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Abstract 

With the advent of virtualization, the Infrastructure-as-a-Service (IaaS) cloud computing model 

has been widely deployed by organizations. One of the main issues with this model is the un-

trusted client virtual machines security problem. Unlike traditional physical servers that are 

directly managed and protected by their owners, the security of hosted virtual machines in the 

IaaS platform relies on the cloud customer, who might be a malicious hacker. Moreover, these 

hosted virtual machines are owned and controlled by a cloud consumer, and at the same time 

they are hosted by a cloud provider. Thus, both consumers and providers claim the right to 

provide the security for the hosted virtual machines from their own perspectives, causing a 

loss-of-control security problem. 

In this research project, we address the loss-of-control security problem of the IaaS plat-

form by introducing the concept of virtualization-aware security solutions. Virtualiza-

tion-aware security solutions enable both cloud providers and consumers to fully utilize the 

virtualization advantages of the IaaS platform from both perspectives. Particularly, we introduce 

CloudSec++, a security appliance that has the ability to provide active, transparent and real-time 

monitoring and protection for the running operating systems in the hosted virtual machines, 

from outside the virtual machines themselves. CloudSec++ enables provision of security from a 

cloud provider’s perspective with no need to have any control over the hosted virtual machines, 

while passively incorporating consumers in maintaining the security of their hosted virtual 

machines. CloudSec++ has the ability to systematically protect multiple concurrent guest op-

erating systems against zero-day threats that could target operating system’s kernel. In particular, 

CloudSec++ has the ability to defend against different types of pointer manipulation attacks 

(whether known or unknown) that target runtime kernel dynamic data and memory. 

Implementing such a virtualization-aware security solution is a multi-disciplinary research 

project, where a number of new mechanisms and techniques, in different research areas, were 

introduced to address different challenging problems. These mechanisms and techniques in-

clude: (i) a virtual machine introspection framework that enables active and transparent moni-
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toring of the hosted virtual machines at a hypervisor level. (ii) A new points-to analysis algo-

rithm and a kernel dynamic objects discovery tool to support the automation of overcoming the 

semantic gap problem for C-based operating systems, such as Windows, Linux and Solaris, 

without a prior knowledge of the operating system’s runtime kernel data layout. (iii) A set of 

operating system runtime security tools that has the ability to defend against kernel dynamic 

data zero-day threats in a real-time fashion. (iv) A security virtual appliance that contains our 

developed virtualization-aware security solution that has the ability to monitor and protect 

multiple concurrent virtual machines hosted on an IaaS platform.  
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  Chapter 1

Introduction 

This chapter provides an overview of this thesis. It starts with a summary of the research 

background and motivation from which our research derived its key goals and objectives. 

Subsequently, our research contributions are outlined, followed by a brief description of the 

approaches and techniques employed to fulfil the objectives of this research. Finally, the thesis 

outline is presented summarizing the thesis chapter structure. 

1.1 Research Background and Motivation 

Cloud computing is a new computing paradigm that enables delivering reliable and scalable 

internet-based services. Infrastructure-as-a-Service (IaaS) is one of the main services delivered 

by the cloud platform that allows regular users to increase their computational and storage 

resources on the fly. IaaS is characterized by the concept of resource virtualization that enables 

running multiple virtual machines on the same physical server. Although virtualization has a 

great role in supporting the IaaS model, it makes the virtual infrastructure of the IaaS platform a 

target for potent security threats because of the “loss-of-control” problem. 

One of the significant risks in the Infrastructure-as-a-Service (IaaS) cloud computing 

model is outsourcing virtual machines control to cloud consumers. In particular, the hosted 

virtual machines are owned and controlled by a cloud consumer, and at the same time they are 

hosted by a cloud provider. Therefore, providers host and run virtual machines but are not aware 

of their running contents, as these virtual machines are controlled by the consumers, causing a 

loss-of-control security problem. This makes the consumers and the hosted virtual machines 

untrusted entities from the provider’s perspective to provide sufficient protection using tradi-

tional in-guest security software, as such security software can be subverted by advanced kernel 

rootkits. Moreover, the absolute and public accessibility and sharing of the IaaS platform with 

the regular consumers (virtual machines owners who might include malicious hackers) has 
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increased the security risks and the attack surface that facilitates exploitation of vulnerabilities, 

not just in the hosted virtual machines but also in the underlying virtual infrastructure of the IaaS 

platform. These security problems raise the need for new security solutions that have the ability 

to protect the hosted virtual machines from outside the virtual machine itself. Such a security 

system would be an important step towards securing the underlying virtual infrastructure of the 

IaaS platform, not just the hosted virtual machines, as the hosted virtual machines are the only 

source of access to the virtual infrastructure of the IaaS platform.

In this research project, we introduce the concept of virtualization-aware security solutions 

that enable both cloud providers and consumers to fully utilize the virtualization advantages, 

and provide protection of the hosted virtual machines, from both perspectives. A number of 

challenging technical problems need to be addressed proficiently to enable delivering a robust 

security application. Some of these problems are related to the IaaS platform complexity, in 

particular are related to the virtualization characteristic that complicates the security process, 

and the others are related to the complexity of operating system security software, as discussed 

in section  1.1.1 and  1.1.2, respectively. 

 Virtualization-Related Technical Problems 1.1.1

Virtualization technology provides important characteristics that make it a very practical plat-

form to implement virtualization-aware security solutions, by utilizing virtual machine intro-

spection techniques. Virtual machine introspection techniques enable monitoring the hosted 

virtual machines from outside the virtual machines, at the hypervisor level. A hypervisor is a 

thin layer of firmware code that runs on the bare hardware to perform dynamic resource sharing 

to enable hosting multiple operating system instances, in the form of virtual machines, on the 

same physical sever. Developing security applications that work at the hypervisor level is a 

prominent security model that enables provisioning robust security against advanced operating 

system security threats. However, there is a number of challenging problems that hinder the 

implementation of such virtualization-aware security systems, discussed below. 
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First, a key problem of working at the hypervisor level is that security tools can only view 

hardware bytes such as physical memory pages and disk blocks, which do not reflect any in-

formation about the internal state of a running operating system. This is in contrast to the in-

ternal view of a virtual machine, where we can view information about high-level operating 

system entities based on the kernel memory and APIs, such as running processes, threads, and 

system calls. This difference in views causes a “semantic gap” problem. In order to make virtual 

machine introspection useful, it is necessary to translate the hardware bytes into a model of 

actual running high-level operating system information. The main difficulty in doing this lies in 

the complexity of the operating system’s kernel runtime data layout. The kernel of a C-based 

operating system, such as Linux, Windows, UNIX and Solaris, contains thousands of hetero-

geneous data structures with direct and indirect pointer-based relations among each other, with 

no explicit integrity constraints. Such operating systems utilize data structures heavily to model 

runtime objects, and also use pointers (especially generic pointers) extensively to guarantee 

high and efficient performance. Such complex implementation of the kernel data layout makes 

the process of overcoming the semantic gap very challenging. Current research efforts for 

overcoming the semantic gap problem are mainly based on manual approaches, to statically 

disambiguate the kernel data layout to overcome the semantic gap. Such manual approach is 

very limited for several reasons
1
 to cope with such complex layout of operating systems’ ker-

nels. The limitations of the manual approach result in an inability to get a complete and accurate 

interpretation of the low-level hardware bytes, making the security software unreliable. Thus, 

new mechanisms are required to enable robust and systematic overcoming of the semantic gap 

problem to support implementing virtualization-aware security solutions. 

Second, active and transparent monitoring is a key feature of any robust security software 

in order to enable real-time prevention of system threats. Active monitoring relies on the capa-

bility of interrupting system and memory call events for inspection. Most current research 

efforts implement active monitoring by installing protected security hooks in the virtual ma-

                                                      

1 Limitations are discussed in chapter 2, in detail. 
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chines’ running operating systems. However such an approach is not reliable and also not 

supported in the IaaS model, as the virtual machines are totally under the consumers’ control 

with no management from the provider’s side. Enabling active monitoring from outside the 

virtual machine without placing any security code is another mandatory design challenge in 

developing virtualization-aware security solutions. 

Third, the cloud architecture is very dynamic and the workload changes dramatically over 

time, due to the creation, removal and suspension of virtual machines. Moreover, the mobile 

nature of the virtual machines that allows them to migrate from one server to another leads to a 

non-predefined network topology. Such a complex and huge amount of workload flowing inside 

each physical server increases the complexity of the protected environment, and requires the 

security software to be able to efficiently cope with an environment that is changing over time. 

On the other hand, the security software should be able to protect different operating system 

versions with the same running software instance, as the hosted virtual machines do not just run 

different kernels; they also run different operating systems such Linux and Windows. A major 

problem with current security software is their limitation to a specific operating system and 

sometimes a specific kernel build. Coping with such heterogeneous environment requires de-

veloping new security solutions that can abstract the underlying protected platform from the 

design of the security software itself, in order to support generic protection for physical servers 

in the IaaS model. 

 Operating System Security-Related Technical Problems 1.1.2

In addition to the technical problems that relate to the IaaS platform complexity, there exists 

another set of challenges that relate to protecting operating systems efficiently against known 

and unknown system threats and the design of security software itself, which include:  

First, C-based operating systems have a very complex runtime layout due to the wide use 

of pointers and data structures, which assist hackers to exploit vulnerabilities to take control of 

the running operating system. Such complex layout is not only a problem in overcoming se-

mantic gap; it is also a problem in checking the integrity of the running operating system’s 
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kernel. Verifying pointer-dereferencing operations of generic pointers at runtime to guarantee 

runtime memory integrity is a serious challenge. This challenge comes from the fact that generic 

pointers only get their values and types at runtime according to the calling contexts of the run-

ning operating system. Thus runtime integrity constraints cannot be extracted from the operat-

ing system’s source code or even at its compilation time, making the process of ensuring the 

reliability and integrity of the running operating system’s kernel very challenging. Furthermore, 

kernel integrity checks are complicated because of kernel dynamic objects. Kernel dynamic 

objects change at runtime in location, value and the number of running instances. Unfortunately, 

they violate consistency constraints that cannot be extracted from the operating system’s kernel 

source code directly, as their attributes depend on the calling contexts of the running system [1]. 

This makes the process of uncovering the running instances of kernel dynamic objects another 

challenge in order to monitor and protect these objects.  

Second, anther common technical problem in any security software is the performance 

overhead of the running security software. Ideally, performance is affected directly by the ro-

bustness of the protection. Lightweight software usually provides weak protection, and vice 

versa. Running security software dramatically impacts system performance as the security 

software typically needs to trap system calls and events before allowing execution. Trapping 

every system activity in the running operating system is not practical to support real-time 

monitoring and protection. The most important thing in developing robust security software 

with a reasonable performance overhead is the recognition of the critical system components. 

Consequently, the most important question is how we can identify the criticality of each system 

component and based on what criteria. A balance between the sufficient protection and low 

performance overhead cannot be easily implemented and new security countermeasures and 

techniques need to be developed to support this.  

Third, malware writers usually try their best to exploit “zero-day” vulnerabilities, i.e. a 

never-seen-before exploit, in current operating systems. What makes it easier for them to do this 

is the complex operating system kernel implementation that does not have sufficient integrity 

checking controls. On the other hand, in order to rectify a new vulnerability, a security company 
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usually needs to release a software update or a patch to minimise the threat consequences. Such 

an approach leaves the operating system unprotected for a while, and consequently leaves the 

whole platform vulnerable to an attack risk. Thus, robust security systems should ideally be 

self-defending and threats self-detectable, and self-mitigatable. However, the ability to defend 

against something that is as yet unknown is very challenging and requires new automated se-

curity mechanisms that can monitor all operating system runtime entities to check for anomalies 

and unusual behaviours. Furthermore, robust security software needs to be able to cope with 

new operating system updates and new released kernel versions in a quick and an easy way, 

without the need to wait for manual analysis by security experts to release software updates.  

1.2 Key Research Contributions 

In this thesis, we introduce a solution for the loss-of-control security problem inherent in the 

IaaS cloud platform. Our proposed solution effectively addresses the loss-of-control problem 

over the hosted virtual machines and at the same time enables delivering robust protection for 

the running operating systems of the virtual machines, from a cloud provider’s perspective. The 

proposed security solution also has the intelligence to systematically recognize operating sys-

tem’s layout to solve the semantic gap and perform systematic integrity checks, without a need 

to the manual experts’ knowledge. Below we summarize the key contributions that we have 

achieved in this research project in order to developed and implement the proposed virtualiza-

tion-aware security solution. 

First, the main and first component in order to provision external security at a hypervisor 

level is building an introspection framework to solve the semantic gap and actively monitor the 

hosted virtual machines. To achieve this we introduce CloudSec. CloudSec is a new virtual 

machine introspection framework that provides fine-grained inspection of the hosted virtual 

machines’ physical memory. A key feature of CloudSec is the ability to provide active moni-

toring for the hosted virtual machines without installing any security hooks inside these virtual 

machines. Active and transparent monitoring in CloudSec is efficiently achieved by moving the 

security hooks from the operating system level of the hosted virtual machines to the hypervisor 
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level. This guarantees more reliability and trustworthiness of the security software, as the hy-

pervisor is considered part of our trusted platform.  

Second, in order to enable systematic and proficient solution for the semantic gap problem 

and kernel integrity checks, we present OS-KDD. OS-KDD is a new points-to analysis tool that 

has the ability to systematically build accurate kernel data definitions that reflect the point-

er-based relations of any C-based operating system, without a prior knowledge of the operating 

system’s kernel data layout. OS-KDD disambiguates all indirect pointer relations, including 

generic pointers, by performing static points-to analysis on the operating systems’ kernel source 

code. In OS-KDD, precision is an important factor, thus we designed and implemented a new 

points-to analysis algorithm that has the ability to provide field, flow and context-sensitive 

points-to analysis for large C programs that contain millions lines of code (LOC), such as large 

operating system kernels. Our points-to analysis algorithm has four analysis phases: in-

traprocedural analysis, interprocedural analysis, graph unification and context-sensitive 

analysis. In the intraprocedural analysis phase we create graph nodes and connect the basic 

edges by computing the transfer functions that describe the modification side effect of the 

program parts. In the interprocedural analysis phase we compute the internal points-to relations 

between procedure nodes and their call sites using the summary-based approach. In the graph 

unification analysis phase, we ensure that we have a balanced graph to achieve precise 

field-sensitivity. Finally, we achieve context-sensitivity that enables us disambiguate the generic 

pointer relations and casting operations. A key feature of OS-KDD is the usage of abstract 

syntax trees as the basis for implementing our points-to analysis algorithm to improve the time 

and memory usage efficiency of the analysis, and scale to large programs of million LOC. 

Third, locating kernel runtime objects from a trusted source is a key to implement different 

operating system applications including virtualization-aware security solutions. To achieve this, 

we present DIGGER; DIGGER is a hybrid mechanism that combines a new value-invariant 

approach and an advanced memory mapping technique, in order to enable accurate discovery for 

kernel runtime objects with fast and nearly complete coverage of the kernel address space. 

DIGGER mainly has two key features that distinguish it from the current approaches. DIGGER 
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has the ability to systematically discover nearly all kernel runtime objects, with no prior 

knowledge of the runtime data layout of the operating system’s kernel. DIGGER has fast cov-

erage and a low performance overhead on a running operating system to uncover the whole 

kernel address space to locate the running instances of kernel dynamic objects.  

Fourth, we introduce a set of runtime kernel data integrity checking tools that enable de-

tecting various kinds of pointer manipulation malware (known and unknown) that target kernel 

data. These tools have the ability to check the integrity of kernel static and dynamic data at 

runtime against the following types of malware: dangling pointers, function pointer hooking and 

direct kernel object manipulation rootkits. We also introduce an offline memory forensics tool 

that analyses the physical memory for rootkit infection evidence for further investigations about 

the rootkit and its modifications effect in the kernel address space.  

Fifth, the final task in this research project was integrating the previously developed 

components into a virtualization-aware security solution. We present CloudSec++ that provi-

sions security from a cloud provider’s perspective while incorporating consumers in a passive 

way in maintaining the security of their hosted virtual machines. CloudSec++ has the ability to 

efficiently and systematically provide protection for multiple concurrent hosted virtual ma-

chines running different operating system versions with a single running instance of CloudSec++. 

CloudSec++ has a reasonable performance overhead that does not affect the operations of the 

protected virtual machines. CloudSec++ efficiently addresses all the technical problems dis-

cussed previously in section  1.1.1 and  1.1.2. 

1.3 Thesis Outline 

This thesis addresses the problem of developing a virtualization-aware security solution that has 

the ability to provide the pre-emptive protection for the running operating systems of the hosted 

virtual machines in the IaaS cloud platform. Our solution for this research project was based on 

developing different new components and techniques, in order to be able to achieve our research 

objectives and deliver the proposed security solution. 
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In chapter 2, we discuss the security problem in cloud computing technology, especially the 

Infrastructure-as-a-Service model. We mainly focus on the security implications of adapting 

virtualization technology for the cloud platform, such as the loss-of-control security problem 

over the hosted virtual machines and the complex and heterogeneous workload flowing in the 

platform servers. We also discuss how the security process of operating systems running in the 

hosted virtual machines have changed and why this has necessitated new security deployment 

models to cope with the new security requirements of the virtualization technology. In addition, 

we discuss the operating system’s kernel data complexity problem and its role in assisting 

hackers to exploit new vulnerabilities in the running operating system.  

In chapter 3, we discuss the related work of this research project along with the key limi-

tations in each research area. In this research project a number of different research problems 

have been addressed with new solutions based on the limitations of the current approaches. In 

this chapter, we survey the literature in several research areas including cloud computing and 

virtualization security, operating system security, kernel rootkits and integrity checks, memory 

bugs and errors, and static program analysis techniques including points-to analysis. We then 

summarize key limitations of each research category and how these limitations can affect the 

robustness of the proposed solution of this research project. 

In chapter 4, we summarize the whole approach used in this research project that will be 

explained in detail in the later chapters. In particular, we give an overview of the big picture of 

our research project to develop a virtualization-aware security solution and how the developed 

components will be integrated together to achieve the intended objective of the proposed secu-

rity software of the IaaS platform. 

In chapter 5, we introduce CloudSec, a virtual machine introspection framework that has 

the ability to actively monitor running virtual machines in a near real-time fashion. In this 

chapter, we explore the high-level architecture of CloudSec, the process of enabling active and 

transparent monitoring, and our approach to overcome the semantic gap of the hosted virtual 

machines. We also discuss the implementation and evaluation results of CloudSec. Finally, we 

discuss key limitations of CloudSec and how these limitations are addressed in the following 
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chapters to enable efficient protection of the running operating systems.  

Chapter 6 discusses one of the key components of this research project, OS-KDD. 

OS-KDD is a new points-to analysis tool that enables analysing the source code of large-scale C 

programs, such as C-based operating systems, in order to solve the ambiguity of the indirect 

points-to relations of system data. OS-KDD enables systematically building accurate kernel 

definitions for C-based operating systems, without a prior knowledge of the operating system’s 

kernel data layout. In this chapter, we discuss the high-level architecture of OS-KDD, the 

points-to analysis algorithm that enables performing the field, flow and context-sensitive 

analysis, and the implementation and evaluation details of OS-KDD. 

Chapter 7 covers another key component in this research project, DIGGER. DIGGER is a 

new approach and tool that enables accurate, fast and nearly complete coverage of the operating 

system kernel runtime objects. In this chapter, we discuss the high-level architecture of 

DIGGER, the process of extracting efficient value-invariants of kernel objects, the 

pool-memory tagging schema, and the runtime memory scanner component that uncover the 

presence of kernel dynamic objects’ running instances, along with the implementation and 

evaluation details, of each component of DIGGER. 

In chapter 8, we discuss CloudSec++, a security virtual appliance that mainly depends on 

CloudSec, OS-KDD and DIGGER in order to provide systematic security for operating system 

kernel data of the hosted virtual machines. In this chapter, we also discuss a set of security and 

memory forensics tools that are deployed in CloudSec++ in order to defend against zero-day 

threats that target operating system’s kernel dynamic data, such as object hiding, dangling 

pointers and function pointer manipulation. 

Finally in chapter 9, we summarize the key conclusions from this research project and then 

give an overview of promising future work that could be done in order to make our approaches 

and tools even more effective.
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  Chapter 2

The IaaS Security Problem 

In this chapter, we discuss the major security challenge of the Infrastructure-as-a-Service cloud 

computing model, which is at the core of our research project. We mainly focus on the security 

implications that have been identified due to the adoption of virtualization technology on the 

cloud platform. We also discuss how the security process of operating systems running on the 

hosted virtual machines has changed, and how this requires new security deployment models to 

cope with the new security requirements of virtualization technology. 

In this chapter, we focus on two key points of this research project: virtualization and op-

erating systems security. This chapter is organized as follows: in section 2.1, we give a general 

overview of cloud computing technology, its importance, and the different service models of 

cloud technology. In section 2.2, we discuss the implications of adopting virtualization tech-

nology and how such adoption can become a double-edged sword that better supports security 

but at the same time adds new security risks to the cloud platform. We also discuss the tradi-

tional and new security distribution models of operating systems that can be used to protect the 

hosted virtual machines in a cloud platform. In section 2.3, we discuss the complexity of 

pointers and memory runtime errors of C-based operating systems, and show how pointers and 

their inefficient handling and analysis can lead to limited protection and security vulnerabilities 

in operating systems at system runtime. Finally, in section 2.4 we discuss the basics of points-to 

techniques and how points-to analysis could help in solving a lot of operating system runtime 

problems that might lead to memory bugs and vulnerabilities. 

2.1 Cloud Computing 

Cloud computing is a new computing paradigm, where IT resources and services are abstracted 

from the underlying infrastructure and provided on-demand at scale in a multi-tenant envi-

ronment [2]. Cloud computing technology provides IT enterprises with a flexible, easy and 
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cost-effective way to operate, manage and maintain their own IT business assets e.g. servers, 

networks, data and applications. Recently, leading enterprise companies – e.g. SalesForce, 

Amazon and Microsoft – have had a great interest in incorporating cloud computing technology 

in their operational strategies to reduce costs and achieve higher capabilities and reachability of 

their applications. A recent survey from Gartner [3] about cloud computing market revenues 

showed that cloud computing market will be at least doubled by 2014; where the market value in 

2010 was around USD 68 Billion and expected to reach in 2014 up to USD 148 Billion. 

Cloud computing has three main service delivery models: Software-as-a-Service (SaaS), 

Platform-as-a-Service (PaaS) and Infrastructures-as-a-Service (IaaS). SaaS is a new software 

distribution model where software vendors or service providers centrally host their software and 

IT services on a cloud platform. This platform makes these software and services available to 

the regular consumers over the Internet with flexible payment methods based on the consumers' 

usage and business needs. SaaS has become a demanded prevalent service delivery model for 

many business applications such customer relationship management (CRM), enterprise re-

source planning (ERP), and human resource management (HRM). PaaS is a service delivery 

model that provides the required environment, platforms, development kits and tools for de-

veloping and provisioning cloud-based applications. The users of this model are not usually 

regular consumers of the cloud as in SaaS and IaaS; commonly they are the software developers 

that target to develop and run cloud applications. One of the key features in PaaS is that it pro-

vides a set of preconfigured features and packages where consumers can include in their de-

veloped applications. PaaS also allows easy and quick application development and hosting 

process with a few mouse clicks, where not much client-side experience is required to run and 

host the developed applications in a cloud platform. IaaS is the core of this research project. IaaS 

enables provisioning computational resources, data storage, and communication channels as 

internet-based services to the regular consumers. In other words, IaaS enables adding compu-

tational resources (such as CPUs and GPUs), associated storage and communication capacities 

on the fly, according to the dynamically changing business needs in a cost-effective way. 
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The foundation of cloud computing, especially the IaaS model, is virtualization. Virtual-

ization enables abstracting the physical resources to integrate multiple servers into a single 

physical server to achieve better hardware utilization rates and boost operational efficiency. 

Despite the outstanding benefits of cloud computing, cloud computing has complicated the 

management and security process of its outsourced IT assets. Cloud computing erased many of 

the traditional physical boundaries and perimeters that were used to protect and manage or-

ganizations’ servers and replaced them with virtual IT assets such as virtual machines, virtual 

networks and virtual firewalls. This results in higher risk rates and a more complex threat mit-

igation process. On the other hand, the absolute and public availability, accessibility and sharing 

of cloud services and resources with the regular consumers – that might include malicious 

hackers – has increased the security risks and the attack surface, assisting hackers in exploiting 

vulnerabilities in these services to take control over the cloud platform, hosted services or 

customers' IT assets (virtual machines).  

2.2 The Virtualization Double-Edged Sword 

In this research project, we focus on the security problem of the IaaS cloud computing model. 

IaaS is characterized by the concept of resource virtualization that enables running multiple 

operating system instances – called Virtual Machines (VMs) – on the same physical server, as 

shown in Figure  2-1. These virtual machines are independent operating environments that have 

access to virtual resources via a thin layer of firmware code – called a hypervisor. Hypervisors 

are mainly responsible for dynamic resource sharing and isolation between hosted virtual ma-

chines. Hypervisors are also known as virtual machine monitors (VMMs). Traditionally, virtual 

machine monitors were run on the bare hardware with basic functionalities that support virtu-

alizing a limited number of guest operating systems with moderate degree of isolation. With the 

revolution of cloud computing and the advent of the IaaS model, virtual machine monitoring 

software has become an embedded special-purpose operating system that supports additional 

functionality and provides robust isolations between the virtual machines and the running 

workloads, and is called a hypervisor. Xen, ESX, and Hyper-V are examples of hypervisors. 
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Figure ‎2-1. Server virtualization. 

Adapting virtualization for cloud platforms has revealed a lot of important benefits that can 

enhance the security process of its hosted virtual assets, along with a lot of new security risks 

that did not exist in the traditional physical hosts that complicated the security process from 

another hand. In section  2.2.1, we discuss briefly the major benefit of virtualization in the IT 

world. In section  2.2.2, we summarize the new security risks that resulted from adapting virtu-

alization in the enterprise IT companies.  

 Virtualization Benefits 2.2.1

Virtualization has simplified IT operations with easier management, maintenance, support and 

rapid response to the changing business needs. Virtualization is being adopted widely by a 

growing number of organizations to reduce costs and enable higher availability of their appli-

cations. Figure  2-2 summarizes key benefits gained from adopting the virtualization technology, 

discussed below.  

Abstraction and Isolation. Sever virtualization adds a layer of abstraction between the 

virtual resources (e.g. virtual machines and virtual networks) and the underlying physical in-

frastructure. This layering enables limiting direct access to the underlying hardware and thus 

limits the amount of damage that might affect the IaaS platform from regular system users. On 

the other hand, such an abstraction layer enables efficient isolation between the different oper-

ating system running instances along with their workloads that flow inside the server. New 
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hardware technologies – such as Intel® Virtual Technology hardware – greatly support better 

and robust isolation that guarantees safe sharing of system resources between the running virtual 

machines by utilizing hardware protection techniques to protect the running hypervisor. 

 

Figure ‎2-2. A summary of virtualization benefits. 

Roll-Back and Backups. Virtualization enables restoring an infected virtual machine to a 

particular running state to get rid of a security violation that could affect the virtual machine. 

Rolling-back might not be the optimal solution to defend against system malware while keeping 

the business applications running without any interruption or losing for important data. How-

ever, it is still an effective solution when security patches and updates are not available for a 

specific security threat. Furthermore, virtualization makes backups and disaster recovery of the 

hosted virtual machines easy. For instance, if a virtual machine is infected, it can be shut down 

and replaced with another standby virtual machine to continue its functionality without no-

ticeably losing business continuity. Disaster recovery strategies enable efficient troubleshooting 

of the malformed virtual machines while quickly restoring access to the running system. Re-
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cently, disaster recovery process can be automated to quickly respond to system failures with 

pre-configured recovery plans for different failover scenarios. 

Portability and Availability. Portability comes as a result of abstracting the software from 

the underlying platforms and hardware, and thus the need of developing specialised software for 

a specific platform or hardware is eliminated. Virtualization also allows high availability of the 

running services because of the redundant topology of the running services and applications. 

For instance, if a server fails, all its virtual machines and running services can be automatically 

migrated and restarted on another server with unnoticeable downtime and thus with no impact 

on the consumer. Such live migration supports avoiding many technical problems that might 

happen because of system maintenance or performance issues that could affect consumers’ 

business continuity and availability. 

Easy Management and Provision. Virtualization allows spreading software running plat-

forms, such as middleware platforms and web servers, into separate virtual environments. This 

enables an easy and effective way to manage and provision hosted software or virtual machines, 

with fewer configurations and administration tasks. Cloud consumers can easily create and 

provision virtual machine images and software services with few mouse clicks without a need to 

spend hours installing operating systems and applications like what happens in the traditional 

physical servers.  

Affordability. Cloud services are a cost-effective way to run businesses because consumers 

pay only for what they use. Rather than investing in expensive hardware upgrades, cloud 

computing enables automatic and easy upgrade without huge costs and IT support, where the 

cloud provider is indirectly responsible for such support and upgrade process. 

Green Computing. Integrating servers into virtual machines and aggregating them into 

fewer physical servers means lowering the power and cooling costs that have a big negative 

impact on the environment. 
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 The Downside: Virtualization Security Risks 2.2.2

Although virtualization has a key role in supporting the IaaS model with great benefits, it makes 

the virtual infrastructure of the IaaS platform a potential target for new potent security threats 

[4]. The problem mainly comes from the loss-of-control security problem over the hosted virtual 

machines. In particular, a hosted virtual machine is owned and controlled by a cloud consumer, 

and at the same time it is hosted by a cloud provider. Consequently, providers host and run 

virtual machines but are not aware of their running contents, as these virtual machines are 

controlled by the consumers, causing a loss-of-control security problem. 

In IaaS model, many unsupported operating systems and applications can be deployed by 

any user. Therefore, a cloud consumer might be a malicious hacker running a malicious service 

on a virtual machine, in order to exploit a vulnerability that enables compromising the hosting 

platform or the other hosted virtual machines [5]. The hosted virtual machines could also be 

compromised – by a third party – using advanced kernel rootkits that assist in gaining control 

over the running operating system and the installed applications, thereby altering the behaviour 

of the installed security software. Thus, cloud consumers and the hosted virtual machines cannot 

be trusted from the provider’s perspective to provide security for the running operating system 

of a hosted virtual machine using the traditional in-guest security software. In section  2.2.3, we 

focus on the loss-of-control security problem over the hosted virtual machines and the new 

security design requirements that are needed in order to develop new security software that can 

robustly protect the hosted virtual machines in the IaaS and scale to the complex workload 

running in IaaS physical servers. 

In addition to the loss-of-control security problem, the security of a host physical server 

becomes more complex when different and heterogeneous workloads are running on the system 

– i.e. different operating systems, platforms and applications. In addition to the huge amount of 

traffic and workload flowing inside each physical server that increases the complexity of the 

protected platform. Such complex environment requires a highly scalable security application 

that can cope with such huge workload to provide real-time protection for the different running 

operating systems and hosted applications.  
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 Virtual Machine Security 2.2.3

The lack of verifiable trust between cloud consumers and providers is a basic security defi-

ciency of the IaaS model. When considering security for the hosted virtual machines in the IaaS 

platform, we should keep in mind two important things: first, these virtual machines are exposed 

to hacking as they are under the consumer’s control. Second, these virtual machines are sharing 

the same hardware resources (such as physical memory and storage) with the other hosted 

virtual machines. This means that an infected virtual machine could assist in exploiting vul-

nerabilities in the underlying platform (i.e. hypervisor) and thus affect that system and the other 

hosted virtual machines. 

Traditional in-guest security solutions that are deployed in running operating systems are 

no longer an effective solution to secure the hosted virtual machines in the IaaS platform. Alt-

hough traditional in-guest security solutions have the ability to get high-level semantic-rich 

information about an operating system running state, they make security software unreliable, 

opaque to the user, and can be subverted by advanced kernel rootkits – even if the security 

software is installed in ring 0 [6]. This is because in-guest security solutions rely on the oper-

ating system kernel trustworthiness and thus do not have the ability to efficiently protect the 

hosted virtual machines. 

To address risks of the hosted virtual machines and the loss-of-control security problem, 

new virtualization-aware security solutions should be introduced. These solutions should have 

the ability to protect the hosted virtual machines from outside the virtual machine itself and 

without relying on operating system kernel trustworthiness. The good thing is that virtualization 

technology provides important characteristics that make it a very practical platform to imple-

ment virtualization-aware security solutions. These characteristics include: 

First, virtualization allows utilizing Virtual Machine Introspection (VMI) techniques [7] 

that enable monitoring the hosted virtual machines externally, at the hypervisor level, as shown 

in Figure  2-3. Virtual machine introspection has a number of key features that make it robust and 

reliable: (i) virtual machine introspection enables isolating the security solution from other 

server workloads by deploying the security solution in a dedicated and isolated virtual machine 
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with a dedicated communication channel with the hypervisor, making it difficult for hackers to 

detect the installed security software. (ii) External monitoring via virtual machine introspection 

gives the security software complete control over the hosted virtual machines including the 

installed operating system, running software, and hardware. A major goal of malicious hackers 

is control, by which the hacker will have the ability to monitor, intercept and modify the state of 

running software on an operating system. Controlling a system allows malware to remain in-

visible by obviating or disabling the installed in-guest security software. Control of a system is 

determined by which side (attacker or defender) occupies the lower layers in system operational 

flow. Lower layers definitely have more control on upper layers because lower layers implement 

the abstractions upon which upper layers are built. Thus, deploying security software at a hy-

pervisor level allows a complete control over the running virtual machines, as the security 

software is installed in a layer lower than the virtual machines’ layer.  

Hardware

Hypervisor

Security 
Software

VMVM VM

VMI Layer

 

Figure ‎2-3. Virtual machine introspection at the hypervisor level. 

Second, hypervisors have a high level of assurance because of their small footprint in the 

physical memory. This small footprint reduces the number of potential vulnerabilities that can 

target the hypervisor code. Moreover, exploiting a hypervisor requires direct physical access to 

its kernel code which is generally inaccessible. In addition, a lot of new hardware-based tech-

niques have been developed to ensure the integrity of the hypervisor kernel code (details are 

discussed in chapter 3). Therefore, security solutions that are deployed at a hypervisor level are 

highly trusted, as the underlying platform is trusted and thus gives more robustness for the 

deployed security software. 
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The big challenge with implementing virtual machine introspection techniques is that only 

hardware bytes – e.g. physical memory pages and disk block – can be observed, at the hyper-

visor level. This is in contrast to the internal view of the virtual machine, where we can view 

high-level entities such as processes, I/O requests, and system calls – using the kernel memory 

and APIs. This difference in views is called a semantic gap. In order to make virtual machine 

introspection useful for monitoring the running state of the operating system, it is necessary to 

translate the hardware bytes from the observed virtual machine to actual running high-level 

operating system information. Current research efforts and practices for overcoming the se-

mantic gap problem mainly fall into two categories
2
: first, stealthy injecting a piece of machine 

code into the kernel address space of a running operating system to read the internal state of the 

virtual machine. This approach has not been implemented widely [8, 9], as the injected code 

could be subverted by advanced kernel rootkits and thus the behaviour of the injected code 

could be altered to deliver false runtime information about the operating system running state. 

Second, the most common approach used to overcome the semantic gap problem is the memory 

mapping technique. Memory mapping means accurately mapping between the runtime kernel 

data layout of an operating system and the underlying hardware memory layout of the virtual 

machine [7, 10, 11], as shown in Figure  2-4. Such mapping is a challenging task because of the 

operating system’s kernel data layout complexity. Current research efforts of this technique [6, 

12, 13] are limited, as: (i) most approaches depend on operating system’s expert knowledge of 

the runtime kernel data layout to manually solve the semantic gap. Thus, they only cover 28% of 

kernel data structures, as discussed by Carbone et al. [14], that relate to the well-known kernel 

objects such as processes, threads and device drivers. (ii) Manual kernel data definitions that are 

based on hard-offset codes allow opportunities for hackers to develop new rootkits that can 

evade such introspection tools as proved by Bahram et al. [15]. (iii) The time and effort spent 

divining the internals of a particular version of an operating system may not be feasible in other 

versions of the same operating system [11]. (iv) Most researches of memory mapping tech-

niques depend on the traditional memory traversal techniques and value-invariant approaches 

                                                      

2 Current research efforts and their limitations are discussed in chapter 3, in detail. 
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to uncover the runtime kernel dynamic objects. Memory traversal techniques and val-

ue-invariant approaches are vulnerable and not accurate. Details of these techniques are dis-

cussed in section  2.2.3.1. 

f875a020 001b0003 00000001  f875a028
f875a02c f875a028    f875a030           f875a030
f875a038 0b0c1640   000c2fe0           00000000

External view (bytes of physical memory pages)

PROCESS f875a020    SessionId: 2   Peb: 7ffdb000  ParentCid: 0460
DirBase: 0b0c1640  ObjectTable: 00000000  HandleCount:   0.
Image: csrss.exe

Internal view (High-level operating system information)
 

Figure ‎2-4. Semantic gap problem. 

The limitations of current approaches to efficiently overcome the semantic gap result in an 

inability to get a complete and accurate interpretation of the low-level hardware bytes, making 

the manual approach inadequate. This made the problem of automatically computing accurate 

kernel data definitions that covers all kernel data one of our research project tasks. 

2.2.3.1 Kernel Data structures and Objects 

In operating systems, we usually refer to a running instance of a data structure (also called data 

type) as an object. Kernel data structures can be generally classified into: control data structures 

and non-control data structures. 

Control data structures are the kernel static data that are used in control-transfer instruc-

tions. Kernel control data structures are generally classified into: (i) CPU-specific types, such as 

descriptor tables that are used to describe memory segments used by the kernel, such as GDT 

and IDT. (ii) Operating system-specific, such as the system call table that contain a list of native 

kernel routines and their addresses that are used by all operating system operations. The com-

mon thing about these tables is that they are marked as read-only in the physical memory and 

thus their values and locations do not change at runtime, so uncovering these data structures 

externally is straight-forward. Moreover, pointer manipulations of such data structures can be 
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easily detected, thus their protection is also straight-forward. 

Non-control data structures are the kernel dynamic objects such as processes, threads and 

device drivers. An operating system kernel contains thousands of non-control data structures, 

and these data structures do change at runtime in location, value and number of running in-

stances (the number of running instances could reach hundreds for a single object type and it 

depends on the calling contexts of the running operating system). This makes the process of 

externally uncovering these data structures challenging. Moreover, it is complicated by the fact 

that: pointer manipulations of non-control data structures are difficult to verify because of their 

dynamically changing nature at runtime. Modifications to non-control data structures violate 

integrity constraints that cannot be easily extracted from operating system’s source code. This is 

because the data structure syntax is controlled by the operating system’s code while their se-

mantic meaning is controlled by the calling contexts of the running operating system [16]. 

Dynamic kernel objects are allocated at runtime and accessed through heap-directed pointers. 

Thus, exploiting dynamic data structures will not make the operating system treat the exploited 

structure as an invalid instance of a given type, or even detect hidden or maliciously modified 

objects. This definitely encourages hackers to exploit these data structures to develop new 

rootkits to gain control over the running operating system. For example, Windows and Linux 

operating systems keep track of runtime objects with the help of linked lists. A major problem 

with these lists is use of C null pointers
3
. Modifications to null pointers violate integrity con-

straints that cannot be extracted from source code as they depend on system calling contexts at 

runtime. This makes it easy to unlink an active object by manipulating its pointers and thus the 

object becomes invisible for the kernel and for monitoring tools that depend on kernel APIs
4
. 

Locating kernel dynamic objects in the physical memory is an important step towards im-

plementing different operating system security solutions such as kernel data integrity checkers 

[17], memory forensics [18], virtual machine introspection [6] and brute-force scanning [19]. 

                                                      

3 Null pointers are discussed in section 2.3 

4 Details of pointer manipulation and hidden objects are discussed in chapter 8, in detail. 
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Efficient security solutions should not rely on the operating system kernel memory or kernel 

APIs to extract runtime objects, as they may be compromised and thus give false information. 

On the other hand, the complex data layout of an operating system’s kernel makes it very 

challenging to locate all system objects in real-time. Previous solutions limit themselves to 

kernel static data e.g. system call and descriptor tables [4], or can reach only a subset of the 

dynamic kernel data [17, 20], resulting in security vulnerabilities and limited protection. Most 

approaches of uncovering dynamic kernel objects fall into two main categories: memory map-

ping techniques and value-invariant approaches. 

Memory mapping techniques identify kernel runtime objects by recursively traversing the 

kernel address space starting from operating system global variables, and then follow pointer 

dereferencing to discover the running instances of the different object types [1, 14, 21]. The 

traversal process is done according to a predefined kernel data definition that statically reflects 

the runtime kernel data layout in the memory. Memory mapping techniques have a number of 

limitations, as: (i) they are vulnerable to Direct Kernel Object Manipulation (DKOM) rootkits 

[22]. Such rootkits exploit the indirect points-to relations between kernel runtime objects 

thereby hiding running objects. DKOM allows kernel rootkits to modify the runtime layout of 

kernel data – e.g. processes and threads, just by manipulating object’s pointers and without 

adding or modifying object’s code or data. Such manipulation allows rootkits to hide system 

objects from system users, while they are operating behind the scenes. (ii) Memory mapping 

techniques cannot follow generic pointer dereferencing, because they only leverage type defi-

nitions and thus cannot know the target types or values of these generic pointers [15]. This 

means that in order to accurately traverse the kernel address space, all the generic pointers 

scattered around the kernel address space need to be resolved first. (iii) Memory traversal 

techniques have a significant performance overhead because of the poor spatial locality of the 

general-purpose operating systems [23]. The problem with general-purpose allocators that are 

used by C-based operating systems is that they primarily focus on reducing the allocation 

overhead and enhancing the memory space utilization. Thus, when the memory manger allo-

cates an object, only allocation sequence and object size are considered [23]. Hence, kernel 
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runtime objects of the same type could be scattered around in the kernel address space – typi-

cally not the whole kernel address space however the address space designated for such allo-

cations is still big in size and affects system performance. Thus, uncovering a single instance of 

a running object would require accessing and traversing several memory pages. 

