Automated Support for Consistency Management

and Validation of Requirements

Massila Kamalrudin

A thesis submitted in fulfilment of the requirements for the degree of Doctor of
Philosophy of Electrical and Electronic Engineering, The University of Auckland,
2011.

Abstract

The requirements engineering phase of software development remains presents many
challenges to researchers and practitioners alike. Among them, the management of consistency
across multiple representations is particularly complex yet it lacks effective tool support. The
thesis proposes an automated support mechanism to enable users (Requirements Engineers) to
manage the consistency and validation of requirements. We have investigated existing
approaches, developed a novel technique, and realised this technique as an automated support

tool called MaramaAl (Automated Inconsistency Checker).

We have taken an an iterative approach to our work. We began by developing a lightweight
extraction approach that allows an accurate and quick extraction of essential requirements
(abstract interactions) from natural language requirements and the generation of Essential Use
Case models from them. We then used automated traceability with visual support to check the
consistency of requirements in three different forms: textual natural language requirements,
abstract interaction and Essential Use Case, as well as to further validate the correctness and
completeness of requirements. We also extended the automated tool to provide end-to-end rapid
prototyping support embedded in the tool for validating requirements consistency in a form usable

by both requirement engineers and clients to confirm the consistency of requirements.

We have evaluated the tool’s efficacy and performance especially on the extraction process, and
also evaluated the user perception on the tool’'s usability and user-perceived strengths via a
substantial usability study and applied the tool to several case studies. The results were positive,
and demonstrate that MaramaAl can be used to manage the consistency and validation of

requirements in various domains of applications.

Dedication

| dedicate this thesis to my husband Ahmad Fadzil Mohamad, my father Kamalrudin Jantan and

my mother Nya Lily Baba.

“Your endless Prayers, love and support have gotten me here”

Acknowledgement

Alhamdulillah: all praises to Allah for giving me good health, a strong will and a clear path to

complete this study.

| am heartily thankful to my supervisors, Professor John Hosking and Professor John Grundy, for
their guidance and support throughout my PhD study. For almost three years of collaboration, |
have learned to think positively, to be confident and focused, to appreciate comments and
criticisms, to take up challenges, to try hard to improve weaknesses, to be generous to others

and to love and care for my family. | am really glad to have had both of you as my supervisors.

To John & John: You're really great! You have given me such a great time while going through

this tough process!

My highest gratitude to my parents (Abah, Mak, Mama and Papa) for all their endless prayers,

love, confidence and support to me to go through the ups and downs of this journey.

My warmest appreciation to my beloved husband, Ahmad Fadzil Mohamad, for all his sacrifices,
understanding, love, care, motivation and support. Acting as my third supervisor at home, he has

really shielded me from all the laziness and negative influences.
To my hubby: Yang, this PhD is yours!

| would like to thank all my friends, especially Jun Huh for his kindness and help throughout this

study.
I would also like to thank Silicon Dream Ltd. for sharing their requirements for this research.

I would also like to acknowledge the sponsor of my study: Ministry of Higher Education and UTeM
as well as PReSS Account of University of Auckland and the FRST Software Process and

Product Improvement project.

Finally, | would like to share this quote which has always been with me for almost three years to

keep up the high level of enthusiasm in completing my research:

"Forget mistakes. Forget failure. Forget everything except what you're going to do now

and do it. Today is your lucky day." wiy purant

Table of Contents

ADSTFACT ... e e e e e e e e e e e e ii
[]=To [o= 1 [o] o FOR USSR iii
ACKNOWIEAGEIMENT ...t e et e e e e e e e e e e e e e e e anbbe e e e e e annbrneee s iv
Table Of CONENESeeiiiee ettt b et e e snee s v
LISt OF FIQUIES ... ettt et e e s e e e X
[o] =T o] [PP PP PP XV
(07 gF=T o] (=]l IR [1 1o Yo [T i) o S 1
1 Research BackgrOUNG............ciiiiiiiiiiii ettt ettt 1
1.1 What is @ Requirement?cooo i 1
R S B o 4 7 £ (= o TSP 2

R 2 [Too] g S] (= o PP 3

1.2 Research MotIVatioNSc.ooiiiiiii e 4
1.3 Research QUESHIONSooiiiiiiiii e e e s 5
14 RESEAICH ODJECHVE. uiiiiee ittt e e e e st e e e s s nraeea e e e enneees 7
1.5 Research Methodologyooiiiiiiiiieee e 7
1.6 Research ContribUtiONSuuiiiiii e 9
1.7 Thesis OrganiSatioNcuuiiiiiiiiiiie e e s s et e e e s e r e e e e eneaeeeeeennseaeeens 11
1.8 SUMIMAIY ...ttt ettt e e e sttt e e e sttt e e e e e stteeeeeaassbeeeeesansbseeeessansaneaessansnneaananns 12
21 Requirement Managementooouiiiii e 13
2.2 Requirement Modelling TEChNIQUEooiiiiiiiiiieeeee e 14
2.3 Requirements SpecCifiCationoociiiie i 14
2.3.1 Formal SPecCificationccccuiiiiiiiieeeeeeeeee e 14
2.3.2 Semi-formal SpecCifiCationcooiiiiiiiiii i 15

2.3.3 Informal Specification...........ccccuiiiiiiiiieieeee e 15

2.4 Semantics iN REQUINEMENTSoiiiiiiiii e 16
25 Requirement Engineering TooIs (RE TOOIS) ...oovviiiiiieieiiicieeeeeee e 16
2.5.1 Examples of Commercial Requirement Engineering ToOIS..........ccccceevciiviereeniiinennn. 16
2.5.2 Examples of Research Requirement Engineering ToOIS............cccceovieiiiienincicennnen. 19
2.5.3 Discussion of RE T0oOIS Features. ... 23

2.6 Requirements Validation............cuuuiiiie e 25

2.7 Consistency/ Inconsistency Management............coocuiiiiiiiiiiiei e 27
2.7.1 Consistency/ Inconsistency Management Techniques in General.................ccc..ece... 27

2.8 Related Work of Consistency/Inconsistency Managementccccooevveiiiiiiiiieneneen. 29
281 TracCabIlityooeiiiiiiiiiiieee e 29
2.8.2 ANalysisS APPrOACHeeiiiii e 30

29 Analysis of Consistency / Inconsistency Management Researchccccocceeeiiis 39

210 DISCUSSION .ttt ettt e ettt e e et e e e e e et e e e e e e e e 43

220t T S 11 T o 12 P= S PRSP 44

Chapter 3: Motivation and Overview of Our ApProachcccoiuiiiii i 45

3.1 g1 1eTe [Te] ([o] o WU PP PP PUPPPPPN 45

3.2 Overview of Essential Use Cases (EUCS)ccoviiiiiiiieeiiiiiiee e ereee e seee e 46

3.3 Applying Essential Use Cases: A StUAY......c.cooiuiiiieiiiiiiiee i 48

3.4 Overview Of QU APPrOACK.........coi ittt r e e e e e e e e e e e e e e eeannnes 50

3.5 SUMIMAIY <.ttt ettt e ettt e e e st e e e e e e tae e e e e e s tteeeeeaassbeeeeesansteeeeessansaneeessansnenaanans 54

Chapter 4: Essential Interaction EXraction.............ccoooiiiiiiiiiiiiiiiiiiieeee e 55

4.1 a1 1yeTe [8Te] ([o] o WP PPPPN 55

4.2 Essential Interaction Pattern Library ... 57

vi

4.3 TOOl SUPPOI ...ttt e e e e e e e e e e e e e e e ettt e e e e e aeaaaaaaeeas 60

4.3.1 TOOI PrOCESS ...cciiiieiiie ettt ettt et e et e e e s et e e e e e nbbe e e e e ennsbeeeeas 60

R T o To I b= o] o [R 62

4.4 EVAIUBTHION ... e 64
4.5 SUMMEIY ..ottt ettt e e et e e et e et e s eer e e e e b e e e nate e e e 69
Chapter 5: Managing Requirements CONSISIENCYcccoiiiiiiiiiiiiiiiie e 71
5.1 INEFOAUCTION ... et e e e e b e e e s 71
5.2 Managing the CONSISIENCYuiiiiiiiiiii et e e s eaee e e e 71
5.3 LI T ST U] o] o o] A TP 73
54 Architecture and Implementationcccceeii i 83
5.5 EVAIUBTION ..o 89
5.6 SUMIMAIY <.ttt e ettt e e e ettt e e e e ab bt e e e e e aabbeeee e s snbbeeeessannneeaaeanns 93
Chapter 6: Requirements Quality ChecCKing..........cooouiiiiiiiiiii e 95
6.1 INEFOAUCTION ...t e e e e e e e e s 95
6.2 EUC interaction pattern............couuuiiiiiiieeeeeeeeee e 96
6.3 (O U] o] o] o = o KO PP PP PPPPUOPPPRR 97
6.4 TOOl SUPPOIt & USAQGE. .. e e et e e e e e e e e e e e e e eeeeaaaeens 100
B.4.1 TOOI SUPPOI ...ttt e e e e e e e e e e e e e e e e e aannsenees 100
6.4.2 CoNSiStENCY ChECKINGeeiiiiiiiiiiie ittt e e e e as 101
6.4.3 Inconsistency, Incorrectness and Incompleteness Checking.............oooeeieiiiiinnnes 105

6.5 Architecture and Implementation ... 109
6.6 CONCIUSION ..ttt ettt a e e ettt e s b e e e e e nabeee s 117
Chapter 7: Supporting Requirement Validation via End-to-End Rapid Prototyping 118
7.1 INEFOAUCTION ...ttt e e et e e e e e e e aanee 118

vii

7.2 7= To (e [(o 10 [oo U ERP ORI 119

7.2.1 Rapid Prototyping ..oc.eeeeeeiiiiiie et 119
7.2.2 Essential User Interface (EUI) prototyping.......ccccoveeeiiiiiiieeee e 119
7.3 Applying EUI Rapid Prototyping: A StUAYccvviiiiiiiiiiie e 120
7.4 REIAIEA WOTK ... e e e s naae e e e an 123
7.5 (O TN Y o] o] o= o KOO 125
7.6 EUI Pattern LIDrary ...ttt e e e e e e e 127
7.7 EUI Pattern Template library.........coooeiiioiiiiec et e e 129
7.8 Lo 1o I T U] o] oo APPSR 130
7.9 Architecture and Implementationcooo oo 134
710 EVAIULON ... 138
A0 S V11111 4= oY PRSP ER R 141
Chapter 8: Case Studies EXamPIES.........cooiiiiiiiiiiiiiie e 142
8.1 INEFOAUCTION ...t e e e e e e e e e e annee 142
8.2 Case Study 1: Reserve a Vehicle from a Rental Company...........ccccccvvevvivieieeeninnnnn. 142
8.2.1 EXample Of USAGE......ooueiiiiiiiii e 143
8.3 Case Study 2: Book Check-out in a Library System ..., 151
8.3.1 EXample Of USAQE.....cccuiiiiiiiiiiiii ettt 152
8.4 Case Study 3: Manage Events with Event Listing System...........coccocciiiiieinniieenn. 160
8.4.1 EXamPIe Of USAQE.....ccci ittt e e e e e e e e e e e e nnnnneaees 161
8.5 DisSCUSSION @Nd SUMIMAIYcoueiiiieiiiiiiie ettt ee e e e e e e s snnnre e e e s s snaeeeeeeas 169
Chapter 9: EVaAlUALIONeeiiiiiieeee e e e e e e e e e e e e e e nrnaaaes 170
9.1 Evaluation Mechanism OVEIVIEWccooiiiiiiiiiiiii e 170
9.2 Usability Criteria for Usability Evaluationcccccuvvieiiiiiie e 171

9.3 Cognitive Dimensions of Notations Approach (CD)ccoeciiiieiiiiiiiie e 172

9.4 Design Of the STUAY........ueiiiiii e 172
9.5 SUINVEY METhOM....... e e e e e e e e e e e e e e 175
9.6 Survey ResuUlt and ANGIYSISooueeiiiieiiiiieee ettt e e 177
9.7 Comparison of SUrvey RESUILSooocuiiiiiiiii e 195
9.8 SUMIMANY <.ttt e e s e b bt e e e s s abe e e e e e e anar e e e e e e annbeeeas 199
Chapter 10: Conclusion and FULUrEe WOTKccoiiiiiiieeiiiiiiie e sciiee e e e e e e e e enernee e ennnes 200
10.1 Summary of Research ContribUtioNScceeviiiiiiiiiii e 200
10.2 CONCIUSIONS ...ttt e e e e s e e e s ee e nne e e s e e e 201
T10.3 FULUrE WOTK ... e s 202
1O T 0T 4= YRR 204
APPENDIX A: PARTICIPANT INFORMATION SHEET (HEAD OF DEPARTMENT)................. 205
APPENDIX B: PARTICIPANT INFORMATION SHEET (STUDENT)oceeiiiieiieiesieeie e 207
APPENDIX C: CONSENT FORM (HEAD OF DEPARTMENT)oiiiiiiiiiiieieneeeeeene e 210
APPENDIX D: CONSENT FORM (STUDENT).....coitiiiiieitiie sttt 211
APPENDIX E: SURVEY QUESTIONNAIRESoooiiiiiiiiiiie e 212
REFERENGCESottt ettt bt et b et s bt e bt b e sb e et sb e e s beeseesbeennenteens 228

List of Figures

Figure 1.1: Requirement Analysis and Negotiation Process (From [5])cccooviierieiniiiieneeiiiiieenn, 2
Figure 2. 1: Example of Features in RAQUESt [66]..........ccuueiiiiiiiiiiiiiiiie e 17

Figure 2. 2: Example of the Qpack Tool for (1) Requirement tracking and (2) Requirement
LUE= 1o == o111 Y (74 U EUEPRU 18

Figure 2. 3: Example of the Enterprise Architect 8 tool in managing: (1) requirements (2) internal

requirements and (3) exporting the internal requirements [3].........cccoo i, 19

Figure 2. 4: Example of the EA-Miner tool in eliciting the input requirement(1) and identifying
(oo aTer=Y o F- 02 N) S 20

Figure 2. 5: Example of the LRS Requirement document (1), LRS scenario object and LRS task
model (3) generated from the LRS 00l [8]coiiiiiiiiiii e 21

Figure 2. 6: Example of the WikiReq system in eliciting and managing requirement: (1) shows the
actor view point page, (2) goal view point page and (3) the WikiReq exported to Eclipse [12].....22

Figure 2. 7: Example of Results from the NAI tool in detecting nocuous coordination ambiguity [7]

Figure 2. 8: Heat Map Representations: Categorisation of the Type of Contributions, Techniques,

Specifications and Semantics Used for Checking the Consistency/Inconsistency 40

Figure 2. 9: Heat Map representation: Classification of the Model Used as a Semi-Formal

Specification APPIrOACHESoooiiiiie et 42

Figure 3.1 : (left) Example of Textual Natural Language Requirements and (right) Example of
Essential Use Case (EUC MOAEI) [4]-. . uuueeeiiiiiieee ettt e e e e e e e e e e 47

Figure 3. 2: The scenario “Getting Cash” Refined and Adapted from [4] Used For the Evaluation

a Traceability Management APPrO@Chcooiuiiiiiiiiiie e 52
Figure 4. 1: Our Essential interaction extraction approachccccccoeciiiiiiic e, 56
Figure 4. 2: Tree Structure for Key Textual Phraseccccccviiiiiei i 59
Figure 4. 4: Our Automated Tracing TOOIcoiiiiiiriiiiii e 62

Figure 4. 5: The Tool Usefulness RESUILS.........cccoiuiiiiieiiiiiiiee e 66
Figure 4. 6: The tool Ease of USe RESUILSccooiiiiiiiiiiiiiii e 66
Figure 4. 7: Accuracy across different SCENArioS ..o 68

Figure 5. 1: Framework for Extracting Requirement (1) Mapping interactions (2) and Creating the
EUC AUOMALICAIY (B) .neeeeieeeiiiiiiie ettt et e e e ettt e e e s et e e e s e nte e e e e e enneeeeaeennseeeeens 73

Figure 5. 2: Tracing the Abstract Interaction from Textual Natural Language Requirement and
Mapping to the Marama ESSentialcoocuuuiiiiiiiiiiiie e 75

Figure 5. 3: Trace back from EUC diagram in Marama Essential to the Abstract Interaction and

Textual natural language reqUIrEMENToiiiiiii e 76
Figure 5. 4: Inconsistency Occurring: Change of Sequence of Abstract Interaction 77
Figure 5. 5: Inconsistency Occurring: Change of Sequence of EUC component..............cccueee... 78
Figure 5. 6: Inconsistency Occurring: Adding New Item to the Abstract Interaction 79
Figure 5. 7: Inconsistency Occurring: Adding New Item to the EUC diagram.............ccccoeevinene 80
Figure 5. 8: Inconsistency Occurring: Change of Name to the Abstract Interaction...................... 81
Figure 5. 9: Inconsistency Occurring: Change of Name to the EUC componentccccccoe....... 82
Figure 5. 10: MaramaAl ArChiteCIUMccuuiiiiiiiiiiee e 83
Figure 5. 11: Example of Trace interactionc.eeeiiiiiiiiiiiiiiiiee e 84
Figure 5. 12: Example of Trace Back interaction from Abstract Interactionccccccoeiiiieen. 85
Figure 5. 13: Example of Trace Back interaction from EUC component...........ccccccoevvvvvreenninnnnnn. 86
Figure 5. 14: Example of Map To EUC interaction from Abstract Interactionccccccceevineeenn. 87
Figure 5. 15: Example of Index Checker interaction of Abstract Interactionccccccoeeiiineeen. 88
Figure 5. 16: Example of Index Checker interaction of EUC component............cccccoccvvereeeiirnennn. 88
Figure 5. 17: The scenario “Voter Registration” [6] used for the Evaluationcccccceeeennnenn. 90
Figure 6. 1: Outline of our Requirement Quality Management Process...........ccccccoviiieeiiinniineenn. 98
Figure 6. 2: Example of extracting an EUC model then adding a new abstract interaction 102

xi

Figure 6. 3: Change the ordering of EUC €lementS...........ccueiieiiiiiiiie e 104
Figure 6. 4: Deletion of an EUC elementcooiiiiiiiiiii e 105
Figure 6. 5: Example of EUC interaction pattern template (1) and Visual differencing (2)........... 107

Figure 6. 6: Change generated EUC model following the EUC interaction pattern template 108

Figure 6. 7: MaramaAl tool architecture for managing consistency of requirement.................... 109
Figure 6. 8: Example of Consistency Management: Delete Abstract Interaction 112
Figure 6. 9: Example of Consistency Management: Delete EUC Component.............ccccceeeenen. 113

Figure 6. 10: Example of Check Consistency with a Template for the Generated EUC Model... 114

Figure 6. 11: Example of Check Keyword of abstract interaction in the abstract interaction

(70T 1 1[0] g = o 1 S PP UU TSP PPUPRRPN 115
Figure 6. 12: Example of Check Keyword of abstract interaction in the EUC Component.......... 116

Figure 7. 1: Example of EUI prototype iterates from Essential Use Cases (EUC model (Ambler

TSt I 1) RO PT T PRUPRRRN 120
Figure 7. 2: Example of Scenario “getting cash” and its EUC diagram...........ccccceeeiiiiiiieeennne 121
Figure 7. 3: End-to-end EUC and EUI prototyping approach...........cccceevvuievieeniiiiiee e 125

Figure 7. 4: An example of performing mapping of EUC model to EUI prototype using the Ul

Pattern library with trace-forward/ trace-back and translating the EUI prototype to the concrete Ul-

L 1 o o o SRR 126
Figure 7. 5: Trace forward and Trace-back from EUC model to EUI prototype.ccccveeeenen. 131
Figure 7. 6: Marama EUI and concrete Ul view in a form of form- based Ulccccceeie 132
Figure 7. 7: Modification of EUI prototype - Addition and Deletion in EUI prototype.................. 133
Figure 7. 8: MaramaEUI tool architeCture.oooov oo 134
Figure 7. 9: Example of Map EUC 10 EUloooiiiiiiiiie e 136
Figure 7. 10: Example Trace Back from EUI prototype to EUC Modelccccveviiiiiiiieennnine 137
Figure 7. 11: Example of Generating HTML form from the EUI prototypecccccoviiiiieinnnins 138

Xii

Figure 7. 12.: User study results of Marama EUI-Usefulness, ease of use, ease of learning,

satisfaction @Nd @CCUFACYc.cooiiiiiiiiii e 140
Figure 8. 1: Example of User Scenario: Reserve a Vehicle [1]........ccccooiiiiiiiiiieeee 143

Figure 8. 2: Capturing requirements - trace the abstract interaction, trace back and map to EUC

00T [TP PP PP PP PPPPPPPRN 144
Figure 8. 3: Add New Item to Abstract Interactionc.cccoiiiiiiiiiiini e 145
Figure 8. 4: Change of Abstract Interaction Sequence Orderingocccevveiniiiiene e 146
Figure 8. 5: Delete the EUC COMPONENT.........uuiiiiiiiiiiiee et e e e e ennes 147
Figure 8. 6: Visual differencing to check for incorrectness and incompleteness.............ccccec..... 148
Figure 8. 7: The generated EUI prototype (1) and translated HTML form (2)ccccoccieeeennnns 149
Figure 8. 8: Modifications in Prototypes. ... 149
Figure 8. 9: Trace back which performs from the EUI prototype..........ccocoovviiniiiiiiiiniiiee e 150

Figure 8. 10: Example of User Scenario in a Form of Use Case Description: Check-out books of a

(I SRV (=T o o N 7] TP PP R POUPRRRN 152
Figure 8. 11: Capturing requirements-trace the abstract interaction and map to EUC model.....153
Figure 8. 12: Deletion of Abstract INteraction...............coeiiiiiiiiiiiiiiie e 155
Figure 8. 13: Change of EUC component Sequence Ordering.........ccccoooueeeieiiiiiieeeeeniiieeee e 156
Figure 8. 14: Visual differencing to check for incorrectness and incompleteness....................... 157

Figure 8. 15: EUI Prototype with the extension components (1) and the generated HTML form
AL T 03 o LT [T ST 2 T PR 158

Figure 8. 16: HTML main page and hyperlink pages generated from EUI prototype................... 159

Figure 8. 17: Example of User Scenarios in the form of Use Case Descriptions: Manage Venue

and Manage Event review from the Silicon Dreams Event Listing System specification............. 161

Figure 8. 18: Capturing Requirements - Trace the Abstract Interaction, Trace Back and Map to

EUC model with Multiple ReqQUIFEMENTScoiiiiiiiiiiiiiee e 162

Figure 8. 19: Change of Abstract Interaction Name............cccccciiiiiiiiiii e 163

xiii

Figure 8. 20: Delete EUC COMPONENT.....ccciiiiiiiiee ittt e eee e e e s e e e e nnes 164

Figure 8. 21: Visual differencing to check for incorrectness and incompleteness for first scenario

E]oT=T o F=1 [PO PP PPPPPUPRPPRN 166
Figure 8. 23: Multiple EUI prototypes and HTML fOrmsccooiiiiiiiiiiiiiiiie e 167
Figure 8. 24: Changes made to the EUI prototype (1) and the results in HTML form (2)............ 168
Figure 9. 1: Usability Results-Capturing Requirementsccooccveieeiiiiiinie e 181
Figure 9. 2: Usability Results - Consistency Checking of Requirementsccccccevvcvieeeennnne 187
Figure 9. 3: Usability Results- End to End Rapid Prototyping..........ccccooiiiiiiiniiiieieeee e 192

Figure 9. 4: Comparison Results of Usability Study for Capturing Requirements, Consistency
Checking and End-to-End Rapid Prototyping of MaramaAl...........ccccceeviiiiiiieiniiiiee e 196

Figure 9. 5: Comparison results of CD Study for Capturing Requirements, Consistency Checking
and End-to- End Rapid Prototyping of MaramaAl...........ccoooiiiiiiiiii e 197

Xiv

List of Tables

Table 2. 1: Comparison and Classification of RE Tool features.............cccccoviiiiiiiiiiiiiiiiie, 24
Table 2. 2: Type of Requirement Quality and its Description.............cccccciiiiiiiiiee s 26
Table 3. 1: EUC Extraction Study RESUISeeiiiiiiiiiii e 49
Table 3. 2: Example of Abstract Interaction and its Related Category.........ccccccvvviiieeiiiiciieeeenns 52
Table 3. 3: Example of EUC Model Generated..............ooeiiiiiiiiiiiiiiiiiicccciiieeeeee e 53
Table 3. 4: Example of EUI Pattern Library for EUI prototypeccccceeiiiiieiiiiiiiie e 53

Table 4. 1: Example of Abstract Interactions and their Associated Essential Interaction and Their

R T =Y (= To J D o] g T= 1] o 1< J TR 58

Table 4. 2: Example of Essential Interaction and its Associated Abstract Interaction stored in the

Essential Interaction Pattern LiDrary ... 60

Figure 4. 3: An example of performing an essential interaction extraction to a EUC model and

supporting trace-forward/trace-backoccuuiiiiiiiiii 61
Table 4. 3: User Perception Characteristics and Questions Evaluating Themcccccoceeee 64
Table 4. 4: Participants Open Feedback ... 65

Table 4. 5: Comparison result of correctness between Manual extraction (previous chapter) and

Automated Tracing TOOIottt e aaaeeeeeas 67
Table 5. 1: User Perception Characteristics and Questions Evaluating Themc........ 91
Table 5. 2: Tool Usefulness RESUIL............eeiiiii e 92
Table 5. 3: Tool Ease of USE RESUILSooiiiiiiiii e 92
Table 5. 4: Participants Open FEedback ... 93
Table 6. 1: Examples of EUC Interaction Patternsccouvviiiiiiiiiiiiicciieeeee e 97

Table 6. 2: Overview of Comparing the Generated EUC model with EUC Interaction Pattern
L= 001 0] = 111

Table 7. 1: EUI prototype Modelling Study RESUIEScoooeiiiiiiiiiiii e 122

XV

Table 7. 2: Example of EUI pattern Category and its related EUI pattern and it's associated
Abstract Interaction from the EUC mModel ... 128

Table 7. 3: Examples of EUI Pattern template with its associated EUI Pattern and associated

Domains in the EUI Pattern template library............oooooiiii e 129
Table 7. 4: User Perception Characteristics and Questions Evaluating Themccccoccee. 139
Table 9. 1: CD Dimensions and Meaning by Blackwell [157]..........ccoooiiiiiiiiiicieeceecee 172
Table 9. 2: CD Notations Used and Questions Evaluating Themccccceiiiiinieeeeene 174
Table 9. 3: Manual Extraction of EUC Study ResSUltcccciiiiiiiiiiee e 178
Table 9. 4: Proficiency level of Using the Marama tool and Experience with Any Other Tool..... 180
Table 9. 5: Evaluation Results for Cognitive Dimensions QUeStoNScccccceeviiiiieeeiiiiieeeenn, 182
Table 9. 6: Open-Ended Feedback............coooiiiiee e 185
Table 9. 7: Evaluation Result for Cognitive Dimensions QUEStIONScccovveeiiieeinieienieee e 188
Table 9. 8: Open-ended FEedDaCK..........c.uuiii i 190
Table 9. 9: Evaluation Result for Cognitive Dimensions QUestions............cccccciviiiieiiiniieeeeen 193
Table 9. 10: Open-ended FEEdbaCKuviiiiiiiiie e e e 195

XVi

Chapter 1: Introduction
1 Research Background

1.1 What is a Requirement?

A set of requirements is interpreted at the early phase of a system development [5] and it reflects the
client's need for a system [72]. It describes “how the system should behave, constraints on the
system’s application domain information, constraints on the system operation or specification of a
system property or attribute” [5]. Software requirement specifications elaborate the functional and
non-functional requirements, design artifacts, business processes and other aspects of a software
system. Software requirement specifications that are complete and accepted by developers and
clients provide a shared understanding and agreement of what a software system should do and why.
Since requirement documents form the basis of development processes and this agreement, they
should be correct, complete, and unambiguous [13] and need to be analysed with respect to
Consistency, Completeness and Correctness (“3 Cs”) to detect errors such as inconsistency and

incompleteness [18].

Most requirements in the software industry are widely written or described using natural language.
According to Fabrini et al. [14] at least the first level of the system is described using natural
language. Requirements described using informal natural language are commonly written in
narratives or scenarios. The major disadvantages of specifying requirements only in natural language
“are inherent imprecision, such as ambiguity, incompleteness and inaccuracy” [13]. It has also been
found that they are often error-prone which is partially caused by interpretation problems due to the
use of natural language itself [14]. Although the development of object-oriented analysis, e.g. using
(semi-)formalised models like UML [15] or formal models like KAOS [16], has afforded better
requirements specification [16,57], most requirements documentation or software system
specifications are still often written in — or at least derived from - free text expressed in natural
language. As a result, this leads to requirements that are vague, informal and contradictory and that
may or may not express the users’ needs. In addition, Zowghi et al. [17] argue that it is difficult, costly
and time consuming to maintain the consistency of the entire software requirements specification if

that specification is derived from natural language.

1.1.1 Consistency

There are several definitions of consistency relating to software requirements specification. These
definitions clarify what consistency is and when it appears in a software requirement specification.
Zowghi and Gervasi state that consistency requires that no two (or more) requirements in a
specification contradict each other, where there is no case that the requirements cannot be satisfied
at the same time [18]. They also stress the importance of terminology, i.e. that words and terms
always have the same meaning throughout the requirement specification. Both these views entail the
need for ways of avoiding mutually exclusive statements and conflicts in terminology [13]. Liu [19]
asserts that a specification is consistent when there is a computational model for its implementation
and the specification will be valid when it ensures the user requirement. Consistency is also present
when there is no internal (logical) negation between the specifications of a system [20]. A few types of
consistency apply to specifications, including the precondition of a function being satisfied by the
function calls, subtypes that include arguments of functions, and results of function subtypes [20].
Some relate to consistency between various non-functional requirements e.g. that security, reliability,
scalability and platform requirements can all be met by the requirements as captured. In order to
make sure requirements are always consistent and follow the customer’s needs from the beginning,
consistency checking needs to be done from the earliest stage of the Requirement Engineering

process: Requirements Analysis (RA) as shown in Figure 1.1.

Mecessity checking) Consistency and — Feasibility checking
completeness
checking
r k. Y
Unnecessary Confflicting and Infeasible requirement
requirement incomplete
requirements
r T
Requirement Requirement Requirement agreement
discussion - prioritisation -

Figure 1.1: Requirement Analysis and Negotiation Process (From [5])

1.1.2 Inconsistency

It is common to find inconsistencies in requirements specifications as the requirement elicitation
process involves two or more parties in delivering and understanding correct requirements. Zowghi et
al. [18] assert that expression by different stakeholders may lead to inconsistencies and
contradictions because the parties keep changing their minds throughout the development process.
Inconsistent requirements occur when two or more stakeholders have differing, conflicting
requirements and/or the captured requirements from stakeholders are internally inconsistent when
two or more elements overlap and are not aligned [21], [22]. Typically the relationship is articulated as
a consistency rule against which a description can be checked. Inconsistency in requirements also
occurs when there are incorrect actions [14], or where requirements clash because of disagreements
about opinions and bad dependencies [20], sometimes resulting from a lack of skills or the
capabilities of different users dealing with shared or related objects. In addition, Litvak [23] believes
that inconsistency occurs when the same parts of the model are portrayed by multiple diagrams and
Lamsweerde et al. [24] find that inconsistency occurs in a set of descriptions when the descriptions

can’t be satisfied all together.

Overall, in our context of work, inconsistencies happen when any of the requirements components
that are intended to be equivalent are not; this could be by not being in the same sequence, not
having the same name, not being consistent when equivalent components are changed and not being

consistency across differing representational models.

Positive and negative outcomes for the system development lifecycle are caused by having
inconsistency [21]. The inconsistency helps to highlight the contradictory views, perceptions and
goals among stakeholders who are involved in a particular development process. It also helps to
identify which part of the system needs further analysis, as well as helping to facilitate the discovery
and evocation of the options and information of a system. In addition, Nuseibah et al. believe that

inconsistency can be used as an assisting tool to verify and validate the software process [22].

However, it is still vital to avoid or check for inconsistency as it could affect the whole development
process, as the clients’ requirement needs by the client cannot be met and attempts to do so may
cause delay, increase the cost of the system development process’s costs, put at risk the properties

related to the quality of a system and make the maintenance process of a system cumbersome.

1.2 Research Motivations

Requirements captured in natural language are normally vague and error-prone due to the
interpretation problem [14]. This is because the capturing process involves a human-centric
representation which is full of arguments and misunderstandings [11]. The process of collecting the
information for specific requirements may also take a long time as the requirements need to be
gathered until they satisfy the client, and this process needs to match the client’s available time [25].
There are also circumstances where requirements analysis ends prematurely because of delays and
impatient clients [25]. This encourages validation to be effected at an earlier stage of requirement
analysis in order to make sure the captured requirements are valid. Besides, waiting for late validation
may cause the requirements’ quality to suffer [25]. This problem leads to requirements’ quality

problems such as inconsistency, incorrectness and incompleteness.

However, as stated by Zowghi and Gervasi, “improving the consistency of the requirements can
reduce the completeness and, thereby again diminish correctness” [18]. Therefore, consistency is of
great importance to ensure the requirements are entirely precise and fulfil the needs of a user. In
order to check and maintain consistency and diminish inconsistency, many techniques have been
used. These include traceability, formal analysis and semi-formal analysis [26],[27],[28],[29],[30].
Traceability is sometimes not applicable in practice as it is too difficult and costly [31], although it
helps in a number of activities in software development such as the evolution of software systems,
compliance verification of the code, requirements validation, aspect identification, and any design
decision [32]. Further, engineers may not be able to foresee or visualise the results although

automated traceability tools are provided [33],[119].

In addition, in many projects consistency and completeness checking is normally performed manually
by a “tedious procedure of reading the requirements documents and looking for linguistic errors” [34].
Many of these approaches to requirements consistency checking require heavyweight formal
approaches where requirements must be expressed in complex formal models. While these are
important in many domains e.g. safety-critical systems, they have proved difficult to put into
widespread use [35]. Similarly, traditional approaches to using natural language processing and
analysis of textually expressed requirements requiring the use of complex analysis algorithms and the
complexity of natural language and its inherent ability to express inconsistent statements makes this

challenging [36].

Translating requirements into semi-formal models, e.g. UML use cases, is a common approach that
supports some limited analysis while improving the structure of the natural language expressed by
requirements. However, translating these semi-formal models and checking consistency between

them and natural language requirements have continued to prove problematic [37]. Besides, these

works are difficult enough for requirements engineers to understand let alone clients or stakeholders,
who are mostly non-technical or non-IT people: most clients do not understand models, formal terms
or mathematics equations [38]. Furthermore, some natural language is interpreted differently from its

original intention by requirements engineers [38].

As determined by various studies, eliciting requirements and extracting their use cases can be
arduous and can lead to a rather imprecise analysis [39],[40],[41],[42]. Constantine and Lockwood [4]
were thus motivated to develop the Essential Use Case (EUC) modelling approach to overcome
some of these problems. Although the usage of EUCs is not as widespread as conventional use
cases, several researchers have recommended their adoption as they helps to integrate the
requirements engineering and interaction design processes [39],[43],[44]. Some of the main reasons
EUCs are not commonly used are: a lack of tool support, engineers’ lack of experience in extracting
essential interactions from requirements, and a lack of integration with other modelling approaches
[39], [43]. A further study to confirm the problem with more qualitative results is discussed in Chapter
3.

We have been motivated by the work done by Constantine and Lockwood [4] in developing the
Essential Use Cases (EUC) modelling approach, as EUCs are beneficial in integrating the
requirements engineering and interaction design processes to mitigate consistency issues between
the requirements and design artefacts and to improve the traceability [43]. We have attempted an
approach which applies traceability to the EUC concept, in the process managing the consistency

and supports validation of requirements.

Overall, the motivation of this research is to provide automated support and a more lightweight
approach for capturing requirements written in natural language and to manage the consistency and
validation of requirements for various domains and applications with less human intervention and
complexity. The aim is to provide notification and visual support for detecting inconsistency, as well
as to determine other requirements quality errors such as incompleteness and incorrectness. In
addition, the focus is to provide end-to-end support for both the requirements engineer and the client

in confirming the consistency of requirements.

1.3 Research Questions

The main research question in this research in relation to our research motivation is:
“Can automated support enable us to better manage the consistency and

validation of requirements?”

In order to address this major research question, we have divided it into smaller research questions

as follows.

1.

“Can a lightweight extraction process with automated tool support extract quickly and accurately

essential requirements (abstract interactions) from textual natural language requirements?”

This question focuses on how to appropriately handle natural language requirements. To answer
this question, we propose a lightweight extraction approach and its implementation in an
automated tracing tool. To evaluate the approach we examine tool performance and efficacy in
handling the extraction and user perceptions regarding the tool’s usefulness and ease of use.

This is addressed in Chapter 4 of this thesis.
“Can the automated tool support the consistency and validation of requirements?”

This question focuses on managing consistency and validating requirements quality —
consistency, completeness and correctness. To answer this question, we propose and implement
automated traceability and visualization support to check the consistency of requirements in three
different forms; textual natural language, abstract interaction and Essential Use Case models as
well as to further validate the correctness and completeness of requirements. In addition, we
evaluate the user perception of the tool's usability and the perceived strengths in selected
dimensions of Cognitive Dimensions (CD). These aspects are addressed in Chapters 5, 6, 8 and
9 of this thesis.

“Can the generation of Ul prototypes from EUC models support the end to end validation of

requirements between the requirements engineer and client?”

This question focuses on extending the tool to provide end-to-end support of requirements
consistency checking, usable by both the requirement engineers and clients to confirm the
consistency of requirements. To answer this question, we propose and implement a rapid
prototyping approach embedded in our tool which is able to generate EUI prototype models and
concrete Ul HTML views from EUC models. In addition, we evaluate the tool usability and user
perceived strengths and apply the tool to several case studies in different domains. These

aspects are addressed in Chapter 7, 8 and 9 of this thesis.

In brief, in order to answer these research questions, we adopt a lightweight automated
approach, and its realisation as a tool, to support consistency management and validation of
requirements. We evaluate the tool efficacy, mainly in the extraction process, and the user’s

perception of the tool and its application.

1.4 Research Objective

The main objective of our research is to provide a requirement management approach that supports

the consistency and validation of requirements from the early stages of Requirement Analysis. In

particular, the research aims to provide the following.

1)

3)

5)

To better support users and developers to work with informal and semi-formal requirements
and keep them consistent. This will assist requirement engineers or business analysts to
check whether their requirements, written or collected in natural language, are consistent with
other analysis and design representations.

To support Requirements Analysis in order to improve requirements consistency and quality.
This will use a set of essential interactions and EUC interaction patterns together with visual
differencing to assist engineers in finding appropriate abstract interactions to design the
EUCs for a particular system.

To provide end-to-end support to confirm the requirements consistency from both the
requirement engineer and client’s perspectives. This will use end-to-end rapid prototyping to
visualise the requirements captured by a requirement engineer in the form of an abstract EUI
prototype and concrete Ul view in the form of an HTML page.

To provide traceability of requirements from both informal, semi-formal requirements and a Ul
prototype. This will assist a requirement engineer to trace forward/ trace—back from the
different requirements representations to make sure the requirement is consistent.

To provide a proof of concept tool to allow automation with visualisation support in managing
requirements consistency and validation of requirements in various domains of application.
This will lessen human intervention in managing and validating the requirement.

To assess the consistency management approach by performing tool efficacy and end-user

evaluations.

1.5 Research Methodology

As it is commonly used in software tool research, we have adopted an iterative approach, using

successive iterations of tool development and evaluation to address our research questions

[120],[164]. This can be categorized as an adaptation of action research [165],[166]. The focus

of this latter methodology fits well with our work as it comprises a cycle of changes, evaluations

and reflections [166]. We follow the cycle in our research research by realising our research

knowledge with tool development and then evaluate the tool to gain feedback from the end-user

experience. The five components of this research are:

Diagnosing: Here, we diagnose the problems faced from our preliminary study and literature,

or from preceding cycle results

Action planning: Here, we plan the problem-solving for the identified problems

Action taken: Here, we try to resolve the problems by performing a solution. In our case, we
develop the tool iterations and supporting assets, such as interaction libraries.

Evaluating: We then evaluate the solution via end-user studies.

Specifying learning: From here, we identify the strength and weaknesses

In order to perform our work we employ additional extraction, consistency management, traceability

and analysis components after evaluation of each stage of the research. An outline of our key steps

follows.

We have conducted a literature review of consistency and inconsistency checking of
requirements in the Requirement Engineering domain, comparing and evaluating their
approaches for checking inconsistency in requirements.

From this, we identified an initial concept, outlined above, of how to support the checking of
requirements inconsistencies providing traceability and aspects of completeness and correctness
checking. The initial functional requirements are elaborated using scenarios or use case
descriptions, which were collected from published material such as software engineering and
requirements engineering books, proceedings and journals and published software developers’
page.

We then collected and categorised the natural language terminology following the interaction
patterns of Essential Use Case from different case studies and scenarios and produced a
database of key abstract interactions.

We developed an initial automated prototype to explore the problems and issues which extracts
and trace between textual natural language requirements and add to EUCs by using our
database of abstract interactions.

We also developed a set of consistency rules between the textual natural language requirements
and the Essential Use Case model of requirements.

We have identified appropriate usage scenarios and evaluated the result of using our consistency
management and tracing tool if changes are made to the requirements.

We developed an initial prototype of our automated inconsistency checking tool by embedding
the tracing tool in Marama and connecting it to Marama Essential and Marama EUI, the User
Interface design tool.

We evaluated the automated inconsistency checking tool by using case studies to derive
scenario examples and conducted a preliminary end user study on the usability of the tool.

We refined our prototype by adding further analysis support for requirements quality checking
using the EUC interaction pattern; adding further inconsistency management and traceability
support features; and eventually adding traceability and consistency management support to

more requirements and Ul models.

o We then evaluated the refined tool with a larger formal end user study assessing the usability of

the tool.

o Finally, we derived conclusions from our review, refinement and evaluations.

1.6 Research Contributions

The main contributions from this research are as follows.

1)

This research provides better support for requirement engineers and developers to work with
informal and semi-formal requirements and keep them consistent. We produce a lightweight
approach to deal with natural language requirement together with a proof of concept tool
called an automated tracing tool, which provides authoring facilities for textual natural
language requirements and checking the consistency of these requirements. We also
produce an essential interaction library and a collection of abstract interaction and essential
interaction patterns which are reusable and can be applied to various domains of application.
This library helps to enhance the accuracy level of natural language requirement and to

assist the generation of the EUC model. Papers describing this work are:

o “Automated Software Tool Support for Checking the Inconsistency of Requirements”
which was published in Proceedings of the 24th IEEE/ACM International Conference
on Automated Software Engineering.(ASE 2009), and

e “Tool Support for Essential Use Cases to Better Capture Software Requirements”
which was published in Proceedings of the 25th IEEE/ACM International Conference
on Automated Software Engineering. (ASE 2010).

This research provides requirements analysis support in order to validate the requirements’
consistency and quality. We provide a set of essential interactions and EUC interaction
patterns together with a visual differencing approach to assist engineers in finding
appropriate interactions for designing the EUC for a particular system. We provide
consistency management using a traceability approach for any form of requirement; a textual
natural language requirement written in a form of user scenario, abstract interaction and EUC
model. The checking process is assisted by a visual approach and a warning notification to
highlight the existence of inconsistency and other requirement quality errors such as

incompleteness and incorrectness. Papers describing this work are:

3)

o “MaramaAl: Tool support for capturing requirement and checking the inconsistency”
which was published in Proceedings of the 21st Australian Software Engineering
Conference (ASWEC 2010);

e “Managing consistency between textual requirements, abstract interactions and
Essential Use Cases” which was published in Proceedings of the 34th Annual IEEE
International Computer Software & Applications.(COMPSAC 2010);

o “Marama Al: Automated and Visual Approach for Inconsistency Checking of
Requirements” which was published in Proceedings of the 18" Requirement

Engineering Conference. (RE 2010), and

¢ ‘“Improving Requirement Quality using Essential Use Case Interaction Patterns”
which was published in Proceedings of the 33™ International Conference on Software
Engineering. (ICSE 2011).

This research provides end-to-end rapid prototyping support to help confirm that the
requirements which have been captured by a requirements engineer are fully consistent with
the client’s original requirement. We provide an approach to map automatically the semi-
formal requirements in the form of an EUC to abstract an Essential User interface (EUI)
prototype model, and a more concrete Ul view in the form of a HTML page. Traceability
support is also provided to allow trace forward and trace-back between the EUC model,
textual natural language and EUI prototype. A set of EUI patterns has been developed for
enhancing the accuracy of the generated EUI prototype.
e “Generating Essential User Interface to Validate Requirements” which was published
in Proceedings of the 26th IEEE/ACM International Conference on Automated
Software Engineering. (ASE 2011).

This research developed a prototype of an automated inconsistency checker called
MaramaAl which was embedded in the existing Marama meta-tool; and which acts as a
proof-of-concept of our approach. We evaluated the prototype using an end-user study
confirming the usability of the tool based on the Cognitive Dimensions (CD) approach [158] .
A conference paper was presented describing this approach:
o ‘“Improving Requirement Quality using Essential Use Case Interaction Patterns”
published in Proceedings of the 33™ International Conference on Software
Engineering. 2011 (ICSE 2011).

10

1.7 Thesis Organisation

The following chapters are organised as follows.

Chapter 2: Related Research

This chapter discusses key related research on the background of Requirement Engineering, the
Requirement Engineering Tool, Requirement Validation, and Consistency Management which
concentrates on the techniques used to check the requirement consistency and inconsistency. The
techniques are compared and analysed and the limitations and gaps for each technique are
identified.

Chapter 3: Motivation and Overview of Our Approach
This chapter presents an in-depth analysis of the problems that motivated our research and describes

an overview of our approach to end-to-end support to address the identified problems.

Chapter 4: Essential Interaction Extraction
This chapter presents our lightweight approach for capturing the essential requirements from textual
Natural language requirement using the essential interaction extraction and essential interaction

library.

Chapter 5: Managing Requirement Consistency
This chapter describes our approach for managing the consistency among three forms of
requirements; textual natural language, abstract interaction and the Essential Use Cases (EUC)

model.

Chapter 6: Improving Requirement Quality using the Essential Use Case Interaction Pattern
This chapter describes our approach to further checking consistency and other requirement qualities

such as completeness and correctness using the EUC Interaction Pattern and visual differencing.

Chapter 7: End-to-End Rapid Prototyping
This chapter describes our end-to-end rapid prototyping approach to help confirm that the
requirements captured by a requirement engineer are consistent with the client's original

requirements.

Chapter 8: Case Studies Examples
This chapter describes three different case studies of requirements written in a form of user scenarios

that we use to demonstrate and describe the key features of our proof concept tool: MaramaAl.

11

Chapter 9: Evaluation
This chapter discusses the evaluation results gained from a formal evaluation conducted with end

users.

Chapter 10: Conclusion and Future Works

This chapter summarises our research achievements and proposes future research directions.

1.8 Summary

This chapter discusses the core research, the implementation of automated support in managing the
consistency and validating the requirements. We have presented our research motivation and the
methodology adopted. We also described the contribution of the research in general and the

composition of later chapters.

12

Chapter 2 Related Research

This chapter discusses requirement management and modeling techniques in general and describes
the overview of the requirement specifications and semantics used in a requirement. An overview of
requirements engineering tools (RE tools), sometimes called requirements management tools, is also
presented. The key features of RE tools are classified and compared. This leads to a discussion of
the requirements validation process and further key related research on consistency management of
requirements. Work related to consistency is then analysed and discussed. The chapter concludes
with an outline of an appropriate programme of work for checking inconsistencies, developed from the

outcomes of the analysis and discussion.

2.1 Requirement Management

Requirements are often unstable [45] as many defects occur, such as conflicts, inconsistencies and
incompleteness [46]. A document-based requirement specification approach also constrains the flow
of requirements as it is complicated to keep up-to-date and it is always difficult to inform the
stakeholders of any changes made [45]. Storage of newly added information and links between
requirements and design such as use cases are also identified as cumbersome [45]. To overcome
these problems, requirements management is essential. This involves activities such as finding,
organising, documenting and tracking the requirements for a software system [47]. Requirements
management is vital from the beginning of system/software development as it responds to changes
and deals with the result of the changes [48]. Managing requirements is not limited to managing
change but also manages the multiple configuration of requirements, requirement versions and
requirement deliveries based on the allocated time, cost and correct quality [49]. Furthermore,
requirements management relates to documentation and ensures that changes are made consistently

across sets of documents [47].

There are two types of requirements management, a narrow sense and a broad sense [48]. The
broad sense focuses on managing requirements throughout the software life cycle, either during the
development phase or after deployment. The narrow sense focuses on the management of changes
in the requirements engineering domains [48]. Requirements therefore need to be managed in order

to ensure their consistency, integration and correctness [48].

13

2.2 Requirement Modelling Technique

As discussed in Chapter 1, requirements are crucial before any system/software development starts.
Thus, knowledge and reasoning from the earlier phase of requirements engineering is necessary [50].
Requirements modeling such as goal-oriented, aspect-driven and system requirements modeling can
be used to capture the requirements [50, 51]. As also discussed in chapter 1, most requirements are
written in informal natural language. Formal language is also used to illustrate the requirements to
ensure the quality. For example, the KAOS language, which focuses on goal-driven modelling and
methodology [16, 52] is able to capture not only what but also why, who and when in a requirement
[16]. It also offers a rich ontology that can be used to specifically capture the “goal, constraints,
object, action and agent’ [16] of a requirement. The other common formal language used as a
requirement specification is B specification [53]. It is particularly used to check the inconsistency of a
requirement [53]. Most requirements techniques as well as the automated verification tools currently
available are used for verifying and checking the requirement quality, such as completeness and

consistency [50].

2.3 Requirements Specification

Most of the research on requirements documentation focuses on specification languages and
notations, with a range of formal, semi-formal and informal language [54]. Requirements specification,
which is commonly generated once the requirement analyst has consulted the user [13], can be
represented either in a formal, semi formal or informal format, based on the purpose of the

specifications.

2.3.1 Formal Specification

A formal specification is defined as “the expression, in some formal language and at some level of
abstraction, of a collection of properties some system should satisfy” [55]. This definition covers the
different notions reliant on coverage of the system, the types of properties, area of interest, the level
of abstraction to be considered and the type of formal language being used [55]. It is also identified
that a specification will become formal once it is expressed in a language consisting of three
components: “rules for determining the grammatical well-formedness of sentences (the syntax), rules

for interpreting sentences in a precise, meaningful way within the domain considered (the semantics)

14

and rules for inferring useful information from the specification (the proof theory)” [55]. A formal
specification is also closely related to the use of “mathematics, logic or algebra” [56] where the
syntax, semantics and the manipulation of rules are clearly defined in the specification language [55].
Formal specification assists in reducing errors such as ambiguity and imprecision, which obviously
leads to the inconsistency and incompleteness [16] of requirements. However, it remains challenging
for average software engineers to use formal specifications to gain fast and visible outcomes [55]. In
addition, formal specification is unable to stand alone and needs to integrate fully with other software

products and processes throughout the software lifecycle [55].

2.3.2 Semi-formal Specification

A semi-formal Specification is a combination of diagram techniques and tabular techniques which
represents information in a structured form as well as providing guidelines to structure the information
by way of manipulation rules over the specification [56]. Here, modeling notations are commonly
applied. Examples of models used are UML diagrams, such as the use case diagram, activity
diagram, sequence diagram, class diagram, state diagram and collaboration diagram, and structured
diagrams such as the data flow diagram, conceptual diagram, ER diagram and any other components
and logic descriptions. Models are commonly used in managing the requirements because models

can easily be decomposed into smaller parts, which allows them to be better understood [57].

2.3.3 Informal Specification

An informal specification is defined as the use of “unrestricted natural language” [56]. This type of
specification describes and specifies system requirements by combining the use of graphics with
semi formal textual grammar which is more “English-like” [58]. It acts as a vehicle to elicit user
requirements and help the analyst and the client to communicate their understanding in verifying a
particular requirement [58]. So far, it is the most commonly used method to represent requirements in

industry [14]. However, as described in Chapter 1, it is often vague and error-prone [13, 14].

15

2.4 Semantics in Requirements

Apart from specifications, semantics are also applied to assist the requirements engineering process.
Semantics is a study of words and sentences [59] which helps to handle a range of issues with the
requirements analysis and indicates the classification, decomposition, terminology and prioritisation of
requirements [59]. Further, semantics is also used as a term in a range of factors, any of which might
provide the meaning of labels, functions and model decomposition [60]. Examples of common

semantics are semantics of XML, of Natural language and of the web.

2.5 Requirement Engineering Tools (RE Tools)

In order to overcome the problems existing in the requirement engineering domain as described in
Sections 2.1 and 2.2, especially in controlling and tracking the requirement changes, tool support is
required [48]. Besides, software requirement specification (which involves different stakeholders and
needs to fulfil many roles and interests) requires an automated tool to support collaborative
requirement development processes [61]. Requirements engineering tools (RE Tools) are also
commonly called requirements management tools [45]. There are currently three types of RE Tools in
the market. First are tools which have existed for several years; the second are newly developed
tools, and third are tools which are not designed for RE purposes but which are being used for RE
activities such as Microsoft Office and Microsoft Excel [45]. This latter tool is becoming the most
active market in the software development tool area [47]. There are two main categories of RE Tools:
commercial and research tools. Available commercial tools support either the full requirements
management process or just a part of the process [61]. Research tools tend to focus on a partial

solution for a particular requirements management process.

2.5.1 Examples of Commercial Requirement Engineering Tools

There are many commercial requirement management tools available on the market: for example
DOORS [62], Serena RTM [63], Caliber RM [64] and Requisite Pro [65]. These latter are leading the
commercial market [45]. They provide rigorous coverage for requirements management but not for
the requirements elicitation, analysis and validation [45] processes and so are not considered further
here. Other tools include RaQuest [66], Q pack [67] and Enterprise Architect 8 [3]. We further

evaluate these tools by self-exploration and the published information provided by the developers of

16

these tools. RaQuest (see Figure 2.1) is a UML modelling tool which) manages the requirements of a
system or an application, as well as tracking the changes in a requirement with various supported
features [66]. It can also be used to generate documents for a whole project with different types of
forms such as HTML, CSV, Word, Excel and RTF. For managing and defining a requirements item,
the tool comes with a few facilities such as prioritisation, updating of log, definition of user attribute
and assignation of members [66]. In order to allow requirements to be viewed at a glance, a project
hierarchy and a list view are provided. For tracking the requirements, different types of relationships
are applicable: for example, the relationship between the requirements item and “connected”
requirements after any changes are made to the requirements; the relationships of requirements area
displayed in a matrix view [66]. Overall, the tool provides rigorous requirements capturing facilities but
does not provide any requirements validation facility. This is also supported by the survey reported by
INCOSE [162].

[EE [RaQuestSample. rge] - RaQuest E@@l

File Edit Wiew Search Projeck Tree List Matrix Regurement Tools Help

=RR Skh £Bs ==

45 = |
[mpgie) Tepe Summary Pricrity Status Rizk Difficulty | Stability | #
=5 Orline bookstare -~ ,
=-[1 Bussiness Requirement ;@] n Medium
= Higher volume - fas| O 002 Funclio... Passing on of roles leading to inefficiency ... High Proposed Medium High
IR Passing on of roles [003 Functio... View of customer messages directly relate. . High Froposed Medium Medium High
= Yiew of customer m
=l Feduce wasted tim O 004 Functio... Reduce wasted time sending messagest... High Proposed Medium Medium High
=[] Stakeholder Requiremne [005 Functio... Relation between orders and emal inguir... Medium Proposed Medium Medium Medium
=1 Rielation betwesn o O 006 Functio... Create a secure orvline ordering system. Mediurn “alidated Mediurn Medium Medium
12 Create 5 seoure on- M AT G LMl inlien Tloms il e VAo ¢ b bt bt kAo T
= HighYolume Throuw &1l Requirements
2 Efficient stock contt
=11 Selution Fequirements 001 Higher valume - Faster cliert Hew
=[] Functional Requirer ||| & —
= Em“gnjgjﬁse““ Summary | @y Detai | £52 User-defined Attibutes | Bg, UML ltems | B Fies | R Members | mm Test [
sers
= Remowve Us Surrnary
=l Report on L — — —
=) Securs Aoc |H|ghel volume - faster client accessibiliy.
= Store User | E]
= Validate Us 1D oo Revision
== Provide Online !
= ShoppingB: Wersion 1.0 Phaze 1.0
2 Process Cre
2.3 Manage Invent r Tupe
= Receive Bc
= List Stock L Cieated 10482010 5:33:24 PM Status
E g(:i ::;'; Created by [raquest ¥ Lock Requirement
=2 Add Books
I3 Process Order Updated 12710/201040505FM
=2 Package O » [
< ¥ Updated by lchira Approved by lchiro
Project -

Current Baseline: Maothing

Figure 2. 1: Example of Features in RaQuest [66]

Next is the QPack tool (see Figure 2.2) which provides better traceability, especially to gather
business requirements, functional requirements or non—functional requirements, and also to track the
changes made in the requirements using the testing coverage and defects produced by using QPack
Analytic [67]. The QPack Requirements definition also acts as a single repository for requirements

management purposes. For example, prioritising and estimating efforts, managing the complete life

17

cycle and notifying changes in a requirement [67]. Furthermore, the solution is used to manage the
software hierarchy and the traceability is measured using several KPIs [67]. The validation of a
requirement is confirmed through testing and defect tracking. To document a requirement, the tool
synchronises the changes made between the MSWord and the QPack requirements management
repository [67]. Overall it is easy to use and is able to trace requirements well but provides limited
requirements validation support by itself as it needs to be integrated with test management and defect

tracking tools.

] '] T Test Management <
- Ovcts“|al Ja 1§ Radaboss dl Conp
Y T] H £ 8-]
1 :.l i r v |
¥ b L :I
& s Py A0 o e
Hagh Level Design] TeiCn:e‘ Task :Drl'c':i | Lagi R 2 -
0 [
0 [—
o e 0 0 [2=
0 [
nied . . i—
" ¢ Y BB
[E
5} 0
@ ¢ 9% ¢ BB
0 " A
° " o0 [i
0 0 0 [
C
0 C
@ a e r

Figure 2. 2: Example of the Qpack Tool for (1) Requirement tracking and (2) Requirement
traceability [67]

Enterprise Architect 8 (see Figure 2.3) is another example of a requirements management tool that
assists users to capture requirements in detail and to manage changes that occur in a requirement
[3]. It also provides a baseline to check for changes, deletions and additions which occur between
processes, as well as version control to allow storage of the standard XMI text file of any compliant
system [3]. Further, it provides links to different requirements assets such as to use cases,
components, software artifacts, test cases and others [3]. Here, a complex traceability graph can be
viewed for each requirement. In addition, it helps to produce detailed documentation and involves the
whole team in defining or working on the captured requirements [3]. Overall we could sum up that this
tool provides full derivation of requirements but only provides partial validation of them as it just

identifies inconsistencies from the unlinked requirements using the provided traceability facility.

