
Investigation of software tester
responsibilities, personality and

performance

by

Tanjila Kanij

A Thesis Submitted for the Degree of

Doctor of Philosophy

at Faculty of Information and Communication Technologies

Swinburne University of Technology

John Street, Hawthorn- 3122

Australia

I would like to dedicate this work to my caring parents and my

loving husband. I hope that this work makes them proud.

Abstract

Software testing refers to the process of reviewing or executing soft-

ware with a view to detecting faults before delivery. The successful

accomplishment of the process includes carrying out a number of unit

tasks. A refined list of such unit tasks is not clear. However, the goal

of the role indicates testing comprises of a fundamentally different task

set to those of other software development practitioners. This raises

the question of whether the personality of software testers is different

to other people involved in software development. These personality

traits may also influence the performance in this role. However a gen-

eralized method for assessing the performance of software testers is

also unavailable.

This research aims to address some of these issues. The research

started with finding the factors that affect software testers’ perfor-

mance. We collected information from different sources to prepare a

list of unit tasks of software testing . We also collected big five factor

based personality profiles of software practitioners including testers to

investigate if software testers differed from others. To find the connec-

tion of the personality traits on the effectiveness in software testing

we conducted a research study with student participants. Finally we

proposed a novel performance appraisal form for software testers and

collected feedback on the proposed form from software development

project managers.

Our findings indicate that along with test specific activities software

testers perform a number of unit tasks such as “Analysing require-

ments and functional design”, “Debugging” and “Maintaining test

infrustructure”. Software testers are generally higher on conscien-

tiousness compared to other related practitioners. Conscientiousness

is also weakly related to bug location rate and weighted fault density

which are used as measures of testing performance.

Acknowledgements

I take the privilege to express my sincere gratitude to my supervisors

Prof. John Grundy and Dr. Robert Merkel for their guidance, support

and patience. The completion of this thesis would not be possible

without my kind mentors.

I am grateful to my loving husband for his active support and encour-

agement throughout the journey of this thesis.

My special thanks go to my mum Hosne Ara Hossain, my mother-in-

law Monoara Ahmed and elder sister Nusrat Zaman for their uncon-

ditional family assistance during my thesis. I also thank my one year

old baby girl for being supportive!

I also wish to thank my dear friends Shimul, Arup, Shibli, Tanay,

Samiran, Galib, Imrul, Saiful, Mohammed, Amani, Feifei and Khalid

for their help. My research works would be somewhat incomplete

without their kind response to my request of participation in all my

pilot projects.

Declaration

I herewith declare that I have produced this thesis with my own work

without the prohibited assistance of third parties. This study has not

previously been presented as a thesis.

Tanjila Kanij,

Dated

The Author’s Publications

1. Tanjila Kanij, Robert Merkel, John Grundy: A Preliminary

Study on Factors Affecting Software Testing Team Performance.

ESEM 2011: 359-362

2. Tanjila Kanij, Robert Merkel, John Grundy: Performance as-

sessment metrics for software testers. CHASE 2012: 63-65

3. Tanjila Kanij, Robert Merkel, and John Grundy, An empirical

study of the effects of personality on software testing, Accepted

to be published at 26th Conference on Software Engineering Ed-

ucation and Training, 2013.

4. Tanjila Kanij, Robert Merkel, and John Grundy, Lessons learned

from conducting industry surveys in software testing, Accepted

to be published at First International Workshop on Conducting

Empirical Studies in Industry, CESI 2013.

5. Tanjila Kanij, Robert Merkel, and John Grundy, Performance

appraisal of softwar testers, Submitted for review at the Journal

of Information Science and Technology, special edition, 2013.

6. Robert Merkel and Tanjila Kanij, Does the individual matter in

software testing? http://www.swinburne.edu.au/ict/research/sat/-

technicalReports/TC2010-001.pdf.

Contents

Contents viii

List of Tables xx

List of Figures xxiii

1 Introduction 1

1.1 Introduction . 1

1.2 Background . 2

1.3 Research Motivation . 3

1.4 Research Problem . 7

1.5 Research Significance . 8

1.5.1 Software Testing Research 8

1.5.2 Software Testing Practice 9

1.6 Research Contributions . 9

1.7 Thesis Organization . 11

viii

CONTENTS

2 Related Work 14

2.1 Introduction . 14

2.2 What Do Software Testers Do . 15

2.3 What Makes A Good Tester - Expert Views 17

2.4 Personality of Software Testers and Debuggers 18

2.5 Personality of Programmers . 21

2.6 Personality of Software Engineers 22

2.7 Other Human Factors of Software Testers 25

2.8 Performance Assessment of Software Testers 27

2.9 Performance Assessment of Other IT Practitioners 28

2.10 Summary . 30

3 Background 32

3.1 Introduction . 32

3.2 Personality . 32

3.2.1 Personality Traits . 33

3.2.2 Personality Theories . 33

3.2.3 Personality Assessment 36

3.2.3.1 Clinical Approach 37

3.2.3.2 Statistical Approach 37

3.3 Performance Appraisal . 48

3.3.1 Approach to Performance Appraisal 49

3.3.2 Scale Types . 49

3.3.3 Scale Labels . 50

ix

CONTENTS

3.3.4 Appraiser (Who will appraise the performance?) 52

3.4 Summary . 58

4 Research Method 60

4.1 Introduction . 60

4.2 Research Questions . 61

4.3 Research Process . 62

4.4 Research Design . 64

4.4.1 Survey . 66

4.4.2 Quasi Experiment . 67

4.4.3 Case Study . 67

4.5 Participants . 67

4.6 Recruitment . 68

4.7 Instruments and Tools . 70

4.7.1 Information Statements 72

4.7.2 Personality Assessment Instruments 73

4.7.3 Software Testing Performance Assessment Instruments . . 74

4.7.4 Data Collection Tools . 75

4.7.5 Advertisement Tools . 75

4.7.6 Information Extraction Scripts 76

4.8 Analysis Procedure . 76

4.8.1 Qualitative Data . 76

4.8.2 Quantitative Data . 78

4.8.3 Human Research Ethics 78

x

CONTENTS

4.8.4 Pilot Studies . 79

4.8.5 Summary . 80

5 Factors influencing effectiveness of individual software testers 82

5.1 Introduction . 82

5.2 Methodology . 83

5.2.1 Setting the Objectives . 83

5.2.2 Survey Design . 83

5.2.3 Development of Survey Instrument 83

5.2.3.1 Questionnaire Design 84

5.2.4 Evaluation of Survey Instrument 87

5.2.5 Obtaining Valid data . 87

5.2.6 Data Analysis . 88

5.3 Results . 88

5.3.1 Demographic information 88

5.3.2 Employment Information 89

5.3.3 Performance . 92

5.3.3.1 Assessment of Performance 93

5.3.3.2 Influence of programming skill and academic records 95

5.3.4 Factors that influence performance 95

5.3.5 Influence of Automated Tools 99

5.3.6 Experience . 100

5.3.6.1 Saturation of Experience 102

5.3.7 Characteristics of Good Testers 103

xi

CONTENTS

5.3.8 Training/Certification . 105

5.4 Threats to Validity . 106

5.4.1 Internal Validity . 106

5.4.2 External Validity . 107

5.5 Analysis . 108

5.6 Summary . 112

6 Development of effective test teams 113

6.1 Introduction . 113

6.2 Methodology . 114

6.2.1 Setting the Objectives . 114

6.2.2 Survey Design . 114

6.2.3 Development of Survey Instrument 115

6.2.4 Questionnaire Design . 116

6.2.5 Evaluation of Survey Instrument 117

6.2.6 Obtaining Valid Data . 117

6.2.7 Data Analysis . 118

6.3 Results . 118

6.3.1 Demographics . 118

6.3.2 Important Factors for Developing testing team 119

6.3.3 Diversity of the testing team 120

6.3.4 Experience of the testing team 122

6.4 Threats to Validity . 122

6.5 Discussion . 123

xii

CONTENTS

6.6 Summary . 126

7 Job responsibilities of software testers 127

7.1 Introduction . 127

7.2 Methodology . 128

7.2.1 Case Study of Software Testers’ Work 130

7.2.2 Survey of Software Testing Job Advertisements 132

7.2.3 Survey of Bug Descriptions in Bug Repositories 132

7.2.4 Analysis . 135

7.3 Results . 135

7.3.1 Case Study of Software Testers’ Worklogs 135

7.3.2 Survey of Software Testing Job Advertisements 149

7.3.3 Survey of Bug Descriptions in Bug Repositories 153

7.4 Threats to Validity . 155

7.5 Discussion . 157

7.6 Summary . 159

8 Personality Traits of Software Developers 160

8.1 Introduction . 160

8.2 Methodology . 161

8.2.1 Setting the Objectives . 161

8.2.2 Survey Design . 162

8.2.3 Development of Survey Instrument 162

8.2.4 Questionnaire Design . 163

xiii

CONTENTS

8.2.5 Evaluation of Survey Instrument 164

8.2.6 Obtaining Valid Data . 164

8.2.7 Data Analysis . 165

8.3 Results . 165

8.3.1 Demographic Information 165

8.3.2 Personality Distribution 168

8.3.3 Tests of Normality . 169

8.3.4 Internal Consistency . 170

8.3.5 Hypothesis Testing . 171

8.3.6 Effect Size . 171

8.3.7 Power Analysis . 172

8.3.8 Comparison with The General Population 173

8.4 Threats to Validity . 173

8.4.1 Threat to Internal Validity 173

8.4.2 Threats to External Validity 174

8.4.3 Threat to Construct Validity 174

8.5 Discussion . 175

8.6 Summary . 176

9 Influence of personality traits on software testing 178

9.1 Introduction . 178

9.2 Experiment Design . 179

9.2.1 Assessment of Personality 179

9.2.2 Assessment of Effectiveness in Software Testing 180

xiv

CONTENTS

9.2.2.1 Assessment Metrics 181

9.2.2.2 Assessment of Overall Effectiveness 184

9.2.2.3 Validation of The Instrument 185

9.2.3 Research Question . 185

9.2.4 Variables . 186

9.2.5 Hypothesis . 187

9.2.6 Participants . 188

9.2.7 Experimental Procedure 188

9.2.8 Analysis . 189

9.3 Results . 190

9.3.1 Demographic information 190

9.3.2 Population distribution . 191

9.3.3 Correlation Between Personality Traits and Effectiveness in

Testing . 192

9.3.4 Hypothesis Testing . 193

9.4 Threats to Validity . 195

9.4.1 Threats to External validity 195

9.4.2 Threats to Internal validity 195

9.4.3 Threats to Construct validity 196

9.5 Discussion . 196

9.6 Summary . 198

10 Performance Appraisal of Software Testers 199

10.1 Introduction . 199

xv

CONTENTS

10.2 Methodology . 200

10.2.1 Setting the Objectives . 201

10.2.2 Survey Design . 201

10.2.3 Development of Survey Instrument 201

10.2.4 Questionnaire Design . 202

10.2.5 Evaluation of Survey Instrument 203

10.2.6 Sampling to Obtain Valid Data 203

10.2.7 Data Analysis . 204

10.2.8 Proposed Performance Appraisal Form (PAF) 204

10.3 Results . 207

10.3.1 Demographic Information 208

10.3.2 State of Practice . 209

10.3.2.1 Current performance appraisal approaches for soft-

ware testers . 209

10.3.2.2 Suggestions on how software testers’ performance

can be appraised 212

10.3.3 Feedback on Proposed PAF 216

10.4 Threats to Validity . 222

10.5 Discussion . 223

10.6 Summary . 225

11 Toolset 227

11.1 Introduction . 227

11.2 Rationale . 227

xvi

CONTENTS

11.3 Toolset . 228

11.3.1 Website 1: Online Survey of Human Factors Influencing

Software Testing and Testing Teams 230

11.3.2 Website 2: Online Worklog Collection 234

11.3.3 Website 3: Performance Appraisal Form (PAF) Validation 243

11.3.4 Website 4: Online Personality Assessment 247

11.4 Summary . 251

12 Discussion 257

12.1 Introduction . 257

12.2 Analysis of key findings . 257

12.3 Findings in relation to the research questions 265

12.4 Threats to Validity . 268

12.4.1 External Validity . 268

12.4.2 Internal Validity . 268

12.4.3 Construct Validity . 269

12.4.4 Conclusion Validity . 270

12.5 Lessons Learned . 270

12.5.1 Participant Recruitment 271

12.5.2 Low Response Rate . 271

12.5.3 Invitation Email . 272

12.5.4 Consent Collection . 272

12.5.5 Questionnaire Length . 273

12.5.6 Nature of Participation . 274

xvii

CONTENTS

12.5.7 Motivation . 275

12.5.8 Analysis of Data . 275

12.5.9 Process of Ethics Approval 276

12.5.10 Data Security . 276

12.6 Summary . 277

13 Conclusions 279

13.1 Introduction . 279

13.2 Research Summary . 279

13.3 Research Contributions . 281

13.3.1 Software Testing Research 282

13.3.2 Software Testing Practice 282

13.4 Limitations . 283

13.5 Future Research . 284

13.5.1 Validation of Proposed Performance Appraisal Form . . . 284

13.5.2 Influence of Personality Traits on Software Testers’ Perfor-

mance . 285

13.5.3 Influence of Conscientiousness on Effectiveness in Software

Testing . 285

13.5.4 Detailed Study of Software Testers’ Unit Tasks 286

13.5.5 Association of Software Testing Unit Tasks and Personality

Traits . 286

13.6 Summary . 286

xviii

CONTENTS

References 288

Appdx A 309

Appdx B 318

Appdx C 333

xix

List of Tables

2.1 Studies Related to the Effect of Personality on Debugging and

Testing . 20

3.1 MBTI Description . 38

3.2 SFPQ factors and facets . 39

3.3 16PF factors . 40

3.4 NEO PI-R Domain and Facets [88] 41

3.5 Different number of performance lables [92] 50

3.6 Pros and cons of different appraisers 52

3.7 Correlation among different ratings 55

3.8 Different rating errors . 58

4.1 Quantitative data analysis . 81

5.1 Country (Question 2.2) . 89

5.2 Main Job Responsibilities (Question 2.2) 92

5.3 Compared to an “average” tester, the best software tester you have

worked with is... (Question 3.6) 94

xx

LIST OF TABLES

7.1 Description of research methods and strategies 130

7.2 Research summary . 137

7.3 Summary of case study . 143

7.4 Summary of job descriptions . 149

7.5 Summary of bug descriptions . 154

8.1 Gender and nationality of the participants 166

8.2 Tests of Normality . 169

8.3 Cronbach’s Alpha . 170

8.4 Population distribution . 172

9.1 Description of Injected Bugs and Comparison with Knuth’s Errors

and Eisenstadt’s Bug War Stories 182

9.2 Variables . 186

9.3 Population Distribution . 191

9.4 Tests of Normality . 192

9.5 Correlations (N = 48) . 193

9.6 Multivariate Tests . 194

9.7 Results of T-Test . 195

10.1 Gender and nationality of the participants 208

10.2 Performance criteria with respective frequency of occurrence . . . 216

10.3 Comments on relative weight assignment 221

10.4 Feedback on proposed PAF and corresponding modifications . . . 225

11.1 List of documents in web site 1 235

xxi

LIST OF TABLES

11.2 List of documents in web site 2 253

11.3 List of documents in web site 3 254

11.4 List of documents in web site 4 256

xxii

List of Figures

4.1 Research process . 65

5.1 Age Ranges . 90

5.2 Educational Information (Question 1.4) 90

5.3 : Employment Type (Question 2.1) 91

5.4 : Experience (Question 2.3) . 91

5.5 Responses to “Performance varies a lot from tester to tester” (Ques-

tion 3.1) . 93

5.6 Responses on “Factors important in measuring performance of soft-

ware testers” (Question 3.2) . 95

5.7 : Responses to question “Do you think good programming skills

help to improve performance as a tester?” (Question 3.4) 96

5.8 Responses to question “Academic record is a good predictor of

performance of software testers” (Question 3.5) 96

5.9 Responses on “Qualities Influencing Performance of Software Testers”

(Question 3.3) . 98

xxiii

LIST OF FIGURES

5.10 : Responses on “Performance grows with Experience” (Question

5.1) . 102

5.11 Responses on “Performance is Saturated after some experience”(Question

5.2) . 103

5.12 Responses on “Characteristics of good software Tester” (Question

6.1) . 104

6.1 Rank of important factors (Question 8.1) 119

6.2 Level of agreement on whether all members should be good team

players (Question 8.2) . 120

6.3 Level of agreement on whether all members should be good testers

(Question 8.3) . 121

6.4 Level of agreement on different type of diversity (Question 8.5) . . 122

6.5 Level of agreement on “A test team performs better when they have

experience working as a TEAM, rather than gathering experience

as individuals” (Question 8.6) . 123

8.1 Type of employment . 167

8.2 Experience . 167

8.3 Personality distribution . 168

9.1 Occurances of different cyclomatic complexity 181

9.2 Demographic information of the participants 190

10.1 Responses on performance appraisal practice 210

10.2 Responses on “How performance of software testers is appraised” 211

xxiv

LIST OF FIGURES

10.3 Responses on “Do you think the form is appropriate for perfor-

mance appraisal of software testers?” 217

10.4 responses on “Do you think the dimensions considered in this form

are sufficient to assess the performance of a software tester?” . . . 219

10.5 Responses on “Do you think the interpretation of overall score is

appropriate?” . 220

10.6 Overall understanding of the performance labels 220

10.7 Responses on “Do you think the personal attributes considered in

dimension7 are sufficient?” . 222

11.1 Three tier architecture . 229

11.2 Screen shot of consent web page (website 1) 231

11.3 Screen shot of consent web page (website 1) 232

11.4 Data Model of website 1 . 234

11.5 Screen shot of registration web page (web site 2) 236

11.6 Screen shot of Login web page (web site 2) 238

11.7 Screen shot of worklog submission web page (web site 2) 240

11.8 Screen shot of edit old jobs web page (web site 2) 241

11.9 Screen shot of message exchange web page (web site 2) 241

11.10Data model of website 2 . 242

11.11Screen shot of login web page (web site 3) 244

11.12Screen shot of demographic and general survey web page (web site

3) . 244

11.13Screen shot of PAF web page (web site 3) 245

xxv

LIST OF FIGURES

11.14Screen shot of feedback web page (web site 3) 246

11.15Data model of website 3 . 247

11.16Screen shot of consent web page (web site 4) 248

11.17Screen shot of demographic survey web page (web site 4) 249

11.18Screen shot of personality assessment items web page (web site 4) 250

11.19Screen shot of Comment web page (web site 4) 251

11.20Data model of website 4 . 255

12.1 Number of responses compared to questionnaire length 274

xxvi

Chapter 1

Introduction

1.1 Introduction

This thesis describes our research to address different issues in software testing.

These include the understanding of the unit tasks performed in this role, human

factors influencing performance in this role, effect of personality traits on soft-

ware testing performance and better understanding of performance appraisal of

software testers. This chapter presents the background and motivation of this

research followed by problem statement and a brief description to the research.

The significance of this research is also illustrated in this chapter. The chapter is

concluded with the organization of the rest of the thesis.

1

1.2 Background

Software testing is an essential part of software development. It refers to the

activity to verify the developed software meets expected requirements. The soft-

ware testing activities are not necessarily restricted to executing the developed

software to identify defects in it, the process also includes planning, designing,

reporting, reviewing, ensuring defects are fixed and so on. The activities are

primarily important to guarantee that the software satisfies the agreed upon re-

quirements. This is also important to develop and deliver reliable and better

quality software. The software quality is attributed to the factors such as cor-

rectness, reliability, usability, maintainability, reusability, testability, and so on.

If testing is performed well in development of the software, the developing or-

ganization can gain certain level of confidence on the delivered software product

which also reduces their maintenance budget.

Due to the many benefits of software testing, it has become a business indus-

try itself. According to an article published in “RedOrbit.com” on 11th March,

2009, testing service will continue to rise at a rate of 9.5% from 2008 to 2013 and

will be an $56 billion industry by 2013 [1]. Software testers are key players in the

testing groups, companies and the testing industry as a whole. From analysing

requirements and developing and/or selecting best approach for testing to inter-

preting and communicating the test results, software testers play the key role.

According to Mr Kris Gopalakrishnan, the Infosys CEO, due to the increased

responsibilities of software testers and the importance of their role on developing

reliable software, software testers have become essential part of software devel-

2

opment management. In his own words- “Today the tester has won a seat on the

product management table” [2].

1.3 Research Motivation

A software tester is a person who tests software before release and helps to increase

the reliability of the software product by reporting bugs and getting them fixed.

According to the text books on software testing and the job advertisements we

see that software testing responsibilities include tasks such as “test planning”,

“test execution”, “reporting the results”, “bug advocacy” and so on. There is

however no empirically validated list of unit tasks performed as part of software

testing. Although this list may not always be static, such a list is important to

get an idea of this role. This lack of clear information about software testers’ job

responsibilities impedes research on finding who is best suited for this role. For

example it is impossible to assess who is best suited for the role of software tester

without knowing what testers actually do.

According to the Guide to the Software Engineering Body of Knowledge [3],

testing related activities are classified in seven broad categories: planning, Test-

case generation, test environment development, execution, test results evaluation,

problem reporting/Test log and defect tracking. However, what the unit tasks

are that make up each of these broad categories of actives is not clear. Although

a compiled list of the unit tasks of this role is unavailable, from the available

information it is clear that this role is different to other practitioners involved in

the software development process. While software programmers are largely con-

3

structive, in that they design and “build” something that meets customer require-

ments, testers’ job is in a sense destructive in that they attempt to “break” the

software constructed by programmers. This needs a destructive approach towards

the module to be tested. The destructive approach is to construct best quality

product possible. Thus it is constructive in a broader sense. The alternative ap-

proach of the profession raises a question whether certain human characteristics

have any influence on the effectiveness in this role. Those human characteristics

might also be different to other software development practitioners.

According to Weinberg [4] and Pressman [5] the performance of software en-

gineers is somehow dependent on their individual characteristics. Pressman said

it is “innate human traits”, and Weinberg suggested that it is “Combinations

of skills and personality traits” that influence the effectiveness of a software en-

gineer. However, little research has been conducted on the influence of human

characteristics on the effectiveness of software testers. The majority of software

testing research has been devoted to the enhancement of testing processes, test

criteria, and to the development of new techniques and tools for different types

of testing [6]. The trend of the research in this field implies a key assumption on

the part of those researchers - that software testing should be, for the most part,

a systematic, standardised and automated process . If so, then the key abilities

required for a software tester are to be able to use the techniques, as implemented

in automated tools - beyond that, the only insight and creativity required is to

determine which technique or tool is most appropriate for the testing task.

On the other hand, a relatively small number of practitioners and researchers

have considered testing as a creative human activity. According to Kaner, Bach,

4

and Petticord [7], manual and automated testing complement each other; au-

tomated testing cannot substitute for manual testing, as human variability and

insight can reveal bugs that cannot be found automatically, while automated

testing can “extend the reach” of the tester to make more comprehensive check-

ing possible than would be feasible manually. According to Armour good testers

have a nose for testing [8]. Their intuition drives them in testing. Iivonen et

al. [9] found that highly performing software testers exhibit thoroughness consci-

entiousness, patience, persistence. Shoab et al. [10] found that extraverts were

good at exploratory testing. Beer and Ramler [11] found that experienced soft-

ware testers possessed increased domain knowledge that helped them in their job.

Similarly, Itkonen et al. [12] concluded that experience is important in software

testing. Capretz et al. [13; 14] suggested software testers should have thorough

and acute attention to details and good organizational skills. Shah and Har-

rold [15] and Rooksby [16] found that testing is considered a boring job. Therefore

software testers should possess the quality of dealing with boring and sometimes

monotonous jobs. There is, overall, support in the literature for a view of soft-

ware testing as a task critically dependent on the personal characteristics of the

tester.

The limited available research reinforces the assumption that different human

factors might have strong influence on the effectiveness of software testing. Most

of these human characteristics are strongly connected with personality traits.

Influence of those characteristics suggests that certain personality traits have

similar influence on the performance of software testers.

To identify the personal characteristics, such as personality, that influence

5

the performance of software testers, a validated and reliable instrument to as-

sess software testers’ performance is an essential prerequisite. However, from an

extensive search of relevant literature we did not find any widely accepted and

well established performance appraisal method for software testers. We found

that Kaner [17] has advocated for qualitative assessment of bug reports and has

discouraged to consider number of bugs found by software testers to assess their

performance. These are useful criteria to assess software testers’ performance

against, however no empirical data is available on how these can be implemented

to assess software testers in practice. This indicates a gap in research relating to

performance of software testers.

From the above discussion it is evident that there is a lack of information

on software testing unit job responsibilities. However, the goal of the role indi-

cates an alternative approach is necessary for successful software testing. There

is limited research available on the influence of different personal characteristics

of software testers on their effectiveness. There is also a deficiency of an accepted

instrument for software testers’ performance assessment. All these encouraged us

to design this research. The research is designed to enhance our knowledge on

software testing unit job responsibilities, to find the human factors that influence

software testers’ performance and to find specific nature of such influence of per-

sonality traits on varying level of tester performance. We also aimed to find if

the personality profiles of software testers differed significantly from other prac-

titioners involved in software development. We also propose a novel Performance

Appraisal Form (PAF) for software testers and attempt to refine the form based

on feedback on the form collected from software development project managers.

6

1.4 Research Problem

Software testing refers to executing the software to verify if it meets specified

requirements. The ultimate goal of software testing is to ensure reliability of the

software. In achieving the goal software testers do not only rely on executing

the software. Their role begins from analysing requirements even before the

software is developed and continues with the software development. Along with

finding bugs using efficient tools and technologies and reporting detected bugs in

precise way, software testers also ensure the detected bugs are fixed. However, the

diversity of the responsibilities of this role has not been analysed or documented

that holds back further research on this profession.

From the limited empirical knowledge on the diversity of the role of software

testers it is assumed that the person carrying out this role is critically important

for the success in this role. The limited available research also indicates that

certain human characteristics are influential to the success of this role. Most of the

characteristics are related to personality. However, the effect of personality traits

on the effectiveness of software testing is unknown. Also whether software testers

possess certain personality traits that are distinct from others is unidentified.

To find the influence of human characteristics such as personality on the ef-

fectiveness of software testing, a means to distinguish among different levels of

effectiveness is necessary. However, to our knowledge there is no well accepted

standard instrument to assess effectiveness of software testers.

7

1.5 Research Significance

The research is designed to address the research issues outlined in Section 1.4.

The research is divided in a survey on the factors affecting software testers’ per-

formance and influencing software test team development, a survey of collecting

information on software testing job responsibilities, a survey of software testers’

personality profiles, a survey of state of practice of performance appraisal of

software testers, and a quasi- experimental study investigating the effect of per-

sonality traits on the effectiveness of software testing. As part of the research

we also proposed and refined a Performance Appraisal Form (PAF) for software

testers based on the feedback from software project managers.

The research is designed to investigate different aspects of software testing that

should enhance our knowledge about this profession. The research is significant

for both software testing research and practice.

1.5.1 Software Testing Research

We are unaware of any agreed upon list of responsibilities of software testers. Such

a list is important to design research related to software testers. The refined list

of software testing job responsibilities should help researchers defining the scope

of the role and to draw the line between software testing and other closely related

software development roles. This should also help the research finding who is

best suited for the role.

To find the factors that influence software testers’ performance a measure to

assess the performance is needed. We found that Kaner [17] proposed detailed

8

assessment approach for software testers’. However, the proposed approach of

performance assessment may not be practical in research context.We believe,

the information on how software testers’ performance should be assessed and

the proposed Performance Appraisal From (PAF) for software testers may help

research in software testing requiring to evaluate testers.

1.5.2 Software Testing Practice

The refined list of software testing job responsibilities should help employers

to plan and design roles for software testers. This should also give young IT

graduates who want to take software testing as their career, an idea of the role.

If specific personality traits which have influence on the effectiveness of soft-

ware testing can be formed, the traits to be looked for while recruiting software

testers can be suggested. This should help the recruitment process of this pro-

fession which still relies on the experience and judgment of the recruiter. This

should also help young IT graduates to select appropriate IT career for them.

The proposed Performance Appraisal Form (PAF) of software testers can be

used in software development organization to assess software testers’ performance

for promotion, remuneration and other organizational purpose.

1.6 Research Contributions

This research has made several contributions in the discipline of software testing

from research and industry perspective. Some of the contributions are described

9

as follows:

• From the review of literature we identified several “gaps” in research relating

to software testing. We designed research studies to address some of these

gaps.

• We proposed refined list of software testing unit tasks will help young grad-

uates to get better understanding of this role. This will also help recruiters

to design job responsibilities for testers and researchers to design detailed

research studies.

• Several factors were identified to be influential to the performance of soft-

ware testers. The empirical evidence of the factors to be influential to the

performance of software testers will encourage researchers to investigate

these influences in more details.

• We found personality traits such as open mindedness, extraversion and

conscientiousness are connected with performance of software testers. The

personality traits found to be associated with the performance of software

testers, will help designing research studies to find the specific effect of each

personality traits and also will help young IT professionals in selecting their

career.

• We proposed and refined a Performance Appraisal Form (PAF) for software.

The form can be used in industry context for performance appraisal of

software testers and in research context requiring assessment of testers’

performance.

10

1.7 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 presents our review of literature related to personality and other

human factors of software testers, personality of other software development prac-

titioners and notes from industry and academic experts on software testers. This

chapter also reports our review of relevant literature in performance evaluation

of software testers and other software development practitioners.

Chapter 3 contains background knowledge on personality, personality traits,

personality theories, personality assessment tests and approaches to performance

appraisal of employees.

Chapter 4 gives an overall description of our research. The chapter details the

formal research questions investigated through different research studies reported

in subsequent chapters, the research methodologies adopted for different research

studies and the instruments used.

Chapter 5 partially describes our preliminary multi part survey, The part of

the survey reported in this chapter focuses on factors influencing individual soft-

ware testers’ performance and reports the results. The survey contained question-

naire on different factors such as automation tools and techniques, experience,

characteristics, training/certification and performance of software testers. The

participants gave valuable opinion on the influence of those factors on testing

and listed some more factors that they thought important.

Chapter 6 describes the second part of the peliminary survey reported in last

chapter. This part of the survey focuses on software testing team development.

11

We collected opinions of the participants on the influence of different factors,

necessity of team diversity and the role of experience on software testing team

development.

Chapter 7 describes a triangulated research study to find software testers’

job responsibilities and reports the findings. In this research study we adopted

different research methodologies to collect information on software testing unit

tasks. The sources of information include worklog of software testers, job ad-

vertisements and bug reports collected from open bug repositories. We analysed

the collected data from different sources to get idea of software testing unit job

responsibilities.

Chapter 8 reports the results of a survey conducted to find personality traits

of software testers. The personality profiles of software testers are compared

to other software development practitioners and the significant differences are

reported in this chapter.

Chapter 9 describes a quasi experiment conducted to find influence of person-

ality traits on the effectiveness of software testing. The big five factor of person-

ality is compared to different metrics of testing performance and the association

found are reported in this chapter.

Chapter 10 presents the results of a survey of state of practice of performance

appraisal of software testers. The survey also collected feedback on a proposed

Performance Appraisal Form (PAF) for software testers. The proposed form was

refined based on the obtained feedback as described in the chapter.

Chapter 11 lists and details the web based tools that are used for data collec-

tion for the surveys conducted as part of this thesis. This chapter contains the

12

design details of all the web based tools we used.

Chapter 12 summarizes and discusses our finding of the series of research

studies conducted as part of this thesis.

Chapter 13 concludes the thesis with future research plans.

13

Chapter 2

Related Work

2.1 Introduction

This chapter presents the findings of our review of research related to this thesis.

This begins with a review of the role of software testers. We also review the pub-

lished opinions of expert practitioners and academics on who is a good software

teters. We present review of research relating to personality of software testers.

We then review the research related to personality and human factors of pro-

grammers and the broader software engineering professionals. We then broaden

our focus and include research on other human factors of software testers. Finally

we present our review of research related to performance of software testers and

programmers.

14

2.2 What Do Software Testers Do

The concept of software testing refers to the job of finding faults, checking the

fitness and ensuring a certain level of reliability of software applications before

deployment. Turing’s article [18] published in 1950, was one of the first written

notes on program testing that proposed to differentiate the program behaviour

with a reference system by “an investigator” (a tester). This preliminary concept

of testing is analogous to what we find in the classic book “The Art of Software

Testing” where Myers [19] describes that testing is a process of executing the

program with an intention to find faults.

The primary focus of software testing is to find faults. However, with the

growth of software testing this has extended from finding faults to prevention

of faults. Gelperin and Hetzel [20] have classified five different stages of testing

growth according to the varying focus. Until 1956, testing was mostly debugging

oriented. Baker differentiated testing from debugging [21]. From 1957 - ’78, test-

ing was more about demonstration that the program satisfies the specification.

Two later periods of testing (1979-1982 and 1983-1987), called destruction and

evaluation oriented periods respectively, were more focused on finding faults. The

last and ongoing period of testing started from 1988 is referred to as prevention

oriented where the main goal of testing is to prevent faults.

Testing now includes a number of other tasks along with running the program

to find faults. Kaner [7] suggests that the software testers’ role should include

versatile tasks from ensuring some standard process of testing to being a cus-

tomer advocate. The first testing maturity model, called TMM, was published

15

by Illinois Institute of technology [22]. The model aligned with Beizer’s [23]

mental model of testers, mentions five different levels of maturity ranging from

level 0 where testing and debugging are indistinguishable to level 4 where test-

ing supports development of a low risk product. TMM levels are parallel to the

capability maturity model of software development CMM [24]. Kasse [25] has

described the job responsibilities of quality assurance practitioners according to

the CMMI standard. Along with testing the list of responsibilities includes dif-

ferent jobs from assisting managers in developing and maintaining quality goals

to serving as internal customer representative in front of development team. Al-

though process standards and the software testing books mention different roles

of software testers, a defined set of such roles is still missing.

Capretz and Ahmed [13; 14] collected the job responsibilities mentioned in dif-

ferent job advertisements for different software engineering roles including soft-

ware testing and connected these responsibilities with required human skills.

They suggested that software testers should have attention to details and possess

good organizational skills. These are common in sensing and judging type peo-

ple, as categorized by the MBTI personality assessment tool [26]. Capretz and

Ahmed’s [13; 14] approach was a good attempt to collect the unit job responsibil-

ities of software testers. However, most of the advertised responsibilities are

related to the custom needs of the job provider. Such collection for a portion

of time may not guarantee all actually desired and practiced responsibilities of

testers. This lack of clarity on software testing job responsibilities impedes re-

search on finding who is best suited for the role. While managing the testing

process and ensuring standards of testing may be more effectively performed by

16

a person who is more disciplined, getting bugs fixed and preventive teaching to

developers require good communication skills. As the testing community lacks an

generally agreed upon set of activities required for the role, the question “who is a

good software tester?” is to some extent unanswerable and as such, still remains

unanswered.

2.3 What Makes A Good Tester - Expert Views

A number of experts have expressed their views on the desired characteristics of

software testers. According to Armour [8], good testers have a “nose” for testing

and they have an intuition that helps them to determine what and how to test.

Pettichord [27] listed a number of distinct characteristics of programmers and

software testers. According to him, software testers should tolerate tedium, be

sceptical and be comfortable with conflicts, while programmers should automate

tedium, be believers and avoid conflicts.

Pol [28] and Black [29] suggested some characteristics of software testers.

While Pol suggests that software testers should be creative, accurate and strict

in their methodical approach, Black thinks that software testers are “professional

pessimists” who possess the curiosity of looking for faults. Weyuker et al. [24]

have outlined general and technical skills required for a software tester based on

the practices followed in AT&T. However, some of the skills such as good oral

and written presentation skill, planning and design skills seem to be important

for all who plan to take software testing as their career.

17

According to Burnstein [30], good communication skills, problem solving and

team playing capability are important for software testers. The author also sug-

gested software testers should be creative and open to new challenges.

2.4 Personality of Software Testers and Debug-

gers

Most software testing research, to date, has emphasized on the technical side of

the discipline [6]. Research investigating human attributes such as specific per-

sonality traits of software testers is thin on the ground. Until recently, research

investigating the influence of personality of software testers on their effectiveness

was uncommon. However, we find a body of research into personality impacts

with software engineers in general. The impact of personality on the area of

programming has also gained little attention to date. Similar research with de-

bugging or testing, however started much later.

In 2007, Da Cunha and Greathead [31] examined the connection of MBTI

personality types of students with the ability in a debugging task. Due to sample

size drawbacks they could not consider all four dichotomies of MBTI. They found

that logical and ingenious people categorized by MBTI were good at code review

task. While Da Cunha and Greathead used MBTI, Almodaimeegh et al [32]

assessed the personality traits of programmers with locus of control. Locus of

control is described as the extent to what one believes that an event is the result of

external factors than his/her own effort [33]. They also investigated the influence

18

of social learning style on debugging skill measured with code comprehension,

bug detection and bug repair test. Their study revealed that although there is no

significant relation between locus of control and debugging skill, individual social

learning style and experience are influential on debugging performance. Although

debugging can be viewed as a part of testing, testing includes many other tasks

besides debugging. Thus the studies focusing on debugging do not give the full

picture of software testing and personality impact.

Shoaib et al. [10], studied the effect of personality traits of students, assessed

with MBTI, on the effectiveness of exploratory testing. They concluded that

extrovert personality traits have a positive correlation with effective exploratory

testing. Exploratory testing is a new concept in testing where the tester learns

as the testing progresses and utilizes the learned experience while running tests.

It is defined by James Bach [34] as “simultaneous learning, test design and test

execution”. Learning expressed as experience is the core point of exploratory

testing. However, this is a specialized testing technique and, based on the findings,

while it can be predicted that extraverts can be good exploratory testers, whether

extraverts will be good testers in general remains an open question.

Capretz and Ahmed [13; 14] collected required soft skills listed in job adver-

tisements for IT practitioners and hypothesized what soft skill is required for

what IT role. The authors suggested that sensing and judging people assessed

with MBTI will be good at software testing based on the type of soft skills re-

quired for them. These two types of MBTI are equivalent [35] to openness to

experience and conscientiousness of big five factor model. Rehman et al. [35]

mapped the soft skills required for software testers with big five personality traits

19

Table 2.1: Studies Related to the Effect of Personality on Debugging and Testing
Study Iden-
tifier

Instrument
used for
personality
assessment

Area Traits having pos-
itive influence

[31] MBTI Debugging skill Logical and inge-
nious

[32] I-E scale
and the
learning
style inven-
tory

Debugging skill Individual social
learning style and
experience

[10] MBTI Exploratory testing
skill

Extraversion

[13; 14] MBTI Software Testers
(The study also
included other
stakeholders)

Sensing and judg-
ing

and suggested that openness to experience and conscientiousness are important

for the role of software testers. These suggestions were based on the experience

and perception of the authors. No empirical data was provided.

The outcomes of the studies related to debugging and testing performance are

summarized in the Table 2.1.

Most of the studies described in Table 2.1 employ MBTI for personality as-

sessment. While MBTI is observed to be most commonly used in this kind of

research, there are some debates about the reliability of the test [36; 37; 38].

The test suffers from the lack of any negative judgment and each of the types is

described in an acceptable and glib manner. The descriptions are more general

and any description can fit with a wide range of people. This lack of specialized

assessment of the test is known as the Barnum effect [36]. Many other limitations

of the test are described in [37]. Bjork and Druckman [38] have questioned most

20

of the studies that has used MBTI. The authors also suggest investigating the

utility of MBTI in an organizational setting more than has currently been done.

The above studies illustrate that the MBTI test is not widely accepted among the

psychologists’ community. Thus, the limited literature on the effect of personal-

ity on testing and debugging ability and the use of a controversial instrument in

those limited studies found in the literature, do not help us to predict who can

be an effective software tester which demonstrates potential for useful insights

investigating the issue.

2.5 Personality of Programmers

There is a body of research associating personality types with the effectiveness of

programming. Until early 2000, most of the research of this category investigated

whether a specific personality trait measured with MBTI was over represented

in programming community. The studies of Sitton and Chmelir [36], Bush and

Schkade [12], Lyons [39] and Chandler et al. [40] all are examples of this kind

of research. Later the research included the impact of the personality types on

performance.

Cegielski and Hall [41] explored the predictive power of personality along with

theoretical value belief and cognitive ability on the performance in object oriented

programming. Personality in this study was measured with self esteem, self ef-

ficacy, locus of control and neuroticism. They found that personality type was

a predictor of performance in object oriented programming. Darcy and Ma [42]

used five factor model of personality to find the influence of personality on the

21

performance of students as programmers. The participants of the study were

given a programming task. They concluded that there was no significant differ-

ence in personality between the group that completed the task and the group

that did not complete the task.

There has been some personality related research undertaken on code com-

prehension and software design. Arochiam et al. [43] investigated the connection

between gender and personality traits measured with Rajan’s 12 point question-

naire and object oriented code comprehension skill measured with a standard

questionnaire in C++. They found that male student participants with coop-

erativeness and high emotional ability did well in code comprehension. Their

findings cannot be directly compared with Greathead’s [44] observation that in-

trovert people are good at code comprehension, as the later study employed MBTI

personality types for personality assessment. Ahmed et al. [45] studied the con-

nection of MBTI personality types of students with their performance in software

design course. They found that judging and thinking type students did better in

this course.

2.6 Personality of Software Engineers

There is also some research analysing the personality traits of software engineers

in general. Capretz [46] administered the MBTI personality assessment test on

100 software engineers ranging from student to professional level. They found

that ST, TJ and NT types were over represented in the sample. The author also

suggested that ET type would be better for system analyst, INTP for program-

22

ming and E/ISTJ for managing, and TP for technical. In his further studies

with Ahmed [13; 14], Capretz associated different required soft skills of software

engineers collected from job advertisements with MBTI personality types and

suggested different personality types suitable for different roles of software engi-

neering.

Sach et al. [47] recently analysed five research studies conducted from 1985 to

2010 using MBTI to find the most common personality types of software engi-

neers. All the studies reported similar findings. The combined results suggested

that certain MBTI types are overrepresented among software engineers. Those

types are different to the general population of the United States. More specif-

ically, thinking and judging types assessed with MBTI were over represented

among software engineers. A systematic literature review on personality research

with software engineers conducted by Cruz et al. [48], summarizes the body of re-

search on personality of software engineers using different personality assessment

tests. They reviewed 42 research studies and found the majority of personal-

ity research was done in pair programming followed by team effectiveness. The

MBTI test was used in most of the reviewed research. The authors suggested

that collaborative research work between software engineering and psychology

researchers is required on this topic.

Sodiya et al. [49] prepared a general test that assesses the five personality

factors along with cognitive style with a standard questionnaire and suggests the

software engineering role that best suits the personality. Feldt et al. [50] studied

the effect of personality of 47 professional software engineers, measured with

50 item IPIP inventory on the attitudes of software engineers and found that

23

there are different clusters of personalities among them and each cluster have

significant correlation with attitude. Clark et al. [51] assessed the personality

of a number of IT students and professionals with Adjective Check List (ACL)

and found that both exceptional students and professionals are conscientious,

however, exceptional students are introvert while exceptional IT developers are

extravert. The difference in type between exceptional students and developers

raises an issue that exceptional students might not be exceptional developers

later.

The diversity of personality in software engineering teams has also been inves-

tigated in several studies. In their series of ethnographic studies Karn and Cowl-

ing [52; 53] observed the team interactions of small software engineering teams of

students and assessed the personality of each team members with MBTI person-

ality assessment test. They found that heterogeneous teams (i.e. teams having

diverse personalities among their members) showed better performance. This is

similar to the findings of Pieterse et al. [54] that states personality diversity and

team ability have positive impact on team performance. They also mentioned

that team diversity helped the team to become productive sooner. The higher

productivity of heterogeneous teams was also supported by the study of Rutherfo-

ord [55]. However, the claim that diverse teams have a positive influence on team

performance, contradicts with the study conducted by Gorla and Lam [56] on 90

IS professionals from 20 teams. They found some significant relations of differ-

ent roles among the team with specific personality traits measured with Keirsey

temperament sorter. They also concluded that there is no significant influence of

diversity on the team performance. Peslak [57] conducted a pilot study and con-

24

cluded that higher level of extraversion, thinking, and judging personality type

are positively related with team success.

Misra et al. [58] investigated the effect of 14 factors on the success of agile

software development practices with a survey. Personal characteristics of the ag-

ile team members were one of those. They found that personal characteristics

have a positive association (although not strong) on the success of agile software

development practices. In the open ended responses to their survey they found

that a number of personal characteristics were considered important by the re-

spondents. Those include: having intellect, taking responsibility, self criticism,

being passionate, and not being perfectionists.

From the above discussion it is evident that there is limited research on the

effect of personality on testing in comparison with research exploring influence of

personality on performance in programming, code comprehension and different

roles in software engineering. There is enough evidence that personality of a

tester might be an important factor in successful software testing. The limited

research in this field encourages researchers to explore this area.

2.7 Other Human Factors of Software Testers

Software testing is a creative human activity. The human attributes that influ-

ence the effectiveness of a software tester is highly important to be investigated

for the improvement of this discipline. Apart from personality, the influence of

other attributes on the effectiveness of software testing that has been investigated

includes experience and organizational issues.

25

Beer and Ramler [11] explored the effect of experience on the effectiveness of

software testing. In their field based study they found that experienced testers

used their domain knowledge to “fill in the gaps” in incomplete and ambiguous

specifications. On the other hand Juha et al. [12] studied 11 software testers to

answer the question “How do testers do it?”. They found that software testers

use a number of techniques and strategies for testing and they do not always

rely on documents. Test execution techniques are strongly based on experience

of the software tester and tests are run in non-systematic fashion. These studies

emphasize the importance of experience in software testing.

Organizational issues in software testing have so far also attracted little at-

tention. In their case study in a company at three different locations, Shah and

Harrold [15] found that testing is considered to be a boring job and that junior

and senior testers have different motivations and attitudes towards software test-

ing. This finding complements the outcome of an ethnographic study conducted

by Rooksby et al. [16], where they found that testing is a boring task. They

found that most of the problems related to testing cannot be dealt with technical

solutions only. Sometimes cooperative practices help to solve these problems.

They also found that software testing problems are mostly organizational and

those should be attempted to solve from organizational or inter organizational

means [59]. Cohen et al. [60] discussed different conflicts in software testing from

organizational and employee’s point of view.

Capretz et al. [61] analysed the soft skills listed in different software engi-

neering job advertisements published across North America, Europe, Asia and

Australia. They found that for software testers having good communication

26

skills was highly required. Good analytical and problem solving skills and or-

ganization skills were moderately sought after in the studied job advertisements.

The authors concluded that employers are not giving much importance to all the

important soft skills needed for software testers.

Over all, there is limited evidence of research on different human attributes

in software testing. The few studies mentioned above explain the attributes of a

software tester such as coping with monotonous job and cooperativeness. These

characteristics of human are related to certain personality traits. The people

having relevant personality traits will exhibit the characteristics and hence will

be suited for the role. The investigation of such characteristics and relevant

personality traits are, therefore, of considerable importance.

2.8 Performance Assessment of Software Testers

To determine the effectiveness of testers some form of performance appraisal of

software testers is necessary. However, not much published research is available

regarding performance evaluation of software testers. Fenton and Pfleeger [62]

suggest to measure efficiency of software testing with the number of bugs found

per KLOC. Grady and Caswell [63] suggest looking for average reported bugs

per working day. Kaner [64] has discussed some of the risky impacts of taking

into account only bug count to measure software testers’ efficiency. According

to Kaner, bug counts would be influenced by other factors like reliability of code

being tested, difficulty of testing the code, testing techniques being used (for

example, exploratory and regression testing will produce different bugs).

