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Abstract 
 
Software question and answering (SQA) platforms (e.g., Stack Overflow, Ask Ubuntu and 

Super User, etc) have been heavily used by developers to seek help to solve their daily 

problems. Typically, when a developer encounters a technical problem, he or she 

formulates the problem as a query and use the search engine to find possible solutions in 

SQA sites such as Stack Overflow. Interacting with SQA, i.e., asking questions and 

searching answers, have been an essential part of developers' daily work for problem 

solving.  

Despite the great success of SQA and active user participation, the ³answer hungry´ 

problem is still one major existing problem with these SQA platforms, i.e., a large number 

of questions remain unanswered and/or unresolved. The ³answer hungry´ problem is 

probably caused by the following several reasons: (1) the questions posted by developers 

are of poor quality (e.g., ambiguous, inaccurate or uninformative), which may discourage 

the potential experts. (2) the SQA search engine are hardly recommend the appropriate 

answers to the unanswered/unresolved questions. (3) even though the appropriate answer 

is returned by the search engine, developers may fail to filter out irrelevant results and 

tend to get lost in the massive amount of information. Three key research questions are 

raised regarding the above three reasons, i.e., ³how to improve the quality of questions in 

SQA community?´, ³how to recommend appropriate answers to technical questions?´, and 

³how to search the best code solutions in SQA for a programming task?´.  

This Ph.D. work focuses on this open issue, which aims to alleviate the ³answer 

hungry´ problem in SQA sites. To be more specific, we present three different approaches 

to solve the aforementioned three research questions respectively, we present this 

dissertation to explore question and answering in software Q&A community by contributing 

to the following three building blocks: 

z Code2Que. A significant number of questions in SQA sites are of low-quality and not 

attractive to other potential experts. Sometimes it is hard for developers, especially the 

novice users, to describe the problem they meet due to their lack of knowledge or 

terminology behind the problems. We propose a sequence-to-sequence learning 

approach, Code2Que, which can help developers in writing higher quality questions 

for a given code snippet. We evaluated our approach on Stack Overflow datasets over 

a variety of programming languages, and the experimental results show that our 

approach significantly outperforms existing baselines and can improve the question 

titles in terms of Clearness, Fitness and Willingness measures.  
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z DeepAns. One of the major reasons for the ³answer hungry´ problem in SQA 

community is the search engines are hardly to recommend relevant answers for the 

unanswered and/or unresolved questions. However, with the rapid growth of the SQA 

community, a tremendous number of historical question answer (QA) pairs, as time 

goes on, have been archived in the SQA databases. Developers therefore have large 

chances to directly get the answers by searching from the repositories, rather than the 

time-consuming waiting. To solve this we propose a novel neural network based 

approach, named DeepAns, to identify the most relevant answer among a set of 

answer candidates. Our experimental results show that our approach significantly 

outperforms several state-of-the-art baselines in both automatic evaluation and human 

evaluation. 

z Que2Code. Following our previous work, sometimes even if the search engine 

successfully returns a target post for a given user question, there is often too much 

noisy and redundant information associated with the returned posts, and the code 

solution can be easily buried in all this overwhelming amount of information and 

developers may get lost with the irrelevant information. There is a need by developers 

to only receive the most suitable and useful code solutions to their current 

programming tasks. To address this, we present a query-driven code search tool, 

named Que2Code, that identifies the best code solutions for a user query from Stack 

Overflow posts. Both the automatic and human evaluation results demonstrate the 

promising performance of our approach over a set of state-of-the-art baselines. 
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Chapter 1

Introduction

1.1 Background

Community Question and Answer. The past decade has witnessed significant social

and technical value of Community Question and Answer (CQA) platforms. Enormous

amount of knowledge sharing occurs every day in CQA communities, members of these

communities can ask/answer questions and search through the archived historical question-

answer (QA) pairs. The CQA systems have made a substantial headway in answewring

complex questions, such as reasoning, advice-seeking and open-minded questions. The

CQA systems are perceived mainly as a successful example of collective intelligence due

to their high popularity, millions of answered questions as well as universal availability.

There are two types of CQA communities:

• General CQA sites. The general CQA sites are community based question answer-

ing systems for general topics (e.g., Yahoo! Answers1, Quora2, Zhihu3). For these

general CQA sites, users may ask questions of any topic, “What is Melbourne famous

for?”. The general CQA sites have little restrictions, to answer this kind of question,

no much professional knowledge is needed.

• Domain CQA sites. Besides the general CQA sites, domain CQA sites are related
1https://answers.yahoo.com/
2https://www.quora.com/
3https://www.zhihu.com/
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to a specific domain area (e.g., HealthTap, StackOverflow). Regarding the domain

CQA systems, the questions and answers are mostly within the same topical domain,

enabling more comprehensive interaction between users on fine-grained topics. In

such systems, users are more likely to ask questions on professional topics and an-

swer questions matching their own expertise. Only experts with professional domain

knowledge are able to answer questions like, “How do I check if a list is empty?”

from Stack Overflow, or “How do I know when skipped heart beats are dangerous?”.

Compared with general CQA sites, professional knowledge is needed.

Software Question Answering Community. In this thesis, we focus on a special type of

domain CQA sites, i.e., Software Question Answering (SQA) communities. SQA sites

are designed for software developers, and the questions will be answered by users who are

software domain experts. The SQA sites are heavily used by software developers as a pop-

ular way to seek programming-related information from peers. The SQA community itself

has a diverse set platforms covering different software engineering topics, such as Stack

Overflow (with a focus on programming-related questions), Ask Ubuntu (with a focus on

Ubuntu operating system), Super User (with a focus on computer software and hardware)

and Server Fault (with a focus on servers and networks) etc,. Taking Stack Overflow as

an example, Stack Overflow aims to serve diverse software development topics on tools,

platforms and other related software development issues. The Stack Overflow community

serves more then 40M professionals and novice developers every moths and has more than

6M registered users, approximately 12M questions, 20M answers, 51M comments and 46K

tags on various issues/topics of software development.
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1.2 Motivations and Objectives

Motivations. Currently, the existing SQA systems are perceived mainly as a successful

example of collective intelligence due to their high popularity, millions of archived ques-

tions and answers and universal availability. In spite of – or perhaps even because of –

the great success of SQA and active user participation, the phenomenon of being “answer

hungry” is still one of the biggest problems within these SQA platforms. This concept

means that a very large number of questions posted in SQA remain unanswered and/or

unresolved. In order to find out the degree of the “answer hungry” problem for SQA sites,

we quantitatively analyzed the prevalence of this problem in real SQA sites. We choose

three popular SQA site (e.g., Stack Overflow, Ask Ubuntu and Super User) for our empir-

ical study. Since it is too expensive to run the empirical experiment on the whole Stack

Overflow dataset, we only focus on Python and Java related programming languages in

Stack Overflow, which refer to SO(Python) and SO(Java) respectively.

To investigate the proportion of the unanswered and unresolved questions, we first

counted the number of questions that have received at least one answer, and refer to these

questions as Answered Questions. Questions not receiving any answers are referred to as

Unanswered Questions. For those Answered Questions, we further divided them into two

groups of Resolved Questions and Unresolved Questions based on whether any answer

within the question thread has been marked or not as the accepted answer by the asker.

Then, we further empirically studied the average time interval for accepting an answer,

which is the time difference between the time a question is created and the time an answer

post is accepted. Table 1.1 presents the statistical results of our collected data4. From the

table, we have the following observations:

1. A large proportion of questions do not receive any answers in these technical

SQA sites. Consider Ask Ubuntu and Super User as examples – around 22% ques-
4For duplicated questions, we only keep the master ones, and remove the others.

3



Table 1.1: Answer Hungry Statistics in SQA Sites

Ask Ubuntu

# Questions 315,924
# Unanswered Questions 69,528
# Resolved Questions 106,301
# Unresolved Questions 140,095
Avg Accepting Time 18.63 (days)

Super User

# Questions 380,940
# Unanswered Questions 73,584
# Resolved Questions 160,200
# Unresolved Questions 147,156
Avg Accepting Time 25.69 (days)

SO (Python)

# Questions 1,236,748
# Unanswered Questions 175,859
# Resolved Questions 674,360
# Unresolved Questions 386,529
Avg Accepting Time 7.78 (days)

SO (Java)

# Questions 1,581,814
# Unanswered Questions 213,963
# Resolved Questions 808,040
# Unresolved Questions 559,811
Avg Accepting Time 8.52 (days)
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tions in Ask Ubuntu and 19% questions in Super User do not get any response since

the time questions have been created, leaving the askers unsatisfied.

2. A large amount of questions are still unresolved. For instance, 31.3% questions

in SO (Python) and 35.4% questions in SO (Java) remain to be unresolved. This

phenomenon is probably caused by the following reasons: (a) no good answer was

provided within the current question thread, (b) even provided with good answers, it

is common for the less experienced users to forget marking a potential answer as a

solution.

3. Developers usually have to wait a long time before getting satisfied answers to

their questions. It takes on average more than 18 days and 25 days to receive an ac-

cepted answer in Ask Ubuntu and Super User SQA sites respectively, and the Stack

Overflow developers have to wait more than one week before getting a suitable an-

swer to their programming tasks, which is far too slow and costly to adapt to the

rapidly software development.

Research objectives. In summary, the answer hungry phenomenon widely exists and

has been one of the biggest challenges in technical Q&A forums. We attributed this answer

hungry problem to the following several reasons: (1) the questions posted by developers

are of poor quality (e.g., ambiguous, inaccurate or uninformative), which may discourage

the potential experts. (2) the SQA search engine are hardly recommend the appropriate

answers to the unanswered and/or unresolved questions. (3) even though the appropriate

answer is returned by the search engine, developers may fail to filter out irrelevant results

and tend to get lost in the massive amount of information. Three key research questions are

raised regarding the above three reasons as follows:

• Research Question 1: How can we improve the quality of questions in SQA commu-

nity?
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• Research Question 2: How can we recommend appropriate answers to technical

questions?

• Research Question 3: How can we search for the best code solutions in SQA for a

programming task?

1.3 Thesis Scope

This thesis focuses on this open issue of answer hungry problem in SQA sites. We aim

to build intelligent and efficient learning systems that can alleviate this answer hungry

problem in SQA sites. Considering the tremendous number of historical data, as time

goes on, have been archived in the software QA communities, it is therefore preferable

to build system by exploring the data accumulated in software Q&A sites. In particular,

we developed three intelligent systems to address the aforementioned research questions

respectively:

• CODE2QUE – Improving question titles from mined code snippets.

• DEEPANS – Best answer recommendation via question boosting.

• QUE2CODE – Semantic code search in Stack Overflow.

CODE2QUE (Chapter3). Sometimes it is hard for developers, especially the novice users,

to describe the problem they meet due to their lack of knowledge or terminology behind

the problems, this leads to a significant number of questions in SQA sites are of low-

quality and not attractive to other potential experts. We thus proposed a system, named

CODE2QUE, which can help developers in writing high quality questions by automati-

cally generating question titles for a given code snippet using a deep sequence-to-sequence

learning approach. CODE2QUE is fully data-driven and uses an attention mechanism to

perform better content selection, a copy mechanism to handle the rare-words problem and
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a coverage mechanism to eliminate word repetition problem. We evaluate CODE2QUE on

Stack Overflow over a variety of programming languages (e.g., Python, Java, Javascript, C#

and SQL) and the experimental results show that our approach significantly outperforms

several state-of-the-art baselines in both automatic and human evaluation.

• This work has led to a research paper – Generating question titles for Stack Over-

flow Posts from mined code snippets, which has been published in the ACM Trans-

actions on Software Engineering and Methodology (TOSEM) in 2020.

• This work also led to an associated tool demo paper – Code2Que: A tool for im-

proving question titles from mined code snippets in stack overflow presented at

The ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (ESEC/FSE) in 2021.

DEEPANS (Chapter4). One of the major reasons for the “answer hungry” problem in

SQA community is the search engines are hardly to recommend relevant answers for the

unanswered and/or unresolved questions. However, with the rapid growth of the SQA com-

munity, the SQA communities have accumulated a huge amount of question answer (QA)

pairs. Therefore, developers have large chances to directly get the answers by searching

from the repositories, rather than the time-consuming waiting. In this work we proposed

a novel neural network based approach, named DEEPANS, to identify the most relevant

answer among a set of answer candidates. Our approach follows a three-stage process:

question boosting, label establishment and answer recommendation. Given a post, we first

generate a clarifying question as a way of question boosting. We automatically estab-

lish the positive, neutral+, neutral� and negative training samples via label establishment.

When it comes to answer recommendation, we sort answer candidates by the matching

scores calculated by our neural network-based model. Our experimental results show that

our approach significantly outperforms several state-of-the-art baselines in both automatic
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evaluation and human evaluation.

• This work has led to a research paper – Technical Q&A Site Answer Recommenda-

tion via Question Boosting, which has been published in the ACM Transactions on

Software Engineering and Methodology (TOSEM) in 2021.

QUE2CODE (Chapter5). Following our previous work, sometimes even if the search

engine successfully returns a target post for a given user question, there is often too much

noisy and redundant information associated with the returned posts, and the code solution

can be easily buried in all this overwhelming amount of information and developers may

get lost with the irrelevant information. There is a need need by developers to only receive

the most suitable and useful code solutions to their current programming tasks. In this

work, we present a query-driven code search tool, named QUE2CODE, that identifies the

best code solutions for a user query from Stack Overflow posts. Both the automatic and

human evaluation results demonstrate the promising performance of our approach over a

set of state-of-the-art baselines.

• This work has led to a research paper – I Know What You Are Searching For: Code

Snippet Recommendation from Stack Overflow Posts, which has been submitted to

the ACM Transactions on Software Engineering and Methodology (currently under

major revision).

1.4 Thesis contribution

This section summarizes the main contributions of the thesis. This thesis builds on top of

materials from our past papers about CODE2QUE, DEEPANS and QUE2CODE.

Chapter3 introduces the CODE2QUE, a tool for improving question titles from mining

code snippets in Stack Overflow, we make the following contributions:

8



1. We propose a novel question generation task based on sequence-to-sequence learn-

ing approach, which can assist developers in writing high-quality question titles from

given code snippets. Our approach is enhanced with attention, copy and coverage

mechanism to perform better content selection, manage rare words in the input cor-

pus and avoid meaningless repetitions. To the best knowledge, this is the first work

which investigates the possibility of improving the low-quality questions in Stack

Overflow.

2. We performed comprehensive evaluation on one of the most popular SQA commu-

nities, i.e., Stack Overflow, to demonstrate the effectiveness and superiority of our

approach. Our system outperforms strong baselines by a large margin and achieves

state-of-the-art performance.

3. We collected more than 1M hcode snippet, questioni pairs from Stack Overflow,

which covers a variety of programming languages (e.g., Python, Java, Javascript, C#

and SQL). We have released our code5 and datasets [Gao, 2020] to facilitate other

researchers to repeat our work and verify their ideas. We also implemented a web

service tool, named CODE2QUE to facilitate developers and inspire the follow-up

work.

Chapter4 introduces the DEEPANS, a tool for recommending answers to the unan-

swered/unresolved questions of the SQA sites, in this work we make the following contri-

butions:

1. Previous studies neglect the value of interactions between the question asker and

the potential helper. We argue that a clarifying question between the question and

answers is an important aspect of judging the relevance and usefulness of the QA

pair. Therefore, we train a sequence-to-sequence model to generate useful clarifying
5https://github.com/beyondacm/Code2Que
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questions for a given post, which can fill the lexical gap between the questions and

answers. To the best of our knowledge, this is the first successful application of

generating clarifying questions for technical Q&A sites.

2. We present a novel method to constructing positive, neutral+, neutral�, negative

training samples via four heuristic rules, which can greatly save the time consuming

and labor intensive labeling process.

3. We develop a weakly supervised neural network model for the answer recommen-

dation task. For any question answer pairs, we fit the QA pair into our model to

calculate the matching score between them; the higher matching score is estimated

by our model, the better chance the answer will be selected as the best answer. In

particular, the Q&A sites can employ our approach as a preliminary step towards

marking the potential solution for the unanswered/unresolved question. This can

avoid unnecessary time spent by developers to browse questions without an accepted

solution.

4. Both our quantitative evaluation and user study show that DEEPANS can help devel-

opers find relevant tehnical question answers more accurately, compared with state-

of-the-art baselines. We have released the source code of DEEPANS and the dataset

of our study to help other researchers replicate and extend our study.

Chapter5 introduces the QUE2CODE, a tool for searching code solutions from the

Stack Overflow posts, in this work we make the following contributions:

1. All previous studies of question routing in CQA systems work on finding similar

questions. However, it is hard to measure the relevance between different questions

automatically and experts are often asked to manually rate the relevance score. In our

study, we propose a new task of semantically-equivalent question retrieval. By uti-

lizing duplicate question pairs archived in Stack Overflow, we present a novel model
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and an evaluation method to automatically evaluate the semantically-equivalent ques-

tions without a labor-intensive labeling process.

2. All current studies that have investigated code snippet searching rely on calculating a

matching score between a query and a code snippet. We argue that code snippet rec-

ommendation is more about predicting relative orders rather than precise relevance

scores. Hence, we propose a novel pairwise learning to rank model to recommend

code snippet from Stack Overflow posts, and we first use the BERT model for search-

ing for code snippets in Stack Overflow.

3. Our experimental results show that our QUE2CODE is more effective for code snippet

recommendation than several state-of-the-art baselines. We have released the source

code of our QUE2CODE and our dataset to help other researchers replicate and extend

our study.

In summary, this Ph.D. thesis proposed three novel models, i.e., CODE2QUE, DEEP-

ANS, and QUE2CODE to address the “answer hungry” problem in SQA community. These

three models deal with the “answer hungry” problem from three perspectives: (i) helping

developers to write high-quality question titles for a given code snippet; (ii) recommend-

ing best answers to the unanswered/unresolved questions in SQA sites; (iii) searching the

useful code solutions for newly posted questions in SQA community. With the help of

our proposed models, (i) developers can use our tool CODE2QUE to write better question

titles to describe the problem they met, which is able to obtain attention from potential

experts; (ii) developers can use our tool DEEPANS to find appropriate answers to their

unanswered/unresovled questions, which can help them to get answers from the reposito-

ries rather than time-consuming waiting. (iii) developers can use our tool QUE2CODE to

search code solutions to their newly posted questions directly, which can save their time

from browsing the irrelevant results and getting lost in the massive amount of information.
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1.5 Structure of the thesis

In this thesis, Chapter 1 introduces the introduction and motivation about the thesis. Chap-

ter 2 surveys the related literature which includes different software engineering tasks and

qualitative study in mining SQA sites, such as Stack Overflow. In Chapter 3, we present

CODE2QUE, an approach to assist developers in writing clear and informative question

titles for a given code snippet. In Chapter 4, we present DEEPANS, an approach to help

developers effectively identify the relevant answer among a set of answer candidates. In

Chapter 5, we present QUE2CODE, a Stack Overflow code search engine to recommend

code snippets for developer’s query questions. Chapter 6 gives the conclusion, some limi-

tations and future research directions.
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Chapter 2

Literature Review

In this chapter, we provides the necessary background to understand the purpose, key con-

cerns, and technical details of the three research studies we conducted in this dissertation.

We conduct a systematic literature review about mining the SQA sites in the context of soft-

ware development. We categorized the relevant research into two main categories: mining

SQA community and usage and deep learning for software engineering. It can help the

readers to get a systematic overview of the work in general and specifically to know future

research directions.

2.1 Software Question Answering Community

The community question and answer (CQA) platforms have become one of the fastest-

growing and user-generated-portals (UCG). The CQA system has risen as an enormous

market for the fulfillment of complex information needs. Compared with the general CQA

sites, which covers a wide range of general topics (e.g., Yahoo! Answers, Quora, Zhihu),

this thesis focuses on the software question answering (SQA) community. Software ques-

tion and answering sites are designed for the users of software developers, developers

will search and post their daily problems on SQA sites and these questions will be an-

swered by users who are software domain experts. Developers may resort to different

SQA platforms for solving different problems. For example, developers often go to Stack
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Overflow (https://stackoverflow.com/) to seek help of programming-related

questions; they may utilize Ask Ubuntu (https://askubuntu.com/) when they en-

counter ubuntu system related problems; if they met problems with respect to servers

and networks, developers can post their problems on Server Fault platform (https:

//serverfault.com/); the software and hardware engineers may resort the Super

User (https://superuser.com/) if they are computer power users. Overall, the

SQA community has been heavily used by developers as a popular way to seek informa-

tion and support via the internet.

Taking Stack Overflow, one of the most popular SQA platforms, as an example, we

illustrate the user scenarios of using SQA platforms as follows. Stack Overflow allows

users to register, create posts (i.e., questions and answers), leave comments on posts (either

questions or answers), revise posts, vote on posts, add tags to posts, and search or browse

the posts created by others. The SQA community users can provide code snippets or other

resources (e.g., screenshots or urls) to better present their questions. The other domain ex-

perts can answer the existing posted questions according to their experience. Each question

may receive multiple answers from different domain experts, however, only one answer can

be marked as “accepted answer” by the asker who created this post, which means this an-

swer correctly solved the asker’s problem. The score of a post (i.e., a question or and

answer) represented the up votes and down votes this post obtained. Fig. 2.1 shows an ex-

ample of a question and its associated accepted answer in Stack Overflow. The developer

posted a question, i.e., “How can I add new keys to a dictionary”, on June 21, 2009 and

received an answer from another domain expert. Then this answer was marked as accepted

by the asker. This question received 3,150 votes from the community members and was

associated tags “python”, “dictionary”, “lookup”. The answerer provided code snippet to

solve this problem which received 4021 votes from the the community members.
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Figure 2.1: Example of questions and answers in SQA community
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2.2 Mining SQA Community

The key aspects of SQA sites are Questions, Answers and Users. For example, the Stack

Overflow community itself serves more than 40M professionals and novice programmers

every month and has more than 6M registered users, approximately 12M questions, and

more than 20M answers on various issues/topics of software development. Software engi-

neering researchers are investigating to explore these different aspects of the SQA to solve

different problems, e.g., how to improve question quality in SQA community and improve

the accuracy in question retrieval, how to classify SQA answers and evaluate their qual-

ity?, how to motivate community members for long-term participation?. In this section,

we discuss different studies with respect to the above three key aspects (i.e., Questions,

Answers, Users).

Software QA Community Questions. The success of SQA community depends heavily

on the willingness of the developers to post their questions and experts to answer others’

questions. High-quality questions help to improve the popularity of the SQA community

and contribute to efficient problem solving. Therefore, the importance of high-quality ques-

tions in SQA sites has been recognized and investigated in many studies.

Nasehi et al. [Nasehi et al., 2012] performed a qualitative study to investigate the fea-

ture of code fragments in Stack Overflow posts. They found that additional explana-

tions with code examples are as useful as the code examples themselves. Their find-

ings can be used to create more usable artifacts for potential users. After that, Yao et

al. [Yao et al., 2013] investigated the question quality in SQA sites, the results showed that

there is a correlation between the question quality and answer quality, i.e., good answers

are more likely to be given in response to good questions. Based on their observations, they

also used a family of algorithms to predict the quality of questions and answers, which can

be used to identify the high-quality and low-quality posts in their early stage.
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Ganguly et al [Ganguly and Jones, 2015] investigated the problem of retrieving a set of

questions which are most likely to be related to a newly created question. It is thus likely

for a moderator to link the previous questions to the new one. They viewed this problem as

an Information Retrieval task where the intention is to retrieve a list of relevant documents

in response to a new query, and they proposed a supervised model (SPLDA) to estimate

the distributions of tags per topic. Ponzanelli et al [Ponzanelli et al., 2014] presented an

approach to classify technical forum questions as well as understand what fundamentally

influences and characterizes it. They devised three sets of metrics to capture textual features

of questions (e.g., from simple textual features to more complex readability metrics) and

the reputation of asker (e.g., popularity of a user in the community). They also empirically

studied how the designed metrics influence the quality of Stack Overflow questions and

found that the metrics of author’s popularity are the best predictors of a question’s quality.

Their approach can identify poor-quality questions at their creation time, thus reducing the

effort and time cost of the reviewing process.

Jiarpakdee [Jiarpakdee et al., 2016] investigated several properties/features on question

quality and which of them has the most impact by creating prediction models that can

forecast whether a question is expected to get any answers. From the evaluation results,

they conclude that community-based and affective features play an important role in the

question quality identification, e.g., Favorite Vote Count from community-based features is

the most influential feature. Squire et al. [Squire and Funkhouser, 2014] explored the role

of source code and non-source code text on Stack Overflow. They discussed whether the

presence of source code (or how much) actually will produce the “best” Stack Overflow

posts. They found that high scoring questions tend to have a lower code-text ratio than do

high scoring answers. They thus recommended one part of code to every three parts of

text (1:3) in Stack Overflow answers is ideal, while a ratio of about 1:9 in Stack Overflow

questions is ideal.
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Baltadzhieva et al. [Baltadzhieva and Chrupała, 2015] investigated which features (e.g.,

question tags, length of question title and body, presence of code snippet and the user rep-

utation) can influence question quality, they also explored the lexical terms that determine

the high and low quality questions. They found that the terms predicting high quality are

terms expressing excitement, negative experience or terms regarding exceptions. Terms

predicting low quality questions are terms containing spelling errors or indicating off-topic

questions and interjections. Duijn et al. [Duijn et al., 2015] proposed an approach to im-

prove the classification of high and low quality questions based on the analysis of code

fragments in Stack Overflow questions. They verified the code-to-text ratio is one of the

most important factor, they also found that several metrics related to code readability also

contribute to the quality of a question. Arora et al. [Arora et al., 2015] proposed an ap-

proach to perform question classification by retrieving similar previously asked questions,

and then using the text from these previously asked similar questions to predict the quality

of the current question. By automating flagging questions as good or bad can speed up the

moderation process and thus saving time and human effort.

Asaduzzaman et al. [Asaduzzaman et al., 2013] empirically investigated the reasons

why Stack Overflow questions are left unanswered. They found several significant rea-

sons, such as unable to find experts, small length and unclear questions, propriety tech-

nology questions, without code snippets example, off-topic questions etc,. They provided

a taxonomy for the unanswered questions to help understand why there is a delay in an-

swering questions and whether a question requires further information. They also built a

classifier to predict how long a question will remain unanswered in Stack Overflow. Mod-

erators can use their classifier to predict questions likely to have delayed responses and

can consider taking actions to promote an earlier response, such as editing the question

or routing the question to an expert. Correa et al. [Correa and Sureka, 2013] conducted

the first study regarding the “closed” questions in Stack Overflow. They used a machine
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learning framework and built a predictive model to identify “closed” question at the time

of question creation. Feature analysis revealed that Stack Overflow urls and code snip-

pet length as the top differentiating features to predict a “closed” question. Galina et

al. [Lezina and Kuznetsov, 2013] presented a classifier to predict whether or not a ques-

tion will be closed given the question as submitted, along with the reason why the question

was closed. Rahman et al. [Rahman and Roy, 2015] investigated 3,956 unresolved ques-

tions by using an exploratory study, they also proposed a prediction model by employing

five metrics related to user behaviour, topics and popularity of questions. Their approach

can predict if a best answer for a question in Stack Overflow might remain unaccepted or

not. Saha et al. [Saha et al., 2013] investigated the reasons why the questions remain unan-

swered by applying a combination of statistical and data mining techniques. They found

that quality attributes such as number of views, favorites, scores and questioners’ reputa-

tion are useful in predicting whether a question will be answered or not. Their preliminary

study indicate that most questions remain unanswered because they apparently are of little

interest to the SQA community. Correa et al. [Correa and Sureka, 2014] investigated the

the phenomena of “deleted questions” in Stack Overflow to gain insights about the nature

of poor quality questions. They developed a framework to predict the the probability of a

question to be deleted at the time of question creation. They experimented with 47 features

based on the member profile, community, content, and stylistic features. Their approach

can help SQA community to detect questions with poor quality and also give immediate

feedback to his/her questions, which can help those asking to revise their questions and

improve them in order to avoid deletion. Xia et al. [Xia et al., 2016] proposed a two stage

hybrid approach, named DelPredictor, which combines text processing and classification

techniques to predict deleted questions in Stack Overflow.

Prior works have also investigated how to improve the question tagging system in SQA

community. Saha et al. [Saha et al., 2013] mined the data from Stack Overflow questions
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and used a discriminative model to automatically suggest relevant question tags for the

questioner. Their approach can suggest tags closely related to the tags added by the users,

and find missing tags (the tags that are neglected to be added by the users) for the ques-

tioner. Xia et al. [Xia et al., 2013] developed a model, named TagCombine, to perform tag

recommendation by analysing objects in SQA community. TagCombine used three differ-

ent components (i.e., multi-label ranking component, similarity based ranking component,

tag-term based ranking component) to calculate the matching score for different question

tags. Rekha et al. [Rekha et al., 2014] presented a hybrid auto-tagging system for Stack

Overflow. Their proposed system is capable of recommending tags to the questioner as

soon as the question is posted on Stack Overflow based on the content of the question. Fol-

lowing that, Wang et al. [Wang et al., 2018] developed a model, named ENTAGREC++,

which integrated the historical tag assignments to software objects, as well as the informa-

tion of the users, and initial set of tags that a user may provide for tag recommendation.