18

Dkl B RDS D @y wi s A OB ABE SR e . om « 5 J
Tookax = 8K | Cysom Disgram: "Fostues Mar" crosind SAM/2003 125521 PH nodied VG00320600PH 1005 Bia x Proecties L
sy - ca e @
s Case =0
Sruchre
Camoous
Commurscaton
ot v
Feng
e
acy
Comporent
Dugioyment
rey o ophio " - X]
Y Fatoch Be [t pes Domt Dapen Heed Dok ddbies Coofgraton teb
el DEHI DA BDSIB Y w s 2 ODABE Y e P Bl
= Toobax = 8% | Clas Disgam "RequemeackCombo’ ciasind ZUUA/2004 103349480 modbed 1102004 TAITIAN 1005 7R05 1138 s Profect Vem cax
I S i 47 dwvae | Caim | UmCusDugim | Repemens) v BB cRARAP
+ Ui Cantred L1 W(E Ovem |
") Tost Casa Lot F— 2
B By £ Package
/ hascems B Gon -
a & 0 iwtacn »
S Genersine 0 ot s
R @0 Tee rom | |G| e | Contris | Lo | Sconwa | e
e < Ao || Hocquonert Tiee
7 D awey n Frind]
e i odeisiiisip "
Bl ESt pew Browct Qogrem Hemeot Toos Addds Coofguaton Heb Dy w x|
7] Hedm (] M
e | DBl B BDSIB @4 azo s A OB ABE e ‘) | e v [G
Ready TEOBOX = BX | Clag Disgroe ‘FemuremersiCombo” croated 28/0S/2004 103343 AM modiied 11/10/2004 24333PM 100% 780x 1138 x oo || i s
Aratve 1 Start Cumtom | UseCors Dagram | Reaemants) RequirementsCom ¥ e
e n ‘ i ¢ @14 o
r e Corcros -
o vt ear
ihats L
Wt s o
Srarrg ot
versers 14
oot careng
o Tois
ok G 8
1, Mol
Tyl R
§ Coe tramaney
3 0s
ProgctHagerent
] G T o
[
Deployment —— —— —
oo) e] Ccomee | []
Custom -
Profie & -
Ready

Figure 2. 3: Example of the Enterprise Architect 8 tool in managing: (1)
requirements (2) internal requirements and (3) exporting the internal
requirements [3]

Overall, commercial tools provide quite thorough support for managing requirements, especially in
capturing requirements and managing changes that occur. But most do not provide a full checking or
validation of requirements. Therefore, RE research tools have been developed to provide solutions
for problems faced by the commercial tools.

2.5.2 Examples of Research Requirement Engineering Tools

As described in Section 2.5 research tools are more focused on partial solutions for particular
requirements processes. For example, EA-Miner (see Figure 2.4), which is developed by Sampaio et
al. [9], was mainly developed to identify and separate concerns, either aspectual or non-aspectual,
with the relationships of their crosscutting at the level of requirements [9]. The tool supports four
requirements processes. First is elicitation, where the tool assists by allowing the requirements

19

engineer to focus on a particular section of the input documents and to help the RE rapidly gain
understanding of the system [9]. Next is the identification of an activity where an internal
representation is produced from the input file as a Java object for the use of specific techniques such
as a viewpoint or scenario-based presentation of results or screening out of irrelevant abstractions
[9]. The third process supported by this tool is presenting the results for the internal model in various
ways, either in the form of diagrams or textual representation [9]. Finally, the tool also helps with the
process of screening out and generating the requirement specifications documents by translating the
model which has been refined to different formats such as XML, DOC and others[9]. However, this
tool is in need of still further improvement to identify the early aspects of both functional and non-
functional requirements, and also to enhance the functionalities of screening out to lessen the
requirement engineer’s efforts in using the tool [9].

a Requirements - Microsoft Internet Explorer
Fle Edt Wew Favortes Tools Help

address | 8] hitp:/locahost:5060jregs. s
HOME
Requirements from Origmal Document
ViewPaints. Select one to view Reqs Requirements
1 In & road traffic pricing system , drivers of
charged at toll gates automatically . 2 The gate dislance A
called green lanes . 3 A driver has to install a diver ;ew:e“:':':n'fE :"”"";:’:;;g: o)
wehicle . 4 The registration of authorised vehic drivars :

ity vehicle . 5 The gizmo is sent
personal data , bank account number and vehicle to the client to be activated

to the client to be activated using an ATH that “:::
activation . 6 A gizmo is read by the toll gate g

read is stored by the system and used to debit t :;l:e”':""""
an authorised vehicle passes through a green lan !

on , and the amount being debited is displayed .

using an ATH that informs the
system upon gimm activation .
€& A gimme 13 read by che toll
gare sensora . »

passes through it , a yellow light is turned on Farly Aspects. Click to see Rel. Croszcutting relatonships
the plate (used to fine the owner of the vehicl
of toll gates : single toll , where the ssme typ ID= autharised [Typa= sacurih Viewpoints JomPomts
awount , entry toll to enter a motorway and exit '?"'"'°‘”d\TYP“'_1P“""'*"*”C"
amount paid on wotorways depends on the type of D= unauthanisad [T, sacunity TN 1 1Inaroad traffic pricing &
n system , drivers of authorised
traveled vehiclea ate charged ac toll
f!n::c—s gates automatically . 4 The
IL:|I: i o registration of swthorised

vehicles includes the owners
personal data , bahk account
nusber and vehicle detatls ., ¥

Figure 2. 4: Example of the EA-Miner tool in eliciting the input requirement(1)

and identifying concerns (2) [9]

In addition, Adisa et al. [8] developed an open-access prototype tool called Living Requirement Space
(LRS) to gather ERP system requirements using Web 2.0 technologies (see Figure 2.5). The tool
helps to handle the problem of constantly changing business requirements characteristics [8]. It acts
as a platform to allow collaboration at any stage of the requirements life cycle for all domain experts,
business analysts and other ERP stake-holders [8]. The requirements life cycles involved are
identification, analysis and management of business requirements, mainly for ERP systems [8]. It
helps to collect, store, retrieve, control the versions and relationships with other requirements and to

manage change requests [8]. The analysis of requirements is conducted via forums and discussion

20

as well as prioritising requirements [8]. As it uses Web 2.0 technologies, it means that it is accessible

to all users from various places, but there is still a problem if there is no internet connection or server

available.
REQUIREMENT XYZ)
This page describes a typical of 3 web ordering business :‘:i | 2
scenario. It describes the processes which are involved in the transactions] =
Dopendants Dopends On Sowees BIZ_SCENARIO SCE_MODELS
Wentfer. Tor Wodet: MODEL
Si dit)
Trtniaslfr:;:i'r';mem specifies that the software be able to register new g Stalemen[: TEX! DGSCNDIIOHZ TEXT
customers as well as the ability to retrieve and update existing customers.
Date_entered: Date Next. MODEL | NULL
Rationale tectit] | asm | | Date_changed: Dale
This requirement specifies that the software be able to register new -
customers as well as the ability to retrieve and update existing customers. Source: SOURCE LIST
Frozess -
_ﬁ::_mslraints o -~ [edit] |ﬂdUStW lNDUSTRY
is requirement specifies that the software be able o register new '
cusmmlzels as well :s the ability 10 retrieve and update Gxglmg customers. Processes: PROCESS_UST
Performance Requirements focit ModeLins: SCE_WODELS SOURCE.LIST
This requirement specifies that the software be able to register new -
customers as well as the abilitu tn ratriaua and undata avietina ristamare
PROCESS_LIST BIZ_PROCESS PROC_MODELS G
References Pe[)p‘e] TEXT
Process: BIZ_PROCESS | | Idenifier, Text Model: MODEL Doouments: TEXT
Description: TEXT Statement: Text Description: TEXT Next: PEOPLE | NULL
Next: PROCESS | NULL Date_entered: Date Next: MODEL | NULL
Date_changed: Date
Source: SOURCE_LIST 3

Scenario: SCEN_LIST
Dep_process: PROCESS_LIST
TASK_LIST Depends_on: PROCESS_LIST

Dependent_Tasks: TASK_LIST SCEN_LIST
Model_links: PROC_MODELS

Task: TASK
Description: TEXT
Next: TASK | NULL

Scenario: TEXT
Documents: TEXT
Next: BIZ_SCENARIO | NULL

Figure 2. 5: Example of the LRS Requirement document (1), LRS scenario object
and LRS task model (3) generated from the LRS tool [8]

Another example of a requirements management tool is the WikiReq system (see Figure 2.6),
developed by Abeti et.al [12]. WikiReq is developed using wiki technology and is suitable to be used
as a collaborative platform for discussion among stakeholders as well as for eliciting and managing
requirements by using a semantic wiki [12]. The requirements are edited, argued and discussed
between the stakeholders directly into the wiki. In order to have a rigorous elicitation of requirements,
each requirement is acquired in a form of a Si* concept [12]. It also allows interoperability between
semantic wiki and Integrated Development Environment (IDE) Eclipse to be achieved. The approach
used in this tool also helps to reduce and simplify concepts which involve requirements and business
processes as well as helping to maintain the coherence of requirements with the use of other

technical artifacts, such as UML use cases and BPMN models [12]. The approach also relates the

21

business requirements with the expected system starting with the use of use cases, business goals

and business processes.

© ne o _) -
oMl A) ecived How Desipbon ("
s A maragn hae

» e
rhange/ pgreds cam ke

Commnet o

D LAthera st Evagrevd
= i Linthcramtoges grove
Bin
% & e
]
o
Fre et 1 et

:.. e — L T
Boea ks oes | 2o —

Figure 2. 6: Example of the WikiReq system in eliciting and managing
requirement: (1) shows the actor view point page, (2) goal view point page and (3)
the WikiReq exported to Eclipse [12]

Another automated requirements tool, developed by Yang et al. [7], is more focused than the other
research tools described towards the requirement validation process. They developed a tool to
automatically detect the “nocuous” coordination ambiguity in natural language requirements. Nocuous
ambiguities are harmful ambiguities that lead to misunderstanding and to errors in an implementation
[68]. They are recognized in any both conditions: present (acknowledged ambiguities) and
undetected (unacknowledged ambiguities) [68]. The tool is called Nocuous Ambiguity Identification
(NAI) (see Figure 2.7). This tool is able to identify ambiguity patterns as well as classifying the
ambiguities; either as nocuous or innocuous cases by using the “nocuity classifier’ [7]. The nocuity
classifier employs a machine-learning algorithm called LogitBoost. If a nocuous ambiguity exists in
the text, it is detected and highlighted on the screen by the tool as shown in Figure 2.7. The tool is
effective and performs well based on the experimental results gained. However, the authors believe

the tool’s performance needs further improvement and the heuristics require further enhancement.

22

The focus of the tool also needs extension to a wider range of ambiguity types, not to be limited to
only nocuous coordination ambiguity [7].

/7 \\penelope |HCSUsers |Staff Uy 237 y237 WAgplcation | maatrex | Data |\ Coondination_Test)\DataSource \Orig - Windows Internet Explorer pro.

E L8]
= [@ vpeneiopeiacsi: YTy 23T Ak trex Diata Coordnabon_ P —— ie_5.hamd [| #
Fie Edt Vew Favorles Tools Help
Urks * (& Snaglt L5y’
s @ T [- - & - hPwe - @Tess - | 8- i 3 A- 5
=]
1. two motion detectors (imd] and imd2), placed above the doors at cach end of the hallway section to determine the presence of a person near a door. Iy

2. one motion detector to cover the whole section (imd3)

3. one haliway section cenmg hgu group. The hnmmesmamu section ceiling Eght group are tamed on or off oaly as a group. Each ceﬁ:ghm zroupn coatrolled by several push buttons (pb} each of
hich 1t group shows the following bekavior if a push buttor is pushed.

4. ome status |

that shows the status of

Sensor Dascription.

Analog sensors fypically have an exponential r
the time from a change of the sensed property fo th

hat can be accessed by the control system. Reaction time is

Facility Manager Needs.

L Use fo achieve the desired I i room and section whenever

ha roam is unoccupiod for at least T3 minutes.

wpors the facility manager

nding the reason
5. All malfunctions and unusual conditions are stored and reported or reguest

6. Malfunctions that the system cannot detect can be entered marnually

Neocuonus Coordination Ambiguity Cases

fwhere the headword of ¢ corgumcts is

by SKiBliG color and modifier is highlighted by pink color

L. Each section is divided into some hallway sections and rooms, each of which may be an office (Q), a compurer lab (CL}, @ hardware lab (HL), a peripheral room (P), or a meeting room
AL},

n is divided into some hallway Sections BRd rooms, cach of which

may be an office (O}, a compurer lab (CL}, @ hardware lab (HL}, a peripheral room (P}, or a meeting

he desired light setting of roont and hailway section whenever
ieve the desired light setring of reom Gmd hallway section wi

o

r can e off the ce:
ity manager can fun off the ce:

a room or hallway section i

Figure 2. 7: Example of Results from the NAI tool in detecting nocuous coordination

ambiguity [7]

2.5.3 Discussion of RE Tools Features

We have developed a characterisation of RE Tools, shown in Table 2.1, to illustrate their strengths
and weaknesses. The classification criteria are based on our experience from exploring the tools and
study of the published literature. The criteria were also informed by the INCOSE survey provided for
Requirements Management tool [162] Classifications used are: processes (Elicitation and Analysis,
Identification, Validation and Change Management), techniques used and type of specification used.
These criteria are chosen because they are the common criteria that exist in most analyses of RE
tools although they may be expressed in a variety of different phrases. This classification also leads
us to clearly identify the gaps that still exist in the RE tools. This table shows that most RE tools
discussed handle the elicitation and analysis processes as well as managing changes and identifying
the requirements. But most of them do not handle the validation of requirements such as consistency,
correctness and completeness, although Laplante [163] states that RE tools must include verification

and validation processes and Yu [50] states that currently available requirements modeling

23

techniques are mostly used for the validation process.Only NAl is very focused towards validating the
ambiguity of requirements and QPack tries to detect the defects by using a testing mechanism.
However, for these, it is proven that the validation process lacks tool support. Based on the
classification too, most tools use semi-formal specifications, as an input and output to process and
generate the results. The requirements techniques used also vary based on the process that the tool
handles. We also conclude that most commercial tools are more interested in using or applying the
traceability techniques, especially in tracking changes and eliciting requirements. The research tools
use different techniques such as heuristics, early aspects, the wiki approach and interviewing and the

brainstorming approach.

As there is little empirical research in validating requirements, we investigate further the key related
research in validating requirements focused on the inconsistency problems. Firstly, however, the

idea of requirements validation is discussed in general terms.

Processes
c
o = . Type of
E =% 5 c S Technique B _
¢ SEE T = g € Specifica Source of Evaluation
= 2L 2 S © c 9 Used .
o S o = = P tion used
v 2 < © = © 5
L i) > =

” x x x ~ Features/ Semi Self-
é Relationship formal exploration/information
) from developer/INCOSE
14
> N x ~ ~ Traceability Semi Self-
5 formal exploration/information
o from developer
- N x ~ N Traceability Semi Self-
o
g 8 (partial) formal exploration/information
& from developer/INCOSE

_ N N x x Early aspects Semi Published literature
< £ formal

=

N N x ~ Interview, Informal

e brainstorming, Published literature
i
- N X x + Wiki approach Semi
(]
% formal/ Published literature
s Formal
_ x x ~ X heuristics Informal Published literature/self-
<zz exploration

Table 2. 1: Comparison and Classification of RE Tool features

24

2.6 Requirements Validation

Requirement validation is a process executed throughout the system life cycle [69]. It ensures the
correctness, completeness and consistency of a requirement [69]. The descriptions of these, based
on different points of view are shown in Table 2.2. The validation process also helps to determine
that the end product is correct and complete as well as guaranteeing that the system developed
satisfies the stakeholders’ original requirements [69]. Late validation of requirements could cause
requirement quality to suffer [25]. In order to make sure the original requirements of stakeholders are
met, the requirements captured by the requirement engineer/analyst need to be entirely precise and
consistent from the early stage of the RE process. Inconsistencies of requirements are identified as
adverse and need to be avoided [22]. Hence, further related research to validate requirements

focuses on managing the consistency/ inconsistency of requirements is discussed.

25

Type of Requirement Quality Description

Correctness “Describes the correspondence of that specification with
the real needs of the intended users in much the same
way that correctness of a piece of software refers to the
agreement of the software part with its specification.” [18]

“A program is considered correct if it behaves as
expected on each element of its input domain” [70].

“An SRS is correct if and only if every requirement
represents something required of the system to be built”
[168]

Completeness “Implies that all customer’'s needs will be met when the
system is constructed.” [18]

“A requirement must have all relevant components” [71]
“A requirement’s document should include requirements
that define all functions and the constraints intended by
the system user” [72]

“It specifies required behaviour and output for all possible
states under all possible constraints.” [73]

“Responses of the software to all realizable classes of
input data in all realizable classes of situations is
included” [167]

Consistency “No two or more requirements in a specification contradict
each other and the case where words and terms have the
same meaning throughout the requirement’s
specifications (consistent use of terminology)” [18]
“Requirement uses terms in a manner consistent with
their specified meanings.” [71]

“Requirement should be understood precisely in the same
way by every person who reads it.” [71]

“Requirements in the document should not conflict.” [72]
“Consistency is also referring to situations where there is
no internal (logical) contradiction in a specification of a
system.” [20]

“Consistent specification exists when there is a
computational model for its implementation and the
specification is valid when it satisfies the user
requirements.” [19]

“An SRS is internally consistent if and only if no subset of
individual requirements stated therein conflict’ [167]

Table 2. 2: Type of Requirement Quality and its Description

Based on all the definitions, we sum up our understanding of consistency as it matches our work.
Consistency happens when any of the requirements components are intended to be equivalent. The
requirements components also should have the same naming and the sequence of the requirements

need to be in the same order throughout the software requirements specification. In addition,

26

consistency happens when the requirements captured by a requirements engineer are confirmed as
satisfying the clients’ intended need. We assume all the requirements are complete when there are
no missing key definitions or constraints for the software system. We also assume all the
requirements are correct when the requirements captured accurately, and with no redundancy, reflect

the actual requirements and needs of clients.

2.7 Consistency/ Inconsistency Management

As discussed in Section 2.2, current available requirements techniques are used to verify and check
the requirements qualities such as completeness and consistency [50], and to detect errors such as
inconsistency and incompleteness. However, it was shown in Section 2.5.3 that few requirement tools
available in the market provide facilities for the validation process. Thus, we would like to investigate
related research done by others in validating requirements quality, especially consistency. Other
researchers have devoted their studies to how to manage the consistency of requirements. There are
efforts to check the existence of inconsistencies in either informal specifications, semi-formal
specifications or formal specifications [17, 74], There is also work on managing the consistency in the
architecture model and other design models [26, 51, 75]. In addition, there are heavyweight or
lightweight approaches used to check for the inconsistencies. Further, there is also work on repairing
inconsistencies and tolerating their presence [22, 76, 77]. There are many techniques to check for
inconsistencies and to maintain the consistency of requirements [78]. Techniques used to check for
consistency or to handle the inconsistency based errors include traceability and analysis approaches.
Analysis approaches can be categorised as either formal analysis or heuristic analysis. Different
types of specifications are also used to represent the requirements before consistency checking is
conducted. Semantics is sometimes applied to the requirements to assist the validation process. We

will explore work relating to these issues through the remainder of the sections.

2.7.1 Consistency/ Inconsistency Management Techniques in General

2.7.1.1 Traceability

Traceability is defined as the “ability to describe and follow the life of an artifact which is developed
during software lifecycle in both forward and backwards directions” [79]. Traceability is an important
approach to manage requirements effectively [5] and a vital practice in an organisation [31].

Traceability must also cover all aspects in terms of scope and coverage, including system level scope

27

and all four types of coverage, as defined by Bashir et al [80]. First is the traceability between an
origin of a requirement inclusive of source, stakeholders and requirements. Next, is traceability
between the requirements and other requirements such as functional and non-functional
requirements. Then, is traceability between the requirements and other artifacts which provides a
trace between different requirements forms such as specifications, designs and test cases. Finally, is
traceability between other artifacts and other artifacts such as considering links and dependencies
among artifacts.

Cysneiros and Zisman (2008) assert that traceability relations help in a number of activities in
software development [32]: for example, the evolution of software systems, compliance verification of
code, requirements validation, aspect identification and any design decision. Traceability is often
informally practised in tracing requirements to and from a software design [5]. Some traceability
techniques are assisted by information retrieval (IR) a derived technique to support identifying
traceability links. However, IR is unable to identify all links [32, 79]. Although traceability is important,

it is sometimes not applied in practice as it is too difficult and costly [31].

2.7.1.2 Analysis Approach

There are two types of analysis identified for checking consistency/inconsistency: heuristic analysis

and formal analysis.

2.7.1.2.1 Heuristic Analysis

“The term heuristic means a method which, on the basis of experience or judgement, seems likely to
yield a reasonable solution to a problem, but which cannot be guaranteed to produce the
mathematically optimal solution’181]. Heuristic analysis is used without the structure of a
mathematical model for making decisions [81] and it is believed that it could assist in specifying the
essential process for achieving the goal state [82]. It can also be used in a particular situation to
specify the process involved in detecting an exception and taking corrective action [82]. Often, an
heuristic algorithm is applied as it helps to provide a close right answer or solution for a specific

instance of a problem [83].

28

2.7.1.2.2 Formal Analysis

“Formal analysis helps to detect many types of errors in a requirements specification either manually
or automatically” [84]. Formal analysis uses formal notation which can be used to analyse and
manipulate mathematical operators and mathematical proof procedures [84]. It also provides benefits
in testing and proving the “internal consistency including data conservation and syntactic correctness

of the specification’185].

2.8 Related Work of Consistency/lInconsistency Management

2.8.1 Traceability

Many approaches have been proposed to maintain consistency and check inconsistency. One of
them is traceability. The traceability technique is divided into two categories; forward/backward trace
and derived. Olsson and Grundy developed a Web-based tool to summarise artifact data and to
support basic explicit linking of elements in different representational models [75]. The method uses
traceability and manages fuzzy relationships between high-level software artifacts (requirements),
uses case models and black box test plans. The aim of this tool is to assist the inconsistency
management for all changes made to artifacts. However, automation is impossible and that is needed
to create a relationship. Further, “high level natural language often lacks well-defined formal

abstraction for all software artifacts representation” [32].

Cysneiro and Zisman implemented the automatic generation of traceability relations among various
types of models generated during the development of agent-oriented systems and identification of
missing elements in the Prometheus model and JACK code specification [32] to check completeness
in order to ensure the consistency between model and code specification is maintained, especially in
a huge and complex system which involves different stakeholders. Rule- based approaches and
Prometheus methodology are used with an extended version of XQuery to represent rules in

traceability. However, this is still preliminary work and enhanced verification is needed.

Another technique to reduce inconsistencies among product lines was developed by Jirapanthong
and Zisman [86]. XtraQue supports the generation of traceability relations in different types of
documents that are capable of representing different levels of the development lifecycle of a product
line [86]. It can define the semantics between the artifacts being compared and can also be used to
bridge various activities and stakeholders taking part in the product line engineering [86]. It generates
nine traceability relations such as satisfiable, ability, dependency, overlaps, evolutions, implements,

refinements, containment, similar and different features based on OO documents created during

29

development [86]. An extension of XQuery is used to represent the traceability rules and consider the
semantics of documents, the traceability relation of various types of traceability with the product line
domain and the grammatical roles of the words in textual parts of document, together with the
synonyms and distance of words being compared [86]. A Rule-based approach is also applied to
automatically generate the traceability relations among elements of documents that are created
during the development of the product line system. Nevertheless, the “existing rules failed to identify
between requirements and object-oriented specification, besides changes in the documents require

the traceability to be re-executed” [86].

Goknil et al. [87] proposed an approach together with a tool for defining requirement relations using
traceability. They cater for issues of consistency, change management and inference of
requirements. First order logic is used to support the consistency checking of relations and to inferring
new relations. However their approach only supports textual requirements and lacks consistency
management between textual and other requirement artifacts such as use case and activity diagrams.
There is also no automation provided for modeling requirements. The visualised result of either
inferred relations or inconsistencies needs to be interpreted manually by the requirements engineer,

which can lead to errors [87].

There is also a “ftechnique to recover traceability links between source code and free text
documentation” [88] using information retrieval which applies to both the IR techniques, namely as
probabilistic, and vector space. This technique is applied to trace C++ and Java source classes to
manual pages as well as the functional requirements. However, the effectiveness of this technique
becomes less prominent when the number of familiar words between the source code component

identifiers and the documentation item decreases [88].

2.8.2 Analysis Approach

2.8.2.1 Heuristic Analysis

As described earlier, analysis approaches are divided into two categories; heuristic analysis and
formal analysis. The analysis approach is used together with requirement specifications and
semantics. Heuristic analysis is one of the common techniques used to check for consistency or
inconsistency of requirements. For example, Koth et al. [89] developed a technique to check the
inconsistency of XML documents from a semantic point of view using an incremental attribute
evaluation approach. This technique introduces incremental facilities and evaluates the attributes
associated to XML semantics by “adding an incremental strategy to XML semantic checker evaluator”

[89]. It also uses the Propagate algorithm and checks the consistency of documents repeatedly until a

30

consistent document is produced. The efficiency of the evaluator is improved by lessening the re-
evaluation process and evaluating the affected area only in the XML and not the entire document
[89].

In addition, Chitchyan et al. implemented an automation support for requirements annotation, which is
the extension of the WMatrix natural language processing tool suite called RDL. “RDL is a tool
enriched with the existing natural language requirements specification with semantic information
derived from the semantics of the natural language itself’ [90] and MRAT tools (Multidimensional
Requirements Analysis Tool) by Waters [91] which is an Eclipse plug in are used to facilitate the
composition and analysis. MRAT is used to analyse the temporal relationship of RDL composition
and it is believed that finding the temporal dependencies is useful to determine the points of

sequencing conflicts and to avoid the conflicts and inconsistencies from happening.

Kroha et al. [92] investigated the use of semantic web technology to check the consistency of
requirement specifications. They transform the static part of UML models that illustrate requirements
into a problem ontology and attempt to discover inconsistencies by using ontological reasoning to
uncover contradictions [92]. This work does not, however, check for behavioural consistency as it

cannot represent dynamic aspects of UML specifications in the ontology.

Much research has been devoted to checking inconsistency and consistency using semi-formal
specifications and heuristic algorithms. Egyed [26] implemented a UML-based transformation
framework to check inconsistency and help in comparison. The author introduced an automated
checking tool called VIEWINTEGRA which used consistent transformation to translate diagrams into
interpretations and used the consistency comparison to compare those interpretations with those of
other diagrams [26]. This technique can check inconsistencies without the help of third party or
intermediate languages. The limitation of this tool exists when checking the consistency between an
object diagram and state chart diagram or vice versa, as they cannot be transformed directly and

need to be changed to a class diagram first in order to obtain the consistency results [26].

Sabetzadeh et al. [93] proposed a tool-supported approach for checking the consistency of a
distributed model and enabling the checking for the inter-model properties of a set of models. This is
done by checking of properties that merge within the intra-models [93]. A set of generic expressions
is also developed to characterise the recurrent patterns in a structural constraint of a conceptual
model. This approach currently works in the homogeneous model only as the merger cannot be
defined at a notational level and this leads to a challenge in implementing this approach in a

heterogeneous model [93].

In addition, Groher et al. presented an incremental consistency checker which allows one to define
and redefine constraints [94]. This approach allows engineers to define and change the meta model

and model any time “without manual annotation or restriction on the constraint of the language used”

31

[94]. This approach is implemented in a tool called “Model analyzer” which highlights the

inconsistency of models in red [94].

Sinha et al. introduced a modeling environment called “Archetest” which adapts a unique bi-layer
approach for precise modeling and automates the analysis [95]. It also analyses consistency and
completeness. This approach accepts vague use case descriptions and helps to provide accuracy to
them through a wizard-driven process [95]. However, more case studies are needed to test this work

in order to prove its early results [95].

Kim [96] implemented a technique to assist the verification of user requirements expressed in natural
language. This technique verifies the discrete event simulation model using a DEVS formalism
together with a prototype tool called VERIDEV [96]. The verification consists of “consistency
verification between user requirements specification and class diagram, consistency verification
between user requirement specification and sequence diagram of UML and the consistency
verification between sequence diagram and DEVS diagram” [96]. This technique is hard to apply
because of difficulties faced in expressing it in the DEVS graph [96]. As a result, future enhancement
is needed to automate the technique of integrity checking for the text base used in describing a model
[96].

Chanda et al. proposed a formalisation methodology for the three most common uses of a UML
diagram in capturing the static and dynamic aspects of an object oriented system: use case diagram,
activity diagram and class diagram in order to emphasise inter-diagram consistency, syntactic
correctness and traceability of requirement by using several formal rules [97]. A regular expression

featuring (eg. +, *) is used to enhance the simplicity and understanding [97] of the grammar.

Jurack et al. presented a criteria for checking the consistency of refined activity diagrams which
includes pre- and post- conditions [98]. The work used graph transformation rule sequences to define
the behaviour of the refined activity diagrams to check consistency. This allows the analysis of a set
of sequence to be conducted in a static manner [98]. However, the graph transformation rule cannot
be checked with the static analysis and needs stronger reduction mechanisms to allow consistency
analysis for a wider range of activity diagrams. For now, a restriction and assumption is applied to
deal with the problem [98].

Litvak proposed an algorithmic approach to check the consistency of UML sequence diagrams and
state diagrams [23]. An automation tool called BVUML is used to implement the consistency check
algorithm [23]. The proposed algorithm helps in handling “complex state diagrams such as fork, join
and concurrent composite states” [23]. The algorithm uses a breadth first search over the state
diagram and a hybrid sequence state diagram is introduced to visualise the process with which the
diagram state is associated to the sequence diagram [23]. This tool is sufficient for checking the

consistency of a UML dynamic diagram, suitable for the standard UML and is demonstrated to be fast

32

error detector. It is easy to use and does not require first or second order logic knowledge to generate
or to understand the tool. In contrast, “BVUML do not support purely syntactical states such as the
stub states”[23].

Whittle and Schumann presented an algorithm that works with a prototype tool in Java to automate
the generation of a UML state-chart from a scenario in a form of sequence diagram [99]. Semantics
information is added to the sequence diagram to detect and report inconsistencies [99]. The concept
of hierarchy and structure in a form of class diagrams is used to show the merging of multiple
sequence diagrams in a single state-chart [99]. However, the generated state-chart is just a skeleton

and can be a substitute for manual refinement and modification [99].

Likewise, Li et al. [100]. have also conducted research into the consistency checking of UML
diagrams. The research proposes a technique for checking the consistency of a UML requirement
model which comprises use cases and conceptual class models with system constraint [100].
Together with this, the consistency of the requirements can be checked logically using semantics.
However, this proposed technique only focuses on the aspect of formal model of requirement
consistency. In order to validate the functional aspect of a requirement, a prototype generator tool is
developed. It helps to automatically generate Java source code from the formal model of a

requirement [100].

Zapata et al. detect consistency problems in UML diagrams by implementing a novel approach using
Xpath and Xquery together with a rule-based system [101]. The reason for using them is because of
“their strange mix of suitability and standardization” [101] that they can achieve. The main focus is to
assess the “consistency rules between UML class diagram and use case diagram’[101]. These
diagrams are integrated with OCL to avoid the ambiguities and guarantee the well-formed models in a

formal way[101].

Alternatively, Satyaijit et al. [20] suggested finding and specifying consistency conditions (CCs) for the
domain in the initial abstract formal specification with the aim of recovering logical errors during the
early phase of development. The RAISE Specification Language (RSL) [20] is used in writing the
formal specification for this purpose. This tool combines the inspection of a specification and testing
the executable specification of a prototype using test cases [20]. The intention is to validate the
specification against requirements and to ensure the specified CCs are respected and maintained by
the operation defined in the specification [20]. However, CCs are not used for checking the

consistency of a requirement specification.

Blanc et al., proposed an approach to deal with inconsistency based on model construction
operations, which uses logical constraints to define inconsistency rules and it is also meta model
independent, which allows both intra-model and inter-model inconsistency rules to be defined and

checked [102]. The consistency check is performed in a batch mode where the whole model is loaded

33

into the memory and the verification starts by running the rules successively on the entire model
[102].

Engels et al. presented a technique to specify and analyse consistency [103]. In order to conduct the
checking process, models are mapped to semantic domains and behavioural constraints are
analysed [103]. The problem of state-chart inheritance is demonstrated for this methodology [103]. A
hybrid, rule-based notation is used. This rule combines textual styles of an attribute grammar with the
queries of the meta model expressed as visual patterns [103]. The limitation faced by this technique
is that it only supports partial resolution, although complete mapping is supported, and it needs tool

support to generate a model compiler for the rule-based description provided [103].

Ha and Kang proposed several verification rules to check for consistency between UML static and
dynamic diagrams such as class diagram, component diagram, state-chart diagram, sequence
diagram, activity diagram, use case diagram, deployment diagram, collaboration diagram and object
diagram [104]. A relation graph is used to show the relationship between diagrams. Consistency rules
are developed from the relationships of both the object and dynamic diagrams [104]. However, these
rules need help from the OCL (Object Constraint Language) as the rules need to first be transformed

to formal language if the consistency checking is to be conducted automatically [104].

Ryndina et al. proposed a technique to establish the consistency between the business process
model and object life cycles [105]. They defined two consistency notions for a process model called
“life cycle compliance and coverage” [105] expressed in terms of conditions. A prototype tool that acts
as an extension to the IBM WebSphere Business modeller was developed to help capture the
existence of object states in the business process model, generating the life cycle from the process
model and checking the consistency of consistency conditions [105]. This technique still has to be

evaluated using a larger case study [105].

El-Attar and Miller proposed a structure presented in use case models called a Simple Structure Use
Case Description (SSUCD) with tool support called SAREUCD which helps automate the detection
and elimination of possible defects caused by inconsistencies [106]. The authors invented a
technique called Reverse Engineering of Use Case Diagrams (REUCD) to generate use case
diagrams from the SSUCD [106]. The SSUCD and REUCD processes allow the use diagram to be
generated systematically and helps guarantee the “consistency between the descriptions and their
diagrams” [106]. However, the tool support still requires human intervention to fill in the details in
each use case description before the tool can detect the inconsistencies. It also requires manual

inspection for inconsistency if the segments are written in unstructured natural language [106].

Another approach is presented by Perrouin et al. for managing the inconsistencies amongst
heterogeneous models by using a model composition mechanism [107]. The information of the

heterogeneous models is translated to a set of model fragments [107]. Fusion is applied to build a

34

global model which allows various inconsistencies to be detected, resulting in the global model [107].
Automation is applied to compute traceability links between the input model and the global one and
thus supports the reporting of the inconsistencies on the original model and helps to resolve the
cause of the inconsistencies [107]. However, the classification of which inconsistencies need to be

resolved is not provided [107].

Mehner et al. proposed an approach for analysing the interaction and the possible inconsistencies
that might exist in the requirement modeling phase [108]. A variant of UML with a use case-driven
approach using use case diagrams, activity diagrams and class diagrams is applied [108]. The
concept of pre- and post-condition using the UML variant of an activity is defined [108]. This requires
more effort and it is recommended that there is an early formal analysis to overcome this problem
[108]. The approach uses a formal technique called graph transformation with a tool support, AGG,
in order to provide the chosen UML variant with formal semantics and allow a thorough and automatic
analysis to be conducted [108]. This approach also allows the analysis of the interactions between

the functional and non-functional aspects to be conducted automatically [108].

El-Mahded and Maibaum developed a tool called GOPSD to develop aspect-based process control
and checking for the consistency and completeness of a requirement [109]. The tool adapts the
concept of goal-driven analysis which was adapted from the KAOS technique for addressing process
control systems [109]. The tool offers an animation utility which helps to reason about the taken
actions in terms of “aspect goals, cycle by cycle and during the symbolic execution” [109]. Further
evaluation is needed for these purposes. GOSPD also covers the early stage of development and it
“refines the abstract user’s needs to functional and formal specification” [109]. The tool also
transforms the requirements automatically to B specification but the requirement needs to be

corrected and validated first by the user before the transformation can be conducted [109].

In addition, Grundy et al. introduced a methodology of aspect-oriented component engineering to
overcome problems related to component requirement engineering [110]. Their methodology
analyses and characterises the component based on the “different aspects of the overall application a
component addresses’[110]. The authors developed tool support which helps to specify aspects of a
component in a component based software development environment [110]. The tool is equipped
with basic validation checking in order to make sure all aspects of a requirement are met correctly
[110]. This tool also provides a basic inconsistency management technique to help to manage the
evolving aspect-oriented requirements including a highlighting of the change facility for all types of

views and consistency checking via the matching of required links between components [110].

Another work related to checking the consistency using an aspect-oriented paradigm, this time for
web applications, is by Yu [111]. The author presents a tool called HILA which was designed as an

extension of UML state machines to model the adaptation rules for web application [111]. However,

35

this work is believed not to be limited to web engineering applications only but may also be applicable
to various other areas [111]. HILA could be helpful in improving the modularity of models and helps to
automate the consistency checking of aspects to ensure rules are always in a consistent state [111].
However, HILA is likely to be useful to model the content and presentation only if it is modeled in a

base machine [111].

To sum up, there are many approaches and techniques used to check or manage consistency and
inconsistency of requirements by using heuristic analysis. Some of the techniques
[23],[26],[92],[93],[95],[98],[99],[105] are well generated but most are still immature and need further
enhancements. We have identified that most work needs tool support for the checking process.
However, it is also true that, most work integrates with other available tools and are not purely built for
consistency checking, especially when this needs to deal with processing natural language. Most
tools or approaches do not support rigorous checking for consistency but only support partial solution
for checking or identifying inconsistency and with a homogeneous model of a set of requirements. It is
also identified that the tools developed still need human intervention to interpret the consistency
results or invoke the action to check for the inconsistency although impressive and high level form of

techniques are applied.

2.8.2.2 Formal Analysis

There are many researchers dedicated to checking the consistency of requirements using formal
analysis together with the use of different types of requirement specifications and semantics. For
example, Nenwitch et al. presented a lightweight framework called Xlinkit in order to check the
consistency of distributed and heterogeneous documents using first order logic and lightweight
mechanisms [29]. The main contribution of this framework is the definition of an extended semantics
based on first order-logic and producing hyperlinks which diagnose inconsistencies across the
specifications at different stages. The incremental checking technique used can also decrease
checking time. However, XLinkit’s limitation is that it lacks discovery of problems if the inconsistencies

are recognised.

Other work by Nentwich et al. proposes a repair framework for inconsistent distributed documents
[76]. They generate interactive repairs from an input of a first order logic formula that constrains the
documents. Their repair system provides a correct repair action for each inconsistency together with
available choices to handle the problem. However, they face problems when the repair actions
interact with the grammar in a document, and also actions generated by other constraints [76]. Their

approach also fails to identify a single inconsistency that may lead to other inconsistencies [76].

Other than that, Chen and Ghose developed an automated tool using the semantic web technology

called SC-CHECK. This tool mainly focuses on the consistency management in distributed

36

requirements engineering, especially in detecting inconsistency and “supporting resolution in the
context of industry-standard requirements specification notations” [112]. Prolog is used to identify the
violated consistency rule and possible errors or elements that need to be repaired. It uses an informal
requirement specification and semi-formal representation in a form of sequence diagram for
abstracting the formal representation to detect and resolve the inconsistencies [112]. It also provides
the user with guidance to attempt to correct the inconsistencies. This tool has been tested via a

medium scale case study and the results seem beneficial.

Zowghi et al. [17] proposed a technique to detect inconsistencies in requirements and the way to deal
with them in a formal manner. A prototype tool named CARL is used to test the technique and it can
perform an exhaustive search for plausible scenarios which cause latent inconsistencies to emerge
[17]. A reasoning engine called CARET is applied to natural language requirements in order to
analyse the inconsistencies within the translated logical statements of requirements. A simple engine
for natural language parsing called Cico is used as a generic syntax-based parser by taking a subset
of the English grammar as its domain [17]. It uses an application of the fuzzy rewriting system to a
text and uses heuristic optimisation strategies and backtracking too. It is also believed that it could
help in identifying and handling inconsistencies in Natural language requirements. Although it is
useful in identifying, analysing and handling inconsistencies, a more expressive logic to specify more
complex requirements is needed and, in order to hold the extended logic, the NL translation needs to
be refined . Then, Gervasi and Zowghi [30] used the tool in detecting, analysing and handling
inconsistencies in requirements for various stakeholders. It extends the tool with employing the
theorem-proving and model- checking techniques in the context of default logic and it shows how to
deal with the problems in a formal manner. The limitation of this tool is that the propositional logic
used is not powerful enough to model adequate detail and accurate complex system behaviour.
Propositional logic is not meant to detail the way the system should behave but is only suitable for

high-level requirements [30].

Taibi et al. [113] implemented an algorithm for self-checking consistency for the classes using Object-
Z specification. Verification utilises a test of specification, model abstraction and model checking. This
algorithm conducts self-consistency only for each class and does not ensure consistency for the

whole specification [113].

Kaneiwa and Satoh introduced an approach for conducting well-mannered consistency checking of
UML class diagrams by translating the identified inconsistencies to first-order predicate logic [114].
They introduced an optimised algorithm with respect to the size of the class diagram to calculate “the
respective consistencies of class diagrams of different expressive powers in P, NP, PSPACE, or
EXPTIME” [114]. This work also helps to confirm the restrictions’ existence for the class diagram in

order to avoid any logical inconsistency.

37

Lamsweerde et al. [24] proposed a framework which is based on both formal and heuristic techniques
to discover the conflicts and divergences of the goals or requirements of a domain property from a
specification. The notion of boundary condition and domain knowledge plays an important role in this
technique and the KAOS language is chosen as the specification language. Here, model checking is
used to detect divergence among goal assertion [24]. It helps to capture the existence of different

types of concept during the elaboration of requirements [24].

Kozlenkov and Zisman manage the consistency between natural language requirements and
software artifacts that are generated during different phases of software system development, using a
specific tool which embodies a goal driven and formal reasoning approach inclusive of “goal
elaboration, ordered abduction and morphing of path” [74]. This is applied together with the use of
knowledge-based and rule-based approaches. The weaknesses of this tool are that the
inconsistencies discovered are limited to those related to the structure that has been recognised
grammatically in natural language sentences only, and that the type of structures used needs to be

expanded in order to allow the approach to be used in a large scale application [74].

Mu et al. [115] presented a merging-based approach to handling inconsistency by prioritising
software requirements locally using the Viewpoints framework, which consists of requirement
collection with local prioritisation. Then the “requirement collection with local prioritization is
transformed into stratified knowledge base” [115]. The authors choose to use categorisation of the
priority - High, Medium and Low. The first order logic is the best suited for this approach. Priority of
requirements is measured to be a beneficial clue in resolving conflicts and making trade-off decisions.
Conversely, there are problems that occur while presenting the merging process. In a few cases, the
user may not obtain a stratified merge requirements collection and the introduced model-based
merging operators could lead to difficulty in explaining the additional formulas in term of the viewpoint

demands of the merge result [115].

Weitl et al. implemented an approach based on user support with the combination of pattern-based
specification, temporal logic and ontology [116]. A Description Logic (DL) specification is used to
represent the ontology and the content of the documents [116]. The verification framework is
knowledge-based and the technique to support user specification is based on example- and a
pattern-based approaches which are themselves based on the concrete examples of both correct and
incorrect documents. This approach aims to check the consistency of high level structure with the
content document and to check semantic consistency criteria on the context-dependent documents
with high expressiveness, flexibility, applicability and high degree usability [116]. However, a broad
knowledge of the logic used is needed in order to interpret or create the diagram and to apply the

temporal formalism for solving the verification problems [116].

38

Scheffczyk et al. propose “formalizing the temporal consistency rules and generating a few domain
specific repairs for inconsistencies” [117] of an industrial specification, using specification examples
which focus on the functional requirements of a specification such as business processes, use cases
and dialogues [117]. Therefore, a semi-formal consistency management toolkit called CDET is used
to improve the quality of the industrial requirement specification. CDET can be used as a tool to
“check the semantics at different granularity levels and integrates fully with established practices”
[117] and daily project work. CDET is also integrated smoothly with the arbitrary revision control
system (RCS) with the aim to establish a work process. CDET uses derivation of temporal predicate
logic to facilitate consistency checking across the document revisions and it is suitable for checking
any property of a document that is computable [117]. Although this tool is profitable for
heterogeneous documents, experts in the field of logic are required to formalise the consistency rules
[117].

Sousa et al. [53] presented an approach of using formal specification to check for inconsistency in a
requirement. They used the B specification as a formal language derived from a controlled natural
language [53] in the form of use case descriptions or scenarios together with the B method - a well-
known formal method based on “first order logic, a set of theory, integer arithmetic and generalized
substitutions” [53]. The work automates the analysis of requirement consistency against constraints
(safety property) with the B method tool to reveal the inconsistencies in the specification. However,
the work still lacks supports in terms of quality dimensions such as correctness and timeliness, lack of
automatic consistency recovery such as a suggestion for changes and lack of support for a complex

scenario and definition of grammar rules for use case scenarios and properties [53].

2.9 Analysis of Consistency / Inconsistency Management

Research

From the discussed related work, we present a heat map in Figure 2.8 to show a categorization of the
corpus work based on the type of specifications used, the type of contributions from all the
researchers, type of semantics applied to each work and the type of techniques used to manage the
consistency of requirements. The categorisation is mapped using colours (multiple tones of dark
orange to light yellow) whereby mapping towards dark orange includes a higher percentage of papers

following into this category.

39

SPECIFICATI CONTRIBUT SEMANTIC TECHNIQUE USED

ONS ION S
Formal Web
Natural Forwar .
Derived
language d
. 1. Reverse
Algorithm | engineering
2.
Framework Theorem || 2. Algorithm
proving
4. Formal | 4.
reasoning || relationship
5. Fuzzy || 5. Model
Legend: logic composition
6.
Temporal || 6. Rule based
A . logic
High 7. Prolog 7. Ontology
8. OCL 8. Goal driven

Usage 9. Breadth
first Search
10.Transform
ation

11. Model

Low merging

13. Condition
14. Hybrid
Rule

15. Regular
Expression
16. Bi-layer

[

Figure 2. 8: Heat Map Representations: Categorisation of the Type of Contributions,

Techniques, Specifications and Semantics Used for Checking the

Consistency/Inconsistency

To sum up, there are three types of specifications used to represent the requirements in a form of
formal, semi-formal or informal specification. The specification most often used is semi-formal. The
types of semi-formal specification used are UML models, structured diagram, scenario/textual
description, description logics and other components. Most of the semi-formal specifications used are
UML models. A UML model is described as the design representation of the source code and this
diagram is useful in making the source code understandable [118]. Semi-formal specifications also
receive great interest here because the models are easily decomposed into smaller parts and this
allows them to be better understood [57]. This feature encourages much works done to check the

consistency between models although some studies concluded that maintaining consistency between

40

models is not important but expensive [57]. Another specification used to represent requirements in
performing consistency checking is informal specification written in natural language. The least used
representation is formal specification. This is because the use of formal specification is challenging
and hard for the beginner to use for fast results [55].

There are also five types of contributions for conducting consistency checking work; tool,
methodology, algorithm, framework and rules. Tools gain most interest from researchers to perform
the checking for inconsistency. This is followed by the development of methodology and algorithm.
Quantitative evidence proves Yu's [50] point of view discussed in the previous section. The least
research focuses on developing frameworks and rules to handle the consistency.

Most of the research to date has not applied any semantics. However, there are some works which
applies the semantics of an artifact, followed by the semantics of natural language as well as the

semantics of the web and of XML.

Techniques are categorised into two types; traceability and analysis approaches. The analysis
approach is used more than traceability because the latter has been identified by several researchers
as being complicated and costly to use and it is also seen to have no proper method to conduct [31],
[5]. Further, the current automated approaches of traceability do not allow engineers to have proper
means to visualise the result [119][33]. Both techniques are then divided into several sub-techniques.
Traceability is divided into forward- and derived techniques. Here, the forward technique is used more
than the derived to present the trace. The analysis approach is divided into formal analysis and
heuristic analysis techniques. Figure 2.8 shows that, heuristic analysis is applied more by researchers
than is formal analysis to perform consistency checking of requirements. For the formal analysis
technique, first-order logic is chosen most by researchers, followed by model checking, temporal
logic, formal reasoning, fuzzy logic, prolog and OCL. Theorem proving is least used in this work. For
heuristic analysis, the use of constraints to perform the consistency checking has received enormous
interest by researchers; followed in descending popularity by the use of graph transformation, reverse
engineering, relationship, rule-based, goal driven, model merging, condition and hybrid rule. The least
used techniques are algorithm, early aspects, model composition, ontology, breadth first search,

transformation, regular expression and Bi-layer.

As shown in Figure 2.8, most researchers use semi-formal specifications to represent the
requirements to check for inconsistency. To investigate in more detail the type of model used, we
further classified the type of model using a heat map similar to the approach in Figure 2.8. This is
shown in Figure 2.9. From the 43 works discussed, more than half used the semi-formal specification.
Based on the classification of model used in a semi- formal specification approach in Figure 2.9, the
most used model in consistency checking work is the UML model. The use case diagram and class
diagram are used in most of the works, followed by the sequence diagram, state chart diagram,

activity diagram and object diagram. Models other than the UML, such as Scenario or textual

41

requirement description, are also used in checking consistency. Models such as task model,
Essential Use Cases and Conventional Use Cases showed less and almost no interest by the
researchers in checking the consistency of requirements, although Biddle et al. [43] found that
Essential Use Cases open fruitful research of consistency issues between the responsibility concept

in the requirements and their related designs as they help to improve the traceability support [43].

Task model
Scenario/ Textual Legend:
Description Y
Structured Diagram - High
ER-Diagram
Usage
Low

4. State diagram

5. State machine

6. Object diagram

7. Collaboration

diagram

8. Activity diagram

Conventional Use

Cases

Essential Use Cases

Other Components

Figure 2. 9: Heat Map representation: Classification of the Model Used as a Semi-Formal

Specification Approaches

42

2.10 Discussion

In this chapter, we provided a general overview of the requirement management process and
requirement modelling techniques as well as the type of requirement specifications and requirement
semantics. Then we discussed and categorised the requirement engineering tool, commonly called a
requirement management tool, to identify the type of current RE tool and the processes it covers. The
type of tool is classified as either a commercial or a research tool. The techniques and type of
specification applied to each tool are also identified. These were presented in Table 2.1. The results
show that most RE tools do not cover the validation process thoroughly. This led to a discussion of
requirement validation in general, drilled down to consistency management. The different types of

techniques used in consistency management were also discussed.

We conducted a literature review of related works based on the type of techniques used to manage
consistency. From here we simplified and categorised the types of contributions, specifications,
semantics and techniques used in the field of consistency management of requirements. We also
compared the existing works and approaches and identified their strengths and weaknesses. We will

use this to motivate us to form a basis for our research development outlined in following chapters.

A heat map was used to represent graphically the data of the types of contributions, specifications,
semantics and techniques used in the consistency management simplified from the related works.
Here, colours are used to show the frequency of the usage. The higher the value of usage, the darker
the colour of the squares. A similar approach was applied to represent the type of models used as a

semi-formal specification to represent the requirements.

The techniques used are categorised into traceability and analysis approaches. Each technique is
then divided into smaller categories. Traceability is divided into forward- and derived techniques
whilst analysis approach is divided into formal and heuristic analysis techniques. Each formal and
heuristic analysis has its own sub-categories as described in previous sections. Most research uses a
combination of techniques. The semi-formal specifications technique is widely used by most
researchers. We then analysed the model used for the works, applying the semi-formal specification
technique through the heat map representation in Figure 2.9. In addition, from the related works as
well as the analysis, we found that traceability techniques are less often used for consistency
checking work due to the difficulties mentioned. UML diagrams gain more interest by researchers in
checking the consistency. Other models such as Essential Use Cases are not explored, although they
are recognised as beneficial in checking the consistency of requirements and designs and have the
ability to improve the traceability support. Further, most of the research does not have full coverage of
the consistency checking of the requirements but tends to partial consistency checking, which

focuses either only on the consistency of the natural language requirement or the models, or

43

consistency between the natural language requirement and the models. Visual capability such as
highlighting the inconsistency is less used to detect the inconsistency. Almost no research provides
full end-to-end consistency checking support, which means from the natural language requirement to
models and then to the prototype. Most research is mainly for the understanding and responsibility of
requirement engineers and almost none support confirming consistency and validating requirements

from the clients’ side.

2.11 Summary

As described in the previous section, almost no research in managing consistency uses the Essential
Use Case representation. Very little of the research discussed provides full end-to-end consistency
checking support, which means from the natural language requirement to models and then to a
prototype. Most of the work is also just concerned with verifying requirements by requirement

engineers and not by the clients.

Therefore, the aim of the research presented in this thesis is to provide end-to-end support for
checking the consistency of requirements in order to allow both the requirements engineer and the
client to confirm and verify requirements consistency from an early stage of requirement analysis. We
want to have a full coverage of inconsistency checking which is not limited to a partial solution or

partial components to be checked.

We improve traceability by implementing a lightweight approach together with a traceability technique
and semi-formal specification in the form of Essential Use Cases (EUC) models in order to support
consistency checking between the natural language requirement, the EUC model and the prototype.
As identified by Biddle et al. [43], EUC has merits in handling consistency issues and this led us to
demonstrate that EUC provides benefits for inconsistency checking of requirements, although almost

no previous researchers have used EUCs in their consistency checking work.

As a visual approach has not been well explored to detect or notify inconsistencies, we embed our
approach with the visual capability provided by the Marama meta-tool [120] to highlight and notify to

the user warnings regarding the existence of inconsistencies in any requirement component.

The following chapters will describe our approach to achieve our aims of providing end-to-end

support for checking the consistency of requirements.

44

Chapter 3: Motivation and Overview of Our Approach

This chapter describes the motivation of our approach for this research on managing the consistency
of requirements using a semi-formal specification in the form of an Essential Use Case (EUC) model
with traceability management support. As mentioned in Chapter 2, we were motivated to apply EUC
in this work as it provides a fruitful research area for consistency. In this chapter, we study further the
usage of EUC in capturing and modelling requirements. We start with an introduction of EUC in
semi-formally capturing a requirement from a textual user scenario, and then describe an experiment
applying EUC within a group of postgraduate students. The results are analysed and motivated us to
develop a lightweight and end-to-end approach to manage requirements consistency. An overview of
our approach is also described.

3.1 Introduction

At present, when capturing software requirements from clients, requirements engineers often use
some form of natural language, written either by clients or themselves. This forms a human-centric
representation of the requirements accessible to both the engineer and client. However, due to both
the ambiguities and complexities of natural language and the process of capture, these requirements
often have inconsistencies, redundancy, incompleteness and omissions. Therefore, engineers often
use models to represent these informally-expressed requirements which allow for better checking,

analysis and structured representations, ideally leading to engineering higher quality systems.

There are many ways, identified in the previous chapter, to represent software requirements. Most
common practices use some form of structured model. Models for our purpose can be defined as
“simplified representations of a complex reality and actually are forms of abstraction” [121] where the
act of abstraction is a “process of focusing on those features that are essential for the task at hand
and ignoring those that are not” [121]. UML models are a common way of capturing software
requirements [122] especially use case diagrams which are widely used by developers and
requirements engineers to elicit and capture requirements. UML use cases capture functional
requirements and, as applied in software engineering, deal with actor/system interaction [123].
Various studies have determined that eliciting requirements and extracting their use cases can be
arduous and can lead to a rather imprecise analysis [39],[40],[41],[42]. Due to these deficiencies,
Constantine and Lockwood [4, 123] were motivated to develop the Essential Use Case (EUC)
modelling approach to overcome some of these problems. Although the usage of EUCs is not as

widespread as conventional use cases, several researchers have recommended their adoption as

45

their use helps to integrate the requirement engineering and interaction design processes
[39],[43],[44]. Some of the main reasons why EUCs are not commonly used are because of a lack of
tool support, engineers’ lack of experience in extracting essential interactions from requirements and

a lack of integration with other modelling approaches [39],[43].

3.2 Overview of Essential Use Cases (EUCs)

The EUC approach is defined by its creators, Constantine and Lockwood, as a “structured narrative,
expressed in a language of the application domain and of users, comprising a simplified, generalized,
abstract, technology free and independent description of one task or interaction that is complete,
meaningful, and well-defined from the point of view of users in some role or roles in relation to a
system and that embodies the purpose or intentions underlying the interaction” [4]. An EUC takes the
form of a dialogue between the user and the system. The aim is to support better communication
between the developers and the stakeholders via a technology-free model and to assist better
requirements capture. This is achieved by allowing only specific detail that is relevant to the intended
design to be captured [43] . Compared to a conventional UML use case, an equivalent EUC
description is generally shorter and simpler as it only comprises the essential steps (core
requirements) of intrinsic user interest. It contains user intentions and system responsibilities to
document the user/system interaction without the need to describe a user interface in detail. The
abstractions used are more focused towards the steps of the use case rather than narrating the use
case as a whole. A set of essential interactions between user and system are organised into an
interaction sequence. Consequently, an EUC specifies the sequence of the abstract steps and
captures the core part of the requirements [43]. Furthermore, the concept of responsibility in EUC
aims to identify “what the system must do to support the use case” without being concerned about
“how it should be done” [43]. By exploiting the EUC concept of responsibility, a fruitful research area
on the consistency issues between responsibility concepts in requirements and their related designs
is opened, which can potentially be used to improve traceability support. EUCs also benefit the
development process as they fit a “problem-oriented rather than solution—oriented” approach and thus
potentially allow the designers and implementers of the user interface to explore more possibilities
[44]. They also allow more rapid development: by using EUCs, it is not necessary to design an actual

user interface [43].

Figure 3.1 shows an example of a textual natural language requirement (left hand side) and an
example Essential Use Case (right hand side) capturing this requirement (adapted from [123]). On
the left is the textual natural language requirement from which important phrases are extracted

(highlighted). From each of these, a specific key phrase (essential requirement) called an abstract

46

interaction is abstracted and is shown in the Essential Use case on the right as user intentions and
system responsibilities. This assists to abstract the requirements for specific technologies. For
example, the requirement of typing in login information and using biometrics as an identification tool

are transformed to a more abstract expression of requirement called “identify self’.