27

In a different article, Kaner [17] proposed a multidimensional assessment

method for software testers. He emphasized qualitative assessment. His recom-

mended approach suggests evaluating a software tester for a long time, preferably

on a weekly basis. He suggests taking testers’ plan of testing, execution of tests

and bug reports in to account for evaluation. He suggests the reviewer conducts

small discussions with the software testers regarding their test progress to obtain

information. Kaner’s proposed approach seems to be an effective way of evaluat-

ing testers. However, the effectiveness of this approach is not supported by any

research results. Also, the evaluation is largely dependent on the perception of

the reviewer and such long term evaluation methods might appear to be infeasi-

ble for a number of organizations. The approach is time consuming and required

highly trained managers to successfully conduct the appraisal without any bias.

2.9 Performance Assessment of Other IT Prac-

titioners

In this section we present our review of some approaches that are used for eval-

uation the performance of IT professionals. Killingsworth et al. [65] described a

model to motivate and evaluate information systems staffs. The model is used

by a number of large organizations. In this model an employee is evaluated on

the following five factors:

• Product Quality: Employee’s contribution to the delivered product or ser-

vice quality.

28

• Customer Outreach: Employee’s contribution to maintaining and expand-

ing work with current client and to wining new client.

• Staff Development: Employee’s contribution to enhance individual and

team effectiveness.

• Administrative Efficiency: Employee’s contribution to develop administra-

tive procedures as well as maintaining the procedures with punctuality and

accuracy.

• Fiscal responsibility: Employee’s own financial plan. Employee is also eval-

uated against organization’s financial plan for the employee.

Senior project manager and team leader assess each employee against each of

the five factors. A five point rating scale is used for the assessment. Each factor

accounts for varying weights for the review of the senior manager and the team

leader. For example product quality accounts for 40% of the review for a team

leader and 20% of the review for a senior manager.

Mayer and Stalnaker [66] describe a number of methods that are useful for

selection and evaluation of computer personnel. While most of the methods pre-

sented in their paper are useful for the selection of programmers, very few of

those can be used for evaluation of programmers as well. The authors describe

Dickmann’s [67] Programmer Appraisal Instrument (PAI). In this method pro-

grammers are reviewed by the supervisors on four major areas of performance-

professional preparation and activity, programmer competence, dealing with peo-

ple and adapting to the job. There are a total of 42 questions to assess perfor-

29

mance on those areas. Supervisors rate the programmers with the help of a five

point scale.

42 items are also used in Bairdain’s approach [68]. This approach considers

the following factors: programming knowledge/capability, working style, temper-

ament traits and personal professional items. The ten highly important items of

this approach are related to performance in programming where as the ten least

important items are related to personal-professional attributes.

The last evaluation method described by Mayer and Stalnker is Berger and

Wilson’s [69] Basic Programmer Knowledge Test (BPKT). The test is not spe-

cific to any programming language. The test evaluates the knowledge of the

programmer on the six areas- logic estimation and analysis, flow diagramming,

programming constraints, coding operations, program testing and checking and

documentation. The knowledge is assessed with 100 multiple choice questions.

Powell [70] presented 13 categories with definition for each of the category

to rate programmers and analysts. Rating is conducted with a five point scale.

Powell has proposed a distribution of performance according to his method for a

group of 20 programmers and analysts.

2.10 Summary

Software testing includes a number of tasks, such as executing and reviewing

software, communicating found faults to others, participating in requirements

analysis and so on. However, a comprehensive and widely agreed list of these

30

activities is currently missing. This gap impedes the research investigating char-

acteristics of effective software testers.

The limited literature and the conceptions of the expert professionals suggest

that effective software testers have some specific characteristics. However, such

characteristics have not been linked to personality traits and the desired person-

ality traits for the effectiveness in this role has not been established by research

so far. On the other hand, such research in other, related disciplines, such as

programming, have a long history.

There is no doubt that the advancement of new techniques and tools in soft-

ware testing has helped to enrich the discipline. There is enough evidence that

human factors also have some positive influence on the effectiveness of software

testing. Thus, this kind of research also seeks some attention by the software

testing research community.

To find the characteristics of high performing software testers, we need to

recognize them. Unfortunately a well accepted measure of the performance of

software testers is unavailable. This indicates a gap in the research and practice

of software testing.

The possible benefits of such research into software tester tasks, performance

appraisal and personality impact on testing effectiveness could include: better

understanding of software testing practices; better recruitment of testers; better

development and management of testers; and improved performance overall by

testing and development teams.

31

Chapter 3

Background

3.1 Introduction

Assessment of personality and software testing performance plays an important

role in this research. As such, a knowledge of research and practice in these areas

is necessary to understand and appreciate the motivation and direction of this

research. This chapter provides a foundational knowledge about theories and

practice related to human personality and performance appraisal.

3.2 Personality

Personality is one of the most used words to refer to a person. However, defining

personality is a difficult task. The struggle for a useful definition began with the

authors of first text book on personality, Gordon Allport and Henry Murray [71].

32

The word personality came from the Latin word persona via French. Persona

means a mask that is worn by an actor to portray a particular character. There

have been a lot of approaches to describe personality. Some have said it’s the

personhood or the individuality of a person [72], whereas some have thought per-

sonality is personal charm [73]. According to Haslam [73] personality encompasses

the sort of non intellectual psychological characteristics that are most informative

about an individual and that help to describe the differences between people. It

is also a feature of an individual that is organized and relatively enduring and

that influences the person’s interactions with others and their adaptation to their

social environment.

3.2.1 Personality Traits

The criteria by which people differ from each other are called personality traits.

Conley defined personality traits as- “personality traits constitute very generalized

behaviour patters in response to emotional tendencies” [74]. Traits are represen-

tative factors that are predictive of one’s behaviour patterns, feeling, thinking

and related activities.

3.2.2 Personality Theories

There are a number of theories that have been developed to describe personality.

The Freudian theory states that personalities differ in the amount of psychic

energy and the method of handling it [75]. Some other theories like “trait and

type theory” are developed based on separate characteristics of a person [75].

33

There have been a few theories developed to help in choosing a set of words

that represent personality traits. The first attempt was taken by Allport and

Odbert [73], who took an English-language dictionary containing 550000 words,

and identified about 18000 words defining traits. They refined those words and

ended up having 4500 words. In order to get a smaller list than 4500 trait terms

as listed by Allport and Odbert, Raymond Cattell [76] sorted the words into

cluster of synonyms and near synonyms according to his personal judgement. He

identified 160 such clusters. He used the following two statistical methods to

group similar traits:

1. Correlation coefficient: Correlation coefficient indicates the association be-

tween two variables. It can vary from -1 to +1 [73].

2. Factor analysis: Factor analysis determines patterns within a group of cor-

relation that describes a factor [73].

He found 12 factors after applying correlation coefficient and factor analysis

on the clusters. He added four more terms from his additional studies. Finally

he got 16 personality factors known as 16PF [73].

Using similar techniques as the above, other psychologists derived big five

factors for analysis of personality [74]. These are described below:

1. Extraversion (E) Carl Jung, proposed that person’s libido can flow in one

of two directions-outward and inward. He substituted the concepts of psy-

chic energy and motivation for libido. The dimension he introduced is

Extraversion - Introversion. He concluded that humans can fall into only

34

two categories - extravert or introvert. Later Hans Eysneck introduced a

middle range called ambivert [73].

2. Agreeableness (A) Agreeableness encompasses the expressive quality of ad-

mirable human aspects of personality. People who are high on agreeableness

are helpful, sympathetic, patient, cordial, cooperative. People who are on

the other end of the continuum, however can be cruel and untrustworthy.

3. Conscientiousness (C) Conscientiousness incorporates qualities like hard

working, discipline, dutifulness, well organization, and so on. High con-

scientious people are efficient, organized and dependable. They accomplish

tasks in systematic ways. Low conscientious people, on the other hand are

inefficient, careless and haphazard.

4. Neuroticism (N) This factor covers all the forms of excessive emotionality.

Watson and Clark [77] suggested that this personality dimension is con-

cerned with negative emotionality of people such as anxiety, depression,

angry hostility.

5. Openness to Experience (O) Openness to Experience is associated with

intelligence and intellectual interests. Many Scientists have named it dif-

ferently. Such as “inquiring intellect” by Fiske [78] and “intellectance” by

Digman [79].

There are also some popular three factor models. According to Hans Eysenck [80]

the three main factors are extraversion-introversion, neuroticism and psychotism.

The first two factors are already described in the big five factor model. The third

35

one, psychotism, he defined as a factor that is composed of traits like aggressive-

ness, coldness and other such anti-social tendencies. Tellegen [81] named the three

factors as positive emotionality, negative emotionality and constraint. The first

two are closely related to the first two factors of the Eysenck model. However,

the last one has a strong negative association with the third factor of the Eysenck

model. Watson and Clark developed another three factors. These are Positive

temperament, Negative temperament and Disinhibition [74]. Disinhibition is the

opposing pole of constraint. Although the names of each of the three factors may

vary, they converge towards three main distinct domains of personality.

3.2.3 Personality Assessment

There is a number of ways in which personality data can be obtained [82], includ-

ing self reported data, observed data, life time data and test data. Personality

research is conducted in two main ways, the correlational approach and the ex-

perimental approach [83]. A number of concepts of personality assessment using

both the approaches are available. There are also a number of tests to identify the

personality traits of an individual [73]. Each of those has unique characteristics

and is used for specific purposes.

A number of techniques have been developed for personality assessment.

There are two popular approaches for personality assessment, the clinical ap-

proach and the statistical approach.

36

3.2.3.1 Clinical Approach

The clinical approach is used for projective personality tests. Projective group of

tests consider responses of an individual to ambiguous stimuli. Projective tests are

mostly used for assessing psychological disorders. These tests are time-consuming

and the data obtained by the test are analyzed using a clinical approach. Some

popular projective tests include Rorscharch method, Thematic Apperception Test

(TAT) and Edwards Personal Preference Schedule (EPPS).

3.2.3.2 Statistical Approach

Statistical approaches like correlational and factor analysis methods are widely

used to come to a type indication for personality assessment. Most of the statis-

tical tests are designed on the popular personality models discussed in previous

section. MBTI, NEO PI-R and such personality tests are generally used for self-

assessment or organizational purposes. A brief discussion of some of these tests

is given below:

Myers-Briggs Type Indicator (MBTI) Carl Jung, a follower of Freud,

proposed typological theory in his 1921 book “Psychological types” [84]. Ac-

cording to the theory, there are two dichotomous pairs of cognitive functions:

“rational (judging)” and “irrational (perceiving)”. He suggested these functions

are expressed in either an introverted or extraverted form.

Isabel Briggs Myers and her mother Katharine Briggs developed the Myers

Briggs Type Indicator (MBTI) based on Jung’s theory. Table 3.1 illustrates the

concept of the test: [26]

37

Table 3.1: MBTI Description
Category Type Code Definition

Mental Processes or function
Sensing(S) -
Intuition(N)

How we perceive-
gather and take infor-
mation

Thinking (T) -
Feeling(F)

How we evaluate choices
and reach conclusion

Mental Orientations or attitude
Extraversion
(E) - Introver-
sion (I)

How we get and use our
energy

Judging (J) -
Perceiving (P)

How we organize and
plan

The permutation of the four preference dichotomies results in sixteen per-

sonality types that form the MBTI inventory. Any of the types result in four

character patterns which show a hierarchy. In order of influence and importance

the elements of the hierarchy are termed as “Dominant” –> Auxiliary” –> “Ter-

tiary” –> “Inferior”.

Sensing (S) and Intuition (N) are two contrasting ways of taking in information

and are called Perceiving Functions. Similarly Thinking (T) and Feeling (F) are

two contrasting ways of making decisions and hence are called Judging Functions.

MBTI is the most popular personality type indicator at the present time. For

most cases, 75% of the time it gives same result if a person retakes the test. In

the case of clear preferences, it gives the same result 95% of the time [85].

MBTI is a simple and inexpensive personality test. Another reason behind

MBTI’s popularity is the very good promotion of the test. The publishers have

done a great job in promoting this test and it also has some intuitive appeal [86].

The test has been criticized for lack of negative judgment referred to as Bar-

num effect [36]. However, this may be important for acceptance for use of the

38

Table 3.2: SFPQ factors and facets
Factor Facets

Agreeableness Abasement
Even-tempered
Good-natured

Independence Autonomy
Individualism
Self-Reliance

Methodicalness Cognitive Structure
Deliberateness
Order

Extraversion Affiliation
Dominance
Exhibition

Industriousness Achievement
Seriousness
Endurance

Openness to Experience Change
Understanding
Breadth of Interest

results in the workplace.

MBTI inventory is distributed by CPP (formerly Consulting Psychologist

Press) and it is a registered trademark of Myers-Briggs Type Indicator Trust.

The Six Factor Personality Questionnaire (SFPQ) The six factor per-

sonality questionnaire has a modified scale for Conscientiousness than the Big

five factors [87]. It does not include Neuroticism. The test measures three facets

for each of the six factors. The factors are described in Table 3.2.

Sixteen Point Factor Personality Questionnaire (16PF)

This questionnaire was developed to assess the sixteen factors of personality

mentioned by Raymond Cattell [76]. The questionnaire includes two sets of forms.

The first set contains forms A and B having 187 items each and the other set

contains form C and D which are shorter. There is also a form named E, which is

39

Table 3.3: 16PF factors
No. Factor

1 Warmth

2 Reasoning

3 Emotional Stability

4 Dominance

5 Liveliness

6 Rule-Consciousness

7 Social Boldness

8 Sensitivity

9 Vigilance

10 Abstractedness

11 Privateness

12 Apprehensiveness

13 Openness to Change

14 Self-Reliance

15 Perfectionism

16 Tension

specially designed for people with low reading skill. The sixteen factors are given

in Table 3.3

NEO Five Factor Inventory (NEO FFI)

This test was designed to assess the big five factors of personality. The first

version of this test was published by Costa and McCrae in 1985 [88]. They consid-

ered only three factors at that time, Neuroticism, Extraversion and Openness to

Experience. Hence the Name “NEO” was given. This test examines six facets for

each of the three domains. This personality inventory contains different versions

of the test discussed in the following subsections. The descriptions are based

on [89].

NEO Personality Inventory Revised (NEO PI R)

This test was published in the year 1992. This test measures all of the five

domains of personality and six facets for each of them. A description of the facets

40

and domains (taken from NEO PI-R manual [88]) are given in Table 3.4.

Table 3.4: NEO PI-R Domain and Facets [88]

Domain Facet High Scorer Low Scorer

Neuroticism Anxiety

N1

apprehensive, fearful,

prone to worry, ner-

vous, tense, jittery,

free floating anxiety

calm, relaxed, do not

dwell on things that

might go wrong

Angry

Hostility

N2

frustration, bitterness easy going, slow to

anger.

Depression

N3

prone to feelings of

guilt, sadness, hope-

lessness, loneliness,

easily discouraged,

often dejected

rarely experience such

emotion

Self-

Consciousness

N4

uncomfortable around

others, sensitive to

ridicule, prone to feel-

ings of inferiority, akin

to shyness and social

anxiety

simply less disturbed

by awkward social sit-

uations

Impulsiveness

N5

can not resist strong

desire but often may

regret later

easily resist such

temptations

Vulnerability

N6

feel unable to cope

with stress, becom-

ing dependent, hope-

less or panicked when

facing emergency situ-

ations

capable of handling

themselves in difficult

situation

41

Extraversion Warmth

E1

affectionate, friendly,

genuinely like people,

easily form close at-

tachments to others

more formal, distant

in manner, reserved

Gregariousness

E2

enjoy the company of

others

do not seek/ even ac-

tively avoid social sim-

ulations

Assertiveness

E3

dominant, forceful,

socially ascendant,

speak without hesi-

tation, often become

group leaders

prefer to live in the

background, let others

do the talking

Activity

E4

rapid tempo, vigorous

movement, in a sense

of energy, in a need

to keep busy, lead fast

paced lives

more leisurely, relaxed

in tempo, are not

necessarily sluggish or

lazy

Excitement

seeking E5

crave excitement

and stimulation, like

bright colors and

noisy environments,

akin to some aspects

of sensation seeking

feel little need for

trills, prefer compara-

tively boring life

Positive

Emotions

E6

laugh easily and often,

cheerful, optimistic

merely less exuberant

and high spirited

Openness Fantasy

O1

have a vivid imagi-

nation, active fantasy

life, daydream not to

escape but to make a

inner world

Prosaic, prefer to keep

their mind on the task

at hand

42

Aesthetics

O2

have a deep appre-

ciation for art and

beauty, need not have

artistic talent, not

necessarily good taste

relatively intensive to

and uninterested in

art and beauty

Feelings

O3

experience deeper and

more differentiated

emotional states and

feel both happiness

and unhappiness

more intensively than

others

have somewhat

blunted affects, do

not believe feeling

states are of much

importance

Actions O4 prefer novelty and

variety to familiarity

and routine, different

hobbies over time

find change difficult,

prefer to stick with the

tried and true

Ideas O5 enjoy philosophical

arguments and brain

teasers, does not

necessarily imply high

intelligence

have limited curiosity,

if highly intelligent-

narrowly focus their

resources on limited

topics

Values O6 readiness to re-

examine social,

political, religious

views

generally conservative

Agree-

ableness

Trust A1 have a disposition to

believe that others are

honest and well inten-

tioned

tend to be cynical

and sceptical to as-

sume that others may

be dishonest or dan-

gerous

43

Straight-

forwardness

A2

frank, sincere, ingenu-

ous

more willing to manip-

ulate others though

flattery, craftiness or

deception

Altruism

A3

generosity, considera-

tion of others, willing-

ness to assist others in

need of help

Self-centered, reluc-

tant to get involved in

the problems of others

Compliance

A4

tends to defer to oth-

ers, to inhibit aggres-

sion, to forgive and

forget, meek and mild

Aggressive. Prefer to

compete than coop-

erate, express anger

when necessary

Modesty

A5

humble, self-effacing believe they are supe-

rior, may be consid-

ered conceited or arro-

gant by others

Tender-

Mindedness

A6

moved by others’

needs and emphasize

the human side of

social policies

more hard-headed,

less moved by ap-

peals to pity, consider

themselves realistic

who make rational

decisions based on

cold logic

Conscient-

iousness

Competence

C1

feel well prepared to

deal with life

have a lower opinion of

their abilities and ad-

mit that they are often

unprepared and inept

Order C2 neat, tidy well orga-

nized, keep things in

their proper places

unable to get orga-

nized and describe

themselves as unme-

thodical

44

Dutifulness

C3

adhere strictly to

their ethical prin-

ciples, scrupulously

fulfill their moral

obligations

more casual about

such matters, may be

somewhat undepend-

able and unreliable

Achievement

Striving

C4

have high aspirations

levels, work hard to

achieve their goals,

diligent purpose-

ful, have a sense of

direction in life

lackadaisical, even

lazy, not driven to

succeed, lack of am-

bition, may seem

aimless

Self Disci-

pline C5

have the ability to mo-

tivate themselves to

get the job done

procrastinate in be-

ginning chores, easily

discouraged, eager to

quit

Deliberations

C6

cautious, deliberate hasty, often speak or

act without consider-

ing the consequences

The test contains 8 questions for each of the facets. It can assess the facet

scores as well as a combined domain level score based on the answers to the total

of 240 questions. 10 questions from the original NEO PI were replaced in this

version. There is no true/false type of answer in this test. Instead, it employs a

five point Likert scale. One can respond either of Strong Disagree (SD), Disagree

(D), Neutral (N), Agree (A) and Strong Agree (SA). The responses are scored

as 4, 3, 2, 1 and 0 when SD is the direction of scoring. The scoring sequence is

reversed when SA is the direction of scoring. So the total score on a domain can

range from 0 to 192. However, for normal adults the range is defined as 25 to

172. It has three validity check question at the end of the test.

45

Scoring of the Test

This is a self scoring test. There are two ways of scoring: computer scoring and

hand scoring. If the test is taken through a computer it will automatically score

the test. The hand response can also be entered in the computer. The responses

are summed to have a facet level as well as a domain level assessment. The score

is then plotted in the given norm sheet to obtain the T-scores. There are two

separate categories of profile form- one is college (17-21 years) and the other one

is adults (21+). To fall into the “college” category one does not necessarily need

to be a student attending a college.

Administration

This is a self-scoring test. The administrator should score the test together

with the participant. Also the aim and process of using the test should be well

described to the participant. NEO PI R is one of the very few tests that allow

the administrator to read the questions to the participants in case if s/he does

not understand it. However, this is discouraged to avoid any bias.

There are some response-related issues such as “no answer”, “random answer”

regarding psychometric tests. In the following subsections we discuss how NEO

PI-R handles these issues.

No Answer

If a participant does not give an answer for fewer than 41 items, N (neutral)

can be selected as those answers. However, individual facets should not be scored

if more than three items are not selected. The test should not be scored if more

than 16.7% items are omitted.

46

The administrator can query why answers were not selected. They can also

remind the participant about choosing N if no suitable answer is found. However

this is strictly discouraged since participants should try to answer each of the

items as much as possible. Though NEO PI R allows selecting N for up to 40

omitted items, responses to those items will have a good impact on the overall

result. Thus, there is a question about the validly of the result in that case. If a

person does not have any association with some items at all, selecting N for those

may not evaluate him or her perfectly on the related domain or facet.

Accurate answer

Validity check C asks the participant if all items have been endorsed at the

right position. An answer of “NO” to this question actually invalidates the test.

Random Response

According to McCrae and Costa, one way of finding random responses is to

note the same response for a number of consecutive items: 6 consecutive SD, 9

consecutive D, 10 consecutive N, 14 consecutive A and 9 consecutive SA.

Bias

Validity check A asks if items have been endorsed honestly. Again a response

of D or SD to this invalidates the scoring of the test. Costa and McCrae suggested

that if more than 150 number of responses are A or SA, than the participant might

have acquiescence bias. On the other hand in case of less than 50 number of A

or SA response, there is a possibility of having nay saying bias. In both the cases

the test should be evaluated with caution.

NEO Personality Inventory 3

47

The original version of NEO PI R was used with 2000 adolescents in the year

2002. They did not answer 30 of the items due to having trouble in understanding

these or not having attachment with them. There were 18 items that had an item

total score on the facet scale less than 0.30. The 48 items had to be changed.

However the publishers found a replacement for 37 items. The remaining 11 were

taken from the original one. The resulting modified test was named NEO PI 3

and is the latest test from the NEO inventory of tests.

International Personality Item Pool (IPIP)

The tests discussed so far are all proprietary, as such the application of the

tests are restricted by licensing agreements. Unsatisfied with this fact and the

pace of development of the science of personality assessment, Goldberg [90], pro-

posed personality assessments items and scoring mechanism named International

Personality Item Pool (IPIP). This is a web based instrument that can be used

freely. This test is popularly used in recent times [91].

3.3 Performance Appraisal

Performance evaluation, also referred as performance appraisal in an organiza-

tional environment, is the process of examining one’s work behaviour and out-

come against a set of criteria and providing him/her with the feedback explaining

the scope of improvements. Performance evaluation is an integral part of man-

agement and is periodically conducted in organizations to make decisions about

employee position, remuneration, promotion and supervision.

48

3.3.1 Approach to Performance Appraisal

There are different approaches to performance appraisal. The different approaches

are briefly described here. Most organizations use all approaches in their perfor-

mance appraisal system.

Performer Focused Appraisal This approach takes into account certain

traits of the performer. The activity of the performer and the results of the

activity are not paid much attention to [92]. This approach only discovers whether

some qualities are exhibited by the performer or not.

Behaviour Based Appraisal This approach judges the performance on the

work behaviour of the performer [92]. Two popular scales using this approach

are described below:

1. Behaviourally Anchored Rating Scale (BARS): This scale has defined be-

haviour for each rating label. This is designed to assess performance in

specific job.

2. Behaviour Observation Scale (BOS): This scale suggests that the appraiser

observes work behaviour of the employee [92].

Result Focused Appraisal This approach includes assessment of perfor-

mance based on predefined goals and objectives [92].

3.3.2 Scale Types

There are four main types of scale for assigning ratings to performance dimen-

sions [92]. Different types of scales are described below:

49

1. Numerical ratings: This type of scale contains numerical rating labels, for

instance 1,2,35.

2. Behaviour frequency: This type of scale considers the frequency of certain

work behaviours. Rating label of this type of scale could include terms such

as always, often, usually, seldom, rarely and so on.

3. Evaluation Concept: The appraiser makes a judgment on quality of per-

formance and assigns a rating to the quality. The choices could include

terms such as outstanding, competent, superior, satisfactory, unsatisfac-

tory, marginal.

4. Compare against a standard: The performance is compared against a stan-

dard and a rating label is assigned accordingly. The ratings labels can be:

exceeds the requirement, meets requirement, partially meets requirement,

fails to meet requirement,.

3.3.3 Scale Labels

We can select three, four or five scale labels (choices) for rating [92]. The pros

and cons of different number of labels are described in Table 10.2.8.

Table 3.5: Different number of performance lables [92]

Number of

label

Advantages Disadvantages

50

Three

1. Extreme perfor-

mances are easily

identifiable

2. Good for pass-fail as-

sessment

1. Rare use of lowest

level

2. No distinction be-

tween “need to

improve” and “termi-

nation” condition

3. May not allow fine

discrimination

Four

1. No midpoint

2. Sufficiently fine dis-

crimination

1. No way of rating aver-

age performers

2. Rare use of lowest rate

3. May not distinguish

between “need to im-

prove” and “termina-

tion” condition

51

Five

1. More consistent with

bell curve

2. Most managers are

comfortable with it

3. Highest degree of fa-

miliarity and accept-

ability

4. True outstanding per-

formers are judged

1. Appraiser may not

have specific differ-

ences between levels

2. Rare use of lowest

level

3. Increased central ten-

dency

3.3.4 Appraiser (Who will appraise the performance?)

The following people can assess performance [92]:

1. Supervisor/Manager only

2. Peer (with supervisor/manager rating)

3. Customers (with supervisor/manager rating)

4. Subordinate (with supervisor/manager rating)

5. Self (with supervisor/manager rating)

A comparative analysis of different appraisers [92] is given in Table 7.2

Table 3.6: Pros and cons of different appraisers

52

Appraiser Advantages Disadvantages

Supervisor

(manager)

only
1. Most information

about quality and

quantity of work

2. Greatest stake in pro-

ducing accurate ap-

praisal of performance

3. Using one sources

keeps the system

simple

1. May be unduly and

unwittingly influ-

enced by personal

relation

Peers (with

supervisor/-

manager

rating)

1. Adds broader per-

spective.

2. Reduces political bi-

ases if large number of

peers are included

3. Increased teamwork

based strengths

1. Competitive co-

workers may lower

the rate

2. Increased paperwork

and complexity

3. Longer execution time

4. Issues about confiden-

tiality and privacy

53

Customers

(with super-

visor/man-

ager rating)

1. Might use most im-

portant data

1. Might not be skilled

enough for assessment

2. Increased paperwork

and complexity

3. Longer execution time

Subordinates

(with super-

visor/man-

ager rating)

1. Might use information

from neglected source

2. Might obtain data

unavailable from any

other source

3. May reveal important

information about su-

pervision

1. May be reluctant to

provide accurate rat-

ing

2. Increased paperwork

and complexity

3. Longer execution time

Self (with

supervisor/-

manager

rating)

1. Probably best source

of data

2. Areas where super-

visor and the em-

ployee disagree are

highlighted

1. Probability of delib-

erately rating low or

high

54

Correlation among different ratings Table 3.7 describes some studies

that investigated whether employee ratings performed by different types of ap-

praisers are correlated.

Table 3.7: Correlation among different ratings

Study Type of

correlation

investi-

gated

description of method Results

Harris and

Schaubroeck

[93]

Self-

supervisor,

self-peer

and peer-

supervisor

1. Meta analysis

2. Searched for

studies ex-

amining such

correlations.

3. Found 36 self su-

pervisor correla-

tions, 23 peer

supervisor corre-

lations and 11

self peer correla-

tions.

Correlation between

self and supervisor

ratings- 0.35, Correla-

tion between self and

peer ratings - 0.36,

Correlation between

peer and supervisor

ratings - 0.62

55

Mabe and

West [94]

Self rating

and other

means of

ability

assess-

ment (test,

grades,

peer, su-

pervisor

ratings)

1. Meta analysis

2. Found 55 stud-

ies analysing

self rating with

other means of

assessment of

ability

Correlation between

self and other means

of assessment of

ability - 0.29

William

and

Seiler [95]

Self - su-

pervisor
1. Obtained self

and supervisor

rating from 202

engineers

2. Compared the

ratings

Correlation between

self and supervisor

rating - 0.60

56

Pym and

Auld [96]

Self - su-

pervisor
1. Considered dif-

ferent groups of

people- scien-

tist, commercial

apprentice,

mechinists,

technicians and

programmers

2. Obtained self

and different

other ratings for

different groups

Correlation between

self and supervisor

rating - 0.56

Klimoski

and Lon-

don [97]

Self - su-

pervisor
1. Obtained self,

peer and super-

visor rating of

hospital nurses

using same

questions

Correlation between

self and supervisor

rating - 0.05

The above studies reveal that there are low correlations between self and

supervisor ratings. Thornton [98] suggests that the reason behind the low cor-

relation is that individuals have a different view of their performance to their

supervisor. However, the study of Harris and Schaubroeck [93] shows that super-

visor and peer ratings have higher correlations than self and any other ratings.

57

Table 3.8: Different rating errors
Error Definition

Halo effect Rating person on one aspect depending on
other aspect.

Central tendency Rating people on the middle of the scale.

Negative and pos-
itive skew

Rating people lower or higher than actual
performance.

Recency effect Rating on minor incidents that have oc-
curred recently than major one happened
in the past.

Contrast effect Comparing individuals with others while
rating.

First impression
effect

Rating on initial positive or negative judg-
ment of the individual.

Similar-to me ef-
fect

Rating individuals higher who resemble
the appraiser.

Attribution bias Considering the factors under control of
individuals the reason of a failings and ex-
ternal factors the reason for success.

Stereotyping Generalize the type of individuals and ig-
noring differences.

Types of Rating Errors In this section we briefly discuss errors that can

occur in ratings of performance [92]. These are listed in Table 3.8.

The best way to avoid rating errors is to provide appropriate training to the

appraisers.

3.4 Summary

In this chapter we briefly introduced some preliminary concepts of personality

and performance appraisal. We found that different personality assessment tests

designed on different theories are available. The most prominent choices for

personality assessment tests are MBTI, IPIP, NEO PI tests. Based on the review

58

of the personality assessment instruments presented in this chapter, we selected

suitable instruments to be used for this research.

The background knowledge on performance appraisal presented in this chapter

also helped to develop performance appraisal form for software testers.

59

Chapter 4

Research Method

4.1 Introduction

From the argument presented in Chapter 1 and the review of relevant literature

described in Chapter 2, we identified some research gaps in software testing. To

address these gaps, a set of formal research questions is presented. We designed a

series of research studies to address these research questions. We then ran these

studies with a range of different participants and analysed the results we obtained.

The research questions, research studies along with the details of participants and

instruments used to carry out the research studies are described in this chapter.

60

4.2 Research Questions

The key question of this research is to find out whether or not personality traits

have any influence on the performance of software testers. We did not find any

direct answers to this from the existing research. However, the existing relevant

literature showed some indication that personality traits might influence the ef-

fectiveness of software testers. This research was designed to find the influence

of personality on the effectiveness of software testing. In designing our research

to find the answer to the key questions, we identified a number of other gaps in

existing software testing-related research.

We know the role of the software tester is different to other practitioners

in the software industry and that it comprises of specific tasks in the software

development process. However, the boundary of the tasks of this role is not

obvious from the review of the literature. Even the definition of the role of

“software tester” is not precise or wholly agreed upon by the community. There

is no agreed upon description of specific software testing tasks. This limitation

encouraged us to investigate and find out what software testers actually spend

their time doing.

Our goal in doing this was to find the relationship between the personality

traits of software testers with their tasks and performance. In order to find any

such associations we needed to distinguish between different performance levels.

However we found no standard way of assessing performance of software testers.

From the review of the literature it is not clear how the performance of software

testers is actually appraised in practice. This gap in the available body of research

61

encouraged us to find out how the performance of software testers is appraised

in practice. In order to use a standard method of performance appraisal in this

research we also proposed a novel performance appraisal form for software testers,

to be used by their managers.

In reconciling the issues described above we planned our research in small

research studies to find the answers to the following key research questions that

we identified:

• RQ1: What factors influence the effectiveness of software testers?

• RQ2: What do software testers do?

• RQ3: What personality traits are over-represented among testers?

– RQ3.1: Are these traits different from other practitioners?

• RQ4: Do personality traits influence software testing performance?

– RQ4.1: If yes, which trait(s) has the maximum influence?

• RQ5: How is the performance of software tester appraised?

• RQ6: How the performance of software testers should be appraised?

4.3 Research Process

We designed individual research studies to find answers to each of our research

questions above. In total we conducted five research studies. The studies are

briefly described below:

62

Study 1: What factors influence the effectiveness of software testers?

In this study we collected the opinions of software testing professionals

about different factors that they think might influence the effectiveness of

a software tester. The study obtained the views of testers on those factors

from both individual and group perspectives. The study is aimed to ad-

dress research question “RQ1: What factors influence the effectiveness of

software testers?”. The study is reported in Chapter 5 and Chapter 6.

Study 2: What responsibilities software testing include?

This study collected the worklogs of professional software testers to find

practiced responsibilities (lists of unit tasks) carried out when doing soft-

ware testing. The study also collected software testing-related job adver-

tisements and open source bug descriptions to find descriptions of testing

related tasks. The study aimed to answer the following research question

“RQ2: What do software testers do?” and is reported in Chapter 7.

Study 3: Personality traits of IT professionals

This study collected the personality profile of professional software testers

and other IT professionals to find whether any trait is over represented

among either type of professionals. The study was designed to address re-

search questions “RQ3: What personality traits are over-represented among

testers?” and “RQ3.1: Are these traits different from other practitioners?”

and is reported in Chapter 8.

63

Study 4: The effect of personality traits on effectiveness of software testing

This study collected the personality profiles of students and measured their

effectiveness in performing some representative software testing tasks, to

find the correlation between these if there is any. The study answered

research questions “RQ4: Do personality traits influence software testing

performance?” and “RQ4.1: If yes, which trait(s) has the maximum influ-

ence?”. The study is reported in Chapter 9.

Study 5: Performance appraisal of software testers

This study collected the information about the state of practice of perfor-

mance appraisal of software testers in industry. This study also collected

the feedback of testing managers on a proposed performance appraisal form

for software testers that we developed. This final research study addressed

the final two research question “RQ5: How is the performance of software

tester appraised?” and “RQ6: How the performance of software testers

should be appraised?”. The study is reported in Chapter 10.

A common process was followed in conducting all of the above research studies.

The process is described in Figure 4.1.

4.4 Research Design

Research is designed based on the research question, hypothesis and the sam-

ple [99]. Denscombe [100] suggests that we consider three key questions to decide

64

Figure 4.1: Research process

65

what strategy best fits the purpose of our research study:

• Is it suitable?

• Is it feasible?

• Is it ethical?

We evaluated different research strategies. A checklist for three key questions

was prepared for different research strategies and the most appropriate strategy

based on the specific research question(s) and the type of sample was selected.

The strategies applied for our research studies are described below:

4.4.1 Survey

A survey is a research strategy that enables researchers to collect a large set of

data in a timely manner. A survey usually has a wide coverage. According to

Denscombe “to survey” is associated with the meaning “to look” [100]. There are

different types of survey. We selected Internet surveys for our research studies.

Internet surveys can be conducted through email or though web based question-

naire. We used web based questionnaires for our research studies when applying

the survey research technique. Web based surveys are less expensive and less time

consuming compared to the conventional paper based surveys. Since the intended

participants of our surveys were software development related practitioners, we

could assume they had easy access to the internet. As such web based survey

was our first choice. At the cost of survey tool development, the other procedural

delays could be mitigated.

66

4.4.2 Quasi Experiment

According to Denscombe [100]- “An experiment is an empirical investigation un-

der controlled conditions designed to examine the properties of, and relationship

between, specific factors”. The main advantage of conducting experiments is it

can be replicated. Experiments can be true experiment, quasi experiment or cor-

relational experiments [100]. We conducted a quasi experiment for one of our

research studies. Compared to other experiments, the treatment is not randomly

assigned to experimental subjects in a quasi experiment.

4.4.3 Case Study

According to Denscombe [100] the defining characteristics of a case study is its

“focus on just one instance of the thing being investigated”. However, occasion-

ally two or more instances can be considered. Unlike surveys, case studies do not

have a wide spectrum. The focus is limited to individual cases.

4.5 Participants

There were two major groups of participants involved in our research studies: ICT

students and software testing related professionals. For experimental research in

software engineering, Juristo and Moreno [101] referred to the participants as

“experimental subjects”. They suggested that researchers carefully address the

role of the experimental subjects, since unlike most other disciplines, the results

can differ depending on the influence of the experimental subjects in software en-

67

gineering. We believe similar cases can occur in the other studies proposed by us.

The type of responses we are seeking were highly dependent on the participants.

For studies 3 and 4 we are interested in personality traits of the participants that

takes individual variability into account. However, there are many other factors

on which individuals can vary, e.g. experience in software testing. We expected to

capture these variances through a demographic questionnaire. However capturing

all of these variables is impossible given the length and scope of the studies we

conducted. All of our research studies included demographic questionnaires and

the information collected though these questionnaires was carefully considered

when analysing data.

4.6 Recruitment

We applied multiple sampling techniques for recruiting participants for our re-

search studies. Sampling is referred to selecting a subset of participants from the

total available population. For many obvious reasons recruiting the total popula-

tion to participate in research studies is not possible. Hence, we need to select a

subset of participants called the sample from the population. The different sam-

pling techniques used for the research studies reported in this thesis are described

below.

Cluster sampling

In cluster sampling, instead of selecting individuals from the population

randomly, clusters of individuals are selected and within one cluster all

68

individuals are included in the sample [100]. In studies 1, 3 and 5 we used

cluster sampling. In these studies we invited participants from different

mailing lists. We selected the cluster of participants who are associated with

mailing lists and groups. In comparison to sending invitation to individuals,

sending email to the groups (clusters from the population) extended our

ability to invite larger group of participants in shorter time.

Snowball sampling

In inviting participants from personal contacts for studies 2 and 3, we ap-

plied snowball sampling [100]. Snowball sampling is the process whereby a

sample is selected through references. The student researcher, the principal

and the associate supervisors invited participants from their personal con-

tacts and requested the invited participants to nominate more participants.

Representative Sampling

For study 1, 3 and 5 we targeted a representative sample. A representative

sample is a subset drawn from the population that includes all relevant fac-

tors and matches the proportions of the populations [100]. Representative

samples are usually associated with quantitative data.

Exploratory Sampling

In contrast, study 2 and 5 involved preparing a list of software testing

unit job responsibilities and validating a proposed performance appraisal

form for software testers, respectively. Our samples for these studies were

exploratory. According to [100], an exploratory sample is suitable for gener-

69

ating new ideas and/or gathering new insights or information. Exploratory

samples are usually associated with qualitative data.

4.7 Instruments and Tools

We used six types of instruments and tools to conduct our different research

studies. These are described below:

• Information statements

– General information statements

– Consent information statements for participants

– Consent information statements for authorizing participants

• Personality assessment instruments

– NEO PI-3 Test materials

∗ NEO PI-3 test items

∗ Answer sheets (S form)

∗ NEO PI-3 norms

∗ Your NEO summary

– IPIP-NEO test materials

∗ Test items

∗ Feedback form

70

• Software testing performance assessment instruments

– Software testing task specification

– Performance Appraisal Form (PAF)

• Data collection tools

– Survey and case study tools

∗ Preliminary survey tool

∗ Worklog collection tool

∗ PAF validation tool

∗ Personality assessment survey tool

– Demographic questionnaire

• Advertisement tools

– Leaflets

– Posters

– Emails

– Tweets

• Information extraction scripts

– Scripts for Yahoo! groups

– Scripts for bug descriptions

– Scripts for job advertisements

71

4.7.1 Information Statements

An information statement contains a brief description of the research study be-

ing conducted including the purpose, procedure and expected outcome of the

research. We used two information statement documents: general information

statement and consent information statement. Both of these information state-

ments contained the purpose, procedure and details of handling data regarding

our respective studies. The ethical considerations, details of ethics approval and

confidentiality issues of the data were clearly stated in both types of letters. Par-

ticipants could retain a copy of the general information statement, if they desired

to.

The participants who agreed to take part in our research studies were required

to sign a consent information statement. Consent to participate in the research

studies were collected from the participants in three different ways: paper based

consent, electronic consent and email consent. Paper based consent forms were

collected for the study described in Chapter 9. The signed paper copies of the

forms were restrained by the researchers. For the studies described in Chapters 5,

6, 7, 8, 10 consent information with a “I give consent” checkbox was presented

in the index page of the data collection website. Checking the checkbox was

considered as giving the consent to participate in the study. For the study de-

scribed in Chapter 7, we required the consent from the participant as well as

from their supervisor/manager/employer to authorize the participation. In this

study, if participants or authorizing personnel considered sending a signed paper

copy back to us infeasible, they sent us emails giving consent. The emails were

72

retained by the researchers as a proof of consent.

The general and consent information statement letters used for all our research

studies are presented in Appendix A.

4.7.2 Personality Assessment Instruments

We used two personality assessment tests in this research. We used a paper-based

NEO PI-3 test and a web-based IPIP NEO test.

The NEO PI 3 is a standard, commercially available test, used for personality

profiling. It comes with a test booklet of 240 multiple-choice items. Each of

the items is usually a one line statement describing a person. The participants

need to indicate their level of agreement with the statement describing them.

There were five point Likert scale responses attached to each item. We used a

hand answerable S (self rating) form of the test where participants could mark

their responses to the corresponding items in the test booklet. Once participants

completed the S form, the researchers performed number of validity checks (such

as response to the validity check questions A, B and C and counting same response

for consecutive number of questions). If researchers considered the responses

valid, then the top layer of the answer sheet was removed and the scores of the

corresponding responses were calculated from the bottom layer. The scores were

then marked on the NEO PI-3 Norm forms and corresponding T scores were

calculated. Based on the T scores the type of the participants were determined

and marked in the “Your NEO Summary” form. The summary form contained

all possible type descriptions. The type of the participants, as determined from

73

the results of the test, was indicated with a tick mark in the summary form.

In line with standard practice the researchers scored the test together with the

participant.

We also used a short form of IPIP NEO test via a web-based survey instru-

ment. This test contains 50 items describing a person. Since the study was web

based, the collection of responses to the items, calculation of score and prepara-

tion of feedback was done with automated PHP scripts. The feedback was shown

in a webpage. Feedback was also prepared as a PDF document that participants

could download if they chose. This shorter, automated personality test allowed

us to collect and analyse responses from a larger numbers of participants.

4.7.3 Software Testing Performance Assessment Instru-

ments

We used two software testing performance assessment instruments in this re-

search. The first one was designed as a software testing task by seeding faults in

a Java program. The test was used for the assessment of effectiveness of student

participants in software testing. Results of participants were scored using several

factors to obtain a rating of their testing performance for this task. The test is

detailed in Chapter 9.

Another performance assessment instrument was developed and proposed by

the researchers to be used for performance appraisal of software testers in an

industrial setting. The instrument implements a form based performance assess-

ment of software testers. The details of the instrument and a study to validate

74

the proposed instrument are discussed in Chapter 10.

4.7.4 Data Collection Tools

As discussed in Section 4.2, we applied many social research methodologies in this

research. For the studies applying survey and case study we used web based data

collection tools. Most of the studies had a custom web interface with relevant

questionnaires, developed by us. The tools are discussed separately in Chapter 11.

Since all of our research studies involved human participants we used ques-

tionnaires to collect demographic information from the participants. Different

studies required different participants; as such same demographic questionnaires

were not used in all of the studies. The survey questionnaire are presented in

Appendix B.

4.7.5 Advertisement Tools

We used several advertisement methods to invite participants for different stud-

ies. For most of the studies we advertised through software testing related Yahoo!

and LinkedIn groups. We sent advertisement emails to those groups with the

permission of the moderators. For study 4 we handed out leaflets to the student

participants. In study 3 we attended Iqnite 2012 conference [102] to invite par-

ticipants. We showed posters and handed out leaflets in the conference. For this

study email was also sent to the YOW! email list by the organizers of the YOW!

conference on request of the researchers. The organizers were very kind and they

sent a tweet message with survey invitation to the tweeter.

75

4.7.6 Information Extraction Scripts

We implemented scripts to list software testing related Yahoo! groups and to

extract the description of those groups from respective webpages. The scripts

extracted the information automatically and stored in a file. The descriptions

were then read by the student researchers to find out suitable groups.

We also implemented scripts for extracting job responsibility related informa-

tion from the job advertisements of for software testers. A separate set of scripts

were also written to extract bug description from bug repositories. All scripts

were written in PHP.

4.8 Analysis Procedure

We collected both qualitative and quantitative data. We applied statistical anal-

ysis on the quantitative data where possible. The procedure of analysing both

types of data is detailed in the following subsections.

4.8.1 Qualitative Data

Words, images, recordings all are considered as qualitative data. In our case, all

our qualitative data were texts. We applied content analysis and grounded theory

to analyse the qualitative data [100]. These are briefly discussed here.

Content analysis

The steps we followed while applying content analysis are:

76

1. Identifying the units of data: Each response to the particular question

being analysed was considered a unit.

2. Form categories: The units of data were read multiple times and pos-

sible categories of responses were formed.

3. Coding units with categories: The units of data were then associated

with a category.

4. Counting frequency: The number of unit responses within each cate-

gory was counted.

5. Analyse the text: The categories are analysed to find relationships.

Grounded theory

The steps of grounded theory analysis of qualitative data are:

1. Exploring data: The researchers read the data multiple times to be-

come familiar with the data.

2. Code the data: Codes were assigned to the data according to the

interpretation made by the researchers.

3. Categorizing codes: Similar codes were grouped together to form cat-

egories.

4. Analysing codes and categories: The codes and categories were anal-

ysed to reduce their number and to develop a hierarchy.

5. Find key concept: Based on the analysis the key concept was found.

77

4.8.2 Quantitative Data

We applied different statistical analysis techniques on different quantitative data

obtained from our studies, depending on the type of data and analysis we wanted

to use. A number of our survey questions included Likert scale responses. The

Likert scale responses usually represent ordinal data [103]. The responses were

converted to numerical values (5 implies “strongly agree” and 1 implies “strongly

disagree”) for analysis. Table 4.1 presents the list of statistical procedures applied

on the quantitative data.

4.8.3 Human Research Ethics

All of our research studies included human participants. The studies were anonymised,

and as such no identifying information of the participants or the organizations

where the participants worked or studied was stored. However, while we did not

store explicitly identifying details, there was the possibility that enough informa-

tion would enable to identify the participants. Therefore, we additionally checked

for potentially identifying information.

The research goal and procedure were clearly stated in both the paper based

and the web based consent information statement forms. All of the research stud-

ies requested enthusiastic and voluntary (except the study described in Chapter 9)

participation from the participants. Participants were assigned unique codes af-

ter they signed (either on paper or electronically) consent information statement

form. The participants were allowed to withdraw participation at any time, if

they desired to. In the studies involving assessment of personality, participants

78

were informed in the unlikely event that if it is required, counselling will be ar-

ranged for the participant. However, no participant sought counseling afterward.

Before conducting any research designed to collect data from people or to col-

lect personal data about living people, it is important that the proposal be scru-

tinized by a committee of people of relevant expertise. In order to fulfil human

research ethics requirements of Swinburne University of Technology we obtained

approval from the Swinburne University of Technology Human Research Ethics

Committee (SUHREC) before conducting every research study reported in this

thesis. For the research study described in Chapter 9 we also obtained approval

from Monash University Human Research Ethics Committee. The approval let-

ters are given in Appendix C.