Value-invariant approaches could be considered as signature-based approaches. This is 

where certain fields of a data structure with their values are formalized as a signature that is used 

to scan the physical memory for matching instances, such as DeepScanner [24], DIMSUM [25] 

and SigGraph [19]. Value-invariant approaches are not an effective way of finding kernel dy-

namic objects for the following reasons: (i) a signature for a specific object type may not always 

exist for a data structure, as discussed by Lin et al. [19]. For example, it is difficult to generate 

value-invariant signatures for data structures that are part of linked-lists (single, doubly and 

trees) because the actual running contents of these structures depend on the calling contexts at 

runtime [26]. This means that the actual objects (type, number of running instances and memory 

locations) in these lists can be recognized only at runtime. (ii) Value-invariant approaches do not 

handle the rich generic pointers problem of kernel data structures and thus they are also vul-

nerable to object hiding attacks and pointer exploits, as happens in memory traversal techniques. 

(iii) The performance overhead of value-invariant approaches is extremely high, as they typi-

cally scan the whole kernel address space with large signatures that makes real-time monitoring 

of system runtime objects impractical. 

2.3 Operating Systems and the “Pointer Problem” 

Ensuring reliability of C-based operating systems against memory vulnerabilities is very chal-

lenging, because of the extensive use of pointers and data structures in their source code. 

C-based operating systems utilize C data structures heavily to model the dynamic runtime ob-

jects. They also use pointers extensively to simulate call-by-reference semantics, emulate ob-

ject-oriented dispatch via function pointers, avoid expensive copying of large objects, imple-

ment lists, trees and other complex data structures, and also as references to objects allocated 

dynamically in kernel memory and user heaps [27]. Moreover, dynamically allocated objects 
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can be cast to multiple types during their lifetimes, further complicated by the fact that kernel 

data structures are implementation-dependent where a pointer deposited in a field under one 

object can be accessed from a different field under another object. 

Pointers, dereferencing and dynamically allocated objects are the most critical points in 

C-based operating systems that assist in exploiting vulnerabilities in the running operating 

system. Despite the serious threat that could arise from maliciously manipulating these critical 

pointers, operating systems vendors continue to use C to implement operating systems for better 

efficiency and higher performance. Unlike safe high-level languages such as Java and C#, C 

pointers can point into anywhere in memory or in the middle of an object. Pointers are extremely 

powerful as they enable manipulating the contexts of memory addresses at runtime. Pointers are 

complex to handle and can cause many memory errors and bugs – such as memory leaks and 

buffer overflows – if not implemented correctly. 

A pointer is usually associated with a type and a value that is specified at declaration time at 

the development stage or can be linked at compilation-time. However, pointers in C could be 

initialized to a value of NULL or initialized without a declared type, as a void pointer. Fur-

thermore, pointers can be cast to different types at system runtime, making the initially declared 

type untrusted. To get a concrete idea of the pointers problem in C-based operating systems, we 

discuss the context of three well-known problems in C-operating systems, namely void 

pointers, null pointers and casting.  

Void pointers. A void pointer defined at declaration time means that it is a pointer that can 

point to any data type, and the actual type of such void pointer can only be identified at runtime 

according to system calling contexts. Thus, void pointers support a form of polymorphism, 

where the target object type(s) can only be identified at runtime. The wide use of void pointers 

hinders performing systematic integrity checks on kernel dynamic data, where there are no type 

constraints for a void pointer. Void pointers are powerful vulnerabilities for hackers to exploit, 

in order to point to somewhere else in memory or execute vulnerable code such as re-

turn-oriented programming [5] and jump-oriented programming [28] rootkits. 
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Null pointers. A null pointer points nowhere – i.e. points to unallocated memory or a 

value of zero – and thus dereferencing a null pointer may cause address violations in the 

memory or attempt to execute an illegal operation. In operating systems, null pointers are used 

mainly to implement linked-lists, which are heavily used in operating systems to maintain and 

manage dynamically allocated kernel objects. The C definition of a linked-list only shows that a 

linked-list data member points to another linked-list data member, as shown in Figure  2-5. 

However, at system runtime members of a linked-list point to a specific object type according to 

the calling contexts of the system, not to another linked-list. This means that the actual objects 

(i.e. type, number of running instances and memory locations) structured in a linked-list can be 

recognized only at runtime, not at compilation time. Manipulating null pointers assists mali-

cious hackers to hide or change runtime objects. This is because runtime manipulations of null 

pointers violate integrity constraints that cannot be extracted from source code as they depend 

mainly on calling contexts at runtime. 

typedef struct _LIST_ENTRY

{

PLIST_ENTRY Flink;

PLIST_ENTRY Blink;

} LIST_ENTRY, *PLIST_ENTRY;

struct list_head

{

struct list_head *next;

struct list_head *prev;

}; 

 

(a)                                         (b) 

Figure ‎2-5. Doubly-linked list implementation in Windows and Linux. 

Figure (a) shows the implementation in Windows operating system source code, and (b) in Linux 

operating system source code.  

Type casting. In C, type declarations are hints indicating how the variables are likely to be 

used at the program runtime; however casting operations are likely to happen at runtime to 

change the original declared type. C data types can be subverted by casting. A pointer of a given 

type can be cast to point to more than one type during its lifetime [29]. A major problem with 

casts is that they induce relationships between objects that appear to be unrelated [30]. These 

implicit points-to relations enable hackers to exploit the layout of kernel runtime objects in the 

physical memory and thus get a false view of the running state of operating system. Figure  2-6 
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shows a code snippet demonstrating how casting can implicitly develop points-to relations 

between runtime objects. Line 3 reflects a cast operation, between the ExHandler data type 

(line 1) and the EPROCESS data type (line 3).  

…

typedef struct _ExHandle {

int* handle;

} ExHandler;                                           //--> (1)

…

PEPROCESS ActiveProcess;                               //--> (2)

…

PEPROCESS AllocatePrMemory(){

return (PEPROCESS) malloc(sizeof(EPROCESS));      

}

void CreateProcess(PEPROCESS p_ptr) {

p_ptr = (PEPROCESS)AllocatePrMemory();    

ActiveProcess = p_ptr;

p_ptr->UniqueProcessId = ExHandler(ActiveProcess); //--> (3)

…

}

 

Figure ‎2-6. Casting example in C. 

In Windows and Linux operating systems, from our analysis, nearly 40% of the inter-data 

structure relations are pointer-based relations (indirect relations), and 35% of these indirect 

relations are generic pointers. In such a complex kernel data layout, the runtime memory layout 

of the data structures cannot be predicted during compilation time. This makes kernel data a rich 

target for rootkits that exploit the points-to relations between kernel data structure running 

instances using direct kernel object manipulating techniques or by overwriting function pointers 

located in dynamic kernel memory, allowing attacks such as object hiding.  

2.4 Points-to Analysis 

The goal of points-to analysis techniques is to statically compute a set of memory locations 

(points-to sets) to which a pointer may point to at runtime. Rather than a pointer is being de-

clared as null or void, or cast at run-time, points-to analysis helps in statically determining 

the set of actual data type(s) and values (memory locations) that a particular pointer can deref-

erence at runtime. 
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Points-to analysis has been used in a variety of static program analysis tools to check for 

memory runtime errors that could arise because of the inefficient use of pointers in the programs 

source code. Simply, basic points-to analysis is an advanced alias analysis approach that at-

tempts to compute equivalence relations of program pointers [31]. Two variables are aliases for 

each other if they point to the same memory location, where changing the contents of one 

pointer will indirectly change the other [32]. Points-to analysis of C programs mainly differ in 

how alias information is grouped. There are two main algorithms to group alias information: 

Andersen’s [33] and Steensgaard’s [34]. Anderson’s points-to analysis algorithm creates a node 

for each variable and the node may have different edges, while Steensgaard’s points-to analysis 

algorithm groups alias sets in one node and each node just have one directed edge. Andersen's 

algorithm processes each statement in the program in arbitrary order to build a points-to graph. 

Andersen’s approach is the slowest but the most precise and Steensgaard’s approach is the fast 

but less precise. 

Table  2-1 shows a C code fragment and the points-to sets computed by those algorithms. 

Based on such general aliasing approaches, there are different types of analysis aspects that 

make the trade-off between performance and precision: first, achieving context-sensitivity, 

where aliasing information is based on distinguishing between heap objects created via different 

call-paths to the program procedures. The context of a procedure call is distinguished by its 

call-path which is the path from the procedure entry to its call site. Context-sensitive algorithms 

are highly precise, but very slow in performance and complicated to be implemented. Achieving 

context-sensitivity enables accurate type-inference of the declared pointers including void 

pointers and runtime casting operations. Type inference determines the actual type(s) of an 

object by analysing the usage of this object in the program. Second, achieving field-sensitivity, 

where aliasing information should distinguish the different fields inside a single data struc-

ture/object and each field must have its own points-to set. In other words, field-sensitivity en-

ables identifying the internal connectivity pattern of data structures. Another analysis aspect that 

is usually considered when performing field-sensitive analysis is inclusion-based analysis. 

Inclusion-based analysis means that two pointers may point to overlapping but different sets of 
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objects [29], and this is likely to exist in operating system’s kernel data. Thus, all objects that 

may be pointed to by a data structure’s field are represented as a standalone node in the points-to 

analysis graph. Third, achieving flow-sensitivity, where aliasing information considers the 

effects of pointer dereferencing instructions with respect to the call-graph of the program. In 

other words, flow-sensitivity considers the flow of values in a program in order to compute the 

points-to sets. A program call-graph is a graph with a set of nodes and edges representing de-

pendency relations between program statements to reflect the statements that control the exe-

cution of the other program statements. 

Points-to analysis is traditionally performed in two main phases: intraprocedural analysis 

and interprocedural analysis. Intraprocedural analysis is local analysis phase of each procedure 

in the program to compute a local points-to set based on local information of each procedure, 

such as formal-in parameters and arguments. In interprocedural analysis the procedures are 

analysed with respect to the incoming parameters and global variables that are used in that 

procedure based on the program call-graph. These two phases could include field and 

flow-sensitivity information; however context-sensitivity is usually achieved with an extra 

phase of the analysis based on the used technique. Highly precise and scalable points-to analysis 

is usually an NP-hard problem [35], which is very expensive to implement. Over the last decade 

a large number of new algorithms have been introduced to perform the analysis with high pre-

cision rates while avoid the expensive analysis cost [36-38], as discussed in chapter 3.  
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Table ‎2-1. Example showing the difference between Steensgaard’s‎and Andersen's algorithms. 

Statement Steensgaard’s‎Algorithm Andersen’s‎Algorithm 

p = &a; p a

 

p a

 

p = &b; p
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b
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2.5 Summary 

In this chapter, we discussed the security problem of the IaaS cloud computing model and a 

collection of different technologies, techniques and technical problems that have been tackled in 

this research project. We focused on the loss-of-control security problem of the hosted virtual 

machines in the IaaS cloud platform, and on the pointers problem in operating systems that lead 

to memory violations and bugs. These two areas are the main big problems that are addressed in 

this research project. We also discussed how points-to analysis techniques could be utilized to 

limit runtime memory bugs and errors in operating systems caused because of pointers. We 

explained the basics of points-to analysis techniques and the different analysis aspects that make 

the tradeoff between precision and scalability. 
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  Chapter 3

Literature Review 

In order to meet the research objectives discussed in chapter 2, a number of multi-disciplinary 

technical problems have been studied. In this chapter, we review and summarize key existing 

research efforts and the state-of-the-art in different research areas including cloud computing 

and virtualization security, operating system security, kernel rootkits and kernel integrity, 

memory bugs and errors, and static program analysis techniques including points-to analysis. 

This chapter is organized as follows: in Section 3.1, we give an overview of the research 

areas cover in this literature review analysis. In Section 3.2, we review related work in the area 

of cloud computing security, with a focus on IaaS security. Then, we discuss key related work in 

the area of virtual machine security, virtual machine introspection, the semantic gap and active 

monitoring. In Section 3.3, we study operating system security and discuss different aspects in 

operating system security such as: (i) kernel rootkits and the key existing approaches to detect 

and defend against such rootkits. (ii) Kernel dynamic objects and key related work to uncover 

these objects from a trusted source. (iii) Operating system memory errors, bugs and generic 

pointers and key related approaches and techniques used to prevent such memory unsafe vio-

lations, such as points-to analysis, separation logic and shape analysis. In section 3.4, we 

summarize key limitations of the related work and discuss the need for new security approaches 

and how such approaches could meet our research objectives. 

3.1 Introduction 

The main research problem of this project is solving the loss-of-control security problem of the 

IaaS platform in order to enable pre-emptive protection of the hosted virtual machines externally. 

To address this problem efficiently, a number of sub-problems needed to be addressed first. 

Figure  3-1 summarizes key research problems that have been studied in this research project in 

order to facilitate the development of our virtualization-aware security solution.
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Figure ‎3-1. Related work analysis structure. 

Based on the organization in Figure  3-1, we discuss key related work and research practices 

of each problem area shown in Figure  3-1. We have two main research problems and each 

problem has other sub-research problems. First, the security problem of the virtual infrastruc-

ture in IaaS cloud platforms. IaaS security can be broken down into component research areas, 

including: hypervisor security, virtual machines security, virtual machine introspection, active 

monitoring, semantic gap and virtual appliances. In section 3.2, we review key related research 

practices discussing generally the security problem of the different cloud computing models. We 

then give more attention to the security of the IaaS model. Finally, we discuss the current re-

search efforts to protect the hosted virtual machines, at a hypervisor level – which is the core of 

our research project. Moreover, we discuss the current solutions for main technical problems 

that need to be addressed in order to enable protecting virtual machines externally. These 

problems include: virtual machine introspection, semantic gap problem, active monitoring and 

virtual appliance deployment models. 
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Second, another key research problem of our research project is operating system security, 

more specifically operating system kernel rootkits and integrity checks. This includes a number 

of sub-areas that needed to be analysed such as kernel data rootkits, kernel dynamic objects, 

operating system memory safety problems and weak typing, and the different analysis tech-

niques used to overcome such memory problems. In Section 3.3, we discuss key related work of 

these areas with their main limitations. We focus mainly on kernel data and the key existing 

approaches to defend against such kernel dynamic data threats. We also discuss operating sys-

tem memory violations caused by the pointers and weak typing of the C programming language. 

Related to the memory safety area, we discuss key related approaches that have been used in 

order to disambiguate generic pointers scattered in kernel memory, such as points-to analysis, 

separation logic and shape analysis. 

3.2 Cloud Computing Security 

Recently, cloud computing security has been a major concern for many researchers discussing 

the main challenges of adapting the different models of the cloud and their relevant security 

issues [39-50]. Each layer in the cloud model has its own vulnerabilities that can affect the 

security and trust of the cloud. Researchers in [51-53] discussed the cloud security problem 

from a cloud provider perspective, exploring the security implications of adapting the different 

technologies in cloud platforms and the different cloud service delivery models. Grobauer et al. 

[54] discussed different vulnerabilities of the basic cloud models as a key to understanding 

cloud risks, such as virtual machine escaping, session hacking and insecure cryptography. Yildiz 

et al. [55] explored a conceptual model to identify security requirements for different cloud 

levels, such as network, servers, and storage, applications and cloud management layers. Lenk 

et al. [56] discussed the cloud computing stack architecture and components, and the different 

cloud services. Brock et al. [57]proposed different security evaluations and countermeasures in 

the cloud security area, and introduced a conceptual security framework for the cloud to apply 

sign-on access token security. Qamar et al. [58] discussed various technical and non-technical 

open issues in cloud computing related to security and costs. Muttik et al. [59] reviewed key 
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security software that can fit in the cloud platform such as anti-spam and antivirus to protect the 

hosted services. Kandukuri et al. [41] explored some security issues in the cloud, such as how 

customers could trust providers through the Service Level Agreements (SLAs). Kandukuri et al. 

explored the contents of the SLA, and how these contents can guarantee for cloud consumers 

secure access to their services in the cloud. 

From the above related work, we see that the security problem in cloud computing is a quite 

big and important problem with many research problems that relate to whether the adaption of 

different technologies in the different models of the cloud, or to the security risks of the cloud 

models themselves. In our research project, we selected the IaaS cloud computing model for 

detailed study and focused on its security problem in an attempt to provide a solution to one if its 

critical problems, which is the outsourced virtual machine security problem. Key related work 

of the IaaS model and its security problem are discussed in section  3.2.1.  

 IaaS Security 3.2.1

In this section, we focus, in particular, on the IaaS model as it is the main core of our research 

project. We review key related work of this service model and discuss its main security issues 

that relate to the hypervisors and hosted virtual machines. 

Dawoud et al. [50] explored the different security challenges of the virtual infrastructure in 

the IaaS model that arise from the virtual machine mobility feature and the in-

ter-communications between virtual machines that do not need to go through the physical 

network interface of the server and take place in the server memory via a virtual switch. In 

addition, Dawoud studied security threats of the main components of the IaaS delivery model, 

including: Service Level Agreements (SLAs), utility computing, cloud software, virtualization, 

internet connectivity, web browsers and hardware. Dawoud et al. also introduced a conceptual 

security model that covers the IaaS components in their entirety. This model is composed of: (i) 

a security configuration policy to guarantee secure configuration for each component in the IaaS 

layer. (ii) Secure resources policy management to control roles and privileges. (iii) Security 

policy monitoring and auditing entity to track system life cycle. Hwang et al. [60] explored the 
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basic security requirements to develop a security solution for the IaaS model, including the 

physical (hypervisor and hardware) and virtual infrastructure (virtual machines, virtual network 

and storage). Caron et al. [61] proposed a system of security metrics specific to the IaaS model, 

used to develop virtual machine placement algorithms. Their proposed metrics system is 

five-layered and covers hardware, hypervisor kernel, operating system security module, pro-

cesses, and application. The metrics enable evaluating the security levels of the cloud IaaS 

infrastructures while considering the customer security requirements. Based on these metrics, 

they generate a set of virtual machine placement algorithms that accommodates both cloud 

provider and customer needs. 

IBM [62] introduced the idea of Trusted Virtual Datacenter (TVDc). A TVDc is a security 

solution that addresses both infrastructure and management issues introduced by datacenter 

virtualization. The main idea behind TVDc is grouping virtual machines and resources that are 

collaborating towards a common purpose into workloads called Trusted Virtual Domains 

(TVDs). It provides strong isolation between workloads by enforcing a mandatory access con-

trol policy throughout a datacentre. This policy defines which virtual machines can access 

which resources and which virtual machines can communicate with each other. This access 

control policy is developed based on the virtual machine meta-information to store security 

labels that are used to determine if the virtual machine can access a specific resource. 

Krautheim [63] proposed a security model that assumes that the cloud consumer should 

control the security of their hosted virtual machines including the running applications, while 

letting the cloud provider only control the security of the physical infrastructure. Such a model 

falls into a conflict with our assumptions about the IaaS platform. This is because the virtual 

machine that is managed by a cloud consumer still has access to the physical hardware and the 

shared memory even if this access is indirect via the hypervisor. Recently, Common Vulnera-

bilities and Exposures (CVE) has reported multiple resource sharing exploits in the Xen and 

ESX hypervisors [64, 65], caused by hosted virtual machines. Thus, the security of the hosted 

virtual machine cannot just be left for the cloud consumer to manage its security, as this con-

sumer might simply be a malicious hacker. 
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3.2.1.1 Hypervisors Security 

Because the hypervisor runs underneath the virtual machines, it is a desirable target for mali-

cious hackers, who would use the hypervisor to take control of the host server and the hosted 

virtual machines. Such threat is called hyperjacking [66]. Hyperjacking requires the hacker to 

either have physical access to the server (to install the malicious code), or exploit a vulnerability 

in a hosted virtual machine in order to be able to inject that malicious code into the hypervisor 

kernel. Wojtczuk [67] discussed how the Xen 3.x hypervisor can be modified at runtime with 

Direct Memory Access (DMA) transfers to install backdoors in the hypervisor’s kernel, by 

allowing loading complied C code into Xen memory. To prevent such security threats, DMA 

access has been restricted in the current chipsets by IOMMU [68] or Intel VT technology [69], 

making this attack inapplicable. 

In order to protect hypervisors, a number of approaches have been developed to guarantee 

their load-time integrity to ensure secure operational environment. SecVisor [70] is a small 

hypervisor that uses hardware memory protection techniques to ensure kernel code integrity, by 

enforcing W ⊕ X property to prevent execution of any injected malicious code. W ⊕ X is a 

protection policy enforced on memory pages to make them either writable or executable, but 

not both simultaneously. SecVisor uses page tables as the basis of its MMU-based memory 

protections. SecVisor virtualizes the MMU and IOMMU, and this enables SecVisor to intercept 

and check all modifications to the MMU and IOMMU state. NICKLE [71] is a similar system 

that checks the lifetime kernel code integrity of the hypervisor using memory shadowing. Any 

code to be executed for the first time is authenticated using a specific cryptographic hash value 

and then copied to the shadow memory transparently. 

Steinberg et al. [72] proposed a micro-hypervisor design that contains the basic security 

and performance critical mechanisms such as: communication, resource delegation, interrupt 

control and exception handling. The rest of the hypervisor components – e.g. file system, net-

work stacks and device drivers – are controlled and provided by a dedicated virtual machine 

monitor that runs in the user-level for each hosted virtual machine. Although, such design 

minimizes the hypervisor footprint in the memory and thus reduces its attack surface, it con-
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sumes the server resources – i.e. RAM, CPU and storage – because of the virtual machine 

monitors that are allocated for each virtual machine. This design makes it impractical to be 

applied in real industrial environment. 

Shinagawa et al. [73] introduced a small hypervisor architecture that is designed to enforce 

memory access and I/O device security through virtual machines and thus reduces the code size 

of the hypervisor. This is done by removing the device drivers and device models from the 

hypervisor and utilizing device drivers of the guest operating system to handle real devices of 

the hosting server. Thus, the hypervisor has a small set of drivers to mediate access to I/O de-

vices. Despite the reduced size of the proposed hypervisor, this architecture limits the hyper-

visor functionalities because it is partially under the control of the virtual machines. Also, if the 

device drivers of a virtual machine are infected with a malicious code, it can bypass the hy-

pervisor and access hardware directly. Murray and Milos [74] discussed a similar approach that 

enables strengthening the Trusted Computing Base (TCB) of a Xen-based system, by removing 

Dom0 (Domain 0) user-space from the TCB to improve Xen’s TCB security against full control 

malware. 

In summary, hypervisors are a critical point in the IaaS security, and effective protection 

mechanisms are usually hardware-based that are related to the underlying hardware architecture 

such as Intel TXT [75]. The hypervisor security problem is not considered in our research 

project, as we mainly focus on virtual machine security which is from our point of view the most 

likely vector of attack that could cause security breaches in the IaaS platform including hyper-

visor and virtual network.    

3.2.1.2 Virtual Machines Security 

Guest virtual machines are a significant source of security threats in the IaaS platform, and they 

are vulnerable to all threat types that can affect traditional operating systems – e.g. rootkits, 

spoofing, malwares, DoS, Buffer overflow. In addition to these threats, virtual machines are 

vulnerable to new types of security threats that are specific to the virtualization feature, as 

discussed in section  3.2.1.2.1. 
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Virtualization has made the process of creating and provision virtual machines very quick 

and easy with just few mouse clicks or simple commands. This ease can lead to virtual machine 

sprawls. Virtual machine sprawl happens when too many virtual machines are created without 

careful planning, management and service consolidation [76]. Virtual machine sprawl affects 

the physical resources of the server such as memory, storage and CPUs, and this could make the 

administration of the entire infrastructure very difficult. To prevent virtual machine sprawl, 

administrators depend on a set of virtual machine management applications to define and en-

force a process for the deployment and provision of virtual machines. Elmroth and Larsson [77] 

explored the standards of virtual machine management (descriptors, placement, migration, 

monitoring) in federated cloud environments, and discussed three different scenarios for virtual 

machine migration (migration due to lack of system resources, primary site failure and need to 

remote site to run the VM, migration request from server to another).  Li et al. [78] applied the 

feedback control theory to represent virtual machine-based architecture for adaptive manage-

ment of virtualized resources in cloud computing. Feedback control offers a conceptual tool to 

address resource management changes and disturbance in workloads and configurations.  

MIRAGE [79] is an image management system that provides an access control framework that 

regulates virtual machine image sharing, and provide image filters to control image information 

and remove unwanted information. MIRAGE consists of four parts: access control framework 

to control images check-in and check-out, image filtration mechanism to filter the publisher data 

before the new user work on it, a provision mechanism to follow up the history of the images, 

and a repository maintenance module to make utility scanning to the existing images, to avoid 

malwares. Wang et al. [80] presented a policy controlled secure solution for virtual machine live 

migration in personal clouds. This work utilizes the Trusted Computing Base (TCB) concept in 

both hardware and software to enable safe virtual machine migration and management. Hao et 

al. [81] addressed the problem of virtual machine migration and management across multiple 

networks in an efficient manner without suspending their operations. This is done by logically 

combining multiple geographical distributed physical devices to form a single virtualized log-

ical router, where each physical device mimics a virtual card with multiple virtual ports.  
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3.2.1.2.1 Virtualization Rootkits 

Another threat that is related to the virtualization feature is dormant virtual machines. Dormant 

virtual machines are the virtual machines that are not running on the server; however they are 

still hosted as files in the physical server – i.e. offline virtual machines. When a virtual machine 

is offline, it is still available to any application that has access to the server storage, and it is 

therefore susceptible to malware infections [82]. Mirzoev and Yang [76] ran an experiment in 

their test lab environment, where a dormant virtual machine running Windows 2000 server in an 

earlier version of a virtualized product was infected by the Blaster Worm. The worm was able to 

duplicate itself and infiltrate other unprotected suspended virtual machines. Another observa-

tion was that a virtual machine running as a DHCP server continued to hand out IP addresses 

even when it was offline. To protect dormant virtual machines, datacentre administrators con-

sider these virtual machines are regular files that should be checked with antivirus software. 

Schwarzkopf [83] et al. also proposed an approach that deals with the dormant virtual machines 

problem, by helping consumers and providers to keep virtual machines up to date. This is not 

just by updating the running operating system but also any running software that are out-dated. 

A number of proof-of-concept rootkits have been developed to prove that virtualization can 

be detrimental to a running operating system, if the appropriate protection is not provided. 

Virtual-machine based rootkit (VMBR) [84] is a rootkit that converts a traditional server that 

runs an operating system into a virtual machine. This rootkit installs a virtual machine monitor 

underneath an existing operating system and hosts that operating system into a virtual machine. 

In order to insert a VMBR underneath an existing system, a VMBR manipulates the system boot 

sequence to ensure that it is loaded before the operating system itself. Then, the VMBR boots 

the existing operating system using the virtual machine monitor. As a result, the operating 

system runs normally, and the VMBR runs stealthy underneath the operating system. In order to 

do this, a hacker must first gain high privileged access to the operating system to modify its boot 

sequence. The authors of the VMBR also showed how to detect a VMBR using their proposed 

system, SubVirt. This is done by placing SubVirt below the VMBR to get complete control of it. 

GuardHype [66] was also introduced as a hypervisor that can defend against VMBRs. 
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GuardHype mediates the access of hypervisors to the hardware virtualization extensions, ef-

fectively acting as a hypervisor for a hypervisor. HVM [85] is a proof-of-concept of a hard-

ware-based virtual machine rootkit for Mac OS X using Intel VT-x architecture. HVM also 

install itself by moving the operating system into a virtual machine while the operating system is 

running, similar to VMBRs. 

Franklin et al. [86] discussed the problem of detecting remote virtual machine monitors by 

devising fuzzy benchmarking to detect their presence on a remote server. The basic idea behind 

their fuzzy benchmarking approach is measuring the execution time of particular code execution 

sequences, by developing a fuzzy benchmarking program whose execution differs from the 

perspective of an external verifier when a target host is virtual machine. Paleari et al. [87] 

proposed an automatic technique to generate red-pills to check if a program is executed through 

a CPU emulator or a real physical CPU. A red-pill is a sequence of bytes that corresponds to the 

assembly instructions of a specific architecture. The proposed technique has been used to dis-

cover new red-pills for detecting two IA-32 CPU emulators of virtual machine monitors. 

Blue Pill [88] is a rootkit based on x86 virtualization technology that targets Microsoft's 

Windows Vista. It exploits AMD64 SVM extensions to host the operating system in a virtual 

machine and export a generic hardware interface inside the virtual machine. Blue Pill cannot 

install itself without hardware virtualization support of the underlying architecture. 

3.2.1.3 Virtual Machine Introspection 

External protection of the operating systems running in the hosted virtual machines is a 

well-known research problem in security, even before the cloud computing era. This is because 

of the robustness of external protection in detecting advanced kernel rootkits that cannot be 

detected using traditional in-guest security solutions. In this section, we explore current research 

efforts and practices used to protect virtual machines via virtual machine introspection against a 

variety of operating system security threats.  

Monirul et al. [89] proposed a general-purpose framework to protect operating systems 

against kernel rootkits in the hosted virtual machines, by utilizing hardware memory protection. 
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Vieira et al. [90] introduced an intrusion detection technology to protect the hosted virtual 

machines based on behavioural-based techniques. Martignoni et al. [91] introduced a frame-

work for dynamic malware analysis and profiling in virtual machines. This framework is based 

on creating a separate virtual machine to be the security lab for the IaaS platform and to monitor 

the running operating systems in the hosted virtual machine. Oliveira et al. [92] introduced a 

framework for protecting kernel code and data using an external monitoring software. X-Spy 

[93] is a hypervisor-based intrusion detection system designed to protect hosted virtual ma-

chines from kernel rootkits. X-Spy is deployed in R-Xen, an enhanced hypervisor architecture 

that focuses on enhancing Domain0 reliability of the Xen hypervisor. 

All of the above approaches, whatever the objective of the security tool, require a robust 

introspection framework that enables reading the internal state of the hosted virtual machine, at 

a hypervisor level. Virtual machine introspection was firstly introduced by Garfinkel et al. [7] in 

2003, to support developing robust hypervisor-based intrusion detection systems. More recently, 

virtual machine introspection has been implemented widely in order to develop security solu-

tions to operating systems [6, 7, 10, 11, 15, 94]. Nance et al. [10] surveyed the different virtual 

machine introspection approaches and introduced a VMI tool, called VIX, that works for Xen 

hypervisor. Xenaccess [95] is another virtual machine introspection library for the Xen hyper-

visor which monitors the internal state of the virtual machines. Xenaccess was built based on 

libxc and blktap modules to enable reading memory and disk hardware bytes of guest 

operating systems. Neugschwandtner et al. [12] introduced dAnubis, a virtual machine intro-

spection tool in order to profile malicious kernel code access. dAnubis provides real-time 

monitoring and analysis of the malicious Windows device drivers by monitoring all available 

interfaces through which the driver can interact with the kernel. KernelGuard [96] is a memory 

access active monitor to prevent malicious memory access to some protected kernel data. 

KernelGuard watches write-access to specific kernel code and data pages that are protected by 

KernelGuard. XenKimono [97] is an intrusion detection system aimed at discovering malicious 

intrusions by analysing the guest kernel data externally. The translation of the memory bytes to 

high-level operating system information is done by using kernel symbols from the DomU kernel 
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binaries of Linux operating system. Onoue et al. [98] proposed a security system that controls 

the behaviour of processes in a guest virtual machine by controlling system calls between the 

virtual machines and the virtual machine monitor. Onoue et al. utilize VMI techniques to mon-

itor the low-level events of the hosted virtual machines. Kienzle et al. [99] utilizes virtual ma-

chine introspection for endpoint configuration compliance monitoring. These endpoint config-

urations include checking the authorized and installed software, registry keys, and software files 

by monitoring the hosted virtual machine externally from Domain0 in Xen. Gilbraltar [17] 

adapts virtual machine introspection techniques, but in a physical environment rather than a 

virtualized platform. This is done by connecting the two hosts with a PCI network card to enable 

the security software to access the physical memory of the other host and then passively monitor 

this host. Nick et al. [20] also applies external monitoring using PCI cards to access to the 

physical memory.  

A key problem with the above researches is their use of a manual approach to overcome the 

semantic gap to implement the virtual introspection frameworks. They depend mainly on their 

prior knowledge and hands-on experience of an operating system kernel to manually build a 

kernel data definition that reflects the underlying runtime data layout. The manual approach 

only covers around 28% of kernel data structures – as discussed by Carbone et al. [14] – that 

relate to well-known objects and structures of the operating system such as processes and 

threads. These approaches also do not consider the generic pointer relations between kernel data 

structures, making their approaches imprecise and vulnerable to wide range of attacks that can 

exploit these pointers in kernel dynamic data. These limitations result in limited protection, as 

an accurate and complete kernel data definition is an important step in implementing a robust 

virtual machine introspection framework. Another limitation of the above approaches is that 

they depend on memory traversal techniques to uncover system runtime objects and kernel data 

based on the developed kernel data definitions. Memory traversal techniques are 

time-consuming and thus present a high performance overhead on the security solution. 

Moreover, memory traversal does not enable efficient detection of kernel object manipulation 

rootkits, as they are based on dereferencing information without performing any integrity 
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checks on the dereferenced pointer value(s) or type(s). Moreover, mapping a kernel memory 

reflects kernel memory status at a specific time and that does not enable real-time monitoring or 

protection. On the other hand, the previously discussed researches can be subverted by new type 

of rootkits as demonstrated by DKSM [15]. 

DKSM (Direct Kernel Structure Manipulation) is a proof-of-concept attack to show that 

existing virtual machine introspection solutions could be subverted to provide false information 

about the operating system internal state. DKSM is based on the observation that kernel data 

structures are the main key to any introspection tool. DKSM is able to add or remove specific 

fields from particular kernel data structure. By doing so, the template-based approach of ex-

isting introspection tools will be using the wrong templates to infer guest states and thus derive 

inaccurate results. This is because of the wide spread of generic pointers that facilitate the ma-

licious manipulation of kernel dynamic data. Generic pointers can only get their values/types at 

runtime based on the calling contexts of the running operating system. Thus, modifying these 

pointers, and adding or removing fields would not violate any integrity constraints of the run-

ning operating system and thus affect the accuracy and reliability of the introspected results. 

Psyco-Virt [100] is an agent-based intrusion detection system that implement host and 

network intrusion detection systems via virtual machine introspection framework to protect Xen 

environments. Psyco-Virt places agents in the hosted virtual machines to overcome their se-

mantic gap, and monitors the changes of specific memory pages of the virtual machines that 

store the instructions of critical components, such as the installed agents. These pages are 

marked as read-only, and any attempt to modify them implies that an attacker is trying to exe-

cute arbitrary instructions. IntroVert [101] is a virtual machine introspection framework that 

bridges the semantic gap using operating system’s kernel APIs to acquire the internal state of the 

virtual machine. ReVirt [94] utilized virtual machine introspection to monitor the execution of 

the guest operating systems and the installed software. ReVirt also depends on the kernel APIs 

to bridge the semantic gap. SADE [8] depends on placing stealthy security code inside the guest 

operating systems to overcome the semantic gap and actively protect them. These researches 

mostly depend on kernel APIs and memory to overcome the semantic gap, instead of depending 
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on their experience and knowledge of the operating system kernel data layout. This approach is 

more generic where it can cover a wider range of kernel data, not like the manual approach is 

limited to a small subset of kernel dynamic data. However, this approach is highly untrusted. 

Kernel APIs can be easily modified either by kernel rootkits or by the virtual machine owners 

themselves. Thus kernel APIs can pass false information to the introspection framework about 

the internal state of the running virtual machines.  

3.2.1.3.1 Active Monitoring 

Another important issue in implementing virtual machine introspection frameworks is the 

active monitoring feature that enables preventing the threats instead of just passively detecting 

them. Payne et al. [102] explored how virtual machine introspection techniques can be utilized 

to apply secure active monitoring inside virtualized environments. Their approach to apply 

active monitoring depends on installing security hooks inside the guest operating systems. 

These hooks are protected at a hypervisor level to prevent any malicious access to them. This is 

done by applying page-write permissions on the memory pages that contain the security hooks. 

Kvmsec [103] is a system that can monitor and protect guest virtual machines in real-time to 

control unauthorized changes inside guest virtual machines. Kvmsec relies on the KVM hy-

pervisor and is composed of two main components, one in the guest to enable active monitoring 

and the other in the KVM itself. The guest code has access rights to kernel memory and the 

virtual machine monitor. SIM [104] is a secure in-VM monitoring system that enables active 

monitoring by places a security code in a dedicated and protected guest address space inside the 

operating system of a hosted virtual machine. 

The approaches enable active monitoring by placing security code inside the hosted virtual 

machines. According to our threat model – discussed in chapter 4 – the approach of placing 

security code in the hosted virtual machines is not secure enough to be implemented in our 

virtualization-aware security solution. This is because virtual machines, including operating 

system and virtual hardware, are under the management and control of the cloud consumer.  
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3.2.1.3.2 Virtual Appliances 

Virtual appliances have been recently introduced as a robust solution to deploy security software 

of virtualized environments, such as virtual machine introspection frameworks and cloud se-

curity applications. Alexander et al. [105] introduced a composition-as-a-service cloud model 

(i.e. virtual appliance) that leverages virtualization and IaaS for software service composition 

and deployment. Alexander proposed a cloud-agnostic modelling of solution requirements that 

can be transformed into cloud-specific configurations and be used to automatically generate a 

deployment plan. Chiueh et al [8] also introduced the idea of virtual appliances to deploy se-

curity software designed to monitor virtual machines via virtual machine introspection. Virtual 

appliances are a promising deployment model that eliminates memory redundancy in the server 

physical memory though the memory de-duplication features that is supported in most hyper-

visors. This is done through kernel component refactoring that takes out common kernel com-

ponents shared by virtual machines running on the same physical machine and runs them on a 

separate virtual appliance [8].   

3.3 Operating System Security 

Researchers have extensively studied operating system security including kernel code and data. 

There are two main techniques used to analyse and defeat operating system threats: static and 

dynamic analysis. Static analysis of operating system rootkits focuses mainly on studying and 

identifying rootkit behaviours in order to formulate a set of integrity constraints that can defend 

against these rootkits at system runtime [106-109]. For dynamic malware analysis, there exist 

two major approaches: internal analysis based on kernel memory and APIs [110, 111], and 

external analysis using virtual machine introspection techniques or PCI memory controllers [6, 

9, 21, 112-114]. In this section, we give more attention to external analysis techniques as one 

key requirement of our research project is protecting operating systems running in the virtual 

machines externally. Moreover, even if the external monitoring is not a design requirement, 

external monitoring and security is much more robust than internal analysis approaches and 

guarantees highly accurate results, as discussed in chapter 2. 
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The vast majority of current external analysis and operating system security approaches are 

based on the Xen hypervisor. Dewan et al. [115] introduced a hypervisor-based security system 

to secure the runtime memory against malware with root privileged access to the memory by 

protecting the page tables of the target program in the physical memory. Their approach mainly 

depends on creating another set of page tables, named protected page tables, in the physical 

memory area that is assigned to the hypervisor. After verifying the target program that needs to 

be protected, their memory protection module copies the entries that correspond to the program 

virtual address range from the shadow page tables to the protected page tables. Next, the pro-

tection module marks all entries in the protected page tables as “not present” and the corre-

sponding in the shadow page tables as “not present”. Any attempt by the operating system to 

access the virtual address space of a specific process, a hypervisor page fault happens, causing a 

virtual machine exit event to the hypervisor to intercept this page fault. Based on the EIP (In-

struction Pointer register) and CR3 registers values, the protection module determines the type 

of the memory access to allow or not. If the instruction is valid, the protection module switches 

the pages tables by changing the value of the CR3 register. Despite the robustness of this ap-

proach, it incurs a very high performance overhead on the running operating system which 

might not be acceptable by the virtual machine owner. XenKIMONO [97] is an intrusion de-

tection system based on Xen hypervisor for introspection and guest integrity enforcement. 

XenKIMONO is implemented in a form of a daemon process into Dom0 of the Xen hypervisor 

to detect kernel code violations and kernel hidden objects. Code violations are detected by 

calculating the hashes of specific memory areas, and then at runtime it periodically recalculates 

these hashes and compares it to the saved values. For kernel objects, XenKIMONO compares its 

computed external view against an internal view of the virtual machine that has been captured 

by an internal program. 

Lares [102] leverages hardware-based page-level protection so that any write-access to the 

protected memory pages with the kernel hook can be monitored and verified. Sharif et al. [89] 

presented a general-purpose framework to monitor operating system applications against ker-

nel-based rootkits in the hosted virtual machines, by utilizing hardware memory protection 
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techniques to place a security code inside the hosted virtual machines to protect the operating 

system kernel. HookSafe [116] is also a hardware-based protection system that relocates kernel 

hooks from their original locations to a page-aligned centralized location, and then use a thin 

hook indirection layer to regulate accesses with hardware-based page-level protection. In other 

words, they create a shadow copy of the kernel hooks in a centralized location, and any attempt 

to modify this copy will be intercepted and verified by the hypervisor. Regular read access will 

be redirected to the shadow copy directly with no inspection. HookSafe claims that it can defend 

against system hooks with 6% slowdown in performance benchmarks. Manitou [117] is a sys-

tem that ensures that a virtual machine only executes authorized code by computing the hash of 

each page before executing the code it includes. The page is executable, if authorized hashes list 

contains the corresponding hash value. Laureano et al. [118] employed a behavioural-based 

detection tools of anomalous system call sequences after a learning phase in which “normal” 

system calls are identified. Processes with anomalous system call sequences are labelled sus-

picious. For these processes, certain dangerous system calls will in turn be blocked. Rkprofiler 

[114] is a security tool that monitors the behaviour of kernel malware in virtual machines. They 

capture the function calls made by the kernel malware and constructs call graphs from the trace 

files. They propose a method called Aggressive Memory Tagging by performing symbol reso-

lution using the Microsoft Symbol Server.  

 Kernel Data Rootkits 3.3.1

A main focus of this research project is defending against kernel dynamic data threats. De-

fending against kernel data rootkits is one of the biggest research problems in the operating 

system security area. There are lots of approaches and techniques used to defend against dif-

ferent types of kernel data rootkits [20, 119-122]. In this section, we survey the most prolific 

techniques and approaches used to defend against pointer rootkits that affect kernel data such as 

memory errors and bugs, hooking rootkits, and object hiding attacks.  

