

Automated Support for Consistency Management
and Validation of Requirements

Massila Kamalrudin

A thesis submitted in fulfilment of the requirements for the degree of Doctor of

Philosophy of Electrical and Electronic Engineering, The University of Auckland,

2011.

 ii

Abstract

The requirements engineering phase of software development remains presents many

challenges to researchers and practitioners alike. Among them, the management of consistency

across multiple representations is particularly complex yet it lacks effective tool support. The

thesis proposes an automated support mechanism to enable users (Requirements Engineers) to

manage the consistency and validation of requirements. We have investigated existing

approaches, developed a novel technique, and realised this technique as an automated support

tool called MaramaAI (Automated Inconsistency Checker).

We have taken an an iterative approach to our work. We began by developing a lightweight

extraction approach that allows an accurate and quick extraction of essential requirements

(abstract interactions) from natural language requirements and the generation of Essential Use

Case models from them. We then used automated traceability with visual support to check the

consistency of requirements in three different forms: textual natural language requirements,

abstract interaction and Essential Use Case, as well as to further validate the correctness and

completeness of requirements. We also extended the automated tool to provide end-to-end rapid

prototyping support embedded in the tool for validating requirements consistency in a form usable

by both requirement engineers and clients to confirm the consistency of requirements.

We have evaluated the tool’s efficacy and performance especially on the extraction process, and

also evaluated the user perception on the tool’s usability and user-perceived strengths via a

substantial usability study and applied the tool to several case studies. The results were positive,

and demonstrate that MaramaAI can be used to manage the consistency and validation of

requirements in various domains of applications.

 iii

Dedication

I dedicate this thesis to my husband Ahmad Fadzil Mohamad, my father Kamalrudin Jantan and

my mother Nya Lily Baba.

“Your endless Prayers, love and support have gotten me here”

 iv

Acknowledgement

Alhamdulillah: all praises to Allah for giving me good health, a strong will and a clear path to

complete this study.

I am heartily thankful to my supervisors, Professor John Hosking and Professor John Grundy, for

their guidance and support throughout my PhD study. For almost three years of collaboration, I

have learned to think positively, to be confident and focused, to appreciate comments and

criticisms, to take up challenges, to try hard to improve weaknesses, to be generous to others

and to love and care for my family. I am really glad to have had both of you as my supervisors.

To John & John: You’re really great! You have given me such a great time while going through

this tough process!

My highest gratitude to my parents (Abah, Mak, Mama and Papa) for all their endless prayers,

love, confidence and support to me to go through the ups and downs of this journey.

My warmest appreciation to my beloved husband, Ahmad Fadzil Mohamad, for all his sacrifices,

understanding, love, care, motivation and support. Acting as my third supervisor at home, he has

really shielded me from all the laziness and negative influences.

To my hubby: Yang, this PhD is yours!

I would like to thank all my friends, especially Jun Huh for his kindness and help throughout this

study.

I would also like to thank Silicon Dream Ltd. for sharing their requirements for this research.

I would also like to acknowledge the sponsor of my study: Ministry of Higher Education and UTeM

as well as PReSS Account of University of Auckland and the FRST Software Process and

Product Improvement project.

Finally, I would like to share this quote which has always been with me for almost three years to

keep up the high level of enthusiasm in completing my research:

"Forget mistakes. Forget failure. Forget everything except what you're going to do now

and do it. Today is your lucky day." Will Durant

 v

Table of Contents
Abstract .. ii

Dedication.. iii

Acknowledgement ... iv

Table of Contents ... v

List of Figures ... x

List of Tables .. xv

Chapter 1: Introduction .. 1

1 Research Background ... 1

1.1 What is a Requirement? ... 1

1.1.1 Consistency .. 2

1.1.2 Inconsistency .. 3

1.2 Research Motivations ... 4

1.3 Research Questions ... 5

1.4 Research Objective... 7

1.5 Research Methodology ... 7

1.6 Research Contributions .. 9

1.7 Thesis Organisation .. 11

1.8 Summary .. 12

2.1 Requirement Management ... 13

2.2 Requirement Modelling Technique ... 14

2.3 Requirements Specification .. 14

2.3.1 Formal Specification ... 14

2.3.2 Semi-formal Specification ... 15

 vi

2.3.3 Informal Specification .. 15

2.4 Semantics in Requirements .. 16

2.5 Requirement Engineering Tools (RE Tools) ... 16

2.5.1 Examples of Commercial Requirement Engineering Tools 16

2.5.2 Examples of Research Requirement Engineering Tools ... 19

2.5.3 Discussion of RE Tools Features .. 23

2.6 Requirements Validation ... 25

2.7 Consistency/ Inconsistency Management ... 27

2.7.1 Consistency/ Inconsistency Management Techniques in General 27

2.8 Related Work of Consistency/Inconsistency Management ... 29

2.8.1 Traceability ... 29

2.8.2 Analysis Approach .. 30

2.9 Analysis of Consistency / Inconsistency Management Research 39

2.10 Discussion .. 43

2.11 Summary .. 44

Chapter 3: Motivation and Overview of Our Approach ... 45

3.1 Introduction ... 45

3.2 Overview of Essential Use Cases (EUCs) .. 46

3.3 Applying Essential Use Cases: A Study.. 48

3.4 Overview of Our Approach .. 50

3.5 Summary .. 54

Chapter 4: Essential Interaction Extraction ... 55

4.1 Introduction ... 55

4.2 Essential Interaction Pattern Library ... 57

 vii

4.3 Tool Support ... 60

4.3.1 Tool Process ... 60

4.3.2 Tool Example .. 62

4.4 Evaluation ... 64

4.5 Summary .. 69

Chapter 5: Managing Requirements Consistency .. 71

5.1 Introduction ... 71

5.2 Managing the consistency .. 71

5.3 Tool Support ... 73

5.4 Architecture and Implementation .. 83

5.5 Evaluation ... 89

5.6 Summary .. 93

Chapter 6: Requirements Quality Checking... 95

6.1 Introduction ... 95

6.2 EUC interaction pattern... 96

6.3 Our Approach ... 97

6.4 Tool Support & Usage... 100

6.4.1 Tool Support ... 100

6.4.2 Consistency Checking .. 101

6.4.3 Inconsistency, Incorrectness and Incompleteness Checking 105

6.5 Architecture and Implementation .. 109

6.6 Conclusion .. 117

Chapter 7: Supporting Requirement Validation via End-to-End Rapid Prototyping 118

7.1 Introduction ... 118

 viii

7.2 Background ... 119

7.2.1 Rapid Prototyping ... 119

7.2.2 Essential User Interface (EUI) prototyping .. 119

7.3 Applying EUI Rapid Prototyping: A Study ... 120

7.4 Related Work .. 123

7.5 Our Approach ... 125

7.6 EUI Pattern Library ... 127

7.7 EUI Pattern Template library ... 129

7.8 Tool Support ... 130

7.9 Architecture and Implementation .. 134

7.10 Evaluation ... 138

7.11 Summary .. 141

Chapter 8: Case Studies Examples .. 142

8.1 Introduction ... 142

8.2 Case Study 1: Reserve a Vehicle from a Rental Company... 142

8.2.1 Example of Usage... 143

8.3 Case Study 2: Book Check-out in a Library System ... 151

8.3.1 Example of Usage... 152

8.4 Case Study 3: Manage Events with Event Listing System .. 160

8.4.1 Example of Usage... 161

8.5 Discussion and Summary ... 169

Chapter 9: Evaluation ... 170

9.1 Evaluation Mechanism Overview .. 170

9.2 Usability Criteria for Usability Evaluation .. 171

 ix

9.3 Cognitive Dimensions of Notations Approach (CD) .. 172

9.4 Design of the Study... 172

9.5 Survey Method .. 175

9.6 Survey Result and Analysis .. 177

9.7 Comparison of Survey Results ... 195

9.8 Summary .. 199

Chapter 10: Conclusion and Future Work ... 200

10.1 Summary of Research Contributions .. 200

10.2 Conclusions .. 201

10.3 Future Work .. 202

10.4 Summary .. 204

APPENDIX A: PARTICIPANT INFORMATION SHEET (HEAD OF DEPARTMENT) 205

APPENDIX B: PARTICIPANT INFORMATION SHEET (STUDENT) ... 207

APPENDIX C: CONSENT FORM (HEAD OF DEPARTMENT) .. 210

APPENDIX D: CONSENT FORM (STUDENT) ... 211

APPENDIX E: SURVEY QUESTIONNAIRES .. 212

REFERENCES ... 228

 x

List of Figures
Figure 1.1: Requirement Analysis and Negotiation Process (From [5]) ... 2

Figure 2. 1: Example of Features in RaQuest [66] ... 17

Figure 2. 2: Example of the Qpack Tool for (1) Requirement tracking and (2) Requirement

traceability [67] ... 18

Figure 2. 3: Example of the Enterprise Architect 8 tool in managing: (1) requirements (2) internal

requirements and (3) exporting the internal requirements [3] ... 19

Figure 2. 4: Example of the EA-Miner tool in eliciting the input requirement(1) and identifying

concerns (2) [9] ... 20

Figure 2. 5: Example of the LRS Requirement document (1), LRS scenario object and LRS task

model (3) generated from the LRS tool [8] ... 21

Figure 2. 6: Example of the WikiReq system in eliciting and managing requirement: (1) shows the

actor view point page, (2) goal view point page and (3) the WikiReq exported to Eclipse [12] 22

Figure 2. 7: Example of Results from the NAI tool in detecting nocuous coordination ambiguity [7]

 ... 23

Figure 2. 8: Heat Map Representations: Categorisation of the Type of Contributions, Techniques,

Specifications and Semantics Used for Checking the Consistency/Inconsistency 40

Figure 2. 9: Heat Map representation: Classification of the Model Used as a Semi-Formal

Specification Approaches ... 42

Figure 3.1 : (left) Example of Textual Natural Language Requirements and (right) Example of

Essential Use Case (EUC model) [4] .. 47

Figure 3. 2: The scenario “Getting Cash” Refined and Adapted from [4] Used For the Evaluation

 ... 48

Figure 3. 3: Overview of Our Requirements Consistency with End-to-End Support using EUC and

a Traceability Management Approach .. 52

Figure 4. 1: Our Essential interaction extraction approach ... 56

Figure 4. 2: Tree Structure for Key Textual Phrase .. 59

Figure 4. 4: Our Automated Tracing Tool ... 62

 xi

Figure 4. 5: The Tool Usefulness Results ... 66

Figure 4. 6: The tool Ease of Use Results .. 66

Figure 4. 7: Accuracy across different scenarios .. 68

Figure 5. 1: Framework for Extracting Requirement (1) Mapping interactions (2) and Creating the

EUC Automatically (3) .. 73

Figure 5. 2: Tracing the Abstract Interaction from Textual Natural Language Requirement and

Mapping to the Marama Essential .. 75

Figure 5. 3: Trace back from EUC diagram in Marama Essential to the Abstract Interaction and

Textual natural language requirement .. 76

Figure 5. 4: Inconsistency Occurring: Change of Sequence of Abstract Interaction 77

Figure 5. 5: Inconsistency Occurring: Change of Sequence of EUC component.......................... 78

Figure 5. 6: Inconsistency Occurring: Adding New Item to the Abstract Interaction 79

Figure 5. 7: Inconsistency Occurring: Adding New Item to the EUC diagram 80

Figure 5. 8: Inconsistency Occurring: Change of Name to the Abstract Interaction...................... 81

Figure 5. 9: Inconsistency Occurring: Change of Name to the EUC component 82

Figure 5. 10: MaramaAI Architecture .. 83

Figure 5. 11: Example of Trace interaction .. 84

Figure 5. 12: Example of Trace Back interaction from Abstract Interaction 85

Figure 5. 13: Example of Trace Back interaction from EUC component 86

Figure 5. 14: Example of Map To EUC interaction from Abstract Interaction 87

Figure 5. 15: Example of Index Checker interaction of Abstract Interaction 88

Figure 5. 16: Example of Index Checker interaction of EUC component 88

Figure 5. 17: The scenario “Voter Registration” [6] used for the Evaluation 90

Figure 6. 1: Outline of our Requirement Quality Management Process .. 98

Figure 6. 2: Example of extracting an EUC model then adding a new abstract interaction 102

 xii

Figure 6. 3: Change the ordering of EUC elements .. 104

Figure 6. 4: Deletion of an EUC element .. 105

Figure 6. 5: Example of EUC interaction pattern template (1) and Visual differencing (2) 107

Figure 6. 6: Change generated EUC model following the EUC interaction pattern template 108

Figure 6. 7: MaramaAI tool architecture for managing consistency of requirement 109

Figure 6. 8: Example of Consistency Management: Delete Abstract Interaction 112

Figure 6. 9: Example of Consistency Management: Delete EUC Component 113

Figure 6. 10: Example of Check Consistency with a Template for the Generated EUC Model... 114

Figure 6. 11: Example of Check Keyword of abstract interaction in the abstract interaction

Component ... 115

Figure 6. 12: Example of Check Keyword of abstract interaction in the EUC Component 116

Figure 7. 1: Example of EUI prototype iterates from Essential Use Cases (EUC model (Ambler

[10, 11]) .. 120

Figure 7. 2: Example of Scenario “getting cash” and its EUC diagram 121

Figure 7. 3: End-to-end EUC and EUI prototyping approach .. 125

Figure 7. 4: An example of performing mapping of EUC model to EUI prototype using the UI

Pattern library with trace-forward/ trace-back and translating the EUI prototype to the concrete UI-

HTML form.. 126

Figure 7. 5: Trace forward and Trace-back from EUC model to EUI prototype. 131

Figure 7. 6: Marama EUI and concrete UI view in a form of form- based UI 132

Figure 7. 7: Modification of EUI prototype - Addition and Deletion in EUI prototype 133

Figure 7. 8: MaramaEUI tool architecture. .. 134

Figure 7. 9: Example of Map EUC to EUI ... 136

Figure 7. 10: Example Trace Back from EUI prototype to EUC Model 137

Figure 7. 11: Example of Generating HTML form from the EUI prototype 138

 xiii

Figure 7. 12.: User study results of Marama EUI-Usefulness, ease of use, ease of learning,

satisfaction and accuracy ... 140

Figure 8. 1: Example of User Scenario: Reserve a Vehicle [1] ... 143

Figure 8. 2: Capturing requirements - trace the abstract interaction, trace back and map to EUC

model .. 144

Figure 8. 3: Add New Item to Abstract Interaction .. 145

Figure 8. 4: Change of Abstract Interaction Sequence Ordering .. 146

Figure 8. 5: Delete the EUC component ... 147

Figure 8. 6: Visual differencing to check for incorrectness and incompleteness 148

Figure 8. 7: The generated EUI prototype (1) and translated HTML form (2) 149

Figure 8. 8: Modifications in Prototypes .. 149

Figure 8. 9: Trace back which performs from the EUI prototype... 150

Figure 8. 10: Example of User Scenario in a Form of Use Case Description: Check-out books of a

LLB system [2] .. 152

Figure 8. 11: Capturing requirements-trace the abstract interaction and map to EUC model 153

Figure 8. 12: Deletion of Abstract Interaction.. 155

Figure 8. 13: Change of EUC component Sequence Ordering ... 156

Figure 8. 14: Visual differencing to check for incorrectness and incompleteness 157

Figure 8. 15: EUI Prototype with the extension components (1) and the generated HTML form

with hyperlinks (2) ... 158

Figure 8. 16: HTML main page and hyperlink pages generated from EUI prototype 159

Figure 8. 17: Example of User Scenarios in the form of Use Case Descriptions: Manage Venue

and Manage Event review from the Silicon Dreams Event Listing System specification 161

Figure 8. 18: Capturing Requirements - Trace the Abstract Interaction, Trace Back and Map to

EUC model with Multiple Requirements ... 162

Figure 8. 19: Change of Abstract Interaction Name .. 163

 xiv

Figure 8. 20: Delete EUC component ... 164

Figure 8. 21: Visual differencing to check for incorrectness and incompleteness for first scenario

 ... 165

Figure 8. 22: Visual differencing to check for incorrectness and incompleteness for second

scenario .. 166

Figure 8. 23: Multiple EUI prototypes and HTML forms .. 167

Figure 8. 24: Changes made to the EUI prototype (1) and the results in HTML form (2) 168

Figure 9. 1: Usability Results-Capturing Requirements .. 181

Figure 9. 2: Usability Results - Consistency Checking of Requirements 187

Figure 9. 3: Usability Results- End to End Rapid Prototyping ... 192

Figure 9. 4: Comparison Results of Usability Study for Capturing Requirements, Consistency

Checking and End-to-End Rapid Prototyping of MaramaAI .. 196

Figure 9. 5: Comparison results of CD Study for Capturing Requirements, Consistency Checking

and End-to- End Rapid Prototyping of MaramaAI... 197

 xv

List of Tables
Table 2. 1: Comparison and Classification of RE Tool features.. 24

Table 2. 2: Type of Requirement Quality and its Description .. 26

Table 3. 1: EUC Extraction Study Results .. 49

Table 3. 2: Example of Abstract Interaction and its Related Category .. 52

Table 3. 3: Example of EUC Model Generated... 53

Table 3. 4: Example of EUI Pattern Library for EUI prototype .. 53

Table 4. 1: Example of Abstract Interactions and their Associated Essential Interaction and Their

Related Domains .. 58

Table 4. 2: Example of Essential Interaction and its Associated Abstract Interaction stored in the

Essential Interaction Pattern Library ... 60

Figure 4. 3: An example of performing an essential interaction extraction to a EUC model and

supporting trace-forward/trace-back ... 61

Table 4. 3: User Perception Characteristics and Questions Evaluating Them 64

Table 4. 4: Participants Open Feedback .. 65

Table 4. 5: Comparison result of correctness between Manual extraction (previous chapter) and

Automated Tracing Tool ... 67

Table 5. 1: User Perception Characteristics and Questions Evaluating Them 91

Table 5. 2: Tool Usefulness Result ... 92

Table 5. 3: Tool Ease of Use Results ... 92

Table 5. 4: Participants Open Feedback .. 93

Table 6. 1: Examples of EUC Interaction Patterns ... 97

Table 6. 2: Overview of Comparing the Generated EUC model with EUC Interaction Pattern

Template... 111

Table 7. 1: EUI prototype Modelling Study Results .. 122

 xvi

Table 7. 2: Example of EUI pattern Category and its related EUI pattern and it’s associated

Abstract Interaction from the EUC model ... 128

Table 7. 3: Examples of EUI Pattern template with its associated EUI Pattern and associated

Domains in the EUI Pattern template library ... 129

Table 7. 4: User Perception Characteristics and Questions Evaluating Them 139

Table 9. 1: CD Dimensions and Meaning by Blackwell [157].. 172

Table 9. 2: CD Notations Used and Questions Evaluating Them ... 174

Table 9. 3: Manual Extraction of EUC Study Result ... 178

Table 9. 4: Proficiency level of Using the Marama tool and Experience with Any Other Tool 180

Table 9. 5: Evaluation Results for Cognitive Dimensions Questions .. 182

Table 9. 6: Open-Ended Feedback ... 185

Table 9. 7: Evaluation Result for Cognitive Dimensions Questions .. 188

Table 9. 8: Open-ended Feedback ... 190

Table 9. 9: Evaluation Result for Cognitive Dimensions Questions .. 193

Table 9. 10: Open-ended Feedback ... 195

 1

Chapter 1: Introduction

1 Research Background

1.1 What is a Requirement?

A set of requirements is interpreted at the early phase of a system development [5] and it reflects the

client’s need for a system [72]. It describes “how the system should behave, constraints on the

system’s application domain information, constraints on the system operation or specification of a

system property or attribute” [5]. Software requirement specifications elaborate the functional and

non-functional requirements, design artifacts, business processes and other aspects of a software

system. Software requirement specifications that are complete and accepted by developers and

clients provide a shared understanding and agreement of what a software system should do and why.

Since requirement documents form the basis of development processes and this agreement, they

should be correct, complete, and unambiguous [13] and need to be analysed with respect to

Consistency, Completeness and Correctness (“3 Cs”) to detect errors such as inconsistency and

incompleteness [18].

Most requirements in the software industry are widely written or described using natural language.

According to Fabrini et al. [14] at least the first level of the system is described using natural

language. Requirements described using informal natural language are commonly written in

narratives or scenarios. The major disadvantages of specifying requirements only in natural language

“are inherent imprecision, such as ambiguity, incompleteness and inaccuracy” [13]. It has also been

found that they are often error-prone which is partially caused by interpretation problems due to the

use of natural language itself [14]. Although the development of object-oriented analysis, e.g. using

(semi-)formalised models like UML [15] or formal models like KAOS [16], has afforded better

requirements specification [16,57], most requirements documentation or software system

specifications are still often written in – or at least derived from - free text expressed in natural

language. As a result, this leads to requirements that are vague, informal and contradictory and that

may or may not express the users’ needs. In addition, Zowghi et al. [17] argue that it is difficult, costly

and time consuming to maintain the consistency of the entire software requirements specification if

that specification is derived from natural language.

 2

1.1.1 Consistency

There are several definitions of consistency relating to software requirements specification. These

definitions clarify what consistency is and when it appears in a software requirement specification.

Zowghi and Gervasi state that consistency requires that no two (or more) requirements in a

specification contradict each other, where there is no case that the requirements cannot be satisfied

at the same time [18]. They also stress the importance of terminology, i.e. that words and terms

always have the same meaning throughout the requirement specification. Both these views entail the

need for ways of avoiding mutually exclusive statements and conflicts in terminology [13]. Liu [19]

asserts that a specification is consistent when there is a computational model for its implementation

and the specification will be valid when it ensures the user requirement. Consistency is also present

when there is no internal (logical) negation between the specifications of a system [20]. A few types of

consistency apply to specifications, including the precondition of a function being satisfied by the

function calls, subtypes that include arguments of functions, and results of function subtypes [20].

Some relate to consistency between various non-functional requirements e.g. that security, reliability,

scalability and platform requirements can all be met by the requirements as captured. In order to

make sure requirements are always consistent and follow the customer’s needs from the beginning,

consistency checking needs to be done from the earliest stage of the Requirement Engineering

process: Requirements Analysis (RA) as shown in Figure 1.1.

Figure 1.1: Requirement Analysis and Negotiation Process (From [5])

 3

1.1.2 Inconsistency

It is common to find inconsistencies in requirements specifications as the requirement elicitation

process involves two or more parties in delivering and understanding correct requirements. Zowghi et

al. [18] assert that expression by different stakeholders may lead to inconsistencies and

contradictions because the parties keep changing their minds throughout the development process.

Inconsistent requirements occur when two or more stakeholders have differing, conflicting

requirements and/or the captured requirements from stakeholders are internally inconsistent when

two or more elements overlap and are not aligned [21], [22]. Typically the relationship is articulated as

a consistency rule against which a description can be checked. Inconsistency in requirements also

occurs when there are incorrect actions [14], or where requirements clash because of disagreements

about opinions and bad dependencies [20], sometimes resulting from a lack of skills or the

capabilities of different users dealing with shared or related objects. In addition, Litvak [23] believes

that inconsistency occurs when the same parts of the model are portrayed by multiple diagrams and

Lamsweerde et al. [24] find that inconsistency occurs in a set of descriptions when the descriptions

can’t be satisfied all together.

Overall, in our context of work, inconsistencies happen when any of the requirements components

that are intended to be equivalent are not; this could be by not being in the same sequence, not

having the same name, not being consistent when equivalent components are changed and not being

consistency across differing representational models.

Positive and negative outcomes for the system development lifecycle are caused by having

inconsistency [21]. The inconsistency helps to highlight the contradictory views, perceptions and

goals among stakeholders who are involved in a particular development process. It also helps to

identify which part of the system needs further analysis, as well as helping to facilitate the discovery

and evocation of the options and information of a system. In addition, Nuseibah et al. believe that

inconsistency can be used as an assisting tool to verify and validate the software process [22].

However, it is still vital to avoid or check for inconsistency as it could affect the whole development

process, as the clients’ requirement needs by the client cannot be met and attempts to do so may

cause delay, increase the cost of the system development process’s costs, put at risk the properties

related to the quality of a system and make the maintenance process of a system cumbersome.

 4

1.2 Research Motivations

Requirements captured in natural language are normally vague and error-prone due to the

interpretation problem [14]. This is because the capturing process involves a human-centric

representation which is full of arguments and misunderstandings [11]. The process of collecting the

information for specific requirements may also take a long time as the requirements need to be

gathered until they satisfy the client, and this process needs to match the client’s available time [25].

There are also circumstances where requirements analysis ends prematurely because of delays and

impatient clients [25]. This encourages validation to be effected at an earlier stage of requirement

analysis in order to make sure the captured requirements are valid. Besides, waiting for late validation

may cause the requirements’ quality to suffer [25]. This problem leads to requirements’ quality

problems such as inconsistency, incorrectness and incompleteness.

However, as stated by Zowghi and Gervasi, “improving the consistency of the requirements can

reduce the completeness and, thereby again diminish correctness” [18]. Therefore, consistency is of

great importance to ensure the requirements are entirely precise and fulfil the needs of a user. In

order to check and maintain consistency and diminish inconsistency, many techniques have been

used. These include traceability, formal analysis and semi-formal analysis [26],[27],[28],[29],[30].

Traceability is sometimes not applicable in practice as it is too difficult and costly [31], although it

helps in a number of activities in software development such as the evolution of software systems,

compliance verification of the code, requirements validation, aspect identification, and any design

decision [32]. Further, engineers may not be able to foresee or visualise the results although

automated traceability tools are provided [33],[119].

In addition, in many projects consistency and completeness checking is normally performed manually

by a “tedious procedure of reading the requirements documents and looking for linguistic errors” [34].

Many of these approaches to requirements consistency checking require heavyweight formal

approaches where requirements must be expressed in complex formal models. While these are

important in many domains e.g. safety-critical systems, they have proved difficult to put into

widespread use [35]. Similarly, traditional approaches to using natural language processing and

analysis of textually expressed requirements requiring the use of complex analysis algorithms and the

complexity of natural language and its inherent ability to express inconsistent statements makes this

challenging [36].

Translating requirements into semi-formal models, e.g. UML use cases, is a common approach that

supports some limited analysis while improving the structure of the natural language expressed by

requirements. However, translating these semi-formal models and checking consistency between

them and natural language requirements have continued to prove problematic [37]. Besides, these

 5

works are difficult enough for requirements engineers to understand let alone clients or stakeholders,

who are mostly non-technical or non-IT people: most clients do not understand models, formal terms

or mathematics equations [38]. Furthermore, some natural language is interpreted differently from its

original intention by requirements engineers [38].

As determined by various studies, eliciting requirements and extracting their use cases can be

arduous and can lead to a rather imprecise analysis [39],[40],[41],[42]. Constantine and Lockwood [4]

were thus motivated to develop the Essential Use Case (EUC) modelling approach to overcome

some of these problems. Although the usage of EUCs is not as widespread as conventional use

cases, several researchers have recommended their adoption as they helps to integrate the

requirements engineering and interaction design processes [39],[43],[44]. Some of the main reasons

EUCs are not commonly used are: a lack of tool support, engineers’ lack of experience in extracting

essential interactions from requirements, and a lack of integration with other modelling approaches

[39], [43]. A further study to confirm the problem with more qualitative results is discussed in Chapter

3.

We have been motivated by the work done by Constantine and Lockwood [4] in developing the

Essential Use Cases (EUC) modelling approach, as EUCs are beneficial in integrating the

requirements engineering and interaction design processes to mitigate consistency issues between

the requirements and design artefacts and to improve the traceability [43]. We have attempted an

approach which applies traceability to the EUC concept, in the process managing the consistency

and supports validation of requirements.

Overall, the motivation of this research is to provide automated support and a more lightweight

approach for capturing requirements written in natural language and to manage the consistency and

validation of requirements for various domains and applications with less human intervention and

complexity. The aim is to provide notification and visual support for detecting inconsistency, as well

as to determine other requirements quality errors such as incompleteness and incorrectness. In

addition, the focus is to provide end-to-end support for both the requirements engineer and the client

in confirming the consistency of requirements.

1.3 Research Questions

The main research question in this research in relation to our research motivation is:

“Can automated support enable us to better manage the consistency and

validation of requirements?”

 6

In order to address this major research question, we have divided it into smaller research questions

as follows.

1. “Can a lightweight extraction process with automated tool support extract quickly and accurately

essential requirements (abstract interactions) from textual natural language requirements?”

This question focuses on how to appropriately handle natural language requirements. To answer

this question, we propose a lightweight extraction approach and its implementation in an

automated tracing tool. To evaluate the approach we examine tool performance and efficacy in

handling the extraction and user perceptions regarding the tool’s usefulness and ease of use.

This is addressed in Chapter 4 of this thesis.

2. “Can the automated tool support the consistency and validation of requirements?”

This question focuses on managing consistency and validating requirements quality –

consistency, completeness and correctness. To answer this question, we propose and implement

automated traceability and visualization support to check the consistency of requirements in three

different forms; textual natural language, abstract interaction and Essential Use Case models as

well as to further validate the correctness and completeness of requirements. In addition, we

evaluate the user perception of the tool’s usability and the perceived strengths in selected

dimensions of Cognitive Dimensions (CD). These aspects are addressed in Chapters 5, 6, 8 and

9 of this thesis.

3. “Can the generation of UI prototypes from EUC models support the end to end validation of

requirements between the requirements engineer and client?”

This question focuses on extending the tool to provide end-to-end support of requirements

consistency checking, usable by both the requirement engineers and clients to confirm the

consistency of requirements. To answer this question, we propose and implement a rapid

prototyping approach embedded in our tool which is able to generate EUI prototype models and

concrete UI HTML views from EUC models. In addition, we evaluate the tool usability and user

perceived strengths and apply the tool to several case studies in different domains. These

aspects are addressed in Chapter 7, 8 and 9 of this thesis.

In brief, in order to answer these research questions, we adopt a lightweight automated

approach, and its realisation as a tool, to support consistency management and validation of

requirements. We evaluate the tool efficacy, mainly in the extraction process, and the user’s

perception of the tool and its application.

 7

1.4 Research Objective

The main objective of our research is to provide a requirement management approach that supports

the consistency and validation of requirements from the early stages of Requirement Analysis. In

particular, the research aims to provide the following.

1) To better support users and developers to work with informal and semi-formal requirements

and keep them consistent. This will assist requirement engineers or business analysts to

check whether their requirements, written or collected in natural language, are consistent with

other analysis and design representations.

2) To support Requirements Analysis in order to improve requirements consistency and quality.

This will use a set of essential interactions and EUC interaction patterns together with visual

differencing to assist engineers in finding appropriate abstract interactions to design the

EUCs for a particular system.

3) To provide end-to-end support to confirm the requirements consistency from both the

requirement engineer and client’s perspectives. This will use end-to-end rapid prototyping to

visualise the requirements captured by a requirement engineer in the form of an abstract EUI

prototype and concrete UI view in the form of an HTML page.

4) To provide traceability of requirements from both informal, semi-formal requirements and a UI

prototype. This will assist a requirement engineer to trace forward/ trace–back from the

different requirements representations to make sure the requirement is consistent.

5) To provide a proof of concept tool to allow automation with visualisation support in managing

requirements consistency and validation of requirements in various domains of application.

This will lessen human intervention in managing and validating the requirement.

6) To assess the consistency management approach by performing tool efficacy and end-user

evaluations.

1.5 Research Methodology
As it is commonly used in software tool research, we have adopted an iterative approach, using

successive iterations of tool development and evaluation to address our research questions

[120],[164]. This can be categorized as an adaptation of action research [165],[166]. The focus

of this latter methodology fits well with our work as it comprises a cycle of changes, evaluations

and reflections [166]. We follow the cycle in our research research by realising our research

knowledge with tool development and then evaluate the tool to gain feedback from the end-user

experience. The five components of this research are:

i. Diagnosing: Here, we diagnose the problems faced from our preliminary study and literature,

or from preceding cycle results

 8

ii. Action planning: Here, we plan the problem-solving for the identified problems

iii. Action taken: Here, we try to resolve the problems by performing a solution. In our case, we

develop the tool iterations and supporting assets, such as interaction libraries.

iv. Evaluating: We then evaluate the solution via end-user studies.

v. Specifying learning: From here, we identify the strength and weaknesses

In order to perform our work we employ additional extraction, consistency management, traceability

and analysis components after evaluation of each stage of the research. An outline of our key steps

follows.

 We have conducted a literature review of consistency and inconsistency checking of

requirements in the Requirement Engineering domain, comparing and evaluating their

approaches for checking inconsistency in requirements.

 From this, we identified an initial concept, outlined above, of how to support the checking of

requirements inconsistencies providing traceability and aspects of completeness and correctness

checking. The initial functional requirements are elaborated using scenarios or use case

descriptions, which were collected from published material such as software engineering and

requirements engineering books, proceedings and journals and published software developers’

page.

 We then collected and categorised the natural language terminology following the interaction

patterns of Essential Use Case from different case studies and scenarios and produced a

database of key abstract interactions.

 We developed an initial automated prototype to explore the problems and issues which extracts

and trace between textual natural language requirements and add to EUCs by using our

database of abstract interactions.

 We also developed a set of consistency rules between the textual natural language requirements

and the Essential Use Case model of requirements.

 We have identified appropriate usage scenarios and evaluated the result of using our consistency

management and tracing tool if changes are made to the requirements.

 We developed an initial prototype of our automated inconsistency checking tool by embedding

the tracing tool in Marama and connecting it to Marama Essential and Marama EUI, the User

Interface design tool.

 We evaluated the automated inconsistency checking tool by using case studies to derive

scenario examples and conducted a preliminary end user study on the usability of the tool.

 We refined our prototype by adding further analysis support for requirements quality checking

using the EUC interaction pattern; adding further inconsistency management and traceability

support features; and eventually adding traceability and consistency management support to

more requirements and UI models.

 9

 We then evaluated the refined tool with a larger formal end user study assessing the usability of

the tool.

 Finally, we derived conclusions from our review, refinement and evaluations.

1.6 Research Contributions

The main contributions from this research are as follows.

1) This research provides better support for requirement engineers and developers to work with

informal and semi-formal requirements and keep them consistent. We produce a lightweight

approach to deal with natural language requirement together with a proof of concept tool

called an automated tracing tool, which provides authoring facilities for textual natural

language requirements and checking the consistency of these requirements. We also

produce an essential interaction library and a collection of abstract interaction and essential

interaction patterns which are reusable and can be applied to various domains of application.

This library helps to enhance the accuracy level of natural language requirement and to

assist the generation of the EUC model. Papers describing this work are:

 “Automated Software Tool Support for Checking the Inconsistency of Requirements”

which was published in Proceedings of the 24th IEEE/ACM International Conference

on Automated Software Engineering.(ASE 2009), and

 “Tool Support for Essential Use Cases to Better Capture Software Requirements”

which was published in Proceedings of the 25th IEEE/ACM International Conference

on Automated Software Engineering. (ASE 2010).

2) This research provides requirements analysis support in order to validate the requirements’

consistency and quality. We provide a set of essential interactions and EUC interaction

patterns together with a visual differencing approach to assist engineers in finding

appropriate interactions for designing the EUC for a particular system. We provide

consistency management using a traceability approach for any form of requirement; a textual

natural language requirement written in a form of user scenario, abstract interaction and EUC

model. The checking process is assisted by a visual approach and a warning notification to

highlight the existence of inconsistency and other requirement quality errors such as

incompleteness and incorrectness. Papers describing this work are:

 10

 “MaramaAI: Tool support for capturing requirement and checking the inconsistency”

which was published in Proceedings of the 21st Australian Software Engineering

Conference (ASWEC 2010);

 “Managing consistency between textual requirements, abstract interactions and

Essential Use Cases” which was published in Proceedings of the 34th Annual IEEE

International Computer Software & Applications.(COMPSAC 2010);

 “Marama AI: Automated and Visual Approach for Inconsistency Checking of

Requirements” which was published in Proceedings of the 18th Requirement

Engineering Conference. (RE 2010), and

 “Improving Requirement Quality using Essential Use Case Interaction Patterns”

which was published in Proceedings of the 33rd International Conference on Software

Engineering. (ICSE 2011).

3) This research provides end-to-end rapid prototyping support to help confirm that the

requirements which have been captured by a requirements engineer are fully consistent with

the client’s original requirement. We provide an approach to map automatically the semi-

formal requirements in the form of an EUC to abstract an Essential User interface (EUI)

prototype model, and a more concrete UI view in the form of a HTML page. Traceability

support is also provided to allow trace forward and trace-back between the EUC model,

textual natural language and EUI prototype. A set of EUI patterns has been developed for

enhancing the accuracy of the generated EUI prototype.

 “Generating Essential User Interface to Validate Requirements” which was published

in Proceedings of the 26th IEEE/ACM International Conference on Automated

Software Engineering. (ASE 2011).

4) This research developed a prototype of an automated inconsistency checker called

MaramaAI which was embedded in the existing Marama meta-tool; and which acts as a

proof-of-concept of our approach. We evaluated the prototype using an end-user study

confirming the usability of the tool based on the Cognitive Dimensions (CD) approach [158] .

A conference paper was presented describing this approach:

 “Improving Requirement Quality using Essential Use Case Interaction Patterns”

published in Proceedings of the 33rd International Conference on Software

Engineering. 2011 (ICSE 2011).

 11

1.7 Thesis Organisation

The following chapters are organised as follows.

Chapter 2: Related Research

This chapter discusses key related research on the background of Requirement Engineering, the

Requirement Engineering Tool, Requirement Validation, and Consistency Management which

concentrates on the techniques used to check the requirement consistency and inconsistency. The

techniques are compared and analysed and the limitations and gaps for each technique are

identified.

Chapter 3: Motivation and Overview of Our Approach

This chapter presents an in-depth analysis of the problems that motivated our research and describes

an overview of our approach to end-to-end support to address the identified problems.

Chapter 4: Essential Interaction Extraction

This chapter presents our lightweight approach for capturing the essential requirements from textual

Natural language requirement using the essential interaction extraction and essential interaction

library.

Chapter 5: Managing Requirement Consistency

This chapter describes our approach for managing the consistency among three forms of

requirements; textual natural language, abstract interaction and the Essential Use Cases (EUC)

model.

Chapter 6: Improving Requirement Quality using the Essential Use Case Interaction Pattern

This chapter describes our approach to further checking consistency and other requirement qualities

such as completeness and correctness using the EUC Interaction Pattern and visual differencing.

Chapter 7: End-to-End Rapid Prototyping

This chapter describes our end-to-end rapid prototyping approach to help confirm that the

requirements captured by a requirement engineer are consistent with the client’s original

requirements.

Chapter 8: Case Studies Examples

This chapter describes three different case studies of requirements written in a form of user scenarios

that we use to demonstrate and describe the key features of our proof concept tool: MaramaAI.

 12

Chapter 9: Evaluation

This chapter discusses the evaluation results gained from a formal evaluation conducted with end

users.

Chapter 10: Conclusion and Future Works

This chapter summarises our research achievements and proposes future research directions.

1.8 Summary

This chapter discusses the core research, the implementation of automated support in managing the

consistency and validating the requirements. We have presented our research motivation and the

methodology adopted. We also described the contribution of the research in general and the

composition of later chapters.

 13

Chapter 2 Related Research

This chapter discusses requirement management and modeling techniques in general and describes

the overview of the requirement specifications and semantics used in a requirement. An overview of

requirements engineering tools (RE tools), sometimes called requirements management tools, is also

presented. The key features of RE tools are classified and compared. This leads to a discussion of

the requirements validation process and further key related research on consistency management of

requirements. Work related to consistency is then analysed and discussed. The chapter concludes

with an outline of an appropriate programme of work for checking inconsistencies, developed from the

outcomes of the analysis and discussion.

2.1 Requirement Management

Requirements are often unstable [45] as many defects occur, such as conflicts, inconsistencies and

incompleteness [46]. A document-based requirement specification approach also constrains the flow

of requirements as it is complicated to keep up-to-date and it is always difficult to inform the

stakeholders of any changes made [45]. Storage of newly added information and links between

requirements and design such as use cases are also identified as cumbersome [45]. To overcome

these problems, requirements management is essential. This involves activities such as finding,

organising, documenting and tracking the requirements for a software system [47]. Requirements

management is vital from the beginning of system/software development as it responds to changes

and deals with the result of the changes [48]. Managing requirements is not limited to managing

change but also manages the multiple configuration of requirements, requirement versions and

requirement deliveries based on the allocated time, cost and correct quality [49]. Furthermore,

requirements management relates to documentation and ensures that changes are made consistently

across sets of documents [47].

There are two types of requirements management, a narrow sense and a broad sense [48]. The

broad sense focuses on managing requirements throughout the software life cycle, either during the

development phase or after deployment. The narrow sense focuses on the management of changes

in the requirements engineering domains [48]. Requirements therefore need to be managed in order

to ensure their consistency, integration and correctness [48].

 14

2.2 Requirement Modelling Technique

As discussed in Chapter 1, requirements are crucial before any system/software development starts.

Thus, knowledge and reasoning from the earlier phase of requirements engineering is necessary [50].

Requirements modeling such as goal-oriented, aspect-driven and system requirements modeling can

be used to capture the requirements [50, 51]. As also discussed in chapter 1, most requirements are

written in informal natural language. Formal language is also used to illustrate the requirements to

ensure the quality. For example, the KAOS language, which focuses on goal-driven modelling and

methodology [16, 52] is able to capture not only what but also why, who and when in a requirement

[16]. It also offers a rich ontology that can be used to specifically capture the “goal, constraints,

object, action and agent” [16] of a requirement. The other common formal language used as a

requirement specification is B specification [53]. It is particularly used to check the inconsistency of a

requirement [53]. Most requirements techniques as well as the automated verification tools currently

available are used for verifying and checking the requirement quality, such as completeness and

consistency [50].

2.3 Requirements Specification

Most of the research on requirements documentation focuses on specification languages and

notations, with a range of formal, semi-formal and informal language [54]. Requirements specification,

which is commonly generated once the requirement analyst has consulted the user [13], can be

represented either in a formal, semi formal or informal format, based on the purpose of the

specifications.

2.3.1 Formal Specification

A formal specification is defined as “the expression, in some formal language and at some level of

abstraction, of a collection of properties some system should satisfy” [55]. This definition covers the

different notions reliant on coverage of the system, the types of properties, area of interest, the level

of abstraction to be considered and the type of formal language being used [55]. It is also identified

that a specification will become formal once it is expressed in a language consisting of three

components: “rules for determining the grammatical well-formedness of sentences (the syntax), rules

for interpreting sentences in a precise, meaningful way within the domain considered (the semantics)

 15

and rules for inferring useful information from the specification (the proof theory)” [55]. A formal

specification is also closely related to the use of “mathematics, logic or algebra” [56] where the

syntax, semantics and the manipulation of rules are clearly defined in the specification language [55].

Formal specification assists in reducing errors such as ambiguity and imprecision, which obviously

leads to the inconsistency and incompleteness [16] of requirements. However, it remains challenging

for average software engineers to use formal specifications to gain fast and visible outcomes [55]. In

addition, formal specification is unable to stand alone and needs to integrate fully with other software

products and processes throughout the software lifecycle [55].

2.3.2 Semi-formal Specification

A semi-formal Specification is a combination of diagram techniques and tabular techniques which

represents information in a structured form as well as providing guidelines to structure the information

by way of manipulation rules over the specification [56]. Here, modeling notations are commonly

applied. Examples of models used are UML diagrams, such as the use case diagram, activity

diagram, sequence diagram, class diagram, state diagram and collaboration diagram, and structured

diagrams such as the data flow diagram, conceptual diagram, ER diagram and any other components

and logic descriptions. Models are commonly used in managing the requirements because models

can easily be decomposed into smaller parts, which allows them to be better understood [57].

2.3.3 Informal Specification

An informal specification is defined as the use of “unrestricted natural language” [56]. This type of

specification describes and specifies system requirements by combining the use of graphics with

semi formal textual grammar which is more “English-like” [58]. It acts as a vehicle to elicit user

requirements and help the analyst and the client to communicate their understanding in verifying a

particular requirement [58]. So far, it is the most commonly used method to represent requirements in

industry [14]. However, as described in Chapter 1, it is often vague and error-prone [13, 14].

 16

2.4 Semantics in Requirements

Apart from specifications, semantics are also applied to assist the requirements engineering process.

Semantics is a study of words and sentences [59] which helps to handle a range of issues with the

requirements analysis and indicates the classification, decomposition, terminology and prioritisation of

requirements [59]. Further, semantics is also used as a term in a range of factors, any of which might

provide the meaning of labels, functions and model decomposition [60]. Examples of common

semantics are semantics of XML, of Natural language and of the web.