Software QA Community Answers. Gkotsis et al. [Gkotsis et al., 2014] proposed a

method to address the problem of determining the best answer in SQA sites by focusing

on the content. They perform the best answer identification and prediction by solely using

various shallow textual features, they ran an evaluation on 21 StackExchange websites

covering around 4 million questions and more than 8 8 million answers, the experimental

results showed their approach is robust, effective, and widely applicable. Gantayat et

al. [Gantayat et al., 2015] studied the synergy between the act of acceptance of an answer

and voting by the community. They found that 81% of the Stack Overflow questions

have multiple answers, the accepted answer is also the top-voted answer, which means the

number of votes on a post plays an influencing factor on their choice of acceptance. They

also found that in the cases where the accepted answer is not the top voted answer, the

asker is biased towards longer posts that use similar terms and include code snippets, while
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community votes lean towards short, concise answers that include external links and have

a better readability score.

Calefato et al. [Calefato et al., 2015] investigated how Stack Overflow users can in-

crease the chance of getting their answer accepted. They focused on actionable factors that

can be acted upon by users when writing an answer and making comments. They found

the evidence that related to information presentation, time and affect all have all have an

impact on the success of answers.

Singh et al. [Singh and Simperl, 2016] proposed the Suman system to detect the an-

swers for the unanswered questions posted on Stack Overflow. The Suman system used the

combination of keywords based on semantic search, text based search and crowdsourced

data to search for relevant answers. The system is also capable of recommending the ex-

pert who are proficient in answering these questions, thus help to reduce the queue of

unanswered questions. Their evaluation also indicated that the participants approved the

algorithm rating given to the unanswered questions. Yao et al. [Yao et al., 2015] proposed

the early detection of high-quality questions/answers. Such detection can help discover

high-quality questions that would be widely recognized by the users, as well as identify

high-quality answers that would gain much positive feedback from users.

Xu et al. [Xu et al., 2017] proposed a model, named AnswerBot, to help developers

quickly capture the key points of several answer posts relevant to a technical question

before they read the details of the posts. Their approach contains three main steps, i.e.,

relevant question retrieval, useful answer paragraph selection, diverse answer summary

generation. The experimental results showed that the answer summaries generated by their

approach are relevant, useful and diverse to developer’s technical questions, and can effec-

tively retrieve relevant questions and salient answer paragraphs for summarization.

Zheng et al. [Zheng and Li, 2017] proposed a new approach to predict the best answers

to the questions raised on Stack Overflow by exploring the heterogeneous data sources
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on the forum. They extracted different groups of features from multiple data sources and

combined them for final prediction via multi-view learning. Experimental results show that

their proposed model is effective for identifying the best answers in Stack Overflow.

Calefato et al. [Calefato et al., 2019] conducted an empirical study of assessment of

best-answer prediction models in SQA sites. They approached the best-answer prediction

problem as a binary-classification task. They assessed 26 best-answer prediction models in

two steps, they first studied how the models perform when predicting best answers in Stack

Overflow, they then assessed the model’s performance in cross-platform settings, where the

prediction models are trained on Stack Overflow and tested on other technical QA sites.

Novielli et al. [Novielli et al., 2014] assessed the suitability of the state-of-the-art senti-

ment analysis tool, already applied in social computing, for detecting affective expressions

in Stack Overflow. they examined the role of emotional lexicon regarding the 7M Stack

Overflow questions. They found that the questions on Stack Overflow do have an emo-

tional style, which affects answer quality and the time to respond.

Software QA Community Users. The Software QA community is one of the most pop-

ular community due to its number of registered users, daily visits, and above all the satis-

faction level of users. Prior works have investigated possible ways of expert identification

by exploring the user files in SQA community.

Ginsca et al. [Ginsca and Popescu, 2013] performed an in-depth analysis of the user

profile information in Stack Overflow, the found that the more complete a 8user profile is,

the higher the chances are for that user to provide good quality answers. They have also

presented a novel answer ranking model which incorporated the user profile information

or user activities. Tian et al. [Tian et al., 2013b] proposed an approach to predict the best

answerer for a new question on SQA site by using both user interest and user expertise

relevant to the topics of the given question.
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Chang et al. [Chang and Pal, 2013] presented a question routing scheme which consid-

ers compatibility, availability and expertise of users. Their approach focused on routing

questions to a group of users, i.e., the users are willing to collaborate and provide useful

answers to the questions. Their experimental results on Stack Overflow datasets showed

the effectiveness of routing a question to a team of compatible users.

Riahi et al. [Riahi et al., 2012] focused on finding experts for a newly posted question.

They first built expert profiles based on their answering history, these profiles are then used

in comparison with a newly posted question. They modeled the interests of users by track-

ing their answer history in the community, for each user, a profile is created by combining

those questions answered by the user. Based on the user profiles, the relation between the

answerer and a new question is measured by using a number of different methods (e.g.,

Dirichlet smoothing, TF-IDF, the Latent Dirichlet Allocation (LDA) and Segmented Topic

Model (STM)).

Posnett et al. [Posnett et al., 2012] studied empirically tenure of posters and quality

of answers in Stack Exchange community. They found that as the community grows in

numbers, the overall quality of answers decreases in general, indicating more and more

answers are given by the non-expert and higher scores are more difficult to obtain. They

also found that the number of prior posts do not increase one’s answer quality, which means

that expertise is present from beginning, and doesn’t increase with the time spent with the

community.

Morrison et al. [Hanrahan et al., 2012] have studies the correlation between age and

Stack Overflow reputation, they investigated the degree to which older age programmers

obtain knowledge available latest technology. The output indicated that the reputation score

of programmers gets higher well into the age of 50s, and at the age of 30s leans towards

exploring less new area compared to those who are younger or older from them.

Yang et al. [Yang et al., 2013] proposed a Topical Expertise Model to jointly model
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topics and expertise in SQA sites. They proposed CQARank to textual features with link

analysis for deriving the user expertise and interests score under various topics. Their

model is applicable for various tasks such as expert finding, relevant answer retrieval and

similar questions recommendation.

Yang et al. [Yang et al., 2014b] contributed a novel metric for expert identification in

SQA communities, which provides a better characterisation of users’ expertise by focusing

on the quality of their contributions. They identified two groups of users, namely sparrows

and owls, their experimental results contribute new insights to the study of expert behaviour

in QA platforms.

Murgia et al. [Murgia et al., 2016] investigated the possibility of building human-bot

interaction in Stack Overflow. They developed a bot emulating an expert user responsible

to answer the questions related to resolving 50 Git error messages in Stack Overflow posts.

The users of SQA community gain specific rewards and badges based on their knowl-

edge contribution to the community. The reputation of expert in SQA community is impor-

tant for other to decide to accept or reject a solution for a specific issue. There are a lot of

studies exploring the role of reputation and reward system on SQA community.

Grant et al. [Grant and Betts, 2013] investigated how user badges, a collection of visible

awards associated with public user profiles, can be used to influence user behaviour. The

results of these works confirmed that badges drive users to behavior in the ways entirely

consistent as predicted, i.e., an increase in user activity was noticed before a badge is earned

compared to the duration onwards. Besides, the users who receive badges, a significant

number of change is made regarding their contribution compared to those who have not

earned any badges. Bosu et al. [Bosu et al., 2013] analyzed the Stack Overflow data from

four perspectives to understand the dynamics of reputation building on Stack Overflow.

Their experimental results provide guidelines to new Stack Overflow contributors who want

to earn high reputation scores quickly.
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Bazelli et al. [Bazelli et al., 2013] investigated the question and answers in Stack Over-

flow to determine the developer’s personality traits via using the Linguistic Inquiry and

Word Count (LIWC). They explored the personality traits of Stack Overflow authors by

categorizing them into different groups based on their reputations. Based on the textual

analysis of Stack Overflow posts, they found that top reputated authors are more extro-

verted compared to medium and low reputed users. They also found that authors of up

voted posts express significantly less negative emotions than authors of down voted posts.

Hart et al. [Hart and Sarma, 2014] investigated the role of social reputation and other

characteristics plays in the information filtering process of technical novices in the context

of Stack Overflow. The experimental results show that technical novices assess informa-

tion quality based on the intrinsic qualities of the answer, such as presentation and con-

tent, suggesting that novices are wary to rely on social cues in SQA context. Halavais

et al. [Halavais et al., 2014] adapted the social learning analytics (SLA) perspective to

study the network effects on badge selection in Stack Overflow. By examining the badges

and “tags” used on Stack Overflow, they found that more general more general badges

are closely related to tenure on this site, while numerous “tag” badges provide for more

socially-determined difference.

Sinha et al. [Sinha et al., 2015] focused on the dynamics of how much the commu-

nity values a user, they showed that the application of network analytic techniques, i.e.,

quadratic assignment procedure (QAP) that is capable of assisting in suggesting how users

in SQA sites incline to fall into same reputation categories with the evolution of time.

In summary, prior works have investigated mining the SQA community from different perspec-
tives, from questions, answers and users. This thesis focuses on mining SQA community for
alleviating the “answer hungry” phenomenon, we explored different deep learning techniques
to help developers to improve their question quality, searching for a better answer as well as the
code solutions.
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2.3 Deep Learning for Software Engineering

In recent years, an interesting research direction in software engineering is to use deep

learning to solve many software engineering tasks, such as comment generation, API and

answer recommendation, tag recommendation, code search, query reformulation etc,. In

this section, we included the different types of software engineering tasks and different

software phases by applying deep-learning based approaches.

Software Requirements. Moran et al. [Moran et al., 2018] have developed an approach

for automatically prototyping software GUIs, and implemented this approach as a tool

named ReDraw for Android. Their approach is capable of accurately detecting and classify-

ing GUI-components in a mock-up artifact, generating hierarchies that are similar to those

that a developer, generating apps that are visually similar to mock-up artifacts, and pos-

itively impacting industrial workflows. Thaller et al. [Thaller et al., 2019] proposed Fea-

ture Map, a flexible human and machine-comprehensible software representation based on

micro-structures. Their approach can embed the high-dimensional, inhomogeneous vector

space of micro-structures into a feature map. Their evaluation result suggested that Fea-

ture Map is an effective software representation method, revealing important information

hidden in the source code.

Chen et al. [Chen et al., 2018] presented a neural machine translator that combines re-

cent advances in computer vision and machine translation for translating a UI design image

into a GUI skeleton. Their approach learns to extract visual features in UI images, encode

these features’ spatial layouts, and generate GUI skeletons in a unified neural network

framework, without requiring manual rule development.

Software Development. A lot of prior works focus on the generating suitable code rep-

resentation for source code. Zhang et al. [Zhang et al., 2019] proposed a novel AST-based
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Neural Network (ASTNN) for source code representation. ASTNN splits each large AST

into a sequence of small statement trees, and encodes the statement trees to vectors by

capturing the lexical and syntactical knowledge of statements. Based on the sequence of

statement vectors, a Bi-RNN is used to leverage the naturalness of statements and finally

produce the vector representation of a code fragment. Wang et al. [Wang et al., 2020c] pre-

sented a new graph neural architecture, named GINN, for learning models of source code.

Their models have an easier time to distill the key features for program representation, thus

can better serve the downstream tasks.

Another task of applying deep-learning models for software development is code gen-

eration. For example, Svyatkovskiy et al. [Svyatkovskiy et al., 2020] proposed IntelliCode

Compose, which is a code completion tool of predicting sequences of code tokens of ar-

bitrary types, generating up to entire lines of syntactically correct code. It applied the

state-of-the-art generative transformer model trained on 1.2 billion lines of source code.

Bunel et al. [Bunel et al., 2018] presented two novel contributions to improve the state-of-

the-art program synthesis techniques. The first contribution uses Reinforcement Learning

to optimize for generating any consistent program, which helps in improving generalization

accuracy of the learned programs. The second contribution is that they incorporates syntax

checking as an additional conditioning mechanism for pruning the space of programs dur-

ing decoding. The experimental results show that incorporating syntax leads to significant

improvements with limited training datasets.

Researchers also investigated to perform better code search task by using deep-learning

based approach. Sachdev et al. [Sachdev et al., 2018] proposed a neural code search

method which combined the of token-level embeddings and conventional information

retrieval techniques TF-IDF. They found that the basic word embedding techniques can

achieve good performance on code search task. Gu et al. [Gu et al., 2018] proposed a su-

pervised technique, named DeepCS, for code searching using deep neural networks. They
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used multiple sequence-to-sequence-based networks to capture the features of the natural

language queries and the code snippets.

Software Testing and Debugging Deep-learning techniques have also been widely used

to support the software testing and debugging process. Wen et al. [Wen et al., 2018] uti-

lized Recurrent Neural Network (RNN), which is a deep learning technique, to encode fea-

tures from sequence data automatically. They proposed a novel approach, named FENCES,

which extracts six types of change sequences covering different aspects of software changes

via fine-grained change analysis. It approaches defects prediction by mapping it to a se-

quence labeling problem solvable by an RNN.

Xu et al. [Xu et al., 2019] proposed a framwork, named LDFR, by learning deep feature

representations from the defect data. They use a hybrid loss function to train a DNN model

to learn top-level feature representation. The experimental results show that compared with

27 baselines, LDFR performs significantly better in terms of five indicators.

Hoang et al. [Hoang et al., 2019] proposed an end-to-end deep learning framework,

named DeepFit, that automatically extracts features from commit messages and code

changes and use them to predict defects just-in-time. Lam et al. [Lam et al., 2017] pro-

posed a novel approach that uses deep neural network in combination with rVSM, an

information retrieval technique. rVSM collects the feature on the textual similarity be-

tween bug reports and source files. A DNN is used to relate the terms in bug reports to

potentially different code tokens and terms in source files.

Li et al. [Li et al., 2019b] proposed a deep learning approach, named DeepFL, to auto-

matically learn the most effective existing/latent features for precise fault localization. The

experimental results on 395 real bugs showed the effectiveness of their approach in defect

localization. Liu et al. [Liu et al., 2017] presented a novel deep learning approach to auto-

matically generate the text inputs for the mobile testing. It produces the most relevant input
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values in a context. They have leveraged the Word2Vec to achieve the app-independence.

The evaluation over 50 IOS apps confirms the effectiveness and efficiency of our designs.

Software Maintenance Great effort has been dedicated to supporting the software main-

tenance tasks, such as clone detection, comment generation, self-admitted technical debt

(SATD) detection. White et al. [White et al., 2016] presented a novel way to detect code

clones. Their approach combined two different RNNs, i.e., RtNN and RvNN, for automat-

ically linking patterns mined at the lexical level and patterns mined at the syntactic level.

The evaluation on file-level and function-level showed the effectiveness of their approach

in detecting code clones.

Gao et al. [Gao et al., 2019a] presented a tree embedding technique to conduct clone

detection. Their approach first conducted tree embedding g to obtain a node vector for

each intermediate node in the AST, which captures the structure information of ASTs.

They then compose a tree vector from its node vectors using a lightweight method. Lastly

Euclidean distances between tree vectors are measured to determine code clones.

Buch et al. [Büch and Andrzejak, 2019] developed an AST-based Recursive Neural

Network. They traversed the ASTs to form data sequences as the input of LSTM, the

experimental results show that simply averaging all node vectors of a given AST yields

strong baseline aggregation scheme.

Researches also investigated the possibility of generating code comments for source

code to better maintain the source code. Hu et al. [Hu et al., 2018] proposed a new ap-

proach, named DeepCom, an attention-based Seq2Seq model, to automatically generate

comments for Java methods. DeepCom m takes ASTs sequences as input. These ASTs s

are converted to specially formatted sequences using a new structure-based traversal (SBT)

method. SBT can express the structural information and keep the representation lossless at

the same time. LeClair et al. [LeClair et al., 2019] proposed a neural model that combines
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the words from code with code structure from an AST. Their model processed each data

source as a separate input, which allows the model to learn code structure independent of

the text in code. This process provided coherent summaries in many cases even when zero

internal documentation is provided.

Technical debt (TD) is terminology that developers takes suboptimal solutions to

achieve short-term goals that may affect long-term software quality. Detecting the techin-

cal debt can help to improve software maintenance. Potdar et al. [Potdar and Shihab, 2014]

proposed the self-admitted technical debt (SATD) concept (e.g., TODO, FIXME, HACK)

for the first time, which refers to the TD introduced by a developer intentionally and

documented by source code comments. Ren et al. [Ren et al., 2019] proposed a CNN-

based approach for classifying code comments as SATD or non-SATD. To improve the

explainability of our model’s prediction results, they exploited the computational structure

of CNNs to identify key phrases and patterns in code comments that are most relevant to

SATD. Zampetti et al. [Zampetti et al., 2020] presented the first step towards the automated

recommendation of SATD removal strategies. They built a multi-level classifier capable of

f recommending six SATD removal strategies. SARDELE combines a convolutional neu-

ral network trained on embeddings extracted from the SATD comments with a recurrent

neural network trained on embeddings extracted from the SATD-affected source code. The

experimental results suggested that SATD removal follows recurrent patterns and indicate

the feasibility of supporting developers in this task with automated recommenders.

In summary, deep learning techniques have been widely used to support various software en-
gineering tasks, which covers software design, software development, software testing and de-
bugging as well as software maintenance. This thesis focuses on applying deep learning models
for assisting developers using Software QA community more efficiently and effectively.
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Chapter 3

Code2Que: Improving Question Titles
from Mined Code Snippets

Gao, Z., Xia, X., Grundy, J.C. , Lo, D., Li, Y.Y-F. Generating Question Titles for Stack Overflow
from Mined Code Snippets, ACM Transactions on Software Engineering and Methodology, Vol.
29, No. 4, September 2020, ACM. https://doi.org/10.1145/3401026.

3.1 Introduction

In recent years, question and answer (Q&A) platforms have become one of the most im-

portant user generated content (UGC) portals. Compared with general Q&A sites such

as Quora1 and Yahoo! Answers2, Stack Overflow3 is a vertical domain SQA (Software

Question Answering) site, its content covers the specific domain of computer science and

programming. SQA sites, such as Stack Overflow, are quite open and have little restric-

tions, which allow their users to post their problems in detail. Most of the questions will be

answered by users who are often domain experts.

Stack Overflow (SO) has been used by developers as one of the most common ways

to seek coding and related information on the web. Millions of developers now use Stack

Overflow to search for high-quality questions to their programming problems, and Stack

Overflow has also become a knowledge base for people to learn programming skills by
1https://www.quora.com/
2https://answers.yahoo.com/
3https://stackoverflow.com/
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browsing high-quality questions and answers. The success of Stack Overflow and of

community-based question and answer sites in general depends heavily on the will of the

users to answer others’ questions. Intuitively, an effectively written question can increase

the chance of getting help. This is beneficial not only for the information seekers, since

it increases the likelihood of receiving support, but also for the whole community as well,

since it enhances the behavior of effective knowledge sharing. A high-quality question is

likely to obtain more attention from potential answerers. On the other hand, low-quality

questions may discourage potential helpers [Mamykina et al., 2011, Calefato et al., 2018,

Nie et al., 2017, Anderson et al., 2012, Yang et al., 2014a, Jin and Servant, 2019].

To help users effectively write questions, Stack Overflow has developed a list of quality

assurance guidelines4 for community members. However, despite the detailed guidelines, a

significant number of questions submitted to SO are of low-quality [Correa and Sureka, 2014,

Arora et al., 2015]. Previous research has provided some insight into the analysis of ques-

tion quality on Stack Overflow, for example, Correa and Sureka [Correa and Sureka, 2014]

investigated closed questions on SO, which suggest that the good question should contain

enough code for others to reproduce the problem. Arora et al. [Arora et al., 2015] proposed

a novel method for improving the question quality prediction accuracy by making use

of content extracted from previously asked similar questions in the forum. More recent

work [Trienes and Balog, 2019] studied the way of identifying unclear questions in CQA

websites. However, all of the work focuses on predicting the poor quality questions and

how to increase the accuracy of the predictions, more in-depth research of dealing with the

low-quality questions is still lacking. To the best of our knowledge, this is the first work

that investigates the possibility of automatically improving low-quality questions in Stack

Overflow. Considering information seekers may lack the knowledge and terminology

related to their questions and/or their writing may be poor, formulating a clear question
4https://stackoverflow.com/help/how-to-ask
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title and questioning on the key problems could be a non-trivial task for some developers.

Lacking important terminology and pool expression may happen even more often when

the developer is less experienced or less proficient in English.

Among the Stack Overflow quality assurance guidelines, one of which is that de-

velopers should attach code snippets to questions for the sake of clarity and complete-

ness of information, which lead to an impressive number of code snippets together

with relevant natural language descriptions accumulated in Stack Overflow over the

years. Some prior work has investigated retrieving or generating code snippets based

on natural language queries, as well as annotating code snippets using natural lan-

guage (e.g., [Franks et al., 2015, Allamanis et al., 2015, Giordani and Moschitti, 2009,

Iyer et al., 2016, Keivanloo et al., 2014, Ling et al., 2016, Oda et al., 2015, Desai et al., 2016,

Locascio et al., 2016, Yin and Neubig, 2017, Wong et al., 2013]). However, to the best of

our knowledge, there have been no studies dedicated to the question generation5 task in

Stack Overflow, especially generating questions based on a code snippet.

Fig. 3.1 shows some example code snippets and corresponding question titles in Stack

Overflow. Generating such a question title is often a challenging task since the corpus

not only includes natural language text, but also complex code text. Moreover, some rare

tokens occur among the code snippet, such as “setUpClass” and “Paramiko” illustrated in

the aforementioned examples.

We propose an approach to help developers write high-quality questions based on

their code snippets by automatically generating question titles from given code snippets.

We frame this question generation task in Stack Overflow as a sequence-to-sequence

learning problem, which directly maps a code snippet to a question. To solve this

novel task, we propose an end-to-end sequence-to-sequence system, enhanced with an

attention mechanism [Bahdanau et al., 2014] to perform better content selection, a copy
5“question generation” in this paper is to generate the question titles for a Stack Overflow post.
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1.   Source	Code	Snippet	(Python)	:	
import		unittest	
import	sys	
import	mymodule	
	
Class	BookTests(unittest.TestCase):	

	@classmethod	
	def	setUpClass(cls):	
	 	cls._mine	=mymodule.myclass(‘test_file.txt’,	‘baz’)	

	
Question:	
How	do	I	use	unittest	setUpClass	method()	?	
	
	
2.	Source	Code	Snippet(Python)	
client	=	paramiko.SSHClient()	
stdin,	stdout,	stderr	=	client.exec_command(command)	
	
Question:�
How	can	I	get	the	SSH	return	code	using	Paramiko?	�

Figure 3.1: Example Code Snippet & Question Pairs

mechanism [Gu et al., 2016a] to handle the rare-words problem, as well as a coverage

mechanism [Tu et al., 2016] to avoid meaningless repetition. Our system consists of two

components: a source-code encoder and a question decoder. Particularly, the code snippet

is transformed by a source-code encoder into a vector representation. When it comes to

the decoding process, the question decoder reads the code embeddings to generate the

target question titles. Moreover, our approach is fully data-driven and does not rely on

hand-crafted rules.

To demonstrate the effectiveness of our model, we evaluated it using automatic met-

rics such as BLEU [Papineni et al., 2002] and ROUGE [Lin, 2004] score, together with a

human evaluation for naturalness and relevance of the output. We also performed a prac-

tical manual evaluation to measure the effectiveness of our approach for improving the

low-quality questions in Stack Overflow. From the automatic evaluation, we found that

our approach significantly outperforms a collection of state-of-the-art baselines, includ-
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ing the approach based on information retrieval [Robertson and Walker, 1994], a statistical

machine translation approach [Koehn et al., 2007], and an existing sequence-to-sequence

architecture approach in commit message generation [Jiang et al., 2017]. For human eval-

uation, questions generated by our system are also rated as more natural and relevant to

the code snippet compared with the baselines. The practical manual evaluation shows that

our approach can improve the low-quality question titles in terms of Clearness, Fitness and

Willingness.

In summary, this work makes the following three main contributions:

• We propose a novel question generation task based on a sequence-to-sequence learn-

ing approach, which can help developers to phrase high-quality question titles from

given code snippets. Enhanced with the attention mechanism, our model can per-

form the better content selection, with the help of and copy mechanism and cover-

age mechanism, our model can manage rare word in the input corpus and avoid the

meaningless repetitions. To the best of our knowledge, this is the first work which

investigates the possibility of improving the low-quality questions in Stack Overflow.

• We performed comprehensive evaluations on Stack Overflow datasets to demonstrate

the effectiveness and superiority of our approach. Our system outperforms strong

baselines by a large margin and achieves state of the art performance.

• We collected more than 1M hcode snippet, questioni pairs from Stack Overflow,

which covers a variety of programming languages (e.g., Python, Java, Javascript, C#

and SQL). We have released our code6 and datasets [Gao, 2020] to facilitate other

researchers to repeat our work and verify their ideas. We also implemented a web

service tool, named CODE2QUE to facilitate developers and inspire the follow-up

work.
6https://github.com/beyondacm/Code2Que
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The rest of this chapter is organized as follows. Section 5.8 presents key related work

on question generation and relevant techniques. Section 3.3 presents the motivation of this

study. Section 5.3 presents the details of our approach for the question generation task in

Stack Overflow. Section 5.4 presents the experimental setup, the baseline methods and the

evaluation metrics used in our study. Section 4.4 presents the detailed research questions

and the evaluation results under each research question. Section 5.7 presents the contri-

bution of the paper and discusses the strength and weakness of this study. Section 4.6.2

presents threats to validity of our approach. Section 5.9 concludes the paper with possible

future work.

3.2 Related Work

Due to the great value of Stack Overflow in helping software developers, there is a growing

body of research conducted on Stack Overflow and its data. This section discusses various

work in the literature closely related to our work, i.e., deep source code summarization, the

empirical study of Stack Overflow on quality assurance, and different tasks by mining the

Stack Overflow dataset. It is by no means a complete list of all relevant papers.

3.2.1 Deep Source Code Summarization

A number of previous works have proposed methods for mining the hnatural language,

code snippeti pairs, these techniques can be applied to tasks such as code summariza-

tion as well as commit message generation. (e.g., [Iyer et al., 2016], [Hu et al., 2018],

[Jiang et al., 2017], [Wan et al., 2018]).

One similar work with ours is Iyer et at.[Iyer et al., 2016]. They proposed Code-NN,

which uses an attentional sequence-to-sequence algorithm to summarize code snippets.

This work is similar to our approach because our approach also uses an sequence-to-

sequence model. However, there are three key differences between our approach and
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Code-NN. First, the goal of of Code-NN is summarizing source code snippets while the

goal of our approach is generating questions from code snippets. Second, the Code-NN

only incorporates attention mechanism while our approach also employs copy mechanism

and coverage mechanism, which is more suitable for the specific task of question gener-

ation. Third, Code-NN needs to parse the code into AST, while most code snippets in

SO are not parsable (e.g., the example code in Fig. 3.8). Followed by Iyer’s work, Hu

et al. [Hu et al., 2018] proposed to use the neural machine translation model on the code

summarization with the assistance of the structural information (i.e., the AST). And Wan

et al. [Wan et al., 2018] applied deep reinforcement learning (i.e., tree structure recurrent

neural network) to improve the performance of code summarization. Their approach also

use AST as the input. All of the aforementioned studies rely on the AST structure of the

source code, and note that most of the code in Stack Overflow are not parsable. Thus, the

AST-based approaches can not apply to our work.

3.2.2 Question Quality Study on Stack Overflow

The general consensus is that the quality of user-generated content is a key factor to attract

users to visit knowledge-sharing websites. Many studies have investigated the content

quality in Stack Overflow (e.g., [Nasehi et al., 2012, Yao et al., 2013, Yang et al., 2014a,

Ponzanelli et al., 2014, Correa and Sureka, 2013, Correa and Sureka, 2014, Arora et al., 2015,

Anderson et al., 2012, Li et al., 2012, Liu et al., 2013, Zhang et al., 2018, Duijn et al., 2015,

Trienes and Balog, 2019]).

For example, Nasehi et al. [Nasehi et al., 2012] manually performed a qualitative as-

sessment to investigate the important features of precise code examples in answers of 163

SO posts. Yao et at. [Yao et al., 2013] investigated quality prediction of both Q&As on

SO. The output revealed that answer quality is strongly positively associated with that of

its question. Yang et al. [Yang et al., 2014a] found that the number of edits on a question
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is a very good indicator of question quality. Ponzanelli [Ponzanelli et al., 2014] developed

an approach to do automatic categorization of questions based on their quality. Correa et

al. [Correa and Sureka, 2013] studied the closed questions in Stack Overflow, finding that

the occurrence of code fragments is significant.

All of the above mentioned studies are either predicting quality of the post or increasing

the accuracy of predictions. Different from the existing research, our approach is related

to improve the quality of the questions. To the best of our knowledge, this is the first

work which investigates the possibility of improving the low quality questions using code

snippets in Stack Overflow.

3.2.3 Machine/Deep Learning on Software Engineering

Recently, an interesting direction of software engineering is to use machine/deep learn-

ing for different tasks to improve software development. Such as code search (e.g.,

[Gu et al., 2018, Li et al., 2019a, Husain et al., 2019, Allamanis et al., 2015]), clone detec-

tion (e.g., [Wang et al., 2020b, Gao et al., 2020, White et al., 2016, Büch and Andrzejak, 2019,

Gao et al., 2019b]), program repair (e.g,. [White et al., 2019, Mesbah et al., 2019, Vasic et al., 2019,

Chen et al., 2019]), document (such as API and questions/answers/tags) recommendation

(e.g., [Gu et al., 2016b, Gu et al., 2017, Xia et al., 2013, Wang et al., 2015, Wang et al., 2018,

Zhu et al., 2015, Gkotsis et al., 2014, Xu et al., 2017, Singh and Simperl, 2016]).

