath) Version 1.0
http://www.w3.org/TR/xpath.html. Last access on June 8, 2003.

W3C (2000). “Extensible Markup Language (XML) 1.0 (Second Edition).”
http://www.w3.0rg/TR/2000/REC-xmI-20001006#N T-document. The last access
on June 8, 2003.

W3C (2000). “XML Schema 1.1.” http://www.w3.org/XML/Schema. Last access on
June 8, 2003.

W3C (2002). “Document Object Model (DOM).” http://www.w3.0rg/DOM/. Last

access on June 8, 2003.

Wharton, Cathleen, et. al. (1994). “The Cognitive Walkthrough Method: A
Practictioner's Guide.” In Nielsen, Jakob, and Mack, R. eds, Usability Inspection
Methods, 1994, John Wiley and Sons, New York, NY. ISBN 0-471-01877-5

(hardcover).

Wixon, Dennis, et. a. (1994). “Inspections and Design Reviews: Framework, History,
and Reflection.” InNielsen, Jakob, and Mack, R. eds, Usability Inspection
Methods, 1994, John Wiley and Sons, New York, NY. ISBN 0-471-01877-5.

Wilcox, E., J. Atwood, M. Burnett, J. Cadiz and C. Cool (1997). “Does continuous
visual feedback aid debugging in direct-manipulation programming systems?” In
ACM CHI 97, pages 22-27, Mar. 1997.

Wilcox, E. and Burnett, M. “Programming a Single Digit LED in Forms/3.”
http://ww.cs.orst.edu/~burnett/Forms3/LED.html. Last access on June 8, 2003.

140

	Cover
	Acknowledgments
	Abstract
	Table of Contents
	Table of Figures
	Table of Tables
	Chapter 1 Introduction
	1.1 Motivation
	1.2 Objectives of the Research
	1.3 Methodology
	1.4 Overview of the Thesis

	Chapter 2 Related Work
	2.1 Introduction
	2.2 Mapping Tools
	2.2.1 Xing
	2.2.2 VXT
	2.2.4 Orion Symphonia System
	2.2.4 Sonic Stylus Studio
	2.2.5 Data Junction

	2.3 End-user programming
	2.3.1 Application-specific Languages
	2.3.2 Programming by Demonstration
	2.3.3 Visual Programming
	2.3.4 Natural Programming

	2.4 Software Usability
	2.5 Summary

	Chapter 3 System Requirements Analysis
	3.1 A Scenario
	3.2 Our Approach
	3.3 Requirements of Our System
	3.4 Main Modules of Our Mapping Tool
	3.5 Summary

	Chapter 4 System Design
	4.1 Architecture of the Tool
	4.1.1 Possible System Architectures of Our Data Mapping Tool
	4.1.1.1 Standalone Architecture
	4.1.1.2 Distributed Architecture

	4.1.2 The System Architecture We Choose

	4.2 Form Visualization Design
	4.2.1 Form rendering
	4.2.2 Reformatting Form
	4.2.3 Importing Sample Data

	4.3 Visual Mapping Specification Environment Design
	4.3.1 Outlook of Mapping Specification Environment
	4.3.2 User Interfacing and Notations for Mapping Specifications
	4.3.2.1 The Type System
	4.3.2.2 Mapping Specifications
	4.3.2.2.1 Simple mapping specifications
	4.3.2.2.2 Complex mapping specifications

	4.4 Object-oriented Design
	4.4.1 User Interfacing
	4.4.2 Converter
	4.4.3 Form Generator
	4.4.4 Code Generator
	4.4.5 Sequence Diagrams for Some Main Operations

	4.5 Summary

	Chapter 5 System Implementation
	5.1 Overview of Prototype
	5.2 Language Chosen
	5.3 XML/XML Parsing
	5.3.1 XML and XML DTD
	5.3.2 DTD Parsing/XML Parsing

	5.4 Form Generation
	5.5 UI Implementation and Mapping Specifications
	5.6 XSLT Generation
	5.6.1 XSLT
	5.6.2 JLex/CUP
	5.6.3 Debugging Mapping Specifications
	5.6.4 XSLT Transformation Engine Implementation

	5.7 Summary

	Chapter 6 System Evaluation
	6.1 Usability Evaluation
	6.2 Cognitive Dimensions
	6.3 Evaluation
	6.3.1 Notation of System
	6.3.2 Sub-devices
	6.3.3 Cognitive Dimensions for Main Device

	6.4 Some Improvements on Current Prototype
	6.5 Summary

	Chapter 7 Conclusions and Future work
	7.1 Conclusions
	7.2 Summary of Main Contributions
	7.3 Future Work

	References