2.5 Requirement Engineering Tools (RE Tools)

In order to overcome the problems existing in the requirement engineering domain as described in

Sections 2.1 and 2.2, especially in controlling and tracking the requirement changes, tool support is

required [48]. Besides, software requirement specification (which involves different stakeholders and

needs to fulfil many roles and interests) requires an automated tool to support collaborative

requirement development processes [61]. Requirements engineering tools (RE Tools) are also

commonly called requirements management tools [45]. There are currently three types of RE Tools in

the market. First are tools which have existed for several years; the second are newly developed

tools, and third are tools which are not designed for RE purposes but which are being used for RE

activities such as Microsoft Office and Microsoft Excel [45]. This latter tool is becoming the most

active market in the software development tool area [47]. There are two main categories of RE Tools:

commercial and research tools. Available commercial tools support either the full requirements

management process or just a part of the process [61]. Research tools tend to focus on a partial

solution for a particular requirements management process.

2.5.1 Examples of Commercial Requirement Engineering Tools

There are many commercial requirement management tools available on the market: for example

DOORS [62], Serena RTM [63], Caliber RM [64] and Requisite Pro [65]. These latter are leading the

commercial market [45]. They provide rigorous coverage for requirements management but not for

the requirements elicitation, analysis and validation [45] processes and so are not considered further

here. Other tools include RaQuest [66], Q pack [67] and Enterprise Architect 8 [3]. We further

evaluate these tools by self-exploration and the published information provided by the developers of

 17

these tools. RaQuest (see Figure 2.1) is a UML modelling tool which) manages the requirements of a

system or an application, as well as tracking the changes in a requirement with various supported

features [66]. It can also be used to generate documents for a whole project with different types of

forms such as HTML, CSV, Word, Excel and RTF. For managing and defining a requirements item,

the tool comes with a few facilities such as prioritisation, updating of log, definition of user attribute

and assignation of members [66]. In order to allow requirements to be viewed at a glance, a project

hierarchy and a list view are provided. For tracking the requirements, different types of relationships

are applicable: for example, the relationship between the requirements item and “connected”

requirements after any changes are made to the requirements; the relationships of requirements area

displayed in a matrix view [66]. Overall, the tool provides rigorous requirements capturing facilities but

does not provide any requirements validation facility. This is also supported by the survey reported by

INCOSE [162].

Figure 2. 1: Example of Features in RaQuest [66]

Next is the QPack tool (see Figure 2.2) which provides better traceability, especially to gather

business requirements, functional requirements or non–functional requirements, and also to track the

changes made in the requirements using the testing coverage and defects produced by using QPack

Analytic [67]. The QPack Requirements definition also acts as a single repository for requirements

management purposes. For example, prioritising and estimating efforts, managing the complete life

 18

2

1

cycle and notifying changes in a requirement [67]. Furthermore, the solution is used to manage the

software hierarchy and the traceability is measured using several KPIs [67]. The validation of a

requirement is confirmed through testing and defect tracking. To document a requirement, the tool

synchronises the changes made between the MSWord and the QPack requirements management

repository [67]. Overall it is easy to use and is able to trace requirements well but provides limited

requirements validation support by itself as it needs to be integrated with test management and defect

tracking tools.

Figure 2. 2: Example of the Qpack Tool for (1) Requirement tracking and (2) Requirement

traceability [67]

Enterprise Architect 8 (see Figure 2.3) is another example of a requirements management tool that

assists users to capture requirements in detail and to manage changes that occur in a requirement

[3]. It also provides a baseline to check for changes, deletions and additions which occur between

processes, as well as version control to allow storage of the standard XMI text file of any compliant

system [3]. Further, it provides links to different requirements assets such as to use cases,

components, software artifacts, test cases and others [3]. Here, a complex traceability graph can be

viewed for each requirement. In addition, it helps to produce detailed documentation and involves the

whole team in defining or working on the captured requirements [3]. Overall we could sum up that this

tool provides full derivation of requirements but only provides partial validation of them as it just

identifies inconsistencies from the unlinked requirements using the provided traceability facility.

 19

1

2

3

Overall, commercial tools provide quite thorough support for managing requirements, especially in

capturing requirements and managing changes that occur. But most do not provide a full checking or

validation of requirements. Therefore, RE research tools have been developed to provide solutions

for problems faced by the commercial tools.

2.5.2 Examples of Research Requirement Engineering Tools

As described in Section 2.5 research tools are more focused on partial solutions for particular

requirements processes. For example, EA-Miner (see Figure 2.4), which is developed by Sampaio et

al. [9], was mainly developed to identify and separate concerns, either aspectual or non-aspectual,

with the relationships of their crosscutting at the level of requirements [9]. The tool supports four

requirements processes. First is elicitation, where the tool assists by allowing the requirements

Figure 2. 3: Example of the Enterprise Architect 8 tool in managing: (1)
requirements (2) internal requirements and (3) exporting the internal

requirements [3]

 20

engineer to focus on a particular section of the input documents and to help the RE rapidly gain

understanding of the system [9]. Next is the identification of an activity where an internal

representation is produced from the input file as a Java object for the use of specific techniques such

as a viewpoint or scenario-based presentation of results or screening out of irrelevant abstractions

[9]. The third process supported by this tool is presenting the results for the internal model in various

ways, either in the form of diagrams or textual representation [9]. Finally, the tool also helps with the

process of screening out and generating the requirement specifications documents by translating the

model which has been refined to different formats such as XML, DOC and others[9]. However, this

tool is in need of still further improvement to identify the early aspects of both functional and non-

functional requirements, and also to enhance the functionalities of screening out to lessen the

requirement engineer’s efforts in using the tool [9].

In addition, Adisa et al. [8] developed an open-access prototype tool called Living Requirement Space

(LRS) to gather ERP system requirements using Web 2.0 technologies (see Figure 2.5). The tool

helps to handle the problem of constantly changing business requirements characteristics [8]. It acts

as a platform to allow collaboration at any stage of the requirements life cycle for all domain experts,

business analysts and other ERP stake-holders [8]. The requirements life cycles involved are

identification, analysis and management of business requirements, mainly for ERP systems [8]. It

helps to collect, store, retrieve, control the versions and relationships with other requirements and to

manage change requests [8]. The analysis of requirements is conducted via forums and discussion

Figure 2. 4: Example of the EA-Miner tool in eliciting the input requirement(1)
and identifying concerns (2) [9]

 21

1
2

3

as well as prioritising requirements [8]. As it uses Web 2.0 technologies, it means that it is accessible

to all users from various places, but there is still a problem if there is no internet connection or server

available.

Another example of a requirements management tool is the WikiReq system (see Figure 2.6),

developed by Abeti et.al [12]. WikiReq is developed using wiki technology and is suitable to be used

as a collaborative platform for discussion among stakeholders as well as for eliciting and managing

requirements by using a semantic wiki [12]. The requirements are edited, argued and discussed

between the stakeholders directly into the wiki. In order to have a rigorous elicitation of requirements,

each requirement is acquired in a form of a Si* concept [12]. It also allows interoperability between

semantic wiki and Integrated Development Environment (IDE) Eclipse to be achieved. The approach

used in this tool also helps to reduce and simplify concepts which involve requirements and business

processes as well as helping to maintain the coherence of requirements with the use of other

technical artifacts, such as UML use cases and BPMN models [12]. The approach also relates the

Figure 2. 5: Example of the LRS Requirement document (1), LRS scenario object
and LRS task model (3) generated from the LRS tool [8]

 22

2

3

1

business requirements with the expected system starting with the use of use cases, business goals

and business processes.

Another automated requirements tool, developed by Yang et al. [7], is more focused than the other

research tools described towards the requirement validation process. They developed a tool to

automatically detect the “nocuous” coordination ambiguity in natural language requirements. Nocuous

ambiguities are harmful ambiguities that lead to misunderstanding and to errors in an implementation

[68]. They are recognized in any both conditions: present (acknowledged ambiguities) and

undetected (unacknowledged ambiguities) [68]. The tool is called Nocuous Ambiguity Identification

(NAI) (see Figure 2.7). This tool is able to identify ambiguity patterns as well as classifying the

ambiguities;; either as nocuous or innocuous cases by using the “nocuity classifier” [7]. The nocuity

classifier employs a machine-learning algorithm called LogitBoost. If a nocuous ambiguity exists in

the text, it is detected and highlighted on the screen by the tool as shown in Figure 2.7. The tool is

effective and performs well based on the experimental results gained. However, the authors believe

the tool’s performance needs further improvement and the heuristics require further enhancement.

Figure 2. 6: Example of the WikiReq system in eliciting and managing
requirement: (1) shows the actor view point page, (2) goal view point page and (3)

the WikiReq exported to Eclipse [12]

 23

The focus of the tool also needs extension to a wider range of ambiguity types, not to be limited to

only nocuous coordination ambiguity [7].

2.5.3 Discussion of RE Tools Features

We have developed a characterisation of RE Tools, shown in Table 2.1, to illustrate their strengths

and weaknesses. The classification criteria are based on our experience from exploring the tools and

study of the published literature. The criteria were also informed by the INCOSE survey provided for

Requirements Management tool [162] Classifications used are: processes (Elicitation and Analysis,

Identification, Validation and Change Management), techniques used and type of specification used.

These criteria are chosen because they are the common criteria that exist in most analyses of RE

tools although they may be expressed in a variety of different phrases. This classification also leads

us to clearly identify the gaps that still exist in the RE tools. This table shows that most RE tools

discussed handle the elicitation and analysis processes as well as managing changes and identifying

the requirements. But most of them do not handle the validation of requirements such as consistency,

correctness and completeness, although Laplante [163] states that RE tools must include verification

and validation processes and Yu [50] states that currently available requirements modeling

Figure 2. 7: Example of Results from the NAI tool in detecting nocuous coordination
ambiguity [7]

 24

techniques are mostly used for the validation process.Only NAI is very focused towards validating the

ambiguity of requirements and QPack tries to detect the defects by using a testing mechanism.

However, for these, it is proven that the validation process lacks tool support. Based on the

classification too, most tools use semi-formal specifications, as an input and output to process and

generate the results. The requirements techniques used also vary based on the process that the tool

handles. We also conclude that most commercial tools are more interested in using or applying the

traceability techniques, especially in tracking changes and eliciting requirements. The research tools

use different techniques such as heuristics, early aspects, the wiki approach and interviewing and the

brainstorming approach.

As there is little empirical research in validating requirements, we investigate further the key related

research in validating requirements focused on the inconsistency problems. Firstly, however, the

idea of requirements validation is discussed in general terms.

R
eq

ui
re

m
en

t

To
ol

Processes

Technique
Used

Type of
Specifica
tion used

Source of Evaluation

El
ic

ita
tio

n
&

An
al

ys
is

Id
en

tif
ic

at
io

n

Va
lid

at
io

n

C
ha

ng
e

m
an

ag
em

en
t

R
aQ

ue
st

 × × × √ Features/

Relationship

Semi

formal

Self-

exploration/information

from developer/INCOSE

Q
Pa

ck
 √ × √ √ Traceability Semi

formal

Self-

exploration/information

from developer

En
te

rp
ri

se

ar
ch

ite
c

t 8

√ × √

(partial)

√ Traceability Semi

formal

Self-

exploration/information

from developer/INCOSE

EA
-

M
in

er
 √ √ × × Early aspects Semi

formal

Published literature

LR
S

√ √ × √ Interview,

brainstorming,

Informal
Published literature

W
ik

iR
eq

 √ × × √ Wiki approach Semi

formal/

Formal
Published literature

N
A

I × × √ × heuristics Informal Published literature/self-

exploration

Table 2. 1: Comparison and Classification of RE Tool features

 25

2.6 Requirements Validation

Requirement validation is a process executed throughout the system life cycle [69]. It ensures the

correctness, completeness and consistency of a requirement [69]. The descriptions of these, based

on different points of view are shown in Table 2.2. The validation process also helps to determine

that the end product is correct and complete as well as guaranteeing that the system developed

satisfies the stakeholders’ original requirements [69]. Late validation of requirements could cause

requirement quality to suffer [25]. In order to make sure the original requirements of stakeholders are

met, the requirements captured by the requirement engineer/analyst need to be entirely precise and

consistent from the early stage of the RE process. Inconsistencies of requirements are identified as

adverse and need to be avoided [22]. Hence, further related research to validate requirements

focuses on managing the consistency/ inconsistency of requirements is discussed.

 26

Type of Requirement Quality Description

Correctness “Describes the correspondence of that specification with
the real needs of the intended users in much the same
way that correctness of a piece of software refers to the
agreement of the software part with its specification.” [18]
“A program is considered correct if it behaves as
expected on each element of its input domain” [70].
“An SRS is correct if and only if every requirement
represents something required of the system to be built”
[168]

Completeness “Implies that all customer’s needs will be met when the
system is constructed.” [18]
“A requirement must have all relevant components” [71]
“A requirement’s document should include requirements
that define all functions and the constraints intended by
the system user” [72]
“It specifies required behaviour and output for all possible
states under all possible constraints.” [73]
“Responses of the software to all realizable classes of
input data in all realizable classes of situations is
included” [167]

Consistency “No two or more requirements in a specification contradict
each other and the case where words and terms have the
same meaning throughout the requirement’s
specifications (consistent use of terminology)” [18]
“Requirement uses terms in a manner consistent with
their specified meanings.” [71]
“Requirement should be understood precisely in the same
way by every person who reads it.” [71]
“Requirements in the document should not conflict.” [72]
“Consistency is also referring to situations where there is
no internal (logical) contradiction in a specification of a
system.” [20]
“Consistent specification exists when there is a
computational model for its implementation and the
specification is valid when it satisfies the user
requirements.” [19]
“An SRS is internally consistent if and only if no subset of
individual requirements stated therein conflict” [167]

Table 2. 2: Type of Requirement Quality and its Description

Based on all the definitions, we sum up our understanding of consistency as it matches our work.

Consistency happens when any of the requirements components are intended to be equivalent. The

requirements components also should have the same naming and the sequence of the requirements

need to be in the same order throughout the software requirements specification. In addition,

 27

consistency happens when the requirements captured by a requirements engineer are confirmed as

satisfying the clients’ intended need. We assume all the requirements are complete when there are

no missing key definitions or constraints for the software system. We also assume all the

requirements are correct when the requirements captured accurately, and with no redundancy, reflect

the actual requirements and needs of clients.

2.7 Consistency/ Inconsistency Management

As discussed in Section 2.2, current available requirements techniques are used to verify and check

the requirements qualities such as completeness and consistency [50], and to detect errors such as

inconsistency and incompleteness. However, it was shown in Section 2.5.3 that few requirement tools

available in the market provide facilities for the validation process. Thus, we would like to investigate

related research done by others in validating requirements quality, especially consistency. Other

researchers have devoted their studies to how to manage the consistency of requirements. There are

efforts to check the existence of inconsistencies in either informal specifications, semi-formal

specifications or formal specifications [17, 74], There is also work on managing the consistency in the

architecture model and other design models [26, 51, 75]. In addition, there are heavyweight or

lightweight approaches used to check for the inconsistencies. Further, there is also work on repairing

inconsistencies and tolerating their presence [22, 76, 77]. There are many techniques to check for

inconsistencies and to maintain the consistency of requirements [78]. Techniques used to check for

consistency or to handle the inconsistency based errors include traceability and analysis approaches.

Analysis approaches can be categorised as either formal analysis or heuristic analysis. Different

types of specifications are also used to represent the requirements before consistency checking is

conducted. Semantics is sometimes applied to the requirements to assist the validation process. We

will explore work relating to these issues through the remainder of the sections.

2.7.1 Consistency/ Inconsistency Management Techniques in General

2.7.1.1 Traceability

Traceability is defined as the “ability to describe and follow the life of an artifact which is developed

during software lifecycle in both forward and backwards directions” [79]. Traceability is an important

approach to manage requirements effectively [5] and a vital practice in an organisation [31].

Traceability must also cover all aspects in terms of scope and coverage, including system level scope

 28

and all four types of coverage, as defined by Bashir et al [80]. First is the traceability between an

origin of a requirement inclusive of source, stakeholders and requirements. Next, is traceability

between the requirements and other requirements such as functional and non-functional

requirements. Then, is traceability between the requirements and other artifacts which provides a

trace between different requirements forms such as specifications, designs and test cases. Finally, is

traceability between other artifacts and other artifacts such as considering links and dependencies

among artifacts.

Cysneiros and Zisman (2008) assert that traceability relations help in a number of activities in

software development [32]: for example, the evolution of software systems, compliance verification of

code, requirements validation, aspect identification and any design decision. Traceability is often

informally practised in tracing requirements to and from a software design [5]. Some traceability

techniques are assisted by information retrieval (IR) a derived technique to support identifying

traceability links. However, IR is unable to identify all links [32, 79]. Although traceability is important,

it is sometimes not applied in practice as it is too difficult and costly [31].

2.7.1.2 Analysis Approach

There are two types of analysis identified for checking consistency/inconsistency: heuristic analysis

and formal analysis.

2.7.1.2.1 Heuristic Analysis

“The term heuristic means a method which, on the basis of experience or judgement, seems likely to

yield a reasonable solution to a problem, but which cannot be guaranteed to produce the

mathematically optimal solution”[81]. Heuristic analysis is used without the structure of a

mathematical model for making decisions [81] and it is believed that it could assist in specifying the

essential process for achieving the goal state [82]. It can also be used in a particular situation to

specify the process involved in detecting an exception and taking corrective action [82]. Often, an

heuristic algorithm is applied as it helps to provide a close right answer or solution for a specific

instance of a problem [83].

 29

2.7.1.2.2 Formal Analysis

“Formal analysis helps to detect many types of errors in a requirements specification either manually

or automatically” [84]. Formal analysis uses formal notation which can be used to analyse and

manipulate mathematical operators and mathematical proof procedures [84]. It also provides benefits

in testing and proving the “internal consistency including data conservation and syntactic correctness

of the specification”[85].

2.8 Related Work of Consistency/Inconsistency Management

2.8.1 Traceability

Many approaches have been proposed to maintain consistency and check inconsistency. One of

them is traceability. The traceability technique is divided into two categories; forward/backward trace

and derived. Olsson and Grundy developed a Web-based tool to summarise artifact data and to

support basic explicit linking of elements in different representational models [75]. The method uses

traceability and manages fuzzy relationships between high-level software artifacts (requirements),

uses case models and black box test plans. The aim of this tool is to assist the inconsistency

management for all changes made to artifacts. However, automation is impossible and that is needed

to create a relationship. Further, “high level natural language often lacks well-defined formal

abstraction for all software artifacts representation” [32].

Cysneiro and Zisman implemented the automatic generation of traceability relations among various

types of models generated during the development of agent-oriented systems and identification of

missing elements in the Prometheus model and JACK code specification [32] to check completeness

in order to ensure the consistency between model and code specification is maintained, especially in

a huge and complex system which involves different stakeholders. Rule- based approaches and

Prometheus methodology are used with an extended version of XQuery to represent rules in

traceability. However, this is still preliminary work and enhanced verification is needed.

Another technique to reduce inconsistencies among product lines was developed by Jirapanthong

and Zisman [86]. XtraQue supports the generation of traceability relations in different types of

documents that are capable of representing different levels of the development lifecycle of a product

line [86]. It can define the semantics between the artifacts being compared and can also be used to

bridge various activities and stakeholders taking part in the product line engineering [86]. It generates

nine traceability relations such as satisfiable, ability, dependency, overlaps, evolutions, implements,

refinements, containment, similar and different features based on OO documents created during

 30

development [86]. An extension of XQuery is used to represent the traceability rules and consider the

semantics of documents, the traceability relation of various types of traceability with the product line

domain and the grammatical roles of the words in textual parts of document, together with the

synonyms and distance of words being compared [86]. A Rule-based approach is also applied to

automatically generate the traceability relations among elements of documents that are created

during the development of the product line system. Nevertheless, the “existing rules failed to identify

between requirements and object-oriented specification, besides changes in the documents require

the traceability to be re-executed” [86].

Goknil et al. [87] proposed an approach together with a tool for defining requirement relations using

traceability. They cater for issues of consistency, change management and inference of

requirements. First order logic is used to support the consistency checking of relations and to inferring

new relations. However their approach only supports textual requirements and lacks consistency

management between textual and other requirement artifacts such as use case and activity diagrams.

There is also no automation provided for modeling requirements. The visualised result of either

inferred relations or inconsistencies needs to be interpreted manually by the requirements engineer,

which can lead to errors [87].

There is also a “technique to recover traceability links between source code and free text

documentation” [88] using information retrieval which applies to both the IR techniques, namely as

probabilistic, and vector space. This technique is applied to trace C++ and Java source classes to

manual pages as well as the functional requirements. However, the effectiveness of this technique

becomes less prominent when the number of familiar words between the source code component

identifiers and the documentation item decreases [88].

2.8.2 Analysis Approach

2.8.2.1 Heuristic Analysis

As described earlier, analysis approaches are divided into two categories; heuristic analysis and

formal analysis. The analysis approach is used together with requirement specifications and

semantics. Heuristic analysis is one of the common techniques used to check for consistency or

inconsistency of requirements. For example, Koth et al. [89] developed a technique to check the

inconsistency of XML documents from a semantic point of view using an incremental attribute

evaluation approach. This technique introduces incremental facilities and evaluates the attributes

associated to XML semantics by “adding an incremental strategy to XML semantic checker evaluator”

[89]. It also uses the Propagate algorithm and checks the consistency of documents repeatedly until a

 31

consistent document is produced. The efficiency of the evaluator is improved by lessening the re-

evaluation process and evaluating the affected area only in the XML and not the entire document

[89].

In addition, Chitchyan et al. implemented an automation support for requirements annotation, which is

the extension of the WMatrix natural language processing tool suite called RDL. “RDL is a tool

enriched with the existing natural language requirements specification with semantic information

derived from the semantics of the natural language itself” [90] and MRAT tools (Multidimensional

Requirements Analysis Tool) by Waters [91] which is an Eclipse plug in are used to facilitate the

composition and analysis. MRAT is used to analyse the temporal relationship of RDL composition

and it is believed that finding the temporal dependencies is useful to determine the points of

sequencing conflicts and to avoid the conflicts and inconsistencies from happening.

Kroha et al. [92] investigated the use of semantic web technology to check the consistency of

requirement specifications. They transform the static part of UML models that illustrate requirements

into a problem ontology and attempt to discover inconsistencies by using ontological reasoning to

uncover contradictions [92]. This work does not, however, check for behavioural consistency as it

cannot represent dynamic aspects of UML specifications in the ontology.

Much research has been devoted to checking inconsistency and consistency using semi-formal

specifications and heuristic algorithms. Egyed [26] implemented a UML-based transformation

framework to check inconsistency and help in comparison. The author introduced an automated

checking tool called VIEWINTEGRA which used consistent transformation to translate diagrams into

interpretations and used the consistency comparison to compare those interpretations with those of

other diagrams [26]. This technique can check inconsistencies without the help of third party or

intermediate languages. The limitation of this tool exists when checking the consistency between an

object diagram and state chart diagram or vice versa, as they cannot be transformed directly and

need to be changed to a class diagram first in order to obtain the consistency results [26].

Sabetzadeh et al. [93] proposed a tool-supported approach for checking the consistency of a

distributed model and enabling the checking for the inter-model properties of a set of models. This is

done by checking of properties that merge within the intra-models [93]. A set of generic expressions

is also developed to characterise the recurrent patterns in a structural constraint of a conceptual

model. This approach currently works in the homogeneous model only as the merger cannot be

defined at a notational level and this leads to a challenge in implementing this approach in a

heterogeneous model [93].

In addition, Groher et al. presented an incremental consistency checker which allows one to define

and redefine constraints [94]. This approach allows engineers to define and change the meta model

and model any time “without manual annotation or restriction on the constraint of the language used”

 32

[94]. This approach is implemented in a tool called “Model analyzer” which highlights the

inconsistency of models in red [94].

Sinha et al. introduced a modeling environment called “Archetest” which adapts a unique bi-layer

approach for precise modeling and automates the analysis [95]. It also analyses consistency and

completeness. This approach accepts vague use case descriptions and helps to provide accuracy to

them through a wizard-driven process [95]. However, more case studies are needed to test this work

in order to prove its early results [95].

Kim [96] implemented a technique to assist the verification of user requirements expressed in natural

language. This technique verifies the discrete event simulation model using a DEVS formalism

together with a prototype tool called VERIDEV [96]. The verification consists of “consistency

verification between user requirements specification and class diagram, consistency verification

between user requirement specification and sequence diagram of UML and the consistency

verification between sequence diagram and DEVS diagram” [96]. This technique is hard to apply

because of difficulties faced in expressing it in the DEVS graph [96]. As a result, future enhancement

is needed to automate the technique of integrity checking for the text base used in describing a model

[96].

Chanda et al. proposed a formalisation methodology for the three most common uses of a UML

diagram in capturing the static and dynamic aspects of an object oriented system: use case diagram,

activity diagram and class diagram in order to emphasise inter-diagram consistency, syntactic

correctness and traceability of requirement by using several formal rules [97]. A regular expression

featuring (eg. +, *) is used to enhance the simplicity and understanding [97] of the grammar.

Jurack et al. presented a criteria for checking the consistency of refined activity diagrams which

includes pre- and post- conditions [98]. The work used graph transformation rule sequences to define

the behaviour of the refined activity diagrams to check consistency. This allows the analysis of a set

of sequence to be conducted in a static manner [98]. However, the graph transformation rule cannot

be checked with the static analysis and needs stronger reduction mechanisms to allow consistency

analysis for a wider range of activity diagrams. For now, a restriction and assumption is applied to

deal with the problem [98].

Litvak proposed an algorithmic approach to check the consistency of UML sequence diagrams and

state diagrams [23]. An automation tool called BVUML is used to implement the consistency check

algorithm [23]. The proposed algorithm helps in handling “complex state diagrams such as fork, join

and concurrent composite states” [23]. The algorithm uses a breadth first search over the state

diagram and a hybrid sequence state diagram is introduced to visualise the process with which the

diagram state is associated to the sequence diagram [23]. This tool is sufficient for checking the

consistency of a UML dynamic diagram, suitable for the standard UML and is demonstrated to be fast

 33

error detector. It is easy to use and does not require first or second order logic knowledge to generate

or to understand the tool. In contrast, “BVUML do not support purely syntactical states such as the

stub states” [23].

Whittle and Schumann presented an algorithm that works with a prototype tool in Java to automate

the generation of a UML state-chart from a scenario in a form of sequence diagram [99]. Semantics

information is added to the sequence diagram to detect and report inconsistencies [99]. The concept

of hierarchy and structure in a form of class diagrams is used to show the merging of multiple

sequence diagrams in a single state-chart [99]. However, the generated state-chart is just a skeleton

and can be a substitute for manual refinement and modification [99].

Likewise, Li et al. [100]. have also conducted research into the consistency checking of UML

diagrams. The research proposes a technique for checking the consistency of a UML requirement

model which comprises use cases and conceptual class models with system constraint [100].

Together with this, the consistency of the requirements can be checked logically using semantics.

However, this proposed technique only focuses on the aspect of formal model of requirement

consistency. In order to validate the functional aspect of a requirement, a prototype generator tool is

developed. It helps to automatically generate Java source code from the formal model of a

requirement [100].

Zapata et al. detect consistency problems in UML diagrams by implementing a novel approach using

Xpath and Xquery together with a rule-based system [101]. The reason for using them is because of

“their strange mix of suitability and standardization” [101] that they can achieve. The main focus is to

assess the “consistency rules between UML class diagram and use case diagram”[101]. These

diagrams are integrated with OCL to avoid the ambiguities and guarantee the well-formed models in a

formal way[101].

Alternatively, Satyajit et al. [20] suggested finding and specifying consistency conditions (CCs) for the

domain in the initial abstract formal specification with the aim of recovering logical errors during the

early phase of development. The RAISE Specification Language (RSL) [20] is used in writing the

formal specification for this purpose. This tool combines the inspection of a specification and testing

the executable specification of a prototype using test cases [20]. The intention is to validate the

specification against requirements and to ensure the specified CCs are respected and maintained by

the operation defined in the specification [20]. However, CCs are not used for checking the

consistency of a requirement specification.

Blanc et al., proposed an approach to deal with inconsistency based on model construction

operations, which uses logical constraints to define inconsistency rules and it is also meta model

independent, which allows both intra-model and inter-model inconsistency rules to be defined and

checked [102]. The consistency check is performed in a batch mode where the whole model is loaded

 34

into the memory and the verification starts by running the rules successively on the entire model

[102].

Engels et al. presented a technique to specify and analyse consistency [103]. In order to conduct the

checking process, models are mapped to semantic domains and behavioural constraints are

analysed [103]. The problem of state-chart inheritance is demonstrated for this methodology [103]. A

hybrid, rule-based notation is used. This rule combines textual styles of an attribute grammar with the

queries of the meta model expressed as visual patterns [103]. The limitation faced by this technique

is that it only supports partial resolution, although complete mapping is supported, and it needs tool

support to generate a model compiler for the rule-based description provided [103].

Ha and Kang proposed several verification rules to check for consistency between UML static and

dynamic diagrams such as class diagram, component diagram, state-chart diagram, sequence

diagram, activity diagram, use case diagram, deployment diagram, collaboration diagram and object

diagram [104]. A relation graph is used to show the relationship between diagrams. Consistency rules

are developed from the relationships of both the object and dynamic diagrams [104]. However, these

rules need help from the OCL (Object Constraint Language) as the rules need to first be transformed

to formal language if the consistency checking is to be conducted automatically [104].

Ryndina et al. proposed a technique to establish the consistency between the business process

model and object life cycles [105]. They defined two consistency notions for a process model called

“life cycle compliance and coverage” [105] expressed in terms of conditions. A prototype tool that acts

as an extension to the IBM WebSphere Business modeller was developed to help capture the

existence of object states in the business process model, generating the life cycle from the process

model and checking the consistency of consistency conditions [105]. This technique still has to be

evaluated using a larger case study [105].

El-Attar and Miller proposed a structure presented in use case models called a Simple Structure Use

Case Description (SSUCD) with tool support called SAREUCD which helps automate the detection

and elimination of possible defects caused by inconsistencies [106]. The authors invented a

technique called Reverse Engineering of Use Case Diagrams (REUCD) to generate use case

diagrams from the SSUCD [106]. The SSUCD and REUCD processes allow the use diagram to be

generated systematically and helps guarantee the “consistency between the descriptions and their

diagrams” [106]. However, the tool support still requires human intervention to fill in the details in

each use case description before the tool can detect the inconsistencies. It also requires manual

inspection for inconsistency if the segments are written in unstructured natural language [106].

Another approach is presented by Perrouin et al. for managing the inconsistencies amongst

heterogeneous models by using a model composition mechanism [107]. The information of the

heterogeneous models is translated to a set of model fragments [107]. Fusion is applied to build a

 35

global model which allows various inconsistencies to be detected, resulting in the global model [107].

Automation is applied to compute traceability links between the input model and the global one and

thus supports the reporting of the inconsistencies on the original model and helps to resolve the

cause of the inconsistencies [107]. However, the classification of which inconsistencies need to be

resolved is not provided [107].

Mehner et al. proposed an approach for analysing the interaction and the possible inconsistencies

that might exist in the requirement modeling phase [108]. A variant of UML with a use case-driven

approach using use case diagrams, activity diagrams and class diagrams is applied [108]. The

concept of pre- and post-condition using the UML variant of an activity is defined [108]. This requires

more effort and it is recommended that there is an early formal analysis to overcome this problem

[108]. The approach uses a formal technique called graph transformation with a tool support, AGG,

in order to provide the chosen UML variant with formal semantics and allow a thorough and automatic

analysis to be conducted [108]. This approach also allows the analysis of the interactions between

the functional and non-functional aspects to be conducted automatically [108].

El-Mahded and Maibaum developed a tool called GOPSD to develop aspect-based process control

and checking for the consistency and completeness of a requirement [109]. The tool adapts the

concept of goal-driven analysis which was adapted from the KAOS technique for addressing process

control systems [109]. The tool offers an animation utility which helps to reason about the taken

actions in terms of “aspect goals, cycle by cycle and during the symbolic execution” [109]. Further

evaluation is needed for these purposes. GOSPD also covers the early stage of development and it

“refines the abstract user’s needs to functional and formal specification” [109]. The tool also

transforms the requirements automatically to B specification but the requirement needs to be

corrected and validated first by the user before the transformation can be conducted [109].

In addition, Grundy et al. introduced a methodology of aspect-oriented component engineering to

overcome problems related to component requirement engineering [110]. Their methodology

analyses and characterises the component based on the “different aspects of the overall application a

component addresses”[110]. The authors developed tool support which helps to specify aspects of a

component in a component based software development environment [110]. The tool is equipped

with basic validation checking in order to make sure all aspects of a requirement are met correctly

[110]. This tool also provides a basic inconsistency management technique to help to manage the

evolving aspect-oriented requirements including a highlighting of the change facility for all types of

views and consistency checking via the matching of required links between components [110].

Another work related to checking the consistency using an aspect-oriented paradigm, this time for

web applications, is by Yu [111]. The author presents a tool called HILA which was designed as an

extension of UML state machines to model the adaptation rules for web application [111]. However,

 36

this work is believed not to be limited to web engineering applications only but may also be applicable

to various other areas [111]. HILA could be helpful in improving the modularity of models and helps to

automate the consistency checking of aspects to ensure rules are always in a consistent state [111].

However, HILA is likely to be useful to model the content and presentation only if it is modeled in a

base machine [111].

To sum up, there are many approaches and techniques used to check or manage consistency and

inconsistency of requirements by using heuristic analysis. Some of the techniques

[23],[26],[92],[93],[95],[98],[99],[105] are well generated but most are still immature and need further

enhancements. We have identified that most work needs tool support for the checking process.

However, it is also true that, most work integrates with other available tools and are not purely built for

consistency checking, especially when this needs to deal with processing natural language. Most

tools or approaches do not support rigorous checking for consistency but only support partial solution

for checking or identifying inconsistency and with a homogeneous model of a set of requirements. It is

also identified that the tools developed still need human intervention to interpret the consistency

results or invoke the action to check for the inconsistency although impressive and high level form of

techniques are applied.

2.8.2.2 Formal Analysis

There are many researchers dedicated to checking the consistency of requirements using formal

analysis together with the use of different types of requirement specifications and semantics. For

example, Nenwitch et al. presented a lightweight framework called Xlinkit in order to check the

consistency of distributed and heterogeneous documents using first order logic and lightweight

mechanisms [29]. The main contribution of this framework is the definition of an extended semantics

based on first order-logic and producing hyperlinks which diagnose inconsistencies across the

specifications at different stages. The incremental checking technique used can also decrease

checking time. However, XLinkit’s limitation is that it lacks discovery of problems if the inconsistencies

are recognised.

Other work by Nentwich et al. proposes a repair framework for inconsistent distributed documents

[76]. They generate interactive repairs from an input of a first order logic formula that constrains the

documents. Their repair system provides a correct repair action for each inconsistency together with

available choices to handle the problem. However, they face problems when the repair actions

interact with the grammar in a document, and also actions generated by other constraints [76]. Their

approach also fails to identify a single inconsistency that may lead to other inconsistencies [76].

Other than that, Chen and Ghose developed an automated tool using the semantic web technology

called SC-CHECK. This tool mainly focuses on the consistency management in distributed

 37

requirements engineering, especially in detecting inconsistency and “supporting resolution in the

context of industry-standard requirements specification notations” [112]. Prolog is used to identify the

violated consistency rule and possible errors or elements that need to be repaired. It uses an informal

requirement specification and semi-formal representation in a form of sequence diagram for

abstracting the formal representation to detect and resolve the inconsistencies [112]. It also provides

the user with guidance to attempt to correct the inconsistencies. This tool has been tested via a

medium scale case study and the results seem beneficial.

Zowghi et al. [17] proposed a technique to detect inconsistencies in requirements and the way to deal

with them in a formal manner. A prototype tool named CARL is used to test the technique and it can

perform an exhaustive search for plausible scenarios which cause latent inconsistencies to emerge

[17]. A reasoning engine called CARET is applied to natural language requirements in order to

analyse the inconsistencies within the translated logical statements of requirements. A simple engine

for natural language parsing called Cico is used as a generic syntax-based parser by taking a subset

of the English grammar as its domain [17]. It uses an application of the fuzzy rewriting system to a

text and uses heuristic optimisation strategies and backtracking too. It is also believed that it could

help in identifying and handling inconsistencies in Natural language requirements. Although it is

useful in identifying, analysing and handling inconsistencies, a more expressive logic to specify more

complex requirements is needed and, in order to hold the extended logic, the NL translation needs to

be refined . Then, Gervasi and Zowghi [30] used the tool in detecting, analysing and handling

inconsistencies in requirements for various stakeholders. It extends the tool with employing the

theorem-proving and model- checking techniques in the context of default logic and it shows how to

deal with the problems in a formal manner. The limitation of this tool is that the propositional logic

used is not powerful enough to model adequate detail and accurate complex system behaviour.

Propositional logic is not meant to detail the way the system should behave but is only suitable for

high-level requirements [30].

Taibi et al. [113] implemented an algorithm for self-checking consistency for the classes using Object-

Z specification. Verification utilises a test of specification, model abstraction and model checking. This

algorithm conducts self-consistency only for each class and does not ensure consistency for the

whole specification [113].

Kaneiwa and Satoh introduced an approach for conducting well-mannered consistency checking of

UML class diagrams by translating the identified inconsistencies to first-order predicate logic [114].

They introduced an optimised algorithm with respect to the size of the class diagram to calculate “the

respective consistencies of class diagrams of different expressive powers in P, NP, PSPACE, or

EXPTIME” [114]. This work also helps to confirm the restrictions’ existence for the class diagram in

order to avoid any logical inconsistency.

 38

Lamsweerde et al. [24] proposed a framework which is based on both formal and heuristic techniques

to discover the conflicts and divergences of the goals or requirements of a domain property from a

specification. The notion of boundary condition and domain knowledge plays an important role in this

technique and the KAOS language is chosen as the specification language. Here, model checking is

used to detect divergence among goal assertion [24]. It helps to capture the existence of different

types of concept during the elaboration of requirements [24].

Kozlenkov and Zisman manage the consistency between natural language requirements and

software artifacts that are generated during different phases of software system development, using a

specific tool which embodies a goal driven and formal reasoning approach inclusive of “goal

elaboration, ordered abduction and morphing of path” [74]. This is applied together with the use of

knowledge-based and rule-based approaches. The weaknesses of this tool are that the

inconsistencies discovered are limited to those related to the structure that has been recognised

grammatically in natural language sentences only, and that the type of structures used needs to be

expanded in order to allow the approach to be used in a large scale application [74].

Mu et al. [115] presented a merging-based approach to handling inconsistency by prioritising

software requirements locally using the Viewpoints framework, which consists of requirement

collection with local prioritisation. Then the “requirement collection with local prioritization is

transformed into stratified knowledge base” [115]. The authors choose to use categorisation of the

priority - High, Medium and Low. The first order logic is the best suited for this approach. Priority of

requirements is measured to be a beneficial clue in resolving conflicts and making trade-off decisions.

Conversely, there are problems that occur while presenting the merging process. In a few cases, the

user may not obtain a stratified merge requirements collection and the introduced model-based

merging operators could lead to difficulty in explaining the additional formulas in term of the viewpoint

demands of the merge result [115].

Weitl et al. implemented an approach based on user support with the combination of pattern-based

specification, temporal logic and ontology [116]. A Description Logic (DL) specification is used to

represent the ontology and the content of the documents [116]. The verification framework is

knowledge-based and the technique to support user specification is based on example- and a

pattern-based approaches which are themselves based on the concrete examples of both correct and

incorrect documents. This approach aims to check the consistency of high level structure with the

content document and to check semantic consistency criteria on the context-dependent documents

with high expressiveness, flexibility, applicability and high degree usability [116]. However, a broad

knowledge of the logic used is needed in order to interpret or create the diagram and to apply the

temporal formalism for solving the verification problems [116].

 39

Scheffczyk et al. propose “formalizing the temporal consistency rules and generating a few domain

specific repairs for inconsistencies” [117] of an industrial specification, using specification examples

which focus on the functional requirements of a specification such as business processes, use cases

and dialogues [117]. Therefore, a semi-formal consistency management toolkit called CDET is used

to improve the quality of the industrial requirement specification. CDET can be used as a tool to

“check the semantics at different granularity levels and integrates fully with established practices”

[117] and daily project work. CDET is also integrated smoothly with the arbitrary revision control

system (RCS) with the aim to establish a work process. CDET uses derivation of temporal predicate

logic to facilitate consistency checking across the document revisions and it is suitable for checking

any property of a document that is computable [117]. Although this tool is profitable for

heterogeneous documents, experts in the field of logic are required to formalise the consistency rules

[117].

Sousa et al. [53] presented an approach of using formal specification to check for inconsistency in a

requirement. They used the B specification as a formal language derived from a controlled natural

language [53] in the form of use case descriptions or scenarios together with the B method - a well-

known formal method based on “first order logic, a set of theory, integer arithmetic and generalized

substitutions” [53]. The work automates the analysis of requirement consistency against constraints

(safety property) with the B method tool to reveal the inconsistencies in the specification. However,

the work still lacks supports in terms of quality dimensions such as correctness and timeliness, lack of

automatic consistency recovery such as a suggestion for changes and lack of support for a complex

scenario and definition of grammar rules for use case scenarios and properties [53].

2.9 Analysis of Consistency / Inconsistency Management
Research

From the discussed related work, we present a heat map in Figure 2.8 to show a categorization of the

corpus work based on the type of specifications used, the type of contributions from all the

researchers, type of semantics applied to each work and the type of techniques used to manage the

consistency of requirements. The categorisation is mapped using colours (multiple tones of dark

orange to light yellow) whereby mapping towards dark orange includes a higher percentage of papers

following into this category.

 40

SPECIFICATI
ONS

CONTRIBUT
ION

SEMANTIC
S TECHNIQUE USED

Formal Tool Web Traceability Analysis Approach

Semi formal

Methodology

Natural
language Forwar

d Derived
Formal
Analysi
s

Heuristic
Analysis

Informal

Algorithm

Artifact

1. First
order
logic

1. Reverse
engineering

Framework

No

semantic

2.
Theorem
proving

2. Algorithm

 Rules XML 3. Model
Checking

3. Early
aspects

 4. Formal
reasoning

 4.
relationship

Legend:
5. Fuzzy
logic

5. Model
composition

6.
Temporal
logic

6. Rule based

 7. Prolog 7. Ontology
 8. OCL 8. Goal driven

9. Breadth
first Search

10.Transform
ation

11. Model
merging

12.
Constraints

 13. Condition

14. Hybrid
Rule

15. Regular
Expression

 16. Bi-layer

17. Graph
transformatio
n

Figure 2. 8: Heat Map Representations: Categorisation of the Type of Contributions,
Techniques, Specifications and Semantics Used for Checking the

Consistency/Inconsistency

To sum up, there are three types of specifications used to represent the requirements in a form of

formal, semi-formal or informal specification. The specification most often used is semi-formal. The

types of semi-formal specification used are UML models, structured diagram, scenario/textual

description, description logics and other components. Most of the semi-formal specifications used are

UML models. A UML model is described as the design representation of the source code and this

diagram is useful in making the source code understandable [118]. Semi-formal specifications also

receive great interest here because the models are easily decomposed into smaller parts and this

allows them to be better understood [57]. This feature encourages much works done to check the

consistency between models although some studies concluded that maintaining consistency between

High

Low

Usage

 41

models is not important but expensive [57]. Another specification used to represent requirements in

performing consistency checking is informal specification written in natural language. The least used

representation is formal specification. This is because the use of formal specification is challenging

and hard for the beginner to use for fast results [55].

There are also five types of contributions for conducting consistency checking work; tool,

methodology, algorithm, framework and rules. Tools gain most interest from researchers to perform

the checking for inconsistency. This is followed by the development of methodology and algorithm.

Quantitative evidence proves Yu’s [50] point of view discussed in the previous section. The least

research focuses on developing frameworks and rules to handle the consistency.

Most of the research to date has not applied any semantics. However, there are some works which

applies the semantics of an artifact, followed by the semantics of natural language as well as the

semantics of the web and of XML.

Techniques are categorised into two types; traceability and analysis approaches. The analysis

approach is used more than traceability because the latter has been identified by several researchers

as being complicated and costly to use and it is also seen to have no proper method to conduct [31],

[5]. Further, the current automated approaches of traceability do not allow engineers to have proper

means to visualise the result [119][33]. Both techniques are then divided into several sub-techniques.

Traceability is divided into forward- and derived techniques. Here, the forward technique is used more

than the derived to present the trace. The analysis approach is divided into formal analysis and

heuristic analysis techniques. Figure 2.8 shows that, heuristic analysis is applied more by researchers

than is formal analysis to perform consistency checking of requirements. For the formal analysis

technique, first-order logic is chosen most by researchers, followed by model checking, temporal

logic, formal reasoning, fuzzy logic, prolog and OCL. Theorem proving is least used in this work. For

heuristic analysis, the use of constraints to perform the consistency checking has received enormous

interest by researchers; followed in descending popularity by the use of graph transformation, reverse

engineering, relationship, rule-based, goal driven, model merging, condition and hybrid rule. The least

used techniques are algorithm, early aspects, model composition, ontology, breadth first search,

transformation, regular expression and Bi-layer.