4.8.4 Pilot Studies

We conducted a pilot study with small number of selected participants before

all our studies. The aim of the pilot studies was to identify and overcome the

limitations of the proposed study designs before conducting those in field. All

the web based survey links were given to the pilot study participants (mostly

PhD students and some friends of the student researcher working in industry).

The pilot study participants browsed the web sites and informed any problems

they encountered or suggested modifications where they thought were important.

The changes made based on the experience of pilot studies were minor. In the

quasi experiment, the software testing task only was given to the pilot study

participants. Based on their comment minor changes were made on the software

79

testing task specification document.

4.8.5 Summary

This chapter describes the different research strategies adopted in our research

studies, introduces our participants and lists the different instruments used in our

research studies. Specific research studies are described in the following chapters.

80

Table 4.1: Quantitative data analysis
Statistics Purpose

Frequency Responses to the demographic
questionnaire such as gender,
nationality - number of re-
sponses to each category was
counted.

Average To find the middle value.

Standard devia-
tion

To find the quantification
of the broadness of the re-
sponses.

Kolmogorov-
Smirnov
Test [104]

To test deviation of popula-
tion distribution from a nor-
mal distribution

Shapiro-Wilk
Test [104]

To test deviation of popula-
tion distribution from a nor-
mal distribution

Correlation To find association between
variables such as personality
traits and effectiveness in soft-
ware testing

MANOVA [104] The multivariate analysis of
variance was used for hypoth-
esis testing. MANOVA was
selected since there was more
than one dependent variables.

Kruskal-
Wallis [104]
statistic

To test whether there is sig-
nificant difference in median
of responses to difference fac-
tors.

Tukey’s Honestly
Significant Dif-
ference (Tukey’s
HSD) [104]

Was used as post-hoc test. To
test the significant difference
of mean of responses to each
pair of factors. This test was
chosen when number of fac-
tors was large.

81

Chapter 5

Factors influencing effectiveness

of individual software testers

5.1 Introduction

This chapter describes our first study that collected the views of professional

software testers on the influence of the individual on the effectiveness of software

testing. The study aimed to collect the opinions of testers on the importance of a

variety of factors that influence effective testing, including experience, automation

of testing, testing-specific training and different human characteristics. The study

also asked about different factors that might be important for measuring the

effectiveness of the tester. The study was conducted to address our first research

question “RQ1: What factors influence the effectiveness of software testers?”.

82

5.2 Methodology

We used a personal opinion survey [103] for our research. While there are a

number of different techniques for soliciting information in social research, a sur-

vey was considered appropriate for this initial study as it allows the views of a

wide range of people to be collected in a timely and practical manner [100]. Our

survey was designed according to the six steps suggested by Kitchenham and

Pfleeger [103].

5.2.1 Setting the Objectives

The survey was divided into two main themes - performance of individual testers

and testing team development. This chapter reports the results relating to the

first theme - performance of individual testers. The next chapter reports the

finding on testing team development.

5.2.2 Survey Design

We used an online survey containing a self-administered questionnaire. The main

advantage of using self-administered questionnaire is that the respondents can

answer at their convenience.

5.2.3 Development of Survey Instrument

Kitchenham and Pfleeger [103] suggest searching for relevant literature before

developing a survey instrument for two reasons. The first reason is to avoid

83

duplicate research. The second is to learn and, if possible, to adopt questions

and experimental design from existing relevant research.

We did not find any research into performance related factors of software

testers in the existing research literature. However, relevant research investigating

the influence of debugging skill and personality types [31; 32] , experience [11]

and organizational issues [15] in software testing were helpful.

Our survey questionnaire included both closed questions (where the respon-

dent chooses from a finite set of possible responses) and open questions (where the

respondent provides a free-form textual response) [100]. Most closed questions

used a Likert scale with five possible responses (“Completely disagree”, “Some-

what Disagree”, “Neither disagree nor agree”, “Somewhat agree” and “Com-

pletely agree”).

5.2.3.1 Questionnaire Design

The survey had a total of 29 questions, split into eight sections:

Personal Information: This section collected general information about the

respondents including gender, age ranges, country and educational attainment.

The survey was anonymous and as such did not record any personally identifying

details of respondents.

Employment Information: This section contained general questions about

the respondent’s current role, responsibilities, and experience. We sought to

determine whether they were testers themselves or interacted with testers, either

as managers or colleagues. We also sought to determine the size of their employer

84

in terms of number of staff, and whether the employer’s primary business activity

was software development or not.

Performance of Software Testers: Questions in this section asked the

respondents about their broad view on what factors should be taken in to con-

sideration to measure the performance of software testers, what human qualities

influence performance in this role and what should be done, both individually

and at an organizational level, to improve the performance of software testers.

This section also asked whether programming skill and academic track record are

connected with software testing effectiveness.

Automation of Testing: This section asked the respondents about their use

and perceptions of automated testing tools. A review of the literature indicates

that, to date, the majority of software testing research has been devoted to the

enhancement of testing processes, test criteria, and to the development of new

techniques and tools for different types of testing [6]. Underlying such research is

the assumption that software testing should be, for the most part, a systematic,

standardised and automated process. If so, then the key abilities required for a

software tester are to be able to use the techniques, as implemented in automated

tools - beyond that, the only insight and creativity required is to determine which

technique or tool is most appropriate for the testing task. This view encouraged

us to know what proportion of our participants use automated tools and in what

ways tools help them.

Experience in Software Testing: This section asked respondents about

their view of experience in software testing.

Characteristics of Software Testers: This section asked respondents’

85

opinions on the personality characteristics of good testers. The characteristics

listed were based on the well-known “Five Factor Model” of personality, which

is one of the most popular models of personality traits in modern personality

psychology research [73]. This model groups the many traits which can be used

to describe an individual’s personality into five broad dimensions, including Ex-

troversion, Agreeableness, Conscientiousness, Neuroticism, and Openness to Ex-

perience. The dimensions of this model were described, in simplified language, as

possible characteristics of “good” software testers. The respondents were asked to

consider a “good” software tester they personally knew and to indicate whether

they believed that the individual considered exhibited these characteristics. An

open-ended question giving respondents the option to mention other characteris-

tics was also provided.

Training/Certification: This section asked respondents to comment on

their experiences and opinions of training and/or certification. An active debate

on the value of certification in software engineering [105; 106] encouraged us to

know the perception of our participants about the importance of testing specific

training and certification.

Test Team Building: So far, all the sections were asked questions from the

individual tester’s perspective. The relative importance of many of these factors

may vary while recruiting members for a test team. Different diversities may play

an important role for testing team success. This final section asked questions

about testing as a team activity. The results of this section are described in a

separate chapter.

86

5.2.4 Evaluation of Survey Instrument

We administered a pilot survey on a small sample of software engineers. In this

pilot survey the questionnaire was sent to seven software engineers requesting

them to fill out the survey and to comment on the questionnaire. Five of them

gave us their opinion about the questionnaire. Using their feedback, some minor

changes were carried out, such as adding some additional factors and questions.

5.2.5 Obtaining Valid data

To get a sample population for the survey we searched LinkedIn and Yahoo!

groups with the keyword “software testing” and listed the first 1000 groups. We

read the description of the listed groups and selected 29 LinkedIn and 21 Yahoo!

groups using purposive sampling [100]. In this sampling process we examined

the description of each of the groups and selected those that were solely software

testing related groups. We excluded inactive and specifically job vacancy-related

groups. We sent a request to the moderators of these selected groups to allow

us to invite group members to take the survey. Moderators of 12 LinkedIn and

12 Yahoo! groups approved our request. The group response rate was 41.4% for

the selected LinkedIn and 57.1% for the selected Yahoo! groups. The numbers of

member for Yahoo! and LinkedIn groups were 49786 and 39027, respectively. The

individual response rate is unknown and can not be measured since a participant

can be member of more than one group. Nor is it known how many group

members actually read the group emails.

No financial or other reward was offered for participation. Respondents were

87

offered the chance to provide an email address to receive a report summarizing the

survey results. No association between the provided email addresses and survey

responses was recorded.

5.2.6 Data Analysis

The Likert scale responses usually represent ordinal data [103]. The responses

were converted to numerical values for analysis. Kruskal-Wallis and Tukey’s Hon-

estly Significant Difference (Tukey’s HSD) tests were used for statistical analysis.

5.3 Results

A total of 104 respondents completed the survey. As the respondents had the

option to leave any question blank, our results report how many respondents did

not answer each question.

5.3.1 Demographic information

Majority of the respondents (around 70%) were male. Figure 5.1 shows that more

than half of the respondents were between 18-40 years of age. Table 5.1 shows

around 30% of respondents reported their “Country” as India, with the second

largest group of respondents (around 25%) coming from the United States. The

balance of respondents were from many different countries around the world.

It was, however, notable that there were no respondents from several countries

known to have substantial software industries, including (for example) China,

88

Table 5.1: Country (Question 2.2)
India approx.

30%

United States of America approx.
25%

Bangladesh approx.
10%

Netherlands approx.
5%

United Kingdom, Pakistan, Finland approx.
3% each

Sweden, Romania, New Zealand, Brazil, Israel approx.
2% each

UAE, Egypt, Switzerland, Philippines, Mexico,
Poland, Austria, Australia, Denmark, Ireland

approx.
1% each

No Response approx.
4%

Japan, and Germany. It is possible that there is a sufficiently large “critical

mass” of testers in those countries to support testing mailing lists in their native

languages. In the case of Brazil, the moderator of a Brazilian testing mailing

list translated our invitation (but not the survey itself) into Portuguese, possibly

explaining the two responses from that country.

Figure 5.2 indicates the educational attainment of the respondents. The vast

majority had a university degree in software engineering (denoted SE in Fig-

ure 5.2) or another IT-related field, with a substantial minority possessing a

graduate degree.

5.3.2 Employment Information

Figure 5.3 reports the employment status of the respondents. Nearly 60% of

respondents were employed by large IT companies; with a little under 20% of the

89

Figure 5.1: Age Ranges

Figure 5.2: Educational Information (Question 1.4)

90

sample employed by smaller IT companies, and a similar proportion employed by

larger “non-IT companies”. Figure 5.4 shows that almost half of the respondents

had more than five years of job experience.

Figure 5.3: : Employment Type (Question 2.1)

Figure 5.4: : Experience (Question 2.3)

Table 5.2 indicates the respondents’ main job responsibilities. Note that re-

spondents were able to select more than one option. More than 75% of respon-

dents indicated that they were responsible for “testing software modules/pro-

91

Table 5.2: Main Job Responsibilities (Question 2.2)
Developing software module/program based on soft-
ware specification and testing self developed mod-
ules/programs

approx.
8%

Developing software module/program based on soft-
ware specification and testing modules/programs de-
veloped by others

approx.
12%

Testing software modules/programs developed by oth-
ers

approx.
70%

Manage Software Testers within a project approx.
45%

Others approx.
20%

No Response approx.
3%

grams developed by others” and around 45% of the total respondents indicated

responsibility for managing “software testers within a project”. Very few re-

spondents indicated that they were responsible, either partly or primarily, for

software development. Some respondents explicitly mentioned quality assurance

(QA) management as their job responsibility. Individual respondents mentioned

roles such as teaching, research, consulting, hiring testers, and business develop-

ment, amongst others.

5.3.3 Performance

The vast majority of respondents agreed that performance of software testing

varies from tester to tester, as indicated in Figure 5.5. Respondents believed that

the difference was substantial, as reported in Table 5.3- approximately 35% of

respondents stated that the best tester they had worked with was “50% more

valuable to the project”, and approximately 27% choosing an 80% figure. In-

92

terestingly, in open-ended comments, a number of respondents nominated higher

figures, though a few were skeptical about being able to quantify the difference.

Figure 5.5: Responses to “Performance varies a lot from tester to tester” (Ques-
tion 3.1)

5.3.3.1 Assessment of Performance

We listed five factors (“Number of bugs found”, “Severity of bugs”, “Quality of

bug report”, “Ability of bug advocacy” and “Rigorousness of test planning and

execution”) that we believed might be important for measuring the performance

of the testers. Respondents indicated their level of agreement that these were

important. The responses are shown in Figure 5.6. We can see that, except for

“Number of bugs”, the distribution of responses to the different factors were quite

similar. The level of agreement is highest for “Bug report quality” and “Rigor-

ousness of testing”. A Kruskal-Wallis test showed that the perceived importance

of the factors differed significantly (p < 0.05).

93

Table 5.3: Compared to an “average” tester, the best software tester you have
worked with is... (Question 3.6)

20% more valuable to the project approx.
10%

50% more valuable to the project approx.
35%

80% more valuable to the project approx.
25%

100% more valuable to the project approx.
15%

Nominated other amount approx.
12%

No Response approx.
3%

Tukey’s HSD tests were used to compare each pair of factors, showing that

“Number of bugs found” was considered significantly (p < 0.05) less important

than any of the other factors. Post-hoc testing also showed that “Quality of bug

report” was considered significantly (p < 0.05) more important than “Severity of

bugs found”. However, there was no significant difference between other pairs of

factors.

In the accompanying open question, around 30% of the respondents noted

other factors as important, for instance, the quality of the communication with

developers (approx. 10%), domain knowledge (approx. 7%) and understanding

of requirements (approx. 5%). Other responses to the open-ended question in-

cluded (in order of frequency of occurrence): analytical ability, implementation

of plans, creativity, level of testing automation, and preventative teaching to the

developers. Interestingly, one respondent suggested that the performance of a

software tester can be measured by the number of bugs reported in the “live”

environment (after deployment).

94

Figure 5.6: Responses on “Factors important in measuring performance of soft-
ware testers” (Question 3.2)

5.3.3.2 Influence of programming skill and academic records

A majority of respondents did not think that programming skill helps to improve

performance as a tester, with around 67% disagreeing, and less than 12% agree-

ing, as shown in Figure 5.7. As Figure 5.8 shows, there was a mixed response

on whether academic records are a good predictor of testing effectiveness, with

roughly half of the respondents agreeing to some extent, but 22% disagreed and

24% neither agreed nor disagreed. Since, no open-ended question was provided

with these two factors, it is difficult to clarify the responses on these.

5.3.4 Factors that influence performance

We asked respondents to indicate whether they agreed that a number of different

factors (“Knowledge of specific testing techniques”, “Expertise in the problem

domain”, “Testing specific training/certification”, “Intelligence”, “Dedication”,

95

Figure 5.7: : Responses to question “Do you think good programming skills help
to improve performance as a tester?” (Question 3.4)

Figure 5.8: Responses to question “Academic record is a good predictor of per-
formance of software testers” (Question 3.5)

96

“Punctuality/time value”, “Thoroughness”, “Positive attitude”, and “Interper-

sonal skill”) might influence the performance of testers. Figure 5.9 shows that

most respondents agreed that these factors were influential.

A Kruskal-Wallis test showed a significant difference between the levels of

agreement on the importance of the factors. Tukey’s HSD test showed that the

level of agreement that “Testing specific training/certification” and “Punctual-

ity/Time value” were important was significantly less than for the other seven

factors. However, there was no significant difference between these two factors,

or among the other seven factors.

Some respondents (around 15%) mentioned other factors in the accompanying

open-ended question. The most common one was “motivation” (approx. 2%);

others included “Accepting new challenges”, “Automation of testing”, “ability to

work under pressure”, “knowledge sharing and good communication skill”, and

“out of the box thinking”.

Individual measures for self-improvement Responses to the open-ended

question 3.7 (“In your opinion, what can help to improve your performance as a

tester”) covered a broad range of ideas, from “putting the evil hat on and trying

to break the application in any way...” to “study philosophy, rhetoric, decon-

struction, fallibilism, ethnomethodology, qualitative methods, grounded theory...

”.

However, some common themes were observed; for instance, testers must be

dedicated and make an active effort to improve their work; as one respondent put

it, testers should “love testing”. Many respondents mentioned the need for learn-

ing, including both new testing techniques, and about the problem and business

97

Figure 5.9: Responses on “Qualities Influencing Performance of Software Testers”
(Question 3.3)

domain of their work. Learning from one’s own personal experience, as well as

the experiences of other testers, were also considered important by respondents.

Organisational measures for improvement Similarly, responses to the

open-ended question 3.8 (“What can your employer do to improve your perfor-

mance in your role of software testing”) were quite broad. The most common

theme amongst responses was the need for training, not only in testing techniques

but also in the problem domain. Most of the respondents think that the employer

should arrange training and ensure usage of new knowledge in the project. They

also emphasised good communication with developers and customers (four of

respondents specifically mentioned the importance of direct customer contact),

including full access to product specification documents. Some respondents men-

tioned the importance of sufficient time for testing, and the need to introduce

testing in the early stage of the development life cycle. Respondents believe that

98

the employer should trust, respect, motivate, and encourage testers to do well in

their job, and provide adequate recognition of good work.

5.3.5 Influence of Automated Tools

In response to Question 4.1, more than 60% of the respondents to our survey

indicated that they frequently use automated tools for software testing, while

35% indicated that they do not. The most commonly-used tools reported by our

respondents (Question 4.1.1a) were Selenium and QTP. The next most common

type of tool mentioned was in-house custom testing tools. WinRunner, loadRun-

ner, Jmeter, Fitness were also listed multiple times by the respondents.

Nearly one-third of respondents identified the most common benefit of auto-

mated tools was as a time-saver, though this sentiment was variously expressed as

increased speed, improved productivity, and less manual testing effort. Related to

this, around 15% of respondents mentioned that automated tools can help doing

“repetitive and mundane tests” - presumably, this relates both to time savings

and to reducing boredom. around 7% respondents mentioned that they could

use the human time saved by test automation tools to perform additional test-

ing. Some respondents mentioned the use of automated tools for specific types of

testing - around 12% respondents mentioned that automated tools are especially

helpful for “regression testing” - several of these specifically identified the ease

of capturing test cases to run on updated software versions - while around 6%

think these are helpful for load and performance testing. Around 6% respondents

said that automated tools improved test accuracy. Other benefits identified by

99

respondents included improved bug tracking and traceability. A small number

of respondents stated that automated testing could improve the quality of test-

ing, expressing greater confidence in tested code, and increased “reach”, and that

fewer bugs were found manually than with automated testing.

On the other hand, a small minority of respondents (approximately 5%) indi-

cated reservations about automated tools. Most of the respondents of this group

stated that automated tools often require excessive (and thus costly) mainte-

nance. They also said that some automated tools sometimes produce large scripts.

A respondent mentioned that most tools do not exactly do what one needs, so

part of a tool can be used. Another respondent noted the lack of a “suspicious

mind” in automated tools, and that they are a means, not an end in themselves:

“Machines can’t feel, they can’t have a hunch, they can’t be suspicious, they can’t

investigate, and they can’t change their minds due to better information. More

important is that test automation shouldn’t be a goal; test automation helps you

achieve goals”. A few respondents mentioned that testers need to understand a

tool very well before using it and should be able to judge when it is necessary or

best to use automated tools. One also said that tools should be simple, quick and

directly related to business value. A few responses suggested that testers should

write their own tools after understanding the problem domain.

5.3.6 Experience

As Figure 5.10 indicates, a majority of respondents agree to some extent that

performance grows with experience. However, this was neither universal nor un-

100

equivocal, with considerably more respondents choosing “somewhat agree” than

“completely agree”, and a considerable fraction either disagreeing or declining to

express an opinion.

We requested that respondents comment on the importance of experience in

software testing (Question 5.3), and around 40% responded. While virtually all

agreed that experience could be important, many expressed the view that not all

experience is equally valuable. The following response is representative: “Some

people learn from experience, some don’t. Good testers become great over time;

terrible testers stay terrible!”.

Some respondents nominated specific reasons for the importance of experi-

ence. According to some of these, an experienced tester can easily get common

bugs and can assess where the probability of bugs is high; as a result they can test

new modules in quick time. One respondent also said “already tested test cases”

remain in the mind of the experienced tester, presumably assisting in the plan-

ning and execution of future testing. According to the respondents, experience

helps testers to prioritise work and is useful for better planning and analysis. The

respondents also said experience helps to increase knowledge of the domain and

the product. Some also said that experience helps to grow adaptability in differ-

ent situations. However, one thing most of the respondents emphasised is that

experience is only fruitful if testers learn from the past, including their mistakes.

It was also mentioned that a variety of experience, including new challenges was

important.

101

Figure 5.10: : Responses on “Performance grows with Experience” (Question
5.1)

5.3.6.1 Saturation of Experience

We asked whether the respondents think performance reaches “saturation” - that

is, at some point, is there no benefit to additional experience. Figure 5.11 shows

that respondents tended to disagree with this proposition, with only 21% agreeing

and 44% disagreeing. It is notable that a high proportion of respondents either

indicated no view, or did not answer the question at all.

For those who agreed that saturation of experience occurs, we asked when

this point is reached, using an open-ended question (Question 5.2.1). The most

frequent response to this was that it varied according to the individual. Some

specifically said that saturation comes after 2-3 years - one respondent nominated

a period of 5 years. According to some respondents saturation occurs if a tester

is bored with repeatedly doing similar work. A few respondents stated that

saturation can never come to the life of an IT professional until, as one respondent

102

Figure 5.11: Responses on “Performance is Saturated after some experi-
ence”(Question 5.2)

put it, “after retirement”.

5.3.7 Characteristics of Good Testers

This section listed human characteristics associated with the factors of the Five

Factor Model of personality [74]. This is one of the most popular models in

modern personality psychology research. The listed characteristics were “Good

interaction with outward social world (Extroversion)”, “Open mindedness”, “Ten-

dency towards negative emotionality”, “Qualities like trust, modesty” and “Per-

sonal organization”. We requested that the respondents consider a good software

tester they have worked with (or themselves, if they believed that they are a

good tester), and to state whether they agreed that the listed characteristics of

this section were exhibited by that person. Figure 5.12 depicts the responses to

this. The level of agreement was highest for “Open mindedness” and “Personal

103

organization”.

A Kruskal-Wallis test indicated that there was a significant difference (p <

0.05) in mean responses. Post-hoc Tukey’s HSD tests show that “Open minded-

ness” was significantly (p < 0.05) more strongly identified with good testers than

the other four characteristics, and “Negative emotionality” was significantly (p

< 0.05) less strongly identified than the other four characteristics of good testers.

No other differences were statistically significant.

In the accompanying open question, some other characteristics were also re-

ported by some respondents (27%). Several of them said “attention to the details”

(around 3%) and “innate investigation traits” (around 3%) should be characteris-

tics of a good tester. Some other characteristics listed by the respondents include

“scepticism”, “tenacity”, “loyalty”, and “creativity”.

Figure 5.12: Responses on “Characteristics of good software Tester” (Question
6.1)

104

5.3.8 Training/Certification

More than 50% of the total respondents indicated that they had done train-

ing/certification in software testing in the last five years (Question 7.1). Of those,

78% mentioned the name of the training/certification. The most common named

courses were the various levels of ISTQB [107] certification, representing around

30% of those who nominated a specific training course or certification. Some

respondents said they have done training on scripting, QA tools and domain spe-

cific product knowledge. A few respondents mentioned attending conferences,

and reading books and blogs.

We obtained a range of responses to Questions 7.2 and 7.3, which asked re-

spondents to indicate whether they found the training/certification useful, and

why. The majority found them at least somewhat useful. A number of respon-

dents indicated that the certification courses were quite general and theoretical;

a few mentioned alternative sources of ideas which they found more useful. Some

respondents thought that their training/certification helped to better understand

their work, provided new approaches to testing, and helped to save testing ef-

fort. These respondents believed that the training taught them techniques that

broadened their “toolbox” - it was then their job to learn how to apply these in

their specific problem domain. On the other hand, some respondents stated that

the generic tools that are taught are often useless while self learned materials are

considerably more useful.

105

5.4 Threats to Validity

We have considered two types of possible threats that can attenuate the validity

of the survey outcome, which we discuss below:

5.4.1 Internal Validity

Misinterpretation of survey questions represents a threat to internal validity, and

we believe this may have occurred with some questions. In the case of the char-

acteristics section, we suspect that the underlying purpose of the questions was

simply not understood by many respondents.

Secondly, as training and certification are perceived quite differently by some

in the community of interest, and our questionnaire did not distinguish between

the two, the responses on the questions of this section may be heavily influenced

by the ongoing debate about the value of various certifications, rather than the

value of ongoing specialized training more generally. Therefore, due to the likeli-

hood of confusion in the responses to these two questions, any conclusions from

these two sections of the survey could not be reliably drawn. It is, of course,

possible that other survey questions were not interpreted as we had intended,

but the results show no evidence that this was the case. For many questions the

themes in the open-ended responses showed that the respondents had understood

our intentions.

Another threat to the validity is the possibility of random (or just ill-considered)

or less than candid responses, which is a common issue in this kind of study.

However our survey responses were volunteered freely without any possibility of

106

compensation, and were completely anonymous. Contact with potential respon-

dents was made indirectly through broadly distributed mailing lists, rather than

through individual contacts. Therefore, we believe that there would have been

little motivation for either “throwaway” responses or lack of candour. The effort

made in responding to open-ended questions by the respondents is also inconsis-

tent with this threat.

5.4.2 External Validity

One possible external threat to the validity of the survey outcome is the represen-

tativeness of the respondents. As a voluntary survey with an unknown response

rate, the survey does not represent any kind of random sample. Sampling through

a limited number of mailing lists raises the possibility that the respondents may

belong to certain subgroups within the wider testing community, with similar

interests, experiences, and attitudes towards testing, which may not be reflective

of the broader community of software testers. Responses were skewed towards

testers from countries where English is the main language used in technical con-

texts.

Another threat to the external validity of our research is that it seeks only the

thoughts and views of expert testers. They may reflect the “common wisdom”

of the profession, but that common wisdom may well be wrong. It is routine in

the physical and social sciences for specific empirical studies to reveal “common

wisdom” to be unsupported by evidence. As such, while valuable, we cannot

claim our results are conclusive. Instead, our survey may best be thought of as

107

a source of plausible theories which can be justified with more detailed empirical

studies.

5.5 Analysis

In the opinion of our respondents, the effectiveness of individual software testers

varies considerably, as discussed in Section 5.3.3. While it would be unwise to

over-interpret the quantitative estimate provided by our respondents in this sec-

tion, their responses to this alone indicate that testers themselves strongly believe

that the individual matters a great deal. We can therefore go on to consider what

influences the individual’s effectiveness, and whether these influences are innate,

or the result of training, experience, or other external factors.

Our finding that “Number of bugs” was least important of the stated factors

in measuring the performance of testers is consistent with Kaner [64], who sug-

gests that the effort a tester puts to find harder bugs is not counted if we only

look for bug counts. “Quality of bug report” is also considered important by

Kaner. However, the outcome that “Quality of bug report” is significantly more

important that “Severity of bugs” is, to our knowledge, novel, and if replicated

sufficiently has significant implications for both the assessment and training of

software testers.

Although there were significant differences among the responses on different

factors that influence performance of testers, our data does not reveal what fac-

tor(s) are most influential. However, the tests suggested that “Testing specific

training/certification” and “Punctuality/Time value” were considered less im-

108

portant. We were surprised that “Punctuality/Time value” was considered of

lower importance, as punctuality is a desired quality in general and testing is

mostly done to a tight schedule. Similarly, we were surprised by the finding that

“programming skill” was considered less important, and have no explanation for

this result. In both cases we believe that these counterintuitive results should be

further investigated.

The difference in responses about the characteristics of testers indicates that

there are characteristics that are common in good testers. Most notably “Open

mindedness” was considered desirable for good testers. Since the characteristics in

the question were based on the Five Factor Model of personality, our results sug-

gest that certain personality traits are associated with good testers. ’Da Cuhna

and Greathead [31] found that individuals identified as “Intuitive and Thinking

(NT)” by the Myers-Briggs Type Indicator (MBTI) perform well at debugging

tasks. “Openness to experience” of the Five Factor Model is positively correlated

with the MBTI type “Intuitive”, so our results are consistent with Cunha and

Greathead in this respect. We believe that our results provide additional justi-

fication for further investigation of the connection between specific personality

types and performance in testing. Their research was based on MBTI, which is

based on a very different model of personality, and due to sample size limita-

tions they were only able to examine a subset of the MBTI factors. Due to these

differences and limitations, it is difficult to directly compare our observations to

their results. However, “Intuitive and Thinking” sounds quite similar to “open

minded”.

As shown in Section 5.3.5, the majority of survey respondents did use some

109

kind of test automation tool. These speed up testing, improve accuracy, and free

testers to devise new tests, rather than conducting repetitive and prosaic tasks.

As Kaner put it, the tools extended human reach [7]. Tools were considered

particularly useful for regression testing. However, it is important to consider

the nature of the tools used by our respondents. QTP and Selenium automate

the process of test execution and evaluation, and assist with the test and defect

management process. They do not automate the generation of test cases. Nor

did testers mention the use of test coverage tools to evaluate test adequacy. The

main use of automated test case generation was for performance testing (through

the use of LoadRunner and Jmeter), not for functional testing. This may be an

artefact of our sample, as it is possible that test generation tools are popular in

particular problem domains, but not in those in which our respondents work.

Another possibility, in the case of coverage tools, is that unit testing, where

coverage is most significant, may be performed by developers themselves rather

than a distinct testing team. It is also possible that the in-house custom tools

mentioned by a number of respondents were used for test case generation. Our

findings on automated tools were similar to those of Ng et al. [108], who conducted

a survey of Australian software testing practices in 2003. They found a similar

proportion of survey respondents used automated tools; furthermore the tools

were used primarily for automating test case execution, regression testing, and

defect tracking. It is striking that, seven years hence, the parts of the testing

process which are automated have not changed. If test generation tools are

indeed not widely used in industry, this presents a challenge to academic testing

research: why haven’t automated test case generation tools found their way from

110

the laboratory to industrial use?

Experience in software testing was considered important by most of our sur-

vey respondents. However, respondents noted that experience can be fruitful if

testers learn from the experience. Most of the respondents also mentioned that

experience can not be saturated.

In general, our respondents tend to believe that certification and training is

helpful, but there were a variety of views as to the type of training that is most

helpful. It is unfortunate that our survey did not distinguish between training

and certification, which limits our ability to draw strong conclusions about this

area as noted in Section 5.3.8. Certification has a dual role - as well as an

opportunity for learning, certification provides a credential indicating that the

holder has (presumably) demonstrated an understanding of the syllabus, which

may be significant for recruitment purposes. There is a long lasting and vigorous

debate on the value of certification in software engineering [105; 106], which we

did not intend to contribute to with this survey. However, it is notable that some

respondents found their training/certification to be quite abstract. According

to them, the materials taught, most of the times, were not directly applicable

at the workplace. Some found this a useful theoretical basis for their work,

others reported difficulty in applying what was taught in practice. In response

to the questions on self-improvement and employer assistance, training in the

problem and business domain, as well as in specific technologies, were frequently

mentioned.

111

5.6 Summary

In summary, our survey responses indicate that, according to professional testers,

testing performance does strongly depend on the tester, and furthermore the

perceived variance between testers is large.

For the measurement of existing testers, a number of factors were suggested by

our respondents. One clear finding was that bug count is not considered a good

measure of performance. These findings helped us to design a novel performance

appraisal form for software testers. The responses also indicate that, what makes

a good measure of testing effectiveness needs to be investigated further which we

address in our fifth study reported in Chapter 10.

The responses indicate that there are factors that influence the performance

of testers. However, our study could not determine precisely what the factors

are. We also found that certain personality characteristics, particularly “open-

mindedness”, are perceived to be associated with good testers. This gives us good

ground to design research studies investigating the influence of personality on the

effectiveness in software testing.

In the following chapters we report more research studies to investigate these

issues in more depth.

112

Chapter 6

Development of effective test

teams

6.1 Introduction

In Chapter 5, we discussed about the effect of different factors on the effective-

ness of testing. The importance of these factors was considered from individual

perspective. However, while developing an effective test team, different factors

might be considered important. Unfortunately, the question of how best to de-

velop an effective testing team - which may or may not be the same as finding

the best individual testers - has received surprisingly little research attention to

date.

In addressing RQ1 we designed the research study reported in Chapter 5.

However, we realised the relative importance of the factors can vary while select-

113

ing members for a test team. So we extended the survey and added the second

theme.

In this chapter, we present the results of the second theme of our preliminary

survey that has already been discussed in Chapter 5. This theme of the survey

examined what factors might be important for developing testing teams.

6.2 Methodology

We used a personal opinion survey [103] for our research.

Our survey was designed according to the six steps suggested by Kitchenham

and Pfleeger [103] and was described in more detail in Chapter 5. The steps of

designing this theme of the survey are described in the following sub sections.

6.2.1 Setting the Objectives

The main objective of this second theme of the survey was to identify the most

important factors that determine the performance of software testing teams. We

specifically examined whether diversity was important for a testing team. If so,

what diversity did participants consider the most important. We also investigated

whether experience working as a team was considered important to performance.

6.2.2 Survey Design

We used an online survey containing a self-administered questionnaire, since these

type of questions help the respondents to answer at their convenience.

114

6.2.3 Development of Survey Instrument

We did not find any research on development of software testing team in the liter-

ature. Existing research of the influence of different factors on team development

(not specific to software testers) [109] led us to hypothesize that there were mul-

tiple factors that could influence testing team performance. Relevant research

investigating the influence of different factors on the performance of IS teams

was also helpful [110; 111?]. Factors like diversity of personality among team

members [110?], experience [111], team playing capability and communication

skill were included in the survey. These factors are considered to be influential on

the performance of an IS team. We speculated they may apply to testing teams

as well. The relative importance of these factors, moreover, would vary. From

our previous experience, a review of the team-development literature, and the

feedback of a pilot survey, we listed seven factors - “Testing performance (perfor-

mance of individual members)”, “Interpersonal skill”, “Team playing capability”,

“Experience in testing”, “Training/certification in testing”, “Knowledge of spe-

cific problem domain” and “Compatibility with other proposed team members

(if known)” - that might be important for developing a successful testing team.

The importance of different types of diversity within a team has also been

studied in general team development research [112]. We listed four types of

diversity - “Diversity of personality”, “Diversity of professional background/ex-

perience”, “Diversity of age” and “Diversity of communication skill’ - based on

our experience and review of the team-development diversity literature.

The survey questionnaire included both closed and open questions. Most

115

closed questions used a Likert scale with five possible responses (“Completely dis-

agree”, “Somewhat Disagree”, “Neither disagree nor agree”, “Somewhat agree”

and “Completely agree”).

6.2.4 Questionnaire Design

The survey instrument contained six closed and two open questions split in to

three main sections.

Important Factors for Developing Testing Team:

This section had three closed questions. The first question asked the partic-

ipants to rank seven factors described in Section 6.2.3 according to their impor-

tance for recruiting team members. The participants could assign a rank from a

range of 1 to 7 to each of the factors in ascending order (lower number implies

higher rank). They could also assign the same rank to more than one factor, if

they considered the factors equally important. An accompanying open question

asked participants to list more factors that they think are also important. The

second and third questions asked the participants whether they think all members

of a testing team should be good testers and good team players. Both questions

were closed and had Likert scale responses available with them. The second and

third questions asked the participants whether they think all members of a testing

team should be good testers and good team players, respectively.

Diversity of the Testing Team:

This section had two closed questions. The first question asked participants

whether they think diversity in a testing team helps to improve performance with

116

two possible responses- “Yes” and “No”. The second question asked participants

what diversities they look for developing a testing team. The question had four

types of diversity listed as described in Section 6.2.3 and each of the diversities

had 5-point Likert scale choices attached to them. Participants could also report

other types of diversity (not present in our list) that they considered important,

via an open question.

Experience of the Testing Team:

This section contained one question that asked participants whether they

think that a testing team performs better when they have experience working as

a team. There were Likert scale responses for this question.

6.2.5 Evaluation of Survey Instrument

We administered a pilot survey on a selected sample software engineers (described

in Chapter 5). Depending on the feedback of the participants of the pilot survey,

minor changes such as adding some additional factors and questions were carried

out.

6.2.6 Obtaining Valid Data

We used purposive sampling to select sample population for our survey. The

details of sampling were discussed in detail in Chapter 5.

117

6.2.7 Data Analysis

The Likert scale responses usually represent ordinal data [103]. The responses

were converted to numerical values (5 implies “strongly agree” and 1 implies

“strongly disagree”) for analysis. Kruskal-Wallis and Tukey’s Honestly Significant

Difference (Tukey’s HSD) tests were used for statistical analysis.

6.3 Results

Total 104 participants completed the survey as mentioned in Chapter 5, however

4 of them did not provide response for the testing team developing questions.

Therefore, 100 responses are reported here.

6.3.1 Demographics

The majority of the respondents (73%) were male. 76% of the respondents were

between 18-40 years of age.

60% of respondents were employed by large IT companies; with 18% of the

sample employed by smaller IT companies, and a similar proportion (17%) em-

ployed by larger non-IT companies. Large company was defined as having more

than 50 employees. An IT company was defined whose main business product or

service is related to IT. Among the participants 77% reported their job respon-

sibility includes testing software/programs developed by others. 45% reported

that they manage testers. Respondents were able to select more than one job

118

responsibility. Half of the respondents (50%) had more than five years of job

experience.

6.3.2 Important Factors for Developing testing team

Figure 6.1 depicts the ranking of the importance of the seven identified factors

for effective testing teams. To improve the clarity of the graph we have reversed

the ranks so that a larger number indicates higher rank (and thus importance).

Figure 6.1: Rank of important factors (Question 8.1)

Some participants (25%) listed other factors that they consider important

while developing a testing team via the accompanying open question. Among

them, 3% of participants suggested that, they look for “Learning ability”, 2%

suggested that they look for “Programming skill”, “Analytical skill” and “Com-

munication skill”.

119

A Kruskal-Wallis test (p < 0.01) showed there is a significant difference be-

tween the mean rank value of the factors.

We have used Tukey’s HSD as Post-hoc test to find which factors’ mean

ranks differ significantly. The test results indicate that “Training/certification in

testing” and “Compatibility with other team members” are ranked significantly

(p < 0.05) lower than all other factors. “Experience in testing” is significantly (p

< 0.05) ranked higher than “Interpersonal skill”.

The agreement with the statement “All team members should be good testers“

and “All team members should be good team players“ are showed in Figure 6.2

and 6.3, respectively.

Figure 6.2: Level of agreement on whether all members should be good team
players (Question 8.2)

6.3.3 Diversity of the testing team

89% of the participants agreed that diversity in a testing team helps to improve

performance. 9% of participants suggested the opposite. 2% of participants did

120

Figure 6.3: Level of agreement on whether all members should be good testers
(Question 8.3)

not respond to this. Figure 6.4 shows the distribution of responses for the four

types of diversity.

In the accompanying open question, 19% of participants listed other types

of diversity that can be helpful for a testing team. The responses to the open

question included (in order of frequency of occurrence): “Cultural diversity” (4%),

“Knowledge of diverse domain” (4%), “Gender diversity”(3%) and “Diversity of

academic discipline” (3%).

A Kruskal-Wallis test indicated that there is a significant (p < 0.01) difference

in the influence of different types of diversity.

A Tukey’s HSD post-hoc test revealed that “Diversity of professional back-

ground/experience” was considered significantly (p < 0.05) more influential than

the other three types of diversity. “Diversity of personality” is significantly (p

< 0.05) more influential than “Diversity of age” and “Diversity of communica-

tion skill”. There was no significant difference between “Diversity of age” and

121

Figure 6.4: Level of agreement on different type of diversity (Question 8.5)

“Diversity of communication skill”.

6.3.4 Experience of the testing team

Figure 6.5 shows the level of agreement of the participants to the statement “A

team performs better when they have experience working as a TEAM”. The

responses indicate that 7% of participants at least somewhat agree that a team

performs better when they have experience working together.

6.4 Threats to Validity

Misinterpretation of the survey questions by respondents threatens our study’s

internal validity. However, the results show no evidence for this. Another poten-

tial threat is random or less than candid survey responses, which is a common

122

Figure 6.5: Level of agreement on “A test team performs better when they have
experience working as a TEAM, rather than gathering experience as individuals”
(Question 8.6)

issue in this kind of study. We see no evidence that it occurred in our data, and

no particular motivation for participants to do so.

Since the individual participation response rate is unknown, we cannot claim

much confidence on the representativeness of the respondents. Our research seeks

only the thoughts and views of expert testers that may reflect the “common

wisdom” of the profession, however that common wisdom may well be wrong.

The possibility of a response bias, based on the construction of the questionnaire,

is also a plausible threat to the external validity of our research.

6.5 Discussion

The results suggest that “Testing performance”, “Experience in testing” and

“Knowledge of problem domain” are the most important factors to be consid-

123

ered while developing a testing team. This is consistent with the observations

of Beer and Ramler [11], that reported- experience resulted in higher domain

knowledge that helped testing in case of insufficient or inaccurate specifications.

However, the perceived benefit of experience was observed and reported for in-

dividual testers and not for a team. The importance of “Testing performance”,

either for individual tester or for team developing, to our knowledge, has not

been supported by any research to date. The higher importance of this factor

according to our survey suggests research is needed to investigate the influence

of this factor in more detail.

Statistical test results reported in Section 6.3 indicate that there is a difference

in importance among the seven factors for developing a testing team. However,

we cannot prepare a simple ranking the seven factors from the responses since

the differences are not significant for all pairs of factors. However, we can con-

clude that “Training/certification in testing” and “Compatibility with other team

members” are considered significantly less important than all other factors. The

responses to “Training/certification in testing” are not surprising, as the benefits

of certification in software engineering are not supported by all [106]. However,

responses to “Compatibility with other team members” are not consistent with

Schutz’s hypothesis that states compatibility has a positive influence on team

productivity [113]. This raises the question of why compatibility is not given

much importance compared to other factors, in a testing team. Further research

is required to substantiate this result and shed light on the reasons behind it.

Our results also suggest that “Experience in testing” is significantly more im-

portant than “Interpersonal skill”. Again the importance of experience is consis-

124

tent with the observations of Beer and Ramler [11] (as has already been discussed

above). However, the relative importance of these two factors according to our

survey suggests research is needed to investigate the relation in more detail.

According to the responses to the closed question asking whether diversity of a

testing team is helpful or not, we can conclude that diversity is considered helpful

for a testing team to perform better since almost 90% participants selected the

option “Yes”. Our next goal was to find what type of diversity participants think

is helpful. The distribution of the responses to different types of diversity and

our statistical tests of the responses suggest that not all diversities are equally

important. Specifically, “Diversity of professional background/experience” and

“Diversity of personality” seem to be more important than the others. The influ-

ence of “Diversity of personality” on IS team development has been supported by

[56] and [13]. Here the authors of the studies suggest different IS roles for people

of different personality types. However, our finding that “Diversity of professional

background/experience” is considered influential is, to our knowledge, new and

needs to be investigated further.

The majority of the participants tend to agree with the statement that “A

testing team performs better when they have experience working as a TEAM,

rather than gathering experience as individuals”. However, the confidence of the

agreement seems to be low, since a greater number of participants “somewhat

agree” with the statement than the number of participants who “completely

agree”. One possible interpretation is that practitioners believe that team ex-

perience makes some contribution to performance, however other factors are of

greater importance.

125

6.6 Summary

Our study indicates that respondents consider multiple factors important for

developing testing team.

It indicates that some factors are perceived as more important than oth-

ers, though the differences did not often reach statistical significance. We also

conclude that diversity is desired for a testing team. “Diversity of professional

background/experience” and “Diversity of personality” are two important types

of diversity to be considered for developing testing team. However, the specific

influence of these on testing team development and performance needs further

empirical study. We also found that the practitioners consider experience as a

testing team is helpful for better performance, although not as important as other

factors.

126

Chapter 7

Job responsibilities of software

testers

7.1 Introduction

As discussed in Chapter 2, an empirically validated list of unit tasks performed

as part of software testing is not currently available. This lack of empirical data

on software testers’ unit job responsibilities impedes research on finding who is

best suited for what role. For example, without information about what testers

actually do, any research assessing who might be best suited, or for what testing

specialisations, is just speculation. To fill this gap and to find an answer for “RQ2:

What do software testers do?”, we designed a research study to identify the unit

tasks of software testing and to prepare a list of job responsibilities practiced by

software testers. This chapter presents the details of the study.

127

7.2 Methodology

The research is designed to find answer to “What unit tasks software testing

include?”. In order to answer the research question we planned to collect infor-

mation about the unit tasks of software testing. One source of this information

is the collection of work logs of software testers. In broad terms, a worklog is

collection of units of work performed with a tracking of time spent to perform the

unit of work. The analysis of worklogs of instructional design professionals [114]

is an example of this type of research. However, such information collected with

this method is dependent on the organization the software testers work in and the

phase of the project they are involved in. Different organizations may define very

different set of responsibilities for testers. Also, different levels of testing effort

may be required at different phases of the project. Depending on the level of

required testing effort the role of the tester can vary. Thus, information collected

in this fashion may not reveal the whole picture.

Another source of this information is the descriptions of software testing roles

in job advertisements. Recruiters generally prepare a list of responsibilities to be

carried out by the newly recruited person and give the list in the job advertisement

so that interested candidates get an idea of the role. The job advertisements for

software testers typically contain lists of such responsibilities to be carried out by

recruited software testers. The job advertisements for software testers can thus

be a very good source of the soft of role information we are looking for. However,

the responsibilities listed can be dependent on the business and work pattern

of the organization. Collecting number of job advertisements from number of

128

organizations can help overcome the problem. The research studies of Capretz

and Ahmed [13; 14] encouraged us to consider this source of information. They

collected the job responsibilities mentioned in different job advertisements for

different software engineering roles, including software testing, and connected

those responsibilities with some human skills that they believed would be helpful

to carry out that responsibility.

Another possible source of information is bug repositories. Bug repositories

are the collection of descriptions of the bugs encountered in a software develop-

ment project. Bug repositories contain bug reports. These often contain enhance-

ment requests as well. Bugs are often found while testing the software. Thus, the

information about what the reporter did to produce the bug actually describes

the tasks performed by a tester to find a bug.

Since such different sources of information were considered for this research

study we chose triangulation [115], which refers to using more than two research

methods. We analysed different social research methodologies [100] and adopted

two different methodologies (Survey and Case study) to collect information from

the different sources of information described above. We initially selected survey

as our research methodology to collect information from different sources. How-

ever, due to very low response rate in worklog collection we analyzed the obtained

data as is done in case study methodology. Therefore, we report the collection of

worklog using case study methodology.

We also selected different social research strategies [100] to help collecting

data. Table 7.1 describes the different methods and strategies followed for this

research along with the rationale of selecting the method and strategy.

129

Table 7.1: Description of research methods and strategies
Method Strategy Rationale

Case study of
software testers’
work

Questionnaire In this method we are expecting to col-
lect detailed information on what testers
are doing. The detailed nature of the data
does not encourage many participants. As
such a case study was performed with
small number of participants. Case study
is suitable for the type of information we
expected to record. Since observing cases
at their work for two weeks was not fea-
sible we used web based questionnaire to
collect the worklog.

Survey of soft-
ware testing job
advertisements

Observation There are many job descriptions avail-
able. Due to the quantity of data survey
was chosen. Survey allows collecting huge
amount of data in small amount of time.
Since this method did not involve any hu-
man participants, no questionnaire was
used. The collected job advertisements
were observed to get necessary informa-
tion.

Survey of bug de-
scriptions in bug
repositories

Observation Similar to the second approach, there are
lot of bug description available from the
bug repositories. A survey helped us to
collect the bug description in less time.
The bug descriptions were then observed
to extract information related to testing
responsibility.

7.2.1 Case Study of Software Testers’ Work

In this method we collected the worklogs of different software testers. The details

of this method are described in the following subsections.

Case selection:

The participants of this study were recruited from the personal contacts of

the researchers. The researchers also contacted few software companies who have

130

some software testers employed in it. The testers were requested to participate in

the study through their employer company. This was a voluntary participation

request and had no connection with their employment. The employer did not

have any access to the responses.

Procedure:

Over a period of approximately two weeks, testers indicated (in a broad sense)

the nature of each individual task they had worked on. They provided this

information through a simple web interface described in Chapter 11.