For code search tasks, Gu et al. [Gu et al., 2018] proposed a deep code search model

which uses two deep neural networks to encode source code and natural language descrip-

tion into a vector representation and then uses a cosine similarity function to calculate

their similarity. Allamanis et al. [Allamanis et al., 2015] proposed a system that uses

Stackoverflow data and web search logs to create models for retrieving C# code snip-

pets given natural language questions and vice versa. For clone detection tasks, white

et al. [White et al., 2016] first proposed a deep learning-based clone detection method to
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identify code clones via extracting features from program tokens. For program repair tasks,

White et al. [White et al., 2019] propose an automatic program repair approach, DeepRe-

pair, which leverages a deep learning model to identify the similarity between code snip-

pets. For document recommendation tasks, Xia et al. [Xia et al., 2013] developed a tool,

called TagCombine, an automatic tag recommendation method which analyzes objects in

software information sites. Gkotsis et al. [Gkotsis et al., 2014] developed a novel ap-

proach to search and suggest the best answers through utilizing textual features. Gangul

et al. [Ganguly and Jones, 2015] examined the retrieval of a set of documents, which

are closely associated with a newly posted question. Chen et al. [Chen et al., 2016] studied

cross-lingual question retrieval to assist non-native speakers more easily to retrieve relevant

questions.

Although the aforementioned studies have utilized machine/deep learning for different

software development activities, to our best knowledge, no one has yet considered the

question generation task in Stack Overflow. In contrast to all previous work, we propose a

novel approach to generate a question by a given code snippet. Our work is first to tackle

such a task for helping developers to generate a question when presenting a given code

snippet.

3.3 Motivation

In this section, we first summarise the problem and our solution in this study. Following

that, we present some example user scenarios of employing our approach in the software

development process. We then show some motivating examples from Stack Overflow of

the sorts of problems our work addresses.
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3.3.1 The Problem and Our Solution

Despite the detailed guidelines provided by the community, a very large number of ques-

tions in Stack Overflow are of low-quality [Arora et al., 2015, Correa and Sureka, 2014].

These poorly asked questions are often ambiguous, vague, and/or incomplete, and hardly

attract potential experts to provide answers, thus hindering the progress of knowledge gen-

eration and sharing. In order to improve question quality, we need to improve title, body

and tags. In this work, we focus on improving titles. The motivation for our work is

that improving low-quality question titles can potentially be helpful in increasing the like-

lihood of getting help for the information seekers, as well as reducing the manual effort

for quality maintenance of the CQA community. We propose a novel approach to as-

sist developers in posting high-quality questions by generating question titles for a given

code snippet. Our approach provides benefit for the following tasks: (i) Question Im-

provement: many developers can not post clear and/or informative questions due to their

lack of knowledge and terminology related to the problem, and/or their poor english writ-

ing skills. Our approach can generate high-quality question titles for helping developers

to summarize the key problems behind their presented code snippet. (ii) Edits Assis-

tance: the SO community has employed a collaborative editing mechanism to maintain

a satisfactory quality level for the post. However, the editing process may require sev-

eral interactions between the asker and other community members, thus delaying the an-

swering and even causing questions to sink in the list of open issues. Our approach can

be used as an automatic edit assistance tool to improve the question formulation process

and reduce the manual effort for quality maintenance. (iii) Code Embeddings: Another

byproduct of our approach is the code embeddings generated by our approach. In this

study, we have collected more than 1M code snippets which covers various programming

languages such as Java, Python, Javascript, C#, etc. All the code snippets are embed-

ded into a high-dimensional vector space by our approach. A variety of applications such
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as code search (e.g., [Gu et al., 2018, Li et al., 2019a, Husain et al., 2019]) , summariza-

tion (e.g., [Iyer et al., 2016, Hu et al., 2018, Jiang et al., 2017, Wan et al., 2018]), retrieval

(e.g., [Chen et al., 2016, Allamanis and Sutton, 2013, Xu et al., 2018]), and API recom-

mendation (e.g., [Gu et al., 2016b, Gu et al., 2017]) can benefit from the code embeddings

used in our study.

3.3.2 User Scenarios

We implement our model as a standalone web application tool, called CODE2QUE. De-

velopers can copy and paste their code snippet to our tool to generate a question title for

the code snippet. Meanwhile, by utilizing the vector representation of the code snippets,

CODE2QUE also retrieves a list of top related questions in Stack Overflow and recommends

them to the developers. The usage scenarios of our proposed tool are as follows:

Without Tool. Consider Bob who is a developer, who is learning a new development

framework. He is also a non-native English speaker with poor English writing skills. Daily,

Bob encounters various programming problems during development. He locates the code

that is the root cause of the problem, but he cannot figure it out. Due to his lack of the

knowledge and terminology of the development framework being used, he does not even

know how to most effectively search for answers to the problem on the Internet. Therefore,

he creates a question in Stack Overflow, provides his code snippet in the question body

according to the Stack Overflow guidelines, and then tries his best to write a question title

to summarize the problem. Unfortunately, his question title turns out to be very unclear

and uninformative, and there are few users attracted by his question. Bob waits for a long

time but does not get any help.

With Tool. Now consider that Bob adopts tool CODE2QUE. Before he searches on the

Internet, Bob copies his code snippet to our CODE2QUE tool to generate a question title for

the code snippet. Bob uses the generated question as a query to search on the internet. The
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searching results are now closely related to the development framework, even though he is

not very familiar with it. Bob can also quickly review a list of related questions in Stack

Overflow which have a similar problem code snippet. After going through these results,

Bob can gain a better understanding of the problem that he is trying to solve and quickly

fix the problem by himself. Moreover, Bob can also go back to his earlier poorly asked

questions, Bob can use our tool as an edit assistance tool on question titles for reformulating

these low-quality questions. Bob provides the code snippet in the question body and writes

a question title based on the question title generated by our tool and the knowledge he

learned from the results. This time, his question title is much more clear and informative

and Bob’s question soon attracts an expert of the development framework. With the help

of this expert, Bob successfully figures his problem out.

3.3.3 Motivating Examples

A large number of questions have been closed by community members because their ques-

tion titles are unclear and need further clarifying. For example, the screenshots in Fig. 3.2

and Fig. 3.3 show two examples of problematic Stack Overflow question titles. Developers

posted a question “Fibonacci sequence in Python3.2” and “I am creating a notepad in java

... to paste it at location of cursor” in Stack Overflow. They attached their code snippet

and tried to explain the key meaning of their problems. However, such question titles are

still very uninformative (in Fig. 3.2) and confusing (in Fig. 3.3). Both of these questions

have been marked as having lack of clarity and need to be further improved upon. Such

titles run a real risk of not being found by the ideal people to answer them, may make po-

tential question answering users lose interest, or make users who may answer them have to

painstakingly browse the additional paragraph to understand the key point. All reduce the

likelihood of them giving help.

Using the tool CODE2QUE described in this paper, we can provide a way to automate
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Figure 3.2: Example of Problem Questions Title (for Python)
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Figure 3.3: Example of Problem Questions Title (for Java)

the process of improving such poor quality question titles, which is potentially helpful in

reducing the manual effort for the quality maintenance of CQA forums. Based on the de-

veloper’s code snippet, the generated question title by our tool is “how to find the fibonacci

series through recursion?” for the code snippet shown in Fig. 3.2 and “how to change the

string value in textarea field using java?” for the code snippet shown in Fig. 3.3. These

newly generated question titles are much more clear and informative to readers, and also

questioning on the key problems of the user’s concern. This is helpful for the potential

helpers to understand the key problems of the question better and also for the askers to

formulate a related question better.

3.4 Approach

In this section, we firstly define the task of question generation, then present the de-

tails of Stack Overflow question generation system. Fig. 5.3 demonstrates the work-

flow used by our model. A Long Short Term Memory (LSTM) encoder-decoder ar-

chitecture, is enhanced by attention mechanism [Bahdanau et al., 2014], copy mecha-
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nism [Gu et al., 2016a] and coverage mechanism [Tu et al., 2016]. In general, our model

consists of two components: A Source-code Encoder and A Question Decoder. The

source code snippet is transformed by Source-code Encoder into a vector representation,

which is then read by a Question Decoder to generate the target question titles. Our

model is a differentiable Seq2Seq model with aforementioned three mechanism, i.e., at-

tention mechanism, copy mechanism and coverage mechanism, which can be trained in an

end-to-end fashion with gradient descent.

3.4.1 Task Definition

The motivation for our work is to improve the low-quality questions in Stack Overflow.

Considering many developers may not be able to describe the problems due to their lack

of knowledge and terminology, and/or they are not native english speakers, we propose

a novel task in this paper - automatic generation of question titles from a code snippet,

the central theme of which is helping developers to create better question titles based on

their targets and code snippets. We formulate this task as a sequence-to-sequence learning

problem.

Given C is the sequence of tokens within a code snippet, our target is to generate a

Question Q, which is relevant, natural, syntactically and semantically correct. To be more

specific, our main objective is to learn the underlying conditional probability distribution

P✓(Q|C) parameterized by ✓. In other words, the goal is to train a model ✓ using hcode snip-

pet, questioni pairs such that the probability P✓(Q|C) is maximized over the given training

dataset. More formally given a code snippet C as a sequence of tokens (x1, x2, ..., xM) of

length M , and a question title Q as a sequence of natural language words (y1, y2, ..., yN) of

length N . Mathematically, our task is defined as finding y, such that:

y = argmaxQP✓(Q|C) (3.1)
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Figure 3.4: Workflow of Code2Que Model

where P✓(Q|C) is defined as:

P✓(Q|C) =
LY

i=1

P✓(yi|y1, ..., yi�1; x1, ..., xM) (3.2)

P✓(Q|C) can be seen as the conditional log-likelihood of the predicted question title Q

given the input code snippet C.

3.4.2 Source-code Encoder

Source code token in the code snippet is fed sequentially into the encoder, which generates

a sequence of hidden states. Our encoder is a two-layer bidirectional LSTM network,
�!
fwt =

����!
LSTM2

⇣
xt,
��!
ht�1

⌘

 ��
bwt =

 ����
LSTM2

⇣
xt,
 ��
ht�1

⌘

where xt is the given input source code token at time step step t, and
�!
ht and

 �
ht are the

hidden states at time step t for the forward pass and backward pass respectively. The hidden

states(from the forward and backward pass) of the last layer of the source-code encoder are

concatenated to form a state s as s = [
�!
fwt;
 ��
bwt].

3.4.3 Question Decoder

Our question decoder is a singe-layer LSTM network, initialized with the state s as s =

[
�!
fwt;
 ��
bwt]. Let qwordt be the target word at time stamp t of the ground truth question
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title. During training, at each time step t the decoder takes as input the embedding vector

yt�1 of the previous word qwordt�1 and the previous state st�1, and concatenates them to

produce the input of the LSTM network. The output of the LSTM network is regarded as

the decoder hidden state st, as follows:

st = LSTM1 (yt�1, st�1) (3.3)

The decoder produces one symbol at a time and stops when the END symbol is emitted.

The only change with the decoder at testing time is that it uses output from the previous

word emitted by the decoder in place of wordt�1 (since there is no access to a ground truth

then).

3.4.4 Incorporating Attention Mechanism

We model the attention [Bahdanau et al., 2014] distribution over words in the source code

snippets. We calculate the attention (ati) over the ith code snippet token as :

eti = vttanh (Wehhi +Wshst + batt) (3.4)

ati = softmax
�
eti
�

(3.5)

Here, vt, Wsh and batt are model parameters to be learned, and hi is the concatenation of

forward and backward hidden states of source-code encoder. We use this attention ati to

generate the context vector c⇤t as the weighted sum of encoder hidden states :

c
⇤
t =

X

i=1,..,|x|

atihi (3.6)

We further use the c⇤t vector to obtain a probability distribution over the words in the

vocabulary as follows,

P = softmax (Wv[st, c
⇤
t ] + bv) (3.7)
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where Wv and bv are model parameters. Thus during decoding, the probability of a word is

P (qword). During the training process for each word at each timestamp, the loss associated

with the generated question title is :

Loss = � 1

T

TX

t=0

logP (qwordt) (3.8)

The attention mechanism allows the model to focus on the most relevant parts of the input

sequence as needed. For example in Fig. 5.3, at time step 2, the context vector c⇤t amplifies

related hidden states hk with high scores, and drowning out unrelated hidden states with

low scores. For such a case, it enables the question decoder to focus on the word “del” when

it generates the word “remove”. This ability to amplify the signal from the relevant part

of the input sequence makes attention models produce better results than models without

attention.

3.4.5 Incorporating Copy Mechanism

A copy mechanism [Gu et al., 2016a] is used to facilitate copying some tokens from the

source code snippet to the target generated question title. As illustrated in Fig. 3.1, some

words such as “setUpClass” are naturally going to be much less frequent than other words.

Thus it is highly unlikely for a decoder that is solely based on a language model to generate

such a word with very rare occurrences in a corpus. In such cases, the possibly rare words

in the input sequence might be required to be copied from our source code snippet to the

target generated question title. We incorporate a copy mechanism to handle such rare word

problem for Stack Overflow question generation.

In order to learn to copy (from source) as well as to generate words from the vocabulary

(using the decoder), we calculate pcg 2 [0, 1]. This is the decision of a binary classifier that

determines whether to generate a word from the vocabulary or to copy the word directly

from the input code snippet, based on attention distribution ati:
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Figure 3.5: Attention & Copy & Coverage Mechanism

pcg = sigmoid(W T
ehc

⇤
t +W T

shst +Wxxt + bcg) (3.9)

Here Weh, Wsh, Wx and bcg are trainable model parameters. The final probability of decod-

ing a word is specified by the mixture model :

p⇤(qword) = pcg
X

i:wi=qword

ati + (1� pcg)p(qword) (3.10)

where p ⇤ (qword) is the final distribution over the union of the vocabulary and the input

sequence. As discussed earlier, Equation (10) addresses the rare words issue, since a word

not in our vocabulary will have probability p(qword) = 0. Therefore, in such cases, our

model will replace the < unk > token for out-of-vocabulary words with a word in the input

sequence having the highest attention obtained using attention distribution ati. The copy

mechanism allows the model to locate a certain segment of the input sequence and puts

that segment into the output sequence. pcg is a soft switch to choose between generating

a word from vocabulary or copying a word from the input sequence. For example, in

Fig. 3.1, the rare word “setUpClass” in the question title is copied from the input source

code snippet. For such a rare word, copy mechanism increases the copy-mode probability
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and decreases the generate-mode probability, which can correctly catch the rare word and

put it to the output sequence.

3.4.6 Incorporating a Coverage Mechanism

Repetition is a common problem for sequence-to-sequence models and to discourage mean-

ingless repetitions, we maintain a word coverage vector cov, which is the sum of attention

distributions over all previous decoder timesteps:

covt =
t�1X

t0=0

at
0

(3.11)

Intuitively, covt is a distribution over source code snippet tokens that represents the degree

of coverage that those tokens have received from the attention mechanism so far. Note that

no word is generated before timestamp 0, and hence cov0 will be a zero vector then. The

update equation (4) is now modified to be:

eti = vttanh
�
Wcvcov

t
i +Wehhi +Wshst + batt

�
(3.12)

Here, Wcv are trainable parameters that ensure the attention mechanism’s current decision

is informed by a reminder of its previous decisions. The coverage mechanism allows our

model to solve the word repetition problem in the output sequence (see Figure 3.12). The

coverage mechanism ensures that the attention mechanism’s current decision is informed

by a reminder of its previous decisions (summarized in covt). This should make it easier

for the attention mechanism to avoid repeatedly attending to the same locations, and thus

avoid generating repetitive text.

Following the incorporation of the copy and coverage mechanism in our attentional

sequence-to-sequence architecture, the final loss function will be:

Loss =
1

T

TX

t=0

logP ⇤(qwordt) + �Lcov (3.13)

where � is a reweighted hyperparameter and the coverage loss Lcov is defined as:

Lcov =
X

i

min(ati, cov
t
i) (3.14)
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Once the model is trained, we do inference using a beam search. The beam search is

parametrized by the possible paths number k. The inference process stops when the model

generates the END token which stands for the end of the sentence.

3.5 Experimental Setup

In this section, we firstly describe the evaluation corpus of the task. We then introduce the

implementation details of our neural generation approach, the baselines to compare, and

their experimental settings. Lastly, we explain the evaluation metrics.

3.5.1 Pre-processing

We experiment with our neural question generation model on the latest dump of the Stack

Overflow (SO) dataset, which is publicly available7. Each post comprises a short question

title, a detailed question body, and one or more associated answers and multiple tags.

In this study, we performed our experiment on a variety of programming languages,

which include Python, Java, Javascript, C# and SQL. To do that, we used the Python, Java,

Javascript, C# and SQL tag for collecting questions associated with the corresponding pro-

gramming language respectively. Then we removed all questions whose question scores

were less than 1. This is reasonable since our goal is to generate high-quality questions

to help developers. We extracted code snippets (using hcodei tags) within the post’s ques-

tion body and corresponding post question title. We added the resulting hquestion, code

snippeti pairs to our corpus.

Data Preprocessing We tokenized the code snippet with respect to each programming lan-

guage for pre-processing respectively. We adopted the NLTK toolkit [Bird and Loper, 2004]

to separate tokens and symbols. One of the challenging tasks during the tokenization was

the structural complexity of the code snippet in our dataset. We stripped out all comments
7https://archive.org/details/stackexchange
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Table 3.1: Dataset Statistics

Languages #Code Tokens #Question Tokens Avg.Code Length Avg.Question Length
Python 2,367,148 109,329 84.7 11.2
Java 3,371,946 123,994 103.2 10.8
Javascript 2,814,729 121,854 94.1 10.8
C# 2,340,202 100,178 82.1 11.0
SQL 1,483,056 48,668 84.1 10.1

Table 3.2: Number of Training/Validation/Testing Samples

Python # pairs (Train) 186,976 # pairs (Test-Raw) 3,000
# pairs (Val) 3,000 # pairs (Test-Clean) 2,940

Java # pairs (Train) 250,708 # pairs (Test-Raw) 3,000
# pairs (Val) 3,000 # pairs (Test-Clean) 2,963

Javascript # pairs (Train) 290,610 # pairs (Test-Raw) 3,000
# pairs (Val) 3,000 # pairs (Test-Clean) 2,940

C# # pairs (Train) 178,830 # pairs (Test-Raw) 3,000
# pairs (Val) 3,000 # pairs (Test-Clean) 2,974

SQL # pairs (Train) 150,002 # pairs (Test-Raw) 3,000
# pairs (Val) 3,000 # pairs (Test-Clean) 2,980
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Figure 3.6: Volinplots of Code Distribution

by using the regular expression for different programming languages. After that, in order

to avoid being context-specific, numbers and strings within a code snippet and replaced

them with special tokens “VAR”, “NUMBER” and “STRING” respectively. Table 3.1,

Fig. 3.6 and Fig. 3.7 shows some data statistics on the processed dataset. We can see

that the length of Java and Javascript code snippets are much longer than the other pro-

gramming languages. On average, Java and Javascript code snippets contain 103 and 94

tokens respectively, while the code snippets of the other three programming languages are

just around 84 tokens long. On the other hand, the question titles of all the programming

languages are approximately at the same level, the overall average of the question titles are

11 tokens long.

Data Filtering Users can post different types of questions in SO, such as “how to X” and

“What/Why is Y”. In our preliminary study, we targeted questions which include interrog-

ative keywords such as “how”, “what”, “why”, “which”, “when”. For the above collection

of question-code pairs, only the pairs where the aforementioned keywords appear in the

question title were kept. After that, we removed pairs where the code snippets are too
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Figure 3.7: Volinplots of Question Distribution

long or too short. Based on the interquartile range (IQR) of the violin plots in Fig. 3.6

and Fig. 3.7, we only preserved pairs where the token range from 16 tokens to 128 tokens

for code snippet and the token range from 4 tokens to 16 tokens for question titles. At

this stage, we collected more than 1M hquestion, code snippeti pairs in total for Python,

Java, Javascript, C# and SQL programming languages. We randomly sampled 3,000 pairs

for validation and 3,000 pairs for testing respectively, and kept the rest for training. The

details of the training, validation and testing samples for each programming language are

summarized in Table 4.1.

Clone Detection Considering that there may be duplicate and/or very similar hcode snip-

pet, questioni pairs between the training set and testing set, this may mislead the eval-

uation results. We further conducted a primitive clone detection analysis to remove the

noisy examples from our testing data set. A lot of methods have been proposed for clone

detection in recent years (e.g., [Wang et al., 2020b, Gao et al., 2020, White et al., 2016,

Büch and Andrzejak, 2019, Gao et al., 2019b]). We followed the approach proposed by

[Gao et al., 2019b] for clone detection. For each code snippet, we compose a numerical
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Table 3.3: Clone Detection Analysis

Similarity Python Java Javascript C# SQL
si 2 [0.0, 0.2) 2,153 2,241 1,939 2,328 2,359
si 2 [0.2, 0.4) 512 473 651 422 413
si 2 [0.4, 0.6) 195 187 272 182 159
si 2 [0.6, 0.8) 80 62 78 42 49
si 2 [0.8, 1.0] 60 37 60 26 20

vector by summing up the word embedding vectors for all the relevant tokens within the

code snippet. Then the similarity between two code snippets C1 and C2 can be calculated

as follows:

Distance(C1, C2) = Euclidean(e1, e2) (3.15)

Similarity(C1, C2) = 1�Distance(C1, C2) (3.16)

where e1 and e2 are the corresponding code embedding vectors of C1 and C2. Each code

snippet Ci in the testing set is queried against all the code snippets in the training set, the

maximum similarity score si associated with the Ci is retrieved. The results of si with

respect to each programming language are summarized in Table 3.3. If the similarity score

si is over a threshold � (� is set to 0.8 in this study), then the code snippet Ci is viewed as

a code clone and will be deleted from our testing set. From the table we can see that the

number of clone code snippets is very small, while most code snippets get relatively low

similarity scores. After removing all the examples with similarity scores above 0.8 from the

testing set, we reconstructed a clean testing set for each programming language, the final

results are summarized in Table 4.1. The clean testing set is used for the final evaluation of

this study.

3.5.2 Implementation Details

We implemented our system in Python using Tensorflow framework. We added special

START and END tokens for each sequence in our training set. The vocabulary size for
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the Java and Python dataset were set to 50,000 and 80,000 respectively. We use a two-

layer bidirectional LSTM for the encoder and a single-layer LSTM for the decoder. We

set the number of LSTM hidden states to 256 in both encoder and decoder. We choose the

word embeddings of 300 dimensions. Optimization is performed using stochastic gradient

descent (SGD) with a learning rate of 0.01. We fix the batch size for updating to be 32.

During decoding, we perform beam search with beam size of 10. We train the model for 30

epochs. Our hyper-parameters were tuned on the validation set, the evaluation results were

reported on the test set. We discuss the details of the parameter tuning in Section 4.4.

3.5.3 Baselines

To demonstrate the effectiveness of our proposed approach, we compared it with several

competitive baseline approaches. We adapted these approaches slightly for our problems,

i.e., generating question titles from a given code snippet. We briefly introduced these ap-

proaches and the experimental settings as below. For each method mentioned below, the

involved parameters were carefully tuned, and the parameters with the best performance

were used to report the final comparison results.

1. IR stands for the information retrieval baseline. For a given code snippet ci, it re-

trieves the question titles associated with the code cj that is closest to the input code

ci from the training set. We use TF-IDF [Robertson and Walker, 1994] metric to cal-

culate the distance between two code snippets, and build a nearest neighbor model to

retrieve the most similar instance from the traning set.

2. MOSES [Koehn et al., 2007] is a widely used phrase-based statistical machine

translation system. Here, we treat a tokenzied code snippet as the source language

text, and the corresponding question title as the target language text. We run the

translation from code snippets to question titles. We train a 3-gram language model

on target side texts using KenLM [Heafield, 2011], and perform turning with MERT
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on dev set.

3. NMT Jiang et al. [Jiang et al., 2017] proposed an sequence-to-sequence approach

to generate commit message from code, we refer to it as NMT in our study. We

choose NMT as one comparing approach since its promising performance in commit

generation. NMT model take source code as inputs and associated question title as

outputs. Hyperparameters are tuned with validation set.

4. CODE-NN Iyer et al. [Iyer et al., 2016] proposed an attention-based Long Short

Term Memory (LSTM) neural network, named CODE-NN, to generate descriptive

summaries for C# code snippets and SQL queries. In order to use CODE-NN, the C#

code fragments and SQL statements first need to be parsed by the modified version of

parser. Considering code snippets in SO are usually incomplete and not parsable, and

it is non-trivial to design specific parser to parse code snippets of various program-

ming languages, we tried our best to apply our approach to the CODE-NN dataset,

which include 60k+ C# (title, query) pairs and 30k+ SQL (title, query) pairs respec-

tively.

3.5.4 Evaluation Metrics

We evaluate our task with automatic evaluation, and also perform human evaluation via a

user study.

1. Automatic Evaluation To evaluate different models, We adopt BLEU-1, BLEU-

2, BLEU-3, BLEU-4 [Papineni et al., 2002], ROUGE-1, ROUGE-2 and ROUGE-

L [Lin, 2004] scores. BLEU is a precision-oriented measure commonly used in

translation tasks, which measures the average n-gram precision on a set of reference

sentences, with a penalty for overly short sentences. BLEU-n is the BLEU score that

uses up to n-grams for counting co-occurrences. ROUGE is a recall-oriented mea-

sure widely used in summarization tasks, which used to evaluate n-grams recall of
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the summaries with gold-standard sentences as references. ROUGE-1 and ROUGE-

2 measures the uigram and bigrams between the system and reference summaries.

ROUGE-L is a longest common subsequence measure metric, it does not require

consecutive matches but in-sequence matches that reflect sentence level word order.

We conducted a large scale automatic evaluation over various kinds of programming

languages, i.e., Python, Java, Javascript, C# and SQL. In our work, we regard the

generated question titles as candidates, and the original human written question titles

as gold-standard references.

2. Human Evaluation Since automatic evaluation of generated text does not always

agree with the actual human-perceived quality and usefulness of the results, we also

perform human evaluation studies to measure how humans perceive the generated

questions. To do this, we consider two modalities in our user study : Naturalness

and Relevance. Naturalness measures the grammatical correctness and fluency of the

question title generated. Relevance measures how relevant the question title is to the

code snippet, and indicates the factual divergence of the code snippet to the reference

question titles. We randomly sampled 50 hcode snippet, questioni pairs from Python

and Java test results respectively, for each code snippet, we provided 5 associated

question titles: one was generated by human (the ground truth question title), while

the others were generated by baseline methods and our approach. Then we invited 5

evaluators, including 4 Ph.D students and 1 Masters student, all of whom are not co-

authors, majoring in Computer Science and have industrial experience with Python

as well as Java programming (ranging from 1-3 years). All of the five evaluators

have at least one year of studying/working-experience in English speaking countries.

Each participant was asked to manually rate generated question titles on a scale

between 1 and 5 (5 for the best results) across the above modalities. The volunteers

were blinded as to which question title was generated by our approach.
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3. Practical Manual Evaluation Following the human evaluation, we also performed

a practical manual evaluation to further analyze whether our approach can generate

better question titles for low-quality questions in Stack Overflow. To do this, we ran-

domly sampled 50 low-quality hcode snippet, questioni pairs from our Python and

Java datasets before the data preprocessing. It is worth mentioning that different from

human evaluation, these sampled posts were not included in our training and/or test-

ing set, because all the questions with score less than 1 were removed before training

processing. For each code snippet, we applied our approach to generate a question

title for manual annotation. We conducted pairwise comparison between two ques-

tion titles (one was generated by humans, one was generated by our tool) for the

same code snippet. For each pairwise comparison, we asked the same 5 evaluators

to decide which one is better or non-distinguishable in terms of the following three

metrics: Clearness, Fitness, Willingness to Respond. Clearness measures whether a

question title is expressed in a clear way. Unclear questions are ambiguous, vague,

and/or incomplete. Fitness measures whether a question title is reasonable in logic

with the provided code snippet, and whether it is questioning on the key information.

Unfit question titles are either irrelevant to the code snippet or universal questions.

Willingness to Respond measures whether a user is willing to respond to a specific

question. This metric is used to justify how likely the generated questions can elicit

further interactions. If people are willing to respond, the interactions can go fur-

ther. Each metric is evaluated independently on each pairwise comparison. Also the

two question titles were randomly shuffled and the participants do not know which

question is generated by our approach.
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3.6 Results and Analysis

To gain a deeper understanding of the performance of our approach, we conduct analysis on

our evaluation results in this section. For quantitative analysis, firstly we study the experi-

mental results of automatic evaluation, then we examine the outcome of human evaluation.

Specifically, we mainly focus on the following research questions:

• RQ-1: How effective is our approach under automatic evaluation?

• RQ-2: How effective is our approach compared with the CODE-NN model?

• RQ-3: How effective is our approach under human evaluation?

• RQ-4: How effective is our approach for improving low-quality questions?

• RQ-5: How effective is our use of attention mechanism, copy mechanism and cover-

age mechanism under automatic evaluation?

• RQ-6: How effective is our approach under different parameter settings?

• RQ-7: How efficient is our approach in practical usage?