As shown in Figure 2.8, most researchers use semi-formal specifications to represent the

requirements to check for inconsistency. To investigate in more detail the type of model used, we

further classified the type of model using a heat map similar to the approach in Figure 2.8. This is

shown in Figure 2.9. From the 43 works discussed, more than half used the semi-formal specification.

Based on the classification of model used in a semi- formal specification approach in Figure 2.9, the

most used model in consistency checking work is the UML model. The use case diagram and class

diagram are used in most of the works, followed by the sequence diagram, state chart diagram,

activity diagram and object diagram. Models other than the UML, such as Scenario or textual

 42

requirement description, are also used in checking consistency. Models such as task model,

Essential Use Cases and Conventional Use Cases showed less and almost no interest by the

researchers in checking the consistency of requirements, although Biddle et al. [43] found that

Essential Use Cases open fruitful research of consistency issues between the responsibility concept

in the requirements and their related designs as they help to improve the traceability support [43].

Legend:

Figure 2. 9: Heat Map representation: Classification of the Model Used as a Semi-Formal

Specification Approaches

Task model

Scenario/ Textual

Description

Structured Diagram

ER-Diagram

UML Models

1. Use case

2. Sequence

diagram

3. Class diagram

4. State diagram

5. State machine

6. Object diagram

7. Collaboration

diagram

8. Activity diagram

Conventional Use

Cases

Essential Use Cases

Other Components

High

Low

Usage

 43

2.10 Discussion

In this chapter, we provided a general overview of the requirement management process and

requirement modelling techniques as well as the type of requirement specifications and requirement

semantics. Then we discussed and categorised the requirement engineering tool, commonly called a

requirement management tool, to identify the type of current RE tool and the processes it covers. The

type of tool is classified as either a commercial or a research tool. The techniques and type of

specification applied to each tool are also identified. These were presented in Table 2.1. The results

show that most RE tools do not cover the validation process thoroughly. This led to a discussion of

requirement validation in general, drilled down to consistency management. The different types of

techniques used in consistency management were also discussed.

We conducted a literature review of related works based on the type of techniques used to manage

consistency. From here we simplified and categorised the types of contributions, specifications,

semantics and techniques used in the field of consistency management of requirements. We also

compared the existing works and approaches and identified their strengths and weaknesses. We will

use this to motivate us to form a basis for our research development outlined in following chapters.

A heat map was used to represent graphically the data of the types of contributions, specifications,

semantics and techniques used in the consistency management simplified from the related works.

Here, colours are used to show the frequency of the usage. The higher the value of usage, the darker

the colour of the squares. A similar approach was applied to represent the type of models used as a

semi-formal specification to represent the requirements.

The techniques used are categorised into traceability and analysis approaches. Each technique is

then divided into smaller categories. Traceability is divided into forward- and derived techniques

whilst analysis approach is divided into formal and heuristic analysis techniques. Each formal and

heuristic analysis has its own sub-categories as described in previous sections. Most research uses a

combination of techniques. The semi-formal specifications technique is widely used by most

researchers. We then analysed the model used for the works, applying the semi-formal specification

technique through the heat map representation in Figure 2.9. In addition, from the related works as

well as the analysis, we found that traceability techniques are less often used for consistency

checking work due to the difficulties mentioned. UML diagrams gain more interest by researchers in

checking the consistency. Other models such as Essential Use Cases are not explored, although they

are recognised as beneficial in checking the consistency of requirements and designs and have the

ability to improve the traceability support. Further, most of the research does not have full coverage of

the consistency checking of the requirements but tends to partial consistency checking, which

focuses either only on the consistency of the natural language requirement or the models, or

 44

consistency between the natural language requirement and the models. Visual capability such as

highlighting the inconsistency is less used to detect the inconsistency. Almost no research provides

full end-to-end consistency checking support, which means from the natural language requirement to

models and then to the prototype. Most research is mainly for the understanding and responsibility of

requirement engineers and almost none support confirming consistency and validating requirements

from the clients’ side.

2.11 Summary

As described in the previous section, almost no research in managing consistency uses the Essential

Use Case representation. Very little of the research discussed provides full end-to-end consistency

checking support, which means from the natural language requirement to models and then to a

prototype. Most of the work is also just concerned with verifying requirements by requirement

engineers and not by the clients.

Therefore, the aim of the research presented in this thesis is to provide end-to-end support for

checking the consistency of requirements in order to allow both the requirements engineer and the

client to confirm and verify requirements consistency from an early stage of requirement analysis. We

want to have a full coverage of inconsistency checking which is not limited to a partial solution or

partial components to be checked.

We improve traceability by implementing a lightweight approach together with a traceability technique

and semi-formal specification in the form of Essential Use Cases (EUC) models in order to support

consistency checking between the natural language requirement, the EUC model and the prototype.

As identified by Biddle et al. [43], EUC has merits in handling consistency issues and this led us to

demonstrate that EUC provides benefits for inconsistency checking of requirements, although almost

no previous researchers have used EUCs in their consistency checking work.

As a visual approach has not been well explored to detect or notify inconsistencies, we embed our

approach with the visual capability provided by the Marama meta-tool [120] to highlight and notify to

the user warnings regarding the existence of inconsistencies in any requirement component.

The following chapters will describe our approach to achieve our aims of providing end-to-end

support for checking the consistency of requirements.

 45

Chapter 3: Motivation and Overview of Our Approach

This chapter describes the motivation of our approach for this research on managing the consistency

of requirements using a semi-formal specification in the form of an Essential Use Case (EUC) model

with traceability management support. As mentioned in Chapter 2, we were motivated to apply EUC

in this work as it provides a fruitful research area for consistency. In this chapter, we study further the

usage of EUC in capturing and modelling requirements. We start with an introduction of EUC in

semi-formally capturing a requirement from a textual user scenario, and then describe an experiment

applying EUC within a group of postgraduate students. The results are analysed and motivated us to

develop a lightweight and end-to-end approach to manage requirements consistency. An overview of

our approach is also described.

3.1 Introduction

At present, when capturing software requirements from clients, requirements engineers often use

some form of natural language, written either by clients or themselves. This forms a human-centric

representation of the requirements accessible to both the engineer and client. However, due to both

the ambiguities and complexities of natural language and the process of capture, these requirements

often have inconsistencies, redundancy, incompleteness and omissions. Therefore, engineers often

use models to represent these informally-expressed requirements which allow for better checking,

analysis and structured representations, ideally leading to engineering higher quality systems.

There are many ways, identified in the previous chapter, to represent software requirements. Most

common practices use some form of structured model. Models for our purpose can be defined as

“simplified representations of a complex reality and actually are forms of abstraction” [121] where the

act of abstraction is a “process of focusing on those features that are essential for the task at hand

and ignoring those that are not” [121]. UML models are a common way of capturing software

requirements [122] especially use case diagrams which are widely used by developers and

requirements engineers to elicit and capture requirements. UML use cases capture functional

requirements and, as applied in software engineering, deal with actor/system interaction [123].

Various studies have determined that eliciting requirements and extracting their use cases can be

arduous and can lead to a rather imprecise analysis [39],[40],[41],[42]. Due to these deficiencies,

Constantine and Lockwood [4, 123] were motivated to develop the Essential Use Case (EUC)

modelling approach to overcome some of these problems. Although the usage of EUCs is not as

widespread as conventional use cases, several researchers have recommended their adoption as

 46

their use helps to integrate the requirement engineering and interaction design processes

[39],[43],[44]. Some of the main reasons why EUCs are not commonly used are because of a lack of

tool support, engineers’ lack of experience in extracting essential interactions from requirements and

a lack of integration with other modelling approaches [39],[43].

3.2 Overview of Essential Use Cases (EUCs)

The EUC approach is defined by its creators, Constantine and Lockwood, as a “structured narrative,

expressed in a language of the application domain and of users, comprising a simplified, generalized,

abstract, technology free and independent description of one task or interaction that is complete,

meaningful, and well-defined from the point of view of users in some role or roles in relation to a

system and that embodies the purpose or intentions underlying the interaction” [4]. An EUC takes the

form of a dialogue between the user and the system. The aim is to support better communication

between the developers and the stakeholders via a technology-free model and to assist better

requirements capture. This is achieved by allowing only specific detail that is relevant to the intended

design to be captured [43] . Compared to a conventional UML use case, an equivalent EUC

description is generally shorter and simpler as it only comprises the essential steps (core

requirements) of intrinsic user interest. It contains user intentions and system responsibilities to

document the user/system interaction without the need to describe a user interface in detail. The

abstractions used are more focused towards the steps of the use case rather than narrating the use

case as a whole. A set of essential interactions between user and system are organised into an

interaction sequence. Consequently, an EUC specifies the sequence of the abstract steps and

captures the core part of the requirements [43]. Furthermore, the concept of responsibility in EUC

aims to identify “what the system must do to support the use case” without being concerned about

“how it should be done” [43]. By exploiting the EUC concept of responsibility, a fruitful research area

on the consistency issues between responsibility concepts in requirements and their related designs

is opened, which can potentially be used to improve traceability support. EUCs also benefit the

development process as they fit a “problem-oriented rather than solution–oriented” approach and thus

potentially allow the designers and implementers of the user interface to explore more possibilities

[44]. They also allow more rapid development: by using EUCs, it is not necessary to design an actual

user interface [43].

Figure 3.1 shows an example of a textual natural language requirement (left hand side) and an

example Essential Use Case (right hand side) capturing this requirement (adapted from [123]). On

the left is the textual natural language requirement from which important phrases are extracted

(highlighted). From each of these, a specific key phrase (essential requirement) called an abstract

 47

interaction is abstracted and is shown in the Essential Use case on the right as user intentions and

system responsibilities. This assists to abstract the requirements for specific technologies. For

example, the requirement of typing in login information and using biometrics as an identification tool

are transformed to a more abstract expression of requirement called “identify self”.

Although EUCs simplify captured requirements compared to conventional UML use cases,

requirements engineers still face the problem of “finding the correct level of abstraction, which also

takes time and effort” [39]. Requirements engineers need to abstract the essential requirements

(using the EUC concept of abstract interactions) manually. This means understanding the natural

language requirements and then extracting an appropriately abstract essential requirement

embedded in a logical interaction sequence. To understand better the difficulty of achieving this, we

conducted a user study of postgraduate students experienced in requirements elicitation and

observed both their accuracy and time duration in undertaking Essential Use Case analyses

manually.

The use case begins when the customer

goes to the Customer Log-on page. There,

the customer types in his/her name and

customer ID on the form and submits it.

The system then displays the Tech Support

home page with a list of Problem

Categories. The customer clicks on

installation help within the list, and the

system supplies the Incident Report Form.

The customer completes and submits the

form, and the system presents a suggested

resolution.

User
Intention

System
Responsibilit

y

1. Identify self

 2.Present help
options

3.Select help
option

 4.Request
deription

5.Describe
problem

 6.Offer possible
solutions

 Figure 3.1 : (left) Example of Textual Natural Language Requirements and (right) Example
of Essential Use Case (EUC model) [4],[123]

Figure 3. 1 (left) Example of Textual Natural Language Requirements and (right) Example of
Essential Use Case (EUC model)[1]

 48

3.3 Applying Essential Use Cases: A Study
Previous research of the EUC approach and practice in their use to model software requirements

have indicated that requirements engineers sometimes have difficulties in identifying the “abstract

interactions” used by EUCs and their sequencing [39]. This observation, while intuitive, is anecdotal.

To obtain a better understanding of these difficulties, we conducted a user study of several

requirements engineers carrying out the extraction of an EUC model from a set of requirements

specified in natural language, in order to observe their performances and experiences in using EUCs.

We used the same requirements as described in [123] and compared the abstracted EUCs in that

work to the results developed by our EUC model developers.

The study participants were 11 post-graduate software engineering students, several of whom had

previously worked in the industry as developers and/or requirements engineers. All were familiar with

UML use case modelling and most had previously used UML use cases to model requirements. None

were familiar with the EUC modelling approach. Each participant was given a brief tutorial on the

EUC approach and some examples of textual natural language requirements and derived EUC

models. Participants were asked to develop an EUC model from the textual natural language

requirements and we tracked the time taken and analysed the accuracy of their resulting models. We

gave them Constantine and Lockwood’s “getting cash” scenario (as shown in figure 3.2), which we

have slightly refined, to analyse. The small refinement was to add a sentence (sentence number 11

from Figure 3.2) to improve the clarity of the scenario to the participants. This is a common template

of user/system interactions common in many web-based systems as well as ATMs and other kiosk-

like systems. Intuitively, the extraction of a set of essential user/system interactions from this example

to form an Essential Use Case structured model of the requirements should be straightforward.

Figure 3. 2: The scenario “Getting Cash” Refined and Adapted from [4] Used For the

Evaluation

1. The use case begins when the Client inserts an ATM card. The system reads and validates the
information on the card.
2. System prompts for PIN. The client enters PIN. The system validates the PIN.
3. System asks which operation the client wishes to perform. Client selects “Cash withdrawal.”
4. System requests amount. Client enters amount.
5. System requests type. Client selects account type (checking, saving, credit).
6. The system communicates with the ATM network to validate account ID, PIN and availability of
the amount requested.
7. The system asks the client whether he or she wants receipt. This step is performed only if
there is paper left to print the receipt.
8. System asks the client to withdraw the card. Client withdraws card. (This is a security measure
to ensure that clients do not leave their cards in the machine.)
9. System dispenses the requested amount of cash.
10. System prints receipt.
11. Client receive cash.
12. The use case ends.

 49

Table 3. 1: EUC Extraction Study Results

Table 3.1 summarises the results of our study. The correctness (Y for correct, x for incorrect) and

time taken were recorded for each person. A correct answer (Y) means that the answer provided by

the participant is the same or very similar to the interaction pattern provided by a library pattern that

we obtained from Constantine and Lockwood [4]. Summarising these results:

1. The number of correct interactions that identified (Y) = 31 out of 66 total correct interactions or

47% (i.e. 53% were incorrect).

2. The number of completely correct EUC interactions (all Ys) = 1 out of 11 or 9.1%

3. The average time taken to accomplish the EUC development task was 11.2 minutes. The

longest time taken was about 25 minutes and the shortest time taken was about 5 minutes, so

there was significant variation in the time taken.

C
an

di
da

te

Answers

Ti
m

e
ta

ke
n

(m
in

ut
e

s)
 Identify

user
Verify

identity
Offer

choices
Choose Dispense

cash
Take cash

1 X X X Y Y Y 9

2 Y X Y Y Y X 5

3 X X Y X Y X 10

4 X X X Y Y X 7

5 X Y X X Y X 10

6 X X X Y Y X 7

7 Y Y Y Y Y Y 20

8 Y X X Y Y X 10

9 Y Y Y X X X 10

10. X X X X Y X 25

11. Y Y X X X Y 10

Total 5 6 4 7 4 7 6 5 9 2 3 8 123

Average time:123/11=11.2

 50

Based on these results, participants were more likely to generate incorrect EUC interactions than

correct ones, and very unlikely (9.1%) to produce a completely correct EUC. All but one participant

failed to identify some of the essential interactions present in the natural language requirements;

many failed to assemble these into an appropriate interaction sequence, and only one (participant 7,

highlighted in orange in Table 3.1) managed to obtain a solution which was the same as or very

similar to the model answer of the “getting cash” scenario of Constantine and Lockwood. The root

cause of most problems was that participants tended to incorrectly determine the required level of

abstraction for their essential interactions (the user intentions and system responsibilities of the EUC

model). This is based on observation made as they performed the task as well as analysis of the

incorrect answers provided by them. The study also demonstrates that it was quite time consuming

for participants as they needed to figure out the appropriate keywords that describe each abstract

interaction and to organise them into an appropriate sequence of user intentions and system

responsibilities. We can see that there is a considerable variation in the time taken and also that the

longest time taken does not ensure the correctness of the answer. For example the participant

(participant 10, highlighted in blue in Table 3.1) who took the longest time (25 minutes) to accomplish

the task only provided 1 correct essential interaction characterisation out of 6, a poor result; while one

of the better participants (participant 2, highlighted in yellow in Table 3.1) took only 5 minutes to

produce 4 out 6 correct interactions. Our survey thus supports the anecdotal findings reported by

Biddle et al. [39] with more quantitative evidence.

3.4 Overview of Our Approach

We were quite surprised by the results in the previous section. Many of the participants were

experienced in the industry; they were academic requirements modellers and all were familiar with

and most were experienced in using UML use case modelling. Given this background, we expected

much more accurate modelling of the example requirements using the EUC technique. This study,

while being quite small in nature, does support previous claims about the challenges in extracting

natural language requirements into EUC models [39]. We then studied and evaluated a variety of of

requirements collections in the form of user scenarios or use case descriptions amenable to

modelling as EUCs. The requirements are derived from requirements engineering and software

engineering books, published literature and published information from software developers web

pages as well as some requirements collected from real requirements engineers and business

analysts. From there, we come across various key phrases (essential interactions) for particular

abstract interactions. This has provided us with the motivation to develop an approach and supporting

tool which enables requirements engineers to extract accurate EUC abstract interactions

automatically from textual natural language requirements. This is supported by related literature

 51

supporting the need for having an automated tool, We also speculated that our approach could

provide better support to users and developers to work with informal and semi-formal requirements

and keep them consistent. We have developed an automated prototype tool providing authoring

facilities for textual requirements and for checking the consistency of these requirements. This tool

assists requirement engineers and business analysts to check whether their requirements that are

written or collected in natural language are consistent with other analysis and design representations.

We have implemented end-to-end support for consistency checking, using:

 the 1) EUC modelling [123], 2) a high level user interface design in the form of low-fidelity prototype-

Essential User Interface (EUI) prototype, 3) a concrete UI view in the form of a form-based UI (HTML

page) as our semi-formal models. This was due firstly to their appeal as representations [10] that

developers and end users could work with and secondly to limited research done to date investigating

consistency issues with these representations and natural language requirement [43]. In addition, EUI

pattern support is developed to allow reusability of the UI component and to enhance the accuracy of

mapping the EUC model to the EUI prototype.

In order to support this concept, we have developed a traceability technique: this allows the elements

of the textual natural language requirements written in a form of user-scenarios and Essential Use

Case requirements, and UI prototypes to be kept consistent with one another. We believe that

supporting this traceability will allow us to better detect and manage inter-specification

inconsistencies and also enable developers and users to work more effectively with different models

of requirements. We embed our consistency management and tracing tool within the Eclipse-based

Marama meta-tool environment [120] in order to help to provide visual capability in detecting any

inconsistency.

To support requirements analysis in improving requirements completeness and quality,

complementary work is done in the collection and categorisation of terminology from different case

studies and scenarios. For now, we have more that 15 scenarios and case studies which contribute to

nearly 360 patterns of essential interactions and almost 80 patterns of abstract interactions. These

are discussed in detail in the next chapter. This provides a library of essential interaction patterns and

EUC interaction patterns which are reusable. They are also able to support various domains and

assist engineers in finding appropriate abstract interactions for designing the EUCs for a system. A

visual differencing approach is applied together with the essential interactions and EUC interaction

patterns to improve the requirements quality such as the completeness and correctness. Figure 3.3

shows an example of our proposed approach.

 52

Figure 3.3 Overview of Our Requirements Consistency with End-to-End Support using EUC
and a Traceability Management Approach

The processes of the outline approach are:

I. Firstly, textual natural language requirements in a form of user scenario of a use case usage

(1) are analysed using a database of essential interactions (2). Phrases from textual natural

language requirement are analysed and matched with the essential interaction pattern library

to find an appropriate abstract interaction. For example;; the phrases “display error” and

“display incorrect error page” are mapped to abstract interaction “display error”.

II. Then, Essential Use Case (EUC) Models are generated (3). A list of abstract interactions

provided by the essential interaction pattern library is then mapped to EUC using the

mapping engine to categorize each abstract interaction as either a user intention or system

responsibility. Examples of related abstract interaction and two categories are shown in table

3.2 below. Each abstract interaction is then organised in a sequence of interactions as an

EUC as shown in table 3.3.

Abstract interaction Category

Request identification System responsibility

Identify self User intention

Table 3. 2: Example of Abstract Interaction and its Related Category

Natural

Language

Requirements

Essential Use

Case

requirements

(EUC model)

Library –

Essential

interaction

pattern

Extraction

Highlight;

change

Essential User

interface (EUI)

prototype

Analysis

Extractors

2

3

4

6

7

1 5

Library – Essential

interaction pattern

and EUC interaction

pattern

Library –

EUI pattern

Library –

EUI pattern

template

template

Form

based UI-

HTML

page

Requirem

ents

8

Figure 3. 3: Overview of Our Requirements Consistency with End-to-End Support using

EUC and a Traceability Management Approach

 53

User intention System responsibility

 1. Request identification

2. Identify self

Table 3. 3: Example of EUC Model Generated

III. The user may select any abstract interaction of the EUC and see the originating textual

natural language elements (4). The user, a requirements engineer or end user, may also

change elements in the EUC model or textual natural language or the list of abstract

interaction requirements and see the impact of the change in the other model (4).

IV. An analysis tool (5) uses a set of essential interactions and EUC interaction patterns to

determine if an extracted EUC model is complete, consistent and correct according to

acceptable patterns of essential interactions in the essential interaction pattern library and

EUC interaction pattern library. A generated EUC model generated will be compared with the

available “best-practice” template based on the specific domains of EUC interactions stored

in the library.

V. Further extractors (6) map the EUC model to a low-fidelity prototype called as Essential User

Interface (EUI) prototype, which is also a high level form of design (7). This is derived from

the Essential Use Case requirements model with the support of the EUI pattern library. The

EUI prototype can also be transformed to a concrete UI view as an HTML form-based UI (8)

with the support of the EUI pattern template library. Some examples from the EUI pattern

library are shown in Table 3.4. Overall, the approach supports end-to-end rapid prototyping

with traceability and inter-model change management between textual natural language

requirements and EUC models (4) and the EUI prototype.

Table 3. 4: Example of EUI Pattern Library for EUI prototype

EUI pattern EUI pattern
category

Abstract interaction of
EUC model

List of options List Choose
offer choice
select option

Display payment Display validate payment
show payment

ID Input identify self
request identification

Help Action Ask help
present solution

 54

3.5 Summary

We have described the use of Essential Use Case models in capturing and checking the

inconsistency of requirements. Problems such as lack of tool support, engineers’ lack of experience in

extracting essential interactions from requirements, and a lack of integration with other modelling

approaches [39],[43] have motivated us to come up with a lightweight approach and tool support to

extract the textual natural language requirement to a semi-formal model - an Essential Use Case. An

essential interaction library is produced to support this process. This initial step in our goal of

providing end-to-end support for requirement consistency is described in more detail in the next

chapter.

 55

Chapter 4: Essential Interaction Extraction

This chapter describes in detail our approach to capturing natural language requirements. It extends

the previous chapter to describe the extraction of the essential interactions approach and the

essential interaction library that we used to enhance the accuracy of essential requirements (abstract

interactions) for the EUC model.

4.1 Introduction

A number of studies have shown the difficulty of using a heavyweight Natural Language Processing

(NLP) tool which includes the use of sentiment and semantic analysis, parser, complex classifier and

complex analysis of NLP and formal method techniques in dealing with and analysing natural

language requirements. They have also shown that the results of such approaches are often

imprecise and inconsistent [124],[36],[34]. Consequently we decided NOT to use any such approach

to extract the essential interaction. Instead of using conventional NLP-based approaches, we adopted

a more domain-specific approach. Extracting EUC essential interactions from textual natural

language requirements constrains the problem domain to a set of suitable interaction descriptions.

This means we chose to develop a library of “proven” essential interactions expressed as textual

phrases, phrase variants and limited regular expressions. This library of essential interactions

contains abstract interaction patterns that were developed from a collection of such patterns

previously identified by Constantine and Lockwood [4] and Biddle et al. [39] together with patterns

that were developed by us, which are all applicable across various domains.

Each essential interaction pattern in the library was also associated with a collection of alternative

sequences of textual natural language requirement phrases that could match the pattern. Each of

these sequences relates to a more concrete version of the abstract interaction pattern. The textual

natural language requirements were then analysed by matching them against the concrete versions,

looking for a good match. Abstraction can then be undertaken by creating an instance of the more

abstract interaction pattern associated with the concrete one. The matching process used is similar to

the process of keyword searching. Collectively, this provides a more lightweight approach to analyse

the natural language requirements than NLP approaches, which is thus able to provide a set of

meaningful abstract interactions to the requirement engineer. The abstract interaction patterns can be

added in order to improve our ability to recognise essential interactions in textual natural language

requirements. We can also segment the library into different patterns for different application domains

as patterns are also commonly used for expressing reusable design. By using the patterns, the user

will be more likely to get the outcomes right and so to acquire sensible EUCs. This contrasts with the

 56

results from the preliminary study reported in the Chapter 3, where most users tended to provide

wrong answers rather than right answers.

After extracting a set of candidate essential interaction phrases and assembling them into a candidate

sequence of abstract interactions, the requirement engineer is presented with a list of interactions

with the original textual natural requirements juxtaposed on the screen. The engineer can then

selects abstract interactions and see from where the textual natural language requirements were

derived, or vice versa. The engineer can move interactions and add or delete interactions. A limited

update of the textual natural language requirement is also supported. The engineer can modify the

natural textual natural language requirement and see the impact on the re-extracted essential

interactions. An Essential Use Case visualisation is also provided, conforming to Constantine and

Lockwood’s [4] approach. It can also be edited with a limited update of the essential interactions from

which it was derived and consequently the textual natural language requirement phrases. An update

of the textual natural language requirement results in an update of the extracted essential interactions

and Essential Use Case models.

Figure 4.1 illustrates this extraction/trace-forward/trace-back process that we provide to requirements
engineers.

I. Textual natural language expressed requirements (1) are fed through an extraction process

(2) which uses a library of essential interaction phrases and expressions, producing a

sequence of EUC essential requirements.

II. The engineer can select items in the textual natural language requirements of EUC

interactions (3) and see corresponding items (4).

Figure 4. 1: Our Essential interaction extraction approach

Natural Language

Requirements

Essential Use Case
Requirements

Library – essential
interaction pattern

Extraction

Highlight;
change

2

4

1
3

 57

4.2 Essential Interaction Pattern Library

In order to facilitate the extraction process, we have developed an essential interaction pattern library

for storing all the essential interactions and abstract interactions. The essential interaction pattern

library is based on a collection of phrases that illustrate the function or behaviour of a system. The

collection of phrases is then categorised, based on its related or associated abstract interaction. We

have collected and categorised phrases from a wide variety of textual natural language requirements

documents available to us and stored them as essential interactions. Currently, we have collected

approximately over 360 phrases from various requirement domains including online booking, online

banking, mobile systems related to making and receiving calls, online election systems, online

business, online registration and e-commerce.. The collection and categorisation of the phrases is an

on-going process. Based on these phrases, we have come up with close to 80 patterns of abstract

interaction. On average, there are 4.5 phrases or essential interactions associated with each abstract

interaction. For example the abstract interaction “display error’ is associated with four different

essential interactions: “display time out”, “show error”, “display error message” and “show problem

list”. The essential interactions were not categorised based on one scenario. They have associations

with five different concrete scenarios such as online business, e-commerce, online booking, online

banking and an online voting system. This example shows that one particular abstract interaction can

be associated with multiple concrete scenarios. Table 4.1, below, shows other examples of abstract

interaction and its associated essential interactions for various domains of application.

 58

Abstract interaction Essential interaction Example of Domains

Verify user verify customer credential Online banking, online booking, online
business, e-commerce, online reservation

verify customer id Online banking, online booking, online
business, e-commerce, online reservation

verify username Online banking, online booking, online
business, e-commerce, online voting system,
online reservation

check the username Online banking, online booking, online
business, e-commerce, online voting system,
online reservation

check the password Online banking, online booking, online
business, e-commerce, online voting system,
online reservation

Ask help help desk Online banking, online booking, online
business, e-commerce, online reservation

request for help Online banking, online booking, online
business, e-commerce, online voting system,
mobile system, online reservation

ask for help Online banking, online booking, online
business, e-commerce, online voting system,
online reservation

clicks help Online banking, online booking, online
business, e-commerce, online voting system,
online reservation

complete help form Online banking, online booking, online
business, e-commerce, online voting system,
online reservation

Offer choice prompt for amount Online booking, online banking, online
business, e-commerce

display account menu Online banking

display transaction menu Online banking

display select function Online banking, online booking, online
business, e-commerce, online voting system,
mobile system, online reservation

display menu Online banking, online booking, online
business, e-commerce, online voting system,
mobile system, online reservation

Table 4. 1: Example of Abstract Interactions and their Associated Essential Interaction and
Their Related Domains

 59

 In order to store the essential interactions in the essential interaction pattern library, selected phrases

(“key textual structures”) are extracted from the textual natural language requirement, based on their

sentence structure. The ‘key textual structure” uses Verb-Phrases (VP) and Noun-Phrases (NP) in

the sentence structures to categorise the essential interactions. Any phrases that follow this structure

will be acceptable as an essential interaction in the essential interaction pattern library. The tree

structure of the key textual structure is illustrated in Figure 4.2.

Figure 4. 2: Tree Structure for Key Textual Phrase

The tree structure in Figure 4.2 shows that our library has three different sentence structures, based

on the location of the Verb Phrase (VP) and Noun Phrase (NP). The Noun Phrase can contain

structure elements such as Articles (ART) and Adjectives (ADJ) or only Nouns (Noun).

The three different sentence structures are;

I. Verb (V) + Noun (N) (only) e.g. request (V) amount (N)

II. Verb (V) + Articles (ART)+ Noun (N) e.g. issue (V) a (ART) receipt (N)

III. Verb (V) + Adjective (ADJ)+ Noun (N) e.g. ask (V) which (ADJ) operation (N)

This key textual structure aims to provide flexibility in the library’s ability to accommodate various

types of sentences containing abstract interactions. With this, a broad range of phrase options can be

extracted by the tracing engine, while still affording a lightweight implementation using string

manipulation and some regular expression matching. Some examples of phrases stored in the

essential interaction pattern library following the key textual structure are shown in Table 4.2. For

now, we have performed this essential interaction pattern library development manually and plan for

an automated approach in the future.

 60

phrases abstract interaction
identifies which item select item
view the order details view detail

creates a receipt print
request for help ask help

Table 4. 2: Example of Essential Interaction and its Associated Abstract Interaction stored
in the Essential Interaction Pattern Library

4.3 Tool Support

We have developed a prototype EUC essential interaction extraction tool based on the approach

outlined in the previous section. The idea is for requirement engineers to use the tool to do an initial

essential interaction extraction from textual natural language requirements, producing an initial EUC

model. Selecting phrases in the textual requirements shows the resulting extracted essential

interactions. Selecting essential interaction(s) shows the textual natural language phrase(s) the

essential interactions were derived from. This provides a traceability support mechanism between

textual natural language requirements and derived EUC models.

The engineer can then modify the resultant EUC model and/or the original textual natural language

requirements. This includes adding phrases and interactions, re-ordering phrases and interactions,

deleting phrases and interactions and modifying phrases and interactions’ descriptive texts. The

engineer then re-extracts the essential interactions and associated traceability links. Engineers can

add new essential interaction phrases to their library or even develop different essential interaction

libraries for different problem domains. The former allows our tool to improve its extraction support for

users over time and the latter allows specific domain interaction patterns to be used. Guidelines for

using the tool and the patterns are also provided. Engineers do need to have an understanding of the

Essential Use Case concept and methodology before using the tool.

4.3.1 Tool Process

The framework for extraction, trace-forward and trace-back between the abstract interactions from the

textual natural language requirements and vice versa is illustrated in Figure 4.3. We use the scenario

of “getting cash”, a similar scenario illustrated in the previous chapter as an example of extracting

textual natural language requirements to Essential Use Cases. The tracing engine searches for key

textual phrases (typically verb-noun phrases, such as “withdraw cash” or “request amount”) contained

in the library within the textual requirements. Having identified such matching phrases, it looks for

orderings of these within the requirements that match orderings in the library associated with

 61

particular EUC interaction specifications. For example, in Figure 4.3 (1), the phrases “insert an ATM

card” and “client enters PIN” are both associated, in that order, with the “identify self” abstract

interaction. Having identified such essential interactions, the tracing engine instantiates the abstract

interaction into the EUC model (to the right in Figure 4.3) and associates it with the identified key

phrases in the textual requirements. This association allows trace-forward or trace-back to be

supported with appropriate matching elements, highlighted in the other view when key phrases or

abstract interactions are selected. This not only supports traceability between textual natural

language and EUC model elements but also assists engineers and clients in understanding the

quality of the requirements. For example, phrases with missing interactions and incomplete

interaction sequences can be seen, interactions or interaction sequences with incomplete textual

phrases or ordering/structure in natural language identified, and EUC models with inconsistencies or

incompleteness, such as missing system responses to user requests, highlighted.

Figure 4. 3: An example of performing an essential interaction extraction to a EUC model

and supporting trace-forward/trace-back

 62

4.3.2 Tool Example

We have developed a prototype automated extraction and tracing tool in order to reduce the time

taken to generate abstract interactions and increase the correctness level of each specific abstract

interaction. Several screen dumps of the tool in use are shown in Figure 4.4.

Figure 4. 4: Our Automated Tracing Tool

 63

The tool processes are:

I. Textual natural language requirements are written in the textual authoring tool (1). The textual

natural language requirements are expressed in natural language phrases. These may

include headings, numbered items and bullet points as well as sentences. In this example, for

clarity we used a numbered list of sentences. However, in general, the textual natural

language requirements can contain other layouts (e.g. paragraphs) as appropriate. The

requirement engineer can author this textual natural language requirement either in our

authoring tool or in any external word processor, or can extract the text from an existing

document such as Text File, PDF, Word, and Power Point files.

II. A list of corresponding essential requirements (abstract interactions) is generated

automatically as shown in (2) using the button “Trace”.

III. Users can trace back each abstract interaction to the corresponding textual requirements

phrases as shown in (3) using the button “Trace Back”.

IV. The engineer then asks the tool to extract all recognised EUC “essential interactions”

expressed in the textual natural language requirements, using an essential interaction pattern

library. The extracted essential interactions are shown in sequence as recognised in the text

(2).

V. Depending on the complexity of the submitted requirements text, several EUC interaction

sequences, or Essential Use Cases, may be recognised. These can be divided or

represented as a collection of EUCs. We used a listing of these essential interaction phrases.

These can be represented as an EUC model with user intention/system responsibility

divisions using Constantine & Lockwood’s [4] approach if desired.

VI. Users can interact with either the textual natural language requirement segments or the

essential interactions extracted, in order to trace between the textual phrases and the

essential interactions. Essentially, this provides a traceability mechanism between each

abstract interaction to the corresponding textual natural language requirements phrases, as

shown in the example of highlighting in (3). This tracing process helps requirements

engineers to check for correctness, completeness and consistency of the requirements.

Phrases with missing EUC essential interactions may be incorrect or incomplete. Phrases

with too many corresponding essential interactions may be imprecise. A sequence of

essential interactions with phrases in different parts of the textual requirements may mean

the text requirements are out of order. A sequence of essential interactions that is incomplete

or redundant may mean the textual natural language requirements have inconsistencies or

undue repetition.

 64

4.4 Evaluation

We carried out an evaluation of our automated tracing tool in order to compare its accuracy and

performance with the manual extractions undertaken by our original EUC extraction study

participants, described in Chapter 3. In addition, these same participants were asked to use and

evaluate the automated tracing tool using the same scenario as before immediately after they had

finished the manual study. They were also told about this evaluation before they started the first

study. They were also told about this evaluation before they started the first study. Each participant

was given a brief tutorial on how to use the tool and some examples of how the traceability provided

by the tool is able to extract the abstract interaction from a set of textual natural language

requirements and to identify its associated essential interaction. They then explored the traceability

and extracted the abstract interaction for the scenario of “getting cash” which was illustrated in the

previous chapter. We then surveyed them to gain their perceptions of the tool’s usefulness and ease

of use for the extraction and tracing tasks evaluated. We also asked for their open feedback on the

tool’s features and performance. The survey consisted of three questions for each question block of

usefulness and ease of use. A five-part Likert scale was used for each question. For each

characteristic, the results of each corresponding block were averaged to produce the results shown in

Figures 4.5 and 4.6. The type of questions for each characteristic is in Table 4.3. The participants’

open feedback is shown in Table 4.4.

User Perception Characteristics Questions

Usefulness The tool is useful in finding the abstract interaction.

The tool helps me to be more effective in extracting

the textual natural language requirement to the

Abstract interaction.

It is easier to capture the core requirement by using

the automated tracing tool compared to the manual

extraction

Ease of Use It is easy to use.

It is user friendly.

I don’t notice any inconsistencies as I use the tool.

Table 4. 3: User Perception Characteristics and Questions Evaluating Them

 65

Participants Feedback

1. “ The tool is easy to use but not interesting.”

2. “The tool can enhance the ability by selecting all abstract interactions and then

trace back.”

3. “The tool is easy but I think it will have constraints with the database.”

4. “Limited coverage of phrases”

5. “Hope tool can have more interactive visual;; for example colours and shapes”

6 “OK.”

7. “Easy to use and easy to understand.”

8. “ More data set for library”

9. “It supports any size of files and brings fast results.”

10. None

11. “The library needs enhancement as it does not support certain phrases and

words”

Table 4. 4: Participants Open Feedback

The results of the participant survey of the tool usefulness and ease of use are shown in Figures 4.5

and 4.6 respectively. All eleven participants found that the tool was either very useful (85%) or always

useful (15%) for generating and tracing the list of abstract interaction. However, in qualitative

feedback, most participants wanted the interaction pattern library to support a broader set of domains

in the future.

 66

Figure 4. 5: The Tool Usefulness Results

The results in Table 4.5 compare the accuracy of the automated tracing tool against the previous

results for manual extraction. The tool succeeded in identifying almost all the abstract interactions,

failing to detect one abstract interaction, providing an accuracy of almost double the participants’

average and better than all but one of the participants’ accuracy. The correctness ratio for manual

extraction is only 47% and the automated tracing tool provides 83%. The single error from the tool is

because of its failure to detect one of the abstract interactions (Take Cash). The automated extraction

process took just over one second to execute in comparison with the 11.2 minutes average taken by

the manual study participants.

Figure 4. 6: The tool Ease of Use Results

 67

Answers

No. Correct answers No. Wrong answers

Manual extraction Automated

Tracing

Manual extraction Automated

Tracing

Identify user 5 1 6 0

Verify Identity 4 1 7 0

Offer cash 4 1 7 0

Choose 6 1 5 0

Dispense cash 9 1 2 0

Take cash 3 0 8 1

Correctness
ratio

47% 83% 53% 17%

Table 4. 5: Comparison result of correctness between Manual extraction (previous chapter)

and Automated Tracing Tool

To further investigate the utility of our tool, we evaluated its accuracy when applied to 15 use case

scenarios in different domains derived from different researchers, developers and ourselves: Online

CD catalogue, Cellular phone [23], Voter registration [125] Cash withdrawal [126], Online book [127],

Checkout book (library) [2], Seminar Enrolment [4], Transfer transaction [126], Deposit transaction

[126], Assign report problem [128], Create problem report [128], Report problem [128], Booking room

[129] and Place order [130]. The tool correctness was evaluated by comparing the answers with the

actual interaction pattern provided in the source pattern documents that was developed by

Constantine and Lockwood [4], Biddle et al. [39] and also with patterns developed by us following

Constantine and Lockwood’s methodology. The correct or similar results provided by the tool are

calculated and averaged with the actual interaction pattern provided for a particular scenario. The

comparison result is then valued with a ratio of maximum 1. The evaluation results are shown in

Figure 4.7.

 68

Figure 4. 7: Accuracy across different scenarios

Figure 4.7 shows the correctness ratio for the automated tracing tool for each scenario. This shows

some variability across the range of scenarios, but the average correctness across all scenarios and

interactions is approximately 80%, so the “getting cash” scenario used in the earlier evaluation was

not atypical. The automated tracing tool does not (and cannot) produce 100% correct answers due to

the incorrectness and incompleteness issue of textual requirements. The correctness and

incompleteness issue is related to various linguistic issues, such as phrases or sentences using a

passive pattern, parentheses’ existence such as {,,[,],/,\ and grammar issues such as plural, singular,

adjective or adverb issues[134]. These problems, however, also lead requirement engineers to

misunderstand requirements and can be one of the reasons why different requirement engineers or

users provide inconsistent results.

For example, our automated tracing tool did not derive a completely correct EUC interaction for the

scenario “Getting Cash” because the grammar used in the sentences of the textual natural language

requirements was incorrect. The phrase “receive cash” from sentence number 11: “Client receive

cash” is not readable by the tool as in the database, it is stored as “receives cash”. This problem can

be improved either by giving guidelines to users for writing a good requirements document or allowing

the library to be expanded to accept grammatically incorrect sentences for patterns that correspond to

common grammatical errors. Additionally, we have experimented with using simple regular

expressions in the essential interaction pattern repository e.g. “receive{s} cash”, indicating it should

have an ‘s’ but may accept without. This, however, complicates both the library phrase representation

and the authoring.

 69

Using our tool, requirements engineers will notice that the “receive cash” phrase in the textual

requirements does not have any corresponding essential interaction phrase(s). Alternatively, they will

see an incomplete interaction sequence between the user and the system where no response is

provided to a user submission by the system in the EUC model extracted and visualised. In our

Eclipse-based prototype described in chapter 5, we have experimented with adding checking for such

apparent inconsistencies between requirement texts and essential interactions. This is also

complicated by textual natural language requirements, typically having portions of texts that do not

correspond directly to the interactions such as headings, introductory or concluding remarks,

comments, and example input/output data.

Overall, our automated tracing tool still has several limitations. Firstly, it is stand-alone and does not

integrate with other requirement or software engineering tools. This causes the tool to appear to

have fewer benefits to the user. Next, it also has limited visual interface or aspects which lead the

user to not understand well the process and the usage of the tool. In addition, the tool has constraints

with the database of the interaction pattern library. The database needs enhancement with more

phrases from a broader set of domains.

4.5 Summary

We have discussed our approach in extracting essential interactions using a more lightweight

approach. We have developed an automated prototype EUC essential interaction extraction and

tracing tool. The key aims of our tool were to support EUC by extracting the essential requirements

(abstract interactions) automatically and to facilitate tracing between EUC and textual natural

language requirements to assist engineers in identifying and managing inconsistencies and

incompleteness. Another aspect of our research involved collecting and categorising terminology for

the library of abstract interactions. This both assists in structuring EUC expressed requirements using

common terminology and also helps prevent the textual natural language requirements from being

vague and error-prone, by tracing back from the EUC-structured representations to the textual natural

language requirement phrases.

We have evaluated our prototype tool using the same group of participants that we used for the

manual extraction survey described in the previous chapter. The participants evaluated the tool’s

usefulness and ease of use with promising results. This confirms other researchers’ claims about the

importance of having tool support for engineers working with EUC models. Our results found that

such automated extraction and the tracing tool appear to increase the ratio of correctness in

extracting EUC requirements from textual natural language requirements and ease the effort of users

 70

or requirement engineers in handling the EUC, significantly reducing the time taken to develop EUC

models from textual natural language requirements.

This is the first phase of our incremental work. The next phase, described in the following chapter,

focuses on embedding our extraction approach into an integrated EUC Diagram tool (Marama

Essential) which was developed using the Marama meta tool [120], to overcome the problems faced

in our current tool, and managing the consistency of requirements by adding more support for

inconsistency detection using our extraction approach and round-trip engineering of natural language

and EUC model requirements.

 71

Chapter 5: Managing Requirements Consistency

This chapter describes our approach to improving the consistency management of requirements by

embedding our automated tracing tool, as discussed in the previous chapter, in the Marama Meta tool

[120] together with additional support for inconsistency detection using our extraction approach and

round-trip engineering of natural language and EUC model requirements. To enhance consistency

management, traceability and visualisation capability are applied.

5.1 Introduction

Consistency management between different artefacts in software engineering has been recognised

as vital for many years [27],[33],[131],[132]. Consistency management between formal requirement

specifications and architecture and design models has been investigated, especially in the

Requirement Engineering domain [29],[26]. Similarly, several approaches have been developed to try

to determine inconsistencies between natural language descriptions of requirements and formalised

models of requirements [27],[34]. Some techniques have been developed to support the correction of

inconsistencies such as the use of repair operations [76]. Detecting inconsistencies may or may not

require immediate correction. Living with inconsistency requires the management of inconsistencies

over time: this provides more flexibility in the development process [22]. Correcting inconsistencies

and providing appropriate tool support to detect, present and manage these inconsistencies are

identified as being challenging [133].