Gibraltar [17] is an external detection tool for kernel data structures rootkits, based on a 

PCI card. It is based on a set of value-invariants of well-known kernel data structures. The 
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invariants are created based on observing the running state of the kernel during a training time. 

The invariants are then formulated as specifications of the kernel data that are enforced at 

runtime. Petroni et al. [20] presented a specification-based approach to model the well-known 

control kernel data structures based on the experience of operating system security experts. 

Then these experts are formulated as a set of specifications for the target data structure to be 

enforced periodically at runtime. Part of these specifications is a set of constraints that must hold 

at runtime in order to keep the system correct. The provided specifications are a C-like con-

structs – as introduced before by Demsky and Rinard [123] – to describe the layout of the ob-

jects in runtime memory. One of the main limitations of these approaches is how the val-

ue-invariants are formulated, and based on what criteria the field of the data structures are being 

selected to be included in the proposed invariant. Those approaches depend mainly on 

knowledge of the operating system kernel data layout to manually formulate the invariants set. 

Dolan-Gavitt et al. [16] proposed an automated mechanism to formally guarantee the ro-

bustness of the value-invariants of a data structure. They proposed an approach to generate 

robust signatures for kernel data structures, by employing a feature selection process that en-

sures that the features chosen are those that cannot be controlled by the attacker. This is done by 

profiling the target data structure to determine the commonly used fields, and then fuzz these 

fields to determine which are essential to the correct operation of the operating system. In other 

words, the proposed approach profiles operating system execution in order to determine the 

most frequently accessed fields of a target data structure and then actively tries to modify their 

contents to determine which are critical to the correct functioning of the operating system. 

Despite the robustness of this approach, it is time consuming and impractical to be implemented, 

where operating systems’ kernels have thousands of data structures that needs to be trained, 

observed and fuzzed to formulate their signatures. 

 K-Tracer [124] is a system for extracting malware behaviour. This is done by performing 

automated analysis to the data manipulation behaviour of rootkits in a sandboxed environment. 

The analysis is a flow-sensitive dynamic slicing applied on the well-known kernel data struc-

tures – e.g. system calls and interrupts – through the executed code paths. They applied back-
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ward and forward dynamic slicing on selected execution paths of the kernel to identify all sen-

sitive data (pre-defined) and the events that manipulate these data manipulations. Such analysis 

reveals information about data access patterns, data modifications and triggers used by the 

rootkits. K-Tracer is only able to detect known attacks by detecting their malformed behaviour, 

and not able to detect zero-day threats. 

OSck [1] is a system for specifying and enforcing the integrity of the operating system data 

structures by detecting violations in the integrity properties specified to the hypervisor. OSck 

defends the static and persistent kernel data, such as system call table, by write-protecting their 

kernel text, and protect the dynamic data by ensuring that dynamic control transfers targets 

functions that are safe for dereferencing at a particular call site. This is by verifying that all paths 

of the kernel could be traverse from a global root to a function pointer will result in calling a safe 

function. They also provide an API interface to enable writing the required integrity checks for 

in-memory kernel data structures, by running a privileged process inside the guest. This ap-

proach is efficient for control data structures, by enforcing write-protect on their kernel text, but 

not suitable for non-control data structures that change at runtime. This approach is also not 

trusted to be applied for IaaS security solutions. This is because providing an API interface to 

write the integrity checks for non-control data structures will violate one of the key technical 

requirements of virtualization-aware security solution, which is in-guest code cannot be a part 

of the security solution. 

Wang et al. [125] proposed a different approach, HookMap, which systematically discover 

all kernel hooks that can used by persistent kernel rootkits to tamper with the kernel data and 

hide themselves. This is done by monitoring the kernel-side execution of the security software, 

to uncover all kernel hooks related to the execution path of the security software that can be 

hijacked by a rootkit. In other words, they perform dynamic analysis to track the call and jump 

(control flow transfer instructions) instructions to identify the possible kernel data hooks. They 

start from an identified control flow transfer instruction and examine in backwards manner any 

related instructions to identify the source that might affect the destination value. After identi-

fying the hooks, they resolve the memory address to get the sematic definition by using the 
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symbol table of Linux operating system. HookMap then installs breakpoints inside the guest 

kernel in a specified kernel function to detect the context switching. Despite the effectiveness of 

these approaches in formulating a set of integrity constraints to specific kernel rootkits that can 

be applied on selected execution paths of the kernel; these approaches are quite limited in de-

tecting zero-day threats that target to manipulate new kernel data and execution paths in the 

kernel code.  

Table  3-1 shows a comparison between key aspects of the previously discussed approaches. 

This table summarizes their approaches to: (i) defend against which category of kernel data 

structures – i.e. control or non-control data structures; (ii) the techniques used to specify and 

enforce the integrity constraints; and (iii) the main security features such as active or passive 

monitoring, detecting zero-day threats, external or internal monitoring, and semantic gap con-

struction approach – i.e. memory traversal or value-invariant. The control DS column denotes 

kernel control data structures. The non-Control DS column denotes non-control kernel data 

structures. The Inv column denotes value-invariant approach. The CFA column denotes da-

ta-flow analysis. CFI column is the control flow integrity. Type denotes validating the types of 

the pointers of the data structures. Ex denotes external monitoring either via hypervisors, VMM 

or PCIs. RT denotes real-time monitoring. SG is the approach used to overcome the semantic 

gap, either memory traversing or AMD (Allocation-Driven Mapping). OS denotes the running 

operating system in the virtual machines. H denotes the hosting platform.  
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Table ‎3-1. A comparison between key related work in operating system kernel data integrity. 

 Kernel DS Security Techniques Security Characteristics Platform 

Control 

DS 

Non-Control 

DS 

Dynamic 

Slicing 

Kernel 

Analysis 

Inv 

DFA 

CFI 

Type 

Safety 

Ex 

Zero-Day 

Threats 

In-Guest 

Code 

Prevent 

(Active) 

RT SG OS H 

[124]    Dynamic         Traversing W QEMU 

[113]    Dynamic         ADM L QEMU 

[1]              L KVM 

[125]    Dynamic         Traversing L QEMU 

[17]    Static          L PCI 

[96]    Dynamic          L QEMU 

[16]              L Windows 

[126]              L QEMU 

[127]             Traversing L Xen 

[128]              W Windows 

[20]              L PCI 

[120]    Static         Traversing L Xen 
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3.3.1.1 Object hiding attacks 

Different approaches and techniques have been studied to detect object hiding rootkits. Some 

research efforts used data invariants – mostly hard-coded operating system expert knowledge – 

such as matching running processes list with the thread scheduler list [20, 128]. Some other 

tools scan kernel memory using signatures to detect hidden objects [18, 129, 130]. Others use 

kernel memory mapping techniques to detect hidden processes evidence [14, 17, 96, 120]. 

Others depend on logging malware accesses to the memory [114, 131], or track the value of the 

CR3 register with the process directory table base value such as Antfarm [132]. All of these 

approaches limit themselves to a specific range of kernel objects such as processes and threads 

with no attention for the other dynamic kernel objects that are a valuable target for direct kernel 

manipulation rootkits in order to run stealthy malware. 

Other approaches are based on the cross-view comparison approach, where a comparison 

between two views (untrusted view from inside the operating system and a trusted view from 

outside the operating system using VMI or PCI-based approaches) is performed. Any discrep-

ancies between the views are considered as hidden objects [14, 133]. VMwatcher [127], 

GhostBuster [134] and X-Spy [93] are hypervisor-based hidden object detection tools that are 

based on the cross-view approach to DKOM rootkits. The internal view in these tools is cap-

tured by running security code inside the virtual machine to read the internal state of the oper-

ating system.  Xuxian Jiang et al. [127] also proposed a similar approach to detect stealthy 

malware through virtual machine introspection and cross-view comparison. Lycosid [135] is a 

virtual machine introspection-based hidden process detection tool. Lycosid is based on the 

cross-view comparison approach to detect hidden processes by comparing the length of the 

processes list captured from the raw hardware bytes and from inside the operating system high 

level internal view. If the trusted list is longer than the untrusted one, then a hidden process 

exists in the virtual machine. 

Cross-view comparison approaches have limited effectiveness as the internal view can be 

subverted to serve the hackers needs and trick the internal tool with fake information. In addi-
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tion, all of the above approaches are time-consuming and require a deep knowledge with the 

operating system kernel, in addition to the high performance overhead. 

3.3.1.2 Locating Kernel Runtime Objects 

Locating kernel runtime objects is an important task in many operating system security solu-

tions such as kernel data integrity checking [17], memory forensics [18], brute-force scanning 

[19], virtualization-aware security solutions [21], and anti-malware tools [106]. However, cur-

rent research efforts focus on some specific, well-known objects such as processes, threads and 

network connections [136]. 

PoolFinder [137] is a memory forensics tool that scans pool memory for object tags. 

PTfinder [18] scans the pool memory to list the running processes and threads using hardcoded 

offsets and addresses. Schuster et al. [18, 138] analysed memory dumps to search for processes 

and threads by analysing pool memory. The Memory Forensics Toolkit [139] lists the running 

processes and the loaded modules for Windows operating system memory dumps. MemParser 

[140] and Kntlist [141] are other tools that enumerate processes and dump their memory. 

Other research efforts uncover system runtime objects using memory mapping techniques 

[1, 14, 21]. Such approaches are limited and not accurate, as: first, they are vulnerable to direct 

kernel object manipulation rootkits that exploit the points-to relations between kernel runtime 

objects to hide running objects. Second, they cannot follow generic pointer dereferencing, be-

cause they only leverage type definitions and thus cannot know the target types or values of 

these generic pointers. Third, memory traversal has a very high performance overhead because 

of the poor spatial locality of the operating systems.  

Royal [88] introduced a hidden processes detection tool called “Azure”. Azure utilizes 

virtual machine introspection to locate the running processes for Windows XP in physical 

memory. Azure depends on a manually-developed kernel data definition that reflects the 

runtime data layout of the EPROCESS structure to detect their execution evidence in the 

memory. Azure then compare the computed processes to the current execution of the CR3 (A 

register contains the page directory pointer of the current process) to confirm its computed 
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results and detect hidden processes. 

DeepScanner [24], DIMSUM [25] and SigGraph [19], use the value invariants of certain 

fields of a data structure as a signature to scan the memory for matching running instances. 

However, many kernel data structures cannot be covered by such value-invariant schemes, as 

discussed before in chapter 2. For example, it is difficult to generate value-invariants for data 

structures that are part of linked-lists, because the actual running contents of these structures 

depend on the calling contexts at runtime [26]. In addition, value-invariants approaches do not 

fully exploit the rich generic pointers of data structures’ fields, and are not able to uncover the 

points-to relations between the different data structures.  

Rhee et al. [113] introduced a runtime kernel memory mapping schema, called alloca-

tion-driven mapping. This schema enables systematically identifying dynamic kernel objects 

including their types and lifetimes. This is done by capturing objects’ allocations and dealloca-

tions instructions, and without relying on the runtime content of the kernel memory. To detect 

the type of an allocated object, they systematically capture code positions for memory allocation 

calls and the call site and analyse the call site offline to determine the type of the call object 

being allocated. This approach has a very high performance overhead and thus cannot be used in 

traditional operating system security tools where it can only be used in implementing the ad-

vanced debugging tools. Also, despite the feature of detecting allocations and deallocations in 

near real-time, they cannot even identify the object type. They need to analyse executed in-

structions offline to identify object types and details. 

To the best of our knowledge all existing approaches, whether value-invariant or memory 

traversal – with the exception of KOP [14], and SigGraph [19] – depend on operating system 

experts knowledge to provide kernel data layout definition that resolves the points-to relations 

between structures. SigGraph follows a systematic approach to define the kernel data layout, in 

order to perform brute force scanning using the value-invariant approach. However, it only 

resolves the direct points-to relations between data structures without the ability to solve generic 

pointers ambiguities, making their approach unable to generate complete and robust signatures 

for the kernel. KOP is the first tool that employs a systematic approach to solve the indirect 
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points-to relations of the kernel data. However, KOP is limited in that: the points-to sets of the 

void typed objects are not precise and thus they use a set of operating system-specific con-

straints at runtime to find out the appropriate candidate for the objects. KOP assumes the ability 

to detect hidden objects based on the traditional memory traversal techniques that are vulnerable 

to object hiding. Moreover, both KOP and SigGraph have high performance overhead to un-

cover kernel runtime objects in a memory snapshot. 

 Operating System Verification and Unsafe C Memory 3.3.2

One of the main major weak points in operating systems’ kernels is the high usage of C pointers 

in kernel code and data, as discussed before in chapter 2. These pointers are a major source of 

kernel rootkits that target kernel dynamic objects [20, 22, 126, 131] and cause memory errors 

and bugs [142-146]. Many techniques have been presented to check for memory bugs and errors 

whether by verifying user pointer dereferencing statically using static memory checking tools or 

software model checkers, or by analysing the source code of the operating systems or the in-

tended program using points-to analysis techniques, separation logic or shape analysis. In this 

section, we review these techniques and focus more on points-to analysis techniques with its 

different analysis aspects, because points-to analysis was a selected solution in our research 

project. 

3.3.2.1 Static Memory Analysis Tools 

As discussed in chapter 2, many of the memory errors in operating system occur because of the 

weak typing of the C language. Foster et al. [147] introduced a framework for adding type 

qualifiers to C programs, by extending the standard type rules of C language to model the flow 

of qualifiers through a program. The framework checks for unchecked user pointer derefer-

encing in the Linux kernel. While this approach is effective, there is a high performance over-

head for the running operating system. 

Many static memory checking tools have been introduced over the last decade to check for 

memory errors and bugs. The main objective of these tools is to automatically determine 
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runtime properties (e.g. pointer dereferencing and type information) at compilation time. CRED 

(C Range Error Detector) [148] is a dynamic bounds checker which checks for buffer over-flow 

exploits in user input data that may cause runtime memory errors. CRED is based on the idea of 

referent objects [148]. A pointer’s referent object is the intended object to be referenced by that 

pointer. Thus, when a pointer is dereferenced, it must point within the bounds of its referent 

object. MECA [149] is a system and annotation language for memory error checking. MECA 

works by performing a flow-sensitive static analysis on the programs to locate unchecked user 

pointer dereferencing. Sparse [150] is another static memory error finding tool developed by the 

Linux community to bad pointer dereferencing in Linux kernels. ESP [151] is a flow-sensitive 

static analysis program verification tool that verifies unchecked user pointer dereferencing in 

Windows operating systems. Blanchet et al. [152] also introduced an abstract interpretation 

static program analyser to verify user pointer dereferencing of the critical embedded real-time 

software. 

Software model checking algorithms are also used to check for bugs and errors in large 

program. Software model checking is an algorithmic analysis of programs designed to prove 

properties of their executions [153], such as SLAM [154] and BLAST [155]. The software 

model checking approach is hard to apply on operating system kernels where the program size is 

extremely large. This makes the cost of developing the specification and the model of the pro-

gram too expensive. Thus, software model checking approaches are not as yet recommended for 

large operating systems. 

Separation logic [156] is an extension of Hoare logic [157] to deal with pointers. Separation 

logic has been used widely to formally verify and check for operating systems’ memory errors 

and bugs. In particular, separation logic is used to formally represent and verify heap data 

structures. Separation logic is based on the assumption; if the precondition includes all memory 

locations and all possible stores, variables and values that can be accessed during the program 

runtime, this will never lead to runtime memory error. Many research practices apply separation 

logic in different ways to perform formal verification of operating system memory especially 

heap memory [158-160]. Kolanski et al. [161] introduced an approach based on separation logic 
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for reasoning about virtual memory in operating systems, e.g. page tables, physical and virtual 

memory accesses, and shared memory. Marti et al. [160] also proposed a formal verification 

method of the heap manager of Topsy embedded operating system using separation Logic. 

Metha et al. [162] proposed a modelling and reasoning approach for C programs, by repre-

senting head data structures as a mapping from a location to value using separation logic. 

Filliâtre et al. [163] introduced a verification tool that takes a C program annotated with asser-

tions and generates verification conditions. Separation logic is a highly effective mechanism to 

formally verify pointers and memory locations of heap memory. However, it is quite compli-

cated to apply, especially if the verification targets to cover all kernel memory, not just heap 

memory of the user-mode where void pointers and null pointers are unlikely to exist. 

Another approach used to check for memory errors is shape analysis. Shape analysis is a 

program static analysis approach that discovers accurately the shapes of data structures allo-

cated in heap memory at a program point of the program’s execution path [164, 165]. Shape 

analysis goes a step beyond pointer aliasing information to infer properties such as whether a 

variable points to a cyclic or acyclic linked-list [164]. Shape analysis can be considered a simple 

form of pointer analysis that focuses on data structures, such as linked-lists, rather than all the 

regular pointer variables. Lee et al. [166] presented a shape analysis approach to automatically 

discover the shape of complex data structures in large programs such as linked-lists and trees. 

The discovered shape is then used to check for memory errors in the corresponding program at 

system runtime. Anders et al. and Češka et al. [164, 167] introduced a shape analysis approach 

based on the use of generic higher-order inductive predicates. The generic higher-order induc-

tive predicates describe the spatial relationships with a method of synthesizing new parame-

terized spatial predicates that can be used in combination with the higher-order predicates. 

Further work [168-170] also introduces a shape analysis approach to express invariants of data 

structures allocated in heap memory using a grammar-based language. Shape analysis is not our 

best solution to check for memory errors. In our research project, we do not only focus on data 

structures. We include every pointer and pointer-compatible variable in our analysis including 

operating system global and local variables, generic pointers and function pointers, as discussed 
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in chapter 6. Moreover, our approach flattens data structures to a scalar field, where each data 

member of a data structure should have its own and separate points-to sets and invariants. Based 

on that, points-to analysis was the best approach to be used in our research project to solve the 

problem of generic pointers ambiguity and weak typing in C-based operating systems. In the 

following section, we discuss key related work in points-to analysis techniques including the 

main analysis aspects of points-to analysis algorithms which as: such as context-sensitivity, 

flow-sensitivity and field-sensitivity. 

3.3.2.2 Points-to Analysis 

Points-to analysis has been a rich point of research to solve a lot of technical problems in pro-

grams, developed in C\C++ and Java such as memory error detection, program understating 

problems, and compiler optimization [27, 34, 171-178]. C\C++ programs have the greatest 

attention because of pointers, casting and weak typing problems discussed previously in chapter 

2. Basically, points-to analysis mainly differ in how we group aliasing information. The first two 

approaches to achieve points-to analysis were introduced by Andersen [33] and Steensgaard 

[34]. Anderson’s approach creates a node for each variable and the node may have different 

edges connected to other nodes in the same type-graph, while Steensgaard’s approach groups 

alias sets that point to the same memory locations and dereference the same objects in one node 

and each node have only one directed edge. Both approaches are flow-insensitive and con-

text-insensitive points-to analysis algorithms. Andersen’s is the slowest but the most precise and 

Steensgaard’s is the fast but less precise. Based on these two main algorithms, many other 

algorithms have been developed with impressive improvements in algorithmic scalability 

[179-181] and performance overhead [35, 182]. 

Most points-to analysis research efforts focus on achieving scalable and efficient con-

text-sensitive and field-sensitive on large programs [35, 36, 173, 175, 177, 179, 183, 184]. 

Achieving field-sensitivity is relatively straight-forward and the difficulty always remains in 

achieving fast, scalable and precise context-sensitivity. Roughly speaking, context-sensitivity is 

usually achieved by sacrificing performance or scalability [185-187]. Context-sensitivity is 
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achieved via different approaches such as computing transitive closure, computing SSAs (single 

static assignments), heap cloning and CFL-reachability (Context-free Language) formulation. 

Almost all of these different approaches are applied through the standard points-to analysis 

phases; intraprocedural, interprocedural and context-sensitive analysis phases. 

Avots et al. [29] presented a context-sensitive and field-sensitive points-to analysis algo-

rithm in order to enable detecting pointer dereferencing vulnerabilities in C programs. Their 

analysis are based on the assumption that; each object is allocated in a separate memory space 

and; a pointer to an object can only be derived from a pointer to the same object. Con-

text-sensitivity is handled by applying a cloning-based approach. Cloning-based approaches 

conceptually means generating multiple instances of a procedure such that each single calling 

context for a procedure invokes a different instance of it. Contexts in their algorithm are dis-

tinguished using the entire call-paths between callers and callees. Avots et al. also introduced a 

type inference approach based on their points-to analysis algorithm, to determine the actual 

target types of the fields that have declared void typed pointers or objects. This helps in 

computing a set of types that can be safely dereferenced through a pointer or an object at system 

runtime. Avots approach is scalable to analyse medium-size programs of around 30K LOC 

(Lines of Code) in a reasonable time with precise results. Liang et al. [188] also introduced a 

fast modular context-sensitive analysis algorithm that is based on heap cloning approach. 

Liang’s algorithm mainly identifies and analyse runtime memory locations that could be passed 

to a procedure. Lattner et al. [173] introduced a new fast full-heap cloning points-to analysis 

algorithm, named DSA, to achieve context-sensitivity for large programs of 200K LOC in a few 

seconds. The basic idea behind the fast scalable analysis of Latter’s approach is incrementally 

building the call-graph of the program during the points-to analysis, not in a separate analysis 

step as happens in many algorithms. DSA is also capable of analysing linked-lists and data 

structures to identify their lifetime and actual runtime types. Recursions in DSA are handled by 

building the Strongly Connected Components (SSCs) of the program – based on Tarjan’s algo-

rithm [189] – of the call-graph in the bottom-up analysis phase. Then, for each strongly con-

nected component, context-sensitivity analysis is applied instead of applying the con-
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text-sensitivity analysis for each function in a strongly connected component. The DSA algo-

rithm is implemented within the LLVM compiler and the analysis is performed at the link-time 

of a compiled program. Despite the effectiveness and fast performance of the DSA algorithm, it 

cannot be used in our research project to achieve highly precise and scalable points-to analysis 

of an operating system’s kernel source code. The DSA is mainly used in compilers to provide a 

fast aliasing approach that do not cover the generic pointers, casting and typing problems ac-

curately. These problems cannot be resolved at compilation time and requires a static deep 

analysis of all pointers and pointer-compatible variables in the program.  

Summary-based algorithms have been also used to enhance the analysis scalability and 

performance in achieving context-sensitivity. Summary-based points-to algorithms are more 

precise and less expensive than heap cloning in order to achieve context-sensitivity [36, 184]. 

Summary-based points-to algorithms are mainly based on computing procedure summaries that 

reflect all of their side effects as a caller beyond its context at system runtime. Nystrom et al. 

[184] presented also a summary-based context-sensitive points-to analysis to address the 

scalability and precision problems by in-lining function calls in the interprocedural analysis 

phase based on the computed procedure summarizes.   

The context-free language-reachability formulation approach is used also to model heap 

objects and function calls [177, 178] to compute precise points-to sets, where a context-free 

language is defined in the analysis algorithm. CFL-reachability points-to analysis algorithms 

proved high precision but with less scalability for large programs. Xu et al. [178] introduced a 

context-free language-based algorithm that scales to analyse large Java programs with ac-

ceptable precision rate. Dereferencing operations in heap memory is formulated as an all-pairs 

context-free language-reachability problem over a simplified balanced-parentheses language. 

Instead of building the program call-graph to perform the points-to analysis, a symbolic 

points-to graph that reflects store and load operations is used instead, to enable faster points-to 

analysis. Context-sensitivity is then achieved by computing the functions summaries and then 

propagates the reachability information from callees to callers. Whaley et al. [181] proposed a 

fast and scalable context-sensitive points-to analysis for large Java programs of around 700K 
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LOC. The high performance and scalability of this approach comes on the cost of ignoring heap 

variables from the context-sensitively analysis phase. Generally speaking, performing points-to 

analysis on C programs is more difficult than Java programs, simply because Java is a more 

type-safe language where it handles the generic pointers problem in its software development 

platform. Heintze et al. [182] achieved context-sensitivity by computing the dynamic transitive 

closure of the program, where indirect points-to relations are resolved via reachability queries 

on the transitive closure graph. This algorithm assumes that an edge between two variables must 

be a non-null path. This means that paths between generic pointers cannot be queried on the 

transitive closure graph, which is a mandatory part of our research problem. In [181, 190] 

context-sensitivity is handled using the full call-paths of the call sites, and they sacrifice scala-

bility for precision. 

Buss et al. [191] designed a points-to analysis algorithm to support implementing 

source-to-source transformation tools. The proposed points-to analysis algorithm operates on 

program’s abstract syntax tress instead of the program’s source code directly. Their proposed 

points-to analysis algorithm is an iterative flow-insensitive and context-insensitive. Buss et al. 

use the must and may points-to relations in their algorithm to achieve precision. A must relation 

is assigned if all the possible execution paths to a program point include a direct dereferencing 

operation, and a may relation is assigned if an indirect dereferencing operation is encountered 

during program execution. They handle return pointers by computing the possible return values 

to be bound to the left-hand side of the assignment statement at the call site. Function pointers 

are also handled in a traditional way by building an iterative function call graph. Buss et al. 

points-to analysis algorithm can analyse small C programs up to 28K LOC within reasonable 

time and acceptable precision.  

Yu et al. [36] proposed a context-sensitive and field-sensitive points-to analysis with a 

full-sparse flow-sensitive analysis on a static single assignment flow-insensitively graphs. This 

enabled achieving higher scalability for medium-sized programs. The basic idea behind the Yu 

et al. algorithm is introducing points-to levels that allow computing the points-to relations of a 

pointer at a particular level based on the points-to relations of the pointers at the higher levels in 
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the system graph. This is based on the assumption that whenever a variable is analysed, all the 

other variables that may have an impact on its value or dereferencing operations either have 

been analysed earlier or are being analysed at the same time. The main problem of this algorithm 

is the double analysis of the control flow graph of the target program. The control-flow graph is 

built once to construct the static single assignment form of the pointers of a current level, and the 

second time to propagate the points-to sets of each level to their use sites. Moreover, static single 

assignment is not highly precise when analysing linked-lists and data structures.  

One of the key problems with achieving context-sensitivity while adding an acceptable 

performance overhead is cycle detection. Most points-to algorithms mainly depend on detecting 

cycles in the call graph and then collapsing the cycle components into a single node. Thus, all 

nodes in the same cycle are guaranteed to have similar points-to sets and can safely be collapsed 

together [35]. However, this method has a significant performance overhead on the algorithm’s 

performance as their cycle detection approach works on the whole call graph, whether a cycle 

exists or not. Pearce et al. [192] presented an efficient mechanism for online cycle detection. In 

order to avoid cycle detection at every edge insertion in the program type graph, the algorithm 

dynamically maintains a topological ordering of the call graph of the program. Pearce et al. later 

proposed a more efficient algorithm [193]. Rather than detecting cycles at every edge insertion, 

the entire call graph is periodically swept to detect any cycles that have been formed since the 

last sweep of the program [35]. Ben and Lin [35] discussed an approach for efficient cycle 

detection online, called lazy cycle detection. This technique is lazy because rather than trying to 

detect cycles when they are created in the call graph, it waits until the effect of the cycle be-

comes evident. Such approach has some pros and cons; however the advantage of decreasing the 

performance overhead without highly affecting the accuracy of the points-to analysis algorithm 

outweighs the disadvantages which mainly lie in the false positive rate of detecting cycles.  

Flow sensitive analysis is no less important than field and context-sensitive analysis and it 

also has been a rich research area. Hind and Pioli [194, 195] discussed the benefits of combining 

flow sensitivity with context sensitivity to improve analysis performance and precision. Hind 

and Pioli presented a flow-sensitive points-to analysis algorithm using a classical iterative 
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analysis approach where pointer information are passed only to callees that are reachable from a 

global variable or from one of the procedure parameters in the call graph. Wilson et al. [196] 

presented a context and partially flow sensitive points-to analysis for small program based on 

partial transfer functions that summarize the effects of procedures at the intraprocedural analysis 

phase. Hasti et al. [197] proposed a technique to iteratively build single static assignments form 

for program variables with known aliasing to perform partial flow sensitive points-to analysis. 

Chase et al. [31] achieved flow sensitivity also by computing single static assignments form 

dynamically during the points-to analysis phase instead of computing it in a separate phase to 

enhance the analysis performance. Zhu et al. [198] took initial steps towards using Binary 

Decision Diagrams (BDDs) to implement a precise flow sensitive points-to. Tok et al. [199] 

presented a technique to perform fast flow sensitive analysis using def-use chains to reorder the 

instructions of the program based on the computed def-use chains, in order to enhance per-

formance. A def-use chain contains a definition of a variable and all the variable uses that are 

reachable only from that variable definition. Hardekopf and Lin [38] presented a semi-sparse 

flow sensitive pointer analysis that combines binary decision diagrams and single static as-

signment to perform a sparse analysis on program typed variables (not void typed pointers) 

and iterative flow sensitive analysis is performed on pointer variables, including void pointers, 

to improve scalability.  

In our research project, we used points-to analysis in a new and a different way from the 

previous discussed approaches. The main objective of most of the previous approaches is to 

achieve scalability without losing the fast performance and precision of the algorithm. However 

in our project scalability and precision are the only factors that we consider in our analysis. Thus, 

none of these approaches meet our requirements in analysing the operating system’s kernel as 

they do not scale to the enormous size and complexity typical of an operating system kernel. 

Moreover, most algorithms are used during program compilation to name objects by allocation 

site, not by the full access path, which do not solve null pointers ambiguity. Thus, they do not 

enable solving the ambiguity of null pointers. 
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To the best of our knowledge, KOP [14] – a Microsoft tool – is the first and only static 

analysis tool that employed points-to analysis in order to analyse kernel source code to solve 

generic pointer ambiguities. However, KOP has a number of limitations: KOP uses a medium 

level intermediate representation (MIR) of the kernel source code. This medium level inter-

mediate representation complicates the analysis and results in improper points-to sets. This is 

because medium level intermediate representation is extremely big in size, omits very important 

information such as declarations, data types and type casting, and creates a lot of temporary 

variables that are allocated identically to source code variables and thus are not easily distin-

guishable from source code variables [200]. Also in KOP, the points-to sets of the void pointer 

typed variables are not highly precise and thus they use a set of operating system specific con-

straint criteria at runtime to find out the appropriate candidate type for the objects, and this 

consequently the runtime performance of the operating system. KOP also does not handle 

casting and null pointer problems. Moreover, KOP assumes that it has the ability to detect 

kernel dynamic hidden objects based on the traditional memory traversal techniques, however 

the traditional memory traversal techniques are vulnerable to direct kernel object manipulation 

rootkits that maliciously modify object pointers as discussed by Bahram et al. [15]. 
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3.4 Related Work Limitations Summary  

Developing a virtualization-aware security solution becomes an urgent necessity for IaaS cloud 

computing model. To the best of our knowledge, no current related work introduced such a 

solution to robustly and externally protect the hosted virtual machines in the IaaS platform. To 

develop such a virtualization-aware security solution, multi-disciplinary technical problems 

needed to be addressed in the following areas: virtual machine introspection, semantic gap and 

operating system kernel data security, and kernel memory, pointers and kernel dynamically 

allocated objects. 

In this chapter, we reviewed key related work in these areas and we can conclude that each 

of these areas still has a number of limitations that makes it inappropriate to develop systematic 

and robust security software for IaaS platforms, as shown in Table  3-2. In summary, the main 

limitations of the previously discussed research efforts that relates to our research project are: 

the manual approach used by most virtual machine introspection techniques to overcome the 

semantic gap problem, the insecure implementation of active monitoring at the virtual machine 

level, the inability to defend against zero-day threats that could affect kernel dynamic data and 

kernel memory. Based on the limitations discussed in this chapter, we developed a set of new 

techniques and methodologies to address these limitations and meet our design requirements – 

that are discussed in chapter 4, 5, 6, 7 and 8.   
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Table ‎3-2. Key limitations in current related work. 

Research Area Technical Problems Limitations of current approaches 

IaaS 

Security 

Virtualization 

aware 

security solutions 

 The lack of a systematic security solution that can provision security from a cloud provider’s perspective to protect 

the hosted virtual machines in the IaaS platforms. 

 Current security solutions deployment models do not enable a central management for a cloud instance and thus 

does not support virtual machine migration between the protected servers and generic protection for the different 

running operating systems in a cloud server. 

Virtual 

 Machine 

Security 

Systematic 

solutions for 

semantic gap 

 Current research practices depend on a manual approach to overcome the semantic gap problem. Such manual 

implementation for semantic gap solutions has many critical limitations that make it unreliable to enable imple-

menting robust security software. 

 The inefficient memory traversal techniques and value-invariants approaches used to uncover kernel dynamic 

objects at system runtime opens the door for a big number of system rootkits that depend on malicious pointer 

manipulation to take control over the running operating system. 

Active and 

transparent 

monitoring 

 Most active monitoring implementations do not enable safe active and transparent monitoring of the hosted virtual 

machine that could be implemented in the IaaS platform. Also most of the current research efforts have a conflict 

with the design requirements of the prosed virtualization-aware security solution of this research project.  
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Research Area Technical Problems Limitations of current approaches 

Virtual 

 Machine 

Security 

Performance 

overhead 

 Performance overhead of current security solutions to provide real-time protection is high, as they mainly depend 

on duplicating the virtual machines’ memory. The original copy works as normal however it does not pass in-

structions to the processor, instead, if the inspection was successful, the other memory space copy take control to 

pass the instructions to the processor. 

 Memory traversal and value invariant mechanisms also have high performance overhead that makes it difficult to 

support the implementation of near real-time security software.  

Operating 

Systems 

Security 

Generic pointers 

 Almost few researchers who tackled the problem of disambiguating generic pointers located in operating system’s 

kernel dynamic data, in order to enable systematic recognition of the runtime data layout of an operating system’s 

kernel. However these approaches do not solve the generic pointers problem efficiently and pointers such as void 

and null pointers are still a pain in operating systems with no sufficient solution. 

Uncovering kernel 

runtime objects 

 Current implementations of memory traversal techniques and value invariant approaches that are used to locate 

kernel runtime objects in kernel memory have critical security limitations and cannot efficiently and robustly 

uncover the runtime kernel dynamic objects. 
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Research Area Technical Problems Limitations of current approaches 

Operating 

Systems 

Security 

Detecting zero-day 

threats 

 Most of the current research efforts focus on detecting a specific type of security threats that is already known. 

Zero-day threats have had little attention in most of the current research efforts. 

 Also systematic security solutions that have the intelligence to be rootkit self-detectable and self-mitigatable have 

been tackled in research to support efficient and fast detection of zero day threats that could target the different 

operating systems.  

Points-to 

Analysis 

Scalability and 

Precision 

 Most of the existing points-to analysis algorithms do not scale to the enormous size and complexity typical of an 

operating system kernel. Moreover, they commonly are used during program compilation to name objects by al-

location site, not by the full access path, which do not solve null pointers ambiguity. 

 In summary, most of the current points-to algorithms are not capable of providing highly scalable and precise 

points-to analysis that main solve the casting, weak typing, and null and void pointers problems. 
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  Chapter 4

Developing a Virtualization-Aware Security 

Solution for IaaS Platforms 

In chapter 2, we have discussed key security challenges and problems in the IaaS cloud platform, 

and in chapter 3 we reviewed the current research efforts and their limitations in meeting our 

research objectives. Based on that, we introduce in this chapter our solution to the 

loss-of-control security problem over the hosted virtual machines in the IaaS platform. In this 

chapter, we give an overview on the big picture of our research project to develop a virtualiza-

tion-aware security solution that has the ability to provide pre-emptive protection externally for 

hosted virtual machines, without placing any security codes in their guest operating systems. In 

Section 4.1, we briefly present the main technical problems and design requirements that our 

security solution consider in its design and implementation phases, and in section 4.2, we 

overview the high-level architecture of our virtualization-aware security solution and our new 

approaches and mechanisms used to develop the different components of the proposed security 

software. 

4.1 Introduction 

As previously discussed in chapter 2, a key problem of the IaaS platform is the loss-of-control 

security problem over the hosted virtual machines. This makes the security process of these 

virtual machines a shared responsibility between the cloud provider and consumers. As shown 

in Figure  4-1, cloud providers are responsible for the security of all the cloud platform layers, 

while at the same time consumers are holding the security responsibility of their virtual IT assets. 

Thus, the greatest challenge in the IaaS cloud platform is applying a security mechanism that 

enables both cloud providers and consumers to fully utilize the virtualization advantages from 

both perspectives. In other words, these security mechanisms should: (i) enable providers to 

safely host virtual machines beyond the security level provided by the consumer using the 
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traditional in-guest security applications. (ii) Enable providers to safely host virtual machines 

without restricting consumers to a specific set of security mechanisms or security software 

provided and supported by the cloud provider. 

Applications

Virtual Machines

Hypervisor

Cloud Physical Infrastructure

Cloud
provider

responsibility 

Cloud
consumer

responsibility 

 

Figure ‎4-1. The shard-responsibility security problem in the IaaS cloud platform. 

In such a threat model, protecting the IaaS platform using traditional in-guest security 

systems is not an effective solution that guarantees robust protection for the hosted virtual 

machines and the underlying virtual infrastructure. Thus, to efficiently address IaaS security 

requirements, new virtualization-aware security solutions need to be introduced. Such solutions 

should have the ability to actively protect the hosted virtual machines from outside the virtual 

machine itself and without relying on operating system kernel trustworthiness, by moving 

protection below the guest operating system level. 

In this research project, we developed a virtualization-aware security solution that delivers 

advanced security to protect the running guest operating system instances of the hosted virtual 

machines externally. This security software ensures compliance (isolating critical workloads) 

and maximizes performance and operational flexibility for both cloud consumers and providers. 

In section  4.2, we briefly overview our general approaches and mechanisms to develop the main 

components of the proposed security solution. 
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4.2 A New Virtualization-Aware Security Solution 

A virtualization-aware security solution should have and support specific characteristics and 

design requirements in order to achieve its goals. These include:  

 High Flexibility. Allowing enterprises to outsource hardware while maintaining 

complete control and protection over the cloud platform without adding any se-

curity restrictions on the cloud consumers and their own virtual machines. 

 Mobility. Virtualization enables live migration of virtual machines from one 

server to another, for the purpose of workload balancing and management, and 

performance and maintenance issues. Thus, a virtualization-aware security solu-

tion should be able to send and receive the security status of a virtual machine to 

and from the corresponding security software between the different servers of an 

IaaS platform to support safe virtual machine migration. The security software 

should also automatically – after the virtual machine migrates to another server – 

resume protection and update its computed memory addresses of the correspond-

ing virtual machines in a near real-time. In short, the security software should be 

able to protect virtual machines at the virtual machine level, regardless of the lo-

cation of the virtual machine within the cloud platform. 

 Scalability and Performance. Server aggregation in cloud platforms duplicates 

the amount of workloads that run inside cloud physical servers. Thus it increases 

the complexity of managing and providing security for the cloud workload. Con-

sequently, the security software should be highly scalable to monitor and protect 

multiple concurrent virtual machines at the same time with a single instance of 

the running security software, and with the lowest possible performance over-

head. Running security software ordinarily adds a significant amount of overhead 

to the underlying operating system, and this overhead definitely increases in vir-

tualized environment because of the hypervisor layer that traps all access requests 

to physical hardware from the hosted virtual machines. In addition, hypervisors 

introduce an additional layer of memory address translation because of the 
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shadow page tables that map a guest linear memory address to a host physical 

memory address which also affects the software performance. 

 Reliability and Robustness. A virtualization-aware security solution should be re-

liable and resistant to the increasing level of rootkit efficiency that might com-

promise the security of operating systems and hypervisors. Moreover, hypervisor 

vulnerabilities will typically be exploited by a rootkit that has already compro-

mised a virtual machine. So, the optimal way to protect against hypervisor vul-

nerabilities is to prevent rootkits from getting access to the hosted virtual ma-

chines in the first place. 

Implementing the aforementioned security solution is a multi-disciplinary research project, 

where various research problems needed to be tackled in order to enable efficient and systematic 

protection for the hosted virtual machines in IaaS platforms. Figure  4-2 shows the high-level 

process of developing our virtualization-aware security solution. Five main research problems 

needed to be resolved in order to deliver this security solution, discussed in 

tions  4.2.1,  4.2.2,  4.2.3,  4.2.4 and  4.2.5.  

 

Figure ‎4-2. The high-level process of developing our virtualization-aware security solution. 
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 Active Monitoring 4.2.1

Transparent and active monitoring is a paramount feature in any security software in order to 

enable the sufficient protection against system threats. A first and crucial step to implementing a 

virtualization-aware security solution is enabling efficient monitoring for the hosted virtual 

machines without installing any security code inside the guest operating systems or without 

relying on the operating system kernel trustworthiness. This is because guest operating systems 

are untrusted and thus security related information about a virtual machine internal state cannot 

be reliably obtained from the operating system kernel memory of APIs. 

As discussed previously in chapter 2, virtual machine introspection techniques enable 

monitoring the hosted virtual machines externally. However, in order to implement a powerful 

introspection framework and solve the semantic gap problem properly, two main challenges 

needed to be addressed: (i) the introspection framework should be transparent to the running 

virtual machines and able to provide near real-time monitoring and protection. (ii) The intro-

spection framework should have the ability to provide active monitoring instead of the common 

passive monitoring mechanisms to enable threat prevention not just detection. This also should 

be done without installing any security hooks in the guest operating systems.  

To solve the monitoring problem, we developed CloudSec, a virtual machine introspection 

framework that transparently and actively monitors the running virtual machines in a virtualized 

computing environment. CloudSec utilizes virtual machine introspection techniques to exter-

nally monitor the running virtual machines in order to provide fine-grained inspection of the 

virtual machines’ physical memory, at a hypervisor level. The main idea behind CloudSec is 

installing the security hooks at the hypervisor level instead of the guest operating system level. 

Particularly, CloudSec works as a watchdog at the hypervisor level with access rights to hosted 

virtual machines’ physical memory via the hypervisor, as shown in Figure  4-3. Such design 

allows CloudSec to read the internal state of the running virtual machines without taxing the 

virtual machine performance or mobility. Details of CloudSec architecture and approach are 

discussed in chapter 5. 
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Figure ‎4-3. A simple view of how CloudSec works at a hypervisor level. 