The use case begins when the customer

U System
goes to the Customer Log-on page. There, ser Responsibilit
Intention
the customer types in his/her name and y

customer ID on the form M\
The system then displays the Tech Support T——____|

1. Identify self

home page with a list of Problem 2 Present help
Categories. The customer clicks ~oR| options

installation help within the list, and the \\‘
3.Select help

system supplies the Incident Re-patm option
The customer completes and submits the —

form, and the system presents W \4.Reque3t
. deription
raanhitinn \

I~A 5.Describe
problem

6.0ffer possible
solutions

Figure 3.1 : (left) Example of Textual Natural Language Requirements and (right) Example
of Essential Use Case (EUC model) [4],[123]

Although EUCs simplify captured requirements compared to conventional UML use -cases,
requirements engineers still face the problem of “finding the correct level of abstraction, which also
takes time and effort” [39]. Requirements engineers need to abstract the essential requirements
(using the EUC concept of abstract interactions) manually. This means understanding the natural
language requirements and then extracting an appropriately abstract essential requirement
embedded in a logical interaction sequence. To understand better the difficulty of achieving this, we
conducted a user study of postgraduate students experienced in requirements elicitation and
observed both their accuracy and time duration in undertaking Essential Use Case analyses

manually.

47

3.3 Applying Essential Use Cases: A Study

Previous research of the EUC approach and practice in their use to model software requirements
have indicated that requirements engineers sometimes have difficulties in identifying the “abstract
interactions” used by EUCs and their sequencing [39]. This observation, while intuitive, is anecdotal.
To obtain a better understanding of these difficulties, we conducted a user study of several
requirements engineers carrying out the extraction of an EUC model from a set of requirements
specified in natural language, in order to observe their performances and experiences in using EUCs.
We used the same requirements as described in [123] and compared the abstracted EUCs in that

work to the results developed by our EUC model developers.

The study participants were 11 post-graduate software engineering students, several of whom had
previously worked in the industry as developers and/or requirements engineers. All were familiar with
UML use case modelling and most had previously used UML use cases to model requirements. None
were familiar with the EUC modelling approach. Each participant was given a brief tutorial on the
EUC approach and some examples of textual natural language requirements and derived EUC
models. Participants were asked to develop an EUC model from the textual natural language
requirements and we tracked the time taken and analysed the accuracy of their resulting models. We
gave them Constantine and Lockwood’s “getting cash” scenario (as shown in figure 3.2), which we
have slightly refined, to analyse. The small refinement was to add a sentence (sentence number 11
from Figure 3.2) to improve the clarity of the scenario to the participants. This is a common template
of user/system interactions common in many web-based systems as well as ATMs and other kiosk-
like systems. Intuitively, the extraction of a set of essential user/system interactions from this example

to form an Essential Use Case structured model of the requirements should be straightforward.

1. The use case begins when the Client inserts an ATM card. The system reads and validates the
information on the card.

2. System prompts for PIN. The client enters PIN. The system validates the PIN.

3. System asks which operation the client wishes to perform. Client selects “Cash withdrawal.”

4. System requests amount. Client enters amount.

5. System requests type. Client selects account type (checking, saving, credit).

6. The system communicates with the ATM network to validate account ID, PIN and availability of
the amount requested.

7. The system asks the client whether he or she wants receipt. This step is performed only if
there is paper left to print the receipt.

8. System asks the client to withdraw the card. Client withdraws card. (This is a security measure
to ensure that clients do not leave their cards in the machine.)

9. System dispenses the requested amount of cash.

10. System prints receipt.

11. Client receive cash.

12. The use case ends.

Figure 3. 2: The scenario “Getting Cash” Refined and Adapted from [4] Used For the

Evaluation

48

© Answers °
% 8 Identify _Verif_y Offer Choose Dispense | Take cash .g E E a
S user identity choices cash FE8E

1 X X X Y Y Y 9

2 Y X Y Y Y X 5

3 X X Y X Y X 10

4 X X X Y Y X 7

5 X Y X X Y X 10

6 X X X Y Y X 7

8 Y X X Y Y X 10
9 Y Y Y X X X 10
10. X X X X Y X 25
1. Y Y X X X Y 10
Total 5 6 4 7 4 7 6 5 9 2 3 8 123

Average time:123/11=11.2

Table 3. 1: EUC Extraction Study Results

Table 3.1 summarises the results of our study. The correctness (Y for correct, x for incorrect) and

time taken were recorded for each person. A correct answer (Y) means that the answer provided by

the participant is the same or very similar to the interaction pattern provided by a library pattern that

we obtained from Constantine and Lockwood [4]. Summarising these results:

1.

47% (i.e. 53% were incorrect).

The number of completely correct EUC interactions (all Ys) = 1 out of 11 or 9.1%

The number of correct interactions that identified (Y) = 31 out of 66 total correct interactions or

The average time taken to accomplish the EUC development task was 11.2 minutes. The

longest time taken was about 25 minutes and the shortest time taken was about 5 minutes, so

there was significant variation in the time taken.

49

Based on these results, participants were more likely to generate incorrect EUC interactions than
correct ones, and very unlikely (9.1%) to produce a completely correct EUC. All but one participant
failed to identify some of the essential interactions present in the natural language requirements;
many failed to assemble these into an appropriate interaction sequence, and only one (participant 7,
highlighted in orange in Table 3.1) managed to obtain a solution which was the same as or very
similar to the model answer of the “getting cash” scenario of Constantine and Lockwood. The root
cause of most problems was that participants tended to incorrectly determine the required level of
abstraction for their essential interactions (the user intentions and system responsibilities of the EUC
model). This is based on observation made as they performed the task as well as analysis of the
incorrect answers provided by them. The study also demonstrates that it was quite time consuming
for participants as they needed to figure out the appropriate keywords that describe each abstract
interaction and to organise them into an appropriate sequence of user intentions and system
responsibilities. We can see that there is a considerable variation in the time taken and also that the
longest time taken does not ensure the correctness of the answer. For example the participant
(participant 10, highlighted in blue in Table 3.1) who took the longest time (25 minutes) to accomplish
the task only provided 1 correct essential interaction characterisation out of 6, a poor result; while one
of the better participants (participant 2, highlighted in yellow in Table 3.1) took only 5 minutes to
produce 4 out 6 correct interactions. Our survey thus supports the anecdotal findings reported by

Biddle et al. [39] with more quantitative evidence.

3.4 Overview of Our Approach

We were quite surprised by the results in the previous section. Many of the participants were
experienced in the industry; they were academic requirements modellers and all were familiar with
and most were experienced in using UML use case modelling. Given this background, we expected
much more accurate modelling of the example requirements using the EUC technique. This study,
while being quite small in nature, does support previous claims about the challenges in extracting
natural language requirements into EUC models [39]. We then studied and evaluated a variety of of
requirements collections in the form of user scenarios or use case descriptions amenable to
modelling as EUCs. The requirements are derived from requirements engineering and software
engineering books, published literature and published information from software developers web
pages as well as some requirements collected from real requirements engineers and business
analysts. From there, we come across various key phrases (essential interactions) for particular
abstract interactions. This has provided us with the motivation to develop an approach and supporting
tool which enables requirements engineers to extract accurate EUC abstract interactions

automatically from textual natural language requirements. This is supported by related literature

50

supporting the need for having an automated tool, We also speculated that our approach could
provide better support to users and developers to work with informal and semi-formal requirements
and keep them consistent. We have developed an automated prototype tool providing authoring
facilities for textual requirements and for checking the consistency of these requirements. This tool
assists requirement engineers and business analysts to check whether their requirements that are

written or collected in natural language are consistent with other analysis and design representations.
We have implemented end-to-end support for consistency checking, using:

the 1) EUC modelling [123], 2) a high level user interface design in the form of low-fidelity prototype-
Essential User Interface (EUI) prototype, 3) a concrete Ul view in the form of a form-based Ul (HTML
page) as our semi-formal models. This was due firstly to their appeal as representations [10] that
developers and end users could work with and secondly to limited research done to date investigating
consistency issues with these representations and natural language requirement [43]. In addition, EUI
pattern support is developed to allow reusability of the Ul component and to enhance the accuracy of
mapping the EUC model to the EUI prototype.

In order to support this concept, we have developed a traceability technique: this allows the elements
of the textual natural language requirements written in a form of user-scenarios and Essential Use
Case requirements, and Ul prototypes to be kept consistent with one another. We believe that
supporting this traceability will allow us to better detect and manage inter-specification
inconsistencies and also enable developers and users to work more effectively with different models
of requirements. We embed our consistency management and tracing tool within the Eclipse-based
Marama meta-tool environment [120] in order to help to provide visual capability in detecting any

inconsistency.

To support requirements analysis in improving requirements completeness and quality,
complementary work is done in the collection and categorisation of terminology from different case
studies and scenarios. For now, we have more that 15 scenarios and case studies which contribute to
nearly 360 patterns of essential interactions and almost 80 patterns of abstract interactions. These
are discussed in detail in the next chapter. This provides a library of essential interaction patterns and
EUC interaction patterns which are reusable. They are also able to support various domains and
assist engineers in finding appropriate abstract interactions for designing the EUCs for a system. A
visual differencing approach is applied together with the essential interactions and EUC interaction
patterns to improve the requirements quality such as the completeness and correctness. Figure 3.3

shows an example of our proposed approach.

51

Essential Use

Natural Case

Langpage requirements

Library —

Library — Essential

Essential . .
interaction pattern

interactio and EUC interaction

pattern

ssential User Library — Form
interface (EUT) EURpatiem based UI-
prototype template HTML

Figure 3. 3: Overview of Our Requirements Consistency with End-to-End Support using

EUC and a Traceability Management Approach

The processes of the outline approach are:

l. Firstly, textual natural language requirements in a form of user scenario of a use case usage
(1) are analysed using a database of essential interactions (2). Phrases from textual natural
language requirement are analysed and matched with the essential interaction pattern library
to find an appropriate abstract interaction. For example; the phrases “display error” and
“display incorrect error page” are mapped to abstract interaction “display error”.

Il. Then, Essential Use Case (EUC) Models are generated (3). A list of abstract interactions
provided by the essential interaction pattern library is then mapped to EUC using the
mapping engine to categorize each abstract interaction as either a user intention or system
responsibility. Examples of related abstract interaction and two categories are shown in table
3.2 below. Each abstract interaction is then organised in a sequence of interactions as an
EUC as shown in table 3.3.

Abstract interaction Category
Request identification System responsibility
Identify self User intention

Table 3. 2: Example of Abstract Interaction and its Related Category

52

User intention System responsibility

1. Request identification

2. Identify self
Table 3. 3: Example of EUC Model Generated

The user may select any abstract interaction of the EUC and see the originating textual
natural language elements (4). The user, a requirements engineer or end user, may also
change elements in the EUC model or textual natural language or the list of abstract
interaction requirements and see the impact of the change in the other model (4).

An analysis tool (5) uses a set of essential interactions and EUC interaction patterns to
determine if an extracted EUC model is complete, consistent and correct according to
acceptable patterns of essential interactions in the essential interaction pattern library and
EUC interaction pattern library. A generated EUC model generated will be compared with the
available “best-practice” template based on the specific domains of EUC interactions stored
in the library.

Further extractors (6) map the EUC model to a low-fidelity prototype called as Essential User
Interface (EUI) prototype, which is also a high level form of design (7). This is derived from
the Essential Use Case requirements model with the support of the EUI pattern library. The
EUI prototype can also be transformed to a concrete Ul view as an HTML form-based Ul (8)
with the support of the EUI pattern template library. Some examples from the EUI pattern
library are shown in Table 3.4. Overall, the approach supports end-to-end rapid prototyping
with traceability and inter-model change management between textual natural language

requirements and EUC models (4) and the EUI prototype.

EUI pattern EUI pattern Abstract interaction of
category EUC model
List of options List Choose
offer choice
select option
Display payment Display validate payment
show payment
ID Input identify self
request identification
Help Action Ask help
present solution

Table 3. 4: Example of EUI Pattern Library for EUI prototype

53

3.5 Summary

We have described the use of Essential Use Case models in capturing and checking the
inconsistency of requirements. Problems such as lack of tool support, engineers’ lack of experience in
extracting essential interactions from requirements, and a lack of integration with other modelling
approaches [39],[43] have motivated us to come up with a lightweight approach and tool support to
extract the textual natural language requirement to a semi-formal model - an Essential Use Case. An
essential interaction library is produced to support this process. This initial step in our goal of
providing end-to-end support for requirement consistency is described in more detail in the next

chapter.

54

Chapter 4: Essential Interaction Extraction

This chapter describes in detail our approach to capturing natural language requirements. It extends
the previous chapter to describe the extraction of the essential interactions approach and the
essential interaction library that we used to enhance the accuracy of essential requirements (abstract

interactions) for the EUC model.

4.1 Introduction

A number of studies have shown the difficulty of using a heavyweight Natural Language Processing
(NLP) tool which includes the use of sentiment and semantic analysis, parser, complex classifier and
complex analysis of NLP and formal method techniques in dealing with and analysing natural
language requirements. They have also shown that the results of such approaches are often
imprecise and inconsistent [124],[36],[34]. Consequently we decided NOT to use any such approach
to extract the essential interaction. Instead of using conventional NLP-based approaches, we adopted
a more domain-specific approach. Extracting EUC essential interactions from textual natural
language requirements constrains the problem domain to a set of suitable interaction descriptions.
This means we chose to develop a library of “proven” essential interactions expressed as textual
phrases, phrase variants and limited regular expressions. This library of essential interactions
contains abstract interaction patterns that were developed from a collection of such patterns
previously identified by Constantine and Lockwood [4] and Biddle et al. [39] together with patterns

that were developed by us, which are all applicable across various domains.

Each essential interaction pattern in the library was also associated with a collection of alternative
sequences of textual natural language requirement phrases that could match the pattern. Each of
these sequences relates to a more concrete version of the abstract interaction pattern. The textual
natural language requirements were then analysed by matching them against the concrete versions,
looking for a good match. Abstraction can then be undertaken by creating an instance of the more
abstract interaction pattern associated with the concrete one. The matching process used is similar to
the process of keyword searching. Collectively, this provides a more lightweight approach to analyse
the natural language requirements than NLP approaches, which is thus able to provide a set of
meaningful abstract interactions to the requirement engineer. The abstract interaction patterns can be
added in order to improve our ability to recognise essential interactions in textual natural language
requirements. We can also segment the library into different patterns for different application domains
as patterns are also commonly used for expressing reusable design. By using the patterns, the user

will be more likely to get the outcomes right and so to acquire sensible EUCs. This contrasts with the

55

results from the preliminary study reported in the Chapter 3, where most users tended to provide

wrong answers rather than right answers.

After extracting a set of candidate essential interaction phrases and assembling them into a candidate
sequence of abstract interactions, the requirement engineer is presented with a list of interactions
with the original textual natural requirements juxtaposed on the screen. The engineer can then
selects abstract interactions and see from where the textual natural language requirements were
derived, or vice versa. The engineer can move interactions and add or delete interactions. A limited
update of the textual natural language requirement is also supported. The engineer can modify the
natural textual natural language requirement and see the impact on the re-extracted essential

interactions. An Essential Use Case visualisation is also provided, conforming to Constantine and

Lockwood'’s [4] approach. It can also be edited with a limited update of the essential interactions from
which it was derived and consequently the textual natural language requirement phrases. An update
of the textual natural language requirement results in an update of the extracted essential interactions

and Essential Use Case models.

1
3 .
Natural Language Extracti Es;entla.l Use (tjase
Requirements xraceon :> equirements
2
4 Library — essential

interaction pattern

Highlight;
change

Figure 4. 1: Our Essential interaction extraction approach

Figure 4.1 illustrates this extraction/trace-forward/trace-back process that we provide to requirements
engineers.
l. Textual natural language expressed requirements (1) are fed through an extraction process

(2) which uses a library of essential interaction phrases and expressions, producing a

sequence of EUC essential requirements.

Il. The engineer can select items in the textual natural language requirements of EUC

interactions (3) and see corresponding items (4).

56

4.2 Essential Interaction Pattern Library

In order to facilitate the extraction process, we have developed an essential interaction pattern library
for storing all the essential interactions and abstract interactions. The essential interaction pattern
library is based on a collection of phrases that illustrate the function or behaviour of a system. The
collection of phrases is then categorised, based on its related or associated abstract interaction. We
have collected and categorised phrases from a wide variety of textual natural language requirements
documents available to us and stored them as essential interactions. Currently, we have collected
approximately over 360 phrases from various requirement domains including online booking, online
banking, mobile systems related to making and receiving calls, online election systems, online
business, online registration and e-commerce.. The collection and categorisation of the phrases is an
on-going process. Based on these phrases, we have come up with close to 80 patterns of abstract
interaction. On average, there are 4.5 phrases or essential interactions associated with each abstract
interaction. For example the abstract interaction “display error’ is associated with four different
essential interactions: “display time out”, “show error”, “display error message” and “show problem
list”. The essential interactions were not categorised based on one scenario. They have associations
with five different concrete scenarios such as online business, e-commerce, online booking, online
banking and an online voting system. This example shows that one particular abstract interaction can
be associated with multiple concrete scenarios. Table 4.1, below, shows other examples of abstract

interaction and its associated essential interactions for various domains of application.

57

Abstract interaction

Essential interaction

Example of Domains

Verify user verify customer credential | Online banking, online booking, online
business, e-commerce, online reservation
verify customer id Online banking, online booking, online
business, e-commerce, online reservation
verify username Online banking, online booking, online
business, e-commerce, online voting system,
online reservation
check the username Online banking, online booking, online
business, e-commerce, online voting system,
online reservation
check the password Online banking, online booking, online
business, e-commerce, online voting system,
online reservation
Ask help help desk Online banking, online booking, online
business, e-commerce, online reservation
request for help Online banking, online booking, online
business, e-commerce, online voting system,
mobile system, online reservation
ask for help Online banking, online booking, online
business, e-commerce, online voting system,
online reservation
clicks help Online banking, online booking, online
business, e-commerce, online voting system,
online reservation
complete help form Online banking, online booking, online
business, e-commerce, online voting system,
online reservation
Offer choice prompt for amount Online booking, online banking, online
business, e-commerce
display account menu Online banking
display transaction menu | Online banking
display select function Online banking, online booking, online

business, e-commerce, online voting system,
mobile system, online reservation

display menu

Online banking, online booking, online
business, e-commerce, online voting system,
mobile system, online reservation

Table 4. 1: Example of Abstract Interactions and their Associated Essential Interaction and

Their Related Domains

58

In order to store the essential interactions in the essential interaction pattern library, selected phrases
(“key textual structures”) are extracted from the textual natural language requirement, based on their
sentence structure. The ‘key textual structure” uses Verb-Phrases (VP) and Noun-Phrases (NP) in
the sentence structures to categorise the essential interactions. Any phrases that follow this structure
will be acceptable as an essential interaction in the essential interaction pattern library. The tree

structure of the key textual structure is illustrated in Figure 4.2.

Sentence

PN

Verb Phrase(VP) Noun Phrase (NP)

d

(None)/ Noun
Articles/Adjective

Figure 4. 2: Tree Structure for Key Textual Phrase

The tree structure in Figure 4.2 shows that our library has three different sentence structures, based
on the location of the Verb Phrase (VP) and Noun Phrase (NP). The Noun Phrase can contain

structure elements such as Articles (ART) and Adjectives (ADJ) or only Nouns (Noun).
The three different sentence structures are;

I. Verb (V) + Noun (N) (only) e.g. request (V) amount (N)
II. Verb (V) + Articles (ART)+ Noun (N) e.g. issue (V) a (ART) receipt (N)

Il. Verb (V) + Adjective (ADJ)+ Noun (N) e.g. ask (V) which (ADJ) operation (N)

This key textual structure aims to provide flexibility in the library’s ability to accommodate various
types of sentences containing abstract interactions. With this, a broad range of phrase options can be
extracted by the tracing engine, while still affording a lightweight implementation using string
manipulation and some regular expression matching. Some examples of phrases stored in the
essential interaction pattern library following the key textual structure are shown in Table 4.2. For
now, we have performed this essential interaction pattern library development manually and plan for

an automated approach in the future.

59

phrases abstract interaction
identifies which item select item
\ view the order details | view detail
creates a receipt print
request for help ask help

Table 4. 2: Example of Essential Interaction and its Associated Abstract Interaction stored

in the Essential Interaction Pattern Library

4.3 Tool Support

We have developed a prototype EUC essential interaction extraction tool based on the approach
outlined in the previous section. The idea is for requirement engineers to use the tool to do an initial
essential interaction extraction from textual natural language requirements, producing an initial EUC
model. Selecting phrases in the textual requirements shows the resulting extracted essential
interactions. Selecting essential interaction(s) shows the textual natural language phrase(s) the
essential interactions were derived from. This provides a traceability support mechanism between

textual natural language requirements and derived EUC models.

The engineer can then modify the resultant EUC model and/or the original textual natural language
requirements. This includes adding phrases and interactions, re-ordering phrases and interactions,
deleting phrases and interactions and modifying phrases and interactions’ descriptive texts. The
engineer then re-extracts the essential interactions and associated traceability links. Engineers can
add new essential interaction phrases to their library or even develop different essential interaction
libraries for different problem domains. The former allows our tool to improve its extraction support for
users over time and the latter allows specific domain interaction patterns to be used. Guidelines for
using the tool and the patterns are also provided. Engineers do need to have an understanding of the

Essential Use Case concept and methodology before using the tool.

4.3.1 Tool Process

The framework for extraction, trace-forward and trace-back between the abstract interactions from the
textual natural language requirements and vice versa is illustrated in Figure 4.3. We use the scenario
of “getting cash”, a similar scenario illustrated in the previous chapter as an example of extracting
textual natural language requirements to Essential Use Cases. The tracing engine searches for key
textual phrases (typically verb-noun phrases, such as “withdraw cash” or “request amount”) contained
in the library within the textual requirements. Having identified such matching phrases, it looks for

orderings of these within the requirements that match orderings in the library associated with

60

particular EUC interaction specifications. For example, in Figure 4.3 (1), the phrases “insert an ATM
card” and “client enters PIN” are both associated, in that order, with the “identify self’ abstract
interaction. Having identified such essential interactions, the tracing engine instantiates the abstract
interaction into the EUC model (to the right in Figure 4.3) and associates it with the identified key
phrases in the textual requirements. This association allows trace-forward or trace-back to be
supported with appropriate matching elements, highlighted in the other view when key phrases or
abstract interactions are selected. This not only supports traceability between textual natural
language and EUC model elements but also assists engineers and clients in understanding the
quality of the requirements. For example, phrases with missing interactions and incomplete
interaction sequences can be seen, interactions or interaction sequences with incomplete textual
phrases or ordering/structure in natural language identified, and EUC models with inconsistencies or

incompleteness, such as missing system responses to user requests, highlighted.

Example: Getting cash [9]
1. The use case begins when the Client insert an AWM card.
The system reads and wvalidates the information on card.
- System prompts for pin. The client ent: PIN. The system
validates the Plk\
3. System asks which gperation the client wishe orm.

Client selects “Cash withdrawal &=~ —————— - 1
3
4. System request ¥mounts. Client enters ami

List of abstract interactions
1 Identify self

2. Verify identity
3. Offer choice
o1

2

. choose
— 3 dispense cash
6. Take cash

— -«
System request Type. Client selects account type (checking,

4
saving, cledits)
'
6. The system communicates with the ATM network to
walidate account ID, PIN and availability of the amount

w

requested.
7. The system asks the client whether he or she w:

This step 1s performed only if there 1s paper 1
receipt.

10. System prints receipt.
11. Client receive cash

12. The use case ends.

Figure 4. 3: An example of performing an essential interaction extraction to a EUC model

and supporting trace-forward/trace-back

61

4.3.2 Tool Example

We have developed a prototype automated extraction and tracing tool in order to reduce the time

taken to generate abstract interactions and increase the correctness level of each specific abstract

interaction. Several screen dumps of the tool in use are shown in Figure 4.4.

Al the traceback wil display here.

=10l

Al the traceback will display here.

i The uze caseneilns ‘when the Client insertan ATM card The s'pstem reads and validales the |nf: ft The use case beging when the Client Insert an ATM card. The system reads and valldates the inf +
2 Systern prompts for pin. The client entérs PIN. The systerm validates the PIN, R Sysbern prompls Tor pin. Thi client anters PIN, The systim validates the PIN
3 Systern asks which operation the client wishes to perform. Cllent selects “Cash withdra 3 System asks which operation the cllent wishes 1o perform. Client selects “Cash withdrawal *
Systerm request amounts. CHent énters amount “ Syaberm request amounts. Client enters amount
Syslern raquest iype. Client selacts account bype (checking, saving, cradis) 55 System requesttype. Client selects account fype (checking, saving, credits)
The sysiem communicates with the ATH netwark 1o validate account 10, PIN and avallabilty ofthd (| & Thie Syslern communicates with thi ATM network 10 validate account D, PIN and avadability ofth
7 The systerm asks the cent whather he or she wanis receipt This step is performed only ifhere | || 7. The sysiem asks the client whether he or she wanis receipt This step is performed only if there |
Sysiem asks [na ci\e nn Mlhd!iwlhe cald fllenlwndraws tam (Tm; \s secum,' measu!e 1o a,.] System asks the client o withdraw the card. Client withdraws card, (This is securlly measureio e.
(| - 1) |3] I vl
idintify self
iy idenility
OfTeT Chiici:
choose
dispense cash

IlIrace!|Il|)ﬂ1.|SM|:W|[E1.I|_Ilacem= |1rm‘|ml|ml|nm|w|1mm|
B 1racing Engine N =101 x|
1. The use case begins when the Client insert an ATM card. The systemn 3 s and the infor on
the card. 2. System prompts for pin. The client enters PIN. The systemy [res the PIN. 3. System asks which
operation the client wishes to perform. Client selects "Cash withdr st ¥ Client
enters . 5. Syst L type. Client type (ch saving, credils) 6. The system
communicates with the ATM Kto 1D, PIN and of the 7. The

System asks the client whether he or she wants receipt. This step is performed only it there IS paper left to
print the receipt. 8. System asks the client to withdraw the card. Cliemt withdraws card. (This is security

measure to ensure that clients do not leave their cards in the

ya. the 1 :

amount of cash. 10. Svslum prints receipt. 11. Client receive cash 12. The use case ands.

Ei. The svstem commumcatas wllrl the ATM network to validate acc oun't ID PIN anﬂ availability of th
7 The systermn asks the client whether he or she wanls receipt, This step ts pemormed only it there |
3 Systern asks the client to withdraw the card. Client withdraws card. (This is security measure to
= Systern dispenses the requested amount of cash.

10 System prints recaipt

11 Cliant recaive cash

12, The usa case ends.

<] I I g |
identity sell
verily identity
offer choice
choose

dispense cash

Trace

| mport][sove][roset]

[Exit || TraceBack

Figure 4. 4: Our Automated

Tracing Tool

62

The tool processes are:

VI

Textual natural language requirements are written in the textual authoring tool (1). The textual
natural language requirements are expressed in natural language phrases. These may
include headings, numbered items and bullet points as well as sentences. In this example, for
clarity we used a numbered list of sentences. However, in general, the textual natural
language requirements can contain other layouts (e.g. paragraphs) as appropriate. The
requirement engineer can author this textual natural language requirement either in our
authoring tool or in any external word processor, or can extract the text from an existing

document such as Text File, PDF, Word, and Power Point files.

A list of corresponding essential requirements (abstract interactions) is generated

automatically as shown in (2) using the button “Trace”.

Users can trace back each abstract interaction to the corresponding textual requirements

phrases as shown in (3) using the button “Trace Back”.

The engineer then asks the tool to extract all recognised EUC “essential interactions”
expressed in the textual natural language requirements, using an essential interaction pattern

library. The extracted essential interactions are shown in sequence as recognised in the text

(2).

Depending on the complexity of the submitted requirements text, several EUC interaction
sequences, or Essential Use Cases, may be recognised. These can be divided or
represented as a collection of EUCs. We used a listing of these essential interaction phrases.
These can be represented as an EUC model with user intention/system responsibility

divisions using Constantine & Lockwood'’s [4] approach if desired.

Users can interact with either the textual natural language requirement segments or the
essential interactions extracted, in order to trace between the textual phrases and the
essential interactions. Essentially, this provides a traceability mechanism between each
abstract interaction to the corresponding textual natural language requirements phrases, as
shown in the example of highlighting in (3). This tracing process helps requirements
engineers to check for correctness, completeness and consistency of the requirements.
Phrases with missing EUC essential interactions may be incorrect or incomplete. Phrases
with too many corresponding essential interactions may be imprecise. A sequence of
essential interactions with phrases in different parts of the textual requirements may mean
the text requirements are out of order. A sequence of essential interactions that is incomplete
or redundant may mean the textual natural language requirements have inconsistencies or

undue repetition.

63

4.4 Evaluation

We carried out an evaluation of our automated tracing tool in order to compare its accuracy and
performance with the manual extractions undertaken by our original EUC extraction study
participants, described in Chapter 3. In addition, these same participants were asked to use and
evaluate the automated tracing tool using the same scenario as before immediately after they had
finished the manual study. They were also told about this evaluation before they started the first
study. They were also told about this evaluation before they started the first study. Each participant
was given a brief tutorial on how to use the tool and some examples of how the traceability provided
by the tool is able to extract the abstract interaction from a set of textual natural language
requirements and to identify its associated essential interaction. They then explored the traceability
and extracted the abstract interaction for the scenario of “getting cash” which was illustrated in the
previous chapter. We then surveyed them to gain their perceptions of the tool’s usefulness and ease
of use for the extraction and tracing tasks evaluated. We also asked for their open feedback on the
tool’s features and performance. The survey consisted of three questions for each question block of
usefulness and ease of use. A five-part Likert scale was used for each question. For each
characteristic, the results of each corresponding block were averaged to produce the results shown in
Figures 4.5 and 4.6. The type of questions for each characteristic is in Table 4.3. The participants’

open feedback is shown in Table 4.4,

User Perception Characteristics Questions

Usefulness The tool is useful in finding the abstract interaction.

The tool helps me to be more effective in extracting
the textual natural language requirement to the

Abstract interaction.

It is easier to capture the core requirement by using
the automated tracing tool compared to the manual

extraction

Ease of Use It is easy to use.

It is user friendly.

| don’t notice any inconsistencies as | use the tool.

Table 4. 3: User Perception Characteristics and Questions Evaluating Them

64

Participants Feedback

1. “The tool is easy to use but not interesting.”

2. “The tool can enhance the ability by selecting all abstract interactions and then
trace back.”

B! “The tool is easy but | think it will have constraints with the database.”

4. “Limited coverage of phrases”

5. “Hope tool can have more interactive visual; for example colours and shapes”

6 “OK.”

7. “Easy to use and easy to understand.”

8. “ More data set for library”

9. “It supports any size of files and brings fast results.”

10. None

11. “The library needs enhancement as it does not support certain phrases and
words”

Table 4. 4: Participants Open Feedback

The results of the participant survey of the tool usefulness and ease of use are shown in Figures 4.5

and 4.6 respectively. All eleven participants found that the tool was either very useful (85%) or always

useful (15%) for generating and tracing the list of abstract interaction. However, in qualitative

feedback, most participants wanted the interaction pattern library to support a broader set of domains

in the future.

65

Usefulness

Bveryuseful malways useful

always useful 1

very useful 85

0 20 40 60 80 100

Figure 4. 5: The Tool Usefulness Results

Ease of Use

Bveryeasy Malwayseasy W

always easy 13(5%

very easy 86.5%

0 20 40 60 80 100

Figure 4. 6: The tool Ease of Use Results

The results in Table 4.5 compare the accuracy of the automated tracing tool against the previous
results for manual extraction. The tool succeeded in identifying almost all the abstract interactions,
failing to detect one abstract interaction, providing an accuracy of almost double the participants’
average and better than all but one of the participants’ accuracy. The correctness ratio for manual
extraction is only 47% and the automated tracing tool provides 83%. The single error from the tool is
because of its failure to detect one of the abstract interactions (Take Cash). The automated extraction
process took just over one second to execute in comparison with the 11.2 minutes average taken by

the manual study participants.

66

No. Correct answers No. Wrong answers
Answers Manual extraction Automated Manual extraction Automated
Tracing Tracing
Identify user 5 1 6 0
Verify Identity 4 1 7 0
Offer cash 4 1 7 0
Choose 6 1 5 0
Dispense cash 9 1 2 0
Take cash 3 0 8 1
Correctness 47% 83% 53% 17%
ratio

Table 4. 5: Comparison result of correctness between Manual extraction (previous chapter)

and Automated Tracing Tool

To further investigate the utility of our tool, we evaluated its accuracy when applied to 15 use case
scenarios in different domains derived from different researchers, developers and ourselves: Online
CD catalogue, Cellular phone [23], Voter registration [125] Cash withdrawal [126], Online book [127],
Checkout book (library) [2], Seminar Enrolment [4], Transfer transaction [126], Deposit transaction
[126], Assign report problem [128], Create problem report [128], Report problem [128], Booking room
[129] and Place order [130]. The tool correctness was evaluated by comparing the answers with the
actual interaction pattern provided in the source pattern documents that was developed by
Constantine and Lockwood [4], Biddle et al. [39] and also with patterns developed by us following
Constantine and Lockwood’s methodology. The correct or similar results provided by the tool are
calculated and averaged with the actual interaction pattern provided for a particular scenario. The
comparison result is then valued with a ratio of maximum 1. The evaluation results are shown in
Figure 4.7.

67

Automated Tool Accuracy
o 0% AN - \
S 07 N\ pd \ / \ i ~—
g 04 v
03
g 01
0
N m— AnSwers
N ,§:‘\ & & S & S F
c’s@. &L L & Q\‘O‘ c}\é\ & &S & & q}@ e,&
LY &8 &
(,j-'b \\&'b & 0‘2& @‘% 0":‘0 0&3" Ke.é <242 OC"Q \O\Qj‘(\ o("Q \Q&' N
\\{\ & & e 9 e s@:‘ I3 R &L R "\\%
N & & S & & P& @Q I
%Cl- 3 «(b 0@ ‘,\Qo o P
o)
Scenarios{requirement)

Figure 4. 7: Accuracy across different scenarios

Figure 4.7 shows the correctness ratio for the automated tracing tool for each scenario. This shows
some variability across the range of scenarios, but the average correctness across all scenarios and
interactions is approximately 80%, so the “getting cash” scenario used in the earlier evaluation was
not atypical. The automated tracing tool does not (and cannot) produce 100% correct answers due to
the incorrectness and incompleteness issue of textual requirements. The correctness and
incompleteness issue is related to various linguistic issues, such as phrases or sentences using a
passive pattern, parentheses’ existence such as {,,[,],/,;\ and grammar issues such as plural, singular,
adjective or adverb issues[134]. These problems, however, also lead requirement engineers to
misunderstand requirements and can be one of the reasons why different requirement engineers or

users provide inconsistent results.

For example, our automated tracing tool did not derive a completely correct EUC interaction for the
scenario “Getting Cash” because the grammar used in the sentences of the textual natural language
requirements was incorrect. The phrase “receive cash” from sentence number 11: “Client receive
cash” is not readable by the tool as in the database, it is stored as “receives cash”. This problem can
be improved either by giving guidelines to users for writing a good requirements document or allowing
the library to be expanded to accept grammatically incorrect sentences for patterns that correspond to
common grammatical errors. Additionally, we have experimented with using simple regular
expressions in the essential interaction pattern repository e.g. “receive{s} cash”, indicating it should
have an ‘s’ but may accept without. This, however, complicates both the library phrase representation

and the authoring.

68

Using our tool, requirements engineers will notice that the “receive cash” phrase in the textual
requirements does not have any corresponding essential interaction phrase(s). Alternatively, they will
see an incomplete interaction sequence between the user and the system where no response is
provided to a user submission by the system in the EUC model extracted and visualised. In our
Eclipse-based prototype described in chapter 5, we have experimented with adding checking for such
apparent inconsistencies between requirement texts and essential interactions. This is also
complicated by textual natural language requirements, typically having portions of texts that do not
correspond directly to the interactions such as headings, introductory or concluding remarks,

comments, and example input/output data.

Overall, our automated tracing tool still has several limitations. Firstly, it is stand-alone and does not
integrate with other requirement or software engineering tools. This causes the tool to appear to
have fewer benefits to the user. Next, it also has limited visual interface or aspects which lead the
user to not understand well the process and the usage of the tool. In addition, the tool has constraints
with the database of the interaction pattern library. The database needs enhancement with more

phrases from a broader set of domains.

4.5 Summary

We have discussed our approach in extracting essential interactions using a more lightweight
approach. We have developed an automated prototype EUC essential interaction extraction and
tracing tool. The key aims of our tool were to support EUC by extracting the essential requirements
(abstract interactions) automatically and to facilitate tracing between EUC and textual natural
language requirements to assist engineers in identifying and managing inconsistencies and
incompleteness. Another aspect of our research involved collecting and categorising terminology for
the library of abstract interactions. This both assists in structuring EUC expressed requirements using
common terminology and also helps prevent the textual natural language requirements from being
vague and error-prone, by tracing back from the EUC-structured representations to the textual natural

language requirement phrases.

We have evaluated our prototype tool using the same group of participants that we used for the
manual extraction survey described in the previous chapter. The participants evaluated the tool’s
usefulness and ease of use with promising results. This confirms other researchers’ claims about the
importance of having tool support for engineers working with EUC models. Our results found that
such automated extraction and the tracing tool appear to increase the ratio of correctness in

extracting EUC requirements from textual natural language requirements and ease the effort of users

69

or requirement engineers in handling the EUC, significantly reducing the time taken to develop EUC

models from textual natural language requirements.

This is the first phase of our incremental work. The next phase, described in the following chapter,
focuses on embedding our extraction approach into an integrated EUC Diagram tool (Marama
Essential) which was developed using the Marama meta tool [120], to overcome the problems faced
in our current tool, and managing the consistency of requirements by adding more support for
inconsistency detection using our extraction approach and round-trip engineering of natural language
and EUC model requirements.

70

Chapter 5: Managing Requirements Consistency

This chapter describes our approach to improving the consistency management of requirements by
embedding our automated tracing tool, as discussed in the previous chapter, in the Marama Meta tool
[120] together with additional support for inconsistency detection using our extraction approach and
round-trip engineering of natural language and EUC model requirements. To enhance consistency

management, traceability and visualisation capability are applied.

5.1 Introduction

Consistency management between different artefacts in software engineering has been recognised
as vital for many years [27],[33],[131],[132]. Consistency management between formal requirement
specifications and architecture and design models has been investigated, especially in the
Requirement Engineering domain [29],[26]. Similarly, several approaches have been developed to try
to determine inconsistencies between natural language descriptions of requirements and formalised
models of requirements [27],[34]. Some techniques have been developed to support the correction of
inconsistencies such as the use of repair operations [76]. Detecting inconsistencies may or may not
require immediate correction. Living with inconsistency requires the management of inconsistencies
over time: this provides more flexibility in the development process [22]. Correcting inconsistencies
and providing appropriate tool support to detect, present and manage these inconsistencies are

identified as being challenging [133].

5.2 Managing the consistency

We have devised another approach that is applied together with a traceability technique to help
support consistency management between textual natural language requirements and the EUC
model. This work focuses on managing the essential interaction requirements to capture the
functional requirements of a system. We have created an “essential interaction” phrase library from
the collection and the categorisation of requirements from different domains and scenarios as
described in Chapter 4. Phrases have been extracted and stored in this library and are used to match
corresponding phrases in textual natural language requirements. The extracted phrases are further
mapped to specific abstract interactions. Each abstract interaction is classified as a user intention or a

system responsibility. The derived essential use case elements can be traced back to their originating

71

natural language requirements phrases and vice-versa. We embed this extraction and tracing support
into an Essential Use Case editing tool that we have developed using the Marama meta-tool platform
[120] . This provides an environment in which requirements engineers have the ability to extract and
then generate candidate diagrammatic EUCs automatically from requirements expressed in textual
natural language. Consistency management support is then provided between these textually-
expressed requirements, a derived set of structured abstract interaction and semi-formal
diagrammatic EUCs. Requirements engineers can move between different requirement forms, using
the traceability relationships preserved during the extraction and generation processes. They can
modify any one of the requirement forms from the informal textual natural language to the semi-formal
EUC diagrams. The environment will attempt to update the other forms and/or indicate resultant

inconsistencies.

The framework for extracting the requirements, mapping the types of interaction and creating the
EUC model is shown in Figure 5.1. This illustrates the extraction of a set of abstract interactions from
the textual natural language requirements. The library of abstract interaction phrases is used by a
“trace engine” to analyse the text for matches and a set of candidate abstract interactions generated
(1). A “mapping engine” then uses a database of essential interaction to structure the interactions into
an EUC model (2). The mapping engine then generates a diagrammatic representation of the
Essential Use Case (3) which represents the dialogue occurring between the user and the system.
The traceability relationships among elements in the textual natural language requirements model,
the extracted essential interactions model and the diagrammatic EUC model are preserved and can
be used to support traceability between the three forms of requirements and to check for
inconsistencies among them. Examples of inconsistencies are elements identified in one form but not
in another, inconsistent naming, the ordering or properties of elements and duplicated or partially

duplicated phrases or elements.

72

EUC diagram 3
User Interticn pstetn R
Voter registration
Select option Recguest identificelion
. . List of Abstract
1.Voter loads EVote system is online Tnt o
e . nteraction
2.Voter selects voter registration option ! 2
3 EVote system asks for name 2 sn%ﬁej\ 1 Select
security number, date of birth addre! 0' tion
4.Voter provides name 3, social seculity P Manpi User Intention System Responsibility
number, date nfbinh,addrzss,\ 2 Request apptng N o s
5.EVote system checks Voter status * Ldentificati engine dertify s s
6.Eyote System generates Voter login idg’ enttheation
and password. \ .
_Identify user
1.a.After 60 sec fy
1.a. EVote system displays time out «‘gg{
s 4. Check status
2.a. After 60 sec
2.a,1. EVote system displays time out pa; \5 Provides System Responsibility
3.3 After 60 sec X
b i i i Providesidentification
3.a,]1 EVote system displays time opf page identification lfiﬁql-lﬂfil System -
identification Responsibility
R . . _Display Tdentify self User Intention
3.2 Voter data is not in reco ! R =
: . ec] s stem
3al Evore System plays incorrect etror “y . l
information eror page®’ select option User Intention System Resporsibitty
Provides System
Identification Responsibility Disgley enrar
Display error System

Figure 5. 1: Framework for Extracting Requirement (1) Mapping interactions (2) and
Creating the EUC Automatically (3)

5.3 Tool Support

Based on the framework in Figure 5.1, we have developed an Automated Inconsistency Checker,
MaramaAl, together with an EUC diagram editor, Marama Essential. This work provides support to
EUC users and requirements engineers for capturing requirements, designing and generating EUCs
automatically and minimising the time to develop them from source textual natural language
requirements. This increases the correctness of the abstract interactions produced. In addition, this
automated tool helps to lessen the need for human intervention in capturing requirements and
checking the consistency of software requirements. The tool provides consistency checking and
notification support, allowing requirements engineers to modify any of the three forms of requirements
in the tool. Any new abstract interaction or EUC component can be inserted and updated. These
changes will trigger the tool to automatically perform consistency checking. In addition, the textual
natural language requirements can also be added, modified or deleted. For this, the tool will only
perform consistency checking after the requirements engineer invokes the event handler. The event
handlers are explained in detail in a later section. We used the Marama meta-toolset [120], a set of
Eclipse IDE plug-ins, to develop our MaramaAl prototype. MaramaAl allows traceability to be
interactively visualised in the textual natural language requirements, abstract interaction and EUCs.
Further, any requirements that are inconsistent and incomplete can be highlighted to the user and a

warning is provided. The tool also comprises a glossary and set of guidelines adapted from [134] to

73

assist users to write correct and complete EUC-based requirements. We do not use all the guidelines
as they contain many conditions which might constrain the description of requirements. The
implementation of all guidelines is also quite difficult for this proof of concept phase and so we have
deferred full implementation to future work.We only adopt the common guidelines that all sentences
must be in active not passive voice , and that the written requirements should avoid the use of
brackets or parentheses [134]. It is believed that parentheses and brackets can lead to ambiguity and
interpretation problems for the contents of the requirements as they may lead to uncertain numbers of
requirements in the sentences [134]. This is also to overcome the problems faced by our previous
automated tracing tool in handling grammar and the parentheses issue revealed by the study outlined
in Chapter 4. That study concerned the accuracy in terms of correctness of the abstract interaction
provided by our automated extraction feature, using the interaction patterns provided by the library
based on the collection of patterns from Constantine and Lockwood [4], Biddle et al. [39], and
patterns developed by us. The results show that the incorrectness and incompleteness of textual
natural language requirements seriously affect the ability to produce correct abstract interactions in

order to structure the requirements.

Our automated extraction and tracing tool which we embed in the Marama meta-tool is shown in
Figure 5.2. For this, we consider the scenario of a “voter registration” use case by Some [125] using
an illustration. We use this scenario as a case study to show the benefits and the flow of the
consistency checking process. Figure 5.2 shows a set of requirements for this voter registration
system that is expressed in natural language and opened in an Eclipse text editor (1). The textual
natural language requirements do not have to be structured as a list nor formed into a structured
layout as shown in this example. The requirements engineer has used the tool to analyse these
requirements and a set of “abstract interactions” has been deduced from these textual natural
language requirements. These abstract interactions are then represented as a vertical list (2). Our
tracing engine uses an essential interaction library of phrases and regular expressions to deduce and
extract candidate abstract interaction from the associated essential interactions. From the abstract
interaction list thus extracted, our mapping engine generates an EUC diagram (3) using a set of
abstract interaction patterns and EUC diagram heuristics as shown below with a red box. The user
can interact with the three representations of requirements- the natural language expressed as
textual natural language requirements, the abstract interactions which is the essential requirement,

and the diagrammatic EUC model in Marama Essential.

74

Register for wote(Jome, 2003) j [})Se\ect
Primary Actor:Voter - ListOfabstractInteraction EUCDiagram

[Marquee
Precondition: EVote System is online [},SKEtChW tool select option 2 User Intention 3

. X I — select option
Postcondition: Voter is registered =
X i |~ Shapes & -
1. Voter losds EVote system is online NEESE (L TllEE T
e r re P [AbstractInteraction
2. Voter g LEr re tluj option 1 iderty sel System Responsib,..
3. EVote system asks for name, socialsecw B UserIntention request identificat. ..
4. Voter provides name and social security num B SystenResponsivity bl it
5. EVote zystem checks Voter status
6. Evote System generates Voter login id and [ListOfAbstractInter. . provide identification User Intention
7. l.a.ifter 60 sec B EUCDiagram identify sef
display errar

W Placeholder
1.a. EVote system displays time out page B Exrash System Responsib. .,
Z.a. Liter 60 sec Hranape check status
2.8.1. EVote systew displays time out page I RequirementGroup Marama
3.a After 60 sec Essential
3.a.1 EVote system displays time out page B e i el
e ¥ play: pag I Extend provide identification
5.a. Voter data is not in record [RequirementGroupE,
S5.8.1 Evote System displaysincorrect informati

B IncludeELC System Responsih. .

display error
M ExtendELIC
| Connectars 4

Figure 5. 2: Tracing the Abstract Interaction from Textual Natural Language Requirement

and Mapping to the Marama Essential

For example, as shown in Figure 5.2 (1), the selected phrase — “select voter registration option” is
traced to a particular abstract interaction — “select option” (2). This has then been mapped to the EUC
diagram and falls under the “user intention” category (3) and select option interaction.

This shows that the tool provides a traceability link for the three requirement components above. The
tool not only provides trace-forward but can also is able to trace-back from an EUC diagram to
abstract interactions and then to a textual natural language requirements. The process of tracing back

is shown in Figure 5.3.

In Figure 5.3, the item “provide identification” (6) from the system responsibility category of the EUC
diagram is selected. This highlights the selected EUC component and the related essential
requirement, which in this case is “provide identification” (5). The traceability between these items is
shown by the visual link (red arrow). The corresponding textual natural language phrases are
automatically highlighted, the matched abstract interaction changes colour to red in (4) and the
matched phrases are quoted with *** (6). The existence of these traceability links allows consistency

among these three items to be maintained.

75

REgiStEr fDr VDtE[StEphanE S.SDmE 2005] j :_1' Marquee LI MUBL UL ILET dLLun S Llayran
Primary Aztor:Voter N .

[}S Shetehing tool select option Lser Inkentian

I select option
Precondition: EVate 3ystem iz online (= Shapes i tequest ertfcation
Posteondition: Voter is registered P ——
1. Vaoter loads EVote systet is online identfy sef Syste Responsib. .
2. Voter selects voter registration option W UserInkention request identicat
3. EVote system asks for name,social security nuek W SystemResponshily thetk status
4, Voter provides nameand social security mmber, . .
5, [EVote system checks Voter status B LetOfbsratine.. povide \dentiﬂcatmnr %seirt‘lfnt:;tfmn
6, Evote Systen GRANISE:] BIZ] [EUCiagram - \:"‘\ !
7. l.a.kfter 60 sec B Placchokder .
System Responsi. .

1.5. EVote system displays time out page W g \“ I theck stafus
2., After 60 sec [Requirementiaroup T
Z.8.1, EVote system displays time out page B Include \\. = Re'sponsib.‘."
d.a Rfter 60 sec B Extend I:E'geidentﬁcatiun
3.a8.1 EVote system displays time out page

[Requirementiroup. . 1 ' :
5.a. Voter data is not in record B ncdeslc System Responsb. .
5.a.1 Evote 3ystem displays incorrect information et diplay ertar

[ExtendeLC

Figure 5. 3: Trace back from EUC diagram in Marama Essential to the Abstract

Interaction and Textual natural language requirement

As shown in Figure 5.3, the traceability link provided is also a possible way to inform the requirements
engineer if any item appears to be incomplete or incorrect by identifying the links for each of the
requirements components. The requirements engineer may modify any one of these requirement
components and the tool will check the resulting models, both for the internal model consistency,
which involves only the Essential Use Case in the Marama Essential view, and the inter-model
consistency which involves all three views: textual natural language requirement, abstract interaction
and the EUC diagram.

Inconsistency occurs if any change or modification is made to the components [76]. Thus, this view is
applicable to our work. If any inconsistency occurs due to a change made by the user, for example if
there is a change of order, name or type for any of the abstract interaction or EUC diagram elements,
an inconsistency warning will occur. If an item or phrase has been added and the new item cannot be
matched to a textual natural language requirement phrase or abstract interaction by the tracing
engine, an inconsistency warning will also occur. If traceability relationships do not exist between
phrases and items, this indicates the existence of a potential incompleteness or inconsistency, which
means that no tracing result will be shown to the engineer. The tool can highlight items for the

engineer to investigate in one view that do not appear to be related to items in another.

Various types of inconsistency errors described are shown in Figures 5.4, 5.5, 5.6 and 5.7. In Figure

5.4, item (7) shows an example of inconsistency error when a change of sequence to an abstract

76

interaction - “select option” is made. Our tool provides the flexibility where requirements engineers

can verify the abstract interaction provided, before mapping it to the EUC diagram. From the

example, the requirements engineer did not agree with the position set by the tool and decided this

should be in a different position in the set of abstract interactions. The tool has highlighted the

potential inconsistency of the EUC diagram in red (8), and the associated phrase “select voter

registration option” from the textual natural language requirements (9) is highlighted with (***). This

change also leads to a change of sequence and position in the EUC diagram - “select option” (8) - to

the bottom, which is highlighted in red. The red arrows show the change of sequence from the

original position to the new one. This produces an inconsistency in the requirements as the textual

natural language requirement remains unaltered. This is because there is no automated update for

the structure of the sentences as it is believed that might affect the whole structure of the sentences.

The tool however does detect the inconsistencies and provides a warning about them.

Register for vote(Stephane 5.3ome 2005) j ! Marquee bl
Primary Aetor:Voter N e
Goal: n unregistered voter want to register in order [y Setchngtoo i;e\ectoption .
Precondition: EVote System %s online (= Shapes @ T
Posteondition: Voter is reg%stered W s
Precondition: EVote System is online identfy self
Postcondition: Voter is registered W UserTntzntion
1. Voter loads EVote systew is online SystemRes... thetk status
2. Voter®##**%s zelects voter registration option® 9)
3. IVote system asks for neme, social security numbel LstOfRost.. providz identfication
4, WVoter provides name and social security maber, d [EUCDiagram -
5. EVote systew checks Voter status W Placehilder R
6. Evote System generates Yoter login id and passwor:
7. 1.z ifter 60 sec B Extashepe
[Requireme. .,
l.a., EVote system displays time out page B Inchice
2.a. hfter 60 sec N
2.a.1. EVote system displays tlmE ﬂ
J.a After 60 sec
3.a.1 EVote system displays time ﬂ Abstract Interaction sequence is inconsistent with the input requirement and
o\ sequence of EUC components,

5.4, Voter data is not in record
S.a.1 Evote Systew displays incor p— |

T - L

EULUIGgrE

User Intention
identify self

System Respansib,
request identficat,

System Respansib,
check status

Syshem Responsib,
provide identificati

System Respansib,
display error

Figure 5. 4: Inconsistency Occurring: Change of Sequence of Abstract Interaction

77

Register for wote(3tephane 5.3ome 2005) :J
Primary Actor:Voter

Goal: in unregistered voter want to register in order
Precondition: EVote System is online

Postcondition: Voter is registered

Precondition: EVote System is online

Postcondition: Voter is registered

S = T R ey

[T vy v gy
[I T)

@ m

£
L Marquee:

h Sketching tool

W abstractInt...

Voter loads EVote system is online

Voter*¥#%%¥ zelects voter registration option®**#%

| iserIntention

[SystemRes...

EVote system asks for name, social security numbe
Voter provides name and social security nuwber, o
EVote system checks Voter status

Evote System generates Voter login id and passworc
l.a.ifter 60 sec

EVote system displays time out page
ifter a0 sec

W ListOfAbstr.
[EUCDiagram
W Placeholder
W Extrashape
W Requireme. ..
W Incude

. Cbeed

SR & ra

bifter 60 sec

interaction and textual requirement.

Voter data is not in record

.1 Evote 3ystem displays incor

(= Shapes k4l

ListoFabstractInkeraction

11

tequest identification
identify self
check status
provide identification

display error

X

.1 EVote system displays time 'E ELC Component sequence is inconsistent with the sequence of abstract

Update Cancel

EUCDiagram

Wser Intention
elect option

User Intenti
identify self

10

System Responsib, .
request identificat. .

System Responsib. .
check status

System Responsib, .
provide identification

System Responsib, .
display errar

Figure 5. 5: Inconsistency Occurring: Change of Sequence of EUC component

Figure 5.5 shows the inconsistency occurring when any EUC component is changed to a new

position different from the auto generated position. In this example, an EUC component “select

option” (10) from the user intention category is moved to the bottom, as shown by the red arrow. The

corresponding abstract interaction “select option” (11) is highlighted in red and the associated

phrases “select voter registration option” from the textual natural language requirements (12) is

highlighted with (***). The red arrows show the change of sequence from the original position to the

new one. This produces an inconsistency in the requirements as the textual natural language

requirement remains unaltered.

78

Primary Actor:Voter j %Select
joal: Ao unregistered voter want to registe Marquee ListOfAbstractinteraction ELCDiagram
Precondition: EVote 3ystem is online | L
posteondition: Voter is registered [; Sketching taol select option Us‘ertlntetljtwon
1. Voter loads EVote system is online = SElect optin
; ; (= Shapes @ request identification
Z. Voter selects voter registration optiot 1
i I AbstractInkerac. .,

3. Evote syst?m asks for name, ‘sacml SF‘TCl ety sel System Responsh...
4. Voter provides name and social securit: [UserInkention request identificat...
5. EVote system checks Voter status. . B SysterRespons.., lérzel disfis
6. Evote Systew generates Voter login id ¢
7. l.a.After 60 sec B ListofabstractL... provids identification User Intention

B ELCDizgran identify self
1.a. EVote systew displays time out page display error

[Flaceholdsr
Z.8. After 60 gec 13 By
z.a.1, EVote system displays time out page B Extrashaps select date teckstabus
3.a Lfter 60 sec [RequirementGr...
3.a.1 EVote systew displays time out page _ A

| -~ - D Swstem Responsib. ..

o Th Folowing ssract nkeracton s nconisstent st testual raquirenents, il e
5.a. Voter data is not in record = ! provide identfication

; (= COnnE == et s

5.a.1 Evote Systew displays incorrect infot

W Vis

™ " System Responsh,..
S —I display errar
B Includelink ‘

Figure 5. 6: Inconsistency Occurring: Adding New Item to the Abstract Interaction

Figure 5.6 shows a potential inconsistency that happens when a new item is added to the abstract
interaction. It shows a new abstract interaction, “select date”, has been inserted into the abstract
interaction view (13). When the tool checks the new abstract interaction with the textual natural
language requirements, it detects an inconsistency between the new abstract interaction “select date”
and the textual natural language requirements. This triggers an inconsistency warning to appear and
highlights the new added item” select date” in red. The warning informs the requirements engineer

where the inconsistency is located.

79

Sl ot ok wor

WoWw o R
2om oo oo

tn
o

Goal:

®

Voter
Voter
EVote
Voter
EVote
Evote

Register for wvote(3tephane 3.3ome 2005)
Primary Actor:Voter

In unregistered VOLEr want to registe
Precondition: EVote System is online
Postocondition: Voter is registered

1.

loads EVote systew is online
selects vorter registration optio:
system asks for name, social seoc
provides nawe and social security
system checks Woter status
3ystem generates Voter login id :

l.a.hfter 60 sec

EVote systewm displays time oub [gems

ifter 60 sec

Lfter

1. EVote system displays time out
60 gec E

1 EVote system displays time out

Woter data is not in record

.1 Evote Swstem displays incorrect

d % Select

r1
L Marques

h Sketching kool

W AbstractInterac,..
I Userlnkention

M SystemRespons...
I ListOfabstract, .
M EUCDiagram

[Flaceholder

= Shapes 40

ListOFabstract Interaction

select option

request identification

identify self

check status

provide identification

display error

X

EUC component is inconsiskent with the property in textual requirement and

abstract interaction,

leyword: select date

I Visuallink

M Sequencelink
M IncludeLink

I ExtendLink

M IncludeEUCLink

=l

EUCDiagram

User Intention
select option

User Intention
identify self

System Responsib. ..
request identificat...

Syskem Responsib...
check status

System Responsib...
pravide identification

System Responsib...
display errar

User Intention
elect date

14

Figure 5. 7: Inconsistency Occurring: Adding New Item to the EUC diagram

Figure 5.7 shows a potential inconsistency that happens when a new item is added to the EUC

diagram in the Marama Essential. It shows that a new EUC component, “select date”, has been

inserted into the EUC diagram view (14). When the tool checks the new EUC component with the

abstract interaction and textual natural language requirements, it detects inconsistencies between the

new EUC component “select date” and the abstract interaction and the textual natural language

requirements. This triggers an inconsistency warning to appear and highlights the new, added item ”

select date” in red. The warning informs the requirements engineer where the inconsistency is

located.