3.6.1 Automatic Evaluation

The automatic evaluation results of our proposed model and aforementioned baselines are

summarized in Table 3.4, 3.5, 3.6, 3.7, 3.8 for Python, Java, Javascript, C#, and SQL

respectively. The best performing system for each column is highlighted in boldface. As

can be seen, our model outperforms all the other methods considerably in terms of

BLEU score and ROUGE score. BLEU score measures precision of the system. To be

more specific, it measures how many words (and/or n-grams) in the machine generated

question titles appear in the ground truth question titles. For ROUGE scores, it measures

the recall of the system i.e. how many words(and/or n-grams) in the ground-truth question

60



Table 3.4: Automatic evaluation(Python dataset)
Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
IRTFIDF 20.2± 1.1% 17.7± 0.4% 18.4± 0.3% 18.0± 0.2% 24.4± 1.4% 6.9± 0.6% 21.8± 1.2%
Moses 20.4± 1.4% 18.1± 0.8% 17.8± 0.7% 17.4± 0.6% 26.9± 1.3% 6.2± 0.5% 20.4± 1.1%
NMT 28.9± 1.7% 21.9± 0.7% 21.3± 0.3% 20.3± 0.2% 34.1± 2.2% 10.6± 1.1% 31.2± 1.9%
Ours 35.8± 2.0% 30.1± 0.9% 26.8± 0.4% 24.2± 0.3% 39.9± 2.5% 12.6± 2.5% 36.7± 2.4%

Table 3.5: Automatic evaluation(Java dataset)
Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
IRTFIDF 18.1± 1.1% 17.2± 0.5% 18.0± 0.4% 17.6± 0.3% 22.2± 1.3% 6.2± 0.7% 19.9± 1.2%
Moses 18.5± 1.0% 17.3± 0.6% 17.1± 0.5% 16.7± 0.4% 25.2± 1.5% 5.3± 0.4% 20.6± 1.2%
NMT 25.0± 1.6% 20.7± 0.7% 20.9± 0.3% 20.2± 0.2% 30.0± 2.0% 9.6± 1.1% 27.3± 1.8%
Ours 31.8± 1.8% 27.5± 0.7% 25.2± 0.3% 23.3± 0.2% 35.4± 2.2% 10.0± 1.8% 32.6± 2.1%

titles appear in the machine generated questions titles. From the table, we can observe the

following points:

1. In general, encoder-decoder architecture baselines, i.e., NMT and our proposed

methods, outperform both the IR based approach and the statistical machine trans-

lation approach (e.g., Moses) by a large margin. For IR based approach, it retrieves

questions from existing database according to similarity score, which relies heavily

on whether similar code snippets can be found and how similar the code snippets are.

As a result, it is unable to consider the context of the code snippet, which is reflecting

that memorizing the training set is not enough for this task. For the phrase-based

statistical approaches which use separately engineered subcomponents, the encoder-

decoder model uses the vector representation for words and internal states, semantic

and structural information can be learned from these vectors by taking global context

into consideration.

2. Regarding the BLEU score, our approach is significantly better than the other meth-

ods (e.g., traditional IR method, phrase-based statistical method, and NMT meth-

Table 3.6: Automatic evaluation(Javascript dataset)
Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
IRTFIDF 18.7± 1.1% 17.6± 0.4% 18.3± 0.3% 17.9± 0.2% 22.6± 1.3% 6.2± 0.6% 20.2± 1.1%
Moses 18.9± 1.2% 18.8± 0.7% 18.7± 0.7% 18.3± 0.6% 25.7± 1.2% 5.8± 0.4% 20.1± 1.0%
NMT 28.1± 1.6% 22.0± 0.6% 21.5± 0.3% 20.5± 0.2% 32.8± 1.9% 10.3± 1.0% 30.4± 1.7%
Ours 33.2± 1.9% 26.4± 0.8% 24.1± 0.4% 22.1± 0.3% 37.3± 2.2% 11.7± 1.8% 34.7± 2.1%
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Table 3.7: Automatic evaluation(C# dataset)
Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
IRTFIDF 18.0± 1.0% 17.1± 0.4% 17.9± 0.3% 17.6± 0.2% 21.9± 1.3% 6.3± 0.6% 19.9± 1.1%
Moses 18.5± 1.0% 16.8± 0.7% 16.6± 0.6% 16.3± 0.6% 25.4± 1.2% 6.0± 0.4% 20.0± 1.0%
NMT 24.4± 1.7% 19.3± 0.7% 19.8± 0.2% 19.3± 0.2% 29.4± 1.6% 9.7± 0.8% 27.1± 1.4%
Ours 30.9± 1.8% 27.7± 0.7% 25.3± 0.3% 23.4± 0.2% 34.8± 2.3% 10.2± 1.9% 31.8± 2.2%

Table 3.8: Automatic evaluation(SQL dataset)
Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
IRTFIDF 15.6± 1.0% 17.6± 0.4% 18.4± 0.3% 17.9± 0.3% 19.3± 1.2% 3.7± 0.6% 16.4± 1.0%
Moses 17.3± 0.9% 16.6± 0.7% 16.5± 0.6% 16.2± 0.6% 21.4± 1.1% 3.4± 0.3% 15.0± 0.8%
NMT 22.0± 1.3% 20.4± 0.5% 20.7± 0.4% 19.9± 0.2% 26.6± 1.7% 7.4± 1.0% 22.9± 1.5%
Ours 26.8± 1.6% 23.8± 0.6% 22.6± 0.3% 21.2± 0.2% 30.5± 2.0% 8.4± 1.3% 26.3± 1.9%

ods) and achieves understandable results [Seljan et al., 2012]. For example, it im-

proves over NMT methods on BLEU-4 by 19.2%8 on Python dataset and 15.3%

on Java dataset. We attribute this to the following reasons: firstly, our approach is

based on a sequence-to-sequence architecture and hence it is superior to the statis-

tical baselines[Koehn et al., 2007]. Secondly, compared with NMT baseline which

is solely based on the sequence-to-sequence approach, besides using the encoder-

decoder architecture, our approach also incorporates an attention mechanism to per-

form better content selection, a copy mechanism to manage the rare-words prob-

lem in source code snippet, as well as a coverage mechanism to eliminate mean-

ingless repetitions, which makes it superior to the NMT baselines. According to

[Seljan et al., 2012], the bleu-1 score above 0.30 generally reflect understandable re-

sults and above 0.50 reflect good and fluent translations, the bleu score of our ap-

proach can be considered as acceptable, but there is still a large gap compared with

ground truth question titles.

3. Regarding the ROUGE score, the advantage of our proposed model is also clear. The

potential explanation is that baseline methods, such as Moses, NMT, even with a

much larger vocabulary, still has a large number of out of vocabulary words. Our

model, augmented with the copy mechanism to handle the rare-words problem, beats
8The improvement ratio is defined within https://www.d.umn.edu/~gshute/arch/

improvements.xhtml
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these baselines by a large margin. This further justifies that the copy mechanism gen-

erally helps when dealing with the question generation tasks. It also signals that out

of vocabulary tokens within code snippet convey much valuable information when

generating question titles.

4. The proposed approach performs best on the Python dataset and worst on the SQL

dataset. This is in part because, compared with Python code snippet, SQL code snip-

pets only contain a set of keywords and functions, and thus generating question titles

for SQL code snippet is more challenging for solely relying on the compositional

structures in the input.

Examples of the Automatic Evaluation. We examine several sample outputs by hand to

perform a further qualitative analysis. Fig. 3.8 shows some examples of the question titles

generated by human (Golden questions), the baselines (e.g., IR, Moses and NMT) and our

approach for the given code snippets in the test set. We have the following interesting

observations:

1. We see a large gap between our approach and other baselines. Our approach gener-

ates syntactically and semantically correct and relevant question titles in most

cases, while the outputs of every other model are less meaningful and/or more irrel-

evant. This is consistent with our previous automatic evaluation results. For the IR

method, often the question titles are unable to connect to the code snippet. For exam-

ple in the third sample, the ground truth question is about “find difference between

two values”, while the IR methods retrieved the question of “how to calculate the

diff between two dates in django”. The statistical machine translation model, such

as Moses, is unable to generate a syntactically correct question title. For example, in

the sixth and seventh sample, the question titles generated by Moses are incomplete

and meaningless. For the NMT method, although it can generate the question titles
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Table 1

ID Code Snippet Questions

1

import unittest 
import sys 
Class BookTests(unittest TestCase): 
          @classmethod  
           def setUpClass(cls): 
                 cls._mine = mymodule.myclass(‘test_file.txt’, ‘baz’)

Golden : How do I use unittest setUpClass method() ?

IR :how to run code when a class is subclassed? 

Moses : how do i import a class booktests unit test how to mine and python

NMT : how do i write a pytest from testsuit ? 

Ours : how do i use a unittest setup class method() ?

2
import win32gui  
 
ImportError : No module named win32gui

Golden : How to use the win32gui module with Python ?

IR : import error: no module named numpy

Moses : python win com guiimport guiwin gui importerror module in windows ?

NMT : how to choose window to a python script to window with window ?

Ours : how to install win32gui . in windows without 

3

def distance(x, y): 
       if x >= y:
            result = x - y
       else:
            result = y - x
       return result

Golden : How do I find the difference between two values without knowing which is larger?

IR : How to calculate diff between two dates in django

Moses : how do I get return to print to console in this code ?

NMT : how to make a python program that is not a list of list ?

Ours : How to find the absolute distance of two point in python ? 

4
In[2] : mimetypes. 
          guess_extension('image/jpeg', strict=False)  
Out[2] : ‘.jpe’

Golden : Why the various JPEG Extensions?

IR : How to load JPE image file?

Moses : how to extension in how to include header in python

NMT : how to get the index of a list of a list of list in python ?

Ours : how to safely get the file extensions from a file use django ?

5

<?xml version="1.0" encoding="UTF-8"?>
<MyDocument xmi:version="2.0">
    <Thingamabob name="A" hasDohicky="//@Dohicky.0">
         <Dingus/> 
    </Thingamabob>
    <Dohicky name="B"/>
</MyDocument>

Golden : In XML what do you call this: //@Dohicky.0 and how to address it in Java

IR : Why should you use XML CDATA blocks?

Moses : how to use uniqueconstraint with single table inherite jpa ?

NMT : how to get the current time in java ? is not abl to get the ip address and host name ?

Ours : how to get the attribute of node and its value in xml use dom in java ? 

6

String path = “/puppy.png”  
try { 
        BufferedImage image = ImageIO.read(  
        getClass().getResourceAsStream(path)); 
} catch (Exception ex) {  
        ex.printStackTrace(); 
}

Golden : java input == null why ? 

IR : how do I generate random integers within a specific range in java?

Moses : file pixel in java ?

NMT : how to read a file from a file in java ? is not abl to do so

Ours : how to get the path of an image in java ? 

7 webbrowser.open(‘STRING’) 
gmail_user = raw_input(‘Please enter your Gmail username:’)

Golden : How can I disable webbrowser message in python ?

IR : how to throw custom 404 messages in python

Moses : how to input 

NMT : how to open a file from a file use python ?

Ours : how to I open the web browser message when python2 ? 

8

def test1(): 
       exec(‘print “hi from test1”’) 
 
def test2(): 
       exec(‘print “hi from test2”’) 
       def subfunction(): 
                return True

Golden : Why doesn’tt exec work in a function with a subfunction?

IR : Why does Python code run faster in a function?

Moses : how to test work in a function with a subfunction ? python

NMT: in python, why does’t the alternative of a function with a subfunction ?

Ours : how python, what is this, ? this function ? some subfunction ?

�1

Figure 3.8: Examples of output generated by each model
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in the right format in some cases, it still fails to replicate the critical tokens (e.g.,

example1) because of the difficulty brought by the unseen words in the code snippet.

2. Our approach handles out of vocabulary words well, and it can generate accept-

able question titles for a code snippet with rare words. In contrast, the baseline

methods often fail in such cases. For example, in the first sample, in which the focus

should be put on “setUpClass” method in the code snippet, Our model successfully

captures this rare phrase, while other baselines return non-relevant descriptions. It is

quite interesting that our model automatically learns to select informative tokens in

the code snippet, which shows the extractive ability of our model. At the same time,

our approach often generates words to “connect” those critical tokens, showing its

aspect of abstractive ability.

3. A large number of the question titles generated by our model produce meaning-

ful output for simple code snippets. Note that in some cases, the generated question

titles are not exactly inline with the standard ones, yet still make sense by looking at

the meaning of the code snippet. For example, in the second case, the ground truth

question title is “How to use win32gui module with Python”, our system generates

a question title about “how to install win32gui”. This is reasonable given the source

code contains “ImportError” while “import win32gui”. In the third case, our ap-

proach generates a question title of “how to find the absolute distance of two point in

python”, this is because the code snippet defines a function that returns the distance

of two points. For such cases, it is reasonable to generate different question titles

that look at the code snippet from different aspects. Our question titles can also be

viewed as correct and meaningful by looking at the meanings of the code snippet.

4. Sometimes, our approach can generate question titles that are more clear and

informative than the ground truth question titles, such as samples 4-6. For exam-
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ple, in the fourth sample, the ground truth question title is “why the various JPEG

extensions?” which is uninformative and unclear to the potential helpers, after using

our tool the question title can be rephrased as “how to safely get the file extensions

from a file” which is more attractive and informative than the original ones.

5. However, outputs from our system are not always “correct”. For example, in the

last second sample, the ground truth question title is “How can I disable the web

browser message in python”, however, our system output an “opposite” question title

of “How to I open the web browser message when python2”. This example reveals

that in some cases, question titles can be generated incorrectly by only looking at

the implementation details of the code snippet. This is because we can not judge the

developers’ intent just through the code snippet attached to the question.

6. Also, outputs from our system are not always “perfect”. The gap between ground

truth question titles and machine generated question titles is still large. For exam-

ple, in the last sample, The question quality of our model degrades on longer and

compositional inputs. This indicates that there is still a large room for our question

generation system to improve. It would be interesting to further investigate how to

interpret why certain irrelevant words are generated in the question title. For exam-

ple, in the second and fifth samples, there are some irrelevant words at the end of

generated questions. We will address such problems in the future.

Answer to RQ-1: How effective is our approach under automatic evaluation? - we

conclude that our approach is effective under automatic evaluation and beats the baselines

by a large margin.

3.6.2 Compared with CODE-NN

CODE-NN trained a neural attention model generate summaries of C# and SQL code frag-

ment, they have published their C# and SQL datasets, which include 66,015 (title, query)
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pairs for C# and 32,337 pairs for SQL. It is worth emphasizing that CODE-NN removed all

the non-parsable code snippets and retained only the parsable code snippets. We retrained

our approach on the CODE-NN datasets, the automatic evaluation results of our approach

and CODE-NN model are summarized in Table 3.9. Because CODE-NN use the BLEU-4

metric for evaluation, we only report the BLEU-4 score in our table. Apart from that, we

also explored the effectiveness of transferring our trained model to the new datasets. We

further applied the C# and SQL model already obtained to the CODE-NN datasets. This

is reasonable because CODE-NN extracted the code snippet only from the accepted an-

swers containing exactly one code snippet, while our approach extracted the code snippet

from the questions, so training dataset of our approach will not contaminate the CODE-NN

datasets. In other words, our model does not see any test case in the CODE-NN dataset

during the training process. From the table, we can observe the following points:

1. In general, our approach and CODE-NN outperforms the other baselines by a large

margin. The results are consistent with our previous evaluation. This further justi-

fies the encoder-decoder architecture approach is helpful to learn the semantic and

structural information from the code snippet.

2. The neural models, i.e., CODE-NN and ours, have better performance on C# than

SQL. This is probably due to the following reasons: First, generating question titles

for SQL code snippets is a more challenging task since the SQL code snippet only

has a handful of keywords and functions, and the generation models need to rely on

other structural aspects. Second, the size of the SQL training data (32,337 pairs) is

much smaller than the size of the C# training data (66,015 pairs), it is more difficult

to train a good neural model if there is lack of sufficient training data.

3. By using CODE-NN datasets, our model performs better than CODE-NN. It im-

proves BLEU-4 score by 7.8% on C# dataset and 10.8% on SQL dataset. We attribute
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Table 3.9: Automatic evaluation(CODE-NN dataset)
Model BLEU-4 (C# Dataset) BLEU-4 (SQL Dataset)
IR 13.7 13.5
Moses 11.6 15.4
CODE-NN 20.5 18.4
Ours 22.1 20.4

Ours (Transfer) 21.3 18.4

this to the copy mechanism and coverage mechanism incorporated into our approach,

which is able to handle the low frequency tokens and reduce the redundancy during

the generation process.

4. By transferring existing trained models to the CODE-NN datasets, it is notable that

even without training directly on the CODE-NN datasets, we can still achieve com-

parable results compared with the CODE-NN model. We attribute this to the advan-

tage of our model as well as the larger datasets constructed with our approach. We

have collected more than 170K hcode snippet, questioni pairs for C# and more than

150K pairs for SQL. The CODE-NN datasets only include 60k+ C# pairs and 30k+

SQL pairs. This verifies the importance of using big training data for applying deep

learning-based methods in software engineering.

Answer to RQ-2: How effective is our approach compared with CODE-NN? - we

conclude that our approach is more effective compared with Code-NN.

3.6.3 Human Evaluation

Fig. 3.9 shows one example in our human evaluation study. We obtain 250 groups of scores

from human evaluation for Python and Java Dataset respectively. Each group contains 4

pairs of scores, which were rated for candidates produced by IR, Moses, Seq2Seq and

our approach. Each pair contains a score for the Naturalness modality and a score for

Relevance modality. We regard a score of 1 and 2 as low-quality, a score of 3 as medium

quality, and a score of 4 and 5 as high-quality. Regarding human evaluation study results,
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Table 3.10: Human Evaluation(Python dataset)
Model Naturalness LowN MediumN HighN Relevance LowR MediumR HighR

IR 3.91 13.2% 15.6% 71.2% 2.22 66.4% 19.2% 14.4%
Moses 2.44 62.4% 17.2% 20.4% 2.73 40.8% 30.8% 28.4%
NMT 3.38 22.0% 28.4% 49.6% 2.90 35.6% 32.4% 32.0%
Ours 3.75 18.4% 12.8% 68.8% 3.55 18.8% 22.8% 58.4%

Table 3.11: Human Evaluation(Java dataset)
Model Naturalness LowN MediumN HighN Relevance LowR MediumR HighR

IR 3.56 19.6% 22.8% 57.6% 2.29 68.4% 14.4% 17.2%
Moses 2.37 62.4% 18.4% 19.2% 2.24 65.2% 21.6% 13.2%
NMT 2.96 28.0% 45.2% 26.8% 2.66 47.2% 27.6% 25.2%
Ours 3.42 22.0% 27.2% 50.8% 3.25 28.8% 24.4% 26.8%

the responses from all evaluators is then averaged for each modality. We also count the

proportion of each quality type within each modality. The quality distribution and average

score of Naturalness and Relevance across each methods are presented in Table 3.10 and

Table 3.11. From the table, several points stand out:

1. From Naturalness prospective, IR performs a slightly better than our approach.

This is reasonable since it retrieves other similar question titles which are all also

written by humans. However its output lacks the explanation to the actual input code

snippet, which also explains its surprisingly low score on Relevance.

2. From Relevance prospective, the question titles generated by our approach are

much more appreciated by the volunteers. Its superior performance in terms of

Relevance further supports our claim that it manages to select content from input

more effectively.

3. In general, our model performs well across both dimensions. The results of hu-

man evaluation are consistent with automatic evaluation results. The considerable

proportion of high-quality questions generated by our approach with respect to the

Naturalness and Relevance also reconfirms the effectiveness of our system.

Answer to RQ-3: How effective is our approach under human evaluation? In
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Table 1

Please rate each Candidate for N(Naturalness) and R(Relevance) from 1-5 (5 is the best)

Reference : Using apache httpclient how to set cookie for http request ?           

Candidate1 : how to connect android app with mysql database through php            N:             R:

Candidate2 : how to use the java httpclient . x how to imit send from us ?                N:             R:

Candidate3 : how to get the url from a http post request ? is not work                      N:             R:

Candidate4 : how to get cookie from apache httpclient ?                                          N:             R:

�1

Figure 3.9: User Study Case (Human Evaluation)

general, for considering the combination of both modality, i.e., Naturalness and Relevance,

our model beats the baselines by a large margin.

3.6.4 Practical Manual Evaluation

Fig. 3.10 shows one example of our practical manual evaluation study. We collected 50

pairs of question titles (one was generated by humans and one was generated by our ap-

proach) for Python and Java respectively for comparison purposes. For each pairwise com-

parison, we got 5 groups of selections from the evaluators. Each group contains three user

selections with respect to the Clearness, Fitness and Willingness measures respectively.

We calculated the proportion of the user selection according to each evaluation metric. Ta-

ble 3.12 and Table 3.13 show the results of the practical manual evaluation for Python and

Java respectively. From the table we can see that:
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Figure 3.10: User Study Case (Practical Manual Evaluation)

Table 3.12: Practical Manual Evaluation (Python dataset)

Ours vs. Human Win (%) Lose (%) Non-distinguishable (%)
Clearness 52.4 33.2 14.4

Fitness 55.2 24.0 20.8
Willingness 61.2 31.6 7.2

1. The question titles generated by our approach outperform the poor quality question

titles in terms of all the metrics. This demonstrates that our approach produces more

clear and/or appropriate question titles, which is potentially helpful for improving

the low-quality questions in Stack Overflow.

2. Particularly, our question titles have substantially better willingness scores, indicat-

ing that developers are more willing to respond to our questions. This shows that

question titles generated by our model are more likely to elicit further interactions,

which is helpful to increase the likelihood of receiving answers.

Examples of Practical Manual Evaluation: Fig. 3.11 presents three examples of manual

evaluation results. From these cases we can see that:

1. The question titles with poor scores in Stack Overflow are often unclear (e.g., Ex-

ample1) and/or unappropriate (e.g., Example2). For such cases, the question titles
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Table 3.13: Practical Manual Evaluation (Java dataset)

Ours vs. Human Win (%) Lose (%) Non-distinguishable (%)
Clearness 42.8 34.0 23.2

Fitness 47.2 39.6 13.2
Willingness 49.2 26.8 24.0

generated by our approach are more clear and attractive, such as Example1, and also

questioning on key information. For example, the newly generated question titles in

Example2 are much more appreciated by the evaluators than the original ones, which

increases the likelihood and willingness of the developers to offer help.

2. Not all of the poor quality question titles can be improved by our approach. No-

tably for some posts, our approach suffered from semantic drift, that is the questions

generated by our approach do not align well with the developers’ intent. Such as in

Example3, the developer’s problem was more about “writing with large data”, while

the semantics of our question generated has drifted to the problem of “java with byte-

buffer”. This is because the string variable “very large data” has been replaced by

STR during data preprocessing, such information loss hinders the learning process

of our approach.

3. Even though the results generated by our approach are still not perfect, our approach

is the first step on this topic and we also release our code and dataset to inspire further

follow-up work.

Answer to RQ-4: How effective is our approach for improving low-quality ques-

tions? In general, for a large number of low-quality questions in Stack Overflow, our ap-

proach can improve the quality of the question titles via Clearness, Fitness and Willingness

measures.
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Example1(6795345) — Question Score: -3 Example2 (4099140) — Question Score: -3 Example3 (876602) — QuestionScore: -3
import urllib2, urllib
from BeautifulSoup import BeautifulSoup
import re
import urlparse  
… 
raw = urllib.rulopen(url) 
soup = BeautifulSoup(raw) 
parse = list(urlparse.urlparse(url)) 
 
for ender in soup.findAll(ender): 
    links = "%(src)s"% ender  
    if “.jpg” in links: end = “.jpg” 
    if “.jpeg” in links: end = “.jpeg” 
    if “.gif” in links: end = “.gif”  
    if “.png” in links: end = “.png”  
    i += 1  
    urllib.urlretrieve(links, “%s%s” % (i, end))  
 

import org.xsocket.connection.*;
import java.io.IOException; 
 
public class SocketClient {
    public static void main(String[] args) {    
        try {
            IBlockingConnection bc = new 
BlockingConnection("127.0.0.1", 8090);
            String req = "Hello server";
            bc.write(req + "\r\n");
        } catch (IOException e) {}
        System.out.println("missing");
    }
} 
 
C:\Users\Wildfire\Desktop>java -cp xSocket-2.8.14.jar 
SocketClient.java  
Exception in thread "main" 
java.lang.NoClassDefFoundError: SocketClient/java

 
 
message = "very large data"+"\n";
 
ByteBuffer buf = ByteBuffer.wrap(message.getBytes());
 
int nbytes = channel.write(buf);

Human: Need help with a Python scraper Human: Can compile but not run the code Human: problem with writing large data using     
                 java nio socket channel

Ours: how to extract all links from url  
           using beautiful soup?

Ours: java - how do i handle the     
           noclassdeffounderror ?

Ours: how to write nbytes in java with  
            bytebuffer ?

Ours vs. Human:  
Clearness(5:0)  Fitness(4:1)  Willingness(5:0)

Ours vs. Human:  
Clearness(4:1)  Fitness(4:1)  Willingness(5:0)

Ours vs. Human:   
Clearness(2:2)  Fitness(1:4)  Willingness(3:2)   

�1

Figure 3.11: Practical Manual Evaluation Example

3.6.5 Ablation Analysis

We added an attention mechanism, a copy mechanism and a coverage mechanism to our

sequence-to-sequence architecture. The ablation analysis is to verify the effectiveness of

the three mechanisms, to be more specific, we compare our approach with several of its

incomplete variants:

• ModelAtten+Copy removes the coverage mechanism from our approach.

• ModelAtten+Coverage removes the copy mechanism from our approach.

• ModelAtten removes the copy and coverage mechanism from our approach.

• ModelBasic removes all the attention, copy and coverage mechanism from our ap-

proach.

The ablation analysis results are presented in the Table 3.14 and Table 3.15. We can

observe the following points:

1. By comparing the results of ModelBasic and ModelAtten, it is clear that incorporating

an attention mechanism is able to improve the overall performance. For example,
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by adding attention mechanism, the average BLEU-4 score of the Attention-based

model was improved by 9% and 13.3%, ROUGE-L score was improved by 6.8%

and 10.8% on Python and Java dataset respectively. We attribute this to the ability

of attention mechanism to perform better content selection, which can focus on the

more salient part of the source code snippet.

2. By comparing ModelAtten with ModelAtten+Copy and ModelAtten+Coverage, we can mea-

sure the performance improvements achieved due to the incorporation of copy mech-

anism and coverage mechanism respectively. Better performance can be achieved

by solely adding copy or coverage mechanism to the attention-based model. This

signals that both copy and coverage mechanism do have contributions to the perfor-

mance improvements.

3. Without copy mechanism, there is a drop overall in every evaluation measure, the

ROUGE-L score drops 13% and 9.4% on Python and Java dataset respectively. On

the other hand, without coverage mechanism, we see a consistent but sufficiently

lower drop in each evaluation measure, the ROUGE-L drops 12.3% on Python and

3.8% on Java.

4. By comparing the results of our approach with each of the variant model, we can see

that no matter which type of mechanism we dropped, it does hurt the performance of

our model. This verifies the importance and effectiveness of these three mechanisms.

Examples of Ablation Analysis To gain further insight into our approach, we further il-

lustrate some examples from the ablation analysis to show the effect of employing the

attention, copy and coverage mechanism. The results are shown in Fig. 3.12, we can see

that:

1. Question titles generated by the basic model are of low-quality. Comparing the re-

sults of the basic model and attention model, we can see that by adding the attention
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Figure 3.12: Ablation Analysis Example

mechanism, the generated question titles are more meaningful and relevant for the

given code snippet. The attention mechanism enables the model to focus on the

relevant parts of the input sequence as needed. As shown in Example1, the model

will focus on the “request” related segment in source code when it generates “post

request” for the question title.

2. Repetition is a common problem for attentional sequence to sequence models

(e.g., [Tu et al., 2016, Sankaran et al., 2016, Suzuki and Nagata, 2016]). Meaning-

less repeated words are produced during the generation process (highlighted with

yellow color). We introduce a coverage mechanism for discouraging such repeti-

tions in our generator by quantitatively emphasizing the coverage of sentence words

while decoding. As can be seen in Example2, “a harshmap” has been meaningless

repeated twice, employing the coverage mechanism can effectively discourage such

repetitions.

3. We observe that a high-quality question title is generated using our approach. Recall
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that a code snippet usually contains tokens (highlighted with a blue color) with very

rare occurrences. It is difficult for a decoder to generate such words solely based

on language modeling. For such cases, we incorporate the copy mechanism to copy

the rare tokens from the code snippet to the question title. In the first example, the

method name get_client_ip has been properly picked up from the source code snippet

to the generated question titles.

Answer to RQ-5: How effective is our use of attention mechanism, copy mechanism

and coverage mechanism under automatic evaluation? In summary, all the three mecha-

nisms, i.e., attention mechanism, copy mechanism, coverage mechanism, are effective and

helpful to enhance the performance of our approach.