 Semantic Gap 4.2.2

The second and most important step in order to provide systematic security for the hosted virtual 

machines is accurately interpreting the internal state of the hosted virtual machines from the 

introspected hardware memory bytes via the introspection framework, in order to overcome the 

semantic gap problem. The most robust solution for the semantic gap problem is accurately 

mapping between the guest operating system runtime kernel data layout and the virtual ma-

chine’s underlying memory layout. However, as discussed before, one of the key problems of 

the C-based operating systems is the existence of thousands of data structures that have direct 

and indirect points-to relations between each other with no explicit integrity constraints. In such 

a complex data layout, the runtime memory layout of the data structures cannot be predicted 

during compilation time, making the process of mapping between the data layout and the 

memory layout very complicated. Moreover, as discussed in chapter 3, the problem with the 

current state-of-the-art solutions that follow this approach is that; most depend on their prior 

knowledge of the operating system kernel data layout to manually solve the semantic gap. 

Acquiring the runtime kernel data layout manually is not an easy task; as this requires massive 

hands-on experience with the kernel runtime data layouts in different operating system versions 

and kernel build. Also, such a huge effort in analysing a specific kernel version may not be 

applicable to another version of the same operating system. Thus, applying such limited ap-

proach represents a significant barrier to developing virtualization-aware security solutions. 

Another key problem with the current virtual machine introspection tools is that they are not 

operating system flexible tools. A single tool may have the ability to solve the semantic gap for 

a specific operating system such Linux or Windows, but not for both. 
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Based on the above limitations, we introduce, in chapter 6, OS-KDD. OS-KDD is a static 

analysis tool that has the ability to systematically build an accurate kernel data definition that 

precisely and statically reflects the runtime data layout of an operating system’s kernel. 

OS-KDD is operating system flexible; it has the ability to analyse a wide range of platforms 

used to run mission-critical applications in the cloud platforms, including Microsoft Windows, 

Linux and Solaris. OS-KDD efficiently handles the generic pointers challenge of the C-based 

operating systems. OS-KDD takes the source code of an operating system kernel as input and 

outputs a directed type-graph that accurately represents the runtime kernel data layout, statically. 

The generated type-graph is not only used to efficiently overcome the semantic gap problem 

and get an external and accurate view of the virtual machine's internal running state, but also 

used to enable accurate uncovering for the dynamic kernel runtime objects and to generate a set 

of constraints on kernel dynamic data to be used in performing kernel data integrity checks.  

 Uncovering Kernel Dynamic Objects 4.2.3

A following step after overcoming the semantic gap problem and defining the runtime kernel 

data layout is uncovering – in near real-time – the running instances of operating system’s kernel 

runtime objects in order to monitor their behaviours and check their integrity. As discussed 

before in chapter 2, accurately uncovering the running instances of the operating system kernel 

objects is an important task in many security solutions not just limited to virtualization-aware 

security solutions. However, current research efforts (whether those who depend on memory 

mapping techniques or value-invariant approaches) are limited for several seasons – discussed 

previously in chapter 2. Two key limitations of those approaches are the high performance 

overhead and the inability to handle the indirect points-to relations and their embedded objects 

properly. 

Motivated by the limitations of these approaches and the need to accurately identify the 

running instances of runtime kernel dynamic objects from a trusted source that does not depend 

on the operating system kernel trustworthiness, we have developed a new approach called 

DIGGER. DIGGER is capable of systematically uncovering all system runtime objects without 
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a prior knowledge of the operating system kernel data layout in memory. DIGGER employs a 

hybrid mechanism that combines a new value-invariant approach and an advanced memory 

mapping technique, in order to get accurate results with nearly complete coverage for the kernel 

address space and with a low performance overhead. The value-invariant approach is used to 

discover the kernel objects with no need of memory mapping information, while the memory 

mapping technique is used to retrieve the object’s details in depth including points-to relations 

with the other running data structures, without any prior knowledge of the runtime data layout in 

memory of the running operating system’s kernel. 

DIGGER uses the four byte pool memory tagging schema as a new value-invariant sig-

nature to uncover kernel runtime objects from the kernel address space. DIGGER then uses the 

generated type-graph from OS-KDD – that summarizes the different data types located in the 

kernel along with their connectivity patterns – to enable systematic mapping of objects’ details 

after locating these objects in the runtime memory. In chapter 7 we discuss DIGGER, in detail. 

 Kernel Integrity Checks 4.2.4

The ability of a malicious hacker to remotely exploit a runtime vulnerability in a guest operating 

system is a significant threat that might give the hacker a complete control for the victim guest 

operating system. This would subsequently enable the hacker to break into the underlying cloud 

platform or the co-located virtual machines in the same physical server. 

As the operating system kernel is the core of trust (where every other running application 

relies on it), we mainly focus on protecting the operating system kernel – especially kernel data. 

Kernel data rootkits are challenging to defend against because they assist in creating memory 

vulnerabilities without injecting stealthy code into the running guest operating system. 

Checking the integrity of an operating system’s kernel data has been a major concern as reported 

in many operating system security research [1, 14, 20]. However, current research efforts and 

practices [16, 17, 110] are limited as they depend on their prior knowledge of the kernel runtime 

data layout to develop a set of integrity constraints to be enforced at system runtime. Current 

approaches also do not consider the widespread use of generic pointers across kernel data, 
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making their approach imprecise and vulnerable to a wide range of attacks that can exploit these 

pointers. Such approaches significantly reduce the likelihood of detecting zero-day threats. 

In this thesis, we focus mainly on kernel data rootkits that target or modify the dynamically 

allocated kernel runtime objects. In chapter 8, we present a set of high-performance integrity 

checking tools that provides protection for the running guest operating systems in a near re-

al-time fashion. Our integrity checking approach mainly depends on DIGGER and OS-KDD to 

systematically detect behaviour violations of the runtime objects due to malicious pointer 

modifications in memory. The proposed integrity checking tools mainly works on the kernel 

memory bugs caused by the memory runtime errors caused by pointers and unsafe types of 

C\C++. These tools mainly check for dangling pointers, hidden objects and function pointers’ 

modifications within the dynamic kernel objects. In chapter 8, we discuss the approaches, im-

plementation and evaluation details of these integrity checking tools. 

 Security Appliance Deployment  4.2.5

The final step in implementing our virtualization-aware security solution is deploying and 

integrating the previously developed components in a single solution that has the ability to 

monitor the virtual machines’ behaviour, and detect and prevent threats. To provide this reliable 

and high performance security solution, virtual appliances are a good solution for deploying 

security software. Virtual appliances offer a new paradigm for software delivery by packaging 

pre-configured, virtualization-ready solutions in a single software package that is secure and 

easy to distribute, deploy and manage [201]. Virtual appliance deployment processes typically 

require installing the security solution artefacts, installing and configuring middleware con-

tainers e.g. web servers and databases, and setting up the communication, isolation, and security 

of the security software with the underlying cloud infrastructure [105].  In chapter 8, we dis-

cuss the details of developing and deploying our security appliance in the IaaS platform to meet 

our design requirements.  
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4.3 Summary 

In this chapter, we gave an overview on the big picture of our research project which is devel-

oping a virtualization-aware security solution that has the ability to systematically protect the 

hosted virtual machines in IaaS platforms. In order to develop such a security solution, different 

new components and mechanisms need to be developed and integrated together in order to 

enable delivering systematic, accurate and high-performance security for the guest operating 

systems. 



 

  

81 

 

  Chapter 5

CloudSec: A Virtual Machine Introspection Frame-

work 

A prerequisite to implementing virtualization-aware security solutions is to develop a trans-

parent and active security monitoring framework that works at a hypervisor level. In this chapter, 

we addressed and discussed the challenges of implementing such framework and introduced a 

monitoring framework, named CloudSec. CloudSec is an introspection framework designed to 

externally and transparently monitor the hosted virtual machines in the IaaS platform. CloudSec 

utilizes virtual machine introspection techniques to provide fine-grained inspection of virtual 

machines’ physical memory, in order to enable near-real time and active monitoring for the 

running operating system kernel and memory events.  

5.1 Introduction 

Virtualization has a great role in supporting the development of such security solutions by 

utilizing virtual machine introspection techniques. Virtual machine introspection enables ob-

servation of a running virtual machine’s state and events from outside the virtual machine, at a 

hypervisor level. In particular, these outside observations are supposed to have a similar se-

mantic view of system states as from inside the virtual machine [15]. Developing a trusted 

virtual machine introspection framework is the first and most important step towards devel-

oping a robust and effective security tool. Key problems behind utilizing virtual machine in-

trospection techniques are the semantic gap and active monitoring. 

Notwithstanding the drawbacks of the manual approaches used in memory mapping tech-

nique (discussed before in chapter 2 and 3) in overcoming the semantic gap, this technique was 

used in implementing CloudSec. This is because the main focus of CloudSec, in this chapter, is 

the introduction of an introspection framework that has the ability to provide active and trans-

parent monitoring, rather than systematically overcoming the semantic gap problem. However, 
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we tackle the systematic overcoming of this semantic gap problem in CloudSec++ using 

OS-KDD, described in subsequent chapters. We developed CloudSec, a proof-of-concept pro-

totype using the VMsafe libraries on a VMware ESX cloud platform. 

CloudSec has the ability to provide feasible monitoring for the hosted virtual machines, 

without placing any security code inside the running operating systems of these virtual ma-

chines. CloudSec achieves active and transparent monitoring by placing security hooks into the 

hypervisor level rather than into the virtual machines’ running operating system level. These 

hooks trap system events of the virtual machines, by interrupting memory call events at the 

hypervisor level, and then transfer control to the security solution rather than to the virtual 

machine itself. For instance, consider if a guest virtual machine issues a request to allocate 

memory or write to the memory via the hypervisor. The hypervisor will receive the request via a 

specific communication channel that exists between the guest virtual machines and a specific 

interface in the hypervisor, and then the hypervisor will transfer the control to the security 

solution via a separate secure communication channel in order to inspect the system event call 

request. After that a command is transferred back to the hypervisor which indicates whether to 

proceed with the request execution or suspend it based on the security solution’s decision.  

The rest of this chapter is organized as follows: The rest of section  5.1 discusses the main 

design requirements to implement CloudSec, in addition to the security threat model of 

CloudSec. Section  5.3 describes the high-level architecture of CloudSec, and in section  5.4, we 

explain in detail the steps to implement and deploy CloudSec in an IaaS platform. Section  0 

describes an evaluation of the prototype, and finally section  5.5 discusses key strengths and 

limitations of CloudSec. 

5.2 Threat Model 

Basically, the threat model of CloudSec does not add new assumptions to the standard as-

sumptions used in most virtual machine introspection tools [6, 7, 94]. We assume a trustworthy 

hypervisor, based on the assumption that the source code of the hypervisor is much smaller and 

more reliable than general-purpose operating systems. In particular, hypervisors are ideally 
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designed to be a thin software layer that is installed directly on the hardware, and their code is 

robustly verifiable and secure. Also, existing hardware based protection technologies including 

Trusted Platform Module [202] and Intel trusted Execution Technology [203] are capable of 

effectively establishing a root of trust by guaranteeing the loading of a hypervisor in a trust-

worthy manner. In other words, these technologies guarantee the load-time integrity of the 

hypervisor [116]. Based on these assumptions the hypervisor – including the virtual switch and 

all its kernel code – is part of the Trusted Computing Base (TCB) of CloudSec. The trusted 

computing base of a system is the set of all hardware, firmware, and software components that 

are critical to its security, in the sense that vulnerabilities occurring inside the TCB might 

jeopardize the security properties of the entire system. By contrast, parts of a system outside the 

TCB must not be able to misbehave in a way that would leak any more privileges than are 

granted to them in accordance to the security policy [204]. Based on this concept, the hosted 

virtual machines are not part of the TCB, and cannot be trusted to execute any monitor-

ing/security code inside them. This is because a hacker might gain a root privilege access to the 

virtual machine. The malicious hacker might even be the virtual machine owner, and thus the 

hacker can modify any code or data in the operating system’s kernel. However, we assume that a 

malicious hacker does not have access rights to the real physical memory of the virtual machine. 

In virtualization, hardware events must go through the hypervisor first before getting back to the 

virtual machine and these events are monitored by CloudSec.  

The design of our security architecture mainly depends on deploying a dedicated virtual 

machine, named the security virtual machine, to host the developed monitoring software. This 

security virtual machine has a privileged access to the hypervisor and is isolated from the other 

server workloads. Therefore, the security virtual machine is also part of the trusted computing 

base of CloudSec architecture.  

Beyond these general assumptions, we have made an assumption specific to CloudSec 

architecture to allow more flexibility in the IaaS platform and to not conflict with the cloud 

consumer design requirements. We do not enforce the hosted virtual machines to undergo a 

secure boot cycle [205], as CloudSec works directly on the hardware bytes which are considered 
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a trusted source of information to detect hidden and polymorphism threats
5
. If true, this as-

sumption makes CloudSec more flexible than other similar approaches. For example, Bryan et 

al. [206] assume a trusted execution environment for the hosted virtual machines where these 

virtual machines are isolated from malicious software running in the user environment. 

 Design Requirements 5.2.1

We designed CloudSec using a set of predefined security requirements in order to meet the 

security goals of the IaaS environment. These security requirements, described below, are the 

basic foundation for implementing CloudSec.  

Active and Transparent Monitoring. Many current approaches implement a passive mon-

itoring technique where an action cannot be taken to prevent a threat [120, 127, 132]. This 

makes the security software limited to being just a monitoring tool rather than a security tool 

that can prevent a threat and limit a threat consequences. Active monitoring means the ability to 

suspend system events execution and to pass control to the security solution for an action to be 

taken. There are many research efforts that provide an active monitoring feature in their security 

tools. Most depend on installing security hooks in the hosted virtual machines in order to trap 

system events [9, 102]. However, this type of active monitoring is not particularly trustworthy 

because part of the security software (which is considered part of the trusted computing base) is 

placed inside the untrusted virtual machine (which is not part of trusted computing base). Even 

if the security code is protected, it is still placed in the consumer’s virtual machine where the 

cloud provider has no control over it. Moreover, one of the key goals in IaaS security applica-

tions is removing any security code from the hosted virtual machines.  

Isolation. Security solutions should be isolated from cloud consumers to avoid tampering 

with the security software behaviour. Virtualization enables isolating multiple co-located virtual 

                                                      

5 Later in chapters 8, we discuss how our systematic approach has the ability to efficiently detect any modifi-

cations to the operating system kernel data, without the requirement of load-time integrity of the virtual machines’ 

running operating systems. 
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machines running on the same physical host by using dedicated virtual switches and secure 

communication channels. Isolation makes it difficult for hackers to detect the existence of a 

security tool in their victim virtual machines. Thus, in CloudSec, all of its components are 

isolated and protected in a dedicated virtual machine with a privileged access to the underlying 

hypervisor. For better security, the security virtual machine is deployed as a virtual appliance. 

Recently, virtual appliances [201] have been introduced as a new solution for deploying secu-

rity virtual machines. A virtual appliance, like a virtual machine, incorporates application, op-

erating system and virtual hardware. However, virtual appliances differ from virtual machines in 

that they are delivered as preconfigured solutions running a “Just enough Operating System” 

(JeOS). JeOS is a purpose-built operating system that supports only the functions of the installed 

software [201]. JeOS occupies a much smaller footprint than a general-purpose operating sys-

tems and thus a JeOS is more stable and secure than a conventional operating system, reducing 

the number of vulnerabilities and exploits that could occur [8].  

5.3 CloudSec High-Level Architecture 

CloudSec utilizes virtual machine introspection techniques to provide fine-grained inspection of 

the hosted virtual machines’ physical memory, without installing any security code inside the 

virtual machines. Monitoring volatile memory enables effective detection of user and kernel 

rootkits, as volatile memory should have imprints for such malware, even self-hiding rootkits. 

CloudSec actively monitors the dynamically changing kernel data to enable effective detection 

and prevention for kernel data rootkits. 

A key feature in CloudSec is the ability to provide active monitoring, which is a key re-

quirement in order to provide effective security mechanisms. Active and transparent monitoring 

is efficiently achieved by moving the security hooks from the operating system level of the 

hosted virtual machines to the hypervisor level. This improves the reliability and trustworthi-

ness of the security software. The security virtual machine contains the core of the security and 

monitoring tools, and it works directly with the hypervisor, not with the virtual machines, to 

detect system and memory call events of the running virtual machines. In Type I virtualization 
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the hardware interrupts of system calls go directly to the hypervisor and then they are either 

multiplexed within the hypervisor or passed to a special virtual machine that multiplexes the 

events [207]. This makes implementations of security hooks much easier at the hypervisor level. 

CloudSec architecture is illustrated in Figure  5-1. The main idea behind designing 

CloudSec is having a private communication interface between the security virtual machine and 

the hypervisor. This interface enables the security virtual machine to get access to the other 

hosted virtual machines – via the virtual machine introspection APIs that are placed in the hy-

pervisor – in a secure way and without a direct communication channel between the security 

virtual machine and the other hosted virtual machines. The communication channel is con-

ducted over a separate virtual network using a separate virtual switch (vSwitch). The commu-

nication interface between the hypervisor and the security virtual machine is composed of two 

main components: frontend component and backend component. 

Frontend Component. The frontend component is a set of C libraries that is part of the 

security software and is placed in the security virtual machine. This frontend component enables 

the security virtual machine to communicate with the hypervisor via a secure communication 

channel. It uses this to obtain information about the monitored virtual machines’ running oper-

ating systems from the hypervisor and also to control access to physical memory and CPU 

registers. Particularly, the frontend component makes CloudSec an external extension of the 

hypervisor to enable transparent access to physical memory of the hosted virtual machines. 

Backend Component. The backend component is part of the hypervisor code that enables 

the hypervisor to gain control over the hosted virtual machine to suspend any access to the 

physical memory and CPU according to the access triggers installed by CloudSec using the 

frontend. As the hypervisor mediates interactions between virtual machines and the host phys-

ical hardware, the guest physical memory is controlled by the hypervisor through the shadow 

page tables, and the hypervisor does not provide any direct control over the host physical 

memory even for CloudSec unless through the backend component. 
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Figure ‎5-1. CloudSec high-level architecture. 
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5.3.1 CloudSec Operation 

The goal of the security virtual machine is to scan the physical memory of a hosted virtual 

machine to locate system runtime objects. In order to enable active monitoring, the security 

virtual machine is loaded and started before any other hosted virtual machine. In particular, to be 

able to actively monitor a memory page/address of a hosted virtual machine, the memory pag-

es/address need to be recognized by CloudSec first, in order to: (i) map the physical address of 

this page/address correctly in the address space of the physical server, and (ii) to be able to 

suspend its execution. Thus, after the physical server is booted up, the security virtual machine 

is started before any other hosted virtual machine, and the following steps take place in order: 

1) Whenever a hosted virtual machine is started up, the security virtual machine is 

notified via the frontend component (1). CloudSec then creates a separate thread 

for each newly activated virtual machine using the VM-Thread Pool Manager, to 

analyse and monitor its memory (2).  

2) CloudSec overcomes the semantic gap using the traditional memory mapping 

technique that maps between the hardware layout and kernel data layout. Thus, 

CloudSec first checks the control registers of the virtual machine’s CPUs to iden-

tify the memory layout of the virtual machine’s underlying hardware, and then 

checks the kernel version of the running operating system to get the appropriate 

kernel data definition
6
. A perquisite to implement memory mapping techniques is 

having a kernel data definition that accurately reflects the runtime data layout of a 

specific range of the kernel data structures. In CloudSec, this definition was de-

veloped manually based on our knowledge and experience with the operating 

systems’ kernels. A kernel data definition mainly reflects the direct and indirect 

                                                      

6 At this stage CloudSec cannot systematically recognize the kernel version of the running operating system in 

a hosted virtual machine, and it depends on the provider’s knowledge with the running operating system version. 

Later in chapter 8, we discuss in CloudSec++, an improvement that has the ability to identify the kernel version of a 

running operating system from analysing the physical memory, and without the provider’s support. 
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pointer relations among kernel data. The components and layout of the kernel da-

ta definition differ from one kernel version to another. Based on the kernel ver-

sion, the security virtual machine loads the corresponding kernel data definition. 

Developing manual kernel data definitions are illustrated in the implementation 

section of this chapter. 

3) After loading the appropriate kernel data definition, CloudSec starts solving the 

semantic gap through our Semantic Gap Builder (SGB) component (3) (4). The 

main idea behind memory mapping techniques is traversing kernel memory 

starting from the operating system global variables and then following pointer 

dereferencing until all memory objects are discovered. Consequently, the seman-

tic gap builder component reads specific physical memory pages based on the 

addresses of the operating system global variables that are computed in the cor-

responding kernel data definition. CloudSec does not have direct access to the 

virtual machines’ physical memory. CloudSec gains such access via the commu-

nication channel with the hypervisor. The backend component reads these physi-

cal memory pages into the Memory Pages Buffer (MPB), and then the semantic 

gap builder component maps these physical memory bytes to the corresponding 

kernel data definition. This mapping builds an external view of the running virtu-

al machine that accurately reflects the high-level semantic view of the running 

operating system. The constructed view includes a set of kernel runtime objects 

e.g. running processes and threads, loaded modules, system table, and interrupt, 

local and general descriptor tables. 

4) After overcoming the semantic gap, CloudSec creates a profile for each virtual 

machine containing its reconstructed high-level semantic view, to be used by the 

Defence Module. 

5) CloudSec then installs memory access triggers or timer-based triggers on the 

page(s) that contain the kernel data structures that needs to be monitored and 

protected according to the applied defence mechanisms. Whenever memory ac-

cess to such pages occurs, the backend notifies the Memory Access Handlers 
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(MAHs) (5), and the hypervisor suspends execution. Memory access handlers 

load the requested memory page(s) into the Defence Module or the semantic gap 

builder component to extract kernel data structure updates (if required by the de-

fence module). Then the defence modules analyse the current running kernel data 

structures for security threats, according to the applied defence mechanism, be-

fore control is given back to the virtual machine executed instructions (6). 

6) Normally, upon completion of step 5, the security virtual machine signals to the 

hypervisor, via the frontend component, that the memory page/address has passed 

inspection and could be: (i) executed (execution of the interrupted virtual CPU in 

the monitored VM resumes), or (ii) discarded. 

The previous process enables CloudSec to perform active monitoring, without installing 

any hooks inside the virtual machine to suspend instructions execution. Although the technique 

used in CloudSec to enable active monitoring presents a heavy page fault in the monitored 

virtual machine, we consider it the safest approach to implement active and transparent moni-

toring. On the other hand, one of the main reasons to adopt virtualization technology in de-

veloping security solutions for IaaS platforms is the isolation feature of the security software 

from the other running virtual machines. Thus, placing a security code in the virtual machine’s 

running operating system violates this feature. However, to minimize the page fault perfor-

mance overhead in CloudSec, the security virtual machine invokes only a limited number of 

pages that contain the important kernel data, as discussed in chapter 8
7
. 

5.4 CloudSec Implementation Details  

VMware® ESX 4.1 hypervisor was our chosen implementation platform. We chose this because 

of availability of the VMSafe libraries [208] that enables implementing virtual machine intro-

spection frameworks. The ESX hypervisor is a type I hypervisor that is installed directly on the 

hardware. Thus, ESX hypervisor architecture supports the design requirements including active 

                                                      

7 Details of performance enhancements are discussed in chapter 8.  
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monitoring with no hypervisor modifications. VMsafe APIs enables reading the hardware bytes 

of the hosted virtual machines.  

The monitoring software deployed in the security virtual machine of CloudSec is a C 

program written using Posix threads
8
 [209] and VMsafe APIs. The C program includes 

hard-coded offsets of the manually developed kernel data definitions, the semantic gap com-

ponent module and a string matching module that is called whenever a signature matches the 

currently executing page of memory in the security virtual machine. As a proof-of-concept, we 

developed a manual kernel data definition for Windows XP SP3 and used this definition to 

accurately map the physical memory of the hosted virtual machines to uncover the running 

instances of kernel objects.  

 Memory Management 5.4.1

One of the key requirements needed to overcome the semantic gap problem using memory 

mapping techniques is to understand the underlying memory layout that is used by the operating 

system to map between physical memory pages and the kernel data definition of the running 

operating system. Thus, before exploring the implementation details of CloudSec, we discuss 

briefly in this section explain the memory hardware layout in operating systems, in addition to 

memory management techniques used in Type I hypervisors, as they are different from the 

traditional memory management model of conventional operating systems. 

5.4.1.1 Hardware Memory Paging Modes 

In this section we overview the basic paging modes of the hardware with reference to Intel® 64 

and IA-32 Architectures Software Developer’s Manual Guide [210]. There exist four main 

paging modes supported by the hardware to manage the physical memory layout. These paging 

modes are controlled by the control registers CR0 and CR4 of the CPU whether for a physical 

host or a virtual machine. CR0 has different control flags that control the processor’s operating 

                                                      

8 POSIX is a set of APIs for implementing multi-threading.  
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and thus manage the hardware memory layout. CR4 is used in protected mode operations such 

as page size extension and machine check exceptions. For example, if the CR0.PG bit is set and 

CR4.PAE bit is clear, then 32-bit paging is used. If the CR0.PG bit is set and CR4.PAE bit is set 

then Physical Address Extension (PAE) paging is used. 

In our proof-of-concept prototype, we used the 32-bit paging mode - physical address ex-

tension disabled. In this mode, the memory is divided into pages or frames of 0x1000 (4096) 

bytes each. Each process has a page directory table and each page directory contains 1024 page 

directory entries. Each page table entry contains an address for a page table and each page table 

contains 1024 page table entries, and each page table entry points to the base address of a page. 

Figure  5-2 summarizes this process. This gives 1024*1024*4096 or 4GB total virtual ad-

dress space for each process. In Windows operating system, the 4GB of virtual address space is 

by default divided into two halves: the first 2GB (from 0x80000000 to 0xFFFFFFFF) is for 

the kernel address space, and the second 2GB (from 0x00000000 to 0x7FFFFFFF) is for the 

user address space. 

When an application requests access (allocate, read or write) permission for a specific 

virtual address via a the corresponding system function call, the operating system returns a 

pointer to the requested memory page, along with an offset into that page for the requested 

address. This low-level access leaves the application to interpret the data within each page of 

memory. To translate a virtual address in a certain process user address space to the corre-

sponding physical address space, we use the linear address translation mechanism which re-

quires the physical address of the process directory table for the given process, as shown in 

Figure  5-2. CR3 control register enables the CPU to translate linear memory addresses into 

physical memory addresses. This is done by locating the corresponding page directory and page 

tables entries for the current executed task. The first 20 bits of CR3 are the page directory base 

register, which stores the physical address of the first page directory entry [210]. To calculate a 

kernel physical address from a given virtual address, we subtract 0x80000000. 
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Figure ‎5-2. The linear address translation mechanism [210]. 

5.4.1.2 Shadow Page Tables 

The hypervisor introduces another layer of address translation, which is the mapping of the 

guest physical pages to the host physical pages. With virtualization, the hypervisor constructs 

shadow page tables that combine both the guest page tables and the additional layer of page 

tables to directly map a guest linear page to a host physical page on the hardware page table. As 

a result, there are three memory layers: guest virtual memory, guest physical memory, and host 

physical memory, as shown Figure  5-3. A shadow page table consists of two types of memory 

address translations [211]: first, Guest virtual address to guest physical address. This mapping is 

performed directly from the virtual machine’s page table using the linear address translation 

mechanism depicted above in Figure  5-2. Second, Guest physical address to host physical ad-

dress. This type of address mapping is managed by hypervisor. Every time a program in a guest 

virtual machine requests access to a virtual address, the memory management unit of the hy-

pervisor looks directly into the shadow page table and find the corresponding host physical 

address. If there is a change in the virtual machine’s page table, the hypervisor has to intercept 

this change and update the corresponding part of shadow page table. 
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Figure ‎5-3. The relation between guest virtual addresses and host physical addresses. 

 Implementation Details 5.4.2

Memory mapping techniques require accurate kernel data definitions in order to overcome the 

semantic gap. A kernel data definition reflects statically the relations between kernel data at 

runtime. A kernel data definition is simply a directed type-graph that has: (i) nodes representing 

data structures, and (ii) edges representing data members of the data structures, as shown in 

Figure  5-4. The problem with operating systems’ kernel is the wide-spread use of pointer rela-

tions between kernel data. Pointer relations fall into two main categories: (i) direct pointer 

relations, where a data member points-to somewhere else in the memory (address) and this 

address holds the address of another data member, denoted by the blue solid rectangles in Fig-

ure  5-5. Second, Indirect pointer relations, where a data member of a void or null pointer 

type is pointing to an address and the runtime contents of this address cannot be identified 

statically at compilation time and can only be identified at runtime, denoted by the red dashed 

rectangles in in Figure  5-5. 

EPROCESS

KPROCESS

D_Header

PCBPLock

Header

ETHREAD

ForkInProgress

typedef struct EPROCESS

{

KPROCESS PCB;

P_Lock Plock;

}

typedef struct PROCESS

{

D_Header Header;

ETHREAD ForkInProgress;

}

P_Lock

 

Figure ‎5-4. A type-graph reflecting relations data structures and their members. 
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In CloudSec, kernel data definitions were developed manually to reflect pointer-based re-

lations between data structures using hard-coded offsets, and the indirect points-to relations are 

computed based on our hands-on experiments with the corresponding operating system’s kernel.  

typedef struct _EPROCESS {

KPROCESS Pcb;

……

LIST_ENTRY ActiveProcessLinks;

ULONG QuotaUsage[3];

……

LIST_ENTRY SessionProcessLinks;

PVOID DebugPort;

……

} EPROCESS, *PEPROCESS;

typedef struct _KPROCESS {

DISPATCHER_HEADER Header;

LIST_ENTRY ProfileListHead;

……

ULONG Unused0;

KGDTENTRY LdtDescriptor;

………

} KPROCESS, *PKPROCESS;

typedef struct _LIST_ENTRY

{

PLIST_ENTRY Flink;

PLIST_ENTRY Blink;

} LIST_ENTRY, *PLIST_ENTRY;

 

Figure ‎5-5. Pointer relations between data structures. 

Operating systems like Microsoft Windows and Linux embody basic object-oriented de-

sign principles [212], where they structure their kernel data into set of predefined data structures 

and objects. This structure of the kernel enables reconstructing kernel data structures through 

recursive traversing for the physical memory using the operating system global variables, 

without relying on the operating system kernel itself that could be exploited. The problem is 

more difficult in commodity operating systems like Microsoft Windows, because unlike Linux, 

the Windows operating system is not open source. Also the Windows kernel data structures are 

opaque – in that the addresses of operating system global variables change from one Windows 

build to another. Fortunately, Microsoft provides Microsoft Symbols [213] which provides 

symbols for each Windows kernel build. These symbols can be used as a reference for recon-

structing the kernel data definitions. For Linux, kernel data definitions can be obtained from the 

kernel symbol table (i.e. System.map). 
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In our implementation, we selected two important Windows kernel structures to be con-

structed externally as a proof-of-concept of our prototype: the EPROCESS structure and the 

KeServiceDescriptorTable structure. These two data structures are often a target for 

hackers to install hooks, inject malicious code and to hide malicious processes – their details are 

discussed below. 

5.4.2.1 EPROCESS Blocks 

A process object type in Windows operating system is represented in kernel address space as 

executive process blocks called EPROCESS structure. An EPROCESS structure contains de-

tailed information about a running process, as well as pointer relations to other data structures 

(e.g. threads, tokens and drivers) and attributes related to the running process. Rootkits often 

target the EPROCESS data structure to run stealthy code in the physical memory. Figure  5-6 

depicts a snapshot of the EPROCESS structure of the system process for Windows XP SP3, 

using the Windbg tool. The figure reflects the offsets of the data members and their corre-

sponding addresses in the kernel address space. These offsets were hardcoded in the corre-

sponding data definition. By locating the running instances of such structure in physical 

memory pages, CloudSec can externally list all the running processes including their details (e.g. 

name, ID, threads, loaded modules, Export and Import Address Tables, Virtual Address De-

scriptors). 

For each running process, there is a dedicated EPROCESS structure and all EPROCESS 

blocks are structured in a doubly-linked list called ActiveProcessLinks, as shown in 

Figure  5-7. Doubly-linked list, represented in Windows operating system as _LIST_ENTRY 

structure, means that each block has a Flink entry that refers to the next node in the doubly 

linked list and a Blink entry that refers to the previous node. Thus, getting the address of one 

EPROCESS structure enables obtaining the rest of the running processes’ EPROCESS blocks 

through traversing the corresponding doubly-linked list.  
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kd> dt _EPROCESS poi(PsInitialSystemProcess)

nt!_EPROCESS

+0x000 Pcb : _KPROCESS

+0x06c ProcessLock : _EX_PUSH_LOCK

+0x070 CreateTime : _LARGE_INTEGER 0x0

+0x078 ExitTime : _LARGE_INTEGER 0x0

+0x080 RundownProtect : _EX_RUNDOWN_REF

+0x084 UniqueProcessId : 0x00000004

+0x088 ActiveProcessLinks : _LIST_ENTRY [ 0x82077638 - 0x8055a1d8 ]

+0x090 QuotaUsage : [3] 0

+0x09c QuotaPeak : [3] 0

+0x0a8 CommitCharge : 7

+0x0ac PeakVirtualSize : 0x2a1000

+0x0b0 VirtualSize : 0x1d9000

+0x0b4 SessionProcessLinks : _LIST_ENTRY [ 0x0 - 0x0 ]

+0x0bc DebugPort : (null)

+0x0c0 ExceptionPort : (null)

+0x0c4 ObjectTable : 0xe1001c50 _HANDLE_TABLE

+0x0c8 Token            : _EX_FAST_REF

+0x0cc WorkingSetLock : _FAST_MUTEX

+0x0ec WorkingSetPage : 0

+0x0f0 AddressCreationLock : _FAST_MUTEX

+0x110 HyperSpaceLock : 0

+0x114 ForkInProgress : (null)

+0x118 HardwareTrigger : 0

+0x11c VadRoot : 0x825c3220

+0x120 VadHint : 0x823b86c8

+0x124 CloneRoot : (null)

+0x128 NumberOfPrivatePages : 3

+0x12c NumberOfLockedPages : 0

+0x130 Win32Process     : (null)

+0x134 Job              : (null)

 

Figure ‎5-6. A snapshot of EPROCESS structure from Windbg. 
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Figure ‎5-7. EPROCESS doubly-linked list in Windows operating system. 

EPROCESS structures are dynamic data objects; their virtual addresses are assigned at 

run-time. The key challenge here is how to get the address of one block taking into consideration 

that we can only read the virtual machines’ physical memory bytes. From our experience with 

the Windows operating system, we found that the first loaded process is always the system 
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process, so it is the first node in the ActiveProcessLinks doubly-linked list. Also, from 

our analysis of live memory dumps from running operating system kernels, we found that the 

global variable PsActiveProcessHead points to the ActiveProcessLinks address of 

the system process, as shown in Figure  5-7. Similar to this and drawing on our experience with 

the Windows operating system, we discovered most of the important data structures and man-

ually built up the corresponding kernel data definition. The physical addresses of operating 

system global variables are static and do not change at runtime. In this way, CloudSec can 

identify the address of PsActiveProcessHead from Windows symbols. In CloudSec 

prototype, the address is 0x805638b8. Subtracting 0x88 from the value pointed to by this 

address gets the System process’s EPROCESS virtual address. After translating the virtual ad-

dress to physical address and reading the corresponding physical memory page, we can extract 

process details e.g. process name, ID, threads from the EPROCESS according to the corre-

sponding kernel data definition. 

To build up the process loaded modules (DLLs) list, we first get the PEB structure virtual 

address, and then translate it to a physical address to read its physical memory page. From the 

process PEB structure we extract the address of the _PEB_LDR_DATA data structure that 

contains a pointer to doubly-linked list for the process loaded modules in different orders: load 

order, memory order and initialization order. Each loaded module is represented with a 

_LDR_DATA_TABLE_ENTRY structure that contains module name, base address size, Flink 

and Blink. To determine the end of the modules list, we check the Flink of current node 

against the address of the first module structure in the list. If the two are equal, then we have 

traversed all of the loaded process modules.  

At this point, we have located the details of the first system process. To extract the rest of 

the running processes, we traverse the doubly-linked list of the ActiveProcessLinks 

structure for the next node, and repeat the previous steps to build the process details. To de-

termine the end of the process list, we check the Flink of each EPROCESS against the address 

of PsActiveProcessHead. If they are equal, then the current EPROCESS structure is the 

last process in the list. Figure  5-8 reflects a part of the manually developed kernel data definition 
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of key structures in EPROCESS structure that we have used in CloudSec to traverse the hosted 

virtual machines’ physical memory to build up running guest operating system processes’ de-

tails. Figure  5-9 summarizes the algorithm for such traversal process to overcome the semantic 

gap problem of the running processes. 

A drawback of listing the processes through the doubly linked list is that this method be-

comes vulnerable to process hiding rootkits that modify the Flink and Blink addresses to hide a 

process.  Mihir et al. [128] explores different techniques for detecting hidden processes with 

their limitations and drawbacks, and introduce their solution that is based on monitoring the 

scheduled threads of the processes. The authors also mentioned that their technique can be 

overcome by recent rootkits that build their own scheduler. To solve this problem, we update 

CloudSec process list when any creation or termination for a process occurs. We achieve this by 

installing memory access triggers on the physical memory page that contains the System Ser-

vice Dispatcher Table (SSDT), to monitor NtCreateProcess and NtTerminatePro-

cess functions that are exported by the SSDT. Each of the SSDT functions has a unique system 

call number. This number is loaded into the EAX register while the function is being called. We 

check the EAX register value during each memory access to the SSDT physical page. If the EAX 

register holds the system call number of one of those functions, then we build our processes list 

again. If we find that a process does not exist in the current process list but exists in the initial 

process list, then we check the process ID, process directory table and ThreadListHead 

members of this process’s EPROCESS. Those members can’t be changed during the process 

runtime [16]. If these members are still available with the same values, this indicates that the 

process has been hidden, but not terminated.  

 

.
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Figure ‎5-8. The manually-developed EPROCESS kernel data definition. 
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Figure ‎5-9. EPROCESS semantic gap construction. 

5.4.2.2 KeServiceDescriptorTable Structure 

The KeServiceDescriptorTable structure references the System Service Dispatcher 

Table (SSDT) that contains a list of the native kernel APIs and their addresses, making it one of 

the central points of execution flow control in the kernel. Reconstructing this structure exter-

nally without relying on the kernel enables detecting any system-wide hook. Hackers often 

attack and try to compromise this structure as it allows redirecting operating system calls to 

other code. The address of the SSDT kernel data structure can be found within the Service 

Descriptor Table (SDT). The SDT is referenced by the KeServiceDescriptorTable 

global structure and its address is static in the Windows operating system. The first member of 

the SDT structure is the KiServiceTable (SSDT address), and the third entry at offset 

0x0c is the number of SSDT entries. To enumerate the SSDT entries, we traverse the physical 

memory page that contains the SSDT address, until the number of read entries is equal to the 

value at the offset 0x0c, as shown in Figure  5-10. Reconstructing the SSDT, allows CloudSec 

to install write-memory-access triggers on the SSDT page, to detect SSDT hooking rootkits that 



Chapter 5: A virtual Machine Introspection Framework 

 

102 

 

target to install system-wide hooks. 

Set KiServiceDescriptorTable
address

Entry_offset  = Entry_offset + 4
Entry_Index = Entry_Index +  1 
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Memory pages

Read Entry 
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Entry Index =
No. of entries
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Figure ‎5-10.KeServiceDescriptorTable reconstruction algorithm. 

 CloudSec Deployment Model 5.4.3

Our evaluation platform for CloudSec was the Intel x86 family of microprocessors. The cloud 

platform hardware consists of a HP Z400 – 2.8 GHz Intel® Xeon® CPU (VT-x) with 6126 MB 

of RAM. This workstation runs VMware ESX 4.1. The ESX server hosts three virtual machines, 

as shown in Figure  5-11. These machines were configured as follows: (i) Security virtual ma-

chine. The security virtual machine is configured with 2GB of RAM and two virtual CPUs and 

is deployed as a virtual appliance running Ubuntu Linux 8.04 Server JeOS. The security virtual 

machine hosts the vCompute APIs OF VMSafe libraries and our monitoring software. The 

security virtual machine is isolated from other server network workload in a separate virtual 

network by creating a dedicated vSwitch and communication channel in the ESX hypervisor. 

(ii) Hosted virtual machines. CloudSec prototype contained two hosted virtual machines for 

validation purposes. Both virtual machines are each allocated with 1.5GB of RAM and two 

virtual CPUs running Windows XP SP3 32-bit operating system. CloudSec Evaluation Details 

We used Windbg from the Debugging Tools for Windows [214] to validate that CloudSec 

bridges the semantic gap successfully. Windbg runs within the guest operating system and hence 

has direct access to and detailed knowledge of running guest operating system kernel data 

structures. We compared the external CloudSec view of mapping the introspected virtual ma-

chines’ physical memory to Windows operating system’s kernel data structures, with the in-

ternal view of the virtual machine using Windbg. This showed that CloudSec produces identical 
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results as Windbg, thus accurately overcoming the semantic gap for the hosted virtual machines, 

without installing any monitoring code inside the target VM. 

ESX 4.1 Hypervisor

vCompute APIs

vSwitch 1vSwitch 2

Security Virtual 
Machine

VM1VM2

 

Figure ‎5-11. The experimental setup lab. 

CloudSec provides detailed information about the running processes inside a hosted virtual 

machine, from outside the virtual machine. Figure  5-12 shows screenshots for the internal view 

for the running processes using Windbg. We selected the csrss.exe process for the comparison. 

Figure  5-12 shows the csrss.exe basic information such as the virtual address of the EPROCESS, 

PEB, and the DirectoryBase(DirBase). Figure  5-13 shows the loaded modules of this 

process. On the other hand, Figure  5-14 shows a snapshot of the CloudSec external view of an 

EPROCESS running instances, focusing on the details of a process at the address 0x896a9020. 