5.2 Managing the consistency

We have devised another approach that is applied together with a traceability technique to help

support consistency management between textual natural language requirements and the EUC

model. This work focuses on managing the essential interaction requirements to capture the

functional requirements of a system. We have created an “essential interaction” phrase library from

the collection and the categorisation of requirements from different domains and scenarios as

described in Chapter 4. Phrases have been extracted and stored in this library and are used to match

corresponding phrases in textual natural language requirements. The extracted phrases are further

mapped to specific abstract interactions. Each abstract interaction is classified as a user intention or a

system responsibility. The derived essential use case elements can be traced back to their originating

 72

natural language requirements phrases and vice-versa. We embed this extraction and tracing support

into an Essential Use Case editing tool that we have developed using the Marama meta-tool platform

[120] . This provides an environment in which requirements engineers have the ability to extract and

then generate candidate diagrammatic EUCs automatically from requirements expressed in textual

natural language. Consistency management support is then provided between these textually-

expressed requirements, a derived set of structured abstract interaction and semi-formal

diagrammatic EUCs. Requirements engineers can move between different requirement forms, using

the traceability relationships preserved during the extraction and generation processes. They can

modify any one of the requirement forms from the informal textual natural language to the semi-formal

EUC diagrams. The environment will attempt to update the other forms and/or indicate resultant

inconsistencies.

The framework for extracting the requirements, mapping the types of interaction and creating the

EUC model is shown in Figure 5.1. This illustrates the extraction of a set of abstract interactions from

the textual natural language requirements. The library of abstract interaction phrases is used by a

“trace engine” to analyse the text for matches and a set of candidate abstract interactions generated

(1). A “mapping engine” then uses a database of essential interaction to structure the interactions into

an EUC model (2). The mapping engine then generates a diagrammatic representation of the

Essential Use Case (3) which represents the dialogue occurring between the user and the system.

The traceability relationships among elements in the textual natural language requirements model,

the extracted essential interactions model and the diagrammatic EUC model are preserved and can

be used to support traceability between the three forms of requirements and to check for

inconsistencies among them. Examples of inconsistencies are elements identified in one form but not

in another, inconsistent naming, the ordering or properties of elements and duplicated or partially

duplicated phrases or elements.

 73

5.3 Tool Support

Based on the framework in Figure 5.1, we have developed an Automated Inconsistency Checker,

MaramaAI, together with an EUC diagram editor, Marama Essential. This work provides support to

EUC users and requirements engineers for capturing requirements, designing and generating EUCs

automatically and minimising the time to develop them from source textual natural language

requirements. This increases the correctness of the abstract interactions produced. In addition, this

automated tool helps to lessen the need for human intervention in capturing requirements and

checking the consistency of software requirements. The tool provides consistency checking and

notification support, allowing requirements engineers to modify any of the three forms of requirements

in the tool. Any new abstract interaction or EUC component can be inserted and updated. These

changes will trigger the tool to automatically perform consistency checking. In addition, the textual

natural language requirements can also be added, modified or deleted. For this, the tool will only

perform consistency checking after the requirements engineer invokes the event handler. The event

handlers are explained in detail in a later section. We used the Marama meta-toolset [120], a set of

Eclipse IDE plug-ins, to develop our MaramaAI prototype. MaramaAI allows traceability to be

interactively visualised in the textual natural language requirements, abstract interaction and EUCs.

Further, any requirements that are inconsistent and incomplete can be highlighted to the user and a

warning is provided. The tool also comprises a glossary and set of guidelines adapted from [134] to

1 2

3

Figure 5. 1: Framework for Extracting Requirement (1) Mapping interactions (2) and
Creating the EUC Automatically (3)

 74

assist users to write correct and complete EUC-based requirements. We do not use all the guidelines

as they contain many conditions which might constrain the description of requirements. The

implementation of all guidelines is also quite difficult for this proof of concept phase and so we have

deferred full implementation to future work.We only adopt the common guidelines that all sentences

must be in active not passive voice , and that the written requirements should avoid the use of

brackets or parentheses [134]. It is believed that parentheses and brackets can lead to ambiguity and

interpretation problems for the contents of the requirements as they may lead to uncertain numbers of

requirements in the sentences [134]. This is also to overcome the problems faced by our previous

automated tracing tool in handling grammar and the parentheses issue revealed by the study outlined

in Chapter 4. That study concerned the accuracy in terms of correctness of the abstract interaction

provided by our automated extraction feature, using the interaction patterns provided by the library

based on the collection of patterns from Constantine and Lockwood [4], Biddle et al. [39], and

patterns developed by us. The results show that the incorrectness and incompleteness of textual

natural language requirements seriously affect the ability to produce correct abstract interactions in

order to structure the requirements.

Our automated extraction and tracing tool which we embed in the Marama meta-tool is shown in

Figure 5.2. For this, we consider the scenario of a “voter registration” use case by Some [125] using

an illustration. We use this scenario as a case study to show the benefits and the flow of the

consistency checking process. Figure 5.2 shows a set of requirements for this voter registration

system that is expressed in natural language and opened in an Eclipse text editor (1). The textual

natural language requirements do not have to be structured as a list nor formed into a structured

layout as shown in this example. The requirements engineer has used the tool to analyse these

requirements and a set of “abstract interactions” has been deduced from these textual natural

language requirements. These abstract interactions are then represented as a vertical list (2). Our

tracing engine uses an essential interaction library of phrases and regular expressions to deduce and

extract candidate abstract interaction from the associated essential interactions. From the abstract

interaction list thus extracted, our mapping engine generates an EUC diagram (3) using a set of

abstract interaction patterns and EUC diagram heuristics as shown below with a red box. The user

can interact with the three representations of requirements- the natural language expressed as

textual natural language requirements, the abstract interactions which is the essential requirement,

and the diagrammatic EUC model in Marama Essential.

 75

1

2 3

For example, as shown in Figure 5.2 (1), the selected phrase – “select voter registration option” is

traced to a particular abstract interaction – “select option” (2). This has then been mapped to the EUC

diagram and falls under the “user intention” category (3) and select option interaction.

This shows that the tool provides a traceability link for the three requirement components above. The

tool not only provides trace-forward but can also is able to trace-back from an EUC diagram to

abstract interactions and then to a textual natural language requirements. The process of tracing back

is shown in Figure 5.3.

In Figure 5.3, the item “provide identification” (6) from the system responsibility category of the EUC

diagram is selected. This highlights the selected EUC component and the related essential

requirement, which in this case is “provide identification” (5). The traceability between these items is

shown by the visual link (red arrow). The corresponding textual natural language phrases are

automatically highlighted, the matched abstract interaction changes colour to red in (4) and the

matched phrases are quoted with *** (6). The existence of these traceability links allows consistency

among these three items to be maintained.

Figure 5. 2: Tracing the Abstract Interaction from Textual Natural Language Requirement
and Mapping to the Marama Essential

 76

Figure 5.3

As shown in Figure 5.3, the traceability link provided is also a possible way to inform the requirements

engineer if any item appears to be incomplete or incorrect by identifying the links for each of the

requirements components. The requirements engineer may modify any one of these requirement

components and the tool will check the resulting models, both for the internal model consistency,

which involves only the Essential Use Case in the Marama Essential view, and the inter-model

consistency which involves all three views: textual natural language requirement, abstract interaction

and the EUC diagram.

Inconsistency occurs if any change or modification is made to the components [76]. Thus, this view is

applicable to our work. If any inconsistency occurs due to a change made by the user, for example if

there is a change of order, name or type for any of the abstract interaction or EUC diagram elements,

an inconsistency warning will occur. If an item or phrase has been added and the new item cannot be

matched to a textual natural language requirement phrase or abstract interaction by the tracing

engine, an inconsistency warning will also occur. If traceability relationships do not exist between

phrases and items, this indicates the existence of a potential incompleteness or inconsistency, which

means that no tracing result will be shown to the engineer. The tool can highlight items for the

engineer to investigate in one view that do not appear to be related to items in another.

Various types of inconsistency errors described are shown in Figures 5.4, 5.5, 5.6 and 5.7. In Figure

5.4, item (7) shows an example of inconsistency error when a change of sequence to an abstract

4
5

6

Figure 5. 3: Trace back from EUC diagram in Marama Essential to the Abstract

Interaction and Textual natural language requirement

 77

interaction - “select option” is made. Our tool provides the flexibility where requirements engineers

can verify the abstract interaction provided, before mapping it to the EUC diagram. From the

example, the requirements engineer did not agree with the position set by the tool and decided this

should be in a different position in the set of abstract interactions. The tool has highlighted the

potential inconsistency of the EUC diagram in red (8), and the associated phrase “select voter

registration option” from the textual natural language requirements (9) is highlighted with (***). This

change also leads to a change of sequence and position in the EUC diagram - “select option” (8) - to

the bottom, which is highlighted in red. The red arrows show the change of sequence from the

original position to the new one. This produces an inconsistency in the requirements as the textual

natural language requirement remains unaltered. This is because there is no automated update for

the structure of the sentences as it is believed that might affect the whole structure of the sentences.

The tool however does detect the inconsistencies and provides a warning about them.

Figure 5. 4: Inconsistency Occurring: Change of Sequence of Abstract Interaction

9

7 8

 78

Figure 5.5

Figure 5.5 shows the inconsistency occurring when any EUC component is changed to a new

position different from the auto generated position. In this example, an EUC component “select

option” (10) from the user intention category is moved to the bottom, as shown by the red arrow. The

corresponding abstract interaction “select option” (11) is highlighted in red and the associated

phrases “select voter registration option” from the textual natural language requirements (12) is

highlighted with (***). The red arrows show the change of sequence from the original position to the

new one. This produces an inconsistency in the requirements as the textual natural language

requirement remains unaltered.

Figure 5. 5: Inconsistency Occurring: Change of Sequence of EUC component

12

11 10

 79

Figure 5.6 shows a potential inconsistency that happens when a new item is added to the abstract

interaction. It shows a new abstract interaction, “select date”, has been inserted into the abstract

interaction view (13). When the tool checks the new abstract interaction with the textual natural

language requirements, it detects an inconsistency between the new abstract interaction “select date”

and the textual natural language requirements. This triggers an inconsistency warning to appear and

highlights the new added item” select date” in red. The warning informs the requirements engineer

where the inconsistency is located.

13

Figure 5. 6: Inconsistency Occurring: Adding New Item to the Abstract Interaction

 80

Figure 5.7

Figure 5.7 shows a potential inconsistency that happens when a new item is added to the EUC

diagram in the Marama Essential. It shows that a new EUC component, “select date”, has been

inserted into the EUC diagram view (14). When the tool checks the new EUC component with the

abstract interaction and textual natural language requirements, it detects inconsistencies between the

new EUC component “select date” and the abstract interaction and the textual natural language

requirements. This triggers an inconsistency warning to appear and highlights the new, added item ”

select date” in red. The warning informs the requirements engineer where the inconsistency is

located.

14

Figure 5. 7: Inconsistency Occurring: Adding New Item to the EUC diagram

 81

Figure 5.8:

Figure 5.8 shows the inconsistency occurring when the name for an abstract interaction is changed.

As shown, the abstract interaction component “select option” is changed to “view list” (15). When the

tool checks the changed component “view list” with the textual natural language requirement and

EUC diagram, it detects inconsistencies between the changed abstract interaction component “view

list” and the textual natural language requirements and the EUC component. This triggers an

inconsistency warning to appear and highlights the changed item ”view list” in red. The warning

informs the requirements engineer where the inconsistency is located.

15

Figure 5. 8: Inconsistency Occurring: Change of Name to the Abstract Interaction

 82

Figure 5.9 shows the inconsistency occurring when the name of an EUC component is changed. The

EUC component “select option” is changed to “view list” (16). When the tool checks the changed

component “view list” with the abstract interaction and the textual natural language requirements, it

detects inconsistencies between the changed EUC component “view list” and the abstract interaction

and the textual natural language requirements. This triggers an inconsistency warning to appear and

highlights the changed item ”view list” in red. The warning informs the requirements engineer where

the inconsistency is located.

To sum up, these inconsistency warnings and highlights shown in the figures above illustrate the

dependencies that occur among the requirement components: the textual natural language

requirements, abstract interaction and the EUC diagram. If any changes are made to any of the

requirement components, the tool will check the change with the associated components. Any

inconsistency detected will trigger an inconsistency warning to appear and also highlights the

inconsistencies error in red for either abstract interaction or the EUC diagram and (***) for the textual

natural language requirements.

16

Figure 5. 9: Inconsistency Occurring: Change of Name to the EUC component

 83

5.4 Architecture and Implementation

As mentioned earlier, to capture and check the inconsistency, we embed our previous automated

prototype tool in the Marama meta-tool [120]. Our new embedded tool is called MaramaAI. MaramaAI

consists of a textual natural language requirement, abstract interaction and Marama Essential (EUC

diagram) editors. The architecture of Marama Al is shown in Figure 5.10. MaramaAI is realised on

Marama which is built in the Java–Eclipse platform (1-2). MaramaAI editors are specified using

Marama shape, meta-model and view tools. The tool is then implemented by interpreting the

specification using a set of Marama plug-ins (4). The process of extracting and mapping any of the

requirement components is assisted by the event handlers (3). Here, the event handler is the vital

agent in maintaining the consistency among the three forms of requirements listed earlier.

Four types of event handlers are used to support the automation process of capturing the

requirements and checking the inconsistencies. These are: Trace, Trace Back, Map Abstract

interactions to EUC and Index Checker. The description of the event handlers is as follows.

Eclipse IDE

Figure 5. 10: MaramaAI Architecture

 84

I. Trace

The event handler for tracing the textual requirement to the abstract interaction is called

Trace. Here, the tracing engine will extract the key phrases which will be analysed by the

essential interaction pattern library to match the keyword (abstract interaction). If the key

phrases match the keywords, the abstract interaction will be displayed. If there is no match

between the key phrases and the keywords, no results will be displayed. This normally

happens when the textual natural language requirements is incorrect or incomplete. A

sequence chart to illustrate the interaction is shown in Figure 5.11 below.

Figure 5. 11: Example of Trace interaction

II. Trace back

To trace back the abstract interaction or EUC component from where it comes from, we use

the help of the Trace Back event handler. This event handler also works together with the

tracing engine. The selected abstract interaction or EUC component is analysed by the

tracing engine and then matched with key phrases in the interaction pattern library. If we try

to trace back the abstract interaction, the tool will show where the key phrases for that

particular abstract interaction come from. If we trace back the EUC component, the system

will show which abstract interaction matches it, together with the matching key phrases in the

textual requirement. If no result appears, it is presumed that the requirements is either

incorrect or incomplete. The requirement is also inconsistent if users try to change the

 85

requirement by adding new abstract interactions or EUC components or change the name of

any of these components as shown in Figures 5.6, 5.7, 5.8 and 5.9. The trace back event

handler will not be able to trace the key phrases in the textual natural language requirements

as the new component is added or changed without updating the textual natural language

requirement. This will also trigger the inconsistency warning to occur. To show further the

interaction process of this event handler, a sequence chart to illustrate the interaction is

shown in Figures 5.12 and 5.13.

Figure 5. 12: Example of Trace Back interaction from Abstract Interaction

 86

Figure 5. 13: Example of Trace Back interaction from EUC component

III. Map to EUC

The event handler for mapping the abstract interaction to Marama Essential, “Map Abstract

interactions to EUC”, helps to generate the Essential Use Cases automatically. The event

handler works with the mapping engine to map the abstract interaction to the EUC diagram.

The mapping engine analyses and matches the selected abstract interaction with the

property in the interaction pattern library. Then, the abstract interaction is mapped

automatically to the EUC together with its category, either user intention or system

responsibility. The event handler will not map the newly added abstract interaction to the

EUC component if it does not exist in the essential interaction pattern library and the textual

natural language requirement is not updated. This action will also trigger an inconsistency

warning to notify the inconsistency error. A sequence chart to illustrate the interaction is

shown in Figure 5.14.

 87

Figure 5. 14: Example of Map To EUC interaction from Abstract Interaction

IV. Index Checker

The event handler Index Checker acts as a checker for the consistency of the sequence for

both abstract interaction and EUC Diagrams in Marama Essential. The Index Checker checks

the index and location for each abstract interaction and EUC component. Both need to be in

sequence with ordering consistent with the textual natural language requirements. If there is

any change of the sequence or location for both, the event handler provides a warning about

the inconsistency that has occurred. Sequence charts to illustrate this interaction are shown

in Figures 5.15 and 5.16.

 88

Figure 5. 15: Example of Index Checker interaction of Abstract Interaction

Figure 5. 16: Example of Index Checker interaction of EUC component

In conclusion, all event handlers assist to automate the traceability process and help to trigger

inconsistency warnings and visualise the related component if they detect any inconsistencies in any

of the requirements components.

 89

5.5 Evaluation

In order to verify the feasibility of our MaramaAI (Automated Inconsistency Checker), we have

conducted a preliminary evaluation of the usefulness and the ease of use of MaramaAI by eight

software engineering post-graduate students, several of whom had previously worked in the industry

as developers and/or requirements engineers. All were familiar with the EUC modeling approach.

Each participant was given a brief tutorial on how to use the tool and some examples of how the EUC

model is derived from the textual natural language requirements. The textual natural language written

in a form of user scenario of “voter registration” by Some [6] was used for this evaluation and is

shown in Figure 5.17. Participants were asked to input the given scenario and then use the

MaramaAI to retrieve the abstract interaction. They were also allowed to explore the event handler by

tracing the abstract interaction from the textual natural language requirement, tracing back the

requirement either from abstract interaction or EUC diagram and mapping the abstract interaction to

the EUC Diagram in the Marama Essential. The participants were also asked to make any changes to

any of the requirements, such as add, delete and change ordering, and then to observe the facilities

provided by the tool in checking and detecting inconsistencies. The participants rated the usefulness

and the usability of the tool together with its inconsistency detection. They also rated the consistency

in textual natural language requirement, abstract interaction and EUC diagram. Our evaluation was

conducted using a standard evaluation method – a Likert scale with a five part scale. It contains a set

of three questions addressing each of these characteristics. The results of each corresponding three

question blocks were averaged to produce the results shown in Tables 5.2 and 5.3. The type of

questions for each characteristic of user perception on usefulness and the usability of the tool is in

Table 5.1.

 90

Register for vote
Primary Actor:Voter
Goal: An unregistered voter wants to register in order to be able to vote. If successful, the
system generates a login id and the system generates a login id and password for the voter.
Precondition: EVote System is online
Postcondition: Voter is registered
1. Voter loads EVote system is online
2. Voter selects voter registration option
3. EVote system asks for name, social security number, date of birth, address
4. Voter provides name and social security number, date of birth, address
5. EVote system checks Voter status
6. Evote System generates Voter login id and password
7. 1.a.After 60 sec
1.a. EVote system displays time out page
2.a. After 60 sec
2.a.1. EVote system displays time out page
3.a After 60 sec
3.a.1 EVote system displays time out page

5.a. Voter data is not in record
5.a.1 Evote System displays incorrect information error page.

Figure 5. 17: The scenario “Voter Registration” [6] used for the Evaluation

 91

User Perception
Characteristics

Component Questions

Usefulness

Abstract interaction

It is useful to capture the essential requirement
(abstract interaction).
It helps to be more effective to capture the
abstract interaction.
It makes it easier to capture abstract interaction.

Marama Essential

It is useful to be used to display Essential Use
Case.
It helps to be more effective to capture
requirements in a form of Essential Use Case.
It makes it easier to understand the interaction
in the Essential Use Case.

Consistency
Management

It is useful to detect inconsistency in the
requirement.
It helps to be more effective to manage the
consistency of the requirement components:
textual natural language requirement, abstract
interaction and Essential Use Cases.
It makes it easier to detect inconsistencies error
in the requirement

Ease of Use

Automated Tracing Tool

It is easy to use to capture requirement by using
Essential Use cases with Marama Essential
It is user friendly.
I don’t notice any inconsistencies as I use the
tool.

Inconsistency
Management

It is easy to detect the inconsistency of the
requirements.
It is user friendly
I don’t notice any inconsistencies as I use the
tool.

Table 5. 1: User Perception Characteristics and Questions Evaluating Them

Table 5.2 shows the results for the evaluation result on the usefulness aspect of the tool. This shows

that almost all of the participants agreed that MaramaAI is useful for finding the abstract interaction,

capturing requirements using the EUC model and also for checking the inconsistency of the

requirements. Overall, the usefulness of finding abstract interactions by using our tool is almost 94%,

where 56.3% identified it as very useful and 37.5% identified it as always useful. A further 6% of the

participants felt that it was sometimes useful to extract the abstract interaction automatically, primarily

because the tool might be constrained by the domains available in the essential interaction pattern

library. It was identified in the evaluation that approximately 94% of participants agreed that using

MaramaAI with the Marama Essential model was useful in capturing requirements. About 56.3%

identified it as very useful and another 37.5% identified it as always useful. The remainder, 6.2% of

the participants, thought it was sometimes useful to use it as a tool to capture requirement as they

were more familiar with using UML diagrams than Essential Use Case diagrams. For the consistency

management support, approximately 94% agreed that the tool provided useful inconsistency checking

 92

and maintained the consistency of the requirements. About 56.3% of participants thought it was very

useful and around 37.5% felt that the tool was always useful in managing the consistency. Again, the

remainder, or 6.2% felt it was only sometimes useful in managing the consistency as they would have

liked to have more complex consistency checking by the tool. However, all participants agreed that

the tool assisted them to save time in capturing requirements and to manage the consistency issue

between the requirements.

 Category Abstract
Interaction (%)

Marama Essential (%) Consistency Management
(%)

Very Useful 56.3 56.3 56.3

Always useful 37.5 37.5 37.5

Sometimes
Useful

6.2 6.2 6.2

Little useful 0 0 0

Not Useful 0 0 0

Table 5. 2: Tool Usefulness Result

Category Automated Tracing Tool (%) Inconsistency Management
(%)

Very Easy 59.4 56.3

Always Easy 37.5 37.5

Sometimes Easy 3.1 6.2

Seldom Easy 0 0

Not Easy 0 0

Table 5. 3: Tool Ease of Use Results

The ease of use of the MaramaAI was also evaluated and the results are presented in Table 5.3.

Both tracing and inconsistency checking features were evaluated. All participants agreed that both

components were user friendly and easy to use in the example tasks performed. For the MaramaAI,

approximately 95% agreed that the tool was easy to use, about 59% agreed that the tool was very

 93

easy to use and almost 37.5% agreed that the tool was always easy to use. Most thought that the

event handlers were easy to use and really helped to automate the process. Only about 3% felt it was

only sometimes easy to use. This small had difficulty in understanding the layout used by MaramaAI.

The participants were confused with the shapes and colour used to represent the requirement

components. For inconsistency checking of the requirements, almost 94% agreed that it was easily

handled and understood. Approximately 56% agreed it was very easy to handle and another 37.5%

agreed it was always easy to handle. Only 6.2% of the participants thought it was sometimes easy to

check the inconsistency, because the tool currently just provides a warning on the detected

inconsistency and there is no way of resolving it automatically. This minority group also wanted the

tool to have an inconsistency warning together with the feedback. Table 5.4 shows further the

feedback received from the participants.

Participants Feedback

1. “I don’t really understand the layout of tool”. But, overall the tool looks OK. ”

2. None.

3. “No feedback is given with the warning. Need help to resolve the inconsistency””

4. “OK””

5. “Other color used for the shapes””

6 None

7. “Didn’t found this type of tool before. Would like to have more complex
consistency management”

8. “Easy to use”

Table 5. 4: Participants Open Feedback

5.6 Summary

We have discussed our approach and the advantages of using a traceability technique together with

a semi formal specification in the form of an Essential Use Cases (EUC) to manage consistency

among and between textual natural language requirements, abstract interactions and EUC.

Traceability and consistency between these artefacts are visualised with the support of Marama. We

described a proof of concept support environment, MaramaAI, that generates tracing and mapping

among textual natural language requirements, abstract interactions and EUCs. Our tool is also shown

to assist users and requirements engineers to capture requirements and generates EUCs

 94

automatically. In addition, our promising preliminary evaluation results conducted on the tool’s

usefulness and ease of use support the assertion that MaramaAI is able to minimise human

intervention in checking consistency. However, there were also minor negative results and feedback

gained from the study. This motivates us to improve our tool with better support for the tool usability

and consistency checking. Our next focus is to provide higher level consistency between textual

natural language requirements, abstract interactions and EUCs and to further check the other

requirement qualities such as correctness and completeness, using our essential interaction patterns

and EUC interaction patterns. This is described in the next chapter.

 95

Chapter 6: Requirements Quality Checking

This chapter describes a higher level consistency checking technique supporting consistency of

management between representations of textual natural language requirements, abstract interaction

and EUCs as well as supporting further requirement quality checking for both correctness and

completeness of requirements. This is an extension to improve our previous focussed work to support

translation among the three forms of requirements: textual natural language, abstract interactions,

and Essential Use Case models, and then the low-level management of consistency for these three

forms of requirement components (described in Chapter 5).

6.1 Introduction

As described in previous chapters, inconsistency of requirements happens when there are conflicting

requirements and/or the captured requirements from stakeholders are internally inconsistent when

two or more components overlap and are not aligned [21], [22], from incorrect actions [14] or from

requirements clashes and bad dependencies [20]. These complications also often introduce

incomplete requirements that are missing key definitions and constraints for the software system.

Incorrect requirements may also occur when the requirements captured do not accurately reflect the

actual requirements and needs of stakeholders. These quality problems of inconsistent, incomplete

and incorrect requirements lead to development delay and various quality errors, and raise the cost of

the system development process, which often risks the success of the overall project [22].

To address this problem, researchers have produced various approaches, either heavyweight or

lightweight, to support the requirement quality issue, but they mainly focus on consistency [17, 94,

127, 135]. As described in the previous chapter, we also manage the consistency issue by applying a

lightweight approach using traceability with automated tool support. However, there are still some

limitations which we need to overcome. Thus, the gaps identified and feedback gained from our

previous work have motivated us to extend our work to check at a higher level consistency together

with other requirement qualities, such as completeness and correctness, by using the concept of

essential interaction patterns and EUC interaction patterns. These concepts assist in detecting

potential quality problems, especially inconsistencies, incompleteness and incorrectness.

The essential interaction pattern library contains a list of important key phrases (essential

interactions) and mappings to appropriate essential requirements (abstract interactions) which

support a variety of different application domains. Essential interactions are not categorised based on

one particular scenario but can be associated with multiple scenarios, such as online booking, e-

 96

commerce, online business, online banking, an online voting system, online reservation and mobile

applications. Thus, multiple essential interactions from various domains can be associated with one

well-defined abstract interaction. This approach allows low-level requirements problems to be

identified; for example, identification of phrases of textual natural language requirements with no

corresponding EUC abstract interactions or identification of EUC interactions added by the

requirements engineer without any textual natural language requirement phrase(s). The essential

interaction pattern library and its usage were described in detail in Chapter 4. In this chapter we will

focus only on the elaboration of the EUC interaction pattern.

6.2 EUC interaction pattern

A key reason we chose to use the EUC model is that it also lends itself to a deeper analysis, enabling

identification of potential problems with the extracted requirements. A set of “best practice” EUC

interaction patterns or templates can be identified for a range of typical user/system interactions in a

wide variety of domains [39]. Biddle et al.[39] provide a set of styles or patterns which need further

enhancements to be made by the user when writing EUCs. Their aim is to allow a user to write a

good EUC more quickly. They also developed a tool called UKASE, a web-based use case

management tool to support the reusability of EUCs [43]. Although both works focus on supporting

the generation of an EUC, neither focuses on using the EUC patterns for consistency as well as

completeness and correctness checking work. This gap motivates us to check for these problems in

the extracted EUCs. To do this, an EUC interaction pattern library is developed.

 As described earlier, the textual natural language specifications we use are described in the form of

a user scenario or story. Therefore, the EUC interaction library stores the ‘best practice” interactions

of the EUC for each set of scenarios or use case stories. Table 6.1 illustrates the examples of EUC

interaction patterns for scenarios or use case stories such as “reserve item”, “purchase item”, “make

a transaction”, ”book item” and “make a registration” with their sequences of abstract interactions.

 97

Scenarios/
Use Case stories

User intention
Abstract Interaction

System responsibility
Abstract Interaction

Reserve item choose
 offer choice
 view detail
 request identification

identify self
 confirm booking

Purchase item choose
 check status

identify self
provides detail

 verify identity
 request confirmation
 view detail

Make a transaction select option
choose

select amount
 verify identity
 print

Book item identify self
select option
select item

insert information
 Print

Make a registration select option
 request identification

identify self
 check status
 provide identification
 display error

Table 6. 1: Examples of EUC Interaction Patterns

Once an EUC model has been extracted, it can be compared against a pattern in our EUC Interaction

Pattern Library. An extracted EUC model would be expected to conform to one of the patterns, or

templates, in this library. If it deviates from this pattern, this typically indicates incompleteness

(missing interactions), incorrectness (redundancy, wrongly sequenced interactions or wrong

interactions), and possible inconsistency (conflicting or nonsensical interactions).

6.3 Our Approach

We have applied the EUC interaction pattern library concept together with an inter-representational

traceability approach to check for requirements quality problems (inconsistency, incompleteness or

incorrectness) that exist in any of the requirement representation components; textual natural

 98

language, abstract Interactions and Essential Use Cases (EUC). Figure 6.1 shows an outline of our

requirements’ quality management process.

Figure 6. 1: Outline of our Requirement Quality Management Process

Illustrated in Figure 6.1 is the outline of our process for managing requirements quality. Textual

natural language requirements are first translated into a set of abstract interactions (1). This is done

by using our essential Interactions library of concrete abstract interaction mappings, which abstract

common expressions and phrases into EUC abstract interactions. These abstract interaction

sequences are then translated into an EUC model to capture the requirements (2). This is done by

applying EUC structuring rules to the interactions and a visual EUC requirements model is then

generated. All of this is as per the processes described in Chapter 5. A set of inter-model checks

between different requirements representation components and intra-model checks of each specific

model is then conducted (3). The sequence of EUC interactions is compared to common sequences,

or EUC interaction patterns, in our EUC interaction patterns library. The extracted EUC model’s

abstract interactions are thus compared to an expected essential interaction and EUC pattern’s set of

 99

abstract interactions and their sequencing. These comparison processes highlight the potential intra-

and inter-model problems such as the following.

 Sequencing of requirement elements: The sequence of abstract Interactions and EUC

components must be in the same order as the sequence of essential interactions in the textual

natural language requirement. This detects inconsistencies between models where one has

been edited and others not. The ordering of the interactions between user and the system also

needs to be consistent.

 Naming of requirement elements: The name of an EUC component must be the same as the

abstract interaction and these need to map to a specific essential interaction in the textual

natural language requirement. The abstract interaction also needs to match one of the abstract

interactions in the essential interaction pattern library. This detects inconsistencies between

models and also incompleteness. This is to ensure the completeness and correctness of the

textual natural language requirements, and to maintain consistency between the abstract

interaction, textual natural language requirement and the EUC diagram.

 Consistency with changing components: All three requirements’ representations - textual natural

language scenario, abstract interaction and EUC - must be consistently updated if elements in

any one of the models are modified by the requirements engineer. Modification processes

include adding, deleting, re-sequencing and changing properties of elements.

 Consistency within models: The EUC and abstract interaction sequence semi-formal notations

have meta-models with constraints expressed over them, allowing low-level validation of

correctness and internal notation consistency. These check for low-level intra-notation

consistency, completeness and correctness. For example, the EUC has start/end interactions,

naming conventions of elements are met and all elements are part of a valid sequence of EUC

model-compliant interactions.

 EUC interaction pattern matching: the abstract interaction elements and the sequence of

elements in EUC models need to match a suitable template in the EUC pattern library. Updating

an abstract interaction or EUC element to conform to matching components requires updating

the equivalent in the textual natural language requirement representation based on the matching

pattern in the EUC pattern library. This detects incomplete and incorrect requirements elements.

EUC models not conforming to a recognised pattern usually indicate missing, duplicated or

redundant elements, or incorrectly expressed interaction components and sequences in the

extracted requirements.

When problems with requirements models are detected, we focus on providing warning, feedback

notification and visualisation of the quality issues existing in any component (4). Components that

mismatch, do not exist in one model, have differing sequencing between components, or that overlap

with non-corresponding names or other information, are classed as an “inconsistency”. Detected

redundancy of a component or a mismatch between a component and the expected element in an

 100

otherwise matching pattern is classed as “incorrectness”. Missing components or sequences in a

model compared to an otherwise matching pattern are classed as “incomplete”. The set of

requirements is assumed to be “complete” [136] once all the requirements model elements satisfy a

match or matches in the EUC interaction pattern library. Requirements engineers can choose to do

one of the following.

I. Resolve a detected quality issue by modifying the components based on the results of the

consistency engine recommendation.

II. Tolerate the inconsistency until later, with our tool tracking it.

III. Strictly ignore the inconsistency (5).

We avoid forcing requirements consistency immediately as consistency rules cannot always

automatically maintain the consistency of the set of requirement components. For example, if the

sequence of components of the abstract interaction or EUC is problematic, we cannot automatically

enforce a change in the structure of the textual natural language as this requires manual

intervention. In this situation, a warning and notational element highlighting make users aware that

the inconsistency is still present. Explicitly ignoring the inconsistency (suppressing warnings) is also

allowed as we respect requirements engineers to make the final decision on the quality of their

requirements. End-user stakeholders can view updated and/or annotated textual requirements at any

time to comment on the correctness and completeness of the requirements model. While the EUC

model is arguably end-user-friendly, keeping it consistent with the textual natural language

representation affords the latter human-centric views continued use through the requirements

engineering process.

6.4 Tool Support & Usage

6.4.1 Tool Support

As described in Chapter 5, our prototype tool - MaramaAI (Automated Inconsistency checker) aims to

help requirements engineers to manage inter-notation requirements translation and consistency

management. We have extended our tool to manage a higher level consistency of requirement and to

provide help for the quality improvement process based on our approach outlined in the previous

section. Our tool helps to lessen the need for human intervention and minimises the time taken to

manage requirements formalisation from textual natural language to the semi-formal representation in

 101

an EUC model. This is supported by the evaluation results obtained. Our tool, as discussed, not only

supports incremental refinement of the requirements to address detected quality issues but also the

evolution of the requirements over time. The textual natural language requirements are kept

consistent with the EUC model, allowing them to co-exist during requirements engineering. Besides

capturing the abstract interactions from the textual natural language requirements, a requirements

engineer can also view the simplified interactions between the user and the system in the EUC

automatically. This form of interaction summary allows requirements engineers to better understand

the flow of the interactions, the structure of the requirements and to view key inconsistency,

incompleteness or incorrectness errors identified by the tool. Warning and feedback messages are

also provided to notify the requirements engineers of quality issues detected throughout the

requirements refinement and correction.

Deeper analysis for completeness and correctness checks is provided by the tool. The tool compares

extracted EUC models to our set of “best practice” template EUC interaction patterns. These patterns

represent valid, common ways of capturing EUC models for a wide variety of domains. Matching a

substantial part of an extracted EUC model to an EUC pattern indicates potential incompleteness

and/or incorrectness at the points of deviation from the pattern. These potential problems are

highlighted to the engineer using visual annotations on the EUC model elements. Currently,

approximately 30 generic EUC interaction pattern templates are available in the tool and an extracted

EUC model is expected to match one of these and, if not, differences are highlighted. New patterns

can be added as required. Extracted EUC models that differ slightly, but in ways the engineer

considers reasonable, can be marked as “complete”.

6.4.2 Consistency Checking

As an example of consistency checking using the outlined approach, we use the textual natural

language user scenario, reserving a vehicle to illustrate requirements extraction, checking and

evolution process using our extended MaramaAI tool.

Figure 6.2 shows an example of some textual natural language requirements (1), extracted abstract

interaction phrases (2), and a generated EUC model representing the requirements (3), all as per the

techniques described in Chapter 5. As previously noted, once these requirements have been

extracted and represented in these three forms, MaramaAI provides low-level checking of the

abstract interaction sequence and EUC model internal consistency, using their defined meta-model

constraints. It also supports inter-model consistency management by propagating changes made to

one representation across to the other two representations.

 102

1 2

0

3

A

B

C

Figure 6. 2: Example of extracting an EUC model then adding a new abstract interaction

 103

Figure 6.2 shows the addition of a new abstract interaction “print”. A warning notifies where an

inconsistency is detected between representations (A). Users have the following options.

(i) Resolve the inconsistency by updating the textual natural language requirement

using the provided correct and complete words (B).

(ii) Undo the change that introduced the inconsistency by deleting the new element.

(iii) Tolerate the inconsistency by ignoring it. A problem marker warning is provided to

inform users about such unresolved inconsistency errors (C).

Figure 6.3 shows an example of MaramaAI tolerating inconsistency when an EUC component

sequence order is changed. The EUC element “choose” has been moved to the end of the EUC

model and this change affects the other two requirements forms. The textual natural language

requirement and abstract interaction sequence are now inconsistent with the EUC representation.

The tool colours the associated abstract interaction “choose” in red (1) and annotates the associated

essential interaction “indicates” with “*****”(2). The process of detecting the inconsistency is as per

described in Chapter 5. However, here, an inconsistency problem marker also appears to notify user

about the inconsistency (3). Options to resolve the inconsistency by moving the associated abstract

interaction element are also provided to the user. In this case, the user will have to tolerate the

inconsistency until later, as changing the structure of the highlighted phrases (essential interactions)

will cascade changes to the whole structure of the textual natural language requirement. Another

problem marker warning is provided to continue to inform the user of the existence of an

inconsistency that has not yet been resolved. The same inconsistency toleration will happen if any of

the abstract interaction elements are changed to another position.

 104

Figure 6. 3: Change the ordering of EUC elements

The tool also forces the user to resolve the inconsistencies if any deletion is made to either abstract

interaction or the EUC component. Figure 6.4 shows that an EUC element “offer choice” is chosen to

be deleted. This deletion causes an inconsistency with the abstract interaction and textual natural

language requirement as indicated in Figure 6.4 (1). The abstract interaction is given a highlight and

the related essential interactions in the textual natural language are also highlighted with “***”. The

user only has two options: either to delete the selected element and its associated components or to

cancel the deletion. If the user continues with the deletion, all the associated components will also be

deleted as in figure 6.4(2). In this case, the abstract interaction element “offer choice” and the

associated essential interactions “prompts the customer for the pickup” and “prompts for the type” in

the textual natural language requirement are deleted.

1

2

3

 105

6.4.3 Inconsistency, Incorrectness and Incompleteness Checking

Further detailed analysis of the consistency, correctness and completeness of requirements models

is provided by using EUC pattern library instances to validate the extracted EUC model. To do this,

the checker attempts to match the extracted EUC model with one of the generic EUC interaction

patterns or templates in the EUC interaction pattern library. Currently, there are approximately 30

generic EUC interaction pattern templates covering various domains developed by us and collected

from the research of Constantine and Lockwood [4] and Biddle et al. [39]. The generic template is

assumed to be the correct and complete interaction (an oracle) for a specific scenario. This provides

the requirements engineer with a further, higher level, check of his requirement’s model by comparing

his EUC, representing a semi-formal model of the original textual natural language requirements, with

a template which matches a “best practice” EUC representation for the abstract interaction scenario.

As discussed above, this technique allows us to detect:

1

2

Figure 6. 4: Deletion of an EUC element

 106

 intra-model inconsistencies (e.g. one or more unexpected abstract interactions or interactions

out of expected sequence appearing in the extracted EUC model);

 incompleteness (missing interactions occur in the extracted EUC model compared to the generic

template matched in the EUC pattern library); and to some degree,

 incorrectness: requirements captured in the extracted EUC model do not match a best-practice

template in the pattern library, indicating possible incorrect textual requirements.

For example, Figure 6.5 shows the requirement describing reservation of a rental vehicle from a

company. To check for consistency of this requirement, the user can choose a provided EUC

interaction pattern template ”reserve item” (outlined in Figure 6.5(1)) to compare to the extracted EUC

model. Alternatively, he can have MaramaAI compare the extracted EUC model to all available

patterns and find a “best fit”, highlighting any differences from the best fit template as possible

problems. MaramaAI checks whether or not the extracted EUC requirements model is consistent with

the identified EUC interaction pattern library template. If differences are found, a warning message is

provided and the tool uses a visual differencing approach [137] to highlight potential inconsistency,

incompleteness and/or incorrectness errors that may exist in the requirements model, as shown in

Figure 6.5 (2).

 107

Visual Differencing

between generated EUC

model and EUC

interaction pattern

template

1

A

B

2

D

Choose a template from

the EUC interaction

pattern template to

compare with the

generated EUC model

C

Figure 6. 5: Example of EUC interaction pattern template (1) and Visual differencing (2)

 108

Here, EUC interaction pattern elements are shown as a set of grey elements adjacent to the

extracted EUC model. Visual link “” annotations connect corresponding elements in the extracted

EUC and EUC interaction pattern. The tool is able to show errors such as wrong sequence ordering,

redundancy, missing elements and the existence of extra elements in the EUC model. Incorrect

sequences are obvious via crossed links (e.g. the out of order “view detail” abstract interaction).

Incorrect interaction is also shown by a grey element (e.g. “choose”) near the extracted EUC model

(e.g. “view detail”) (A). Both are from different interaction category where element “choose” is from

User Intention and “view detail” is from System Responsibility. The position is also supposed to be

held by” choose” and not “view detail”. Unmatched items in the EUC interaction pattern template

(e.g. “view detail”) or in the extracted EUC (e.g. “identify self”) are highlighted (B) (in this case

juxtaposed to indicate the EUC interaction pattern element could sensibly replace the extracted

element). The error is the incorrect position hold by “identify self” where the position should be hold

by “view detail”. The incomplete item is shown by the grey shape “offer choice” overlapping the green

shape “request identification” (C). This also shows that the incorrect position held by the extracted

EUC component “request identification”: it should actually be after the element “offer choice” The

extra element “print” is highlighted with a red box (D) to show the unnecessary existence of an

element in the diagram.

Based on the visualised errors, requirements engineers can choose to: change their EUC model to

conform to the template view, incorporate some of the recommended changes into their model, or

keep their existing EUC requirements model. For example, Figure 6.6 (3) shows that if the

E

3

Generated EUC model is
changed to EUC

interaction pattern

Figure 6. 6: Change generated EUC model following the EUC interaction pattern
template

 109

requirement engineers choose to change his EUC model to follow the template, the EUC model will

change automatically to an EUC based on the EUC pattern template. The problem marker provides a

warning if the generated EUC model is kept or changes to the pattern template or if there are still

inconsistencies in any of the requirement components (E). Our philosophy is to lessen the human

effort and intervention in checking for potential errors but to leave the final decision to accept or reject

recommendations to the user. Our belief is that combining tool automation support to identify potential

requirements errors with human acceptance and cross validation better helps unearth and fix

inconsistency, incompleteness and incorrectness errors [138].

6.5 Architecture and Implementation

Abstract
Interactions

Library

EUC Patterns
Library

Text editorMaramaAI visual editor

Marama
meta-tool
Core APIs

MaramaAI
tool

specifications

MaramaAI
diagrams &

model

Extract
Interactions

Visual diff
EUC model

Add/update/
delete

Annotate
diagram

Annotate
text

Marama
Tool

instance

Marama
Meta-tool
designers

Meta-
model

designer

Shape
designer

View
designer

Behaviour
designer

Update
text

MaramaAI saved
model/ diagram/

text data

Change
Diagram/text

1

2
3

4

5

6
7

Figure 6. 7: MaramaAI tool architecture for managing consistency of requirement

We developed the extended MaramaAI toolset using our Marama meta-tools [120] and a number of

specialised components for requirements extraction, analysis, comparison to the pattern library and

visual differencing. An outline of the tool’s architecture is represented in Figure 6.7.

I. Items (1-4) are as per described in Chapter 5. We developed the meta-model, editing tools

and basic EUC model constraint management with Marama, generating a specification for

 110

the tool (1). When using MaramaAI, a requirements engineer opens the MaramaAI tool

specification and the Marama meta-tool instantiates the tool including model and diagrams

(2).Textual natural language requirements are extracted from plain text documents (which

themselves can be extracted from Word and PDF formats). This is done by using essential

interaction phrases to abstract interaction mappings in our essential interaction library (3). A

list of extracted abstract interactions is generated which is then translated into an EUC

model. These models are used to generate an abstract interactions list and an associated

EUC diagram (4).

II. Here, we have mapped our EUC interaction pattern library approach, illustrated in Figure 1,

to the consistency management framework proposed by Nuseibeh [135]. The requirements

engineer can make modifications to any of the representations supported by MaramaAI (5),

including changing textual representation or adding, updating, re-sequencing or removing

elements in EUC or abstract interaction representations. Inconsistencies between these

representations are detected and shown to the user via highlighting text and/or diagram

elements. The EUC model is compared against “best practice” templates in the EUC patterns

library to check its completeness and correctness (6). Differences to a chosen pattern

template in the library are highlighted between the EUC model and template through visual

differencing (7). This annotates the EUC model to indicate these differences. For all

inconsistencies and differences from an EUC model from a pattern library template, the

requirements engineer can choose to resolve the inconsistency by modifying components, to

tolerate it (deferring for later attention) or to indicate his wishes to ignore the inconsistency.