80

Register for vote(Stephane §.3ome 2005) ﬂ -”-Marquee Listiranstractinteraction EUCLnagram

Primary Actor:Voter -t

Goal: An unregistered voter want to registe %Sketchingtoo\ view list 15 Ejirctl';t;t%:?”

Precondition: EVote System is online =

Postecondition: Voter is registered 5T “ tequest idertifcation

1. WVoter loads EVote system is online W Abstractinterac... identiFy sel

2. Voter selects voter registration optior B UserInkention b

3. EVote system asks for nawe, social sect B SstenResons... check status

4, Voter provides nawe and socilal securits

5, EVote system checks Voter status O ListfAbstractl, . | proyide idertfication User Intention

6. Evote Jystem generates Voter login id ¢ W EUCDiagram wentfy sef

7. l.a.After 60 gec B Flacehalder display rror

l.a. EVote syatem displays time gutpage Mo)

Z.a.1. EVote systendisplays time out page

3.8 After 60 sec ' The Follawing abstract interaction is inconsistent with textual requirement and
EUE Component

3.a.1 EVote systemw displays time out page keyward: view list

j.a.1 EVote svstem displav

5.a. Voter data is not in record

5.a.1 Evote System displays incorrect es Ho

B ExtendELC ‘

System Responsib. ..
request identficat...

System Responsib. ..
theck status

System Responsib. ..
provide identification

System Responsib. ..
display error

Figure 5. 8: Inconsistency Occurring: Change of Name to the Abstract Interaction

Figure 5.8 shows the inconsistency occurring when the name for an abstract interaction is changed.

As shown, the abstract interaction component “select option” is changed to “view list” (15). When the

tool checks the changed component “view list” with the textual natural language requirement and

EUC diagram, it detects inconsistencies between the changed abstract interaction component “view

list” and the textual natural language requirements and the EUC component. This triggers an

inconsistency warning to appear and highlights the changed item “"view list” in red. The warning

informs the requirements engineer where the inconsistency is located.

81

Register for vote (Stephane S.Some 2005 .ﬂ T Marquee LISTUTADSTACTINCErACEan UL LIagram
Primary Actor:Voter o) i
Goal: in unregistered voter vant to registe ksketchlng tul select option fi?u: ‘igten 1o 16
Precondition: EVote System is online (= Shapes o0 e
s)) =4 request identification
Posteondition: Voter is registered
) . W AbstractInterac.,.

1. Voter loads EVote system iz online identFy self System Respansib. .
2. WVoter selects voter registration aptio: [UserIntention request identificat. .
3. EVore system asks for name, social sect B SystemRespons... theck status
4. Voter provides nawe and social securits . .
5. EVote system checks Voter status B ListOfbstractl, provide identfication %sertllfntenltflon

) identify sel
6. Evote Syatem generatez Voter login id [EUCDiagram el
7. l.a.After 60 sec B Flaceholder Ispaf ermor

System Responsib. ..
i.a. EVote system displays time outpage W ExtraShege check status
2.a. ifter 60 sec [Requirementsr. .,
Z.a.1l. EVote systendisplays time out page Indude :
3.a After 60 sec - Systeddeespofnsm.u
! i % provide identification
a1 EVote systen displaystire our p DR k|
EUC component: is inconsistent with the property in textual requirement and

5.a. Voter data is not in record ! abstract inkeraction. System Responsib...
5.a.1 Evote 3ystewm displays incorrect display error

keyword: view list

LR rPvrp—"— T

Figure 5. 9: Inconsistency Occurring: Change of Name to the EUC component

Figure 5.9 shows the inconsistency occurring when the name of an EUC component is changed. The
EUC component “select option” is changed to “view list’” (16). When the tool checks the changed
component “view list” with the abstract interaction and the textual natural language requirements, it
detects inconsistencies between the changed EUC component “view list” and the abstract interaction
and the textual natural language requirements. This triggers an inconsistency warning to appear and
highlights the changed item "view list” in red. The warning informs the requirements engineer where

the inconsistency is located.

To sum up, these inconsistency warnings and highlights shown in the figures above illustrate the
dependencies that occur among the requirement components: the textual natural language
requirements, abstract interaction and the EUC diagram. If any changes are made to any of the
requirement components, the tool will check the change with the associated components. Any
inconsistency detected will trigger an inconsistency warning to appear and also highlights the
inconsistencies error in red for either abstract interaction or the EUC diagram and (***) for the textual

natural language requirements.

82

5.4 Architecture and Implementation

As mentioned earlier, to capture and check the inconsistency, we embed our previous automated
prototype tool in the Marama meta-tool [120]. Our new embedded tool is called MaramaAl. MaramaAl
consists of a textual natural language requirement, abstract interaction and Marama Essential (EUC
diagram) editors. The architecture of Marama Al is shown in Figure 5.10. MaramaAl is realised on
Marama which is built in the Java—Eclipse platform (1-2). MaramaAl editors are specified using
Marama shape, meta-model and view tools. The tool is then implemented by interpreting the
specification using a set of Marama plug-ins (4). The process of extracting and mapping any of the
requirement components is assisted by the event handlers (3). Here, the event handler is the vital

agent in maintaining the consistency among the three forms of requirements listed earlier.

Eclipse IDE

Marama AI Application

Textual requirement

Abstract Interaction
Marama Editor Al)
Plugin
Marama Essential Adapter
N
(EUC Diagram) /
o EclipseIDE Ly Tool config. Held
"] resource in DOMS
1 management

Event
\; handler

Figure 5. 10: MaramaAl Architecture

Four types of event handlers are used to support the automation process of capturing the
requirements and checking the inconsistencies. These are: Trace, Trace Back, Map Abstract

interactions to EUC and Index Checker. The description of the event handlers is as follows.

83

Trace

The event handler for tracing the textual requirement to the abstract interaction is called
Trace. Here, the tracing engine will extract the key phrases which will be analysed by the
essential interaction pattern library to match the keyword (abstract interaction). If the key
phrases match the keywords, the abstract interaction will be displayed. If there is no match
between the key phrases and the keywords, no results will be displayed. This normally
happens when the textual natural language requirements is incorrect or incomplete. A

sequence chart to illustrate the interaction is shown in Figure 5.11 below.

Usar Trace event handler Tracing engine M ;{:ll':;i:l]l::zwg mf;m Eijon Abstract interaction
| press event : | | :
: : send instruction "trace” : : :
: | extract keyphrases : :
|

check key phrases
5
|

D cheek and mateh keywerds

|

|
j |
| |
| display abstract interaction :
'

|
| |

.
|
|
|
|
provides abstract interaction

{if (keyword!=essential interaction patterm))} Iﬁ

T
|
- |
show no result |
;
+
|
|
|

—— e B

Figure 5. 11: Example of Trace interaction

Trace back

To trace back the abstract interaction or EUC component from where it comes from, we use
the help of the Trace Back event handler. This event handler also works together with the
tracing engine. The selected abstract interaction or EUC component is analysed by the
tracing engine and then matched with key phrases in the interaction pattern library. If we try
to trace back the abstract interaction, the tool will show where the key phrases for that
particular abstract interaction come from. If we trace back the EUC component, the system
will show which abstract interaction matches it, together with the matching key phrases in the
textual requirement. If no result appears, it is presumed that the requirements is either

incorrect or incomplete. The requirement is also inconsistent if users try to change the

84

requirement by adding new abstract interactions or EUC components or change the name of
any of these components as shown in Figures 5.6, 5.7, 5.8 and 5.9. The trace back event
handler will not be able to trace the key phrases in the textual natural language requirements
as the new component is added or changed without updating the textual natural language
requirement. This will also trigger the inconsistency warning to occur. To show further the
interaction process of this event handler, a sequence chart to illustrate the interaction is

shown in Figures 5.12 and 5.13.

.) essential interaction Textual natural language
User Trace Back event handler Tracing engine pattem library requirement

Traceback from Abstract interaction component

press avant

send instruction "trace back”

check absiract interaction

|
|
|
|
|
|
|
|
|
=]
|
L
] |
] check and match keywords
pro

|
vides associated key phrases

|
|
N
|
|
|
|
|
|
|
|
L trigger event to highlight

|

I
1 I
| nhighlight key phrases I
1

] |

]
{If (abstract inleHFmic-n!=sssentlal Interaction pattem)}

shiow no result

Itﬁgge' event to display message

display inconsistency waming :

|
Figure 5. 12: Example of Trace Back interaction from Abstract Interaction

|
|
k
|
|
|
|
|

85

User

" | Traci . essential interaction Texiual natural language
WET! H {[a] [1n] m li r in -

Abstract inferaction

Traceback from Essential use Case component

N

dilsplay inconsistency warniﬁg
e -

press event

Map to EUC
The event handler for mapping the abstract interaction to Marama Essential, “Map Abstract

|
|
|
|
|
|
|
|
Isand instruction "trace back" I

check abstract interaction of EUC component

|

|

: : I check keyward and
|

: provides assoc'iated key phrases and abstract interaction

|

trigger event to highlight l I

| T PR

highlight key phrases :

|

! n

| highlight assoclated abstract interaction
1

|

- =

|
{if (abstract inie+ctim of EUC component!=essential interaction pattern]}
|

]

show no result
|

|
L
|
L
|
|
|
|
|
|
|
|

lri'gger event to display messaéle
|

|
|
|
|
|
|
|
|
|
|
|
|
match with essential interactidn
|
|
|
|
|
|
|
|
5
|
|
|

Figure 5. 13: Example of Trace Back interaction from EUC component

interactions to EUC”, helps to generate the Essential Use Cases automatically. The event

handler works with the mapping engine to map the abstract interaction to the EUC diagram.

The mapping engine analyses and matches the selected abstract interaction with the

property in the interaction pattern library. Then, the abstract interaction is mapped

automatically to the EUC together with its category, either user intention or system

responsibility. The event handler will not map the newly added abstract interaction to the

EUC component if it does not exist in the essential interaction pattern library and the textual

natural language requirement is not updated. This action will also trigger an inconsistency

warning to notify the inconsistency error. A sequence chart to illustrate the interaction is

shown in Figure 5.14.

86

i

Map to EUC event handler Mapping endgine T IMarama Essential

press event :
nd instruction "map to EUC" :
L |

match abstract interaction with EUG pattern
L =)

D check keyword and match with EUC pattern

provides EUC pattern

e £ -

trigger event to generate ELU

i

| |

J |

| |

| |

generate EUC diagram | |
| |

| |

I
I
I
I
I
(%

¢
I
1
[l
I

{if (abstract interattfion of EUC component!=essential interaction pattem))
1

|

|

L shiow no result |

frigger event fo display rrhessaé :
L trigger event fo highlight : :

|
L
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1 highlight the new EUC component
1 1 1
[

display Inconsistency warning :
) I ,
I I
I

Figure 5. 14: Example of Map To EUC interaction from Abstract Interaction

—_——

Index Checker

The event handler Index Checker acts as a checker for the consistency of the sequence for
both abstract interaction and EUC Diagrams in Marama Essential. The Index Checker checks
the index and location for each abstract interaction and EUC component. Both need to be in
sequence with ordering consistent with the textual natural language requirements. If there is
any change of the sequence or location for both, the event handler provides a warning about
the inconsistency that has occurred. Sequence charts to illustrate this interaction are shown
in Figures 5.15 and 5.16.

87

JTexdual natural lanquage
Lsar Index Checker event handlar Marama Essential Textual nat_ural language
e requirement

prass avant | | |

| | |

check index with EUC diagram | |

| |

|

=)

B

i
I -
| check index with textual natural language requirement
L |
|
|
T
|

e

l’display inconsistency waming

Ay

{if (index pf abstract interaction'=EUC diagram && Textual natural language requireinent]}
| |
1 I I
| | |
| highlight the ELIC diagram | |
1 | |
I highlight associated key phrases |
1 | |
| 7
| |
| |
| |

Figure 5. 15: Example of Index Checker interaction of Abstract Interaction

|
|
|
|
|
T

Tentual natural langquage
User Index Checker evant handler Abstract inleraction Textual nat_ural language
requirement

press evant | | |

| | |

check index with abstract interaction |

- |

check index with textual natural language requirement |

| -

>

|

highlight the abstract interaction |

)

highlight associated key phrases
1

|
I
{if {index U{EUC comporent/=Abstract interaction && Textusl natural language requirlprneni]}
|
T
|
|
|
|

Ldisplay inconsistency waming
|

|
T
|
|
L
|
|
|
I
|

_—

Figure 5. 16: Example of Index Checker interaction of EUC component

In conclusion, all event handlers assist to automate the traceability process and help to trigger

inconsistency warnings and visualise the related component if they detect any inconsistencies in any

of the requirements components.

88

5.5 Evaluation

In order to verify the feasibility of our MaramaAl (Automated Inconsistency Checker), we have
conducted a preliminary evaluation of the usefulness and the ease of use of MaramaAl by eight
software engineering post-graduate students, several of whom had previously worked in the industry
as developers and/or requirements engineers. All were familiar with the EUC modeling approach.
Each participant was given a brief tutorial on how to use the tool and some examples of how the EUC
model is derived from the textual natural language requirements. The textual natural language written
in a form of user scenario of “voter registration” by Some [6] was used for this evaluation and is
shown in Figure 5.17. Participants were asked to input the given scenario and then use the
MaramaAl to retrieve the abstract interaction. They were also allowed to explore the event handler by
tracing the abstract interaction from the textual natural language requirement, tracing back the
requirement either from abstract interaction or EUC diagram and mapping the abstract interaction to
the EUC Diagram in the Marama Essential. The participants were also asked to make any changes to
any of the requirements, such as add, delete and change ordering, and then to observe the facilities
provided by the tool in checking and detecting inconsistencies. The participants rated the usefulness
and the usability of the tool together with its inconsistency detection. They also rated the consistency
in textual natural language requirement, abstract interaction and EUC diagram. Our evaluation was
conducted using a standard evaluation method — a Likert scale with a five part scale. It contains a set
of three questions addressing each of these characteristics. The results of each corresponding three
question blocks were averaged to produce the results shown in Tables 5.2 and 5.3. The type of
questions for each characteristic of user perception on usefulness and the usability of the tool is in
Table 5.1.

89

Register for vote
Primary Actor:Voter

Goal: An unregistered voter wants to register in order to be able to vote. If successful, the
system generates a login id and the system generates a login id and password for the voter.

Precondition: EVote System is online

Postcondition: Voter is registered

Voter loads EVote system is online

Voter selects voter registration option

EVote system asks for name, social security number, date of birth, address
Voter provides name and social security number, date of birth, address
EVote system checks Voter status

Evote System generates Voter login id and password

. 1.a.After 60 sec

1.a. EVote system displays time out page

2.a. After 60 sec

2.a.1. EVote system displays time out page

3.a After 60 sec

3.a.1 EVote system displays time out page

Noakowh=

5.a. Voter data is not in record
5.a.1 Evote System displays incorrect information error page.

Figure 5. 17: The scenario “Voter Registration” [6] used for the Evaluation

90

User Perception Component Questions
Characteristics

It is useful to capture the essential requirement
(abstract interaction).

Abstract interaction It helps to be more effective to capture the
abstract interaction.

It makes it easier to capture abstract interaction.
It is useful to be used to display Essential Use
Case.

It helps to be more effective to capture
requirements in a form of Essential Use Case.
Usefulness It makes it easier to understand the interaction
in the Essential Use Case.

It is useful to detect inconsistency in the
requirement.

It helps to be more effective to manage the
Consistency consistency of the requirement components:
Management textual natural language requirement, abstract
interaction and Essential Use Cases.

It makes it easier to detect inconsistencies error
in the requirement

It is easy to use to capture requirement by using
Essential Use cases with Marama Essential
Automated Tracing Tool | Itis user friendly.

| don’t notice any inconsistencies as | use the
tool.

It is easy to detect the inconsistency of the
requirements.

It is user friendly

I don’t notice any inconsistencies as | use the
tool.

Table 5. 1: User Perception Characteristics and Questions Evaluating Them

Marama Essential

Ease of Use

Inconsistency
Management

Table 5.2 shows the results for the evaluation result on the usefulness aspect of the tool. This shows
that almost all of the participants agreed that MaramaAl is useful for finding the abstract interaction,
capturing requirements using the EUC model and also for checking the inconsistency of the
requirements. Overall, the usefulness of finding abstract interactions by using our tool is almost 94%,
where 56.3% identified it as very useful and 37.5% identified it as always useful. A further 6% of the
participants felt that it was sometimes useful to extract the abstract interaction automatically, primarily
because the tool might be constrained by the domains available in the essential interaction pattern
library. It was identified in the evaluation that approximately 94% of participants agreed that using
MaramaAl with the Marama Essential model was useful in capturing requirements. About 56.3%
identified it as very useful and another 37.5% identified it as always useful. The remainder, 6.2% of
the participants, thought it was sometimes useful to use it as a tool to capture requirement as they
were more familiar with using UML diagrams than Essential Use Case diagrams. For the consistency

management support, approximately 94% agreed that the tool provided useful inconsistency checking

91

and maintained the consistency of the requirements. About 56.3% of participants thought it was very

useful and around 37.5% felt that the tool was always useful in managing the consistency. Again, the

remainder, or 6.2% felt it was only sometimes useful in managing the consistency as they would have

liked to have more complex consistency checking by the tool. However, all participants agreed that

the tool assisted them to save time in capturing requirements and to manage the consistency issue

between the requirements.

Category Abstract Marama Essential (%) Consistency Management
Interaction (%) (%)
Very Useful 56.3 56.3 56.3
Always useful 37.5 37.5 37.5
Sometimes 6.2 6.2 6.2
Useful
Little useful 0 0 0
Not Useful 0 0 0
Table 5. 2: Tool Usefulness Result
Category Automated Tracing Tool (%) Inconsistency Management
(%)
Very Easy 59.4 56.3
Always Easy 37.5 37.5
Sometimes Easy 3.1 6.2
Seldom Easy 0 0
Not Easy 0 0

Table 5. 3: Tool Ease of Use Results

The ease of use of the MaramaAl was also evaluated and the results are presented in Table 5.3.

Both tracing and inconsistency checking features were evaluated. All participants agreed that both

components were user friendly and easy to use in the example tasks performed. For the MaramaAl,

approximately 95% agreed that the tool was easy to use, about 59% agreed that the tool was very

92

easy to use and almost 37.5% agreed that the tool was always easy to use. Most thought that the
event handlers were easy to use and really helped to automate the process. Only about 3% felt it was
only sometimes easy to use. This small had difficulty in understanding the layout used by MaramaAl.
The participants were confused with the shapes and colour used to represent the requirement
components. For inconsistency checking of the requirements, almost 94% agreed that it was easily
handled and understood. Approximately 56% agreed it was very easy to handle and another 37.5%
agreed it was always easy to handle. Only 6.2% of the participants thought it was sometimes easy to
check the inconsistency, because the tool currently just provides a warning on the detected
inconsistency and there is no way of resolving it automatically. This minority group also wanted the
tool to have an inconsistency warning together with the feedback. Table 5.4 shows further the

feedback received from the participants.

Participants Feedback
1. “I don’t really understand the layout of tool”. But, overall the tool looks OK. ”
2. None.
3. “No feedback is given with the warning. Need help to resolve the inconsistency”
4. “OK™
5. “Other color used for the shapes™
6 None
7. “Didn’t found this type of tool before. Would like to have more complex
consistency management”
8. “Easy to use”

Table 5. 4: Participants Open Feedback

5.6 Summary

We have discussed our approach and the advantages of using a traceability technique together with
a semi formal specification in the form of an Essential Use Cases (EUC) to manage consistency
among and between textual natural language requirements, abstract interactions and EUC.
Traceability and consistency between these artefacts are visualised with the support of Marama. We
described a proof of concept support environment, MaramaAl, that generates tracing and mapping
among textual natural language requirements, abstract interactions and EUCs. Our tool is also shown

to assist users and requirements engineers to capture requirements and generates EUCs

93

automatically. In addition, our promising preliminary evaluation results conducted on the tool’s
usefulness and ease of use support the assertion that MaramaAl is able to minimise human
intervention in checking consistency. However, there were also minor negative results and feedback
gained from the study. This motivates us to improve our tool with better support for the tool usability
and consistency checking. Our next focus is to provide higher level consistency between textual
natural language requirements, abstract interactions and EUCs and to further check the other
requirement qualities such as correctness and completeness, using our essential interaction patterns

and EUC interaction patterns. This is described in the next chapter.

94

Chapter 6: Requirements Quality Checking

This chapter describes a higher level consistency checking technique supporting consistency of
management between representations of textual natural language requirements, abstract interaction
and EUCs as well as supporting further requirement quality checking for both correctness and
completeness of requirements. This is an extension to improve our previous focussed work to support
translation among the three forms of requirements: textual natural language, abstract interactions,
and Essential Use Case models, and then the low-level management of consistency for these three

forms of requirement components (described in Chapter 5).

6.1 Introduction

As described in previous chapters, inconsistency of requirements happens when there are conflicting
requirements and/or the captured requirements from stakeholders are internally inconsistent when
two or more components overlap and are not aligned [21], [22], from incorrect actions [14] or from
requirements clashes and bad dependencies [20]. These complications also often introduce
incomplete requirements that are missing key definitions and constraints for the software system.
Incorrect requirements may also occur when the requirements captured do not accurately reflect the
actual requirements and needs of stakeholders. These quality problems of inconsistent, incomplete
and incorrect requirements lead to development delay and various quality errors, and raise the cost of

the system development process, which often risks the success of the overall project [22].

To address this problem, researchers have produced various approaches, either heavyweight or
lightweight, to support the requirement quality issue, but they mainly focus on consistency [17, 94,
127, 135]. As described in the previous chapter, we also manage the consistency issue by applying a
lightweight approach using traceability with automated tool support. However, there are still some
limitations which we need to overcome. Thus, the gaps identified and feedback gained from our
previous work have motivated us to extend our work to check at a higher level consistency together
with other requirement qualities, such as completeness and correctness, by using the concept of
essential interaction patterns and EUC interaction patterns. These concepts assist in detecting

potential quality problems, especially inconsistencies, incompleteness and incorrectness.

The essential interaction pattern library contains a list of important key phrases (essential
interactions) and mappings to appropriate essential requirements (abstract interactions) which
support a variety of different application domains. Essential interactions are not categorised based on

one particular scenario but can be associated with multiple scenarios, such as online booking, e-

95

commerce, online business, online banking, an online voting system, online reservation and mobile
applications. Thus, multiple essential interactions from various domains can be associated with one
well-defined abstract interaction. This approach allows low-level requirements problems to be
identified; for example, identification of phrases of textual natural language requirements with no
corresponding EUC abstract interactions or identification of EUC interactions added by the
requirements engineer without any textual natural language requirement phrase(s). The essential
interaction pattern library and its usage were described in detail in Chapter 4. In this chapter we will

focus only on the elaboration of the EUC interaction pattern.

6.2 EUC interaction pattern

A key reason we chose to use the EUC model is that it also lends itself to a deeper analysis, enabling
identification of potential problems with the extracted requirements. A set of “best practice” EUC
interaction patterns or templates can be identified for a range of typical user/system interactions in a
wide variety of domains [39]. Biddle et al.[39] provide a set of styles or patterns which need further
enhancements to be made by the user when writing EUCs. Their aim is to allow a user to write a
good EUC more quickly. They also developed a tool called UKASE, a web-based use case
management tool to support the reusability of EUCs [43]. Although both works focus on supporting
the generation of an EUC, neither focuses on using the EUC patterns for consistency as well as
completeness and correctness checking work. This gap motivates us to check for these problems in

the extracted EUCs. To do this, an EUC interaction pattern library is developed.

As described earlier, the textual natural language specifications we use are described in the form of
a user scenario or story. Therefore, the EUC interaction library stores the ‘best practice” interactions

of the EUC for each set of scenarios or use case stories. Table 6.1 illustrates the examples of EUC

» oo« » oo

interaction patterns for scenarios or use case stories such as “reserve item”, “purchase item”, “make

a transaction”, "book item” and “make a registration” with their sequences of abstract interactions.

96

Scenarios/ User intention System responsibility

Use Case stories Abstract Interaction Abstract Interaction
Reserve item choose
offer choice
view detail
request identification
identify self
confirm booking
Purchase item choose
check status
identify self

provides detail

verify identity
request confirmation
view detalil

Make a transaction select option
choose
select amount

verify identity

print
Book item identify self
select option
select item
insert information
Print
Make a registration select option
request identification
identify self

check status
provide identification

display error
Table 6. 1: Examples of EUC Interaction Patterns

Once an EUC model has been extracted, it can be compared against a pattern in our EUC Interaction
Pattern Library. An extracted EUC model would be expected to conform to one of the patterns, or
templates, in this library. If it deviates from this pattern, this typically indicates incompleteness
(missing interactions), incorrectness (redundancy, wrongly sequenced interactions or wrong

interactions), and possible inconsistency (conflicting or nonsensical interactions).

6.3 Our Approach

We have applied the EUC interaction pattern library concept together with an inter-representational
traceability approach to check for requirements quality problems (inconsistency, incompleteness or

incorrectness) that exist in any of the requirement representation components; textual natural

97

language, abstract Interactions and Essential Use Cases (EUC). Figure 6.1 shows an outline of our

requirements’ quality management process.

1. Extract abstract

interactions using Abstract Interactions
Textual : ; S .
o mnteraction hibrary {erorabaae i erortion
Requirements I
Begister for vote(Stephane S.Some 2005) select option
Primary Acvor:Voter | PR
Precondition: EVote System is online 7——7—**"’_7_77_77_7_77_ request identification
S?"?E?:L" N identify self 2. Derive EUC
N o e e : check stat i
% o viloe v i el & Interactions e 1bnodel tf‘““
§ i aaeRnerdlppa ey i provide identification \ interactions
La. Tvote system displey tive ON Dese_ i i \
e e T - —— \
el i 5. Resolve, live-with, \
Bt el N ignore problems T k
. e EUC Model
Visual . i
Dift. - 3. Check EUC against s
ichlic ifferencing ; . T
4. Highlight = pattern library instances rHeD :
i e} ELCDIagranm w
inconsistency, A —_— _
‘) e i e
incompleteness, : pesz e
.) request identificat.... = s T froe
icorrectness [t i et
" g identify sef \ System Responsb...
problems S BN
\ = check status
—— \rm] EUC Interactions
\ System Responsib. ..
fovide identificationsystem Responsb. . Pattel‘lls Drﬂwde ensiheation
[v—lwm ammvmm— Library Syt ot

‘ ¥ identificat. ..

Figure 6. 1: Outline of our Requirement Quality Management Process

lllustrated in Figure 6.1 is the outline of our process for managing requirements quality. Textual
natural language requirements are first translated into a set of abstract interactions (1). This is done
by using our essential Interactions library of concrete abstract interaction mappings, which abstract
common expressions and phrases into EUC abstract interactions. These abstract interaction
sequences are then translated into an EUC model to capture the requirements (2). This is done by
applying EUC structuring rules to the interactions and a visual EUC requirements model is then
generated. All of this is as per the processes described in Chapter 5. A set of inter-model checks
between different requirements representation components and intra-model checks of each specific
model is then conducted (3). The sequence of EUC interactions is compared to common sequences,
or EUC interaction patterns, in our EUC interaction patterns library. The extracted EUC model’s

abstract interactions are thus compared to an expected essential interaction and EUC pattern’s set of

98

abstract interactions and their sequencing. These comparison processes highlight the potential intra-

and inter-model problems such as the following.

Sequencing of requirement elements: The sequence of abstract Interactions and EUC
components must be in the same order as the sequence of essential interactions in the textual
natural language requirement. This detects inconsistencies between models where one has
been edited and others not. The ordering of the interactions between user and the system also
needs to be consistent.

Naming of requirement elements: The name of an EUC component must be the same as the
abstract interaction and these need to map to a specific essential interaction in the textual
natural language requirement. The abstract interaction also needs to match one of the abstract
interactions in the essential interaction pattern library. This detects inconsistencies between
models and also incompleteness. This is to ensure the completeness and correctness of the
textual natural language requirements, and to maintain consistency between the abstract
interaction, textual natural language requirement and the EUC diagram.

Consistency with changing components: All three requirements’ representations - textual natural
language scenario, abstract interaction and EUC - must be consistently updated if elements in
any one of the models are modified by the requirements engineer. Modification processes
include adding, deleting, re-sequencing and changing properties of elements.

Consistency within models: The EUC and abstract interaction sequence semi-formal notations
have meta-models with constraints expressed over them, allowing low-level validation of
correctness and internal notation consistency. These check for low-level intra-notation
consistency, completeness and correctness. For example, the EUC has start/end interactions,
naming conventions of elements are met and all elements are part of a valid sequence of EUC
model-compliant interactions.

EUC interaction pattern matching: the abstract interaction elements and the sequence of
elements in EUC models need to match a suitable template in the EUC pattern library. Updating
an abstract interaction or EUC element to conform to matching components requires updating
the equivalent in the textual natural language requirement representation based on the matching
pattern in the EUC pattern library. This detects incomplete and incorrect requirements elements.
EUC models not conforming to a recognised pattern usually indicate missing, duplicated or
redundant elements, or incorrectly expressed interaction components and sequences in the

extracted requirements.

When problems with requirements models are detected, we focus on providing warning, feedback

notification and visualisation of the quality issues existing in any component (4). Components that

mismatch, do not exist in one model, have differing sequencing between components, or that overlap

with non-corresponding names or other information, are classed as an “inconsistency”. Detected

redundancy of a component or a mismatch between a component and the expected element in an

99

otherwise matching pattern is classed as “incorrectness”. Missing components or sequences in a
model compared to an otherwise matching pattern are classed as ‘“incomplete”. The set of
requirements is assumed to be “complete” [136] once all the requirements model elements satisfy a
match or matches in the EUC interaction pattern library. Requirements engineers can choose to do

one of the following.

l. Resolve a detected quality issue by modifying the components based on the results of the

consistency engine recommendation.
Il. Tolerate the inconsistency until later, with our tool tracking it.
II. Strictly ignore the inconsistency (5).

We avoid forcing requirements consistency immediately as consistency rules cannot always
automatically maintain the consistency of the set of requirement components. For example, if the
sequence of components of the abstract interaction or EUC is problematic, we cannot automatically
enforce a change in the structure of the textual natural language as this requires manual
intervention. In this situation, a warning and notational element highlighting make users aware that
the inconsistency is still present. Explicitly ignoring the inconsistency (suppressing warnings) is also
allowed as we respect requirements engineers to make the final decision on the quality of their
requirements. End-user stakeholders can view updated and/or annotated textual requirements at any
time to comment on the correctness and completeness of the requirements model. While the EUC
model is arguably end-user-friendly, keeping it consistent with the textual natural language
representation affords the latter human-centric views continued use through the requirements

engineering process.

6.4 Tool Support & Usage

6.4.1 Tool Support

As described in Chapter 5, our prototype tool - MaramaAl (Automated Inconsistency checker) aims to
help requirements engineers to manage inter-notation requirements translation and consistency
management. We have extended our tool to manage a higher level consistency of requirement and to
provide help for the quality improvement process based on our approach outlined in the previous
section. Our tool helps to lessen the need for human intervention and minimises the time taken to

manage requirements formalisation from textual natural language to the semi-formal representation in

100

an EUC model. This is supported by the evaluation results obtained. Our tool, as discussed, not only
supports incremental refinement of the requirements to address detected quality issues but also the
evolution of the requirements over time. The textual natural language requirements are kept
consistent with the EUC model, allowing them to co-exist during requirements engineering. Besides
capturing the abstract interactions from the textual natural language requirements, a requirements
engineer can also view the simplified interactions between the user and the system in the EUC
automatically. This form of interaction summary allows requirements engineers to better understand
the flow of the interactions, the structure of the requirements and to view key inconsistency,
incompleteness or incorrectness errors identified by the tool. Warning and feedback messages are
also provided to notify the requirements engineers of quality issues detected throughout the

requirements refinement and correction.

Deeper analysis for completeness and correctness checks is provided by the tool. The tool compares
extracted EUC models to our set of “best practice” template EUC interaction patterns. These patterns
represent valid, common ways of capturing EUC models for a wide variety of domains. Matching a
substantial part of an extracted EUC model to an EUC pattern indicates potential incompleteness
and/or incorrectness at the points of deviation from the pattern. These potential problems are
highlighted to the engineer using visual annotations on the EUC model elements. Currently,
approximately 30 generic EUC interaction pattern templates are available in the tool and an extracted
EUC model is expected to match one of these and, if not, differences are highlighted. New patterns
can be added as required. Extracted EUC models that differ slightly, but in ways the engineer

considers reasonable, can be marked as “complete”.

6.4.2 Consistency Checking

As an example of consistency checking using the outlined approach, we use the textual natural
language user scenario, reserving a vehicle to illustrate requirements extraction, checking and

evolution process using our extended MaramaAl tool.

Figure 6.2 shows an example of some textual natural language requirements (1), extracted abstract
interaction phrases (2), and a generated EUC model representing the requirements (3), all as per the
techniques described in Chapter 5. As previously noted, once these requirements have been
extracted and represented in these three forms, MaramaAl provides low-level checking of the
abstract interaction sequence and EUC model internal consistency, using their defined meta-model
constraints. It also supports inter-model consistency management by propagating changes made to

one representation across to the other two representations.

101

iz use case begins when a customer jncs
The system prompts the customer
The system prompts for the type
The system pressnts all matching

If the customer selects & wehicle fi

5. The system presents information on }

I1f the customer indicates "accept re

9. This use case ends when the ressrval

| mincusenc
Friia use case begine when @ custcemer imie]
- The system prompis Che oustomer oo
= The pystes prompta for the type of v
l4. The systes presents all matching Vel
5. If eke customer selests & vehlisle T
. The system presents informaticn on |
7. 1I£ the customes indicates "accepi &
. Thir use case ends when the ressrvat

1
i

v

fhin
i

pE. The aystem |
T, If the casts
E. Thiz uze o

I BTy s

I Extrashope

! i — r
i Weardngs {1 bam)
A The reevs Soetract nkensction i ronsstent sith beabusl regunsment dagraml ;... Al prinic Frobdemn

Figure 6. 2: Example of extracting an EUC model then adding a new abstract interaction

102

Figure 6.2 shows the addition of a new abstract interaction “print”. A warning notifies where an

inconsistency is detected between representations (A). Users have the following options.

(i) Resolve the inconsistency by updating the textual natural language requirement

using the provided correct and complete words (B).
(i) Undo the change that introduced the inconsistency by deleting the new element.

(iii) Tolerate the inconsistency by ignoring it. A problem marker warning is provided to

inform users about such unresolved inconsistency errors (C).

Figure 6.3 shows an example of MaramaAl tolerating inconsistency when an EUC component
sequence order is changed. The EUC element “choose” has been moved to the end of the EUC
model and this change affects the other two requirements forms. The textual natural language
requirement and abstract interaction sequence are now inconsistent with the EUC representation.
The tool colours the associated abstract interaction “choose” in red (1) and annotates the associated
essential interaction “indicates” with “*****”(2). The process of detecting the inconsistency is as per
described in Chapter 5. However, here, an inconsistency problem marker also appears to notify user
about the inconsistency (3). Options to resolve the inconsistency by moving the associated abstract
interaction element are also provided to the user. In this case, the user will have to tolerate the
inconsistency until later, as changing the structure of the highlighted phrases (essential interactions)
will cascade changes to the whole structure of the textual natural language requirement. Another
problem marker warning is provided to continue to inform the user of the existence of an
inconsistency that has not yet been resolved. The same inconsistency toleration will happen if any of

the abstract interaction elements are changed to another position.

103

[The customer Y**"sssssindicaceastreremay
[H. The ayatem presents all satching wvehi
5 If the customer selects a vehicle for

[This use case begins when & customer _Pf'_'_"__'"'_'!..nugateu"'!;;l
e Wishes to BakE & CESGCVATION LOX & TERTAL OAE,

2. The system prompts the customer for the pickup and cet
jof the reservacion, a3 well as the pickup and recurn daces
3. The system prompts for the type of vehicle the custome

2

icle type.
jailnble at
; the ayst

. The aystes presents 1nformation of Protectio
T - A F

7. If the customer| ®eeeess "rindicateatvrreeNee | Saccapt D6

This use case ends vhen the reservation confirsation F

n products

r—

B Component
wibew aation ared bl v

sagaence i incoramtant vith the sequence of shetract
o A

:.~M

W stractin,
W Userlntent.,,
B Srstersiies
B Lt bt
I EUCDuagram
W Placebelder

T

] |

Derrors, 1 warring, 0 others

|

W PREGECLE,

B ExtereLiC

| [—

B Veuskink
B Ssquentedivk
I Enchadelink
W Exterciink
W Ik,
W Extere®li,

]

[Rescuece | pah

|[= & warings (1 o)

(12 probisens 1 davadio |), Daclaration| ® Mdel Unstaros | W Exgosted Progartins | ® Pty Maggars |

[iecson [g

B Incoraistency: The sequence of KU component i indonsifent with the ¢ dagramim... Alb

<hooss Problem

3

Figure 6. 3: Change the ordering of EUC elements

The tool also forces the user to resolve the inconsistencies if any deletion is made to either abstract

interaction or the EUC component. Figure 6.4 shows that an EUC element “offer choice” is chosen to

be deleted. This deletion causes an inconsistency with the abstract interaction and textual natural
language requirement as indicated in Figure 6.4 (1). The abstract interaction is given a highlight and

the related essential interactions in the textual natural language are also highlighted with “***”. The

user only has two options: either to delete the selected element and its associated components or to

cancel the deletion. If the user continues with the deletion, all the associated components will also be

deleted as in figure 6.4(2). In this case, the abstract interaction element “offer choice” and the

associated essential interactions “prompts the customer for the pickup” and “prompts for the type” in

the textual natural language requirement are deleted.

104

[This use case begins when a customwer indicates = i'.lMarwee
he wishes to make a reservation for a rental car. = Sthitching
2. The sysr.e:n|'"prompr.s the customer for the pickup®*f = :oolc
lof the reservetion, as well as the pickup and return dates
3. The system| ***prompts for the type®** |of vehicle the c (= Shapes
[The customer indicates the vehicle type. W Abstractin...
4. The system presents all matching vehicles available at B .
5. If the custower selects a vehicle for rental, the sy=t
6. The system presents information on protection products B SystemRes... |
7. If the customer indicates "accept reservation,” the sy I ListOfabst.
[B. This use case ends when the reservation confirmation k B EUCDisgram

I Placehoider

W Extrashape

B Requreme...

B Include

& Inconsistency Warning x|
() INCONSISTENCY ocour between Textual requirement and Abstract
- Interaction. Do you want to DELETE both components or CANCEL deletion of
EUC Component?
o _|

T
IN1s usSe case Heyins when & CUuStOmer lndicates 21) Marques el ST
he wizhes to MG)C_E a _FE_S_G_'KUB:I.OI’! for a :er}_r.al. car. g

ik e
2. The system deleted - ” tool e et W !
of the reservation, as well as the pickup and recurn daces [T 'd'e'le'téd‘ """ 1 E i
3. The system [deleted = of vehicle the ¢ (= Shapes g — e b ——
[The cuscomer indicates the vehicle type. W Abstractin... it detail 2
4, The system present=a all matching vehiclez available at B Userlntert. . deleted
5. If the customer selects a vehicle for rental, the syst request identification
6. The system presents information on protection products B SystemRes... N
7. If the customer indicates "accept reservation,” the sy I ListOfabst... identify sef med:bﬂ =
8. This use case ends when the reservation confirmation k B EUCDiagram
B Flaceholder System Responsib...
B Extrashape Toquest lgendFicat.
B Requireme. .
W Indude
W Extend 1
Requireme. ..
8 Requir System Responsib...
B InchudeEUC confirm bocking
B ExtendEUC

Figure 6. 4: Deletion of an EUC element

6.4.3 Inconsistency, Incorrectness and Incompleteness Checking

Further detailed analysis of the consistency, correctness and completeness of requirements models
is provided by using EUC pattern library instances to validate the extracted EUC model. To do this,
the checker attempts to match the extracted EUC model with one of the generic EUC interaction
patterns or templates in the EUC interaction pattern library. Currently, there are approximately 30
generic EUC interaction pattern templates covering various domains developed by us and collected
from the research of Constantine and Lockwood [4] and Biddle et al. [39]. The generic template is
assumed to be the correct and complete interaction (an oracle) for a specific scenario. This provides
the requirements engineer with a further, higher level, check of his requirement’s model by comparing
his EUC, representing a semi-formal model of the original textual natural language requirements, with
a template which matches a “best practice” EUC representation for the abstract interaction scenario.

As discussed above, this technique allows us to detect:

105

e intra-model inconsistencies (e.g. one or more unexpected abstract interactions or interactions
out of expected sequence appearing in the extracted EUC model);

e incompleteness (missing interactions occur in the extracted EUC model compared to the generic
template matched in the EUC pattern library); and to some degree,

e incorrectness: requirements captured in the extracted EUC model do not match a best-practice

template in the pattern library, indicating possible incorrect textual requirements.

For example, Figure 6.5 shows the requirement describing reservation of a rental vehicle from a
company. To check for consistency of this requirement, the user can choose a provided EUC
interaction pattern template "reserve item” (outlined in Figure 6.5(1)) to compare to the extracted EUC
model. Alternatively, he can have MaramaAl compare the extracted EUC model to all available
patterns and find a “best fit”, highlighting any differences from the best fit template as possible
problems. MaramaAl checks whether or not the extracted EUC requirements model is consistent with
the identified EUC interaction pattern library template. If differences are found, a warning message is
provided and the tool uses a visual differencing approach [137] to highlight potential inconsistency,
incompleteness and/or incorrectness errors that may exist in the requirements model, as shown in
Figure 6.5 (2).

106

Choose a template from
the EUC interaction
pattern template to

compare with the
generated EUC model

servation for & rental (
pta the customer for thi
well as the pickup and
pta LOC Che cype¥®® of »
tea™™" the vehicls type
= all matching vehicles
lecta a vehicle for rem
5 information on protect
indicates®r Maggept ri
vhen che reservation o

Your ELKC diagram is INCONSISTENT with the ELIC Template, There is an
! incomplets or incormect component, Do you want to KEEF your new diagram o

CHANGE to the EUC Template,

[} Shatching
bl
l=rShapes o
W Abstractin.
B Ussrlntert..,
B Sysieniies...
I ListOfdbst...
I EUCDiagram
I Flaceholder

T .
& Inconsistency warning

Visual Differencing
between generated EUC
model and EUC

interaction pattern

B

[ow] _dws |

| |ECrai
|5 Connectors. ¢

B Visuallnk

M Secusncelink

Figure 6. 5: Example of EUC interaction pattern template (1) and Visual differencing (2)

107

This use case begihs when o customer ***indici=~| |
he wishes to make a reservarion for a rental «
2. The system ***prompts the customer for the
of the resecvation, as well as the pickup and
3. The aystem ***prompt= for the type*** aof s = Shapes
The customer ***indicates*=** the wvehicle type B Abstractin,. iderdy sof Systemn Responsib. ..
4. The system presents all matching vehicles B Userintent... offer cholce

If the custower selects & vehicle for rem confiem booking
The =ystem presents information on protect B SystemiRes...

If the customer ***indicates®** “accept Ii B ListOfAbst, ..
s wi = © 4
This use case ends when the reservacion c B EUCDiagram _
print.

{73 Marguee
| Sketching view datai User Intention
tool dhoose

Systemn Responsib. ..
wiew detail

@ oo

B Flaceholder
I Extrashape
B Requirerms, .
W Include w
M Extond

B Requirerns, ..
B IncludefLC
B ExtendELC

g Generated EUC model is
i

B Secqusncelsd: _changgd to EUC
B InchudeLink interaction pattern
Bl ExtendLink
W IncludeEL..,
= B ExtendEL...

] il |
L. Problems 3 (2 Javadoc | [, Declwation | ® Model Instances | ® Exparted Propertios | ® Proparty Mapping |
errors, 2 warnings, 0 others

System Responsib., ..

System Responsib. ..
confirm booking

| Resource | Path | Location | Type |
=R K. A — | S | S =

@ The ELIC diagram is changed to EUC Template disgrami.m. Al EUC o, .

| The Hglighted textual requirementis inconsistent with the sequence of 4 disgraml.m... Al& choose E

Figure 6. 6: Change generated EUC model following the EUC interaction pattern

template

Here, EUC interaction pattern elements are shown as a set of grey elements adjacent to the
extracted EUC model. Visual link “>” annotations connect corresponding elements in the extracted
EUC and EUC interaction pattern. The tool is able to show errors such as wrong sequence ordering,
redundancy, missing elements and the existence of extra elements in the EUC model. Incorrect
sequences are obvious via crossed links (e.g. the out of order “view detail” abstract interaction).
Incorrect interaction is also shown by a grey element (e.g. “choose”) near the extracted EUC model
(e.g. “view detail”) (A). Both are from different interaction category where element “choose” is from
User Intention and “view detail” is from System Responsibility. The position is also supposed to be
held by” choose” and not “view detail”. Unmatched items in the EUC interaction pattern template
(e.g. “view detail”) or in the extracted EUC (e.g. “identify self’) are highlighted (B) (in this case
juxtaposed to indicate the EUC interaction pattern element could sensibly replace the extracted
element). The error is the incorrect position hold by “identify self” where the position should be hold
by “view detail”. The incomplete item is shown by the grey shape “offer choice” overlapping the green
shape “request identification” (C). This also shows that the incorrect position held by the extracted
EUC component “request identification”: it should actually be after the element “offer choice” The
extra element “print” is highlighted with a red box (D) to show the unnecessary existence of an

element in the diagram.

Based on the visualised errors, requirements engineers can choose to: change their EUC model to
conform to the template view, incorporate some of the recommended changes into their model, or

keep their existing EUC requirements model. For example, Figure 6.6 (3) shows that if the

108

requirement engineers choose to change his EUC model to follow the template, the EUC model will
change automatically to an EUC based on the EUC pattern template. The problem marker provides a
warning if the generated EUC model is kept or changes to the pattern template or if there are siill
inconsistencies in any of the requirement components (E). Our philosophy is to lessen the human
effort and intervention in checking for potential errors but to leave the final decision to accept or reject
recommendations to the user. Our belief is that combining tool automation support to identify potential
requirements errors with human acceptance and cross validation better helps unearth and fix

inconsistency, incompleteness and incorrectness errors [138].

6.5 Architecture and Implementation

1314;2:221 M%Ea:)rlna MaramaAl visual editor Text editor
designers instance .E: :
Meta- S
model %__-m..
designer [
Sha / ’A_‘ X 3
pe 7
designer MaramaAl Add/update/ Update
v ; diagrams & delete text
iew
. model
designer / Annotate \ Annotate
B Marama diagram text
Behz‘Wlour meta-tool 3 B
designer Core APIs Visual diff Change Extract
] EUC model Diagram/text Interactions
Ay

Interactions

MaramaAl MaramaAT saved Library
tool model/ diagram/
specifications text data

Figure 6. 7: MaramaAl tool architecture for managing consistency of requirement

We developed the extended MaramaAl toolset using our Marama meta-tools [120] and a number of
specialised components for requirements extraction, analysis, comparison to the pattern library and

visual differencing. An outline of the tool’s architecture is represented in Figure 6.7.

l. Items (1-4) are as per described in Chapter 5. We developed the meta-model, editing tools

and basic EUC model constraint management with Marama, generating a specification for

109

the tool (1). When using MaramaAl, a requirements engineer opens the MaramaAl tool
specification and the Marama meta-tool instantiates the tool including model and diagrams
(2).Textual natural language requirements are extracted from plain text documents (which
themselves can be extracted from Word and PDF formats). This is done by using essential
interaction phrases to abstract interaction mappings in our essential interaction library (3). A
list of extracted abstract interactions is generated which is then translated into an EUC
model. These models are used to generate an abstract interactions list and an associated
EUC diagram (4).

Here, we have mapped our EUC interaction pattern library approach, illustrated in Figure 1,
to the consistency management framework proposed by Nuseibeh [135]. The requirements
engineer can make modifications to any of the representations supported by MaramaAl (5),
including changing textual representation or adding, updating, re-sequencing or removing
elements in EUC or abstract interaction representations. Inconsistencies between these
representations are detected and shown to the user via highlighting text and/or diagram
elements. The EUC model is compared against “best practice” templates in the EUC patterns
library to check its completeness and correctness (6). Differences to a chosen pattern
template in the library are highlighted between the EUC model and template through visual
differencing (7). This annotates the EUC model to indicate these differences. For all
inconsistencies and differences from an EUC model from a pattern library template, the
requirements engineer can choose to resolve the inconsistency by modifying components, to

tolerate it (deferring for later attention) or to indicate his wishes to ignore the inconsistency.

110

Scenario Generated EUC model with changes EUC interaction pattern
Reserve 1. view detall\-- =4 choose
item T
2 request S|p 2. |Offer choice|
Jdentification, T
3. ,fﬁent?fy\. el e b » 3. view detail
\ self !
- -
4. I(Yonfirn’r\ .. »4.request
\booking, identification
5. \ Ehgofq.. 'S 5.identify self
L T > .
6.~ print 6. confirm booking

Table 6. 2: Overview of Comparing the Generated EUC model with EUC Interaction Pattern

Template

Table 6.2 shows an overview of the comparison of a generated EUC model with an EUC
interaction pattern based on the selected scenario template. An item with a red dashed circle
shows an incorrect item that exists in the EUC model compared to the EUC interaction
pattern. The blue dotted lines show an incorrect match between both models and a yellow
dotted line shows an incorrect position or sequence hold by each item in the generated model
compared to the EUC interaction pattern. The red dotted box with the item “offer choice”
shows there is an incomplete item which is missing in the generated item compared to the
EUC interaction pattern. This concept is performed using visual differencing in MaramaAl as

illustrated in Figure 6.5.

1. An inconsistency is resolved by updating a representation model appropriately and
MaramaAl provides support to the user by presenting and applying potential changes to
resolve the inconsistency. In each case, any modification results in the models again being

checked with the meta-model consistency rules and the EUC pattern template.

As mentioned earlier, we implemented the visual diagramming interfaces of MaramaAl using the
Marama meta-tool [120]. This support the latter used in visual differencing. The meta-model and
DSVL editors were also supplemented with event handlers to provide low-level model constraints,
consistency management support and interfaces to other elements of the architecture. These were
implemented in Java and include generation of dialogues and problem markers to help the user to
track, tolerate and resolve inconsistencies. In Chapter 5, an event handler was described to
implement extraction of textual natural language requirements into abstract interactions, and another
to generate an EUC model from the abstract interaction as well as simple inconsistency checking.

Three further event handlers which are written in Java and used to check for the higher level

111

consistency checking using the essential interaction pattern and EUC Interaction Pattern, are

described as below;

l. Consistency Management: This event handler is used to check any deleted item in any of the
requirement components: textual natural language, abstract interaction and the EUC model.
The Consistency Management checks the deleted item either in abstract interaction or an
EUC component. Then the event handler will highlight the associated component in red and
the corresponding textual natural language requirement with ****. The highlight components
need to be deleted also, or the user is forced to cancel the deletion It also provides warning
about the inconsistency that has occurred and triggers the problem marker to show the

inconsistency errors. Sequence diagrams to illustrate this interaction are shown in Figures

6.8 and 6.9.
Consistency Management Textual Natural Language .
s gvent handler Requirement Marama Cesential Erobler marker
press event I

|
) I
highlight the EUC component
1

highlight the essential interaction |
|

|
|
|
|
i
display inconsistency warning and ask user to deletl_e or cancel :

v

trigger to display inconsistency emor
1

]
show inconsistency arror
1
1
1
1
delete EUC component
1

elete highlighted essential interaction
=]

trigger to remove inconsistency error
1

]
remove inconsistency emor

{if usar==cancel}

1
remowe highlight
1

remave highlight I
A |

trigger to remove inconsistency error
1

]
remove inconsistency eror

—— e e N

|
|
|
|
|
|
|
|
|
|
d
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-l W __1_

Figure 6. 8: Example of Consistency Management: Delete Abstract Interaction

112

Consistency Management .) Textual Matural Language
Uit event handler Abslract ineractinn requirement

press event |]
N |

highlight the abstract intaraction component
|

highlight the essential interaction
1

1
|
|
i

display inconsistency warning and ask user to delete or cancel :

trigger to display inconsistency amor
|

|

|

| . .]

| show inconsistency error
| |
|
|
|

|
|
le
|

1
1
1
Hedate abstract interaction component

|

{if user==delata}

delete highlighted essential interaction
1

trigger to remove inconsistency error
1

]
remove inconsistency eror
M

remove highlight
1

{if user==cancel}

remcwve highlight |
|

trigger to remove inconsistency error
|

1
remove inconsistency eror

L

B

Figure 6. 9: Example of Consistency Management: Delete EUC Component

Check Consistency with a Template: This event handler is used to check and compare the
generated EUC model with the EUC interaction pattern in the EUC interaction pattern library.
Here, visual differencing proposed by Mehra et al. [137] is conducted to show the
inconsistency, incompleteness and incorrectness in the EUC model. If any of these errors
occur, the event handler provides a warning about the errors and asks the user to either
change the generated EUC model to the suggested template or to live with the inconsistent
model. The event handler also triggers the problem marker to show the error which still exists

in the model. A sequence chart to illustrate this interaction is shown in Figure 6.10.

113

Check Consistency with

a Temglale event handler EUC interaction pattem
library
User Marama Essential Problem marker

press event

ask user o select template

select template
check template

T

|

|

|

|

|

|

|

D compare template with generated ELIC model :

1

send result |
|

|

|

|

|

|

|

|

|

i
show visual differences.

T

display incansistency warning |

1
trigger to display inconsistency error

T
display inconsistency ermos

3

|
|
|
|
|
|
|
|
|
|
|
|
|
f
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
e
|
|
|
e
|
|
|

N [

|
I |
| |
| |
: |
Figure 6. 10: Example of Check Consistency with a Template for the Generated EUC
Model

Check Keyword: This event handler is used to check the existence of new abstract interaction
in either the abstract interaction component or the EUC component. The event handler
checks the new abstract interaction with the textual natural language requirement and will
trigger an inconsistency warning if the new abstract interaction is not matched with the
essential interactions in the textual natural language requirement. It will also trigger the user
to make a selection: to update the new abstract interaction with the provided suggested list of
complete and correct words, to delete the new item or to continue with the addition of the new
abstract interaction without any updating to the textual natural language requirement.

Sequence charts to illustrate this interaction are shown in Figures 6.11 and 6.12.

114

Textual Natural L anguage Essential interaction
1] Check Keyword event handler Requirsment pattern librar Problem marker

=

press event 1

I
check abstract interaction with essential interactions
]

|
N |
|
I
| |
|
|
(=

] interaction

accept abstract intaraction

> check abstrac

ask user o update text

update text

[N M. |

}
L}
}
o |
1

}

{if {abstract interaction'=essential interaction)
1
1

1

1

I

1

1

1

1

1

1

l |
~

| I
I

| |
! |
! [
! |
! |
1

b reject additon
k
display ir'|c:o|'|si51nal|'|cg|I warning & ask user to update, delete, continue I
) o |
| |
| |
{if user== update} | |
| 1
. | check the essential interaction
i ‘ ' I
| : |
I i I
| ! k
I : L
I
1 : {if (essential intaraction inserted!=library)}
! [
I v
1 L reject update
I

display error message and ask user 1o change
I~

L

{if user==continue without updating}

display inconsistency waming

trigger to display inconsistency eror
1

display incanststancy errar

i

{if user==deleta}

D delete the new abstract interaction
trigger to remove inconsistency error
1

remaove Incnnsist'ancyI error

T
|
|
|
|
|
|
|
|
B |
|
D check asssmq interaction
update text i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

e .

—_———————_———

Figure 6. 11: Example of Check Keyword of abstract interaction in the abstract interaction

Component

115

Check Kevword svent handlar

‘ - ‘

. Textual natural langusoe Essential interaction
Abstract Interaction requirement pattern libran Problem marker

| press event | : 1
— i
check absfacl interaction with essential inferactions

{if (essential interaction insarted!=library)}

1 |
1 |
| 1 I
| I 1 ol |
: | [I !)
| | : I I check absllac'il interaction
| L | accept abstract interaction : 1 |
! add 1o the list of Abstract Interaction 1 : !
1 5 1
| 1 |
| ask user lo update text | | : 1 |
] update text 1 I I I
! L 1 J 1 I
] f 1
	1
	1 {if (abstract iﬁmracﬁon!:sssenn’al interaction)
1 }	
]	
! 1 .	
! L	reject addition : T
display inconsistency warning & ask user o update, delete, continue : 1 : :	
]	
1 1 1 I	
i 1 I 1 I	
{if user== update} : : : : :	
I kheck the essential interacion	! !
1 1 1 =)	
1 I i I	
: I ::> check essemleil interaction	
: H I update text i	
[P b —	
b 1	
! L add to the list of abstract interaction \	
r .	

|
|
|
|
1 |
1 |
I |
I . |
! L | reject update : : :
display eror message and ask user © change : : 1 |
i i —————
| ' : :
I
{if user==continue without updating} 1 1 1 |
1 1 1 I
I |
display inconsistency warning : : 1 |
| | : trigger to display inconsistency error : :
1 1
|] N I 1
| I | display inconsistency error : : :
I [1
1 1 1 I |
{if user==delete} | 1 1 : :
I
: 1 : 1 I
I 1 I 1 I
: D delete the new ab5t‘ﬁc1 interaction : : :
: | : trigger lo remave incansistency error : :
1 1
| | 1)) 1 T al
| | |femave inconsistency error | | |
f | [1 T I
| | 1 1 I |
| 1 I |
| |

Figure 6. 12: Example of Check Keyword of abstract interaction in the EUC Component

116

6.6 Conclusion

In this chapter, we have described our further work in managing the requirement consistency. We
described an approach supporting requirements quality improvement via a combination of semi-
formal model extraction from natural language specifications and analysis using the essential
interaction pattern library and an EUC interaction pattern library. Low-level inconsistency problems
can be identified such as textual natural language phrases without matching semi-formal model
elements and meta-model constraint violations of the extracted model. Higher-level problems,
including inconsistency, incompleteness and incorrectness can be identified by comparing the semi-
formal model with the essential interaction pattern and with the “best practice” examples of EUC
interaction pattern templates. A visual differencing technique highlights differences between the
pattern template and the EUC model. Modifications to EUC, abstract interaction and textual natural
language requirements representations are also supported with consistency management support
among the different representations. We have conducted the evaluation of our consistency
management approach and the results are further discussed in the Evaluation Chapter, Chapter 9.