After constructing the semantic information we extracted the process name csrss.exe, DTB and 

loaded modules and other information. The comparison shows that the results are identical in 

both the internal and external view. The addresses of the EPROCESS, PEB and DTB are the 

similar in both views. The memory loaded modules are also the same with the same base ad-

dresses. Figure  5-15 and Figure  5-16 show screenshots of the internal and external views of the 

SSDT using Windbg and CloudSec, respectively. As mentioned before, each entry has a unique 

number so entries are in order. By comparing the addresses in the internal and external views, 

we found that our interpretation of the physical memory pages to operating system semantic 

information matched accurately. The SSDT address is the same in both views, which is 

0x80504480, and for example, the first SSDT entry address in the two views is 

0x805145f6, which is the address of the NtConnectPort, because this function system 

call index is 0. For the other entries, the addresses of entries in both views are the same.  
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Figure ‎5-12. The internal view of a virtual machine using Windbg. 

 

Figure ‎5-13. The internal view of the loaded modules of the crss.exe process.  

 

Figure ‎5-14. CloudSec external view of the csrss.exe process. 

 

Figure ‎5-15. The internal view of the SSDT using Windbg. 
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Figure ‎5-16. CloudSec external view of the SSDT. 

To evaluate the active monitoring feature of CloudSec, we used 9 real rootkits that perform 

data hooks and object manipulation attack
9
s. These rootkits perform IAT hooking, DLL injec-

tion and DLL and process hiding [215-220] and perform SSDT and GDT hooking [221-223], 

named FU and FuTo Rootkits, Remote DLL rootkit, NtIllusion rootkit, Injective Code inside 

Import Table rootkit, NtOpenProcess hook, SSDT hooking and *REAL* NT rootkits.  

CloudSec was able to detect and take appropriate action to prevent the malicious rootkits’ 

behaviours successfully. Figure  5-17 shows a detection and prevention process of an SSDT 

function pointer hooking rootkit.  Figure  5-18 reflects detection of a process hiding rootkit and 

the prevention action in this case is making the hiding process visible to the virtual machine’s 

running operating system by modifying the corresponding pointers. CloudSec has no more 

actions to do with such rootkits, as protecting running processes is the consumer’s property. 

Figure  5-19 reflects a DLL injection rootkit and Figure  5-20 reflects function hooking of a DLL 

routine. Figure  5-21 a DLL hiding rootkit. The prevention action of most detected threats was by 

overwriting the memory bytes to the original memory addresses and values based on the 

hard-coded offsets in the kernel data definition. 

                                                      

9 The main objective of the experiment is validating our active monitoring feature rather than detecting rootkits 

(known and unknown) using efficient techniques. 
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Figure ‎5-17. SSDT hooking. 

 

Figure ‎5-18. Process hiding detection. 

 

Figure ‎5-19. DLL Injection. 

 

Figure ‎5-20. Function hooking . 

 

Figure ‎5-21.DLL module hiding. 

5.4.3.1 Performance Overhead 

CloudSec builds all the necessary information to bridge the semantic gap and install monitoring 

triggers once a virtual machine is booted-up. The performance overhead of CloudSec depends 
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on the interception overheads of the vCompute APIs and the amount of processing performed 

by our monitoring code. VMsafe APIs (including vCompute) reduce performance overhead 

because security inspections are processed in the hypervisor kernel [224]. To calculate the 

elapsed time for running our code, we called CloudSec code functions 1000 times and calculated 

the average time taken. Figure  5-22 shows the elapsed CPU clocks and time in milliseconds 

(msecs) for 1000 iterations for both the EPROCESS and SSDT construction and listing func-

tions. Time is calculated by dividing the CPU clocks for each function calls by the 

CLOCK_PER_SEC (processor dependant variable). Listing the processes (including processes 

details and loaded modules) consumes about 0.96 msecs, and locating and reading the SSDT 

table consumes 0.03 msecs. These results indicate that the performance overhead to enable near 

real-time, active and transparent monitoring to uncover the specific kernel runtime objects 

monitored by CloudSec is very low.  

 

Figure ‎5-22.CloudSec performance overhead. 

The normal boot-up time for virtual machines hosted in our platform is 12 seconds, this 

being the time from the time we press power on until the operating system is loaded. CloudSec 

reads the SSDT entries before the operating system is completely loaded by 7 seconds. As the 

virtual machine is powered on, CloudSec queries the hypervisor to find out the version of the 

running operating system, and starts locating and reading the SSDT. For listing the running 

processes, CloudSec waits until processes are loaded into memory. Once a process is loaded, 

CloudSec reads the process immediately.  

5.5 Discussion 

CloudSec is an introspection framework designed to facilitate the monitoring process of an 
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operating system of a running virtual machine, hosted in an IaaS cloud platform. CloudSec 

enables transparent and near real-time monitoring for the operating system running state, at a 

hypervisor level. CloudSec also enables active monitoring, which is needed to enforce security 

decisions on system events. Our experiments with CloudSec have shown that it can provide rich, 

high-level operating system information about a limited part of kernel data, from outside the 

virtual machine and without placing any code in the virtual machine.  

To date, nearly all virtual machine introspection research efforts had been based on the Xen 

hypervisor. The Xen hypervisor itself is small (approximately 100 KLOC) relative to other 

hypervisors. However, Xen relies mainly on a Domain0 virtual machine which is part of its 

trusted computing base. This results in a large footprint hypervisor, increasing the possibility 

that vulnerabilities and exploits that can occur. VMware ESX has a smaller footprint than Xen 

because the ESX hypervisor does not depend on any external components. Virtual machine 

introspection research that is based on the VMware ESX environment is not seen much in re-

search. 

CloudSec has a number of limitations that make it ineffective approach to develop robust 

and systematic security solutions, for the following reasons: first, we must depend on the se-

curity expert experience with the operating system kernel data layout to manually solve the 

semantic gap. This is limited to 28% of kernel data structures – as discussed by Carbone et al. 

[14]. These data structures relate to the well-known kernel objects such as processes, threads 

and device drivers. Second, the process of uncovering kernel runtime objects in memory diffi-

cult and time consuming process. Moreover, not all data structures are easy to be uncovered 

suing the traditional memory traversal technique, as discussed in chapters 2 and 6. Third, the 

traditional memory traversal techniques used to uncover the runtime dynamic kernel objects are 

vulnerable and not accurate, as discussed in chapter 2. These limitations result in an inability to 

get a complete and accurate interpretation of the low-level hardware bytes, making the manual 

analysis approach inadequate. This causes security holes, limited protection and an inability to 

detect zero-day threats. Based on that, a systematic solution is required to efficiently solve the 

semantic gap problem. However, implementing such a solution is challenging as it should be 
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generic enough to cover all kernel data, yet accurate enough to correctly uncover the running 

instances. The challenge arises from the complexity of the operating system kernel data. In 

chapter 6, we will describe a new static analysis tool that enables analysing operating system’s 

source code to systematically build a kernel data definition that reflects the runtime kernel data 

layout, without a prior experience of the operating system. In chapter 7, we introduce a solution 

that efficiently overcomes the limitations of the memory traversal techniques and enables fast 

and nearly complete coverage of the kernel address space to uncover the running instances of 

kernel dynamic objects.   
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5.6 Summary 

Virtualization has complicated the security process of the IaaS platform, but it has also provided 

ways of enabling monitoring the virtual machines, at the hypervisor level. In this chapter, we 

described CloudSec, a security appliance that provides active, transparent and near real-time 

security monitoring for multiple concurrent virtual machines hosted on an IaaS platform. 

CloudSec provides fine-grained inspection for physical memory of the hosted virtual machines 

in the IaaS platform. One of the key features of CloudSec is its ability to provide active and 

transparent monitoring by placing the security hooks at the hypervisor level to intercept hard-

ware events. This allows the security virtual machine to set access triggers on selected memory 

pages of the hosted virtual machines’ address space to suspend hardware event execution until 

the event is analysed. Our experiments showed that the constructed external memory view by 

CloudSec is identical to the internal view of the hosted virtual machine’s running kernel data 

instances. We have also shown that the performance overhead of traversing the physical 

memory to build the external view is relatively low enough to support real-time external virtual 

machine monitoring. 
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  Chapter 6

OS-KDD: Operating System Kernel Data 

Disambiguator 

In chapter 5, we discussed our virtual machine introspection framework CloudSec that has the 

ability to actively overcome the semantic gap problem and monitor hosted virtual machines in 

the infrastructure-as-a-Service cloud platform. One of the main limitations of CloudSec is the 

manual approach used to overcome the semantic gap. In this chapter, we introduce a new ap-

proach, called Operating System Kernel Data Disambiguator (OS-KDD), to systematically 

build an accurate kernel definition for a C-based operating system, without a prior knowledge of 

the operating system’s kernel runtime data layout. OS-KDD builds a kernel data definition by 

performing static points-to analysis on the operating system’s kernel source code in order to 

compute a directed type-graph that statically reflects the runtime kernel data layout. Section 6.1 

gives an overview on OS-KDD’s approach including the main key features of it. In section 6.2, 

we discuss the structure of the generated type-graph and the representation language used to 

represent OS-KDD analysis steps. In section 6.3, we describe the high-level process of 

OS-KDD, and section 6.4 we discuss in detail the points-to analysis algorithm. The imple-

mentation and evaluation details are presented in section 6.5 and finally we discuss the key 

features and limitations of our approach. 

6.1 OS-KDD Overview 

One of the main limitations of CloudSec, and many other virtual machine introspection tools [6, 

7, 9-11, 102, 103, 225, 226], is their use of a manual approach to build a kernel data definition 

that statically reflects the runtime kernel data layout. In this chapter, we present OS-KDD 

(Operating System Kernel Data Disambiguator), a static analysis tool that has the ability to 

systematically build an accurate kernel data definition of any C-based operating system, without 

prior knowledge of the operating system’s kernel runtime data layout.
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The generated definition precisely models kernel data structures, reflects both direct and 

indirect relations among data structures, and generates constraint-sets on the pointer-based 

relations of the data structures in order to enable systematic integrity checks on kernel data. 

OS-KDD is not just limited to operating systems. It is also a powerful tool for analysing C 

program source code to: (i) discover data structures and generic pointers’ bugs that could cause 

memory violations, and (ii) to perform accurate type inference to determine the actual target 

types of program’s runtime objects to formulate robust integrity constraint-sets that can be 

enforced at system runtime. 

OS-KDD disambiguates the pointer-based relations, including generic pointers, by per-

forming static points-to analysis on operating systems’ kernel source code. In OS-KDD, preci-

sion is an important factor, as the main goal of OS-KDD is computing the most precise points-to 

sets for each generic pointer deferencing operation. Too meet our analysis requirements, we 

designed and implemented a new points-to analysis algorithm that has the ability to provide 

field, flow and context-sensitive points-to analysis for large C programs that contain millions 

lines of code such as operating system kernels. To facilitate and speed up the analysis process, 

we use Abstract Syntax Trees (AST) as a high-level representation for the kernel source code. 

Abstract syntax trees capture the essential structure of the code that reflects the code semantic, 

while omitting the unnecessary syntactic details of the programming language used to write up 

the code. 

OS-KDD takes the source code of an operating system’s kernel as input and outputs a di-

rected type-graph that represents the kernel data definition. This type-graph summarizes the 

different data types located in the kernel address space along with their connectivity patterns. It 

also reflects the inclusion-based relations between data structures for both direct and indirect 

pointer-based relations. These inclusion-based relations enable formulating a constraint-set 

between data structures, in order to enable performing systematic integrity checks on kernel 

dynamic data at runtime.  
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6.2 Type-Graph Description 

For a target C program source code, OS-KDD computes a directed type-graph G(N, E, R) 

that summarizes memory objects accessible within procedures along with their points-to rela-

tions with the other kernel data structures, where: 

 N is a set of nodes representing the program objects such as global and local var-

iables, fields, array elements, procedure arguments\parameters and returns. 

 E is a set of directed edges across nodes representing values, assignments, returns 

and function calls between graph nodes.  

 R indicates, for each procedure node in the type-graph, whether the node is part of 

a cycle or not. This bit enables efficient cycle detection during the points-to anal-

ysis phases. Handling cycles efficiently helps improving the performance of the 

points-to analysis algorithm. The R bit is initially false for all nodes, and its value is 

updated based on our cycle detection mechanism, discussed later in this chapter. 

In OS-KDD, there are four types of graph nodes and four types of graph edges. This col-

lection of nodes and edges greatly reduces the number of nodes visited during con-

text-sensitivity analysis, without loss of precision. All graph nodes must be disjoint, as we 

developed our analysis algorithm based on Anderson’s approach that states that a node is cre-

ated for each variable and a single node may have different edges pointing to other nodes. Each 

variable is represented by a unique node and each edge represents a constraint between the 

source and destination nodes. A Graph node N is one of the following:  

 Variable Node. A variable node represents a set of memory locations such as lo-

cal and global variables including procedure’s formal-in parameters. These varia-

bles are possibly pointers to objects and have an initial declared type.  

 Field Reference Node. A field reference node represents data structure fields, 

where each field reference node has an associated parent node that represents the 

field’s data structure. A field reference node is also used to represent elements of 
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an array. Each field reference node has a declared type as stated in the source 

code.  

 Procedure Call Node. A procedure call node represents procedure calls within the 

program to represent unresolved call sites in the context of the current function. A 

function call node is represented as a function name plus an index; index = -1 if 

the node represents a function return. Otherwise index = i, where i is the index of 

formal-in argument. For example, given a function call G (argx, argy); in this 

case OS-KDD creates two nodes G:1 and G:2 representing passed formal-in ar-

guments argx and argy, respectively.  

 Cast Node. A cast node represents explicit casting where the type of the node is 

the typecast and the name is the casted variable or function.  

 Allocation Node. An allocation node represents a heap object created using 

malloc. Each runtime object is represented by one allocation node. An alloca-

tion node has by default a void* type, unless a type cast statement is added to 

the malloc statement in order to be dereferenceable.   

The source and destination of a directed edge E are both fields of a graph node N. A graph 

edge E is a function of type ⟨Nsource ,Fsource⟩ → ⟨Ndest , Fdest⟩, where Nsource and Ndest ∈ 

N , Fsource ∈ fields(Nsource)and Fd ∈ fields(Ndest). Directed edges between graph 

nodes are one of the following:  

 Points-to Edge. A points-to edge represents a points-to relation between two 

nodes according to the edge direction, and denoted as ↝.  

 Inlist Edge. represents a points-to relation between two nodes but on a local scope 

based on the results of the escape analysis
10

 of the pointer, thus if ∃ node A has 

inlist edge to node B, then B ∈ pts(A) where pts(A) means the points-to set of A. 

An inlist edge is denoted as →.  

                                                      

10 Escape analysis is a method for determining the dynamic scope of pointers. 
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 Outlist Edge. An outlist edge is not a relation edge, but represents a directed path 

between two nodes that are used to perform the interprocedural and the con-

text-sensitive analysis in an efficient manner, and denoted as ←.  

 Parent-Child Edge. A parent-child edge represents a relation between a parent 

node and a child node – i.e. relation between structure and fields, or array and its 

elements. 

We also state some definitions that clarify some notations used in the graph representation, 

for easier understanding for the points-to analysis algorithm. For a graph G = (N, E), we 

assume: 

 Definition 1. We say that node p points-to node q, written p ↝ q, if p = q or p → 

q ∈ E or ∃x : [p → x ∈ E ^ x ↝ q]. We also say that q is reachable from p. 

 Definition 2. The set of inlist edges for a node, n ⊆ N, is defined as ( )     →

   ∈        ∈    . The set of outlist edges for a node n ⊆ N, is defined as 

 ( )     ←    ∈          ∈            ↝    . 

 OS-KDD Representation Language 6.2.1

To formalize the representation of OS-KDD analysis, we define a very simple programming 

paradigm that describes the C programming language – in a naïve way – as shown in Figure  6-1. 

This facilitates a simple formal representation of the OS-KDD approach. OS-KDD covers most 

of C programming language features. A C program basically has the following form: 

pre-processor commands including compiler directives, procedures, variables, statements and 

expressions, and comments. OS-KDD only works on the procedures, variables and the program 

statements and expressions. Pre-processor commands are being processed in the source code 

transformation process of OS-KDD; details are discussed in section  6.3.1. 

Any programming language has a type system that is used to reduce memory bugs and 

overflows by defining interfaces between the different program parts. The C language has a 

naive type system. Based on that naïve type system, in our representation language, we presume 
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that there are basic integer, character and floating point number pointers, called point-

er-compatible variables. These types will be included in the points-to analysis phase even if they 

are not declared as pointers. There are also complex types using typedef to form complex 

types from the basic language type system. We can assign a type to variables, expressions, and 

procedures. 

𝑡𝑦 𝑒 ∶  𝑣𝑜𝑖𝑑   𝑐ℎ𝑎𝑟   𝑖 𝑡   𝑖 𝑡 ∗  𝑖 𝑡 ∗∗  𝑡𝑦 𝑑𝑒𝑓 

𝐶𝑜𝑚 𝑙𝑒𝑥 𝑡𝑦 𝑒 ∶  𝑡𝑦 𝑒𝑑𝑒𝑓 𝑠𝑡𝑟𝑢𝑐𝑡 {(𝑡𝑦 𝑒 𝑣𝑎𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )}   

 𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 ∶  𝑡𝑦 𝑒  𝑟𝑜𝑐 (𝑡𝑦 𝑒 𝑣𝑎𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ){𝑠𝑡𝑎𝑡𝑒𝑚𝑒 𝑡} 

𝑠𝑡𝑎𝑡𝑒𝑚𝑒 𝑡 ∶  𝑡𝑦 𝑒 𝑣𝑎𝑟   𝑣𝑎𝑟   ℤ   𝑟𝑒𝑡𝑢𝑟  𝑣𝑎𝑟 

                                𝑣𝑎𝑟1   ∗ 𝑣𝑎𝑟2   𝑣𝑎𝑟1  &𝑣𝑎𝑟2   𝑣𝑎𝑟   𝑢𝑙𝑙  

                               ∗ 𝑣𝑎𝑟1  𝑣𝑎𝑟2   𝑣𝑎𝑟1    𝑟𝑜𝑐 (𝑣𝑎𝑟2⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

                                 𝑟𝑜𝑐 (𝑣𝑎𝑟⃗⃗⃗⃗⃗⃗  ⃗)   (∗  𝑟𝑜𝑐)(𝑣𝑎𝑟⃗⃗⃗⃗⃗⃗  ⃗) 

                                𝑖𝑓 (𝑐𝑜 𝑑) 𝑠𝑡𝑎𝑡𝑒𝑚𝑒 𝑡 𝑒𝑙𝑠𝑒 𝑠𝑡𝑎𝑡𝑒𝑚𝑒 𝑡 

                                𝑤ℎ𝑖𝑙𝑒 (𝑐𝑜 𝑑) 𝑠𝑡𝑎𝑡𝑒𝑚𝑒 𝑒𝑡 

 

Figure ‎6-1. OS-KDD Representation Language 

Program statements include simple assignment, pointer load (read) and store (write) oper-

ations, conditions, loops, procedure calls including return statements and indirect function calls. 

Here, we consider all forms of assignments: x=y, x=&y, *x=y, x=*y, and function calls. 

6.3 Type-Graph Construction 

The main objective of OS-KDD is to systematically compute an accurate type-graph for an 

operating system’s kernel source code. This type-graph statically and precisely reflects the 

runtime kernel data layout of a specific operating system’s kernel version. A high-level repre-

sentation of OS-KDD is shown in Figure  6-2. A type-graph is created and refined in a two main 

analysis phases: first, source code transformation. The objective of this phase is transforming 

the program source code into abstract syntax trees (1). Code transformation into abstract syntax 
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trees enables more efficient and scalable points-to analysis for large-scale applications. Sec-

tion  6.3.1 discusses in details this phase of the analysis. Second, points-to analysis phase. This 

analysis phase is the key to automate the generation of the kernel data definitions, without a 

need for a prior knowledge of the runtime kernel data layout. This is done by performing 

points-to analysis on the operating system’s source code, in order to get an accurate estimation 

for each pointer dereferencing operation, for both pointers and pointer-compatible variables. 

This analysis phase has two main rounds; one for computing the direct points-to relations be-

tween kernel dynamic data (2), and the second round to compute the indirect points-to relations 

such as void and null pointers, and casting operations (3). An overview of our points-to 

analysis algorithms is explained in section  6.3.2 and the details of the points-to analysis algo-

rithm is covered in in section  6.4.  

Direct 

Relations 

Graph (DRG)

Kernel Data Type-Graph

Indirect 

Relations 

Graph 

(IRG)

Source Code Transformation

Points-to Analysis

Intraprocedural Analysis

Interprocedural Analysis

Context-Sensitivity Analysis
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Build Program Dependency Graph

Source Code (C files)

AST

1

2

3

 

Figure ‎6-2. High-level view of OS-KDD framework. 
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 Source Code Transformation 6.3.1

The first phase of OS-KDD framework is the: the code transformation process from a C source 

code into a high-level representation of the source code that has a context-free grammar (CFG) 

feature in order to enable efficient points-to analysis. 

Most modern programming languages are context-free grammar languages. A context-free 

grammar is a formal grammar in which every production rule is of the form V → w, where V is a 

single nonterminal symbol, and w is a string of terminals and/or non-terminals. A formal 

grammar is considered context-free when its production rules can be applied regardless of the 

context of a nonterminal [227]. However, C and C++ programming languages are not con-

text-free grammar languages. They are context-sensitive languages; for example, in C and C++ 

users are allowed to declare new types that are not defined in the type system of these languages, 

and in this case the context-free grammar approach cannot predict the way in which those var-

iables should be used at program runtime. One solution to this problem is transforming the code 

into another representation language whether low-level or high level representation language. 

Points-to analysis algorithms have usually been implemented in compiler optimization prob-

lems, which typically require transforming the source code into a low-level representational 

language. Low-level representational languages discard most of the original structure of the 

source code, and thus omit very important information such as declarations, data types and type 

casting. They also are extremely big in size as they create lots of temporary variables that are 

allocated identically to source code variables and thus are not easily distinguishable from 

source code variables [200]. Thus, a low-level representational language is not an efficient way 

to represent the program source code. 

In the OS-KDD framework, we transform the C program source code into a high-level 

representation by parsing the code into abstract syntax trees. Abstract syntax trees are used 

widely in program analysis tools, as they capture the essential structure of the program source 

code that reflects the program semantics, while omitting the unnecessary syntactic details. Such 

transformation eliminates the irrelevant information such as literal symbols and layout while 

keeping everything about the original program source code structure. An abstract syntax tree of 
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a C/C++ function over alphabets of attributes ΣL, ΣE can be viewed as an attributed tree 

(N,E,μL,μE) with nodes N, edges E, and labelling functions μL: N→ΣN and μE :E→ΣE. The 

labelling functions assign attributes to nodes and edges, respectively. Nodes are labelled with 

program statements and expressions, while edges are attributed with the role of a branch [228]. 

C parsers usually work like C compilers; they must receive preprocessed C code in order to 

function correctly. In order to parse C/C++ source code into abstract syntax tress, a preprocessor 

is required to transform the program into a preprocessed code before the parsing process. Pre-

processed C code is generated using a C preprocessor. The C/C++ preprocessor is a macro 

processor that is usually used by compilers to transform a program before compilation. A C 

preprocessor provides four main facilities: (i) handling compiler directives like #include and 

#define, (ii) macros, (iii) conditional compilation, and (iv) line control. To parse a source code 

program into abstract syntax trees, we just use the header file inclusion feature of the prepro-

cessor. Simply, a C preprocessor replaces header file declarations ds – i.e. #include <xx.h> – 

with the entire text of the header file itself. From the preprocessed C code, we generate the 

abstract syntax trees using a C parser that fully supports the C89 and C99 language. Figure  6-3 

shows two C code snippets and their corresponding abstract syntax tress with a textual repre-

sentation for the trees instead of using the DOT language. Figure  6-3(a) depicts how a C type 

definition is parsed into AST and Figure  6-3(b) show the same process for a function call.  

 OS-KDD Points-to Analysis Overview 6.3.2

In section  6.3.1 we discussed the source code transformation process that builds the abstract 

syntax trees of a target source code program to be ready for our points-to analysis algorithm. In 

this section, we give a high-level view of how OS-KDD computes a type-graph from the ab-

stract syntax trees using our points-to analysis algorithm and in section  6.4 we discuss the 

points-to analysis algorithm in details.  
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typedef struct basket

{

MCF_arc_p a;

MCF_cost_t cost;

MCF_cost_t abs_cost;

}BASKET;

Typedef: BASKET, [], ['typedef']

TypeDecl: BASKET, []

Struct: basket

Decl: a, [], [], []

TypeDecl: a, []

IdentifierType: ['MCF_arc_p']

Decl: cost, [], [], []

TypeDecl: cost, []

IdentifierType: ['MCF_cost_t']

Decl: abs_cost, [], [], []

TypeDecl: abs_cost, []

IdentifierType: ['MCF_cost_t']

C Code

AST

 

(a) 

FuncCall: 

ID: sort_basket

ExprList: 

Constant: int, 1

ID: basket_size

Assignment: =

UnaryOp: *

ID: red_cost_of_bea

StructRef: ->

ArrayRef: 

ID: perm

Constant: int, 1

ID: cost

Return: 

StructRef: ->

ArrayRef: 

ID: perm

Constant: int, 1

ID: a

sort_basket( 1, basket_size ); C Code

AST

 

(b) 

Figure ‎6-3. Snapshots of C ode snippets and their ASTs 

In chapter 2, we discussed in detail the complexity problem of an operating system’s kernel 

data, and the wide usage of data structures and generic pointers in an operating system’s kernel 
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source code. Based on that, we needed to develop a points-to analysis algorithm that satisfies the 

following features in order to meet our analysis requirements: first, one of the key features of 

our points-to analysis algorithm is achieving true context-sensitivity to distinguish heap objects 

in an efficient and scalable manner. In OS-KDD, we achieve context-sensitivity by detecting the 

entire acyclic call paths of the different calling contexts, not by allocation site. This approach is 

also known as a heap cloning approach [229] that allows distinguishing the different instances 

of a data structure created in different calling contexts. Second, one of the main objectives of 

performing points-to analysis on the kernel source code is generating a constraint-set between 

data structures to be used at runtime, in order to perform kernel data integrity checks and detect 

memory bugs and overflows. This is done by performing an inclusion inclusion-based analysis 

on the relations between data structures during the points-to analysis. Third, as our points-to 

analysis mainly works on data structures and the complex data types defined in the kernel source 

code, we should guarantee precise field-sensitivity analysis to distinguish the points-to sets of 

the different data structure fields. Identifying accurately the internal connectivity patterns of a 

data structure with the other data structures guarantees accurate results that greatly affect the 

trustiness of the proposed security solution. 

To meet these requirements, we have developed a new points-to analysis algorithm to 

statically analyse the kernel’s source code to get an approximation for every generic pointer 

dereferencing based on Anderson’s approach. Our points-to analysis algorithm is field, flow and 

context-sensitive points-to analysis for large C programs that contain millions lines of code such 

as operating system kernels. The field-sensitivity feature is applied on data structures and arrays. 

Context-sensitivity is achieved by detecting the entire acyclic call paths of the different calling 

contexts. Type casting is handled by analysing the usage of the cast variables and objects in the 

code base. We consider all forms of assignments including load and store operations, and 

function calls including indirect function calls, as described before in Figure  6-1. Our points-to 

algorithm works only on pointers and pointer-compatible variables that are defined in sec-

tion  6.2.1. Algorithm  6-1 summarizes our points-to algorithm. The type-graph is created and 

refined in a two-step process:  
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First, Direct Points-to Relations Analysis. The direct points-to relations analysis step is 

straight-forward and its target is building the direct points-to relations graph (DRG) that reflects 

the direct inclusion-based relations between kernel data structures that have clear type defini-

tions. From the generated abstract syntax trees, OS-KDD performs a simple compiler-pass 

approach to extract the data structure type definitions by looking for typedef aliases, and 

extract their fields with the corresponding type definitions. Nodes are data structures and edges 

are data members (inclusion relations) of the data structures. Figure  6-4 depicts an example for a 

C type definition code, and its corresponding direct relations graph. Figure  6-5 shows different 

snapshots of the direct relations type-graph for analysing Windows research kernel showing the 

different direct relations among kernel data. 

Algorithm ‎6-1 OS-KDD high-level analysis algorithm 

1: Parse C program source code into an AST; 

2: Compute the direct points-to relations; 

3: 

4: 

5: 

6: 

7: 

8: 

Build direct points-to relations type-graph, denoted DRG; 

Intraprocedural_analysis (AST); 

Build local points-to relations type-graph, denoted LTG; 

Interprocedural_analysis (AST); 

Update_graph (LTG); 

Build the program dependency-graph, denoted PDG; 

9: repeat  

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

18: 

for lev from lowest to highest do 

points_to_analysis(LTG, lev); 

Build indirect points-to relations type-graph, denoted IRG; 

end for 

until reach the highest level of the dependency-graph 

Graph_unification(IRG); 

Context_sensitivity_analysis(IRG); 

merge_graphs(IRG, DRG); 

Build final type-graph, denoted TG; 

 

Second, Indirect Points-to Relations Analysis. The indirect points-to relations analysis is 

the most important and complicated analysis phase. This analysis phase computes the indirect 

points-to relations between data structures to build the indirect points-to relations graph (IRG) 

using our points-to analysis algorithm. The type-graph of the indirect relations (IRG) is com-
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puted by our points-to analysis algorithm in a four-step process: Intraprocedural Analysis, In-

terprocedural Analysis, Graph Unification and Context-Sensitive Points-To Analysis. The de-

tails of the points-to analysis algorithm are discussed thoroughly in section  6.4. 

EPROCESS

KPROCESSP_Lock

D_Header

PCBPLock

Header

ETHREAD

ForkInProgress

typedef struct EPROCESS

{

KPROCESS PCB;

P_Lock Plock;

}

typedef struct PROCESS

{

D_Header Header;

ETHREAD ForkInProgress;

}

 

Figure ‎6-4. Direct Inclusion-Based Relations Analysis. 

 



Chapter 6: Operating System Kernel Data Disambiguator 

 

124 

 

 

 

Figure ‎6-5. Different snapshots of the direct relations type-graph for Windows research kernel. 

6.3.2.1 Usage Example 

For a better illustration of how OS-KDD works to disambiguate generic pointers problem using 

our points-to analysis algorithm, we will use the code snippet in Figure  6-6 as a running ex-

ample to explain our analysis phases and objectives. 

typedef struct _LIST_ENTRY { 

struct _LIST_ENTRY *Flink; 

struct _LIST_ENTRY *Blink; 
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} LIST_ENTRY, *PLIST_ENTRY, *RESTRICTED_POINTER; 

 

typedef struct _KProcess { 

LIST_ENTRY ThreadHeadList; 

} KProcess, *PKProcess; 

 

typedef struct _EPROCESS { 

void* UniqueProcessId; 

LIST_ENTRY ActiveProcessLinks; 

KProcess kpc; 

int DebugPort; 

} EPROCESS, *PEPROCESS; 

 

typedef struct _EThread { 

void* UniqueThreadId; 

PEPROCESS parentProcess; 

LIST_ENTRY ActiveThreadLinks; 

} EThread, *PEThread; 

 

typedef struct _ExHandle { 

int* handle; 

} ExHandle; 

 

LIST_ENTRY PsActiveProcessHead; 

PEPROCESS MyProcesses[2]; 

PEPROCESS AllocatePrMemory() 

{ 

PEPROCESS p; 

…… 

p = (PEPROCESS) malloc(sizeof(EPROCESS)); 

return p; 

} 

PEThread AllocateThMemory() 

{ 

PEThread p; 

…… 

p = (PEThread) malloc(sizeof(PEThread)); 

return p; 

} 

 

void CreateProcess(PEPROCESS p_ptr) 

{ 

p_ptr = (PEPROCESS)AllocatePrMemory();     
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MyProcesses[0] = p_ptr; 

…… 

p_ptr-.UniqueProcessId = ExHandler(MyProcesses[0]); 

p_ptr->DebugPort = ExHandler(MyProcesses[0]); 

updatelinks(&ptr->ActiveProcessLinks, &PsActiveProcessHead);  

CreateThread(p_ptr); 

} 

 

void DeleteProcess(PEPROCESS p) 

{ 

LIST_ENTRY NextEntry = p->kpc->ThreadListHead.Flink; 

while (NextEntry != &p->kpc->ThreadListHead) 

{ 

WaitThread = GetThread(NextEntry);  

NextEntry = NextEntry->Flink; 

} 

EThread CreateThread(PEPROCESS p) 

PEThread th = (PEThread)AllocateThMemory(); 

int handle = 12345;  th->UniqueThreadId = ExHandler(); 

updatelinks(&th->ActiveThreadLinks, p->kpc->ThreadHeadList);  

} 

 

void* ExHandler() 

{ 

ExHandle tempHandle;     

…… 

return tempHandle.handle; 

} 

 

void updatelinks(PLIST_ENTRY src, PLIST_ENTRY tgt) 

{ 

src->Flink = tgt->Flink; 

tgt->Blink = src->Blink; 

} 

void main() 

{ 

PEPROCESS ptr[2];     

CreateProcess(ptr[0]);     

CreateProcess(ptr[1]); 

} 

Figure ‎6-6. A motivating example in C language reflecting generic pointers and casting problems. 
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6.4 Points-to Analysis Algorithm 

Indirect inclusion-based relations (generic pointers dereferencing) cannot be computed from the 

generated abstract syntax trees directly. Thus, we developed a points-to analysis algorithm that 

has the ability to perform field, flow and context sensitive analysis on large-scale C programs. 

Our points-to analysis algorithm has four sub-steps in order to compute the indirect relations 

type-graph: Intraprocedural Analysis, Interprocedural Analysis, Graph Unification and Con-

text-sensitive Analysis – discussed in details in section  6.4.1,  6.4.2,  6.4.3 and  6.4.4, respectively.  

 Intraprocedural Analysis 6.4.1

The goal of the intraprocedural analysis step is to compute a local graph – denoted as LTG 

(Local Type Graph) – for each procedure in the program graph but without information about 

caller or callees. Algorithm  6-2 summarizes the process of performing an intraprocedural 

analysis for a procedure P. The intraprocedural analysis module of OS-KDD takes the abstract 

syntax trees of the target program as input and outputs a local type-graph with nodes for all 

pointers, pointer-compatible and global variables, malloc operations, assignments and return 

instructions. Analysis is performed on each procedure in the program, and OS-KDD assumes 

unknown initial values for parameters, local and global variables, and all memory locations 

reachable from the analysed procedure.  

Algorithm ‎6-2. Intraprocedural Analysis Algorithm 

1: Procedure IntraproceduralAnalysis (ASTFile F) 

2:  ∀ ASTLine L ∈ F 

3:  if L ∋ variable 𝑣𝑎𝑟 (type) then EscapeAnalysis (𝑣𝑎𝑟); 

4:   if (scope == null) then 𝑣𝑎𝑟 ⊆ global variable 

5:   elseif L ∋ function parameters then 𝑣𝑎𝑟 ⊆ Local function parameter 

6:   else V ⊆ Local variable 

7:   CreateNode (𝑣𝑎𝑟, scope); 

8:  endif 

9:  if L ∋ assignment | function call | return statement then ComputeTransFun(); 

10: end  

11: 

12: 

Procedure ComputeTransferFunction (L) 

end 
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Section 6.4.1.1 explains the nodes creation part and section  6.4.1.2 explains how edges are 

computed and connected between graph nodes to generate constraints sets between graph nodes. 

6.4.1.1 Graph Nodes Creation 

The intraprocedural analysis module performs a linear scan over the abstract syntax trees of the 

program procedures and creates the graph nodes, as follows:  

 Pointers and Pointer-Compatible Variables. For each pointer declaration or 

pointer-compatible variable declaration, the intraprocedural analysis module cre-

ates a new node for it and performs escape analysis to check the function scope of 

the variable. Variables generally are local or global variables.  

 Procedures. For each procedure definition proc, the intraprocedural analysis 

module creates a node for each formal-in parameter param. For procedure call; 

the analysis module creates two nodes for each formal-in argument arg; one is 

for the argument itself and the node holds the name of that argument, and the se-

cond node is an auxiliary node contains the argument index (relative position) in 

the procedure. These auxiliary nodes are used in the interprocedural analysis 

phase to compute the implicit assignment relations between the formal-in argu-

ments and parameters. For example, given a procedure call proc(x, y), x,y ∈ 

arg; the analysis module creates two nodes for the arguments x and y, in addi-

tion to other two auxiliary nodes proc:1 and proc:2.  

 Assignment Statements. An assignment statement expresses a store, write (include 

malloc statements) or load operation in the program execution. The analysis 

module creates a node for the variables of the left and right hand sides, if not al-

ready created in one of the previous steps. A malloc statement is always the 

right-hand side of an assignment statement. We create a node for allocated object 

of void type unless the malloc statement is cast.  

 Return Statements. The analysis module creates two nodes; one node for the re-

turn statement itself and the other one for the returned value.  
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 Casting Statements. The analysis module creates a node of void type, as the ac-

tual target type of their variables will be estimated during the analysis.  

Initially, any newly created node of a variable var has the type Ʈvar of its declared variable, 

and Ʈvar is updated at dereference operations and when var is indexed into a structure or array 

pointed to by another variable varn and varn has a different type Ʈn.  

6.4.1.2 Edges Computations 

To obtain high scalability in performing the points-to analysis, we compute a transfer function 

for each procedure, procedure call, and return and assignment statements in order to summarize 

the relations between graph nodes. This transfer function describes the modification side effect 

of these entities independently of the procedure input that summarizes its points-to relations. A 

transfer function is basically a formal way of describing a relationship between an input and 

output. At this stage of the analysis OS-KDD builds the initial edges based on the computed 

transfer function as described in Table  6-1, as follow. 

First, procedures; A procedure’s transfer function is a relation between the formal-in pa-

rameters and the auxiliary nodes that hold the indexes of these parameters. The directed edges 

between these nodes are expressed as: (i) an inlist edge between each formal-in parameter node 

and its relevant auxiliary node, and (ii) an outlist edge from the auxiliary node to its relevant 

formal-in parameter node. Second, procedure calls; a transfer function for a procedure call 

reflects the relation between the nodes of formal-in arguments and auxiliary nodes. The directed 

edges between these nodes are expressed as an inlist edge between each argument node and its 

relevant auxiliary node. A procedure call includes computing edges for the program global 

variables, escaped local variables and dynamically allocated objects whose values may be ac-

cesses by proc or the procedure that proc invokes. Third, return statements; a transfer function 

for a return statement is a relation among left hand side, the procedure return node and the 

returned value node. The directed edges between these nodes are expressed as: (i) an inlist edge 

between the left hand side and the return node. (ii) An inlist edge between the return node and 

retuned value node. (iii) An outlist edge between the return node and the left hand side. 
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Similarly, the formal-out parameters of a procedure proc include not only its return value 

but also the global variables, escaped local variables (from this procedure) and dynamic allo-

cated objects whose values may be modified by proc or the procedures that proc invokes. 

Fourth, assignment statements; a transfer function for an assignment statement is a relation 

between the nodes of left and right hand sides of the assignment statement. The directed edges 

between these nodes are expressed as: (i) an inlist edge from left hand-side to right hand-side, 

and (ii) an outlist edge from the right hand-side to left hand-side. 
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Table ‎6-1. Transfer function description. 

Local points-to sets pts(), constraints between nodes, and edges (→ a directed inlist edge between two nodes, ← a directed outlist edge). 

 Code Local pts() Constraints Edges 

Procedure  𝑟𝑜𝑐 ( 𝑎𝑟𝑎𝑚⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )  𝑡𝑠( 𝑟𝑜𝑐: 𝑖 𝑑𝑒𝑥𝑝𝑎𝑟𝑎𝑚) ⊇  𝑡𝑠( 𝑎𝑟𝑎𝑚𝑖𝑛𝑑𝑒𝑥)  𝑟𝑜𝑐: 𝑖 𝑑𝑒𝑥𝑝𝑎𝑟𝑎𝑚 ⊇   
𝑖 𝑑𝑒𝑥𝑝𝑎𝑟𝑎𝑚 →   

𝑖 𝑑𝑒𝑥𝑝𝑎𝑟𝑎𝑚 ←   

Call  𝑟𝑜𝑐 (𝑎𝑟𝑔⃗⃗⃗⃗ ⃗⃗  ⃗)  𝑡𝑠(𝑎𝑟𝑔𝑖𝑛𝑑𝑒𝑥  ) ⊇  𝑟𝑜𝑐 (𝑖 𝑑𝑒𝑥𝑝𝑎𝑟𝑎𝑚 ) 𝑎𝑟𝑔𝑖𝑛𝑑𝑒𝑥 ⊇ 𝑖 𝑑𝑒𝑥𝑝𝑎𝑟𝑎𝑚 
𝑎𝑟𝑔𝑖𝑛𝑑𝑒𝑥  

→  𝑖 𝑑𝑒𝑥𝑝𝑎𝑟𝑎𝑚  

Return 

   𝑟𝑜𝑐 ( ); 

𝑡𝑦 𝑒  𝑟𝑜𝑐 (𝑡𝑦 𝑒 𝑣𝑎𝑟⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) 

{𝑟𝑒𝑡𝑢𝑟  𝑥; } 

 𝑡𝑠 ( 𝑟𝑜𝑐−1)  ⊇   𝑡𝑠(𝑥)  𝑟𝑜𝑐−1 ⊇  𝑥  𝑟𝑜𝑐−1  →  𝑥 

Assignment 

  &  𝑙𝑜𝑐( )  ∈   𝑡𝑠( )   ⊇  { } 
  →    

  ←    

     𝑡𝑠( )  ⊇   𝑡𝑠( )   ⊇    
  ↝    

  ←    

  ∗   ∀𝑣 ∈   𝑡𝑠( ) ∶   𝑡𝑠 ( )  ⊇   𝑡𝑠(𝑣)   ⊇ ∗   
  → ∗  →  𝑣 ∶    ↝  𝑣 

  ← ∗   ←  𝑣 

∗     ∀𝑣 ∈   𝑡𝑠( ) ∶   𝑡𝑠 (𝑣)  ⊇   𝑡𝑠( ) ∗   ⊇    
𝑣 → ∗   →   ∶  𝑣 ↝    

𝑣 ← ∗   ←    
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For better understanding, we show the analysis results for some code snippets from the 

motivating example depicted in Figure  6-1 – section  6.3.2.1. Consider a call to procedure 

Updatelinks, where the formal-in parameters are (src, tgt), and the actual passed 

arguments are (&ActiveProcessLinks, &ActiveProcessHead), and consider these 

explicit assignment statements src→Flink = tgt→Flink and tgt→Blink = 

src→Blink; OS-KDD computes the transfer function for those statements as shown in Fig-

ure  6-7(a) and Figure  6-7(b), respectively. For return statements, given this fragment of code 

UniqueThreadId = ExHandler(), the computed transfer function is as is shown in 

Figure  6-7 (c). 