Using the web interface, the participants recorded very basic information

about themselves, including their age, gender, country of origin, and informa-

tion about their educational achievement, their present job title, and their level

of experience in that role. They were asked to categorize, in very broad terms,

the type of software project they were working on at the time of logging their

work.

The participant could enter a job description (unit tasks) along with some

associated information regarding the job description. The associated information

included duration, priority, status, interaction and any commentads/notes on the

job. The job description field contained some options such as test planning, test

execution, error reporting, test infrastructure building, testing tool maintenance

and so on. These options were prepared from a review of software testing related

job descriptions. We reviewed job descriptions in a number of job advertisements

and listed the unit tasks presented as options for job descriptions. The partic-

ipants could also write down a job description if the available options were not

appropriate. The job descriptions usually were small blocks of text describing

131

the unit tasks of the tester role.

Participants were encouraged to log as they work, or at least, at the end of

each working day. There was also an option to edit already submitted jobs.

7.2.2 Survey of Software Testing Job Advertisements

In this approach, we collected the job descriptions of software testers from popular

job web site monster.com [116] over a period of five days. We used an automated

script written using PHP for this purpose. The URL containing the list of jobs

resulted searching with “software testing” in the job website was given as input

to the script. The script then collected the URLs to the individual job adver-

tisements and parsed the job descriptions from those URLs. The collected job

descriptions for testers were then analysed manually and unique job descriptions

were listed.

7.2.3 Survey of Bug Descriptions in Bug Repositories

Many organizations employ bug repositories to keep track of the bugs of a soft-

ware project. These repositories are hosted on local server of the organization

and the access to these repositories is restricted and not permitted for public

use. However, there are a number of open source bug repositories that contain

same type of information. So we considered open source bug repositories in this

method.

There are number of open source bug repositories, and as such the number of

available bug reports is huge. To draw a boundary of our search space we lim-

132

ited our search to bug reports of testing related products of Eclipse and Firefox

repositories. The products were Eclipse Java Development Tool (JDT) and Fire-

fox (Server software) Testopia. A brief description about the products is given

below:

Eclipse Java Development Tool (JDT)

JDT is a plug-in for the Eclipse software [117]. This is a Java IDE that

helps development of Java applications using Eclipse. The JDT plug-ins provide

APIs so that they can be extended by other tool builders. It has some core

plugins - JDT APT, JDT Core, JDT Debug, JDT Text, JDT UI. JDT APT

adds annotation processing support to Java projects in Eclipse. JDT core defines

the non-UI infrastructure and provides code assist and code select support. JDT

Debug supports debugging. JDT Text provides Java editor. JDT UI supports

package explorer.

Firefox Testopia:

Testopia is a test case management tool. This tool is used for tracking test

cases, integrating bug report with test case run results [118]. It is used for both

a test case repository and management system and meets the needs of small to

large size software testing organisation. It was developed to provide a central

storehouse for the collaborative works of software tester.

The tool can be used as an extension to the open source issue tracking

software- Bugzilla.

Rationale for selecting the tools

Generally there is no deliberate software testing team for most of the open

source projects. The bugs of these projects mostly are reported by the users of

133

the projects. Eclipse is an editor mostly used by JAVA programmers. On the

other hand the primary users of Testopia are testers. If most of the users are not

deliberately testing the tools then we can assume they report the bugs that they

encounter while using the tools for development of other software.

Both these tools can be used during the testing phase of a software develop-

ment life cycle. Thus the bug reports related to these tools may contain useful

information about the testing of the software under development.

Procedure

We used an automated script written in PHP to search for all bugs that

contained the keyword “test” in the summary and/or in comments fields of the

bug reports. The bug ID of the resultant list of bugs was stored in a file. An-

other script, also written in PHP, read the bug IDs from the file and parsed the

summary, description, comments, reporting time, reporter information of the re-

spective bugs. The extracted information was then saved in a database stored

on the researcher’s computer. The information of a subset of the resultant list

of bugs were analysed manually. We found that the “steps to reproduce” section

in the description of the bugs contained the information of the tasks performed

to generate the bugs. We prepared another script to parse the “steps to repro-

duce” section from the description and the comments of all the resultant list of

bugs. We discarded the bugs from the list that did not contain any information

on “steps to reproduce”. These “steps to reproduce” of all the bugs were then

analysed manually to identify distinct software testing tasks.

134

7.2.4 Analysis

The nature of the data collected in this research was mostly qualitative. Each

of the methods adopted for this research resulted in a large textual dataset. We

adopted the following steps to analyse the collected data:

1. Unit tasks were identified and listed from the complete worklogs, job de-

scriptions and bug descriptions.

2. The frequency of each unit task was counted.

3. The listed unit tasks were analysed to group similar tasks in common cat-

egories.

7.3 Results

7.3.1 Case Study of Software Testers’ Worklogs

There were a total of 6 cases (paticipants), from Australia, New Zealand, Ger-

many and Bangladesh. Of these, two were female. Three of the cases were from

26-30 years age group.

Three cases mentioned their main job responsibility was to “test modules/pro-

grams developed by others”. Two cases noted their main job responsibility was

“managing testers within a project”. One case mentioned main job responsibility

was “testing and managing”. Two cases had more than 5 years of experience and

two cases had between 3 to 5 years of experience. The other two cases had 1 to

3 years of experience and less than a year of experience respectively.

135

All of the cases worked in different companies having between 35 to 40000 em-

ployees. Two of the cases mentioned they follow an “agile” development process

while two other cases said they use “waterfall and agile” development process.

“Waterfall” and “Partially agile” was followed by one case each. We also asked the

cases to note the application domain they work in. They could choose more than

one option in this category. Four cases mentioned their application domain was

“Web development”, three cases worked in “Desktop application development”,

two cases worked in “Mobile application development” and one case worked in

“Backend application development”.

The demographic information of the cases is summarized in Table 7.2. To

ensure anonymity, we denote the cases with A, B, C, D, E and F.

136

T
ab

le
7.

2:
R

es
ea

rc
h

su
m

m
ar

y

C
as

e
G

en
d

er
A

ge
N

at
io

n
al

it
y

M
ai

n
jo

b
re

sp
on

-

si
b

il
it

y

E
x
p

er
ie

n
ce

N
u

m
b

er
of

em
p

lo
ye

e

A
p

p
li

ca
ti

on

d
om

ai
n

D
ev

el
op

m
en

t

p
ro

ce
ss

P
ro

je
ct

st
a
tu

s

A
F

em
al

e
51

-

60

A
u

st
ra

li
a

1.
T

es
ti

n
g

p
ro

gr
am

s

d
ev

el
op

ed

b
y

ot
h

er
s

2.
M

an
ag

in
g

te
st

er
s

w
it

h
in

a

p
ro

je
ct

M
or

e
th

an

5
y
ea

rs

20
0

W
eb

d
ev

el
-

op
m

en
t

W
at

er
fa

ll
M

a
in

te
n

a
n

ce

137

B
M

al
e

26
-

30

B
an

gl
ad

es
h

T
es

ti
n

g
p

ro
gr

am
s

d
ev

el
op

ed
b
y

ot
h

-

er
s

M
or

e
th

an

5
y
ea

rs

35
W

eb
,

d
es

k
-

to
p

ap
p

li
ca

-

ti
on

,
m

ob
il

e

ap
p

li
ca

-

ti
on

an
d

b
ac

ke
n

d

ap
p

li
ca

ti
on

d
ev

el
op

-

m
en

t

A
gi

le
R

u
n

n
in

g

C
M

al
e

31
-

40

G
er

m
an

y
m

an
ag

in
g

te
st

er
s

w
it

h
in

a
p

ro
je

ct

3-
5

y
ea

rs
70

00
D

es
k
to

p

ap
p

li
ca

ti
on

d
ev

el
op

-

m
en

t

A
gi

le
S

o
m

e
m

o
n
th

s

b
ef

o
re

g
o
in

g

li
ve

138

D
F

em
al

e
41

-

50

G
er

m
an

y
m

an
ag

in
g

te
st

er
s

w
it

h
in

a
p

ro
je

ct

1-
3

y
ea

rs
40

00
0

D
es

k
to

p

ap
p

li
ca

ti
on

d
ev

el
op

-

m
en

t

W
at

er
fa

ll

an
d

ag
il

e

D
iff

er
en

t

p
ro

je
ct

s
a
t

d
if

-

fe
re

n
t

st
a
tu

s

E
M

al
e

26
-

30

N
ew

Z
ea

la
n

d

te
st

in
g

m
o
d

u
le

s

d
ev

el
op

ed
b
y

ot
h

er
s

1
y
ea

r
60

00
W

eb
an

d

m
ob

il
e

ap
-

p
li

ca
ti

on

d
ev

el
op

-

m
en

t

W
at

er
fa

ll

an
d

ag
il

e

se
ri

es
o
f

p
ro

je
ct

s
a
t

m
u

lt
ip

le

p
h

a
se

s

F
M

al
e

26
-

30

A
u

st
ra

li
a

te
st

in
g

m
o
d

u
le

s

d
ev

el
op

ed
b
y

ot
h

er
s

3-
5

y
ea

rs
30

0
W

eb
d

ev
el

-

op
m

en
t

A
gi

le
C

lo
se

to
g
o
in

g

li
ve

139

Case A

Case A was a senior tester as well as test manager. She had more than 5

years of experience. The project she was involved in during logging her work was

at maintenance phase. The project was developed using waterfall development

process.

She submitted worklog for 37 working days. Working days are counted ex-

cluding the weekends during the period of logging the work. The jobs frequently

submitted by her includes (in order of frequency of occurrence)- “analysing re-

quirement and functional design”, “developing test suit”, “maintaining test in-

frastructure”, “debugging”, “executing tests”. A close review of her worklog

revealed that she was involved in variety of jobs such as developing and execut-

ing test suits, reviewing others work, performing human resource responsibilities,

supporting support staff, providing quote for testing and so on.

Case B

Case B was a tester having more than 5 years of experience in this role. The

projects he worked in followed agile development methodology.

He submitted worklogs for 5 working days. From an analysis of his worklogs,

7 unique tasks were found. These are: (in order of frequency of occurrence)

“Execute tests”, “debugging”, “upgrade test tools”, “analysing requirements”,

“reporting test results”, “helping other testers” and “test team meeting”.

Case B spent most of his time executing tests. He indicated executing tests

was his routine work. He did not indicate with whom he worked for the submitted

worklog.

Case C

140

Case C was a manager of testers with 3 to 5 years of experience. He was

working in an agile development process. He recorded his worklog over a few

months before the project was live.

He logged his work for 10 working days. The unique tasks identified from his

worklog include: “planning for resources and upcoming test phases”, “coordinat-

ing testing team”, “meeting”, “preparation work for upcoming test phases” and

“executing test”. While coordinating testing team he worked with other testers.

For planning for upcoming test phases he worked with the project manager.

Most of Case B’s unit tasks were related to planning and coordinating. These

unit tasks were routine work. He indicated project team meetings were often

interrupted works. An interrupted work was defined as the work carried out

interrupting other work in progress.

Case D

Case D was also a manager of testers with 1 to 3 years of experience. She

worked in a large company having 40,000 employees. She was involved in multiple

projects with different status. The projects she worked in followed both waterfall

and agile development processes.

The unique responsibilities identified from her worklogs include: “planning

test orders for next financial year”, “checking accounting for system test efforts”,

“coordinating test team”, “helping other testers”, “project team meeting” and

“maintaining test infrastructure”. While helping other testers she worked with

offshore testing partners. For planning for the next financial year and for coordi-

nating testing team she worked with the project manager. She did the mainte-

nance work with other testers of the team.

141

Case E

Case E was a tester with 1 year experience. He was involved in multiple

projects running at different stages. The projects he was involved in followed

both agile and waterfall development processes.

He submitted worklogs for 3 working days only. We found 3 unique tasks from

her worklogs. These include: (in order of frequency of occurrence) “searching for,

analysing and finalizing testing tools”, “requirement analysis” and “test team

meeting”. She worked together with the project team for searching for, analysing

and finalizing testing tools. Most of her tasks were routine work. He noted

requirement analysis was interrupted work.

Case F

Case F was a tester with 3 to 5 years of experience in this role. He was

involved in agile development process and he logged his work close to product

release deadline.

He submitted his worklogs for 10 working days. Around 12 unique tasks were

found from his logs. Among these responsibilities, “executing tests”, “report-

ing test results”, “explaining test results”, “retesting after defects were fixed”,

“project team meetings”, “ maintaining test infrastructure”, “developing test

suite”, “gaining domain knowledge” were prominent. He noted that retesting

was a different responsibility since he did not execute regular tests while retest-

ing after defects were fixed.

A close observation of his worklogs revealed that he spent a significant amount

of time explaining test results after reporting them. He worked with developer,

project team and project manager while reporting results, however, most of the

142

time he worked with project manager for explaining test results. He worked with

subject matter experts to gain domain knowledge. Reporting and explaining

results were sometimes routine responsibilities, sometimes interrupted responsi-

bilities. He also noted project team meetings were most of the time an interrupted

responsibility.

Summary of Case Study A total of 6 studied cases submitted their work-

logs for different time span ranging from 2 to 37 working days. We used SQL

(SELECT DISTINCT(‘jobDescription‘) FROM ‘workDetails‘ and SELECT DIS-

TINCT(‘jobDescriptionOther‘) FROM ‘workDetails‘)to find out unique strings

from the submitted worklogs by all. The SQL returned 63 unique strings from

the total submitted jobs. A manual inspection of those 63 job descriptions re-

vealed that similar unit tasks were listed multiple times due to minor difference

in description or spelling. For example “Peer review work done by another test

team member” and “Peer review work done by other tester” was listed separately

due to the difference in description, however these two tasks are actually same.

We eliminated the redundant responsibilities from the list and obtained a list

of 44 unique tasks. These 44 unique tasks were analysed carefully and by grouping

similar jobs together we found 12 distinct categories of jobs were performed by

the cases. The 12 categories along with the unique tasks in each category are

listed in Table 7.3. The last column of the table represents the frequency of

unique tasks in each category.

Table 7.3: Summary of case study

Category

of tasks

Unique tasks Frequency of oc-

currence

143

Planning Resource planning 6

Planning upcoming test phases 1

Planning test orders for next financial

year

1

Research

and Devel-

opment

Looking for test automation tools that

will meet our requirements

1

Analysing requirement and functional

design

38

Gaining domain Knowledge 2

Finalizing proof of concept on auto-

mated tools

2

Consulting with Subject Matter Ex-

perts

1

Discussion of change in direction for an-

other project - proposal to provide sys-

tem testing support

1

Review Peer Review work done by another

tester

13

Human Resources Responsibility - an-

nual review of tester on other project

2

Review defects logged by other testers 2

Document reviews 1

Testing Setting up test environment 4

Develop test specification 7

Develop test suite 35

Execute tests 29

Retesting Retesting of fixed defects (not execu-

tion of regular test)

5

Defect retest 1

Reporting Reporting test results 7

Explaining test results 5

144

Turn Around Report - status of all

tasks currently with test team

5

Debugging Debugging 22

Main ten-

ance

Maintaining test infrastructure 25

Upgrade test tools, versions, environ-

ments

2

Managerial Coordinating testing team 15

Prepare and provide quote for test-

ing (preparation and execution) for a

change request

4

Preparation work for upcoming test

phases

1

Checking accounting for system test ef-

forts

1

Adminis

trative

Admin tasks related to Test Lead 1

Various administrative tasks 2

Meeting Test team meetings 4

Project team meetings 17

Development Practice Meeting 1

Company meeting 4

Meeting with external stakeholder 2

Help and

Support

Helping other testers 15

Help developers with existing function-

ality

1

Support for support team 4

Provide support to trainers 1

Miscel la-

neous

Waiting for development to fix defects 1

145

Work for company I work for (as dis-

tinct from company where I am con-

tracted to)

5

Work for Test Practice Group 1

On Leave 1

Total 299

Planning

The first identified category of software testing unit tasks from the work-

logs is planning. There were two main types of planning related responsibilities:

“planning for resource allocation” and “planning for future testing”. One issue

observed from the submitted worklogs is that planning-related unique tasks were

mostly carried out by managers. This is not surprising since planning generally

is a part of managing.

Research and Development

From the analysis of the worklogs we see that software testers perform a

number of research and development type jobs. Most prominent of those are:

requirement and functional design analysis. This task refers to transforming the

identified functional, performance, interface and other requirements in to coherent

descriptions of system functions. This tasks is, in fact reported maximum number

of times by all the cases. Requirement and functional design is analysed by

both testers and managers. Other tasks of this category include: searching and

analysing testing tools, gaining domain knowledge and so on.

Review

A good proportion of software testers’ time is spent in reviewing jobs done

by other testers. They also review the defects reported by other testers. Cases

146

reported document review as a unique task, however the type of document is

not clear from this description. Conducting annual review was reported by a

manager.

Testing

This category represents testing specific jobs such as setting up test environ-

ment, prepare test specification, developing test suit and executing tests. Devel-

oping test suite and executing tests are reported many times by the cases. A

noticeable fact is that executing tests is reported by both testers and managers.

Retesting

This category also includes testing-related jobs. However, cases indicated that

retesting of fixed defects did not always involve execution of regular test suite.

This is why a separate category of jobs is formed. Another job of this category

says defect retest. It is a bit unclear what cases wanted to illustrate with this.

Our impression is that defects reported by customers or other stakeholders are

retested and confirmed by the cases.

Reporting

This category includes reporting as well as explaining test results. From the

worklogs we find that our cases also needed to report the status of testing.

Debugging

Debugging refers to the activity of finding the root cause of a defect. This is

a distinct responsibility and hence is grouped separately. Debugging is reported

number of times by managers and testers.

Maintenance

147

Both managers and testers spent effort for maintaining test infrastructure.

This category also included up gradation of test tools and others.

Managerial

The most popular managerial job, as was reported by the managers, was

coordinating their test teams. Other managerial jobs included preparation for

upcoming tests, checking accounts and preparing quote for testing.

Administrative

Our cases reported they did a number of administrative jobs as well. Some

of those administrative tasks were reported to be related to leading test team as

well. Most administrative jobs were not specifically described in detail.

Meeting

Our cases participated in several different types of meetings. Most frequent of

those were project team meetings. They also participated in test team meetings,

company meetings, amongst others. No client meeting was specifically mentioned.

Help and support of others

Our cases helped other software testers in their work. They also provided

support to the support team, mentioned differently, for example answering queries

from the support team and helping support staff in analysing, replicating and

finding defects. One case also mentioned about helping developers with existing

functionality.

Miscellaneous

The jobs that could not be grouped with others, are organised in this group.

These include waiting for developers to fix defects, working for a separate com-

pany (types of work is not described) and so on.

148

Whom cases work with?

For most of the tasks reported by our cases, they worked alone. However,

for 10.03% of total submitted tasks they worked with other testers. They also

mentioned working with (in order of frequency of occurrence) developers, business

analysts, project managers, subject matter experts, delivery managers and so on.

7.3.2 Survey of Software Testing Job Advertisements

We found 47 job advertisements for software testers on the monster.com over

5 days. We listed the tasks illustrated in these job advertisements. A manual

inspection was performed to determine the unique tasks from the list. We found

39 unique tasks. By grouping similar jobs together in the same fashion we applied

in the case study reported earlier, we found 11 distinct categories of job. The

categories with the unique tasks are reported in Table 7.4.

Table 7.4: Summary of job descriptions

Category

of tasks

Unique tasks Frequency

of occur-

rence

Testing Prepare test plans 35

Develop test specification 3

Write test cases 33

Create test input 4

Execute test cases 43

Implement and manage automated testing

package

40

Retest after defects are fixed 4

149

Research

and Devel-

opment

Develop and maintain quality standards 20

Gain knowledge of product 6

Requirement analysis 12

Suggest enhancements to test mechanisms 2

Identify issues during new product develop-

ment

1

Learn new technologies 1

Participate in process improvement 11

Determine resource needs 1

Design new test strategy 9

Writing

and Re-

porting

Report test results 24

Analyse testing report 16

Track, record and report testing status 13

Write test documents 10

Debugging Determination of the cause of defect 3

Find and recommend options to resolve test-

ing issues

11

Assessment

and evalu-

ation

Assess code coverage 1

Evaluate usability 2

Planning Prepare and ensure timeline deliverables 11

Participate in budget process 1

Managerial Manage test team 4

Setup and maintain test infrastructure 11

Supervision Review others’ work 21

Provide training 8

150

Adminis

trative

Perform software configuration 6

Defect tracking 6

Administrative work 7

QA Review 2

Release management 3

Track and control change management pro-

cess

2

Collabo ra-

tion

collaborate with other stack holders 14

Participate in status meeting 3

Communication with Clients 1

Total 305

Testing

Most of the jobs identified from the job advertisements fall in this category.

Testing specific jobs are grouped in this category. These include planning tests,

writing test cases, preparing test input, writing automated testing programs,

executing tests and so on.

Research and development

Recruiters expected that recruited testers will be involved in process improve-

ments, and will maintain quality standards. They also expected that testers will

learn new technologies and gain knowledge of their domain. These jobs along

with requirement analysis, suggesting new enhancements to test mechanisms are

grouped in research and development type of tasks.

Writing and reporting

From the analysis of job advertisements, we found that recruiters not only

151

expect testers to write test reports. They design more writing jobs such as writ-

ing test documents, reporting test status for testers. Testers also seemed to be

analysing test reports (most probably reports from others).

Debugging

In practice recruiters seemed to be expecting testers to perform debugging

activities as well, including finding the root cause of defects and providing sug-

gestions for correction.

Assessment and evaluation

As part of testing testers are expected to prepare metrics such as assessing

code coverage and usability.

Managerial

Few job advertisements contained managing test team in the job responsi-

bility description. As seen from our worklogs analysis, managing a test team,

in practice, should include a number of unique tasks. However, the job descrip-

tions lacked the detailed steps of managing a test team. So we listed managing

test team as a unique task and grouped it with setting up and maintaining test

infrastructure under managerial category of jobs.

Planning

Some recruiters expected testers would participate in budget preparation and

timeline deliverable planning process.

Supervision

Some recruiter designed the role of the testers providing training to other

testers as well as to supervising their work.

Administrative

152

This category of jobs contained a number of different unique tasks. Jobs such

as defect tracking, track and control change management, release management

are considered administrative jobs of a testers for this analysis. The category also

included QA review and software configuration related jobs.

Collaboration

Similar issues to the managerial category of jobs were found in this category

of jobs. A number of advertisements contained a requirement for collaborative

work with other stakeholders. However, the nature of the collaboration and the

specific type of stakeholder were not obvious from the job descriptions most of

the times. Jobs such as participating in meetings (not specific type of meeting)

and maintaining communication with clients were also considered collaborative

type of jobs.

7.3.3 Survey of Bug Descriptions in Bug Repositories

The steps to reproduce a bug as described in bug reports were very specific job

information regarding testing activities. We identified 24 unique tasks from the

bug reports. Most of the jobs identified from these texts were testing related.

We grouped most of the jobs in a broad category called “Testing”. The rest

of the jobs were put in “Reporting”, “research and development” and planning

category.

The jobs in the “Testing” category were subdivided in small groups. Man-

agement of test plans was put in the testing category (as different to the other

two methods described in Section 7.3.1 and 7.3.2). The reason is that unique

153

tasks, such as prepare test plan, cloning test plan and so on, were specific plans

for a test. Firefox Testopia tool enables users to create plan for a specific test

and then associate test cases to the plan. Hence the test plan related jobs are

kept in testing category, different from what we did in worklog analysis, where

test planning represented the planning activities of overall testing.

The jobs identified from the repositories are reported in Table 7.5.

Table 7.5: Summary of bug descriptions

Category Groups Tasks Frequency of occurrence

Eclipse

JDT

Firefox

Testopia

Testing

Preparation Preparing environ-

ment

9 33

Test plan management

Writing test plan 0 16

Modify testplan 0 3

Searching test plan 0 13

Exporting/cloning

test plan

0 7

Deleting test plan 0 2

Test case management

Creating new test-

cases

3 29

Modify existing test-

case

1 10

Searching/selecting

existing testcase

5 18

Cloning test case 0 7

Test run management

Create test run 0 10

Edit test run 0 1

Selecting test run 0 10

Cloning test run 0 2

154

Association of compo nents
Linking test plan with

test case

0 5

Linking test case with

test run

0 4

Test execution

Executing test 5 4

Creating programs for

executing tests

1 0

Check output 3 17

Other Change test status 0 8

Write notes 0 1

Reporting Create test report 0 7

Research

and devel-

opment

Read help files 0 2

Planning Time estimation 0 1

Total 27 210

The list of unique tasks collected from the bug descriptions represent the part

of testing jobs performed during using tools such as Eclipse JDT and Firefox

Testopia. The jobs do not represent the overall role of a tester, however sheds

some light on the detailed tasks that make up.

7.4 Threats to Validity

There are number of threats that can attenuate the validity of our findings. We

discuss some of those here.

The collection of information from the worklog, job advertisements and bug

descriptions for a period of time may not guarantee all practiced responsibilities

155

of software testing are present in the information. Some responsibilities may

fall outside the time frame of the period worklog was collected for, may not be

mentioned in the collected job advertisements and bug descriptions. This is a

common threat of this type of research. To overcome the threat we need to

collect worklog, job advertisement and bug descriptions for infinite time which is

impossible. However, to minimize the effect of this threat our plan was to collect

as much data as feasible.

The information we are seeking to extract from this research is highly depen-

dent on the organization, type of software being developed and the development

process being followed. We tried to capture this information in collecting work-

log by asking type of development process followed and number of employees in

the organization, and business domain of the organization. However, in other

two methods it was infeasible to obtains this information. Thus our finding do

not ensure the same tasks are practiced in organizations operating in different

business domains and using different development processes.

The type of data collected was qualitative. The qualitative data analysis

process followed in this study required reading the bundle of text collected as

worklogs and extracted from job advertisements and bug descriptions and listing

the unique tasks. A lot of the time the analysis process required reading between

the lines and interpreting the hidden meaning of the text. This needed a good

understanding of the language. The initial analysis was conducted by the student

researcher who is a non native English speaker. This presented the threat of inter-

preting the information incorrectly and listing wrong unique tasks. To overcome

this threat part of the analysis performed was checked by the supervisors who

156

were native English speakers and the student researcher was guided accordingly.

7.5 Discussion

From our research, we found that “Test” specific responsibilities of a software

testers comprises of a number of unit tasks such as creating test cases, preparing

environment, executing test cases and so on. These unit tasks were found from

all three methods followed in this research study.

As a consequence of testing testers need to report results. We observed that

testers also need to explain and analyse the test reports. They also perform other

writing tasks such as preparing test documents, writing test status reports. The

amount of writing and reporting related tasks performed by the testers indicate

that they need good communication and writing skill. This also suggests that

the development of better methodologies and tools for test reporting is poten-

tially very useful. Along with testing specific knowledge, software testing related

certification syllabus and undergraduate IT curricula should thus also include

knowledge and practice to develop these skills.

We also found that software testers are engaged in many research and de-

velopment group of tasks. Most frequent of this type of jobs evident from the

worklogs is requirements analysis. This job was frequently mentioned in job ad-

vertisements as well. In addition to that testers also gain domain knowledge and

conduct research about testing tools and new technologies. These are encouraged

by the recruiters as well. Testers also participate in preparing quality standards

and in improving process. In our opinion, these responsibilities seek the tester to

157

be quite a good reader, possessing qualities such as attention to details, being well

organized and so on. Some of these qualities were also listed by our participants

in our preliminary survey as key factors influencing testers’ performance.

Software testing tasks also include debugging tasks, such as finding the root

cause of the defect, exploring and suggesting possible resolutions. This was evi-

dent from both the worklog and the job advertisements. To find the cause and the

possible resolution of defects testers need to review the code. According to the

study performed by Cunha and Greathead [31], Intutitive-Thinking types of peo-

ple (as assessed with MBTI personality assessment test) are good at code review

tasks. NT people are described to be “logical and ingenious” by the MBTI type

definition [31]. This category of people is always “looking at the possibilities,

theoretical relationships, and abstract patterns” [119].

Along with the testing and debugging responsibilities testers (mostly senior

level such as managers) perform some managerial, supervision and planning re-

lated jobs.

Testers collaborate with other stake holders, such as programmers, managers

and clients, and participate in meetings. The types of meetings were not clear

from the job advertisements. However from a review of the collected worklog we

see they participate in different type of meetings such as project team meeting,

test team meeting, company meetings and so on. This indicates a significant

amount of testers’ time is allocated to meetings. Hence a different category

called meeting is formed from the analysis of the worklogs.

158

7.6 Summary

This research study was an attempt to prepare a refined list of software testing

unit tasks. We adopted different research methods to collect information from

different available sources. From those sources of information we could prepare

a list of unit tasks performed for testing. We also found that along with testing

many other unit tasks such as debugging, planning, maintenance, managerial and

collaboration with others are performed by testers.

We believe the identified category of jobs along with specific unit tasks of

each category will help recruiters to design job responsibilities for testers. This

will also help young graduates get better understanding of the responsibilities of

this role in selection of their career choices. This will also benefit our research

finding suitable human characteristics of software testers. In addition, some po-

tential enhancements to tester training and education were identified including

an emphasis on soft skills.

159

Chapter 8

Personality Traits of Software

Developers

8.1 Introduction

Software testing is a distinct role from other software development roles. The

influence of certain personal characteristics on this role is evident from our pre-

liminary research reported in previous chapters. Different personality type is

potentially one of these. The research study reported in this chapter addresses

“RQ3: What personality traits are over-represented among testers?” and “RQ3.1:

Are these traits different from other practitioners?” by investigating whether any

particular personality trait is over represented among professional software testers

and whether that is distinct from those of others involved in software develop-

ment.

160

8.2 Methodology

In this research study, we collected the personality profiles of software engineers

with the help of a survey. We used a web based survey as our research strategy

since such a survey enables us to collect personality profiles of wide range of

software engineers in a very short time. The survey was designed according to

the six steps suggested by Kitchenham and Pfleeger [103]. The steps are discussed

in the following subsections.

8.2.1 Setting the Objectives

The research study involved a group of software testers and a group of software

developers who were involved in other roles of software development excepting

software testing. The objective of the research study was to collect the personality

profiles of the two groups and to conduct a comparative analysis to find out if

there are any notable trends and significant differences among the two groups.

The personality profiles of the participants were prepared based on the “Big five

factor” model [120] of personality.

In order to find the differences, if any, of five major personality traits described

in big five factor model, between software testers and the non testers, we assume

the following alternative hypothesis:

H A: There is difference in mean on the five personality traits (Neuroticism,

Extraversion, Openness to Experience, Agreeableness and Conscientiousness) be-

tween software testers and the non testers.

161

In contrast to the alternative hypothesis we propose the following null hy-

pothesis:

H O: There is no difference in mean on the five personality traits (Neuroti-

cism, Extraversion, Openness to Experience, Agreeableness and Conscientious-

ness) between software testers and the non testers.

8.2.2 Survey Design

We conducted a web based survey with a self-administered personality assessment

questionnaire. One of the main benefits of web based surveys is that the responses

are collected in an automatic fashion and participants can complete the survey

questionnaire at their convenience. A potential disadvantage of web based survey,

however, is the generalization of the sample. Due to the necessity of internet

access sample is often skewed to the participants with internet access. In our

survey, our intended participants were software engineers who generally would

have internet access.

8.2.3 Development of Survey Instrument

According to Kitchenham and Pfleeger [103] researchers should search for relevant

literature before developing a survey instrument at this stage. This has two key

benefits. The first benefit is this will reduce the chance of duplicate research.

The second is that the researchers can learn and, if possible, can adopt questions

and experimental design from existing relevant research.

162

A similar research study to ours was conducted by Capretz [46] and reported

the personality profiles of software engineers. However, software engineers were

not divided into sub groups depending on their specific roles (e.g. programmers,

analysts, software testers) for analysis. The personality of those software engi-

neers was also assessed using the MBTI personality assessment test that identifies

one of possible 16 “type” of personality. This is different compared to the con-

temporary trait based assessment of personality.

We used the 50 item IPIP personality assessment test [90] for this research

study. This test is designed based on the “Big five factor” model [120] of per-

sonality, which is the most commonly used contemporary model of personality

psychology. The rationale behind selecting this personality test is that it can be

used royalty-free and the test items as well as the scoring rules are available. The

shorter version of the test could also be completed very quickly.

We used a custom-built data collection website for this survey described in

Chapter 11.

8.2.4 Questionnaire Design

The survey was divided into two sections. The first section collected general

demographic information of the participants along with their role in software de-

velopment. The second section contained the IPIP NEO personality test items.

The responses to each item could range from “Very inaccurate” to “Very accu-

rate”.

163

8.2.5 Evaluation of Survey Instrument

A pilot survey was administered to validate the survey instrument. In the pilot

survey the URL of the survey website was sent to some PhD students of Faculty

of Information and Technology in Swinburne University of Technology. Based on

the feedback obtained from the pilot survey minor spellings and a duplicate item

were corrected.

8.2.6 Obtaining Valid Data

We used cluster and purposive sampling to recruit participants for this survey.

In cluster sampling, instead of selecting individuals from the population ran-

domly, clusters of individuals are selected and within one cluster all individuals

are included in the sample [100]. In this survey we requested permission from

the 12 LinkedIn and 12 Yahoo! groups that gave us permission in our prelimi-

nary survey [121; 122]. 5 Yahoo! and 3 LinkedIn groups approved us. In this

process we could select clusters of participants who are associated with software

testing-related mailing lists and groups. In comparison to sending invitations to

individuals, sending email to the groups (clusters from the population) enabled

us to invite larger group of participants in a shorter time.

In the purposive sampling process the sample is “hand picked” on the basis

of relevance and knowledge [100]. As part of this process we attended a soft-

ware testing related industry conference in Australia and posted to an industry

conference email list related to software development. We also tweeted on the

Twitter feed of the developer conference with the help of the organisers. Given

164

the maximum size of a Twitter message is 140 characters, we sent out a “teaser”

message to encourage those who read the message to investigate further. Our

Tweet was: “Are developers from Mars and testers from Venus? Help Swinburne

university researchers find out: <link of the website>”.

The participants could register for a draw of two $100 Amazon.com gift vouch-

ers by providing their email addresses. The email addresses were stored in a

separate database table and were not associated with their responses.

8.2.7 Data Analysis

We report results with descriptive statistics. We used Mann-Whitney U test to

find the significance of difference of mean scores on five major personality traits.

We used Hedge’s g to find the effect size to quantify the difference in mean. We

also used power analysis to determine the statistical significance of our findings.

8.3 Results

8.3.1 Demographic Information

Total 182 software engineers participated in the survey among them 45.1% were

software testers. Among the rest of the participants 57% were programmers and

28% were managers. There were also business analysts, consultants, Architects,

Software Product Designers and so on. The Gender and nationality of the par-

ticipants are given in Table 8.1.

165

Table 8.1: Gender and nationality of the participants
Criteria Software testers

(%)
Non testers (%)

Gender

Female 16.5 12.1

Male 28.6 42.9

Nationality

Australia 7.7 14.3

Bangladesh 8.2 8.2

Brazil 0 0.5

Canada 1.1 2.2

Croatia 0.5 0

Ecuador 0.5 0

Egypt 0.5 0

Germany 1.6 1.1

Hungary 0 0.5

India 4.9 2.7

Indonesia 0.5 0

Iran 0.5 0

Israel 0.5 0

Malaysia 0.5 0.5

Nepal 0.5 0

New Zealand 1.1 1.1

Pakistan 2.7 0

Peru 0.5 0

Philippines 0.5 0

Romania 1.1 1.6

Serbia 0 0.5

South Africa 0 0.5

Spain 0 1.1

Turkey 0 0.5

Ukraine 0.5 0

United Kingdom 2.7 2.7

United States of America 6 13.2

Not selected 1.6 3.3

The majority of our participants were male irrespective of their role. This is

not surprising since the majority of practitioners in the IT field are male [123].

However, a noticeable fact is that, there were more female participants in the

166

software testers group than in the non testing group. The highest number of

participants selected their country of work as “Australia”. The second highest

number of participants was from “United States of America”.

The type of employment of the participants and their experience are shown

in Figure 8.1 and 8.2, respectively.

Figure 8.1: Type of employment

Figure 8.2: Experience

From Figure 8.1, we find that most of our participants were employed in IT

companies. A small portion of the participants worked in non IT organizations

167

and a very small portion of them were self employed. Figure 8.2 shows experi-

ence of our participants. Majority of our participants had more than 5 years of

experience

8.3.2 Personality Distribution

Figure 8.3 shows the percentages of participants with different levels of five major

personality traits obtained in our study.

The numerical score on the five major personality traits were categorized in

three distinct levels- low, high and medium, suggested by Johnson [124] and

applied by Norsaremah et al. [125] on New Zealand based student sample. Ac-

cording to the scheme, if the score lies within lowest 30% boundary, the level is

low, if the score lies within middle 40% the level is medium and if the score lies

within the highest 30% then the level is high.

Figure 8.3: Personality distribution

From the distribution presented in Figure 8.3 we see there were a number of

non-testers with medium conscientiousness compared to testers who were highly

168

conscientious. Both testers and non testers were agreeable, extravert and open

to an almost equal degree. However, we noticed a higher number of non-testers

with high neuroticism compared to testers in this group.

8.3.3 Tests of Normality

We have applied the Kolomogorov-Smirnov and Shapiro Wilk test [104] to our

sample, as shown in Table 8.2. For these tests of normality, if the Sig. value is

less than 0.05 then the distribution significantly deviates from the normal distri-

bution. From the obtained Sig. values via the Kolmogorv-Smirnov test, we see

that, except for extraversion, the distribution of scores for other factors signifi-

cantly deviated from the normal distribution. Using the Shapiro-Wilk test, we

found the distribution of scores agreeableness, conscientiousness and neuroticism

significantly deviated from normal distribution. From the results of both the tests

we found only the distribution of extraversion did not significantly deviate from

the normal distribution.

Table 8.2: Tests of Normality
Kolmogorov-Smirnov a Shapiro-Wilk

Statistic df Sig Statistic df Sig
A .092 182 .001 .977 182 .005
C .067 182 .045 .984 182 .036
E .062 182 .081 .987 182 .096
N .069 182 .036 .976 182 .003
O .086 182 .002 .987 182 .090

a. Lilliefors Significance Correction, N= Neoroticism, E= Extraversion, O= Open-
ness to experience, A= Agreeableness, C= Conscientiousness

169

8.3.4 Internal Consistency

We have calculated the Cronbach’s Alpha [126] to determine the internal consis-

tency of the personality test items. Cronbach’s Alpha is a measure of reliability

of a test and can range from 0 to 1. The closer the Cronbach’s Alpha is to 1

the greater the reliability is. The obtained Cronbach’s Alpha of the items for

agreeableness, conscientiousness, extraversion, neuroticism and openness to ex-

perience are reported in Table 8.3. We also present the Cronbach’s Alpha of five

major personality traits reported by Goldberg with original scales and reported

by Buchanan et al. [127] with revised scale on an internet sample of 2448 people.

Table 8.3: Cronbach’s Alpha
Our
sample

50 Item
original
scale by
Goldberg

50 item re-
vised scale
on Internet
sample by
Buchanan

Agreeableness 0.74 0.77 0.76

Conscientiousness 0.81 0.81 0.84

Extraversion 0.85 0.86 0.88

Neoroticism 0.83 0.86 0.83

Openness to ex-
perience

0.67 0.82 0.74

According to the proposed interpretation of George and Mallery [128], on our

sample the reliability for conscientiousness, extraversion and neuroticism were

good, reliability for agreeableness was acceptable and reliability for openness to

experience was questionable.

The internal consistency of our sample was similar to those reported by

Buchanan et al. [127] on internet sample of 2448 participants. Except for neuroti-

170

cism our internal consistencies were also similar with those reported by Goldberg

with original scales.

8.3.5 Hypothesis Testing

The mean and standard deviation of each of the five major personality traits

measured by the 50 item IPIP test on our sample is presented in Table 8.4. The

scores on each factor could range from 10 to 50 inclusive. We applied Mann

Whitney U test to find if the mean score on each factor significantly varied be-

tween software testers and the non testers. This test is applied to compare the

differences of mean between two independent groups when the normaility of un-

derlying distribution is questionnable [104]. The results of the 2 tailed Mann

Whitney U test are given in column 8 of Table 8.4. We see only for conscientious-

ness that p <= 0.01, This indicates that the testers scored significantly higher in

conscientiousness than non-testers. No other significant differences were found.

8.3.6 Effect Size

Statistical tests such as Mann Whitney U test help us to find of the mean of

two independent groups differ significantly. However, these tests do not indicate

the extent of differences. An effect size can help us to find the magnitude of

mean differences. We have applied Hedge’s g to find the effect size of the mean

differences on the five major personality traits. The calculated effect size for

conscientiousness is 0.39 that refers to a medium effect. A medium effect implies

that the mean score on conscientiousness between software testers and non testers

171

Table 8.4: Population distribution
Software testers Non testers Combined Mann

Whit-
ney
U
test
(Be-
tween
soft-
ware
tester
and
non
testers)

Effect
size

Percen
tage
of
non
testers
who
would
be
be-
low
av-
er-
age
per-
son
in
soft-
ware
test-
ing
group

Statis-

tical
power

FactorsMean SD Mean SD Mean SD p
A 38.51 5.53 37.55 5.21 37.98 5.36 0.191 0.18 58% 0.27
C 38.37 6.03 36.19 5.79 37.17 5.98 0.011 0.39 66% 0.76
E 32.91 7.62 31.51 7.24 32.14 7.43 0.155 0.19 58% 0.27
N 25.07 6.98 25.71 7.3 25.42 7.15 0.549 -

0.09
54% 0.10

O 37.54 5.21 37.32 5.43 37.42 5.32 0.892 0.04 50% 00.5

N= Neoroticism, E= Extraversion, O= Openness to experience, A= Agreeableness,
C= Conscientiousness

are likely to be different. An interpretation of the effect size is presented in

Table 8.4. We see that approximately 65% of non-testers would be below average

conscientiousness of a person in the testing group.

8.3.7 Power Analysis

We applied post-hoc power analysis to compute the probability that the null

hypothesis was correctly rejected. The computed power of our hypothesis testing

is reported in Table 8.4. We see the power ranged from 0.05 to 0.76. We see

that for conscientiousness we obtained a high statistical power. For the other

factors, such as Openness to experience, the statistical power was relatively low.

This means that we can have confidence in our result for significant difference

in conscientiousness between testers and non-testers, however less confidence for

the other results.

172

8.3.8 Comparison with The General Population

The designers of the IPIP personality assessment test discourage establishment

of and comparison against any norms. We were unable to find any norm on

general population to compare our sample with. The only available results (mean

and standard deviation) of application of the 50 item IPIP test on an internet

sample of 2448 self-selected participants was reported by Buchanan [129] in an

unpublished paper. However, the number of items for each factors was not same

as has been used in this study. Therefore we have not directly compared our

results with those reported by Buchanan.

Even though the test applied by Buchanan used different items, those mea-

sure the same five factors. Therefore we calculated the inter correlations in our

sample and compared with those reported by Buchanan et al. [127] using the

method proposed by Fisher [130]. We found the intercorrelations were higher

on our sample, indicating that the personality scores of our sample were more

homogenous than those of Buchanan et al [127].

8.4 Threats to Validity

There are a number of possible threats to the validity of our study.

8.4.1 Threat to Internal Validity

In web based surveys a major threat to the internal validity is the random re-

sponses of participants. The participants of this survey could register for a draw

173

of 2 $100 Amazon gift vouchers that may be a motivating factor for partici-

pation. However, the interest and enthusiasm observed in inviting participants

contradicts with this view. The fact that only 45.6% participants registered for

the draw also illustrates that not every participant was motivated by the reward.

8.4.2 Threats to External Validity

One possible threat to the external validity of this research is generalization of

the findings. This is a common threat to such research conducted with a limited

sample. Since it is impossible to conduct the study with an entire population, the

findings can always be questioned for any bias caused due to sampling. However,

the demographic information provided in Table 8.1, shows our participants were

from different countries. Most of those countries have well established software

industry of their own. Thus we can consider our sample to be broadly represen-

tative.

8.4.3 Threat to Construct Validity

For this research study we have employed a freely available personality test in-

strument. The reliability of the test adopted for this research can pose a threat

to the construct validity of the research. Although the personality assessment

test is unrestricted, the test has become popular and is widely used [91].

174

8.5 Discussion

The research was designed to find the personality profiles of software testers and

other professionals related to software development. Our aim was to observe the

personality profiles and find if there is any difference between software testers and

other IT professionals. From our perceptions and the findings of our earlier survey,

we hypothesized that software testers would, as a group, exhibit differences in

personality traits compared to others involved in software development.

The results indicate that there is no significant difference in mean scores on

agreeableness, extraversion, neuroticism and openness to experience between soft-

ware testers and the non-testers for our sample population. However we found

significant difference in mean on conscientiousness. The effect size results indicate

that the probability of software testers to be high on conscientiousness is higher

than the non-testers.

The distribution of different personality levels presented in Figure 8.3 indicates

that in our sample we observed software testers scored significantly higher on

conscientiousness compared to the non-testers. Conscientiousness is related to

personal organization of people [88]. Highly conscientious people tend to be more

organized, disciplined and hard working. Higher number of software testers with

higher conscientiousness conforms to the general assumption, found in our earlier

informal survey of practitioners, that software testers generally need to be highly

organized, disciplined and hard working.

The qualities exhibited by highly conscientious people seem to be important to

succeed in any profession. However, these qualities might be particularly impor-

175

tant for software testers. Capretz and Ahmed [14] analysed the job responsibilities

of software testers as mentioned in job advertisements and suggested that sensing

and judging type of people categorized with MBTI personality assessment test

will be more successful as software testers. Sensing and judging types of MBTI

are associated with conscientiousness of five major personality traits [131]. Our

study’s finding that software testers are more highly conscientious than others in

the IT profession supports Capretz and Ahmed’s perception.

Greathead and Cunha [31] found that intuitive and thinking type students

assessed with MBTI were better at performing code review task. According to

Furnham [131], Conscientiousness is associated with thinking and sensing type of

MBTI. Sensing is opposite to intuitive type in the dichotomous scale of MBTI.

The observation of Greathead and Cunha, thus partly supports the influence of

conscientiousness on effectiveness of software testing tasks.

8.6 Summary

The purpose of this research was to find any difference in personality on five

major traits between software testers and others involved in software develop-

ment. We conducted a web based survey to collect personality profiles of nearly

200 IT practitioners. From the analysis of their personality profiles we found a

significant difference on the conscientiousness trait between the software testers

and other software developers. Software testers in our sample scored significantly

higher than other software developers. This is indicative that software testers

differ in their personality from others involved in software development. The dif-

176

ference in personality between software testers and others, makes our assumption

more stronger that personality traits might influence the effectiveness of software

testers. We investigate such influence in our next study.

177

Chapter 9

Influence of personality traits on

software testing

9.1 Introduction

The results of our preliminary survey reported in Chapter 5 indicate that certain

human factors were viewed as crucial to being an effective tester. Most of the

factors, we believe are related to the personality traits. However, specific per-

sonality traits to be influential for testers could not be identified in the detailed

survey. We designed a quasi experiment to investigate the relationship between

the psychological aspects of individuals who test software, and their performance

as testers. In the quasi experiment we attempted to answer “RQ4: Do personality

traits influence software testing performance?” and “RQ4.1: If yes, which trait(s)

has the maximum influence?” by examining the connection between the person-

178

ality profile and testing performance of later-year software engineering students.

This chapter describes the quasi experiment.

The effectiveness in software testing can be influenced by a number of factors.

Although the quasi experiment was specially designed to investigate the effect of

personality, we also recorded experience and background knowledge of testing of

the participants and examined the effect of these factors on the effectiveness of

testing. The background knowledge of software testing was determined by the

information whether participants studied any unit on software testing.