 111

Scenario Generated EUC model with changes EUC interaction pattern

Reserve
item

 1. view detail 1. choose

 2. request
identification 2. offer choice

3. identify
self 3. view detail

 4. confirm
booking 4.request

identification

5. choose 5.identify self

 6. print 6. confirm booking

Table 6. 2: Overview of Comparing the Generated EUC model with EUC Interaction Pattern
Template

Table 6.2 shows an overview of the comparison of a generated EUC model with an EUC

interaction pattern based on the selected scenario template. An item with a red dashed circle

shows an incorrect item that exists in the EUC model compared to the EUC interaction

pattern. The blue dotted lines show an incorrect match between both models and a yellow

dotted line shows an incorrect position or sequence hold by each item in the generated model

compared to the EUC interaction pattern. The red dotted box with the item “offer choice”

shows there is an incomplete item which is missing in the generated item compared to the

EUC interaction pattern. This concept is performed using visual differencing in MaramaAI as

illustrated in Figure 6.5.

III. An inconsistency is resolved by updating a representation model appropriately and

MaramaAI provides support to the user by presenting and applying potential changes to

resolve the inconsistency. In each case, any modification results in the models again being

checked with the meta-model consistency rules and the EUC pattern template.

As mentioned earlier, we implemented the visual diagramming interfaces of MaramaAI using the

Marama meta-tool [120]. This support the latter used in visual differencing. The meta-model and

DSVL editors were also supplemented with event handlers to provide low-level model constraints,

consistency management support and interfaces to other elements of the architecture. These were

implemented in Java and include generation of dialogues and problem markers to help the user to

track, tolerate and resolve inconsistencies. In Chapter 5, an event handler was described to

implement extraction of textual natural language requirements into abstract interactions, and another

to generate an EUC model from the abstract interaction as well as simple inconsistency checking.

Three further event handlers which are written in Java and used to check for the higher level

 112

consistency checking using the essential interaction pattern and EUC Interaction Pattern, are

described as below;

I. Consistency Management: This event handler is used to check any deleted item in any of the

requirement components: textual natural language, abstract interaction and the EUC model.

The Consistency Management checks the deleted item either in abstract interaction or an

EUC component. Then the event handler will highlight the associated component in red and

the corresponding textual natural language requirement with ****. The highlight components

need to be deleted also, or the user is forced to cancel the deletion It also provides warning

about the inconsistency that has occurred and triggers the problem marker to show the

inconsistency errors. Sequence diagrams to illustrate this interaction are shown in Figures

6.8 and 6.9.

Figure 6. 8: Example of Consistency Management: Delete Abstract Interaction

 113

Figure 6. 9: Example of Consistency Management: Delete EUC Component

II. Check Consistency with a Template: This event handler is used to check and compare the

generated EUC model with the EUC interaction pattern in the EUC interaction pattern library.

Here, visual differencing proposed by Mehra et al. [137] is conducted to show the

inconsistency, incompleteness and incorrectness in the EUC model. If any of these errors

occur, the event handler provides a warning about the errors and asks the user to either

change the generated EUC model to the suggested template or to live with the inconsistent

model. The event handler also triggers the problem marker to show the error which still exists

in the model. A sequence chart to illustrate this interaction is shown in Figure 6.10.

 114

Figure 6. 10: Example of Check Consistency with a Template for the Generated EUC

Model

III. Check Keyword: This event handler is used to check the existence of new abstract interaction

in either the abstract interaction component or the EUC component. The event handler

checks the new abstract interaction with the textual natural language requirement and will

trigger an inconsistency warning if the new abstract interaction is not matched with the

essential interactions in the textual natural language requirement. It will also trigger the user

to make a selection: to update the new abstract interaction with the provided suggested list of

complete and correct words, to delete the new item or to continue with the addition of the new

abstract interaction without any updating to the textual natural language requirement.

Sequence charts to illustrate this interaction are shown in Figures 6.11 and 6.12.

 115

Figure 6. 11: Example of Check Keyword of abstract interaction in the abstract interaction

Component

 116

Figure 6. 12: Example of Check Keyword of abstract interaction in the EUC Component

 117

6.6 Conclusion

In this chapter, we have described our further work in managing the requirement consistency. We

described an approach supporting requirements quality improvement via a combination of semi-

formal model extraction from natural language specifications and analysis using the essential

interaction pattern library and an EUC interaction pattern library. Low-level inconsistency problems

can be identified such as textual natural language phrases without matching semi-formal model

elements and meta-model constraint violations of the extracted model. Higher-level problems,

including inconsistency, incompleteness and incorrectness can be identified by comparing the semi-

formal model with the essential interaction pattern and with the “best practice” examples of EUC

interaction pattern templates. A visual differencing technique highlights differences between the

pattern template and the EUC model. Modifications to EUC, abstract interaction and textual natural

language requirements representations are also supported with consistency management support

among the different representations. We have conducted the evaluation of our consistency

management approach and the results are further discussed in the Evaluation Chapter, Chapter 9.

The results and feedback received from the evaluation motivate us to extend our work with end-to-

end support by developing an Essential User Interface (EUI) prototype and a concrete UI view in a

form-based UI from the EUC model. The generated UI could be used to verify and confirm that

requirements expressed by clients are consistent with the requirement engineer’s view using this

alternative visualisation mechanism. This is described in the next chapter.

 118

Chapter 7: Supporting Requirement Validation via End-to-
End Rapid Prototyping

This chapter describes a significant extension of previous work which provides end-to-end rapid

prototyping support for validating requirements. A new round-trip requirements engineering approach,

capturing requirements as essential use cases and further translating them into “Essential User

Interface” low-fidelity rapid prototypes is developed. These prototypes aid clients to better

conceptualise and understand how requirements might surface in a system, enable them to provide

more detailed feedback to requirements engineers and provide a complementary user-centric

representation of requirements orthogonal to existing natural language and formal models. A study

illustrating the challenges of requirements engineers in capturing such rapid prototypes, a tool to

support requirements capture, rapid prototype generation and consistency management are also

described.

7.1 Introduction

Requirements capture from clients is often difficult, time consuming and error prone [11]. Late

validation, in particular, causes requirements quality to suffer [25]. This has placed a focus on

techniques for early client feedback, such as use of formal and semi-formal models and heuristic

algorithms [30],[139],[26] plus techniques for translating natural language requirements into such

models [14, 28, 139]. While beneficial, these approaches are often difficult to use and require much

effort [140], [141]. However, most clients do not understand models, formal terms or mathematics

equations leading to validation problems [141],[142]. Rapid prototyping can be one of the best ways

for early validation of requirements from both a requirements engineer (RE) and a client’s view

respectively [143]. Using prototypes, clients gain a much clearer understanding of a proposed system

via an intuitive representation, or mock-up, of the target system. This helps to reach a very early

identification of missing or incorrect requirements [144],[71].

For early-stage requirements analysis, low-fidelity or abstract prototypes are useful [145]. However,

developing such prototypes requires effort [71] and, Sukaviriya et al [145] assert, is poorly supported

by toolsets. In chapters 5 and 6, we have developed a technique and toolset for checking consistency

of requirements based on Essential Use Case (EUC) diagrams. Here, we describe a significant

extension of this work providing end- to-end rapid prototyping support. EUC models are mapped to an

 119

abstract Essential User Interface (EUI) prototype model. From there they are mapped to concrete

User Interface (UI) views in the form of form-based UIs. This allows the RE and client to walk-through

the formalised requirements together and to validate and confirm the consistency of these

requirements. We have established a set of EUI patterns for EUI prototypes and an EUI Pattern

template for translating an EUI prototype to concrete UI view-HTML form and implemented them as

an extension to our previous work.

7.2 Background

7.2.1 Rapid Prototyping

Rapid prototyping assists the requirement elicitation process by gaining early feedback from clients

on captured requirements [71],[146]. Low-fidelity or abstract prototypes (often paper) are commonly

used in this process [147]. Types of abstract prototypes include EUI prototypes [4], abstract user

interfaces [148] or UI prototypes [149]. These are easy-to-change mock ups which encourage

iteration of the elicitation and validation process [71],[149]. They allow a rough walk-through of user

tasks before needing to factor in hardware or technology concerns [146] and can avoid clients being

fixated at an early stage on concrete product appearance rather than functionality [71].

7.2.2 Essential User Interface (EUI) prototyping

EUI prototyping is a low-fidelity prototyping approach [10]. It provides the general idea behind the UI

but not its exact details. It focuses on the requirements and not the design, representing UI

requirements without the need for prototyping tools or widgets to draw the UI [150]. EUI prototyping

extends from, and works in tandem with, the semi-formal representation of EUCs, both focusing on

users and their usage of the system, rather than on system features [11]. It thus helps to avoid clients

and REs being misled or confused by chaotic, rapidly evolving and distracting details.

Figure 7.1, from Ambler [10, 11], shows an example of an EUI prototype being developed from an

Essential Use Case (EUC). The post-it notes represent abstractions of user interfaces. The different

colours of these notes represent different UI elements. Pink notes represent the input field, yellow

notes represent display only and blue notes represent actions [11]. Here, the RE is capturing the user

intention/system responsibility dialogue represented in the EUC as possible UI functionality at a high

 120

level of abstraction. Although EUI prototyping has advantages, it has not been rigorously applied in

practice as no tool support is available for such an approach. Being a whiteboard/paper technique, it

does not integrate well with other tools used in the software engineering process [10]. Also, previous

work has shown that the application of low-fidelity techniques in practice proves challenging [71].

Overcoming these problems was the motivation for the work described in this chapter.

7.3 Applying EUI Rapid Prototyping: A Study

To obtain a more rigorous understanding of the reported anecdotal difficulty of using low-fidelity

prototyping [71], and EUI prototyping in particular, we conducted a user study of several REs

modelling an EUI prototype from a set of requirements written in the form of a user scenario.

Our study participants were 20 post-graduate software engineering students, several of whom had

previously worked in the industry as developers and/or REs. All were familiar with requirements and

prototyping but none with the EUI prototyping approach. Each participant was given a brief tutorial on

the approach and examples of natural language requirements with derived EUC models and EUI

prototypes. Participants were then asked to develop an EUI prototype model from an EUC model and

natural language requirements. We tracked the time they took to complete the task. The particular

Figure 7. 1: Example of EUI prototype iterates from Essential Use Cases (EUC
model (Ambler [10, 11])

 121

scenario we gave them to analyse was “getting cash”, which is the same scenario discussed in

Chapter 3, but here we focus on EUI modelling, given an existing EUC, rather than EUC modelling

itself. This scenario is given as we wanted the participants to understand and be comfortable with the

requirements before capturing the intended content and the organisation of the UI. The example of

the scenario and EUC diagram given are shown in Figure 7.2.

Table 7.1 summarises the results of the study. The correctness (Y correct, X incorrect) and the time

taken were recorded for each participant and each EUI component. A correct answer (Y) means that

the participant’s component was the same or very similar to an oracle EUI pattern we developed

based on the Constantine and Lockwood [4] methodology. Thus:

 Only 42% of the EUI components were correct.

 No participant had all EUI components correct (all Ys). Three had only one wrong (orange

highlight). One participant’s components were all incorrect (grey highlight).

1. The use case begins when the Client inserts
an ATM card. The system reads and validates
the information on the card.
2. System prompts for pin. The client enters PIN.
The system validates the PIN.
3. System asks which operation the client wishes
to perform. Client selects “Cash withdrawal.”
4. System requests amounts. Client enters
amount.
5. System requests type. Client selects account
type (checking, saving, credits)
6. The system communicates with the ATM
network to validate account ID, PIN and
availability of the amount requested.
7. The system asks the client whether he or she
wants receipt. This step is performed only if there
is paper left to print the receipt.
8. System asks the client to withdraw the card.
Client withdraws card. (This is security measure
to ensure that clients do not leave their cards in
the machine.)
9. System dispenses the requested amount of
cash.
10. System prints receipt.
11. Client receives cash
12. The use case ends.

User Intention System
responsibility

1. identify
self

2.verify identity

 3.offer choice

4.choose
transaction

5.dispense cash

6.take cash

Figure 7. 2: Example of Scenario “getting cash” and its EUC diagram

 122

 The average time taken was 14.4 minutes, the longest time 35 minutes (yellow highlight) and

the shortest 3 minutes. Thus, there was a significant variability in the time taken.

Based on these results, participants were more likely to generate incorrect EUI prototype models than

correct ones. The root cause was that participants tended to incorrectly determine the main UI

component of a specific business use case. Almost all participants tended to capture unnecessary UI

components, gearing towards a concrete GUI rather than EUI components. There was considerable

variation in the time taken and the longest time taken did not increase the likelihood of the

correctness of the answer: 35 minutes for only 2 correct EUI components. Our survey thus supports

the anecdotal findings reported in [71] regarding the problems faced in using low-fidelity prototypes

but with more quantitative evidence.

Participant Answers Time
taken

(minutes)
ID Other

personal
detail

Display ID List of
Option

List of
Payment

Display Cash

1 Y X Y X X X 7
2 Y Y Y Y X Y 10
3 Y X X X Y X 5
4 Y X X X X X 30

5 X X X X Y Y 23
6 X X X X X X 10
7 Y X X Y X Y 3
8 Y X X X X Y 4
9 X X Y X Y Y 11

10 Y Y Y X Y Y 11
11 Y X Y Y Y Y 30
12 X X Y X X Y 30
13 Y Y X Y Y Y 8

14 X X X X Y Y 4
15 Y X X X X X 5
16 X X X X X X 12
17 X X Y Y X X 25

18 X X Y X Y X 20
19 Y X Y X Y Y 4
20 Y X Y X X X 35
 12 8 3 17 10 10 5 15 9 11 11 9 287

Average time taken: 287/ 20= 14.35

Table 7. 1: EUI prototype Modelling Study Results

 123

7.4 Related Work

Earlier in this chapter we suggested that rapid prototyping is useful in assisting the requirements

validation and confirmation as well as supporting the analysis and requirements engineering at an

early stage. Many other researchers have generated user interfaces or prototypes in the requirement

engineering domain.

For example, Ogata and Matsuura propose a method for automatic generation of user interface/

prototypes for web-based business applications based on requirement specifications defined in UML

[142]. Their work guarantees consistency of the data and flow between the requirement Analysis

model and prototype, and thus decreases the time taken to conduct requirements analysis.

Gabrysiak et al. present an approach and preliminary tools that support combining requirement

models with specific requirements prototyping of interactive visualisations (animations). These are for

requirements elicitation and validation of systems for multiple users in the business domain and for

scenario-based requirements [151].

Furthermore, Li et al. present an approach for validating system requirement at an early stage by

transforming UML system requirement models with Object Constraint Language(OCL) specifications

into executable prototypes with the aim of checking multiplicity and invariant constraints [152]. Their

work also performs automatic consistency checking of requirements. However, some OCL

expressions cannot be handled by their tools and the algorithm used does not support larger

executable sets of OCL [152].

Memmel and Reiterer introduce an interactive integration between interdisciplinary and informal

modeling language, comprising different fidelity levels for UI prototyping in their INSPECTOR tool

[149]. This enhances the traceability of dependencies, increases transparency of design decisions

and provides support for round-trip engineering [149].

Schneider developed the “Fast feedback” technique with “By Product principles” to collect additional

information during interviews with clients by sketching and animating user interface mock–ups guided

by use case steps [25]. This technique requires two interviewers to collect requirements: one interacts

with the stakeholder and the other completes a template.

There is also much work on non tool-based techniques. Vijayan and Raju propose a paper

prototyping approach for eliciting requirements [153]. The requirements gathered are validated by

examining the captured paper prototype to identify omissions, ambiguities and other requirement

quality problems[153].

 124

Molina et al. have developed a model and graphical notation for the specification of abstract UIs

based on a conceptual pattern [154]. This Just UI approach identifies patterns for UIs and abstracts

them to work with problem domains specifically for presentation and navigation issues. It extends

Object- Oriented(OO) methods to capture UI requirements and presents a set of patterns that can be

used as building blocks to create UI specifications for information systems manually [154].

The work discussed above present approaches to generate the user interface/ prototype for

requirement engineering purposes, mainly for requirement analysis. However, most approaches

generate the user interface/prototype from semi-formal specifications, typically UML models, only and

not from informal specifications in the form of textual natural language requirements. Some of the

work identified lacks automation support to generate the interface/prototype and to conduct the

validation process. None of the approaches generate EUI prototypes; most generate another type of

abstract prototype to visualise the requirements. Almost no work has been done to develop a EUI

pattern library or EU pattern template for generating the user interface/prototype. In addition, most of

the approaches also lack round-trip prototyping support to validate the requirements by both the REs

and clients.

 125

7.5 Our Approach

Figure 7. 3: End-to-end EUC and EUI prototyping approach

We were motivated by the gaps that we found from the related work discussed in the previous

section. We were also surprised by the results in section 7.3, although perhaps should not have been,

given the results from per manual EUC extraction study presented in Chapter 4. Many participants

were experienced in the field of software requirements. Given this background, we expected that less

time would be used to accomplish the simple task. We also expected they would be able to develop

more accurate EUI rapid prototypes for this problem domain.

This has provided us with an additional motivation to develop an approach and supporting tool to

enable REs to capture or confirm more effectively requirements with clients via end-to-end rapid

prototyping using low-fidelity EUI prototyping together with a concrete UI prototype. Figure 7.3

provides an overview of our end-to-end rapid prototyping and requirements elicitation process.

I. The process followed in items (1-6) in Figure 7.3 is as per described in earlier chapters,

Chapter 4, 5, and 6. Our new work presented here (in the grey box) allows the RE to

automatically and traceably transform EUC models to EUI prototypes using a novel EUI

pattern library we have developed (7).

 126

II. Combined with our earlier toolset, this means traceability is provided throughout the process,

allowing any of the EUI components to be traced forward/back from/to the EUC model,

abstract interaction or textual natural language requirement.

III. The EUI prototype can also be translated to a more concrete form-based UI view, an HTML

form, by using a novel EUI Pattern template library (8). An EUI prototype model can be

translated to a concrete form-based UI using a pre-defined template in a EUI pattern template

library, one template for each EUI pattern. The EUI Pattern template consists of the

descriptions of Concrete UI components to be instantiated for a particular EUI pattern.

IV. Simple interaction with the generated HTML form is supported to illustrate how target system

information input and output could work. This EUI model and concrete UI can then be

reviewed by the RE with end-users to validate and confirm the consistency of the original

textual requirements (9).

Figure 7. 4: An example of performing mapping of EUC model to EUI prototype using the

UI Pattern library with trace-forward/ trace-back and translating the EUI prototype to the
concrete UI-HTML form

Figure 7.4 shows in more detail the mapping and tracing process between the EUC model, EUI

prototype and Concrete UI view, using the “getting cash” scenario. The numbers indicate mapped

elements between the models. The EUC model is mapped to/from the EUI prototype using the UI

 127

mapping engine. This maps each of the abstract interaction components which have a relevant EUI

pattern in the EUI pattern library. For example, the abstract interaction “identify self” (1) will be

searched for in the EUI pattern library and its related EUI pattern found. This results in abstract UI

elements “ID” and “Other personal detail” being added to the EUI model. More than one abstract

interaction may share the same EUI pattern. For example, the abstract interactions “dispense cash”

and “take cash” share the same UI pattern “Display cash”. Here, only one EUI pattern “Display Cash”

is included in the model with two different sequence numbers associated. The sequence associations

support trace forward and back.

7.6 EUI Pattern Library

We developed the EUI patterns in the EUI Pattern library, using an adaptation of the brainstorming

methodology proposed by Constantine and Lockwood [4]. The adaptation generalised the approach

providing a simpler and more generic EUI pattern for EUI prototypes. The generalised EUI pattern

comprises four types of EUI pattern category: List, Display, Input and Action. These are similar to the

concept of Containers, introduced by Constantine and Lockwood. The main aim of these EUI

Patterns is to assist REs to rapidly model a user interface based on the requirements captured and

modelled earlier in the EUC model. An abstract UI captured using such a pattern is used as a

medium for early communication between the RE and the client as it is easy to understand and allows

the client to narrow down UI detail before moving to the concrete UI.

Table 7.2 shows examples of mappings among abstract EUC interactions (right) and various EUI

patterns (centre), and their categories (left). For example, the EUI pattern “Save” from the “Action”

category is associated with three different abstract EUC interactions: “record call”, “record detail” and

“save identification”. We can see that the abstract EUI patterns are very general and apply across a

range of different domains. For example, the EUI pattern “Save” could support a range of different

scenario domains such as making calls in a mobile application domain to online booking, registration

and retail systems.

In more detail, the four EUI pattern categories are as follows.

 List: Show a list of items, options or values that are associated with a particular

abstract interaction of the EUC model. Default values are provided from the UI

pattern library but can be overridden during application.

 Display: Display output based on an associated abstract interaction of the EUC

model. This could display a name, id, number, address, message or notification.

 128

 Input: Allow a user to input data or details of a specific element associated with an

abstract EUC interaction.

 Action: Show a control button, such as save, delete and submit, based on an

associated EUC abstract interaction.

Table 7. 2: Example of EUI pattern Category and its related EUI pattern and it’s associated

Abstract Interaction from the EUC model

EUI pattern category EUI pattern Abstract interaction
List List of option Choose

offer choice
Select option

List of solution offer alternative
offer possible solution

List of product select product
List of problem view problem
List of payment choose transaction

choose payment
select amount

Display Display payment validate payment
show payment

Display Item detail return item
view detail

Display status check user
Notify user

Display ID verify identity
provide identification

Display error message display error
Input ID identify self

request identification
Other personal detail identify self

request identification
Payment detail make payment

Item detail provides detail
Number make call

indicates number to dial
Action Help Ask help

Present solution
Save record call

Record detail
save identification

Print Print
Delete delete item
Submit insert information

 129

7.7 EUI Pattern Template library

The EUI Pattern template library consists of an EUI Pattern template which is developed to translate

the EUI prototype to the concrete UIs in a form of HTML page. The EUI pattern template is based on

the EUI pattern used in the EUI prototype. The EUI pattern template is already pre-defined in the

library. It contains templates defined in HTML format for each of the EUI pattern categories: List,

Display Input and Action. The defined EUI Pattern template for the HTML form is as below;

i. List: Table

ii. Display: message/text/data/value

iii. Input: Text Input

iv. Action: Button

The EUI pattern template is also applicable and reusable for various domains of applications. Table

7.3 shows the examples of EUI pattern templates with their associated EUI patterns and domains

applicable to the pattern.

EUI pattern
categories

EUI Pattern EUI Pattern
template

Domains

Action Submit Button

Online banking, online booking,
online business, e-commerce,
online voting system, mobile
system, online reservation

 Add
 Search

List List of item

Table

Online banking, online booking,
online business, e-commerce,
online voting system, mobile
system, online reservation

 List of payment
 List of option

Display Display
availability Numbers/text Online banking, online booking,

online business, e-commerce,
online voting system, mobile
system, online reservation

 Display amount Value/text
 Display ID Numbers

Input Item detail Text input

Online banking, online booking,
online business, e-commerce,
online voting system, online
reservation

 Payment detail
 Problem form

Table 7. 3: Examples of EUI Pattern template with its associated EUI Pattern and associated
Domains in the EUI Pattern template library

.

 130

7.8 Tool Support

We have extended our prototype tool, MaramaAI, which previously supported extraction of EUC

models from textual natural language requirements, as described in previous chapters, to additionally

and automatically map EUC models to EUI prototypes and concrete UIs, based on the approach

outlined in the previous section. The EUI prototype is modelled in a Marama editor called

MaramaEUI. The concrete UI is presented in the form of an HTML page, both realised in the Eclipse

IDE.

Several screen dumps of the tool in use are shown in Figure 7.5. From a set of textual natural

language requirements (1);

I. semi-formal EUC models are extracted (2) and

II. then mapped to a low-fidelity Essential User interface model in a MaramaEUI editor (3).

 131

Each EUI prototype component is associated with an EUC model abstract interaction component and

through that, the original textual natural language requirements from which it was derived from. Any

EUI component can be selected and its associated EUC component and related textual natural

requirements can be shown using a “trace back” menu item which highlights the relevant

components. Here, the tool differentiates the EUI pattern categories with different colours which

follow the concept of the EUI component by Constantine and Lockwood [4]. The List category is

visualised in light yellow, the Display category in purple, Input category in light pink and the Action

category in blue.

For example in Figure 7.5 (top – section A), the Option list EUI Component (3) is traced back to a

“system responsibility: offer choice” EUC component (2) which in turn is traced back to the textual

requirement (1), both of which have been highlighted. One EUI component might be associated with

more than one abstract interaction in the EUC model. Figure 7.5 (bottom - section B) shows that the

3

2

1
5

4

6

A

B

Figure 7. 5: Trace forward and Trace-back from EUC model to EUI prototype.

 132

EUI component “ Display cash” (4), traces back to two abstract interaction components of the EUC

model “dispense cash” and “take cash” (5) and the associated textual requirement (6) “dispenses the

requested amount” and “receives cash”.

The idea of this support is for REs to confirm that the requirements captured or described earlier in

textual natural language and the EUC model are consistent with the client’s original requirements.

Further, the RE could use this automated support to obtain fast feedback from clients for the captured

or gathered requirements based on their understanding. This will allow any inconsistency to be

detected as early as possible. It also shows that the EUI pattern is only abstracting the main

important components that need to be in the user interface in order to display the core requirements

captured by the EUC model. It does not display unimportant components of the system and does not

justify any technology options for the system. This is because at the early stage of requirements

analysis, neither fancy, colourful layout of user interface nor technology-dependent identification is

required. The focus is to understand the problem first [25] and to confirm the consistency of the

requirements from both RE and client perspectives, especially in terms of behavioural or functional

requirement. The RE therefore has the flexibility to agree or disagree with the results provided by the

tool.

Figure 7.6 shows the prototype view for both the Marama EUI (A) and concrete HTML form-based UI

view (B). Both views allow the RE and client to walk-through the requirement and its UI in order to

validate the consistency of the requirement. The Marama EUI component can be edited, allowing the

A
B

Figure 7. 6: Marama EUI and concrete UI view in a form of form- based UI

 133

RE and client to add input detail that they think is required for the UI, or to delete any EUI pattern that

they think is not necessary for a specific business use case.

The concrete UI view helps clients with a non-technical background to understand the whole process

and to confirm at an early stage that the requirements captured by the RE are consistent with their

original needs, before the requirement is passed to a developer or designer.

Figure 7.7 shows a modification of an EUI prototype by adding a new detail to the “List of option” EUI

pattern (1) and the result of the modification in the concrete UI view (2). Here, the “List of option” in

(1) is extended with more detail: “deposit, withdrawal. Transfer and check balance”. This causes a

change in the concrete UI view by displaying the additions in (2). In (3), one of the UI patterns, “Other

1

2

3 4

Figure 7. 7: Modification of EUI prototype - Addition and Deletion in EUI prototype

 134

personal detail”, has been deleted resulting in changes to the concrete view (4), where the UI

elements requesting “name, address, phone number” have been deleted.

7.9 Architecture and Implementation

We developed the MaramaEUI toolset using our Marama meta-tools [120] and a number of

specialised components: extraction from the textual natural language requirements (described

earlier), EUI model mapping from the EUC model, HTML form generation from the EUI model,

extended tracing support between the EUI models, EUC model, abstract interactions and the textual

natural language requirements, model consistency support and visual differencing. An outline of the

tool’s architecture is represented in Figure 7.8.

Figure 7. 8: MaramaEUI tool architecture.

 135

i. Items (1-3) are as described in Chapter 5 and 6. We then map an EUC model into an EUI

model using our EUI patterns library (4), as described in Section 7.5.

ii. The generated EUI model may be edited by the RE to add, update or delete automatically

populated items, to rearrange the interface and to annotate the interface (5).

iii. Multiple EUI models can be generated from multiple EUC models. A HTML form can be

generated from each EUI model using our EUI pattern template library (6), that maps EUI

elements and relationships into HTML form elements.

iv. The form can interact with Eclipse in limited ways to illustrate the likely system interface

characteristics to stakeholders. Tracing support is provided between the EUI models, EUC

model, abstract interaction and textual natural language requirement (7), where a selected

EUI item will have derivative EUC item(s), abstract interaction and the textual natural

language requirements highlighted. This is potentially a many-to-many mapping.

v. Model consistency is maintained between a generated EUI model with the originating EUC

model, as described and illustrated in (8). Adding, updating and deleting items in either model

are propagated to the other and a visual differencing approach uses annotation to highlight

affected items in other models.

We used the Marama meta-tool which supports rapid design and development of domain-

specific visual languages to develop the notations and editors for the EUC and EUI models,

the EUI to EUC tracing highlighting, and the visual difference of changes to highlight changes

made to EUI and EUC diagrams. The meta-model and DSVL editors were supplemented with

event handlers to provide low-level model constraints, consistency management support and

interfaces with other elements of the architecture. These were implemented in Java and

include generation of dialogues and problem markers to assist the user to track and resolve

inconsistencies.

vi. Further event handlers were implemented in Java to implement generation of HTML forms

from EUI models, to generate an EUI model from an EUC model and to trace back the EUI

model to other requirement components: EUC model, abstract interaction and textual natural

language requirement were also used. The event handlers used in this work are as follows.

i. Map EUC to EUI

The event handler for mapping the EUC model to MaramaEUI, “Map EUC to EUI”,

helps to generate the EUI prototype automatically. The event handler works with the

mapping engine to map the EUC model to an EUI prototype. The mapping engine

analyses and matches the abstract interaction of the EUC model with the property in

the EUI Pattern library. Then, the abstract interaction of the EUC model is mapped

automatically to the EUI prototype based on its EUI pattern category. The event

handler will not map the newly-added EUC component to the EUI prototype if the

 136

abstract interaction does not exist in the EUI Pattern library. A sequence diagram to

illustrate the interaction is shown in Figure 7.9.

Figure 7. 9: Example of Map EUC to EUI

ii. Trace Back

To trace back the EUI prototype component to its source, we used the help of the

Trace Back event handler. This event handler also works together with the tracing

engine. The selected EUI prototype component is analysed by the tracing engine and

then matched with the abstract interaction in the EUI Pattern library. If we try to trace

back the EUI component, the tool will show where the associated abstract interaction,

EUC model and essential interaction for that particular EUI prototype come from. If a

newly added component of the EUI prototype does not match with the abstract

interaction in the EUI Pattern library, no result is provided. A sequence diagram to

illustrate the interaction is shown in Figure 7.10.

 137

Figure 7. 10: Example Trace Back from EUI prototype to EUC Model

iii. EUI to prototype

The event handler for translating the EUI prototype to concrete UI view-HTML form

called “EUI to prototype”, helps to generate the concrete UI view in a form of HTM

form automatically. The event handler works with the mapping engine to map the EUI

prototype to HTML form. The mapping engine analyses and matches the EUI pattern

of the EUI prototype with the property in the EUI Pattern template library. Then the

EUI pattern of the EUI prototype is mapped automatically to the HTML form based on

the matching EUI pattern template. The event handler will not map the newly added

EUI prototype component to the HTML form prototype if the UI pattern does not exist

in the EUI Pattern template library. A sequence diagram to illustrate the interaction is

shown in Figure 7.11.

 138

Figure 7. 11: Example of Generating HTML form from the EUI prototype

7.10 Evaluation

In our preliminary study, we demonstrated that end users find manual derivation of EUI prototypes

difficult, time consuming and error prone. We wanted to demonstrate the effectiveness of our new

automated tool support in Marama EUI, together with its ability to support end-to-end prototyping. To

this end we conducted an end user study to evaluate user perceptions of the tool and its application.

Participants in this study were the 20 software engineering post-graduate students who had earlier

participated in the manual study of modelling EUI prototype. The same scenario as the manual study

is used. Here, their experience as REs could be categorised as novice to intermediate. Each

participant was given a brief tutorial on how to use the tool and some examples of how the tool

captures requirements using end-to-end prototyping. They then derived an EUI prototype from an

EUC model and natural language requirements and mapped the EUI prototype to a concrete UI view.

Further exercises modifying the EUI prototype followed: adding and deleting EUI components and

exploring the result of the modifications in the concrete UI view.

 139

Having familiarised themselves with the tool’s capabilities and undertaken the tasks, users completed

two surveys:

1. MaramaEUI itself and

2. Formal evaluation of end-to-end prototyping.

However, in this chapter, we only discuss the result of the first survey. The second survey results are

discussed in the Chapter 9. This chapter focuses only on Marama EUI and comprises a standard

evaluation by Lund [156] of user perceptions of the usefulness, ease of use, ease of learning,

satisfaction and accuracy of the EUI patterns in supporting EUI prototyping. The first survey consisted

of two questions for accuracy, four questions for usefulness and three for other characteristics. A five-

part Likert scale was used for each question. The type of questions for each characteristic is in Table

7.4.

User Perception Characteristics Questions

Usefulness

It is useful to capture the abstract prototype.
It helps me be more effective in capturing
Essential User Interface prototype (EUI).
It makes me easier to understand requirements
that has been modelled earlier using EUC.
It makes me easier to confirm the requirements
with the client from the early stage.

Ease of Use

It is easy to use.
It is user friendly.
I don’t notice any inconsistencies as I use the
tool.

Ease of Learning
I learned to use it quickly.
I easily remember how to use it.
It is easy to learn to use it.

Satisfaction
I am satisfied with it.
I would recommend it to a friend.
It is fun to use.

Accuracy

I think the EUI pattern provided for the EUI
prototype is accurate as what I expected.
I think the abstract interaction component of the
Essential Use Cases model is mapped
accurately to the EUI prototype

Table 7. 4: User Perception Characteristics and Questions Evaluating Them

 140

Figure 7.12 shows the results for the standard usability and accuracy results of the EUI pattern

survey conducted on Marama EUI alone. For each characteristic, the results of each corresponding

four, three and two questions block were averaged to produce the results shown. The results are very

positive, with strong agreement over the usefulness of the tool (about 90% strongly agree or agree on

its usefulness), the ease of use (over 90%), ease of learning (about 90%), satisfaction (about 90%)

and accuracy of the results of EUI patterns provided (over 85%). The few disagreements over ease of

learning related to a preference by those participants to have a video demo embedded in the tool to

assist in learning to use it.

Overall, these results are very encouraging, particularly given prior studies, our own and others, that

suggest low-fidelity prototype or abstract prototyping, while appealing to end users, have a large

barrier to entry due to the effort involved [71]. The accuracy result is also very positive as most

participants felt that the EUI patterns we developed help to enhance the accuracy level of the UI

components in the EUI prototypes. A minority thought that the tool would be constrained by the

coverage of the EUI Pattern library. An automatic updating of the library was suggested to allow other

REs or users to update the library automatically rather than just depending on the library provided by

the developer. For this, it was also suggested that guidelines for developing EUI patterns to be

embedded in the tool.

Figure 7. 12.: User study results of Marama EUI-Usefulness, ease of use, ease of
learning, satisfaction and accuracy

 141

7.11 Summary

We have described an approach supporting the confirmation and verification of requirements from

both RE and client perspective using an end-to-end rapid prototyping. An initial study of the manual

usage of EUI prototyping was conducted and the poor results gained confirmed the point of view of

Robertson [71] on the real problems faced by the engineers in effectively using low-fidelity

prototyping, and subsequently motivated our work.

We have developed an automated tool support for our approach to help overcome the problems

faced in manually applying EUI prototyping. We have also evaluated our prototype tool using an end

user study for MaramaEUI. The results of this evaluation are promising, with most participants finding

our tool to be useful for validating requirements, especially in confirming the consistency. A formal

usability survey for the end-to-end prototyping approach provided by our tool was also conducted and

the results are discussed in Chapter 9. The generic use of our tool is discussed in the next chapter by

showing three examples of case studies from different domains.

In our new approach, we believe that requirements captured earlier by an RE can be verified with the

client through the visualisation of low-fidelity prototypes in a form of Essential User Interface

prototypes and also in a more concrete form-based UI to validate requirements. While the evaluations

described in Chapter 9 do not extend to client participants, just focussing on the REs, including client

participants will be a focus of our future work.

 142

Chapter 8: Case Studies Examples

This chapter describes three different case studies of requirements written in a form of user scenarios

that we use to demonstrate and describe the key features of our proof of concept tool - MaramaAI

(Automated Inconsistency Checker). The key features described are in capturing requirements with

Essential Use Cases (EUC), in checking the consistency and validating the requirements and also in

supporting the end-to-end rapid prototyping.

8.1 Introduction

Three different case studies of requirements, written in the form of user scenario from different

domains of applications, are described and which our toolset are aplied to. This is to demonstrate and

describe the key features of our proof of concept tool -MaramaAI. The key MaramaAI tool features

illustrated for each scenario are:

a) Capturing the requirements,

b) Checking the consistency and validating the requirements, and

c) Supporting end-to-end rapid prototyping.

We chose three diverse sets of requirements examples. The first set of requirements is a scenario of

reserving a vehicle from a rental company, written by Evans [1]. The second is a book check-out

scenario of a library system written by Sendall and Strohmeier [2] which illustrates a user scenario

with the use of extensions in the description. This allows us to demonstrate our tool support for the

use of extend/include. The third requirements provide multiple scenarios of a real industry project

example for managing events by Silicon Dream Ltd. This allows us to demonstrate our tool’s key

features in handling multiple requirements with real industry requirements.

8.2 Case Study 1: Reserve a Vehicle from a Rental Company

We chose this user scenario, which was developed by Evans and published on the IBM developer

works website, as a first example of a requirement to demonstrate the key features of our tool. This

user scenario is a “hypothetical browser-based software system for an auto rental company” [1]

mainly for an individual account. It illustrates the situation that happens in a rental company when a

 143

1. This use case begins when a customer indicates he wishes to make a reservation for a
rental car.

2. The system prompts the customer for the pickup and returns locations of the reservation,
as well as the pickup and return dates and times. The customer indicates the desired
locations and dates.

3. The system prompts for the type of vehicle the customer desires. The customer indicates
the vehicle type.

4. The system presents all matching vehicles available at the pickup location for the
selected date and time. If the customer requests detailed information on a particular
vehicle, the system presents this information to the customer.

5. If the customer selects a vehicle for rental, the system prompts for information identifying
the customer (full name, telephone number, email address for confirmation, etc.). The
customer provides the required information.

6. The system presents information on protection products (such as damage waiver,
personal accident insurance) and asks the customer to accept or decline each product.
The customer indicates his choices.

7. If the customer indicates "accept reservation," the system informs the customer that the
reservation has been completed, and presents the customer a reservation confirmation.

8. This use case ends when the reservation confirmation has been presented to the
customer.

customer comes to the rental counter to rent a vehicle [1]. It is also an example from an online

booking domain of application. The description of this user scenario is shown in Figure 8.1.

8.2.1 Example of Usage

We demonstrate our tool’s key features with the user scenario below:

Massila, a requirement engineer, would like to validate the requirements that she has collected from

the client, John, who is the car rental information manager. To do this, as shown in Figure 8.2, she

types in the requirements in a form of user scenario to the textual editor or copies them in from an

existing file (1) and has the tool trace the essential requirements (abstract interactions) (2). Here, she

verifies the list of abstract interactions provided by the tool and then has the tool generate the EUC

model (3). In order to check for the consistency and dependencies among the EUC component and

the abstract interaction and the user scenario, she performs trace back by using the event handler

Figure 8. 1: Example of User Scenario: Reserve a Vehicle [1]

 144

from the EUC component or abstract interaction. For trace back (as shown in Figure 8.2), the

selected EUC component (A) and its associated abstract interaction (B) changes colour to red and

the associated essential interactions (C) are highlighted with “***”. The processes of tracing

forward/backward and mapping are assisted by event handlers. These tracings show and maintain

the consistency among the requirement components.

 Figure 8.2: Results of Capturing Requirements

By using MaramaAI, Massila can make any modification to any of the requirement components if she

is not satisfied with the results provided by the tool. For example, if she thinks one of the abstract

interactions is missing, she could add a new abstract interaction to the list. In particular, she might

think that an abstract interaction “make payment” is missing from the list. Thus, she adds a new

abstract interaction “make payment” to the list. This action triggers an inconsistency warning and the

options either to update, delete or continue without updating the textual natural language

requirements to appear to inform her that an inconsistency has occurred in the requirement

components (as shown in Figure 8.3: (1)). She then chooses to continue without updating the user

scenario as she probably thinks that the “make payment” abstract interaction is necessary and

matches the user scenario. Although the option “continue” is chosen by her, she can still map the

newly-added abstract interaction to the EUC model (2). This triggers a problem marker to inform her

of the inconsistency error for later consideration to resolve the inconsistency (3).

1

2 3

A

B
C

Figure 8. 2: Capturing requirements - trace the abstract interaction, trace back
and map to EUC model

 145

Next, Massila is also unhappy with the sequence ordering of one the abstract interaction components:

“choose”. She thinks this abstract interaction should be above the “make payment” component as

shown in Figure 8.4 (1) because the user should choose from the option before any payment should

be requested. This triggers the associated EUC component “choose” to change colour to red and the

essential interaction “indicates” to be highlighted with”***”. An Inconsistency warning also appears to

inform her of the inconsistencies and provide options either to update or cancel the change. A

problem marker also provides warning on inconsistencies that still exist. Then she decides to update

the sequence ordering, and this automatically also changes the position of the EUC component”

choose” (2). However, the ordering of the highlighted essential interactions is not altered as such

changes could affect the structure of the user scenario. This action also triggers a problem marker to

warn about the inconsistencies that have not been completely resolved.

1

2

3

Figure 8. 3: Add New Item to Abstract Interaction

 146

On reviewing the extracted EUC, Massila feels that there is an extra component in the EUC model.

She thinks that the EUC component “offer choice” is not necessary and needs to be deleted. She

believes there is a redundancy between the “choose” and “offer choice” component. Thus, she

selects the “offer choice” component to be deleted. This action triggers the associated abstract

interaction to automatically change colour to red and the associated essential interactions “prompts

the customer for the pickup” and “prompts for the type” to be highlighted with “***”. The inconsistency

warning also appears to inform the inconsistencies and options to either delete or cancel the deletion.

Although a notification of the inconsistencies is provided, she still thinks she needs to delete the “offer

choice” component. This triggers the associated abstract interaction and essential interactions also to

be deleted. This occurs as the tool tries to keep all the three requirement components in a consistent

state.

2

1

Figure 8. 4: Change of Abstract Interaction Sequence Ordering

 147

Being a novice requirement engineer, Massila is keen to validate her extracted EUC model against a

best-practice EUC template. Thus, she looks through the list of available templates and chooses the

pattern “Reserve Item” as shown in Figure 8.6 (1) that appears to be similar to this scenario. She

matches the pattern to her EUC model and sees that she has missed some interactions as a few

sequence orderings and components are incorrect. In addition, an extra component also exists in the

interaction. As shown in Figure 8.6 (2), the incorrect sequence ordering is shown by the red visual

links (A), the existence of the extra component “make payment” (B) is outlined with red and the

correct component “offer choice” (C) is shown by a grey element on top of the green shape “view

detail” which also displays the incorrect component and position held by the “view detail” component.

As there is an unmatched interaction between the generated EUC and the best- practice template,

Massila is notified with an inconsistency warning and given options to either keep or change the

generated EUC following the best-practice template. She agrees with the warning and the errors

shown. She then selects to change this EUC model to the EUC interaction templates.

The phrases

are deleted

1
2

Figure 8. 5: Delete the EUC component

 148

When Massila is satisfied with the requirements components, she sits with John to validate the

requirements and to confirm the consistency of her captured requirements with the earlier

requirements provided by John. In order to allow John to better understand the requirement

components, she then has the tool map the EUC model to abstract prototype: EUI prototype as (1)

and also has the tool translate EUI prototype to a concrete UI view in a HTML form (2) as shown in

Figure 8.7.

2

1

B

A

C

Figure 8. 6: Visual differencing to check for incorrectness and incompleteness

 149

1 2

From the walkthrough, John thinks that the EUI component of “List of options” is a bit vague and

would be better understood by adding detail of the types of options such as “car, van and campervan”

as shown in Figure 8.8(1). Massila modifies that on the spot and then shows the result in a HTML

form as in Figure 8.8(2). Next, she wants to validate and confirm the consistency of her point of view

against John’s point of view. She selects one of the EUI components “List of options” (A) and has the

tool trace back to the other requirement components: EUC model, abstract interactions and textual

natural language requirements as shown in Figure 8.9. This triggers the associated EUC component

1
2

Figure 8. 7: The generated EUI prototype (1) and translated HTML form (2)

Figure 8. 8: Modifications in Prototypes

 150

and abstract interactions “choose and offer choice” (B) to change colour to red and the essential

interactions “indicates, prompts the customer for the pickup and prompts for the type” (C) of the user

scenario to be highlighted. Here, Massila is able to confirm the consistency of all requirement

components with John for the earlier collected requirements.

In summary, Massila has used the MaramaAI tool to capture automatically the abstract interactions

and to extract the EUCs from the user scenario provided by John. She also used the tool to manage

the consistency and to validate the incorrectness and incompleteness of the requirements by using

the essential interaction pattern library and “best- practice” template from the EUC interaction pattern

library, together with the inconsistency warning, problem marker and highlights. She then sat with

John to verify and confirmed further the consistency of the requirements by having the tool generate

the prototypes: EUI prototype and HTML form.