ActiveProcessLinks

Updatelinks : 1

src

ActiveProcessHead

Updatelinks : 2

tgt
 

(a) 

Src Flink tgt Flink

Points-to Edge

Outlist Edge
 

(b) 

UniqueProcessId

ExHandler:-1

handle
 

(c) 

Figure ‎6-7. Intraprocedural analysis graph. 

From the computed transfer function and after connecting the graph edges we formulate a 

set-constraint – shown in Table  6-1 – that determines the nature of the source and destination 
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nodes of an edge. For example, an edge from node p to node q constraints the points-to set of p 

to be a subset of the points-to set of q. The constraint-set built at this stage of the analysis is an 

initial set that will be updated based on the results of the later analysis steps. 

 Interprocedural Analysis  6.4.2

In this phase, we perform an interprocedural analysis that enables performing points-to analysis 

across the different program files to perform a whole-program analysis. This enables adding 

new edges between graph nodes in order to eliminate incomplete information between callers 

and callees of procedures. The result of the interprocedural analysis phase is updating the LTG 

graph by adding new edges and removing some of the existing edges, in order to compute the 

calling effects (returns, arguments and parameters), but without any information about the 

calling contexts of the procedures. Algorithm  6-3 summarizes this interprocedural analysis step. 

Based on the computed transfer function in the intraprocedural analysis phase, OS-KDD 

starts to map between callers and callees. This is done by propagating the local points-to sets 

computed at the intraprocedural step to their use sites consistently with arguments’ indexes in 

the corresponding call sites, and then removing the internal inlist edges. Thus we can map 

between the procedure arguments and parameters, and procedure returns. Figure  6-8 shows the 

analysis results of this step for the examples discussed in the intraprocedural analysis step. 

Figure  6-8(a) and Figure  6-8(b) show the analysis results for a procedure declaration and its call, 

procedure returns, receptively. 

Algorithm ‎6-3. Intraprocedural Analysis Algorithm 

1: Procedure Interprocedural Analysis (Graph G) 

2:  ∀ Node N ∈ G 

3:   if ∃ N has the form N(Procedure Name : index) then 

4:    Create inlist edge (N.outlist, N.inlist); Create outlist edge (N.intlist, N.outlist); 

6:    Delete dummy nodes (); 

7:   end if 

8: end 
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ActiveProcessLinks

Updatelinks : 1

src

ActiveProcessHead

Updatelinks : 2

tgt

⤫⤫
 

(a) 

UniqueThreadId

ExHandler:-1

handle

⤫
 

(b) 

Figure ‎6-8. Interprocedural analysis graph. 

 Graph Unification 6.4.3

Before proceeding with the context-sensitivity analysis step, we need to ensure that 

field-sensitivity property is applied accurately and the points-to sets of reference nodes are 

relatively complete – but without calling contexts yet. For a better understating for the problem, 

consider the following piece of code from our motivating example: 

void updatelinks(PList_Entry src, PList_Entry tgt)

updatelinks(&ptr->ActiveProcessLinks, &ActiveProcessHead)

 

In this piece of code, we pass an object type to the procedure updatelinks, however, the 

procedure manipulates the fields of the passed object Flink and Blink, as the definition of 

the _PList_Entry data type is: 

typedef struct _LIST_ENTRY {

struct _LIST_ENTRY *Flink;

struct _LIST_ENTRY *Blink;

} LIST_ENTRY, *PLIST_ENTRY, *RESTRICTED_POINTER;
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To solve this problem, we apply a unification algorithm to the type-graph, as follows:  

given node A with points-to set S and s ∈ S, if s has child-relation edge with a field reference 

node f; we create a points-to edge between f and A. Figure  6-9 shows the analysis results of this 

step of the aforementioned example. Graph unification is an important step to generate and 

accurate and balanced graph to ensure true field-sensitivity analysis results. 

ActiveProcessHead ActiveProcessLinks

src tgt

Flink Blink Flink Blink

 

Figure ‎6-9. Graph unification results. 

 Context-Sensitive Points-To Analysis 6.4.4

Without context-sensitivity, the analysis of procedures that have different calling contexts 

would result in imprecise points-to sets. The key in achieving true context-sensitivity in 

OS-KDD is: (i) using the computed transfer function for each procedure call and apply its 

calling contexts, to bind the output of the procedure call according to the calling site. (ii) A graph 

node must not be analysed until all of its callers and callees – affecting that value of that node – 

have been analysed and their points-to sets are updated into the graph. (iii) Compute the tran-

sitive closure of some graph nodes to build complete strongly connected components, in order to 

fully resolve recursion cycles. 

In OS-KDD, context-sensitivity is achieved by detecting the entire call paths between 

callers and callees. During a program execution, we have: (i) cyclic call paths; a cyclic call path 

means the existence of function recursions in the program’s source code. Details of applying 

context-sensitivity in the presence of recursion cycles are discussed in section  6.4.4.1. (ii) 

Acyclic call paths; an acyclic call path means there is no recursive calls in the program 

call-graph. Context-sensitivity in this case is applied straight forward using our algorithm. 
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Algorithm  6-4 summarizes the context-sensitive points-to analysis module of OS-KDD. 

Algorithm ‎6-4. Context-Sensitivity Points-to Analysis 

1: Procedure PointsToAnalysis (PDG PDG, Graph G, TransferFunction TF)    

2:  ∀ Node N ∈ G 

3:   ∀ InListNode in ∈ N.InList 

4: 

5: 

   Compute points-to set (in);  

N. PointstoSet. Add (in. PointstoSet); 

6:   N. PointstoSet. Add (in); 

7:   ∀ PointedToNode toN ∈ N. PointstoSet 

8:    ∀ Child ch ∈ N. Children  

9: 

10: 

    CopyNode (ch);  

Connect edges (); 

11: 

12: 

  UpdateNodePointsTo (N, toN); 

Write the Graph(); 

13: end 

14: Procedure UpdateNodePointsTo (Node N, PointedToNode toN) 

15:  if N.fnScope != toN.fnscope) then ∀ SubPointedToNode StoN ∈ toN. PointstoSet 

16:   if StoN.fnScope == N.fnScope then N. PointstoSet. Add(StoN); 

17:  else UpdateNodePointsTo (N, toN); 

18: end 

 

For acyclic call paths, OS-KDD starts the analysis by building a call graph of the target 

program’s source code. A call graph is a directed graph that represents calling relations between 

procedures in a program. Each node Nc represents a procedure and an edge Ec from p to q, where 

(p,q) ∈ Nc, indicates that procedure p calls procedure q. The call graph can be computed easily 

from the interprocedural graph, as the main objective of interprocedural graph is mapping be-

tween callers and callees. Then, the graph is traversed in a topological order [193], starting with 

the top node – according to the call graph – that does not have any node dependency, and thus 

we guarantee that each node has its inlist nodes already analysed before proceeding with the 

node itself. For a directed acyclic call-graph, G (Nc, Ec), a topological ordering means assigning 

a priority value to each node in the graph such that, for all edges p ↝ q ∈ E, pts(p) < pts(q). 

Thereafter pointers are analysed iteratively until their points-to sets are fully traversed, and then 

we propagate the points-to set of each node into its successors accumulating to the bottom node. 

Context-sensitivity is achieved by distinguish the calling contexts for a procedure using the 
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points-to sets of the higher-levels nodes. A points-to edge here is a tuple ⟨n, v, c⟩ represents a 

pointer n points to variable v at context c, where the context is defined by a sequence of func-

tions and their call-sites to compute valid call paths between the graph nodes. 

A hidden problem in points-to analysis is the implicit relations between the program objects 

that have not been explicitly declared in the source code, but created due to indirect pointer 

dereferencing via function pointers. Most of these relations could be detected during the con-

text-sensitive analysis phase. However, variables that are in the same function scope might have 

implicit relations between each other as one of these variables might escape to other thread of 

execution that modifies indirectly other pointer-compatible variables within the same original 

scope. In order to detect such indirect relations we compute the transitive closure of the some 

specific graph nodes, in order to detect indirect points-to relations between nodes within a local 

function scope that have not been detected in the intraprocedural analysis phase. 

Transitive closure can be thought of a graph nodes reachability problem. Consider a graph 

G (N, E) with nodes (p, q) ∈ N, a transitive closure ≡ a directed path from p to q in G and the 

result of node q depends on node p. When the value of a given node is modified or dereferenced, 

the values of all reachable nodes must also be updated. In our algorithm, we compute the tran-

sitive closure only for a set of nodes that has the same function scope, but are not but not in-

cluded in one points-to set. Such that, ∀ two nodes v and n where v ∈ pts(n) and v and n has 

different function scope, check the function scope of n and x where x ∈ pts(v), if the function 

scope is the same then create a transitive closure relation expressed as a points-to edge between 

n and x. Figure  6-10 shows the transitive closure analysis results for the Updatelinks ex-

ample. We have discovered that there is an indirect points-to relation from ActivePro-

cessHead to ActiveProcessLinks. 
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ActiveProcessHead ActiveProcessLinks

src tgt

Flink Blink Flink Blink

 

Figure ‎6-10. Transitive closure computations results 

6.4.4.1 Function Recursion 

To handle recursive calls, the call graph is divided into strongly connected components (SCCs). 

A directed graph is called strongly connected if there is a path from each node in the graph to 

every other node. In order to compute accurate strongly connected components, indirect func-

tion call information should be updated accurately into the type-graph, to guarantee precise 

results. A strongly connected component of graph G (N, E) is a maximal set of nodes n, where 

n ⊆ N such that ∀C∀D ∈ N  C ↝ D a d D ↝ C  as show  i  Figure  6-11. 

A C

FE

D

G
 

Figure ‎6-11. Strongly connected components in a directed graph cycle. 

Computing strongly connected components can greatly affect performance; therefore we 

follow an inline approach that only detects cycles that are visited during the context-sensitive 

analysis step not when a cycle is created in the program’s source code. From the call-graph, we 

detect strongly connected components using Tarjan’s algorithm [189] – also called depth-first 

search – and back-propagate component information along edges traversed by the depth-first 

search. The power of this algorithm is the ability to identify all cycles in linear time. If a new 

edge C ↝ D introduces a cycle then C must be visited during a forward depth-first search from 

D. Then, for each node that forms a strongly connected component with other node, we mark the 
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R bit of the node as true. Once a cycle has been detected we collapse its nodes into a new node 

that represents a cycle, as all nodes in the same SCC are guaranteed to have identical points-to 

sets and can safely be collapsed together. Then, we reapply the context-sensitive analysis algo-

rithm described in section  6.4.3 on these new nodes that represents SCCs. Node collapsing 

enables getting a finite set of reduced call paths, as all nodes in a SCC have the same call paths 

between callers and callees.  

6.5 Implementation and Evaluation  

We have implemented a prototype of OS-KDD using C#. OS-KDD uses pycparser [230] to 

generate AST files of the C program’s source code. Figure  6-12 shows the analysis sequence of 

OS-KDD in the implementation phase. OS-KDD then uses abstract syntax trees files to apply 

the points-to analysis algorithm to generate the type-graph. we have used Microsoft’s Parallel 

Extensions [231] to leverage multicore processors in an efficient and scalable manner to im-

plement OS-KDD. Threading has also been used to improve parallelization of computations 

(.NET supports up to 32768 threads on a 64bit platform). In the intraprocedural analysis, 

OS-KDD analyses each AST file using a separate thread. For interprocedural analysis, OS-KDD 

allocates a thread for each procedure to parse the AST files to map between the procedure pa-

rameters and arguments. However, for the context-sensitive, the analysis is done on sequen-

tial-basis as each node depends on its predecessors. When the analysis is done, OS-KDD writes 

the type-graph. It replaces each variable node with its data type and for fields and array elements 

we add the declared parent type. Then, OS-KDD reformats the results of our analysis to the 

DOT language [232], as a simple visualization for the analysis results. 

C Preprocessor pycparser
Processed

C Code

ASTs
KDD

Type

Graph

Source 

Code

 

Figure ‎6-12. Kernel Source Code Analysis Sequence. 
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We performed two different types of experiments with OS-KDD to demonstrate its scala-

bility and effectiveness. We measured the soundness and precision of OS-KDD using different 

sets of benchmark programs. We analysed the Linux kernel v3.0.22 and WRK (Windows Re-

search Kernel) using OS-KDD, and performed a comparison between the computed pointer 

relations using OS-KDD and the manual efforts to solve these relations in both kernels. Our 

implementation and evaluation platform is a 2.5GHz core i5 processor with 12 GB RAM. 

 Soundness and Precision Experiment 6.5.1

A points-to analysis algorithm is sound if the points-to set for each variable contains all its actual 

runtime targets, and is imprecise if the inferred set is larger than necessary thus imprecise results 

could be sound [193]. For instance, if the inferred points-to set of variable p, pts(p) = { a,c,b } 

while the actual runtime targets are only a and b, then the algorithm is sound but not precise and 

thus there exist a false positive rate. If  𝑡𝑠( )    { 𝑎 𝑐 } and the actual runtime targets are a 

and b then the algorithm is neither sound nor precise, and thus there exist both false positives 

and negatives. 

OS-KDD achieves a high rate of precision and 100% soundness of the inferred points-to 

sets. This exemplary rate of soundness achieved is because OS-KDD performs points-to anal-

ysis not only on the declared pointers, but also on the pointer compatible-variables. Thus, we 

guarantee that all pointer dereferencing operations whether direct or indirect is included in the 

analysis algorithm. However, OS-KDD cannot guarantee the same rate in precision, where 

precision depends on the points-to analysis algorithm and false alarms are likely to exist. We 

used a selection of C programs from the SPEC2000 and SPEC2006 benchmark suites, and other 

open source C programs, to measure the soundness and precision of OS-KDD. Figure  6-13 

shows a snapshot of OS-KDD tool while analysing one of the program benchmarks. 
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Figure ‎6-13. A snapshot of OS-KDD while analysing one of the program benchmarks. 

Table  6-2 shows the characteristics of these benchmark C programs, in addition to the 

experimental results of OS-KDD analysis of each of these benchmark programs. We also show 

indications of memory, time and processor usage of running OS-KDD on these benchmark 

programs. We used SLOCCount [233] to count Lines of Code (LOC) for the benchmark pro-

grams used in my experiments. “LOC” denotes the lines of code of the program. “Pointer Inst” 

denotes the number of pointer instructions. “Proc” is number of Procedures. “Struct” is number 

of the type definitions. “AST T” is the time consumed, “AST M” is memory usage, and “AST C” 

is CPU usage to generate the ASTs. “TG T” is the time consumed, “TG M” is memory usage, 

and “TG C” is CPU usage to build the type-graph of the target benchmark program. We show 

the peak value for both time and processor usage.  
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Table ‎6-2. Soundness and precision results of OS-KDD on a suite of benchmark programs. 

Benchmark LOC Pointer Inst Proc Struct 
AST T 

(sec) 

AST M 

(MB) 

AST C 

(%) 

TG T 

(sec) 

TG M 

(MB) 

TG C 

(%) 

P  

(%) 

S 

(%) 

art 1272 286 43 19 22.7 21.5 19.9 73.3 12.3 17.6 100 100 

equake 1515 485 40 15 27.5 25.4 20.4 87.5 14.1 21.1 98.9 100 

mcf 2414 453 42 22 43.2 41 28.5 14 23 27 98.2 100 

gzip 8618 991 90 340 154.2 144.6 70.5 503.3 81.4 68.3 97.0 100 

parser 11394 3872 356 145 305.2 191.2 76.7 661.4 107.8 74.3 94.5 100 

vpr 17731 4592 228 398 316.1 298.7 80.2 1031.5 163.2 79 NA 100 

gcc 222185 98384 1829 2806 3960.5 3756.5 93.5 12962 2200 94 NA 100 

sendmail 113264 9424 1005 901 2017.2 1915.1 91.6 6609 1075.0 91.5 97.7 100 

bzip2 4650 759 90 14 82.3 78.1 45.5 271.6 44.2 42.9 98.9 100 

Wave5 7764 6523 84 245 142.6 142.2 70.5 504 81.9 69.8 97.3 100 

crafty 20650 5422 236 402 325 315.2 82.1 1101.2 173.2 82.6 98.3 100 
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We manually verified each program to get an accurate estimation of the points-to set. For 

programs that are less than 4 KLOC, we instrumented pointers manually. For larger programs 

we picked a random set of generic pointers based on my understanding of the program. However, 

we could not measure precision for some programs because of their big size. We also ran each 

program and monitored allocations in physical memory to get the actual runtime targets (i.e. 

relevant points-to set). Then we used the equation below to calculate precision. Our results show 

that for the benchmark C programs analysed by OS-KDD, a high level of precision and 100% of 

soundness was achieved. The results also show that for significantly sized C programs, 

OS-KDD is able to process the application code with very acceptable CPU time and memory 

usage. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜   
𝑅𝑒𝑙𝑒𝑣𝑎 𝑡 𝑃𝑜𝑖 𝑡𝑠 𝑡𝑜 𝑆𝑒𝑡  ∩  𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑃𝑜𝑖 𝑡𝑠 𝑡𝑜 𝑆𝑒𝑡

𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑃𝑜𝑖 𝑡𝑠 𝑡𝑜 𝑆𝑒𝑡
 

 Operating System Kernel Analysis Experiment 6.5.2

To illustrate the scale of the problem presented by C-based operating systems, we performed a 

simple statistical analysis on the WRK (~ 3.5 million LOC) and Linux kernel v3.0.22 (~ 6 

million LOC) to compute the amount of type definitions (data structures), global variables and 

generic pointers used in their source code. Table  6-3 summarizes this analysis. “TD” column 

shows the number of type definitions, “GV” is the number of global variables, “DL” shows the 

number of doubly linked lists, “Uint” is the amount of the declared unsigned integers, and “AST 

shows AST files size in gigabyte. 

Table ‎6-3. Kernel source code analysis. 

 TD GV void* Null* DL Uint AST 

Linux 11249 24857 5424 6157 8327 4571 1.6 

WRK 4747 1858 1691 2345 1316 2587 0.9 

 

OS-KDD scales to the very large size of such operating system’s kernel. OS-KDD needed 

12.7 hours to analyse the WRK and 21.6 hours to analysis the Linux kernel. Comparing 

OS-KDD to KOP, KOP has to be run on a machine with 32GB RAM. As our points-to analysis 
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is performed offline and just once for each kernel version, the performance overhead of ana-

lysing kernels is acceptable, and does not present a problem for any security application that 

makes use of OS-KDD’s generated type-graphs. Re-generation of the graph is only necessary 

for different versions of a kernel where data structure layout changes may have occurred. As the 

analysis is done offline and just run once for each kernel version, performance is not such an 

important factor in our analysis. However, OS-KDD can be extended to be more efficient with 

regard to service pack and patch updates. OS-KDD can be extended to locate code change 

locations and just analyse the corresponding data structures, variables and system code that 

relate to the code updates – details are discussed in chapter 9, in the future work section. 

To evaluate the accuracy of OS-KDD’s generated type-graphs, we performed a comparison 

between the pointer relations inferred by OS-KDD and the manual efforts of operating systems’ 

experts to solve these indirect relations in both kernels. We manually compared around 130 

generic pointers from WRK and 150 from the Linux kernel. These comparisons show that 

OS-KDD successfully deduced the candidate target type/value of these members with 100% 

soundness. Because of the huge size of the operating system’s kernel code base, we could not 

measure its precision for nearly 60% of the members we used in our experiment, as there is no 

clear description for these members from any existing manual analysis. We were only able to 

measure precision for well-known objects that have been analysed manually by security experts 

and whose purpose and function is well-known and documented. The resulting precision was 

around 96% in both kernel versions, and Table  6-4 shows the results of our comparison.  

  



Chapter 6: Operating System Kernel Data Disambiguator 

 

  

145 

 

Table ‎6-4. A comparison between OS-KDD type-graphs and some kernel data value-invariants. 

OS Structure / GV T KDD S(%) P(%) 

L
in

u
x
 

thread_group S 

task_struct.thread_group:[task_struct.group_leader.thread_group 

thread_group.next: [list_head.next, task_struct.thread_group.next, 

task_struct.group_leader.thread_group] 

thread_group.next: [list_head.next, task_struct.thread_group.next, 

task_struct.group_leader.thread_group] 

Context: Thread 

100 100 

journal_info v* journal_info:[btrfs_trans_handle, gfs2_trans, nilfs_transaction_info] 100 100 

cg_list S 
cg_list: [list_head, css_set.tasks, css_set __rcu.task] 

context: task_struct 
100 100 

btrace_seq v* blktrace_seq, unsigned int 100 NA 

W
in

d
o

w
s 

ActiveProcessLinks S 

ActiveProcessLinks: [List_Entry, PsActiveProcessHead] 

ActiveProcessLinks.Flink: [List_Entry.Flink, PsActiveProcessHead.Flink] 

ActiveProcessLinks.Blink: [List_Entry.Blink, PsActiveProcessHead.Blink] 

Context: EPROCESS 

100 100 

PsActiveProcess-

Head 
G 

PsActiveProcessHead: [List_Entry, ActiveProcessLinks] 

PsActiveProcessHead.Flink: [ActiveProcessLinks.Flink, ActiveProcess-

Links.Flink] 

PsActiveProcessHead.Blink:  [ActiveProcessLinks.Blink, ActiveProcess-

Links.Blink] 

Context: EPROCESS  

100 100 

VadRoot S VarRoot: [MM_AVL_TABLE] 100 100 
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OS Structure / GV T KDD S(%) P(%) 
W

in
d

o
w

s 

ThreadListHead S 

ThreadListHead: [List_Entry] 

ThreadListHead.Flink: [List_Entry.Flink]ThreadListHead.Blink: 

[List_Entry.Blink] 

Context: ETHREAD 

100 100 

PsLoadedModuleList G 

PsLoadedModuleList: [List_Entry] 

PsLoadedModuleList.Flink: 

[KLDR_DATA_TABLE_ENTRY.InLoadOrderLinks.Flink, List_Entry.Flink] 

PsLoadedModuleList.Blink: [KLDR_DATA_TABLE_ENTRY. InLoadOrder-

Links.Blink] 

Context: LDR_DATA 

100 100 

LdtInformation v* LdtInformation: [PVOID, PROCESS_LDT_INFORMATION] 100 100 

DirectoryTableBase U 

DirectoryTableBase: [MmCreateProcessAddressSpace:-1] 

DirectoryTableBase[0]: [PageDirectoryIndex, ULONG64] 

DirectoryTableBase[1]: [HyperSpaceIndex, ULONG64] 

100 100 
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6.6 Discussion 

Our experiments with OS-KDD have shown that a generated type-graph is highly accurate and 

solves the null and void pointers, and casting problems with a high percentage of soundness 

and precision. OS-KDD is able to scale to the enormous size of operating system’s kernel code, 

unlike most other points-to analysis tools that do not scale to such large-scale analysis. This 

scalability and high performance was achieved via a number of factors: first, using abstract 

syntax trees as a high-level representation for C programs. The compact and syntax-free abstract 

syntax trees improve time and memory usage efficiency of the analysis. This is because in-

strumenting abstract syntax trees is more efficient than instrumenting the low-level representa-

tion languages because many intermediate computations are saved from hashing, as discussed 

before in section  6.3.1. Second, using the transfer function approach enables precise description 

for the modification side effects of program procedures while keeping their computations costs 

to a minimum. Moreover, the compositional manner used in our implementation to developing 

OS-KDD. Each procedure proc is analysed independently and only information about proc’s 

summary, is communicated to other procedures that call proc. This enables OS-KDD to scale 

the analysis to millions of lines of code.  

OS-KDD has the ability to accurately disambiguate generic pointers statically to get a 

precise estimation of their pointer dereferencing operations and extract robust type definitions 

for the kernel data structures. Such static analysis approach on kernel source code has several 

advantages that can support developing many other applications, not just CloudSec++, as follow:  

first, OS-KDD capabilities enable the implementation of different systematic security solutions 

that requires formal checking of memory operations such as pointer dereferencing in dynamic 

data. By this we mean that we have the ability to systematically protect kernel data without the 

need to understand deep details about kernel data layout in memory, as is done to date. Second, 

OS-KDD minimizes the performance overhead in security applications as a major part of the 

analysis process is done offline. If no static analysis were done, every pointer dereferencing 

operation would have to be instrumented, which increases performance overhead and makes the 
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security software inadequate. Third, OS-KDD is capable of systemically analysing the whole 

address space of an operating system’s kernel with nearly a complete coverage of all pointer 

dereferencing operations. This maximizes the likelihood of detecting zero-day threats that target 

generic pointers (via bad pointer dereferencing) located in kernel dynamic data that do not have 

explicit integrity constraints that can be extracted from the operating system’s kernel source 

code. Fourth, declared types of C variables are unreliable indications of how the variables are 

likely to be used at system runtime. OS-KDD enables accurate type inference of pointers and 

pointer-compatible variables of a C program. This enables determining the actual runtime type 

of a dynamic object by analysing the usage of this object in the code base. Fifth, OS-KDD 

enables checking the integrity of kernel code function pointers that reside in dynamic kernel 

objects, by inferring the target candidate type for each function pointer. This decreases the need 

to instrument every function pointer at system runtime, as the addresses of objects that hold 

these pointers change during runtime. In chapter 8, we discuss different tools that benefit form 

OS-KDD to enable integrity checks on kernel pointers and function pointers. 
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6.7 Summary  

In this chapter, we described our points-to analysis tool (OS-KDD). OS-KDD is a static analysis 

tool that operates offline on a C-based operating system’s kernel source code to generate a 

robust type-graph for the kernel data that reflects both the direct and indirect relations between 

structures, models data structures and generates constraint sets on the relations between them. 

Our experiments with OS-KDD prototype have shown that the generated type-graphs are ac-

curate and solve the generic pointer problem with a high rate of soundness and precision. 
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  Chapter 7

DIGGER: A Kernel Runtime Objects Discovery Tool 

Dynamic kernel runtime objects may be a significant source of security and reliability problems 

in operating systems. Having a complete and accurate understanding of the runtime kernel 

dynamic data layout is thus necessary to implement an operating system security application. In 

this chapter, we discuss a new systematic approach, named DIGGER
11

. DIGGER uncovers the 

presence of any running instances of operating system’s kernel dynamic objects and data. 

DIGGER uses a hybrid approach to identify the running instances of kernel objects and data, 

and their type information. DIGGER provides necessary information to enable a security ap-

plication to guard against generic pointers exploits and stealthy malware. DIGGER's approach 

makes use of memory pools used by operating systems, in order to achieve accurate results and 

high performance. DIGGER uses kernel data definitions generated by OS-KDD in order to 

automate the process of uncovering kernel dynamic objects and thus DIGGER does not require 

any prior knowledge of the runtime kernel data layout. 

We have implemented a prototype of the DIGGER approach and conducted an evaluation 

of its efficiency and effectiveness. In section 7.1, we give an overview of the problem and 

DIGGER’s approach to solving it, and in section 7.2, we discuss the high-level architecture of 

DIGGER and its main components in detail. The implementation and evaluation details are 

discussed in section 7.3. Section 7.3 covers the evaluation and implementation details of 

DIGGER and we discuss the key features and limitations of DIGGER in section 7.4.

                                                      

11 The DIGGER name is derived from the word dig; i.e. digging for information in the physical memory of the 

operating system. 



Chapter 7: A Kernel Runtime Objects Discovery Tool 

 

152 

 

7.1 Overview 

In general-purpose operating systems, we usually refer to a running instance of a kernel data 

structure as a kernel object. Identifying accurately the running instances of operating system’s 

kernel data is an important task in many operating system security solutions, not just for virtu-

alization-aware security solutions applications, as discussed before in chapter 2 and 3. There are 

mainly two mechanisms used to discover kernel runtime objects: memory mapping techniques 

and value-invariant approaches. Both mechanisms have a number of critical limitations that 

make them vulnerable and inapplicable in real-time operating system security applications, as 

discussed previously in chapter 2. 

Motivated by the limitations of these mechanisms and the need to accurately uncover dy-

namic kernel runtime objects reliably, we have developed a new approach to discover kernel 

runtime objects, called DIGGER. DIGGER is a new hybrid mechanism that combines a new 

value-invariant approach and an advanced memory mapping technique. This combination en-

ables accurate discovery with fast and nearly complete coverage of the kernel address space. 

The value-invariant approach is used to uncover the presence of the running instances in the 

physical memory. DIGGER uses the pool memory tagging schema
12

 in order to implement this 

value-invariant approach. On the other hand, the memory mapping technique is used to recon-

struct the object type information in depth including the points-to relations with the other run-

ning instances – based on the generated type-graphs of OS-KDD. The level of the required 

object type information is selected by the security software user based on the required hierar-

chal-information depth. This controls the trade-off between details and performance overhead, 

as some object types have hundreds of fields with hierarchically-organised points-to relations 

with other system data. Details of in-depth analysis of runtime objects are covered in chapter 8. 

DIGGER has two key features that distinguish it from the other approaches: first, DIGGER has 

                                                      

12 DIGGER is designed mainly to Windows operating system kernels, as the pool memory tagging schema is 

only related to Windows operating system kernel. However, in section 7.4.1 we show how DIGGER can be imple-

mented in Linux operating systems using the slab allocation mechanism instead of the pool memory tagging schema.   
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the ability to systematically discover nearly all kernel objects, with no prior knowledge with the 

runtime kernel data layout. The key to achieve this is the usage of the type-graphs generated by 

OS-KDD, to enable systematic coverage of the pointer-based relations. A type-graph statically 

reflects the runtime kernel data layout of a specific kernel version, with accurate computations 

for the points-to relations. Second, the fast coverage and the low performance overhead of the 

runtime component of DIGGER by using the pool memory tagging schema that make it one of 

the fastest approaches to locate dynamic objects in memory.  

7.2 DIGGER High-Level Architecture  

The high-level process of DIGGER is shown in Figure  7-1. DIGGER has three main phases of 

the analysis; two of them are offline and occur once for each operating system kernel version, 

and the last phase is the dynamic analysis phase that uses the results of the first two phases in 

order to run the dynamic analysis and accurately locate the system objects. The DIGGER 

analysis phases are: static analysis phase, signature extracting phase and dynamic analysis 

phase. The main objective of the static analysis phase is parsing the operating system kernel 

source code in order to generate an accurate type-graph that reflects statically the runtime kernel 

data layout. The static analysis phase was discussed in detail in chapter 6, and in this chapter we 

focus only on the signature extraction and dynamic analysis phases, discussed in section  7.2.1 

and  7.2.2, respectively. 

type-graphs

Dynamic Memory Analysis 
Component

Signatures Extraction Component

Static Analysis Component

Objects list

Pool Tags

 

Figure ‎7-1. The high-level architecture of DIGGER approach. 
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 Signature Extraction Component 7.2.1

One of the main challenges of implementing a value-invariant approach or performing signa-

ture-based scanning is obtaining robust, unique and small signatures for the operating system 

kernel data. The complexity mainly comes from: first, data structures’ sizes are not small. From 

my analysis of Windows and Linux operating systems kernels, we found that a single data 

structure could be several hundreds of bytes. Thus, considering the whole data structure as a 

scanning signature would typically increase the discovery cost and the system performance 

overhead. Second, assuming that not all the fields of a data structure will be included in its 

signature, the question is “what are the most important fields that cannot be modified during 

runtime to be included in the scanning signature, to effectively detect stealthy malware and be 

difficult to be evaded?”. Dolan et al. [16] introduced an automated mechanism for generating 

robust signatures for kernel data structures. Dolan et al. profiled data structures and then fuzzed 

them to determine which were essential to the correct operation of the operating system. This 

mechanism enabled the identification of the most important fields in a data structure that cannot 

be modified during the object lifetime. Despite the effectiveness of this approach, it is time 

consuming as each single data structure requires massive analysis and runs in a sandboxed 

environment to determine its critical fields. Third, an operating system kernel contains thou-

sands of heterogeneous data structures, and this makes the process of generating unique sig-

natures for this huge number of the data structures is a challenging task. 

In order to overcome the above challenges in DIGGER, we used the pool memory tagging 

schema of the Windows operating system memory manager to overcome the size and efficiency 

problems of the signatures (first two problems), and we were motivated by the below paragraph, 

from Windows internals book [234] – denoted WI-note – to overcome the uniqueness problem 

(third problem). Details are discussed in section  7.2.1.1 and  7.2.1.2, respectively. 
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“Not all data structures in the Windows operating system are

objects. Only data that needs to be shared, protected,

named, or made visible to user-mode programs (via system

services) are placed in objects. Structures used by only one

component of the operating system to implement internal

functions are not objects.”

 

7.2.1.1 Signature Size and Efficiency Problem 

When the Windows operating system object manager allocates a memory pool block to allocate 

an object, it associates the allocation with a pool tag. A pool tag is a unique four-byte tag for 

each object type that is associated with any dynamically allocated pool block, and it is stored in 

reverse order in memory. Figure  7-2 shows a snapshot of the pools tags used for pool allocations 

by kernel mode components and drivers in Windows operating system, using the Poolmon13 

tool [235]. The full pool tag list for the Windows operating system can be extracted from the 

symbol information i.e. – Microsoft Symbols or from the kernel source code (Pooltag.txt file). 

Pool memory blocks are allocated via the routine ExAllocatePoolWithTag, shown in 

Figure  7-3. The formal-in parameters of this routine are: (i) PoolType; specifies the type of the 

used pool memory for the allocation and it is whether paged or non-paged pool memory. (ii) 

NumberofBytes; specifies the number of bytes to allocate and it is different from one object type 

to another – i.e. the allocated object size. (iii) Tag; specifies the pool tag and it depends on the 

type of the allocated object. For instance, to allocate memory for a process where the pool tag is 

“Proc”, it will appear in the memory as “corP” and the ASCII value would be 0xe36f7250. 

ExAllocatePoolWithTag returns a pointer to the allocated memory pool block. 

                                                      

13 PoolMon is a memory pool monitoring tool that displays accurate data about memory allocations and 

deallocations from the paged and nonpaged memory pools. 
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Figure ‎7-2. A snapshot of Poolmon tool depicts a set of pool tags of Windows operating system. 

PVOID ExAllocatePoolWithTag(

_In_ POOL_TYPE PoolType,

_In_ SIZE_T NumberOfBytes,

_In_ ULONG Tag

); 

 

Figure ‎7-3. ExAllocatePoolWithTag pool memory allocation routine. 

We use this pool tag as a value-invariant signature to uncover the presence of the running 

instances of the different kernel objects. The pool tag field is included in the pool header 

structure, named _POOL_HEADER. The pool header is a data structure used by the Windows 

object manager to keep track of memory allocations of each allocated pool block. The pool 

header holds information related to the allocation and free algorithms of allocated pool block. 

However, Pool tags alone are not sufficient signatures. This is because the false positive 

rate in this case will be very high. For instance, if DIGGER scans the memory for the running 

processes with the process pool tag “Proc”, any memory bytes that parse the same ASCII string 

will be detected as an object instance from that process object type. Thus, an additional checking 

signature is required to ensure accurate results. To overcome this problem, we include the first 

two bytes of the object dispatcher header to be part of DIGGER value-invariant formula. 

All kernel objects that can be waited to start (created in a wait state) – e.g. processes, 
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threads, ports, mutex – have an embedded dispatcher header. An object’s dispatcher header is a 

data structure named _DISPATCHER_HEADER that holds lots of information in a fixed-size 

data structure, as shown in Figure  7-4. A dispatcher header structure describes the type, size and 

state of a specific object, in addition to object synchronization information [236]. From our 

analysis we found that the first two bytes of the dispatcher header are unique for each object 

type, as they describe an object’s type and size, as shown in Figure  7-5. The value of these two 

bytes can be computed from the generated type-graph.  

typedef struct _DISPATCHER_HEADER {

union {

struct {

UCHAR Type;

union {

UCHAR Absolute;

UCHAR NpxIrql;

};

union {

UCHAR Size;

UCHAR Hand;

};

union {

UCHAR Inserted;

BOOLEAN DebugActive;

};

};

volatile LONG Lock;

};

LONG SignalState;

LIST_ENTRY WaitListHead;

} DISPATCHER_HEADER;

 

Figure ‎7-4. Object dispatcher header data structure. 

kd> dt _DISPATCHER_HEADER

+0x000 Type            : UChar

+0x001 Absolute        : UChar

+0x001 NpxIrql : UChar

+0x002 Size            : UChar

 

Figure ‎7-5. A snapshot from Windbg for the dispatcher header structure. 

The figure shows the offsets of the type and size fields. 
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In order to apply the additional checking signature efficiently, a formal relation between the 

pool header and the object should be computed in order to validate the computed addresses and 

values. As shown in Figure  7-7, each object is prefixed with an object header structure, named 

_OBJECT_HEADER, and the whole object including the object header is prefixed by a pool 

header structure, named _POOL_HEADER. The dispatcher header is located at offset 0x000 of 

the start address of object itself. For instance, in the EPROCESS structure that is the data 

structure of process object type, the first field at offset 0x000 is the KPROCESS data structure 

and the _DIPATCHER_HEADER is the first field of this KPROCESS structure, as shown in 

Figure  7-6. Table  7-1 summarizes some of important fields in the above mentioned structures 

that will be used later in our analysis algorithm. 

typedef struct _EPROCESS {

KPROCESS Pcb;

EX_PUSH_LOCK ProcessLock; 

LARGE_INTEGER CreateTime; 

LARGE_INTEGER ExitTime; 

EX_RUNDOWN_REF RundownProtect;

………

} EPROCESS, *PEPROCESS;
typedef struct _KPROCESS {

DISPATCHER_HEADER Header;

LIST_ENTRY ProfileListHead;

ULONG DirectoryTableBase;

ULONG Unused0;

KGDTENTRY LdtDescriptor;

………

} KPROCESS, *PKPROCESS;

 

Figure ‎7-6. The location of the object dispatcher header within the object structure. 

Key advantages of using pool memory tagging schema as scanning signatures for the 

kernel runtime objects include: (i) these pool tags are not tied to a specific kernel data layout and 

are thus effective in the different Windows operating system kernel versions, where some data 

layout change may occur. (ii) The compact signature size that does not exceed a few bytes 

decreases the performance overhead significantly. 
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Figure ‎7-7. The memory layout of allocated objects in the pool memory. 
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Table ‎7-1. Description of some fields in pool header and object header structures. 

Structure Field Description 

_POOL_HEADER 

PreviousSize An eight byte offset to previous pool block 

BlockSize 
Describes the size of the allocation including the size 

of the pool header. 

PoolType 
The pool from which this allocation takes place, 

whether paged or nonpaged pool. 

PoolTag 
The four character tag used when allocating the 

buffer. 

_OBJECT_HEADER 

PointerCount A count of the number of references to the object 

HandleCount 
The number of times a handle (an identifier to the 

object) has been opened. 

ObjectType A pointer to the type of the allocated object. 

 

7.2.1.2 Signature Uniqueness Problem 

To solve the problem of generating unique signatures for kernel data structures, we considered 

the WI-note, described in section 7.2. To the best of our knowledge, all current operating system 

security research for Windows and Linux treats all kernel data structures as objects and does not 

consider the WI-note. Considering the WI-note enables filtering the list of data structures ex-

tracted at the static analysis phase using OS-KDD, and obtaining a precise list of the actual 

runtime object types. In DIGGER, we consider each kernel data structure that has an associated 

pool tag used by the memory manager as an object and the others are not considered as objects. 

These structures are treated as normal data structures and have less significance than those that 

are considered as objects. This massively reduces the number of object types from hundreds to 

dozens. Data structures that are classified as objects are discovered using the pool memory 

tagging schema – to locate its presence – and then the details of these objects are traversed using 

the type-graph. Other data structures that are not classified as objects are located using the 

points-to relations – that are computed in the type-graph – with the kernel objects to locate their 

presence and also traverse their details.  
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 Dynamic Memory Analysis Component 7.2.2

DIGGER’s dynamic memory analysis component is a simple memory scanner that locates 

system objects using our formulated signatures which are composed of the pool memory tag-

ging schema and the additional checking signature. After that, the dynamic analysis component 

constructs the details of the uncovered objects using the corresponding type-graph of the run-

ning kernel version. The dynamic memory analysis component scans the kernel address space 

with the pool memory allocation granularity, and at every computed address the scanner as-

sumes a valid structure of a running instance. Based on that computed address, the scanner reads 

the memory bytes and parses them based on the corresponding type-graph. The output of the 

dynamic memory analysis component is an object graph that has: (i) nodes that denote the 

running instances of data structures and the different object types of the kernel, and (ii) directed 

edges that express the dependency and points-to relations (direct and indirect) between these 

running instances and their fields. 

7.2.2.1 DIGGER and Pool Memory 

The kernel address space of a running operating system or even a memory image is big in size. 

The kernel address space ranges from 1GB to 2GB in 32bit operating systems and is up to 8TB 

in 64bit operating systems according to the available hardware memory and its memory layout. 

Thus, scanning a whole memory image or a live kernel memory would definitely affect the 

scanner performance. In DIGGER, to reduce performance overhead and scanning time of the 

kernel address space, the scanner only scans the memory pages of memory pools instead of the 

whole kernel address space.  

Kernel address space has different pools, and each pool is separated from other pools and is 

used to allocate specific object types. The memory manager mainly creates two memory pools, 

and both are used by the kernel address space to store kernel and executive objects: first, 

non-paged pool; the non-paged pool consists of virtual memory addresses that always reside in 

physical memory and never paged out. Non-paged pool memory is used by the operating system 

kernel and system device drivers to allocate dynamic data that would be accessed when page 
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faults are not allowed. Non-paged pool memory is used to store objects such as e.g. processes, 

threads and tokens. This means that such memory pages are valuable targets for rootkits to be 

able to achieve its objective, as they remain resident in the system memory. Second, paged pool; 

the paged pool memory consists of memory addresses that can be paged in and out, and thus 

they are used to allocate less important objects that do not require persistent residence in the 

physical memory. 