Table 3.14: Ablation evaluation (Python dataset)
Measure ModelBasic ModelAtten ModelAtten+Coverage ModelAtten+Copy Ours
BLEU-1 25.1± 1.5% 28.6± 1.7% 29.6± 1.8% 31.5± 1.9% 35.8± 2.0%
BLEU-2 20.2± 0.7% 22.3± 0.8% 24.6± 0.6% 27.8± 0.8% 30.1± 0.9%
BLEU-3 19.1± 0.4% 21.7± 0.4% 23.8± 0.5% 25.4± 0.4% 26.8± 0.4%
BLEU-4 18.7± 0.3% 20.3± 0.3% 22.3± 0.2% 23.1± 0.2% 24.2± 0.3%
ROUGE-1 32.8± 2.0% 34.1± 2.3% 35.3± 2.2% 35.4± 2.4% 39.9± 2.5%
ROUGE-2 9.1± 0.8% 10.2± 1.2% 10.6± 2.1% 10.8± 2.0% 12.6± 2.5%
ROUGE-L 29.2± 5.8% 31.2± 2.0% 31.9± 2.1% 32.2± 2.2% 36.7± 2.4%

Table 3.15: Ablation evaluation (Java dataset)
Measure ModelBasic ModelAtten ModelAtten+Coverage ModelAtten+Copy Ours
BLEU-1 20.5± 1.0% 25.2± 1.6% 27.8± 1.6% 29.7± 1.7% 31.8± 1.8%
BLEU-2 16.4± 0.6% 20.7± 0.7% 25.0± 0.6% 26.1± 0.6% 27.5± 0.7%
BLEU-3 17.8± 0.4% 21.1± 0.3% 23.6± 0.3% 24.4± 0.3% 25.2± 0.3%
BLEU-4 18.1± 0.2% 20.5± 0.2% 22.0± 0.1% 22.6± 0.2% 23.3± 0.2%
ROUGE-1 28.3± 1.3% 30.5± 2.0% 31.2± 2.0% 33.2± 2.1% 35.4± 2.2%
ROUGE-2 6.9± 0.5% 7.9± 1.1% 8.2± 1.2% 8.7± 1.5% 10.0± 1.8%
ROUGE-L 24.6± 1.1% 27.3± 1.8% 28.8± 1.9% 30.6± 2.0% 31.8± 2.2%

3.6.6 Parameters Settings

One of the key parameter of our approach is the vocabulary size. The encoder-decoder

architecture models need a fixed vocabulary for the source input and target output. To
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Table 3.16: Vocab Size & Training Time(per epoch)

Python

Threshold Vocab Size Training Time
1 58,536 766.9
2 49,656 719.1
3 36,277 663.7
5 22,244 593.8
7 16,368 549.2
10 12,142 539.1

100 2,503 499.9

Java

Threshold Vocab Size Training Time
1 221,160 2218.3
2 131,862 1692.3
3 79,048 1074.1
5 54,352 962.2
7 38,670 898.4
10 27,341 831.4

100 4,642 723.8

generate all the possible words, the basic Seq2Seq model has to include all the vocabulary

tokens that appeared in the training set, which requires a lot of time and memory to train

the models. One advantage of our model is that, with the help of copy mechanism, our

approach can copy words from source input to the target output. We can maintain a small

size vocabulary which exclude the low frequency words, but also get better performance

and generalization ability.

We set different word frequency threshold, i.e., 1, 2, 3, 5, 7, 10, 100, for constructing

the vocabulary. Setting word frequency threshold to 1 means the vocabulary is constructed

with words that appeared at least twice in the training set. Different models were trained

under these parameters on the Python and Java datasets separately. The vocabulary size

and training time under different threshold are summarised in Table 3.16. Fig. 3.13 and

Fig. 3.14 shows the influence of different threshold settings on the BLEU-4 score and

ROUGE-L score. We have the following observations from these figures:

1. Our approach achieves its best performance on Java dataset when the similarity
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Figure 3.13: BLEU4 Score under different vocab threshold

threshold set to 3, the corresponding vocabulary size is 79,048. When the vocabulary

size is too big, i.e., 221,160 with threshold equals 1, the BLEU4 and ROUGE-L score

becomes lower. This is because some non-generic words will be included in the fixed

vocabulary, which leads to difficulties for our approach to learn how to copy words

from the input source sequence.

2. The results of our approach are best on Python dataset when the word frequency

threshold set to 1, the corresponding vocabulary size is 58,536. Compared with the

results of the Java dataset, the optimum vocabulary size settings of our approach can

be around 60000.

3. When the word frequency threshold rockets up to 100, the vocabulary size decreases

to 2,503 and 4,626 on Python and Java dataset respectively. Even with a much smaller

vocabulary size, our approach can still have a comparable performance against Basic

Seq2Seq model, which further supports the generalization ability of our approach.

Another parameter of our approach is the dimension of word embeddings. We choose

five different word embedding sizes, i.e., 100, 200, 300, 400, 500, and qualitatively com-
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Figure 3.14: ROUGE-L Score under different vocab threshold

pare the performance of our approach in these different word embeddings. Fig. 3.15

and Fig. 3.16 show the influence of different word embedding sizes on the BLEU-4 and

ROUGE-L score. One can clearly see that our approach achieves the best BLEU-4 and

ROUGE-L score when the embedding size is set to 300. Too large word embedding size

may not be helpful to improve the accuracy.

3.6.7 Efficient Analysis

The experiment was conducted on an Nvidia GeForce GTX 1080 GPU with 8GB memory.

The time cost of our approach is mostly for the training process which takes approximately

8 to 10 hours for different datasets. The testing process on around 3,000 examples takes

one to three minutes, while generating a single question title only costs 20 to 60ms.

Considering that the query for generating a question title using our approach is efficient,

we have implemented our approach as a standalone web-based tool, named CODE2QUE,

to facilitate developers in using our approach and to inspire follow up research. Fig. 3.17

shows the web interface of CODE2QUE. Developers can copy and paste their code snippet
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Figure 3.15: BLEU4 Score under different sizes of word embeddings

Figure 3.16: ROUGE-L Score under different sizes of word embeddings
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into our web application. CODE2QUE embeds the code snippet via source code encoder

and generates the question titles for the developers. We below describe the details of the

input and output of such a process.

• Input: the input to the CODE2QUE is a code snippet, which is an ordered sequence

of source code lines. We have provided support for different types of programming

languages (e.g., Python, Java, Javascript, C# and SQL) for users to select. The input

box in Fig. 3.17 shows an example of a Python code snippet. After inputting the code

snippet, the developers can click the “Generate” button to submit their query.

• Output: the output of CODE2QUE is in two parts: (i) Generated Questions:

CODE2QUE will generate a question title using our backend model according to

the code snippet and programming language they choose. For example, “how to

extract text from html pages using html2text” is generated for the given code snip-

pet. (ii) Retrieved Questions: After the developer submits his/her code snippet to

the server, the code snippet is converted into a vector by our backend Source Code

Encoder, then CODE2QUE searches through our codebase and returns the top3 ques-

tions with similar code snippets. The link to these questions on the Stack Overflow

website is also provided for reference. Developers can use these to quickly browse

the related questions to have a better understanding of the problem.

Answer to RQ-7: How efficient is our approach in practical usage? In summary,

our approach is efficient enough for practical use and we have implemented a web service

tool, named CODE2QUE, to apply our approach for practical use.

3.7 Discussion

In this section, we discuss the main contribution of our work and analyze the strength and

potential weakness of our work associated with each contribution.
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Figure 3.17: CODE2QUE Web Service Tool

3.7.1 Question Quality Improvement

It is important for CQA forums to maintain a satisfactory quality level for the questions

and answers so as to improve community reputation and provide better user experience.

Questions are a fundamental aspect of a CQA website. Poorly formulated questions are

less likely to receive useful responses, thus hindering the overall knowledge generation and

sharing process.

• Strength of our work. Previous work related to CQA quality studies focus on ques-

tion quality prediction. For example, the authors in [Ravi et al., 2014] developed a

model for predicting question quality using the content of the question. The authors

in [Arora et al., 2015] proposed a method to identify inappropriate questions by using

previously asked similar questions. Different from the existing research, our study

aims to improve low-quality questions in Stack Overflow. To the best of our knowl-

edge, this is the first work that investigates the possibility of automatically improving
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low-quality questions in Stack Overflow.

• Weakness of our work. According to our practical manual evaluation results, our

approach can improve a large number of low-quality questions in Stack Overflow via

Clearness, Fitness and Willingness measures. However, the results generated by our

approach are still not perfect, and for some posts, our approach suffers from semantic

drift problems. We plan to incorporate more context information for generating better

question titles in the future.

3.7.2 Deep Sequence to Sequence Approach

Recently, deep learning has achieved promising results in solving many software engineer-

ing tasks, such as code search (e.g., [Gu et al., 2018, Li et al., 2019a, Husain et al., 2019]),

code summarization (e.g., [Iyer et al., 2016, Hu et al., 2018, Jiang et al., 2017, Wan et al., 2018]),

and API recommendation (e.g., [Gu et al., 2016b, Gu et al., 2017]). Among these works,

a number of researchers have applied the sequence to sequence methods for mining the

hnatural language, code snippeti pairs, such as the commit message generation. (e.g.,

[Iyer et al., 2016, Jiang et al., 2017]).

• Strength of our work. A major challenge for question generation tasks in our study

is the semantic gap between the code snippet and natural language descriptions. To

bridge the gap between code fragment and natural language queries, we employed a

deep sequence to sequence approach to build the neural language model for both code

snippets and natural language questions. The neural language model automatically

learns common patterns from the large scale source code snippets. Furthermore,

different from the existing sequence to sequence learning approach, we add attention,

copy and coverage mechanism to our sequence-to-sequence architecture to suit our

specific task. The attention mechanism can perform better content selection from the
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input, while the copy mechanism can handle the rare word problems among the code

snippet, and the coverage mechanism can eliminate the meaningless repetitions.

• Weakness of our work. Previous works [Iyer et al., 2016, Hu et al., 2018, Wan et al., 2018]

have shown that incorporating structural information of the source code (i.e., the

AST) can improve the performance of the model, However, considering that the

majority of the code snippets are not parsable in Stack Overflow, we do not use the

AST structural information at the current stage. We plan to use the program repair

algorithm to fix the code snippet in Stack Overflow and employ more contextual

information of the source code in the future.

3.7.3 Question Generation Task

Stack Overflow is a collaborative question answering website, its target audience are soft-

ware developers, maintenance professionals and programmers. Over the recent years, Stack

Overflow has attracted increasing attention from the software engineering research commu-

nity. However, since the questions and answers posted by developers on Stack Overflow

are usually unstructured natural language texts containing code snippets, which makes it

more challenging for researchers to mine and analyze these posts.

• Strength of our work. To improve the software development process, researchers have

investigated the Stack Overflow knowledge-base for various software development

activities, such as predicting the post quality [Ravi et al., 2014, Yao et al., 2013,

Yang et al., 2014a, Arora et al., 2015, Ponzanelli et al., 2014], answer recommenda-

tion [Gkotsis et al., 2014, Xu et al., 2017, Singh and Simperl, 2016], code/questions

retrieval [Xu et al., 2018, Chen et al., 2016, Allamanis et al., 2015, Ganguly and Jones, 2015,

Hen� et al., 2012] etc. However, to the best of our knowledge, this is the first work

which investigates the question generation task in Stack Overflow. We first perform

84



such a task to assist developers to generate a question title when presenting a code

snippet.

• Weakness of our work. We collected more than 1M hcode snippet, questioni pairs

from Stack Overflow, which covers a variety of programming languages (e.g.,

Python, Java, Javascript, C# and SQL). Considering our study is the first step on

this topic, we have published our data to inspire further follow-up work. However,

even though we have cleaned the data via pre-processing, some data may still be

noisy. We plan to improve the dataset quality by further manual checking in the

future.

3.8 Threats to Validity

We have identified the following threats to validity among our study:

Internal Validity Threats to internal validity are concerned with potential errors in our code

implementation and study settings. For the automatic evaluation, in order to reduce errors,

we have double-checked and fully tested our source code. We have carefully tuned the

parameters of the baseline approaches and used them in their highest performing settings

for comparison, but there may still exist errors that we did not note. Considering such cases,

we have published our source code and dataset to facilitate other researchers to replicate

and extend our work.

External Validity The external validity relates to the quality and generalizability of our

dataset. Our dataset is constructed from the official Stack Overflow data dump which con-

tains a variety of programming languages, such as Python, Java, Javascript, C# and SQL.

However, there are still many other programming languages in Stack Overflow which are

not considered in our study. We believe that our results will generalize to other program-

ming languages, due to the overall reasonable similarity in code snippets despite particular

85



language syntax, semantics and APIs. We will try to extend our approach to other program-

ming languages to benefit more users in future studies.

Construct Validity The construct validity concerns the relation between theory and ob-

servation. In this study, such threats are mainly due to the suitability of our evaluation

measures. For the practical manual evaluation, the manual validation could be affected by

the subjectiveness of the evaluators and the human errors. For the human evaluation, the

evaluators’ degree of carefulness, effort and English skills in the examination process may

affect the validity of judgements. We minimized such threats by choosing experienced par-

ticipants who have at least one year of studying/working experience in English speaking

countries, and are familiar with Python and Java programming languages. We also gave

the participants enough time to complete the evaluation tasks.

Conclusion Validity The conclusion validity relates to issues that could affect the ability

to draw correct conclusions about relations between the treatment and the outcome of an

experiment. One issue during the data filtering procedure is that we only keep the ques-

tions which contain several keywords, such as “how”, “what”, “why”. However, since the

questions in Stack Overflow can be rather complicated, our results do not shed light on how

effective our solution is on questions of other kinds. On the other hand, from the human

evaluation analysis, we see a key challenge for our current work is that the questions gener-

ated by our approach suffered from semantic drift. This is because it is difficult to judge a

question poster’s intent by solely looking at his/her code snippet. In such a case, more rel-

evant information such as question description, question tags could further be incorporated

within our model, which may help to generate a question that is more accurate and precise.
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3.9 Summary

In this work, we have proposed a model for the task of automatic question generation based

on a given code snippet. Our model is based on sequence-to-sequence architecture, and en-

hanced with an attention mechanism to perform better content selection, a copy mechanism

to handle the rare-words problem within the input code snippet as well as coverage mech-

anism to discourage the meaningless repetitions. We carried out comprehensive evaluation

on Stack Overflow datasets to demonstrate the effectiveness of our approach, compared

with several existing baselines, our model achieves the best performance in both the au-

tomatic evaluation and human evaluation. We have also released our code and datasets to

facilitate other researchers to verify their ideas and inspire the follow up work. For future

work, we plan to design better models to generate meaningful question titles by considering

extra context information, such as question description. Additional work will be needed to

address this context-sensitive question generation task.
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Chapter 4

DeepAns: Best Answer
Recommendation via Question Boosting

Gao, Z., Xia, X., Lo, D., Grundy, J.C., Technical Q&A Site Answer Recommendation via
Question Boosting, ACM Transactions on Software Engineering and Methodology, vol. 30, no.
1, December 2020, ACM. https://doi.org/10.1145/3412845.

4.1 Introduction

The past decade has witnessed significant social and technical value of Question and An-

swer (Q&A) platforms, such as Yahoo! Answers1, Quora2, and StackExchange3. These

Q&A websites have become one of the most important user-generated-content (UGC) por-

tals. For example, on the Stack Exchange forums, more than 17 million questions have been

asked so far, and more than 11 million pages of these forums are visited daily by users. To

keep up with the fast-paced software development process, the technical Q&A platforms

have been heavily used by software developers as a popular way to seek information and

support via the internet.

StackExchange is a network of online question and answer websites, where each web-

site focuses on a specific topic, such as academia, Ubuntu operating system, latex, etc.

There are a lot of technical Q&A sites which are heavily used by developers, such as Stack
1https://answers.yahoo.com/
2https://www.quora.com/
3https://stackexchange.com
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Overflow (with a focus on programming-related questions), Ask Ubuntu (with a focus on

Ubuntu operating system), Super User (with a focus on computer software and hardware),

and Server Fault (with a focus on servers and networks). These Q&A websites allow users

to post questions/answers and search for relevant questions and answers. Moreover, if a

post is not clear/informative, users routinely provide useful comments to improve the post.

Fig. 4.1 shows an example of an initial post and its associated question comment in Ask

Ubuntu Q&A site. By providing the question comment to the original post, it can assist

potential helpers to write high quality answers since the question is more informative.

In spite of their success and active user participation, the phenomenon of being "an-

swer hungry" is still one of the biggest issues within these Q&A platforms. This concept

means that a very large number of questions posted remain unanswered and/or unresolved.

According to our empirical study in different technical Q&A sites, Ask Ubuntu4 and Super

User5, and Stack Overflow6. we found that (1) developers often have to wait a long time,

spanning from days to even many weeks, before getting the first answer to their questions.

Moreover, around 20% of the questions in Ask Ubuntu and Super User do not receive any

answer at all and leave the askers unsatisfied; and (2) even with provided answers, about

44% questions in Ask Ubuntu and 39% questions in Super User are still unresolved, i.e.,

the question asker does not mark any answer as the accepted solution to their post. In such a

case, information seekers have to painstakingly go through the provided answers of various

quality with no certainty that a valid answer has been provided.

In this work, we aim to address this answer hungry phenomenon by recommending

the most relevant answer or the best answer for an unanswered or unresolved question by

searching from historical QA pairs. We refer to this problem as relevant answer recommen-

dation. We propose a deep learning based approach we name DEEPANS, which consists of
4https://askubuntu.com/
5https://superuser.com/
6https://stackoverflow.com/
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Figure 4.1: Example Post on Ask Ubuntu

three stages: question boosting, label establishment and answer recommendation. Given

a post, our first step is to generate useful clarifying questions via a trained sequence-to-

sequence model. The clarifying question is then appended to the original post as a way of

question boosting, which can help eliminate the isolation between question and answers.

Then, in the label establishment phase, for each enriched question, we pair it with its corre-

sponding answers and automatically label the QA pair as positive, neutral+, neutral� and

negative samples by leveraging four heuristic rules. In the answer recommendation phase,

given a question q and an answer candidate ai, our goal is calculating the matching degree

of the hq, aii pair. We formulate this problem as a four-category classification problem (i.e.,

a question and answer pair can be positive, neutral+, neutral�, or negative related). We pro-

pose a weakly supervised neural network that can be trained with the aforementioned four

kinds of training samples.

The key usage scenarios of DEEPANS are as follows: (1) for unresolved questions

which do not have an asker-accepted answer, developers can use DEEPANS to recommend

the best answers; and (2) for unanswered questions, developers can use DEEPANS to get

the most relevant answers by mining answers to other related questions.
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To evaluate the performance of our proposed approach, we conducted comprehensive

experiments with four datasets, collected from the technical Q&A sites Ask Ubuntu, Super

User and Stack Overflow respectively. The large-scale automatic evaluation results suggest

that our model outperforms a collection of state-of-the-art baselines by a large margin. For

human evaluation, we asked 5 domain experts for their feedback on our generated clarifying

questions and answers. Our user study results further demonstrate the effectiveness and

superiority of our approach in solving unanswered/unresolved questions. In summary, this

paper makes the following contributions:

• Previous studies neglect the value of interactions between the question asker and

the potential helper. We argue that a clarifying question between the question and

answers is an important aspect of judging the relevance and usefulness of the QA

pair. Therefore, we train a sequence-to-sequence model to generate useful clarifying

questions for a given post, which can fill the lexical gap between the questions and

answers. To the best of our knowledge, this is the first successful application of

generating clarifying questions for technical Q&A sites.

• We present a novel method to constructing positive, neutral+, neutral�, negative

training samples via four heuristic rules, which can greatly save the time consuming

and labor intensive labeling process.

• We develop a weakly supervised neural network model for the answer recommen-

dation task. For any question answer pairs, we fit the QA pair into our model to

calculate the matching score between them; the higher matching score is estimated

by our model, the better chance the answer will be selected as the best answer. In

particular, the Q&A sites can employ our approach as a preliminary step towards

marking the potential solution for the unanswered/unresolved question. This can

avoid unnecessary time spent by developers to browse questions without an accepted
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solution.

• Both our quantitative evaluation and user study show that DEEPANS can help devel-

opers find relevant tehnical question answers more accurately, compared with state-

of-the-art baselines. We have released the source code of DEEPANS and the dataset7

of our study to help other researchers replicate and extend our study.

The rest of the paper is organized as follows. Section 5.3 presents the details of our

approach to identifying the most relevant answers. Section 5.4 presents the experimental

set up and evaluation metrics. Section 4.4 presents the results of our approach on auto-

matic evaluation. Section 4.5 presents the results of our approach on human evaluation.

Section 4.6 discusses the strength of our approach and the threats to validity in our study.

Section 5.8 presents key related work and techniques of this work. Section 5.9 concludes

the paper with possible future work.

4.2 Approach

We present our approach named DEEPANS, which ranks candidate answers from a relevant

answer pool and recommends the most relevant answer to developers. In general, our model

follows a three-stage process: Question Boosting, Label Establishment, and Answer Rec-

ommendation. Particularly, in the question boosting phase, DEEPANS uses an attentional

sequence-to-sequence recurrent neural network [Sutskever et al., 2014] to generate possi-

ble clarifying questions for a given post. These generated questions are appended to the

original post as a way of question boosting. Then DEEPANS automatically constructs pos-

itive, neutral+, neutral� and negative training samples for each question and answer pair

via four heuristic rules. In the answer recommendation phase, DEEPANS trains another

convolutional neural network to calculate the matching score between a given question and
7https://github.com/beyondacm/DeepAns
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a candidate answer, the higher a similarity score is estimated, the more probable the answer

will be selected as the best answer.

The underlying principle of applying the recurrent networks for the question boost-

ing task is that compared with CNN neural networks, RNN architectures are dedicated se-

quence models, and this family of architectures has gained tremendous popularity to promi-

nent applications, e.g., machine translation [Bahdanau et al., 2014, Sutskever et al., 2014].

For the answer recommendation task, we select the convolutional networks. Theoretically,

we could also employ the recurrent networks for answer recommendation. However, due

to the fact that computing score for each answer in the answer candidate pool is time-

consuming, CNN architecture has better performance, lower perplexity, and more impor-

tantly, it runs much faster [Dauphin et al., 2017, Kim, 2014] than RNN architecture for text

encoding tasks, i.e., we can process all time steps in parallel via convolutional networks in

both training and testing processes.

4.2.1 Question Boosting

The task of question boosting is to automatically generate clarifying questions from the

title of an initial post. This can be formulated as a sequence-to-sequence learning problem.

Given Q is a sequence of words within the question title of an initial post, our target is to

generate a useful clarifying question CQ, which is relevant, syntactically and semantically

correct. To be more specific, the goal is to train a model ✓ using hq, cqi pairs such that the

probability P✓(CQ|Q) is maximized over the given training dataset. Mathematically, this

query boosting task is defined as finding y, such that:

y = argmaxCQP✓(CQ|Q) (4.1)

P✓(CQ|Q) can be seen as the conditional log-likelihood of the clarification question CQ

given the input post Q. The encoder-decoder architecture has been used in addressing

such a problem. We demonstrate an example of the question boosting process in Fig 4.2.
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Figure 4.2: Question boosting process

The original post title “error loading update manager ?” is fed into the encoder, and the

clarifying question “do you change server location ?” is the decoder target output.

Encoder The sequence of words within a post title is fed sequentially into the encoder,

which generates a sequence of hidden states. Our encoder is a two-layer bidirectional

LSTM network,
�!
fwt =

����!
LSTM2

⇣
xt,
��!
ht�1

⌘

 ��
bwt =

 ����
LSTM2

⇣
xt,
 ��
ht�1

⌘

where xt is the given input word token at time step t, and
�!
ht and

 �
ht are the hidden states

at time step t for the forward pass and backward pass respectively. The hidden states (from

the forward and backward pass) of the last layer of the encoder are concatenated to form a

state s as s = [
�!
fwt;
 ��
bwt].

Decoder Decoder is singe layer LSTM network, initialized with the state s as s =

[
�!
fwt;
 ��
bwt]. Let qwordt be the target word at time stamp t of the clarifying question.

During training, at each time step t the decoder takes as input the embedding vector yt�1 of

the previous word qwordt�1 and the previous state st�1, and concatenates them to produce

the input of the LSTM network. The output of the LSTM network is regarded as the

decoder hidden state st, as follows:

st = LSTM1 (yt�1, st�1) (4.2)

The decoder produces one symbol at a time and stops when the END symbol is emitted.

The only change with the decoder at testing time is that it uses output from the previous
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word emitted by the decoder in place of wordt�1(since there is no access to a ground truth

then).

Attention Mechanism To effectively align the target words with the source words, we

model the attention [Bahdanau et al., 2014] distribution over words in the target sequence.

We calculate the attention (ati) over the ith input token as :

eti = vttanh (Wehhi +Wshst + batt) (4.3)

ati = softmax
�
eti
�

(4.4)

Here vt, Wsh and batt are model parameters to be learned, and hi is the concatenation

of forward and backward hidden states of source-code encoder. We use this attention ati to

generate the context vector c⇤t as the weighted sum of encoder hidden states :

c
⇤
t =

X

i=1,..,|x|

atihi (4.5)

We further use the c⇤t vector to obtain a probability distribution over the words in the vo-

cabulary as follows,

P = softmax (Wv[st, c
⇤
t ] + bv) (4.6)

where Wv and bv are model parameters. Thus during decoding, the probability of a word is

P (qword). During the training process for each word at each timestamp, the loss associated

with the generated question is :

Loss = � 1

T

TX

t=0

logP (qwordt) (4.7)

Once the model is trained, we do inference using beam search [Graves, 2012] and ap-

pend the generated clarifying question to the original post title. The beam search is pa-
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Figure 4.3: Label Establishing Process

rameterized by the possible paths number k. The inference process stops when the model

generates the END token, which stands for the end of the sentence.

4.2.2 Label Establishment

According to our empirical study results from Section 2, the answer hungry phenomenon

widely exists in technical Q&A forums, i.e. only a small proportion of questions have an

“resolved” answer, while many others remain unanswered and/or unresolved. Due to the

reason of professionality of technical questions, only the experts with specific knowledge

are qualified to evaluate the matching degree between a question and an answer. Therefore

it is very hard to find such annotators and/or the creation of training sets requires a substan-

tial manual effort. To address such a problem, We propose a novel scheme to automatically

labeling each QA pair as positive, neutral+, neutral�, and negative samples. Fig 4.3 shows

an example of our labeling process. We propose four heuristic rules to label the QA pairs:

• Positive samples: for a given question Qi, we pair it with its marked "best" answer

(if it has one) Ai1, and label this qa pair as Positive.

• Neutral+ samples: for a given question Qi, we pair it with its non-best answer (an-

swers within the same question thread, except the one marked as the best answer),

and label this qa pair as Neutral+.
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• Neutral� samples: for a given question Qi, we randomly select one answer Aj from

questions similar to it, then label this question-answer pair as Neutral�.

• Negative samples: for a given question Qi, we pair it with a randomly selected answer

Ak from non-similar questions and label this QA pair as Negative.

Since we are recommending answers from candidate answers of questions relevant to the

query question, if the retrieved questions are not relevant to the query question, it is unlikely

we can select the best answer from the answer candidates pool. We followed the question

retrieval method proposed by Xu et al. [Xu et al., 2017] to search for similar questions,

which has been proven to be more effective for this task of relevant question retrieval. We

used the IDF-weighted word embedding to calculate the similarity score between the query

and the question title. Thereafter, a set of similar questions can be identified by selecting

the top-k ranked questions.

After this label establishing process, we can gather large amounts of labeled examples,

which greatly saves the time-consuming and labor-intensive labeling process.

4.2.3 Answer Recommendation

After collecting large amounts of labeled training data via label establishment, we are able

to train the deep learning model based on the four kinds of training samples.

We present a weakly supervised neural network architecture for ranking QA pairs.

Fig. 5.3 demonstrates the workflow of our proposed model. The main building blocks of our

architecture are two convolutional neural networks [Kim, 2014, Kalchbrenner et al., 2014].

These two underlying sub-models work in parallel, mapping questions and answers to their

distributional vectors respectively, which are then used to calculate the final similarity score

between them.

Sentence Matrix The input to our model are hq � cq, ai pairs, where q and a stands for

the question and answer of a labelled QA pair, cq stands for the clarifying questions gener-
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Figure 4.4: Overall architecture of the answer recommendation model.

ated by our question boosting model. The questions (including the original questions and

clarifying questions) and answers are parallel sentences, where each sentence is treated as

a sequence of words: (w1, ..., ws), where each word is drawn from a vocabulary V. Words

are represented by distributional vectors w 2 R1⇥d via looking up in a pre-trained word

embedding matrix W 2 Rd⇥|V |.

For each input hq � cq, ai pair, we build two sentences matrix Sq and Sa 2 Rd⇥|s| for

each question and answer respectively, where the ith column represents the word embed-

ding of wi at corresponding position i in a sentence.

Convolutional feature maps To learn to capture and compose features of individual words

in a given sentence from low-level word embeddings into higher level semantic concepts,

we apply two identical convolutional neural network blocks to the input sentence matrix

Sq and Sa respectively.

More formally, the convolution operation ⇤ between an input sentence matrix Sq/a 2

Rd⇥|s| and a filter F 2 Rd⇥m (called a filter of size m) results in a vector c 2 R|s|�m+1,
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where each component is computed as follows:

ci = (S ⇤ F)i =
X

k,j

�
S[:,i�m+1:i] ⌦ F

�
kj

(4.8)

In the above equation, ⌦ is the element-wise multiplication and S[:,i�m+1:i] is a matrix

slice of size m along the columns. Note that the convolution filter is of the same dimen-

sionality d as the input sentence matrix. As shown in Fig. 5.3, it slides along the column

dimension of S producing a vector c 2 R|s|�m+1. Each component ci is the result of com-

puting an element-wise product between a column slice of S and the filter matrix F, which

is then flattened and summed producing a single value. By applying a set of filters (called a

filter bank) F 2 Rn⇥d⇥m to sequentially convolved with the sentence matrix S will generate

a convolutional feature map matrix C 2 Rn⇥(|s|�m+1).