A B

C

Figure 8. 9: Trace back which performs from the EUI prototype

 151

8.3 Case Study 2: Book Check-out in a Library System

We choose the Library Book Borrowing (LLB) system as the second example of a requirement to

demonstrate the key features of our tool in handling the use of extension/include in the use case.

This user scenario is written by Sendall and Strohmeier [2] as a set of use cases which is also as a

case study for the Software Engineering Education project (SWEED).

This automated LLB system is developed to ease the task of librarians in processing book loans in all

the departmental libraries of any university [2]. The system makes use of the available library book

search system to undertake the book search.

Users do not need to identify themselves to the system to search for a book, but this is required when

they want to check-out a book, to check their loan status or to reserve a book which is “on hold”. This

process of identification is conducted by using a card and a password together with password

verification for security reasons, similar to the ATM system.

All books are provided with barcodes. A barcode scanner is used to check out the book. If any

failures happen to the scanner, the barcodes need to be manually entered. The description of the

user scenario we have chosen is shown in Figure 8.10.

 152

LBB System
Use Case: check-out books
Scope: Library Book Borrowing System
Level: User Goal
Intention in Context: The intention of the User is to check-out books from a library. Only one
User can check-out books at any one time.
Primary Actor: User (becomes Member once s/he has identified him/herself with the System)

Main Success Scenario:
1. User requests System to check-out books.
2. User identifies him/herself to System.
Step 3 is repeated for each book that is checked-out by Member.
3. Member registers book with System.
4. Member indicates to System that s/he has finished checking out books.
5. System records all books registered by Member as on loan, requests Printer to print out a
receipt* for the session, and puts itself in a state to receive the next User.

Extensions:
2a. User fails to identify him/herself with System: use case ends in failure.
3a. System informs Member that s/he has reached his/her maximum number of books allowed
on loan; use case continues at step 4.
3||a. Member requests System to remove book from the books that are checked out:
3||a.1. Member identifies book to System.
3||a.2a. System identifies book and removes it from the list of books registered by Member; use
case continues from where it was interrupted.
3||a.2b. System fails to identify book; use case continues from where it was interrupted.
(3-4)a. Member requests System to cancel check-out.
(3-4)a.1. System removes all books that were registered by Member, and puts itself in a state to
receive the next User; use case ends in failure.
(3-4)b. System times-out waiting for input from Member:
(3-4)b.1. System removes all books that were registered by Member, and puts itself in a state to
receive the next User; use case ends in failure.

8.3.1 Example of Usage

We demonstrate our tool key features which deal with extension/include in the use case description

for the requirements as below:

Massila, the requirement engineer, meets Johan, who is the Library IT Support Manager, and gathers

the requirements for the library booking system. After she collects the requirements, she refines the

user scenario and describes it in a form of use case description. She also thinks that the use case

description for the functional requirements needs to be supported with the use of extension. She then

types in the requirements written in a form of use case description to the textual editor, following the

guidelines provided by the tool as shown in figure 8.11 (1). Then she has the tool trace the abstract

interaction and map to the EUC model. The process of tracing the abstract interaction and EUC

Figure 8. 10: Example of User Scenario in a Form of Use Case Description: Check-out
books of a LLB system [2]

 153

component and the process of mapping the abstract interaction to the EUC model are conducted

similarly to the first example. The tool generates a separate component for the extended abstract

interactions (2). A small orange circle with a grey extension link (A) is also generated to show the

extension. The generated abstract interactions are then mapped to the EUC component with an

extension (3). A similar separate component and a small orange circle with grey extension links (B)

are also provided for the EUC model to show the extension.

From the results shown by the tool, Massila thinks she needs to delete an abstract interaction

“identify self” as she feels that this component is not important to the requirement. Thus, she selects

the “identify self” component to be deleted. This action triggers the associated EUC components

“identify self” and “ fail identification” to automatically change colour to red (1), and the associated

1
2

3

A
B

Figure 8. 11: Capturing requirements-trace the abstract interaction and map to

EUC model

 154

essential interaction “identifies herself” to be highlighted with “***” as shown in Figure 8.12(2). The

EUC component “fail identification” is also highlighted because this component is an extension to the

main abstract interaction “identify self” component. The inconsistency warning also appears to inform

the inconsistencies and options to either delete or cancel the deletion. From the notification on the

inconsistencies, she thinks she has made a wrong decision. So she cancels the deletion. This

triggers the associated EUC component and essential interactions to revert to the original format.

Then she identifies another component which actually needs to be deleted: “fail identification”

component is the one that needs to be deleted. Thus, she selects “fail identification” to be deleted.

She recognises that different situations happen. Here, only the “fail identification” of an EUC

component changes colour to red (3) and only the essential interaction “fails to identifies herself”

which is association with “fail identification”, is highlighted with *** (4). This happens because the “fail

identification” component is an extension component which does not affect the main abstract

interaction if any deletion happens.

 155

2

2

1

1

3 4

On reviewing the requirements, Massila also thinks that the sequence ordering of one of the EUC

component, “register item”, needs to be changed to another position above the “check out”

component as shown in Figure 8.13. This triggers the associated abstract interaction component

“register item” to change colour to red and the essential interaction “registers book” to be highlighted

with “***”. An Inconsistency warning appears to inform Massila of the inconsistencies and provides

options either to update or cancel the change. Further, a problem marker also appears to warn of

inconsistencies that still exist. Despite these notifications, she still thinks that she needs to change the

sequence ordering of the “register item” component. This automatically changes the position of the

abstract interaction component “register item”. However, the ordering of the highlighted essential

interactions is not changed. This is because she believes the change could affect the structure of the

Figure 8. 12: Deletion of Abstract Interaction

 156

description. This also triggers the problem marker to warn of inconsistencies that have not been

completely resolved. The ordering of the extension component “register item” is not changed. This is

because the change of the sequence ordering only affects the interaction of the main EUC

components and not the extension component.

After making these changes, Massila thinks she should further validate the interactions in the

requirements against the best-practice template of EUC interactions. She selects a template which

looks very similar to her requirement descriptions. From the available templates, she chooses the

pattern “Checkout Item” as shown in Figure 8.14 (1). She matches the pattern to her EUC model and

sees that she has missed some interactions as there are a few extra and incorrect components in her

model. Figure 8.14 (2) shows the existence of extra components such as “register item, choose,

record call, record item, identify item, update, notify user, verify item, cancel booking and delete”

outlined in red, and the correct components, such as “select option”, are shown by a grey element on

top of the blue shape of “register item” (A), while the “check status” is shown by a grey element on top

of the green shape of “record call” (B). These two components show that there are missing and

incorrect components “register item” and “check status”. There is also an incomplete interaction

where an EUC component “identify self” (C) needs to be provided to complete the interaction. As

Figure 8. 13: Change of EUC component Sequence Ordering

 157

there is an unmatched interaction between the generated EUC and the best-practice template,

Massila is notified with an inconsistency warning and options to either keep or change the generated

EUC as per the best-practice template. She then chooses to keep this EUC model which triggers a

problem marker to notify her of the inconsistency that still occurs between the generated EUC model

and the EUC interaction templates.

In order to further validate her captured requirements and to ease the discussion process with Johan,

she has the tool map the validated EUC model to the low-fidelity prototype - EUI prototype in Marama

EUI editor as shown in Figure 8.15 (1). Here, she sits with Johan and together they walk through the

1

2

A

C

B

Figure 8. 14: Visual differencing to check for incorrectness and
incompleteness

 158

captured requirements and the UI. She finds that the generated EUI prototype in Marama EUI editor

is also supported with extension components similar to the Marama Essential as shown in Figure

8.15 (1). She then has the tool translate the EUI prototype to a more concrete UI view in a HTML form

(2) to give a better picture of the captured requirements to Johan. The tool generates the HTML page

with hyperlinks (underlined purple words) (A and B) in an HTML form. These hyperlinks are from the

extension components in the EUI prototype (1).

Figure 8. 15: EUI Prototype with the extension components (1) and the generated HTML

form with hyperlinks (2)

After viewing the HTML page, Johan would like to see the results of the hyperlink. Massila shows him

how each hyperlink associates with the main page. Illustrated in Figure 8.16, the arrow (A) shows the

navigation of hyperlink “identify self” to page 1 and the arrow (B) shows the navigation of hyperlink

“register item” to page 2.

A

B

1 2

 159

Figure 8. 16: HTML main page and hyperlink pages generated from EUI prototype

From these views, Massila tries to confirm the consistency of the captured requirements on the LLB

system from her viewpoint as against Johan’s original idea. Johan is also happy as he could

visualise his requested requirements in a way he understood.

In summary, Massila has used the MaramaAI tool to capture automatically the abstract interactions

and to extract the EUCs from the use case descriptions provided by Johan. The tool demonstrates its

ability to support the use of extension/include in a use case. She also used the tool to manage the

consistency and to validate the incorrectness and incompleteness of the requirements by using the

essential interaction pattern library and “best-practice” template from the EUC interaction pattern

library together with the inconsistency warning, problem marker and highlights. She then sat with

John to verify and confirm further the consistency of the requirements by having the tool generate the

prototypes with hyperlinks for both the EUI prototype and HTML form.

A

B

1

2

 160

8.4 Case Study 3: Manage Events with Event Listing System

We chose the Silicon Dreams Event Listing System (www.reaction.co.nz), a real-world example with

several requirements, as the third example of a requirement to demonstrate the key features of our

tool in handling multiple requirements. This user scenario is obtained from a real industry project to

manage events from Silicon Dream Ltd, a web design company which specialises in developing

websites, e-commerce and online marketing [155]. It has developed an event-listing website since

1999 but closed that site due to legal, technical and environmental issues which badly affected the

progress and usage of the website. It is now trying to re-launch this website with new technology and

a more interactive portal. The company also wants to make sure it is correctly developed and fits the

right end-users.

The Silicon Dreams Event Listing System is an event-management website for adults. It allows users

to browse available event lists by event category such as night-life, eating out and stage. Users can

also select and view events and venues. This website also allows users to register, to receive

newsletters and to post comments and feedback. This portal is also for the administration to update,

edit and maintain the database on the venues and events as well as to manage the list of events,

reports and reviews. All the requirements for this website were collected from Mark Young, the project

manager, who has kindly allowed us to use them in this study. He described them in the form of a

user scenario which we then presented in the form of use case description. For this example, we will

only describe two different parts of the requirements: Manage Venue and Manage Event Review. The

requirement descriptions are shown in Figure 8.17.

 161

8.4.1 Example of Usage

We demonstrate our tool key features with this user scenario which needs to deal with multiple

requirements.

Massila, the requirement engineer, meets Mark, the project manager, and gathers the requirements

for the event-listing system. After she collects the requirements, she refines the user scenarios and

describes them in a form of use case descriptions. She then types in the requirements written in the

form of use case descriptions using the textual editor, following the guidelines provided by the tool as

Scope: Event Listing System (Manage Venue)

Summary: user (super admin, city admin, venue admin) is the only authorised person to
manage venues. For event listing purposes, event venues management is necessary.

1. User logs into the system {www.recation.co.nz} with authorised admin policy.
2. User clicks on “venue button” which opens an interface with “Add Venue”, ”Modify

Venue”, and “Delete Venue” options.
3. User performs add venue. User enters the venue name.
4. System verifies the venue.
5. User enters the venue information.
6. System stores the venue into database.

Extension:

4.1a If venue does not exists: the system displays an error message.

Scope: Event Listing System (Manage Event Review)

Summary: user (super admin, city admin) would like to review an event posted by registered
viewer to avoid violent reviews. In addition, they also need to block (de-activate) the user
(portal viewer) account to avoid future inconvenience from that user (portal viewers).

1. User logs in the system {www.recation.co.nz} with authorised admin policy.
2. User chooses “reviews on event” option, which opens an interface with posted

reviews of specific event.
3. User reviews the comment on a particular event.

Extension:

3.1a If user is not satisfied with the comment or the comment seems to be violent, he
could remove the comments.
3.1b System removes comments from database.
3.1c User could also block other user’s ability to post comments by clicking the “De-
Activate user” button.

Figure 8. 17: Example of User Scenarios in the form of Use Case Descriptions:
Manage Venue and Manage Event review from the Silicon Dreams Event Listing

System specification

 162

shown in figure 8.18 (1). Here, she tries to validate two scenarios at a time, editing each in a separate

editor window. Then she has the tool trace the abstract interactions and map the abstract interactions

to the EUC model. The process is conducted along the same lines as the first and second examples.

The only difference is that she can view the results (A and B) for both scenarios and have the tool

trace the abstract interaction sand map to the EUC models at the same time. She then has the tool

trace back the EUC component “identify self”. For this, as shown in Figure 8.18 (2), she finds that the

tool is able to perform trace back only for one set of requirements at once and not both

simultaneously. However, she is happy as she can automatically capture the essential requirements

and the interaction.

While reviewing the captured requirements model, Massila disagrees with the name of abstract

interaction “record detail “provided by the tool for the first scenario: Manage event. Thus, she

changes the name to “record item” and this automatically triggers an inconsistency warning to inform

her of the inconsistency and provides options to update, delete or continue without updating the

descriptions as shown in Figure 8.19 (1). Although, she is notified of the inconsistencies, she still

thinks she has to continue with changing the name of the abstract interaction “record detail” to “record

A

B

1

2

Figure 8. 18: Capturing Requirements - Trace the Abstract Interaction, Trace Back and
Map to EUC model with Multiple Requirements

 163

item”. So she selects “continue” from the options provided and this triggers a problem marker to

provide the warning regarding the inconsistencies that still exist. She then maps the new abstract

interaction to the EUC model. This also changes the name of the EUC component “record detail” to

“record item” as shown in Figure 8.19 (2).

Massila is also unhappy with the “delete item” of the EUC component in the extension component of

the second scenario. She considers deleting the “delete item” component. She selects the component

and deletes it. This action triggers the associated abstract interaction to automatically change its

colour to red and the associated essential interactions “to be highlighted with “***” as shown in Figure

8.20. An inconsistency warning also appears to inform the inconsistencies and options to either

delete or cancel the deletion. After seeing the notifications, she thinks she has made a wrong

decision. She selects to cancel the deletion, and the highlighted abstract interaction returns to the

original state.

1

2

Figure 8. 19: Change of Abstract Interaction Name

 164

Figure 8. 20: Delete EUC component

Being a novice requirement engineer dealing with a project from an established company, Massila

thinks she needs to further validate her requirements against a best-practice template, in order to

ensure her requirements are correct and complete. Thus, she looks through the pattern catalogue

and chooses pattern “Manage item” that appears to be very similar to the first scenario as shown in

Figure 8.21 (1). She matches the pattern to her EUC model and sees that she has missed

interactions as there are several incorrect sequence orderings and missing components. As shown in

Figure 8.21 (2), an inconsistency warning to inform her of the inconsistency, incompleteness and

incorrectness appears with options either to keep the designed model or change the model to follow

the template. Here, the incorrect sequence ordering is displayed by the red visual links (A) showing

the position held by each component. The missing component “select option” is identified by the grey

element on top of the blue shape of “provides detail” (B). The component “display error” (C) is

outlined in red and highlighted with grey as this shows that the template does not apply the extension

component but agrees with the need of the “display error” component. Massila agrees wi th the

template as she thinks that the tool has failed to trace the “select option” component. She thinks this

may be because of the constraints faced by the essential interaction pattern library. However, she still

thinks that the other components from her EUC model are correct. So, she would like to keep her

EUC model as the tool does not support partial selection of the change and she subsequently has a

further validation meeting with the client.

 165

Massila then thinks she should also further validate the second scenario. Thus, she looks through the

list of available templates and chooses a pattern “Review Item” that seems to be very similar to the

second scenario as shown in Figure 8.22 (1). She matches the pattern to her EUC model and sees

that she has missed interactions as there are incorrect ordering, missing components and extra

components in her EUC model. These are shown in Figure 8.22 (2): an inconsistency warning to

warn her about the inconsistency, incompleteness and incorrectness appears with options either to

keep the designed model or change the model following the template. Here, again, the incorrect

sequence ordering is shown by the red visual link showing the position held by each component, the

missing component “select option” (A) is identified by the grey element at the position after “identify

self” and the extra component “Deactivate user” (B) is outlined in red. Massila disagrees with the

template as she is confident with her EUC model. Thus, she then selects to keep her designed

model.

1

2

A

B

C

Figure 8. 21: Visual differencing to check for incorrectness and incompleteness for first
scenario

 166

After Massila is satisfied with the requirements components, she meets Mark to validate further the

requirements and to confirm the consistency of her captured requirements with the earlier

requirements provided by Mark. In order to allow Mark to better understand the requirements

components, she then has the tool map the EUC model to an abstract prototype: EUI prototype (1)

and also has the tool translate the EUI prototype to a concrete UI view in a HTML form (2) as shown

in Figure 8.23. They can view the prototypes for both scenarios. However, she and Mark

subsequently walk through the requirements and the UI components for both sets of scenarios for

better validation.

1

2
A

B

Figure 8. 22: Visual differencing to check for incorrectness and incompleteness
for second scenario

 167

Figure 8. 23: Multiple EUI prototypes and HTML forms

From the discussion, Mark thinks the EUI component “other personal detail” needs to be deleted and

the EUI component “Item Detail” needs to be added with the information of “Venue Name and Venue

Description”. Massila makes the changes requested by Mark and the results of the changes are

shown in Figure 8.24(1). Then Mark also asks to delete the “delete” EUI component as he thinks that

should not appear in the interface but as a process at the backend of the system. So Massila deletes

the “delete” component and the result is shown in Figure 8.24 (2).

1 2

 168

 At the end of the process, Massila and Mark are satisfied with the help of MaramaAI as together they

could confirm the consistency and validate the requirements. They are also happy as they could also

finalise the requirements quickly and without delay.

In summary, Massila has used the MaramaAI tool to capture automatically the multiple abstract

interactions and to extract multiple EUCs from the user scenario written in a form of use case

descriptions provided by Mark. The tool demonstrates its ability to support multiple requirements

together with the use of extension/include in a use case. She also used the tool to manage the

consistency and validate the incorrectness and incompleteness of the multiple requirements by using

the essential interaction pattern library and “best- practice” template from the EUC interaction pattern

library together with the inconsistency warning, problem marker and highlights. She then sat with

Mark to verify and confirm further the consistency of the multiple requirements by having the tool

generate the prototypes: the EUI prototype and HTML form for both the requirements at once.

1

2

Figure 8. 24: Changes made to the EUI prototype (1) and the results in HTML form (2)

 169

8.5 Discussion and Summary

We have applied our MaramaAI tool to three different domains of application: reserve a vehicle (rental

car company), book check-out (Library Book Borrowing System) and event management (Silicon

Dream Event Listing Website). We described our tool utilities by creating a user persona for each of

the requirements examples which are described in a form of user scenario. We demonstrated each of

the tool key features: capturing requirements, checking the consistency and validating the

requirements and supporting the end-to-end rapid prototyping. We also described how each utility of

the tool is interconnected.

The user scenario described in the first example is simple and straightforward. This scenario is used

to demonstrate the basic utilities provided by our tool. The second user scenario is more complex as

it is described with the use of extension. This scenario demonstrated that our tool is able to deal with

more complex requirements and to deal with any type of requirement descriptions. The third user

scenario was used to describe a real industry project requirement with several requirements. This

demonstrated that our tool is able to be used in a real industry environment and showed how our tool

simultaneously dealt with multiple requirements. Our main purpose in using these three different sets

of requirements is to show that the utilities provided by MaramaAI can also be extended to a range of

different domains and applications.

The demonstration of the tool also leads us to identify several limitations that we need to handle in

future work. Firstly, we found that, the essential interaction library needs to be further enhanced as it

does not trace an abstract interaction, which we believe is important, particularly in the third scenario.

We believe though, that this can be solved as the process of updating the library is on-going. Next,

we identified that the tool’s utilities in validating the requirements’ qualities using the visual

differencing with “best-practice” templates need to be further enhanced. We noticed that, currently,

the tool only allows the user to either convert or keep his/her original EUC model against the whole

EUC interaction provided by the template and does not allow partial acceptance of a particular EUC

interaction.

Further, our tool’s utility in handling multiple requirements also need to be further enhanced. The tool

can display all requirements together but the processes of consistency management and validation of

requirements needs to be done one after the other. It would be preferable if both processes could be

done simultaneously. However, this is a goal to be handled in our future work.

 170

Chapter 9: Evaluation

This chapter presents the formal evaluation of our proof concept tool: MaramaAI (Automated

Inconsistency Checker). The evaluation mechanism to evaluate the tool as well as the usability

criteria and Cognitive Dimension notation (CD) used to evaluate the usability are also discussed.

Then, discussion and comparison of the tool’s evaluation results are also presented. This formal end

user evaluation is approved by the University of Auckland Human Participants Ethics Committee

(reference number: 2010/172).

9.1 Evaluation Mechanism Overview

We have conducted evaluations for three different phases of the prototype iteration with the same

usability criteria and CD notation for our MaramaAI tool. This is a different evaluation from the

informal evaluations presented in the earlier chapters, Chapter 4, 5 and 7. The earlier evaluations

were used to inform refinements to the design, while the set of evaluations presented in this chapter

took a larger group of participants (20) through each process step supported by the tool. The

targeted end users for this evaluation are either postgraduate or undergraduate students who have

sufficient background to understand software requirements. The participants of this survey were

volunteers and their participation was treated anonymously. We recruited once, and the same group

of participants was used to formally evaluate each phase, where phases corresponded to the

development steps outlined in each of the previous three chapters. A full description of the evaluation

phases is provided in appendices. The three separated evaluation phases are:

a. Part 1: Capturing requirements

The participants were required to accomplish three parts of the evaluation. Firstly, to

manually extract Essential Use Cases from the given scenario “reserve a vehicle” by Evan [1]

and followed by repeating the same process automatically with MaramaAI. The participant

was then given a set of questionnaires to be completed including open-ended feedback.

b. Part 2: Consistency Checking

The participants were required to accomplish the following steps. Firstly, to explore the tool

capabilities for checking the consistency of the requirements components: textual natural

language requirement, abstract interactions and EUC model. The participant was asked to

explore the tool by adding a new abstract interaction or textual requirement, delete any

components or change the sequence of the components. Then, he/she was asked to explore

the facility provided for validating other requirement qualities such as completeness and

 171

correctness. Finally, participants were given a set of questionnaires to be completed including

open-ended feedback.

c. Part 3: Exploring the end to end prototyping facility (End to End Rapid Prototyping)

The participants were required to explore the refined tool capability for managing the

requirements via an end-to-end prototyping facility. Here, participants were asked to map the

three forms of requirements: textual natural language requirement, abstract interaction and

EUC to the low fidelity UI in the form of Essential User Interface prototype (EUI prototype).

Next, participants were asked to translate the EUI prototype to a concrete UI view in the form

of HTML page. Finally, the participant was given a set of questionnaires to be completed and

the open feedback questions to answer.

Questionnaires are used to support each part of the evaluation. The design of the questionnaires are

discussed in detail in Section 9.4. Observation data is also collected while participants are performing

tasks based on:

I. How they manage to complete the task given;

II. How they complete the Essential Use Cases practice manually and automatically;

III. How they navigate between different parts of the tool;

IV. How they explore the tool for consistency checking;

V. How they explore the end-to-end rapid prototyping support, and

VI. Listening to their verbal responses while using the tool.

9.2 Usability Criteria for Usability Evaluation

To evaluate our tool, we consider the type of usability criteria suggested by Lund [156] in the USE

questionnaire. The author suggested four criteria that are correlated to one another- Usefulness,

Ease of Use, Ease of Learning and Satisfaction. We used these criteria in developing our

questionnaires, and had previously used these in our informal evaluations presented earlier. We

define the criteria as follows.

 Usefulness: How useful the tool is to help users be effective in accomplishing the given task.

 Ease of Use: How easily the users can work with the tool’s facility, user interface and event

handler provided by the tool.

 Ease of Learning: How easily the user can understand and learn to use the tool.

 Satisfaction: Is the user satisfied with the tool’s capability in solving the problems?

 172

9.3 Cognitive Dimensions of Notations Approach (CD)

As a second element to the evaluation, we apply the CD Framework, as operationalised by Blackwell

[157] in our questionnaires to allow us to explore in detail the reason for each of the user’s

perceptions for our MaramaAI tool in capturing requirements, managing the consistency of

requirements and supporting end-to-end roundtrip prototyping. CD is applied here as it is a common

approach for evaluating visual language environments. It helps non-HCI specialist and ordinary users

to evaluate usability and it can be applied during any design phase [158]. In addition, it is design to

provide a lightweight analysis as well as to allow reasoning about usability tradeoffs [158]. The list of

CD dimensions refined by Blackwell [157] is shown in Table 9.1.

Cognitive Dimension Meaning
Viscosity Resistance to change
Visibility Ability to view component easily
Premature commitment Constraints on the order of doing
Hidden dependencies Important links between entities are not visible
Role-expressiveness The purpose of an entity is readily inferred
Error-proneness The notation invites mistakes and the system gives little protection
Abstraction Types and availability of abstraction mechanism
Secondary notation Extra information in means other than formal syntax
Closeness of mapping Closeness of representation to domain
Consistency Similar semantics are expressed in similar syntactic forms
Diffuseness Verbosity of language
Hard mental operations High demand on cognitive resources
Progressive evaluation Work-to-Date can be checked at any time.
Provisionality Degree of commitment to actions and marks

Table 9. 1: CD Dimensions and Meaning by Blackwell [157]

9.4 Design of the Study

As discussed in Section 9.1, the evaluation is conducted in three different phases. Similar usability

criteria and CD dimensions were evaluated for each phase. This study aimed to fulfil the following

evaluation objectives:

I. to evaluate Marama AI tool’s usability and effectiveness in capturing requirements, managing

inconsistency and exploring the end-to-end prototyping facility, and

II. to obtain qualitative information on user perceptions of the MaramaAI tool.

 173

We have structured our study into two parts.

1. Task list and observation

For this part, the participants need to explore and accomplish the provided task and while

they are performing the task, observation data is collected. This method aims to fulfil the

second objective of the evaluation. There are two types of observation conducted.

I. Unobtrusive observation

Here, participants are observed on how well they use the tool. This helps us to learn

whether participants can use the tool in an easy and efficient way. The following

aspects are also observed.

i) How participants capture the requirement manually and automatically and

then trace the abstract interaction and map to the EUC diagram

automatically.

ii) Is a participant able to manage the consistency of the requirement?

iii) How a participant navigates different parts of the tool and explores the

facility provided for end-to-end prototyping.

II. Obtrusive observation

Here, participants are asked to say aloud what he/she thinks while using the tool. This

helps us to learn more about the usefulness and the acceptance of the tool. Through

this method, we expect the participants to feel relaxed and willing to express their

sincere perception about the tool. Perceptions and comments from the participants

are then collected. We took notes for each piece of feedback and each observation

made.

For both methods we are using the think aloud method [159] and no personal information

about the participant is collected and no personal questions are asked.

2. Questionnaire

Each question for each usability criteria and CD dimension was recorded using a five parts-

Likert scale: 1=strongly disagree, 2=disagree, 3= undecided, 4= agree and 5=strongly agree.

The results for each question blocks, which consist of several questions for each criterion,

are averaged and converted to percentage. For this part, there are two sections which the

participants need to answer after they have completed their tasks.

I. The questionnaire for the four usability criteria and CD notations.

a. For usability criteria, each criterion for part 1: capturing requirements and

part 2: consistency checking and Part 3: Exploring the end to end prototyping

facility (End to End Rapid Prototyping) of the evaluation are designed with

three questions, with the exception that the usefulness criterion for part 3 has

 174

five questions. All these questions are designed by us with several adapted

from Lund [156]. In total, our questionnaire consists of 12 questions related

to the four criteria for parts 1 and 2 of the evaluation and 15 questions for

part 3.

b. For CD dimensions, we do not apply all the CD dimensions provided by

Blackwell in Table 1 but only focus on several elements that we think

influence our tool the most and helps for better usability tradeoffs as well as

better design choices discussion, which we think important for the adoption

and refinement of our tool at different phases. In this evaluation, we do not

consider the role-expressiveness, abstraction, secondary notation

dimensions and provisionality. As for the abstraction, we think that we do not

require participants to scale the level of abstraction and encapsulation

provided by the tool and for role-expressiveness, we do not require the

participants to discover the reasons we built the tool structure in such a way

as we follows the Constantine and Lockwood methodology of creating EUC

and EUI prototype models. As for secondary notation, the reason we left it

out is because the notations used by MaramaAI are clearly defined and

specific for a particular part of requirements. For provisionality, the reason we

left it out is because at this time round, we do not require the participants to

scale the degree of flexibility provided by the notations in allowing them to

play with their ideas or make any marking to the design. Each CD dimension

consists of one question to evaluate it. All these questions are adapted from

Kutar et al. [160]. In total, there are ten questions for this section. The list of

CD dimensions used by us and the questions evaluating them are shown in

Table 9.2 below.

Cognitive Dimension Question

Visibility It is easy to see various parts of the tool
Viscosity It is easy to make changes

Diffuseness The notation is succinct and not long-winded
Hard mental effort Some things do require hard mental effort
Error-proneness It is easy to make errors or mistakes
Closeness of mapping The notation is closely related to the result
Consistency It is easy to tell what each part is for when reading the

notation
Hidden dependencies The dependencies are visible
Progressive evaluation It is easy to stop and check my work so far
Premature commitment I can work in any order I like when working with the

notation
Table 9. 2: CD Notations Used and Questions Evaluating Them

 175

Overall, there are 24 questions for part 1 and part 2 of the evaluation and there are

27 questions for part 3 of the evaluation. Two background questions are also asked

at the beginning of the questionnaire regarding the participant’s proficiency in using

Marama tools: proficient/skilled, intermediate and novice and a question regarding

his/her experience in using any tool similar to our MaramaAI.

II. Open-ended questions related to any improvements that participants’ desire.

A sample of our evaluation survey appears in the appendices.

9.5 Survey Method

We invited potential participants who were enrolled in two postgraduate courses with specifically

relevant background in Software Requirements, and other students who had attained a background in

Software Requirements. This is because we needed participants who already had a knowledge of

requirements engineering to perform this survey. We recruited 20 voluntary postgraduate students

who had sufficient knowledge or experience in software requirements and requirement engineering to

participate in this survey. The usability evaluation was conducted individually in order to allow us to

observe participants and receive feedback one-to-one from them.

Participants were given an explanation and demonstration of how to use the prototype tool and the

tasks they needed to perform. A task list and a questionnaire sheet were given to participants before

they started using the prototype tool. The task list and questionnaires (Part 1, 2 ,3) as well as

Consent Forms, a University Ethics Approval Form and Personal Information Sheet are in the

appendices. A brief overview of the tasks for each phase of evaluation follows.

Part 1: Capturing requirements

I. Extract manually the Essential Use Cases from the scenario given.

 The participant reads through the given scenario and extracts the abstract interaction

and designs an EUC model from the scenario. The time used for this task is taken

and their work checked for accuracy by comparing their answers with the EUC

patterns developed by us.

II. Extract a similar scenario to the Essential Use Cases using the MaramaAI tool.

 The participant is asked to insert the same scenario into the tool and to extract the

EUC using the tool event handler.

 176

III. Explore MaramaAI facilities in capturing requirements using event handlers: trace, trace back

and map to EUC.

 The participant is asked to explore the tool facilities in tracing forward/back and

mapping using the provided event handlers.

Part 2: Consistency Checking

I. Explore the tool capability in managing the inconsistency by adding a new abstract interaction

or textual requirement, delete any components or change the sequence of the components.

 The participant is asked to explore the tool facilities for managing the consistency of

requirements by doing some modifications to the requirements as instructed.

Participant feedback while exploring is recorded.

II. Check for other requirements quality such as correctness and completeness using the tool.

 The participant is asked to check their modified requirement model with a defined

EUC pattern template for certain scenarios. He/she is required to observe the visual

differences provided to detect the incorrectness and incompleteness in the modified

requirement model. Participant feedback while exploring is recorded.

Part 3: Exploring the end-to-end prototyping facility (End-to-end Rapid Prototyping)

I. Explore the tool capability for mapping the EUC diagram to an EUI prototype.

 The participant is asked to explore the tool facilities in supporting end-to-end rapid

prototyping. He/she is asked to map the EUC model to a low-fidelity prototype: EUI

prototype. Participant feedback while exploring is recorded.

II. Explore the tool facility for mapping the EUI prototype to the concrete UI in a form of HTML

page.

 The participant is asked to explore the tool facility in generating automatically the

concrete UI view in a form of HTML page from the generated EUI prototype.

We observed the participants’ performances while using the tool to accomplish the provided task.

Participants were also asked to think aloud and give suggestions to enhance the tool. Once all tasks

were completed for each part, they had to answer the questionnaire sheet provided earlier.

Participants completed the questionnaire at their own pace without any supervision. The response

data was then collected for analysis. Each participant took less than one hour to perform the

evaluation survey. The results of the survey and analysis are discussed in the following section.

 177

9.6 Survey Result and Analysis

In this section, we present the survey results and analysis for all three parts of the evaluation.

Part 1: Capturing requirements

I. Task 1: Extract manually the Essential Use Cases from the scenario given.

The accuracy results provided by all the 20 participants for this task are poor, confirming the

preliminary study we undertook, presented in Chapter 3. Few participants could provide

correct abstract interaction for the EUC model. Table 9.3 summarises the results of our study.

The correctness (Y for correct, X for incorrect) and time taken were recorded for each person.

A correct answer (Y) means that the answer provided by the participant is the same or very

similar to the abstract interaction pattern developed by us following the Constantine and

Lockwood [4] methodology provided in the essential interaction pattern library. Summarising

these results:

4. The number of correct interactions identified (Y) = 48 out of 120 total correct interactions or 40%

(i.e. 60% were incorrect).

5. The number of completely correct EUC interactions (all Ys) = 2 out of 20 or 10%.

6. The average time taken to accomplish the EUC development task was 10.2 minutes. The

longest time taken was about 20 minutes and the shortest time taken was about five minutes,

so there was significant variation in the time taken.

Based on these results, participants were more likely to generate incorrect EUC interactions than

correct ones, and very unlikely (10%) to produce a completely correct EUC. All but two participants

failed to identify some of the essential interactions present in the given requirements; many failed

(highlighted in orange in Table 9.3) to assemble these into an appropriate interaction sequence, and

only two (participants 6 and 20) managed to obtain a solution which is the same as or very similar to

the model answer of the reserving a vehicle developed by us. From these results, it is obvious that

participants took considerable time to provide the right answer. This is shown by the time taken by

both participants 6 and 20 who respectively took 18 minutes and 12 minutes to provide the right

answer. Our survey thus supports the preliminary findings in our initial study discussed in Chapter 3.

 178

P
ar

tic
ip

an
ts

Answers

Ti
m

e
Ta

ke
n

(m
in

ut
es

)

Choose Offer choice View detail Request
identification Identify self Confirm

booking

1. Y Y X Y X X 14

2 X Y X X X X 11

3. X X X X Y Y 10

4. X Y X X X Y 10

5. X Y X X X Y 7

6. Y Y Y Y Y Y 18

7. X X X X X X 9

8. X X X Y Y Y 9

9. X X X X X X 16

10. Y X X X X X 6

11. X X X X X X 6

12. X X X X X X 8

13. X Y Y X X Y 5

14. X Y Y X X Y 20

15. Y Y Y X X Y 7

16. X Y Y X X X 5

17. X Y Y X X Y 13

18. X Y X Y Y Y 9

19. Y X Y X Y Y 9

20. Y Y Y Y Y Y 12

TOT
AL 6 14 12 8 8 12 5 15 6 14 11 9 204

=10.2

Table 9. 3: Manual Extraction of EUC Study Result

Observation results for Task 1:

We found that participants seemed to have difficulty in finding the right level of abstraction for the

abstract interactions. Most did not know how to abstract the requirements and just listed the

functional requirements. We also found that it was quite time-consuming for participants to figure out

 179

appropriate keywords to describe each abstract interaction and to organise these into an appropriate

sequence of user intentions and system responsibilities.

Task 2: Extract a same scenario to the Essential Use Cases using MaramaAI tool.

Task 3: Explore MaramaAI facilities in capturing requirement using event handlers: trace, trace-back

and map to EUC.

Observation Results for Tasks 2 and 3:

We found that 15 out of 20 of the participants were quite happy to use the tool as most of the process

was automated. They were also happy as the abstract interactions were provided and mapped to

interaction sequence in the EUC model automatically by the tool. They did not have to worry about

the accuracy issues observed in the first task. They also thought this would save much time and effort

in capturing the essential requirements as on average, most took only 1.5 minutes to solve the task.

This was much faster than the time taken in manual extraction. However, a minority group of five

participants were confused and uncomfortable with the layout of Marama as well as the shape and

colour used to represent the EUC model. These problems were solved after a few explanations and

trials using the tool.

Background Information

As mentioned in Section 9.3, participants were asked about their proficiency in using the Marama tool

and their experience in using any tool similar to our Marama AI before they moved to usability and CD

notation study. The results appear in Table 9.4.

 180

Participants Level of proficiency in using
Marama tool

Experience with any tool to capture
requirements similar to Marama AI

1. Intermediate No
2. Novice No
3. Novice No
4. Novice No
5. Novice No
6. Novice No
7. Novice No
8. Novice No
9. Novice No

10. Intermediate No
11. Novice No
12. Novice No
13. Intermediate No
14. Novice No
15. Novice No
16. Novice No
17. Intermediate No
18. Intermediate No
19. Novice No
20. Novice No

Table 9. 4: Proficiency level of Using the Marama tool and Experience with Any Other Tool

Based on the background results provided in this table, our participants were novice to intermediate

in using the Marama tool, the meta toolset used to construct MaramaAI – experience with this

indicates they have a background in using graphical modelling toolsets and graphical tool design.

Most of them were thus unfamiliar with tool design. The same group of participants was also used in

our next phase of evaluation. We conclude that this group of users were unfamiliar with RE tools like

MaramaAI.

Usability Criteria and CD Study

The results for the usability criteria and CD dimensions based on the questionnaire are shown in

Figure 9.1 and Table 9.5.

 181

Figure 9.1 shows the survey results for each usability criterion. For each criterion, the results of each

corresponding three-question block were averaged to produce the results shown. The results are

positive. 80% of the participants strongly agree or agree on its usefulness in capturing requirement;

the ease of use - over 78% strongly agree or agree; ease of learning - over 81% strongly agree or

agree, and satisfaction (80% strongly agree or agree). For ease of use, the result is slightly lower

than other criteria as a few participants felt uncomfortable with using the tool as they had difficulty in

understanding the layout provided by Marama and they were used to a UML model rather than the

EUC. In addition, they also expected the EUC component to be numbered in order to make it easier

for users to see the sequence of interactions as, currently, the sequence is shown only as an index in

the property box.

The CD study allows us to explore in more detail the reasons for these user perceptions as well as

further discuss the tool’s strength and weaknesses. The tradeoffs between the dimensions are also

discussed in section 9.7. We used the dimensions and questions in respect to MaramaAI in Table

9.2. for this study. The results are based on percentage depending on the number of participants’

answers for each scale.

Figure 9. 1: Usability Results-Capturing Requirements

 182

Cognitive dimension
1-Strongly
Disagree

(%)

2-Disagree
(%)

3-Neither
(%)

4-Agree
(%)

5-Strongly
Agree

(%)
Visibility 0.0 0.0 10.0 60.0 30.0
Viscosity 0.0 0.0 20.0 50.0 30.0
Diffuseness 0.0 10.0 20.0 55.0 15.0
Hard-mental effort 5.0 40.0 30.0 10.0 15.0
Error-Proneness 15.0 40.0 35.0 10.0 0.0
Closeness of Mapping 0.0 0.0 25.0 45.0 30.0
Consistency 0.0 0.0 15.0 45.0 40.0
Hidden Dependencies 0.0 5.0 15.0 60.0 20.0
Progressive Evaluation 0.0 0.0 20.0 55.0 25.0
Premature Commitment 0.0 5.0 15.0 60.0 20.0

Table 9. 5: Evaluation Results for Cognitive Dimensions Questions

Based on Table 9.5. we could summarise the results for each dimension as follows.

i. Visibility

About 90% of the participants either strongly agreed or agreed that the tool is able to show

clearly the three components requirements: textual natural language requirements in the

textual editor, abstract interaction and EUC in Marama Essential. They could also easily see

the dependencies of each component as a visual link and highlights are provided. The

remaining 10% hoped for sequence numbering for abstract interactions and the EUC

components in the shapes rather than just in the property boxes.

ii. Viscosity

About 80% of the participants either strongly agreed or agreed that the tool allowed them to

make changes easily. They could make changes in any part of the requirements components

either in textual natural language requirement or abstract interaction or EUC model. 20%

doubted the tool’s ability to support independent changes as they believed that the three

requirements components were dependent on one another.

iii. Diffuseness

About 70% of the participants either strongly agreed or agreed that the notation used by the

tool is succinct and not long-winded. However, 10% disagreed and thought it was hard to

understand the notation when using it for the first time. They were confused with the

coordination, shape and colour used in representing abstract interaction and EUCs.

iv. Hard-mental effort

About 45% of the participants either strongly disagreed or disagreed that this tool needs a lot

of effort to solve the tasks. They were quite happy as this tool is able to extract automatically

the EUC which minimises a lot of their time and effort. This is in stark contrast to the difficulty

 183

found by users in understanding and applying EUCs found in the prior studies. However,

there was still some dissatisfaction from 25% of the participants who thought this tool still

required effort to understand the shape and the layout when using it for the first time. 30% of

the participants answered ‘undecided’: they may have thought that all the problems faced in

understanding the tool could be solved if they used it more often.

v. Error-Proneness

More than half the participants either strongly disagreed or disagreed that the tool leads the

user to make errors. This is because the extracted abstract interaction is believed to be

accurate as all the essential interaction and abstract interaction patterns are already pre-

defined in the library. However, 35% of the participants were undecided: they may have

believed that the tool could be constrained by the size of the library. Another 10% of the

participants agreed that they made mistakes easily at the beginning as they were confused

with the shape used for abstract interaction and the EUC model, and the highlighting of

several essential interactions in the textual natural language requirements for a particular

abstract interaction when trace-back was performed.

vi. Closeness of Mapping

Most participants (75%) either strongly agreed or agreed that the notation used was closely

related to the results: abstract interaction and EUC model. They understood the shapes and

labels used to describe both requirement components. Only 25% of the participants were

undecided with the notation used as they were not familiar with the Marama meta-tool and

were not happy with the colours used to identify specific shapes.

vii. Consistency

Most participants (85%) either strongly agreed or agreed that they could easily identify the

requirements components: textual natural language, abstract interaction and EUC model

throughout the task. Only 15% of the participants were undecided: they were unsure about

the Marama shape and the colours used but believed that the notations used were consistent

and straight-forward.

80% of the participants either strongly agreed or agreed that the dependencies among the

three requirements components were visible. Visual links are provided to show the

dependencies between abstract interaction and the EUC model when trace-back is

performed. Highlights with (***) and change of colour also help to visualise the dependencies

among components. However 5% of the participants disagreed with this and 15% were

undecided. This may be because of the misunderstanding of the requirements components

and the purpose of highlighting the essential interactions in the textual natural language

requirement.

viii. Progressive Evaluation

 184

80% of the participants also either strongly agreed or agreed that MaramaAI allows users to

evaluate their work at any time and to verify the abstract interaction produced by the library.

Here, participants could make any change to the list of abstract interaction if they did not

agree with the tool’s decision. Only 20% were undecided with this dimension. The latter is

well supported by the tool as the automation process is supported by event handlers. Event

handlers will only generate the event if there is a trigger from the user.

ix. Premature Commitment

This dimension reflects the sequence of using this tool in order to achieve the results. 80% of

the participants strongly agreed or agreed that the tool allows a user to perform the task from

any direction. However, 5% of participants disagreed and another 15% were undecided. This

could be because of the constraint; only one way is provided if they want to trace the abstract

interaction from the textual natural language requirement.

Open-ended Questions to Improve the Tool

The open-ended feedback for the open-ended question to improve the tool is illustrated in

Table 9.6 below.

 185

Participants Comment
1. “User who understands the concept of Essential Use case will be much

easier to operate the tool. After regular use, it will be easy to use the tool.
It will be good if the list of actions is numbered so that the user can view
the sequence of interactions.”

2. “I think this tool can have better GUI for better use.”
3. “It is getting easier to use the tool if it is explored more than once.”
4. None
5. “Re-organise the layout and the colour of the shape.”
6. “It will be better if the shape is numbered.”
7. None
8. None
9. None

10. “The user interface can be improved. The boxes and the colour bar can be
combined.”

11. “It will be good if the list of abstract interaction can be edited in the shape.”
12. “It is quite confusing that 3 occurrences of “indicate” keyword

corresponded to one box in EUC diagram.”
13. “Better presentation of diagrammatic elements (shapes, colours) for more

visual distance.”
14. “Allow tracing all together rather than individuals.”
15. None
16. “Allow line-breaks in the text areas, solid colouring for the shapes.”
17. “A “trace back all” feature which would highlight all occurrences in the text

might be useful and “trace back highlights” in the text with colour instead of
stars.”