The amount of memory pages allocated to pools varies and the size is determined based on 

the operating system running kernel version, processor architecture, and installed RAM. For 

example, a 32-bit Windows operating system has a total of 2
32 

bytes or 4GB of address space. By 

default, Windows uses 2GB for system user-mode and 2GB for kernel-mode. The pool memory 

is part of the 2GB of kernel address space and it is around 460MB per single processor. Ta-

ble  7-2 summarizes the amount of paged and non-paged pools in different versions of Windows 

operating systems. 

In DIGGER, the scanner only scans the non-paged pool memory. This is because it is 

considered to be a trusted source of information where we can get all the running objects in-

stances that are potential targets for hackers, as they always reside in physical memory. On 

uniprocessor or multiprocessor systems there exists only one non-paged pool and this number 

can be confirmed using the global variable nt!ExpNumberOfNonPagedPools. The op-

erating system also maintains a number of global variables that define the start and end ad-

dresses of the paged and nonpaged pool memory: MmPagedPoolStart, MmPagedPool-

End, MmNonPagedPoolStart and MmNonPagedPoolEnd. These global variables enable 

computing exactly the memory pages associated to the non-paged pool and this speeds up the 

scanning process by limiting the scanned memory area.  

 

 

Table ‎7-2. Paged and non-paged pools size in different Windows operating system versions. 



Chapter 7: A Kernel Runtime Objects Discovery Tool 

 

  

163 

 

Windows Version 

Kernel 

Address 

Space 

Non-paged Pool Paged Pool 

Size in 

MB 

Percentage 

of Kernel 

Memory 

Size in 

MB 

Percentage 

of Kernel 

Memory 

32-bit 

Windows XP 
2GB 4.03 0.19% 17.96 0.87% 

32-bit 

Windows Server 

2008 

2GB 15.43 0.75% 24.52 1.19% 

64-bit 

Windows XP 
2GB 15.30 0.74% 28.11 1.37% 

32-bit 

Windows Server 

2008 

2GB 39.20 1.91% 100.06 4.91% 

64-bit 

Windows 7 
8BG 174.48 2.13% 372.15 4.54% 

7.2.2.2 The Scanning Algorithm 

Using our developed pool memory tagging schema signatures as discussed in section  7.2.1, the 

DIGGER dynamic memory component scans the kernel address space with the granularity of 

the default size of the pool header data structure, which is eight-byte granularity. The most 

important fields, from my scanner perspective, in the _POOL_HEADE, is the PoolTag field. 

For example, to scan the kernel address space for the running instances of the process object 

type, where the pool tag of this object type is proc, the memory scanner continues reading the 

memory bytes until it reads the hexadecimal value (0xe36f7250) of the corresponding pool 

tag. The next step is confirming whether the located hexadecimal string at address ADDRx is a 

running object instance or not, by applying the additional checking signature on ADDRx. Then, 

the scanner confirms the existence of a running object instance by using the two bytes of the 

additional checking signature, discussed in section  7.2.1. 

At this stage the dynamic memory analysis component assumes a valid structure of a 

process object running instance. However, until this step the scanner can only identify that there 
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is a running object instance of type Τ located at address Ӽ14, but cannot uncover any details 

about the object itself – even the object name. To reconstruct the details of the target object 

located at address Ӽ, the graph of the corresponding data structure is then used to traverse the 

memory pages. This graph includes the dependency relations and offsets of the data structure 

and its fields and can be retrieved from the type-graph generated by OS-KDD. By adding the 

size of the pool header and the object header to Ӽ, the object’s start address is computed, denoted 

ΤӼ. Then we retrieve the object’s details based to the type-graph. The size of the pool and object 

headers are calculated from the kernel type-graph. 

After locating the object and traversing its details, the scanner checks the BlockSize 

value of the _POOL_HEADER structure, to find out the size of the pool block that has been 

allocated for an object instance O, denoted SZo. The scanner then skips these bytes to move to 

next adjacent pool block in the list, without the need to continue scanning the rest of the pre-

vious pool block. Within a page the allocated blocks are chained. Each block stores its size and 

the size of the previous block, which allows faster scanning for the allocated objects. Figure  7-8 

summarizes my scanning algorithm in order to locate the running instance of kernel dynamic 

objects.  

For un-mappable memory pages the size of pages set is relatively small. We perform a scan 

on the whole set of the memory pages using the pool tag and the additional checking signature. 

However, as the memory mapping information may not be available in such un-mappable 

memory pages, not all of the details for the discovered objects can be retrieved as we depend on 

the memory traversal technique according to the generated type-graph. 

                                                      

14
 Ӽ is calculated by subtracting the offset of the PoolTag field (offset == 0x004) from the address 

ADDRx. The pool tag field enables computing the start address of the allocated object’s pool block.  
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Figure ‎7-8. A flowchart summarizing the scanning algorithm of DIGGER. 

7.3 Implementation and Evaluation 

We have developed a prototype of DIGGER. The static analysis component was built using 

OS-KDD, as described in Chapter 6 [26, 237]. The signatures and runtime components are 

standalone programs and both components are implemented in C. The runtime component could 

perform the analysis whether online or offline. Offline analysis is performed on a memory 

snapshot raw dumps (e.g. dumps in the Memory Analysis Challenge and Windows crash 

dumps), and VMware suspended sessions. Online analysis is performed in a near-real time 

fashion in a virtualized environment by scanning virtual machines’ physical memory at the 
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hypervisor level. Details of implementing and evaluating DIGGER at a hypervisor level are 

discussed in chapter 8. In this chapter we only discuss the implementation and evaluation details 

of DIGGER on memory snapshots (offline analysis). We have evaluated the basic functionality 

of DIGGER with respect to the identification of kernel runtime objects and the performance 

overhead of uncovering these objects
15

.  

 Uncovering Runtime Objects 7.3.1

To enable the efficient evaluation of DIGGER’s approach, especially its runtime component, we 

needed a robust ground truth that reflects the exact objects layout in kernel memory so that we 

could compare it with DIGGER’s results, in order to accurately measure the rate of false alarms. 

To build the ground truth, we extracted all the running instances of the different object types and 

data structures of the running Windows operating system memory image via program instru-

mentation using the Windows Debugger (WD). In other words, we instrumented the kernel to 

log every pool allocation and deallocation, along with the allocation/deallocation address using 

the Windows Debugger. In particular, we modified the GFlags (Global Flags Editor) feature of 

the memory manager to enable advanced debugging and troubleshooting of the pool memory. 

We measured DIGGER efficiency as the fraction of the total allocated objects for which 

DIGGER was able to identify the correct object type. We performed experiments on different 

versions of the Windows operating system on a 2.8 GHz CPU with 2GB RAM. Each memory 

snapshot size was 4GB. Table  7-3 shows the results of DIGGER and WD in discovering the 

allocated instances for specific object types in two different Windows operating system kernel 

versions. Memory, paged and non-paged columns represent the size in pages (0x1000 granu-

larity) of the kernel address space, paged pool and non-paged pool, respectively. DIG and WD 

refer to windows debugger’s and DIGGER’s scanning results respectively. FN, FP and FP* 

denote the false negative, reported false positive and the actual false positive rates, respectively. 

                                                      

15 In this chapter, we only evaluate the basic functionality of DIGGER which is locating system runtime objects. 

However in chapter 8 more evaluation experiments of DIGGER are discussed. 
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From Table  7-3 we can see that DIGGER achieves zero false negative rates, and a low false 

positive rate. However, from our manual analysis of the results, we found that this reported false 

positive rate is not an actual false positive. This difference represents the deallocated objects 

that still persist in the physical memory after object termination. We call such deallocated ob-

jects “dead memory-pages allocated objects (DMAOs)”. Dead memory pages objects are pre-

sent because the Windows operating system does not usually clear the contents of memory 

pages after deallocation to avoid the overhead of writing zeroes to the physical memory. 

However, we noticed from our analysis that the handle count of the DMAOs is always zero 

(HandleCount field in the _OBJECT_HEADER structure). This enables differentiating the 

active objects from the DMAOs, and thus our actual false positive rate becomes zero, denoted 

FP* in Table  7-3. 

Table ‎7-3. Experimental results of DIGGER and WD on Windows XP 32 bit and 64bit.  

Object 

Windows XP 32bit Windows XP 64bit 

Memory Paged Non-paged Memory Paged Non-paged 

915255 27493 11741 1830000 35093 17231 

WD DIG FN % FP % FP
*
% WD DIG FN % FP % FP

*
% 

Process 119 121 0.00 1.65 0.00 125 125 0.00 0.00 0.00 

Thread 2032 2041 0.00 0.44 0.00 2120 2121 0.00 0.04 0.00 

Driver 243 243 0.00 0.0 0.00 211 211 0.00 0.00 0.00 

Mutant 1582 1582 0.00 0.0 0.00 1609 1609 0.00 0.00 0.00 

Port 500 501 0.00 0.19 0.00 542 542 0.00 0.00 0.00 

 

We argue this finding that whenever the kernel has to allocate a new object it will return the 

pool block address from the pool free list head. When an object is deallocated, the kernel will 

free its memory. But that does not necessarily mean the memory gets overwritten. For instance, 

the EPROCESS structure of a newly created process will overwrite the object data of a process 

that has been terminated previously [138]. This because when a block is freed using the free 
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function call, the allocator just adds the block to the doubly linked list of free blocks without 

overwriting memory. The DMAOs can provide forensic information about an attacker’s activity. 

We discuss in chapter 8, how DMAOs how can be used in developing memory forensics tools to 

check for rootkits evidence. 

7.3.1.1 Performance Overhead 

We have evaluated DIGGER’s runtime performance to demonstrate that it can perform its 

memory analysis in a reasonable amount of time. We measured DIGGER’s running time when 

analysing the memory snapshots used in my experiments. The median running time was around 

0.8 minutes to uncover 12 different object types from the nonpaged pool, and 1.6 minutes to 

uncover another 15 object type from the paged pool. This time included the time of loading the 

memory snapshot from the disk to the runtime analysis component. We consider this running 

time to be acceptable for offline analysis and even for online analysis in virtualized environ-

ments. This is because DIGGER is able to detect the DMAOs that could be created and termi-

nated between the scan time intervals. However, we cannot argue that DMAOs results would be 

100% accurate. Comparing DIGGER with SigGraph [19], DIMSUM [25] and KOP [14], 

DIGGER is the fastest with highest coverage and lowest performance overhead. The perfor-

mance overhead of extracting object details based on our generated type-graph differs according 

to the required details-depth. Figure  7-9 shows the time consumed (in seconds) to extract object 

details with different depths for all of the running instances from a specific object type. “I” 

denotes the number of the running objects from the object, and “D” denotes the depth of the 

extracted details. Depth means the number of dereferencing operations that could be reachable 

from a pointer or data structure. The depths declared in Figure  7-9 were selected randomly. 
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Figure ‎7-9. Object details extraction normalized time.  

7.4 Discussion 

DIGGER’s approach enables obtaining a robust view of operating system kernel runtime ob-

jects. This view is not affected by the manipulation of actual kernel memory contents and thus 

enables developing different robust operating system kernel data security applications as dis-

cussed in chapter 8 – e.g. systematic kernel data integrity checks, detecting stealthy malware 

and brute-force scanning. Key features of DIGGER include: (i) using OS-KDD to statically 

recognize the runtime kernel data layout, in order to enable systematic coverage for the running 

instances of kernel dynamic data, without a need for having extensive hands-on experience with 

operating systems’ kernel implementations. (ii) The robust and small signature size used to 

uncover runtime objects that has significantly reduced the performance overhead of the dynamic 

memory analysis component. This definitely helps developing lightweight security applications 

that does not affect system performance. (iii) DIGGER’s runtime component is not related to a 

specific version of Windows operating system kernels. DIGGER can work on any version and 

either 32-bit or 64-bit layouts, as it does not depend on any hard-coded offsets for a specific 

kernel build. The pool memory tagging schema is the basic of any Windows NT kernel and thus 

DIGGER is applicable to a wide range of Windows operating systems such as Windows XP and 

Windows 7. 

As the pool memory tagging schema is only related to the kernel of Windows operating 

systems, the current approach used in DIGGER is not applicable to Linux and UNIX operating 

systems. However, the DIGGER approach can be implemented in a similar way on Linux/UNIX 

operating systems, as these operating systems implement a similar mechanism to pool memory, 
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named slab allocation [238]. Slab allocation is a memory management mechanism for Linux 

and UNIX operating systems for allocating kernel runtime objects efficiently by providing 

better object layout in the kernel address space at system runtime. The basic idea behind the slab 

allocator is having memory chucks, known as slab caches, similar to memory pools in Windows 

operating systems, of commonly used objects kept in an initialized state – i.e. memory chunks 

are preallocated. Whenever the memory manager receives a memory allocation request for a 

specific object type, the memory manager instantly responds to the request with a pointer to a 

pre-allocated slot from the free slots list. With slab allocators, deallocation of an object does not 

free its memory, but only links this memory slot to the list of free slots [238]. This is similar to 

happen in Windows operating systems, where deallocated blocks are added to the free 

ListHeads list, to be used later by a newly allocated object.  

In the Windows system kernel, there are only two memory pools and each pool contains 

different types of allocated objects and structures. However, Linux operating system’s kernel 

has a number of caches that are structured in a doubly-linked list called a cache chain. A cache 

chain is similar to the _LIST_HEAD of the pool memory blocks used in the Windows kernel. 

Caches are created by the kmem_cache_create() routine. Each cache is designated for a 

specific object type, and maintains blocks of contiguous pages in memory called slabs (struct 

slab_t) [239]. Each slab is further divided into equal size segments of the object type that the 

cache is maintaining, similar to pool block in Windows operating system. A full list of these 

caches can be retrieved from the /proc/slabinfo file of the kernel source code. A snapshot 

of the slabinfo file is shown in Figure  7-10, and the columns details are described in Ta-

ble  7-4, in order. All cache information is stored in a very big data structures, named 

kmem_cache_s, a snapshot of its important fields
16

 is shown in Figure  7-11 and slab_t is 

shown in Figure  7-12. Table  7-5 describes some important fields that are used in my analysis. 

 

 

                                                      

16 The important fields are represented from DIGGER’s perspective. 
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kmem_cache 59 78 100 2 2 1 

ip_fib_hash 10 113 32 1 1 1 

ip_conntrack 0 0 384 0 0 1 

urb_priv 0 0 64 0 0 1 

clip_arp_cache 0 0 128 0 0 1 

ip_mrt_cache 0 0 96 0 0 1 

tcp_tw_bucket 0 30 128 0 1 1 

tcp_bind_bucket         5 113 32 1 1 1 

tcp_open_request        0 0 96 0 0 1 

inet_peer_cache         0 0 64 0 0 1 

Figure ‎7-10. A Snapshot of the slab allocator info file of Linux kernel. 

Table ‎7-4. slabinfo file columns description. 

Column Description 

cache-name Holds a human readable name for the cache. 

num-active-objs Expresses the number of objects that are in use. 

total-objs Reflects the number of objects that are available in total. 

obj-size The size of object.  

num-active-slabs The number of slabs containing active objects. 

total-slabs The number of slabs in total. 

num-pages-per-slab The pages required to create one slab. 

 

struct kmem_cache_s {        

struct list_head slabs_full;       

struct list_head slabs_partial;        

struct list_head slabs_free;        

unsigned int objsize;        

unsigned int flags;  /* constant flags */        

unsigned int num;    /* # of objs per slab */        

spinlock_t spinlock;

...        

unsigned int gfporder;        

unsigned int gfpflags;        

size_t colour;  /* cache colouring range */        

...        

void (*ctor)(void *, kmem_cache_t *, unsigned long);        

void (*dtor)(void *, kmem_cache_t *, unsigned long);        

char name[CACHE_NAMELEN];        

struct list_head next; 

...

}; 

 

Figure ‎7-11. A partial list of important fields within the kmem_cache_t structure. 
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typedef struct slab_s {

struct list_head list;    

unsigned long           colouroff;    

void                    *s_mem;    

unsigned int inuse;    

kmem_bufctl_t free;

} slab_t;

 

Figure ‎7-12. slab_s data structure. 

Table ‎7-5. The description of kmem_cache_t structure fields. 

Structure Fields Description 

Kmem_cache_s 

slabs_full 

slabs_partial 

slabs_free 

These data structures are the slabs associated with a spe-

cific cache to speed up the allocation and freeing of ob-

jects, and they denote: the doubly linked lists of the in-use 

objects, the list that has prime candidate for next object 

allocation, and the list that has no allocated objects, re-

spectively. 

objsize The size of the object contained within the cache. 

num The number of cache objects per a slab.  

slabp_cache A pointer to the kernel cache that is used for the slab_t 

name 
A string describing the cache that holds a specific object 

type. 

next 
A list_struct pointer to the next cache in the kernel cache 

chain. 

Slab_t 

list 
The linked-list that holds the slab, and it is one of slab_full, 

slab_partial or slab_free. 

s_mem The start address of the first object within the slab. 

inuse The number of active objects in the slab. 
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To implement a customized version of DIGGER for the Linux operating system, we con-

sider the name field of the kmem_cache_s structure as an equivalent to pool tags used in the 

original DIGGER version. Then using objsize, s_mem, list and next fields, DIGGER 

can scan the memory and traverse the linked lists: slabs_full and slabs_partial, in a 

similar way like what happened for Windows operating system. After locating a running in-

stance, the type-graph is then used to retrieve the related object type information. Figure  7-13 

summarizes the main algorithm that can be applied in DIGGER to enable objects discovery in 

Linux operating systems. 

Compute the start address of the first created and then  

compute the start addresses of the other available 

caches using next field.

start

Terminate 

scanning

no

yes

Create a separate thread for each cache

Scan for cache name using name 

field to identify the object type 

maintained by the cache

Calc slab size and number of 

available slabs per cache using 

gporder field

Create a thread for each slab

Compute the start address of the 

first object using s_mem field

Update

object-graph

Skip to next 

segment

End of the cache?

 

Figure ‎7-13. Proposed DIGGER Implementation for Linux operating systems. 
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7.5 Summary 

Current efforts in uncovering the running instances of kernel dynamic objects from a robust 

view have a number of limitations that make them impractical to be used in operating system 

security solutions that supports real-time and robust protection. In this chapter, we introduced a 

new approach called DIGGER, which systemically, speedily and accurately uncover kernel 

runtime objects from a robust view that cannot be tampered with. DIGGER is a hybrid mech-

anism that combines a new value-invariant approach and an advanced memory mapping tech-

nique. Our evaluation of DIGGER has shown its effectiveness in uncovering system objects for 

Windows operating systems. DIGGER’s approach is limited to Windows operating systems 

however it is generic enough to be used in the different versions of the Windows operating 

system kernels. Moreover, we discussed how the DIGGER approach could be customized and 

implemented for analysis of Linux and UNIX operating systems, by utilizing the slab allocation 

mechanism of the Linux operating system’s kernel instead of the pool memory concept that 

related of Windows operating systems. 
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  Chapter 8

CloudSec++: A virtualization-Aware Security 

Solution 

In this chapter, we introduce CloudSec++, an enhanced version of CloudSec that has the ability 

to provide systematic and pre-emptive protection for the hosted virtual machines in IaaS plat-

form. CloudSec++ depends mainly on OS-KDD and DIGGER, in order to provide proficient 

security for the guest operating systems of hosted virtual machines. Moreover, CloudSec++ is 

designed to provide security from a cloud provider’s perspective and at the same time incor-

porates the consumers in the security process of their virtual machines, without direct interac-

tion with CloudSec++. In this chapter, we also discuss a set of security and memory forensics 

tools that are deployed in CloudSec++ in order to defend against zero-day threats that target 

operating system kernels. These security tools work mainly on operating system kernel data to 

check the integrity of generic pointers located in runtime kernel dynamic objects. Checking the 

integrity of generic points enables detection of many types of kernel data threats such as object 

hiding, dangling pointers and function pointer manipulation.  

8.1 Introduction 

CloudSec++ is a virtualization-aware security solution that has the ability to protect guest op-

erating systems of the hosted virtual machines actively and systematically. It is designed to 

utilize all the components described in previous chapters: CloudSec, OS-KDD and DIGGER to 

deliver a robust security framework that works in the IaaS platform to systematically and ex-

ternally protect the hosted virtual machines. 

Our research contribution in this chapter is twofold: first, introducing an enhanced version 

of CloudSec – named CloudSec++ – that overcomes many of CloudSec’s limitations by using 

OS-KDD and DIGGER in its design and implementation phases. Moreover, CloudSec++ has a 

new design architecture that supports passive involvement of cloud consumers in the security 
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process of their hosted virtual machines, as discussed in section  8.2. Second , Introducing a set 

of operating systems security tools that are used to defend against zero-day threats that target 

operating system kernel dynamic data. Our developed tools focus on checking the integrity of 

the generic pointers located in the running instances of kernel dynamic objects, to enable de-

fending against kernel rootkits that modify the system control flow by hooking kernel dynamic 

data, as discussed in section  8.3. 

8.2 CloudSec++ 

The design of CloudSec++ provides additional functionalities, compared to CloudSec, in order to 

achieve its intended tasks. These additional functionalities include: (i) CloudSec++ enables 

systematic solution of the semantic gap problem for the guest operating systems without the 

very limiting prerequisite of operating system kernel data layout knowledge. CloudSec++ 

mainly depends on OS-KDD to enable systematic generation of kernel data definitions in order 

to enable efficient overcoming of the semantic gap problem. (ii) CloudSec++ systematically 

infers the kernel version of the running operating systems in the hosted virtual machines, to 

ensure complete automation of the security process. The exact kernel version of the running 

operating system is a key to enable accurate interpretation of the underlying hardware bytes. 

However, the exact running version of a hosted virtual machine is not always available to the 

cloud provider, as service pack updates and operating system upgrades are likely to happen. (iii) 

CloudSec++ enables systematic and fast discovery of kernel runtime objects from a trusted 

source that cannot be tampered with, with a low performance overhead that enables near re-

al-time protection by utilizing DIGGER in the external monitoring phase. Fourth, the new 

design of CloudSec++ allows the inclusion of cloud consumers in maintaining the security 

process of their hosted virtual machines, without direct interaction with CloudSec++ that could 

violate our design requirements discussed before in chapter 4 and 5. 

The threat model in CloudSec++ is identical to the one used in CloudSec, and the basic 

high-level architecture is nearly the same. Before discussing the architecture details of 

CloudSec++ in section  8.2.2, we discuss in section  8.2.1 a new mechanism that enables sys-
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tematic inference of the kernel version of running operating system in a hosted virtual machine. 

Such a process is required to enable pure automation for the security process in CloudSec++. 

 Systematic Kernel Version Inference 8.2.1

In order to make CloudSec++ completely systematic, we need to provide CloudSec++ with the 

exact kernel version of the running guest operating system in order to start its job to overcome 

the semantic gap problem and provision the proper security. The kernel version of a guest op-

erating system is not always known by the cloud provider, as it is the property of the cloud 

consumer. Moreover, even if the cloud provider is aware of the original kernel version of a 

virtual machine, the consumer could perform service pack updates or even operating system 

upgrades without a need to report that to the provider. 

CloudSec++ finds out the exact kernel version of the running operating system in a hosted 

virtual machine by systemically inferring the kernel version from the virtual machine’s physical 

memory. To enable systematic inference of the running operating system kernel version, we 

benefit from the OS-KDD generated type-graphs to create a unique signature for each kernel 

version, as the kernel data layout may change from one kernel build to another. 

To generate the kernel inference signatures, we tried to identify a common kernel data 

structure that has different signatures in each kernel build. From our analysis of Windows
17

 XP 

(SP2 and SP3) and Linux (v3.0.22 and v 3.1.10 – source code), we found that there is not a 

distinctive structure across the different kernel builds for each operating system. However, we 

noticed that data members’ offsets of some structures do change in each build. Based on that, we 

can identify such a structure with its data members to be the kernel version inference signature. 

However to guarantee accurate results this structure must present all the time during kernel 

execution. In order to find out such trusted signature, we followed the approach used by 

Brendan et al. [16] in order to identify the best data members that could be included in the kernel 

                                                      

17 We used Windows symbol information to find the data members’ offsets in the different ker-

nel versions, as there is no source code for those versions except WRK.  
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version inference signature. Brendan et al. introduced a dynamic analysis approach that can 

profile a target data structure to determine its commonly used fields at runtime. They then apply 

specific fuzzing techniques on those fields to determine which are essential to the correct op-

eration of the operating system, and the runtime modifications to these fields that cause runtime 

errors. Based on their computations for the trusted fields, we use these fields to form the kernel 

version inference signature.  

Based on this approach, we found that the EPROCESS data structure, in Windows oper-

ating system, with some of its fields are robust to exist during system runtime and modifying 

their values causes system crash. Brendan’s results stated that out of 221 fields in the 

EPROCESS structure, 72 fields were identified as always accessed during the profiling stage. 

Then at the runtime modification fuzzing stage, 29 fields out of the 72 fields failed the test – i.e. 

their modification did not result in any loss of the operating system functionality – and the rest 

passed the test however there was a false positive rate of some of fields that did not passed the 

test every time in the training phase. As a result, the robust fields on the EPOCESS structure are, 

as shown in Figure  8-1. Based on that, we generate an inference signature for each kernel build 

using EPROCESS data structure in Windows with the robust its members. CloudSec++ then at 

runtime locates the first loaded process (which is always the system process that initializes the 

kernel subsystems and must exist during system runtime) and checks its signature to infer the 

running kernel version. 

Pcb.ReadyListHead.Flink

Pcb.ThreadListHead.Flink

WorkingSetLock.Count

Vm.VmWorkingSetList

VadRoot

Token.Value

AddressCreationLock.Count

VadHint

Token.Object

QuotaBlock

ObjectTable

GrantedAccess

ActiveProcessLinks.Flink

Peb

Pcb.DirectoryTableBase.0

 

Figure ‎8-1. Robust signatures of EPROCESS data structure according to Brendan’s results. 
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Brendan’s approach can be also implemented to compute a set of robust kernel version 

inference signatures for other operating systems that uses data structures to represent objects 

such as Linux, UNIX and Solaris. 

 CloudSec++ High-Level Architecture 8.2.2

Figure  8-2 shows the high-level architecture of CloudSec++. CloudSec++ has a similar archi-

tecture to CloudSec, with a few modifications, as follow: first, OS-KDD is a stand-alone tool 

that is not deployed in CloudSec++. The generated kernel data definitions are stored in the same 

location as in CloudSec. However, the definitions in the current architecture are generated by 

OS-KDD rather than the manual approach, and are represented as directed type-graphs.  Se-

cond, DIGGER component is an online memory analysis tool that enables uncovering of kernel 

dynamic runtime objects. DIGGER is part of the CloudSec++ architecture and is deployed in the 

security virtual machine of CloudSec++. In order for DIGGER to function properly, it has access 

to the type-graphs database and the memory access handler that enables reading the hardware 

bytes of the hosted virtual machines via the hypervisor. Third, the web portal virtual machine is 

a virtual machine used to allow cloud consumers to maintain and track the security status of 

their hosted virtual machines without direct access to the security virtual machine of 

CloudSec++. This virtual machine is running a web service that allows consumers to configure 

and enforce the security policies, upon consumer request, of their own virtual machines through 

CloudSec++. Moreover, this web service allows consumers to track their virtual machines' se-

curity status that is maintained by CloudSec++. The web portal virtual machine has a policies 

and reports database that stores the consumers’ security policies and the security reports of the 

virtual machines that have been sent from CloudSec++ to the consumer. Communications be-

tween CloudSec++ and the web portal virtual machine is conducted via the hypervisor over a 

secure communication channel, and communications between the web portal virtual machines 

and the other hosted virtual machines are not allowed. Communications security with the web 

service is beyond our research scope, however communications security can be enhanced by 

applying various secure web services mechanisms [240-242]. 
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Figure ‎8-2. CloudSec++ High-level architecture.
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The inclusion of the consumers in the security process has two scenarios from which a 

consumer can choose which to participate. Whichever the chosen scenario is, the consumer does 

not need to build perfect security policies to detect all system threats, as such feature is already 

enabled by default in CloudSec++ to protect the hosted virtual machines against advanced kernel 

rootkits that affects the operating system behaviour not the running applications. Consumers’ 

security policies enable the consumer to protect the user-mode of the operating system of their 

virtual machines. The two security scenarios are: 

First, certified virtual machines scenario. In this the scenario consumers agree on the 

conducted Service-Level Agreements (SLAs
18

) to get their virtual machines protected by 

CloudSec++ – the security software of the cloud provider. A service-level agreement is a service 

contract where the service details are formally defined, such as service performance, delivery 

methods and operational costs. SLAs for IaaS focus on characteristics of the hosting cloud 

platform, the shared responsibility security model, virtual machine specifications the billing 

information. For example, Amazon, one of the biggest IaaS providers in the market, defines in 

their SLAs the relation between providers and consumers. A provider is responsible to provide 

all the necessarily building blocks that enable consumers to create and manage virtual machines. 

In certified virtual machines scenario, the provider becomes aware of the virtual machine 

behaviour (according to the security polices selected by the consumer) and this enables more 

accurate provision of the security process in the user-mode of the running operating system. In 

this scenario, consumers also get accurate security reports via the web portal about the security 

status of their virtual machines. These reports contain detailed information about kernel viola-

tions that has affected the running operating system. As CloudSec++ focuses on dynamic kernel 

data security, the policies include only how to control and protect kernel runtime objects that are 

                                                      

18 In this research project, we add to such SLAs that the provider has the right to protect its virtual infrastructure 

against memory leakage attacks that might be caused of the hosted virtual machines. Based on that, the running 

kernels of the hosted virtual machines are being monitored and protected to enable a secure operational environment 

for the other hosted virtual machines. 
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affected by the user calling contexts such as processes, threads and drivers. For example, a 

consumer can enforce polices e.g. “allow all processes/services except”, “block all process-

es/services except”. In this case CloudSec++ can protect the virtual machines from running 

malicious processes and hiding processes or services. 

Second, uncertified virtual machines scenario. In this scenario consumers do not agree to 

be protected by CloudSec++. In this case, the situation is more oblivious with regard to the 

user-mode protection. The consumers then should rely on their supported traditional in-guest 

security software to protect the user-mode of the running operating system. Only operating 

system kernels will be protected against advanced kernel rootkits that could lead to memory 

leakage or sharing exploits. 

8.2.2.1 CloudSec++ Implementation and Evaluation 

The evaluation and implementation details of CloudSec++ are similar to the evaluation and 

implementation details of CloudSec. The difference between the two architectures is the auto-

mation process of overcoming the semantic gap by incorporating DIGGER and OS-KDD in 

CloudSec++ architecture, and the new design feature that enables consumers to maintain the 

security status of their virtual machines.  

8.2.2.1.1 Deployment Model 

Our platform for evaluating CloudSec++ is a 2.8 GHz Intel Xeon with 8GB of RAM, running 

ESX 4.1. Figure  8-3 depicts the deployment model of CloudSec++. CloudSec++ is running ESX 

4.1 hypervisor and hosts the security virtual machine, two hosted virtual machines and the web 

portal virtual machine. The security virtual machine is configured with 2GB RAM and de-

ployed as a virtual appliance, running Ubuntu Linux 8.04 Server JeOS, and hosts the vCompute 

APIs and our monitoring and security code and tools. The monitoring code running in the se-

curity virtual machine and DIGGER’s code are normal Linux C programs written using 

vCompute and Posix Threads APIs. Both of the security virtual machines and the web portal 

virtual machines are isolated from other hosted virtual machines in separate virtual networks 

using two dedicated virtual switches. The hosted virtual machines are running Windows XP 
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64-bit and 32-bit, each on a 2.8 GHz CPU with 2GB RAM. The hosted virtual machines were 

executed under normal workload with an average of 50 processes and 910 threads. 

ESX 4.1 Hypervisor

vCompute APIs

vSwitch 1vSwitch 2

Security ApplianceVM1VM2

vSwitch 3

Web-portal
VM

 

Figure ‎8-3. CloudSec++ deployment model. 

The proposed deployment model of CloudSec++ has key advantages that enable easy and 

high performance protection for the IaaS platforms: first, the deployment model of CloudSec++ 

makes the external security provisioning approach much easier to deploy across a wide variety 

of user operating systems. This is because CloudSec++ has the ability to protect different oper-

ating systems such as UNIX, Linux or Windows, by just adjusting the online monitoring code 

and DIGGER approach to monitor and protect the running operating system. Second, a major 

goal of malicious hackers is control, by which the hacker would have the ability to monitor, 

intercept, and modify the state of other software on a system. In our deployment model, 

CloudSec++ works at a hypervisor level, which means that the security virtual machine is de-

ployed at a layer lower than the hosted virtual machine layers. This enables complete control 

over the hosted virtual machines including their virtual hardware, while making it difficult for 

an attacker to even detect the security software. 

8.2.2.1.2 Experimental Results 

To validate that CloudSec++ effectively overcomes the semantic gap and monitors kernel 

runtime objects, we compared the external view of mapping the physical memory to runtime 

objects using CloudSec++ with the internal view of the virtual machines using Windows de-

bugging tools. Using DIGGER and OS-KDD, CloudSec++ was able to successfully uncover the 

correctly identified kernel runtime objects with a zero rate of false alarms and with a low per-
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formance overhead. We compared 124 random data structures and 13 different object types with 

a 2-level information depth (based on the computed type-graph), and the results were identical 

in both views. Figure  8-4 shows the time consumed (in seconds) to extract object and data 

structures details with a 2-level information depth for some data structures.  

 

Figure ‎8-4. Object details extraction normalized time in seconds. 

8.3 Kernel Data Integrity Checking Tools 

Operating systems implement a hierarchical object model to provide consistent and secure 

access to the various internal services implemented in the operating system’s kernel [236]. 

Despite the benefit of easier management of runtime objects using this model, this model makes 

kernel runtime objects attractive targets for malicious hackers who want to take control of the 

kernel, as discussed previously in chapter 2. The general definition of an object is a running 

instance of a data structure encapsulated as an object. However, as discussed in chapter 7 – 

based on WI-note – we do not consider any running instance of a data structure to be an object. 

For instance, in the Windows operating system only few dozens of kernel data structures are 

encapsulated as kernel objects such as processes, threads and tokens, as shown in Figure  8-5. 

Kernel objects are typically created either by the system user using the kernel native APIs 

or by the kernel itself to support a kernel-specific tasks. For example, to create a process a user 

application calls the CreateProcess routine, implemented in Kernelbase.dll. Then, 

after some validation and initialization by the kernel mode, CreateProcessW calls the native 

Windows service NtCreateProcess to create a process object [236]. A traditional approach 
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to subvert the kernel runtime objects is by modifying the text/code of the kernel native routines 

such as CreateProcess, CreateProcessW and NtCreateProcess. However, such 

approach can be easily detected as kernel code is always static and does not change at runtime.  

 

Figure ‎8-5. A snapshot from WinObj of the different object types supported by Windows OS. 

Instead, kernel rootkits stealthily modify the non-control data structures (that change in 

location, value and number of running instances) by manipulating the pointers of these data 

structures at system runtime. Protecting the running instances of the non-control data structures 

is challenging because of: (i) the changeable nature of non-control data structures that makes the 

process of formulating a set of integrity constraints to check their integrity at runtime imprac-

tical. In other words, the contents of kernel dynamic data is not predictable and depends on the 

calling contexts at runtime, and thus detecting malformed objects and pointers is not an easy 

task. (ii) The huge number of non-control data structures that exist in the kernel address space 
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makes kernel dynamic data a rich target for hackers to subvert the kernel, especially with the 

significant existence of generic pointers. This makes the process of protecting them in near 

real-time impractical. Kernel data integrity checking likely have a large performance overhead, 

thus a kernel data integrity checker will have to operate periodically not in a near real-time 

fashion. However, periodically-based monitoring might miss catching short-lived objects such 

as token and keys. (iii) Finally, kernel runtime objects can be made invisible with no explicit 

integrity constraints that can be extracted from the source code of the operating system or even 

the running contexts that could make the running operating system detect that there is a hidden 

object or a malicious behaviour. 

Based on the above discussion, we introduce in this section a set of kernel data integrity 

checking runtime tools that enable detecting various kinds of pointer manipulation malware that 

target kernel dynamic and static data. These tools have the ability to check the integrity of kernel 

dynamic data at runtime for the following types of malware: hiding runtime kernel objects, 

function pointer hooking and dangling pointers, details are discussed below in 

tion  8.3.1,  8.3.2 and  8.3.3, respectively. In addition, we introduce an offline memory forensics 

tool that analyses the physical memory for evidence of rootkit infections for further forensics 

investigations.  

CloudSec++ is not just limited to support our developed security tools. Many other security 

tools could be implemented in CloudSec++ using DIGGER and OS-KDD. Details of this will be 

discussed in the future work section in chapter 9. In summary, with the help of a static analysis 

tool that can analyse kernel code with respect to its control and data flow, calling contexts and 

also able to disambiguate void and null pointers, and casting operations that take place at 

runtime; many operating system security tools can be developed to defend against zero-day 

threats that could target kernel code or data.    
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 Hidden Dynamic Objects Detection Tool 8.3.1

8.3.1.1 Hidden Objects Problem Overview 

Hiding kernel runtime objects – known also as Direct Kernel Object Manipulation (DKOM). 

DKOM is a well-known technique used to place a stealthy kernel rootkit in a victim operating 

system by hiding its presence from the system user and traditional security tools. Kernel hidden 

objects are a problem related to the number of running instances of a kernel object type (i.e. a 

specific data structure). As discussed before, this number changes at system runtime according 

to the different calling contexts of the system user which means that no straight-forward integ-

rity constraints can be enforced on such changing number of running instances. 

The main idea behind DKOM rootkits is manipulating the generic pointers located in 

kernel dynamic data, in order to point to somewhere else other than the memory addresses that 

these pointers are supposed to dereference. For better understanding of the object hiding prob-

lem in operating systems, we discuss a practical example of hiding a system process and how 

this process can remain invisible to system users and security software. Operating systems such 

as Windows and Linux keep track of runtime objects with the help of linked-lists that are cir-

cularly linked. A major problem with these lists is the use of null pointers. This makes it easy to 

unlink a running object by manipulating pointers and thus the object becomes invisible to the 

kernel and to security tools that depend on kernel APIs or memory e.g. HookFinder [106] or 

memory traversal e.g. and OSck [1]. Figure  8-6 depicts an example of 3 running processes 

structured in the ActiveProcessLinks doubly-linked list, in a Windows operating system. 

The FLINK of the doubly-linked list points to the next entry in the list, while BLINK points to 

the previous entry in the list. In addition, the FLINK of the last entry in the list points to the list 

head, as each doubly-linked list starts with a list head. A DKOM rootkit can simply change the 

FLINK and BLINK Fields of process 1 to point to process 3 instead of process 2, by manipu-

lating the pointers as shown in Figure  8-7. Such manipulation detaches process 2 from the 

ActiveProcessLinks structure. However, process 2 is still running in the operating sys-

tem memory and scheduled by the processor, because scheduling in the Windows kernel is 
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thread-based rather than process-based. Such modifications to kernel dynamic data violate 

integrity constraints that cannot be built from operating system’s source code directly. This is 

because data structure syntax is controlled by the operating system code while their semantic 

meaning is controlled by the runtime calling contexts – i.e. number of running instances and 

memory locations. Consequently, exploiting dynamic kernel dynamic data structures will not 

make the operating system treat the exploited structure as an invalid instance of a given type, or 

even detect hidden or malicious objects.  

EPROCESS1

ActiveProcessLink

FLINK

BLINK

EPROCESS2

ActiveProcessLink

FLINK

BLINK

EPROCESSLast

ActiveProcessLink

FLINK

BLINK

 

Figure ‎8-6. Windows operating system processes structured in a doubly linked list. 
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Figure ‎8-7. DKOM mechanism for hiding runtime objects. 

8.3.1.2 D-Hide: A Hidden Objects Detection Tool 

Based on the above problem we have developed a security tool called D-Hide that has the ability 

to systematically uncover all kinds of stealthy malware – not just limited to a specific object 

type, as done by most research efforts to date [18, 243]
19

. D-Hide detects the presence of hidden 

objects by scanning the physical memory directly and without relying on the operating system 

kernel trustworthiness. D-Hide is implemented using the C programming language and is de-

ployed as an online security analysis tool in the security module of the security virtual machine. 

                                                      

19 Details are discussed in chapter 3. 
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D-Hide starts working after overcoming the semantic gap and building the security profiles 

of each virtual machine, as discussed in section  8.2. At this stage, D-Hide has an external view 

of the virtual machines’ kernel data that was built based on DIGGER’s approach and OS-KDD 

generated type-graphs. In D-Hide, we employ the cross-view comparison approach to detect 

runtime objects anomalies [93]. However, in order to detect the hidden objects using the 

cross-view comparison approach, we need to get the internal view of the virtual machines to 

compare it with the external view and extract discrepancies to be marked as malicious hidden 

objects. Such an internal view is not applicable in our threat model, as the security virtual ma-

chine does not have any access rights to the operating systems running in the hosted virtual 

machines. Our solution for this problem is getting such internal view “externally”. 

Windows internal tools depend on the kernel APIs to extract system runtime objects. These 

APIs depend on a similar approach to the traditional memory traversal techniques. Kernel APIs 

simply traverse the memory by following pointer dereferencing as what happens in the tradi-

tional memory traversal techniques. Based on that, we use the type-graph of the corresponding 

kernel version to traverse the memory externally from the security virtual machine of 

CloudSec++. This allows us to get the other internal view of the comparison “externally”. This is 

considered to be the internal view and we call it “ex view”, and the view of DIGGER is the 

external view against which it will be compared. Discrepancies in this comparison reveal hidden 

kernel objects, and the prevention actions are taken as follow: first, if the target virtual machine 

is not a certified virtual machine, the pointers’ values will be modified to make the hidden object 

visible again by linking the object to the corresponding doubly-linked list. This will make the 

hidden object visible to the security software installed inside the operating system and system 

users. No further action will be taken if the hidden object is a user-mode object like processes 

and threads, and does not target to modify the kernel memory or the pointers’ values that reside 

in the kernel memory. Otherwise, an urgent alert will be issued to the consumer. Second, if the 

target virtual machine is a certified one then the detected hidden process will be destroyed from 

the memory by zeroing its memory address space and unlinking all of its pointers to the other 

running objects. A security alert will then be issued to the virtual machine owner with the threat 
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details and the prevention action taken. The security alert contains the threat detection time, 

threat type, the infected memory regions, protection action and the current security status of the 

virtual machine. 