9.2 Experiment Design

The quasi experiment was divided in two broad phases- Assessment of person-

ality and Assessment of effectiveness in software testing. Following subsections

describe about each of the phases and other details of the quasi experiment.

9.2.1 Assessment of Personality

MBTI has been commonly used in research relating personality and IT practi-

tioners. However, neither the MBTI, nor Jungian personality theories, on which

the axes of the MBTI are based, are widely used in modern personality psychol-

ogy research. A major reason is because the MBTI does not come with norms

based on continuous scores, restricting the scope of statistical analysis [37].

We have, instead, chosen to use the NEO personality inventory test (NEO PI-

3), proposed by Costa and McCrae [132], and based on the five factor model of

179

personality. In comparison to MBTI, NEO personality inventory tests are widely

accepted by personality psychology community, and provide continuous normed

scores on the standard five-factor model of personality. Tests based on big five

factor model of personality such as NEO inventory of personality assessment has

gained much popularity in recent times [48].

9.2.2 Assessment of Effectiveness in Software Testing

To our knowledge, there is no available method or test for assessment of effec-

tiveness in software testing. We have used a faulty Java program to assess the

effectiveness in software testing in this study. The program was developed as

an assignment as part of “Programming in Java” unit in Swinburne University

of Technology. The program calculates all possible loop free network topologies

given the location of different towers. The locations are defined with latitude and

longitude. The program also finds the shortest topology among all. A number

of anonymous student assignments were collected and tested by the researchers.

There were 18 different types of bugs encountered in those programs. We selected

the student assignment program that had least number of bugs in it to be used

for the testing task in this study. From the list of the bugs found in the assign-

ment programs, 13 bugs along with 7 more bugs (which were not found in the

student programs) were injected in the assignment program to be used for the

study. Thus the testing task program had a total of 20 known bugs in it. The

main reason behind injecting detected bugs is that the bugs represent real world

bugs as they were created by the student programmers writing the program. The

180

severity of the injected bugs was decided on the classification taken from [133].

This scheme is broadly accepted in many projects including Microsoft [134]. To

ensure that the injected bugs represent real world bugs, we have compared the

type of bugs with two well-known bug classification scheme Knuth’s errors and

Eisenstadt’s bug war stories [135]. Table 9.1 presents the comparison along with

the description of the bugs.

The program used for our testing task had total 1017 lines of code and the

maximum cyclomatic complexity of the program was 7 (Calculated using Eclipse-

Metrics plugin [136]). Figure 9.2.2 shows occurances of different cyclomatic com-

plexity.

Figure 9.1: Occurances of different cyclomatic complexity

9.2.2.1 Assessment Metrics

There are a number of proposed metrics in the literature for assessing testing ef-

fectiveness [62], [17]. Three metrics were used for our purpose: Bug location rate,

181

Table 9.1: Description of Injected Bugs and Comparison with Knuth’s Errors and
Eisenstadt’s Bug War Stories

Bug
No.

Correct program be-
haviour

Incorrect program be-
haviour (Bug)

Fault
description

Fault
Source

Severity Knuth’s
errors

Eisenstadt’s
bug war
stories

1 The output is printed in
the console and in the file

The output is printed
only on the console

Missing
functional-
ity

Students Low forgotten
func-
tion

unsolved

2 Pair of cities are printed
with their names

Pairs are printed with
numbers

Wrong
implemen-
tation

Students Medium algorithm
awry

3 Prints right number of
pairs possible among the
given cities

Prints wrong number of
pair of cities

Wrong
implemen-
tation

Researchers High blunder
or
botch

4 Prints right distance be-
tween the pair of cities

Prints wrong distance
between pair of cities

Wrong
function
call

Researchers High mismatch
be-
tween
mod-
ules

des.logic

5 Prints pairs with right
(name/number) of cities

Prints pairs with wrong
(name/number) of cities

Researchers High blunder
or
botch

6 Prints right number
of topologies possible
among the given cities

Prints wrong number of
topologies among the
given cities

Wrong in-
dex

Students High blunder
or
botch

lex/var

7 Prints right topology dis-
tance

Prints wrong topology
distance

Wrong in-
dex

Students High blunder
or
botch

lex/var

8 Selection of right short-
est distance

Selection of wrong short-
est distance

Wrong pa-
rameter

Students High blunder
or
botch

var

9 Not printing duplicate
topologies

Printing duplicate topol-
ogy

Researchers Medium blunder
or
botch

10 Right display of distance
unit

Wrong display of dis-
tance unit

Wrong
string
literal

Researchers Medium trivial
typo

11 Should calculate dis-
tance for all values

Cannot calculate topolo-
gies for special value
(gives exception with 2
cities)

Students Critical Forgotten
func-
tion

lang

12 Calculates right distance
for cities with <0 degree

Calculates wrong dis-
tance for cities with <0
degree

Missing
Bracket

Students High trivial
typo

lex

13 Should work with any
number of cities

For more than 6 cities
gives memory limit ex-
ceed exception

Memory Students High Language
liability

mem

14 Use of right conditional
operator in line 286
wirlessNet.java

Use of wrong conditional
operator in line 286
wirlessNet.java

Wrong
implemen-
tation

Researchers High trivial
typo

var

15 Use of right conditional
operator in line 309
wirlessNet.java

Use of wrong conditional
operator in line 309
wirlessNet.java

Wrong
implemen-
tation

Researchers High trivial
typo

var

16 Calculates right distance
for cities with 0 degree

Calculates wrong dis-
tance for cities with 0
degree

Missing
equal sign

Students High trivial
typo

var

17 Should print error mes-
sage when number of pa-
rameters mismatch

No output when number
of parameters mismatch

Number of
parameter
mismatch

Students Critical surprising
sce-
nario

behav

18 Should print error mes-
sage for null parameter
value

No output for null pa-
rameter value

Null pa-
rameter

Students Critical surprising
sce-
nario

behav

19 Should print error mes-
sage when parameter
types mismatch

No output with parame-
ter type mismatch

Parameter
type mis-
match

Students Critical surprising
sce-
nario

behav

20 Right method name
“getTopologies”

Wrong method name
“getTopology”

Wrong
implemen-
tation

Students Low trivial
typo

Weighted fault density, Bug report quality. Given that there are no universally-

accepted criteria for tester effectiveness, we judged that these three metrics were

plausible and practical for use in our experiment.

182

• Bug Location Rate: This is measured as the number of bugs found in

comparison to the time taken for testing [133].

Bug Location Rate = Numberofbugsfound
T imetakenfortesting(inminutes)

Bug location rate could range from 0 to infinite.

• Weighted Fault Density: The weighted fault density can be measured

as:

Weighted Fault Density = (W1∗S1)+(W2∗S2)+(W3∗S3)+(W4∗S4)
N

where:

W denotes assigned weights W1 > W2 > W3 > W4. S denotes severity of

faults assigned according to [133]. N denotes number of total bugs found.

There were 4 critical, 11 high, 3 medium and 2 low bugs in the software. For

this experiment we used the following weights: W1 = 0.4,W2 = 0.3,W3 =

0.2 and W4 = 0.1. The total weighted fault density could range from 0 to

0.4.

• Bug report quality: This is assessed using the IEEE standard of Test

Documentation [137]. According to the standard, there are 8 separate doc-

uments that should be given as part of a bug report. As our test sessions

were small, as well as the provided software to test was also a small and

simple one, we did not expect the participants to provide separate docu-

ment(s) on each of the bugs found. We examined whether any information

on each of the 8 standard deliverable fields were present for each of the bugs

reported in the bug report prepared by a student and assigned a score from

183

0 to 1 for each of the field. Thus the total score of bug report quality could

range from 0 to 8.

The total number of bugs found was calculated as the number of reported

valid bugs (Total number of reported bug - total number of reported invalid/false

bug).

9.2.2.2 Assessment of Overall Effectiveness

We did not find any indication of how to assess overall effectiveness using the

above defined metrics in the testing literature. For assessment of overall effec-

tiveness using these metrics we followed two possible approaches:

• Total score: In this approach we summed the score of bug location rate,

weighted fault density and bug report quality of a participant to derive

overall score. The score is denoted as Osum.

Osum = bug location rate + weighted fault density + bug report quality

• Weighted total score: In this approach we assigned different weights to

the assessment metrics according to their importance on total score to get

an overall score. According to Kaner [64] the number of bugs found by a

tester may be affected by a variety of factors. He emphasized qualitative

assessment of bug report quality than accounting for bug counts [17]. In

our previous study [121], we found that “Quality of bug report” is more

important than “Severity of bugs found”. Therefore, we assign more im-

portance to bug report quality. The other two proposed metrics are based

184

on bug count and we can not distinguish the varying importance of those.

We assign the following weights to the three proposed metrics (bug location

rate = 0.3, weighted fault density = 0.3 and bug report quality = 0.4) and

sum the weighted metrics to get weighted total score, denoted as Owsum.

Owsum = (0.3 * bug location rate) + (0.3 * weighted fault density) + (0.4

* bug report quality)

9.2.2.3 Validation of The Instrument

After a pilot study conducted with 9 volunteer student participants, minor changes

were made in the description of the specification document provided with the

testing task.

9.2.3 Research Question

The formal research question that we intend to answer in this study, states:

Formal Research Question: Is there any association between personality

traits assessed by five factor model of personality and effectiveness in software

testing? Accompanying this formal research question we also expect to answer

the following other research questions:

Other Research Question 1: Is there any significant difference in the effec-

tiveness in software testing between the group of participants who have experience

in software testing and those who do not.

Other Research Question 2: Is there any significant difference in effective-

ness in software testing between the group of participants who studied software

185

testing related unit and those who did not.

9.2.4 Variables

We consider the five factors of personality assessed by NEO PI-3 (Neuroticism,

Extraversion, Openness to Experience, Agreeableness and Conscientiousness) as

our independent variables and the two measures of overall effectiveness (Osum

and Owsum) as our dependent variables. We also consider the three different mea-

sures of effectiveness (Bug location rate, weighted fault density and bug report

quality) as our dependent variables for analysis. We also consider the experience

(whether participants had experience in software testing) and background knowl-

edge (whether they studied any software testing unit) as independent variable.

The list of dependent and independent variables are given in Table 9.2.

Table 9.2: Variables
Independent variables Dependent variables
Score on Neuroticism (N) Total score (Osum)
Score on Extraversion (E) Weighted total score (Owsum)
Score on Openness to Experience
(O)

Bug location rate (BLR)

Score on Agreeableness (A) Weighted fault density (WFD)
Score on Conscientiousness (C) Bug report quality (BRQ)
Experience in software testing
Background knowledge of soft-
ware testing

186

9.2.5 Hypothesis

In order to test the effect of five personality traits on the effectiveness of software

testing we assume the following alternative hypothesis:

H A:There is an association between different levels of five personality traits

(Neuroticism, Extraversion, Openness to Experience, Agreeableness and Consci-

entiousness) and the effectiveness in software testing.

In contrast to the alternative hypothesis we propose the following null hy-

pothesis:

H O: There is no association between different levels of five personality traits

(Neuroticism, Extraversion, Openness to Experience, Agreeableness and Consci-

entiousness) and the effectiveness in software testing.

Difference in levels of five personality traits can be calculated from the T

scores on each personality factor assessed by NEO PI-3. The test suggests five

levels depending on the T score. For ease of calculation we have combined the

five levels to three levels: Low (T <= 44) , Average (T = 45to55) and High

(T >= 56). Participants were grouped in either of the three levels according to

their T score on each of the five factors for hypothesis testing.

In addressing the other research questions described in Section 9.2.3, we pro-

pose the following null hypotheses:

H O 1: There is no significant difference in mean effectiveness between the

group of participants who have experience in software testing and those who do

not.

H O 2: There is no significant difference in mean effectiveness between the

187

group of participants who studied software testing related unit and those who did

not.

9.2.6 Participants

The participants of the study were students of FICT of Swinburne University of

Technology and Monash University. The researchers gave a small 5 minute talk at

the end of the lecture of different IT units in both universities to invite students

to participate. The researchers collected the contact details of the students who

showed interest to participate in the research study.

9.2.7 Experimental Procedure

After each of the participants signed a consent statement information form for

participation in the research study, they were assigned a unique number and

were provided with a small demographic questionnaire that asks about the par-

ticipants’ experience in software testing. Once the demographic questionnaire

was completed the participants were presented with self scoring NEO PI-3 form.

After the completion of the personality assessment form the participants were

given the specification document of the testing task program. The testing task

program was installed in a desktop computer for Swinburne University of Tech-

nology participants and in a laptop for Monash University participants. Same

environment was ensured in both desktop and laptop used for the study. Partic-

ipants were requested to complete the testing task within 40 minutes. However,

participants took variable times. They informed when they arrived at the end

188

of testing. They produced bug report document as a result of testing. The bug

report also contained the starting and ending time. The duration was calculated

from these time differences. The bug report document was later analyzed to

count number of bugs found.

At the end of the test each participant received $25 for participation. The T

scores and the answer form of NEO PI-3 test was kept to the researchers and the

participants were provided with their personality profile form named “Your NEO

Summary”.

The data was collected over the period September 2010 to October 2011.

9.2.8 Analysis

To find the association between variables we used Pearson correlation [104].

For Hypothesis testing we used a single factor multivariate analysis of variance

(MANOVA) [104]. MANOVA analysis is applicable when there is more than one

dependent variable. This analysis can find the effect of one or more independent

variables on several dependent variables at the same time.

For testing the other null hypotheses described in Section 9.2.5 we used two

sample T-Test. T-Test is used to compare the mean of two samples to examine

if the means of two samples vary significantly. In conducting the first two sample

T-Test we divided our main sample in to two groups depending on whether they

had experience in testing or not. The first sample had experience in software

testing and the second did not. For the second two sample T-Test the sample

was divided in two groups depending on whether participants studied software

189

testing related units. The first sample studied software testing related unit and

the second sample did not.

We used SPSS (version 18) to conduct the MANOVA analysis and Microsoft

Excel 2007 to conduct the T-Test.

9.3 Results

9.3.1 Demographic information

A total of 48 students from 18 to 35 years of age, participated in the research

study. The majority of the participants (69%) were male. Almost 23% partici-

pants had professional experience in software testing. More than 30% participants

had studied a specialized unit on software testing. Figure 9.3.1 shows the sum-

mary of demographic information of the participants.

Figure 9.2: Demographic information of the participants

190

9.3.2 Population distribution

Table 9.3 shows the number of participants with different levels of five personality

factors.

Table 9.3: Population Distribution
Factor Number of participants

High (>=56) Average (45-55) Low (<=44)
Total % Total % Total %

N 24 50 14 29.17 10 20.83
E 14 29.17 22 45.83 12 25
O 19 39.58 24 50 5 10.42
A 12 25 19 39.58 17 35.42
C 6 12.5 27 56.25 15 31.25

N= Neoroticism, E= Extraversion, O= Openness to experience, A= Agreeableness,
C= Conscientiousness

The scales of NEO personality inventory tests measure factors that follow

an approximately normal distribution. We have applied two well-known tests of

normality, namely Kolmogorov-Smirnov Test and the Shapiro-Wilk Test to test

our population distribution [104]. For a small sample size of < 50, a Shapiro-Wilk

Test is more appropriate. If the Sig. value of the test is greater than the alpha

level 0.05 then the data is not significantly non-normal else the data significantly

deviate from a normal distribution. Table 9.4 shows the details of the test.

The Shapiro-Wilk test results presented in Table 9.4, shows our population

on each of the five personality factors, does not significantly deviate from normal

distribution.

191

Table 9.4: Tests of Normality
Kolmogorov-Smirnov Shapiro-Wilk

Statistic df Sig Statistic df Sig
N .134 39 .077 .963 39 .231
O .107 39 .200 .970 39 .365
E .100 39 .200 .965 39 .269
A .097 39 .200 .983 39 .819
C .118 39 .184 .969 39 .354

N= Neoroticism, E= Extraversion, O= Openness to experience, A= Agreeableness,
C= Conscientiousness

9.3.3 Correlation Between Personality Traits and Effec-

tiveness in Testing

Table 9.5 shows Pearson correlations between our dependent and independent

variables. From this table we see that at significance level p = 0.05, there is

a negative association between extraversion and Osum, Owsum and bug report

quality. At the same level of significance we also see a positive, though weak

association between conscientiousness and bug location rate and a weak negative

association between conscientiousness and weighted fault density. There are also

some correlations among different personality factors such as between Neoroticism

and Conscientiousness. Since we are interested in the correlations between per-

sonality factors and effectiveness variables, we limit our discussion in this paper

to those correlations only.

192

Table 9.5: Correlations (N = 48)

N E O A C Os Ows BLR WFD BRQ
N 1 -

.329*
-
0.136

-
0.135

-
.457**

0.034 0.036 -
0.122

0.02 0.043

E 1 .401** -
0.231

.375** -
.267*

-
.267*

0.038 -
0.133

-
.265*

O 1 -
0.235

0.177 0.161 0.165 -
0.025

-
0.154

0.179

A 1 -
0.121

0.167 0.173 -
0.034

-
0.215

0.191

C 1 0.026 0.026 .251* -
.241*

0.028

Os 1 1.000** .258* 0.085 .996**
Ows 1 .248* 0.071 .998**
BLR 1 -

.310*
0.214

WFD 1 0.028
BRQ 1

N= Neoroticism, E= Extraversion, O= Openness to experience, A= Agreeableness,
C= Conscientiousness, Os= Osum, Ows= Owsum BLR= Bug Location Rate, WFD=
Weighted Fault Density and BRQ= Bug Report Quality

*. Correlation is significant at the 0.05 level (1-tailed)
**. Correlation is significant at the 0.01 level (1-tailed)

9.3.4 Hypothesis Testing

Our single factor multivariate analysis of variance (MANOVA) results are pre-

sented in Table 9.6. We are particularly interested in the significance levels pre-

sented in the last column of Table 9.6. There are four multivariate tests conducted

by default. For Cgroup effect we see Wilks’ Lamda test gave p = 0.043, Hotelling’s

Trace test gave p = 0.036 and Roy’s Largest Root test gave p = 0.008, all of

which are less than 0.05. This means at the 95% confidence level we can reject

the null hypothesis for conscientiousness and can say that based on these exper-

imental results, there is an association between the conscientiousness trait and

193

effectiveness in software testing. For the other four factors p value is greater than

0.05 and as such we fail to reject the null hypothesis for those personality traits.

Table 9.6: Multivariate Tests
Effect Value F Hypothesis

df
Error df sig.

Intercept

Pillai’s Trace .995 414.396 3.00 6.00 0.00
Wilks’ Lamda .005 414.396 3.00 6.00 0.00
Hotelling’s Trace 207.198 414.396 3.00 6.00 0.00
Roy’s Largest Root 207.198 414.396 3.00 6.00 0.00

Ngroup

Pillai’s Trace .793 1.534 6.000 14.000 .238
Wilks’ Lambda .350 1.381 6.000 12.000 .298
Hotelling’s Trace 1.448 1.206 6.000 10.000 .377
Roy’s Largest Root 1.062 2.478 3.000 7.000 .146

Egroup

Pillai’s Trace 1.076 2.716 6.000 14.000 .058
Wilks’ Lambda .188 2.607 6.000 12.000 .074
Hotelling’s Trace 2.904 2.420 6.000 10.000 .104
Roy’s Largest Root 2.293 5.349 3.000 7.000 .031

Ogroup

Pillai’s Trace .767 1.452 6.000 14.000 .264
Wilks’ Lambda .295 1.681 6.000 12.000 .209
Hotelling’s Trace 2.176 1.813 6.000 10.000 .194
Roy’s Largest Root 2.074 4.838 3.000 7.000 .040

Agroup

Pillai’s Trace .498 .774 6.000 14.000 .603
Wilks’ Lambda .551 .695 6.000 12.000 .658
Hotelling’s Trace .728 .607 6.000 10.000 .721
Roy’s Largest Root .575 1.341 3.000 7.000 .336

Cgroup

Pillai’s Trace 1.041 2.532 6.000 14.000 .071
Wilks’ Lambda .152 3.138 6.000 12.000 .043
Hotelling’s Trace 4.329 3.607 6.000 10.000 .036
Roy’s Largest Root 4.012 9.362 3.000 7.000 .008

The results of two sample T-Test is presented in Table 9.7.

All the p-values reported in Table 9.7 are more than 0.05. That mean we fail

to reject the other null hypotheses described in Section 9.2.5. As such, we did not

find any significant difference in effectiveness in software testing by dividing our

sample based on their experience in software testing and background knowledge

of software testing.

194

Table 9.7: Results of T-Test
Factors Dependent Variable p-value

Experience in software
testing

Total score (Osum) 0.28

Weighted total score (Owsum) 0.28
Bug location rate (BLR) 0.17
Weighted fault density (WFD) 0.12
Bug report quality (BRQ) 0.27

Background knowledge
of software testing

Total score (Osum) 0.19

Weighted total score (Owsum) 0.18
Bug location rate (BLR) 0.34
Weighted fault density (WFD) 0.43
Bug report quality (BRQ) 0.17

9.4 Threats to Validity

In this section we discuss some of the possible threats that can attenuate the

validity of the outcome of our study.

9.4.1 Threats to External validity

One possible threat to the external validity is the generalization of our findings.

Since we had only limited number of participants (N=48), we cannot claim that

our findings as general. We plan to replicate the study with a large number of

participants in future to test the outcome of this study.

9.4.2 Threats to Internal validity

Participants were paid $25 for their participation in the study, the reward might

be the motivation for participating. However, the enthusiastic participation of

the participants opposes that this might have happened.

195

9.4.3 Threats to Construct validity

For the assessment of effectiveness in software testing, we have developed an

instrument ourselves. One possible threat might be the reliability of the test.

The bugs injected in the instrument represent real life bugs and match with

Knuth’s and Eisenstadt’s classification. Hence, we can consider the instrument

as a reliable instrument for testing effectiveness in software testing.

9.5 Discussion

The purpose of this study was to investigate the effect of five factor personality

traits on effectiveness in software testing assessed with a custom software testing

task. To find any association we closely examined the Pearson correlations of the

five factors personality traits with the overall effectiveness in testing as well as

different measures of effectiveness. In contrast to our assumption, we do not find

much significant correlations among the personality factors and the effectiveness

measures.

A weak negative correlation, however, is seen between extraversion and overall

effectiveness. This differs from the results of Shoaib et al. [10] that concluded

extravert people were good at exploratory testing. A negative correlation also

exists between extraversion and bug location rate. As suggested by the type

descriptions [88] extravert people are assertive, active and talkative. As such it is

surprising that people who are active and talk much, are not good at reporting

bugs. This finding should be investigated with more controlled experiment in

future.

196

Another personality trait conscientiousness showed a weak positive correla-

tion with bug location rate and a weak negative correlation with weighted fault

density. Bug location rate takes time spend in testing in to account with the

total number of bugs found in testing. According to [88] conscientious people are

determined, punctual and reliable that complements the positive correlation be-

tween bug location rate and conscientiousness. On the other hand, weighted fault

density is more concerned with severity of found bugs. The negative correlation of

conscientiousness with weighted fault density raises the question whether highly

conscientious individuals do not pay much attention to the severity of bugs. The

above two findings indicate that highly conscientious individuals might be more

interested towards finding more bugs in the available time without giving much

attention to the severity of the bugs.

In testing the hypothesis, we found support for the influence of different levels

of conscientiousness on the effectiveness in testing. Conscientiousness is closely

linked to the Judging-Perceiving dimension of MBTI [131]. According to Capretz

and Ahmed [13; 14], sensing and judging individuals categorized by MBTI would

be good at testing. Our finding that conscientiousness has influence on testing

effectiveness, thus, partially supports Capretz and Ahmed’s perception. How-

ever, the exact effect of conscientiousness should be examined by more controlled

experiment which is one of the plan of our future research.

Although our main focus was investigating the effect of personality on the

effectiveness of software testing we also examined if there was any significant

difference in experience among the participants depending on their experience

and background knowledge in software testing. The results indicate that there

197

was no significant difference in effectiveness.

9.6 Summary

In this empirical study we considered five major personality traits. Our results

indicated some association of extraversion and conscientiousness with effective-

ness in testing measured with different metrics. However, none of the associations

were strong. We plan to replicate the experiment with larger number of partici-

pants in future to test the validity of this finding. The effect of extraversion and

conscientiousness also needs to be examined with more focused experiment where

the influence of the other independent variables can be kept to a minimum.

198

Chapter 10

Performance Appraisal of

Software Testers

10.1 Introduction

The reliability of delivered software, to a large extent, depends on the perfor-

mance of software testers. An accurate performance appraisal of software testers

is thus very important for their recruitment, monitoring and development, and

for testing team performance management. Furthermore, from our own research

perspective, to conduct studies of factors that potentially affect software testers’

performance, a validated, reliable instrument to assess software testers’ perfor-

mance is an essential prerequisite for us, and other researchers, to be able to

use.

Current methods utilized to appraise software testers in the software industry

199

have not been reported or evaluated in any detail in the open literature [138].

This gap in the existing literature - and practice - encouraged us to design the

research study discussed in this chapter. This study was designed to obtain the

opinions of software development project managers on the current practice of

performance appraisal of software testers and the pros and cons of their current

appraisal system. These helped us to answer research questions “RQ5: How is

the performance of software tester appraised?” and “RQ6: How the performance

of software testers should be appraised?”.

Based on our review of the literature and analysis of different requirements

listed in job advertisements for testers, we designed a new Performance Appraisal

Form (PAF) for software testers. We also aimed to collect feedback on a proposed

PAF for software testers, by requesting the software development project man-

agers to review the form and seeking feedback on the form.

10.2 Methodology

A personal opinion survey [103] was used to conduct our survey. Compared to

other available research methods, a survey enabled us to collect opinions of higher

number of participants in limited available time [100]. The survey was designed

by following the steps as suggested by Kitchenham and Pfleeger [103], and these

are presented in the following subsections.

200

10.2.1 Setting the Objectives

The two main objectives of the research were to (i) collect information about

the state of practice of performance appraisal of software testers; and (ii) collect

feedback on a proposed Performance Appraisal Form (PAF) for software testers.

Accordingly, the research was divided in two sections.

10.2.2 Survey Design

We used a web-based survey and prepared a data collection tool containing a self-

administered questionnaire. The benefit of using a web-based, self-administered

questionnaire is that the participants can respond at their own convenience. A

potential disadvantage of web-based survey is the generalization of the sample.

10.2.3 Development of Survey Instrument

According to the suggestion of Kitchenham and Pfleeger [103], we searched for

relevant research studies in the literature before developing our own survey in-

strument. However, we did not find any research study we could adopt some

questionnaire or designing tips from. As such we developed our own instrument.

Since our aim was to collect opinion and feedback, most of the data collected was

in the form of open-ended free-form text.

201

10.2.4 Questionnaire Design

Opinion on state of practice: The section asked whether there is a formal

performance appraisal process for employees, is there any specialized appraisal

process for software testers or not, whether the performance appraisal of software

tester in practice was considered sufficient and appropriate or not and in their

opinion how software testers performance should be appraised.

Feedback on proposed PAF: In our initial design we planned to evaluate

the proposed PAF using the following two steps: Step 1: We requested partic-

ipants to consider a software tester worked under their supervision. We asked

them to rate the software tester’s overall performance using a scale of five with

rating labels of poor, marginal, satisfactory, good and outstanding. Step 2: The

managers were then asked to rate the same software tester’s performance using

our proposed appraisal form. The managers were requested to rate more than

one tester working in their supervision by repeating the steps above. The overall

score obtained from using our form and the overall score the manager had as-

signed before completing our form would be compared to check the validity of

our proposed form in obtaining the right appraisal score. Once managers rate

their testers, they would be given a survey form where the managers could give

their feedback about our proposed appraisal form.

Due to a poor response rate to our initial PAF survey we had to revise this pro-

cess and plan a more lightweight survey based on feedback from participants and

potential participants that the original was too detailed and too time-consuming.

We modified our survey design and participants were no longer requested to use

202

our proposed performance appraisal form. The form was presented to the par-

ticipants to review followed by a simplified feedback questionnaire asking them

whether they thought the performance dimensions considered in the proposed

PAF were sufficient and appropriate or not, how the proposed PAF could be im-

proved, whether the weight assignment to different attributes were appropriate or

not and so on. Most of the feedback questions used closed Likert scale responses.

10.2.5 Evaluation of Survey Instrument

To evaluate the survey instrument 11 participants including professional software

engineers, academics teaching software engineering and PhD students with prior

industry experience were requested to participate in a pilot survey. Based on the

feedback of six participants (54.5%) who responded, definition of a severity class

was modified.

10.2.6 Sampling to Obtain Valid Data

We used cluster and snowball sampling in this survey [100]. In cluster sampling,

instead of selecting individuals from the population randomly, clusters of indi-

viduals are selected and within one cluster all individuals are included in the

sample. In applying cluster sampling, permission to send invitation email was

requested from the 12 LinkedIn and 12 Yahoo! groups that had approved us in

our preliminary survey [121; 122; 138]. Three LinkedIn and four Yahoo! groups

permitted us to post to the group this time, making the group response rate 25%

and 33.3%, respectively. It is, however, impossible to calculate an accurate indi-

203

vidual response rate, since most of the invitations were sent to the groups and

the number of group members who actively read emails cannot be obtained.

Snowball sampling, on the other hand, is a process where samples are selected

through references. The authors invited participants from their personal contacts

and requested the invited participants to nominate more participants. Unfortu-

nately we did not find any participant in the initial survey, however obtained 3

participants in lightweight survey with snowball sampling.

10.2.7 Data Analysis

We used grounded theory [100] to analyse open-ended responses. In this analysis

process the researchers read the data multiple times and assign codes to the data

according to the interpretation made by the researchers. Similar codes are then

grouped together to form categories and categories are analysed to develop a

hierarchy. The key concepts are found from the hierarchy.

Before reporting the results, a brief description of the proposed PAF is given

in the following subsection. The PAF itself is available at:

http://www.testingsurveys.org/PAF static/initialPaf.html

10.2.8 Proposed Performance Appraisal Form (PAF)

The objective of our proposed PAF is to provide a standard assessment instru-

ment to assess overall performance of software testers from different performance

dimensions. Some performance appraisal instruments use multiple forms to as-

sess different aspects of employee performance. However, for simplicity we chose

204

to design an integrated form. The performance dimensions of our proposed PAF

were based on different approaches [92] to performance appraisal: Performer fo-

cused appraisal - This approach attempts to discern whether some qualities are

exhibited by the performer or not.Work behaviour based appraisal - This ap-

proach judges the performance on the work behaviour of the performer. Result

focused appraisal: This approach includes assessment of performance based on

predefined goals and objectives.

For software testers, how effectively testing has been carried out and how ef-

ficiently the testing contributed to the reliability of the software, are important.

We also believe there are some general skills that are important to be high per-

forming software testers. The appraisal form, therefore include different rating

dimension on work behaviour, work outcome and personal attributes, with seven

dimensions in total.

Dimensions related to work outcome: Kaner [17] emphasized on the

qualitative assessment of bug report based on- ease of understanding, sufficient

information to replicate the bug, short and precise description, absence of unnec-

essary information and using polite tone for communication. We designed two

performance dimensions on the quality of bug report according to the suggestion

of Kaner.

Dimension 1- Bug report (ease of understanding): This dimension helps to

assess the qualities of the bug reports that are important to make those un-

derstandable. The dimension uses evaluation concept scale labels [92] with five

choices since this scale is designed to evaluate the quality of the attribute.

Dimension 2- Bug report (ease of replication): This dimension evaluates the

205

presence of sufficient information to replicate the bugs addressed in the reports.

This dimension also uses evaluation concept scale labels for the same reason as

the previous dimension.

We have designed two performance dimensions related to the number of bugs

found. However, taking into account the drawbacks as outlined by Kaner [64] of

considering only raw bug count, we have incorporated two mitigating criteria -

the severity of found bugs and the difficulty of finding the bugs - that produce

extra context about the bug detection performance.

Dimension 3- Bug count (compared to the ease of finding the bug): The num-

ber of bugs found by a tester is directly dependent on the ease of testing the

code. We have defined three levels of difficulty from our experience and assigned

varying weights. The standard scale labels [92] is associated with this dimension.

The standard is considered as the average number of bugs which is highly depen-

dent on the project, so no range or number is specified and should be decided by

the appraiser.

Dimension 4- Bug count (compared to the severity of found bugs): This di-

mension considers the severity of the found bugs in regard to the frequency of

finding those. Four levels of severity are adopted from [133]. The weights of the

different levels of severity are assigned from our experience.

Dimensions related to work behaviour: We have collected and analysed

the job descriptions of software testers in the popular recruitment web site [116]

over a period of five days. We found the responsibilities of testers can be classified

in two broad classes - test planning and execution of tests.

Dimension 5- Assessment of performance in test planning: This dimension

206

uses frequency scale labels [92] with five choices. Since this dimension is related

to work behaviour and frequency scale helps to assess how often certain behaviour

is displayed, frequency scale was considered most appropriate for this dimension.

Dimension 6 - Assessment of performance in executing tests: This dimension

also uses frequency scale labels with five choices for the same reason as stated

above.

Dimensions related to personal attributes: We have listed the soft-skills

or qualities mentioned in job advertisements of software testers in recruitment web

site[116]. We have also reviewed related literature and found skills like good do-

main knowledge [121], [9] are important. We have designed the seventh dimension

with these personal attributes of a software tester.

Dimension 7- Personal attributes of a tester: This dimension uses compare

against a standard scale labels [92] to assess whether the software tester possesses

the following personal attributes: domain knowledge, adaptability to new tools

and techniques for testing, communication skill, attention to details and ability

to handle complex technical aspects. Different weights are assigned to those

attributes from our experience.

10.3 Results

Our survey was divided into two main sections. We noticed that we obtained a

different rate of participation for the two sections. We found that approximately

20% of the participants dropped out after completing the first section. Thus we

describe the results obtained from each section separately.

207

Table 10.1: Gender and nationality of the participants
Criteria Number

of partici-
pants

Gender

Female 3

Male 15

Nationality

Bangladesh 5

Australia 4

Canada, United Kingdom 2 each

China, Egypt, Hungary, Romania, United States of America 1 each

Employment

Employed in an IT organization 13

Employed in a non-IT organization 4

Self employed 1

Experience of managing testers

Less than a year 3

Between 1 and 3 years 7

Between 3 and 5 years 4

More than 5 years 4

A total of 18 participants (8 in the initial survey and 10 in the new lightweight

survey) participated in the first section. Due to the rate of participation, the

results are not presented with percentages in this chapter.

10.3.1 Demographic Information

The demographic information of the participants is summarized in Table 10.1.

The majority of our participants in our sample were male. This is not sur-

prising since the majority of practitioners in the IT field are male [123]. We

assume the gender ratio is similar for software testers since female participants

were in the minority in all our previous studies [121; 122; 138]. Participants were

distributed over a number of countries, with the most coming from (in order of

208

frequency) Bangladesh (5), Australia (4), Canada (2) and United Kingdom (2).

There were also participants from China (1), Egypt (1), United States of Amer-

ica (1), Hungary (1) and Romania (1) as shown in Table 10.1. Most participants

(13) worked in IT organizations with little (4) working in non-IT organization

and one being self employed. Since the intended participants of this survey were

software development project managers, we did not explicitly ask the role of the

participants. Seven participants had between 1 to 3 years experience, four had

between 3 to 5 years of experience, four had more than 5 yesrs of experience in

managing testers.

10.3.2 State of Practice

10.3.2.1 Current performance appraisal approaches for software testers

We asked the participants whether the organization they work in practiced a

formal process of employee appraisal and whether there is any specialized perfor-

mance appraisal method/form used for software testers. The responses to these

questions are summarized in Figure 10.1.

From Figure 10.1 we can see that 78% of the organizations our participants

came from, conduct a formal process of employee appraisal. A similar number

of organizations (77.8%) have specialised processes or methods for performance

appraisal of software testers. For these we asked whether they thought the spe-

cialized process or method was adequate and sufficient. We also asked whether

the specialized method or process were designed for custom use by the organiza-

tion. 50% of those participants (77.8% of total) indicated that their specialized

209

Figure 10.1: Responses on performance appraisal practice

performance appraisal process or method was designed specifically for their or-

ganization. All were satisfied with the customized method. However, responses

were divided on the sufficiency of performance components considered in the spe-

cialized process or method. Only 50% mentioned the performance components

were sufficient.

On the other hand, those who reported that they did not have a specialized

appraisal method or process for software testers were asked how performance of

software testers is appraised in those organizations. Different views were obtained

in response to this question. The responses are shown in Figure 10.3.

From the responses, we see that about half of the organizations that do not

have any specialized performance appraisal process or method for their software

testers use a “general appraisal method”. Sometimes the same appraisal method

210

Figure 10.2: Responses on “How performance of software testers is appraised”

was used for software testers and programmers, sometimes a common HR ap-

praisal policy was followed for all employees. These are grouped under “general

appraisal method”. The second most common practice was “manager evalua-

tion”. Different methods of manager evaluation were described by our partic-

ipants. These include managers setting goals and evaluating the performance

based on these goals; managers sitting closely by the software testers and eval-

uating them based on their activity; and software testers evaluating themselves

and manager evaluation taking place afterwards. Surprisingly, in 14% of those

organizations, no appraisal method at all is practiced for software testers. Only

one participant mentioned that in their organisation software testers’ performance

was evaluated based on the bugs found in the live environment.

211

10.3.2.2 Suggestions on how software testers’ performance can be ap-

praised

In total 17 participants gave their views on how the performance of software

testers can be appraised. Their responses were broad and detailed. We grouped

the responses to form different categories as discussed below:

General appraisal approach: Three participants were reluctant to use spe-

cialized performance appraisal for software testers. One of them suggested using

same template and same agreed upon criteria for software testers and devlopers.

According to the participant this approach is “fair” and agreed upon Key Perfor-

mance Indicators (KPIs) help employees to check their progress periodically. Two

other participants of this group suggested designing performance appraisal for all

employees based on the organization’s business goals. They noted that the bene-

fits of this approach are a sense of equal contribution and benefits and devloping

required expertise for the organization’s business. One participant however noted

that this approach is missing “key items” for different practitioners.

Experiment based approach: One participant suggested to compare the

number and severity of bugs found by different testers testing same version of

software in same environment in a controlled experiment. The participant how-

ever, was not much confident about the accuracy of the process. This approach

seems to be more appropriate for academic research purposes and less feasible in

an industry context.

Specific performance criteria-based approach: Six participants pro-

posed different performance criteria for appraisal of software testers, including:

212

using a standard performance appraisal model with software testing specific KPIs;

basing appraisal on delivered system performance; using performance evaluation

tools; manually appraising software testers performance; using a website where

testers can fill out worklog data everyday and managers can evaluate performance

based on the data submitted by the software tester; agreed upon team values and

personal goals, quality of the tested product (can be accounted for by the number

of bugs that reaches the client), the depth of thinking process behind discovery

of a bug; time spent in regards to the type of bug (cosmetic or critical); and

ability to go in depth intto the code to find bug, usage of formal QA/QC process,

innovativeness of testing requirement analysis and depth of testing.

One participant suggested software testers’ performance should be assessed

based on their skill on testing methodology and technical knowledge, efficiency of

executing tests and knowledge of the product. The participant was not specific

about how software testers can be assessed based on these criteria.

Another participant suggested assessing the performance based on some com-

mon performance criteria and emphasized on the improvement of individual skill.

However, he did not detail the performance criteria. They proposed that perfor-

mance feedback, including achievements and limitations, should come from every

party involved and should be communicated to the individual. He also suggested

that the performance appraisal process should be periodical, and shorter peri-

ods are better than longer ones. However, he also noted that obtaining feedback

from multiple sources adds extra work overhead and often can be difficult to be

collected in time.

Manager evaluation approach: Two participants suggested the manager

213

should work closely with the software tester and take note of every achievement

and mistake they make. One of them thought since there is no process, software

testers cannot deceive it. However, this approach depends on the manager, is

highly labour-intensive, and is prone to bias.

Performance metrics based approach: One participant suggested the

following performance metrics in order of preference: number of bugs in deliv-

ered software (lower the better); throughput - test cases run/analysed (higher the

better); bug report quality; severity of found bugs (more severe, better); num-

ber of bugs found (higher better); and teamwork. The participant noted that

the scheme they proposed uses specific metrics and would take time to be im-

plemented. However, the advantage is that it focuses on the things that really

matters and deemphasises quantity in favour of quality.

Another participant proposed certain metrics along with specific formulae to

assess performance based on the metrics. The proposed metrics of the participant

are: T: Time to run test suite; F: flakiness of tests (buggy tests); C: behavioural

or functional or requirement coverage; and S: complete number of automated

test cases. According to the participant the base score would be a normalized

(S-x*F)*C/T, where x is a weight assigned based on the impact of flaky tests.

All of the metrics proposed by the participant were related to automated testing.

The rationale behind this given by the participant was that automated testing is

highly desirable and that this proposed scheme will encourage more automation.

The drawbacks on the other hand are that some of the metrics, such as C, are

not exact. Also, optimizing a test suite for such proposed metrics can lead to

designing testing that runs quickly without verifying more error prone areas of

214

the software.

One participant proposed the following metrics: test efficiency (number of

test cases executed in regards to time); number of bugs found; number of bugs

found by customer; efficiency of designed test suite (test cases taken to find

bugs); troubleshooting skills; and skill of communication with developers. The

participant indicated although the proposed scheme can evaluate comprehensive

quality of a software tester, it does not take innovativeness of test suite design

into account.

From the detailed responses described above we see two major themes. One

group of participants thought that software testers’ performance should be ap-

praised using the same process as is practiced for others. The other group of

participants thought the opposite and advocated for a specialized performance

appraisal method for software testers. Some participants of later group precisely

described what criteria should be considered for performance appraisal of soft-

ware testers. Different performance criteria were stated in all the reponses as

indicated in Table 10.2 along with respective frequency of occurences.

From the responses, we see that about half of the organizations that do not

have any specialized performance appraisal process or method for their software

testers use a “general appraisal method”. Sometimes the same appraisal method

was used for software testers and programmers, sometimes a common HR ap-

praisal policy was followed for all employees. These are grouped under “general

appraisal method”. The second most common practice was “manager evalua-

tion”. Different methods of manager evaluation were described by our partic-

ipants. These include managers setting goals and evaluating the performance

215

Table 10.2: Performance criteria with respective frequency of occurrence
Performance criteria Number

of time
mentioned

Bugs found after delivery, Number of test cases
run with regards to time

4 each

Agreed upon KPIs 3

Number of bugs found, Agreed upon personal
goals, In depth code inspection

2 each

Bug report quality, Severity of bugs found,
Teamwork, Skill on applying testing method-
ology, Technical knowledge, Knowledge of the
product, Use of formal QC/QA methodology,
Innovativeness of testing requirement analysis,
Depth of testing, Thought process behind dis-
covery of bug, Time spent on type of bugs
(cosmetic vs crucial), Number of buggy tests,
Number of automated test cases, Behavioural or
functional or requirement coverage, Efficiency of
test case design, Communication skill

1 each

based on these goals; managers sitting closely by the software testers and eval-

uating them based on their activity; and software testers evaluating themselves

and manager evaluation taking place afterwards. Surprisingly, in two of those

organizations, no appraisal method at all is practiced for software testers. Only

one participant mentioned that in their organisation software testers’ performance

was evaluated based on the bugs found in the live environment.

10.3.3 Feedback on Proposed PAF

All of the participants who responded to the first section of the survey did not

participate in the second section. We noticed a 25% and 20% drop out for the

initial survey and the new lightweight survey, respectively. As a result we obtained

a total of only 14 participants who completed feedback on the proposed PAF.

216

Responses to the first three questions from the initial and the new lightweight

survey are analysed together. However, possible responses to the other questions

of this section were different, so those are presented separately.

The main feedback on our new proposed PAF was whether participants con-

sidered the proposed form is appropriate for performance appraisal of software

testers. The responses to this are shown in Figure 10.3.

Figure 10.3: Responses on “Do you think the form is appropriate for performance
appraisal of software testers?”

The majority of participants thought the proposed PAF was at least somewhat

appropriate. None of the participants considered the PAF completely inappro-

priate. However two participants thought the PAF was somewhat inappropriate.

Three participants gave their comments on the appropriateness of the PAF in

the accompanying open ended question. The impression on the appropriateness

of the PAF was variable. Some participants gave an overall suggestion whereas

some were more specific about what to improve.

217

One participant thought that the form is appropriate for general performance

appraisal of software testers. However, depending on the business type of the

organization the form could be varied. Another participant suggested that ac-

counting for number of bugs that pass through testing without noticing instead

the number and severity of found bugs. The final participant who gave comment

on this was more specific suggesting to include some evaluation about automated

testing, being more specific about what a satisfactory test plan is and ignoring

the number of bugs found, since software testers often report “misfeatures or UX

problems” as bugs.

Our proposed PAF had a total seven performance dimensions. We asked

the participants whether the dimensions we considered are sufficient or not. The

responses are given in Figure 10.4. From the responses we see that, although most

of the participants thought the dimensions considered were somewhat sufficient,

some participants thought the opposite. We found some interesting comments

from the open ended responses to this.

One participant suggested adding another dimension where testers can set

their own goals in terms of capabilities and weaknesses and can self-evaluate

their achievement on these. The self evaluation can help their manager’s evalua-

tion. Another participant suggested taking the innovation skill of the process into

account. Another participant stated that reproducing bugs is very important and

the time taken to reproduce a bug often reported by customers and requested to

be fixed urgently should be considered in the PAF dimensions. Another partici-

pant suggested the ability of working in a team should be considered.

The overall score obtained by the PAF dimensions are interpreted as poor

218

Figure 10.4: responses on “Do you think the dimensions considered in this form
are sufficient to assess the performance of a software tester?”

(0-0.99), marginal (1-1.99), satisfactory (2-2.99), good (3-3.99) and outstanding

(4-5). We requested participants to indicate whether they thought the proposed

interpretation of the overall score is appropriate. As shown in Figure 10.5 none of

the participants considered the proposed interpretation inappropriate. However,

three participants were not sure about this and selected “Neither appropriate nor

inappropriate”. No open ended responses were received for this question.

We asked participants to indicate whether they clearly understood the perfor-

mance labels attached to each performance dimension from respective definitions.

In the new light weight survey they could indicate their overall response to this.

However, in the initial detailed survey they could indicate the ease of understand-

ing for each dimension.

From the responses we see that the majority of participants could understand

the labels from definitions well (two participants indicated the lables were “very

219

Figure 10.5: Responses on “Do you think the interpretation of overall score is
appropriate?”

Figure 10.6: Overall understanding of the performance labels

220

Table 10.3: Comments on relative weight assignment
Dimen
sion.

Description Relative
weights

Comments

3 Bug count vs ease
of finding: num-
ber of bugs found
in comparison to
difficulty of find-
ing

Three levels
of difficulty
of finding
bugs

Participants views on relative
weight assignments were positive.
One participant stated weight
assignment was good, another
“alright”. One stated non bug feed-
back are not included. Another said
number of bugs found should not
be compared to difficulty of finding
since it depends on complexity.

4 Bug count vs
severity: Number
of bugs found in
comparison to
severity of bugs

Four levels
of severity

Three participants stated relative
weight assignment was “good”,
“useful” and “about right”. An-
other suggested this is valuable but
should not limit the number of bugs

7 Personal at-
tributes: extent
to which person
being appraised
possesses certain
attributes

Different
personal
attributes

Two participants stated the relative
weight assignments to this dimen-
sion was good. Two participants
mentioned that this dimension is the
most important.

clear”, four indicated the labels were “clear”), although a few (one participant

indictaed those were “neither clear nor unclear”) were not sure about this. How-

ever, for the specific responses of the initial survey, we see that two participants

thought the definitions were unclear for dimension 3 and 4.