18. “Highlight the keywords in the original requirements which have been
used, so user can quickly identify the situations where a requirement
needs to be manually added.”

19. “Clearer differences between components (colour). The one in pink on the
left almost looks like a status bar.”

20. “A larger database for the pattern is needed. A strong database could
support the tool to provide accurate results.”

Table 9. 6: Open-Ended Feedback

Part 2: Consistency Checking

We conducted a second part of the evaluation for the next iteration of our prototype focussing on

checking the consistency. Before the evaluation was conducted, the tool was modified over a period

3- 6 weeks based on the relevant feedback and suggestions received from the first evaluation as well

as extending the tool with the additional functionality developed for the iteration.

Task 1: Explore the tool capabilities for managing inconsistency by adding a new abstract interaction

or textual requirement, delete any components or change the sequence of the components.

Here, participants were required to do some prescribed modifications and then observe how well the

tool automatically supported the consistency validations.

Task 2: Check for other requirements quality such as correctness and completeness using the tool.

Here, participants were required to explore how the tool supports the identification of incompleteness

and incorrectness that occurs in the generated EUC model.

 186

Observation Result for Task 2 and 3:

We found that 17 out of 20 participants were interested in using the tool as they were able to view

automatically the inconsistencies, incompleteness and incorrectness errors that occur. They were

also quite satisfied with the notification supports such as problem marker and warning, and visual

differencing support in detecting the errors. However, two participants requested more modification

options and validation support which focuses not only on these three types of errors. In addition, one

participant strongly thought this tool would be constrained by the available templates in the EUC

interaction library.

Background Information

The same group of participants from the first evaluation were used for this second evaluation. Thus

the same background applies for all the participants. This is because they already had an idea of how

our tool works and they could compare the current tool functionality with the previous one. Thus, we

can sum up that none had prior experience with any RE tool similar to our MaramaAI for checking the

consistency of requirements except for one participant who thought that the way our tool notifies the

error and feedback by using warnings is similar to the Marama Critic tool. But overall, that tool has a

different focus than our tool, which focuses on managing the consistency and validating the

requirements, whereas Marama Critic focuses on providing a critic specification tool that allows the

tool developers to construct critics for a DSVL tool [161]. Here, the results gained from the first phase

of the evaluation were also used to enhance the prototype before we moved to this evaluation– note

there were minor changes from the responses in Figure 9.1 and Table 9.5 due to the time difference

between the two parts of the study.

Usability Criteria and CD Study

The results of the usability criteria and CD notations based on the questionnaire are shown in Figure

9.2 and Table 9.7.

 187

Figure 9.2 shows the result of our usability survey on consistency checking of requirements using our

tool, MaramaAI. For each criterion, the results of each corresponding three-questions block were

averaged to produce the results shown. The results are very positive, with strong agreement over the

usefulness of the tool (90% strongly agree or agree on its usefulness), the ease of use (over 90%),

ease of learning (over 80%) and satisfaction (over 80%). These results show that there is an

increment in the usefulness of the tool and other criteria compared to the previous evaluation. The

small number of cases of disagreement over usefulness, ease of learning and satisfaction related to a

preference by those participants for a UML Use Case-based approach rather than the Essential Use

Case approach. Some also felt that requirements engineers would be too constrained by the

templates available in the EUC interaction pattern library, and some could not foresee the purpose of

the tool after checking the consistency. However, overall these results are very encouraging,

particularly given prior studies, our own and others, that suggest EUC modelling, while appealing to

end users, has a large barrier to entry due to difficulty of use [39].

The CD study allows us to explore in more detail the reason for these user perceptions. Similar to the

previous evaluation, we used the dimensions and questions in Table 9.2. for this study. The results

are based on percentage, depending on the number of participants’ answers for each scale.

Table 9.7 shows the evaluation results for each of these questions. These demonstrate interesting

tradeoffs between the dimensions that we feel have contributed to the strong usability acceptance.

Figure 9. 2: Usability Results - Consistency Checking of Requirements

 188

Cognitive dimension
1-Strongly
Disagree

(%)

2-
Disagree

(%)

3-Neither
(%)

4-Agree
(%)

5-Strongly
Agree

(%)
Visibility 0 0 10 80 10

Viscosity 0 0 0 75 25

Diffuseness 0 0 10 70 20

Hard-mental effort 5 40 45 10 0

Error-Proneness 0 55 45 0 0

Closeness of Mapping 0 5 15 85 5

Consistency 0 0 15 80 5

Hidden Dependencies 0 0 15 70 15

Progressive Evaluation 0 0 15 50 35

Premature Commitment 0 0 15 65 20
Table 9. 7: Evaluation Result for Cognitive Dimensions Questions

Based on Table 9.7, we summarise the results for each dimension as below;

i. Visibility

90% of the participants strongly agree or agree that they could see various parts of the tool.

They could easily view the consistency dependencies among the three requirement

components: textual natural language requirements, abstract interaction and EUC model.

Only 10% of the participants are undecided.

ii. Viscosity

All participants strongly agree or agree that they find it easy to make changes to the diagrams

representing the various notational forms. Both strong results of visibility and viscosity show

that the participants are comfortable with the tool.

iii. Diffuseness

About 90% of the participants strongly agree or agree that the notation used by the tool is

succinct and not long-winded. However, 10% of the participants are undecided with this as

they are more comfortable with UML diagrams than with the EUC model.

iv. Hard-mental effort

About 45% of the participants strongly disagree or disagree that this tool needs a lot of effort

to solve the tasks. They are quite happy as this tool is able to automatically detect

inconsistencies in the requirements. However, there is still dissatisfaction from 10% of the

participants who think this tool still requires effort and strong understanding to locate the error

if they do not understand the concept of the EUC model. 45% of the participants answer

undecided: perhaps they used this tool for the first time and all doubts were resolved after a

few explanations and trials.

v. Error-Proneness

 189

More than half of the participants disagree that the tool leads the user to errors. This is

because all the errors are detected automatically and they could view the incorrectness and

incompleteness of the differences between the generated EUC model and the templates. In

addition, all modifications are also checked with the available patterns and templates in the

library, so that they do not worry about the accuracy issue. Another 45% of the participants

are undecided; perhaps they think that the tool might constrain the available patterns and

templates available in the library. However, they believe that this problem could be easily

solved when we mentioned that the collection of patterns and templates for both our libraries

are on-going.

vi. Closeness of Mapping

Most participants (90%) strongly agree or agree that the notations used are relatively intuitive

and understandable. Only 15% of the participants are undecided and another 5% disagree

with the notations used as they are confused with the Marama Layout.

vii. Consistency

Most participants (85%) strongly agree or agree that they could easily recognise the notations

used by our tool. Only 15% of the participants are undecided as they were initially confused

with the notations used to represent the differences between the generated EUC model and

the EUC model from the templates. However, those doubts were resolved after a few

explanations.

viii. Hidden dependencies

85% of the participants strongly agree and agree that the dependencies among the three

requirements components are visible. A visual link is provided to show the dependencies

between abstract interaction and EUC model when inconsistencies exist. Highlights with (***)

in textual natural language requirements, change of colour, problem marker as well as

warning and feedback also help to visualise the inconsistencies among components when

any requirement component is changed. However, 15% of the participants are undecided.

ix. Progressive Evaluation

85% of the participants also strongly agree or agree that they could easily stop and check

their work at any time. MaramaAI allows changes to be made to any of the requirement

components. Thus, end users do not have to worry about the errors as the tool provides an

automated support if any errors such as inconsistencies, incompleteness and incorrectness

exist. Only 15% are undecided but their doubts were resolved after a few trials.

x. Premature Commitment

This dimension reflects the sequence of using this tool in order to achieve the results. Over

85% of the participants strongly agree or agree that the tool allows a user to perform the task

from any direction. End users could make changes in any of the components as the tool

provides automated detection if the changes cause an inconsistency in any other component.

 190

If inconsistency is detected, end users could make changes to other components as well,

based on the feedback provided by the tool in order to keep the three requirements

components consistent. Only 15% of the participants are undecided but their doubts were

resolved after a few trials.

Open-ended Questions to Improve the Tool

The open-ended feedback for the open-ended question to improve the tool is illustrated in Table 9.8.

Participants Comment
1. “The main concern is the pattern and template available in the library.

More templates available are better.”
2. None
3. “Allow to use templates only partially, e.g. use some parts of it but not all.”
4. “To consider more options/types of requirement quality error apart from

inconsistency, incompleteness and incorrectness.”
5. “Still confuse with the layout. Need to change the colour used by the

notations.”
6. None
7. “Modification options can be increased.”
8. None
9. None

10. “I like the visual differencing approach as I could view visually the errors.”
11. “Easy to make changes to the notations.”
12. “Still prefer the UML rather than EUC”.
13. “Need to have knowledge and understanding on the concept of EUC.”
14. “Need to have a try on this tool for a few times.”
15. None
16. None
17. None
18. “Would be too constrained by the available templates available in the

library.”
19. None
20. “More templates in the library are needed to support the visual

differences.”
Table 9. 8: Open-ended Feedback

Part 3: Exploring the end-to-end prototyping facility (End-to-End Rapid Prototyping)

We have conducted another evaluation for the final iteration of our prototype for end-to-end rapid

prototyping support. Before the evaluation was conducted, the tool was again modified over a period

of 3-6 weeks based on the relevant feedback and suggestions received from the second evaluation,

as well as adding additional functionality.

 191

Task 1: Explore the tool capability in mapping the EUC diagram to the EUI prototype

Here, the participants were required to explore the tool utility in mapping the generated EUC model to

the low-fidelity prototype-EUI prototype.

Task 2: Explore the tool facility for mapping the EUI prototype to the concrete UI in a form of HTML.

Here, the participants were required to explore the tool facility to translate the EUI prototype model to

the more concrete UI view: an HTML form. From here, participants could see the end results and

confirm the consistency of the requirements provided earlier in a form of textual natural language

requirements with the generated prototype.

Observation Results for Tasks 2 and 3:

We found that 16 of the 20 participants were happy to use the tool as they were able to view the

prototype as a result from the generated EUC model. They were also satisfied with the generation of

the concrete UI view–HTML form as they could understand and have the picture of the requirements

instead of just text and model. However, one participant requested GUI support for the HTML form

based on particular domains and three other participants suggested that a video demo be embedded

in the tool. Those three participants also requested more descriptive labels and a key to explain the

meanings of the colours near or at the side of the models.

Background Information

The same group of participants from the first and second evaluations was used in this third

evaluation, so the same background applies. This is because they already had an idea of how our

tool works and what the tool supports and they could compare the usefulness of the current tool with

the previous one. We also concluded that no participant has experienced the same approach of end-

to-end rapid user interaction prototyping provided by MaramaAI in any other requirements tool in

capturing or analysing the requirements.

Usability Criteria and CD Study

The results of the usability criteria and CD notations based on the questionnaire are shown in Figure

9.3 and Table 9.9.

 192

Figure 9.3 shows the results of the usability survey conducted for the end-to-end rapid prototyping

approach provided by our tool. For each characteristic, the results of each corresponding question

block were averaged to produce the results shown. The results are very positive compared to the

previous evaluation, with strong agreement over the usefulness of the tool (100% strongly agree or

agree on its usefulness), the ease of use (over 90%), ease of learning (95%) and satisfaction (90%).

The small number of cases of disagreement over ease of use and ease of learning related to a

preference by those participants to have a more descriptive label for each colour and shape used in

MaramaAI.

The CD study allows us to explore in more detail the reasons for these user perceptions. Similar to

previous evaluations, we used the dimensions and questions in Table 9.2 for this study. The results

are based on percentage, depending on the number of participants’ answers for each scale. Table

9.11 shows the evaluation results for each of these questions. As with the previous evaluation, we

believe these results demonstrate interesting usability tradeoffs between the dimensions that we feel

have contributed to the strong usability acceptance of our final prototype.

Figure 9. 3: Usability Results- End to End Rapid Prototyping

 193

Cognitive dimension
1-Strongly
Disagree

(%)

2-Disagree
(%)

3-Neither
(%)

4-Agree
(%)

5-Strongly
Agree

(%)
Visibility 0.0 0.0 5.0 50.0 45.0

Viscosity 0.0 0.0 5.0 50.0 45.0

Diffuseness 0.0 0.0 5.0 55.0 40.0

Hard-mental effort 30.0 50.0 15.0 5.0 0.0

Error-Proneness 25.0 50.0 10.0 15.0 0.0

Closeness of Mapping 0.0 0.0 0.0 40.0 60.0

Consistency 0.0 5.0 10.0 55.0 30.0

Hidden Dependencies 0.0 0.0 10.0 50.0 40.0

Progressive Evaluation 0.0 0.0 5.0 50.0 45.0

Premature Commitment 0.0 0.0 5.0 40.0 55.0
Table 9. 9: Evaluation Result for Cognitive Dimensions Questions

Based on Table 9.9, we conclude that almost all results are positively increased compared to both

evaluations conducted earlier. A summary of the results for each dimension follows.

i. Visibility

Almost all of the participants (95%) strongly agree or agree they could see various parts of

the tool. They could easily view the dependencies between requirements components in

MaramaEssential and the prototype in MaramaEUI. Only 5% are undecided as they are not

sure of the notation used for the EUI prototype at the beginning.

ii. Viscosity

95% of the participants strongly agree or agree that they found it easy to make changes to

the diagrams either in the EUC model or EUI prototype model. Strong results of both visibility

and viscosity show that the participants were comfortable with the tool.

iii. Diffuseness

95% of the participants strongly agree or agree that the notation used by the tool is succinct

and not long-winded, although there were suggestions to be able to generate HTML forms

with GUI templates based on a selected (i.e. domain specific) application domain. 5% of the

participants were undecided with this as they were new to the EUI prototype model.

iv. Hard-mental effort

About 80% of the participants strongly disagree or disagree that this tool needs a lot of effort

to solve the tasks. They are happy as this tool is able to help to generate automatically the

EUI prototype from the EUC model and to translate automatically the EUI prototype model to

a more concrete UI view: HTML form. Only 5% believe that they need a lot of effort to

understand the concept and dependencies between the EUC model and EUI prototype. 15%

of the participants answered undecided: perhaps they used this tool for the first time and all

doubts were satisfied after explanations and trials. However, this is still in strong contrast to

 194

the findings of prior studies regarding the difficulty found by users in understanding and

applying EUCs and EUI prototypes.

v. Error-Proneness

75% of the participants disagree that the tool leads the user to errors. This is because all the

errors are detected automatically and they could automatically generate the prototype. The

prototype generated is based on the pre-defined template and UI pattern in the library. Thus,

this assures the accuracy of the UI. Only 15% of the participants disagree with this and

another 10% are undecided. However, all doubts were resolved after explanations were

made.

vi. Closeness of Mapping

All participants strongly agree or agree that the notations used are relatively intuitive and

understandable.

vii. Consistency

Most participants (85%) strongly agree or agree that they could easily recognise the notations

used by our tool. Only 5% of the participants disagree with this and 10% of the participants

are undecided as they were initially confused with the notations used to represent the EUI

prototype model. All the misunderstandings were resolved after a few explanations.

viii. Hidden dependencies

90% of the participants strongly agree or agree that the dependencies among the three

requirements components and the prototype are visible. The highlights with a change of

colour to red in the EUC component and abstract interaction as well as the highlight with (**)

in textual natural language requirements after trace-back are performed from the EUI

prototype and show the dependencies between all requirements components and the

prototype. Only 10% of the participants are undecided as some required that highlights be

provided to active elements in order to view the consistency between the EUI prototype and

EUC model. In addition, a warning is also requested if any EUI prototype is deleted: this

ensures consistency with the EUC model.

ix. Progressive Evaluation

95% of the participants also strongly agree or agree that they could easily stop and check

their work at any time. Marama AI allows changes to be made to any of the requirement

components and the prototype. Only 5% are undecided but all doubts were resolved after a

few explanations.

x. Premature Commitment

This dimension reflects the sequence of using this tool in order to achieve the results. Over

95% of the participants strongly agree or agree that the tool allows a user to perform the task

from any direction. End users could make changes in any of the components either from the

MaramaEUI editor or Marama Essential editor. End users could use either or both editors to

 195

capture the requirements. Only 5% of the participants are undecided but they still believe

they could use the tool in any direction they like.

Open-ended Questions to Improve the Tool

The open-ended feedback to the open-ended question to improve the tool is illustrated in Table 9.10

below.

Participants Comment
1. “Highlight active elements to view the consistency between EUI prototype

and EUC models. Provide warning if any item of EUI prototype is deleted.”
2. None
3. “Remove unnecessary elements from eclipse. Provide more descriptive

labels.”
4. “Could provide templates for specific domain for the HTML form.”
5. “EUC and EUI prototype can be on the same page.”
6. None
7. None
8. None
9. None

10. “Would prefer to have a video demo on how to use the tool .”
11. “Maybe could have a “key” explaining what the colours mean near to the

model.”
12. “Would be good if the HTML form is designed with interesting GUI.”
13. “Need to understand the concept of EUI prototype.”
14. “Need to have a try on this tool for a few times.”
15. None
16. None
17. None
18. None
19. None
20. “MaramaAI tool can be improved by providing more interactions between

abstract interaction and other diagrams. In future, it can be used to extract
UML diagram such as class diagram and sequence diagram.”

Table 9. 10: Open-ended Feedback

9.7 Comparison of Survey Results

We compared the results gained from these three evaluations. Most results showed a positive

increment in terms of usability, especially the usefulness of the tool. The comparison results of the

usability study for the three evaluations- capturing requirements, consistency checking and end-to-

end rapid prototyping are shown in Figure 9.4.

 196

Based on Figure 9.4, the usefulness of the tool increases in each of the evaluations. All participants

agreed that the final prototype, end-to-end rapid prototyping, is useful. They could understand the

value of the tool for consistency management and validation of requirements after they viewed the

results of the requirements in terms of the prototype.

Other results of usability criteria also show positive increment for each of the prototype iterations. For

ease of use, from only 78.3% rating in the first prototype (capturing requirements), increases to

93.3% in the second prototype (consistency checking), but has a slight drop with 91.6% in the final

prototype. This is because most of the participants are still new to the concept of abstract prototype

(EUI prototype) and the tool is somewhat more complex with the additional functionality provided.

However, for ease of learning criteria, the rating of the final prototype increases to 95% from just

83.4% in the second prototype and 81.7% in the first prototype. This is because most participants

believe that they could easily follow the flow of the tool after a few trials and explanations. The

satisfaction rate also gains a positive increase in the final prototype with 90% compared to only

83.4% in the first prototype and 80% in the second prototype. Most participants are satisfied with the

end results produced as the tool visualises the requirements in a form of prototype.

Figure 9. 4: Comparison Results of Usability Study for Capturing Requirements,
Consistency Checking and End-to-End Rapid Prototyping of MaramaAI

 197

As we used a CD study to explore in more detail the reasons for these user perceptions, we

compared the results for each dimension for the three evaluations. We also explored the tradeoffs

between the dimensions. There are also positive increments for each of the dimensions in the CD

study. The comparison results for each dimension in the CD study are shown in Figure 9.5.

Figure 9.5 shows that most of the results for each of the CD dimensions have increased in each of

the prototype iteration. The visibility rating has increased to 95% in the final prototype compared to

90% in both the first and second prototypes.

The viscosity rating has a high increment from 80% in the first prototype, shooting up to 100% in the

second prototype. It shows that the participants began to be comfortable with the tool after they have

understood the concept of an EUC model. However, there is a slight drop to 95% in the final

prototype as most participants are still new to the concept of the EUI prototype.

The results of diffuseness also show a high increment, with only 70% in the first prototype, increasing

to 90% in the second prototype and 95% in the final prototype. This shows that most participants start

to understand and be comfortable with the notation used in MaramaAI.

Figure 9. 5: Comparison results of CD Study for Capturing Requirements, Consistency
Checking and End-to- End Rapid Prototyping of MaramaAI

 198

For the hard mental effort dimension, only 45% of the participants in both first and second prototypes

agreed that the tool is easy to use, but the rate increases to 80% in the final prototype. This high

increment also happens in the error-proneness dimension, where 75% of the participants of the final

evaluation compare favourably to both earlier prototypes where only 45% agree that it is hard to

make errors or mistakes with the tool. The result for closeness of mapping also increased to 100% in

the final prototype compared to 90% in the second prototype and only 75% in the first. The strength of

mapping rating and the relatively strong hard mental effort and error proneness ratings indicate that

EUC and EUI prototype notations are seen as intuitive and understandable by the participants. This is

in stark contrast to the difficulty found by users in understanding and applying EUC’s and EUI

prototype in the prior studies.

The result of consistency dimension for the three evaluations remains at 85%. The result for the

hidden dependencies dimension also shows gradual increments for each prototype. The first

prototype received an 80% rating and the second prototype with an 85% rating while the final

prototype had a 90% rating. These results show that participants are improving in understanding the

dependencies that occur between the requirements components and the prototype.

A similar gradual increment also happens to the rating of progressive evaluation and premature

commitment dimensions. For both dimensions, the first prototype received an 80% rating and the

second prototype had a 85% rating and the final prototype had a 95% rating. We conclude that the

automated extraction support, consistency management and generation of prototypes appear to be

responsible for all these high ratings.

From the results, the usability tradeoffs between the dimensions are also clearly shown. It shows that

high closeness of mapping and visibility as well as high viscosity assists with the issue of hard mental

operations and reduces the error proneness. The high progressive evaluation also contributes to the

lower error- proneness and hard mental operations. The high visibility also increases the result of

hidden dependencies. The consistent result of consistency affects the increment of the diffuseness

result. In addition, it is also shown that the high premature commitment assist with the positive result

of the high progressive evaluation.

 199

9.8 Summary

The MaramaAI tool has been evaluated phase by phase with a usability survey and Cognitive

Dimensions study. The evaluation results are positive for all the three phases of prototypes: capturing

requirements, consistency checking and end-to-end rapid prototyping.

The survey has shown very positive results in usefulness. This shows a good degree of acceptance

by end-users to use the tool in managing the consistency and validating the requirements. The results

appear to complement the prior studies in applying EUCs and the EUI prototype.

However, there are also some minor improvements are needed to improve the usability of the

MaramaAI tool. The evaluation survey has also provided a number of suggestions (listed in the

previous sections) to improve the usability of MaramaAI. The suggestions will be taken into

consideration in our future work.

 200

Chapter 10: Conclusion and Future Work

This chapter concludes this thesis by summarising the contributions of this research responding to

research questions described in Chapter 1 as well as some conclusions on the achievements so far.

This chapter also discusses the limitations of the research and suggests some future work to extend

the research.

10.1 Summary of Research Contributions

1. We have designed and developed a lightweight extraction approach to deal with natural

language requirements. This lightweight approach is implemented in an automated tracing

tool which provides facilities for authoring textual natural language requirements and

checking the consistency of those requirements. This approach enables requirements

engineers to extract quickly and accurately essential requirements (abstract interactions)

from the textual natural language requirements and then map them to an Essential Use Case

(EUC) model. To support the extraction process, we have also developed an essential

interaction pattern library and a collection of abstract interaction patterns and essential

interactions patterns which are reusable and can be applied in various domains of

applications.

2. We have designed and developed requirements analysis support to validate the

requirements’ consistency and quality. We have implemented automated traceability and

visualisation support to manage the consistency of the requirements in three different forms:

textual natural language requirements, abstract interactions and EUC models; as well as to

further validate the correctness and completeness of requirements. To do this, we employed

a visual differencing approach between essential interaction patterns and EUC interaction

patterns. Thus, this could assist the requirements engineers to find appropriate interactions

for designing the EUC model for a particular system. Warnings and highlights are also used

to highlight inconsistencies and other requirement quality errors such as incorrectness and

incompleteness.

3. We have designed and developed a rapid prototyping approach together with traceability

support to provide end-to-end support for consistency checking which we assume will be

usable by both requirements engineers and clients to confirm the consistency of

requirements. In addition, an approach has been developed and embedded into the tool to

automatically map the semi-formal requirements in the form of EUC model to an abstract

 201

Essential User Interface (EUI) prototype model and a more concrete UI view in a form of a

HTML page. The traceability support provides trace forward and trace- back between the EUI

prototype, EUC model, abstract interaction and textual natural language requirements. We

have also developed a set of EUI patterns to enhance the accuracy of a generated EUI

prototype model and a set of EUI pattern templates to allow the translation of an EUI

prototype model to the more concrete UI view – HTML page for various domains of

applications.

4. We have developed a proof of concept prototype tool: MaramaAI. This was built using the

existing Marama meta-tool and acts as a proof of concept for our approaches for providing

automated support for consistency management and validation of requirements. We have

evaluated our prototype tools performance and efficacy mainly for the tool extraction process

and we have evaluated the tool with an end-user study, confirming the usability of the tool

based on Cognitive Dimensions (CD) and applied the tool to several case studies in different

domains of applications.

10.2 Conclusions

From our research, we conclude that our automated support tool,MaramaAI, can extract automatically

abstract interactions and EUC models from textual natural language requirements. Then, an EUI

prototype model and concrete UI view in the form of an HTML page can also automatically be

generated from the EUC model. We have demonstrated that these automation processes perform

better than manual processes conducted by requirements engineers.

In addition, our tool can also check for the 3 C’s - consistency, correctness and completeness - using

the developed essential interaction patterns and EUC interaction patterns with traceability and visual

support to highlight the requirements’ quality errors such as inconsistencies, incorrectness and

incompleteness.

Finally, we have also speculated that our approach and automated tool support are able to improve

the dialogue between the requirement engineers and stakeholders/clients by having the auto-

generated prototypes from the EUC models: these help to provide a clearer picture of the

requirements to the client. It also allows confirmation of the consistency of the requirements captured

by the engineers with a client’s original requirements by having the textual natural language

requirements, abstract interaction, EUC model, EUI prototype model and HTML form mutually

traceable to each other.

 202

However, some limitations of our MaramaAI tool were exposed by the evaluations and the case

studies applications. These include the following.

1. Constraints on the size of the essential interaction pattern library, specifically the list of

abstract interactions and essential interactions available. During the evaluations, the tool

efficacy result averaged 80% due to grammar issues and the size of the library. This is also

supported by the example of the case study three in Chapter 8, in which we also faced the

problem of tracing a particular abstract interaction. However, this can be readily addressed as

the process of abstracting and storing patterns is on-going.

2. Constraints on the available types of “best-practice” templates in the EUC interaction patterns

library for supporting the visual differences in validating requirements. More “best-practice”

templates are required to support wider domains of applications. However, this also can be

handled as the process of searching for and storing the templates is on-going.

3. Constraints on the available EUI pattern and template in the EUI pattern library for generating

the prototypes: EUI prototype and HTML page. More EUI patterns and a EUI pattern

templates are also needed to generate more UI for wider domains of applications. In addition,

generation of prototype concrete UIs that are not form based may be desirable.

4. Constraints in handling validation of multiple requirements. At present, the validation process

can only be conducted subsequently by MaramaAI and the tool does not allow partial

acceptance of a particular EUC interaction pattern from the “best-practice” template.

5. Constraints on a novice user to understand the layout of the tool. During the evaluation,

participants requested better representation including the layout, colour, shape and labels

used by the tool. A video demo on how to use the tool and illustration explaining the colours

and shapes was also requested.

6. The HTML page generated does not contain any GUI. It only shows the main functionality of

the requirements.

Overall, these minor limitations observed in our tool can be improved in future work.

10.3 Future Work

MaramaAI tool is still at the prototype stage. We aim to continually develop it to be more robust and to

allow its use by the Requirement Engineering community and industry.

 203

In order to achieve this, we need to address the following matters.

1. Enhance the support of our library for essential interaction patterns, EUC interaction patterns

and EUI patterns. To do this, a pattern template editor can be developed to allow automatic

updates of the patterns to be done by any requirements engineer. At present, the process of

updating the patterns is via manual insertion by the developer into the libraries. With

appropriate editing support, a requirements engineer could update or define any new abstract

interaction, essential interaction, EUC interaction or EUI pattern in the various libraries

following the provided guidelines.

2. Provide better support for consistency management and validation of multiple requirements.

We plan to enhance the support tool to allow validation for all requirements at the same time.

With this, the consistency checking can be done for all requirements at the same time. The

completeness and correctness checking using the visual differences also can be conducted

together for all requirements. In addition, we also plan to provide the user with flexibility either

to change the whole or partially of original EUC interaction against the “best-practice”

template.

3. Enhance the layout of MaramaAI and embed a video demo describing how to use the tool for

better understanding by a novice user. The colour and shapes used in the tool need some

improvement with better labelling to explain the features. The tool can also be integrated with

a GUI template for the generated HTML form for each domain of applications. The GUI

template, based on different domains of applications, can be stored in a library to allow

automatic generation of the template together with the generated HTML form.

4. Conduct an evaluation of the effectiveness of our tool in improving the dialogue between the

requirements engineer and the stakeholders/clients. This evaluation is to assess the

effectiveness of our tool-MaramaAI utilities in assisting the communication between the

requirement engineer and clients, especially in confirming the consistency of requirements

captured by the requirements engineer using the tool with the client’s original requirements.

We are now waiting for Ethics approval for this evaluation, which will be underway shortly..

5. Integrate our tool with other UML models such as sequence diagrams and class diagrams to

check for the consistency of the generated EUC model with both UML sequence and class

diagram. The next step is to try to integrate our framework with other NLP tools in order to

perform grammar analysis for the textual natural language requirements in the textual editor.

With this, we may overcome some of the grammar problem faced by our current tool.

 204

10.4 Summary

The research presented here has focused on providing automated support for consistency

management and validation of requirements. We have developed several libraries of patterns,

covering essential interactions, EUC interactions and EUIs which, together with traceability and visual

support for the EUC concept, we have demonstrated to be usable, for managing consistency and

validating requirements. In addition, the dialogue between the requirements engineer and the client

may also be improved via the generation of user interface prototypes from the EUC model.

Evaluations focussing on the performance and efficacy of the tool extraction process and formal

evaluations on the tool usability as well as a demonstration of the use of the tool with different case

studies were employed to evaluate the approach and the proof of concept prototype tool - MaramaAI.

 205

APPENDIX A: PARTICIPANT INFORMATION SHEET (HEAD
OF DEPARTMENT)

PARTICIPANT INFORMATION SHEET (HEAD OF DEPARTMENT)

Title: Evaluation of Marama AI: Automated Inconsistency Checker for Capturing Requirement and

Managing Inconsistency

My name is Massila Kamalrudin and I am a PhD student at the Department of Electrical and Computer

Engineering, The University of Auckland. I am conducting research on Inconsistency checking of Software

Requirements. This research is under the supervision of Professor John Hosking and Professor John Grundy. Our

research investigates the use of an automated tool which applies an approach using visualisation and lightweight

traceability techniques for capturing and formalising natural language requirements and managing consistency

between the natural language and formalised requirements in an efficient and simple way. A prototype tool for

capturing requirement and managing inconsistency called Marama AI has been developed. Part of our research

involves an evaluation of this prototype regarding its usability and effectiveness for capturing natural language

requirement and managing the inconsistency and exploring the end to end prototyping facility that is provided

by the tool. As a Computer Science Head of Department, we would like to ask your permission to allow us to

have access to students who enrolled in COMPSCI 732 course and SOFTENG 450 course, or any postgraduate or

undergraduate student who has a background of Software requirement and permit the students to participate

voluntarily in our survey. Participation in this survey is on a voluntary basis and there will be no financial

compensation. The survey is performed in an anonymous way. No personal information will be collected during

the survey. A Participant Information Sheet (PIS) and consent form will be given to students before they start

Science Centre (Building 303)
38 Princess Street
Auckland, New Zealand
Telephone 6493737599 ext 88158
Facsimile 6493737461
www.auckland.ac.nz

The University of Auckland
Private Bag 92601
Auckland 1142
New Zealand

 206

with the evaluation process in order to make sure they understand the terms and conditions. Once, they

understand and agree with both documents and they wish to continue participation, they will need to sign the

consent form. Both documents will be collected immediately after they agree to participate in the evaluation and

before they start with the evaluation. A tutor from their class will collect the questionnaires once they have

completed the evaluation and answered all the questionnaires”. We would like you to provide us the assurance

that neither the students’ grades nor academic relationships with the department staff members will be affected

by either refusal or agreement in students’ participation. Your support would be greatly appreciated.

This research is funded by the Ministry of Higher Education, Malaysia. If you have any queries regarding this

survey, please do not hesitate to contact me. You can email me at: mkam032@aucklanduni.ac.nz. Alternatively,

you may phone me at 0210 -2446787. You may also contact my supervisor, Professor John Hosking at

john@cs.auckland.ac.nz or 09 373 7599 ext 88297.

For any queries regarding ethical concerns you may contact the Chair, The University of Auckland Human

Participants Ethics Committee, The University of Auckland, Office of the Vice Chancellor, Private Bag 92019,

Auckland 1142. Telephone 09 373-7599 extn. 83711.

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS

COMMITTEE ON 6 May 2010 for (3) years, Reference Number 2010/172.

APPENDIX B: PARTICIPANT INFORMATION SHEET
(STUDENT)

PARTICIPANT INFORMATION SHEET (STUDENT)

Title: Evaluation of Marama AI: Automated Inconsistency Checker for Capturing Requirement
and Managing Inconsistency

My name is Massila Kamalrudin and I am a PhD student at the Department of Electrical and Computer

Engineering, The University of Auckland. I am conducting research on Inconsistency checking of Software

Requirements. This research is under the supervision of Professor John Hosking and Professor John Grundy.

Our research investigates the use of an automated tool which applies an approach using visualisation and

lightweight traceability techniques for capturing and formalising natural language requirements and

managing consistency between the natural language and formalised requirements in an efficient and simple

way. A prototype tool for capturing requirement and managing inconsistency called Marama AI has been

developed. Part of our research involves an evaluation of this prototype regarding its usability and

effectiveness for capturing natural language requirement and managing the inconsistency and exploring the

end to end prototyping facility that is provided by the tool.

You are invited to participate in this survey as you are either postgraduate or undergraduate student who

enrolled COMPSCI 732 course or 4th year undergraduate student who enrolled SOFTENG 450 course, or any

postgraduate or undergraduate student who has a background of Software requirement. Your comments

and assistance would be greatly appreciated.

Participation in this survey is on a voluntary basis and there will be no financial compensation. The survey is

performed in an anonymous way. No personal information will be collected during the survey. You can be

Science Centre (Building 303)
38 Princess Street
Auckland, New Zealand
Telephone 6493737599 ext 88158
Facsimile 6493737461
www.auckland.ac.nz

The University of Auckland
Private Bag 92601
Auckland 1142
New Zealand

 208

assured that neither your grades nor academic relationships with the department staff members will be

affected by either refusal or agreement to participate. This assurance is given by the Computer Science

Head of Department. You can withdraw yourself from the survey at any time. Completing the required tasks

in the survey and submitting the evaluation is an indication of consent but as the evaluation is anonymous,

no answers can be withdrawn once the evaluation is submitted.

If you consent to participate in this survey, the participation involves one visit to the Computer Science

Undergraduate Laboratory, approximately 1 hour. A Participant Information Sheet (PIS) (this document) and

consent form will be given to you before you start the evaluation process in order to make sure you

understand the terms and conditions. Once you understand and agree with both documents and you wish to

continue participation, you will need to sign the consent form. Both documents will be collected immediately

after you agree to participate in the evaluation and before you start with the evaluation. You will be given

an explanation together with a demonstration of what need to be done. A task list and questionnaire sheet

will be given to you before you start using the prototype tool. You will be asked to extract Essential Use

cases manually, to perform a number of tasks on the prototype tool and once you completed the task, you

will be asked to answer the questionnaire sheet given to you.

A tutor from you class will collect the questionnaires once you have completed the evaluation and answered

all the questionnaires. You also will be observed to allow the researcher to learn whether the tool is easy

and efficient to use and also to know more about the usefulness and acceptance of the tool. You will be

observed based on the following aspects: a) how you manage to complete the task given to you; b) how

you complete the Essential Use Cases practice manually and automatically; c) how you navigate different

parts of the tool; d) how you explore the tool for consistency checking and end-to end rapid prototyping

and d) your verbal responses while using the tool. The observations will take place only while you perform

the tasks on the prototype tool. There will be note-taking while you perform the tasks and also while you

are responding or commenting when using the prototype tool. However, no personal information will be

collected in this observation process. Audio-tape, video-tape and any other electronic means such as Digital

Voice Recorders are not used in this survey.

After completing the tasks you will be asked to answer the questionnaire sheet. Once you completed the

questionnaire, you need to put in the box that will be placed in the lab. There will be no coding to your

questionnaire as it is treated anonymously. The observation and questionnaires data will be compiled and

analysed, and the results will be used for a PhD thesis and for other academic publications. Results also will

be available to participants on request. The observation and questionnaires data will be stored for SIX (6)

years for the purpose of peer review and further research. When the observation and questionnaires data is

no longer needed, it will be destroyed using the paper shredder.

This research is funded by the Ministry of Higher Education, Malaysia. If you have any queries regarding this

survey, please do not hesitate to contact me. You can email me at: mkam032@aucklanduni.ac.nz.

Alternatively, you may phone me at 0210 -24426787. You may also contact my supervisor, Professor John

 209

Hosking at john@cs.auckland.ac.nz or 09 373 7599 ext 88297, or the Head of Department, Professor Gill

Dobbie, gill@cs.auckland.ac.nz or 09 373 7599 ext 83949, or you can write to us at:

Department of Computer Science

 The University of Auckland

 Private Bag 92019

 Auckland.

 For any queries regarding ethical concerns you may contact the Chair, The University of Auckland Human

Participants Ethics Committee, The University of Auckland, Office of the Vice Chancellor, Private Bag 92019,

Auckland 1142. Telephone 09 373-7599 extn. 83711.

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS

COMMITTEE ON 6 May 2010 for (3) years, Reference Number 2010/172

 210

APPENDIX C: CONSENT FORM (HEAD OF
DEPARTMENT)

CONSENT FORM (HEAD OF DEPARTMENT)

This Consent Form will be held for a period of six (6) years.

Title: Evaluation of Marama AI: Automated Inconsistency Checker for Capturing Requirement and
Managing Inconsistency

Researcher: Massila Kamalrudin

I have read and understood the Participant Information Sheet. I understand the nature of the
research and why I have been asked for permission and assurance of this research. I
understand that this research is funded by Ministry of Higher Education Malaysia. I have had
the opportunity to ask questions and have them answered. I agree to support the survey.

 I agree to allow the researcher to have access to the students who enrolled in

COMPSCI 732 course and SOFTENG 450 course, or any postgraduate or undergraduate
student who has a background of Software requirement.

 I agree to permit the students to participate voluntarily in the survey.

 I understand there will be no payment to the student who participates in the survey.

 I understand that all of the data collected from the survey will be non-identifying.

 I agree to provide the assurance that neither grades nor academic relationship with any
departmental staff members will be affected by either refusal or agreement to students’
participation in the survey.

Name:___________________________________

Signature & Date: _________________________

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
The University of Auckland
Private Bag 92019
Auckland

Tel: 09 373 7599

 211

APPENDIX D: CONSENT FORM (STUDENT)

CONSENT FORM (STUDENT)

This Consent Form will be held for a period of six (6) years.

Title: Evaluation of Marama AI: Automated Inconsistency Checker for Capturing Requirement and
Managing Inconsistency

Researcher: Massila Kamalrudin

I have read and understood the Participant Information Sheet. I understand the nature of the
research and why I have been selected to participate in this research. I understand that this
research is funded by Ministry of Higher Education Malaysia. I have had the opportunity to
ask questions and have them answered. I understand that I can withdraw at any time but
that data already recorded cannot be withdrawn. I agree to take part in the survey.

 I understand that I will not be paid for the time taken to participate in this survey.

 I understand that all of the data collected from the survey will be non-identifying.

 I understand that I will be observed while doing a task on the prototype tool if I agree to

participate in this survey. No audio-tape, video-tape or any other electronic means such as
Digital Voice Recorders is used in this survey.

 I understand that I will need to fill in a questionnaire at the end of the task if I agree to

participate in this survey.

 I understand that only the researcher and her main supervisor will have access to the

questionnaire and observation data.

 I understand that the observation and questionnaire data may be used to review the

research outcomes both to improve the notation and software tool and in publications
about the survey.

 I understand that data will be archived or stored for six years and then destroyed.

 I understand that the Computer Science Head of Department has provided assurance

that neither my grades nor academic relationship with any department staff members
will be affected by either refusal or agreement to participate.

 I understand that at the conclusion of the survey, a summary of the results will be

available from the researcher upon request.

Name:___________________________________

Signature & Date: _________________________

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
The University of Auckland
Private Bag 92019
Auckland

Tel: 09 373 7599

 212

APPENDIX E: SURVEY QUESTIONNAIRES

Survey: Evaluation of Marama AI: Automated Inconsistency Checker for Capturing
Requirements and Managing Inconsistency

Note: This survey is structured into THREE parts. Part one, provides a scenario
that need to be extracted to an Essential Use Cases diagram (EUC) by you,
manually and then try it in an automated way using the Marama AI. An
observation data will be collected by PhD student Massila Kamalrudin while you
are performing these tasks. You are provided with a set of questionnaire that
should be answered by you once participant have completed the tasks.

Statement
 I have read the Participant Information Sheet and have understood the

nature of the survey and I agree to take part in this survey. (please tick
√)

PART ONE: Capturing Requirements
Purpose: To allow you to gain experience in capturing software requirements from
natural language scenarios using an Essential Use Cases (EUC) diagram manually
and automated. After designing the diagram manually, the participant needs to try to
repeat the task using the Marama AI: Automated Inconsistency Checker tool. The
same scenarios are applied to the tool. Please note that you will be observed on how
you extracted the requirements manually and how you used the tool. You can ask
questions while doing the task. Observation data will be collected while participant
carry out this task.

Instruction: Please read and perform the following task steps.

Task 1: Understanding the Essential Use Case (EUC) Modelling Approach

What is an Essential Use case?

Essential Use Cases (EUCs) are part of Usage-Centered Design, as developed by L.
Constantine and L.Lockwood [1]. The authors defined an essential use case as:

“An essential Use Case is a structured narrative, expressed in the language of the
application domain and of users, comprising simplified, generalized, abstract,
technology free and implementation independent description of one task or interaction
that is complete, meaningful, and well-defined from the point of view of users in some role or
roles in relation to a system and that embodies the purpose or intention underlying the
interaction.”
EUCs are documented in a format representing a dialogue between the user and the system
that is user intention and system responsibility. The labels indicate how EUC support
abstraction by allowing interaction to be documented without describing, the details of the
user interface. The abstraction does not really relate to the use case as a whole, but

Department of Computer Science
Level 3, Science Centre
Building 303
38 Princes St
The University of Auckland
Private Bag 92019
Auckland

Tel: 09 373 7599

 213

more to the steps of the use case. In this way, an EUC does not specify a sequence of
interaction, but a sequence with abstract steps.
The EUC:
User intention System responsibility

1. Identify self

2. Verify identity

Example of use case step for “getting cash”[2]:

1. The use case begins when the Client insert an ATM card1. The system reads and validates the
information2 on the card.

2. System prompts for pin. The client enters PIN1. The system validates the PIN2.
3. System asks which operation3 the client wishes to perform. Client selects “Cash withdrawal4.”
4. System request amounts. Client enters amount.
5. System request type. Client selects account type4 (checking, saving, credits)
6. The system communicates with the ATM network to validate account ID, PIN and availability of the

amount requested.
7. The system asks the client whether he or she wants receipt. This step is performed only if there is

paper left to print the receipt.
8. System asks the client to withdraw the card. Client withdraws card. (This is security measure to

ensure that clients do not leave their cards in the machine.)
9. System dispenses the requested amount 5 of cash.
10. System prints receipt.
11. Client receives cash6.
12. The use case ends.

User intention System responsibility

1. Identify self

2. Verify identity

3. Offer choices
4. choose

5. dispense cash
6. take cash

Task 2. Extract natural language requirements and design an Essential Use
Cases (EUC) model from these

Scenario 1:
Time
Taken:

 (minutes)

Reserve a vehicle:

1. This use case begins when a customer indicates he wishes to make a reservation for a
rental car.

2. The system prompts the customer for the pickup and return locations of the
reservation, as well as the pickup and return dates and times. The customer indicates
the desired locations and dates.

3. The system prompts for the type of vehicle the customer desires. The customer
indicates the vehicle type.

4. The system presents all matching vehicles available at the pickup location for the
selected date and time. If the customer requests detailed information on a particular
vehicle, the system presents this information to the customer.

 214

5. If the customer selects a vehicle for rental, the system prompts for information
identifying the customer (full name, telephone number, email address for confirmation,
etc.). The customer provides the required information.

6. The system presents information on protection products (such as damage waiver,
personal accident insurance) and asks the customer to accept or decline each product.
The customer indicates his/her choices.