We implemented a memory traversal add-on for the CloudSec++ security module that takes 

a type-graph as input and based on that graph, it traverses the kernel address space. We evalu-

ated D-Hide’s ability to identify hidden objects with four real-world kernel rootkit samples: 

FURootkit, FuToRootkit, AFX Rootkit and HideToolz, and three simple self-developed 

proof-of-concept rootkits that hide threads, files, mutants and events based on the DKOM 

technique. We infected a hosted virtual machine running Windows XP SP3 operating system 

with these rootkits to hide a number of processes, threads, files, mutants and events. To evaluate 

DIGGER’s efficiency in detecting hidden objects, we used Windbg and Poolmon tools to check 

the validity of “ex view” and DIGGER’s view, as follows: 

 First, Windbg depends on the operating system’s kernel APIs and thus its view 

should be similar to our “ex view”. We compared the two results for a small sample 

of 7 different object types and 20 running instances of each object. The results were 

identical meaning that our add-on is correctly implemented.  

 Second, Poolmon displays allocation-driven data about memory allocations and 

deallocations from the paged and nonpaged pools. Thus Poolmon’s results should 

be similar to DIGGER’s view. We confirmed that again by comparing 7 different 

object types and 20 running instance of each object. The results were identical 

meaning that DIGGER is correctly implemented. 

 Finally, we performed a cross-view comparison between DIGGER’s view and “ex 

view” and we found that all the hidden objects were correctly detected. 

Table  8-1 summarizes our evaluation results. The DIGGER view, Poolmon, ex view and 

WinDbg columns show the number of running instances of each object type revealed from these 

views and tools. The results conforms that DIGGER’s view and Poolmon are identical, the same 

for “ex view” and Windbg. The hidden objects column reflects the cross-view comparison 

results that show the number of hidden runtime objects for each object type. Name and address 
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columns shows the details of the detected hidden objects. The “Man. fields” column shows the 

fields that were manipulated to hide the object. The “Next Obj Address” and “Previous Obj 

Address” fields show the objects that their fields were manipulated to hide the objects – i.e. if 

the hidden object was objn, so these two columns reflects the addresses of objn-1 and objn+1, 

respectively. Finally the false positive column shows the false positive rate of D-Hide. 

D-Hide correctly identified all hidden objects with zero false alarms. D-Hide has two key 

characteristics that distinguish it from other hidden objects detection tools: (i) its ability to apply 

the cross-view comparison approach without the need for any internal tools e.g. task manager or 

Windbg that gets the internal view, as done in the current cross-view research [93, 134]. This 

feature enables deploying D-Hide to monitor and protect hosted virtual machines in the IaaS 

platform, where the cloud providers do not have any access rights to the hosted virtual machine. 

(ii) D-Hide is unlike previous tools [128, 135] that rely on the tool authors’ knowledge of op-

erating system’s kernel runtime data layout and thus focus on detecting specific types of hidden 

objects by hardcoding security expert knowledge of the kernel data layout [20]. D-Hide is not 

limited to specific objects and can detect stealthy hidden runtime objects of any type. This 

feature is greatly supported by the generated type-graphs of OS-KDD that provides accurate and 

systematic mapping of the complex kernel data layout.  
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Table ‎8-1. D-Hide evaluation results. 

Object 

Type 

Pool 

Tag 

DIGGER 

View 
PoolMon 

Ex 

view 
Windbg 

Hidden 

Objects 

Hidden Objects Man. 

Fields 

Next 

Obj Address 

Previous 

Obj Address 

False 

Positive 
Name/ID Address 

Process Proc 144 144 140 140 4 

winRAR.exe 0x9AA4590 
FLink 

Blink 
0x9ABDDA0 0x9A89788 

0 

ALsvc.exe 0xa4ea720 
FLink 

Blink 
0xA6CF5B0 0xA4ea720 

ipmtlg.exe 0x9A2F808 
FLink 

Blink 
0x9A49CF8 0x9A2E030 

IEMonitor.exe 0x989EBC0 
FLink 

Blink 
0x97E6030 0x98B3030 

Thread Thre 2576 2576 2571 2571 5 

520 0x95F25E0 
FLink 

Blink 
0x95F8D40 0x95F5030 

0 

821 0x9909030 
FLink 

Blink 
0x9911748 0x9905c98 

191 0x90B9030 
FLink 

Blink 
0x90BA030 0x90B8970 

837 0x9948030 
FLink 

Blink 
0x994B3C8 0x9947030 

312 0x932CDA8 
FLink 

Blink 
0x9332030 0x9315030 
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Object 

Type 

Pool 

Tag 

DIGGER 

View 
PoolMon 

Ex 

view 
WinDbg 

Hidden 

Objects 

Hidden Object 

Man. Fields 
Next 

Obj Address 

Previous 

Obj Address 

False 

Positive Name/ID Address 

File File 9992 9992 9988 9988 4 

6510 0x15EA8978 
FLink 

Blink 
0x15FF85C8 0x14D80038 

0 

1722 0x9235B68 
FLink 

Blink 
0x923D538 0x92323D8 

3212 0x97DF320 
FLink 

Blink 
0x97E4038 0x97D2108 

6472 0x1578EDD0 
FLink 

Blink 
0x14B24038 0x156C4C90 

Mutant Muta 470 470 467 467 2 

209 0x9BF1510 
FLink 

Blink 
0x9BCFB40 0xA429F2F8 

0 

121 0x9885580 
FLink 

Blink 
0x9888B00 0x9885CE0 

Event Even 6708 6708 6705 6705 3 

6341 0x53CCDDAC 
FLink 

Blink 
0x4519D824 0x53D8FCA4 

0 6333 0x53BEE4AC 
FLink 

Blink 
0x5383E1CC 0x53BEE7E4 

219 0x9141264 
FLink 

Blink 
0x7BB3E244 0x8F85BD4 
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 Function Pointer Hooking Detection Tool 8.3.2

8.3.2.1 Function Pointers Problem Overview 

The presence of NX-bit protection technologies and similar kernel code protection technologies 

make it is hard for rootkits to inject stealthy code into the kernel address space. NX-bit tech-

nology enforces a W  X property on the kernel memory pages that contains kernel code. The 

W  X property states that a given memory page can be either writable or executable, but not 

both at the same time [244]. As kernel code does not change at runtime and remains all the time 

similar to the desk copy, so the W  X property works well to prevent direct kernel code mod-

ification. Consequently, recent rootkits tends to execute their backdoors in the kernel address 

space without modifying the kernel text. This is done by modifying function pointers, instead of 

the function text itself, that are located in the kernel dynamic runtime objects such as loaded 

modules, import and export address tables [245]. A function pointer is a type of pointers, where 

instead of pointing to a data type, the pointer points to the entry point of a routine. Thus, by 

modifying a function pointer to point to malicious code located in another memory address, a 

hacker can execute this arbitrary code [109] instead of the intended benign code. In particular, 

when a function pointer is dereferenced, this pointer is be used to invoke the target function it 

points to and pass it arguments just like a normal function call, as demonstrated by Bush [246]. 

Function pointers exist frequently in operating systems’ kernels and this provides a wide attack 

surface for hackers to exploit kernels indirectly. In order to defend against function pointer 

hooking, we need to know where the malicious code could be placed. Generally there are only 

two locations where a backdoor can be placed: user address space and kernel address space. 

 User Address Space. In case of placing the malicious code into the user mode address 

space; the code will affect only the address space of a specific running instance of an object type. 

Examples of such rootkits are IAT and EAT hooking of Windows operating systems, as shown 

in Figure  8-8. Defending against such local rootkits is beyond our virtualization-aware security 

solution tasks, as it is the responsibility of the cloud consumer. 
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Figure ‎8-8. IAT and EAT function pointer hooking. 

Kernel Address Space. In the case of placing the malicious code in the kernel-mode, there 

are two main locations: (i) Kernel text pages. Placing code in kernel text pages is a naïve ap-

proach that can be detected easily. Kernel text pages do not change at runtime and thus a W  X 

property can sufficiently protect kernel text pages. Another approach for changing kernel text 

pages is modifying the function pointers of the system call table and replaces a function entry 

with the address of a malicious code, as shown in Figure  8-9. Such approach is also easy to be 

detectable as memory addresses of the system call table do not change at runtime. (i) Memory 

pools. Memory pools are used to allocate kernel dynamic objects. These pages are readable and 

writable at the same time and thus there are no integrity constraints that enable differentiating 

the memory addresses that point to functions entries or kernel objects, in order to detect function 

pointer hooks. Therefore, we focus on pool memory pages to check for function pointers 

hooking. Figure  8-11 shows a function pointer example in one of the non-control data structures 

that are usually allocated in pool memory in Windows operating system. 
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Figure ‎8-9. Hooking SSDT system call table of Windows operating system. 

PBOOT_DRIVER_LIST_ENTRY DriverEntry;

NTSTATUS DriverEntry(IN PDRIVER_OBJECT DriverObject, ……)

{

………

PEPROCESS Process = NULL;

HANDLE ProcessHandle = NULL;

………

}

typedef struct _BOOT_DRIVER_LIST_ENTRY {

LIST_ENTRY Link;

UNICODE_STRING FilePath;

UNICODE_STRING RegistryPath;

PKLDR_DATA_TABLE_ENTRY LdrEntry;

} BOOT_DRIVER_LIST_ENTRY, *PBOOT_DRIVER_LIST_ENTRY;

 

Figure ‎8-10. A function pointer example in Windows operating system. 

8.3.2.2 FP-Protect: A Function Pointer Hooking Detection Tool 

In order to detect and defend against function pointers hooking, we developed a runtime security 

analysis tool named FP-Protect. FP-Protect is written in C and deployed in the security virtual 

machine of CloudSec++. FP-protect works directly on the introspected hardware bytes after the 

semantic gap module finishes constructing the internal view, externally. FP-Protect first extracts 

all function pointers that are located in kernel runtime objects using the generated type-graphs 

of OS-KDD. A type-graph contains all the pointer details of the kernel address space (code and 

data), as discussed previously in chapter 6. FP-Protect focuses on functions’ pointers located in 

the non-paged pool memory only, in other words we check for function pointers that are located 
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in the dynamically allocated kernel runtime objects. 

Protecting a function pointer located in the address space of the static kernel objects – e.g. 

system call table, IDT and GDT – is straightforward, as the dereferencing information of func-

tion pointers are fixed all the time during system runtime. The challenge is check the integrity of 

function pointers that are located in dynamic kernel objects. To check the integrity of these 

function pointers, FP-Protect checks the deferencing details of the predefined function pointers 

of these objects. Any function pointer that dereferences a memory address that resides outside 

kernel code text pages is considered to be a function pointer hook. For each uncovered object, 

FP-Protect uses the corresponding type-graph to compute the memory addresses of the function 

pointers based on their relative addresses in the type-graph, as shown in Figure  8-11. The offsets 

of a field indicate the distance from the base address (object start address) to form the relative 

addresses. From the relative addresses (base address + offset), we can compute the absolute 

addresses (the actual address of a memory location) based on the located object physical ad-

dress. 

We built a small test environment to evaluate FP-Hook. We performed experiments on a 

virtual machine running Windows XP SP3 on a 2.8 GHz CPU with 2GB RAM. Figure  8-12 

shows the detected function pointers for different object types at runtime in different time slots, 

where each time slot is 120 seconds. At a random runtime time t, we first scanned the memory of 

the virtual machine to locate function pointers in the running instances of process, driver, thread, 

file, mutant and port object types. Then after every 120 seconds we repeated the process twice. 

From our scan analysis, we found that: (i) most of function pointers are located in the running 

instances of device drivers and file object types. (ii) We did not find any function pointers in 

mutants. (iii) The number of detected function pointers changes over time based on the use of 

the system user (calling contexts). 
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Base address nt!_EPROCESS

+0x000 Pcb : _KPROCESS

+0x06c ProcessLock : _EX_PUSH_LOCK

+0x070 CreateTime : _LARGE_INTEGER 0x0

+0x078 ExitTime : _LARGE_INTEGER 0x0

+0x080 RundownProtect : _EX_RUNDOWN_REF

+0x084 UniqueProcessId : 0x00000004

Offsets

 

Figure ‎8-11. Absolute and relative memory addresses 

 

Figure ‎8-12. Function pointers age at runtime. 

The average runtime in seconds to detect function pointers in each object type is shown in 

Figure  8-13. FP-Hook has a relatively low performance. To evaluate the accuracy of FP-Hook’s 

results, we manually checked the detected pointers at runtime and the false positive rate is as 

shown in Figure  8-14. The false alarm rate was in the drivers of around %0.04. This rate indi-

cates that pointers were wrongly identified as function pointers. We think that false positives 

exist because of the un-deallocated memory objects that were discussed in chapter 7. Further 

investigations into the reasons of false alarms will allow us to end or lower the rate and this is a 

part of our future work. 

 

Figure ‎8-13. Average time to locate function pointers in different object types. 
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Figure ‎8-14. False alarm rates of locating function’ pointers. 

After memory locations of these function pointers are computed, we then detect function 

pointers’ manipulations. In order to detect malicious function pointers’ manipulations, we treat 

the problem as an access control problem, where the dereferenced address should point to a 

relative address within the object address space in the non-paged pool memory. Most of function 

pointer’s hooking rootkits were not available for download, so we had to develop a few rootkit 

samples that modify function pointers in system device drivers of the Windows operating sys-

tem. The developed rootkits are based on previously reported techniques [247, 248] that enables 

function hooking in operating system kernels. We focused on device drivers because they are 

usually allocated to enable a user-mode applications getting root access to the kernel memory. 

We developed two rootkits: 

 SimpleHook1. SimpleHook1 is a simple proof-of-concept rootkit that overwrite the 

function pointer of the IOCTL_dispatch_routine to point to a malicious 

code that allocates a free memory pool block to allocate a new created process. The 

malicious code address is located in the paged pool memory. 

 SimpleHook2. SimpleHook2 is also a simple proof-of-concept rootkit that over-

write the function pointer of DriverEntry to hide a running process by using 

kernel object manipulation techniques to unlink a process from its doubly linked 

list. The malicious code address is located in the paged pool memory. 

The developed rootkits had some runtime errors that caused a system crash in nearly half of 

their runs. However as the rootkit development is out-of-scope we accepted the successful runs 

rate to infect the kernel and then use FP-Protect to detect the manipulated function pointers. 

Further investigations in the technical development phases of the rootkits in order to get an-error 
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free environment is part of our future work. FP-Protect successfully detected the hooked func-

tion pointers and then dispatched the manipulated pointers to their original deferencing address 

based on the corresponding type-graph. Table  8-2 shows our evaluation results of FP-Hook to 

detect function pointer manipulations in IOCTL_dispatch_routine and DriverEntry 

routines.  
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Table ‎8-2. FP-Hook evaluation results of detecting function pointers. 

Object 

Address 

Driver 

Name 

Function 

Pointer 

Offset 

Function 

Pointer 
Pointer type 

Dereferenced Original 

Function 

Dereferenced 

Malicious 

Function 

Hook 

detected 

? 

Prevention 

action 

0x821A4500 Fips 0x038 MajorFunction *PDRIVER_DISPATCH 
IOCTL_dispatch_rout

ine 
SimpleHook1 YES 

Overwrite 

function 

pointer 

0x820C2550 HTTP 0x038 MajorFunction *PDRIVER_DISPATCH 
IOCTL_dispatch_rout

ine 
SimpleHook1 YES 

Overwrite 

function 

pointer 

0x82201B10 RasAcd 0x02c DriverInit *PDRIVER_INITIALIZE DriverEntry SimpleHook2 YES 

Overwrite 

function 

pointer 

0x81ED3270 Cdfs 0x02c DriverInit *PDRIVER_INITIALIZE DriverEntry SimpleHook2 YES 

Overwrite 

function 

pointer 
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 Dangling Pointers Detection Tool 8.3.3

8.3.3.1 Dangling Pointers Problem Overview 

Dangling pointers are pointers that do not point to a valid object type, and thus they can lead to 

memory bugs such as use-after-free and double-free vulnerabilities [249, 250]. Dangling 

pointers mainly arise when an object is deleted or deallocated, without modifying its pointers, 

values to null and linking it to the pool or heap free memory slots, so that it still has a pointer still 

points to the memory location of the deallocated memory [251], as shown in Figure  8-15. In 

particular, a dangling pointer is created when the object is deallocated and there is still a 

points-to relation from another object to that deallocated memory. This object may later real-

locate or overwrite the deallocated memory causing a dangling pointer.  

Pool Block

Object1

Pool Block

Object2

Pool Block

Object3

Deallocated 
object

pointer pointer pointer Dangling pointer

 

Figure ‎8-15. Dangling pointers example. 

Dangling pointers allows a malicious code to run in kernel’s memory in a stealthy way, by 

working under the umbrella of another legally allocated object. Identifying dangling pointers is 

time-consuming task as this requires two main analysis phases [143, 252-254]: detecting the 

creation of the dangling pointers and detecting the memory bugs caused a the dangling pointer. 

First, analysing the program to detect the creation of dangling pointers. Dangling pointers 

are usually created by the operating system itself and its running applications. Operating sys-

tems like Windows and Linux sometimes do not clear the contents of a memory slot after its 

deallocation to avoid the overhead of writing zeroes to the physical memory and thus does not 

affect system performance. Such performance-related issue is a main reason for the creation of 

dangling pointers. In chapter 7, we discussed the problem of the dead DAMOs that are likely to 
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exist because of operating systems runtime bugs. Hackers can re-use DAMOs to reallocate an 

undealloacted memory block to another stealthy object or stealthy code. This makes the original 

program (that has allocated the memory block) to dereference the new object/code (that has 

been stealthy allocated) causing a dangling pointer. Thus, a memory violation could occur and 

the new object will be running in the kernel memory to execute its objectives. Another reason 

for dangling pointers creation is the shared objects. As discussed in chapter 2, kernel data 

structures are implementation-dependent where a pointer deposited in a field under one object 

can be accessed from a different field under another object. Thus multiple objects could have 

different pointer relations to a single running object. If this running object is deallocated from 

one of those pointing objects without updating the pointer count value of the other object be-

cause of a runtime error, the other pointing objects (that share pointers to that deallocated object) 

still consider it as a live object and perform deferencing operations. This is unlikely to occur 

however it could happen because of an implementation bug in a program. Moreover, dangling 

pointers could be created by a malicious hacker that targets to manipulate the pointers of a 

running object by unlinking it from its parent object (simulate deallocation) while its memory 

block is still allocated in the memory. 

Second, analysing the runtime memory to detect any memory bugs caused by the created 

dangling pointers. In particular, analyse the program to identify the dereferencing instructions of 

the created dangling pointer at system runtime to detect any malicious behaviour such as exe-

cuting code and modifying runtime kernel data. Such a step requires an accurate con-

text-sensitive points-to analysis to be performed, not just on the running operating system kernel 

but also on all the running applications that might allocate objects such as device drivers. Such 

process should be done online at system runtime, not statically, as dandling pointers cannot be 

defined at the static analysis phase in OS-KDD. 

8.3.3.2 D-Pointer: Dangling Pointers Detection Tool 

In other to address dangling pointers problem, we propose a new mechanism based on 

DIGGER’s approach that has the ability to locate dangling pointers whatever was the reason of 
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their creations. We developed a tool based on DIGGER’s approach called D-Pointer. D-Pointer 

is a fast mechanism that has the ability to prevent dangling pointers from occurrence in oper-

ating systems’ kernels. D-Pointer does not have two analysis tasks like the current approaches, 

as discussed above. D-Pointer has a single analysis phase at runtime that enables detecting any 

deallocated object that still exist in the kernel memory and still has some live pointers deref-

erencing it. D-Pointer shifts the focus from the creation of the dangling pointer to the prevention 

of these dangling pointers and its consequences bugs from taking place before even they are 

utilized by any hacker. D-Pointer protects the kernel address space from such memory safety 

violations by ensuring that: first, each deallocated runtime kernel object has no live pointer 

relations with any other live object. To achieve this, we made use of the object header data 

structure, discussed before in chapter 7. As shown in Figure  8-16, OBJECT_HEADER data 

structure has a PointerCount and HandleCount fields. HandleCount is used as dis-

cussed before in chapter 7 to detect the un-deallocated memory objects. PointerCount is 

then used to detect if an un-deallocated memory object still has pointers from other running 

objects that can dereference it. In particular, PointerCount field maintains the number of 

references to a running object. An object gets deallocated when its PointerCount becomes 

zero. From our analysis to different memory images using WinDbg, we found out that it is likely 

to find an object with HandleCount equals to zero and PointerCount equals to 1, as 

shown in Figure  8-17. Second, the detected deallocated objects that still have a Pointer-

Count greater than zero are then efficiently freed from the memory and linked to the pool list 

that holds the free pool blocks. We do this by following the approach discussed by Tarjei [245]. 

Tarjei discussed a mechanism used by malicious hackers to unlink and link memory pool blocks 

from the free pool blocks list. We use the same mechanism to fix dangling pointers by linking its 

deallocated object to the free pool blocks linked list. 

At runtime, whenever an object is uncovered, D-Pointer checks for the dangling pointers 

and deallocate then using the technique described above. To evaluate our approach we ran 

D-Pointer to monitor a running virtual machine running Windows XP SP3 on a 2.8 GHz CPU 

with 2GB RAM. We did not use any rootkits; D-Pointer was looking only for the internally 
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caused dangling pointers by the operating system runtime errors. Table  8-3 shows the detected 

dangling pointers in a running operating system for different object types. Table  8-3 summa-

rized the number of the running instances of each object type, the detected dangling pointers, the 

addresses of these dangling pointers and the PointerCount field value of the infected ob-

jects. By manually analysing the infected objects that contain dangling pointers, we found that 

they are DMAOs for previously allocated objects and their PointerCount fields are still 

active and pointing to another object (the field value is greater than zero). 

typedef struct _OBJECT_HEADER {

LONG_PTR PointerCount;

union {

LONG_PTR HandleCount;

PVOID NextToFree;

};

POBJECT_TYPE Type;

……

} OBJECT_HEADER, *POBJECT_HEADER;

 

Figure ‎8-16. A snapshot of the object header structure. 

kd> dt _OBJECT_HEADER 8966BB8

nt!_OBJECT_HEADER

+0x000 PointerCount     : 1

+0x004 HandleCount      : 0

+0x004 NextToFree : 0x00000001 

+0x008 Type             : 0x812b5730 _OBJECT_TYPE

+0x00c NameInfoOffset : 0 

+0x00d HandleInfoOffset : 0 

+0x00e QuotaInfoOffset : 0 

 

Figure ‎8-17. A snapshot of Windbg reflecting our analysis. 

Figure  8-18 reflects the time consumed in seconds to analyse the different types of kernel 

runtime objects to locate dandling pointers in them. D-Pointer has a low performance overhead 

and thus it supports near real-time protection against dangling pointers that could be created in 

kernel dynamic data. 
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Table ‎8-3. D-Pointer evaluation results 

Object 

Type 

Running 

Instances 

Dangling 

Pointers 
Percentage 

Object 

Address 
PointerCount HandleCount 

Process 125 2 0.016% 

0x96E8180 1 0 

0x98A2960 1 0 

Thread 2365 1 0.000% 0x9607618 1 0 

Port 365 0 0.000% NA NA NA 

File 5820 0 0.000% NA NA NA 

Profile 685 0 0.000% NA NA NA 

Job 452 0 0.000% NA NA NA 

Session 178 0 0.016% NA NA NA 

 

 

Figure ‎8-18. Dangling pointers detection time in seconds. 

 Memory Forensics 8.3.4

Analysing physical memory for rootkit infection evidence is a famous approach used by 

memory forensics experts to understand rootkits’ behaviours. Brute force scanning is one of the 

approaches that enable such memory forensics analysis. Brute force scanning is an offline 

analysis approach of kernel memory images in order to uncover semantic information of interest 

for a specific rootkit or an object. 

D-Hide, FP-Protect and D-Pointer are all online analysis tools and their main objective is 

detecting system rootkits in a near real-time fashion, rather than going in-depth in the details of 
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the detected rootkits and their effects on the underlying operating system. This is to avoid high 

performance overhead of the running security software. Brute force scanning is on the contrast 

enables getting detailed information about an infected runtime object. Implementing a brute 

force scanning tool is straightforward with the help of DIGGER’s approach and OS-KDD 

generated type-graphs. Given a memory dump or a snapshot, and a signature for an infected 

object, our brute force scanning tool helps retrieving in-depth information about the running 

state of the infected objects. In particular, it builds detailed semantic information about the 

infected object including any points-to relations with the other benignant objects that have 

dereferenced the infected object at a specific point at system runtime. 

We developed B-Force, as a proof-of-concept for our brute force scanning approach. 

B-Force works on snapshots or memory dumps. Memory snapshots can be easily created using 

the ESX hypervisor and its vShpere client. B-Force takes a signature for an infected object; the 

signature is a combination of the object’s address and its pool tag. B-Force then scans the 

memory snapshot through the security virtual machine of CloudSec++ to retrieve in-depth de-

tails about the object using the corresponding type-graph of the running kernel. Based on the 

type-graph, B-Force builds a detailed infection-graph using all the points-to relations (described 

in the type-graph) of the target infected object with the other running objects. Such infec-

tion-graph can be used by security experts for an in-depth analysis about rootkits to understand 

their behaviours and manipulation side of the running operating system. A sample of the infec-

tion-graph is shown in Figure  8-19. B-Force results (the infection-graph) are very accurate, and 

this mainly comes from the accuracy of KDD generated type-graph and DIGGER’s approach to 

locate kernel runtime objects in memory. 

We have implemented B-Force in C and it is deployed in the security virtual machine. 

However it is not like the previous tool that works online on a running virtual machine. B-Force 

works offline on a memory snapshot of a virtual machine. B-Force can also be used to uncover 

the presence of rootkits by using the rootkit signature instead of our pool tagging schema. 

However, we are not fans of using such signature-based detection approaches, as many of kernel 

data structures cannot be covered with a value-invariant schema, as discussed before. 
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secur32.dll

77BE0000 

 

Figure ‎8-19. A sample infection-graph. 

To evaluate B-Force efficiency, we used B-Force to analyse DMAOs to provide detailed 

forensic information about a malicious hacker’s activity. Imagine a malicious hacker runs 

stealthy malware and then terminates it on a victim operating system. After the termination there 

may still exist for a non-trivial period of time some forensic data of interest in the memory pages 

of the deallocated objects. To demonstrate B-Force’s efficiency in analysing DMAOs, we used 

some benchmark programs to run in three different memory snapshots, we then analysed the 

dead memory pages using B-Force to uncover some data of interest: user login information 

(GroupWise email client), chat sessions (Yahoo messenger), FTP sessions (FileZilla). We cre-

ated 9 processes (three of these are the benchmark programs) and then performed some 

CPU-intensive operations using these processes. We then terminated these processes after 30 

minutes, 10 minutes and 5 minutes in three different memory images – identified L, M and S, 

respectively. Then we created 4 different new processes 1 minute after termination. The 

memory images were then scanned using B-Force to generate infection-graphs for the termi-

nated processes. We found that 3 from the terminated processes’ physical addresses were 

overwritten by EPROCESS structure for new processes, while another three processes (from the 

terminated ones) still persisted in memory (at the same address in the memory). 

We made the following observations. First, for the email client, we were not able to iden-

tify the login information (user name and password) for all of the memory images. For the ftp 
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client we were able to identify the server name and the server and client connection ports for the 

M image only, without any ability to locate the login credentials in all of the three images. For 

the chat benchmark application, we were able to locate the username and connection ports in the 

L image.  
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8.4  Summary 

In this chapter, we introduced our proposed virtualization-aware security solution, CloudSec++. 

In particular, we gathered our previously developed components and tools, discussed in chapters 

5, 6 and 7, into a single security solution that has the ability to protect the hosted virtual ma-

chines in the IaaS platforms. CloudSec++ has the ability to systematically and effectively protect 

multiple operating system running instances in the same physical server against kernel data 

rootkits including zero-day threats. Key strengths of CloudSec++ include: (i) the systematic 

approach used to overcome the semantic gap problem and uncover kernel dynamic objects. (ii) 

The robust security approach used to protect the hosted virtual machines, where the security 

software is totally isolated from the running virtual machines. Such external security makes it 

harder for hackers to detect the installed security software and tamper with its behaviour. 

Moreover, external security provisioning model has the advantage of being easier to deploy 

across a wide variety of user operating systems. (iii) In CloudSec++, cloud consumers enjoy the 

feature of getting feedback and enforce basic robust security polices of their hosted virtual 

machines via the cloud provider to ensure robust security for their hoisted virtual machines. 

In this chapter, we also introduced a set of operating system kernel data integrity checking 

tools that have the ability to protect dynamic kernel data against zero-day threats that target to 

manipulate the generic pointers located in kernel dynamic data. The developed tools proved 

functional protection against various types of pointer manipulation threats such as hiding ob-

jects, dangling pointers and function pointer hooking. We also introduced a memory forensics 

tool that assists operating system’s security experts to study and understand the behaviour of the 

newly detected zero-day threats on the running operating system.
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  Chapter 9

Conclusions and Future Work 

In this thesis we reported our investigations into the loss-of-control security problem over 

hosted virtual machines in the IaaS platform, leading to the development of a robust security 

software system that can systematically and reliably protect their guest operating systems ex-

ternally. In this chapter, we summarize our solutions to this research problem and outline key 

future work that can be done to extend and improve this work. 

9.1 Key Conclusions  

The main contribution of this research project is the development of a robust security solution to 

overcome the loss-of-control security problem of hosted virtual machines in the IaaS platform. 

In order to develop such a security solution, a number of new tools and mechanisms were in-

troduced. Key strengths and limitations of these tools and mechanisms are discussed in the 

following sub-sections. 

 CloudSec 9.1.1

CloudSec enables reliable active and transparent monitoring for multiple concurrent hosted 

virtual machines, without placing any security code in their running operating systems. The key 

point behind implementing such a transparent active monitoring framework is moving the 

monitoring hooks from the virtual machine level to the hypervisor level by implementing our 

introspection framework on the ESX hypervisor using VMsafe libraries that facilitated 

achieving that. The hypervisor are the ideal location to host any security-critical code to ensure 

strict protection of the security solution. This is built on our assumption that the hypervisor is 

highly trusted and protected by the underlying hardware protection technologies, as discussed 

previously in chapter 5.
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It is not just our virtualization-aware security solution that can benefit from CloudSec. 

Many other security software systems can benefit from CloudSec including virus scanners, 

kernel data and code integrity checkers, memory forensics tools, intrusion detection systems 

and firewalls. This is because nearly all of these security solutions share the same high-level 

operational flow that is supported by CloudSec – i.e. active, transparent and near real-time 

monitoring of the runtime operating system activities.  

 OS-KDD  9.1.2

While CloudSec was an effective IaaS security contribution, it suffered from manual effort 

to bridge the semantic gap. Based on such limitation, we introduced OS-KDD to enable sys-

tematic overcoming of the semantic gap problem, without a need to the expensive manual 

efforts or deep experience about an operating system’s kernel runtime data layout. OS-KDD can 

be considered the backbone of this research project. It solved most of the technical problems 

that relate to the complex implementation of the C-based operating systems e.g. Windows and 

Linux. OS-KDD enables systematic generation of an accurate type-graph that reflects statically 

the runtime data layout of an operating system’s kernel. The key point behind such systematic 

approach is performing field, flow and context-sensitive points-to analysis on the operating 

system’s kernel source code to disambiguate the generic pointers and get accurate estimation of 

their expected deferencing operations at runtime, statically. OS-KDD scales to produce detailed 

and highly accurate type-graphs that solve the generic pointers problem of large-scale C pro-

grams, including C-based operating systems. This scalability and good performance was 

achieved by using abstract syntax trees as the basis for implementing our points-to analysis 

algorithm. The compact and syntax-free abstract syntax trees improves the time and memory 

usage efficiency of the analysis, as instrumenting abstract syntax trees is more efficient than 

instrumenting the machine code, as discussed before in chapter 6. 

In summary, OS-KDD was a key solution for a number of technical problems in this re-

search project, as follow: (i) OS-KDD enables systematic and accurate overcoming of the se-

mantic gap problem for C-based operating system, without requiring deep experience about the 
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runtime kernel data layout or even the running kernel version. (ii) OS-KDD supports the im-

plementation of DIGGER’s approach to enable computing a complete object-graph in a 

near-real time fashion that reflects the actual set of kernel dynamic objects at system runtime. 

(iii) OS-KDD is an essential factor to support performing systematic integrity checks on the 

generic pointers located in kernel dynamic objects. OS-KDD enables computing accurate con-

straint-sets on the pointers and pointer-compatible variables, during its analysis phases. These 

constraint-sets enable performing runtime integrity checks to detect memory errors and viola-

tions caused by manipulating the generic pointers located in kernel dynamic objects. 

OS-KDD is not only beneficial for our research project; it can also be applied to many other 

security applications. Performing static analysis on the operating system’s kernel source code to 

extract robust type definitions for kernel data has several advantages that can be used in many 

other operating system security applications for both virtualization-aware and traditional 

in-guest security solutions. These advantages include: (i) OS-KDD supports implementing 

systematic operating system security solutions, without a need to deeply understand the com-

plex kernel implementation details. Such feature gives the security software the maximum 

coverage to protect different operating system kernel versions without major modifications to 

the implementation of the security software itself. (ii) OS-KDD greatly minimizes the perfor-

mance overhead of any dependant security software, as a major part of the analysis is performed 

offline. Static analysis saves a lot of time by instrumenting most of pointer deferencing opera-

tions offline. (iii) Systematic static analysis maximizes the likelihood of detecting zero-day 

threats that could target kernel non-control data structures. Not like other researches that cover a 

fraction of kernel dynamic data to only cover around 28% of dynamic objects, OS-KDD enables 

uncovering and protecting all non-control data structures. This is because OS-KDD generates 

constraint-sets on the generic pointers located in these structures and thus enables detecting new 

rootkits that could exploit obscure data structures that have not been considered by current 

security solutions. (iv)Type-Inference. Declared data types of C pointers are unreliable indica-

tions of how the pointers are likely to be used at runtime, as C allows casting operations at 

system runtime with no restrictions. Points-to analysis is a powerful approach in type inference 
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to determine the actual runtime type(s) of an object statically, by analysing the usage of those 

pointers in the source code. 

To the best of our knowledge, our points-to analysis algorithm is the first points-to analysis 

technique that depends on the abstract syntax trees to provide field, flow and context sensitive 

analysis. Buss et al. [191] had an initiative in performing points-to analysis based on the abstract 

syntax tress of the source code. However, their algorithm is field and context insensitive and 

does not scale to the large programs. To the best of our knowledge also, there is no similar 

research in the area of systematically solving the semantic gap except KOP [14]. KOP has an 

initiative in systematically computing a type-graph for kernel data; however KOP has a number 

of critical limitations, as discussed before in chapter 3.  

 DIGGER  9.1.3

DIGGER is a key to enabling real-time monitoring and protection for kernel runtime objects. 

DIGGER is a fast and robust object discovery approach that enables systemic discovery of 

kernel runtime objects from a trusted view. DIGGER is accurate and fast due to the utilization of 

a new value-invariant approach and an advanced memory mapping technique to work together 

in a single mechanism to deliver the required accuracy and high performance. The robust ap-

proach used in DIGGER to discover system runtime objects can be used in many other operating 

system applications that require locating system runtime objects such as kernel data integrity 

checkers, memory forensics tools, virtual machine introspection frameworks and network 

monitors. A key feature of DIGGER is the small and robust value-invariant signatures used to 

uncover the runtime objects. A key advantage of such signatures is that they are not tied to a 

specific data structure layout and are thus effective in different operating system kernel versions, 

where data structure layout change is likely to occur. Moreover, the very small size of the de-

veloped signatures significantly decreases the performance overhead of the security software. 

DIGGER’s implementation in this research project is limited to Windows operating sys-

tems. However, it is generic enough to be used in the different versions of the Windows oper-

ating system’s kernels. The DIGGER’s approach could be customized and implemented on 
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Linux and UNIX operating systems by utilizing the slab allocation mechanism of the Linux 

operating systems instead of the pool memory concept of Windows operating systems, as dis-

cussed previously in chapter 7. Recent research by Microsoft [255] was published after our 

DIGGER paper [133]. This research introduced a similar idea of using pool tags as a val-

ue-invariant approach to locate runtime objects. The research confirms our results and shows 

how effective our approach is in locating runtime objects from a robust source, as Microsoft has 

applied this approach to different operating system kernels.  

 CloudSec++ 9.1.4

Our final major component of this research project is CloudSec++. CloudSec++ is capable of 

monitoring and protecting multiple concurrent virtual machines hosted at the same physical 

server and also supports migrating virtual machines across the hosting physical servers of an 

IaaS platform. The CloudSec++ architecture allows benefiting from the virtualization charac-

teristics and runs in an isolated and controlled virtual machine as a security appliance to protect 

the other hosted virtual machines. The design of CloudSec++ has key advantages that enable 

efficient and high performance protection for the IaaS platforms. First, the deployment model of 

CloudSec++ makes the external security provisioning approach much easier to deploy across a 

wide variety of user operating systems. This is because CloudSec++ has the ability to protect 

different operating systems such as UNIX, Linux or Windows without relying on hard-coded 

offsets of a specific kernel version. Second, in our system design, CloudSec++ works at a hy-

pervisor level, which means that the security virtual machine is deployed at a layer lower than 

the hosted virtual machines’ layer. This enables complete control over the hosted virtual ma-

chines including their virtual hardware, while making it difficult for an attacker to even detect 

the security software. Third, CloudSec++ has the ability to perform real-time kernel integrity 

checks for operating system kernel dynamic data to defend against system zero-day threats that 

could target the non-control data structures. CloudSec++ employs a collection of security tools 

that enable detecting pointer manipulations across kernel dynamic data. We developed a number 

of security tools that are deployed in CloudSec++ to detect various operating system kernel data 
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attacks. This demonstrates the ability of our approach to provide effective external security 

support for virtualized operating systems in the IaaS cloud model. We developed four main tools: 

(i) D-Hide is a hidden objects detection tool that can detect any kind of stealthy malware not just 

limited to specific object types. A key feature of D-Hide is its ability to perform cross-view 

comparison without the need for an internal debugging tool to read the operating system’s 

internal view. This feature enables deploying D-hide to monitor and protect hosted virtual 

machines in the IaaS platform, where the cloud providers do not have any access rights to the 

virtual machine’s running operating system. (ii) FP-Hook is a function pointer hooking detec-

tion tool that can detect malicious function pointers manipulations that could happen in any 

routine located in the kernel dynamic objects. (iii) D-pointer has the ability to detect dangling 

pointers that might be happen because of operating system runtime errors or even a malicious 

hacker. D-pointer is not like previous approaches that require two phases of the analysis to 

detect the presence of a dangling pointer. D-pointer makes use of kernel data DIGGER’s ap-

proach to easily detect dangling pointers and deallocate them from the kernel address space. (iv) 

B-Force is an offline analysis tool that has the ability to deeply analyse kernel runtime objects to 

enable further investigations about rootkits behaviours. B-Force is considered a powerful 

memory forensics tool because it has the ability to retrieve accurate and detailed information 

about a running object based on OS-KDD generated type-graphs. 

9.2 Future Research 

CloudSec++ results have been encouraging enough to merit further investigation. The research 

in this thesis can be extended and enhanced to introduce more robust security features that can 

be deployed in CloudSec++. Below, we summarize key research points in this project that can be 

enhanced for better performance and productivity. 

OS-KDD does not employ enough intelligence to work efficiently on operating system’s 

kernel updates and new patch releases. An interesting thing would be developing an extension 

for OS-KDD to enable locating kernel code and data layout changes and then only analyse the 

new changes instead of re-analysing the whole kernel’s source code, to get an updated 
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type-graph that reflects the new changes in the runtime kernel data layout. Furthermore, one 

potential issue with OS-KDD is the high performance overhead. Despite the fact that OS-KDD 

works offline and needs to be run once for each kernel version, the analysis performance 

overhead is still very high. Improving the analysis performance by optimizing the analysis 

phases and using parallel computations could greatly improve OS-KDD’s efficiency for more 

practical usage in different applications not just limited to operating system static analysis. 

Moreover, OS-KDD can be employed to support mobile security. Mobile operating systems 

such as Android and iOS are also exposed to similar vulnerabilities that benefit from manipu-

lating pointers located in kernel dynamic objects at runtime. This is because these operating 

systems are developed using the C and Objective C programming languages. For example, the 

Android operating system is based on the Linux kernel with further architectural changes. The 

Linux kernel is implemented in C and thus it has the same problem of generic pointers and 

dynamic data. Furthermore, Mobile devices are being used more and more widely nowadays. 

Many applications have been developed for different objectives such as children’s learning, 

eHealth and mobile banking applications. Regular users including children can unintentionally 

allow executing of a malicious code in memory by touching links or accepting commands they 

are not aware of. Such malicious code can allow the installation of backdoors such as key 

loggers in memory by modifying a generic pointer to dereference the malicious code. Thus, in 

addition to the risks of runtime memory bugs and errors of C-based operating systems, mobile 

operating systems have an even wider attack interface. This is because many of such systems’ 

users could unintentionally facilitate installing rootkits that target the runtime memory.  

Our implementation of DIGGER is Windows operating system-specific. However, we 

discussed, in chapter 8, that a Linux version can be implemented by utilization the slab alloca-

tion mechanism to implement DIGGER’s approach in a similar way to the pool memory used in 

Windows operating systems. A practical implementation of DIGGER on Linux operating sys-

tems would further demonstrate the validity of our assumptions. In this research project, we 

focused on operating system kernel data protection. Kernel code with rootkits that develop 

return and jump-oriented programming e worth attention, especially with the support of 
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OS-KDD that provides precise analyse of pointers scattered around kernel text pages. In the 

evaluation results of FP-Hook, there was a small false alarm rate of around %0.04 in device 

drivers that relates to pointers were wrongly identified as function pointers. Further investiga-

tions into the reasons of false alarms could help to end or lower this rate. Also the developed 

rootkits to modify function pointers were not highly accurate in the implementation-side, 

causing runtime errors. Further investigations in the technical development phases of the root-

kits in order to get an-error free environment is also a point for future work.
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