Three of the performance dimensions in the proposed PAF contained rela-

tive weights assigned to different performance labels. We asked participants to

comment on the relative weight assignment. The comments to each dimension

with relative weights are summarized in Table 10.3. The majority of the partic-

ipants were happy with the weight assignments with one participant indicating

the severity of bugs found should not limit the number of bugs found.

221

We asked participants to indicate whether they thought that the personal

attributes we considered in dimension 7 were sufficient with possible response

options “yes” and “no” in the initial survey and five point Likert scale responses in

light-weight survey. In the initial survey three participants thought the attributes

were sufficient. The responses to this obtained in the new light weight survey are

presented in Figure 10.7. Participants who thought the attributes considered

were insufficient, suggested several additional attributes (in order of frequency

of occurrence): ability to cooperate in a team, ability to deal with clients and

colleagues, patience, ability to raise important issues to management at the right

time, self organization, presentation skill, and being pedantic.

Figure 10.7: Responses on “Do you think the personal attributes considered in
dimension7 are sufficient?”

10.4 Threats to Validity

One of the threats that can limit the validity of our reported results is over-

generalization of the findings. We believe that the nature of participation required

222

for this study put off many potential participants and as such we obtained a

limited number of participants. Due to the small number of participants we had

to modify the survey to require less time and yet still the participation rate was

not satisfactory. We found that many participants were less interested in the

second section and as a result we noticed a number of drop outs. Although some

of our findings are interesting, due to the low number of responses we cannot

strongly conclude that our finding applies in general. Another limitation of this

study was modifying our proposed PAF based on the feedback we received from

the participants. Compared to the first section of the survey, the responses to

this section were not broad and informative enough. As a consequence of this

we cannot gain much confidence on our proposed PAF. However, useful feedback

was obtained on various aspects which have helped us to refine it further.

10.5 Discussion

From the responses to the survey questionnaire of the state of practice of per-

formance appraisal, it is evident that formal process of employee appraisal is

practiced in majority of organizations. A specialized appraisal process is also

common for software testers. However, when there is no such specialized process,

performance of software testers is most commonly appraised using a more general

employee appraisal process or a manager’s evaluation. In only a small number

of organizations are bugs reported after deployment also considered a measure

of the performance of software testers. It is the software testers responsibility

to ensure certain level of reliability of the software. Bugs encountered in a live

223

environment is an ultimate measure of the reliability of the software. We believe

that this might be the reason that this criterion is used in small instances.

In response to the request to propose a performance appraisal method for soft-

ware testers, participants gave detailed responses. The majority of participants

advocated for specialized performance appraisal for software testers. Participants

indicated different criteria for testers on which performance can be measured.

Among those, counting the number of bugs encountered after delivery and the

number of test cases run during unit testing were most popular. Participants

also stated that KPIs should be agreed upon from the beginning and that eval-

uation should occur more frequently. Number of bugs found was also considered

important by a few participants. As has already been discussed, this contradicts

Kaner’s [64] views on bug counts and our finding in the preliminary survey [138].

In the preliminary survey we also found that the severity of bugs found was a

better measure than number of bugs found. However, compared to severity of the

bugs found, number of bugs found were stated multiple times by our participants.

We found that our proposed PAF was considered appropriate by the majority

of the participants. The performance dimensions in the proposed PAF were also

considered generally sufficient. Participants suggested that we consider some ex-

tra dimensions, such as time taken to reproduce a bug and agreed upon KPIs.

The responses indicate the majority of participants were satisfied with the inter-

pretation of the overall score, the labels attached to each dimension and relative

weight assignment. We refined our proposed PAF according to the overall feed-

back as summarised in Table 10.4. The modified version of the proposed PAF is

available at:

224

Table 10.4: Feedback on proposed PAF and corresponding modifications
Feedback Modification to

be carried out
Comment

PAF should be
designed based on
business domain

No modification The aim of the proposed PAF is to develop and refine a generalized
performance appraisal form for software testers. Employers can deploy
the PAF and add domain specific dimension(s) if necessary.

Consider number
of bugs that pass
testing without
notice

No modification Undiscovered bugs may indicate poor performance or especially hard-
to-find bugs. However, testing cannot reveal all bugs. The importance
of this criteria needs to be evaluated before considering this as a per-
formance dimension.

Specific definition
for satisfactory
test plan

Added more text
to dimension 5.

Dimension 5 - test planning: added text to give explanation. Modified
text is-“DIMENSION 5- TEST PLANNING: Frequency of preparing
efficient and good quality test plan. Quality and efficiency attributes of
the test plan include: ability of assessing high risk area and selection of
efficient test strategy. A satisfactory test plan should incorporate such
test strategy that is able to test most important parts of the software
in feasible time.”

Ignore number of
bugs

No modification. We agree that number of bugs should not be directly used as a mea-
sure of testing performance. As such number of bugs are considered as
related to severity of bugs and the difficulty of finding those.

Specific KPIs
from testers
themselves

Added a dimen-
sion.

A dimension is added where the manager can set some specific KPIs
with the software tester at the beginning of the evaluation period. The
score of this dimension and relative weight assignment (if necessary) is
suggested done by the manager.

To consider in-
novation skill of
process

No modification. We believe the selection of appropriate and feasible test strategy covers
the innovativeness of selected test process.

Time taken to re-
produce a bug

No modification. Suggested by one participant. In some organizations software testers
may be requested to reproduce bugs that are reported by clients but
not all, hence we didn’t include directly

Unclear definition
for ”bug count vs
ease of finding”

Simplified text

Unclear definition
for ”bug count vs
severity”

Simplified text

Add more per-
sonal attributes

Added attribute. “Team playing capability” was mentioned by multiple participants.
Others, such as ”ability to deal with clients and colleagues”, ”pa-
tience”, ”ability to raise important issues to management at the right
time”, ”self organization”, ”presentation skill” and ”being pedantic”
were listed only once. If managers think some are particularly impor-
tant, those can be added as specific KPIs.

http://www.testingsurveys.org/PAF static/refinedPaf.html

10.6 Summary

This study aimed to obtain information about the state of practice of performance

appraisal of software testers and to make suggestions on how the appraisal process

can best be conducted. We found that there are two trends: some organizations

use the same performance appraisal process for all employees, whereas some use

a specialized one for software testers. Our participants suggested a number of

criteria that should be considered in appraising performance of software testers.

Among those number of bugs found in live environment and efficiency of running

225

test cases were most prominent.

We also aimed to obtain feedback on our new proposed PAF for software

testers and refine this based on their feedback. In spite of some dropouts in

participation, we obtained good feedback on our proposed PAF. We found that

parts of the proposed PAF were unclear to our participants and so we modified the

text to make those parts more understandable. A few more useful performance

dimensions were proposed by our participants. We added two more dimensions

and one more personal attribute to address these proposals on our PAF. We

believe the new refined PAF can appraise the performance of software testers

appropriately. However, further industry deployment and evaluation of the PAF

by managers is required to verify this. The proposed PAF will be helpful for

the researchers aiming to investigate the influence of different factors on the

performance of software testers as well as for industry practitioners to assess the

performance of software testers for improvement, promotion and renumeration

purposes.

Since the PAF is designed to assess professional software testers and the study

reported in Chapter 9 was conducted with students, we could not use our proposed

PAF in that study. This study was conducted later which is another reason for

not using it in other research studies.

226

Chapter 11

Toolset

11.1 Introduction

All of our research studies have involved human participants. We conducted four

internet based surveys to collect data from those participants. While some could

have been undertaken with standard survey tools, some required quite specialised

support for data capture. To help collection of data for these surveys we designed

and developed a number of tools. This chapter describes the tools we have used

for data collection.

11.2 Rationale

A number of service providers provide data collection services and software that

can be used for data collection through the internet [139; 140; 141; 142]. With

227

these, users can create and/or customize their own surveys. These services pro-

vide a platform for data collection for all, even for those with limited or no knowl-

edge of software development. Most of these services, however, are restricted to

paid services or are quite restrictive in the way data can be captured.

Surveys with straightforward questions and answers can be easily customized

with most available survey development services. However, surveys requiring spe-

cial data collection, such as our worklogs and performance appraisal information,

are much more difficult to be setup with the existing approaches. Higher flexi-

bility is required for these types of survey. Surveys with complex data analysis

on-line, such as our personality appraisal tool, are very challenging to build with

existing survey toolsets.

Another challenge of using existing services for data collection is the limited

administrative control. For the surveys we conducted we required full control

of the data to perform rigorous types of analysis. The necessity of setting up a

survey with flexible interface and with full access to the data led us to design and

develop our own survey tools.

11.3 Toolset

Since we chose to conduct internet based surveys for our data collection, all our

data collection tools were designed to be used via the internet. As a result we

developed four websites for collection of data for four of our surveys. All our data

collection tools were hence interactive websites.

228

All our websites were designed using a 3-tier architecture [143]. This simple

architecture was chosen since the websites were developed for collection of data

for the research purpose only and did not require application of extensive business

logic. Three tier architecture comprises of three main tiers called presentation

tier, business logic tier and data tier. The users’ browsers are the presentation

tier and is considered frontend. Business logic tier and data tier are considered

backend. Direct communication is performed between the frontned and backend

and in the backend business logic tier communicates with the data tier. An

example is shown in Figure 11.1.

Figure 11.1: Three tier architecture

We frequently use frontend (presentation tier) and backend (business logic and

data tier) to describe the data collection websites in this chapter. The frontend

comprised of the user interfaces (mostly web pages) used for data collection. The

backend was designed to connect to the database and to process data storage to

229

and retrieval from the database. The detailed design and functionality of each of

the websites are discussed in the following subsections.

We chose to use HTML [144], PHP [145], JavaScript [146] and CSS [147]

for developing the websites. We used the MySQL database [148] to store the

data collected for the survey. The student researcher had prior experience of

using these mark-up and scripting languages and MySQL database. As such, all

the websites were developed using these familiar technologies. Another reason

for choosing these languages and techniques is these are not restricted by any

licensing agreements.

11.3.1 Website 1: Online Survey of Human Factors Influ-

encing Software Testing and Testing Teams

This website was developed to collect data for our preliminary survey (discussed

in Chapters 5, 6) of human factors influencing the performance of software testers.

We listed a number of factors that could be influential on tester performance and

asked the participants to indicate their level of agreement on the influence of

these factors. We also provided some space where the participants could mention

more factors (not present in our list) if they thought important. The design of

the frontend and backend of this website is discussed below.

Frontend The frontend contained two sections: consent and main survey.

The sections are discussed in the following subsections.

Consent section The consent information statement was signed electroni-

cally by the participants. The index page of the website contained the consent

230

information statement with a “Participate” button. Clicking on this button in-

dicated that the participant had agreed to the consent information statement

and was referred to as signing the consent information statement electronically.

Participants were taken to the main survey section through this button. A screen

shot of the index webpage is shown in Figure 11.2.

Figure 11.2: Screen shot of consent web page (website 1)

Main survey section The main survey was split into eight subsections: de-

mographic, employment, performance, automated tools, experience, characteris-

tics, trainings/certifications and team development. There were separate interface

(web page) for each subsection. The web pages were presented one after another

sequentially.

The main interface of the survey was divided in four HTML frames. The first

frame contained the title information of the survey, the second one contained a

231

small table with basic information (number of questions in each section) about

the survey, third one loaded the web pages for different sections of the survey

dynamically and the final frame called submit frame was hidden and was used to

store the submitted responses to each section temporarily before storing those to

the database.

There was a progress bar on every web page to indicate what proportion of

the survey questions had been completed by the participant. A screen shot of

the webpage collecting demographic information of the participant is presented

in Figure 11.3.

Figure 11.3: Screen shot of consent web page (website 1)

This survey accepted partial data submission. When participants filled out a

section and clicked on the “Next” button, a JavaScript procedure called check-

Validity() was called. This procedure checked if response was provided to all the

questions. If response to any question was missing, a popup window appeared

with “Carry on filling” and “Submit partial response” options. If participants

chose to carry on filling, checkValidity() returned false and as a result partici-

232

pants were kept in the same section, otherwise checkValidity() returned a true

value and another JavaScript procedure goNext() was called. This procedure

submitted the responses provided on each web page to the submit frame.

A webpage was presented at the end that provided the participants some

space if they wished to write comments about the survey. Participants could

enter their email addresses if they wished to get a copy of the research outcome.

This webpage verified the structure of the email addresses to check if valid email

addresses were provided. This webpage loaded all the data stored in the sub-

mit frame and submitted the data along with those submitted in this webpage

to the survey submit try.php script.

Backend: The backend of the website handled the connection and data stor-

age to the database. These functionalities were developed in survey submit try.php

script. A connection to the database was established and the responses to all the

sections were stored to the database in this script. Email addresses were encrypted

in this script before those were submitted to the database. The connection to the

database was closed after the completion of the data storage to the database.

There were total 12 tables in the database. The design of the database is

demonstrated with the data model shown in Figure 11.4.

The backend also contained one php script that showed a report (percentage of

response to all questions along with a list of the responses to the open questions)

on the collected data. This script connected with the database and retrieved the

data stored in different tables to prepare the report. The script was protected by

password. The administrators could enter the password in an html document. If

a valid password was provided, the php script was loaded on the browser.

233

Figure 11.4: Data Model of website 1

Code repository This subsection describes the list of documents prepared

for this website along with the functionalities in tabular format. There were total

17 documents in the code repository described in Table 11.1.

The website was useful for collecting the survey responses. However, after

data collection was started, we noticed few database fields could not store long

responses. Therefore, the maximum limit of those database fields were extended.

11.3.2 Website 2: Online Worklog Collection

This website was designed to collect worklogs from software testers. Software

testers would provide their detailed time allocation to different tasks using this

website. The design of the frontend and backend of the website is discussed in

234

Table 11.1: List of documents in web site 1
Name of the document Functionality
frame.html Positioned the four frames
frame1 pass value.html Contained title information
frame2 display status.html Contained other information about the survey
survey submit.html Initialized hidden fields to store data submitted in

each section
survey intro try.html Display of consent information statement and collec-

tion of consent
survey personal info.php Collection of demographic information, displaying

progress and submission of collected data to the sur-
vey submit frame

Survey employment info.php Collection of employment information, showing
progress

survey performance info.php Collection of responses to the performance subsection,
showing progress and submission of collected data to
the survey submit frame

survey automation info.php Collection of responses to the automated tools sub-
section, showing progress and submission of collected
data to the survey submit frame

survey experience info.php Collection of responses to the experience subsection,
showing progress and submission of collected data to
the survey submit frame

survey characteristic info.php Collection of responses to the characteristics of high
performing testers subsection, showing progress and
submission of collected data to the survey submit
frame

survey certification info.php Collection of responses to the testing related train-
ing/certification subsection, showing progress and
submission of collected data to the survey submit
frame

survey teamPerformance info.php Collection of responses to the testing team develop-
ment subsection, showing progress and submission of
collected data to the survey submit frame

survey optional info.php Collection of comments, email addresses and submis-
sion of data to backend

survey submit try.php Connection to database, storing data to the database
and displaying conclusion message

survey admin intro.html Collection of administrative username and password
survey admin main.php Verification of username and password, connection

with database, retrieving data from database and
preparation and displaying of report on the responses

the following subsections.

Frontend The frontend of the website contained mainly four modules- regis-

tration, login, worklog submission and message exchange module. Each module

is described here.

Registration Module: Participants needed to register (create an account)

before they could submit their worklog using this website. This module of the

website provided the interface (web pages) for registration. The module captured

basic demographic information asked as part of the survey. This module involved

three main processes:

1. Collection of demographics information

235

2. Collection of consent

3. Account verification

Collection of demographic information: This process is implemented in

the demo.php webpage. This webpage collected various demographic information

about the participants. The information was collected only once while registering

in the website.

A screen shot of the demographic screen is given in Figure 11.5.

Figure 11.5: Screen shot of registration web page (web site 2)

Once the participant completed the registration form and submitted the data

by clicking on the submit button, a JavaScript procedure called checkValidity()

is called to verify the responses provided against some predefined constraints. If

response to any of the questions was invalid the procedure focused the field where

the invalid response was provided and returned false. If the procedure returned

a true value then the next process (collection of consent) was triggered.

236

Collection of consent: Once participants clicked on the submit button

in the account creation page a pop up window with the consent information

statement and a checkbox with ”I give consent” appeared. Participants had to

select the checkbox before they could complete the registration process. The pop

up is a web page named consent.php designed with php. The consent is stored

as a flag. Initially the flag is 0. Once participants checked the consent checkbox

the flag was flipped to 1. The page passed the consent flag to demo.php page.

Account verification: Once all the demographic fields were filled up with

valid information and the consent flag was 1, demo.php was submitted to demo submit.php

page. This page had two sections- email and data storage sections. The email

section generated a unique activation key and sent email with a url (to the login

module) containing this key to the email address collected in demo.php. The

recipient was required to visit the url to complete the registration process. This

mechanism was developed to verify the account and to avoid any fraudulent at-

tempt at registration. The email addresses were striped and stored separately to

confirm anonymity. The data storage section called database connection mod-

ule(discussed later in the chapter) to connect to the database. Once a connection

was established the demographic information collected through demo.php along

with the activation key generated in the email section were stored in the database.

There was a database field called status to keep track of the state of registration.

At this stage the status field contained a value “verify” to track that the account

was not verified yet. A unique database ID was generated for each registration.

Login module This module presented the main interface to login to the

worklog collection website. The module contained the index webpage of the tool.

237

A screen shot of this page is given in Figure 11.6. This module had two main

processes:

1. Login

2. Account verification

Figure 11.6: Screen shot of Login web page (web site 2)

Login This process presented the participants with a web interface to provide

their username and password to log in to the website. Once user entered the

username and password, this process matched these with the registered value in

the database. If the user was found and the status for this user was not “verify”,

then the participant was allowed to login to the website and was redirected to

worklog submission module.

Account verification The url sent to the participants during registration

redirected them to the login module. This process in the login module searched

in the database for the key embedded in the url. If any record with the key was

238

found, then the status field in that record was changed from ”verify” to “active”.

In this way the account was verified and the registration process was completed.

Once the status field was active, the participant could use their username and

password to login to the website.

Work log Details Module Participants with an active account could access

the work log module. The module was designed in a way that the participants

could enter the task they had been doing in an hourly format. There were two

main processes of this module:

1. Submit new job

2. Edit old job

Submit new job A drop down list contained a list of possible jobs one par-

ticipant can do. This list was derived from the responsibilities of software testers

mentioned in job advertisements. Participants could choose the job from the

list or could write down the description of the job in their own language. Par-

ticipants were asked to attach duration, priority, interactions, status and notes

with the job description. The Work log main page automatically showed current

date and time while entering the job description. Participants could override the

time. When a job was submitted, by default, the webpage saved the duration

of the work from the last submitted work to the current time unless otherwise

specified. There was a field to indicate the priority of the job with choices -

“interrupted”, “regular work” and “I had nothing else to do”. Participants were

asked to mention if that particular job needed any kind of interaction with other

239

team members. Only description and duration field was compulsory. This web-

page contained a calendar and a report. The report showed the total hours the

participants had submitted jobs for. Participants could click on any day of the

calendar to see the list of submitted jobs for that particular day. A screen shot

of worklog submission webpage is showed in Figure 11.7.

Figure 11.7: Screen shot of worklog submission web page (web site 2)

Edit old job A webpage containing a list of the submitted jobs by the partic-

ipant was linked from the worklog submission webpage. The list could be refined

by day of the week or by the dates on which jobs were submitted by the partici-

pants. If participants wished to edit any job description, they could click on the

edit icon besides the job. This allowed participants to edit the description of that

job. A screen shot of the list page is shown in Figure 11.8.

Message exchange Module In order to support direct communication with

the researchers, the website contained a message exchange system integrated with

it. Participants could send message to the researchers using the message exchange

web page available from the navigations tabs. The message sent to researchers

240

Figure 11.8: Screen shot of edit old jobs web page (web site 2)

was stored in the database. Researchers could see the message in the database

and write reply to the message in the database. The reply can be seen by the

participant when they login to the website and visit the message exchange web

page. A screen shot of this webpage is shown in Figure 11.9.

Figure 11.9: Screen shot of message exchange web page (web site 2)

Backend The backend mechanism for this website contained the connection

to the database and storing information to the database. The database design is

241

illustrated with data model in Figure 11.10.

Figure 11.10: Data model of website 2

Code repository The description of code repository is given in Table 11.2.

The worklog collection website was very useful for collecting worklog. We

plan to add new feature like “todo” list and time reminders to the website and

design it as a small plug in that can be used by partitioners to keep track of their

worklog as well as to maintain work calendar.

242

11.3.3 Website 3: Performance Appraisal Form (PAF)

Validation

This website was developed to validate our proposed performance appraisal form

for software testers and to help collecting data for a supporting survey of the

practice of performance appraisal of software testers. More about the frontend

and backend of the website is discussed in the following subsections.

Frontend The frontend of the website was divided into four sections: login,

demographic and general survey, PAF experience and feedback section. The

sections are discussed below.

Login section For this study the consents from the participants were col-

lected offline. Once the consents were collected, participants were given unique

ID to log in to the system. The approved IDs were already stored in the database.

When participants entered their ID in the index.php web page and clicked start

button, the web page was submitted to signin.php web page. This web page

verified whether the ID was in the database or not. If the ID was valid (found in

the database), the participant was taken to the next section, otherwise index.php

was displayed with an error message. A screen shot of the index web page is

shown in Figure 11.11.

Demographic and general survey section This section (demo.php web

page) collected demographic information about the participants. This section

also contained questions on the general practice of performance appraisal of soft-

ware testers in the industry. “Next” button submitted the collected data to

demo submit.php. this web page submitted the data to the database and took

243

Figure 11.11: Screen shot of login web page (web site 3)

participants to the next section. checkValidity() procedure in demo.php checked

whether response was provided to all the questions of this section. A screen shot

of this section is given in Figure 11.12.

Figure 11.12: Screen shot of demographic and general survey web page (web site
3)

PAF experience section This section (paf.php web page) presented our

proposed PAF to the participants to appraise the performance of at least three

244

software testers the participants had managed. The PAF was presented three

times to appraise the performance of three software testers. There was a help

icon after each of the PAF items. Clicking on the icon brought a pop up window

with detailed information on those items.

Participants could use the PAF to appraise more software testers if they

wished to. After completion of using the PAF three times, when participants

clicked on the “Next” button, a pop up window appeared and asked the partici-

pants if they wish to use the PAF more. If participants did not want to use the

PAF anymore, the data were submitted to paf submit.php and the participants

were taken to the feedback section. A screen shot of PAF web page is given in

Figure 11.13.

Figure 11.13: Screen shot of PAF web page (web site 3)

Feedback section This section (feedback.php) collected the feedback on the

PAF from the participants. checkValidity() procedure in feedback.php validated

the responses to the questions of this section. The data were submitted to feed-

back submit.php that submitted the data to the database. Participants were then

245

taken to the last.php webpage that contained the conclusion message. A screen

shot is given in Figure 11.14.

Figure 11.14: Screen shot of feedback web page (web site 3)

Backend The backend of the website comprises of the procedures for database

connection and data storage to the database. A script called dbconnect.php

contained the procedures for connection to the database. The database of this

website contained seven tables. The data model is shown in Figure 11.15.

Code repository The documents of the website are described in Table 11.3.

The website was useful to collect the responses, however due to very small

response rate, we modified the design of this survey and made it a light weighted

one. In the new light weight survey, the participants no longer required any login

ID. They could check the “I give consent” checkbox in the new index.php. In

the new survey participants were also not requested to use our porposed PAF,

instead they could review the PAF and could give feedback based on the review.

246

Figure 11.15: Data model of website 3

11.3.4 Website 4: Online Personality Assessment

This website was developed to assess personality of the participants. We used

short version (50 items) of IPIP NEO personality assessment test for this study.

There are websites available collecting responses on different version of IPIP tests.

However for full administrative control over the collected responses and for using

IPIP test with the smallest number of items we designed our own website. The

overall design of the website is discussed below.

Frontend The frontend of the website was split in to four sections: consent,

demographic, personality assessment and comment section.

Consent Section This section contains the index page of the website. This

247

page showed brief consent information statement and a “I give consent” checkbox.

Participants had to check the checkbox before they could enter the personality

assessment section. “Start” button would be only active when the checkbox is

checked. There is also a link to a pop up window containing detailed consent

information statement. When participants clicked the start button, a unique

response ID is stored in the database and a session was started. The unique

response id was loaded in the session variable. A screen shot of the web page is

shown in Figure 11.16.

Figure 11.16: Screen shot of consent web page (web site 4)

Demographic section This section contains demo.php webpage. Partic-

ipants are taken to demo.php once they gave consent in the consent section.

This section collected demographic information about the participants including-

gender, age range, nationality, primary job responsibility, experience, type of

employment. The “Next” button in this webpage submitted the data collected

in this web page to demo submit.php. demo submit.php submitted the data to

the database and redirected participants to the personality assessment section.

248

JavaScript procedure checkValidity() in demo.php, allowed the submission of data

and the redirection only if all the fields on this web page were filled out with valid

data. A screen shot of this web page is given in figure Figure 11.17.

Figure 11.17: Screen shot of demographic survey web page (web site 4)

Personality assessment section This section contains the personality.php

web page with the 50 items of IPIP NEO test. There were five options for re-

sponse presented with radio buttons for each item. Participants had to click on

the complete button after completing filling their responses to the items. check-

Validity() procedure checked if all items were filled out before the responses could

be submitted to personality submit.php. personality submit.php calculated the

scores of five factors of personality from the responses to the assessment items

and prepared a summary of the personality assessment outcome based on the

scores. The summary was also written to a pdf document. Participants can

download this pdf document if they wished to. The personality submit.php web

page submitted the responses given in personality.php to the database. A screen

shot of personality.php is given in Figure 11.18.

249

Figure 11.18: Screen shot of personality assessment items web page (web site 4)

Comment Section This section asks the participants whether they want a

copy of the outcome of the survey and whether they want to register for a draw of

prize. If participants chose “Yes” for any of the above, they were required to enter

their email address. The last question of this section asked participants about the

source from where they heard about the survey. By submitting these information

participants entered last.php webpage that contained the thanks message for

participating along with link to other research studies. A screen shot of the last

screen is given in Figure 11.19.

Backend The backend of this website handled the procedures for database

connection and for storing information to the database. There was a php script

named dbconnect.php that contained the necessary procedures for connection to

the database. The scripts that were designed to submit data to the database

included dbconnect.php before submitting data to the database.

There were eight tables in the database. The database design is shown in

Figure 11.20.

250

Figure 11.19: Screen shot of Comment web page (web site 4)

Code repository The list of the documents written for this website is pre-

sented in table 11.4.

The website works as an automated personality assessment test designed based

on IPIP inventory. Users of this website get their personality profile by complet-

ing the personality assessment questionnaire. Although the website was initially

designed for a research study of this thesis, the website can be used for personality

assessment for other purposes as well.

11.4 Summary

Existing survey development tools were found not to be able to support the range

of data presentation, collection and analysis online that we required. The data

collection tools described in this chapter were developed to collect data for the

range of research studies designed as part of this PhD thesis. After successful

completion of this thesis these tools will be published as open source in the

251

internet to help future researchers collect data for their research studies.

————————————————————————

252

Table 11.2: List of documents in web site 2
Name of the document Functionality

index.php Positioning frames

top nav.html Navigation tab

worklog.php Collection of worklog

newUser.php Collection of demographic informa-
tion

mkcalendar.php Preparation of calendar

about research.html More information about the re-
search

about researcher.html More information about the re-
searchers

submitData.php Submission of worklog to the
database

help.html Providing more information about
worklog

workDetail.php Displaying list of submitted work
log

checkLogin.php Checking login status

common.php Containing common php procedures

datetimepicker css.js Help selection duration for worklog

contact.php Web page for message exchange

contactSubmit.php Submission of message to the
database

dbconnect.php Connection to database

downloadconsent.php Providing pdf document with con-
sent information statement

forgot pass.php Sending new password in case of for-
gotten password

login.php Initializing session variables after
logging in

logout.php Closing session variables after log-
ging out

253

Table 11.3: List of documents in web site 3
Name of the document Functionality

index.php Displaying of brief summary about
the research study and providing
space to enter unique ID

signin.php Verification of unique ID entered in
index.php and redirection to appro-
priate web page

dbconnect.php Establishment of connection to the
database

demo.php Collection of demographic informa-
tion

demo submit.php Submission of demographic infor-
mation to the database

Paf index.php Displaying general information
about using the PAF

paf.php Collection of responses to the PAF
items

paf submit.php Submission of responses to the PAF
items to the database

Feedback.php Collection of responses to the feed-
back on PAF

Feedback submit.php Submission of responses to the feed-
back on PAF

finish.php Collection of extra information
(email addresses, whether wanted a
copy etc.)

finish submit.php Submission of extra information to
the database

last.php Displaying conclusion message

Paf show.html Detailed information about PAF
items

ethicsNpolicy.html Displaying detailed policy of ethics
approval

style.css Style sheet for the website

254

Figure 11.20: Data model of website 4

255

Table 11.4: List of documents in web site 4
Name of the document Functionality

index.php Displaying of short consent informa-
tion statement and collection of con-
sent

cis.html Displaying detailed consent infor-
mation statement

dbconnect.php Establishment of connection to the
database

demo.php Collection of demographic informa-
tion

demo submit.php Submission of demographic infor-
mation to the database

personality.php Collection of responses to the per-
sonality assessment items

personality submit.php Submission of responses to the per-
sonality assessment items to the
database

finish.php Collection of extra information
(email addresses, whether wanted a
copy etc.)

finish submit.php Submission of extra information to
the database

last.php Displaying conclusion message

fpdf.php Contained required class for creat-
ing pdf document

fpdf.css Style sheet for pdf document

signin.php Collection of email address

signin submit.php Submission of email address to the
database

style.css Style sheet for the website

256

Chapter 12

Discussion

12.1 Introduction

In this chapter, we discuss our overall findings from the series of research studies

conducted as part of this thesis and reported from Chapters 5 to 10. We weigh up

our findings in the context of the research questions presented in Chapter 4. We

also analyse possible threats that might invalidate the findings of this research.

We report our experiences of conducting the empirical studies and the lessons

that we have learned from our experience.

12.2 Analysis of key findings

As part of this thesis, five empirical research studies investigating different aspects

of software testing were conducted from 2009 to 2012. Among the five research

257

studies, four were web based surveys and one was a quasi experiment. The

research studies were conducted with ICT students and software development

practitioners. The requested participation ranged from few minutes to 15 days.

The research studies are summarized below:

Study Name: Preliminary survey of factors affecting software testers per-

formance and testing team building

Study Methodology: Survey

Participants: 104 Software development practitioners

Participants sourced from: Yahoo! and LinkedIn groups

Time required by participants: 30 minutes

Summary of findings:

1. The effectiveness of individual software testers varies considerably.

2. “Number of bugs” is not much important in measuring performance of

software testers.

3. “Quality of bug report” is more important than “severity of bugs” in mea-

suring performance of software testers.

4. “open mindedness” is a common characteristics of good software testers.

5. Usage of automation tools is very common and these are mostly used for

regression testing.

6. “Testing performance”, “Experience in testing” and “Knowledge of problem

domain” are the most important factors for developing a testing team.

258

Study Name: Worklog of software testers

Study Methodology: Case study and survey

Participants: 6 Software testers and managers working in industry

Participants sourced from: Invitation from personal contacts

Time required by participants: 15 days

Summary of findings:

1. Software testers perform different categories of jobs. 12 distinct categories of

jobs from worklogs, 11 categories from job advertisements and 4 categories

from bug repositories were found.

2. Testing related responsibilities are broken down to a number of unit tasks.

3. Testing related responsibilities are followed by reporting related responsi-

bilities such as reporting and explaining test results.

4. Many research and development type of tasks such as requirement analysis,

gaining domain knowledge, searching for tools are performed by software

testers.

5. Other responsibilities of software testers include managerial, administrative

and supervision related tasks.

6. “Executing tests”, “Requirement analysis”, “preparing test plans” and “de-

veloping test suite” were most frequent tasks.

Study Name: Personality traits of software testers

Study Methodology: Survey

259

Participants: 182 Software development practitioners

Participants sourced from:

1. Yahoo!, YOW! and LinkedIn groups

2. Attending conference

3. Tweets

Time required by participants: 30 minutes

Summary of findings: Software testers are more conscientious compared

to other IT practitioners.

Study Name: Effect of personality on effectiveness of software testing

Study Methodology: Quasi experiment

Participants: 48 ICT students

Participants sourced from: Inviting from lectures

Time required by participants: 2 hours

Summary of findings:

1. Weak negative correlation (0.267) between extraversion and overall effec-

tiveness in software testing.

2. Weak positive correlation (0.251) between conscientiousness and bug loca-

tion rate.

3. Weak negative correlation (0.241) between conscientiousness and weighted

fault density.

260

4. Support for the influence of conscientiousness on the effectiveness in soft-

ware testing (hypothesis testing) .

Study Name: Survey of state of practice of performance appraisal of software

testers and collection of feedback on PAF

Study Methodology: Survey

Participants: 18 Software development project managers

Participants sourced from:

1. Yahoo! and LinkedIn groups

2. Invitation from personal contacts

Time required by participants: 20 minutes

Summary of findings:

1. According to the majority of participants specialized performance appraisal

should be used for software testers.

2. Bugs found after delivery and test cases run in unit time should be consid-

ered for performance appraisal.

3. Our proposed PAF is appropriate for performance appraisal of software

tester, one new dimension, one new personal attribute and few more text

were added to the PAF based on the feedback.

From our preliminary survey we found that the performance of software testing

varies depending on the individual who carries out the testing. This indicates that

performance to some extent is dependent on the person. This finding makes the

261

ground strong for investigation of personal attributes that can influence the per-

formance. Personality is prominent among those personal attributes. A detailed

assessment of personality was not feasible in our preliminary survey. However,

we asked participants to indicate the characteristics of high performing software

testers. Participants believed that “open mindedness” was common among high

performing testers. Open mindedness is related to creativity and thoroughness,

which were found to be the personal characteristics exhibited by high performing

software testers by Iivonen et al. [9].

Iivonen et al. [9] also found that high performing software testers tend to be

conscientious, patient, persistent and accurate. Most of these characteristics are

closely related to the “conscientiousness” factor of five factor model of personality.

In our survey of personality traits of software testers, we found that testers were

higher on conscientiousness compared to other IT practitioners. This observation

complements the personal characteristics listed by Iivonen et al.

Capretz et al. [13] suggested that sensing and judging type people as assessed

with MBTI will be good as software testers. These dimensions of MBTI are re-

lated to the conscientiousness factor of the five factors model of personality. Thus

this result also complements our findings. In our quasi experiment examining the

effect of personality traits on the effectiveness of software testers, we found that

conscientiousness was positively associated with bug location rate and negatively

associated with weighted fault density. Both the associations were however, weak.

Bug location rate is more concerned with timely execution of tests and maximiz-

ing detection of bug in specific time frame. Since highly conscientious people

accomplish tasks in systematic ways and maintain good organization, it is not a

262

surprise that conscientiousness has a positive association with bug location rate.

Weighted fault density, however, is dependent on severity of bugs. Weighted fault

density might be associated with some intellectual attributes that might not be

much related to conscientiousness.

Another factor, extraversion, showed a weak negative association with overall

effectiveness of software testing in our quasi experiment. This is different to the

finding of Shoaib et al. [10], who found extravert people were good exploratory

testers. A negative correlation also exists between extraversion and bug location

rate. As suggested by the type descriptions, extravert people are assertive, active

and talkative. As such it is rather surprising that people who are enthusiastic

about communication may not be as good as others at reporting bugs.

From this research study we found that software testers perform a variety of

tasks as part of their role. These range from requirements engineering and func-

tional design analysis to administrative tasks. We found testing specific tasks,

such as writing test cases and executing tests, are often followed by reporting

and explanation of test results. Research related responsibilities, such as gain-

ing domain knowledge, selecting best testing tools and methodologies, are also

performed by software testers. Software testers acquire experience in performing

these tasks. This supports the view that experienced testers possess more domain

knowledge and that this helps them to “fill in the gap” and to interpret unclear

and ambiguous specifications, as suggested by Beer and Ramler [11].

In examining the influence of personality traits on effectiveness of software

testing, we required a means to distinguish between high and average performing

testers. However, such a means (an instrument or a method) was unavailable.

263

This gap in the available body of research encouraged us to design a performance

appraisal form for software testers. We considered the proposed assessment meth-

ods by Kaner [17; 64] in designing the form.

In a survey we collected information on the state of practice of performance

appraisal of software testers and feedback on our proposed performance appraisal

form. From the responses we found that software testers are sometimes appraised

with common employee appraisal used for other employees. However, a special-

ized appraisal method or instrument is also used for appraising software testers.

As an outcome of the research study, we refined our proposed performance ap-

praisal form based on the feedback received that can be used to appraise the

performance of software testers.

Our initial research plan was to find specific personality traits that influence

software testers’ performance. As such we designed our preliminary survey to find

whether the list of factors that are influential to software testing includes per-

sonality. Our second research study was investigation of any connection between

personality traits and performance of software testers. However, in reviewing the

relevant literature and during conducting the initially planned research studies,

we came across “gaps” in existing research such as- no agreed upon list of soft-

ware testing and no standard performance appraisal method. This encouraged

us to design research studies to address these issues. The studies reported in

Chapter 7 and Chapter 10 were conducted later, therefore the outcome of these

studies could not be directly used in other studies.

The summarized finding of the series of research studies conducted are re-

ported in this section. Some of the studies suffered from lack of enough partici-

264

pation. There were also some threats (discussed separately) associated with the

research studies. Considering these, although information, we cannot claim our

findings apply in general.

12.3 Findings in relation to the research ques-

tions

The series of research studies were designed based on the research questions listed

in Chapter 4. In this section we analyse the implication of our findings of the

different research studies in answering the pre defined research questions.

RQ1: What factors influence the effectiveness of software testers?

The preliminary survey reported in Chapters 5 and 6 was designed to address

this research question. Before going to the detail of what factors influence the

effectiveness of software testers, we wanted to determine whether or not there is

a significant difference in effectiveness. The responses we obtained indicate that

participants believed the effectiveness in software testing significantly differed

from individual to individual. Factors such as personal characteristics, experience

contributes to this difference.

RQ2: What do software testers do?

The research study reported in Chapter 7 was designed to find answers to this

research question. We collected worklogs of software testers working in industry,

software testing related job advertisements, and bug reports from open source

bug repositories to prepare a list of tasks performed as part of software testing.

265

We found that software testers typically perform a wide variety of tasks. Soft-

ware testing related responsibilities comprise of number of unit tasks such as test

planning, developing test suite, executing tests and so on. Reporting of found

bugs is often followed by explaining bugs. A number of research and development

type of tasks are also performed by software testers. These include tasks such as

analysis of requirement and design documents, searching for new tools and so on.

RQ3: What personality traits are over-represented among testers?

We collected personality profiles of a number of software development prac-

titioners in the research study reported in Chapter 8. These personality profiles

were prepared using IPIP NEO test designed based on the five factor model of

personality. We found that software testers are significantly more conscientious

than non-tester IT professionals.

RQ3.1: Are these traits different from other practitioners?

In the research study described in Chapter 8, we also collected the personality

profiles of other software development practitioners. Their profiles were compared

to those of software testers. The score on five major personality traits of the

software testers and the non testers were compared and we found that software

testers were significantly higher on conscientiousness. On other factors, testers

and non-testers do not have a significant difference in personality traits.

RQ4: Do personality traits influence software testing performance?

In our experiment reported in Chapter 9, we examined the influence of person-

ality traits on the effectiveness of software testing. We found a weak association

between two of the personality traits and some of the measures of effectiveness

in software testing. More specifically, we found that extraversion and overall ef-

266

fectiveness was negatively correlated (r=-0.267), conscientiousness was positively

correlated with bug location rate and negatively correlated with weighted fault

density. All these associations were, however, quite weak.

RQ4.1: If yes, which trait(s) has the maximum influence?

We hypothesized that the effectiveness of the student testers for a given soft-

ware testing task would differ significantly based on the different level of five

major personality traits. In the hypothesis testing we found the support for our

hypothesis only for conscientiousness.

RQ5: How is the performance of software testers appraised?

We conducted a survey to collect information on the state of practice of per-

formance appraisal of software testers. The survey is reported in Chapter 10.

We found that specialized performance appraisals are often used for software

testers. However, software testers’ performance is also often appraised with the

same appraisal method or process as is used for other IT professionals. On very

rare occasions bugs reported after deployment is also considered a criterion of

performance appraisal of software testers.

RQ6: How should the performance of software testers be appraised?

In the accompanying questionnaire of the survey reported in Chapter 10, we

requested opinions from software development project managers on how perfor-

mance of software testers’ should be appraised. The participants were very en-

thusiastic and gave detailed opinions on this. The participants suggested different

criteria to be considered for performance appraisal of software testers, including

bugs found after delivery and efficiency of executing test cases. We developed

267

a new potential performance appraisal form and process for use in appraising

testers.

12.4 Threats to Validity

In this section we discuss some of possible threats that can impact the validity of

our overall findings.

12.4.1 External Validity

The samples for our studies were chosen using convenience, purposive and snow-

ball sampling. Research studies conducted with conveniently selected sample

suffer from the common problem of representativeness. As such the representa-

tiveness of our samples is a concern. Although we found some interesting results,

we cannot claim that our findings represent the views of the wider population.

12.4.2 Internal Validity

We cannot guarantee that the survey questionnaires were interpreted by the par-

ticipants in the way we wanted those to be. The development of survey question-

naires was carefully carried out in order to avoid the misinterpretation. However,

our respondents came from different countries of the world and English is not

spoken as first language in many of those. For example in our first survey the

questions on the characteristics of high performing software testers might had

been interpreted differently by our respondents. However, the enthusiastic and

268

to-the-point responses to the open ended questions in most of our surveys give us

confidence that questions were interpreted correctly by the participants in most

of the cases.

There is a possibility that our participants provided random responses. This

is a common threat to the type of empirical studies we conducted. However, we

believe this did not happen in the studies we conducted. We do not see much

motivation for the participants to provide random responses. One motivation

could be the financial incentive that we offered in two of our studies (participants

of the quasi experiment obtained $25 for participating and participant of soft-

ware engineers’ personality survey could register for a draw of two $100 Amazon

vouchers). In the quasi experiment we noticed that the participants were enthu-

siastic and some of them suggested to us to increase the time for participation.

In the survey of personality profiles, 46% registered for the draw of prize, so this

was not primary motivation for many of the participants.

12.4.3 Construct Validity

For the assessment of effectiveness in software testing in our quasi experiment, we

developed an instrument ourselves. The reliability of the instrument in measuring

effectiveness in testing is a concern. The instrument needs to be verified with more

experiments.

The appropriateness of the words used in survey questionnaire threatens the

construct validity. The interpretation and often to some extent the responses

depend on the ways questions are asked. We think this threat was present in our

269

first survey. We learned from the experience and in the later surveys our careful

design of questionnaire helped to mitigate this threat.

12.4.4 Conclusion Validity

In analysis of the qualitative data in most of our surveys, we applied grounded

theory and content analysis. These are structured procedures used to interpret

opinion-type responses. However, the interpretation can depend on the person

analysing the data. To mitigate the influence of any bias most of the qualitative

data was interpreted by the student researcher first and then checked by one of

the supervisors.

12.5 Lessons Learned

A total of five research studies were conducted during this PhD. Four of those

research studies were web-based surveys. One of those is reported as case study

in Chapter 7 due to very low response rate. We refer to the studies as surveys

here.

In conducting the four web-based surveys described, we came across several

factors that we believe had an effect on our response rates and hence quantity and

quality of data. We list some of the lessons we have learned from our experience

of conducting the web based surveys in this section.

270

12.5.1 Participant Recruitment

Since all the surveys were conducted as part of a PhD thesis, the time to design,

to get approval from the University human research ethics committee, to collect

data, and to analyse the results were all limited. Hence we searched for a cen-

tralized body of software testing professionals where we could send invitations to

participate in our survey in order to be able to recruit large numbers of partici-

pants in a relatively short time. However, there is no such centralized board of

software testing professionals.

The relevant email lists provided by LinkedIn and Yahoo! were helpful in this

regard. We believe this process of recruitment helped us to get a good number

of participants in the short available time, for two of our surveys.

12.5.2 Low Response Rate

A crucial factor in survey research is the response rate, calculated as the ratio

of the number of participants who completed the survey to the number of par-

ticipants who we sent invitations to. A good survey aims to keep non-responses

to a minimum. In the surveys (except the second survey) we conducted, it was

impossible to calculate an accurate response rate, since most of the invitations

were sent to the groups and the number of group members who actively read

emails cannot be obtained. However, in comparison to the number of people we

sent invitations to, the number of responses we received for the surveys is very

poor. A common reason behind this low response could be that IT professionals

may be reluctant to participate in research studies like a survey! However, this

271

assumption, to our knowledge, has not been supported by any specific experimen-

tal evidence. Additionally, we found that academic paper referees are generally

very keen to see specific response rates calculated and presented in papers using

survey techniques. Being unable to calculate these due to recruitment techniques

via boards and lists is not always well-received.

In conducting surveys, along with the survey response rate, the representa-

tiveness of the sample is also very important. According to Cook et al. [149], the

assurance that the chosen sample represents the population is particularly impor-

tant when a sample of convenience is chosen. In the surveys we conducted, the

captured demographic information of the participants increased our confidence

on the representativeness of the sample.

12.5.3 Invitation Email

We believe the nature of the invitation played an important role in recruiting

participants for our surveys. We sent large invitation emails to the participants

in the first three surveys. However, in the fourth survey, we sent a much shorter,

catchy slogan and obtained far more participants compared to our other surveys.

12.5.4 Consent Collection

According to standard human research ethics protocols, participants are gener-

ally required to indicate their informed consent by signing Consent Information

Statement (CIS) before participating. In our first, second and fourth surveys,

participants could sign CIS electronically. However, in the third survey we re-

272

quested participants to send a signed CIS to the researchers via email. We think

the necessity of making two separate efforts (sending email and participating

online) for participating might have negatively influenced participation.

Getting consent from the supervisor, manager or employer added an extra

work burden on the participants. The reaction on getting manager consent was

illustrated with the comment of one interested participant- “...getting the consent

from employer or manager is hard job and would prefer to avoid it. But if you

need my opinion do send me the link, I can fill it up and can happily provide the

information.”.

12.5.5 Questionnaire Length

In the series of surveys we conducted, we found that we obtained more respon-

dents when the stated length of the survey was around 20-30 minutes. For the

longer duration surveys, such as the worklog collection (at least 15 days), we got

very few participants.

Figure 12.1 shows the number of responses compared to the length of the

survey. The length of the second survey cannot be compared directly to the

others since the time needed to complete a worklog might be only a few minutes

(depending on the work load of the participants). However, participants were

required to spend that few minutes each working day for at least 15 days. As

such the exact time needed to complete the survey is unknown. Also the responses

to the third survey are not conclusive, as due to the low number of responses,

we stopped collecting data for the survey and modified the survey to make it less

273

Figure 12.1: Number of responses compared to questionnaire length

time consuming.

12.5.6 Nature of Participation

We obtained a much higher number of participants in our first and fourth surveys.

Compared to these two surveys the responses we obtained for our second and third

surveys were very low (and very disappointing). One factor behind this might

be the nature of participation requested in the surveys. The first and fourth

surveys were prepared with a straightforward questionnaire. On the other hand,

the second and third survey requested participation such that participants had

to recall information from memory that took more time to form responses to

questions. This may be a significant causative factor in the low response in those

two surveys.

274

12.5.7 Motivation

We found that some IT professionals are highly motivated to participate in the

surveys we conducted. The enthusiastic responses of the participants in the first

survey encouraged us to design this series of surveys. In order to store the lengthy

textual responses to open-ended questions in the first survey, we had to increase

the size of our database field during data collection. Along with filling out the

surveys, some members of Yahoo! groups, carried out discussion in the groups

on the survey topic. We received the following response from one member to the

group invitation indicating their interest “Fascinating! It’s an interesting study.