7. If the customer indicates "accept reservation," the system informs the customer that
the reservation has been completed, and presents the customer with a reservation
confirmation.

8. This use case ends when the reservation confirmation has been presented to the
customer.

User Intention System responsibility

Task 3. Explore Marama AI: Automated Inconsistency Checker

1. Marama AI is divided into three parts; Input textual requirements (1), List of Abstract
Interactions (2) and EUC Diagram (3) called Marama Essential. You just need to insert
the natural language requirement in (1) and save. Then, right-click in the diagram
window and use the menu item (Trace) to trace the abstract interaction (2). Then,
you can use the menu item (MaptoEUC) to map the abstract interaction to Marama
Essential (3). You can use the menu item (trace back) if you would like to support
tracing back to the requirements either from abstract interaction to textual
requirement or Marama Essential to abstract interactions and textual requirements.

Figure 1.Capturing requirements with Marama AI

How to use:
1.Insert requirement in (1) and save .

 2.Right click and choose Trace.

 3.Right click and choose MapToEUC

4. Right click and choose trace back (optional)

1
2 3

 215

References:
[1] J. Noble. R. Biddle, E.Tempero, "From Essential Use Cases to Objects," C. L. ltd, Ed.: Ampersand

Press, 2002.
[2] L. A. D. Lockwood. L. L. Constantine, "Structure and style in use cases for user interface design ":

Addison -Wesley, 2001.

Insert this requirement to the textual input component:

1. This use case begins when a customer indicates he wishes to make a reservation for a
rental car.

2. The system prompts the customer for the pickup and return locations of the
reservation, as well as the pickup and return dates and times. The customer indicates
the desired locations and dates.

3. The system prompts for the type of vehicle the customer desires. The customer
indicates the vehicle type.

4. The system presents all matching vehicles available at the pickup location for the
selected date and time. If the customer requests detailed information on a particular
vehicle, the system presents this information to the customer.

5. If the customer selects a vehicle for rental, the system prompts for information
identifying the customer (full name, telephone number, email address for confirmation,
etc.). The customer provides the required information.

6. The system presents information on protection products (such as damage waiver,
personal accident insurance) and asks the customer to accept or decline each product.
The customer indicates his/her choices.

7. If the customer indicates "accept reservation," the system informs the customer that
the reservation has been completed, and presents the customer with a reservation
confirmation.

This use case ends when the reservation confirmation has been presented to the customer.

Task 4: Questionnaire

Instruction:
Please answer the following questions.

Section (1)- Background Information.

1. How do you rate yourself in using Marama? (tick one box)

 Proficient/skilled
 Intermediate
 Novice

2. Have you experience with any tool that enables you to capture requirements
similar to the of Marama AI?

Section (2)- Prototype Tool Information.

Please rate your agreement with the following statements about how you feel in
general when using Marama AI:Automated inconsistency Checker (a new
automated tool to manage requirements and check inconsistency). Please circle or
tick the level of agreement that applies using the following scale:

 216

1: Strongly Disagree (SD) 2:Disagree (D) 3: Undecided (U) 4: Agree (A) 5: Strongly Agree(SA)

A. Usefulness:
It is useful to capture the essential requirement (abstract interaction).
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It helps me be more effective in capturing requirements.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It makes it easier to capture requirements.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

B. Ease of Use:
It is easy to use.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is user friendly.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I don’t notice any inconsistencies as I use the tool.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

C. Ease of Learning:
I learned to use it quickly.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I easily remember how to use it.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to learn to use it.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

D. Satisfaction:
I am satisfied with it.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I would recommend it to a friend.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is fun to use.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

E. Cognitive Dimensions of Marama AI:

It is easy to see various parts of the tool.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to make changes.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

The notation is succinct and not long-winded.

 217

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

Some things do require hard mental effort.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to make errors or mistakes.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

The notation is closely related to the result.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to tell what each part is for when reading the notation.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

The dependencies are visible.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to stop and check my work so far.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I can work in any order I like when working with the notation.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

F. After completing this questionnaire, can you think of obvious ways that the

Marama AI tool can be improved for capturing the requirement? What are they?

Thank you for your time!

Please let us know if you have any queries about this questionnaire or the survey we are
conducting. Questions or concerns can either be directed to the researcher, Massila
Kamalrudin(mkam032@aucklanduni.ac.nz) or to her supervisor, Professor John Hosking
(john@cs.auckland.ac.nz), Dept. of Computer Science.

 218

PART TWO: Consistency checking

Task 1:
Please explore the tool capability in managing the consistency of the requirements. There are
three forms of requirements; textual, a set of abstract interactions and an EUC diagram is then
checked for consistency when any of the components is changed using the inconsistency
management support that is provided by the tool as shown in Figure 1.

Figure 2. Example of Inconsistency checking in MaramaAI

Figure 1.0 example of consistency checking

You can explore the tool capability in managing the inconsistency by adding a new abstract
interaction or textual requirement, delete any components or change the sequence of the
components. All processes are automated and use drag and drop. You can also modify the
layout back to original by using the command Reset layout.

You can also check for the requirements quality such as correctness and completeness using
the tool.
Use the command Check consistency with a template in order to check for the EUC
diagram completeness and correctness. The result is as shown below;

 Figure 2.0 example of quality checking

You can choose either to keep your new diagram or change the diagram based on the
Template.

This shape

shows that 1

component is

missing

(incomplete)

 219

The step to check using the template is as below;

Task 2: Questionnaire

Instruction:
Please answer the following questions.

Section (1)- Background Information.

3. How do you rate yourself in using Marama? (tick one box)

 Proficient/skilled
 Intermediate
 Novice

4. Have you experience in any tool that enables you to manage the consistency similar to the
way of Marama AI?

Section (2)- Prototype Tool Information.

Please rate your agreement with the following statements about how you feel in general when
using Marama AI:Automated inconsistency Checker (a new automated tool to manage
requirements and check inconsistency). Please circle or tick the level of agreement that
applies using the following scale:

1

2

2) Choose the appropriate template list based on the requirement

1) Choose the command Check consistency with a template

 220

1: Strongly Disagree (SD) 2:Disagree (D) 3: Undecided (U) 4: Agree (A) 5: Strongly Agree(SA)

G. Usefulness:
It is useful in checking the requirement inconsistency.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It helps me be more effective in managing the requirement inconsistency.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It makes the management of requirement inconsistency easier to achieve.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

H. Ease of Use:
It is easy to use.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is user friendly.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I don’t notice any inconsistencies as I used the tool.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I. Ease of Learning:
I learned to use it quickly.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I easily remembered how to use it.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to learn to use it.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

J. Satisfaction:
I am satisfied with it.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I would recommend it to a friend.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is fun to use.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

K. Cognitive Dimensions of Marama AI for consistency checking:

It is easy to see various parts of the tool.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to make changes.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

The notation is succinct and not long-winded.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

Some things do require hard mental effort.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to make errors or mistakes.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

 221

The notation is closely related to the result.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to tell what each part is for when reading the notation.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

The dependencies are visible.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to stop and check my work so far.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I can work in any order I like when working with the notation.
Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

L. After completing this questionnaire, can you think of obvious ways that the Marama AI tool

can be improved for checking the requirement inconsistency? What are they?

Thank you for your time!

Please let us know if you have any queries about this questionnaire or the survey we are
conducting. Questions or concerns can either be directed to the researcher, Massila
Kamalrudin(mkam032@aucklanduni.ac.nz) or to her supervisor, Professor John Hosking
(john@cs.auckland.ac.nz), Dept. of Computer Science.

 222

PART THREE: End to End Prototyping

TASK 1:

Please explore the refined tool capability for managing the requirements together with an end
to end prototyping facility. There are three forms of requirements; textual, a set of abstract
interactions and an EUC diagram. You can map these requirements to a low fidelity UI, called
an Essential User Interface prototype (EUI) or Abstract Prototype. You can then map the EUI
to concrete UI in the form of form based UI by using the facilities provided by the tool.
Suppose you have textual, abstract interaction and EUC requirements as shown in Figure 1.

You can explore the tool capability in mapping the EUC diagram (item 1 Figure 2) to the
Essential User Interface (EUI) or Abstract prototype (item 2 Figure 2) by using the event
handler “map EUC to EUI”.

Figure1. Three components of requirement after refinement: Textual requirement, Abstract

interaction and EUC diagram

1. EUC

2. EU1

MaptoEUI

Figure 2. Mapping EUC diagram to EUI using the event handler “Map toEUI”

 223

You can further explore the tool facility for mapping the Abstract prototype (item 1
Figure 3) to the concrete UI in a form of form based UI (item 2 Figure 3) in order to
view the outcome of the models. You can also use both types of UI to confirm and
verify the requirements captured from the earlier stages.

Task 2: Questionnaire

Instruction:

Please answer the following questions.

Section (1)- Background Information.

5. How do you rate yourself in using Marama? (tick one box)
 Proficient/skilled

 Intermediate

 Novice

6. Have you experience with any tool that enables you to apply end to end rapid
user interaction prototyping mechanism for capturing requirement from
user/client?

Figure 3. Mapping EUI diagram to Concrete UI-Form based UI using the event handler “generate

prototype”

Generate

prototype

2. Form

based UI

1. EU1

 224

Section (2)- Prototype Tool Information.

Please rate your agreement with the following statements about how you feel in
general when using Marama AI:Automated inconsistency Checker (a new
automated tool to manage requirements and check inconsistency). Please circle or
tick the level of agreement that applies using the following scale:

1: Strongly Disagree (SD) 2:Disagree (D) 3: Undecided (U) 4: Agree (A) 5: Strongly Agree(SA)

M. Usefulness:

It helps me be more effective in capturing requirements.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It makes it easier for me to capture requirements.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It makes it easier for me to see the outcome of a requirement.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It makes it easier for me to verify requirements with a client from an early stage.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It makes it easier for me to confirm requirements with a client from an early stage.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

N. Ease of Use:
It is easy to use.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

 225

It is user friendly.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I don’t notice any inconsistencies as I use the tool.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

O. Ease of Learning:
I learned to use it quickly.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I easily remember how to use it.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to learn to use it.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

P. Satisfaction:
I am satisfied with it.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I would recommend it to a friend.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is fun to use.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

Q. Cognitive Dimensions of Marama AI:

It is easy to see various parts of the tool.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

 226

It is easy to make changes.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

The notation is succinct and not long-winded.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

Some things do require hard mental effort.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to make errors or mistakes.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

The notation is closely related to the result.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to tell what each part is for when reading the notation.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

The dependencies are visible.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

It is easy to stop and check my work so far.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

I can work in any order I like when working with the notation.

Strongly Disagree 1--------2--------3--------4--------5 Strongly Agree

 227

7. After completing this questionnaire, can you think of obvious ways that the
Marama AI tool can be improved for its end to end rapid user interaction
prototyping mechanism for capturing requirement from user/client? What are
they?

Thank you for your time!

Please let us know if you have any queries about this questionnaire or the survey we are
conducting. Questions or concerns can either be directed to the researcher, Massila
Kamalrudin(mkam032@aucklanduni.ac.nz) or to her supervisor, Professor John Hosking
(john@cs.auckland.ac.nz), Dept. of Computer Science.

 228

REFERENCES
[1] G. Evans. Getting from use cases to code, Part 1: Use-Case Analysis. Available:

http://www.ibm.com/developerworks/rational/library/5383.html,retrieved on: January 2009.
[2] S. Sendall. LBB System Use Case: check-out books. Available:

http://lgl.epfl.ch/research/fondue/case-studies/lbb/uc-check-out-books.htm,retrieved on:
June 2009.

[3] S.S.Pty.Enterprise Architect 8. Available:
http://www.sparxsystems.com/products/ea/index.html, retrieved on: February 2011.

[4] L. L. Constantine and L. A. D. Lockwood, Software for use: a practical guide to the
models and methods of usage-centered design. ACM Press/Addison-Wesley Publishing
Co., 1999.

[5] G. Kotonya and I.Sommerville, Requirement Engineering Process and Techniques. West
Sussex,England. John Wiley & Sons Ltd, 1998.

[6] S.S.Some, "Use Cases based Requirements Validation with Scenarios," in Proc. 13th
IEEE International Conference on Requirements Engineering, IEEE Press,2005.

[7] H. Yang,A.Willis,A.D.Roeck and B.Nuseibah, "Automatic detection of nocuous
coordination ambiguities in natural language requirements," in Proc. IEEE/ACM
international conference on Automated software engineering, Antwerp, Belgium, ACM
Press. 2010.

[8] P. S. F. Adisa, F.Sudzina, B. Johansson, "Living Requirements Space: An open access
tool for enterprise resource planning systems requirements gathering," Online Information
Review, vol. 34, pp. 540 - 564, 2010.

[9] A.Sampaio,R.Chityan,A.Rashid and P.rayson, "EA-Miner: a tool for automating aspect-
oriented requirements identification," Proc. 20th IEEE/ACM international Conference on
Automated software engineering, Long Beach, CA, USA, ACM Press. 2005.

[10] S. W. Ambler. Essential (Low Fidelity) User Interface Prototypes. Available:
http://www.agilemodeling.com/artifacts/essentialUI.htm, retrieved on: June 2010.

[11] S. W. Ambler, The Object Primer: Agile Model-Driven Development with UML 2.0, 3rd
ed.. New York Cambridge University Press, 2004.

[12] L. Abeti,P.Ciancarini and R.Moretti, "Wiki-based requirements management for Business
Process Reengineering," in ICSE workshop of Wikis for Software Engineering 2009
(WIKIS4SE '09) 2009, pp. 14-24.

[13] C. Denger and D.M.Berry., "Higher Quality Requirements Specifications through Natural
Language Patterns,"Proc. IEEE International Conference on Software-Science,
Technology & Engineering, IEEE Computer Society, 2003, pp. 80.

[14] F. Fabbrini,M.Fusani,S.Genesi and G.Lami, "The linguistic approach to the natural
language requirements quality: benefit of the use of an automatic tool," in Proc. Software
Engineering Workshop, 2001. 26th Annual NASA Goddard, IEEE.2001, pp. 97-105.

[15] G. Engels, J. M. Küster, L. Groenewegen and R. Heckel, "“UML” 2003 - The Unified
Modeling Language," in “UML” 2003 - The Unified Modeling Language, ed, 2003, pp.
356-359.

[16] R. Darimont,E.Delor,P.Massonet and A.V.Lamsweerde, "GRAIL/KAOS: an environment
for goal-driven requirements engineering," Proc. 19th international conference on
Software engineering, Boston, Massachusetts, United States, 1997.

[17] D. Zowgh, V.Gervasi and A.MacRae, "Using default reasoning to discover inconsistencies
in natural language requirements," in Proc. Eighth Asia-Pacific Software Engineering
Conference, 2001(APSEC 2001), 2001, pp. 133-140.

[18] D. Zowghi and V. Gervasi, "On the interplay between consistency, completeness, and
correctness in requirements evolution," Information and Software Technology, vol. 45, pp.
993-1009. 2003.

[19] S. Liu, "Verifying Consistency and Validity of Formal Specifications by Testing," Proc.
World Congress on Formal Methods in the Development of Computing Systems (FM’99).
Springer-Verlag.1999,Vol.1, pp. 712-712.

[20] A. Satyajit, H.Mohanty and C.George, "Domain consistency in requirements
specification," Proc.Fifth International Conference on Quality Software 2005(QSIC 2005),
2005, pp. 231-238.

[21] G. Spandiakos and A. Zisman, "Handbook of Software Engineering and Knowledge
Engineering." vol.1, S. K. Chang, ed: World Publishing co, 2001, pp. 329-380.

 229

[22] B. Nuseibeh, S.Easterbrook and A.Russo, "Leveraging Inconsistency in Software
Development," Journal Computer, vol. 33, Los Alamitos,CA,USA.IEEE Press. pp. 24-29,
2000.

[23] B. Litvak,S.Tyszberowicz and A.Yehudai, "Behavioral consistency validation of UML
diagrams," Proc. First International Conference on Software Engineering and Formal
Methods 2003. Brisbane, Australia. 2003, pp. 118-125.

[24] A. V. Lamsweerde, R.Darimont and E.Letier., "Managing conflicts in goal-driven
requirements engineering," IEEE Transactions Software Engineering, vol. 24, 1998.pp.
908-926.

[25] K. Schneider, "Generating Fast Feedback in Requirements Elicitation," in Requirements
Engineering: Foundation for Software Quality, 2007, pp. 160-174.

[26] A. Egyed, "Scalable Consistency Checking Between Diagrams-The ViewIntegra
Approach," Proc.16th IEEE international conference on Automated software engineering,
IEEE Computer Society, 2001, p. 387.

[27] A. Kozlenkov and A. Zisman, "Are their design specifications consistent with our
requirements?," Proc. IEEE International Joint Conference on Requirements Engineering
2002, 2002, pp. 145-154.

[28] A. Egyed, "Instant consistency checking for the UML," Proc. 28th international conference
on Software engineering, Shanghai, China, ACM, 2006, pp. 381-390.

[29] C. Nentwich, et al., "Flexible consistency checking," ACM Trans. Softw. Eng. Methodol.,
vol. 12, pp. 28-63, 2003.

[30] V. Gervasi and D. Zowghi, "Reasoning about inconsistencies in natural language
requirements," ACM Trans. Softw. Eng. Methodol., vol. 14, pp. 277-330, 2005.

[31] A. J. O. Markku, "Software requirements implementation and management", Software &
systems engineering and their applications vol.1 à 3, , 2004 pp. 1.1-1.8 2004.

[32] G. Cysneiros and A. Zisman, "Traceability and completeness checking for agent-oriented
systems," Proc. 2008 ACM symposium on Applied computing, Fortaleza, Ceara,
Brazil,ACM, 2008, pp. 71-77.

[33] A. Egyed and P. Grünbacher, "Supporting software understanding with automated
requirements traceability," International Journal of Software Engineering and Knowledge
Engineering, vol. 15, pp. 783-810, 2005.

[34] L. G. Gnesi S, Trentanni G, Fabbrini F, Fusani M, "An automatic tool for the analysis of
natural language requirements," International Journal of Computer Systems Science &
Engineering, vol. 20, pp. 53-61, 2005.

[35] K. K. Breitman and J. C. S. do Prado Leite, "Ontology as a requirements engineering
product," Proc. 11th IEEE International Requirements Engineering Conference 2003,
2003, pp. 309-319.

[36] K. Haruhiko and S. Motoshi, "Ontology Based Requirements Analysis: Lightweight
Semantic Processing Approach," Proc. Fifth International Conference on Quality
Software, 2005.

[37] F. Meziane, et al., "Generating Natural Language specifications from UML class
diagrams," Requirements Engineering, vol. 13, pp. 1-18, 2008.

[38] S. Ogata and S. Matsuura, "Evaluation of a use-case-driven requirements analysis tool
employing web UI prototype generation," WSEAS Trans. Info. Sci. and App., vol. 7, pp.
273-282, 2010.

[39] J.Noble,R.Biddle, E.Tempero, "Pattern for Essential Use Cases," Victoria University of
Wellington, Wellington, New zealand, April 2000.

[40] L. Susan, "Use Case Pitfalls: Top 10 Problems from Real Projects Using Use Cases,"
Proc. Proceedings of Technology of Object-Oriented Languages and Systems - TOOLS
30,Santa Barbara,CA,USA. 1999, pp. 174-174.

[41] G. Sindre and A. L. Opdahl, "Eliciting security requirements with misuse cases,"
Requirements Engineering, vol. 10, pp. 34-44, 2005.

[42] A. Cockburn, "Structuring use cases with goals," Journal of Object-Oriented
Programming, 1997.

[43] R. Biddle, J.Nobles and E.Tempero, "Essential use cases and responsibility in object-
oriented development," Aust. Comput. Sci. Commun., vol. 24, pp. 7-16, 2002.

[44] H. Kaindl, et al., "How to Combine Requirements Engineering and Interaction Design?,"
Proc.16th IEEE International Requirements Engineering 2008 (RE'08).
Barcelona,Catalunya,Spain, 2008, pp. 299-301.

 230

[45] T. H. M. Geisser, N. Riegel, "Evaluating the Applicability of Requirements Engineering
Tools for Distributed Software Development," Working papers of University of Mannheim
for January 2007, Germany, 2007..

[46] I. Sommerville, Software Engineering, 7th Edition, International Computer Science Series,
Addison Wesley, 2004.

[47] A. Finkelstein and W. Emmerich, "The future of requirements management tools,"
Information Systems in Public Administration and Law, 2000.

[48] X. Yufei, et al., "Research on requirement management for complex systems," in 2nd
International Conference on Computer Engineering and Technology 2010 (ICCET), 2010,
pp. 113-116.

[49] S. W. C.Hood, S. Fichtinger and U. Pautz, Requirements Management: The Interface
Between Requirements Development and All Other Systems Engineering Processes, 1st
edition.,Springer, 2007.

[50] E. S. K. Yu, "Towards modelling and reasoning support for early-phase requirements
engineering," Proc. Third IEEE International Symposium on Requirements Engineering,
1997., 1997, pp. 226-235.

[51] A. Goknil, I.Kurtev and K.V.D.Berg., "A Metamodeling Approach for Reasoning about
Requirements," Model Driven Architecture – Foundations and Applications, 2008, pp.
310-325.

[52] R. Darimont and A. V. Lamsweerde, "Formal refinement patterns for goal-driven
requirements elaboration," Proc. 4th ACM SIGSOFT symposium on Foundations of
software engineering, San Francisco, California, United States, 1996.

[53] T. C. d. Sousa, J.R.Almeida,S.Viana,J.Pav "Automatic analysis of requirements
consistency with the B method," SIGSOFT Softw. Eng. Notes, vol. 35, pp. 1-4, 2010.

[54] B. Nuseibeh and S. Easterbrook, "Requirements engineering: a roadmap," Proc.
Conference on The Future of Software Engineering, Limerick, Ireland, 2000.

[55] A. V. Lamsweerde, "Formal specification: a roadmap," Proc. Conference on The Future of
Software Engineering, Limerick, Ireland, 2000.

[56] R. Wieringa and E. Dubois, "Integrating semi-formal and formal software specification
techniques," Information Systems, vol. 23, pp. 159-178.

[57] S. Kovacevic, "UML and User Interface Modeling," in The Unified Modeling Language.
«UML»’98: Beyond the Notation, 1999, pp. 514-514.

[58] M. D. Fraser, K.Kumar and V.K.Vaishnavi, "Informal and Formal Requirements
Specification Languages: Bridging the Gap," IEEE Trans. Softw. Eng., vol. 17, pp. 454-
466, 1991.

[59] M. G. Georgiades,A.S.Andreou,C.S.Pattichis "A requirements engineering methodology
based on natural language syntax and semantics," Proc. 13th International Conference
on Requirements Engineering, 2005. IEEE, 2005, pp. 473-474.

[60] B. Y. Surya, R.R.Bravoco,A.T.Chatfield and T.M.Rajkumar, "Comparison of analysis
techniques for information requirement determination," Commun. ACM, vol. 31, pp. 1090-
1097, 1988.

[61] M. Lang and J. Duggan, "A Tool to Support Collaborative Software Requirements
Management," Requirements Engineering, vol. 6, pp. 161-172, 2001.

[62] E. Hull, et al., "DOORS: A Tool to Manage Requirements," in Requirements Engineering,
Springer London, 2005, pp. 173-189.

[63] S.S.Inc. Serena. Available: http://www.serena.com/docs/repository/products/rm/wp900-
001-0505.pdf, retrieved on: December 2010.

[64] B. S. Corporation. CaliberRM™ Enterprise Software Requirements Management System.
Available: http://www.borland.com/us/products/caliber/index.html, retrieved on:January
2011.

[65] IBM. Rational RequisitePro A requirements management tool. Available: http://www-
01.ibm.com/software/awdtools/reqpro/ , retrieved on: January 2011.

[66] S. S. J. Co. Requirements Management Tool RaQuest, Available:
http://www.raquest.com/ retrieved on: January 2011.

[67] Orcanos. QPack Requirements Tool for Requirements Management. Available:
http://orcanos.com/Requirements_management.htm, retrieved on: January 2011.

[68] F. Chantree, B.Nuseibah,A.de Roeck and A.Willis, "Identifying Nocuous Ambiguities in
Natural Language Requirements," Proc. 14th IEEE International Requirements
Engineering Conference,IEEE Press. 2006.

 231

[69] A. T. Bahill and S. J. Henderson, "Requirements development, verification, and validation
exhibited in famous failures," Syst. Eng., vol. 8, pp. 1-14, 2005.

[70] A. P. Mathur, Foundations of Software Testing: Fundamental Algorithms and Techniques:
Pearson Education India, 2007.

[71] S.Robertson and A. J. Robertson, Mastering the Requirements Process, 2nd Edition,
Addison-Wesley Professional, 2006.

[72] I. Sommerville, Software Engineering, 9th ed., Addison-Wesley, 2011.
[73] J. M. Atlee, S.L. Pfleeger, Software Engineering Theory and Practice Fourth Edition,

Prentice Hall, 2010.
[74] A. Kozlenkov and A. Zisman, "Are their Design Specifications Consistent with our

Requirements?," Proc. 10th Anniversary IEEE Joint International Conference on
Requirements Engineering, IEEE Computer Society, 2002, pp. 145-156.

[75] T. Olson and J.Grundy, "Supporting Traceability and Inconsistency Management
Between Software Artefacts," Proc.of the IASTED International Conference on Software
Engineering and Applications, Boston, MA, November 2002.

[76] C.Nentwich, W.Emmerich and A.Finkelstein, "Consistency management with repair
actions," Proc. 25th International Conference on Software Engineering, Portland, Oregon,
2003.

[77] B. Nuseibeh, S.Easterbrook and A.Russo, "Making inconsistency respectable in software
development," Journal of Systems and Software, vol. 58, pp. 171-180, 2001.

[78] G.Spanoudakia and A.Zisman, "Inconsistency management in software engineering:
Survey and open research issues," Handbook of software Engineering and Knowledge
Engineering, World Scientific, 2001.

[79] A. D. Lucia, F.Fasano,R.Oliveto and G.tortora "Recovering traceability links in software
artifact management systems using information retrieval methods," ACM Trans. Softw.
Eng. Methodol., vol. 16, p. 13, 2007.

[80] M. F. Bashir and M. A. Qadir, "Traceability Techniques: A Critical Study,"Proc. Multitopic
Conference, 2006(INMIC '06). IEEE, 2006, pp. 265-268.

[81] E. A. Silver, "An Overview of Heuristic Solution Methods," The Journal of the Operational
Research Society, vol. 55, pp. 936-956, 2004.

[82] A .A. G. Sutcliffe and N. A. M. Maiden, "Bridging the requirements gap: policies, goals
and domains," Proc. Seventh International Workshop on Software Specification and
Design 1993, 1993, pp. 52-55.

[83] N. Kokash, " An introduction to heuristic algorithms, 2005, available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.105.8050, retrieved on: January
2009.

[84] C. L. Heitmeyer, R.D Jeffords and B.G Labaw, "Automated consistency checking of
requirements specifications," ACM Trans. Softw. Eng. Methodol., vol. 5, pp. 231-261,
1996.

[85] M. D. Fraser,K.Kumar and V.K.Vaishnavi, "Informal and formal requirements specification
languages: bridging the gap," IEEE Transactions on Software Engineering, vol. 17, pp.
454-466, 1991.

[86] W. Jirapanthong and A. Zisman, "XTraQue: traceability for product line systems,"
Software and Systems Modeling, September 05, 2007.

[87] A. Goknil,I.Kurtev and J.W.Veldhus, "Semantics of trace relations in requirements models
for consistency checking and inferencing," Software and Systems Modeling,Vol.10,pp 31-
54, 2009.

[88] G. Antoniol, G.Canfora,G.Casazza,A.D.Lucia and E.Merlo, "Recovering traceability links
between code and documentation," IEEE Transactions on Software Engineering, vol. 28,
pp. 970-983, 2002.

[89] Y. Koth, K.Gondow and T.Katayama, "An incremental evaluation approach to check the
consistency of XML documents," Proc. IEEE International Conference on Systems, Man
and Cybernetics 2002, vol. 6, 2002.

[90] R. Chitchyan,A.Rashid,P.Rayson and R.Waters, "Semantics-based composition for
aspect-oriented requirements engineering," Proc. 6th international conference on Aspect-
oriented software development, Vancouver, British Columbia, Canada, ACM, 2007, pp.
36-48.

[91] R. W. Waters, "MRAT: A Multidimensional Requirements Analysis Tool," MSc
Dissertation, University of Lancaster, UK, 2006.

 232

[92] P. Kroha, R.Janetzko and J.E Labra., "Ontologies in Checking for Inconsistency of
Requirements Specification," Proc. Third International Conference on Advances in
Semantic Processing 2009 (SEMAPRO '09), 2009, pp. 32-37.

[93] M. Sabetzadeh, S.Nejati,S.Liaskos,S>Easterbrook and M.Chechik, "Consistency
Checking of Conceptual Models via Model Merging," Proc.15th IEEE International
Requirements Engineering Conference 2007(RE '07), 2007, pp. 221-230.

[94] I. Groher, A.Ader and A.egyed, "Incremental Consistency Checking of Dynamic
Constraints," in Fundamental Approaches to Software Engineering. vol. 6013, Springer
Berlin / Heidelberg, pp. 203-217, 2010.

[95] A. Sinha, M.Kaplan, A.Paradkar and C.Williams , "Requirements Modeling and Validation
Using Bi-layer Use Case Descriptions," in Model Driven Engineering Languages and
Systems. vol. 5301, Springer Berlin / Heidelberg, pp. 97-112, 2008.

[96] D.Kim, "Method and Implementation for Consistency Verification of DEVS Model against
User Requirement," in 10th International Conference on Advanced Communication
Technology 2008 (ICACT 2008), 2008, pp. 400-404.

[97] J. Chanda,A.Kanjilal,S.Sengupta and C.Bhattacharya, "Traceability of requirements and
consistency verification of UML use case, activity and Class diagram: A Formal
approach," Proc. International Conference on Methods and Models in Computer Science
2009 (ICM2CS 2009), 2009, pp. 1-4.

[98] S. Jurack, L.Lambers,K.Mehner and G.Taentzer, "Sufficient Criteria for Consistent
Behavior Modeling with Refined Activity Diagrams," in Model Driven Engineering
Languages and Systems. vol. 5301, Springer Berlin / Heidelberg, pp. 341-355,2008.

[99] J. Whittle and J. Schumann, "Generating statechart designs from scenarios," Proc. o
International Conference on Software Engineering 2000, 2000, pp. 314-323.

[100] X. Li, Z.Liu and J.He, "Consistency checking of UML requirements," Proc. 10th IEEE
International Conference on Engineering of Complex Computer Systems 2005 (ICECCS
2005), 2005, pp. 411-420.

[101] C. Zapata, G.Gonzales and A.Gelbukh, " A rule-based system for assessing consistency
between UML models" Proc. 6th Mexican international conference on Advances in
artificial intelligence(MICAI 2007), 2007, pp. 215-224.

[102] X. Blanc, I.Mounier, A.Mougenot and T.Mens, "Detecting model inconsistency through
operation-based model construction," Proc of the 30th international conference on
Software engineering, Leipzig, Germany, ACM, 2008, pp. 511-520.

[103] G. Engels, R.heckel and J.Kuster, "Rule-Based Specification of Behavioral Consistency
Based on the UML Meta-model," in «UML» 2001 — The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, ed, 2001, pp. 272-286.

[104] I. Ha and B. Kang, "Cross Checking Rules to Improve Consistency between UML Static
Diagram and Dynamic Diagram," in Intelligent Data Engineering and Automated Learning
– IDEAL 2008. vol. 5326, Springer Berlin / Heidelberg, 2008, pp. 436-443.

[105] K. Ryndina, J.Kuster and H.Gall, "Consistency of Business Process Models and Object
Life Cycles," in Models in Software Engineering, 2007, pp. 80-90.

[106] M. El-Attar and J. Miller, "Producing robust use case diagrams via reverse engineering of
use case descriptions," Software and Systems Modeling, vol. 7, pp. 67-83, 2008.

[107] G. Perrouin,B.Baudry,E.Brottier and Y.Le Traon , "Composing Models for Detecting
Inconsistencies: A Requirements Engineering Perspective," in Requirements
Engineering: Foundation for Software Quality, 2009, pp. 89-103.

[108] K. Mehner, M.Monga and G.Taentzer, "Interaction Analysis in Aspect-Oriented Models,"
Proc.14th IEEE International Conference Requirements Engineering 2006 (RE'06), 2006.
pp. 69-78.

[109] T. S. E. M. Islam A.M.El-Maddah, "Tracing Aspects in Goal Driven Requirements of
Process Control Systems," Proc. 3rd International Conference on AOSD, 2004.

[110] J. Grundy, "Aspect-oriented requirements engineering for component-based software
systems," Proc. IEEE International Symposium on Requirements Engineering 1999,
1999, pp. 84-91.

[111] Y. Yu, "From Goals to Aspects: Discovering Aspects from Requirements Goal Models,"
Proc. 12th IEEE International Requirement Engineering Conference 2004, 2004.pp. 38-
47.

[112] C. Zerong and A. Ghose, "Web agents for requirements consistency management," Proc.
IEEE/WIC International Conference on Web Intelligence 2003 (WI 2003), 2003, pp. 710-
713.

 233

[113] F. Taibi,K.D.Jacob and A.F.Mohammed, "On checking the consistency of Object-Z
classes," SIGSOFT Softw. Eng. Notes, vol. 32, p. 11, 2007.

[114] K. Kaneiwa and K. Satoh, "On the complexities of consistency checking for restricted
UML class diagrams," Theoretical Computer Science, vol. 411, pp. 301-323, 2010.

[115] K. Mu, W.Liu,Z.Jin,R.Lu,A.Yu and D.Bell,"A Merging-Based Approach to Handling
Inconsistency in Locally Prioritized Software Requirements," in Knowledge Science,
Engineering and Management, 2007, pp. 103-114.

[116] F. Weitl, M.Jaksic and B.Freitag , "Towards the automated verification of semi-structured
documents," Data & Knowledge Engineering, vol. In Press, 2008.

[117] J. Scheffczyk, U.M.Borghoff,A.Birf and J.Siedersleben, "Pragmatic consistency
management in industrial requirements specifications," Proc. Third IEEE International
Conference on Software Engineering and Formal Methods 2005 (SEFM 2005), 2005, pp.
272-281.

[118] T. Mens and P. Van Gorp, "A Taxonomy of Model Transformation and its Application to
Graph Transformation," Electronic Notes in Theoretical Computer Science, vol. 152, pp.
125-142, 2006.

[119] X. Chen, "Extraction and visualization of traceability relationships between documents
and source code," Proc. IEEE/ACM international conference on Automated software
engineering (ASE'10), Antwerp, Belgium, ACM.2010.

[120] J. Grundy, J.Hosking, J.Huh, and N. Li, "Marama: an Eclipse meta-toolset for generating
multi-view environments," in 2008 IEEE/ACM International Conference on Software
Engineering, Liepzig, Germany, May 2008.

[121] D. W. Brown, An Introduction to Object- Oriented Analysis object and UML in Plain
English, second ed. New York: John Wley& Sons,Inc, 2002.

[122] L. L. Constantine, "Essential modeling: use cases for user interfaces," interactions, vol. 2,
pp. 34-46, 1995.

[123] L. L. Constantine and A. D. L. Lockwood, "Structure and style in use cases for user
interface design," in Object modeling and user interface design: designing interactive
systems, Addison-Wesley, Longman Publishing Co., Inc., 2001, pp. 245-279.

[124] S. Aithal. S. Vinay, P. Desai, "An Approach towards Automation of Requirements
Analysis," Proc. International MultiConference of Engineers and Computer Scientists,
Hong Kong, 2009, pp. 1080-1085.

[125] S. S. Some, "Use cases based requirements validation with scenarios," Proc. 13th IEEE
International Conference in Requirements Engineering 2005, 2005, pp. 465-466.

[126] R. C. Bjork. (1998, June). Use Cases for Example ATM System. Available:
http://www.math-cs.gordon.edu/courses/cs320/ATM_Example/UseCases.html, retrieved
on: February 2009.

[127] M. Glinz, "A lightweight approach to consistency of scenarios and class models," 2000.
Proc.4th International Conference on Requirements Engineering 2000, 2000, pp. 49-58.

[128] T.Horton. Example Use Cases for PARTS. Available:
http://www.cs.virginia.edu/~horton/cs494/examples/parts/usecases-ex1.html, retrieved
on: February 2009.

[129] J. Kim, S.Park and V.sugumaran, "Improving use case driven analysis using goal and
scenario authoring: A linguistics-based approach," Data & Knowledge Engineering, vol.
58, pp. 21-46, 2006.

[130] Scenario examples. Available:
http://www.opensrs.com/resources/documentation/sync/scenarioexamples.htm, retrieved
on: February 2009.

[131] W. L. Poon and A. Finkelstein, "Consistency management for multiple perspective
software development,"Proc. Joint proceedings of the second international software
architecture workshop (ISAW-2) and international workshop on multiple perspectives in
software development (Viewpoints '96) on SIGSOFT '96 workshops, San Francisco,
California, United States, ACM, 1996, pp. 192-196.

[132] A. Finkelstein, "A Foolish Consistency: Technical Challenges in Consistency
Management," in Database and Expert Systems Applications, 2000, pp. 1-5.

[133] J. Grundy, J.Hosking and W. B. Mugridge, "Inconsistency management for multiple-view
software development environments," IEEE Transactions on Software Engineering, vol.
24, pp. 960-981, 1998.

[134] S. F. Tjong, N.Hallam and M.Hartley, "Improving the Quality of Natural Language
Requirements Specifications through Natural Language Requirements Patterns," Proc.

 234

The Sixth IEEE International Conference on Computer and Information Technology, 2006
(CIT '06), 2006, pp. 199-199.

[135] B. Nuseibeh, S.Easterbrook and A.Russo, "Making inconsistency respectable in software
development," Journal of Systems and Software, vol. 58, pp. 171-180, 2001.

[136] Z. Huzar, L.Kuzniarz, G.Reggio and J.L.Sourrouille "Consistency Problems in UML-
Based Software Development," in UML Modeling Languages and Applications, ed, 2005,
pp. 1-12.

[137] A.Mehra,J.Grundy and J.Hosking, "A generic approach to supporting diagram differencing
and merging for collaborative design," Proc. 20th IEEE/ACM international Conference on
Automated software engineering, Long Beach, CA, USA, 2005.

[138] A. Ghose, G.Koliadis and A.Chueng, "Process Discovery from Model and Text Artefacts,"
Proc. IEEE Congress on Services 2007, pp. 167-174.

[139] A. Kozlenkov and A. Zisman, "Are their design specifications consistent with our
requirements?," proc. IEEE Joint International Conference on Requirements Engineering,
2002, 2002, pp. 145-154.

[140] G. Engels, R. Heckel, and J.M.Kuster, "The Consistency Workbench: A tool for
consistency management in UML-based development," in UML 2003—the Unified
Modeling Language. vol. 2863, New York, Springer, Berlin Heidelberg 2003, pp. 356–
359.

[141] A. Katasonov and M. Sakkinen, "Requirements quality control: a unifying framework,"
Requirements Engineering, vol. 11, pp. 42-57, 2006.

[142] S. Ogata and S. Matsuura, "Evaluation of a use-case-driven requirements analysis tool
employing web UI prototype generation," WSEAS Transactions on Information Science
and Applications, vol. 7, pp. 273-282, 2010.

[143] Z. Jia, C.K.Chang and J.Y.Chung, "Mockup-driven fast-prototyping methodology for Web
requirements engineering," Proc. 27th Annual International Computer Software and
Applications Conference 2003 (COMPSAC 2003), 2003, pp. 263-268.

[144] S. Xiping, "S-RaP: A Concurrent Prototyping Process for Refining Workflow-Oriented
Requirements," Proc. 13th IEEE International Conference on Requirement Engineering
2005, 2005, pp. 416-420.

[145] N. Sukaviriya, et al., "User-Centered Design and Business Process Modeling: Cross
Road in Rapid Prototyping Tools," in Human-Computer Interaction – INTERACT 2007.
vol. 4662, Springer Berlin / Heidelberg, 2007, pp. 165-178.

[146] R. V.Buskirk and B. W. Moroney, "Extending prototyping," IBM Systems Journal, vol. 42,
pp. 613-623, 2003.

[147] L.L Constantine, "Rapid Abstract Prototyping,"
http://www.foruse.com/articles/abstractprototypes.pdf, retrieved on: February 2009

[148] C. Boghdan, "Generating an Abstract User Interface from a Discourse Model Inspired by
Human Communication," Proc. 41st Annual Hawaii International Conference on System
Sciences 2008(HICSS'08), IEEE Computer Society,2008,pp. 36-36

[149] T. Memmel and H. Reiterer, "Inspector: Interactive UI Specification Tool," in Computer-
Aided Design of User Interfaces VI, 2009, pp. 163-175.

[150] L.L.Constantine and A. D. L. Lockwood, "Usage-centered software engineering: an agile
approach to integrating users, user interfaces, and usability into software engineering
practice," Proc. 25th International Conference on Software Engineering, Portland,
Oregon, 2003.

[151] G. Gabrysiak, H.Giese and A.Seibel,"Interactive Visualization for Elicitation and
Validationn of Requirements with Scenario-Based Prototyping," Proc. 2009 Fourth
International Workshop on, Requirements Engineering Visualization (REV), 2009, pp. 41-
45.

[152] D. Li, X.Li,J.liu and Z.liu, "Validation of requirement models by automatic prototyping,"
Innovations in Systems and Software Engineering, vol. 4, pp. 241-248, 2008.

[153] J. Vijayan and G. Raju, "Requirements Elicitation Using Paper Prototype," in Advances in
Software Engineering. vol. 117, Springer Berlin Heidelberg, 2010, pp. 30-37.

[154] S. Melia, O. Pastor. P. J. Molina, "Just-UI: A User Interface Specification Model," Proc.
Computer Aided Design of User Interfaces III (CADUI'2002), Valenciennes, France,pp.63-
74, 2002.

[155] S. Dream Ltd. Creative New Media. Available: http://www.silicon-dream.com/, retrieved
on: January 2011.

 235

[156] A.Lund.(1998). USE Questionnaire Resource Page. Available:
http://usesurvey.com/IntroductionToUse.html, retrieved on: February 2010.

[157]A.Blackwell,C.Britton,A.Cox,T.Green,C.Gurr,G.Kadoda,M.Kutar,M.Loomes,C.Nehaniv,M.Pet
re,C.Roast,C.Roe,A.Wong and R.Young, "Cognitive Dimensions of Notations: Design
Tools for Cognitive Technology," in Cognitive Technology: Instruments of Mind. vol. 2117,
Springer Berlin / Heidelberg, 2001, pp. 325-341.

[158] T. Green, A. Blackwell., Cognitive Dimensions of Information Artefacts:a tutorial. Version
1.2,1998.Available: https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDtutorial.pdf,
retrieved on:February 2010.

[159] J. Ramey, T.Boren,E.Chuddihy,J.Dumas,Z.Guan,M.J.V.D.Haak and M.D.T.D.Jong, "Does
think aloud work?: how do we know?," extended abstracts Human Factors in Computing
Systems (CHI EA'06), Canada, ACM, 2006.

[160] M. Kutar, C. Britton., J. Wilson, "Cognitive Dimensions An Experience Report," in Twelfth
Annual Meeting of the Psychology of Programming Interest Group, Memoria, Cozenza
Italy, 2000, pp. 81-98.

[161] N. M. Ali,J.Hosking,J.Grundy and J.Huh, "End-user oriented critic specification for
domain-specific visual language tools," Proc. IEEE/ACM international conference on
Automated software engineering, Antwerp, Belgium, 2010.

[162] INCOSE International Council on system Engineering, INCOSE Requirements
Management Tools Survey, Available: http:
http://incose.org/ProductsPubs/products/rmsurvey.aspx

[163] P.A.Laplante, Requirements Engineering for Software and System, CRC Press,2009.
[164] N.M.Ali, “A Generic Visual Critic Authoring Tool” Proc. IEEE Symposium on Visual

Languages and Human-Centric Computing (VLHCC '07),USA, 2007.
[165] R.L.Baskerville, “Investigating information systems with action research” Journal

Communications of the AIS, Volume 2 Issue 3es,Nov.1999
[166] D.E. Avison,F.Lau,M.D.Myers and P.A.Nielsen,”Action Reserach”, Magazine

Communication of the ACM, Volume 42 Issue 1,Jan.1999.
[167] Institute of Electrical and Electronics Engineers, “IEEE guide to software Requirements

Specification”Standard 830-1984,New York, IEEE Computer Society Press,1984.
[168] A. Davis, S. Overmyer, K. Jordan, J. Caruso, F. Dandashi, A. Dinh, G.Kincaid, G.

Ledeboer, P.Reynolds,.P.Sitaram, A. Ta, and M.Theofanos,”Idnetifying and Measuring
Quality in a Software Requirements Specifications, Proc. International Software Metrics
Symposium,Pages 141-152,Los Almitos,CA,USA,1993.IEEE Computer Society.