Pooling layer Following that, we pass the output from the convolutional layer to the pool-

ing layer, whose goal is to aggregate the information and reduce the representation. We

apply a max pooling operation [Collobert et al., 2011] over the convolutional feature map

and take the maximum value bc = max{ci} as the feature corresponding to a particular

filter. The idea is to capture the most important feature - one with the highest value - for

each feature map.

Matching score layer The output of the penultimate convolutional and pooling layers x

is passed to a series of fully connected layer followed by a softmax layer. It computes the

probability distribution over the four kinds of labels (positive, neutral+, neutral�, nega-

tive):

P (y = j|x) = ex
T ✓j

PK
k=1 e

xT ✓k
(4.9)

where ✓k is a weight vector of the k-th class. x can be thought of as a final abstract repre-

sentation of the input QA pair obtained by a series of transformations from the input layer

through a series of convolutional and pooling operations.

For the final matching score, we want this score to be high if the input qa pair is pos-
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itive and neutral+, and to be low if it is negative and neutral�. Therefore we define the

calculation of the similarity score as follows:

Score = !pos⇥P (pos)+!neu+⇥P
�
neu+

�
�!neu�⇥P

�
neu���!neg⇥P (neg) (4.10)

Algorithm 1 DeepAns Algorithm (Offline Training)
Input: Data dump of technical Q&A sites
Output: 1.Question Boosting model; 2.Answer recommendation model

1 Extract hq, cqi pairs from data dump Train hq, cqi pairs with attentional-based seq2seq
model Save the model as Question Boosting model Extract hq, ai pairs from data dump
for qi, ai 2 hq, aipairs do

2 if qi has accepted-answer then
3 if ai is accepted-answer then
4 Label hqi, aii as Positive
5 end
6 else
7 Label hqi, aii as Neutral+

8 end
9 Select similar answer aj then Label hqi, aji as Neutral� Select random answer

ak then Label hqi, aki as Negative
10 end
11 end
12 for qi 2 labelledhq, aipairs do
13 Generate cqi for qi using Question Boosting model Append cqi to qi to make labelled

hqi � cqi, aii pair
14 end
15 Train labelled hq � cq, ai pairs with CNN-based classification model Save the model as

Answer Recommendation model
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Algorithm 2 DeepAns Algorithm (Online Recommendation)
Input: User search query quser
Output: A set of candidate answers with a matching score for each answer

16 Generate cq for quser using Question Boosting model Search top-k similar questions for
the given query quser Add top-k questions to similar question set SQ for qi 2 SQ do

17 for aj 2 qi do
18 Add answer to candidate answers set CA
19 end
20 end
21 for ai 2 CA do
22 Pair ai with expanded query to make a hquser � cq, aii pair Fit hquser � cq, aii pair

to Answer Recommendation model Compute the final matching score si via Equa-
tion 4.10

23 end
24 Rerank answers in CA via matching scores

There are four weights as shown in Equation 4.10. We initially set all the four weights

to 1 at the beginning. Then the optimal settings of these weights are carefully tuned on our

validation set (detailed in Section 4.4.3). We use the final matching score to measure the

relevance between a question and an answer.

4.2.4 DeepAns Algorithm

We divide our model into two components: offline training and online recommendation.

The detailed algorithms of DeepAns for offline training and online recommendation are

presented in Algorithm 1 and Algorithm 2 respectively. To be more specific, during the

offline training, we use the data from technical Q&A sites to train the question boosting

model (lines 1-3) and answer recommendation model (lines 4-20). When it comes to the

online recommendation, for a given user query, we first collect a pool of answer candidates

via finding its similar questions (lines 1-8). After that, we use the trained question boosting

model to perform query expansion, then pair it with each of the answer candidates and

fit them into the trained answer recommendation model to estimate their matching scores

(lines 9-14).
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4.3 Experiment Setup

In this section, we first describe the data sets used throughout our experiments. We then

discuss the baselines we compare to our new DeepAns approach and our experimental

settings. Lastly, we explain the automatic evaluation process.

4.3.1 Data Preparation

We collected data from the official dump of StackExchange, a network of online question

and answer websites. The StackExchange data dump contains timestamped information

about the posts, comments as well as the revision history made to the post. Each post com-

prises a short question title, a detailed question body, corresponding answers and multiple

tags. For each post, users can add clarifying questions to posts for further discussion. After

receiving one or more answers, the asker can select one answer that is most suitable for

their question as the accepted/best answer. We choose three different technical Q&A sites,

i.e., Ask Ubuntu, Super User and Stack Overflow for our experiment. These three technical

Q&A sites are commonly used by software developers and each one focuses on a specific

area. For instance, Ask Ubuntu and Super User focus on Ubuntu system questions and

computer software/hardware questions respectively, and Stack Overflow is the most pop-

ular programming related Q&A site which has been heavily used by software developers

via the internet. As with our previous empirical study, we only focus on the Python and

Java related questions in Stack Overflow for this study, referred to as SO (Python) and SO

(Java) respectively in this study.

The experimental dataset creation process is divided into three phases: extracting hq, cqi

pairs, constructing labelled hq, ai pairs, and constructing labelled hq � cq, ai pairs, where

q stands for the question, cq stands for the clarifying question, and a stands for the answer.

Table 4.1 describes the statistics of our collected datasets.

1. Extract hq, cqi Pairs: For each post, we follow the methods described in Section ??
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Table 4.1: Number of Training/Validation/Testing Samples

Ask Ubuntu
# hq, cqi pairs 68,216 # hq, ai pairs 289,062
# Positive pairs 79,726 # Neutral+ pairs 49,884
# Neutral� pairs 79,726 # Negative pairs 79,726

Super User
# hq, cqi pairs 87,081 # hq, ai pairs 447,221
# Positive pairs 119,305 # Neutral+ pairs 89,306
# Neutral� pairs 119,305 # Negative pairs 119,305

SO (Python)
# hq, cqi pairs 311,127 # hq, ai pairs 2,372,232
# Positive pairs 610,948 # Neutral+ pairs 539,388
# Neutral� pairs 610,948 # Negative pairs 610,948

SO (Java)
# hq, cqi pairs 456,077 # hq, ai pairs 3,013,859
# Positive pairs 734,977 # Neutral+ pairs 808,928
# Neutral� pairs 734,977 # Negative pairs 734,977

to extract the clarifying questions. According to our manual analysis results, we sum-

marize a list of keywords associated with non-clarifying questions, such as “edit”,

“related”, “vote”, etc. We preprocess our dataset to remove all instances that involve

such keywords. We also summarize a list of key phrases associated with the clari-

fying questions, such as “do you”, “have you”, “how”, “which”, etc. We retained

the pairs that include the above key phrases. After that, we pair the original post

with its associated clarifying question as hq, cqi pairs. We extract a total of 68,216

pairs in Ask Ubuntu, and 87,081 pairs in Super User. The number of hq, cqi pairs in

Stack Overflow are much larger, we obtain a total of 311,127 pairs for SO (Python)

and 456,077 pairs for SO (Java). These collected hq, cqi pairs are used to train a

sequence-to-sequence model for question boosting.

2. Construct labelled hq, ai Pairs: To make the hq, ai pairs, we first extract the ques-

tions that having explicitly marked accepted answers. Then for each question, we

pair it with the accept answer to make the positive sample, with non-accepted an-

swer to make the neutral+ sample, with an answer to a similar question to make

the neutral� sample, and with an answer to a randomly selected question to make
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the negative sample. We have to clarify that some questions do not have the non-

accepted answers; this is the reason why the number of neutral+ samples is smaller

than the number of other samples, such as Ask Ubuntu, Super User and SO (Python),

while some other questions have more than one non-accepted answers, which re-

sults in the number of neutral+ samples is bigger than those of the rest, such as SO

(Java). For the final dataset, we construct 289,062 and 447,221 hq, ai labelled pairs

for Ask Ubuntu and Super User, and 2,372,232 and 3,013,859 hq, ai labelled pairs

for SO (Python) and SO (Java) respectively. It is obvious that the number of qa pairs

in Stack Overflow far outnumber those of other technical Q&A sites. After the la-

bel establishment process, we largely expand the labelled dataset for training. We

randomly sample 5,000 questions for validation and 5,000 questions for testing re-

spectively, and kept the rest for training. It is worth mentioning that we first used the

validation set for model selection regarding the accuracy of QA pairs classification

results, which is a middle result of the answer selection target. After that, we reused

the validation set for tuning the four weights as shown in Equation 4.10. The testing

set was used only for testing the final solution to confirm the actual predictive power

of our model with optimal parameter settings.

3. Construct labelled hq� cq, ai Pairs: For each labelled hq, ai pair, we feed the origi-

nal question to the trained question boosting model to generate a clarifying question.

After that, we append the clarifying question to the original question to construct the

hq � cq, ai pairs. The number of the hq � cq, ai pairs is identical with the number of

hq, ai pairs.

4.3.2 Implementation Details

We implemented our DeepAns system in Python using the PyTorch framework. The main

parameters of our deep learning model (tuned using the validation dataset) were as follows:
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• Question Boosting: We train an attentional sequence-to-sequence model for this

subtask. Previous studies have shown that the deep sequence-to-sequence model

can achieve state-of-the-art performance on different tasks [Sennrich et al., 2016,

Iyer et al., 2016, Hu et al., 2018, Gao et al., 2020a]. We also used the parameter set-

tings from [Gao et al., 2020a] for training the hq, cqi pairs in this study. We use a

two-layer bidirectional LSTM for the encoder and a single-layer LSTM for the de-

coder. We set the number of LSTM hidden states to be 256 in both encoder and

decoder. Optimization is performed using stochastic gradient descent (SGD) with a

learning rate of 0.01. During decoding, we perform beam search with a beam size of

10.

• Answer Recommendation: Kim et al. [Kim, 2014] have shown that convolutional

neural networks trained on top of pre-trained word vectors achieved promising per-

formance for sentence-level classification tasks. Hence in our work, we also followed

the experiment settings of their studies. We initialize the word embeddings from our

unsupervised corpus and set the dimension of word embedding d to 100. The width

m of the three convolution filters is set to 3, 4, 5 and the number of convolution fea-

ture maps is set to 100. We use ReLu activation function and a simple max-pooling

function. The size of the hidden layer is equal to the size of the join vector obtained

after concatenating question and answer vectors from the distributional models.

To train both networks, we used stochastic gradient descent with shuffled mini-batches.

The batch size is set to 64. Both network are trained for 50 epochs with early stopping, i.e.,

we stop the training if no update to the best accuracy on the validation set has been made

for the last 5 epochs.
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4.3.3 Baselines

To demonstrate the effectiveness of our proposed DEEPANS, we compared it with several

comparable systems. We briefly introduced these and how they are used for the task of

predicting the best answer among a set of answer candidates. DEEPANS is built with the

semantic features of words in their dimensions, we used the average word vector of a

sentence as features for training all of the baseline models for a fairer comparison. For each

baseline method, their parameters were carefully tuned, and the parameters with the best

performance were used to report the final comparison results with our DeepAns approach

on the same datasets:

• Learning to Rank The answer prediction problem of our task is similar to the tra-

ditional ranking task [Savenkov, 2015] [Agarwal et al., 2012], where the given ques-

tion and a set of answer candidates are analogous to a query and a set of relevant

entities. Hence our task is transformed to find an optimal ranking order of these

answer candidates according to their relevance to a given question. We choose

the AdaRank[Xu and Li, 2007] and LambdaMART [Burges, 2010] as the baseline

learning-to-rank methods for our task. We used the positive, neutral+ as the target

value to define the order of each example. This is reasonable because the label estab-

lishment is part of our model, and the heuristic rules for setting up the neutral� and

negative samples are never used before.

• Traditional Classifiers Recently Calefato et al. [Calefato et al., 2019] proposed to

approach the best answer prediction problem as a binary-classification task, and in

their work they assessed 26 best-answer prediction classifiers in Stack Overflow. We

choose the two most effective traditional classifiers from their experimental results,

xgbTree and RandomForest, for use in our study. As they were doing binary classi-

fication, to adapt to our training data, we kept our positive samples as positive and
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consider neutral+ samples as negative. Thereafter, we utilize the classification mod-

els to generate an answer ranking list by pairwise comparison between the answer

candidates.

• AnswerBot Xu et al. [Xu et al., 2017] proposed a framework called AnswerBot to

generate an answer summary for a non-factoid technical question. Their user study

showed a promising performance for selecting salient answers by their method. We

adapted their AnswerBot approach for our task of recommending answers among

a set of answer candidates. To be more specific, for a given question, AnswerBot

generates a ranked list of candidate answers according to the ranking scores. This

ranked list of answers is then used to calculate the precision of answer selection

results.

• IR-DeepAns To verify the effectiveness of using clarifying questions as a way of

question boosting, compared with our sequence to sequence model, we also consid-

ered a simple IR-based approach using similar clarifying questions as a query expan-

sion mechanism. For a given question qi, we first identified the most similar question

qj in hq, cqi dataset, and then retrieved the clarifying question cqj associated with qj .

We applied IDF-weighted word embedding methods to calculate the similarity score

between two questions. We feed the qi and cqj into our model and name this baseline

as IR-DeepAns. This model is close to ours.

4.3.4 Evaluation Methods

Experiment Setup To thoroughly evaluate our model, we conducted a large-scale auto-

matic evaluation experiment. We used IDF-weighted word embedding (described in Sec-

tion 4.2.2) to calculate the similarity score between two question titles. For each testing qa

pair hqt, ati, we then performed K-NN (K=5) to search for similar questions over the whole
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data set for the given testing question qt. We then constructed an answer candidate pool by

gathering the top-5 answers associated with these selected questions. Since the top-similar

question extracted by K-NN is always the original post itself, we can ensure that the ac-

cepted answer at paired with the original post qt is always in the answer candidate pool.

In other words, the answer candidate pool for testing question qt contains 5 answers, one

of which is the accepted answer at. In summary, for the 5,000 testing questions of each

platform, we constructed 5,000 ⇥ 5 QA pairs in total to serve as the final evaluation sets.

Following this, for each testing question qt, we first applied the pre-trained question boost-

ing model to generate a clarifying question cqt. We then paired the given question with

each answer in the candidate pool to construct the hqt� cqt, ati pairs. The hqt� cqt, ati pair

was fitted into our model to calculate a matching score, and we then generated a ranking

order for each group of candidate answers according to their matching scores to the given

question.

Evaluation Metrics Since the evaluation answer candidate pool includes the accepted an-

swer, one way to evaluate our approach is to look at how often the accepted answer is

ranked higher up among members of the answer candidate pool. Thus we adopted the

widely-accepted metric, P@K and DCG@K to measure the ranking performance of our

model.

• P@K is the precision of the best answer in top-K candidate answers. Given a ques-

tion, if one of the top-k ranked answers is the best answer, we consider the rec-

ommendation to be successful and set success(besti 2 topK) to 1, otherwise, we

consider the recommendation to be unsuccessful and set success(besti 2 topK) to

0. The P@K metric is defined as follows:

P@K =
1

N

NX

i=1

[success(besti 2 topK)] (4.11)

• DCG@K is another popular top-K accuracy metric that measures a recommender
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system performance based on the graded relevance of the recommended items and

their positions in the candidate set. Different from P@K, the intuition of DCG@K

is that highly-ranked items are more important than low-ranked items. According

to this metric, a recommender system gets a higher reward for ranking the correct

answer at a higher position. The success(besti 2 topK) is same with the previ-

ous definition, while the rankbesti is the ranking position of the best answer i. The

DCG@K is defined as follows:

DCG@K =
1

N

NX

i=1

[success(besti 2 topK)]

log2(1 + rankbesti)
(4.12)

4.4 Automatic Evaluation Results

To gain a deeper understanding of the performance of our approach, we conducted an

analysis on our large-scale automatic evaluation results. Specifically, we mainly focus on

the following research questions:

• RQ-1: How effective is our approach under automatic evaluation?

• RQ-2: How effective is our use of Question boosting and Label establishing meth-

ods?

• RQ-3: How effective is our approach under different parameter settings?

4.4.1 Effectiveness Analysis

The automatic evaluation results of our proposed model and aforementioned baselines over

different technical Q&A sites are summarized in Table 4.2, Table 4.3, Table 4.4 and Ta-

ble 4.5 respectively. We do not report P@5 and DCG@1 in our tables, since DCG@1 is

always equal to P@1 and P@5 will always be equal to 1. The best performing system for

each column is highlighted in boldface. As can be seen, our model outperforms all the

109



other methods by a large margin in terms of P@K score and DCG@K score. From the

table, we can observe the following points discussed below.

1. Compared to traditional classifiers, such as xbgTree and RandomForest, one can

clearly see that our approach performs much better. For example, it improves over

xgbTree on P@1 by 42% on Ask Ubuntu dataset, and 39% on Super User dataset.

2. Compared with the method proposed by [Calefato et al., 2019], which only has two

kinds of labels (positive and negative), our approach constructs four kinds of labeled

data (positive, neutral+, neutral�, negative) automatically via incorporating the label

establishing process. By introducing the neutral+ and neutral� training samples, our

approach can learn how to separate the best answer from the similar ones, which may

explain the obvious advantage of our model in P@1.

3. Our approach also outperforms the AnswerBot by a large margin. We attribute this to

the following reasons. Firstly, by adding a clarifying question into our model, we can

properly fuse the information between the isolated question sentences and answers,

which can reduce the lexical gap between them and better pair the answer with asso-

ciated questions. Secondly, we use two parallel convolutional neural network block

to learn optimal vector representation of QA pairs that preserving important syntactic

and semantic features. To compute the matching score, we relate the rich representa-

tion features via a weakly supervised way from the available training data.

Table 4.2: Automatic evaluation (Ask Ubuntu)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5
RandomForest 26.6± 1.6% 49.2± 1.6% 70.8± 1.6% 87.1± 0.4% 40.9± 1.5% 51.7± 1.5% 58.8± 0.9% 63.7± 0.8%
XgbTree 28.8± 1.4% 53.6± 1.3% 73.0± 1.0% 87.9± 1.2% 44.5± 1.2% 54.2± 0.9% 60.7± 0.8% 65.3± 0.7%
LambdaMART 25.4± 1.1% 45.7± 1.0% 65.7± 1.2% 84.0± 1.0% 38.5± 1.0% 47.5± 1.1% 55.8± 0.9% 62.3± 0.6%
AdaRank 24.9± 1.1% 45.3± 1.1% 65.0± 1.0% 82.9± 0.8% 38.1± 1.2% 47.2± 1.1% 55.2± 1.0% 61.8± 0.7%
AnswerBot 27.7± 1.6% 52.1± 1.5% 73.5± 1.0% 89.2± 0.7% 43.1± 1.5% 53.8± 1.1% 60.5± 0.8% 64.7± 0.8%
DeepAns-IR 37.2± 2.0% 59.9± 2.1% 77.5± 1.7% 92.0± 1.0% 50.8± 1.5% 59.6± 1.3% 65.8± 1.1% 68.7± 0.8%
DeepAns 40.9± 1.5% 61.7± 1.9% 77.9± 0.9% 92.0± 0.9% 54.0± 1.7% 62.1± 1.1% 68.2± 1.1% 71.3± 0.9%

4. Compared to our model, the learning-to-rank based approach achieved the worst per-

formance regarding the P@K and DCG@K scores with different depths. The learn-
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Table 4.3: Automatic evaluation (Super-User)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5
RandomForest 27.4± 1.6% 50.2± 1.7% 70.5± 1.4% 87.3± 0.9% 41.7± 1.6% 51.9± 1.4% 59.2± 1.2% 64.1± 0.9%
XgbTree 29.2± 1.6% 55.9± 1.3% 74.2± 0.9% 88.5± 0.7% 47.6± 1.2% 56.7± 1.1% 63.0± 0.9% 67.4± 0.8%
LambdaMART 25.9± 1.1% 47.1± 1.0% 66.1± 1.0% 84.5± 1.2% 39.8± 1.0% 48.8± 1.0% 56.4± 0.7% 62.9± 0.6%
AdaRank 25.1± 1.2% 46.2± 1.1% 65.7± 1.0% 84.1± 0.9% 38.4± 1.1% 47.6± 1.1% 55.7± 1.0% 62.2± 0.9%
AnswerBot 29.8± 1.4% 53.9± 1.2% 74.1± 1.3% 89.6± 0.8% 45.0± 1.2% 55.1± 0.9% 61.8± 0.7% 65.8± 0.6%
DeepAns-IR 38.8± 2.1% 63.4± 1.8% 80.7± 1.2% 92.5± 1.2% 54.3± 1.8% 63.0± 1.3% 68.1± 1.2% 70.9± 1.0%
DeepAns 40.7± 1.9% 65.8± 1.1% 82.2± 1.1% 93.9± 0.8% 56.5± 1.2% 64.7± 1.2% 69.8± 1.0% 72.1± 0.8%

Table 4.4: Automatic evaluation (SO-Python)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5
RandomForest 34.0± 1.3% 57.2± 1.0% 74.8± 0.7% 89.7± 0.6% 48.6± 0.9% 57.4± 0.6% 63.9± 0.7% 67.8± 0.5%
XgbTree 35.4± 1.5% 58.4± 1.9% 74.2± 1.5% 88.7± 1.1% 49.9± 1.6% 57.8± 1.3% 64.1± 1.0% 68.4± 0.8%
LambdaMART 32.6± 1.7% 56.2± 2.2% 73.7± 1.7% 88.3± 0.8% 47.5± 1.9% 56.3± 1.7% 62.5± 1.2% 67.1± 1.0%
AdaRank 29.9± 1.3% 53.3± 1.1% 71.4± 0.9% 85.8± 0.8% 44.7± 1.1% 53.7± 0.8% 59.9± 0.8% 65.4± 0.6%
AnswerBot 31.8± 1.8% 52.8± 2.0% 71.6± 1.9% 88.7± 0.9% 44.5± 1.7% 54.3± 1.6% 62.6± 1.2% 68.1± 0.9%
DeepAns-IR 42.8± 1.3% 62.8± 1.9% 78.2± 2.0% 90.0± 0.9% 55.4± 1.6% 63.1± 1.6% 68.2± 1.0% 72.1± 0.8%
DeepAns 45.7± 1.6% 65.7± 1.6% 80.2± 1.9% 92.1± 1.2% 58.3± 1.4% 65.6± 1.3% 70.7± 1.1% 73.8± 0.8%

ing to rank approach ignores the fact that ranking is a prediction task on a list of

objects. Because they require a large number of training instances with ranking la-

bels, therefore if the ground truth ordering of input candidates is lacking, they are

unable to capture the relative preference between two QA pairs. This may explain

the reason why its performance is comparatively suboptimal.

5. The DeepAns-IR approach has its advantage as compared to other baselines exclud-

ing our proposed model. This is because DeepAns-IR employs the same data labeling

strategy and the model structure as ours. Moreover, it also incorporates the IR-based

approach to expand the query with clarifying questions. This verifies the effective-

ness of our model for question and answering tasks in technical Q&A sites. The only

difference between DeepAns-IR and our model is that our model generates clarifying

Table 4.5: Automatic evaluation (SO-Java)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5
RandomForest 32.9± 1.0% 56.1± 1.1% 74.1± 1.1% 89.5± 0.7% 47.6± 0.9% 56.6± 0.8% 63.2± 0.6% 67.2± 0.5%
XgbTree 35.9± 1.3% 59.0± 1.2% 75.7± 0.9% 89.1± 1.0% 50.5± 1.0% 58.8± 0.7% 64.6± 0.7% 68.8± 0.5%
LambdaMART 31.5± 1.2% 54.4± 1.2% 72.3± 1.7% 87.6± 1.3% 46.0± 0.8% 54.9± 1.1% 61.5± 0.7% 66.3± 0.5%
AdaRank 29.2± 2.1% 52.1± 2.2% 69.9± 1.8% 86.2± 1.5% 43.6± 1.8% 52.5± 1.7% 59.6± 1.5% 64.9± 1.1%
AnswerBot 34.7± 1.5% 58.0± 2.1% 77.8± 1.9% 90.2± 1.5% 49.4± 1.6% 59.3± 1.5% 64.7± 1.1% 68.4± 0.8%
DeepAns-IR 42.3± 2.9% 63.7± 2.3% 78.3± 2.1% 91.8± 1.6% 55.7± 2.4% 63.1± 2.2% 68.9± 1.8% 72.1± 1.4%
DeepAns 45.5± 1.6% 65.9± 2.2% 79.9± 1.6% 92.0± 0.9% 58.4± 1.9% 65.4± 1.5% 70.6± 1.2% 73.7± 0.9%
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questions via deep sequence to sequence learning, while the DeepAns-IR retrieves

the clarifying questions from the existing database according to a similarity score,

which relies heavily on whether similar questions can be found and how similar the

questions are. This results in our model’s superior performance as compared to the

DeepAns-IR approach.

6. By comparing the evaluation results of the different technical Q&A sites, i.e., Ask

Ubuntu, Super User and Stack Overflow, we can see that our proposed model is

stably and substantially better than the other baselines. This suggests that our ap-

proach behaves consistently across different technical Q&A platforms, regardless of

the different topic of the specific technical forums. This supports the likely gener-

alization and robustness of our approach. We also notice that the advantage of our

proposed model is much more obvious on SO (Python) and SO (Java) as compared

to Ask Ubuntu and Super User. The reason for this phenomenon is likely the large

number of training samples from Stack Overflow which benefits the classification

performance of our model.

In summary, our model substantially outperforms the baselines under automatic evalu-

ation.

4.4.2 Ablation Analysis

Ablation analysis is used to verify the effectiveness of the DeepAns using Question boosting

and Label establishing methods. More specificly, we compare our approach with several

of its incomplete variants:

• Drop CQ: removes the clarifying question part generated by Question boosting

model.

• Drop Labeling: removes the training samples generated by Label establishing
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Table 4.6: Ablation Evaluation (Ask Ubuntu)

Measure Drop CQ Drop Labeling DeepAns
P@1 34.2± 1.3% 31.3± 1.2% 40.9± 1.5%
P@2 58.9± 1.8% 50.5± 1.1% 61.7± 1.9%
P@3 77.3± 1.5% 68.9± 1.3% 77.9± 0.9%
P@4 91.4± 0.8% 86.0± 1.1% 92.0± 0.9%

DCG@2 49.8± 1.5% 43.4± 0.9% 54.0± 1.7%
DCG@3 59.5± 1.2% 51.7± 0.8% 62.1± 1.1%
DCG@4 65.8± 0.9% 59.1± 0.7% 68.2± 1.1%
DCG@5 68.5± 0.7% 64.5± 0.5% 71.3± 0.9%

Table 4.7: Ablation Evaluation (Super User)

Measure Drop CQ Drop Labeling DeepAns
P@1 35.8± 1.4% 29.7± 1.4% 40.7± 1.9%
P@2 60.2± 1.0% 53.9± 1.9% 65.8± 1.1%
P@3 79.6± 0.9% 72.5± 1.5% 82.2± 1.1%
P@4 92.1± 0.5% 89.5± 0.9% 93.9± 0.8%

DCG@2 51.2± 1.1% 45.0± 1.6% 56.5± 1.2%
DCG@3 60.9± 0.9% 54.0± 1.4% 64.7± 1.2%
DCG@4 66.3± 0.7% 61.4± 1.1% 69.8± 1.0%
DCG@5 69.3± 0.7% 65.6± 0.8% 72.1± 0.8%

model, to do this, we keep the best QA pairs as positive samples, and make other

answer pairs as negative samples. Our model was trained as a binary classification

model.

We performed the ablation analysis experiment on Ask Ubuntu and Super User respec-

tively. The ablation analysis results are presented in the Table 4.6 and Table 4.7. We can

observe the following points.

1. By comparing the results of our approach with each of the variant model, we can see

that no matter which method we dropped, it does hurt the performance of our model.

This verifies the importance and effectiveness of these three mechanisms.
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Figure 4.5: Sensitivity Analysis on Ask-ubuntu (left) and Super-user (right)

2. By comparing the results of DeepAns with Drop CQ, it is clear that incorporating

a clarifying question improves the overall performance. When adding a clarifying

question to our model, the P@k score is improved by 19.5% and 13.9% on Ask

Ubuntu and Super User dataset respectively. We attribute this to that the useful clar-

ifying question can reduce the lexical gap between answer and questions, which can

make the information properly fused between them.

3. By comparing the results of DeepAns with Drop Labeling, we can measure the per-

formance improvements achieved due to the incorporation of “Label establishment”

process. After removing the training samples constructed by Label establishment,

there is a significant drop overall in every evaluation measure. This is because by

employing our label establishing process, the size of the training data is largely ex-

panded, in the meanwhile, by introducing neutral+ and neutral� samples, our model

can learn to better distinguish best answer from similar ones.

In summary, both the question boosting module and label establishing model are effective

and helpful to enhance the performance of our approach.

4.4.3 Parameters Tuning Analysis

In this section, we tune the key parameters of our model for sensitivity analysis and robust-

ness analysis.
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Sensitivity Analysis We have four key parameters (i.e., !pos,!neu+,!neu�,!neg) in Equa-

tion 4.10. The optimal settings of these weights were carefully tuned on our dataset. We

demonstrate the weights tuning on Ask Ubuntu and Super User respectively. In particular,

the validation set was leveraged to validate our model and the grid search method was em-

ployed to select optimal parameters between 0 and 10 with small but adaptive step sizes.