I’d love to hear any conclusions you draw from this”. Members also informed

their colleagues about the surveys without being explicitly asked to do so.

Some participants, on the other hand, participated for personal self-interest.

For example, one participant was interested in postgraduate research and asked

for help from the student researcher. The following comment is indicative: “I am

interested about SQA (Software Quality Assurance) and want to (do) research. I

read your mail but i am not fully understand(ing) about the mail purpose. I want

to participate in the research study about SQA (Software Quality Assurance). Can

you help me?”.

12.5.8 Analysis of Data

The surveys were all originally conceived and designed to allow detailed quantita-

tive analysis of the collected data. However, due to the limited responses received

to our second and third studies, we were limited to performing qualitative analysis

275

of the data instead. The qualitative analysis was very time-consuming although

we did obtain useful and interesting results. However, had we known that we

would need to use qualitative analysis, we would have asked some questions dif-

ferently and some different questions.

12.5.9 Process of Ethics Approval

In the process of obtaining human research ethics committee approval, we had to

submit a filled out protocol form accompanied by templates of the informed con-

sent letters, website design documents and so on. The committee typically took

a few weeks to review the application. We found the opinions of the committee

members helped to improve the quality of the surveys. Delays were, however,

compounded when it was necessary to make changes, often requiring another

round of ethical review. Our new light-weight survey on software tester perfor-

mance appraisal was an example of this.

12.5.10 Data Security

In web-based surveys, data usually is temporarily stored on a web server. The

security of the data is a concern when those reside on an external server. Ensuring

the security of the collected data was given higher priority in designing all the

studies. This was also one of the primary concerns of the human research ethics

committee that approved these experimental studies.

The data we collected were anonymous. Also considering the nature of the

data, we believe even if the data would have been compromised, those would

276

not be of any personal interest to others. In case of highly sensitive data like

email addresses, we encrypted the data before storing. The University ethics

committee appraisal of our applications was highly concerned to ensure very

secure data management. We believe due to the higher importance given to the

security issues during designing of the studies, we didn’t face any problem.

12.6 Summary

In the series of research studies conducted we found that the effectiveness of

software testing varies from tester to tester. There are number of factors that

influence the effectiveness. Highly effective software testers exhibit some charac-

teristics such as open mindedness. We also found that software testing includes

variety of unit tasks and different criteria should be considered while assessing the

performance of a person in carrying out these responsibilities. In a quasi experi-

ment we found two major personality traits, extraversion and conscientiousness,

are positively associated with effectiveness in software testing. In a broad survey

we also found that software testers are higher on conscientiousness as compared

to other software development partitioners. We discussed these findings in detail

in this chapter.

We also described our experiences of conducting a series of web surveys on

software testing-related topics. We found the most difficult part of the process is

to convince participants. Although the group invitations helped to reach a large

number of potential participants, we did not achieve a high response rate for two

surveys. In the case of our third survey, we had to significantly modify the survey

277

itself - and thus the research we were attempting to undertake - in order to get

more responses!

We believe our experiences will be helpful for future researchers expecting to

apply similar methodologies in similar fields. Based on our experiences we make

the following recommendations to others who want or need to use surveying of

IT professionals in their research programme -

1. Group invitations are helpful - but moderators need convincing of the worth.

2. Surveys designed with straightforward questionnaires that can be answered

without too much thinking are more popular than surveys requiring more

time to form responses - deeper research questions may massively reduce

response and quality.

3. Marketing is important - a short, catchy slogan is more likely to draw the

attention of participants.

4. Simple methods for participants to indicate informed consent are helpful in

reducing drop-out rates.

5. Surveys should be designed with different data analysis methods in mind.

6. A significant amount of time should be allocated to the process of human

research ethics approval.

7. In web surveys, the method of ensuring the security of data should be given

a high priority.

278

Chapter 13

Conclusions

13.1 Introduction

This chapter summarizes the overall findings of the research, outlines the contri-

butions made in context of academic research as well as industrial practice and

proposes possible future work directions.

13.2 Research Summary

The thesis began with outlining different research questions related to software

testers. The formal research questions were specified in later chapters. Four web

based surveys and a quasi experiment were conducted to address these research

questions.

In our first web based survey we found unit tasks of software testing from

279

different sources of information including worklogs of software testers, job adver-

tisements for software testers and bug reports of software testing related tools

from open source bug repositories. We found that there was a number of test-

ing related unit tasks performed by software testers. Those included creating

test cases, preparing environment, executing test cases and so on. Apart from

reporting test results testers perform different writing related tasks as well, such

as preparing test documents, writing test status reports. Number of “research

and development” type of tasks such as requirement analysis, research on testing

tools and new technologies, preparing and improving quality standards are also

performed by software testers. Other unit tasks such as debugging, planning,

maintenance, managerial and collaboration with others are performed by testers.

In the preliminary web based survey we found that the performance of software

testing varies depending on the individual. We also found number of bugs found

is not a good metric to measure software testes’ performance. The participants of

this survey also suggested open mindedness is a characteristic of high performing

software testers.

For selection of members to develop an effective software testing team, “Test-

ing performance”, “Experience in testing” and “Knowledge of problem domain”

are the most important and “Training/certification in testing” and “Compat-

ibility with other team members” are the least important factors to consider.

“Diversity of professional background/experience” and “Diversity of personality”

are also important for an effective software testing team. We also found that,

a testing team performs better when they have experience working as a TEAM,

rather than gathering experience as individuals.

280

We collected the personality profiles of software testers and related practition-

ers to identify similarities and dissimilarities. We found that compared to other

software developers, software testers scored higher on conscientiousness.

In our quasi experimental study conducted with student participants to find

out the effect of personality traits on the effectiveness in a custom designed soft-

ware testing task, we found that extraversion was negatively correlated with

overall testing effectiveness, conscientiousness was positively correlated with bug

location rate and was negatively correlated with weighted fault density. None of

the association were however, strong. In testing for hypothesis we found different

level of conscientiousness had influence on effectiveness in software testing.

In our final research study we collected information on performance appraisal

of software testers and feedback on our proposed performance appraisal form for

software testers. We found most organizations practice specialized performance

appraisal process for software testers, with a few organizations using common

performance appraisal methods for all employees. We also identified a number of

factors that are important in appraising testers. “Bug reported after delivery”

and “efficiency of test case execution” were most prominent of those. We also

refined our proposed PAF based on the feedback and we believe the new refined

PAF can appraise software testers’ performance appropriately.

13.3 Research Contributions

In this section, we list the contributions that were made in context of industry

practice and academic research on software testing.

281

13.3.1 Software Testing Research

1. The enhanced knowledge on software testing unit tasks will help researchers

in further investigation of factors that influence the effectiveness in this role.

2. The indication of the influence of different factors on the performance of

software testers and the relative importance of different factors in measuring

performance of software testers will help in designing more specific research

studies to investigate the effect of each identified factors.

3. This research was aimed to find any connection between personality and

effectiveness in software testing, however, preliminary comments on the

influence of some other factors such as experience, automated tools indicates

more research is needed on this.

4. The preliminary finding indicates open mindedness, extraversion and con-

scientiousness may influences software testing effectiveness. More specific

and detailed research can now be designed to investigate the influence of

each factor.

13.3.2 Software Testing Practice

1. We believe the identified unit tasks of software testing will help recruiters

to design job responsibilities for testers.

2. The list of software testing unit tasks will also help young graduates to get

better understanding of the responsibilities of this role in selection of their

career choices.

282

3. From the preliminary survey we found open mindedness is believed by prac-

titioners to be a characteristic of high performing software testers, and

from our quasi experiment we found conscientiousness and extraversion

have some connection with effectiveness in software testing. This will help

employers to recruit software testers.

4. The personality traits found to be influential to software testers’ perfor-

mance can also help young IT graduates select an appropriate -career path

for them.

5. Our proposed Performance Appraisal Form (PAF) can be adopted by orga-

nizations to appraise performance the software testers.

6. The information and suggestion collected on the performance appraisal of

software testers we believe will help organizations to improve their perfor-

mance appraisal process.

13.4 Limitations

A potential limitation of our research was the small sample size. Due to the

sample size we could not strongly conclude any of the findings. We could not

apply statistical tests in all our research studies due to this reason.

In absence of a well accepted standard for assessment of software testing

performance, we used a small software testing task designed by us in the quasi

experiment. The efficiency of this task was not verified with any prior research

study.

283

The majority of our survey was designed to collect and analyse qualitative

data. A potential drawback of dealing with qualitative data is that the analysis

and interpretation of such data is greatly dependent on the researchers.

13.5 Future Research

All of the research studies conducted as part of the thesis need to be replicated

with larger sample to validate the finding. The research reported in this thesis

also opened window for more research in to software testing. Along with per-

sonality the influence of other human factors on software testing also need to be

investigated with more detailed research. Some specific plan for our future work

is presented here:

13.5.1 Validation of Proposed Performance Appraisal Form

We plan to validate our proposed performance appraisal form by requesting IT

organizations to use the form to appraise their software testers. The same software

testers will also be appraised with their existing appraisal process. The appraisal

obtained using both methods will then be compared to confirm the effectiveness

of our proposed PAF to appraise software testers appropriately.

284

13.5.2 Influence of Personality Traits on Software Testers’

Performance

We propose to design a research study with professional software testers to in-

vestigate the association between personality traits and performance. We aim to

employ our proposed performance appraisal form to assess performance of soft-

ware testers, once the form is validated. We will collect the personality profiles

(big five personality traits) of the software testers and will analyze the personality

profiles and performance of software testers to find association, if there is any.

13.5.3 Influence of Conscientiousness on Effectiveness in

Software Testing

From our research studies we found that conscientiousness was associated with

bug location rate and weighted fault density of student software testers. We also

found software testers working in the industry were higher on conscientiousness

compared to other software development practitioners. Overall, there are some

indication that conscientiousness might be influencial to software testers’ per-

formance. We plan to investigate the influence of conscientiousness on software

testing performance with more specific research study. In the proposed research

study the effect of other personality traits will be kept to a minimum. Groups

of software testers will be formed based on the score on conscientiousness. The

performance in software testing of each group will be assessed and compared.

285

13.5.4 Detailed Study of Software Testers’ Unit Tasks

In our research study investigating unit tasks of software testers, we captured

worklog of software testers, collected job advertisements for software testers and

extracted bug reports to prepare a list of job responsibilities of software testers.

However, the number of job advertisements and bug reports considered were

small. In future, we plan to conduct research study mining more bug repositories

and analyzing larger number of job advertisements. Also we plan to adopt dif-

ferent methodology for collecting worklog such as ethnography using think aloud

approach.

13.5.5 Association of Software Testing Unit Tasks and

Personality Traits

With the list of the unit tasks performed by software testers, we want to conduct

a research study to find what personality traits are helpful to successfully carry

out what unit task.

13.6 Summary

Due to the nature of the role of software testers, it is assumed that their person-

ality traits can be different to other software developers and certain personality

traits can influence their performance in this role. The research conducted to

find such traits revealed that software testers were more conscientious than other

software developers. We also found that conscientiousness and extraversion have

286

some influence on the performance of software testers. These finding will help

researchers to formulate hypothesis and design further research to investigate the

effect of conscientiousness on software testing. This will also help practitioners

to recruit software testers as well as young pupil in their career selection.

287

References

[1] P. T. Costa and R. R. McCrae, The NEO personality inventory manual,

Psychological Assessment Ressources, Odessa, FL, 1985.

[2] D. Grote, The Complete Guide to Performance Appraisal. Amacom

Books, 1996. [Online]. Available: http://books.google.com.au/books?id=

u1n3tgAACAAJ

[3] redOrbit Staff & Wire Reports, “Software testing market continues

to rise.” [Online]. Available: http://www.redorbit.com/news/technology/

1652726/software testing market continues to rise/

[4] A. Parthasarathy, “Testing times ahead? its good news for india!” January

20, 2008.

[5] A. Abran, P. Bourque, R. Dupuis, J. W. Moore, and L. L. Tripp,

Guide to the Software Engineering Body of Knowledge - SWEBOK,

2004th ed., A. Abran, P. Bourque, R. Dupuis, J. W. Moore, and L. L.

Tripp, Eds. Piscataway, NJ, USA: IEEE Press, 2004. [Online]. Available:

http://www.swebok.org/ironman/pdf/SWEBOK Guide 2004.pdf

288

http://books.google.com.au/books?id=u1n3tgAACAAJ
http://books.google.com.au/books?id=u1n3tgAACAAJ
http://www.redorbit.com/news/technology/1652726/ software_testing_market_continues_to_rise/
http://www.redorbit.com/news/technology/1652726/ software_testing_market_continues_to_rise/
http://www.swebok.org/ironman/pdf/SWEBOK_Guide_2004.pdf

REFERENCES

[6] G. M. Weinberg, The Psychology of Computer Programming. New York,

NY, USA: John Wiley & Sons, Inc., 1985.

[7] R. S. Pressman, Software Engineering: A Practitioner’s Approach, 6th ed.

McGraw-Hill Higher Education, 2005.

[8] A. Bertolino, “Software Testing Research: Achievements, Challenges,

Dreams,” in FOSE ’07: 2007 Future of Software Engineering. Washington,

DC, USA: IEEE Computer Society, 2007, pp. 85–103.

[9] C. Kaner, J. Bach, and B. Pettichord, Lessons Learned in Software Testing.

New York, NY, USA: John Wiley & Sons, Inc., 2001.

[10] P. G. Armour, “The Unconscious Art of Software Testing,” Communica-

tions of the ACM, vol. 48, no. 1, pp. 15–18, 2005.

[11] J. Iivonen, M. V. Mäntylä, and J. Itkonen, “Characteristics of high perform-

ing testers: a case study,” in Proceedings of the 2010 ACM-IEEE Interna-

tional Symposium on Empirical Software Engineering and Measurement,

ser. ESEM ’10. New York, NY, USA: ACM, 2010, pp. 60:1–60:1.

[12] L. Shoaib, A. Nadeem, and A. Akbar, “An Empirical Evaluation of The

Influence of Human Personality on Exploratory Software Testing,” in Mul-

titopic Conference, 2009. INMIC 2009. IEEE 13th International, 2009, pp.

1 –6.

[13] A. Beer and R. Ramler, “The Role of Experience in Software Testing Prac-

tice,” in SEAA ’08: Proceedings of the 2008 34th Euromicro Conference

289

REFERENCES

Software Engineering and Advanced Applications. Washington, DC, USA:

IEEE Computer Society, 2008, pp. 258–265.

[14] J. Itkonen, M. V. Mantyla, and C. Lassenius, “How do testers

do it? an exploratory study on manual testing practices,” in

Proceedings of the 2009 3rd International Symposium on Empirical

Software Engineering and Measurement, ser. ESEM ’09. Washington,

DC, USA: IEEE Computer Society, 2009, pp. 494–497. [Online]. Available:

http://dx.doi.org/10.1109/ESEM.2009.5314240

[15] L. F. Capretz and F. Ahmed, “Making Sense of Software Development and

Personality Types,” IT Professional, vol. 12, pp. 6–13, 2010.

[16] ——, “Why Do We Need Personality Diversity in Software Engineering?”

ACM SIGSOFT Software Engineering Notes, vol. 35, pp. 1–11, March 2010.

[17] H. Shah and M. J. Harrold, “Studying Human and Social Aspects of

Testing in a Service-Based Software Company: Case Study,” in Proceedings

of the 2010 ICSE Workshop on Cooperative and Human Aspects of Software

Engineering, ser. CHASE ’10. New York, NY, USA: ACM, 2010, pp.

102–108. [Online]. Available: http://doi.acm.org/10.1145/1833310.1833327

[18] J. Rooksby, M. Rouncefield, and I. Sommerville, “Testing in the Wild: The

Social and Organisational Dimensions of Real World Practice,” Comput.

Supported Coop. Work, vol. 18, pp. 559–580, December 2009. [Online].

Available: http://portal.acm.org/citation.cfm?id=1666305.1666323

290

http://dx.doi.org/10.1109/ESEM.2009.5314240
http://doi.acm.org/10.1145/1833310.1833327
http://portal.acm.org/citation.cfm?id=1666305.1666323

REFERENCES

[19] C. Kaner, “Measuring the effectiveness of software testers,” Software Test-

ing Analysis Review Conference (STAR) East, May 2003.

[20] A. M. Turing, “Computing machinery and intelligence,” pp. 433–460,

1950. [Online]. Available: http://cogprints.org/499/

[21] G. J. Myers and C. Sandler, The Art of Software Testing. John Wiley &

Sons, 2004.

[22] D. Gelperin and B. Hetzel, “The growth of software testing,”

Commun. ACM, vol. 31, pp. 687–695, June 1988. [Online]. Available:

http://doi.acm.org/10.1145/62959.62965

[23] C. L. Baker, “Review of D.D.McCracken’s “Digital Computer Program-

ming”,” 1957.

[24] I. Burnstein, A. Homyen, T. Suwanassart, G. Saxena, and R. Grom, “A

testing maturity model for software test process assessment and improve-

ment,” Software Quality Professional, vol. 1, no. 4, pp. 8–21, 1999.

[25] B. Beizer, Software Testing Techniques (2nd ed.). New York, NY, USA:

Van Nostrand Reinhold Co., 1990.

[26] E. J. Weyuker, T. J. Ostrand, J. Brophy, and R. Prasad, “Clearing a Career

Path for Software Testers,” IEEE Softw., vol. 17, pp. 76–82, March 2000.

[Online]. Available: http://portal.acm.org/citation.cfm?id=624636.626113

[27] T. Kasse, Practical Insight into CMMI, 2nd ed. Norwood, MA, USA:

Artech House, Inc., 2008.

291

http://cogprints.org/499/
http://doi.acm.org/10.1145/62959.62965
http://portal.acm.org/citation.cfm?id=624636.626113

REFERENCES

[28] “MBTI,” http://www.personalitypathways.com/MBTI intro.html.

[29] B. Pettichord, “Testers and Developers Think Differently: Understanding

and Utilizing the Diverse Traits of Key Players on Your Team,” Testing &

Quality, vol. 2, January-February 2000.

[30] M. Pol, R. Teunissen, and E. V. Veenendaal, Software Testing:A guide to

the TMap Approach. Addison-Wesley (E), 2001.

[31] R. Black, “Being a “good” tester: Attitudes, skills, and growth,”

http://www.rbcs-us.com/documents/BeingaGoodTester.pdf.

[32] J.-F. Collard and I. Burnstein, Practical Software Testing. Secaucus, NJ,

USA: Springer-Verlag New York, Inc., 2002.

[33] A. D. da Cunha and D. Greathead, “Does Personality Matter? An Analysis

of Code-Review Ability,” Communications of the ACM, vol. 50, no. 5, pp.

109–112, May 2007.

[34] H. Almodaimeegh and J. Harrold, “Predicting Debugging Successs: An

Investigation of the Relationship between Learning Styles, Personality

Traits, and Computer Program Debugging ,” in Proceedings of World Con-

ference on Educational Multimedia, Hypermedia and Telecommunications

2009, G. Siemens and C. Fulford, Eds. Honolulu, HI, USA: AACE, June

2009, pp. 2702–2710. [Online]. Available: http://www.editlib.org/p/31860

[35] J. B. Rotter, “Generalized expectancies for internal versus external control

292

http://www.editlib.org/p/31860

REFERENCES

of reinforcement.” Psychological monographs, vol. 80, no. 1, pp. 1–28, 1966.

[Online]. Available: http://view.ncbi.nlm.nih.gov/pubmed/5340840

[36] J. Bach, Exploratory Testing Explained, E. v. Veenendaal, Ed. The Testing

Practitioner. UTN Publishers, 2002, www.satisfie.com.

[37] M. Rehman, A. Mahmood, R. Salleh, and A. Amin, “Mapping job require-

ments of software engineers to big five personality traits,” in Computer

Information Science (ICCIS), 2012 International Conference on, vol. 2,

June, pp. 1115–1122.

[38] V. C. Petersen, “MBTI - Distorted Reflections of Personality?”

University of Aarhus, Aarhus School of Business, Department of

Management, Working Papers 2006-5, Sep. 2006. [Online]. Available:

http://ideas.repec.org/p/hhb/aardom/2006 005.html

[39] G. J. Boyle, “Myers-Briggs Type Indicator (MBTI): Some Psychometric

Limitations,” Australian Journal of Psychology, vol. 30, 1995.

[40] R. A. Bjork and D. Druckman, In the Mind’s Eye: Enhancing Human

Performance. The natinal Academy Press, 1991.

[41] M. L. Lyons, “The DP Psyche,” Datamation, vol. 31, no. 16, pp. 103–105,

1985.

[42] J. Chandler, J. Carter, and I. Benest, “Extrovert or introvert? the

real personalities of computing students,” in Proceedings of 4th Annual

293

http://view.ncbi.nlm.nih.gov/pubmed/5340840
http://ideas.repec.org/p/hhb/aardom/2006_005.html

REFERENCES

LTSN-ICS conference. Galway: LTSN-ICS, August 2003. [Online].

Available: http://www.cs.kent.ac.uk/pubs/2003/1678

[43] C. G. Cegielski and D. J. Hall, “What Makes a Good Programmer?”

Commun. ACM, vol. 49, pp. 73–75, October 2006. [Online]. Available:

http://doi.acm.org/10.1145/1164394.1164397

[44] D. P. Darcy and M. J. Ma, “Exploring Individual Characteristics and Pro-

gramming Performance: Implications for Programmer Selection,” Hawaii

International Conference on System Sciences, vol. 9, p. 314a, 2005.

[45] K. U. L. Arockiam, T. Lucia Agnes Beena and H. Leena, “Object-Oriented

Program Comprehension and Personality Traits,” in Proceedings of SMEF,

2005.

[46] D. Greathead, “MBTI Personality Type and Student Code Comprehension

Skill,” www.ppig.org, Tech. Rep., 2008.

[47] F. Ahmed, P. Campbell, A. Jaffar, S. Alkobaisi, and J. Campbell,

“Learning & personality types: A case study of a software design

course,” Journal of Information Technology Education: Innovations in

Practice, vol. 9, no. 1, pp. 237–252, January 2010. [Online]. Available:

http://www.editlib.org/p/111706

[48] L. F. Capretz, “Personality Types in Software Engineering,” Int. J. Hum.-

Comput. Stud., vol. 58, no. 2, pp. 207–214, 2003.

294

http://www.cs.kent.ac.uk/pubs/2003/1678
http://doi.acm.org/10.1145/1164394.1164397
http://www.editlib.org/p/111706

REFERENCES

[49] R. Sach, M. Petre, and H. Sharp, “The use of MBTI in software

engineering,” in 22nd Annual Psychology of Programming Interest Group

2010, September 2010. [Online]. Available: http://oro.open.ac.uk/24433/

[50] S. Cruz, F. da Silva, C. Monteiro, C. Santos, and M. dos Santos, “Person-

ality in software engineering: Preliminary findings from a systematic liter-

ature review,” in Evaluation Assessment in Software Engineering (EASE

2011), 15th Annual Conference on, 2011, pp. 1–10.

[51] A. S. Sodiya, H. Longe, S. Onashoga, O. Awodele, and L. Omotosho, “An

improved assessment of personality traits in software engineering,” Inter-

disciplinary Journal of Information, Knowledge and Management, pp. 163–

177, January 2007.

[52] R. Feldt, L. Angelis, R. Torkar, and M. Samuelsson, “Links between

The Personalities, Views and Attitudes of Software Engineers,” Inf.

Softw. Technol., vol. 52, pp. 611–624, June 2010. [Online]. Available:

http://dx.doi.org/10.1016/j.infsof.2010.01.001

[53] J. G. Clark, D. B. Walz, and J. L. Wynekoop, “Identifying Exceptional Ap-

plication Software Developers: A Comparison of Students and Profession-

als,” Communications of the Association for Information Systems, vol. 11,

2003.

[54] J. Karn and A. Cowling, “A Study of The Effect of Disruptions on The Per-

formance of Software Engineering Teams,” Empirical Software Engineering,

International Symposium on, vol. 0, p. 9 pp., 2005.

295

http://oro.open.ac.uk/24433/
http://dx.doi.org/10.1016/j.infsof.2010.01.001

REFERENCES

[55] J. Karn and T. Cowling, “A follow up study of the effect of personality on

the performance of software engineering teams,” in Proceedings of the 2006

ACM/IEEE international symposium on Empirical software engineering,

ser. ISESE ’06. New York, NY, USA: ACM, 2006, pp. 232–241. [Online].

Available: http://doi.acm.org/10.1145/1159733.1159769

[56] V. Pieterse, D. G. Kourie, and I. P. Sonnekus, “Software Engineering

Team Diversity and Performance,” in Proceedings of the 2006 annual

research conference of the South African institute of computer scientists

and information technologists on IT research in developing countries, ser.

SAICSIT ’06. , Republic of South Africa: South African Institute for

Computer Scientists and Information Technologists, 2006, pp. 180–186.

[Online]. Available: http://dx.doi.org/10.1145/1216262.1216282

[57] R. H. Rutherfoord, “Using Personality Inventories to Form Teams

for Class Projects: a Case Study,” in Proceedings of the 7th

conference on Information technology education, ser. SIGITE ’06.

New York, NY, USA: ACM, 2006, pp. 9–14. [Online]. Available:

http://doi.acm.org/10.1145/1168812.1168817

[58] N. Gorla and Y. W. Lam, “Who Should Work with Whom?: Building

Effective Software Project Teams,” Commun. ACM, vol. 47, pp. 79–82,

June 2004. [Online]. Available: http://doi.acm.org/10.1145/990680.990684

[59] A. R. Peslak, “The Impact of Personality on Information Technology

Team Projects,” in Proceedings of the 2006 ACM SIGMIS CPR conference

296

http://doi.acm.org/10.1145/1159733.1159769
http://dx.doi.org/10.1145/1216262.1216282
http://doi.acm.org/10.1145/1168812.1168817
http://doi.acm.org/10.1145/990680.990684

REFERENCES

on computer personnel research: Forty four years of computer personnel

research: achievements, challenges & the future, ser. SIGMIS CPR ’06.

New York, NY, USA: ACM, 2006, pp. 273–279. [Online]. Available:

http://doi.acm.org/10.1145/1125170.1125233

[60] S. C. Misra, V. Kumar, and U. Kumar, “Identifying some important

success factors in adopting agile software development practices,”

Journal of Systems and Software, vol. 82, no. 11, pp. 1869 – 1890,

2009. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S016412120900123X

[61] D. Martin, J. Rooksby, M. Rouncefield, and I. Sommerville, ““Good”

Organisational Reasons for “Bad” Software Testing: An Ethnographic

Study of Testing in a Small Software Company,” in Proceedings of the

29th international conference on Software Engineering, ser. ICSE ’07.

Washington, DC, USA: IEEE Computer Society, 2007, pp. 602–611.

[Online]. Available: http://dx.doi.org/10.1109/ICSE.2007.1

[62] C. F. Cohen, S. J. Birkin, M. J. Garfield, and H. W. Webb, “Managing

conflict in software testing,” Commun. ACM, vol. 47, pp. 76–81, January

2004. [Online]. Available: http://doi.acm.org/10.1145/962081.962083

[63] F. Ahmed, L. Capretz, and P. Campbell, “Evaluating the demand for soft

skills in software development,” IT Professional, vol. 14, no. 1, pp. 44–49,

Jan.-Feb.

297

http://doi.acm.org/10.1145/1125170.1125233
http://www.sciencedirect.com/science/article/pii/S016412120900123X
http://www.sciencedirect.com/science/article/pii/S016412120900123X
http://dx.doi.org/10.1109/ICSE.2007.1
http://doi.acm.org/10.1145/962081.962083

REFERENCES

[64] N. Fenton and S. L. Pfleeger, Software metrics (2nd ed.): a rigorous and

practical approach. Boston, MA, USA: PWS Publishing Co., 1997.

[65] R. B. Grady and D. L. Caswell, Software metrics: establishing a company-

wide program. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1987.

[66] C. Kaner, “Don’t use bug counts to measure testers,” Software Testing &

Quality Engineering, p. 80, May/June 1999.

[67] B. L. Killingsworth, M. B. Hayden, D. Crawford, and R. Schellenberger, “A

model for motivating and measuring quality performance in information

systems staff,” Information Systems Management, vol. 18, no. 2, pp. 1–7,

2001. [Online]. Available: http://www.tandfonline.com/doi/abs/10.1201/

1078/43195.18.2.20010301/31271.2

[68] D. B. Mayer and A. W. Stalnaker, “Selection and evaluation of

computer personnel- the research history of sig/cpr,” in Proceedings

of the 1968 23rd ACM national conference, ser. ACM ’68. New

York, NY, USA: ACM, 1968, pp. 657–670. [Online]. Available:

http://doi.acm.org/10.1145/800186.810630

[69] R. A. Dickmann, “A programmer appraisal instrument,” in Proceedings

of the second SIGCPR conference on Computer personnel research, ser.

SIGCPR ’64. New York, NY, USA: ACM, 1964, pp. 45–64. [Online].

Available: http://doi.acm.org/10.1145/1142635.1142640

[70] E. F. Bairdain, “Research studies of programmers and programming,” 1964.

298

http://www.tandfonline.com/doi/abs/10.1201/1078/43195.18.2.20010301/31271.2
http://www.tandfonline.com/doi/abs/10.1201/1078/43195.18.2.20010301/31271.2
http://doi.acm.org/10.1145/800186.810630
http://doi.acm.org/10.1145/1142635.1142640

REFERENCES

[71] R. M. Berger and R. C. Wilson, “Correlates of programmer proficiency,”

in Proceedings of the fourth SIGCPR conference on Computer personnel

research, ser. SIGCPR ’66. New York, NY, USA: ACM, 1966, pp. 83–95.

[Online]. Available: http://doi.acm.org/10.1145/1142620.1142629

[72] B. Powell, “Performance evaluation of programmers and analysts,” in

Proceedings of the 3rd annual ACM SIGUCCS conference on User services,

ser. SIGUCCS ’75. New York, NY, USA: ACM, 1975, pp. 19–21. [Online].

Available: http://doi.acm.org/10.1145/800115.803716

[73] R. J. Larsen and D. M. Buss, Personality Psychology: Domains of Knowl-

edge About Human Nature, 3rd ed. McGraw-Hill, 2008.

[74] R. Williams, Keywords : a vocabulary of culture and society, ser. Fontana

communications series. Fontana/Croom Helm, 1976. [Online]. Available:

http://books.google.com.au/books?id=UqkOAAAAQAAJ

[75] N. Haslam, Introduction to Personality and Intelligence. London, UK:

SAGE Publications Ltd, 2007.

[76] D. P. McAdams, The Person: An Integrated Introduction to Personality

Psychology, 3rd ed. Orlando, FL, USA: Harcourt, Inc, 2001.

[77] R. Lanyon and L. Goodstein, Personality assessment, ser. Wiley

Series on Personality Processes. Wiley, 1997. [Online]. Available:

http://books.google.com.au/books?id=gt19AAAAMAAJ

299

http://doi.acm.org/10.1145/1142620.1142629
http://doi.acm.org/10.1145/800115.803716
http://books.google.com.au/books?id=UqkOAAAAQAAJ
http://books.google.com.au/books?id=gt19AAAAMAAJ

REFERENCES

[78] R. B. Cattell, “The description of personality: basic traits resolved into

clusters,” The Journal of Abnormal and Social Psychology, vol. 38, pp.

476–506, 1943.

[79] D. Watson and L. A. Clark, “Negative affectivity: The disposition to expe-

rience aversive emotional states.” Psychological Bulletin, vol. 96, no. 3, pp.

465–490, Nov. 1984.

[80] D. W. Fiske, “Consistency of the factorial structures of personality ratings

from different sources,” The Journal of Abnormal and Social Psychology,

vol. 44, no. 3, pp. 329–344, Jul. 1949.

[81] J. M. Digman, “Personality structure: Emergence of the five-factor model,”

Annual Review of Psychology, vol. 41, no. 1, pp. 417–440, 1990. [Online].

Available: http://www.annualreviews.org/doi/abs/10.1146/annurev.ps.41.

020190.002221

[82] H. J. Eysenck, “The scientific study of personality,” British Journal of

Statistical Psychology, vol. 6, no. 1, pp. 44–52, 1953. [Online]. Available:

http://dx.doi.org/10.1111/j.2044-8317.1953.tb00132.x

[83] A. Tellegen, “Brief manual for the differential personality questionnaire,”

University of Minnesota, 1982.

[84] C. Dyer, Research in Psychology: A Practical Guide to Methods and

Statistics. Wiley, 2006. [Online]. Available: http://books.google.com.au/

books?id=5iYO4h-NLV4C

300

http://www.annualreviews.org/doi/abs/10.1146/annurev.ps.41.020190.002221
http://www.annualreviews.org/doi/abs/10.1146/annurev.ps.41.020190.002221
http://dx.doi.org/10.1111/j.2044-8317.1953.tb00132.x
http://books.google.com.au/books?id=5iYO4h-NLV4C
http://books.google.com.au/books?id=5iYO4h-NLV4C

REFERENCES

[85] R. Robins, R. Fraley, and R. Krueger, Handbook of Research Methods in

Personality Psychology. Guilford Publications, 2009. [Online]. Available:

http://books.google.com.au/books?id=-VTvN3aPw8sC

[86] I. Myers and P. Myers, Gifts differing: understanding personality type.

Davies-Black Pub., 1980. [Online]. Available: http://books.google.com.au/

books?id=D3V-AAAAMAAJ

[87] “MBTI,” http://members.ozemail.com.au/ alchymia/library/mb-

tiorg.html.

[88] D. J. Pittenger, “Measuring the MBTI. . .And Coming Up Short,” Journal

of Career Planning and Employment, vol. 54, no. 1, pp. 48–52, November

1993.

[89] “SFPQ,” http://www.sigmaassessmentsystems.com/resources/presentations/sfpq.pdf.

[90] I. Weiner and R. Greene, Handbook of Personality Assessment. , John

Wiley & Sons, December 2007.

[91] L. R. Goldberg, A broad-bandwidth, public-domain, personality inventory

measuring the lower-level facets of several five-factor models. Tilburg

University Press, 1999, vol. 7, pp. 7–28. [Online]. Available: http:

//ipip.ori.org/New IPIP-100-item-scale.htm

[92] L. R. Goldberg, J. A. Johnson, H. W. Eber, R. Hogan, M. C. Ashton, C. R.

Cloninger, and H. G. Gough, “The international personality item pool and

the future of public-domain personality measures,” Journal of Research in

301

http://books.google.com.au/books?id=-VTvN3aPw8sC
http://books.google.com.au/books?id=D3V-AAAAMAAJ
http://books.google.com.au/books?id=D3V-AAAAMAAJ
http://ipip.ori.org/New_IPIP-100-item-scale.htm
http://ipip.ori.org/New_IPIP-100-item-scale.htm

REFERENCES

Personality, vol. 40, no. 1, pp. 84 – 96, 2006, proceedings of the 2005

Meeting of the Association of Research in Personality. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0092656605000553

[93] M. M. Harris and J. Schaubroeck, “A meta-analysis of self-supervisor,

self-peer, and peer-supervisor ratings,” Personnel Psychology, vol. 41,

no. 1, pp. 43–62, 1988. [Online]. Available: http://dx.doi.org/10.1111/j.

1744-6570.1988.tb00631.x

[94] P. A. Mabe and S. G. West, “Validity of self-evaluation of ability: A review

and meta-analysis.” Journal of Applied Psychology, vol. 67, no. 3, p. 280,

1982.

[95] W. E. Williams and D. A. Seiler, “Relationship between measures of effort

and job performance.” Journal of Applied Psychology, vol. 57, no. 1, p. 49,

1973.

[96] D. Pym and H. Auld, “The self-rating as a measure of employee satisfac-

toriness.” Occupational Psychology, vol. 39, no. 2, pp. 103–113, 1965.

[97] R. J. Klimoski and M. London, “Role of the rater in performance appraisal.”

Journal of Applied Psychology, vol. 59, no. 4, p. 445, 1974.

[98] G. C. Thornton, “The relationship between supervisory- and self-appraisals

of executive performance,” Personnel Psychology, vol. 21, no. 4, pp.

441–455, 1968. [Online]. Available: http://dx.doi.org/10.1111/j.1744-6570.

1968.tb02044.x

302

http://www.sciencedirect.com/science/article/pii/S0092656605000553
http://dx.doi.org/10.1111/j.1744-6570.1988.tb00631.x
http://dx.doi.org/10.1111/j.1744-6570.1988.tb00631.x
http://dx.doi.org/10.1111/j.1744-6570.1968.tb02044.x
http://dx.doi.org/10.1111/j.1744-6570.1968.tb02044.x

REFERENCES

[99] J. Creswell, Research Design: Qualitative, Quantitative, and Mixed

Methods Approaches. SAGE Publications, 2003. [Online]. Available:

http://books.google.com.au/books?id=nSVxmN2KWeYC

[100] M. Denscombe, The Good Research Guide for Small-Scale Social Research

Projects. Milton Keynes, UK: Open University Press, 2003.

[101] N. Juristo and A. M. Moreno, Basics of Software Engineering Experimen-

tation. Norwell, MA, USA: Kluwer Academic Publishers, 2001.

[102] “IQNITE,” http://www.iqnite-conferences.com/AU/index.aspx.

[103] F. Shull, J. Singer, and D. I. Sjøberg, Guide to Advanced Empirical Software

Engineering. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[104] S. Boslaugh and P. A. Watters, Statistics in a Nutshell. Sebastopol, CA,

USA: O’Reilly, 2008.

[105] L. L. Tripp, “Software Certification Debate: Benefits of Certification,”

Computer, vol. 35, pp. 31–33, 2002.

[106] A. Kolawa, “Software Certification Debate: Certification Will Do More

Harm than Good,” Computer, vol. 35, pp. 34–35, 2002.

[107] “ISTQB homepage,” http://www.istqb.org/.

[108] S. Ng, T. Murnane, K. Reed, D. Grant, and T. Chen, “A Preliminary

Survey on Software Testing Practices in Australia,” in Proceedings of the

2004 Australian Software Engineering Conference (ASWEC’04), 2004, pp.

116–125.

303

http://books.google.com.au/books?id=nSVxmN2KWeYC

REFERENCES

[109] S. G. Cohen and D. E. Bailey, “What makes teams work: Group

effectiveness research from the shop floor to the executive suite,” Journal

of Management, vol. 23, no. 3, pp. 239–290, 1997. [Online]. Available:

http://jom.sagepub.com/content/23/3/239.abstract

[110] J. H. Bradley and F. J. Hebert, “The effect of personality type

on team performance,” The Journal of Management Development,

vol. 16, no. 5, pp. 337–353, 1997. [Online]. Available: http:

//dx.doi.org/10.1108/02621719710174525

[111] S. Faraj and L. Sproull, “Coordinating expertise in software development

teams,” Manage. Sci., vol. 46, pp. 1554–1568, December 2000. [Online].

Available: http://portal.acm.org/citation.cfm?id=970301.970322

[112] S. K. Horwitz and I. B. Horwitz, “The Effects of Team Diversity on Team

Outcomes: A Meta-Analytic Review of Team Demography,” Journal of

Management, vol. 33, no. 6, pp. 987–1015, Dec. 2007. [Online]. Available:

http://dx.doi.org/10.1177/0149206307308587

[113] W. C. Schutz, The Interpersonal Underworld. Palo Alto, CA, USA: Science

and Behavior Books, 1966.

[114] S. Cox and R. Osguthorpe, “How do instructional design professionals

spend their time?” TechTrends, vol. 47, no. 3, pp. 45–47, 2003. [Online].

Available: http://dx.doi.org/10.1007/BF02763476

[115] “Triangulation,” http://en.wikipedia.org/wiki/Triangulation social science.

304

http://jom.sagepub.com/content/23/3/239.abstract
http://dx.doi.org/10.1108/02621719710174525
http://dx.doi.org/10.1108/02621719710174525
http://portal.acm.org/citation.cfm?id=970301.970322
http://dx.doi.org/10.1177/0149206307308587
http://dx.doi.org/10.1007/BF02763476

REFERENCES

[116] “Recruitment website,” http://www.monster.com/, [Online; accessed 07-

July-2010].

[117] “Eclipse JDT,” http://www.eclipse.org/jdt/.

[118] “Firefox Testopia,” http://www.mozilla.org/projects/testopia/.

[119] I. Myers, A Guide to the Development and Use of the Myers-Briggs

Type Indicator: Manual. Consulting Psychologists Press, 1986. [Online].

Available: http://books.google.com.au/books?id=YWXDHAAACAAJ

[120] R. R. McCrae and O. P. John, “An introduction to the five-factor model and

its applications,” Journal of Personality, vol. 60, no. 2, pp. 175–215, 1992.

[Online]. Available: http://dx.doi.org/10.1111/j.1467-6494.1992.tb00970.x

[121] R. Merkel and T. Kanij, “Does the individual matter in soft-

ware testing?” http://www.swinburne.edu.au/ict/research/sat/-

technicalReports/TC2010-001.pdf.

[122] T. Kanij, R. Merkel, and J. Grundy, “A preliminary study on factors affect-

ing software testing team performance,” in Empirical Software Engineering

and Measurement, 2011, pp. 359–362.

[123] L. F. Sanz, “Personal skills for computing professionals.” IEEE Computer,

no. 10, pp. 110–112.

[124] J. A. Johnson, “The IPIP NEO personality assessment tools,”

http://www.personal.psu.edu/j5j/IPIP/.

305

http://books.google.com.au/books?id=YWXDHAAACAAJ
http://dx.doi.org/10.1111/j.1467-6494.1992.tb00970.x

REFERENCES

[125] N. Salleh, E. Mendes, and J. Grundy, “Investigating the effects of

personality traits on pair programming in a higher education setting

through a family of experiments,” Empirical Software Engineering, pp. 1–

39, 2012. [Online]. Available: http://dx.doi.org/10.1007/s10664-012-9238-4

[126] J. A. Gliem and R. R. Gliem, “Calculating , interpreting , and

reporting cronbach s alpha reliability coefficient for likert-type

scales,” October, vol. 88, no. 1992, pp. 82–88, 2003. [Online]. Avail-

able: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:

Calculating+,+Interpreting+,+and+Reporting+Cronbach++s+Alpha+

Reliability+Coefficient+for+Likert-Type+Scales#0

[127] T. Buchanan, J. A. Johnson, and L. R. Goldberg, “Implementing a

Five-Factor Personality Inventory for Use on the Internet,” European

Journal of Psychological Assessment, vol. 21, no. 2, pp. 115–

127, 2005. [Online]. Available: file://D:%5CArticles%5CMeasures%

5CBuchananGoldgerg2005FiveFactPersInvNet.pdf

[128] D. George and P. Mallery, SPSS for Windows Step by Step: A Simple

Guide and Reference. Allyn and Bacon, 1999. [Online]. Available:

http://books.google.com.au/books?id=7tYnAQAAIAAJ

[129] T. Buchanan, “Online implementation of an ipip five factor per-

sonality inventory,” http://www.docstoc.com/docs/36825859/Big-Five—

Online-Implementation-of-an-IPIP-Five-Factor, March 2013.

306

http://dx.doi.org/10.1007/s10664-012-9238-4
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Calculating+,+Interpreting+,+and+Reporting+Cronbach+�+s+Alpha+Reliability+Coefficient+for+Likert-Type+Scales#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Calculating+,+Interpreting+,+and+Reporting+Cronbach+�+s+Alpha+Reliability+Coefficient+for+Likert-Type+Scales#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Calculating+,+Interpreting+,+and+Reporting+Cronbach+�+s+Alpha+Reliability+Coefficient+for+Likert-Type+Scales#0
file://D:%5CArticles%5CMeasures%5CBuchananGoldgerg2005FiveFactPersInvNet.pdf
file://D:%5CArticles%5CMeasures%5CBuchananGoldgerg2005FiveFactPersInvNet.pdf
http://books.google.com.au/books?id=7tYnAQAAIAAJ

REFERENCES

[130] R. A. Fisher, “On the probable error of a coefficient of correlation deduced

from a small sample,” Metron, vol. 1, pp. 3–32, 1921.

[131] A. Furnham, “The big five versus the big four: the relationship

between the myers-briggs type indicator (MBTI) and NEO-PI five

factor model of personality,” Personality and Individual Differences,

vol. 21, no. 2, pp. 303 – 307, 1996. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/0191886996000335

[132] P. T. Costa and R. R. McCrae, Revised NEO Personality Inventory (NEO-

PI R) and Neo Five Factor Inventory (NEO-FFI). Psychological Assess-

ment Inventories, 1992.

[133] M. L. Hutcheson, Software Testing Fundamentals: Methods and Metrics,

1st ed. New York, NY, USA: John Wiley & Sons, Inc., 2003.

[134] “Bug triage meeting - severity & priority,”

http://geekswithblogs.net/srkprasad/archive/2004/08/20/9961.aspx.

[135] J. Ploski, M. Rohr, P. Schwenkenberg, and W. Hasselbring, “Research

issues in software fault categorization,” SIGSOFT Softw. Eng. Notes,

vol. 32, November 2007. [Online]. Available: http://doi.acm.org/10.1145/

1317471.1317478

[136] “EclipseMetrics,” http://www.stateofflow.com/projects/16/eclipsemetrics.

[137] “IEEE Standard for Software Test Documentation,” IEEE Std 829-1998,

p. i, 1998.

307

http://www.sciencedirect.com/science/article/pii/0191886996000335
http://www.sciencedirect.com/science/article/pii/0191886996000335
http://doi.acm.org/10.1145/1317471.1317478
http://doi.acm.org/10.1145/1317471.1317478

REFERENCES

[138] T. Kanij, R. Merkel, and J. Grundy, “Performance assessment metrics for

software testers,” in CHASE, 2012, pp. 63–65.

[139] “Survey Monkey,” http://www.surveymonkey.com/.

[140] “Fluid surveys,” http://fluidsurveys.com/.

[141] “Free online surveys,” http://freeonlinesurveys.com/.

[142] “Kwik surveys,” http://kwiksurveys.com/.

[143] D. Wall, Multi-Tier Application Programming with PHP: Practical Guide

for Architects and Programmers, ser. The Practical Guides. Elsevier

Science, 2004. [Online]. Available: http://books.google.com.au/books?id=

9xuuBm08bMwC

[144] “Hypertext markup language HTML,” http://en.wikipedia.org/wiki/HTML.

[145] “PHP: Hypertext preprocessor,” http://php.net/.

[146] “Javascript,” http://en.wikipedia.org/wiki/JavaScript.

[147] “Cascading style sheet css,” http://en.wikipedia.org/wiki/Cascading Style Sheets.

[148] “MySQL,” http://www.mysql.com/.

[149] C. Cook, F. Heath, and R. L. Thompson, “A Meta-Analysis of Response

Rates in Web- or Internet-Based Surveys,” Educational and Psychological

Measurement, vol. 60, no. 6, pp. 821–836, December 2000.

308

http://books.google.com.au/books?id=9xuuBm08bMwC
http://books.google.com.au/books?id=9xuuBm08bMwC

Appdx A

309

-

Page 1

Research Supervisor

Dr. Robert Merkel
Lecturer,
Faculty of Information and Communication Technologies
Swinburne University of Technology
PO Box 218
Hawthorn VIC 3122
Australia
Ph + 61392148741
Email:rmerkel@ict.swin.edu.au

Researcher
Tanjila Kanij
PhD Candidate
FICT, Swinburne University of Technology
Phone: +61 3 9214 8840
Email: tkanij@swin.edu.au
PO Box 218
Hawthorn VIC 3122
Australia
Ph + 61392148840
Email:tkanij@swin.edu.au

This survey invites the voluntary participation of software testing professionals. The aim of the survey is
to identify the key factors that influence the workplace performance of software testers. This survey is
conducted as a part of PhD research by Tanjila Kanij under the supervision of Dr. Robert Merkel,
Lecturer, Faculty of ICT, Swinburne University of Technology. The project is approved by Swinburne
University Human Research Ethics Sub Committee (SHESC2) and conducted under the privacy policy
followed by Swinburne University of Technology. The responses provided will be kept confidential and
will be used for academic research purposes only. Individual responses will not be released or shared.
The information provided will be kept in our server and will be accessible to the researchers only.
Results from analysis of survey responses will be published in peer-reviewed academic journals.