The results and feedback received from the evaluation motivate us to extend our work with end-to-
end support by developing an Essential User Interface (EUI) prototype and a concrete Ul view in a
form-based Ul from the EUC model. The generated Ul could be used to verify and confirm that
requirements expressed by clients are consistent with the requirement engineer’s view using this

alternative visualisation mechanism. This is described in the next chapter.

117

Chapter 7: Supporting Requirement Validation via End-to-
End Rapid Prototyping

This chapter describes a significant extension of previous work which provides end-to-end rapid
prototyping support for validating requirements. A new round-trip requirements engineering approach,
capturing requirements as essential use cases and further translating them into “Essential User
Interface” low-fidelity rapid prototypes is developed. These prototypes aid clients to better
conceptualise and understand how requirements might surface in a system, enable them to provide
more detailed feedback to requirements engineers and provide a complementary user-centric
representation of requirements orthogonal to existing natural language and formal models. A study
illustrating the challenges of requirements engineers in capturing such rapid prototypes, a tool to
support requirements capture, rapid prototype generation and consistency management are also

described.

7.1 Introduction

Requirements capture from clients is often difficult, time consuming and error prone [11]. Late
validation, in particular, causes requirements quality to suffer [25]. This has placed a focus on
techniques for early client feedback, such as use of formal and semi-formal models and heuristic
algorithms [30],[139],[26] plus techniques for translating natural language requirements into such
models [14, 28, 139]. While beneficial, these approaches are often difficult to use and require much
effort [140], [141]. However, most clients do not understand models, formal terms or mathematics
equations leading to validation problems [141],[142]. Rapid prototyping can be one of the best ways
for early validation of requirements from both a requirements engineer (RE) and a client’s view
respectively [143]. Using prototypes, clients gain a much clearer understanding of a proposed system
via an intuitive representation, or mock-up, of the target system. This helps to reach a very early

identification of missing or incorrect requirements [144],[71].

For early-stage requirements analysis, low-fidelity or abstract prototypes are useful [145]. However,
developing such prototypes requires effort [71] and, Sukaviriya et al [145] assert, is poorly supported
by toolsets. In chapters 5 and 6, we have developed a technique and toolset for checking consistency
of requirements based on Essential Use Case (EUC) diagrams. Here, we describe a significant

extension of this work providing end- to-end rapid prototyping support. EUC models are mapped to an

118

abstract Essential User Interface (EUI) prototype model. From there they are mapped to concrete
User Interface (Ul) views in the form of form-based Uls. This allows the RE and client to walk-through
the formalised requirements together and to validate and confirm the consistency of these
requirements. We have established a set of EUI patterns for EUI prototypes and an EUI Pattern
template for translating an EUI prototype to concrete Ul view-HTML form and implemented them as

an extension to our previous work.

7.2 Background

7.2.1 Rapid Prototyping

Rapid prototyping assists the requirement elicitation process by gaining early feedback from clients
on captured requirements [71],[146]. Low-fidelity or abstract prototypes (often paper) are commonly
used in this process [147]. Types of abstract prototypes include EUI prototypes [4], abstract user
interfaces [148] or Ul prototypes [149]. These are easy-to-change mock ups which encourage
iteration of the elicitation and validation process [71],[149]. They allow a rough walk-through of user
tasks before needing to factor in hardware or technology concerns [146] and can avoid clients being

fixated at an early stage on concrete product appearance rather than functionality [71].

7.2.2 Essential User Interface (EUI) prototyping

EUI prototyping is a low-fidelity prototyping approach [10]. It provides the general idea behind the Ul
but not its exact details. It focuses on the requirements and not the design, representing Ul
requirements without the need for prototyping tools or widgets to draw the Ul [150]. EUI prototyping
extends from, and works in tandem with, the semi-formal representation of EUCs, both focusing on
users and their usage of the system, rather than on system features [11]. It thus helps to avoid clients

and REs being misled or confused by chaotic, rapidly evolving and distracting details.

Figure 7.1, from Ambler [10, 11], shows an example of an EUI prototype being developed from an
Essential Use Case (EUC). The post-it notes represent abstractions of user interfaces. The different
colours of these notes represent different Ul elements. Pink notes represent the input field, yellow
notes represent display only and blue notes represent actions [11]. Here, the RE is capturing the user

intention/system responsibility dialogue represented in the EUC as possible Ul functionality at a high

119

level of abstraction. Although EUI prototyping has advantages, it has not been rigorously applied in
practice as no tool support is available for such an approach. Being a whiteboard/paper technique, it
does not integrate well with other tools used in the software engineering process [10]. Also, previous
work has shown that the application of low-fidelity techniques in practice proves challenging [71].

Overcoming these problems was the motivation for the work described in this chapter.

User Intention System Responsibility
Student identifies himself Verifies eligibility to enroll via BR129 Dat:
Eligibiy to Enroll

Indicate available seminars

Validate choice via BR130 Determine St
Choose seminar Elgibilty to Envoll i & Sermingr
Validale schedule fit via BRT43 Valdate
Semingr Schedule

Calculates fees via BR 180 Calculate St
and BRES Cakculate Taxes for Seminar,

Summarize fees

Request confirmation

Envoll student in seminar

Confirm enrollment)
Add fees to student bill

Pravide confirmation of

Figure 7. 1: Example of EUI prototype iterates from Essential Use Cases (EUC
model (Ambler [10, 11])

7.3 Applying EUI Rapid Prototyping: A Study

To obtain a more rigorous understanding of the reported anecdotal difficulty of using low-fidelity
prototyping [71], and EUI prototyping in particular, we conducted a user study of several REs
modelling an EUI prototype from a set of requirements written in the form of a user scenario.

Our study participants were 20 post-graduate software engineering students, several of whom had
previously worked in the industry as developers and/or REs. All were familiar with requirements and
prototyping but none with the EUI prototyping approach. Each participant was given a brief tutorial on
the approach and examples of natural language requirements with derived EUC models and EUI
prototypes. Participants were then asked to develop an EUI prototype model from an EUC model and

natural language requirements. We tracked the time they took to complete the task. The particular

120

scenario we gave them to analyse was “getting cash”, which is the same scenario discussed in
Chapter 3, but here we focus on EUI modelling, given an existing EUC, rather than EUC modelling
itself. This scenario is given as we wanted the participants to understand and be comfortable with the
requirements before capturing the intended content and the organisation of the Ul. The example of

the scenario and EUC diagram given are shown in Figure 7.2.

1. The use case begins when the Client inserts
an ATM card. The system reads and validates
the information on the card.

2. System prompts for pin. The client enters PIN.

The system validates the PIN.

3. System asks which operation the client wishes User Intention System

to perform. Client selects “Cash withdrawal.” responsibility

4. System requests amounts. Client enters

amount. 1. identify

5. System requests type. Client selects account self 2.verify identity
type (checking, saving, credits)

6. The system communicates with the ATM ” 3.offer choice
network to validate account ID, PIN and

availability of the amount requested.

7. The system asks the client whether he or she 4.choose

wants receipt. This step is performed only if there transaction

is paper left to print the receipt.

8. System asks the client to withdraw the card. .
Client withdraws card. (This is security measure 5.dispense cash
to ensure that clients do not leave their cards in

the machine.) 6.take cash

9. System dispenses the requested amount of
cash.

10. System prints receipt.
11. Client receives cash
12. The use case ends.

Figure 7. 2: Example of Scenario “getting cash” and its EUC diagram

Table 7.1 summarises the results of the study. The correctness (Y correct, X incorrect) and the time
taken were recorded for each participant and each EUI component. A correct answer (Y) means that
the participant's component was the same or very similar to an oracle EUI pattern we developed

based on the Constantine and Lockwood [4] methodology. Thus:
e Only 42% of the EUl components were correct.

¢ No participant had all EUI components correct (all Ys). Three had only one wrong (orange

highlight). One participant’s components were all incorrect (grey highlight).

121

e The average time taken was 14.4 minutes, the longest time 35 minutes (yellow highlight) and

the shortest 3 minutes. Thus, there was a significant variability in the time taken.

Based on these results, participants were more likely to generate incorrect EUI prototype models than

correct ones. The root cause was that participants tended to incorrectly determine the main Ul

component of a specific business use case. Almost all participants tended to capture unnecessary Ul

components, gearing towards a concrete GUI rather than EUlI components. There was considerable

variation in the time taken and the longest time taken did not increase the likelihood of the

correctness of the answer: 35 minutes for only 2 correct EUl components. Our survey thus supports

the anecdotal findings reported in [71] regarding the problems faced in using low-fidelity prototypes

but with more quantitative evidence.

Participant Answers Time
ID Other Display ID List of List of Display Cash taken
personal Option Payment (minutes)
detail

1 Y X Y X X X 7
2 Y Y Y Y X Y 10
3 Y X X X Y X 5
4 Y X X X X X 30
5 X X X X Y Y 23
6 X X X X X X 10
7 Y X X Y X Y 3
8 Y X X X X Y 4
9 X X Y X Y Y 11
10 Y Y Y X Y Y 11
11 Y X Y Y Y Y 30
12 X X Y X X Y 30
13 Y Y X Y Y Y 8
14 X X X X Y Y 4
15 Y X X X X X 5
16 X X X X X X 12
17 X X Y Y X X 25
18 X X Y X Y X 20
19 Y X Y X Y Y 4
20 Y X Y X X X 35

12| 8 3 17 10 10 5 15 9 11 11 9 287

Average time taken: 287/ 20= 14.35

Table 7. 1: EUI prototype Modelling Study Results

122

7.4 Related Work

Earlier in this chapter we suggested that rapid prototyping is useful in assisting the requirements
validation and confirmation as well as supporting the analysis and requirements engineering at an
early stage. Many other researchers have generated user interfaces or prototypes in the requirement

engineering domain.

For example, Ogata and Matsuura propose a method for automatic generation of user interface/
prototypes for web-based business applications based on requirement specifications defined in UML
[142]. Their work guarantees consistency of the data and flow between the requirement Analysis

model and prototype, and thus decreases the time taken to conduct requirements analysis.

Gabrysiak et al. present an approach and preliminary tools that support combining requirement
models with specific requirements prototyping of interactive visualisations (animations). These are for
requirements elicitation and validation of systems for multiple users in the business domain and for

scenario-based requirements [151].

Furthermore, Li et al. present an approach for validating system requirement at an early stage by
transforming UML system requirement models with Object Constraint Language(OCL) specifications
into executable prototypes with the aim of checking multiplicity and invariant constraints [152]. Their
work also performs automatic consistency checking of requirements. However, some OCL
expressions cannot be handled by their tools and the algorithm used does not support larger
executable sets of OCL [152].

Memmel and Reiterer introduce an interactive integration between interdisciplinary and informal
modeling language, comprising different fidelity levels for Ul prototyping in their INSPECTOR tool
[149]. This enhances the traceability of dependencies, increases transparency of design decisions

and provides support for round-trip engineering [149].

Schneider developed the “Fast feedback” technique with “By Product principles” to collect additional
information during interviews with clients by sketching and animating user interface mock—ups guided
by use case steps [25]. This technique requires two interviewers to collect requirements: one interacts

with the stakeholder and the other completes a template.

There is also much work on non tool-based techniques. Vijayan and Raju propose a paper
prototyping approach for eliciting requirements [153]. The requirements gathered are validated by
examining the captured paper prototype to identify omissions, ambiguities and other requirement

quality problems[153].

123

Molina et al. have developed a model and graphical notation for the specification of abstract Uls
based on a conceptual pattern [154]. This Just Ul approach identifies patterns for Uls and abstracts
them to work with problem domains specifically for presentation and navigation issues. It extends
Object- Oriented(OO) methods to capture Ul requirements and presents a set of patterns that can be

used as building blocks to create Ul specifications for information systems manually [154].

The work discussed above present approaches to generate the user interface/ prototype for
requirement engineering purposes, mainly for requirement analysis. However, most approaches
generate the user interface/prototype from semi-formal specifications, typically UML models, only and
not from informal specifications in the form of textual natural language requirements. Some of the
work identified lacks automation support to generate the interface/prototype and to conduct the
validation process. None of the approaches generate EUI prototypes; most generate another type of
abstract prototype to visualise the requirements. Almost no work has been done to develop a EUI
pattern library or EU pattern template for generating the user interface/prototype. In addition, most of
the approaches also lack round-trip prototyping support to validate the requirements by both the REs

and clients.

124

7.5 Our Approach

Abstract Interactions EUC Model ELErEcyps
v 3. Derive s I-Derive =
A Texual . 2.Extractabstract EUC model asars EUI £ G
_ Lrequemens interactions using Lo from E prototype
interaction library -t oo, - from EUC —-

interactions
: model

T —— Eamm) B —

-
== e

. Essential ; oers T
Interactions A -— i‘~_T TI
_ Library Ul
Pattern
6. Resolve, live-with, ignore problems. } Library
8. Derive
Cc te Ul
5. Highlight bt
1. Requirement inconsistency, 4. Check EUC agains; EUI
Capturing incompleteness, pattern library rototype
incorrectness instances P P
problems il
— e EUI
= - — Pattern
"r:":__ EUC template
e e N Interactions Library
= Patterns
s Library
Userand Requirements Engineer Visuahr Differencing Concrete Ul View-Form Based Ul

9. Validation with user

Figure 7. 3: End-to-end EUC and EUI prototyping approach

We were motivated by the gaps that we found from the related work discussed in the previous
section. We were also surprised by the results in section 7.3, although perhaps should not have been,
given the results from per manual EUC extraction study presented in Chapter 4. Many participants
were experienced in the field of software requirements. Given this background, we expected that less
time would be used to accomplish the simple task. We also expected they would be able to develop

more accurate EUI rapid prototypes for this problem domain.

This has provided us with an additional motivation to develop an approach and supporting tool to
enable REs to capture or confirm more effectively requirements with clients via end-to-end rapid
prototyping using low-fidelity EUI prototyping together with a concrete Ul prototype. Figure 7.3

provides an overview of our end-to-end rapid prototyping and requirements elicitation process.

l. The process followed in items (1-6) in Figure 7.3 is as per described in earlier chapters,
Chapter 4, 5, and 6. Our new work presented here (in the grey box) allows the RE to
automatically and traceably transform EUC models to EUI prototypes using a novel EUI
pattern library we have developed (7).

125

1. Combined with our earlier toolset, this means traceability is provided throughout the process,
allowing any of the EUI components to be traced forward/back from/to the EUC model,

abstract interaction or textual natural language requirement.

. The EUI prototype can also be translated to a more concrete form-based Ul view, an HTML
form, by using a novel EUI Pattern template library (8). An EUI prototype model can be
translated to a concrete form-based Ul using a pre-defined template in a EUI pattern template
library, one template for each EUI pattern. The EUI Pattern template consists of the

descriptions of Concrete Ul components to be instantiated for a particular EUI pattern.

V. Simple interaction with the generated HTML form is supported to illustrate how target system
information input and output could work. This EUI model and concrete Ul can then be
reviewed by the RE with end-users to validate and confirm the consistency of the original

textual requirements (9).

1.1D 1. Other
personal
detail

User Intention System responsibili

1. identifyself

2.verifyi

3.offer choice

e e]
transaction

— |
5.diwash/’

Ul Tracing
engine

ul
Mappging
engine

3. List of
option

6.tak h 5
e ST 4 EUl pattern

EUl pattern
library P

template
library

4.List of
Payment

AY

A)
5.6,
Display
Cash

Figure 7. 4: An example of performing mapping of EUC model to EUI prototype using the
Ul Pattern library with trace-forward/ trace-back and translating the EUI prototype to the
concrete UI-HTML form

Figure 7.4 shows in more detail the mapping and tracing process between the EUC model, EUI
prototype and Concrete Ul view, using the “getting cash” scenario. The numbers indicate mapped
elements between the models. The EUC model is mapped to/from the EUI prototype using the Ul

126

mapping engine. This maps each of the abstract interaction components which have a relevant EUI
pattern in the EUI pattern library. For example, the abstract interaction “identify self’ (1) will be
searched for in the EUI pattern library and its related EUI pattern found. This results in abstract Ul
elements “ID” and “Other personal detail” being added to the EUI model. More than one abstract
interaction may share the same EUI pattern. For example, the abstract interactions “dispense cash”
and “take cash” share the same Ul pattern “Display cash”. Here, only one EUI pattern “Display Cash”
is included in the model with two different sequence numbers associated. The sequence associations

support trace forward and back.

7.6 EUI Pattern Library

We developed the EUI patterns in the EUI Pattern library, using an adaptation of the brainstorming
methodology proposed by Constantine and Lockwood [4]. The adaptation generalised the approach
providing a simpler and more generic EUI pattern for EUI prototypes. The generalised EUI pattern
comprises four types of EUI pattern category: List, Display, Input and Action. These are similar to the
concept of Containers, introduced by Constantine and Lockwood. The main aim of these EUI
Patterns is to assist REs to rapidly model a user interface based on the requirements captured and
modelled earlier in the EUC model. An abstract Ul captured using such a pattern is used as a
medium for early communication between the RE and the client as it is easy to understand and allows

the client to narrow down Ul detail before moving to the concrete UI.

Table 7.2 shows examples of mappings among abstract EUC interactions (right) and various EUI
patterns (centre), and their categories (left). For example, the EUI pattern “Save” from the “Action”
category is associated with three different abstract EUC interactions: “record call”, “record detail” and
“save identification”. We can see that the abstract EUI patterns are very general and apply across a
range of different domains. For example, the EUI pattern “Save” could support a range of different
scenario domains such as making calls in a mobile application domain to online booking, registration

and retail systems.
In more detail, the four EUI pattern categories are as follows.

e List: Show a list of items, options or values that are associated with a particular
abstract interaction of the EUC model. Default values are provided from the Ul
pattern library but can be overridden during application.

o Display: Display output based on an associated abstract interaction of the EUC

model. This could display a name, id, number, address, message or notification.

127

abstract EUC interaction.

associated EUC abstract interaction.

Input: Allow a user to input data or details of a specific element associated with an

Action: Show a control button, such as save, delete and submit, based on an

Abstract interaction

EUI pattern category EUl pattern
List List of option Choose
offer choice
Select option
List of solution offer alternative
offer possible solution
List of product select product
List of problem view problem
List of payment choose transaction
choose payment
select amount
Display Display payment validate payment
show payment
Display Item detail return item
view detail
Display status check user
Notify user
Display ID verify identity
provide identification
Display error message display error
Input ID identify self
request identification
Other personal detail identify self
request identification
Payment detail make payment
Item detail provides detail
Number make call
indicates number to dial
Action Help Ask help
Present solution
Save record call
Record detail
save identification
Print Print
Delete delete item
Submit insert information

Table 7. 2: Example of EUI pattern Category and its related EUI pattern and it’s associated
Abstract Interaction from the EUC model

128

7.7 EUI Pattern Template library

The EUI Pattern template library consists of an EUI Pattern template which is developed to translate
the EUI prototype to the concrete Uls in a form of HTML page. The EUI pattern template is based on
the EUI pattern used in the EUI prototype. The EUI pattern template is already pre-defined in the
library. It contains templates defined in HTML format for each of the EUI pattern categories: List,

Display Input and Action. The defined EUI Pattern template for the HTML form is as below;

i List: Table
ii. Display: message/text/data/value

ii. Input: Text Input

V. Action: Button

The EUI pattern template is also applicable and reusable for various domains of applications. Table
7.3 shows the examples of EUI pattern templates with their associated EUI patterns and domains

applicable to the pattern.

EUI pattern EUI Pattern EUI Pattern Domains
categories template
Action Submit B Online banking, online booking,
utton . .
Add online business, e-commerce,
Search online voting system, mobile
system, online reservation
List List of item Online banking, online booking,
List of payment Table online business, e-commerce,
List of option online voting system, mobile
system, online reservation
Display Display Numbers/text Online banking, online booking,
availability online business, e-commerce,
Display amount Value/text online voting system, mobile
Display ID Numbers system, online reservation
Input Item detail . Online banking, online booking,
- Text input : ;
Payment detail online business, e-commerce,
Problem form online voting system, online
reservation

Table 7. 3: Examples of EUIl Pattern template with its associated EUl Pattern and associated
Domains in the EUIl Pattern template library

129

7.8 Tool Support

We have extended our prototype tool, MaramaAl, which previously supported extraction of EUC
models from textual natural language requirements, as described in previous chapters, to additionally
and automatically map EUC models to EUI prototypes and concrete Uls, based on the approach
outlined in the previous section. The EUI prototype is modelled in a Marama editor called
MaramaEUI. The concrete Ul is presented in the form of an HTML page, both realised in the Eclipse
IDE.

Several screen dumps of the tool in use are shown in Figure 7.5. From a set of textual natural

language requirements (1);

l. semi-formal EUC models are extracted (2) and

Il. then mapped to a low-fidelity Essential User interface model in a MaramaEUI editor (3).

130

1.4 Mt 1. Haguss

Ly Seterare vool wderify sl “ Ly Sstorung 1w t'-_ ------ — K_-Fr:.i
o Ehates v ﬂf *‘i’ ety | L T i s ot

W Abstiactlnbsanc. .. - W Corimrer
. RO
e e ol o

W SrsbemFapons. ., dcse tarascle B dechude | I

W et At] despenreia et . R : W E et _;‘_'H_'“'"‘
L : | | . .
[ars 1 [
I LT e —— 2 | | W T s | [

I Pl ke

| A “ W Pvesgationd ik " -
I Eotp i el A B ek o o 3
W rechie = o i Exterink
[T e
W oy e = - -
W ke B e . l,—l
5 [y [~ |
.-wt M-l.'-'c I 1Marauee {2} Marquse i e . |
- [Sheaching oot e Ly Shitetung tool — T
. uskink e = saasas e : &, sorsonal ...
I Fepatralink I Absteactinierac.. o B Contaner |
= (S
e, m ; _r
I Irechadef i Lird I LstOf At
[_LEL b SEE Tty B ELCDuagram |
i o BE
e ede— - I Cxirahape |
P e e | W Recenerecr...
ke
e T | o
AySceE prompte for pin. |

Systesm ssks whioh operar| W ReREse..
Eypstem "Teragquest seeunt:| B Inedelc
System FYPTOguUest TypaT | [GenduC
The system communicates 8o — —
The system asks The olom| o ore
Hyscew asks the olienc ri| B Vel
Bystem dispenses the coq| B Sequeenk

. Bystem prints receipL. B trchedstink

Client receives cash B Berdik

B drechaded UCLRk
I ExtordtLiCLink

A ™A

4 | & pEl |
L2 problams | 1 2wk |11 Dactastion | vl Instaces [Exported Propasties [ropaty Mapping |) IUG Tracn Rasul £

I=

. Hystem prompes for pin. The client encers PIN. The system validaces the PIN.
. Hystem mmks which operation the client wishes to pecform, Client selecta “Cash withdrawal,”
. Hystem Fequest AamOunts. CL1ent enters AMOUAE.
5, System requesc cype. Client selects mouount type (checking, meving, oredics)

%, The ayatem communicates with Ehe ATH network to validate account ID, PIN and availability of the amount requested.
. The system asks the client whecher he or she wants receipt. This step is performed only if there is paper lefr to print
P System maks the client to withdraw the card. Client withdraws cacd. (This is security measure to snauce that clienta dc
. Hystem [rTALSH NESTEN BEECT of cash.
. System Prints receipt.
.+ Client [*rraceives cash?:
+ The use case ends,

Figure 7. 5: Trace forward and Trace-back from EUC model to EUI prototype.

Each EUI prototype component is associated with an EUC model abstract interaction component and
through that, the original textual natural language requirements from which it was derived from. Any
EUI component can be selected and its associated EUC component and related textual natural
requirements can be shown using a “trace back” menu item which highlights the relevant
components. Here, the tool differentiates the EUI pattern categories with different colours which
follow the concept of the EUI component by Constantine and Lockwood [4]. The List category is
visualised in light yellow, the Display category in purple, Input category in light pink and the Action

category in blue.

For example in Figure 7.5 (top — section A), the Option list EUl Component (3) is traced back to a
“system responsibility: offer choice” EUC component (2) which in turn is traced back to the textual
requirement (1), both of which have been highlighted. One EUI component might be associated with

more than one abstract interaction in the EUC model. Figure 7.5 (bottom - section B) shows that the

131

EUI component “ Display cash” (4), traces back to two abstract interaction components of the EUC
model “dispense cash” and “take cash” (5) and the associated textual requirement (6) “dispenses the

requested amount” and “receives cash”.

The idea of this support is for REs to confirm that the requirements captured or described earlier in
textual natural language and the EUC model are consistent with the client’s original requirements.
Further, the RE could use this automated support to obtain fast feedback from clients for the captured
or gathered requirements based on their understanding. This will allow any inconsistency to be
detected as early as possible. It also shows that the EUI pattern is only abstracting the main
important components that need to be in the user interface in order to display the core requirements
captured by the EUC model. It does not display unimportant components of the system and does not
justify any technology options for the system. This is because at the early stage of requirements
analysis, neither fancy, colourful layout of user interface nor technology-dependent identification is
required. The focus is to understand the problem first [25] and to confirm the consistency of the
requirements from both RE and client perspectives, especially in terms of behavioural or functional
requirement. The RE therefore has the flexibility to agree or disagree with the results provided by the
tool.

|
| - sy sl L7 - L WALSI - =
P e : e [Chme | Lk EToe e kL I._JI,-I
5]] B !)RR
m obher perscnal ... |
input input {
l J || Name ih'as—,:la
] |
Doty 1Tx {
Lt s Phope MNumber [[2102446787
A || Your IDis: 12345
List of opktion | choice 1 [choice 2 choice 3 B
valuel |[Vahiel ~aloe3
Type 1 [Vahse 2 Type3

3 [- .
ik of parmment | cheque senving | credit

Il 100 50 i}
4 || Yourbalance is- $1000
Drrplay cash |
st

Figure 7. 6: Marama EUI and concrete Ul view in a form of form- based Ul

Figure 7.6 shows the prototype view for both the Marama EUI (A) and concrete HTML form-based Ul
view (B). Both views allow the RE and client to walk-through the requirement and its Ul in order to

validate the consistency of the requirement. The Marama EUI component can be edited, allowing the

132

RE and client to add input detail that they think is required for the Ul, or to delete any EUI pattern that

they think is not necessary for a specific business use case.

The concrete Ul view helps clients with a non-technical background to understand the whole process
and to confirm at an early stage that the requirements captured by the RE are consistent with their

original needs, before the requirement is passed to a developer or designer.

. [CrimaramandZiruntine- workspacelAl6idagr v B
B] m [1119381
jis] pther personal detad
snpe st ot
Wame [Massila
== Adress 4972 whitaker place
Display ID
B Phone Number [02102446787
Your IDvis: 12345
E -
List of j deposit withrawal transfer check balance 2
e .
ansher 1 cheque sanving |credit
Foech; balance
100 50 10
List of
Your balance is: 51000
2 m o o A Ateidagr =] B .
I 5 A e,]DE ID 1119361 R
gk nput claliiad » deleted
Your ID is: 12345 4
3
choice 1 |choice 2 |choice 3
i l . g a
Display 10 vauel |Vamel value3
£:03 Type1 [Vahe 2 [Type3
J cheque [saving [eredit
AR | [[
_— 100 [50 [0
Your balance is: 51000
Lisk of payment
Fs 1
Display cash
rput

Figure 7. 7: Modification of EUI prototype - Addition and Deletion in EUI prototype

Figure 7.7 shows a modification of an EUI prototype by adding a new detail to the “List of option” EUI
pattern (1) and the result of the modification in the concrete Ul view (2). Here, the “List of option” in
(1) is extended with more detail: “deposit, withdrawal. Transfer and check balance”. This causes a

change in the concrete Ul view by displaying the additions in (2). In (3), one of the Ul patterns, “Other

133

personal detail’, has been deleted resulting in changes to the concrete view (4), where the Ul

elements requesting “name, address, phone number” have been deleted.

7.9 Architecture and Implementation

We developed the MaramaEUIl toolset using our Marama meta-tools [120] and a number of
specialised components: extraction from the textual natural language requirements (described
earlier), EUl model mapping from the EUC model, HTML form generation from the EUl model,
extended tracing support between the EUI models, EUC model, abstract interactions and the textual
natural language requirements, model consistency support and visual differencing. An outline of the

tool’s architecture is represented in Figure 7.8.

Marama
Marama Tool MaramaEUI visual editors HTML Form
Met_a-tool Thstance _ — e o
designers e - | =
model | gt e Iﬁ‘; == =-RELEs
: P ———
designer [%] P B - .
Shape =r;ﬁ | (1
designer MaramaAl u / < ' '
; diagrams & N Sk Extract EUI
V!cw 4 model Extract EUC Extract EUI =~ HTML
designer model Model mappings
: Marama A Folad
BLhi‘IVlOLl] meta-tool @ @
designer Core APIS Add/updatc/ . Show trace A
T = Delete + visual diff links /
bpe
- _) ___"__'.\ s ;
EUllPattcrns EUI Pattern
MaramaEUI Marama EUI saved Library Templates
tool model/ diagram/ text e

specifications

data

Figure 7. 8: MaramaEUI tool architecture.

Library

134

vi.

Items (1-3) are as described in Chapter 5 and 6. We then map an EUC model into an EUI
model using our EUI patterns library (4), as described in Section 7.5.
The generated EUI model may be edited by the RE to add, update or delete automatically
populated items, to rearrange the interface and to annotate the interface (5).
Multiple EUI models can be generated from multiple EUC models. A HTML form can be
generated from each EUI model using our EUI pattern template library (6), that maps EUI
elements and relationships into HTML form elements.
The form can interact with Eclipse in limited ways to illustrate the likely system interface
characteristics to stakeholders. Tracing support is provided between the EUI models, EUC
model, abstract interaction and textual natural language requirement (7), where a selected
EUI item will have derivative EUC item(s), abstract interaction and the textual natural
language requirements highlighted. This is potentially a many-to-many mapping.
Model consistency is maintained between a generated EUI model with the originating EUC
model, as described and illustrated in (8). Adding, updating and deleting items in either model
are propagated to the other and a visual differencing approach uses annotation to highlight
affected items in other models.
We used the Marama meta-tool which supports rapid design and development of domain-
specific visual languages to develop the notations and editors for the EUC and EUI models,
the EUI to EUC tracing highlighting, and the visual difference of changes to highlight changes
made to EUl and EUC diagrams. The meta-model and DSVL editors were supplemented with
event handlers to provide low-level model constraints, consistency management support and
interfaces with other elements of the architecture. These were implemented in Java and
include generation of dialogues and problem markers to assist the user to track and resolve
inconsistencies.
Further event handlers were implemented in Java to implement generation of HTML forms
from EUI models, to generate an EUI model from an EUC model and to trace back the EUI
model to other requirement components: EUC model, abstract interaction and textual natural
language requirement were also used. The event handlers used in this work are as follows.
i Map EUC to EUI
The event handler for mapping the EUC model to MaramaEUI, “Map EUC to EUI”,
helps to generate the EUI prototype automatically. The event handler works with the
mapping engine to map the EUC model to an EUI prototype. The mapping engine
analyses and matches the abstract interaction of the EUC model with the property in
the EUI Pattern library. Then, the abstract interaction of the EUC model is mapped
automatically to the EUI prototype based on its EUl pattern category. The event

handler will not map the newly-added EUC component to the EUI prototype if the

135

abstract interaction does not exist in the EUI Pattern library. A sequence diagram to

illustrate the interaction is shown in Figure 7.9.

Map EUC to EUI t
n hancc)uer e EUI pattern library

press event

|
|
mag the EUC to EUI 1

x|

|
|
|
|
I |
|
| check the abstarct interaction with ELI pattern
|
I
]

rrigger to open EUI editor
}

rasult match

|
|
|
-
|
|
|
~

display EUI prototype

I
|
|
I
map EUC to EUI prototype
]
|
]
|
L

{if abstract interaction '=EUI pattemn} Il}

display no result

display no result

|
=)
|
L
|
|
|
|
|
e
|
L
|
|
|
|
|
L
|
I
|
|
|
|
|
|
|
I
|
|
|
|
|

|
|
|
|
|
|
|

Figure 7. 9: Example of Map EUC to EUI

Trace Back

To trace back the EUI prototype component to its source, we used the help of the
Trace Back event handler. This event handler also works together with the tracing
engine. The selected EUI prototype component is analysed by the tracing engine and
then matched with the abstract interaction in the EUI Pattern library. If we try to trace
back the EUI component, the tool will show where the associated abstract interaction,
EUC model and essential interaction for that particular EUI prototype come from. If a
newly added component of the EUI prototype does not match with the abstract
interaction in the EUI Pattern library, no result is provided. A sequence diagram to

illustrate the interaction is shown in Figure 7.10.

136

. . Texiual Matural Language
User Trace Back event handler EU pattern library. MaramaEUC Abstract Interaction Reguirement
i prass event | | 1 | [
| | | |
| check EUl component with library : : :
L N|
: | | | | |
| | | | |
| : ! check EUI with abstarct interaction : :
| |
| . | | | |
: L send result | h | |
| | highlight EUC clbmponenl J : :
L
|
| | highlight lhbrstracl interaction component : :
L 1
|
| | : highlight essertial interaction : J
L 1
: | | | | |
| | | | | |
| | I | |
| : {if EUI '= abstract interaction} : : :
: | I | |
I - 1 I I
: le display no result | I |
| dspaynoresut | I I

|
J
|
|
|
|
Figure 7. 10: Example Trace Back from EUI prototype to EUC Model

EUI to prototype
The event handler for translating the EUI prototype to concrete Ul view-HTML form
called “EUI to prototype”, helps to generate the concrete Ul view in a form of HTM
form automatically. The event handler works with the mapping engine to map the EUI
prototype to HTML form. The mapping engine analyses and matches the EUI pattern
of the EUI prototype with the property in the EUI Pattern template library. Then the
EUI pattern of the EUI prototype is mapped automatically to the HTML form based on
the matching EUI pattern template. The event handler will not map the newly added
EUI prototype component to the HTML form prototype if the Ul pattern does not exist
in the EUI Pattern template library. A sequence diagram to illustrate the interaction is

shown in Figure 7.11.

137

EUl o prototype event
- hiandler EUl

[
£

tern temolate HTML form

press event

| I
| I
map the EUI comganent | [
| [
| I

I
E:> check the EUI component with template
i

send result :
map to HTML form |
| |

|
|
: D create HTML form
|
I
|
I

display HTML form

N

{if (EUI companent!=EUI pattern template)}

send no result

display no resull

Figure 7. 11: Example of Generating HTML form from the EUI prototype

7.10 Evaluation

In our preliminary study, we demonstrated that end users find manual derivation of EUI prototypes
difficult, time consuming and error prone. We wanted to demonstrate the effectiveness of our new
automated tool support in Marama EUI, together with its ability to support end-to-end prototyping. To

this end we conducted an end user study to evaluate user perceptions of the tool and its application.

Participants in this study were the 20 software engineering post-graduate students who had earlier
participated in the manual study of modelling EUI prototype. The same scenario as the manual study
is used. Here, their experience as REs could be categorised as novice to intermediate. Each
participant was given a brief tutorial on how to use the tool and some examples of how the tool
captures requirements using end-to-end prototyping. They then derived an EUI prototype from an
EUC model and natural language requirements and mapped the EUI prototype to a concrete Ul view.
Further exercises modifying the EUI prototype followed: adding and deleting EUI components and

exploring the result of the modifications in the concrete Ul view.

138

Having familiarised themselves with the tool’s capabilities and undertaken the tasks, users completed

two surveys:
1. MaramaEUI itself and
2. Formal evaluation of end-to-end prototyping.

However, in this chapter, we only discuss the result of the first survey. The second survey results are
discussed in the Chapter 9. This chapter focuses only on Marama EUl and comprises a standard
evaluation by Lund [156] of user perceptions of the usefulness, ease of use, ease of learning,
satisfaction and accuracy of the EUI patterns in supporting EUI prototyping. The first survey consisted
of two questions for accuracy, four questions for usefulness and three for other characteristics. A five-
part Likert scale was used for each question. The type of questions for each characteristic is in Table
7.4.

User Perception Characteristics Questions

It is useful to capture the abstract prototype.

It helps me be more effective in capturing
Essential User Interface prototype (EUI).
Usefulness It makes me easier to understand requirements
that has been modelled earlier using EUC.

It makes me easier to confirm the requirements
with the client from the early stage.

It is easy to use.

It is user friendly.

Ease of Use | don’t notice any inconsistencies as | use the
tool.
| learned to use it quickly.
Ease of Learning | easily remember how to use it.

It is easy to learn to use it.

| am satisfied with it.

Satisfaction | would recommend it to a friend.

It is fun to use.

| think the EUI pattern provided for the EUI
prototype is accurate as what | expected.
Accuracy | think the abstract interaction component of the
Essential Use Cases model is mapped
accurately to the EUI prototype

Table 7. 4: User Perception Characteristics and Questions Evaluating Them

139

MaramakEUI
1
=
@
[+1a]
b
c
u
2
Q | _—— | |
Strongly _) Stronly
Agree Agree Neither Disagree Disagree
m Usefulness 53.3 46.7 0 0 0
M Ease of Use 40 56.7 3.3 0 0
Ease of Learning 56.7 33.3 6.7 3.3 0
W Satisfaction 43.3 46.7 10 0 0
W Accuracy 47.5 40 12.5 0 0

Figure 7. 12.: User study results of Marama EUl-Usefulness, ease of use, ease of

learning, satisfaction and accuracy

Figure 7.12 shows the results for the standard usability and accuracy results of the EUl pattern
survey conducted on Marama EUI alone. For each characteristic, the results of each corresponding
four, three and two questions block were averaged to produce the results shown. The results are very
positive, with strong agreement over the usefulness of the tool (about 90% strongly agree or agree on
its usefulness), the ease of use (over 90%), ease of learning (about 90%), satisfaction (about 90%)
and accuracy of the results of EUI patterns provided (over 85%). The few disagreements over ease of

learning related to a preference by those participants to have a video demo embedded in the tool to
assist in learning to use it.

Overall, these results are very encouraging, particularly given prior studies, our own and others, that
suggest low-fidelity prototype or abstract prototyping, while appealing to end users, have a large
barrier to entry due to the effort involved [71]. The accuracy result is also very positive as most
participants felt that the EUI patterns we developed help to enhance the accuracy level of the Ul
components in the EUI prototypes. A minority thought that the tool would be constrained by the
coverage of the EUI Pattern library. An automatic updating of the library was suggested to allow other
REs or users to update the library automatically rather than just depending on the library provided by
the developer. For this, it was also suggested that guidelines for developing EUI patterns to be
embedded in the tool.

140

7.11 Summary

We have described an approach supporting the confirmation and verification of requirements from
both RE and client perspective using an end-to-end rapid prototyping. An initial study of the manual
usage of EUI prototyping was conducted and the poor results gained confirmed the point of view of
Robertson [71] on the real problems faced by the engineers in effectively using low-fidelity

prototyping, and subsequently motivated our work.

We have developed an automated tool support for our approach to help overcome the problems
faced in manually applying EUI prototyping. We have also evaluated our prototype tool using an end
user study for MaramaEUI. The results of this evaluation are promising, with most participants finding
our tool to be useful for validating requirements, especially in confirming the consistency. A formal
usability survey for the end-to-end prototyping approach provided by our tool was also conducted and
the results are discussed in Chapter 9. The generic use of our tool is discussed in the next chapter by

showing three examples of case studies from different domains.

In our new approach, we believe that requirements captured earlier by an RE can be verified with the
client through the visualisation of low-fidelity prototypes in a form of Essential User Interface
prototypes and also in a more concrete form-based Ul to validate requirements. While the evaluations
described in Chapter 9 do not extend to client participants, just focussing on the REs, including client
participants will be a focus of our future work.

141

Chapter 8: Case Studies Examples

This chapter describes three different case studies of requirements written in a form of user scenarios
that we use to demonstrate and describe the key features of our proof of concept tool - MaramaAl
(Automated Inconsistency Checker). The key features described are in capturing requirements with
Essential Use Cases (EUC), in checking the consistency and validating the requirements and also in

supporting the end-to-end rapid prototyping.

8.1 Introduction

Three different case studies of requirements, written in the form of user scenario from different
domains of applications, are described and which our toolset are aplied to. This is to demonstrate and
describe the key features of our proof of concept tool -MaramaAl. The key MaramaAl tool features
illustrated for each scenario are:

a) Capturing the requirements,
b) Checking the consistency and validating the requirements, and
c) Supporting end-to-end rapid prototyping.

We chose three diverse sets of requirements examples. The first set of requirements is a scenario of
reserving a vehicle from a rental company, written by Evans [1]. The second is a book check-out
scenario of a library system written by Sendall and Strohmeier [2] which illustrates a user scenario
with the use of extensions in the description. This allows us to demonstrate our tool support for the
use of extend/include. The third requirements provide multiple scenarios of a real industry project
example for managing events by Silicon Dream Ltd. This allows us to demonstrate our tool’s key

features in handling multiple requirements with real industry requirements.

8.2 Case Study 1: Reserve a Vehicle from a Rental Company

We chose this user scenario, which was developed by Evans and published on the IBM developer
works website, as a first example of a requirement to demonstrate the key features of our tool. This
user scenario is a “hypothetical browser-based software system for an auto rental company” [1]

mainly for an individual account. It illustrates the situation that happens in a rental company when a

142

customer comes to the rental counter to rent a vehicle [1]. It is also an example from an online

booking domain of application. The description of this user scenario is shown in Figure 8.1.

1. This use case begins when a customer indicates he wishes to make a reservation for a
rental car.

2. The system prompts the customer for the pickup and returns locations of the reservation,
as well as the pickup and return dates and times. The customer indicates the desired
locations and dates.

3. The system prompts for the type of vehicle the customer desires. The customer indicates
the vehicle type.

4. The system presents all matching vehicles available at the pickup location for the
selected date and time. If the customer requests detailed information on a particular
vehicle, the system presents this information to the customer.

5. If the customer selects a vehicle for rental, the system prompts for information identifying
the customer (full name, telephone number, email address for confirmation, etc.). The
customer provides the required information.

6. The system presents information on protection products (such as damage waiver,
personal accident insurance) and asks the customer to accept or decline each product.
The customer indicates his choices.

7. If the customer indicates "accept reservation," the system informs the customer that the
reservation has been completed, and presents the customer a reservation confirmation.

8. This use case ends when the reservation confirmation has been presented to the
customer.

Figure 8. 1: Example of User Scenario: Reserve a Vehicle [1]

8.2.1 Example of Usage

We demonstrate our tool’s key features with the user scenario below:

Massila, a requirement engineer, would like to validate the requirements that she has collected from
the client, John, who is the car rental information manager. To do this, as shown in Figure 8.2, she
types in the requirements in a form of user scenario to the textual editor or copies them in from an
existing file (1) and has the tool trace the essential requirements (abstract interactions) (2). Here, she
verifies the list of abstract interactions provided by the tool and then has the tool generate the EUC
model (3). In order to check for the consistency and dependencies among the EUC component and

the abstract interaction and the user scenario, she performs trace back by using the event handler

143

from the EUC component or abstract interaction. For trace back (as shown in Figure 8.2), the
selected EUC component (A) and its associated abstract interaction (B) changes colour to red and
the associated essential interactions (C) are highlighted with “****. The processes of tracing
forward/backward and mapping are assisted by event handlers. These tracings show and maintain

the consistency among the requirement components.

Jy 2es
1. This use case begins vhen a customer indicates he wisiﬂ LE Harquee L\stOFAbstractInteractmn EUCDiagram
i, The system [**prompts the customer for the pickup**¥: Seich m—
ser Intentian
3. The system[F*Pprompts for Che type’® Ehicle the o %toolc " house Hooce
1. The system presents all matching veh Evailahle & — e chaice
3. If the customer selects & vehicle for rental, the sy (E3hapes & YNy
5. The system presents inforwation on protection product: W Abstrac.., view detal Tl] il 'SystemRe'sponsib.Hi
7. If the customer indicates "accept reservation,” the s B et ffer chaice
3. This use case ends vhen the reservation confirmation : tequest identification
W Systen... : "
) identify sef System Responb..
EI B ListOf.. vigw detal
W EUDA. . confitm booking
B Farshol. System Respansib. .
BEnsh. request identificat. .,
[Requie...
B Include User Intention
identify sef
W Estend
W Requie... .
System Respansib. .
[Include... confirm booking
W Extend...

Figure 8. 2: Capturing requirements - trace the abstract interaction, trace back

and map to EUC model

By using MaramaAl, Massila can make any modification to any of the requirement components if she
is not satisfied with the results provided by the tool. For example, if she thinks one of the abstract
interactions is missing, she could add a new abstract interaction to the list. In particular, she might
think that an abstract interaction “make payment” is missing from the list. Thus, she adds a new
abstract interaction “make payment” to the list. This action triggers an inconsistency warning and the
options either to update, delete or continue without updating the textual natural language
requirements to appear to inform her that an inconsistency has occurred in the requirement
components (as shown in Figure 8.3: (1)). She then chooses to continue without updating the user
scenario as she probably thinks that the “make payment” abstract interaction is necessary and
matches the user scenario. Although the option “continue” is chosen by her, she can still map the
newly-added abstract interaction to the EUC model (2). This triggers a problem marker to inform her

of the inconsistency error for later consideration to resolve the inconsistency (3).

144

[Select
1. This use case begins uhen a Customer =] "1 Mg ot
2, The system prompra the customer fof | Py
3. The system prowpts Zor the type of W 3 g chooie
4. The system presents all matching veh
S, 1If the customer selects a vehicle for e e Ui
6. The system presents information on pr [kit Systom Rsponnds..
7. If the customer indicates "accept Cet B et eifer choice e i
8. This use case ends uheh Che Feservar reguest dertfication thooes
B System. . difar cheite. B |
Systomn Raspcids...
WL, ety ok il —— System Resgoess
alfer dhesie
EUDH. .
[confinm bodking
W Plscehal, . Systom Responsb.
ﬂ
B Cabath, request idertificat... ey,
[1 i
1 Inchide L S ar i
= |
[ncomsnteney wameg —— R Pm— |
S il 1
' abat fo S L |
E oif Fesporeiy...
1N requrements. "k s i b
¥ CELETE bocting
Intaraction or Continue with Inconsistency?
Tk payir
Updte | Delete | coninun
W T
I eqen.. |
I (e
W Eatend |
W ke |
[
' o !
|2 probdenm, £3 0 9 davades | (12, Daclaration | ® Mods Indtance: | @ Exporied fripertion | @ froperty Miggang |
S aurors, | waerwg, 0 céhare 3
Dereten = | eosse Lpan Lesron Lime
= h Warnings {1 e}
T The ruwes ababract rkeraction it rconistent vath besbusl recuaremant dsgaml.m.., | Al mabe et Probiem

Figure 8. 3: Add New Item to Abstract Interaction

Next, Massila is also unhappy with the sequence ordering of one the abstract interaction components:
“choose”. She thinks this abstract interaction should be above the “make payment” component as
shown in Figure 8.4 (1) because the user should choose from the option before any payment should
be requested. This triggers the associated EUC component “choose” to change colour to red and the
essential interaction “indicates” to be highlighted with”***”. An Inconsistency warning also appears to
inform her of the inconsistencies and provide options either to update or cancel the change. A
problem marker also provides warning on inconsistencies that still exist. Then she decides to update
the sequence ordering, and this automatically also changes the position of the EUC component”
choose” (2). However, the ordering of the highlighted essential interactions is not altered as such
changes could affect the structure of the user scenario. This action also triggers a problem marker to

warn about the inconsistencies that have not been completely resolved.

145

L. This use case begias vhen a customse [Prrrevimieated S| 1 ppgme Y B i
Ci The syscem promgte the gustomer for the pickup and © Sating | E'—l e 1
1. The aystem prompts for the type of vebicle the custo i e i | |
. The system presents all matching vehicles avallable “““ |
5, I the oustomer selects a vehivie for rental, she py (|5 508 =
6, The system prassnts information on protectiss produc [| o S Raigerety,
7. 1f the customer[*=esriindicaresteied “accepr reserv [ofter choice
+ This use case ends vhen the reservacion confirmation requet it
W Sptem,
Siom Besporns,
L b ki v delnd (kiR etk o0
|_Jilaet confim bbhing
fer chake
10 Flacebal v Syern Basporad...
[et derifi s, it
W e L reaumst dertication
W Inchuce 1 T L
£ Inconaistency Warning = ; [b
= i R i ; rise o
!3 wagaarca of EUC ompanars, | Eom
[Brenl Ll
W egan... |
I b,
W Eawd.,, |
ke, |
1 e
e _I‘j il |
Frobem 0 Mk [\ Diclaration | ® |
| #rvors, 2 wiapnings, 0 othary
T [nsionres | path | Lgeaen | type
= i Wi {2 Res)
[inconeistancy: Tha absinact ke sction secpuence & Fonnastent rth the segarae of [LA. conponant & Tee dagraml n.,. Al chatnn Froklem
I Tha reews sbutract réeractin s reoosstend vbh bnshad reqareert dagamin.,. AL mabn paymert frobiens 4| | 1
L Problems [@ Javdoe | 1), Deceation|
wwcr, § warig, Octhen.
preei Y) | vocation [trem
% Worrars (£ gomm}
I1 incormstercy: T Higighted beatal curoment rcnsatert meh the sequence o dagrami o Al oo Frokien
E T vy st i s btk el et AT T o ree g i i

Figure 8. 4: Change of Abstract Interaction Sequence Ordering

On reviewing the extracted EUC, Massila feels that there is an extra component in the EUC model.
She thinks that the EUC component “offer choice” is not necessary and needs to be deleted. She
believes there is a redundancy between the “choose” and “offer choice” component. Thus, she
selects the “offer choice” component to be deleted. This action triggers the associated abstract
interaction to automatically change colour to red and the associated essential interactions “prompts
the customer for the pickup” and “prompts for the type” to be highlighted with “***”. The inconsistency
warning also appears to inform the inconsistencies and options to either delete or cancel the deletion.
Although a notification of the inconsistencies is provided, she still thinks she needs to delete the “offer
choice” component. This triggers the associated abstract interaction and essential interactions also to
be deleted. This occurs as the tool tries to keep all the three requirement components in a consistent

state.

146

L. This use case begins vhen a custoner tndicates be MEll ryen ettt en .
2. The system " *prompts the ouptomer for the pickep'*"| >
. The sysven ["YYpGRptd YoT (B LypeT™")of vebiele the o b o
4, The aysten presents all matching vehicles availsble T Fre
5. 1f the custemsr selests a vehicle fr sental, the gy |-
5. The aystes presents information on protection produz || I dbirs . This une ase beging vien & custoser in
7. 1f the customte indicaten *ASeapt cesecation,® the - (bt (T
| [m | Margas
. This use cos esds when the reservation confirmatios : e
Wi 4, Tué ayntsw grasance all Eatching vehiglas availsble at Sty | geriad |
4 i 5 1t ¢r selects a velicle fof pental, the syste e i | deleted |
W L, ¢ satnta information oo st o vl
: 7, okt indicaten "sooept caservati e aye
| Lo ‘St Respons
BT oo N ane| ends when The reservation comfirmation he - .‘_Y oot e w’:’;«
vl
a, i ww:dno
Boosh, - S hesorsd
F L] 2 roqueid chrticat
B e The phrases al o
| J L
- " o are deleted =, F=tin
Wrea,, | S i =]
CORBISTENCY et bt it e ar Abtyact &
T\ b, B o st o CELETE b comparets o CAREL et f B sk i
UC Comporwt Wi
W P, e .
(] o =
J B e ,,‘
B -
B st
Wi —
[[2 [JE dppiei
sk Wi, |
Bind 1 Irckshe
: Wi
d | | o | ly |

Figure 8. 5: Delete the EUC component

Being a novice requirement engineer, Massila is keen to validate her extracted EUC model against a
best-practice EUC template. Thus, she looks through the list of available templates and chooses the
pattern “Reserve Item” as shown in Figure 8.6 (1) that appears to be similar to this scenario. She
matches the pattern to her EUC model and sees that she has missed some interactions as a few
sequence orderings and components are incorrect. In addition, an extra component also exists in the
interaction. As shown in Figure 8.6 (2), the incorrect sequence ordering is shown by the red visual
links (A), the existence of the extra component “make payment” (B) is outlined with red and the
correct component “offer choice” (C) is shown by a grey element on top of the green shape “view
detail” which also displays the incorrect component and position held by the “view detail” component.
As there is an unmatched interaction between the generated EUC and the best- practice template,
Massila is notified with an inconsistency warning and given options to either keep or change the
generated EUC following the best-practice template. She agrees with the warning and the errors
shown. She then selects to change this EUC model to the EUC interaction templates.

147

5? e
x ina wen [st :
3, huen log Y Ut Aty It cton T am
8 = | Wicle the b
7. 1f the custcess indicates ——— f
0. This wae case thds sbes th || ——— N " r: all ::.om rn.
e tldctd a =
18 inform L \'“ LD I
lsetrice ulleates i RERRERE] .
i | i
v whan th e | detal
Wi, : . C
. Aoty el |
i @
L] Syten Amgoru...
prmdoe gy winon, (1 S ———
i [T ﬁ. il 1
g "
ey I W
Wi, b byt 5
- MJ k
Intorsisleny waming Eij l | oo bockrey
ﬁ Vi ELIC chirah o INCOMSISTENT vttt ELE Taplate, Phara i i -
I 1 e L T, 2
ErE R
Wt |
| B !
' wdD dugomi s A
: : sapmin. Im‘
W e
1 ke, i
Wit |
Al
10 Jovodi ., Dok B . d i ‘lmm;

[P ([[tira I

Figure 8. 6: Visual differencing to check for incorrectness and incompleteness

When Massila is satisfied with the requirements components, she sits with John to validate the
requirements and to confirm the consistency of her captured requirements with the earlier
requirements provided by John. In order to allow John to better understand the requirement
components, she then has the tool map the EUC model to abstract prototype: EUI prototype as (1)
and also has the tool translate EUI prototype to a concrete Ul view in a HTML form (2) as shown in
Figure 8.7.

148

[% Select s IC:\maramaAIZ\runt\me-wurkspace\nls\d\ej B
- EUIDiagram
{_i Marquee
[Sketching toel 1t - choice 1 |choice 2 |choice 3
R ist of option
(2= Shapes m vamel [Vahel vahed
B Container Type 1 (Vale2 Type3
W Requirementdr. ..
B Include Ttem Name
I Extend Display Item detail
B EUDiagram et ID [1118361
=G t L]
(= Connectors Name W
I NavigationLink
I Includetink T T Adress [4g/2 whitaker place
B Extendlink D other personal ...
input input
‘ Phone Number [02102446787
vour booking mumber is xyz 1234
2
Display booking
nput

Figure 8. 7: The generated EUI prototype (1) and translated HTML form (2)

[} Select O} L&“‘ IC:\maramaAIZ\,runtime-worlspace\,n[s\d\agram1EUI.m-j 3 I
o EUIDiagram
L Marquee

——,

Sketching tool pi car (vVaf |campervan
%7 st of option 1 & 2
[~ Shapes 4 ar

W Container an 1 Item Name
Amperan
I RequirementGr... I
M Include [i) ID 1119361
I Extend Display Item detail Name [Massila
I EUIDiagram nput
= Connectors £ Adress [49/2 whitaker place
W MavigationLink
M IncludeLink T 1 fe Phone Number |02102446757
B Extendlink b (o] other personal ...
rpuk input . .
vour booking number is xyz 1234
Display booking
inpuk

Figure 8. 8: Modifications in Prototypes

From the walkthrough, John thinks that the EUI component of “List of options” is a bit vague and
would be better understood by adding detail of the types of options such as “car, van and campervan”
as shown in Figure 8.8(1). Massila modifies that on the spot and then shows the result in a HTML
form as in Figure 8.8(2). Next, she wants to validate and confirm the consistency of her point of view
against John’s point of view. She selects one of the EUI components “List of options” (A) and has the
tool trace back to the other requirement components: EUC model, abstract interactions and textual

natural language requirements as shown in Figure 8.9. This triggers the associated EUC component

149

and abstract interactions “choose and offer choice” (B) to change colour to red and the essential
interactions “indicates, prompts the customer for the pickup and prompts for the type” (C) of the user
scenario to be highlighted. Here, Massila is able to confirm the consistency of all requirement

components with John for the earlier collected requirements.

[sel... [3 sel... & [cn=] = E
,,1 ListOFAbstractInteraction EUCDiagram o EUIDiagram = .
L it Bl

[Sk.oe _ [Skoee P! choice choice |choice
tool = taol ist of option) 5 5

[EE _ Em & valel |[Vale2 |vale3

M Ab... detail | Co.. "

[EmEEE Type 1 |Value 2 |Type3
s W FRe.. - -

request identification
Wy Bin.. E Item Name

identify self System Responsib... Display Item detail
M L. 7 view detal W e inpt
W confitm booking mEu.. D 1118361
M Fla... System Responsib... || = C... @
e request identificat... B e, Name

fe 1k4 I| [Massila
M Re... M. hin) other personal ... I
n.. User Inkention inpuk input
| identify self W Adress
M.
4g/2 whitaker place
EeRe... "
=0, o System Responsib...
confirm booking | — Phone Number
W vis...
[l liaking 02102446787

M se.. input
. vour booking mmber is xyz
W e 1234

M.

1= Maramat
5 e] o A él

. Prablems | O EUC Trace Result 32

This use case begins when a customer [F3sindicateswsd hes Lo make s reservation for a rental car.

The system|***prompts the customer for the pickup##4] g urn locations of the reservation, as well as the pickup and return dates and ti
The system [F7iprompts for the typer’? of vehicle the o r desires. The customer the vehicle type.

The system presents all mwatehing vehicles available at the pickup location for the selected date and tiwe. If the customer requests detail i
If the customwer selects a vehicle for rental, the system prompts for inforwation identifving the customer (full name, telephone nunber, ewmail
The system presents information on protection products (such as damage waiver, personal accident insurance] and asks the customser To accept
If the customer "accept reservation,” the system informs the customer that the reservation has been completed, and presents
This use case ends when the reservation confirmation has heen presented to the customer.

FEE

Figure 8. 9: Trace back which performs from the EUI prototype

In summary, Massila has used the MaramaAl tool to capture automatically the abstract interactions
and to extract the EUCs from the user scenario provided by John. She also used the tool to manage
the consistency and to validate the incorrectness and incompleteness of the requirements by using
the essential interaction pattern library and “best- practice” template from the EUC interaction pattern
library, together with the inconsistency warning, problem marker and highlights. She then sat with
John to verify and confirmed further the consistency of the requirements by having the tool generate

the prototypes: EUI prototype and HTML form.