The step sizes were 0.01, 0.1, and 1 for the range of [0, 0.1], [0.1, 1] and [1, 10], respec-

tively. The parameters tuning process was varying one weight while fixing the other three

weights. For example, in order to tune the parameter !neg, we fix the other three parameters

and change !neg from 0 to 10 with different step sizes. After that, we fix !neg to its optimal

settings for tuning other parameters. Fig. 4.5 illustrates the performance of our model with

respect to different weights on Ask Ubuntu and Super User respectively. From the figure,

we have the following observations:

1. Even though the four parameters vary in a relatively wide range, the performance of

our proposed model DEEPANS changes within small ranges near the optimal settings.

This indicates that our model is non-sensitive to the parameters around their optimal

settings, which further supports the generalization ability of our approach.

2. We notice that most parameters achieve their best performance in the range of [1, 3],

we thus recommend to initialize the weights in Equation 4.10 to be around the above

range, which is close to the optimal settings of our model.

Robustness Analysis In real world Q&A sites, there is no guarantee to find the exactly

matched questions from the archive, expecially when k is small. Therefore we have to

enlarge k to improve the recall of the similar questions and hence the “matched answers”.

However, a larger k may introduce more noise into the answer candidate pool with more

irrelevant answers. This can then increase the difficulty of our answer recommendation

task.
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Figure 4.6: Robustness Analysis on Ask-ubuntu (left) and Super-user (right)

To verify the robustness of our proposed approach, we set different thresholds for the

number of returned questions by k-NN method. More specifically, we varied the number of

returned similar questions k from 6 to 10 and measured the performance of our approach,

we then reported average P@1-5 over each dataset under different parameter settings of

k. The results of Ask Ubuntu and Super User are shown in Fig. 4.6. We can make the

following observations:

1. The trend in overall performance of our model decrease as k increases, which sup-

ports our concern that larger k settings introduce more noises and bring bigger chal-

lenges for our task. By analyzing the performance of our approach with respect to

different k, we notice that our approach achieves good performance when k varies

from 5 to 7, while still ensuring the “matched answer” is highly-ranked. We thus

recommend setting k within the above range for real-world applications.

2. The advantage of our proposed model is more obvious on P@1 compared with other

metrics(P@2 � 5). Even when we set k to 10, the performance of our model on

P@1 is still on a par with the best performance of other baselines, while k is set to

5 in these baselines (See Table 4.2 and Table 4.3). This reveals that our model can

perform well under a noisy context, which shows the robustness of our model.

In summary, our model is non-sensitive and robust under different parameter settings.
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4.5 User Study Setup and Results

Since automatic evaluation results do not always agree with the actual ranking preference of

real-world users, we also performed a small, qualitative user study to measure how humans

actually perceive the results produced by our approach. Specifically, we mainly focus on

the following research questions:

• RQ-4: How effective is the question boosting results of our approach under human

evaluation?

• RQ-5: How effective is the question answering results of our approach under human

evaluation?

For human evaluation, we used the Ask Ubuntu and Stack Overflow (Python) platforms

to perform our user study. We invited 5 evaluators to participate in our user study; all of

these participates have more than three years of studying/working experience in software

development process, have more than one year of experience using technical Q&A sites,

and are familiar with the Ubuntu system and Python programming languages. We did not

limit the amount of time for evaluators to complete the user study.

Human Evaluation on Question Boosting Results To gain a deeper understanding of how

the clarifying questions impact the results in our study, we conducted human evaluation

studies to measure how humans perceive the question boosting results. To do this, we

consider two modalities in our user study: Relevance and Usefulness. Relevance measures

how relevant the clarifying question is to the original question title. Usefulness measures

how useful the clarifying question is for adding missing information for the original post.

We randomly sampled 25 hq, ai pairs from Ask Ubuntu and SO (Python) respectively. For

each question, we provided two clarifying questions. One was generated by our approach,

the other was generated by the IR-based approach, i.e., DeepAns-IR. We also provided the

accepted answer to the question as a reference. We asked the participants to manually rate
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Table 4.8: Human Evaluation of Question Boosting Results
Data Model Score(1)R Score(2)R Score(3)R AvgR Score(1)U Score(2)U Score(3)U AvgU

Ask Ubuntu IR-based 21.6% 43.2% 35.2% 2.14 28.8% 34.4% 36.8% 2.08
Ours 18.4% 32.8% 48.8% 2.30 22.4% 35.8% 42.4% 2.20

SO (Python) IR-based 19.2% 36.0% 44.8% 2.26 26.4% 32.0% 41.6% 2.15
Ours 17.6% 32.0% 50.4% 2.33 23.2% 29.6% 47.2% 2.24

the generated clarifying questions on a scale between 1 and 3 (1 = worst, 3 = best) across

the above modalities. The volunteers were blinded as to which question title was generated

by our approach.

Evaluation Results. We obtained 125 groups of scores from evaluators for Ask Ubuntu and

SO (Python) respectively. Each group contains two pairs of scores, which were rated for

clarifying questions produced by IR-based approach and ours. Each pair contains a score

for the Relevance modality and a score for Usefulness modality. The score distribution

and average score of Relevance and Usefulness across the two methods are presented in

Table 4.8. From the table, we can observe the following points:

1. Our approach performs better than the IR-based approach on both modalities. We at-

tribute this to the following reason: the IR-based approach relies heavily on whether

similar clarifying questions can be retrieved from the existing hq, cqi dataset. Con-

sidering the complexity of the questions in technical Q&A sites, there may exist only

a few questions that are very similar to the given one, hence it is difficult to retrieve

relevant clarifying questions from the training set.

2. Both the IR-based approach and our approach can produce relevant and useful clari-

fying questions for the given question. This further verifies the clarifying question is

helpful in adding missing information and reducing the gap between questions and

answers. We also notice that there are still quite a few questions that received low

scores for Relevance and Usefulness modalities. Even though the clarifying ques-

tions generated by our approach are still not perfect, our study is the first step on

this topic and we also release our data to inspire follow-up work for utilizing the
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Figure 4.7: Evaluation Examples of Question Boosting.

clarifying questions.

Evaluation Examples. A major challenge for question answering tasks is the semantic

gap between the questions and answers. This is because the questions from technical Q&A

sites are, more often than not, very specific and complex, and oriented towards expert

professional answers. To fill the gap between question and answers, we employ a deep

encoder-decoder model to generate a clarifying question for a given post as a way of ques-

tion boosting. Fig. 4.7 presents three examples of human evaluation on question boosting

results (the words that appear in both clarifying questions and answers are highlighted).

From these cases, we can see that:

1. The clarifying questions produced by our approach as well as the IR-based approach

generally perform well across both modalities. It is clear that the clarifying question

can reduce the lexical gap between the answer and the questions, which can add

missing information and make the information better linked between question and

answers. For example, in the first and second case, our approach generates “xdg-

open” and “sudo apt-get install” for the clarifying questions which also appear in

the answers. Thus, the added information can eliminate and/or reduce the isolation

between questions and answers. We attribute this to the advantage of our model for
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learning common patterns automatically from the hq, cqi pairs.

2. Not all the clarifying questions are appreciated by the evaluators; an example is

shown in the last row of Fig. 4.7. For such cases, even though the generated clarify-

ing question is not optimal to the participants, our approach still precisely replicates

the salient tokens, i.e., “thunderbird” from the question title, which also increases the

likelihood of selecting the right answer from answer candidates.

In summary, the clarifying questions generated by our approach are effective under human

evaluation results.

Human Evaluation on Question Answering Results Since the final goal of our study is

recommending relevant answers to developers, we also performed a human evaluation to

measure the effectiveness of question answering results with respect to human developers.

To be more specific, we measured how developers perceive the answers produced by our

approach to solved questions, unresolved questions and unanswered questions. For solved

questions, we compared our approach with the ground truth; for unresolved questions, we

compared our approach with xgbTree and Answerbot methods; and for unanswered ques-

tions, we compared our approach with Stack Exchange search engine and Google search

engine.

User Study on Solved Questions In order to investigate the agreement of the developers on

solved questions, we randomly sampled 25 examples of solved questions from the testing

set of Ask Ubuntu and SO (Python) respectively. For each solved question, we provided

two answer candidates. One answer was the accepted answer – we refer to it as the ground

truth in this study. The other answer was produced by our approach. After that, each

evaluator was asked to manually rate on the two answer candidates from 1 to 3, according

to the acceptance of the answer. Score 3 means that the evaluator strongly agrees with the

acceptance of the answer, and score 0 means that the evaluator strongly disagrees with the

acceptance of the answer. It is worth emphasizing that the answer selected by our approach
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Table 4.9: Human Evaluation - Ask Ubuntu

Type Approach Score(1) Score(2) Score(3) Rankavg

Solved Ground Truth 7.2% 18.4% 74.4% 2.67
DeepAns 19.2% 32.8% 48.0% 2.29

Unresolved
xgbTree 15.2% 26.4% 58.4% 2.43

AnswerBot 12.8% 28.0% 59.2% 2.46
DeepAns 12.0% 23.2% 64.8% 2.53

Unanswered
SE Engine 51.2% 33.6% 15.2% 1.64

Google 25.6% 32.8% 41.6% 2.16
DeepAns 22.4% 30.4% 47.2% 2.25

Table 4.10: Human Evaluation - SO (Python)

Type Approach Score(1) Score(2) Score(3) Rankavg

Solved Ground Truth 5.6% 14.4% 80.0% 2.74
DeepAns 18.4% 31.2% 50.4% 2.32

Unresolved
xgbTree 12.0% 26.4% 61.6% 2.50

AnswerBot 9.6% 32.0% 58.4% 2.49
DeepAns 10.4% 21.6% 68.0% 2.58

Unanswered
SE Engine 54.4% 32.0% 13.6% 1.59

Google 30.4% 31.2% 38.4% 2.08
DeepAns 26.4% 28.0% 45.6% 2.19

may actually be the same with the ground truth answer, and the participants were blinded

as to which answer is the ground truth.

Evaluation Results. We collected 125 groups of scores from participants for Ask Ubuntu

and SO (Python) respectively. Each group contains two scores, which were rated for an-

swers of the ground truth and ours. We count the proportion of different scores and cal-

culate the average score for each method. The evaluation results for Ask Ubuntu and SO

(Python) are presented in Table 4.9 and Table 4.10 respectively. From the table, we can

observe the following points:

1. The evaluators are in agreement with acceptance of the ground truth answers for most

cases. For example, around 75% of the ground truth answers in Ask Ubuntu and 80%

answers in SO (Python) are appreciated by the volunteers.

2. The ground truths are better than our approach. This is reasonable because the ground

truth answers are usually high-quality answers that have been accepted by the devel-
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opers. Even though our approach is not as good as the ground truth at the current

stage, we observe that a small number of answers produced by our approach are

marked with score 1. This indicates that the answers selected by our approach are

meaningful and acceptable for the majority of questions.

Evaluation Examples. Fig. 4.8 shows three examples of the user study on solved ques-

tions. It can be seen that:

1. In general, our approach can produce acceptable answers. Sometimes, the answers

chosen by our approach are actually more accepted by the volunteers than the ground

truth answers. For example, in the first sample, three evaluators gave a score of 3 to

the ground truth answer, while four evaluators gave a score of 3 to ours. However,

our answer does not belong to the current question thread and is selected from answer

candidates of other questions (e.g., Python: duplicating each element in a list). This

further justifies the feasibility of addressing answer hungry problem by selecting

answers from the historical QA dataset.

2. Outputs from our model are not always “correct”. For example, in the last sample,

the information seeker asks a question of “Can I download Ubuntu 12.04 on a note-

book/laptop?”, while the answer provided by our approach is about how to download

a file from the packages. This example reveals that considering the complexity of the

questions in technical Q&A sites, the gap between the ground truth answers and ours

is still large, and hence there is still a large room for our question answering system

to be further improved.

User Study on Unresolved Questions To investigate how developers perceive our ap-

proach to solve the unresolved questions, we sampled 25 unresolved questions for Ask

Ubuntu and SO (Python) respectively. Each question has multiple answer candidates that

have not been selected as Accept. By computing the matching score between question and
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Ex1. Solved Question (493367 - SO Python):  
Python: For each list element apply a function across the list ?

Ex2. Solved Question (742371 - SO Python)  
Why does Python skip elements when I modify a list 
while iterating over it?

Ex3. Solved Question (230712 - Ask Ubuntu):  
Can I download Ubuntu 12.04 on a notebook/laptop?

Answer(Ground Truth) :   
score_3(3) / score_2(2) / score_1(0) 
You can do this using list comprehensions and min() (Python 3.0 
code): 
>>> nums = [1,2,3,4,5] 
>>> [(x,y) for x in nums for y in nums] 
>>> min(_, key=lambda pair: pair[0]/pair[1]) 
 
Note that to run this on Python 2.5 you'll need to either make one of 
the arguments a float, or do from __future__ import division so that 
1/5 correctly equals 0.2 instead of 0.

Answer(Ground Truth) :  
score_3(4) / score_2(1) / score_1(0)  
 
This is a well-documented behaviour in Python, that you 
aren't supposed to modify the list being iterated through. 
Try this instead: 
for i in x[:]: 
    x.remove(i) 
The [:] returns a "slice" of x, which happens to contain all 
its elements, and is thus effectively a copy of x.

Answer(Ground Truth) :  
score_3(5) / score_2(0) / score_1(0) 
 
Ubuntu-desktop runs on netbooks and laptops.  
If you are concerned about the performance of your 
laptop running the desktop version of Ubuntu you should 
try Lubuntu which is a lightweight distro based on 
Ubuntu but using the LXDE desktop environment. 
Lubuntu 12.10 is the latest version.

Answer(Ours) :   
score_3(4) / score_2(1) / score_1(0)  
Using list comprehension: 
>>> oldList = [1, 2, 3, 4]
>>> newList = [x for x in oldList for _ in range(2)]
>>> newList 
Above list comprehension is similar to following nested for loop. 
newList = []
for x in oldList:
    for _ in range(2):
        newList.append(x)

Answer(Ours) :  
score_3(3) / score_2(2) / score_1(0)  
 
You edit the list while loop over it. Since you only keep 
pointers for looping you remeber positions, but they 
change since elements vanish. Try remebering the 
elements you want to delete by something like:  
… 
Using List Comprehensions from the start leads to: 
dt_list = [3600, 2700, 1800, 900] 
dt_list = [x for x in dt_list if (3600/x).is_integer()]

Answer(Ours) :  
score_3(2) / score_2(2) / score_1(1) 
 
Yes, you can download the .deb file from 
packages.ubuntu.com and then open it like an archive 
(using file-roller). There are two more archives inside, 
you'll need to open "data.tar.gz".

�1

Figure 4.8: Examples of Solved Questions

each answer candidate, we can identify a best answer via our approach, xgbTree and An-

swerbot respectively (note that different approaches may choose the same answer as the

best answer). Following that, we ask each evaluator to rank three answer candidates pro-

duced by our approach, xgbTree and Answerbot from 1 to 3 (3 is the best) according to

the acceptance of the answer. It is worth emphasizing that the answers identified by our

approach and others could be the same, and the order of the answers is randomly decided.

Evaluation Results. The human evaluation results of unresolved questions for Ask Ubuntu

and SO (Python) are presented in Table 4.9 and Table 4.10 respectively. From the table, we

can see that:

1. Our model performs better than xgbTree and Answerbot baselines. This further in-

dicates that the answers selected by our approach are more appreciated by evalua-

tors. The results of human evaluation on unresolved questions are consistent with

large-scale automatic evaluation results, which reconfirms the effectiveness of our

approach for identifying the best answer in unresolved questions.

2. Compared with the evaluation results of ground truth, the average scores between the

answers of unresolved questions and solved questions are close, which supports our

previous assumption that users forget to mark the accepted answer is not uncommon
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Ex1. Unresolved Question (12109648 - SO Python):  
Python: how to adjust x axis in matplotlib ?

Ex2. Unresolved Question (12035394 - SO Python)  
Python - replace random items in column

Ex3. Solved Question (1169424 - Ask Ubuntu):  
How do I put two Ubuntu OSes on the same hard drive??

Answer(xgbTree) :   
score_3(3) / score_2(2) / score_1(0) 
 
Look at the docs : 
    xlocs, xlabs = plt.xticks() 
put in xlocs your range, and in xlabs what you want to display. then: 
    plt.xticks(xlocs, xlabs)

Answer(xgbTree  & Ours) :  
score_3(4) / score_2(1) / score_1(0) 
I would strongly suggest reading a python primer, the way 
your problem solved can be done in two steps  
1. read items from file - reference  
2. use math.random() to change random string- reference  
by know how to do these points you can easily achieve 
what you intend to do.

Answer(xgbTree) :  
score_3(3) / score_2(2) / score_1(0) 
You don't put two OS in the same partition. Each instance of Ubuntu 
or an Ubuntu family OS requires its own partition. You can run the 
installer for the second version you wish to install, and choose 
'Something Else' when you get to Installation Type, and let it share 
the same drive; just not the same partition. See this step-by-step 
workflow illustration for Ubuntu 18.04 LTS.

Answer(Answerbot) :   
score_3(3) / score_2(1) / score_1(1) 
The size of the plot can be changed by setting the dynamic rc 
settings of Matplotlib. These are stored in a dictionary named 
rcParams. The size of the plot figure is stored with the key 
figure.figsize.

Answer(Anwerbot) :  
score_3(3) / score_2(1) / score_1(1) 
 
Use this to generate a random string  
import os
random_string = os.urandom(string_length) 
 
To loop over a file line by line, do  
with open('file') as fd:
    for line in fd:
        # do stuff 
 
No need to close the file handle. use split to well, split on 
whitespace and place the result in an array (indexing 
starts at 0) Read more at docs.python.org.  
Please update your question with some code when you 
have gotten that far... Good luck

Answer(Ours & Answerbot) :  
score_3(3) / score_2(2) / score_1(0) 
Assuming there is nothing you want to preserve on your hard drive, 
you can do the following: 
1. When you install the first instance of Ubuntu, at some point during 
installation there will be a window called "Installation type". Choose 
"Something else". 
2. On the next window you can erase and create partitions. Make 
sure you create at least two partitions large enough for Ubuntu 
installations. 
3. Select the partition on which you want to install the first instance of 
Ubuntu and press Change. Select Ext4 under "Use as" and "/" under 
"Mount point". 
4. Go ahead, finish the installation. 
5. Boot from the installation USB again and repeat step 1. 
6. No need to repartition, as that was done in step 2. already. 
7. Select the second partition and repeat Step 3. for it. 
8. Go ahead, and finish the installation of the second instance. 
The next time you boot the computer Grub will allow you to boot to 
whichever instance you want.

Answer(Ours) :   
score_3(4) / score_2(1) / score_1(0) 
 
It sounds like you want to changes the limits of the plotting display - 
for that use xlim (and ylim for the other axis). To change the xticks 
themselves is provided in the answer by @fp. Show below is an 
example using without/with xlim: 
    import pylab as plt
    plt.subplot(2,1,1)
    plt.hist(X,bins=300)
    plt.subplot(2,1,2)
    plt.hist(X,bins=300)
    plt.xlim(0,100)
    plt.show()
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Figure 4.9: Examples of Unresolved Questions

in technical Q&A sites.

Evaluation Examples. Fig. 4.9 shows the examples of the user study on unresolved ques-

tions. It can be seen that:

1. The overall answer quality for the unresolved questions is good. This is because

these answers are directly related to the specific problems of the questions, which are

more suitable to the needs of information seekers.

2. Even all the answer candidates of an unresolved question aim at solving the same

problem. As can be seen, some answers identified by our approach stand out from

the rest and are more appreciated by evaluators, such as samples 1-2. This further

verifies the ability of our approach to select the most relevant answer from a set of

answer candidates.

User Study on Unanswered Questions Similar to unresolved questions, We also ran-

domly sampled 25 examples of unanswered questions for Ask Ubuntu and SO(Python)

respectively. For each unanswered question, considering that developers usually search for

technical help using Google search engine and/or the Q&A site search engine itself, we

compare our approach against two baselines built based on the above search engines re-
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spectively. We used the question title of the post as the search query. For Google search

engine, we add “site:stackoverflow.com” and “site:askubuntu.com” to the end of the search

query so that it searches only posts on Stack Overflow and Ask Ubuntu respectively. We use

the first ranked question returned by Google search engine as the most relevant question,

we extracted the accept answer or the answer with the highest vote if there is no accepted

answer of the relevant question. For technical Q&A site search engine, we refer to the first

ranked related question recommended by the technical Q&A site search engine as the most

relevant question, and extracted the associated accepted answer or the highest-vote answer.

After constructing the evaluation set for unanswered questions, for each unanswered ques-

tion, we asked the evaluators to rank on the 3 answer candidates from 1 to 3 (3 for the best

answer), The higher grade indicates that the answer is more suitable to the given question.

Please note that the participants do not know which answer is generated by which approach.

Evaluation Results. The expert evaluation results of unanswered questions for Ask Ubuntu

and SO (Python) are presented in Table 4.9 and Table 4.10. We can observe the following

points:

1. Compared with baselines, our model outperforms SE (Stack Exchange search en-

gine) and Google (Google search engine). This suggests that the answers produced

by our approach are considered to be more suitable to the given question by the eval-

uators. We attribute this to the reason that Google search engine identifies the answer

via searching from similar questions, thus it is unable to judge the matching degree

between the questions and answers. In contrast, our approach estimates the match-

ing score using the context information of the qa pair, which fills the gap between

questions and answers. The superior performance of our approach in terms of aver-

age score further supports the effectiveness of our approach in identifying the best

answer.
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Ex1. Unanswered Question (57147927 - SO Python):  
Python: How to import package correctly in python?

Ex2. Unresolved Question (57152181- SO Python)  
How to read a bit field integer in python?

Ex3. Solved Question (1179515 - Ask Ubuntu):  
Ubuntu 18.04 reboots randomly ?

Answer(Stack Overflow) :   
score_3(0) / score_2(2) / score_1(3) 
 
For dictionaries x and y, z becomes a shallowly merged dictionary 
with values from y replacing those from x. In Python 3.5 or greater:  
z = {**x, **y} …  
Resources on Dictionaries. 

Answer(Stack Overflow) :  
score_3(0) / score_2(1) / score_1(4) 
 
For dictionaries x and y, z becomes a shallowly merged 
dictionary with values from y replacing those from x. In 
Python 3.5 or greater:  
z = {**x, **y} … 
Resources on Dictionaries. 

Answer(Stack Overflow) :  
score_3(2) / score_2(2) / score_1(1) 
Your OEM system vendor Asus probably placed the 24GB SSD drive 
for caching purposes, e.g. Intel Smart Response. This could explain 
why you can't set it as a boot drive. I suffer from the same issue in my 
HP laptop with an mSATA SSD slot and HP's response to this is "this 
is intentional”. ……
One downside of this approach is that your system will fail to boot 
even if just one of the drives fails.

Answer(Google) :   
score_3(2) / score_2(2) / score_1(1) 
 
"I have a medium size Python application with modules files in 
various subdirectories.” Good. Make absolutely sure that each 
directory include a __init__.py file, so that it's a package. 
"I have created modules that append these subdirectories to 
sys.path” Bad. Use PYTHONPATH or install the whole structure Lib/
site-packages. Don't update sys.path dynamically. It's a bad thing. 
Hard to manage and maintain. 
Bad. Use PYTHONPATH or install the whole structure Lib/site-
packages. Don't update sys.path dynamically. It's a bad thing. Hard 
to manage and maintain. …… 
My current project has 100's of modules, a dozen or so packages. 
Each module imports just what it needs. No magic. 

Answer(Google) :  
score_3(1) / score_2(3) / score_1(1) 
 
The following code will load the requested portions of the 
binary number into the fields: 
class Register(object): 
    def __init__(self,x): 
        self.fieldwidths = [6,12,6,4,12,8,16] 
        …… 
Which will result in: 
BitField1 = 0b111011  
BitField2 = 0b111011101110  
…… 
The results may not be what you wanted because of the 
fact that the data you provided is not 64 bits but rather 128 
bits, which would mean that the 64 most significant bits of 
the input data will be ignored by the program.

Answer(Google) :  
score_3(3) / score_2(2) / score_1(0) 
 
This sounds like a combination of issues.

In the case of an individual system rebooting randomly I would want 
to replace the power supply in the chassis with one that provided 
more than adequate amperage for the connected components (as 
you want it to keep running during periods of peak power draw).

In the case where the entire rack reboot simultaneously I would look 
at an inadequate UPS as the root cause or possibly an overheat 
condition due to AC failure in the server location.

An intermittent short in the feed cord to the multi-tap could also result 
in the multiple reboot result that you describe.

Answer(Ours) :   
score_3(3) / score_2(2) / score_1(0) 
 
Since there are already many answers on SO for this*, I will focus 
on question (2). About what is a better code organization: 
… 
The (relative) import is done as follows, from inside module_2: 
    from ..pkg1 import module1 as m1  
Alternatively, you can use absolute imports, which refer to the top 
package name: 
    from top_pkg_name.pkg1 import module1 as m1  
In such an organization, when you want to run any module as a 
script, you have to use the -m flag: 
    python -m top_pkg_name.pkg1.module1

Answer(Ours) :   
score_3(4) / score_2(1) / score_1(0) 
 
 
In Python 3 you can use something like this: 
    int.from_bytes(byte_string, byteorder='little')

Answer(Ours) :   
score_3(3) / score_2(2) / score_1(0) 
 
I'm guessing hardware problems.

Your Lubuntu problem "Press S to skip mounting or Press M for 
Manual recovery." could have been from corrupted filesystems. And 
random reboots could be an indication of bad RAM too.

I had a laptop with bad RAM that would reboot just like that, after 
20-40 minutes, the RAM was physically dirty & I think even had 
corroded contacts, after a while it wouldn't work at all with that RAM

�1

Figure 4.10: Examples of Unanswered Questions

2. For the unanswered questions, a gap for the answer quality between unanswered

questions and solved/unresolved questions still exists. We also notice that our ap-

proach received more low scores (score = 1) with unanswered questions as com-

pared to solved/unresolved questions. This is because in technical Q&A sites, some

questions are rather complicated and sophisticated and it is hard to find suitable

question-specific answers for these questions.

Evaluation Examples. Fig. 4.10 shows three examples of the user study on unanswered

questions. we can observe the following points:

1. The search engine of the technical Q&A site achieves worst performance. For exam-

ple, in sample 1 and sample 2, the SE search engine recommends the same answer to

two different questions. This is why the evaluators give comparatively low scores to

the answers identified by SE search engine.

2. Our approach has its advantage as compared to the Google search engine (e.g., sam-

ple 1-2). This is because the Google search engine does not consider the contextual
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information between the questions and answers, but instead only identifies the an-

swers based solely by searching for similar questions. By contrast, our approach

takes the question as well as the candidate answers and calculates the matching score

between the question and the answers, which results in its superior performance com-

pared to the other baselines.

3. In technical Q&A sites, some question titles are relatively abstract and uninformative.

For example, in sample 3, even the answer selected by our approach is relevant and

meaningful, we can not make sure if the answer solves the actual problem or not. For

such cases, more detailed information, such as the description in the question body,

could be considered when searching for appropriate answers.

In summary, our model is comparatively effective under human evaluation for question

answering tasks in technical Q&A sites.

4.6 Discussion

In this section, we first discuss the strength of our approach as well as the threats to validity

of our work, after that we analyze the outlier cases involving in our data creation process.

4.6.1 Strength of Our Approach

To address the answer hungry problem in technical Q&A sites, we propose a deep learn-

ing based approach DEEPANS to search relevant answers from historical QA pairs. We

summarized the strength of our approach as follows:

Neural Language Model for Question Boosting One advantage of our approach is train-

ing an attentional sequence-to-sequence model for generating clarifying questions as a way

of question boosting. Instead of searching similar clarifying questions, our approach builds

a neural language model for linking semantics of question and clarifying questions. The

neural language model is able to handle the uncertainty in the correspondence between the
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questions and clarifying questions. Our approach automatically learns common patterns

automatically from the hq, cqi pairs. The encoder itself is a neural language model which

is able to remember the likelihood of different kinds of questions. Following that, the de-

coder learns the context of the questions fills the gap between the questions and clarifying

questions.

Label Establishment for Data Augmentation Due to the reason of the professional ques-

tions in technical Q&A sites, it is thus very hard, if not possible, to find experts and

annotators for manual labeling the QA pairs. In this paper, we present a novel labeling

scheme to automatically construct positive, neutral+, neutral�, and negative training sam-

ples. Guided by our four heuristic rules, this label establishment process can collect large

amounts of labeled QA pairs, which greatly saves the time-consuming and labor-intensive

labeling process.

Deep Neural Network for Answer Recommendation We present a weakly supervised

neural network for the answer recommendation task in technical Q&A sites. Our model

architecture is able to incorporate the aforementioned four types of training samples for

ranking QA pairs. Our work first uses the deep neural network to solve the problem of

best answer selection in technical Q&A sites, which is able to alleviate the answer hungry

phenomenon that widely exists in technical Q&A forums.

4.6.2 Threats to Validity

We have identified the following threats to validity among our study:

Internal Validity Threats to internal validity are concerned with potential errors in our code

implementation and study settings. For the automatic evaluation, in order to reduce errors,

we have double-checked and fully tested our source code. We have carefully tuned the

parameters of the baseline approaches and used them in their highest performing settings

for comparison, but there may still exist errors that we did not note. Considering such cases,
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we have published our source code and dataset to facilitate other researchers to replicate

and extend our work.