The survey questionnaire contains 29 questions taking at most 25 minutes to be answered. No
identifying information is collected. If you wish to be informed of the results of the survey, you may
provide an email address through which we will contact recipients with a report of the results once the
study is completed; however, this address will be stored independently and NOT associated with your
survey responses. You are also encouraged to ask if any questions you have about the survey. Your co-
operation will be greatly helpful for the successful completion of this survey.

Swinburne University of Technology
A survey of key factors affecting effectiveness of software testing professionals
Faculty of Information and Communication Technologies

-

Page 1

Research Supervisor
Prof. John Grundy

Professor in Software Engineering and Head of Academic Group, Computer Science & Software Engineering
FICT, Swinburne University of Technology
Phone: +61 3 9214 8731
Email: jgrundy@swin.edu.au

Research Supervisor
Dr. Robert Merkel
Lecturer
Clayton School of IT, Monash University
Phone: +61 3 9905 5056
Email: robert.merkel@monash.edu

Researcher
Tanjila Kanij
PhD Candidate
FICT, Swinburne University of Technology
Phone: +61 3 9214 8840
Email: tkanij@swin.edu.au

Dear Research Participant,

You are invited to participate in a research trial as part of PhD study by Tanjila Kanij, supervised by Prof. John Grundy and Dr. Robert Merkel in the
Faculty of ICT of Swinburne University of Technology. The research project will examine the relationship between personality traits and effectiveness in
software testing. Being a student of Faculty of ICT of Swinburne University of Technology, you are cordially requested to read the following description of
the research project and if you are interested to participate in the project, sign this consent form before participating.

The Research Project

Software testing is a procedure of exploring software to find defects prior release. Our previous research has suggested that the psychological traits of
software testers may influence their effectiveness in software testing. This research project is designed to examine the influence directly.

If you have any general inquiry about the research project, you are welcome to contact any of the researchers available at above mentioned addresses.
This research project is approved on behalf of Swinburne's Human Research Ethics Committee (SUHREC) by a SUHREC Subcommittee (SHESC2). If
you have any complaints or question regarding the approval of the project you can contact the ethics officer at resethics@swin.edu.au.

The Procedure

The research project is divided in two tests. If you agree to participate in the test, you will be requested to fill a NEO PI-R personality assessment form
containing 240 multiple choice questions, in the first test. It will take around 40 minutes. NEO PI 3 is a standard, commonly used test to assess
personality trait. It is NOT a test to reveal psychological disorders.

In the second test, you will be given a small software program to test and write a report about the errors you find in it. In this test, you will be provided a
computer where a small program written in Java will be installed. A printed specification of the software program will be available.

The total session will take about 1.5 hours.

The data of the two tests will be analysed to see if there is a connection between personality traits and effective software testing. No identifying
information about you will be recorded; each participant will be assigned a unique code. No individual results will be reported in a way that any
participant can be indentified.

Expected Outcome

If specific personality traits having influence on the effectiveness of software testing can be formed, we can suggest the traits to be looked for while
recruiting software testers. This will help the recruitment process of this profession which still relies on the experience and judgement of the recruiter. This
will also help IT graduates to select appropriate IT career for them.

The outcome will be published as a technical report as soon as prepared and later in peer reviewed conferences and/or journals.

Participation

Swinburne University of Technology
The Effect of Personality Traits on Effectiveness of Software Testing
Faculty of Information and Communication Technologies

Page 2

You will get $25 for participating in the research project. You will also get a copy of your personality profile called “My NEO Summary”. You are
free to withdraw at any time during the tests, if you feel uncomfortable. The researchers will be physically available during both the tests and will
be happy to assist you if you have any question or need further explanation. If you are worried about the outcome of your personality assessment test, you
are welcome to have discussion with the researchers. In the unlikely event if you find the personality test distressing, you can ask for counselling. If you
wish to be informed about the research outcome you can optionally put your email address where a technical report on the research project will be sent as
soon as it is available.

Consent

By signing this consent form, I confirm that I have read and understood the information provided about the research project and I agree to take part in this
research project.

Print Full Name: __

Signature __

Date __

Email (Optional, If you wish to receive a copy of the research outcome)__

-

.

Research Supervisor
Prof. John Grundy

Professor in Software Engineering and Head of Academic Group, Computer Science & Software Engineering
FICT, Swinburne University of Technology
Phone: +61 3 9214 8731
Email: jgrundy@swin.edu.au

Research Supervisor
Dr. Robert Merkel

Lecturer
Clayton School of IT, Monash University
Phone: +61 3 9905 5056
Email: robert.merkel@monash.edu

Researcher
Tanjila Kanij

PhD Candidate
FICT, Swinburne University of Technology
Phone: +61 3 9214 8840
Email: tkanij@swin.edu.au

This survey is part of a PhD research at Swinburne University of Technology.

The purpose of the survey is to collect the work log of software testers to revise a list of actual job responsibilities of software testers. The list of jobs
accomplished by software testers will help the researchers for their future research as well as will help the employers to design job responsibilities for
software testers.

If you are interested to participate please create an account to provide your work log for a minimum of two weeks.

Anonymity
Please note that a valid email address is required to create an account. The email address will not be associated with your user id. So a participant will
NOT be identifiable with the user name. However, if you have any concerns you are advised to open a new "disposable" email account (using a free email
service such as Google Mail), for this purpose. No identifying information of your employer or any of the other participants you worked with will be asked.
Individual responses will not be shared with the employer company. However, the employer company may receive a copy of the outcome of the survey, if
they wish to.

Confidentiality
The responses provided will be kept confidential and will be used for academic research purposes only. Individual responses will not be released or
shared. The information provided will be kept in our server and will be accessible to the researchers only. Results from analysis of survey responses will
be published in peer-reviewed academic conferences and journals.

Research Ethics
The project is approved by Swinburne University Human Research Ethics Sub Committee (SHESC2) and conducted under the privacy policy followed by
Swinburne University of Technology.

Right to ask question
If you have any general inquiry about the research project, you are welcome to contact student researcher Tanjila Kanij at tkanij@swin.edu.au. If you have
any complaints or question regarding the approval of the project you can
contact with - Research Ethics Officer, Swinburne Research (H68),
Swinburne University of Technology, P O Box 218, HAWTHORN VIC 3122.
Tel (03) 9214 5218 or +61 3 9214 5218 or resethics@swin.edu.au

Voluntary Participation
Your participation in this research is voluntary. You may discontinue
participation at any time during the research activity. You must check the
consent box to indicate your consent to these terms.

Swinburne University of Technology

What Do Software Testers Spend Their Time Doing?
Faculty of Information and Communication Technologies

Research Supervisor

Prof. John Grundy
Professor in Software Engineering and Head of Academic Group, Computer Science & Software Engineering
FICT, Swinburne University of Technology
Phone: +61 3 9214 8731
Email: jgrundy@swin.edu.au

Research Supervisor

Dr. Robert Merkel
Lecturer
Clayton School of IT, Monash University
Phone: +61 3 9905 5056
Email: robert.merkel@monash.edu

Researcher

Tanjila Kanij
PhD Candidate
FICT, Swinburne University of Technology
Phone: +61 3 9214 8840
Email: tkanij@swin.edu.au

Dear manager,

You are invited to participate in a research trial as part of PhD study by Tanjila Kanij, supervised by Prof. John
Grundy and Dr. Robert Merkel in the Faculty of ICT of Swinburne University of Technology.

The research Study

The delivered reliability of software to large extend depends on the performance of software testers. Thus,
appraising performance of software testers appropriately is crucial for ensuring quality project outcomes.
However, to date there is very limited information available on how the appraisal of software testers is actually
carried out in industry. More specifically, it is unknown what are the range of performance appraisal methods
used, what are the pros and cons of the different methods, and are different methods contemporary or needing
improvement.

This study is designed to collect information about the current practice of performance appraisal of software
testers in industry. It will also evaluate a software tester performance appraisal form proposed by the
researchers. This is based on our review of the literature and an analysis of job requirements for this position
collected from recruitment advertisements.

The Procedure

The study is divided into two sections. In the first section the participants are requested to fill out a small survey
questionnaire on the current practice of performance appraisal of testers in their organisation. The section
contains a total of 12 questions. In the second section the participants are requested to consider one of their
testers and to assign an overall performance appraisal score for that tester. The participants will then be given a
performance appraisal form designed by the researchers and be asked to appraise the performance of that same
tester using this form. The study will correlate the overall score assigned by the participants with the overall
score calculated with the scores in the form. The participants are also asked to provide us their feedback on the
form, positive or negative.

Anonymity
No identifying information about the participant will be recorded. Each participant will be assigned a unique
code. No individual results will be reported in a way that any participant or their selected tester can be
indentified.

No identifying information about your employer or any of the other people the participant
has worked with will be asked. Individual responses will not be shared with the employer

Swinburne University of Technology

Performance Assessment of Software Testers
Faculty of Information and Communication Technologies

company. However, the employer company may receive a copy of the overall findings, if they wish to.

Confidentiality

The responses provided will be kept confidential and will be used for academic research purposes only.
Individual responses will not be released or shared. Results from the analysis of responses will be published in a
publically available PhD thesis, and may be published in peer‐reviewed academic conferences and journals.

Research Ethics

This project has been approved by Swinburne’s Human Research Ethics Subcommittee (SHESC3) on behalf of
Swinburne’s Human Research Ethics Committee (SUHREC) in line with the National Statement on Ethical Conduct
in Human Research (SUHREC Project 2011/172).

Right to ask question

If you have any general inquiry about the research project, you are welcome to contact the principal investigator
Prof. John Grundy at jgrundy@swin.edu.au or the student researcher Tanjila Kanij at tkanij@swin.edu.au.

If you have any concerns or complaints about the conduct of this project, you can contact:

Research Ethics Officer, Swinburne Research (H68),
Swinburne University of Technology, P O Box 218,
HAWTHORN VIC 3122.
Tel (03) 9214 5218 or +61 3 9214 5218 or resethics@swin.edu.au.

Voluntary Participation

Your participation in this research is voluntary. You may discontinue participation at any time during the
research activity and, on request, will delete data collected from you (until publication, at which point deletion is
no longer possible).

Consent and Authorization

To participate, you must sign the consent form below. Furthermore, a person in your organization with
sufficient authority to permit your participation must sign the authorization form. If you have the authority to
authorize your own participation, you may sign the authorization form yourself.

Participant Consent

By signing this consent form, I confirm that I have read and understood the information provided about the
research project and I agree to take part in this research project.

Print Full Name: __

Signature __

Date __

Email (Optional, If you wish to receive a copy of the research outcome)__

Research Supervisor

Prof. John Grundy
Professor in Software Engineering and Head of Academic Group, Computer Science & Software Engineering
FICT, Swinburne University of Technology
Phone: +61 3 9214 8731
Email: jgrundy@swin.edu.au

Research Supervisor

Dr. Robert Merkel
Lecturer
Clayton School of IT, Monash University
Phone: +61 3 9905 5056
Email: robert.merkel@monash.edu

Researcher

Tanjila Kanij
PhD Candidate
FICT, Swinburne University of Technology
Phone: +61 3 9214 8840
Email: tkanij@swin.edu.au

You are invited to participate in a research trial as part of PhD study by Tanjila Kanij, supervised by Prof. John
Grundy and Dr. Robert Merkel in the Faculty of ICT of Swinburne University of Technology.

The research Study

A software tester is a person who tests software before release, helping to increase the reliability of software
products by reporting bugs and getting them fixed. This role is different to other stakeholders involved in the
software development process. While software programmers are largely constructive, in that they design and
“build” something that meets customer requirements, testers’ job is in a sense destructive in that they attempt to
“break” the software constructed by programmers. This needs a destructive approach towards the module under
test. The alternative mindset required by testers poses a research question, whether software testers, as a group,
tend to exhibit certain personality traits. This research study is designed to collect personality profiles of
software testers to investigate whether certain personality traits are over-represented among software testers.

The Procedure

The study is conducted using an online questionnaire. Once participants give consent to participate in the study
they will be presented with a small demographic questionnaire. On completion of the demographic
questionnaire the participants will then complete the personality assessment questionnaire. This section
contains 50 statements describing a person. The participants are requested to select one response from
5 available responses ("Very Inaccurate", "Moderately Inaccurate", "Neither Inaccurate nor Accurate",
"Moderately Accurate" and "Very Accurate") for each of the statements. On submission of the responses the
online system will return a general personality profile of the participant. Participants can also download this
profile in PDF format.

Anonymity
No identifying information about participants will be recorded. Each participant will be assigned a unique code.
No individual results will be reported in a way that any participant can be indentified.

No identifying information about your employer or any of the other people the participant has worked with will
be asked. Individual responses will not be shared.

Swinburne University of Technology

Personality Traits of Software Testers
Faculty of Information and Communication Technologies

Confidentiality

The responses provided will be kept confidential and will be used for academic research purposes only.
Individual responses will not be released or shared. Results from the analysis of responses will be published in a
publically available PhD thesis, and may be published in peer-reviewed academic conferences and journals.

Research Ethics

This project has been approved by Swinburne’s Human Research Ethics Subcommittee (<subcommittee name>)
on behalf of Swinburne’s Human Research Ethics Committee (SUHREC) in line with the National Statement on
Ethical Conduct in Human Research (SUHREC Project <project number>).

Right to ask question

If you have any general inquiry about the research project, you are welcome to contact the principal investigator
Prof. John Grundy at jgrundy@swin.edu.au or the student researcher Tanjila Kanij at tkanij@swin.edu.au.

If you have any concerns or complaints about the conduct of this project, you can contact:

Research Ethics Officer, Swinburne Research (H68),
Swinburne University of Technology, P O Box 218,
HAWTHORN VIC 3122.
Tel (03) 9214 5218 or +61 3 9214 5218 or resethics@swin.edu.au.

Participation

Participants will be given the chance to enter a random draw to win one of two 100 USD Amazon gift vouchers
for participating in the research projects. You need to enter your email address at the end of the survey to
register for the draw of the incentive. No association between your email address and the responses to the
survey questionnaire will be recorded or stored. You will also get a copy of your personality profile. You are free
to withdraw at any time during the test, if you feel uncomfortable. If you are worried about the outcome of your
personality assessment test, you are welcome to contact the researchers to discuss it further. In the unlikely
event if you find the personality test distressing, you can ask to be referred for counselling. If you wish to be
informed about the research outcome you can optionally check the "Wish to get a copy" checkbox at the end of
the study. We will send a technical report on the research project as soon as it is available.

Consent

To participate, you must check the "I give consent" checkbox below.

 I give consent

Appdx B

318

1

Survey Questionnaire

A survey of key factors affecting effectiveness of software testing professionals

PERSONAL INFORMATION

1.1 Sex: (Please check one option) Female Male

1.2 Age:

1.3 Nationality:

1.4 Education: (Please choose one option from below)

 University Degree in Software Engineering
 University Degree in Computer Science
 University Degree in Other IT fields
 Associated Degree/Diploma in Software Engineering
 Associated Degree/Diploma in Computer Science
 Associated Degree/Diploma in Other IT fields
 Other Degree/Diploma
 No Degree/Diploma

2. EMPLOYMENT INFORMATION

2.1 Nature of Your Present Employment: (Please choose one option from below)

 Self Employed
 Employed in a Small1 IT Company3
 Employed in a Large2 IT Company 3
 Employed in a Small1 Non-IT Company4
 Employed in a Large2 Non-IT Company4
 Not Employed

2.2 Your Present Job Responsibilities Include: (Please choose option(s) from below, you can choose
multiple option)

 Developing software module/program on software specification
and testing self developed modules/programs

 Developing software module/program on software specification
and testing modules/programs developed by others

Testing software modules/programs developed by others
 Manage Software Testers within a project
 Others , Please mention your responsibilities

2.3 Your Experience in Software Testing (Working as software tester/QA engineer): (Please choose
one option from below)

2

 No experience
 Less than 1 year experience
 Between 1 and 3 years experience
 Between 3 and 5 years experience
 More than 5 years experience

1 Small company implies having employee less than 50
2 Large company implies having employee more than 50
3 Company’s main focus is building or maintaining software
4 Company’s main focus is not building or maintaining software

3 PERFORMANCE IN SOFTWARE TESTING

3.1 “The performance of software testers varies greatly from tester to tester!” – Do you agree with this
statement? (Please choose one option from below)

 Completely disagree
 Somewhat disagree
 Neither disagree nor agree
 Somewhat agree

 Completely agree

3.2 Please mention how much do you agree with the following factors about their importance in
measuring the performance of software testers. (Please choose one option for each factor)

Factors Important in Measuring Performance of Software Testers

a Number of
bugs found

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

b Severity of
bugs

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

c Quality of
bug report

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

d Ability of
bug
advocacy

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

e Rigorousness
of test
planning and
execution

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

3.2.1 If you think there is any other factor(s) rather than specified in the above list, please
mention them:

3.3 Please mention how much do you agree with the following qualities about their influence on the
performance of software testers. (Please choose one option for each factor)

3

Qualities Influencing Performance of Software Testers

a Knowledge
of specific
testing
techniques

 Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

b Expertise in
the problem
domain

 Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

c Testing
specific
training/cer
tification

 Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

d Intelligence Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

e Dedication Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

f Punctuality
/Time value

 Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

g Thoroughn
ess

 Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

h Positive
Attitude

 Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

i Interperson
al skills

 Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

3.3.1 If you think there is any other important quality(s) not specified in the above list,
please list them:

3.4 Do you think good programming skills help to improve performance as a tester?
 Absolutely
 Somewhat
 May be or not
 Not much
 Never

3.5 Do you think academic record is a good predictor of performance of software testers? (Please
choose one option from below)

 Absolutely
 Somewhat
 May be or not
 Not much

 Never

4

3.6 Consider the best software tester you have worked with. How would you compare the value of
their contribution to a project to that of an “average” tester? Are they approximately (Please choose
one option from below)

a) 20% more efficient to the project
b) 50% more efficient to the project
c) 80% more efficient o the project
d) 100% more efficient to the project
e) Some other percentage, please specify

3.7 In your opinion, what can help to improve your performance as a tester?

3.8 What your employer can do to improve your performance in your role of software testing?

4 AUTOMATION OF SOFTWARE TESTING

4.1 Do you frequently use automatic tools for software testing? (Please choose one option from
below)

 Yes (If yes, Please check 4.1.1)
 No (If no, please go to 4.2)

4.1.1a Which automated tools have you used? (optional):

5 4.1.1b Which of those were most useful and why? (optional): 4.2 According to you, in what
ways tools are (or are not) helpful to increase your effectiveness/productivity/performance?
 EXPERIENCE IN SOFTWARE TESTING

5.1 Do you think experience in software testing is helpful to increase performance of a software
tester? (Please choose one option from below)

 Yes
 No (if, no please go to next section)

5.2 Performance of software testing grows with time. For instance, “Performance of a software tester
is better in the sixth month in comparison to her performance in the third month” – Do you agree?
(Please choose one option from below)
 Completely disagree
 Somewhat disagree
 Neither disagree nor agree
 Somewhat agree

 Completely agree

5.3 Do you believe that after certain level of experience performance of a software tester is saturated
that is growth of experience is not so significant anymore? (Please choose one option from below)
 Completely true (Please go to question 5.3.1)
 Somewhat true (Please go to question 5.3.1)
 Neither true nor false
 Somewhat false

 Completely false

5

5.3.1 When is this “saturation point” reached?

5.4 Please comment on the importance of experience in software testing (optional):

6 CHARACTERISTICS OF SOFTWARE TESTERS

6.1 Consider the good software testers you have worked with (or yourself, if you believe you are a
good tester). Would you agree or disagree that these people have the following characteristics/nature:
(Note: For the purposes of this question, we are not interested in whether these characteristics are the
reason behind their good performance, just whether they have these characteristics).

(Please choose one option for each characteristic)

Characteristics/Nature of Good Software Testers
a Good

interaction
with outward
social world

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

b Openness to
new
experiences /
Intellectual
curiosity

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

c Tendency
towards
negative
emotionality1

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

d Qualities like
Trust,
modesty,
tender
mindedness
and so on

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

e Personal
organization2

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

1 By negative emotionality we mean sadness, anxiety, temper and depression
2 By personal organization we mean discipline, competence, ambition and dutifulness.

6.2.1 If you think there are any other characteristics that are important please specify them:

7 TRAINING/CERTIFICATION ON SOFTWARE TESTING

7.1 Have you, in the last five years, done any training/certification on techniques/tools of software
testing? (Please choose one option from below)

 Yes (If yes, please go to 7.1.1)
 No (If yes, please go to next section)

6

7.1.1 What training/certification did you do? (optional)

7.2 How useful in your professional activities were the techniques/tools for you? (Please choose one
option from below)

 Not at all useful
 Somewhat useful
 Neither useful or not useful
 Not very useful

 Complete waste of time

7.3 Why (or why not) were these techniques/tools useful (or not useful)?

8 SOFTWARE TESTING TEAM PERFORMANCE

8.1 Please rank (from 1 to 7) the following factors in order of their importance on recruiting
members to build a software testing team. (lower score implies higher rank)

No. Factors Rank

1 Testing performance

2 Interpersonal Skills

3 Team playing capability

4 Experience in software Testing

5 Training/certification in software testing

6 Knowledge of the specific problem domain

7 Compatibility with specific other proposed
team members (if known)

8.1.1 Please mention if there is any other important factors for test team building that are
not listed above?

8.2 Do you think all members of a test team should be very good testers for the team to perform
well?

 Completely disagree
 Somewhat disagree
 Neither disagree nor agree
 Somewhat agree
 Completely agree

8.3 Do you think all members of a test team should be good team players for the team to perform
well?

 Completely disagree
 Somewhat disagree
 Neither disagree nor agree
 Somewhat agree
 Completely agree

8.4 Do you think a diverse test team helps to improve performance?

 Yes (if yes please check 8.5)

7

 No (if no please go to the next section)

8.5 In order to build a good software test team, which kind of diversity would you look for?

Factors for selecting members to build a Software Testing team
a Diversity of

personality

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

b Diversity of
professional
background/ex
perience

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

c Diversity of
Age

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

d Diversity of
communicatio
nal skills

Completely
disagree

 Somewhat
disagree

 Neither
disagree
nor agree

 Somewhat
agree

 Completely
agree

8.5.1 If there are other diversities that you would look for building a test team, please state them:

8.6 Do you think a test team performs better when they have experience working as a team, rather
than gathering experience as individuals?

 Completely disagree
 Somewhat disagree
 Neither disagree nor agree
 Somewhat agree
 Completely agree

Optional Question:

Do you think there are any other key factors influencing the performance of software testers, that are
not covered by our questionnaire?

In your opinion, what makes a good software tester?
If you wish to be informed of the results of our survey, you can provide your email address and we
will send you a copy of our findings. The address will be stored separately and NOT associated with
your responses to questions.

 Email Address (optional):

Page 15

Survey Questionnaire

Personality Traits of Software Testers

Demographic information of the participant:

Please provide the following information about you:

Question Type Options to choose from

Gender closed Male

 Female

Age range closed 25-30

 31-40

 41-50

 51-60

 61+

Country of work (Where do you

work?)

closed List of countries

Main job responsibility closed Developing modules/programs

based on software specification

 Testing modules/programs

developed by others

 Managing developers

 Managing testers

 Other, please specify

Duration of experience in software

testing/development

closed Less than a year

 From 1 to 3 years

 From 3-5 years

 More than 5 years

Nature of employment closed Self employed

 Employed in small IT company

 Employed in large IT company

 Employed in small non IT company

 Employed in large non IT company

Page 16

Personality Assessment

No items Very

inaccurate
Inaccurate Neither

inaccurate

nor

accurate

Accurate Very

accurate

1 Often feel blue.

2 Dislike myself.

3
Am often down in
the dumps.

4
Have frequent mood
swings.

5 Panic easily.

6 Rarely get irritated.

7 Seldom feel blue.

8
Feel comfortable
with myself.

9
Am not easily
bothered by things.

10
Am very pleased
with myself.

11
Feel comfortable
around people.

12 Make friends easily.

13
Am skilled in
handling social
situations.

14
Am the life of the
party.

15
Know how to
captivate people.

16 Have little to say.

17
Keep in the
background.

Page 17

18
Would describe my
experiences as
somewhat dull.

19
Don't like to draw
attention to myself.

20 Don't talk a lot.

21
Believe in the
importance of art.

22
Have a vivid
imagination.

23
Tend to vote for
liberal political
candidates.

24
Carry the
conversation to a
higher level.

25
Enjoy hearing new
ideas.

26
Am not interested in
abstract ideas.

27 Do not like art.

28
Avoid philosophical
discussions.

29
Do not enjoy going
to art museums.

30
Tend to vote for
conservative political
candidates.

31
Have a good word
for everyone.

32
Believe that others
have good intentions.

33 Respect others.

34
Accept people as
they are.

35
Make people feel at
ease.

36 Have a sharp tongue.

37 Cut others to pieces.

Page 18

38
Suspect hidden
motives in others.

39 Get back at others.

40 Insult people.

41 Am always prepared.

42
Pay attention to
details.

43
Get chores done right
away.

44 Carry out my plans.

45
Make plans and stick
to them.

46 Waste my time.

47
Find it difficult to get
down to work.

48
Do just enough work
to get by.

49
Don't see things
through.

50 Shirk my duties.

Survey Questionnaire

Performance Appraisal of Software Testers

Demographic information of the participant:

Please provide the following information about you:

Question Type Options to choose from

Gender closed Male

 Female

Age range closed 25-30

 31-40

 41-50

 51-60

 61+

Country of Work (Where do you

work?)

closed List of countries

Duration of experience in

managing testers

closed Less than a year

 From 1 to 3 years

 From 3-5 years

 More than 5 years

Nature of employment closed Self employed

 Employed in small IT company

 Employed in large IT company

 Employed in small non IT company

 Employed in large non IT company

Information about the organization:

Please provide the following information about the organization you work in:

Question Type Options to choose from

Number of employee Open

Business domain Closed Web application development

 Game development

 Smart phone application

development

 Desktop application development

 Other (with an option to provide

details)

Development process Closed Waterfall

 Prototyping

 Agile

 XP

 Scrum

 Other (with an option to provide

details)

Does the organization follow any

process improvement standard?

Closed No

 Yes (with an option to provide

details)

Survey questionnaire (Practice of performance appraisal):

Please provide your response to the following:

Number Question Type Options to choose

from

1 Does the organization you work in practice

formal process of employee appraisal? Formal

process is structured and periodic review of

efficiency of carrying out the duties assigned to

the employees.

closed Yes

 No

2 Does the organization you work in use

specialized performance appraisal

method/form for software testers?

closed Yes

 No

2.1 If no, how do you appraise the performance of

software testers?

open N/A

2.2 If yes, please describe the appraisal method

the organization use for software testers.

open N/A

2.3 If yes, is the appraisal method for software

testers developed in-house by the organization

you work in?

closed Yes

 No

2.3.1 If the appraisal method/form is not developed

in-house by the organization, where does the

organization render the method/form from?

Open N/A

2.4 If yes, do you think the method/form can

appraise the performance of software testers

appropriately?

closed Yes

 No

2.5 If yes, do you think the performance

components taken in to account in the

method/form are sufficient?

closed Yes

 No

Survey questionnaire (Opinion on performance appraisal of testers):

1 What performance components do you think

should be taken in to account for performance

appraisal of testers?

Open N/A

2 What are the advantages of taking your

proposed components in to account?

Open N/A

3 What can be the disadvantages of taking your

proposed components in to account?

Open N/A

Question on follow-up study:

Are you interested to participate in a follow-up study of performance appraisal of testers?

 Yes

 No

Appdx C

333

SUHREC Project 2009/273 Ethics Clearance

To: Dr R Merkel, FICT / Ms Tanjila Kanij

Dear Dr Merkel,

SUHREC Project 2009/273 A survey of key factors affecting effectiveness of software testing
professionals
Approved Duration: 18/12/2009 To 18/12/2013 [Adjusted]

I refer to the ethical review of the above project protocol undertaken on behalf of Swinburne's
Human Research Ethics Committee (SUHREC) by SUHREC Subcommittee (SHESC2) at a meeting held
on 27 November 2009. Your responses to the review as e-mailed on 8 December were forwarded to
a SHESC2 delegate for review.

I am pleased to advise that, as submitted to date, the project has approval to proceed in line with
standard on-going ethics clearance conditions here outlined.

- All human research activity undertaken under Swinburne auspices must conform to Swinburne and
external regulatory standards, including the National Statement on Ethical Conduct in Human
Research and with respect to secure data use, retention and disposal.

- The named Swinburne Chief Investigator/Supervisor remains responsible for any personnel
appointed to or associated with the project being made aware of ethics clearance conditions,
including research and consent procedures or instruments approved. Any change in chief
investigator/supervisor requires timely notification and SUHREC endorsement.

- The above project has been approved as submitted for ethical review by or on behalf of SUHREC.
Amendments to approved procedures or instruments ordinarily require prior ethical appraisal/
clearance. SUHREC must be notified immediately or as soon as possible thereafter of (a) any serious
or unexpected adverse effects on participants and any redress measures; (b) proposed changes in
protocols; and (c) unforeseen events which might affect continued ethical acceptability of the
project.

- At a minimum, an annual report on the progress of the project is required as well as at the
conclusion (or abandonment) of the project.

- A duly authorised external or internal audit of the project may be undertaken at any time.

Please contact me if you have any queries about on-going ethics clearance. The SUHREC project
number should be quoted in communication. Chief Investigators/Supervisors and Student
Researchers should retain a copy of this e-mail as part of project record-keeping.

Best wishes for the project.

Kaye Goldenberg
Secretary, SHESC2

Kaye Goldenberg
Administrative Officer (Research Ethics)
Swinburne Research (H68)
Swinburne University of Technology
P O Box 218
HAWTHORN VIC 3122
Tel +61 3 9214 8468
Fax +61 3 9214 5267

SUHREC Project 2011/036 Ethics Clearance
To: Prof. John Grundy, FICT/Ms Tanjila Kanij

 Dear Prof. Grundy,

SUHREC Project 2011/036 What responsibilities software testing includes and who is better doing
what?
Prof. John Grundy, FICT/Ms Tanjila Kanij
Approved Duration: 27/06/2011 To 31/09/2013 [Adjusted]

I refer to the ethical review of the above project protocol undertaken on behalf of Swinburne's
Human Research Ethics Committee (SUHREC) by SUHREC Subcommittee (SHESC1) at a meeting held
on 25 March 2011. Your responses to the review as e-mailed on 10 May and 6, 21 and 23 June 2011
were put to a nominated SHESC1 delegate for review.

I am pleased to advise that, as submitted to date, the project has approval to proceed in line with
standard on-going ethics clearance conditions here outlined.

- All human research activity undertaken under Swinburne auspices must conform to Swinburne and
external regulatory standards, including the National Statement on Ethical Conduct in Human
Research and with respect to secure data use, retention and disposal.

- The named Swinburne Chief Investigator/Supervisor remains responsible for any personnel
appointed to or associated with the project being made aware of ethics clearance conditions,
including research and consent procedures or instruments approved. Any change in chief
investigator/supervisor requires timely notification and SUHREC endorsement.

- The above project has been approved as submitted for ethical review by or on behalf of SUHREC.
Amendments to approved procedures or instruments ordinarily require prior ethical appraisal/
clearance. SUHREC must be notified immediately or as soon as possible thereafter of (a) any serious
or unexpected adverse effects on participants and any redress measures; (b) proposed changes in
protocols; and (c) unforeseen events which might affect continued ethical acceptability of the project.

- At a minimum, an annual report on the progress of the project is required as well as at the
conclusion (or abandonment) of the project.

- A duly authorised external or internal audit of the project may be undertaken at any time.

Please contact me if you have any queries about on-going ethics clearance. The SUHREC project
number should be quoted in communication. Chief Investigators/Supervisors and Student
Researchers should retain a copy of this e-mail as part of project record-keeping.

Best wishes for the project.

Yours sincerely

 Kaye Goldenberg
Secretary, SHESC1

Kaye Goldenberg
Administrative Officer (Research Ethics)
Swinburne Research (H68)
Swinburne University of Technology
P O Box 218
HAWTHORN VIC 3122
Tel +61 3 9214 8468

SUHREC Project 2010/144 Ethics Clearance

To: Dr Robert Merkel, FICT/ Miss Tanjila Kanij
 CC: Ms Mandish Webb, FICT

 Dear Dr Merkel,

SUHREC Project 2010/144 The Effect of Personality Traits on Effectiveness of Software Testing
Dr Robert Merkel, FICT/ Miss Tanjila Kanij
Approved Duration: 10/08/2010 To 10/08/2013 [Adjusted]

I refer to the ethical review of the above project protocol undertaken on behalf of Swinburne's Human
Research Ethics Committee (SUHREC) by SUHREC Subcommittee (SHESC2) at a meeting held on 19 July
2010. Your response to the review as e-mailed on 3 August 2010 was put to a nominated SHESC2
delegate for consideration. The Delegate wished me to convey to you their compliments on an excellent
response.

I am pleased to advise that, as submitted to date, the project has approval to proceed in line with
standard on-going ethics clearance conditions here outlined.

- All human research activity undertaken under Swinburne auspices must conform to Swinburne and
external regulatory standards, including the National Statement on Ethical Conduct in Human Research
and with respect to secure data use, retention and disposal.

- The named Swinburne Chief Investigator/Supervisor remains responsible for any personnel appointed
to or associated with the project being made aware of ethics clearance conditions, including research and
consent procedures or instruments approved. Any change in chief investigator/supervisor requires timely
notification and SUHREC endorsement.

- The above project has been approved as submitted for ethical review by or on behalf of SUHREC.
Amendments to approved procedures or instruments ordinarily require prior ethical appraisal/ clearance.
SUHREC must be notified immediately or as soon as possible thereafter of (a) any serious or unexpected
adverse effects on participants and any redress measures; (b) proposed changes in protocols; and (c)
unforeseen events which might affect continued ethical acceptability of the project.

- At a minimum, an annual report on the progress of the project is required as well as at the conclusion
(or abandonment) of the project.

- A duly authorised external or internal audit of the project may be undertaken at any time.

Please contact me if you have any queries about on-going ethics clearance. The SUHREC project number
should be quoted in communication. Chief Investigators/Supervisors and Student Researchers should
retain a copy of this e-mail as part of project record-keeping.

Best wishes for the project.

Yours sincerely

Kaye Goldenberg
Secretary, SHESC2

SUHREC Project 2011/172 Ethics Clearance

To: Prof J Grundy Ms Tanjila Kanij FICT
CC: Ms Mandish Webb Research Administration Coordinator FICT

Dear John and Tanjila,

SUHREC Project 2011/172 Performance appraisal of software tester
Prof J Grundy Ms Tanjila Kanij FICT
Approved duration: 4/11/2011 To 4/11/2013 [Adjusted]

I refer to the ethical review of the above project protocol undertaken by a SUHREC Subcommittee
(SHESC3). Your responses to the reviews, as e-mailed on 5 September and 31 October 2011, were
put to and approved by SUHREC delegate(s).

I am pleased to advise that, as submitted to date, the project may proceed in line with standard on-
going ethics clearance conditions here outlined.

- All human research activity undertaken under Swinburne auspices must conform to Swinburne and
external regulatory standards, including the current National Statement on Ethical Conduct in
Research Involving Humans and with respect to secure data use, retention and disposal.

- The named Swinburne Chief Investigator/Supervisor remains responsible for any personnel
appointed to or associated with the project being made aware of ethics clearance conditions,
including research and consent procedures or instruments approved. Any change in chief
investigator/supervisor requires timely notification and SUHREC endorsement.

- The above project has been approved as submitted for ethical review by or on behalf of SUHREC.
Amendments to approved procedures or instruments ordinarily require prior ethical appraisal/
clearance. SUHREC must be notified immediately or as soon as possible thereafter of (a) any serious
or unexpected adverse effects on participants and any redress measures; (b) proposed changes in
protocols; and (c) unforeseen events which might affect continued ethical acceptability of the project.

- At a minimum, an annual report on the progress of the project is required as well as at the
conclusion (or abandonment) of the project.

- A duly authorised external or internal audit of the project may be undertaken at any time.

Please contact me if you have any queries about on-going ethics clearance. The SUHREC project
number should be quoted in communication. Chief Investigators/Supervisors and Student
Researchers should retain a copy of this email as part of project record-keeping.

Best wishes for project.

Yours sincerely,

Ann Gaeth
Secretary, SHESC3

Dr Ann Gaeth
Administrative Officer (Research Ethics)
Swinburne Research (H68)
Swinburne University of Technology
P.O. Box 218
HAWTHORN VIC 3122
Tel: +61 3 9214 5935
Fax: +61 3 9214 5267

SUHREC Project 2012/243 Ethics Clearance
To: Professor John Grundy; FICT
Ms Tanjila Kanij

Dear John and Tanjila,

SUHREC Project 2012/243 Personality traits of software testers
Prof John Grundy, Ms Tanjila Kanij, Dr Robert Merkel
Approved Duration: 02/11/2012 To 31/01/2014 [Adjusted]

I refer to the ethical review of the above project protocol undertaken by a SUHREC Subcommittee
(SHESC3). Your responses to the review, as emailed on 29 October 2012 with attachments including
revised consent instrument, were put to a SHESC3 delegate for consideration.

I am pleased to advise that, as submitted to date, the project may proceed in line with standard on‐
going ethics clearance conditions here outlined.

‐ All human research activity undertaken under Swinburne auspices must conform to Swinburne and
external regulatory standards, including the current National Statement on Ethical Conduct in
Human Research and with respect to secure data use, retention and disposal.

‐ The named Swinburne Chief Investigator/Supervisor remains responsible for any personnel
appointed to or associated with the project being made aware of ethics clearance conditions,
including research and consent procedures or instruments approved. Any change in chief
investigator/supervisor requires timely notification and SUHREC endorsement.

‐ The above project has been approved as submitted for ethical review by or on behalf of SUHREC.
Amendments to approved procedures or instruments ordinarily require prior ethical appraisal/
clearance. SUHREC must be notified immediately or as soon as possible thereafter of (a) any serious
or unexpected adverse effects on participants and any redress measures; (b) proposed changes in
protocols; and (c) unforeseen events which might affect continued ethical acceptability of the
project.

‐ At a minimum, an annual report on the progress of the project is required as well as at the
conclusion (or abandonment) of the project.

‐ A duly authorised external or internal audit of the project may be undertaken at any time.

Please contact the Research Ethics Office if you have any queries about on‐going ethics clearance.
The SUHREC project number should be quoted in communication. Chief Investigators/Supervisors
and Student Researchers should retain a copy of this email as part of project record‐keeping.

Best wishes for project.

Yours sincerely,

Sheila Hamilton‐Brown
Secretary, SHESC3

Sheila Hamilton-Brown
Administrative Officer (Research Ethics & Biosafety)
(Tues, Wed & Fri)
Swinburne Research (H68)
Swinburne University of Technology
PO Box 218
HAWTHORN VIC 3122
Tel: 03 9214 5935
Fax: 03 9214 5267

	Contents
	List of Tables
	List of Figures
	1 Introduction
	1.1 Introduction
	1.2 Background
	1.3 Research Motivation
	1.4 Research Problem
	1.5 Research Significance
	1.5.1 Software Testing Research
	1.5.2 Software Testing Practice

	1.6 Research Contributions
	1.7 Thesis Organization

	2 Related Work
	2.1 Introduction
	2.2 What Do Software Testers Do
	2.3 What Makes A Good Tester - Expert Views
	2.4 Personality of Software Testers and Debuggers
	2.5 Personality of Programmers
	2.6 Personality of Software Engineers
	2.7 Other Human Factors of Software Testers
	2.8 Performance Assessment of Software Testers
	2.9 Performance Assessment of Other IT Practitioners
	2.10 Summary
	bookmark text is here

	3 Background
	3.1 Introduction
	3.2 Personality
	3.2.1 Personality Traits
	3.2.2 Personality Theories
	3.2.3 Personality Assessment
	3.2.3.1 Clinical Approach
	3.2.3.2 Statistical Approach

	3.3 Performance Appraisal
	3.3.1 Approach to Performance Appraisal
	3.3.2 Scale Types
	3.3.3 Scale Labels
	3.3.4 Appraiser (Who will appraise the performance?)

	3.4 Summary

	4 Research Method
	4.1 Introduction
	4.2 Research Questions
	4.3 Research Process
	4.4 Research Design
	4.4.1 Survey
	4.4.2 Quasi Experiment
	4.4.3 Case Study

	4.5 Participants
	4.6 Recruitment
	4.7 Instruments and Tools
	4.7.1 Information Statements
	4.7.2 Personality Assessment Instruments
	4.7.3 Software Testing Performance Assessment Instruments
	4.7.4 Data Collection Tools
	4.7.5 Advertisement Tools
	4.7.6 Information Extraction Scripts

	4.8 Analysis Procedure
	4.8.1 Qualitative Data
	4.8.2 Quantitative Data
	4.8.3 Human Research Ethics
	4.8.4 Pilot Studies
	4.8.5 Summary

	5 Factors influencing effectiveness of individual software testers
	5.1 Introduction
	5.2 Methodology
	5.2.1 Setting the Objectives
	5.2.2 Survey Design
	5.2.3 Development of Survey Instrument
	5.2.3.1 Questionnaire Design

	5.2.4 Evaluation of Survey Instrument
	5.2.5 Obtaining Valid data
	5.2.6 Data Analysis

	5.3 Results
	5.3.1 Demographic information
	5.3.2 Employment Information
	5.3.3 Performance
	5.3.3.1 Assessment of Performance
	5.3.3.2 Influence of programming skill and academic records

	5.3.4 Factors that influence performance
	5.3.5 Influence of Automated Tools
	5.3.6 Experience
	5.3.6.1 Saturation of Experience

	5.3.7 Characteristics of Good Testers
	5.3.8 Training/Certification

	5.4 Threats to Validity
	5.4.1 Internal Validity
	5.4.2 External Validity

	5.5 Analysis
	5.6 Summary

	6 Development of effective test teams
	6.1 Introduction
	6.2 Methodology
	6.2.1 Setting the Objectives
	6.2.2 Survey Design
	6.2.3 Development of Survey Instrument
	6.2.4 Questionnaire Design
	6.2.5 Evaluation of Survey Instrument
	6.2.6 Obtaining Valid Data
	6.2.7 Data Analysis

	6.3 Results
	6.3.1 Demographics
	6.3.2 Important Factors for Developing testing team
	6.3.3 Diversity of the testing team
	6.3.4 Experience of the testing team

	6.4 Threats to Validity
	6.5 Discussion
	6.6 Summary

	7 Job responsibilities of software testers
	7.1 Introduction
	7.2 Methodology
	7.2.1 Case Study of Software Testers' Work
	7.2.2 Survey of Software Testing Job Advertisements
	7.2.3 Survey of Bug Descriptions in Bug Repositories
	7.2.4 Analysis

	7.3 Results
	7.3.1 Case Study of Software Testers' Worklogs
	7.3.2 Survey of Software Testing Job Advertisements
	7.3.3 Survey of Bug Descriptions in Bug Repositories

	7.4 Threats to Validity
	7.5 Discussion
	7.6 Summary

	8 Personality Traits of Software Developers
	8.1 Introduction
	8.2 Methodology
	8.2.1 Setting the Objectives
	8.2.2 Survey Design
	8.2.3 Development of Survey Instrument
	8.2.4 Questionnaire Design
	8.2.5 Evaluation of Survey Instrument
	8.2.6 Obtaining Valid Data
	8.2.7 Data Analysis

	8.3 Results
	8.3.1 Demographic Information
	8.3.2 Personality Distribution
	8.3.3 Tests of Normality
	8.3.4 Internal Consistency
	8.3.5 Hypothesis Testing
	8.3.6 Effect Size
	8.3.7 Power Analysis
	8.3.8 Comparison with The General Population

	8.4 Threats to Validity
	8.4.1 Threat to Internal Validity
	8.4.2 Threats to External Validity
	8.4.3 Threat to Construct Validity

	8.5 Discussion
	8.6 Summary

	9 Influence of personality traits on software testing
	9.1 Introduction
	9.2 Experiment Design
	9.2.1 Assessment of Personality
	9.2.2 Assessment of Effectiveness in Software Testing
	9.2.2.1 Assessment Metrics
	9.2.2.2 Assessment of Overall Effectiveness
	9.2.2.3 Validation of The Instrument

	9.2.3 Research Question
	9.2.4 Variables
	9.2.5 Hypothesis
	9.2.6 Participants
	9.2.7 Experimental Procedure
	9.2.8 Analysis

	9.3 Results
	9.3.1 Demographic information
	9.3.2 Population distribution
	9.3.3 Correlation Between Personality Traits and Effectiveness in Testing
	9.3.4 Hypothesis Testing

	9.4 Threats to Validity
	9.4.1 Threats to External validity
	9.4.2 Threats to Internal validity
	9.4.3 Threats to Construct validity

	9.5 Discussion
	9.6 Summary

	10 Performance Appraisal of Software Testers
	10.1 Introduction
	10.2 Methodology
	10.2.1 Setting the Objectives
	10.2.2 Survey Design
	10.2.3 Development of Survey Instrument
	10.2.4 Questionnaire Design
	10.2.5 Evaluation of Survey Instrument
	10.2.6 Sampling to Obtain Valid Data
	10.2.7 Data Analysis
	10.2.8 Proposed Performance Appraisal Form (PAF)

	10.3 Results
	10.3.1 Demographic Information
	10.3.2 State of Practice
	10.3.2.1 Current performance appraisal approaches for software testers
	10.3.2.2 Suggestions on how software testers' performance can be appraised

	10.3.3 Feedback on Proposed PAF

	10.4 Threats to Validity
	10.5 Discussion
	10.6 Summary

	11 Toolset
	11.1 Introduction
	11.2 Rationale
	11.3 Toolset
	11.3.1 Website 1: Online Survey of Human Factors Influencing Software Testing and Testing Teams
	11.3.2 Website 2: Online Worklog Collection
	11.3.3 Website 3: Performance Appraisal Form (PAF) Validation
	11.3.4 Website 4: Online Personality Assessment

	11.4 Summary

	12 Discussion
	12.1 Introduction
	12.2 Analysis of key findings
	12.3 Findings in relation to the research questions
	12.4 Threats to Validity
	12.4.1 External Validity
	12.4.2 Internal Validity
	12.4.3 Construct Validity
	12.4.4 Conclusion Validity

	12.5 Lessons Learned
	12.5.1 Participant Recruitment
	12.5.2 Low Response Rate
	12.5.3 Invitation Email
	12.5.4 Consent Collection
	12.5.5 Questionnaire Length
	12.5.6 Nature of Participation
	12.5.7 Motivation
	12.5.8 Analysis of Data
	12.5.9 Process of Ethics Approval
	12.5.10 Data Security

	12.6 Summary

	13 Conclusions
	13.1 Introduction
	13.2 Research Summary
	13.3 Research Contributions
	13.3.1 Software Testing Research
	13.3.2 Software Testing Practice

	13.4 Limitations
	13.5 Future Research
	13.5.1 Validation of Proposed Performance Appraisal Form
	13.5.2 Influence of Personality Traits on Software Testers' Performance
	13.5.3 Influence of Conscientiousness on Effectiveness in Software Testing
	13.5.4 Detailed Study of Software Testers' Unit Tasks
	13.5.5 Association of Software Testing Unit Tasks and Personality Traits

	13.6 Summary

	References
	Appdx A
	Appdx B
	Appdx C