150

8.3 Case Study 2: Book Check-out in a Library System

We choose the Library Book Borrowing (LLB) system as the second example of a requirement to
demonstrate the key features of our tool in handling the use of extension/include in the use case.
This user scenario is written by Sendall and Strohmeier [2] as a set of use cases which is also as a

case study for the Software Engineering Education project (SWEED).

This automated LLB system is developed to ease the task of librarians in processing book loans in all
the departmental libraries of any university [2]. The system makes use of the available library book

search system to undertake the book search.

Users do not need to identify themselves to the system to search for a book, but this is required when
they want to check-out a book, to check their loan status or to reserve a book which is “on hold”. This
process of identification is conducted by using a card and a password together with password

verification for security reasons, similar to the ATM system.

All books are provided with barcodes. A barcode scanner is used to check out the book. If any
failures happen to the scanner, the barcodes need to be manually entered. The description of the

user scenario we have chosen is shown in Figure 8.10.

151

LBB System

Use Case: check-out books

Scope: Library Book Borrowing System

Level: User Goal

Intention in Context: The intention of the User is to check-out books from a library. Only one
User can check-out books at any one time.

Primary Actor: User (becomes Member once s/he has identified him/herself with the System)

Main Success Scenario:

1. User requests System to check-out books.

2. User identifies him/herself to System.

Step 3 is repeated for each book that is checked-out by Member.

3. Member registers book with System.

4. Member indicates to System that s/he has finished checking out books.

5. System records all books registered by Member as on loan, requests Printer to print out a
receipt® for the session, and puts itself in a state to receive the next User.

Extensions:

2a. User fails to identify him/herself with System: use case ends in failure.

3a. System informs Member that s/he has reached his/her maximum number of books allowed
on loan; use case continues at step 4.

3|la. Member requests System to remove book from the books that are checked out:

3|la.1. Member identifies book to System.

3||a.2a. System identifies book and removes it from the list of books registered by Member; use
case continues from where it was interrupted.

3|la.2b. System fails to identify book; use case continues from where it was interrupted.

(3-4)a. Member requests System to cancel check-out.

(3-4)a.1. System removes all books that were registered by Member, and puts itself in a state to
receive the next User; use case ends in failure.

(3-4)b. System times-out waiting for input from Member:

(3-4)b.1. System removes all books that were registered by Member, and puts itself in a state to
receive the next User; use case ends in failure.

Figure 8. 10: Example of User Scenario in a Form of Use Case Description: Check-out
books of a LLB system [2]

8.3.1 Example of Usage

We demonstrate our tool key features which deal with extension/include in the use case description

for the requirements as below:

Massila, the requirement engineer, meets Johan, who is the Library IT Support Manager, and gathers
the requirements for the library booking system. After she collects the requirements, she refines the
user scenario and describes it in a form of use case description. She also thinks that the use case
description for the functional requirements needs to be supported with the use of extension. She then
types in the requirements written in a form of use case description to the textual editor, following the
guidelines provided by the tool as shown in figure 8.11 (1). Then she has the tool trace the abstract

interaction and map to the EUC model. The process of tracing the abstract interaction and EUC

152

component and the process of mapping the abstract interaction to the EUC model are conducted
similarly to the first example. The tool generates a separate component for the extended abstract
interactions (2). A small orange circle with a grey extension link (A) is also generated to show the
extension. The generated abstract interactions are then mapped to the EUC component with an
extension (3). A similar separate component and a small orange circle with grey extension links (B)

are also provided for the EUC model to show the extension.

dcope: Library Book Borrowing System =] %Se\&[t check out User Intention
check out
i) Marques
Level: User Goal L. Mar idertify self
Sketching =
h Lol teqister item User Intention
Intention in Context: The intention of the User is t identify self A
(= Shapes < — ‘
Primary Lctor: User (becomes MNewber once s/he has id B Abstrac...
tecord call User Intention
Main Success Scenario: W UserInt... registeritem
W System... recard item ‘
1. User requests System to check-out books. 1 B ListofA, .] 2 s et
r :l W ELCD identiFy sef e |
2. User identifies herselffExtend: identify self#, Gl |
B Placeho... fal identification |
dtep 3 is repeated for each hook that is checked-out { | System Responsib...
B Extras... I record cal
!
3. Member registers book with system®Extend: regist W Require.., register item |
Inchude
4. Memb i b he has £ hed = update Syskem Responsib..,
. Member indicates to system that she has finishe Leatem
[Extend |
. notify user |
5. System records all books registered by nmenher as W Require... 3
and puts itself in a state to receive the next U B Include... identify item |
identify self
’*Extsnﬁmn: identify self+ B Edtend... werify item
. = User Intention
Za. User fails to identifies herself with system: us (= Comne... < cance bocking Failidentification
M visuallink
*Extension: register item?® delets e
3a. System informs Member that s/he has reached his/ W Sequen...
1
B Indude... reqister item
3| |a. Member requests System to remove book from the
B Extend.., System Responsh..,
3lla.1. Member identifies hook to System. W Incude.., update
M Extend...
3l la.2a. System identifies book and removes it from System Responsib..
notify user
3| |a.2b. System fails to identify hook; use case con
(3-4)a. Member reguests System to cancel check-out. User Intention
identify item
i3-4)a.1. System removes all books that were registe
System Responsib..,
[3-4)b. System times-out waiting for input from Memb werify kem
i3-4)b.1. System removes all books that were registe
System Responsib. ..
cancel booking
System Responsib. ..
J delete ikem
>

Figure 8. 11: Capturing requirements-trace the abstract interaction and map to
EUC model

From the results shown by the tool, Massila thinks she needs to delete an abstract interaction
“identify self’ as she feels that this component is not important to the requirement. Thus, she selects
the “identify self” component to be deleted. This action triggers the associated EUC components

“identify self” and “ fail identification” to automatically change colour to red (1), and the associated

153

essential interaction “identifies herself’ to be highlighted with “***” as shown in Figure 8.12(2). The
EUC component “fail identification” is also highlighted because this component is an extension to the
main abstract interaction “identify self” component. The inconsistency warning also appears to inform
the inconsistencies and options to either delete or cancel the deletion. From the notification on the
inconsistencies, she thinks she has made a wrong decision. So she cancels the deletion. This
triggers the associated EUC component and essential interactions to revert to the original format.
Then she identifies another component which actually needs to be deleted: “fail identification”
component is the one that needs to be deleted. Thus, she selects “fail identification” to be deleted.
She recognises that different situations happen. Here, only the “fail identification” of an EUC
component changes colour to red (3) and only the essential interaction “fails to identifies herself’
which is association with “fail identification”, is highlighted with *** (4). This happens because the “fail
identification” component is an extension component which does not affect the main abstract

interaction if any deletion happens.

154

[y Mt [T |
Gropsl Libracy bosk Borvewing Sysvem 2 || g .u_._._._._uE
i EHE:“-.-.-.-.I
|y st
Levmli Uamy Sanl i .
tou gt o /¥ 1
ThEenkion Ui Sontasbi ThE inbeailan of L) i s i !! 1
M i v n Tl
Friwary Aovarl Ussy (Gecowss Hambar spas B i dimilaeiad [f}
Mnin Bunnesa Bosnsyis B ke wdbm
Lo,
1. Usmi imgpusske Dysies So ohesb=mib b iy " roiat
3, U "‘+""I.-Inu'|.:ll|i nETEELETTRpEE) Flissfal, fad s i
r st | _f Sy laapry
Buap § 18 vApSATad B abaa imi el M
T Elfe
1, Henbmy yegists 5 Aty ff i
Lirutmid Oyt fwajmnadl, .
;wmiuﬂlmhlhmmmr{#ﬂkm#mm wa W
A, Mk il e - -- i
B, APSLEH TE00T0E "'-n'"""—l
s purE irEsi il
= ey i
SEmranmiong idantify seif® L S
Gn; Veer faila ko *0fO daniidinn |u|nn| B vk EHHH
i B tepan | sk R
TRALERALEN] FAWLNAD Scope: Library Book Dorrowing System =] 1 i Sel
14, BYELEm INEOTEE M >
Levelis User Gosl M.
il Hembay paguesy el
Intention in Context: The intention of the
(S
118}, Waphey (086L pramecy Accor: User (becomes Hewber once -k
1) @20, Oystam lideh Pein Success Scenacic: L
-y
1. User TEquests DYSUEm Lo CHRSCM-OUT Book . s
1] 140l BystEn TaLl o
Z. User idencifiss hecselfYExtend: idene: -
. ¥ -
(3=4ln: Hambar couus Brep 3 18 Fepeated Tor esch bDosk That Ls @ me
{ic4im. |, Hymimm yom 3. Momber regiscers book with system*Exc -
LRl
(3-41D. Dystem Ciess ¢ Tember indicates to system chat she he -
5. Syscem records mll hooks regiscered by - R,
{i=H4ilsds Aymnam pem and pucs Ltself In & SLate Lo receive
“Extenaias cify meigr 4 [
Zm. User o idencifims hecselfs]
g
"Extenaion: register itam"™
Im. Syacem informs Member that a/he haa © L

2 | a. Herber request TG R

INCORMEISTENCY etur bntvemen Tastusl necp et srd ELIC comgorset Do | Sysiesn Responsi, ..
2 w1, Mamber idanc i wian bo CALETE both components or CANCIL deletion of Abstract | uplate
Inbessmctiont |

3 (a2, System iden | i
. el aay [ooets] com | | Gl fesis

(i=dim. Member requests System to cancel c |

(d-4im.i. Syscem removes all hooks shat we

(3=4)b. Syatem timea-cut walting for inpul EV‘—.’"
(¥-4ik. 1. Byscem removes all bhooks that we
Systees Rospona, ..
el R
| | et de

Figure 8. 12: Deletion of Abstract Interaction

On reviewing the requirements, Massila also thinks that the sequence ordering of one of the EUC
component, “register item”, needs to be changed to another position above the “check out”
component as shown in Figure 8.13. This triggers the associated abstract interaction component
“register item” to change colour to red and the essential interaction “registers book” to be highlighted
with “***”_ An Inconsistency warning appears to inform Massila of the inconsistencies and provides
options either to update or cancel the change. Further, a problem marker also appears to warn of
inconsistencies that still exist. Despite these notifications, she still thinks that she needs to change the
sequence ordering of the “register item” component. This automatically changes the position of the
abstract interaction component “register item”. However, the ordering of the highlighted essential

interactions is not changed. This is because she believes the change could affect the structure of the

155

description. This also triggers the problem marker to warn of inconsistencies that have not been
completely resolved. The ordering of the extension component “register item” is not changed. This is
because the change of the sequence ordering only affects the interaction of the main EUC

components and not the extension component.

[

S ListOFAbstractInteraction EUCDiagram
Level: User Goal LT
s Ske.. check out User Intention
Intention in Context: The intention of the User is vaal e
e —
(= 1
Primary Actor: User (becomes Member once s/he has i m ... T PO e el
- 4 identify self 3
. o Wi,
Main Success Scenario: —— /| |
S !
1. User requests System to check-out books. = —— Viser Intention
Lis... eqister item
2. User identifies herself*Extend: identify self®. e record item
B Fla... User Intention
Step 3 is repeated for each book that is checked-ou / choose
s identify self |
3. Member [Fr@7rrregisters book®777%%7| yith system® | Re... Fail Identification /
e f | System Responsib. ..
3. HMember indicates Lo System that e - | record cal
g
Il
5. System records all books registe ELC Component sequence is incansistent with the sequence of abstract System Responsib...
and puts irself in & state to re 1\ interaction and textual requirement. record item

|
*Extension: identify selfw |

Za. User fails to identifies hersel: Update I Cancel |

S ideritity selt
*Extension: register item® werify item
3a. System informs Mewber that s/he has reached his, M Se... User Intention
cancel booking Fail identification
o, In..
3| |a. Member requests System to remove book from th |
M * b M Ex... delete item
: fei |
..
3] la-1. Mewber identifies hook to System. m T (o
M. ’
3| |a.2a. System identifies book and remowves it from Sv;tetm Responsib...
update
3| |a.2b. System fails to idencify book: use case co
System Responsib. ..
(3-4ja. Mewber recuests System to cancel checlk-our. notify user
(3-4ja.1. System removes all books that were regist
User Intention
(3-4)b. System times—ocut waiting for input from Mewd =iy e
(3-4)k.1. System removes all hooks that were registi T
J B werify item
[E! Problems 22 @ Javadnq [, Declaration | ® Madel Instances | @ Exported Pmpertiaﬂ W Property Mappinﬂ I EUC Trace Resuﬂ
0 errors, 1 warning, O others
Description_~ | Resource [Path | Location | Type |
5 & Warnings {1 item)
[& Inconsistency: The sequence of EUC component is inconsistent with the diagrami.m... AI6 registe... Problem |

Figure 8. 13: Change of EUC component Sequence Ordering

After making these changes, Massila thinks she should further validate the interactions in the
requirements against the best-practice template of EUC interactions. She selects a template which
looks very similar to her requirement descriptions. From the available templates, she chooses the
pattern “Checkout ltem” as shown in Figure 8.14 (1). She matches the pattern to her EUC model and
sees that she has missed some interactions as there are a few extra and incorrect components in her
model. Figure 8.14 (2) shows the existence of extra components such as “register item, choose,
record call, record item, identify item, update, notify user, verify item, cancel booking and delete”
outlined in red, and the correct components, such as “select option”, are shown by a grey element on
top of the blue shape of “register item” (A), while the “check status” is shown by a grey element on top
of the green shape of “record call” (B). These two components show that there are missing and
incorrect components “register item” and “check status”. There is also an incomplete interaction

where an EUC component “identify self’ (C) needs to be provided to complete the interaction. As

156

there is an unmatched interaction between the generated EUC and the best-practice template,
Massila is notified with an inconsistency warning and options to either keep or change the generated
EUC as per the best-practice template. She then chooses to keep this EUC model which triggers a

problem marker to notify her of the inconsistency that still occurs between the generated EUC model
and the EUC interaction templates.

Bz |poope: Libracy Dook Borrowing System - Har
A e
B svel: Haser Goal [Shatiching tocl
B Al e Fhage
wS A% Incention im Content! The imtention of che Taer = ctiar,
i daram
dapaml| Primazy dctor: Usec (becomma Membes once afhe he I Userinbaniion
- ""’“il W Systeneespn
| |Bain Success Soenaric:
"] Mmi aln Sucte Bl ™ -
o i e
.ﬂwpi i. User requests Iystem to oheck-ous hooks. [t T
& | 1 Flaceholder
Hf- tses veridentis hacaglreee,
B & idenzifies hezae _—
| pi
Saren || [Tep 3 48 repesred for each book hat 18 checked I Faguremant... T
depa| [BT |
dagrem|| 1. Membar *°CCEgIOTETE BoOK'® Vith BYpGam.
| I el |
dhagpam
dagaml| -
| gy
e alpn i » Oystem records all books registered Choo & 11 ke
& ey 2 and purs itself in & state to recelv r_ |
- Comy ok |
pram =] I
| dagan) [fa. User *ifails £o *reidencifies herse e
= | et taz.
e ekt ke
3 | [y Select
Larz [scope: Library Book Borrowing System = 73 Margues
A ar i -
= Level: User Goal Iy Sketehing
e ars (= Shapes ;
e A6 Intention in Context: The intention of the User prerm—
1] chagram|
:j’ dagram| | [Primacy Actor: User (becomes Menber once a/he he 1B userintention
" @ dagram W Systeniespo,
@ dagram|| [Main Success Scenario: 2 Lo bairac
@ dagram #ost
@ dagan|| [1. User requests System to check-our books. B ELCDiagr e
P dagam B Flaceholder
2. W rrig £ n Agwwn,
diagram) aer entifies herae e
diagram, a0
| dagram|| [Step 3 ia repeated for sach book that i3 checkec 1B Requrenent. .
diagram)

dagram|| 7. Member Trac
-

= [degram) g\ Yo ELC dagram is INCONSISTENT with the ELC Template. There is an
cogram|| [4. Member indi Incomplete of incosrect component. Do you want to KEEP your new dagram or
Froki m CHANGE b5 the EUC Template.
51 Alpey 5. System reco
B [Copvi2) and pucs it
b ¥ 21 Copy of
i 1) chagram
| dogram|| [2a. User **3fails to *+idencifies hecself=s+s+r B Viessbink
| Gossary W Sequencelink
) ha. 9 ing Henber that s/he b hed)
B a. System informs er that = a3 reache
121 input res ¥ -
[renst.t Acadnk
Altasl 5118, nemoer requescs System to remove book Trom W inchidesucunk
Alziz0I0g I ExtendELiClnk
Altolad|| 31 1a.1. Member to System.
suctest
Maramssse)| (31 1a.2n. System and removes it from the list of
iz ac. skl
11a.2b. System book: use case continues from v
(3-3)a. Member requests System to . e T
ol boding
(3-4)a.1. System that were registered by embe:
|
. ,‘—I Resgonsb,..
| e kem
tems 1
3 weamings, 0 cthers B -
= Resourca | Path | Locatson [Type |
)_Inconzistency: The sequence of ELC with the of & dagram Ate elats ... Problem
5 Tha EUC G0 B 1§ Fonsistenk vath ELC TRmplata. Bagrani ... A EUC ... Problem]
T T o T Fede . Probls

Figure 8. 14: Visual differencing to check for incorrectness and

incompleteness

In order to further validate her captured requirements and to ease the discussion process with Johan,
she has the tool map the validated EUC model to the low-fidelity prototype - EUI prototype in Marama
EUI editor as shown in Figure 8.15 (1). Here, she sits with Johan and together they walk through the

157

captured requirements and the Ul. She finds that the generated EUI prototype in Marama EUI editor
is also supported with extension components similar to the Marama Essential as shown in Figure
8.15 (1). She then has the tool translate the EUI prototype to a more concrete Ul view in a HTML form
(2) to give a better picture of the captured requirements to Johan. The tool generates the HTML page
with hyperlinks (underlined purple words) (A and B) in an HTML form. These hyperlinks are from the
extension components in the EUI prototype (1).

ESEleQ Cﬁhack = d (| oé'ﬂ IC:lmaramanIZ\runhme-wnrkspace\ﬂlﬁldiagram1EUI.mararj B I
Lt Marquee
[\\S Skekehing tool Check out
.= Shapes &0
I Container i I] D |1119361
(o] A
R tGr. .. ¥
M RequirementGr ot i | npie denty sclf
B Include (.
M Extend | | Name W
[EUiagram . 1 I| : AN | 1 2
| | 45
== Canneckors &0 ItemtDetaiI | 'i Save Adress |49/2 whitaker place
npu |
M NavigationLink I
W Inchudslink | Phone Number |02102446767
W ExtendLink
E | ¥ Book
istof option || ftem Name
[A ltem D [123
| [l
=i Ttem Category |Fiction

I
lidentify self \
{ . .

register item

i
Display error ... Help

input ‘I ‘ Save
|
‘I ‘ choice 1 |choice 2 |choice 3

| valel [Valne) fvaie3
reqister item .
Type 1 (Valie2 Typeld

Update Informa...
pt
Display status
riput
E | B |
1D other personal ...

Figure 8. 15: EUI Prototype with the extension components (1) and the generated HTML
form with hyperlinks (2)

After viewing the HTML page, Johan would like to see the results of the hyperlink. Massila shows him
how each hyperlink associates with the main page. lllustrated in Figure 8.16, the arrow (A) shows the
navigation of hyperlink “identify self’ to page 1 and the arrow (B) shows the navigation of hyperlink

“register item” to page 2.

158

|
Check out An error occured during transaction Please try Your information is updated at time and date
again!
m e You status is: confirm/cancel
Help
identify self A » 1D |1119361
Name |Massila Name [Massila
Adress |49/2 whitaker place Adress |4g/2 whitaker place
Phone Number |02102446787 Phone Number |02102446787
Ttem Name IF The item ID: sy123
‘You booking status is :confirmed/cancelled.
Ttem ID 123 &
tem
Delete
Ttem Category |Fiction
register ftem >
B 5
Save
choice 1 |choice 2 |choice 3
vael Vale2 value3
Type 1 |Vale 2 Type3

Figure 8. 16: HTML main page and hyperlink pages generated from EUI prototype

From these views, Massila tries to confirm the consistency of the captured requirements on the LLB
system from her viewpoint as against Johan’s original idea. Johan is also happy as he could

visualise his requested requirements in a way he understood.

In summary, Massila has used the MaramaAl tool to capture automatically the abstract interactions
and to extract the EUCs from the use case descriptions provided by Johan. The tool demonstrates its
ability to support the use of extension/include in a use case. She also used the tool to manage the
consistency and to validate the incorrectness and incompleteness of the requirements by using the
essential interaction pattern library and “best-practice” template from the EUC interaction pattern
library together with the inconsistency warning, problem marker and highlights. She then sat with
John to verify and confirm further the consistency of the requirements by having the tool generate the
prototypes with hyperlinks for both the EUI prototype and HTML form.

159

8.4 Case Study 3: Manage Events with Event Listing System

We chose the Silicon Dreams Event Listing System (www.reaction.co.nz), a real-world example with

several requirements, as the third example of a requirement to demonstrate the key features of our
tool in handling multiple requirements. This user scenario is obtained from a real industry project to
manage events from Silicon Dream Ltd, a web design company which specialises in developing
websites, e-commerce and online marketing [155]. It has developed an event-listing website since
1999 but closed that site due to legal, technical and environmental issues which badly affected the
progress and usage of the website. It is now trying to re-launch this website with new technology and
a more interactive portal. The company also wants to make sure it is correctly developed and fits the

right end-users.

The Silicon Dreams Event Listing System is an event-management website for adults. It allows users
to browse available event lists by event category such as night-life, eating out and stage. Users can
also select and view events and venues. This website also allows users to register, to receive
newsletters and to post comments and feedback. This portal is also for the administration to update,
edit and maintain the database on the venues and events as well as to manage the list of events,
reports and reviews. All the requirements for this website were collected from Mark Young, the project
manager, who has kindly allowed us to use them in this study. He described them in the form of a
user scenario which we then presented in the form of use case description. For this example, we will
only describe two different parts of the requirements: Manage Venue and Manage Event Review. The

requirement descriptions are shown in Figure 8.17.

160

Scope: Event Listing System (Manage Venue)

Summary: user (super admin, city admin, venue admin) is the only authorised person to
manage venues. For event listing purposes, event venues management is necessary.

User logs into the system {www.recation.co.nz} with authorised admin policy.

User clicks on “venue button” which opens an interface with “Add Venue”, "Modify
Venue”, and “Delete Venue” options.

User performs add venue. User enters the venue name.

System verifies the venue.

User enters the venue information.

System stores the venue into database.

N —

oGk w

Extension:
4.1a If venue does not exists: the system displays an error message.

Scope: Event Listing System (Manage Event Review)

Summary: user (super admin, city admin) would like to review an event posted by registered
viewer to avoid violent reviews. In addition, they also need to block (de-activate) the user
(portal viewer) account to avoid future inconvenience from that user (portal viewers).

1. User logs in the system {www.recation.co.nz} with authorised admin policy.

2. User chooses “reviews on event” option, which opens an interface with posted
reviews of specific event.

3. User reviews the comment on a particular event.

Extension:

3.1a If user is not satisfied with the comment or the comment seems to be violent, he
could remove the comments.

3.1b System removes comments from database.

3.1c User could also block other user’s ability to post comments by clicking the “De-
Activate user” button.

Figure 8. 17: Example of User Scenarios in the form of Use Case Descriptions:
Manage Venue and Manage Event review from the Silicon Dreams Event Listing

System specification

8.4.1 Example of Usage

We demonstrate our tool key features with this user scenario which needs to deal with multiple

requirements.

Massila, the requirement engineer, meets Mark, the project manager, and gathers the requirements
for the event-listing system. After she collects the requirements, she refines the user scenarios and
describes them in a form of use case descriptions. She then types in the requirements written in the

form of use case descriptions using the textual editor, following the guidelines provided by the tool as

161

shown in figure 8.18 (1). Here, she tries to validate two scenarios at a time, editing each in a separate
editor window. Then she has the tool trace the abstract interactions and map the abstract interactions
to the EUC model. The process is conducted along the same lines as the first and second examples.
The only difference is that she can view the results (A and B) for both scenarios and have the tool
trace the abstract interaction sand map to the EUC models at the same time. She then has the tool
trace back the EUC component “identify self”. For this, as shown in Figure 8.18 (2), she finds that the
tool is able to perform trace back only for one set of requirements at once and not both
simultaneously. However, she is happy as she can automatically capture the essential requirements

and the interaction.

|| *input requirement txt £ 1 *dimgrami maramaiagram £2 =
Scope: Event Listing System (Manage Venus) ;' s Sel...
Surmnary: user | super admin, city admin, venue "2
1. User [**"loga in*""|che system {www.recatio A
Z. User clicks on “venue button” which opens by k.. §}
3. User performs add venue. User enters the v tool
4. System verifies the venue "Extend: validat | ik
S. User enters the venue information. Wb, |
6. Syscem stores the venue into database. |
-
“wgnk recurnemenk ot 5 T *dacrami mavamabiagrom 1
Szope! Event Listing System (Manage Verue B
Seor: g By, (Hanag - + 3ol (Btfabstractinter action CTtagram System Responsihg.
. User logs in the M o — IR T ey e vaidate item
2. UOeer clicks on "venus buttomn 3 B dertfy sell |
3. User peerforms add venus. Dse Ehe Ll [1 eplay error
4. System verifies che venus "Excend: valida L1 L System Recpons...
5. Usar entacs the VeRHA inforwation. | s » record detard
6. System scores the vemue into davabase.
A Us... | s et |
*Excension: validate ieem® 5 Sriken Riponibg
4.1a If yenue does not exists: system displa th T valdate em s)
Bl e |
Sritem Revpirab... System Responsd... |
=Ml cord deplsy error |
(2 |
T |
- ViR o 2]
it Syshom Rasponsb.. == |
e dsplhay erce Hagram o3
. 4
Abstractinteraction EUCDiagram
[| 1 Pl s
L1 gk requrement 2.0 E3 1 " ey saif MW T
Scope: Event Listing System (Hamage Event Revis] "y sell,. identify seif |
Sussary: Susmery: user | super adwin, City adn 1, | EUCDiacran o » |
1. User logs in the CATLGH. 0 E 5 dentify self Usér Itrkion System Responsibg.
Z. User cheoses “rev aption, wt ool derkfy sof Il viow detal 3
3, User revievs the articulas e =y o detad » SRS | view detail
- Systom Resgonsbiy.
sExeansion: viev devailv . s eekem
3.1a 1T user is not mot sarisfied with the o s - R I 7
ewoves commnts from databare. | 3 s romees activate user Views detal
a. 4 alss block other user to pos
i s e System Responsib.
m Eu delete kem
s Systom Davpora. .
e delets tem
- e
=y s
- ReC S
me
e _.

Figure 8. 18: Capturing Requirements - Trace the Abstract Interaction, Trace Back and

Map to EUC model with Multiple Requirements

While reviewing the captured requirements model, Massila disagrees with the name of abstract
interaction “record detail “provided by the tool for the first scenario: Manage event. Thus, she
changes the name to “record item” and this automatically triggers an inconsistency warning to inform
her of the inconsistency and provides options to update, delete or continue without updating the
descriptions as shown in Figure 8.19 (1). Although, she is notified of the inconsistencies, she still

thinks she has to continue with changing the name of the abstract interaction “record detail” to “record

162

item”. So she selects “continue” from the options provided and this triggers a problem marker to

provide the warning regarding the inconsistencies that still exist. She then maps the new abstract
interaction to the EUC model. This also changes the name of the EUC component “record detail” to

“record item” as shown in Figure 8.19 (2).

Scope: Event Listing System (Manage Venue) %] [} el
Sumoary: user | super adwin, city admin, venue “im
1. User logs in the system (wuv.recation.co.n i
2. User clicks on “venus button” which opens [y k...
3. User performs add venue. User enters the v L
4. System verifies the venue "Extend: validat ES. ©
5. User enters the venue information. o
6., System stores the venus into database.
WU
"Extension: validate icem® B 5.
4.1a If venue does not exista: system dizplays WL
MEu.
ec. ol "
& Inconsistency Warning x|

‘The Following abstract intaraction ks inconsistent with the textual
! requiemants.
Do youwant to UPDATE the bextual requirement or DELETE the new Abstract

Interaction or Continue with Inconsistency?
q record ke 1
| rput requremant 2.4 53
Scope: Event Listir _.L“‘f_]...;."*"_..’f_l

Summary: Sumary: WEEF | SUPEL NOETN, CICYHE
1. User logs in the system (wuv,recation.co.r mﬂ“
2. User chooses “reviews on event” option, vk L .
3. User reviews the comment on a particular € view detal
"Extension: view decail® st ot okt ity datal
3.1a if user is not not satisfied with the com i) &
I.1b System removes comments from database. delete tem
3.1c User could also block other user to post
e e "
delste Rem
of || WEs |
ey of ol _ Lo
L Problems £3 @ Javadoc | 1) Declaration | Model Irstances | W Exposted Properties | 8 Progerty Mapping | T EUC Trece Resuk |
errcrs, | warring, 0 others — S
Jsription = [Resouree [pah [tocaton [1ype |
= & Wamings (1 kem)
i) Im:mmmmrnmbmmwmmmm_ rement M__emi‘m.‘. Al record ... Problem

Figure 8. 19: Change of Abstract Interaction Name

Syt Rﬂﬂﬂﬂ?’
= T vaid:‘uun J
i !
System Responsib...
dsplay error |
|
arnaDiagram 22 .
BOfAbtractinteraction
T vewdetal
delete tem
1T 11 System Responsb...
item

Massila is also unhappy with the “delete item” of the EUC component in the extension component of

the second scenario. She considers deleting the “delete item” component. She selects the component

and deletes it. This action triggers the associated abstract interaction to automatically change its

colour to red and the associated essential interactions “to be highlighted with “***” as shown in Figure

8.20. An inconsistency warning also appears to inform the inconsistencies and options to either

delete or cancel the deletion. After seeing the notifications, she thinks she has made a wrong

decision. She selects to cancel the deletion, and the highlighted abstract interaction returns to the

original state.

163

I *input requirement.kxt 22 [*diagram1.maramabiagram &2 =t
Scope: Event Listing System (Manage Venue) -] [Sel... I}
Summary: user [super admin, city admin, venue i ListOFAbstractInteraction ELICDiagran
1. User logs in the system {www.recation.co.n b e
2. User clicks on “venue button” which opens [k... identify self UE‘sertIFntquun
3. User performs add venus. User enters the v toel {geptin=e
4. System verifies the venue *Extend: wvalidat =5... o provides detail
5. User enters the venus information. b IE—— e TRt
6. System stores the venus into datsbase. A provides detail

s .
record item
+Extension: validate item*® =
4.1a If venue does not exists: system displays - System Respansih
Lis... T walidate iterm 7
UL
— display error
=C.. @ System Respénsib..
m vis recard item
m se..
M In...
& Inconsistency Warning x| ‘ validate item
Syske R b..
il | y\ [NCONSISTENCY ocour between Textual requirement and Abstract R o
!\ Interaction, Do you want to DELETE both companents or CANCEL deletion of

ELWC ke
=] *input requirement 2.bxt 52 omponen

Scope: Event Listing Sy

Swmmary: Summary: user Cancel EUCDiagram

1. User logs in the system {www.recation.co.r [skeo. identify self Udsertlrﬂtenliion
Z. User chooses “reviews on =vent” option, wk tool geni=s
3. User reviews the comment on a particular e 5. © wiew detail 3
| Ab.) System Responsibg.
+*Extension: view detail® — View detail 7
View detai
3.1m if user is not not satisfied with the con L
3.1b System|[#rseaw removes commentsS*rtessEan == [_
3.1l User could also block other user to posSt B Lis
Deactivate user wiews detail
| Eu... — ..
= et Retponsit .|
=c. Lielete item 1
m = _‘
M se... User Inkention
m Deactivate user
In...
M Ex..
-1 —

Figure 8. 20: Delete EUC component

Being a novice requirement engineer dealing with a project from an established company, Massila
thinks she needs to further validate her requirements against a best-practice template, in order to
ensure her requirements are correct and complete. Thus, she looks through the pattern catalogue
and chooses pattern “Manage item” that appears to be very similar to the first scenario as shown in
Figure 8.21 (1). She matches the pattern to her EUC model and sees that she has missed
interactions as there are several incorrect sequence orderings and missing components. As shown in
Figure 8.21 (2), an inconsistency warning to inform her of the inconsistency, incompleteness and
incorrectness appears with options either to keep the designed model or change the model to follow
the template. Here, the incorrect sequence ordering is displayed by the red visual links (A) showing
the position held by each component. The missing component “select option” is identified by the grey
element on top of the blue shape of “provides detail” (B). The component “display error” (C) is
outlined in red and highlighted with grey as this shows that the template does not apply the extension
component but agrees with the need of the “display error” component. Massila agrees with the
template as she thinks that the tool has failed to trace the “select option” component. She thinks this
may be because of the constraints faced by the essential interaction pattern library. However, she still
thinks that the other components from her EUC model are correct. So, she would like to keep her
EUC model as the tool does not support partial selection of the change and she subsequently has a

further validation meeting with the client.

164

L] "input requrement bt 13 Ol ek
Scope: Event Listing System (Manage Venue) = & sl
Summary: user (super admin, city adwin, venue T UstOFAbstractinkeraction
1. User logs in the system (wvv.recation.co.n Lo T
2. User clicks on “venue button” which opens [y k.. identify self
3. User performs add venus. User enters the v ool i
4, System verifies the venus *Extend: validat (5., c1 ||| Provicesdetol
5. User enters the venue information.
LU valdate |
6. System stores the venue into database. - A, L
[
ecord ken ok
*Extension: validate ijtem? W5y
4.1a If venue does not exists: aystem displays s
[vekdstoken
| | .
T ey L DRSS v

Surmary: user { super admin, cicty admin, venue
1. User logs in the system (Vwv.recation.co.n
User clicks on “venue hutton” which opens
User performs add venue. User enters the v
System verifies the venue *Extend: validat
User enters the venue information.

System stores the venue into database.

o s R

TEXtension: validate item®
4.1a If venue does not exists: system displays

| |
1) rput requrement 260 5
Scope: Event Listing System (Nanage Event Rev

Summary: Summary: user (super admin, city ad
1. User logs in the system (www.recation.co. 2
2.

User chooses “reviews on event” option, u
3. User reviews the comment on a particular ‘ |
| System Responsb...| |
e T ¢ =
¥.1a if user is not not satisfied with the co (CHANGE to the EUC Templste. i {
3.1b System removes comments from database. L | J
3.1c User could alse block other wser to post |

e (o -

123 *wnput requ bt 82 -

Scope: Event Listing System (Manage Event Revis|
Summary: Summary: user { super admin, city adn UstOfAbstractInteraction ELCDRagram
1. User logs in the system (vwv.recation.co.:
2. User chooses “reviews on event” option, ut
3. User reviews the comment on a particular e

*Extension: viev detail®

3.1a if user is not not satisfied with the con
3.1b System rewoves comwents from database. M Sy delote kem
3.1c User could also block other user to post) f=

=, all |l
[
W se..
v | E
P ;lJ LB 4 | 20

(£ Problems 3 (i Javadoc |), Declaration | M Model Instances | B Exparted Properties | ® Propesty Mapping |) ELIC Trace Resuit |

1 errors, 2 warmings, 0 others
Desorption_~ | Resource | path | Location | Type |
T, The ELC diagram Is Inconsisters wih EUC Template. dagranim... Al FUCd... Problem
1 The new abstract inberaction is iconsistent with tertusl requremert __ disgraml.m... AI6 tecond ... Problen ‘

Figure 8. 21: Visual differencing to check for incorrectness and incompleteness for first

Hi

scenario

Massila then thinks she should also further validate the second scenario. Thus, she looks through the
list of available templates and chooses a pattern “Review ltem” that seems to be very similar to the
second scenario as shown in Figure 8.22 (1). She matches the pattern to her EUC model and sees
that she has missed interactions as there are incorrect ordering, missing components and extra
components in her EUC model. These are shown in Figure 8.22 (2): an inconsistency warning to
warn her about the inconsistency, incompleteness and incorrectness appears with options either to
keep the designed model or change the model following the template. Here, again, the incorrect
sequence ordering is shown by the red visual link showing the position held by each component, the
missing component “select option” (A) is identified by the grey element at the position after “identify
self’ and the extra component “Deactivate user” (B) is outlined in red. Massila disagrees with the
template as she is confident with her EUC model. Thus, she then selects to keep her designed

model.

165

Summary: user {super admin, cicy admin, venue admin) is che enly author - by Sebect
1. User 1ay in the SyStem {Wiw.Fecation.ss.nz} with surharissd samin ¢ '

. User elicks s “yemue bu epens an imeerfase with “Rdd Ve Li Mucquee
. User parforms add venue. Us

2

3 3 the venue name. [y Sketching toot
4, System verifies the venge

5

&

validate iten*,
+ User encvers the yenue information . S
. dystem stores the wenue ince database, B Abwracslntarac

B Usedntention
Extensicn: validate item

SystemPepen._
4.1a If venue does mot exists the system displays error message, Sy ihpoe
B Listabstractl.,
W EUCDiagram
walidate item
W Viaallink
W Sequencelink System Responsi...
B includelink o u
W Estendlink
L B IncludelU Link W"’- ,,_‘
- ¥ W ExtendELICLink
Copy of input [= toa I [*diagraml maramaliagram [
egister for vore(Stephane 5.3cme 2005) . s Seleet
Primary Revor:Vates . g
Goal: An Saregistered voLed waat To Iegiates in ofder to be able to voL L. Marquee
FURmATYE UPET (PEPET AGEAT, CASY 89mAN) would like IO TEVAEW 8N €VERT § by Sketching toel identify el]
1. User logs in the syscem {www.recation.co.nz] with auchorised admin | = sapa p A— 1
3. User skosses “Teviews an evEAT® SpTLSR, UMLK apens & inverfase wi || view detail »
3. User reviews the commens on & particular event *Exvesd: view devatl W dbstractinterac., /|
System Fesansiy
W Useilatertion view detail
EXTERBLONT View detail '
——— e pon /
5.1a T user is mer savisfied wirhl @ [UC template st | ;
3.1 System remcves cimments from] voew detal |
3.1c User could alsc block other Choose sn EUC template: o] |
2 ! System Responsi.. |
[Fenew e | detete fem | iystemn
| | rabdabe om
Tesminate Cal | | /!
Transaction(Cash Deposit) |
Transaction{Tranzer) | iyshemn
Viter Regntration | ecord

W lnclideEUCLink |

ncy warning E |

Your ELIC diagram is INCONSISTENT with the ELIC Tamplate, There i an
incomplote or incorrect component, Do you want bo KEEP your new diagramor |

CHANGE 1o the ELIC Template,
e
3.1a if user i= not not aacisfied with the con o=
3.1b System removes comments Irom database. M Sy...
3.1c User could also block other user to post
I Us,
e
-
ErCu, @
. B
M Ex... 4
- | in...
<1 | I3 | S S |
| Problems 52 G Javadec| [, mm}-mm}-mm]-wmm]ﬂﬂxnusmﬂ
arors, 1 warning, 0 others
pseription_~ | Resowcs [patn Location |
1 & Warnings (1 kem
@ _The ELIC diagram i with EUC Template. clageam] .m. A7 EUC di... Problem]

Figure 8. 22: Visual differencing to check for incorrectness and incompleteness

for second scenario

After Massila is satisfied with the requirements components, she meets Mark to validate further the
requirements and to confirm the consistency of her captured requirements with the earlier
requirements provided by Mark. In order to allow Mark to better understand the requirements
components, she then has the tool map the EUC model to an abstract prototype: EUI prototype (1)
and also has the tool translate the EUI prototype to a concrete Ul view in a HTML form (2) as shown
in Figure 8.23. They can view the prototypes for both scenarios. However, she and Mark
subsequently walk through the requirements and the Ul components for both sets of scenarios for

better validation.

166

k el D Sther personal (=] c;@ C\maramadl2iruntime-workspacel, | [O] ¢§7’ Ciinaramafl2iruntime-workspacel v | [I
": M... input: input A
[t Sk, 1D 1119361 An error occured during transaction Please try again!
tool
= © Nl
| co.., Ttem Detail
o R input
Eee Adress [4g/2 whitaker place
Wi
WEx. Phone Number 02102446787
WEU... 1
Display Ttem - l—
=C. @ nput ‘ Ttem Name
M Ha... |
(Item ID
. ."
WEx.
I | Ttem Category
/ validate item >
f = Save
]
validate item
i m had
l [1 E 2
—
7 *diagram1.maramabisg (E *diagramEULmarameD £3 1 CiimaramanlZiruntime-workspacel ALF\diagr ILmaram & @ ti fspacelAl7\diagram ELL maram &
3 Sel.. = HE . 2l o @ & [comeramantziuntme-workspacel ¥] B B & [Cinaramaaizyuntinevorkspacel x| B [
other personal ...
L»‘: M. input input d |
Iy sk, 1 [11e36 Delete
tool
5., @ i | Name |Massila De-activate
H ... Display comment | Display Item detail
HrRe... put p) meut Adress [4g/2 whitaker placs You are unauthotized to view the comments Please
| .
| contact the admin
| \
CED ! Phone Numiber 02102446787
e |
comment A: Fantastic event.
B0, © wiew detail
L L Delete T || view detail >
Wi
HEs.. ITtem Name

=2

Figure 8. 23: Multiple EUI prototypes and HTML forms

From the discussion, Mark thinks the EUI component “other personal detail” needs to be deleted and

the EUI component “Iltem Detail” needs to be added with the information of “Venue Name and Venue

Description”. Massila makes the changes requested by Mark and the results of the changes are
shown in Figure 8.24(1). Then Mark also asks to delete the “delete” EUl component as he thinks that
should not appear in the interface but as a process at the backend of the system. So Massila deletes

the “delete” component and the result is shown in Figure 8.24 (2).

167

- B S e —— |
=
An error ceeured dusing wansaction Please try again!
= L
| | S B P E—"T—— S | B [Smeramaniziu = >
| EUltusgram | : 2 |
I |
]] | S De-activats
walkish o m ciher pavsonal ... | n
input |
Deslay erca m... | _\'meih“|5{;:|.’| 2 [You are unauthorized to view the comments. Please
= | lcontact the admin.
—— |l Adress [4g/2 whitaker place
T I 1

ke % || Phone Number [02102846787
Il comment A: Fantastic event

|| view detail

|| Item Name

Figure 8. 24: Changes made to the EUI prototype (1) and the results in HTML form (2)

At the end of the process, Massila and Mark are satisfied with the help of MaramaAl as together they
could confirm the consistency and validate the requirements. They are also happy as they could also

finalise the requirements quickly and without delay.

In summary, Massila has used the MaramaAl tool to capture automatically the multiple abstract
interactions and to extract multiple EUCs from the user scenario written in a form of use case
descriptions provided by Mark. The tool demonstrates its ability to support multiple requirements
together with the use of extension/include in a use case. She also used the tool to manage the
consistency and validate the incorrectness and incompleteness of the multiple requirements by using
the essential interaction pattern library and “best- practice” template from the EUC interaction pattern
library together with the inconsistency warning, problem marker and highlights. She then sat with
Mark to verify and confirm further the consistency of the multiple requirements by having the tool

generate the prototypes: the EUI prototype and HTML form for both the requirements at once.

168

8.5 Discussion and Summary

We have applied our MaramaAl tool to three different domains of application: reserve a vehicle (rental
car company), book check-out (Library Book Borrowing System) and event management (Silicon
Dream Event Listing Website). We described our tool utilities by creating a user persona for each of
the requirements examples which are described in a form of user scenario. We demonstrated each of
the tool key features: capturing requirements, checking the consistency and validating the
requirements and supporting the end-to-end rapid prototyping. We also described how each utility of

the tool is interconnected.

The user scenario described in the first example is simple and straightforward. This scenario is used
to demonstrate the basic utilities provided by our tool. The second user scenario is more complex as
it is described with the use of extension. This scenario demonstrated that our tool is able to deal with
more complex requirements and to deal with any type of requirement descriptions. The third user
scenario was used to describe a real industry project requirement with several requirements. This
demonstrated that our tool is able to be used in a real industry environment and showed how our tool
simultaneously dealt with multiple requirements. Our main purpose in using these three different sets
of requirements is to show that the utilities provided by MaramaAl can also be extended to a range of

different domains and applications.

The demonstration of the tool also leads us to identify several limitations that we need to handle in
future work. Firstly, we found that, the essential interaction library needs to be further enhanced as it
does not trace an abstract interaction, which we believe is important, particularly in the third scenario.
We believe though, that this can be solved as the process of updating the library is on-going. Next,
we identified that the tool’s utilities in validating the requirements’ qualities using the visual
differencing with “best-practice” templates need to be further enhanced. We noticed that, currently,
the tool only allows the user to either convert or keep his/her original EUC model against the whole
EUC interaction provided by the template and does not allow partial acceptance of a particular EUC

interaction.

Further, our tool’s utility in handling multiple requirements also need to be further enhanced. The tool
can display all requirements together but the processes of consistency management and validation of
requirements needs to be done one after the other. It would be preferable if both processes could be

done simultaneously. However, this is a goal to be handled in our future work.

169

Chapter 9: Evaluation

This chapter presents the formal evaluation of our proof concept tool: MaramaAl (Automated
Inconsistency Checker). The evaluation mechanism to evaluate the tool as well as the usability
criteria and Cognitive Dimension notation (CD) used to evaluate the usability are also discussed.
Then, discussion and comparison of the tool’s evaluation results are also presented. This formal end
user evaluation is approved by the University of Auckland Human Participants Ethics Committee
(reference number: 2010/172).

9.1 Evaluation Mechanism Overview

We have conducted evaluations for three different phases of the prototype iteration with the same
usability criteria and CD notation for our MaramaAl tool. This is a different evaluation from the
informal evaluations presented in the earlier chapters, Chapter 4, 5 and 7. The earlier evaluations
were used to inform refinements to the design, while the set of evaluations presented in this chapter
took a larger group of participants (20) through each process step supported by the tool. The
targeted end users for this evaluation are either postgraduate or undergraduate students who have
sufficient background to understand software requirements. The participants of this survey were
volunteers and their participation was treated anonymously. We recruited once, and the same group
of participants was used to formally evaluate each phase, where phases corresponded to the
development steps outlined in each of the previous three chapters. A full description of the evaluation

phases is provided in appendices. The three separated evaluation phases are:

a. Part 1: Capturing requirements
The participants were required to accomplish three parts of the evaluation. Firstly, to
manually extract Essential Use Cases from the given scenario “reserve a vehicle” by Evan [1]
and followed by repeating the same process automatically with MaramaAl. The participant
was then given a set of questionnaires to be completed including open-ended feedback.

b. Part 2: Consistency Checking
The participants were required to accomplish the following steps. Firstly, to explore the tool
capabilities for checking the consistency of the requirements components: textual natural
language requirement, abstract interactions and EUC model. The participant was asked to
explore the tool by adding a new abstract interaction or textual requirement, delete any
components or change the sequence of the components. Then, he/she was asked to explore

the facility provided for validating other requirement qualities such as completeness and

170

correctness. Finally, participants were given a set of questionnaires to be completed including
open-ended feedback.

Part 3: Exploring the end to end prototyping facility (End to End Rapid Prototyping)

The participants were required to explore the refined tool capability for managing the
requirements via an end-to-end prototyping facility. Here, participants were asked to map the
three forms of requirements: textual natural language requirement, abstract interaction and
EUC to the low fidelity Ul in the form of Essential User Interface prototype (EUI prototype).
Next, participants were asked to translate the EUI prototype to a concrete Ul view in the form
of HTML page. Finally, the participant was given a set of questionnaires to be completed and
the open feedback questions to answer.

Questionnaires are used to support each part of the evaluation. The design of the questionnaires are

discussed in detail in Section 9.4. Observation data is also collected while participants are performing

tasks based on:

How they manage to complete the task given;

How they complete the Essential Use Cases practice manually and automatically;
How they navigate between different parts of the tool;

How they explore the tool for consistency checking;

How they explore the end-to-end rapid prototyping support, and

Listening to their verbal responses while using the tool.

9.2 Usability Criteria for Usability Evaluation

To evaluate our tool, we consider the type of usability criteria suggested by Lund [156] in the USE

questionnaire. The author suggested four criteria that are correlated to one another- Usefulness,

Ease of Use, Ease of Learning and Satisfaction. We used these criteria in developing our

questionnaires, and had previously used these in our informal evaluations presented earlier. We

define the criteria as follows.

Usefulness: How useful the tool is to help users be effective in accomplishing the given task.
Ease of Use: How easily the users can work with the tool’s facility, user interface and event
handler provided by the tool.

Ease of Learning: How easily the user can understand and learn to use the tool.

Satisfaction: Is the user satisfied with the tool’s capability in solving the problems?

171

9.3 Cognitive Dimensions of Notations Approach (CD)

As a second element to the evaluation, we apply the CD Framework, as operationalised by Blackwell
[157] in our questionnaires to allow us to explore in detail the reason for each of the user’s
perceptions for our MaramaAl tool in capturing requirements, managing the consistency of
requirements and supporting end-to-end roundtrip prototyping. CD is applied here as it is a common
approach for evaluating visual language environments. It helps non-HCI specialist and ordinary users
to evaluate usability and it can be applied during any design phase [158]. In addition, it is design to
provide a lightweight analysis as well as to allow reasoning about usability tradeoffs [158]. The list of

CD dimensions refined by Blackwell [157] is shown in Table 9.1.

Cognitive Dimension Meaning

Viscosity Resistance to change

Visibility Ability to view component easily

Premature commitment Constraints on the order of doing

Hidden dependencies Important links between entities are not visible
Role-expressiveness The purpose of an entity is readily inferred
Error-proneness The notation invites mistakes and the system gives little protection
Abstraction Types and availability of abstraction mechanism
Secondary notation Extra information in means other than formal syntax
Closeness of mapping Closeness of representation to domain

Consistency Similar semantics are expressed in similar syntactic forms
Diffuseness Verbosity of language

Hard mental operations High demand on cognitive resources

Progressive evaluation Work-to-Date can be checked at any time.

Provisionality Degree of commitment to actions and marks
Table 9. 1: CD Dimensions and Meaning by Blackwell [157]

9.4 Design of the Study

As discussed in Section 9.1, the evaluation is conducted in three different phases. Similar usability
criteria and CD dimensions were evaluated for each phase. This study aimed to fulfil the following

evaluation objectives:

l. to evaluate Marama Al tool’s usability and effectiveness in capturing requirements, managing
inconsistency and exploring the end-to-end prototyping facility, and

Il. to obtain qualitative information on user perceptions of the MaramaAl tool.

172

We have structured our study into two parts.

1. Task list and observation
For this part, the participants need to explore and accomplish the provided task and while
they are performing the task, observation data is collected. This method aims to fulfil the
second objective of the evaluation. There are two types of observation conducted.
l. Unobtrusive observation
Here, participants are observed on how well they use the tool. This helps us to learn
whether participants can use the tool in an easy and efficient way. The following
aspects are also observed.
i) How participants capture the requirement manually and automatically and
then trace the abstract interaction and map to the EUC diagram
automatically.
ii) Is a participant able to manage the consistency of the requirement?
iii) How a participant navigates different parts of the tool and explores the

facility provided for end-to-end prototyping.

Il. Obtrusive observation

Here, participants are asked to say aloud what he/she thinks while using the tool. This
helps us to learn more about the usefulness and the acceptance of the tool. Through
this method, we expect the participants to feel relaxed and willing to express their
sincere perception about the tool. Perceptions and comments from the participants
are then collected. We took notes for each piece of feedback and each observation
made.

For both methods we are using the think aloud method [159] and no personal information

about the participant is collected and no personal questions are asked.

2. Questionnaire
Each question for each usability criteria and CD dimension was recorded using a five parts-
Likert scale: 1=strongly disagree, 2=disagree, 3= undecided, 4= agree and 5=strongly agree.
The results for each question blocks, which consist of several questions for each criterion,
are averaged and converted to percentage. For this part, there are two sections which the
participants need to answer after they have completed their tasks.
I. The questionnaire for the four usability criteria and CD notations.

a. For usability criteria, each criterion for part 1: capturing requirements and
part 2: consistency checking and Part 3: Exploring the end to end prototyping
facility (End to End Rapid Prototyping) of the evaluation are designed with
three questions, with the exception that the usefulness criterion for part 3 has

173

five questions. All these questions are designed by us with several adapted
from Lund [156]. In total, our questionnaire consists of 12 questions related
to the four criteria for parts 1 and 2 of the evaluation and 15 questions for
part 3.

b. For CD dimensions, we do not apply all the CD dimensions provided by
Blackwell in Table 1 but only focus on several elements that we think
influence our tool the most and helps for better usability tradeoffs as well as
better design choices discussion, which we think important for the adoption
and refinement of our tool at different phases. In this evaluation, we do not
consider the role-expressiveness, abstraction, secondary notation
dimensions and provisionality. As for the abstraction, we think that we do not
require participants to scale the level of abstraction and encapsulation
provided by the tool and for role-expressiveness, we do not require the
participants to discover the reasons we built the tool structure in such a way
as we follows the Constantine and Lockwood methodology of creating EUC
and EUI prototype models. As for secondary notation, the reason we left it
out is because the notations used by MaramaAl are clearly defined and
specific for a particular part of requirements. For provisionality, the reason we
left it out is because at this time round, we do not require the participants to
scale the degree of flexibility provided by the notations in allowing them to
play with their ideas or make any marking to the design. Each CD dimension
consists of one question to evaluate it. All these questions are adapted from
Kutar et al. [160]. In total, there are ten questions for this section. The list of
CD dimensions used by us and the questions evaluating them are shown in
Table 9.2 below.

Cognitive Dimension Question

Visibility It is easy to see various parts of the tool

Viscosity It is easy to make changes

Diffuseness The notation is succinct and not long-winded

Hard mental effort Some things do require hard mental effort

Error-proneness It is easy to make errors or mistakes

Closeness of mapping The notation is closely related to the result

Consistency It is easy to tell what each part is for when reading the
notation

Hidden dependencies The dependencies are visible

Progressive evaluation It is easy to stop and check my work so far

Premature commitment | can work in any order | like when working with the
notation

Table 9. 2: CD Notations Used and Questions Evaluating Them

174

Overall, there are 24 questions for part 1 and part 2 of the evaluation and there are
27 questions for part 3 of the evaluation. Two background questions are also asked
at the beginning of the questionnaire regarding the participant’s proficiency in using
Marama tools: proficient/skilled, intermediate and novice and a question regarding
his/her experience in using any tool similar to our MaramaAl.

. Open-ended questions related to any improvements that participants’ desire.

A sample of our evaluation survey appears in the appendices.

9.5 Survey Method

We invited potential participants who were enrolled in two postgraduate courses with specifically
relevant background in Software Requirements, and other students who had attained a background in
Software Requirements. This is because we needed participants who already had a knowledge of
requirements engineering to perform this survey. We recruited 20 voluntary postgraduate students
who had sufficient knowledge or experience in software requirements and requirement engineering to
participate in this survey. The usability evaluation was conducted individually in order to allow us to

observe participants and receive feedback one-to-one from them.

Participants were given an explanation and demonstration of how to use the prototype tool and the
tasks they needed to perform. A task list and a questionnaire sheet were given to participants before
they started using the prototype tool. The task list and questionnaires (Part 1, 2 ,3) as well as
Consent Forms, a University Ethics Approval Form and Personal Information Sheet are in the

appendices. A brief overview of the tasks for each phase of evaluation follows.

Part 1: Capturing requirements

l. Extract manually the Essential Use Cases from the scenario given.

e The participant reads through the given scenario and extracts the abstract interaction
and designs an EUC model from the scenario. The time used for this task is taken
and their work checked for accuracy by comparing their answers with the EUC
patterns developed by us.

Il. Extract a similar scenario to the Essential Use Cases using the MaramaAl tool.
e The participant is asked to insert the same scenario into the tool and to extract the

EUC using the tool event handler.

175

1. Explore MaramaAl facilities in capturing requirements using event handlers: trace, trace back
and map to EUC.
e The participant is asked to explore the tool facilities in tracing forward/back and
mapping using the provided event handlers.

Part 2: Consistency Checking

l. Explore the tool capability in managing the inconsistency by adding a new abstract interaction

or textual requirement, delete any components or change the sequence of the components.
e The participant is asked to explore the tool facilities for managing the consistency of
requirements by doing some modifications to the requirements as instructed.

Participant feedback while exploring is recorded.

Il. Check for other requirements quality such as correctness and completeness using the tool.
e The participant is asked to check their modified requirement model with a defined
EUC pattern template for certain scenarios. He/she is required to observe the visual
differences provided to detect the incorrectness and incompleteness in the modified

requirement model. Participant feedback while exploring is recorded.

Part 3: Exploring the end-to-end prototyping facility (End-to-end Rapid Prototyping)

l. Explore the tool capability for mapping the EUC diagram to an EUI prototype.

e The participant is asked to explore the tool facilities in supporting end-to-end rapid
prototyping. He/she is asked to map the EUC model to a low-fidelity prototype: EUI
prototype. Participant feedback while exploring is recorded.

Il. Explore the tool facility for mapping the EUI prototype to the concrete Ul in a form of HTML
page.

e The participant is asked to explore the tool facility in generating automatically the

concrete Ul view in a form of HTML page from the generated EUI prototype.

We observed the participants’ performances while using the tool to accomplish the provided task.
Participants were also asked to think aloud and give suggestions to enhance the tool. Once all tasks
were completed for each part, they had to answer the questionnaire sheet provided earlier.
Participants completed the questionnaire at their own pace without any supervision. The response
data was then collected for analysis. Each participant took less than one hour to perform the

evaluation survey. The results of the survey and analysis are discussed in the following section.

176

9.6 Survey Result and Analysis

In this section, we present the survey results and analysis for all three parts of the evaluation.

Part 1: Capturing requirements

l. Task 1: Extract manually the Essential Use Cases from the scenario given.

The accuracy results provided by all the 20 participants for this task are poor, confirming the
preliminary study we undertook, presented in Chapter 3. Few participants could provide
correct abstract interaction for the EUC model. Table 9.3 summarises the results of our study.
The correctness (Y for correct, X for incorrect) and time taken were recorded for each person.
A correct answer (Y) means that the answer provided by the participant is the same or very
similar to the abstract interaction pattern developed by us following the Constantine and
Lockwood [4] methodology provided in the essential interaction pattern library. Summarising
these results:

4. The number of correct interactions identified (Y) = 48 out of 120 total correct interactions or 40%

(i.e. 60% were incorrect).
5. The number of completely correct EUC interactions (all Ys) = 2 out of 20 or 10%.

6. The average time taken to accomplish the EUC development task was 10.2 minutes. The
longest time taken was about 20 minutes and the shortest time taken was about five minutes,

so there was significant variation in the time taken.

Based on these results, participants were more likely to generate incorrect EUC interactions than
correct ones, and very unlikely (10%) to produce a completely correct EUC. All but two participants
failed to identify some of the essential interactions present in the given requirements; many failed
(highlighted in orange in Table 9.3) to assemble these into an appropriate interaction sequence, and
only two (participants 6 and 20) managed to obtain a solution which is the same as or very similar to
the model answer of the reserving a vehicle developed by us. From these results, it is obvious that
participants took considerable time to provide the right answer. This is shown by the time taken by
both participants 6 and 20 who respectively took 18 minutes and 12 minutes to provide the right

answer. Our survey thus supports the preliminary findings in our initial study discussed in Chapter 3.

177

Answers

2 S ~
'é R t Confirm E é
-% Choose Offer choice View detail ide neticliilé(;?i on Identify self bc?oking lg é
o i~
1. Y Y X Y X X 14
2 X Y X X X X 11
3. X X X X Y Y 10
4. X Y X X X Y 10
5. X Y X X X Y 7
6. Y Y Y Y Y Y 18
7. X X X X X X 9
8. X X X Y Y Y 9
9. X X X X X X 16
10. Y X X X X X 6
11. X X X X X X 6
12. X X X X X X 8
13. X Y Y X X Y 5
14. X Y Y X X Y 20
15. Y Y Y X X Y 7
16. X Y Y X X X 5
17. X Y Y X X Y 13
18. X Y X Y Y Y 9
19. Y X Y X Y Y 9
20. Y Y Y Y Y Y 12
T 6 | 14 | 12 | 8 | 8| 12 | 5 | 15 6 | 14 | 11 | o |20

Observation results for Task 1:

Table 9. 3: Manual Extraction of EUC Study Result

We found that participants seemed to have difficulty in finding the right level of abstraction for the

abstract interactions. Most did not know how to abstract the requirements and just listed the

functional requirements. We also found that it was quite time-consuming for participants to figure out

178

appropriate keywords to describe each abstract interaction and to organise these into an appropriate

sequence of user intentions and system responsibilities.

Task 2: Extract a same scenario to the Essential Use Cases using MaramaAl tool.
Task 3: Explore MaramaAl facilities in capturing requirement using event handlers: trace, trace-back
and map to EUC.

Observation Results for Tasks 2 and 3:

We found that 15 out of 20 of the participants were quite happy to use the tool as most of the process
was automated. They were also happy as the abstract interactions were provided and mapped to
interaction sequence in the EUC model automatically by the tool. They did not have to worry about
the accuracy issues observed in the first task. They also thought this would save much time and effort
in capturing the essential requirements as on average, most took only 1.5 minutes to solve the task.
This was much faster than the time taken in manual extraction. However, a minority group of five
participants were confused and uncomfortable with the layout of Marama as well as the shape and
colour used to represent the EUC model. These problems were solved after a few explanations and

trials using the tool.

Background Information

As mentioned in Section 9.3, participants were asked about their proficiency in using the Marama tool
and their experience in using any tool similar to our Marama Al before they moved to usability and CD

notation study. The results appear in Table 9.4.

179

Participants Level of proficiency in using Experience with any tool to capture
Marama tool requirements similar to Marama Al
1. Intermediate No
2. Novice No
3. Novice No
4. Novice No
5. Novice No
6. Novice No
7. Novice No
8. Novice No
9. Novice No
10. Intermediate No
11. Novice No
12. Novice No
13. Intermediate No
14. Novice No
15. Novice No
16. Novice No
17. Intermediate No
18. Intermediate No
19. Novice No
20. Novice No

Table 9. 4: Proficiency level of Using the Marama tool and Experience with Any Other Tool

Based on the background results provided in this table, our participants were novice to intermediate

in using the Marama tool, the meta toolset used to construct MaramaAl — experience with this

indicates they have a background in using graphical modelling toolsets and graphical tool design.

Most of them were thus unfamiliar with tool design. The same group of participants was also used in

our next phase of evaluation. We conclude that this group of users were unfamiliar with RE tools like

MaramaAl.

Usability Criteria and CD Study

The results for the usability criteria and CD dimensions based on the questionnaire are shown in
Figure 9.1 and Table 9.5.

180

Capturing Requirements with MaramaAl
100.0
90.0
© 80.0
ap 70.0
B 60.0
S 50.0
5 300
w .
) 100
0.0 - —
Strongly . . Strongly
Agree Agree Neither Disagree Diagree
B Usefulness 30.0 50.0 13.3 6.7 0.0
W Ease of Use 15.0 63.3 16.7 3.3 0.0
Ease of Learning 21.7 60.0 13.3 5.0 0.0
W Satisfaction 15.0 65.0 15.0 1.7 3.3

Figure 9. 1: Usability Results-Capturing Requirements

Figure 9.1 shows the survey results for each usability criterion. For each criterion, the results of each
corresponding three-question block were averaged to produce the results shown. The results are
positive. 80% of the participants strongly agree or agree on its usefulness in capturing requirement;
the ease of use - over 78% strongly agree or agree; ease of learning - over 81% strongly agree or
agree, and satisfaction (80% strongly agree or agree). For ease of use, the result is slightly lower
than other criteria as a few participants felt uncomfortable with using the tool as they had difficulty in
understanding the layout provided by Marama and they were used to a UML model rather than the
EUC. In addition, they also expected the EUC component to be numbered in order to make it easier
for users to see the sequence of interactions as, currently, the sequence is shown only as an index in

the property box.

The CD study allows us to explore in more detail the reasons for these user perceptions as well as
further discuss the tool’s strength and weaknesses. The tradeoffs between the dimensions are also
discussed in section 9.7. We used the dimensions and questions in respect to MaramaAl in Table
9.2. for this study. The results are based on percentage depending on the number of participants’

answers for each scale.

181

Cognitive dimension 1DiS;(;(;?§tley 2-Di?’agree 3-N$ither 4-A:)gree ° ig?:g Y

%) (%) (%) (%) %)
Visibility 0.0 0.0 10.0 60.0 30.0
Viscosity 0.0 0.0 20.0 50.0 30.0
Diffuseness 0.0 10.0 20.0 55.0 15.0
Hard-mental effort 5.0 40.0 30.0 10.0 15.0
Error-Proneness 15.0 40.0 35.0 10.0 0.0
Closeness of Mapping 0.0 0.0 25.0 45.0 30.0
Consistency 0.0 0.0 15.0 45.0 40.0
Hidden Dependencies 0.0 5.0 15.0 60.0 20.0
Progressive Evaluation 0.0 0.0 20.0 55.0 25.0
Premature Commitment 0.0 5.0 15.0 60.0 20.0

Table 9. 5: Evaluation Results for Cognitive Dimensions Questions

Based on Table 9.5. we could summarise the results for each dimension as follows.

Visibility

About 90% of the participants either strongly agreed or agreed that the tool is able to show
clearly the three components requirements: textual natural language requirements in the
textual editor, abstract interaction and EUC in Marama Essential. They could also easily see
the dependencies of each component as a visual link and highlights are provided. The
remaining 10% hoped for sequence numbering for abstract interactions and the EUC
components in the shapes rather than just in the property boxes.

Viscosity

About 80% of the participants either strongly agreed or agreed that the tool allowed them to
make changes easily. They could make changes in any part of the requirements components
either in textual natural language requirement or abstract interaction or EUC model. 20%
doubted the tool’s ability to support independent changes as they believed that the three
requirements components were dependent on one another.

Diffuseness

About 70% of the participants either strongly agreed or agreed that the notation used by the
tool is succinct and not long-winded. However, 10% disagreed and thought it was hard to
understand the notation when using it for the first time. They were confused with the
coordination, shape and colour used in representing abstract interaction and EUCs.
Hard-mental effort

About 45% of the participants either strongly disagreed or disagreed that this tool needs a lot
of effort to solve the tasks. They were quite happy as this tool is able to extract automatically

the EUC which minimises a lot of their time and effort. This is in stark contrast to the difficulty

182

vi.

Vii.

viii.

found by users in understanding and applying EUCs found in the prior studies. However,
there was still some dissatisfaction from 25% of the participants who thought this tool still
required effort to understand the shape and the layout when using it for the first time. 30% of
the participants answered ‘undecided’: they may have thought that all the problems faced in
understanding the tool could be solved if they used it more often.

Error-Proneness

More than half the participants either strongly disagreed or disagreed that the tool leads the
user to make errors. This is because the extracted abstract interaction is believed to be
accurate as all the essential interaction and abstract interaction patterns are already pre-
defined in the library. However, 35% of the participants were undecided: they may have
believed that the tool could be constrained by the size of the library. Another 10% of the
participants agreed that they made mistakes easily at the beginning as they were confused
with the shape used for abstract interaction and the EUC model, and the highlighting of
several essential interactions in the textual natural language requirements for a particular
abstract interaction when trace-back was performed.

Closeness of Mapping

Most participants (75%) either strongly agreed or agreed that the notation used was closely
related to the results: abstract interaction and EUC model. They understood the shapes and
labels used to describe both requirement components. Only 25% of the participants were
undecided with the notation used as they were not familiar with the Marama meta-tool and
were not happy with the colours used to identify specific shapes.

Consistency

Most participants (85%) either strongly agreed or agreed that they could easily identify the
requirements components: textual natural language, abstract interaction and EUC model
throughout the task. Only 15% of the participants were undecided: they were unsure about
the Marama shape and the colours used but believed that the notations used were consistent
and straight-forward.

80% of the participants either strongly agreed or agreed that the dependencies among the
three requirements components were visible. Visual links are provided to show the
dependencies between abstract interaction and the EUC model when trace-back is
performed. Highlights with (***) and change of colour also help to visualise the dependencies
among components. However 5% of the participants disagreed with this and 15% were
undecided. This may be because of the misunderstanding of the requirements components
and the purpose of highlighting the essential interactions in the textual natural language
requirement.

Progressive Evaluation

183

80% of the participants also either strongly agreed or agreed that MaramaAl allows users to
evaluate their work at any time and to verify the abstract interaction produced by the library.
Here, participants could make any change to the list of abstract interaction if they did not
agree with the tool’s decision. Only 20% were undecided with this dimension. The latter is
well supported by the tool as the automation process is supported by event handlers. Event
handlers will only generate the event if there is a trigger from the user.

Premature Commitment

This dimension reflects the sequence of using this tool in order to achieve the results. 80% of
the participants strongly agreed or agreed that the tool allows a user to perform the task from
any direction. However, 5% of participants disagreed and another 15% were undecided. This
could be because of the constraint; only one way is provided if they want to trace the abstract

interaction from the textual natural language requirement.

Open-ended Questions to Improve the Tool

The open-ended feedback for the open-ended question to improve the tool is illustrated in
Table 9.6 below.

184

Participants Comment

1. “User who understands the concept of Essential Use case will be much
easier to operate the tool. After regular use, it will be easy to use the tool.
It will be good if the list of actions is numbered so that the user can view
the sequence of interactions.”

2. “I think this tool can have better GUI for better use.”

3. “It is getting easier to use the tool if it is explored more than once.”

4. None

5. “Re-organise the layout and the colour of the shape.”

6. “It will be better if the shape is numbered.”

7. None

8. None

9. None

10. “The user interface can be improved. The boxes and the colour bar can be
combined.”

11. “It will be good if the list of abstract interaction can be edited in the shape.”

12. ‘It is quite confusing that 3 occurrences of ‘“indicate” keyword
corresponded to one box in EUC diagram.”

13. “Better presentation of diagrammatic elements (shapes, colours) for more
visual distance.”

14. “Allow tracing all together rather than individuals.”

15. None

16. “Allow line-breaks in the text areas, solid colouring for the shapes.”

17. “A ‘“trace back all” feature which would highlight all occurrences in the text
might be useful and “trace back highlights” in the text with colour instead of
stars.”

18. “Highlight the keywords in the original requirements which have been
used, so user can quickly identify the situations where a requirement
needs to be manually added.”

19. “Clearer differences between components (colour). The one in pink on the
left almost looks like a status bar.”

20. “A larger database for the pattern is needed. A strong database could
support the tool to provide accurate results.”

Table 9. 6: Open-Ended Feedback

Part 2: Consistency Checking

We conducted a second part of the evaluation for the next iteration of our prototype focussing on
checking the consistency. Before the evaluation was conducted, the tool was modified over a period
3- 6 weeks based on the relevant feedback and suggestions received from the first evaluation as well
as extending the tool with the additional functionality developed for the iteration.

Task 1: Explore the tool capabilities for managing inconsistency by adding a new abstract interaction
or textual requirement, delete any components or change the sequence of the components.

Here, participants were required to do some prescribed modifications and then observe how well the
tool automatically supported the consistency validations.

Task 2: Check for other requirements quality such as correctness and completeness using the tool.
Here, participants were required to explore how the tool supports the identification of incompleteness

and incorrectness that occurs in the generated EUC model.

185

Observation Result for Task 2 and 3:

We found that 17 out of 20 participants were interested in using the tool as they were able to view
automatically the inconsistencies, incompleteness and incorrectness errors that occur. They were
also quite satisfied with the notification supports such as problem marker and warning, and visual
differencing support in detecting the errors. However, two participants requested more modification
options and validation support which focuses not only on these three types of errors. In addition, one
participant strongly thought this tool would be constrained by the available templates in the EUC

interaction library.

Background Information

The same group of participants from the first evaluation were used for this second evaluation. Thus
the same background applies for all the participants. This is because they already had an idea of how
our tool works and they could compare the current tool functionality with the previous one. Thus, we
can sum up that none had prior experience with any RE tool similar to our MaramaAl for checking the
consistency of requirements except for one participant who thought that the way our tool notifies the
error and feedback by using warnings is similar to the Marama Critic tool. But overall, that tool has a
different focus than our tool, which focuses on managing the consistency and validating the
requirements, whereas Marama Critic focuses on providing a critic specification tool that allows the
tool developers to construct critics for a DSVL tool [161]. Here, the results gained from the first phase
of the evaluation were also used to enhance the prototype before we moved to this evaluation— note
there were minor changes from the responses in Figure 9.1 and Table 9.5 due to the time difference

between the two parts of the study.

Usability Criteria and CD Study
The results of the usability criteria and CD notations based on the questionnaire are shown in Figure
9.2 and Table 9.7.

186

Consistency Checking with MaramaaAl
100.0
90.0
@ 80.0
o 70.0
- 60.0
S 50.0
3 300
QL .
- 100
Strongly . _ Strongly
Agree Agree Neither Disagree Diagree
B Usefulness 38.3 51.7 6.7 3.3 0.0
B Ease of Use 20.0 73.3 6.7 0.0 0.0
Ease of Learning 21.7 6l1.7 13.3 3.3 0.0
W satisfaction 16.7 66.7 13.3 3.3 0.0

Figure 9. 2: Usability Results - Consistency Checking of Requirements

Figure 9.2 shows the result of our usability survey on consistency checking of requirements using our
tool, MaramaAl. For each criterion, the results of each corresponding three-questions block were
averaged to produce the results shown. The results are very positive, with strong agreement over the
usefulness of the tool (90% strongly agree or agree on its usefulness), the ease of use (over 90%),
ease of learning (over 80%) and satisfaction (over 80%). These results show that there is an
increment in the usefulness of the tool and other criteria compared to the previous evaluation. The
small number of cases of disagreement over usefulness, ease of learning and satisfaction related to a
preference by those participants for a UML Use Case-based approach rather than the Essential Use
Case approach. Some also felt that requirements engineers would be too constrained by the
templates available in the EUC interaction pattern library, and some could not foresee the purpose of
the tool after checking the consistency. However, overall these results are very encouraging,
particularly given prior studies, our own and others, that suggest EUC modelling, while appealing to

end users, has a large barrier to entry due to difficulty of use [39].

The CD study allows us to explore in more detail the reason for these user perceptions. Similar to the
previous evaluation, we used the dimensions and questions in Table 9.2. for this study. The results

are based on percentage, depending on the number of participants’ answers for each scale.

Table 9.7 shows the evaluation results for each of these questions. These demonstrate interesting

tradeoffs between the dimensions that we feel have contributed to the strong usability acceptance.

187

Cognitive dimension 1Diss,t;cg);?§<|ay Dissgree 3-[\2;|)t)her 4-/(-\:)2r)ee ° ig?:g Y
(%) (%) (%)
Visibility 0 0 10 80 10
Viscosity 0 0 0 75 25
Diffuseness 0 0 10 70 20
Hard-mental effort 5 40 45 10 0
Error-Proneness 0 55 45 0 0
Closeness of Mapping 0 5 15 85 5
Consistency 0 0 15 80 5
Hidden Dependencies 0 0 15 70 15
Progressive Evaluation 0 0 15 50 35
Premature Commitment 0 0 15 65 20

Table 9. 7: Evaluation Result for Cognitive Dimensions Questions

Based on Table 9.7, we summarise the results for each dimension as below;

Visibility

90% of the participants strongly agree or agree that they could see various parts of the tool.
They could easily view the consistency dependencies among the three requirement
components: textual natural language requirements, abstract interaction and EUC model.
Only 10% of the participants are undecided.

Viscosity

All participants strongly agree or agree that they find it easy to make changes to the diagrams
representing the various notational forms. Both strong results of visibility and viscosity show
that the participants are comfortable with the tool.

Diffuseness

About 90% of the participants strongly agree or agree that the notation used by the tool is
succinct and not long-winded. However, 10% of the participants are undecided with this as
they are more comfortable with UML diagrams than with the EUC model.

Hard-mental effort

About 45% of the participants strongly disagree or disagree that this tool needs a lot of effort
to solve the tasks. They are quite happy as this tool is able to automatically detect
inconsistencies in the requirements. However, there is still dissatisfaction from 10% of the
participants who think this tool still requires effort and strong understanding to locate the error
if they do not understand the concept of the EUC model. 45% of the participants answer
undecided: perhaps they used this tool for the first time and all doubts were resolved after a
few explanations and trials.

Error-Proneness

188

vi.

Vii.

viii.

More than half of the participants disagree that the tool leads the user to errors. This is
because all the errors are detected automatically and they could view the incorrectness and
incompleteness of the differences between the generated EUC model and the templates. In
addition, all modifications are also checked with the available patterns and templates in the
library, so that they do not worry about the accuracy issue. Another 45% of the participants
are undecided; perhaps they think that the tool might constrain the available patterns and
templates available in the library. However, they believe that this problem could be easily
solved when we mentioned that the collection of patterns and templates for both our libraries
are on-going.

Closeness of Mapping

Most participants (90%) strongly agree or agree that the notations used are relatively intuitive
and understandable. Only 15% of the participants are undecided and another 5% disagree
with the notations used as they are confused with the Marama Layout.

Consistency

Most participants (85%) strongly agree or agree that they could easily recognise the notations
used by our tool. Only 15% of the participants are undecided as they were initially confused
with the notations used to represent the differences between the generated EUC model and
the EUC model from the templates. However, those doubts were resolved after a few
explanations.

Hidden dependencies

85% of the participants strongly agree and agree that the dependencies among the three
requirements components are visible. A visual link is provided to show the dependencies
between abstract interaction and EUC model when inconsistencies exist. Highlights with (***)
in textual natural language requirements, change of colour, problem marker as well as
warning and feedback also help to visualise the inconsistencies among components when
any requirement component is changed. However, 15% of the participants are undecided.
Progressive Evaluation

85% of the participants also strongly agree or agree that they could easily stop and check
their work at any time. MaramaAl allows changes to be made to any of the requirement
components. Thus, end users do not have to worry about the errors as the tool provides an
automated support if any errors such as inconsistencies, incompleteness and incorrectness
exist. Only 15% are undecided but their doubts were resolved after a few trials.

Premature Commitment

This dimension reflects the sequence of using this tool in order to achieve the results. Over
85% of the participants strongly agree or agree that the tool allows a user to perform the task
from any direction. End users could make changes in any of the components as the tool

provides automated detection if the changes cause an inconsistency in any other component.

189

If inconsistency is detected, end users could make changes to other components as well,
based on the feedback provided by the tool in order to keep the three requirements
components consistent. Only 15% of the participants are undecided but their doubts were

resolved after a few trials.

Open-ended Questions to Improve the Tool

The open-ended feedback for the open-ended question to improve the tool is illustrated in Table 9.8.

Participants Comment

1. “The main concern is the pattern and template available in the library.
More templates available are better.”

2. None

3. “Allow to use templates only partially, e.g. use some parts of it but not all.”

4. “To consider more options/types of requirement quality error apart from
inconsistency, incompleteness and incorrectness.”

5. “Still confuse with the layout. Need to change the colour used by the
notations.”

6 None

7. “Modification options can be increased.”

8. None

9. None

10. “I like the visual differencing approach as | could view visually the errors.”

11. “Easy to make changes to the notations.”

12. “Still prefer the UML rather than EUC”.

13. “Need to have knowledge and understanding on the concept of EUC.”

14. “Need to have a try on this tool for a few times.”

15. None

16. None

17. None

18. “Would be too constrained by the available templates available in the
library.”

19. None

20. “More templates in the library are needed to support the visual
differences.”

Table 9. 8: Open-ended Feedback

Part 3: Exploring the end-to-end prototyping facility (End-to-End Rapid Prototyping)

We have conducted another evaluation for the final iteration of our prototype for end-to-end rapid
prototyping support. Before the evaluation was conducted, the tool was again modified over a period
of 3-6 weeks based on the relevant feedback and suggestions received from the second evaluation,

as well as adding additional functionality.

190

Task 1: Explore the tool capability in mapping the EUC diagram to the EUI prototype

Here, the participants were required to explore the tool utility in mapping the generated EUC model to
the low-fidelity prototype-EUI prototype.

Task 2: Explore the tool facility for mapping the EUI prototype to the concrete Ul in a form of HTML.
Here, the participants were required to explore the tool facility to translate the EUI prototype model to
the more concrete Ul view: an HTML form. From here, participants could see the end results and
confirm the consistency of the requirements provided earlier in a form of textual natural language

requirements with the generated prototype.

Observation Results for Tasks 2 and 3:

We found that 16 of the 20 participants were happy to use the tool as they were able to view the
prototype as a result from the generated EUC model. They were also satisfied with the generation of
the concrete Ul view—HTML form as they could understand and have the picture of the requirements
instead of just text and model. However, one participant requested GUI support for the HTML form
based on particular domains and three other participants suggested that a video demo be embedded
in the tool. Those three participants also requested more descriptive labels and a key to explain the

meanings of the colours near or at the side of the models.

Background Information

The same group of participants from the first and second evaluations was used in this third
evaluation, so the same background applies. This is because they already had an idea of how our
tool works and what the tool supports and they could compare the usefulness of the current tool with
the previous one. We also concluded that no participant has experienced the same approach of end-
to-end rapid user interaction prototyping provided by MaramaAl in any other requirements tool in

capturing or analysing the requirements.

Usability Criteria and CD Study
The results of the usability criteria and CD notations based on the questionnaire are shown in Figure
9.3 and Table 9.9.

191

End to End Rapid Prototyping with MaramaAl

100.0
90.0
80.0
70.0
60.0
50.0
40.0
30.0
20.0

10.0
0.0 - —

Percentage

Strongly
Agree

Agree

Neither

Disagree

Strongly
Diagree

B Usefulness

50.0

50.0

0.0

0.0

0.0

B Ease of Use

48.3

43.3

5.0

3.3

0.0

Ease of Learning

45.0

50.0

2.5

25

0.0

m Satisfaction

41.7

48.3

10.0

0.0

0.0

Figure 9. 3: Usability Results- End to End Rapid Prototyping

Figure 9.3 shows the results of the usability survey conducted for the end-to-end rapid prototyping
approach provided by our tool. For each characteristic, the results of each corresponding question
block were averaged to produce the results shown. The results are very positive compared to the
previous evaluation, with strong agreement over the usefulness of the tool (100% strongly agree or
agree on its usefulness), the ease of use (over 90%), ease of learning (95%) and satisfaction (90%).
The small number of cases of disagreement over ease of use and ease of learning related to a
preference by those participants to have a more descriptive label for each colour and shape used in

MaramaAl.

The CD study allows us to explore in more detail the reasons for these user perceptions. Similar to
previous evaluations, we used the dimensions and questions in Table 9.2 for this study. The results
are based on percentage, depending on the number of participants’ answers for each scale. Table
9.11 shows the evaluation results for each of these questions. As with the previous evaluation, we
believe these results demonstrate interesting usability tradeoffs between the dimensions that we feel

have contributed to the strong usability acceptance of our final prototype.

192

Cognitive dimension 16%:;?33 2-Di§agree 3-N?ither 4-A°gree 5?\2?33 Y

(%) (%) (%) (%) (%)
Visibility 0.0 0.0 5.0 50.0 45.0
Viscosity 0.0 0.0 5.0 50.0 45.0
Diffuseness 0.0 0.0 5.0 55.0 40.0
Hard-mental effort 30.0 50.0 15.0 5.0 0.0
Error-Proneness 25.0 50.0 10.0 15.0 0.0
Closeness of Mapping 0.0 0.0 0.0 40.0 60.0
Consistency 0.0 5.0 10.0 55.0 30.0
Hidden Dependencies 0.0 0.0 10.0 50.0 40.0
Progressive Evaluation 0.0 0.0 5.0 50.0 45.0
Premature Commitment 0.0 0.0 5.0 40.0 55.0

Table 9. 9: Evaluation Result for Cognitive Dimensions Questions

Based on Table 9.9, we conclude that almost all results are positively increased compared to both

evaluations conducted earlier. A summary of the results for each dimension follows.

Visibility

Almost all of the participants (95%) strongly agree or agree they could see various parts of
the tool. They could easily view the dependencies between requirements components in
MaramaEssential and the prototype in MaramaEUI. Only 5% are undecided as they are not
sure of the notation used for the EUI prototype at the beginning.

Viscosity

95% of the participants strongly agree or agree that they found it easy to make changes to
the diagrams either in the EUC model or EUI prototype model. Strong results of both visibility
and viscosity show that the participants were comfortable with the tool.

Diffuseness

95% of the participants strongly agree or agree that the notation used by the tool is succinct
and not long-winded, although there were suggestions to be able to generate HTML forms
with GUI templates based on a selected (i.e. domain specific) application domain. 5% of the
participants were undecided with this as they were new to the EUI prototype model.
Hard-mental effort

About 80% of the participants strongly disagree or disagree that this tool needs a lot of effort
to solve the tasks. They are happy as this tool is able to help to generate automatically the
EUI prototype from the EUC model and to translate automatically the EUI prototype model to
a more concrete Ul view: HTML form. Only 5% believe that they need a lot of effort to
understand the concept and dependencies between the EUC model and EUI prototype. 15%
of the participants answered undecided: perhaps they used this tool for the first time and all

doubts were satisfied after explanations and trials. However, this is still in strong contrast to

193

vi.

Vii.

viii.

the findings of prior studies regarding the difficulty found by users in understanding and
applying EUCs and EUI prototypes.

Error-Proneness

75% of the participants disagree that the tool leads the user to errors. This is because all the
errors are detected automatically and they could automatically generate the prototype. The
prototype generated is based on the pre-defined template and Ul pattern in the library. Thus,
this assures the accuracy of the Ul. Only 15% of the participants disagree with this and
another 10% are undecided. However, all doubts were resolved after explanations were
made.

Closeness of Mapping

All participants strongly agree or agree that the notations used are relatively intuitive and
understandable.

Consistency

Most participants (85%) strongly agree or agree that they could easily recognise the notations
used by our tool. Only 5% of the participants disagree with this and 10% of the participants
are undecided as they were initially confused with the notations used to represent the EUI
prototype model. All the misunderstandings were resolved after a few explanations.

Hidden dependencies

90% of the participants strongly agree or agree that the dependencies among the three
requirements components and the prototype are visible. The highlights with a change of
colour to red in the EUC component and abstract interaction as well as the highlight with (**)
in textual natural language requirements after trace-back are performed from the EUI
prototype and show the dependencies between all requirements components and the
prototype. Only 10% of the participants are undecided as some required that highlights be
provided to active elements in order to view the consistency between the EUI prototype and
EUC model. In addition, a warning is also requested if any EUI prototype is deleted: this
ensures consistency with the EUC model.

Progressive Evaluation

95% of the participants also strongly agree or agree that they could easily stop and check
their work at any time. Marama Al allows changes to be made to any of the requirement
components and the prototype. Only 5% are undecided but all doubts were resolved after a
few explanations.

Premature Commitment

This dimension reflects the sequence of using this tool in order to achieve the results. Over
95% of the participants strongly agree or agree that the tool allows a user to perform the task
from any direction. End users could make changes in any of the components either from the

MaramaEUI editor or Marama Essential editor. End users could use either or both editors to

194

capture the requirements. Only 5% of the participants are undecided but they still believe

they could use the tool in any direction they like.

Open-ended Questions to Improve the Tool

The open-ended feedback to the open-ended question to improve the tool is illustrated in Table 9.10

below.
Participants Comment

1. “Highlight active elements to view the consistency between EUI prototype
and EUC models. Provide warning if any item of EUI prototype is deleted.”

2. None

3. “‘Remove unnecessary elements from eclipse. Provide more descriptive
labels.”

4. “Could provide templates for specific domain for the HTML form.”

5. “EUC and EUI prototype can be on the same page.”

6. None

7. None

8. None

9. None

10. “Would prefer to have a video demo on how to use the tool .”

11. “Maybe could have a “key” explaining what the colours mean near to the
model.”

12. “Would be good if the HTML form is designed with interesting GUI.”

13. “Need to understand the concept of EUI prototype.”

14. “Need to have a try on this tool for a few times.”

15. None

16. None

17. None

18. None

19. None

20. “MaramaAl tool can be improved by providing more interactions between

abstract interaction and other diagrams. In future, it can be used to extract
UML diagram such as class diagram and sequence diagram.”
Table 9. 10: Open-ended Feedback

9.7 Comparison of Survey Results

We compared the results gained from these three evaluations. Most results showed a positive
increment in terms of usability, especially the usefulness of the tool. The comparison results of the
usability study for the three evaluations- capturing requirements, consistency checking and end-to-

end rapid prototyping are shown in Figure 9.4.

195

Com pa}{g!}son Results of Usability Study
100 90 933916 95 90
80
&
& 60
c
S
= 40
o
20
0
Usefulness Ease of Use Ease of Learning Satisfaction
B Capturing Requirements W Consistency Checking
M End to End Rapid Prototyping

Figure 9. 4: Comparison Results of Usability Study for Capturing Requirements,
Consistency Checking and End-to-End Rapid Prototyping of MaramaAl

Based on Figure 9.4, the usefulness of the tool increases in each of the evaluations. All participants
agreed that the final prototype, end-to-end rapid prototyping, is useful. They could understand the
value of the tool for consistency management and validation of requirements after they viewed the

results of the requirements in terms of the prototype.

Other results of usability criteria also show positive increment for each of the prototype iterations. For
ease of use, from only 78.3% rating in the first prototype (capturing requirements), increases to
93.3% in the second prototype (consistency checking), but has a slight drop with 91.6% in the final
prototype. This is because most of the participants are still new to the concept of abstract prototype

(EUI prototype) and the tool is somewhat more complex with the additional functionality provided.

However, for ease of learning criteria, the rating of the final prototype increases to 95% from just
83.4% in the second prototype and 81.7% in the first prototype. This is because most participants
believe that they could easily follow the flow of the tool after a few trials and explanations. The
satisfaction rate also gains a positive increase in the final prototype with 90% compared to only
83.4% in the first prototype and 80% in the second prototype. Most participants are satisfied with the
end results produced as the tool visualises the requirements in a form of prototype.

196

As we used a CD study to explore in more detail the reasons for these user perceptions, we
compared the results for each dimension for the three evaluations. We also explored the tradeoffs
between the dimensions. There are also positive increments for each of the dimensions in the CD
study. The comparison results for each dimension in the CD study are shown in Figure 9.5.

Comparison Results of CD Study
100
90
80
& 70
‘E 60
S 50
2 40
& 30
20
10
0
.\'\\’C\ B & ‘&06 & & & o & &
° & & & & QQ X2 & 3 _&((\
R I R & 3
N < o
° &S & © SN0 &
\ <& N N s &
2 & @ 2 N
¥ & S & S
0 ‘2‘\ Qko (q,((\
B Capturing Requirements B Consistency Checking ® End to End Rapid Prototyping

Figure 9. 5: Comparison results of CD Study for Capturing Requirements, Consistency

Checking and End-to- End Rapid Prototyping of MaramaAl

Figure 9.5 shows that most of the results for each of the CD dimensions have increased in each of
the prototype iteration. The visibility rating has increased to 95% in the final prototype compared to

90% in both the first and second prototypes.

The viscosity rating has a high increment from 80% in the first prototype, shooting up to 100% in the
second prototype. It shows that the participants began to be comfortable with the tool after they have
understood the concept of an EUC model. However, there is a slight drop to 95% in the final

prototype as most participants are still new to the concept of the EUI prototype.

The results of diffuseness also show a high increment, with only 70% in the first prototype, increasing
to 90% in the second prototype and 95% in the final prototype. This shows that most participants start
to understand and be comfortable with the notation used in MaramaAl.

197

For the hard mental effort dimension, only 45% of the participants in both first and second prototypes
agreed that the tool is easy to use, but the rate increases to 80% in the final prototype. This high
increment also happens in the error-proneness dimension, where 75% of the participants of the final
evaluation compare favourably to both earlier prototypes where only 45% agree that it is hard to
make errors or mistakes with the tool. The result for closeness of mapping also increased to 100% in
the final prototype compared to 90% in the second prototype and only 75% in the first. The strength of
mapping rating and the relatively strong hard mental effort and error proneness ratings indicate that
EUC and EUI prototype notations are seen as intuitive and understandable by the participants. This is
in stark contrast to the difficulty found by users in understanding and applying EUC’s and EUI

prototype in the prior studies.

The result of consistency dimension for the three evaluations remains at 85%. The result for the
hidden dependencies dimension also shows gradual increments for each prototype. The first
prototype received an 80% rating and the second prototype with an 85% rating while the final
prototype had a 90% rating. These results show that participants are improving in understanding the

dependencies that occur between the requirements components and the prototype.

A similar gradual increment also happens to the rating of progressive evaluation and premature
commitment dimensions. For both dimensions, the first prototype received an 80% rating and the
second prototype had a 85% rating and the final prototype had a 95% rating. We conclude that the
automated extraction support, consistency management and generation of prototypes appear to be

responsible for all these high ratings.

From the results, the usability tradeoffs between the dimensions are also clearly shown. It shows that
high closeness of mapping and visibility as well as high viscosity assists with the issue of hard mental
operations and reduces the error proneness. The high progressive evaluation also contributes to the
lower error- proneness and hard mental operations. The high visibility also increases the result of
hidden dependencies. The consistent result of consistency affects the increment of the diffuseness
result. In addition, it is also shown that the high premature commitment assist with the positive result

of the high progressive evaluation.

198

9.8 Summary

The MaramaAl tool has been evaluated phase by phase with a usability survey and Cognitive
Dimensions study. The evaluation results are positive for all the three phases of prototypes: capturing

requirements, consistency checking and end-to-end rapid prototyping.

The survey has shown very positive results in usefulness. This shows a good degree of acceptance
by end-users to use the tool in managing the consistency and validating the requirements. The results

appear to complement the prior studies in applying EUCs and the EUI prototype.

However, there are also some minor improvements are needed to improve the usability of the
MaramaAl tool. The evaluation survey has also provided a number of suggestions (listed in the
previous sections) to improve the usability of MaramaAl. The suggestions will be taken into

consideration in our future work.

199

Chapter 10: Conclusion and Future Work

This chapter concludes this thesis by summarising the contributions of this research responding to
research questions described in Chapter 1 as well as some conclusions on the achievements so far.
This chapter also discusses the limitations of the research and suggests some future work to extend

the research.

10.1 Summary of Research Contributions

1. We have designed and developed a lightweight extraction approach to deal with natural
language requirements. This lightweight approach is implemented in an automated tracing
tool which provides facilities for authoring textual natural language requirements and
checking the consistency of those requirements. This approach enables requirements
engineers to extract quickly and accurately essential requirements (abstract interactions)
from the textual natural language requirements and then map them to an Essential Use Case
(EUC) model. To support the extraction process, we have also developed an essential
interaction pattern library and a collection of abstract interaction patterns and essential
interactions patterns which are reusable and can be applied in various domains of

applications.

2. We have designed and developed requirements analysis support to validate the
requirements’ consistency and quality. We have implemented automated traceability and
visualisation support to manage the consistency of the requirements in three different forms:
textual natural language requirements, abstract interactions and EUC models; as well as to
further validate the correctness and completeness of requirements. To do this, we employed
a visual differencing approach between essential interaction patterns and EUC interaction
patterns. Thus, this could assist the requirements engineers to find appropriate interactions
for designing the EUC model for a particular system. Warnings and highlights are also used
to highlight inconsistencies and other requirement quality errors such as incorrectness and

incompleteness.

3. We have designed and developed a rapid prototyping approach together with traceability
support to provide end-to-end support for consistency checking which we assume will be
usable by both requirements engineers and clients to confirm the consistency of
requirements. In addition, an approach has been developed and embedded into the tool to

automatically map the semi-formal requirements in the form of EUC model to an abstract

200

Essential User Interface (EUI) prototype model and a more concrete Ul view in a form of a
HTML page. The traceability support provides trace forward and trace- back between the EUI
prototype, EUC model, abstract interaction and textual natural language requirements. We
have also developed a set of EUI patterns to enhance the accuracy of a generated EUI
prototype model and a set of EUl pattern templates to allow the translation of an EUI
prototype model to the more concrete Ul view — HTML page for various domains of

applications.

4. We have developed a proof of concept prototype tool: MaramaAl. This was built using the
existing Marama meta-tool and acts as a proof of concept for our approaches for providing
automated support for consistency management and validation of requirements. We have
evaluated our prototype tools performance and efficacy mainly for the tool extraction process
and we have evaluated the tool with an end-user study, confirming the usability of the tool
based on Cognitive Dimensions (CD) and applied the tool to several case studies in different

domains of applications.

10.2 Conclusions

From our research, we conclude that our automated support tool,MaramaAl, can extract automatically
abstract interactions and EUC models from textual natural language requirements. Then, an EUI
prototype model and concrete Ul view in the form of an HTML page can also automatically be
generated from the EUC model. We have demonstrated that these automation processes perform

better than manual processes conducted by requirements engineers.

In addition, our tool can also check for the 3 C’s - consistency, correctness and completeness - using
the developed essential interaction patterns and EUC interaction patterns with traceability and visual
support to highlight the requirements’ quality errors such as inconsistencies, incorrectness and

incompleteness.

Finally, we have also speculated that our approach and automated tool support are able to improve
the dialogue between the requirement engineers and stakeholders/clients by having the auto-
generated prototypes from the EUC models: these help to provide a clearer picture of the
requirements to the client. It also allows confirmation of the consistency of the requirements captured
by the engineers with a client’'s original requirements by having the textual natural language
requirements, abstract interaction, EUC model, EUIl prototype model and HTML form mutually

traceable to each other.

201

However, some limitations of our MaramaAl tool were exposed by the evaluations and the case

studies applications. These include the following.

1. Constraints on the size of the essential interaction pattern library, specifically the list of
abstract interactions and essential interactions available. During the evaluations, the tool
efficacy result averaged 80% due to grammar issues and the size of the library. This is also
supported by the example of the case study three in Chapter 8, in which we also faced the
problem of tracing a particular abstract interaction. However, this can be readily addressed as

the process of abstracting and storing patterns is on-going.

2. Constraints on the available types of “best-practice” templates in the EUC interaction patterns
library for supporting the visual differences in validating requirements. More “best-practice”
templates are required to support wider domains of applications. However, this also can be

handled as the process of searching for and storing the templates is on-going.

3. Constraints on the available EUI pattern and template in the EUI pattern library for generating
the prototypes: EUI prototype and HTML page. More EUI patterns and a EUI pattern
templates are also needed to generate more Ul for wider domains of applications. In addition,

generation of prototype concrete Uls that are not form based may be desirable.

4. Constraints in handling validation of multiple requirements. At present, the validation process
can only be conducted subsequently by MaramaAl and the tool does not allow partial

acceptance of a particular EUC interaction pattern from the “best-practice” template.

5. Constraints on a novice user to understand the layout of the tool. During the evaluation,
participants requested better representation including the layout, colour, shape and labels
used by the tool. A video demo on how to use the tool and illustration explaining the colours

and shapes was also requested.

6. The HTML page generated does not contain any GUI. It only shows the main functionality of

the requirements.

Overall, these minor limitations observed in our tool can be improved in future work.

10.3 Future Work

MaramaAl tool is still at the prototype stage. We aim to continually develop it to be more robust and to

allow its use by the Requirement Engineering community and industry.

202

In order to achieve this, we need to address the following matters.

1. Enbhance the support of our library for essential interaction patterns, EUC interaction patterns
and EUI patterns. To do this, a pattern template editor can be developed to allow automatic
updates of the patterns to be done by any requirements engineer. At present, the process of
updating the patterns is via manual insertion by the developer into the libraries. With
appropriate editing support, a requirements engineer could update or define any new abstract
interaction, essential interaction, EUC interaction or EUI pattern in the various libraries

following the provided guidelines.

2. Provide better support for consistency management and validation of multiple requirements.
We plan to enhance the support tool to allow validation for all requirements at the same time.
With this, the consistency checking can be done for all requirements at the same time. The
completeness and correctness checking using the visual differences also can be conducted
together for all requirements. In addition, we also plan to provide the user with flexibility either
to change the whole or partially of original EUC interaction against the “best-practice”

template.

3. Enhance the layout of MaramaAl and embed a video demo describing how to use the tool for
better understanding by a novice user. The colour and shapes used in the tool need some
improvement with better labelling to explain the features. The tool can also be integrated with
a GUI template for the generated HTML form for each domain of applications. The GUI
template, based on different domains of applications, can be stored in a library to allow

automatic generation of the template together with the generated HTML form.

4. Conduct an evaluation of the effectiveness of our tool in improving the dialogue between the
requirements engineer and the stakeholders/clients. This evaluation is to assess the
effectiveness of our tool-MaramaAl utilities in assisting the communication between the
requirement engineer and clients, especially in confirming the consistency of requirements
captured by the requirements engineer using the tool with the client’s original requirements.

We are now waiting for Ethics approval for this evaluation, which will be underway shortly..

5. Integrate our tool with other UML models such as sequence diagrams and class diagrams to
check for the consistency of the generated EUC model with both UML sequence and class
diagram. The next step is to try to integrate our framework with other NLP tools in order to
perform grammar analysis for the textual natural language requirements in the textual editor.

With this, we may overcome some of the grammar problem faced by our current tool.

203

10.4 Summary

The research presented here has focused on providing automated support for consistency
management and validation of requirements. We have developed several libraries of patterns,
covering essential interactions, EUC interactions and EUIs which, together with traceability and visual
support for the EUC concept, we have demonstrated to be usable, for managing consistency and
validating requirements. In addition, the dialogue between the requirements engineer and the client
may also be improved via the generation of user interface prototypes from the EUC model.
Evaluations focussing on the performance and efficacy of the tool extraction process and formal
evaluations on the tool usability as well as a demonstration of the use of the tool with different case

studies were employed to evaluate the approach and the proof of concept prototype tool - MaramaAl.

204

APPENDIX A: PARTICIPANT INFORMATION SHEET (HEAD

OF DEPARTMENT)

waaa THE UNIVERSITY
OF AUCKLAND
FACULTY OF ENGINEERING

Department of Electrical and

Computer Engineering

Science Centre (Building 303)

38 Princess Street

Auckland, New Zealand
Telephone 6493737599 ext 88158
Facsimile 6493737461
www.auckland.ac.nz

The University of Auckland
Private Bag 92601
Auckland 1142

New Zealand

PARTICIPANT INFORMATION SHEET (HEAD OF DEPARTMENT)

Title: Evaluation of Marama Al: Automated Inconsistency Checker for Capturing Requirement and

Managing Inconsistency

My name is Massila Kamalrudin and I am a PhD student at the Department of Electrical and Computer
Engineering, The University of Auckland. I am conducting research on Inconsistency checking of Software
Requirements. This research is under the supervision of Professor John Hosking and Professor John Grundy. Our
research investigates the use of an automated tool which applies an approach using visualisation and lightweight
traceability techniques for capturing and formalising natural language requirements and managing consistency
between the natural language and formalised requirements in an efficient and simple way. A prototype tool for
capturing requirement and managing inconsistency called Marama AI has been developed. Part of our research
involves an evaluation of this prototype regarding its usability and effectiveness for capturing natural language
requirement and managing the inconsistency and exploring the end to end prototyping facility that is provided
by the tool. As a Computer Science Head of Department, we would like to ask your permission to allow us to
have access to students who enrolled in COMPSCI 732 course and SOFTENG 450 course, or any postgraduate or
undergraduate student who has a background of Software requirement and permit the students to participate
voluntarily in our survey. Participation in this survey is on a voluntary basis and there will be no financial
compensation. The survey is performed in an anonymous way. No personal information will be collected during
the survey. A Participant Information Sheet (PIS) and consent form will be given to students before they start

205

with the evaluation process in order to make sure they understand the terms and conditions. Once, they
understand and agree with both documents and they wish to continue participation, they will need to sign the
consent form. Both documents will be collected immediately after they agree to participate in the evaluation and
before they start with the evaluation. A tutor from their class will collect the questionnaires once they have
completed the evaluation and answered all the questionnaires”. We would like you to provide us the assurance
that neither the students’ grades nor academic relationships with the department staff members will be affected
by either refusal or agreement in students’ participation. Your support would be greatly appreciated.

This research is funded by the Ministry of Higher Education, Malaysia. If you have any queries regarding this

survey, please do not hesitate to contact me. You can email me at: mkam032@aucklanduni.ac.nz. Alternatively,

you may phone me at 0210 -2446787. You may also contact my supervisor, Professor John Hosking at
john@cs.auckland.ac.nz or 09 373 7599 ext 88297.

For any queries regarding ethical concerns you may contact the Chair, The University of Auckland Human
Participants Ethics Committee, The University of Auckland, Office of the Vice Chancellor, Private Bag 92019,
Auckland 1142. Telephone 09 373-7599 extn. 83711.

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS
COMMITTEE ON 6 May 2010 for (3) years, Reference Number 2010/172.

206

APPENDIX B: PARTICIPANT INFORMATION SHEET

(STUDENT)

wwaa THE UNIVERSITY
OF AUCKLAND
FACULTY OF ENGINEERING

Department of Electrical and

Computer Engineering

Science Centre (Building 303)

38 Princess Street

Auckland, New Zealand
Telephone 6493737599 ext 88158
Facsimile 6493737461
www.auckland.ac.nz

The University of Auckland
Private Bag 92601
Auckland 1142

New Zealand

PARTICIPANT INFORMATION SHEET (STUDENT)

Title: Evaluation of Marama Al: Automated Inconsistency Checker for Capturing Requirement
and Managing Inconsistency

My name is Massila Kamalrudin and I am a PhD student at the Department of Electrical and Computer
Engineering, The University of Auckland. I am conducting research on Inconsistency checking of Software
Requirements. This research is under the supervision of Professor John Hosking and Professor John Grundy.
Our research investigates the use of an automated tool which applies an approach using visualisation and
lightweight traceability techniques for capturing and formalising natural language requirements and
managing consistency between the natural language and formalised requirements in an efficient and simple
way. A prototype tool for capturing requirement and managing inconsistency called Marama Al has been
developed. Part of our research involves an evaluation of this prototype regarding its usability and
effectiveness for capturing natural language requirement and managing the inconsistency and exploring the

end to end prototyping facility that is provided by the tool.

You are invited to participate in this survey as you are either postgraduate or undergraduate student who
enrolled COMPSCI 732 course or 4™ year undergraduate student who enrolled SOFTENG 450 course, or any
postgraduate or undergraduate student who has a background of Software requirement. Your comments

and assistance would be greatly appreciated.

Participation in this survey is on a voluntary basis and there will be no financial compensation. The survey is

performed in an anonymous way. No personal information will be collected during the survey. You can be

assured that neither your grades nor academic relationships with the department staff members will be
affected by either refusal or agreement to participate. This assurance is given by the Computer Science
Head of Department. You can withdraw yourself from the survey at any time. Completing the required tasks
in the survey and submitting the evaluation is an indication of consent but as the evaluation is anonymous,

no answers can be withdrawn once the evaluation is submitted.

If you consent to participate in this survey, the participation involves one visit to the Computer Science
Undergraduate Laboratory, approximately 1 hour. A Participant Information Sheet (PIS) (this document) and
consent form will be given to you before you start the evaluation process in order to make sure you
understand the terms and conditions. Once you understand and agree with both documents and you wish to
continue participation, you will need to sign the consent form. Both documents will be collected immediately
after you agree to participate in the evaluation and before you start with the evaluation. You will be given
an explanation together with a demonstration of what need to be done. A task list and questionnaire sheet
will be given to you before you start using the prototype tool. You will be asked to extract Essential Use
cases manually, to perform a number of tasks on the prototype tool and once you completed the task, you
will be asked to answer the questionnaire sheet given to you.

A tutor from you class will collect the questionnaires once you have completed the evaluation and answered
all the questionnaires. You also will be observed to allow the researcher to learn whether the tool is easy
and efficient to use and also to know more about the usefulness and acceptance of the tool. You will be
observed based on the following aspects: a) how you manage to complete the task given to you; b) how
you complete the Essential Use Cases practice manually and automatically; ¢) how you navigate different
parts of the tool; d) how you explore the tool for consistency checking and end-to end rapid prototyping
and d) your verbal responses while using the tool. The observations will take place only while you perform
the tasks on the prototype tool. There will be note-taking while you perform the tasks and also while you
are responding or commenting when using the prototype tool. However, no personal information will be
collected in this observation process. Audio-tape, video-tape and any other electronic means such as Digital

Voice Recorders are not used in this survey.

After completing the tasks you will be asked to answer the questionnaire sheet. Once you completed the
questionnaire, you need to put in the box that will be placed in the lab. There will be no coding to your
questionnaire as it is treated anonymously. The observation and questionnaires data will be compiled and
analysed, and the results will be used for a PhD thesis and for other academic publications. Results also will
be available to participants on request. The observation and questionnaires data will be stored for SIX (6)
years for the purpose of peer review and further research. When the observation and questionnaires data is

no longer needed, it will be destroyed using the paper shredder.

This research is funded by the Ministry of Higher Education, Malaysia. If you have any queries regarding this

survey, please do not hesitate to contact me. You can email me at: mkam032@aucklanduni.ac.nz.

Alternatively, you may phone me at 0210 -24426787. You may also contact my supervisor, Professor John

208

Hosking at john@cs.auckland.ac.nz or 09 373 7599 ext 88297, or the Head of Department, Professor Gill
Dobbie, gill@cs.auckland.ac.nz or 09 373 7599 ext 83949, or you can write to us at:

Department of Computer Science
The University of Auckland
Private Bag 92019

Auckland.

For any queries regarding ethical concerns you may contact the Chair, The University of Auckland Human
Participants Ethics Committee, The University of Auckland, Office of the Vice Chancellor, Private Bag 92019,

Auckland 1142. Telephone 09 373-7599 extn. 83711.

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS
COMMITTEE ON 6 May 2010 for (3) years, Reference Number 2010/172

209

APPENDIX C: CONSENT FORM (HEAD OF
DEPARTMENT)

Department of Computer Science
Level 3, Science Centre

Building 303

38 Princes St

The University of Auckland
Private Bag 92019

Auckland

University
of Auckland [NI Ry ARt

CONSENT FORM (HEAD OF DEPARTMENT)

This Consent Form will be held for a period of six (6) years.
Title: Evaluation of Marama Al: Automated Inconsistency Checker for Capturing Requirement and
Managing Inconsistency
Researcher: Massila Kamalrudin
| have read and understood the Participant Information Sheet. | understand the nature of the
research and why | have been asked for permission and assurance of this research. |
understand that this research is funded by Ministry of Higher Education Malaysia. | have had
the opportunity to ask questions and have them answered. | agree to support the survey.
= | agree to allow the researcher to have access to the students who enrolled in
COMPSCI 732 course and SOFTENG 450 course, or any postgraduate or undergraduate
student who has a background of Software requirement.
= | agree to permit the students to participate voluntarily in the survey.
= | understand there will be no payment to the student who participates in the survey.
= | understand that all of the data collected from the survey will be non-identifying.
= | agree to provide the assurance that neither grades nor academic relationship with any

departmental staff members will be affected by either refusal or agreement to students’
participation in the survey.

Name:

Signature & Date:

210

APPENDIX D: CONSENT FORM (STUDENT)

Department of Computer Science
Level 3, Science Centre

Building 303
NG A 38 Princes St
Qi The University of Auckland
Private Bag 92019
The Auckland

University
of Auckland

Tel: 09 373 7599

CONSENT FORM (STUDENT)

This Consent Form will be held for a period of six (6) years.

Title: Evaluation of Marama Al: Automated Inconsistency Checker for Capturing Requirement and
Managing Inconsistency

Researcher: Massila Kamalrudin

| have read and understood the Participant Information Sheet. | understand the nature of the
research and why | have been selected to participate in this research. | understand that this
research is funded by Ministry of Higher Education Malaysia. | have had the opportunity to
ask questions and have them answered. | understand that | can withdraw at any time but
that data already recorded cannot be withdrawn. | agree to take part in the survey.

= | understand that | will not be paid for the time taken to participate in this survey.

= | understand that all of the data collected from the survey will be non-identifying.

= | understand that | will be observed while doing a task on the prototype tool if | agree to
participate in this survey. No audio-tape, video-tape or any other electronic means such as

Digital Voice Recorders is used in this survey.

= | understand that | will need to fill in a questionnaire at the end of the task if | agree to
participate in this survey.

= | understand that only the researcher and her main supervisor will have access to the
questionnaire and observation data.

= | understand that the observation and questionnaire data may be used to review the
research outcomes both to improve the notation and software tool and in publications
about the survey.

= | understand that data will be archived or stored for six years and then destroyed.

= | understand that the Computer Science Head of Department has provided assurance
that neither my grades nor academic relationship with any department staff members

will be affected by either refusal or agreement to participate.

= | understand that at the conclusion of the survey, a summary of the results will be
available from the researcher upon request.

Name:

Signature & Date:

211

APPENDIX E: SURVEY QUESTIONNAIRES

Department of Computer Science
Level 3, Science Centre

Building 303

38 Princes St

The University of Auckland
Private Bag 92019

Auckland

University
RN 1o 09 373 7599

Survey: Evaluation of Marama Al: Automated Inconsistency Checker for Capturing
Requirements and Managing Inconsistency

Note: This survey is structured into THREE parts. Part one, provides a scenario
that need to be extracted to an Essential Use Cases diagram (EUC) by you,
manually and then try it in an automated way using the Marama AI. An
observation data will be collected by PhD student Massila Kamalrudin while you
are performing these tasks. You are provided with a set of questionnaire that
should be answered by you once participant have completed the tasks.

Statement
I have read the Participant Information Sheet and have understood the
nature of the survey and I agree to take part in this survey. (please tick

V)

PART ONE: Capturing Requirements

Purpose: To allow you to gain experience in capturing software requirements from
natural language scenarios using an Essential Use Cases (EUC) diagram manually
and automated. After designing the diagram manually, the participant needs to try to
repeat the task using the Marama AI: Automated Inconsistency Checker tool. The
same scenarios are applied to the tool. Please note that you will be observed on how
you extracted the requirements manually and how you used the tool. You can ask
questions while doing the task. Observation data will be collected while participant
carry out this task.

Instruction: Please read and perform the following task steps.

Task 1: Understanding the Essential Use Case (EUC) Modelling Approach
What is an Essential Use case?

Essential Use Cases (EUCs) are part of Usage-Centered Design, as developed by L.
Constantine and L.Lockwood [1]. The authors defined an essential use case as:

“An essential Use Case is a structured narrative, expressed in the language of the
application domain and of users, comprising simplified, generalized, abstract,
technology free and implementation independent description of one task or interaction
that is complete, meaningful, and well-defined from the point of view of users in some role or
roles in relation to a system and that embodies the purpose or intention underlying the
interaction.”

EUCs are documented in a format representing a dialogue between the user and the system
that is user intention and system responsibility. The labels indicate how EUC support
abstraction by allowing interaction to be documented without describing, the details of the
user interface. The abstraction does not really relate to the use case as a whole, but

212

more to the steps of the use case. In this way, an EUC does not specify a sequence of
interaction, but a sequence with abstract steps.
The EUC:

User intention System responsibility

1. Identify self

2. Verify identity

Example of use case step for “getting cash”[2]:

1. The use case begins when the Client insert an ATM card'. The system reads and validates the

information” on the card.

System prompts for pin. The client enters PIN'. The system validates the PIN?.

System asks which operation3 the client wishes to perform. Client selects “Cash withdrawal”.”

System request amounts. Client enters amount.

System request type. Client selects account type4 (checking, saving, credits)

The system communicates with the ATM network to validate account ID, PIN and availability of the

amount requested.

The system asks the client whether he or she wants receipt. This step is performed only if there is

paper left to print the receipt.

8. System asks the client to withdraw the card. Client withdraws card. (This is security measure to
ensure that clients do not leave their cards in the machine.)

9. System dispenses the requested amount ®of cash.

10. System prints receipt.

11. Client receives cash®.

12. The use case ends.

IR

N

User intention System responsibility

1. Identify self
2. Verify identity

3. Offer choices

4. choose
5. dispense cash

6. take cash

Task 2. Extract natural language requirements and design an Essential Use
Cases (EUC) model from these

Scenario 1:

Time (minutes)
Taken:

Reserve a vehicle:

1. This use case begins when a customer indicates he wishes to make a reservation for a
rental car.

2. The system prompts the customer for the pickup and return locations of the
reservation, as well as the pickup and return dates and times. The customer indicates
the desired locations and dates.

3. The system prompts for the type of vehicle the customer desires. The customer
indicates the vehicle type.

4. The system presents all matching vehicles available at the pickup location for the
selected date and time. If the customer requests detailed information on a particular
vehicle, the system presents this information to the customer.

213

If the customer selects a vehicle for rental, the system prompts for information
identifying the customer (full name, telephone number, email address for confirmation,
etc.). The customer provides the required information.

The system presents information on protection products (such as damage waiver,
personal accident insurance) and asks the customer to accept or decline each product.
The customer indicates his/her choices.

If the customer indicates "accept reservation," the system informs the customer that
the reservation has been completed, and presents the customer with a reservation
confirmation.

This use case ends when the reservation confirmation has been presented to the
customer.

User Intention System responsibility

Task 3. Explore Marama AI: Automated Inconsistency Checker

1. Marama Al is divided into three parts; Input textual requirements (1), List of Abstract
Interactions (2) and EUC Diagram (3) called Marama Essential. You just need to insert
the natural language requirement in (1) and save. Then, right-click in the diagram
window and use the menu item (Trace) to trace the abstract interaction (2). Then,
you can use the menu item (MaptoEUC) to map the abstract interaction to Marama
Essential (3). You can use the menu item (trace back) if you would like to support
tracing back to the requirements either from abstract interaction to textual
requirement or Marama Essential to abstract interactions and textual requirements.
] input requirement kxt E3 [*diagrami.maramabiagram &3
;iyﬁn:g;s;iuf?éuzzieES:EphanE 7o seme 2005 = ESEIE& ListOF AbstractInteraction EUICDiagram
Sal: An unregistered voter want to register in orde L[;\jMa'q”ea
recondition: EVote 3ystem is online Sketching tool select option| 2 :l;l:r(tlrétet?é:’?n 3
e, e S e, i ey —
EEY s=l=ct voter reg ation option B Abstractinterac. .
Fuore Syscam asic Zor name. socis: sscurity mme B Lerotertion wcerey == RN e
ot Treten oheene Toner shana] e, gave B SystemRespons. EerE
Evote System generates Voter login id =nd passwo: I ListOfAbstractl... provide identification :—E"Zir“lfnt:;tfm
o Foate myaten Gieplay cine ou page | eoaen | aroier oD i
2. Aftec 60 zgg (5 conneetars = System Responsib. ..
.&2.1. EVote sysStem display time out padge A visuallink check status
.8 After 60 sec
.a.1 EVote system display time out page
e Ao
:5:1VEVD|:EdSys|:Em display 1ncD:rEc|: information err:
System Responsib. ..
display errar
Figure 1.Capturing requirements with Marama Al
How to use:

1.Insert requirement in (1) and save .

2.Right click and choose Trace.
3.Right click and choose MapToEUC

4. Right click and choose trace back (optional)

214

References:

[1] J. Noble. R. Biddle, E.Tempero, "From Essential Use Cases to Objects," C. L. Itd, Ed.: Ampersand
Press, 2002.
[2] L. A. D. Lockwood. L. L. Constantine, "Structure and style in use cases for user interface design ":

Addison -Wesley, 2001.

Insert this requirement to the textual input component:

1. This use case begins when a customer indicates he wishes to make a reservation for a
rental car.

2. The system prompts the customer for the pickup and return locations of the
reservation, as well as the pickup and return dates and times. The customer indicates
the desired locations and dates.

3. The system prompts for the type of vehicle the customer desires. The customer
indicates the vehicle type.

4. The system presents all matching vehicles available at the pickup location for the
selected date and time. If the customer requests detailed information on a particular
vehicle, the system presents this information to the customer.

5. If the customer selects a vehicle for rental, the system prompts for information
identifying the customer (full name, telephone number, email address for confirmation,
etc.). The customer provides the required information.

6. The system presents information on protection products (such as damage waiver,
personal accident insurance) and asks the customer to accept or decline each product.
The customer indicates his/her choices.

7. If the customer indicates "accept reservation," the system informs the customer that
the reservation has been completed, and presents the customer with a reservation
confirmation.

This use case ends when the reservation confirmation has been presented to the customer.
Task 4: Questionnaire

Instruction:
Please answer the following questions.

Section (1)- Background Information.

1. How do you rate yourself in using Marama? (tick one box)
Proficient/skilled
Intermediate
Novice

2. Have you experience with any tool that enables you to capture requirements
similar to the of Marama AI?

Section (2)- Prototype Tool Information.

Please rate your agreement with the following statements about how you feel in
general when using Marama AI:Automated inconsistency Checker (a new
automated tool to manage requirements and check inconsistency). Please circle or
tick the level of agreement that applies using the following scale:

215

1: Strongly Disagree (SD) 2:Disagree (D) 3: Undecided (U) 4: Agree (A) 5: Strongly Agree(SA)

A. Usefulness:
It is useful to capture the essential requirement (abstract interaction).
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It helps me be more effective in capturing requirements.
Strongly Disagree 1-------- 2-==mmeu- 3-=memee- G4e-mmme- 5 Strongly Agree

It makes it easier to capture requirements.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

B. Ease of Use:
It is easy to use.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It is user friendly.
Strongly Disagree 1-------- 2-------- 3-------- 4---m--- 5 Strongly Agree

I don't notice any inconsistencies as I use the tool.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

C. Ease of Learning:
I learned to use it quickly.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

I easily remember how to use it.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree
It is easy to learn to use it.

Strongly Disagree 1-------- 2-------- 3-------- 4---mmmm- 5 Strongly Agree

D. Satisfaction:
I am satisfied with it.
Strongly Disagree 1-------- 2-------- 3-------- 4---mmnm- 5 Strongly Agree

I would recommend it to a friend.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It is fun to use.
Strongly Disagree 1-------- 2----=m-- 3----m--- 4-------- 5 Strongly Agree
E. Cognitive Dimensions of Marama AI:

It is easy to see various parts of the tool.
Strongly Disagree 1-------- 2-----=-- 3-------- 4-------- 5 Strongly Agree

It is easy to make changes.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

The notation is succinct and not long-winded.

216

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

Some things do require hard mental effort.
Strongly Disagree 1-------- 2--====-- 3---m---- 4--nme- 5 Strongly Agree

It is easy to make errors or mistakes.
Strongly Disagree 1-------- 2-m-=mm-- 3-------- 4-------- 5 Strongly Agree

The notation is closely related to the result.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It is easy to tell what each part is for when reading the notation.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

The dependencies are visible.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It is easy to stop and check my work so far.
Strongly Disagree 1-------- 2---mm--- 3------- 4-------- 5 Strongly Agree

I can work in any order I like when working with the notation.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

F. After completing this questionnaire, can you think of obvious ways that the

Marama Al tool can be improved for capturing the requirement? What are they?

Thank you for your time!

Please let us know if you have any queries about this questionnaire or the survey we are

conducting. Questions or concerns can either be directed to the researcher,

Massila

Kamalrudin(mkam0O32@aucklanduni.ac.nz) or to her supervisor, Professor John Hosking

(john@cs.auckland.ac.nz), Dept. of Computer Science.

217

PART TWO: Consistency checking

Task 1:

Please explore the tool capability in managing the consistency of the requirements. There are

three forms of requirements; textual, a set of abstract interactions and an EUC diagram is then
checked for consistency when any of the components is changed using the inconsistency
management support that is provided by the tool as shown in Figure 1.

|51 input requirement kxt E2

ram

. Register for vote(Stephane S.Some 2005
cimary Actor:Voter

oal:
recondition: EVote System is online
Voter is registered
loads EVote system i online

sstcondition:
Voter
Voter

Evote
1.a.After 60 sec

EVote system display time out pags
After 60 ges

1. EVote system display Gime out page
Afrer 60 sec

.1 EVote system display time out page

990009

&. Vorcer data is not in record

AN

An unregistered voter want to register in orde

select woter registration option .
systew ask for nsme, Social Security Humdne:

EVore
Voter provide namme, social security number,
EVote system checks Voter status

System generates Voter login id and passwo

=

date

la.1 Evore System aisplay ineorrect

(= Shapes

. I systemRespons...

(= Connectors

[Select

{11 Marquee

|5 Sketching tacl

= request identificat. .
B AbstractInterac, .

identify self]
B UserIntention

chack status|
B-ustofabstrant. .
m EUCI‘)‘\E'Q\'arr__A

B visuallink

Abstract Interaction sequence is inconsistent with the input requirement and
sequence of ELIC components

ListOFAbstractInkeraction,

EUCDiagram

provide identififation

User Inkentian

select Ditmn

User Inkentian

|dentlfi seiF

System Responsib....
request identificat...

System Responsib...
check status

System Responsib. .

[rovlde identification

System Responsib...
display srror

Figure 1.0 example of consistency checking

You can explore the tool capability in managing the inconsistency by adding a new abstract
interaction or textual requirement, delete any components or change the sequence of the
components. All processes are automated and use drag and drop. You can also modify the
layout back to original by using the command Reset layout.

You can also check for the requirements quality such as correctness and completeness using

the tool.

Use the command Check consistency with a template in order to check for the EUC
diagram completeness and correctness. The result is as shown below;

Edt Mavigste Search Project Run Window Help

b= |#H-0-%- | BEHEG- | @S 4~ | .. SRS e 100% = [|8 Java
pack 23 % Te H\era\} = O[[E input requirement tx 52 1 - £3 = O || = euc Trace Result 52 =0
B 1. voter loads EVote systes| Iy Select
= Aoy Z. vVoter select voter reg [e ListOFAbstractnteraction | Eucpiagram 1. Voter losds Evots syea]
~[E] Copy of input requiremer, 3. EVote system ask for n: [. : i e 2. Voter select vaoter re
\o| disgramd meramaliagrar| o COFST Provids nawe and " seect option [o 5. Evote system ask for
GlossaryOfwords 5. EVote system checks Vol (= Shapes o . la. Voter provide nmme an
6. Evore System generates request identficat...
GuidelineToWrikeR equirer . : o 5. EVate system checks V.
7. 1l.a.After 60 sec I Abstractinterac...
~[E] input requirement. bt identify ;E\F- System Responsib,.. || [6. Evote System generate
O resdtt I Userlntention request identificat. . || [7. 1.a.8frer 60 sec
-1 Altool ;'B' ’;‘;“E z;ﬁtem display B Systemiesons... check stotusJ RN
2 euckest -&. hfrer 28E B Lt Ofbstract] 1.a. EVote system *#tdisp
-1 MaramaEssential Z.a.1. EVote system displa: protsiractt. . provide identification D Z.a. kfter 60 sec
identFy cel
180 rz.ac auckiand.ce.marama b| | 28 AETET €0 geg B EUCDiagram _ .a.1. Evote systew displ
3.a.1 EVote system display: B Flccholder s ifter 80 sec
System Responsib. . || [-2. 1 EVote system displa
[Extrashape
S.a. Voter data is not in 1 P check status
5.a.1 Evote System dlsplau = = = . s, vorer data is mot in
X o |[fsat =vore syoren aspia
ystem Responsib. .
y\ Your ELC dagram s INCONSISTENT with the EUC Template, There i an ravide identification
+ \ incomplete or incorrect component, Do you want to KEEP your new diagram or
CHANGE to the EUC Template,
e f
i This shape
v shows that 1
Figure 2.0 example of quality checking .
component s
missing

You can choose either to keep your new diagram or change the diagram based on the

Template.

218

The step to check using the template is as below;

1)

Choose the command Check consistency with a template

Edi Ravigste Search Project Run Window Help
|- 0-Q-~ | LayE~- | @™o 5|
Te vimra | ' B[[input reauismant s 0

i
11 Capy of input requiremer

S.a.i Evere System display

1] diagrarm 1 .mararmathag
s
{1 maraues
T Shatering tact

o shanes
[ren—
[rep—
[P ——

- Gonnectars
- issallin
. seauenceting:

| |eucoisoran)

[Euc Trace ezl & Sl

B [87 Save

(or i [wRTR R R

Usar Tresntion

Ty niucn

System Responch, .
reauest Identiricat

Usar Inksntian

ey

1 Undo crasts Placeheldar shaps

[ABALrack Tnkatactions b ELIC Diagran:
3 N

ke R

TH OURHE JREEREE

Toads Evare sya=]

LMl EVote system displs

cm. vomar aava im new in
@1 Evote System displo

e RS i .
l 2) Choose the appropriate template list based on the requirement
ava - Alprj/diagram1.maramaDiagram - Eclipse Platform -1}
Edit Mavigate Search Project Run Window Help
9.0 Jﬁ.g.g.Jg@@.J@b—g.J = = t= -J{;’,‘ 100% - [& ava
pack 2 [2 Hwera] = O|[B input requirement.bx 52 71 ﬁ=- ramL. marsmaliagrs & = O || [EucC Trace Resuk I3 =C
B8] 1. Voter loads EVote systes| [; Select
Ey— 2. Woter select voter reg 3 Marques ListOfAbstractInteraction | EucDiagram 1. voter ioaas EVoue sysHl
[
[Copy of npk requiremer|| | © - EVOTE Svstem ask for nc Vs setehing o ‘ e 2. Voter select voter e
diagram1 .maramaDiagrar 4. Voter provide name and 9 o E'Dt‘“'”- select option 3. EVote system ask for
= GlnssaryOfwonds 5. Evets system checks Vou = Shapes P s 4. voter provide name an
6. Evote System generates request identificat...
2 GuidelineTowriteRequirer [y 5. Evote system checks V
7. l.a.hfter 60 sec stractinterac...
[) input requirement.txt identify ;a|f- System Responsib... || [6. Evote System generate
[EERT B Userlntention request identiicat... || [7. 1.s.5frer 60 sec
S aol 1.a. EVote system display 1 B SystenRespons... checkstatus-
1 euckest g.a. Afcer 60 gag M Lstofabstract] . 1.a. EVote system tesdisp
. istOfAbstractL., i ser Intention
1 MaramaEssential £-a.1. EVote oystenm displa i ity . 2.a. kfter €0 sec
B reataukond comarama]| | 0% ATEET 60 s2c B EucDiagran _ 2.a.1. Fvote system diopl
3.a.1 EVate system display & Fasshalder 5 Afrer f0 sec
SystemResponsib... || [3.@.1 EVate system displa
5.a. Voter data is not in 1 [Extrashaps check status
5.a.1 Evote Syotem display & a. Vorer data is not in

(= Connectors)

| Choose an ELIC template:

| & Euc template List

getting cash
place cal
receive cal
terminate cal

System Responst. .

[mwde identification

5.a.1 Evote System displa

Task 2: Questionnaire

Instruction:

Please answer the following questions.

Section (1)- Background Information.

3. How do you rate yourself in using Marama? (tick one box)

Proficient/skilled

Intermediate

Novice

4. Have you experience in any tool that enables you to manage the consistency similar to the

way of Marama AI?

Section (2)- Prototype Tool Information.

Please rate your agreement with the following statements about how you feel in general when
using Marama AI:Automated inconsistency Checker (a new automated tool to manage
requirements and check inconsistency). Please circle or tick the level of agreement that

applies using the following scale:

219

1: Strongly Disagree (SD) 2:Disagree (D) 3: Undecided (U) 4: Agree (A) 5: Strongly Agree(SA)

G. Usefulness:
It is useful in checking the requirement inconsistency.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It helps me be more effective in managing the requirement inconsistency.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It makes the management of requirement inconsistency easier to achieve.
Strongly Disagree 1-------- 2-------- 3-------- 4---mm--- 5 Strongly Agree

H. Ease of Use:
It is easy to use.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It is user friendly.
Strongly Disagree 1-------- 2-------- 3-------- 4---m--- 5 Strongly Agree

I don't notice any inconsistencies as I used the tool.

Strongly Disagree 1-------- 2-------- 3----m--- 4-------- 5 Strongly Agree

I. Ease of Learning:
I learned to use it quickly.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

I easily remembered how to use it.
Strongly Disagree 1-------- 2-------- 3-------- 4-----mm- 5 Strongly Agree

It is easy to learn to use it.

Strongly Disagree 1-------- 2----=--- 3-------- 4--mmmm- 5 Strongly Agree

J. Satisfaction:
I am satisfied with it.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

I would recommend it to a friend.
Strongly Disagree 1-------- 2-------- 3-------- 4-m-mme- 5 Strongly Agree

It is fun to use.
Strongly Disagree 1-------- 2-------- 3-------- 4---mmnn- 5 Strongly Agree
K. Cognitive Dimensions of Marama AI for consistency checking:

It is easy to see various parts of the tool.
Strongly Disagree 1-------- 2==mmmne- 3-mmmmmne 4mmmmmm 5 Strongly Agree

It is easy to make changes.
Strongly Disagree 1-------- 2-------- 3----m--- 4-------- 5 Strongly Agree

The notation is succinct and not long-winded.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

Some things do require hard mental effort.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It is easy to make errors or mistakes.
Strongly Disagree 1-------- 2----=--- 3-------- 4---m--- 5 Strongly Agree

220

The notation is closely related to the result.
Strongly Disagree 1-------- 2-------- 3---mm--- 4----mn-- 5 Strongly Agree

It is easy to tell what each part is for when reading the notation.
Strongly Disagree 1-------- 2-------- 3----m--- 4----mmm- 5 Strongly Agree

The dependencies are visible.
Strongly Disagree 1-------- 2-------- 3----m--- 4----mmm- 5 Strongly Agree

It is easy to stop and check my work so far.
Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

I can work in any order I like when working with the notation.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

L. After completing this questionnaire, can you think of obvious ways that the Marama AI tool
can be improved for checking the requirement inconsistency? What are they?

Thank you for your time!

Please let us know if you have any queries about this questionnaire or the survey we are
conducting. Questions or concerns can either be directed to the researcher, Massila
Kamalrudin(mkamQ32@aucklanduni.ac.nz) or to her supervisor, Professor John Hosking
(john@cs.auckland.ac.nz), Dept. of Computer Science.

221

PART THREE: End to End Prototyping

TASK 1:

Please explore the refined tool capability for managing the requirements together with an end
to end prototyping facility. There are three forms of requirements; textual, a set of abstract
interactions and an EUC diagram. You can map these requirements to a low fidelity UI, called
an Essential User Interface prototype (EUI) or Abstract Prototype. You can then map the EUI
to concrete UI in the form of form based Ul by using the facilities provided by the tool.
Suppose you have textual, abstract interaction and EUC requirements as shown in Figure 1.

= =

-5 Alpri

- Altool

[B-=F Altool20101

1= AltoolBacku

-1 euctest

= MaramaEsse
~I nz.ac.auckle

=T RN A N SR

After 60 sec

After 60 sec

(RO Vo S
[]

¢
oo

Extension: identify self

9. 2a. User fails to identifies him/herse
10. 3a. System informs Menber that s/he ha

20. * normally & hyperlink to the document

Voter loads EVote system is online
Woter select vOter registration option
EVote system ask for name, social secu
Voter provide namwe and social security
EVote system checks Voter status
Evote System generates Voter login id
1.a.After 60 sec

EVote system display time out page

1. EVote system display time out page

1 EVote systenm display time out page

Voter data iz not in record
.1 Evote System display incorrect infor

| [Sefect
7} Marquee

[Sketching tonl

W AbstractInterac..,
W UserIntention

B SystemRespans. ..
W ListOFabstractL...
B EUCTiagram

M Placeholder

M Extrashape

B Requirementér. .,
M Include

M Extend

B RequirementGr...
B IncludeEUC

B ExtendEUC

B visuallink

B Sequencelink
B Includetink

B Extendlink

B IncludeEUCLink
I ExtendEUCLink

(- Shapes &0

(2= Connectars @

ListOfabstractInteraction

select option
request identification
identify self

check status

praovide identification

display srror

identify self
update

Rty ussr

ELCDiagram

User Intention
select option

System Responsib. .
request identficat. ..

User Intention
identify self A

System Responsib...
| check status

|
System Respansib, ..
provide identification
|

|5ystem Responsib. ..
display error

|
identify self

System Responsib. ..
update

System Responsib...
notify user

Figurel. Three components of requirement after refinement:

interaction and EUC diagram

Textual

requirement, Abstract

You can explore the tool capability in mapping the EUC diagram (item 1 Figure 2) to the
Essential User Interface (EUI) or Abstract prototype (item 2 Figure 2) by using the event

handler *map EUC to EUI".

[select
71 Marquee

|1z Sketehing
tool

= Shapes <o
B Abstra...
B UserInt...
M System. ..
B ListOfA, .
M EUCDia. .
B Placeh. ..
B Extras...
B Requir
B Include
B Extend
B Requir
M Include. ..
B Extend...

= Conn... <0
B visuallink
B Sequen...
B Include. ..
B Extend...
M Include. ..
M Extend...

ListOFAbstrackInkeraction

select option
request identification
identify self

check status

provide identification

display arror

identiy self

update

notify user

ELICDiagram

User Intertion
select option

User Intention
identify self

System Responsib. ..
request idsntificat. ..

i
|

System Responsib. ..
| check status

1. EUC

|
System Responsib. ..
provids identification
|

| System Responsib. ..
display error

|
identiFy self

System Responsib. ..
Update

System Responsib
notify user

[Shapes <o

(= Conne... <

[3; select

7 Marques

|1z Sketehing
tool

B Container

|
ist of option

B Navigat...

input

L 2. EllJ;

Display error m...

Search Updste Informa...
inpuk ‘
[¥E] |z iz
Display status jis) other personal ...
input input; input

|

Figure 2. Mapping EUC diagram to EUI using the event handler “Map toEUI”

You can further explore the tool facility for mapping the Abstract prototype (item 1
Figure 3) to the concrete Ul in a form of form based UI (item 2 Figure 3) in order to
view the outcome of the models. You can also use both types of UI to confirm and
verify the requirements captured from the earlier stages.

h Select

[_i Marquee

[k Shetching p]

tool ist of option Search Update Informa...

———— input
[=-Shapes

B Container 1 . EU1
L Conne,., 4

) e} Iz | fz T
W Navigat... Display status jis] other persanal ...
input input input
Display 10

input

Display error m...
input

= qg“" |C:lmaramaAIZ\runt\me—workspace\AIsldlagram1EUI.maramaD\agram.htm\ j =3 I

‘List of tvpe |List of value |List of date

Typel |[Vamel |July2010
Type2 ([Vale2 [August2010
Search |
2. Form
Your information is updated at time and date
based Ul

You status is: confirm/cancel

1D |1119361

Vame |[Massila
Adress |4g/2 whitaker place
Phone Number |02102446757

Your ID is: 12345

An error occured during transaction Please try again!

Figure 3. Mapping EUI diagram to Concrete Ul-Form based Ul using the event handler “generate

prototype”

Task 2: Questionnaire
Instruction:
Please answer the following questions.

Section (1)- Background Information.

5. How do you rate yourself in using Marama? (tick one box)

Proficient/skilled

Intermediate

Novice

6. Have you experience with any tool that enables you to apply end to end rapid
user interaction prototyping mechanism for capturing requirement from

user/client?

223

Section (2)- Prototype Tool Information.

Please rate your agreement with the following statements about how you feel in
general when using Marama AI:Automated inconsistency Checker (a new
automated tool to manage requirements and check inconsistency). Please circle or
tick the level of agreement that applies using the following scale:

1: Strongly Disagree (SD) 2:Disagree (D) 3: Undecided (U) 4: Agree (A) 5: Strongly Agree(SA)

M. Usefulnhess:
It helps me be more effective in capturing requirements.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It makes it easier for me to capture requirements.

Strongly Disagree 1-------- 2-------- 3-------- 4---mmm- 5 Strongly Agree

It makes it easier for me to see the outcome of a requirement.

Strongly Disagree 1-------- 2--==-=-- 3-------- 4-------- 5 Strongly Agree

It makes it easier for me to verify requirements with a client from an early stage.

Strongly Disagree 1-------- 2--==-=-- 3-------- 4--m--n-- 5 Strongly Agree

It makes it easier for me to confirm requirements with a client from an early stage.

Strongly Disagree 1-------- 2---==-=- 3---m---- 4 5 Strongly Agree

N. Ease of Use:
It is easy to use.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

224

It is user friendly.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

I don't notice any inconsistencies as I use the tool.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

O. Ease of Learning:
I learned to use it quickly.

Strongly Disagree 1-------- 2--====-- 3-------- 4-----n-- 5 Strongly Agree

I easily remember how to use it.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It is easy to learn to use it.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

P. Satisfaction:
I am satisfied with it.

Strongly Disagree 1-------- 2-------- 3-------- 4-----m- 5 Strongly Agree

I would recommend it to a friend.

Strongly Disagree 1-------- 2-------- 3-------- 4---mmm- 5 Strongly Agree

It is fun to use.

Strongly Disagree 1-------- 2--====-- 3---m---- 4--m-nm- 5 Strongly Agree

Q. Cognitive Dimensions of Marama AI:

It is easy to see various parts of the tool.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

225

It is easy to make changes.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

The notation is succinct and not long-winded.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

Some things do require hard mental effort.

Strongly Disagree 1-------- 2-------- 3-------- 4---mmm- 5 Strongly Agree

It is easy to make errors or mistakes.

Strongly Disagree 1-------- 2--==--=- 3---m---- 4--nmne- 5 Strongly Agree

The notation is closely related to the result.

Strongly Disagree 1-------- 2----==-- 3-------- 4--n-n-- 5 Strongly Agree

It is easy to tell what each part is for when reading the notation.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

The dependencies are visible.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

It is easy to stop and check my work so far.

Strongly Disagree 1-------- 2-------- 3-------- 4-------- 5 Strongly Agree

I can work in any order I like when working with the notation.

Strongly Disagree 1-------- 2-------- 3-------- 4---mmm- 5 Strongly Agree

226

7. After completing this questionnaire, can you think of obvious ways that the
Marama Al tool can be improved for its end to end rapid user interaction

prototyping mechanism for capturing requirement from user/client? What are
they?

Thank you for your time!

Please let us know if you have any queries about this questionnaire or the survey we are
conducting. Questions or concerns can either be directed to the researcher, Massila
Kamalrudin(mkam032@aucklanduni.ac.nz) or to her supervisor, Professor John Hosking
(john@cs.auckland.ac.nz), Dept. of Computer Science.

227

REFERENCES

(1]
(2]

(3]
(4]

(3]

(6]

(7]

(8]

(9]

[10]

(1]
[12]

[13]

[14]

[19]

[16]

[17]

(18]

[19]

(20]

[21]

G. Evans. Getting from use cases to code, Part 1: Use-Case Analysis. Available:
http://www.ibm.com/developerworks/rational/library/5383.html,retrieved on: January 2009.
S. Sendall. LBB System Use Case: check-out books. Available:
http://lgl.epfl.ch/research/fondue/case-studies/Ibb/uc-check-out-books.htm,retrieved on:
June 2009.

S.S.Pty.Enterprise Architect 8. Available:
http://www.sparxsystems.com/products/eal/index.html, retrieved on: February 2011.

L. L. Constantine and L. A. D. Lockwood, Software for use: a practical guide to the
models and methods of usage-centered design. ACM Press/Addison-Wesley Publishing
Co., 1999.

G. Kotonya and I.Sommerville, Requirement Engineering Process and Techniques. West
Sussex,England. John Wiley & Sons Ltd, 1998.

S.S.Some, "Use Cases based Requirements Validation with Scenarios," in Proc. 13th
IEEE International Conference on Requirements Engineering, IEEE Press,2005.

H. Yang,AWillis,A.D.Roeck and B.Nuseibah, "Automatic detection of nocuous
coordination ambiguities in natural language requirements," in Proc. |IEEE/ACM
international conference on Automated software engineering, Antwerp, Belgium, ACM
Press. 2010.

P. S. F. Adisa, F.Sudzina, B. Johansson, "Living Requirements Space: An open access
tool for enterprise resource planning systems requirements gathering," Online Information
Review, vol. 34, pp. 540 - 564, 2010.

A.Sampaio,R.Chityan,A.Rashid and P.rayson, "EA-Miner: a tool for automating aspect-
oriented requirements identification," Proc. 20th IEEE/ACM international Conference on
Automated software engineering, Long Beach, CA, USA, ACM Press. 2005.

S. W. Ambler. Essential (Low Fidelity) User Interface Prototypes. Available:
http://www.agilemodeling.com/artifacts/essentialUl.htm, retrieved on: June 2010.

S. W. Ambler, The Object Primer: Agile Model-Driven Development with UML 2.0, 3rd
ed.. New York Cambridge University Press, 2004.

L. Abeti,P.Ciancarini and R.Moretti, "Wiki-based requirements management for Business
Process Reengineering," in ICSE workshop of Wikis for Software Engineering 2009
(WIKIS4SE '09) 2009, pp. 14-24.

C. Denger and D.M.Berry., "Higher Quality Requirements Specifications through Natural
Language Patterns,"Proc. |EEE International Conference on Software-Science,
Technology & Engineering, IEEE Computer Society, 2003, pp. 80.

F. Fabbrini,M.Fusani,S.Genesi and G.Lami, "The linguistic approach to the natural
language requirements quality: benefit of the use of an automatic tool," in Proc. Software
Engineering Workshop, 2001. 26th Annual NASA Goddard, IEEE.2001, pp. 97-105.

G. Engels, J. M. Kister, L. Groenewegen and R. Heckel, "“UML” 2003 - The Unified
Modeling Language," in “UML” 2003 - The Unified Modeling Language, ed, 2003, pp.
356-359.

R. Darimont,E.Delor,P.Massonet and A.V.Lamsweerde, "GRAIL/KAOS: an environment
for goal-driven requirements engineering,” Proc. 19th international conference on
Software engineering, Boston, Massachusetts, United States, 1997.

D. Zowgh, V.Gervasi and A.MacRae, "Using default reasoning to discover inconsistencies
in natural language requirements," in Proc. Eighth Asia-Pacific Software Engineering
Conference, 2001(APSEC 2001), 2001, pp. 133-140.

D. Zowghi and V. Gervasi, "On the interplay between consistency, completeness, and
correctness in requirements evolution," Information and Software Technology, vol. 45, pp.
993-1009. 2003.

S. Liu, "Verifying Consistency and Validity of Formal Specifications by Testing," Proc.
World Congress on Formal Methods in the Development of Computing Systems (FM'99).
Springer-Verlag.1999,Vol.1, pp. 712-712.

A. Satyajit, H.Mohanty and C.George, "Domain consistency in requirements
specification," Proc.Fifth International Conference on Quality Software 2005(QSIC 2005),
2005, pp. 231-238.

G. Spandiakos and A. Zisman, "Handbook of Software Engineering and Knowledge
Engineering." vol.1, S. K. Chang, ed: World Publishing co, 2001, pp. 329-380.

228

(22]

(23]

(24]

(2]

(26]

(27]

(28]
(29]
(30]
[31]

[32]

(33]

[34]

[35]

(36]

[37]

[38]

[39]
[40]

[41]
[42]
[43]

(44]

B. Nuseibeh, S.Easterbrook and A.Russo, "Leveraging Inconsistency in Software
Development," Journal Computer, vol. 33, Los Alamitos,CA,USA.IEEE Press. pp. 24-29,
2000.

B. Litvak,S.Tyszberowicz and A.Yehudai, "Behavioral consistency validation of UML
diagrams," Proc. First International Conference on Software Engineering and Formal
Methods 2003. Brisbane, Australia. 2003, pp. 118-125.

A. V. Lamsweerde, R.Darimont and E.Letier., "Managing conflicts in goal-driven
requirements engineering," IEEE Transactions Software Engineering, vol. 24, 1998.pp.
908-926.

K. Schneider, "Generating Fast Feedback in Requirements Elicitation,” in Requirements
Engineering: Foundation for Software Quality, 2007, pp. 160-174.

A. Egyed, "Scalable Consistency Checking Between Diagrams-The Viewlntegra
Approach," Proc.16th IEEE international conference on Automated software engineering,
IEEE Computer Society, 2001, p. 387.

A. Kozlenkov and A. Zisman, "Are their design specifications consistent with our
requirements?," Proc. IEEE International Joint Conference on Requirements Engineering
2002, 2002, pp. 145-154.

A. Egyed, "Instant consistency checking for the UML," Proc. 28th international conference
on Software engineering, Shanghai, China, ACM, 2006, pp. 381-390.

C. Nentwich, et al., "Flexible consistency checking," ACM Trans. Softw. Eng. Methodol.,
vol. 12, pp. 28-63, 2003.

V. Gervasi and D. Zowghi, "Reasoning about inconsistencies in natural language
requirements," ACM Trans. Softw. Eng. Methodol., vol. 14, pp. 277-330, 2005.

A. J. O. Markku, "Software requirements implementation and management", Software &
systems engineering and their applications vol.1 a 3, , 2004 pp. 1.1-1.8 2004.

G. Cysneiros and A. Zisman, "Traceability and completeness checking for agent-oriented
systems," Proc. 2008 ACM symposium on Applied computing, Fortaleza, Ceara,
Brazil, ACM, 2008, pp. 71-77.

A. Egyed and P. Grlnbacher, "Supporting software understanding with automated
requirements traceability," International Journal of Software Engineering and Knowledge
Engineering, vol. 15, pp. 783-810, 2005.

L. G. Gnesi S, Trentanni G, Fabbrini F, Fusani M, "An automatic tool for the analysis of
natural language requirements," International Journal of Computer Systems Science &
Engineering, vol. 20, pp. 53-61, 2005.

K. K. Breitman and J. C. S. do Prado Leite, "Ontology as a requirements engineering
product,” Proc. 11th IEEE International Requirements Engineering Conference 2003,
2003, pp. 309-319.

K. Haruhiko and S. Motoshi, "Ontology Based Requirements Analysis: Lightweight
Semantic Processing Approach," Proc. Fifth International Conference on Quality
Software, 2005.

F. Meziane, et al.,, "Generating Natural Language specifications from UML class
diagrams," Requirements Engineering, vol. 13, pp. 1-18, 2008.

S. Ogata and S. Matsuura, "Evaluation of a use-case-driven requirements analysis tool
employing web Ul prototype generation," WSEAS Trans. Info. Sci. and App., vol. 7, pp.
273-282, 2010.

J.Noble,R.Biddle, E.Tempero, "Pattern for Essential Use Cases," Victoria University of
Wellington, Wellington, New zealand, April 2000.

L. Susan, "Use Case Pitfalls: Top 10 Problems from Real Projects Using Use Cases,"
Proc. Proceedings of Technology of Object-Oriented Languages and Systems - TOOLS
30,Santa Barbara,CA,USA. 1999, pp. 174-174.

G. Sindre and A. L. Opdahl, "Eliciting security requirements with misuse cases,"
Requirements Engineering, vol. 10, pp. 34-44, 2005.

A. Cockburn, "Structuring use cases with goals,"” Journal of Object-Oriented
Programming, 1997.

R. Biddle, J.Nobles and E.Tempero, "Essential use cases and responsibility in object-
oriented development," Aust. Comput. Sci. Commun., vol. 24, pp. 7-16, 2002.

H. Kaindl, et al., "How to Combine Requirements Engineering and Interaction Design?,"
Proc.16th IEEE International Requirements Engineering 2008 (RE'08).
Barcelona,Catalunya,Spain, 2008, pp. 299-301.

229

(45]

[46]
[47]

(48]

[49]

[50]

[51]

[52]

(53]
[54]
[59]
[56]
[57]

[58]

[59]

[60]

[61]
[62]
[63]
(64]

(65]
[66]
(67]
(68]

T. H. M. Geisser, N. Riegel, "Evaluating the Applicability of Requirements Engineering
Tools for Distributed Software Development," Working papers of University of Mannheim
for January 2007, Germany, 2007..

I. Sommerville, Software Engineering, 7th Edition, International Computer Science Series,
Addison Wesley, 2004.

A. Finkelstein and W. Emmerich, "The future of requirements management tools,"
Information Systems in Public Administration and Law, 2000.

X. Yufei, et al., "Research on requirement management for complex systems," in 2nd
International Conference on Computer Engineering and Technology 2010 (ICCET), 2010,
pp. 113-116.

S. W. C.Hood, S. Fichtinger and U. Pautz, Requirements Management: The Interface
Between Requirements Development and All Other Systems Engineering Processes, 1st
edition.,Springer, 2007.

E. S. K. Yu, "Towards modelling and reasoning support for early-phase requirements
engineering," Proc. Third IEEE International Symposium on Requirements Engineering,
1997., 1997, pp. 226-235.

A. Goknil, I.Kurtev and K.V.D.Berg., "A Metamodeling Approach for Reasoning about
Requirements," Model Driven Architecture — Foundations and Applications, 2008, pp.
310-325.

R. Darimont and A. V. Lamsweerde, "Formal refinement patterns for goal-driven
requirements elaboration," Proc. 4th ACM SIGSOFT symposium on Foundations of
software engineering, San Francisco, California, United States, 1996.

T. C. d. Sousa, J.R.Almeida,S.Viana,J.Pav "Automatic analysis of requirements
consistency with the B method," SIGSOFT Softw. Eng. Notes, vol. 35, pp. 1-4, 2010.

B. Nuseibeh and S. Easterbrook, "Requirements engineering: a roadmap," Proc.
Conference on The Future of Software Engineering, Limerick, Ireland, 2000.

A. V. Lamsweerde, "Formal specification: a roadmap," Proc. Conference on The Future of
Software Engineering, Limerick, Ireland, 2000.

R. Wieringa and E. Dubois, "Integrating semi-formal and formal software specification
techniques," Information Systems, vol. 23, pp. 159-178.

S. Kovacevic, "UML and User Interface Modeling," in The Unified Modeling Language.
«UML»'98: Beyond the Notation, 1999, pp. 514-514.

M. D. Fraser, K.Kumar and V.K\Vaishnavi, "Informal and Formal Requirements
Specification Languages: Bridging the Gap," IEEE Trans. Softw. Eng., vol. 17, pp. 454-
466, 1991.

M. G. Georgiades,A.S.Andreou,C.S.Pattichis "A requirements engineering methodology
based on natural language syntax and semantics," Proc. 13th International Conference
on Requirements Engineering, 2005. IEEE, 2005, pp. 473-474.

B. Y. Surya, R.R.Bravoco,A.T.Chatfield and T.M.Rajkumar, "Comparison of analysis
techniques for information requirement determination," Commun. ACM, vol. 31, pp. 1090-
1097, 1988.

M. Lang and J. Duggan, "A Tool to Support Collaborative Software Requirements
Management," Requirements Engineering, vol. 6, pp. 161-172, 2001.

E. Hull, et al., "DOORS: A Tool to Manage Requirements," in Requirements Engineering,
Springer London, 2005, pp. 173-189.

S.S.Inc. Serena. Available: http://www.serena.com/docs/repository/products/rm/wp900-
001-0505.pdf, retrieved on: December 2010.

B. S. Corporation. CaliberRM™ Enterprise Software Requirements Management System.
Available: http://www.borland.com/us/products/caliber/index.html, retrieved on:January
2011.

IBM. Rational RequisitePro A requirements management tool. Available: http://www-
01.ibm.com/software/awdtools/regpro/ , retrieved on: January 2011.

S. S. J. Co. Requirements Management Tool RaQuest, Available:
http://www.raquest.com/ retrieved on: January 2011.

Orcanos. QPack Requirements Tool for Requirements Management. Available:
http://orcanos.com/Requirements_management.htm, retrieved on: January 2011.

F. Chantree, B.Nuseibah,A.de Roeck and A.Willis, "ldentifying Nocuous Ambiguities in
Natural Language Requirements," Proc. 14th |EEE International Requirements
Engineering Conference,|lEEE Press. 2006.

230

(69]
[70]
(71]
[72]
[73]
[74]
(73]

[76]

[77]

(78]

[79]

(80]
(81]
(82]

(83]

(84]

(8]

(86]

(87]

(88]

(89]

[90]

(91]

A. T. Bahill and S. J. Henderson, "Requirements development, verification, and validation
exhibited in famous failures," Syst. Eng., vol. 8, pp. 1-14, 2005.

A. P. Mathur, Foundations of Software Testing: Fundamental Algorithms and Techniques:
Pearson Education India, 2007.

S.Robertson and A. J. Robertson, Mastering the Requirements Process, 2nd Edition,
Addison-Wesley Professional, 2006.

I. Sommerville, Software Engineering, 9th ed., Addison-Wesley, 2011.

J. M. Atlee, S.L. Pfleeger, Software Engineering Theory and Practice Fourth Edition,
Prentice Hall, 2010.

A. Kozlenkov and A. Zisman, "Are their Design Specifications Consistent with our
Requirements?," Proc. 10th Anniversary |IEEE Joint International Conference on
Requirements Engineering, IEEE Computer Society, 2002, pp. 145-156.

T. Olson and J.Grundy, "Supporting Traceability and Inconsistency Management
Between Software Artefacts," Proc.of the IASTED International Conference on Software
Engineering and Applications, Boston, MA, November 2002.

C.Nentwich, W.Emmerich and A.Finkelstein, "Consistency management with repair
actions," Proc. 25th International Conference on Software Engineering, Portland, Oregon,
2003.

B. Nuseibeh, S.Easterbrook and A.Russo, "Making inconsistency respectable in software
development," Journal of Systems and Software, vol. 58, pp. 171-180, 2001.
G.Spanoudakia and A.Zisman, "Inconsistency management in software engineering:
Survey and open research issues," Handbook of software Engineering and Knowledge
Engineering, World Scientific, 2001.

A. D. Lucia, F.Fasano,R.Oliveto and G.tortora "Recovering traceability links in software
artifact management systems using information retrieval methods," ACM Trans. Softw.
Eng. Methodol., vol. 16, p. 13, 2007.

M. F. Bashir and M. A. Qadir, "Traceability Techniques: A Critical Study,"Proc. Multitopic
Conference, 2006(INMIC '06). IEEE, 2006, pp. 265-268.

E. A. Silver, "An Overview of Heuristic Solution Methods," The Journal of the Operational
Research Society, vol. 55, pp. 936-956, 2004.

A .A. G. Sutcliffe and N. A. M. Maiden, "Bridging the requirements gap: policies, goals
and domains," Proc. Seventh International Workshop on Software Specification and
Design 1993, 1993, pp. 52-55.

N. Kokash, " An introduction to heuristic algorithms, 2005, available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.8050, retrieved on: January
2009.

C. L. Heitmeyer, R.D Jeffords and B.G Labaw, "Automated consistency checking of
requirements specifications," ACM Trans. Softw. Eng. Methodol., vol. 5, pp. 231-261,
1996.

M. D. Fraser,K.Kumar and V.K.Vaishnavi, "Informal and formal requirements specification
languages: bridging the gap," IEEE Transactions on Software Engineering, vol. 17, pp.
454-466, 1991.

W. Jirapanthong and A. Zisman, "XTraQue: traceability for product line systems,"
Software and Systems Modeling, September 05, 2007.

A. Goknil,l.Kurtev and J.W.Veldhus, "Semantics of trace relations in requirements models
for consistency checking and inferencing," Software and Systems Modeling,Vol.10,pp 31-
54, 2009.

G. Antoniol, G.Canfora,G.Casazza,A.D.Lucia and E.Merlo, "Recovering traceability links
between code and documentation," IEEE Transactions on Software Engineering, vol. 28,
pp- 970-983, 2002.

Y. Koth, K.Gondow and T.Katayama, "An incremental evaluation approach to check the
consistency of XML documents," Proc. IEEE International Conference on Systems, Man
and Cybernetics 2002, vol. 6, 2002.

R. Chitchyan,A.Rashid,P.Rayson and R.Waters, "Semantics-based composition for
aspect-oriented requirements engineering," Proc. 6th international conference on Aspect-
oriented software development, Vancouver, British Columbia, Canada, ACM, 2007, pp.
36-48.

R. W. Waters, "MRAT: A Multidimensional Requirements Analysis Tool," MSc
Dissertation, University of Lancaster, UK, 2006.

231

(92]

(93]

(94]

[99]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]
[106]

[107]

[108]

[109]

[110]

[111]

[112]

P. Kroha, R.Janetzko and J.E Labra., "Ontologies in Checking for Inconsistency of
Requirements Specification," Proc. Third International Conference on Advances in
Semantic Processing 2009 (SEMAPRO '09), 2009, pp. 32-37.

M. Sabetzadeh, S.Nejati,S.Liaskos,S>Easterbrook and M.Chechik, "Consistency
Checking of Conceptual Models via Model Merging," Proc.15th IEEE International
Requirements Engineering Conference 2007(RE '07), 2007, pp. 221-230.

I. Groher, A.Ader and A.egyed, "Incremental Consistency Checking of Dynamic
Constraints," in Fundamental Approaches to Software Engineering. vol. 6013, Springer
Berlin / Heidelberg, pp. 203-217, 2010.

A. Sinha, M.Kaplan, A.Paradkar and C.Williams , "Requirements Modeling and Validation
Using Bi-layer Use Case Descriptions," in Model Driven Engineering Languages and
Systems. vol. 5301, Springer Berlin / Heidelberg, pp. 97-112, 2008.

D.Kim, "Method and Implementation for Consistency Verification of DEVS Model against
User Requirement,” in 10th International Conference on Advanced Communication
Technology 2008 (ICACT 2008), 2008, pp. 400-404.

J. Chanda,A Kanijilal,S.Sengupta and C.Bhattacharya, "Traceability of requirements and
consistency verification of UML use case, activity and Class diagram: A Formal
approach," Proc. International Conference on Methods and Models in Computer Science
2009 (ICM2CS 2009), 2009, pp. 1-4.

S. Jurack, L.Lambers,K.Mehner and G.Taentzer, "Sufficient Criteria for Consistent
Behavior Modeling with Refined Activity Diagrams," in Model Driven Engineering
Languages and Systems. vol. 5301, Springer Berlin / Heidelberg, pp. 341-355,2008.

J. Whittle and J. Schumann, "Generating statechart designs from scenarios," Proc. o
International Conference on Software Engineering 2000, 2000, pp. 314-323.

X. Li, Z.Liu and J.He, "Consistency checking of UML requirements," Proc. 10th IEEE
International Conference on Engineering of Complex Computer Systems 2005 (ICECCS
2005), 2005, pp. 411-420.

C. Zapata, G.Gonzales and A.Gelbukh, " A rule-based system for assessing consistency
between UML models" Proc. 6th Mexican international conference on Advances in
artificial intelligence(MICAI 2007), 2007, pp. 215-224.

X. Blanc, I.Mounier, A.Mougenot and T.Mens, "Detecting model inconsistency through
operation-based model construction,” Proc of the 30th international conference on
Software engineering, Leipzig, Germany, ACM, 2008, pp. 511-520.

G. Engels, R.heckel and J.Kuster, "Rule-Based Specification of Behavioral Consistency
Based on the UML Meta-model," in «UML» 2001 — The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, ed, 2001, pp. 272-286.

I. Ha and B. Kang, "Cross Checking Rules to Improve Consistency between UML Static
Diagram and Dynamic Diagram," in Intelligent Data Engineering and Automated Learning
— IDEAL 2008. vol. 5326, Springer Berlin / Heidelberg, 2008, pp. 436-443.

K. Ryndina, J.Kuster and H.Gall, "Consistency of Business Process Models and Object
Life Cycles," in Models in Software Engineering, 2007, pp. 80-90.

M. El-Attar and J. Miller, "Producing robust use case diagrams via reverse engineering of
use case descriptions," Software and Systems Modeling, vol. 7, pp. 67-83, 2008.

G. Perrouin,B.Baudry,E.Brottier and Y.Le Traon , "Composing Models for Detecting
Inconsistencies: A Requirements Engineering Perspective,” in Requirements
Engineering: Foundation for Software Quality, 2009, pp. 89-103.

K. Mehner, M.Monga and G.Taentzer, "Interaction Analysis in Aspect-Oriented Models,"
Proc.14th IEEE International Conference Requirements Engineering 2006 (RE'06), 2006.
pp. 69-78.

T. S. E. M. Islam A.M.EI-Maddah, "Tracing Aspects in Goal Driven Requirements of
Process Control Systems," Proc. 3rd International Conference on AOSD, 2004.

J. Grundy, "Aspect-oriented requirements engineering for component-based software
systems,” Proc. IEEE International Symposium on Requirements Engineering 1999,
1999, pp. 84-91.

Y. Yu, "From Goals to Aspects: Discovering Aspects from Requirements Goal Models,"
Proc. 12" IEEE International Requirement Engineering Conference 2004, 2004.pp. 38-
47.

C. Zerong and A. Ghose, "Web agents for requirements consistency management," Proc.
IEEE/WIC International Conference on Web Intelligence 2003 (WI 2003), 2003, pp. 710-
713.

232

[113]
[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]
[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

F. Taibi,K.D.Jacob and A.F.Mohammed, "On checking the consistency of Object-Z
classes," SIGSOFT Softw. Eng. Notes, vol. 32, p. 11, 2007.

K. Kaneiwa and K. Satoh, "On the complexities of consistency checking for restricted
UML class diagrams,” Theoretical Computer Science, vol. 411, pp. 301-323, 2010.

K. Mu, W.Liu,ZJin,R.Lu,A.Yu and D.Bell,"A Merging-Based Approach to Handling
Inconsistency in Locally Prioritized Software Requirements," in Knowledge Science,
Engineering and Management, 2007, pp. 103-114.

F. Weitl, M.Jaksic and B.Freitag , "Towards the automated verification of semi-structured
documents," Data & Knowledge Engineering, vol. In Press, 2008.

J. Scheffczyk, U.M.Borghoff,A.Birf and J.Siedersleben, "Pragmatic consistency
management in industrial requirements specifications," Proc. Third |IEEE International
Conference on Software Engineering and Formal Methods 2005 (SEFM 2005), 2005, pp.
272-281.

T. Mens and P. Van Gorp, "A Taxonomy of Model Transformation and its Application to
Graph Transformation," Electronic Notes in Theoretical Computer Science, vol. 152, pp.
125-142, 2006.

X. Chen, "Extraction and visualization of traceability relationships between documents
and source code," Proc. IEEE/ACM international conference on Automated software
engineering (ASE'10), Antwerp, Belgium, ACM.2010.

J. Grundy, J.Hosking, J.Huh, and N. Li, "Marama: an Eclipse meta-toolset for generating
multi-view environments," in 2008 IEEE/ACM International Conference on Software
Engineering, Liepzig, Germany, May 2008.

D. W. Brown, An Introduction to Object- Oriented Analysis object and UML in Plain
English, second ed. New York: John Wley& Sons,Inc, 2002.

L. L. Constantine, "Essential modeling: use cases for user interfaces," interactions, vol. 2,
pp. 34-46, 1995.

L. L. Constantine and A. D. L. Lockwood, "Structure and style in use cases for user
interface design," in Object modeling and user interface design: designing interactive
systems, Addison-Wesley, Longman Publishing Co., Inc., 2001, pp. 245-279.

S. Aithal. S. Vinay, P. Desai, "An Approach towards Automation of Requirements
Analysis," Proc. International MultiConference of Engineers and Computer Scientists,
Hong Kong, 2009, pp. 1080-1085.

S. S. Some, "Use cases based requirements validation with scenarios," Proc. 13th IEEE
International Conference in Requirements Engineering 2005, 2005, pp. 465-466.

R. C. Bjork. (1998, June). Use Cases for Example ATM System. Available:
http://www.math-cs.gordon.edu/courses/cs320/ATM_Example/UseCases.html, retrieved
on: February 2009.

M. Glinz, "A lightweight approach to consistency of scenarios and class models," 2000.
Proc.4th International Conference on Requirements Engineering 2000, 2000, pp. 49-58.
T.Horton. Example Use Cases for PARTS. Available:
http://www.cs.virginia.edu/~horton/cs494/examples/parts/usecases-ex1.html, retrieved
on: February 2009.

J. Kim, S.Park and V.sugumaran, "Improving use case driven analysis using goal and
scenario authoring: A linguistics-based approach," Data & Knowledge Engineering, vol.
58, pp. 21-46, 2006.

Scenario examples. Available:
http://www.opensrs.com/resources/documentation/sync/scenarioexamples.htm, retrieved
on: February 2009.

W. L. Poon and A. Finkelstein, "Consistency management for multiple perspective
software development,"Proc. Joint proceedings of the second international software
architecture workshop (ISAW-2) and international workshop on multiple perspectives in
software development (Viewpoints '96) on SIGSOFT '96 workshops, San Francisco,
California, United States, ACM, 1996, pp. 192-196.

A. Finkelstein, "A Foolish Consistency: Technical Challenges in Consistency
Management," in Database and Expert Systems Applications, 2000, pp. 1-5.

J. Grundy, J.Hosking and W. B. Mugridge, "Inconsistency management for multiple-view
software development environments," IEEE Transactions on Software Engineering, vol.
24, pp. 960-981, 1998.

S. F. Tjong, N.Hallam and M.Hartley, "Improving the Quality of Natural Language
Requirements Specifications through Natural Language Requirements Patterns," Proc.

233

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]
[147]

[148]

[149]

[150]

[151]

[152]
[153]

[154]

[155]

The Sixth IEEE International Conference on Computer and Information Technology, 2006
(CIT '06), 2006, pp. 199-199.

B. Nuseibeh, S.Easterbrook and A.Russo, "Making inconsistency respectable in software
development,” Journal of Systems and Software, vol. 58, pp. 171-180, 2001.

Z. Huzar, L.Kuzniarz, G.Reggio and J.L.Sourrouille "Consistency Problems in UML-
Based Software Development,” in UML Modeling Languages and Applications, ed, 2005,
pp. 1-12.

A.Mehra,J.Grundy and J.Hosking, "A generic approach to supporting diagram differencing
and merging for collaborative design," Proc. 20th IEEE/ACM international Conference on
Automated software engineering, Long Beach, CA, USA, 2005.

A. Ghose, G.Koliadis and A.Chueng, "Process Discovery from Model and Text Artefacts,"
Proc. IEEE Congress on Services 2007, pp. 167-174.

A. Kozlenkov and A. Zisman, "Are their design specifications consistent with our
requirements?," proc. IEEE Joint International Conference on Requirements Engineering,
2002, 2002, pp. 145-154.

G. Engels, R. Heckel, and J.M.Kuster, "The Consistency Workbench: A tool for
consistency management in UML-based development,” in UML 2003—the Unified
Modeling Language. vol. 2863, New York, Springer, Berlin Heidelberg 2003, pp. 356—
359.

A. Katasonov and M. Sakkinen, "Requirements quality control: a unifying framework,"
Requirements Engineering, vol. 11, pp. 42-57, 2006.

S. Ogata and S. Matsuura, "Evaluation of a use-case-driven requirements analysis tool
employing web Ul prototype generation,” WSEAS Transactions on Information Science
and Applications, vol. 7, pp. 273-282, 2010.

Z. Jia, C.K.Chang and J.Y.Chung, "Mockup-driven fast-prototyping methodology for Web
requirements engineering," Proc. 27th Annual International Computer Software and
Applications Conference 2003 (COMPSAC 2003), 2003, pp. 263-268.

S. Xiping, "S-RaP: A Concurrent Prototyping Process for Refining Workflow-Oriented
Requirements," Proc. 13" IEEE International Conference on Requirement Engineering
2005, 2005, pp. 416-420.

N. Sukaviriya, et al., "User-Centered Design and Business Process Modeling: Cross
Road in Rapid Prototyping Tools," in Human-Computer Interaction — INTERACT 2007.
vol. 4662, Springer Berlin / Heidelberg, 2007, pp. 165-178.

R. V.Buskirk and B. W. Moroney, "Extending prototyping," IBM Systems Journal, vol. 42,
pp. 613-623, 2003.

L.L Constantine, "Rapid Abstract Prototyping,"
http://www.foruse.com/articles/abstractprototypes.pdf, retrieved on: February 2009

C. Boghdan, "Generating an Abstract User Interface from a Discourse Model Inspired by
Human Communication," Proc. 41st Annual Hawaii International Conference on System
Sciences 2008(HICSS'08), IEEE Computer Society,2008,pp. 36-36

T. Memmel and H. Reiterer, "Inspector: Interactive Ul Specification Tool," in Computer-
Aided Design of User Interfaces VI, 2009, pp. 163-175.

L.L.Constantine and A. D. L. Lockwood, "Usage-centered software engineering: an agile
approach to integrating users, user interfaces, and usability into software engineering
practice," Proc. 25th International Conference on Software Engineering, Portland,
Oregon, 2003.

G. Gabrysiak, H.Giese and A.Seibel,"Interactive Visualization for Elicitation and
Validationn of Requirements with Scenario-Based Prototyping," Proc. 2009 Fourth
International Workshop on, Requirements Engineering Visualization (REV), 2009, pp. 41-
45.

D. Li, X.Li,J.liu and Z.liu, "Validation of requirement models by automatic prototyping,"
Innovations in Systems and Software Engineering, vol. 4, pp. 241-248, 2008.

J. Vijayan and G. Raju, "Requirements Elicitation Using Paper Prototype," in Advances in
Software Engineering. vol. 117, Springer Berlin Heidelberg, 2010, pp. 30-37.

S. Melia, O. Pastor. P. J. Molina, "Just-Ul: A User Interface Specification Model," Proc.
Computer Aided Design of User Interfaces Il (CADUI'2002), Valenciennes, France,pp.63-
74, 2002.

S. Dream Ltd. Creative New Media. Available: http://www.silicon-dream.com/, retrieved
on: January 2011.

234

[156]

A.Lund.(1998). USE Questionnaire Resource Page. Available:
http://usesurvey.com/IntroductionToUse.html, retrieved on: February 2010.

[157]A.Blackwell,C.Britton,A.Cox, T.Green,C.Gurr,G.Kadoda,M.Kutar,M.Loomes,C.Nehaniv,M.Pet

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

re,C.Roast,C.Roe,AWong and R.Young, "Cognitive Dimensions of Notations: Design
Tools for Cognitive Technology," in Cognitive Technology: Instruments of Mind. vol. 2117,
Springer Berlin / Heidelberg, 2001, pp. 325-341.

T. Green, A. Blackwell., Cognitive Dimensions of Information Artefacts:a tutorial. Version
1.2,1998.Available: https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf,
retrieved on:February 2010.

J. Ramey, T.Boren,E.Chuddihy,J.Dumas,Z.Guan,M.J.V.D.Haak and M.D.T.D.Jong, "Does
think aloud work?: how do we know?," extended abstracts Human Factors in Computing
Systems (CHI EA'06), Canada, ACM, 2006.

M. Kutar, C. Britton., J. Wilson, "Cognitive Dimensions An Experience Report," in Twelfth
Annual Meeting of the Psychology of Programming Interest Group, Memoria, Cozenza
Italy, 2000, pp. 81-98.

N. M. Ali,J.Hosking,J.Grundy and J.Huh, "End-user oriented critic specification for
domain-specific visual language tools," Proc. IEEE/ACM international conference on
Automated software engineering, Antwerp, Belgium, 2010.

INCOSE International Council on system Engineering, INCOSE Requirements
Management Tools Survey, Available: http:
http://incose.org/ProductsPubs/products/rmsurvey.aspx

P.A.Laplante, Requirements Engineering for Software and System, CRC Press,20009.
N.M.Ali, “A Generic Visual Critic Authoring Tool” Proc. IEEE Symposium on Visual
Languages and Human-Centric Computing (VLHCC '07),USA, 2007.

R.L.Baskerville, “Investigating information systems with action research” Journal
Communications of the AIS, Volume 2 Issue 3es,Nov.1999

D.E. Avison,F.Lau,M.D.Myers and P.A.Nielsen,’Action Reserach”, Magazine
Communication of the ACM, Volume 42 Issue 1,Jan.1999.

Institute of Electrical and Electronics Engineers, “IEEE guide to software Requirements
Specification”Standard 830-1984,New York, IEEE Computer Society Press,1984.

A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh, G.Kincaid, G.
Ledeboer, P.Reynolds,.P.Sitaram, A. Ta, and M.Theofanos,”ldnetifying and Measuring
Quality in a Software Requirements Specifications, Proc. International Software Metrics
Symposium,Pages 141-152,Los Almitos,CA,USA,1993.IEEE Computer Society.

235