External Validity The external validity relates to the quality and generalizability of our

dataset. Our dataset is constructed from the official StackExchange data dump. We focus

on three technical Q&A sites, i.e., Ask Ubuntu, Super User and Stack Overflow for our

experiment. These three technical Q&A sites are commonly used by software developers

and each one focuses on a specific area. However, there are still many other technical

Q&A sites in StackExchange which are not considered in our study (e.g., Server Fault).

We believe that our results will generalize to other technical Q&A sites as well, due to the

ability of our approach to identify the best answer from a set of answer candidates. We

will try to extend our approach to other technical Q&A sites to benefit more users in future

studies.

Construct Validity The construct validity concerns the relation between theory and obser-

vation. In this study, such threats are mainly due to the suitability of our evaluation mea-

sures. For human evaluation, the subjectiveness of the evaluators, the evaluators’ degree

of carefulness, and the human errors may affect the validity of judgements. We minimized

such threats by choosing experienced participants who have at least three years of study-

ing/working experience in the software development process, and are familiar with Ubuntu

system and Python programming languages. We also gave the participants enough time to

complete the evaluation tasks.

Model Validity The model validity relates to model structure that could affect the learn-

ing performance of our approach. In this study, for the answer recommendation task, we

choose a CNN-based model due to the optimum results achieved by [Kim, 2014]. Recent

studies [Lai et al., 2015, Zhou et al., 2016] have shown that the RNN-based model can also

achieve promising performance on the text classification task, which is similar to ours.

For the question boosting task, we use the vanilla sequence-to-sequence model. Recent
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Table 1

Outlier 
Examples

Q (Ask Ubuntu): How to install SiS 
671/771 Video Drivers in ubuntu?

A(Positive): This is an easy how-to: http://
sites.google.com/site/easylinuxtipsproject/sis

A(Neutral+): The display driver for sis would be already 
installed in Ubuntu. xserver-xorg-video-sis is the display 
driver for all Sis and XGI video driver. …

Q (SO Python): How can I create a 
regular expression in Python?

A(Positive): Try something like this:  
r’[a-zA-Z0-9]+_[^_]+_[a-zA-Z0-9]+\.[a-zA-Z0-9]+’.  

A(Neutral-): https://www.debuggex.com is also pretty 
good. It's an online Python (and a couple more 
languages) debugger, which has a pretty neat 
visualization of what does and what doesn't match. A 
pretty good resource if you need to draft a regexp 
quickly.

Q (Ask Ubuntu): How to share 
hotspot through SSH tunnel?

A(Neutral+): Oh, it works just as that. I didn't notice I 
have to check the rule specifying the table explicit: … 

A(Neutral-): … Here's two options that do work, though: 
1. use sshuttle …  2. set up OpenVPN on the remote 
system and your local system

�1

Figure 4.11: Outlier Examples in Label Establishment

research has proposed new models, such as the pointer-generator [See et al., 2017], trans-

former [Vaswani et al., 2017] and bert [Devlin et al., 2018]. However, our results do not

shed light on the effectiveness of employing other deep learning models with respect to

different structures and new advanced features. We will try to use other deep learning

models for our tasks in future work and compare them to those we report in this paper.

4.6.3 Outlier Cases Study

As detailed in Section 4.2.2, we build our training samples via four heuristic rules, we thus

can not ensure that there are no outlier cases distant from our heuristic rules. The outlier

cases will produce a series of wrong preference pairs and hinder the learning performance

of our model. Fig. 4.11 shows three outlier examples for label establishment. From the

figure we can see that:

1. From the first example, it can be seen that, the quality of its non-accept answer in

terms of informativeness and relevance are better than the accepted ones, not to men-

tion that the link provided within the Positive sample has been not available. This

shows the outlier case that the non-accept answers may be better than the accepted
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answers.

2. From the second example, it can be seen that, for a given question, the answers from

its similar questions are more descriptive than its own. This shows the outlier cases

that the answers of other questions may be better than its own.

3. From the last example, it can be seen that, the answers from its similar questions may

provide more information cues than its non-accept answers.

Detecting and removing these outlier cases before building the training samples will benefit

the learning performance of our proposed DEEPANS model, we will focus on this research

direction in the future.

4.7 Related Work

In this section, we describe the related studies on best answer retrieval, query expansion in

software engineering, and deep learning in software engineering.

4.7.1 Best Answer Retrieval

Great effort has been dedicated to addressing the question answering tasks on Q&A

sites [Adamic et al., 2008, Tian et al., 2013a, Calefato et al., 2019, Zhang et al., 2007,

Jenders et al., 2016, Calefato et al., 2016, Sahu et al., 2016, Nie et al., 2017]. Conventional

techniques for retrieving answers primarily focus on complementary features of the Q&A

sites. For example, Adamic et al. [Adamic et al., 2008] reported the first study on best an-

swer prediction in Yahoo! Answers using user-related features. Following Adamic et al.’s

study, Tian et al. [Tian et al., 2013a] trained a classifier on a dataset from Stack Overflow

without relying on user-related features. Recently, Calefato et al. [Calefato et al., 2019]

modelled the answer prediction task as a binary classification problem, they assessed 26

best answer prediction model in Stack Overflow. Different from these works, we present
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a novel weakly supervised neural network architecture for ranking answers for a given

question. To the best of our knowledge, our work is the first to apply deep neural network

to the specific problem of best answer selection in Q&A sites. Our approach can not

only identify best answers from a list of candidate answers, but also recommend the most

relevant answers for these unanswered posts. Besides, we also compare with Calefato

et al.’s [Calefato et al., 2019] approach, and the experimental results have shown that the

improvement is substantial.

4.7.2 Query Expansion in SE

Query expansion has long been investigated as a way to improve the results returned

by a search engine [Haiduc et al., 2013, Hill et al., 2014, Lu et al., 2015, Xu et al., 2017,

Rao and Daumé III, 2018, Nie et al., 2016, Li et al., 2016, Azizan and Bakar, 2015, Huang et al., 2018].

Some software engineering researchers have employed query expansion to improve the

performance of tasks such as code search, answer summary, and similar question recom-

mendation. For example, Haiduc et al. [Haiduc et al., 2013] proposed an approach that

can recommend a good query reformulation strategy by performing machine learning on

a set of historical queries and relevant results. Hill et al. [Hill et al., 2014] proposed a

query expansion tool named Conquer, which introduces a novel natural language based

approach to organize and present search results and suggest alternative query words. More

recently, Lu et at. [Lu et al., 2015] presented an approach to expand the original query with

synonyms from WordNet, which can help developers to quickly reformulate a better query.

Xu et al. [Xu et al., 2017] proposed a novel framework to reformulate the answer in Stack

Overflow to reduce the lexical gap between question and answer sentences. Inspired by

these studies we also leverage the idea of query expansion to recommend the relevant an-

swers. Our DeepAns tool generates useful clarifying questions as a way of query boosting,

which can substantially reduce the lexical gap between the question and answer sentences.
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In contrast, all of the aforementioned studies ignore the interactions between the asker and

the potential helper.

4.7.3 Deep Learning in SE

Recently, an interesting direction in software engineering is to use deep learning to solve

many diverse software engineering tasks [White et al., 2019, Gu et al., 2018, Hu et al., 2018,

Gao et al., 2020, Li et al., 2017, Huang et al., 2020, Yang et al., 2015, Gu et al., 2016b,

Sun et al., 2019, Alahmadi et al., 2018, Kim et al., 2019, Kim et al., 2018, Dong et al., 2019,

Chen and Zhou, 2018, Liu et al., 2017, Gao et al., 2019b, Gao et al., 2020c]. For example,

White et al. [White et al., 2019] leverage an deep learning approach, DeepRepair, for auto-

matic program repairing. Gu et al. [Gu et al., 2018] propose a novel deep neural network

named DeepCS for code search tasks, where code snippets semantically related to a query

can be effectively retrieved. Hu et al. [Hu et al., 2018] a develop new sequence-to-sequence

model named DeepCom to automatically generate code comments for Java methods. Li et

al. [Li et al., 2017] present CClearner which is a deep-learning based approach for clone

detection.

Although the aforementioned studies have utilized deep learning techniques for differ-

ent kinds of software engineering tasks, to our best knowledge, no one has yet considered

the relevant answer recommendation task in technical Q&A sites. We proposed in this pa-

per a novel neural network architecture to address the answer hungry problems in technical

Q&A forums.

4.8 Summary

To alleviate the answer hungry problem in technical Q&A sites, we have presented a novel

neural network-based tool, DEEPANS, to identify the most relevant answer among a set of

answer candidates. Our model follows a three-stage process:question boosting, label estab-
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lishing and answer recommendation. Given a post, we first generate a clarifying question

as a way of question boosting, we then automatically generate positive, neutral+, neutral�

and negative training samples via label establishing. Finally based on the four kinds of

training samples we generated, we trained a weakly-supervised neural network to compute

the matching score between the question and candidate answers. Extensive experiments on

the real-world technical Q&A sites have comparatively demonstrated the promising perfor-

mance and the robustness of our approach in solving unanswered/unresolved questions.
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Chapter 5

Que2Code: Searching Code Solutions
from Stack Overflow Posts

Gao, Z., Xia, X., Lo, D., Grundy, J.C., Zhang, X., Xing, Z., I Know What You Are Searching
For: Code Snippet Recommendation from Stack Overflow Posts, submitted to ACM Transac-
tions on Software Engineering and Methodology, under major revision.

5.1 Introduction

To deliver high-quality software more effectively and efficiently, many developers fre-

quently use community Question and Answer (Q&A) sites, such as Stack Overflow, for

solutions to their programming problems and tasks [Xu et al., 2017]. Code search is one

such task that plays an important role in software development. Software developers

spend about 19% of their development time searching for relevant code snippets on the

web [Brandt et al., 2009]. To help in programming problem solving, searching for use-

ful code snippets from Stack Overflow has become a common part of developer’s daily

work [Xu et al., 2017]. Typically, when developers encounter a technical problem, they

formulate the problem as a query and use a search engine to obtain a list of possible rele-

vant posts that may contain useful solutions to their problem. After that, developers have

to read answers with various levels of quality included in the returned posts to identify the

possible solutions.

This kind of solution-seeking experience can be difficult and painful with respect to the

135



following two kinds of phenomena:

• Query Mismatch. Although search engines (e.g., Google) are widely used for search-

ing required information on the web, there are certain user needs that can not be

satisfied. Considering the question queries formulated by developers are highly tech-

nical, context-specific and/or subjective, these queries may be semantically related

but not share lexical units. This query mismatch phenomena can lead to the “discov-

ery deficit” problem when using general-purpose search engines. This is because no

obvious answers relate to the specific problem, which decreases success rate when

using standard information retrieval tools for code search tasks.

• Information Overload. Due to the huge amount of posts and content of most on-

line Q&A systems software developers commonly experience information overload.

This phenomenon can lead to the “filter failure” problem, that is developers become

flooded with too many search results. Xu et al. [Xu et al., 2017] conducted a sur-

vey with 72 developers, according to their interview and survey-based study, there is

too much noisy and redundant information online, and developers often wasted their

time on reading the irrelevant posts, which was really time-consuming. Moreover,

developers may fail to filter out irrelevant results and tend to get lost in the massive

amount of information they encounter. Therefore, there is a need by developers to

only receive the most suitable code snippets to their current programming tasks.

Stack Overflow contains a large number of code snippets embedded in posts, as both

questions and solution examples. Due to this large volume, there is a high chance that code

snippets related to a developer’s query already existed in the Stack Overflow posts. A ma-

jor challenge is whether these code snippets can be retrieved successfully and effectively

based on developer queries relating to their current programming task. In this work, we

aim to help developers who want to quickly identify useful code snippets for their tech-
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nical queries, without spending too much time on browsing through and/or understanding

irrelevant examples. To do this, we have developed an automated technique to search for

the best code fragments in Stack Overflow that most closely match the developer’s intent.

This automated approach needs to be able to prioritize or rank code snippets according

to developers’ specific technical questions, so more relevant and useful code snippets are

ranked higher than the less useful and irrelevant ones.

We formulate this task as a query-driven code recommendation task for a given input

question to Stack Overflow. Given an input question, instead of naively choosing the an-

swers from relevant questions, we present a novel model and tool, named QUE2CODE, to

achieve this goal of searching for the best code snippet to answer a user query. We use a

two-stage model: in the first stage, we use a query rewriter to tackle the query mismatch

challenge. The idea is to use rewritten version of a query question to cover different forms

of semantically equivalent expressions. In the second stage, we use a code selector to tackle

the information overload challenge. We extract all the code snippets from the collected an-

swers to construct a candidate pool, and then train a Pairwise Learning to Rank neural

network by automatically establishing positive and negative training samples. We then

select the best code snippet from the code snippet candidates via pairwise comparisons.

We conduct extensive experiments to evaluate our QUE2CODE model. To evaluate the

first stage of semantically-equivalent question retrieval, we collect duplicate question pairs

of Python and Java from Stack Overflow and verify the effectiveness of our approach for

identifying the semantically-equivalent question for a given user query question. To eval-

uate the second stage of best code snippet recommendation, we collect more than 218K

QC (question-code snippet) pairs for Python and more than 270K QC pairs for Java. We

then evaluate the effectiveness of our approach for choosing the right code snippet in the

code snippet candidate pool. The automatic experimental results show that our proposed

QUE2CODE model outperforms several state-of-the-art baselines in both stages, and this
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demonstrates the superiority of our model.

This paper makes the following three main contributions:

• All previous studies of question routing in CQA systems [Wang et al., 2009, Cao et al., 2010,

Ganguly and Jones, 2015, Ye et al., 2014, Zou et al., 2015, Xu et al., 2018] work on

finding similar questions. However, it is hard to measure the relevance between

different questions automatically and experts are often asked to manually rate the

relevance score [Xu et al., 2017, Xu et al., 2018]. In our study, we propose a new

task of semantically-equivalent question retrieval. By utilizing duplicate question

pairs archived in Stack Overflow, we present a novel model and an evaluation

method to automatically evaluate the semantically-equivalent questions without a

labor-intensive labeling process.

• All current studies that have investigated code snippet searching [Gu et al., 2018,

Cambronero et al., 2019, Sachdev et al., 2018, Ye et al., 2016] rely on calculating a

matching score between a query and a code snippet. We argue that code snippet rec-

ommendation is more about predicting relative orders rather than precise relevance

scores. Hence, we propose a novel pairwise learning to rank model to recommend

code snippet from Stack Overflow posts, and we first use the BERT model for search-

ing for code snippets in Stack Overflow.

• Our experimental results show that our QUE2CODE is more effective for code snippet

recommendation than several state-of-the-art baselines. We have released the source

code of our QUE2CODE and our dataset1 to help other researchers replicate and

extend our study.

The rest of the paper is organized as follows. Section 5.2 presents a motivating ex-

ample and user scenario of our approach. Section 5.3 presents details of our approach
1https://github.com/beyondacm/Que2Code
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Table 1

          How to split a web address [duplicate] (286150)

         Slicing URL with Python (258746)M

D

�1

Figure 5.1: Motivating Example of Query Mismatch

for semantically-equivalent question retrieval and best code snippet recommendation. Sec-

tion 5.4 presents the automatic experimental results of our approach with respect to the two

stages separately. Section 5.5 presents the results of our approach on human evaluation.

Section 5.7 discusses the strengths and of our approach and threads to validity. Section 5.8

presents key related work associated with our study. Section 5.9 concludes the paper.

5.2 Motivation

In this section, we first show two motivating examples from Stack Overflow of the sorts

of problems mentioned above (i.e., query mismatch and information overload), we then

present the user scenarios of employing our approach which can help developers to address

these problems.

Consider Fig. 5.1 and Fig. 5.2 which illustrates the query mismatch and information

overload problem in Stack Overflow respectively. For example, as shown in Fig. 5.1, the
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Table 1

          How do I calculate the derivative of an input-function?  
          [duplicate] (44390259)

          How do I compute derivative using Numpy? M

D

�2

Figure 5.2: Motivating Example of Information Overload
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objective is to split a URL using Python. The code snippet associated with the target

question (marked with ‘M’) can satisfy the problem of the user’s query question (marked

with ‘D’). However, since the user query question and the target question do not share any

lexical units, it is very difficult, if not impossible, to retrieve the target question post solely

based on generic, lexically-based search engines. Another example is shown in Fig. 5.2,

even though the duplicate question pairs share some common words, searching the user

query, i.e., “how do I calculate the derivative of an input-function?”, with Google search

engine still returns a large volume of low-quality and/or irrelevant posts. Each post often

includes multiple answers with many not useful code examples. As shown in Fig. 5.2, Even

if the search engine successfully returns a target post, if the target post is not ranked high

in the results, the potential solution to the programming task can be easily buried in all this

overwhelming amount of information.

We illustrate the usage scenario of our proposed tool, QUE2CODE, as follows:

Without Our Tool: Consider Bob is a developer. Daily, Bob encounters a technical

problem and wants a code snippet to help solve it. He tries his best to write a query to sum-

marize his problem and searches related questions on Stack Overflow. However, due to lack

of the knowledge and terminology about the problem, the query formulated by Bob does

not match any post with potential answers. Furthermore, Bob has to painstakingly browse

a lot of low-quality and/or irrelevant posts to identify any possible solutions. Therefore,

Bob loses interest and is unsatisfied with the overwhelming number of seemingly irrele-

vant posts. As a result, he posts a duplicate question on Stack Overflow.

With Our Tool: Now consider Bob adopts our QUE2CODE. When Bob types in his

query question, our QueryRewriter first generates a list of paraphrase questions for his

problem, which increases the likelihood of retrieving semantically-equivalent questions in

Stack Overflow. Following that, instead of naively returning a massive amount of similar

questions, our CodeSelector sorts the returned code snippet candidates and recommends
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the most relevant ones that may contain possible solutions. With the help of our tool,

Bob can quickly get answers for his problem without spending much time on reviewing

and digesting the low-quality and/or irrelevant information. This time, Bob successfully

identifies a useful code snippet from a Stack Overflow post for his problem by using our

tool.

5.3 Approach

We present a novel query-driven code recommendation system. QUE2CODE consists of

two stages: Semantically-Equivalent Question Retrieval and Best Code Snippet Selection.

Our approach takes in a technical question as a query from a developer, and recommends a

sorted list of code snippets.

5.3.1 Overview of Approach

Fig. 5.3 demonstrates the workflow of QUE2CODE. Our model contains two stages: (i)

semantically-equivalent question retrieval and (ii) best code snippet recommendation. It

has two sub-components, i.e., QueryRewriter and CodeSelector. The first can qualitatively

retrieve semantically-equivalent questions, and the second can quantitatively rank the most

relevant code snippets to the top of the recommendation candidates.

In the first stage, our QueryRewriter component tackles the query mismatch challenge.

To bridge the gap between different expressions of semantically-equivalent questions, we

introduce the idea of query rewriting. The idea is to use a rewritten version of a query

question to cover a variety of different forms of semantically equivalent expressions. In

particular, we first collect the duplicate question pairs from Stack Overflow, because du-

plicate questions can be considered as semantically-equivalent questions of various user

descriptions. We then frame this problem as a sequence-to-sequence learning problem,

which directly maps a technical question to its corresponding duplicate question. We train
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Figure 5.3: Workflow of Que2Code

a text-to-text transformer, named QueryRewriter, by using the collected duplicate question

pairs. After the training process, for any given query question, QueryRewriter outputs se-

mantically equivalent paraphrased questions of the input query. Following that, the query

question and its generated paraphrased questions are encoded by QueryRewriter to measure

their relevance with other question titles.

In the second stage, our CodeSelector component tackles the information overload

challenge. To do this, we first collect all the answers of the semantic relevant questions

retrieved in the first stage. We then extract all the code snippets from the collected answer

posts to construct a candidate code snippets pool. For the given query question, we pair it

with each of the code snippet candidates. We then fit them into the trained CodeSelector

to estimate their matching scores and judge the preference orders. CodeSelector can then

select the best code snippet from the code snippet candidates via pairwise comparison. Our

approach is fully data-driven and does not rely on hand-crafted rules.
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5.3.2 Semantically-Equivalent Question Retrieval

In this stage, given a technical problem formulated as a query, we propose a QueryRewriter

to generate paraphrase questions and retrieve the semantically-equivalent questions in

Stack Overflow. Fig. 5.4 demonstrates the workflow of QueryRewriter. QueryRewriter has

three steps: paraphrase generation, question embedding and questions retrieval.

Paraphrase Generation To obtain the features of semantically-equivalent questions for a

given user query, we utilize the historical archives of duplicate questions in Stack Overflow,

which are manually marked by users and moderators. These duplicate question pairs can

be viewed as questions of same intent but written in different ways. In this step, we first

automatically generate paraphrase questions for the query question to represent different

forms of user expressions. The underlying idea is that by adding these paraphrase ques-

tions, we are more likely to find the relevant question that match the intent expressed in the

user query.

In this step, we model the task of paraphrase question generation as a sequence-to-

sequence learning problem, where the question title is viewed as a sequence of tokens and

its corresponding duplicate question as another sequence of tokens. We adopt the Seq2Seq

Transformer architecture [Vaswani et al., 2017], which includes an Encoder Transformer

and a Decoder Transformer. Both the Encoder and the Decoder Transformers have mul-

tiple layers and each layer contains a multi-head attentive sub-layers followed by a fully

connected sub-layer with residual connections [He et al., 2016] and and layer normaliza-

tion [Ba et al., 2016].

More formally, given a question X as a sequence of tokens (x1, x2, ..., xM) of length

M , and its duplicate question Y as a sequence of tokens (y1, y2, ..., yN) of length N . The

encoder takes the question X as input and transforms it to its contextual representations.

The decoder learns to generate the corresponding duplicate question Y one token at a time

based on the contextual representations and all preceding tokens that have been generated
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Figure 5.4: QueryRewriter Workflow

so far. Mathematically, the paraphrase generation task is defined as finding y, such that:

y = argmaxYP✓(Y|X) (5.1)

where P✓(Y|X) is defined as:

P✓(Y|X) =
LY

i=1

P✓(yi|y1, ..., yi�1; x1, ..., xM) (5.2)

P✓(Y|X) can be seen as the conditional log-likelihood of the predicted duplicate question

Y given the input question X. This model can be trained by minimizing the negative log-

likelihood of the training question duplicate question pairs. Once the model is trained, we

do inference using beam search [Koehn, 2004]. Beam Search returns a list of most likely

output sequences (i.e., paraphrase questions). It searches question tokens produced at each

step one by one. At each time step, it selects b tokens with the least cost, where b is the

beam wise. It then prunes off the remaining branches and continues selecting the possible

tokens that follow on until it meets the end-of-sequence symbol. We repeat the process and

generate the top-N most likely paraphrase questions for our study.

A working example is demonstrated in Fig. 5.4, when we input the user query “how

to split a web address?” described in the motivation example into our trained model, the

145



QueryRewriter automatically generates paraphrase questions of different expressions, such

as “understanding slice notation”, “python: split url by multiple slashes”, “how to parse

url in python”. Since the user query question (i.e., “how to split a web address”) and the

target question (i.e., “slicing url with python”) do not share any lexical units, incorporating

the aforementioned paraphrase questions can successfully bridge this gap and solve the

query mismatch problem.

Question Embedding After the text-to-text transformer is trained, we can generate multi-

ple paraphrase questions for a newly posted user query. We use these paraphrase questions

to boost the user query for the downstream task of question retrieval. By incorporating the

paraphrase questions, we can alleviate the query mismatch problem by covering the dif-

ferent forms of duplicate question expressions. Thus, we have a better chance to retrieve

semantically-equivalent questions in Stack Overflow that are intended to solve the same

problem.

For a given user query question qu, we first construct Qu = {qu, pqk}(1 6 k 6 N),

where qu is the user query question and pqk(1 6 k 6 N) are the top-N generated para-

phrase questions. We investigated a wide range of N values (i.e., from 1 to 20) for mea-

suring our model’s performance, setting N to 5 is close to the optimal settings for our

approach. To capture the overall features and semantics of the user query qu we embed

each question qi in Qu (including the user query question and the paraphrase questions)

to a fixed dimensional vector eqi via the Encoder Transformer. We then use the average

embeddings of all possible questions as the final representation for the user query question.

More formally, the question embedding step is defined as follows:

eqi = Encoder(qi), qi 2 Qu (5.3)

equ =
1

N

X
eqi , qi 2 Qu (5.4)

Question Retrieval Given a newly posted user query question qu and a question title q
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Figure 5.5: CodeSelector Workflow

in the Stack Overflow repository, we define the semantic distance as well as the relevance

between two questions as below:

Distance(qu, q) =
Euclidean(equ , eq)

|equ |+ |eq|
(5.5)

Relevance(qu, q) = 1�Distance(qu, q) (5.6)

For a given user query, we can easily compute a relevance score between the user query

and any candidate question in our database. Following that, all the relevance scores are

sorted and the top-K ranked questions are returned as the most semantically-relevant ques-

tions for the query. In this study, we selected different K values (i.e., from 5 to 10) to

investigate the robustness of our model. In practice, we recommend setting K around the

above range, which can cover a wide range of code snippets as well as maintain a good

performance.

5.3.3 Best Code Snippet Recommendation

Theoretically, after retrieving the semantically-equivalent questions for a given user query,

we can naively choose the code snippet from the top ranked questions and recommend the

solution to the developers. However, we argue this is not sufficient regarding the following

reasons: (i) The technical queries submitted by developers are complicated or sometimes
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inaccurate [Gao et al., 2020a], there is no guarantee that the top ranked solution is correct

and can satisfy the needs of developers. Therefore, we need to collect as many as possible

relevant potential code snippet candidates. (ii) Although the search engine can return a

list of relevant questions to their problems, the large number of relevant posts and the

sheer amount of information in them makes it difficult for developers to find the most

needed answer [Xu et al., 2017]. Therefore, how to pick the best solution from the massive

amounts of information is a non-trivial task.

To address this time-consuming task of online code searching, we propose CodeSe-

lector to help developers effectively select the most relevant and suitable code snippet for

a specific query question. Particularly, the CodeSelector reranks all the code snippets by

comparing the matching score among different QC (query-code) pairs. Snippets ranked

in the top of the final result indicate that these code snippets are more likely and suitable

for the programming task. Fig. 5.5 demonstrates the workflow of our CodeSelector. For a

given query question, a list of relevant questions are retrieved from stage one. After that,

all the code snippets associated with these questions are collected, and each code snippet

is paired with the given query to make a QC pair. Then the CodeSelector reranks all the

code snippet candidates by conducting pairwise comparison among QC pairs. To build

the CodeSelector, two steps are performed: Preference Pairs Construction and Pairwise

Comparison.

Preference Pairs Construction In this step, we use the available crowdsourced data on

Stack Overflow for preference pairs construction. We propose three heuristic rules that can

automatically establish the preference pairs and construct the training sets. Our approach is

fully data driven and it does not need manual effort. Our three heuristic rules are as follows:

• For a given question, its best code snippet is preferable to a non-relevant code snip-

pet. We define the best code snippet for a question as the code snippet associated

with an accepted answer to the question, or the one associated with the highest-vote
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Figure 5.6: Preference-Pairs Construction

answer if there are multiple answers to the question. A non-relevant code snippet is

randomly selected from the repository. This rule suggests that the quality of the best

code snippet is better than the non-relevant ones.

• For a given question, its non-best code snippet is preferable to a non-relevant code

snippet. We define the non-best code snippet as other code snippets apart from the

best one within the same question thread. This rule suggests that a question prefers

the code snippets associated with answers to itself to those of others.

• For a given question, its best code snippet is preferable to its non-best code snippet.

Even though an individual user vote may not be very reliable, the aggregation of a

great number of user votes can provide a very powerful indicator of relevance prefer-

ence. We argue that the best code snippet from an answer post for a question is better

than the non-best ones in different answer posts for the same question, in most cases.

According to the above heuristic rules, for each given question, three query-code (QC)

pairs can be generated: we pair it with its best code snippet as the QCb (best QC pair), we

pair it with its non-best code snippet as the QCnb (non-best QC pair), we pair it with a non-

149



relevant code snippet as the QCnr (non-relevant QC pair). We then automatically construct

the training samples hQC1, QC2, Y i for this study. In particular, a training sample contains

three parts: two QC pairs (i.e., QC1 and QC2) and a label (i.e., Y ), the label is automatically

determined by the preference relationship between the two QC pairs. Fig. 5.6 demonstrates

our data labeling process. Given the query question “Slicing URL with Python”, we first

make three QC pairs, i.e., QCb, QCnb and QCnr as mentioned above. Then a Pairwise

comparison between any two QC pairs can establish a label Y for this training sample. It

is worth emphasizing that the comparison order of the two QC pairs matters. For example,

a comparison between QCb and QCnb will be labelled as positive, while a comparison

between QCnb and QCb will be labelled as negative.

There are several advantages of employing this data labeling process: (i) due to the

professionality of technical queries, only experts with domain knowledge are qualified to

judge the usefulness of a code snippet to a query question. Therefore, manually labeling

the relevance scores for all code snippets is very time-consuming and requires a substantial

effort [Jiang et al., 2016, Gao et al., 2020b]. Our heuristic rules can automate the labeling

process without any human efforts. (ii) By using these heuristic rules, we gather more

training samples, which can provide enough data points for training a deep learning based

model.

Pairwise Comparison

After collecting large amounts of labeled training data via preference pairs construction,

we develop a learning-to-rank model to sort all the code snippets for a given query question.

We design a novel semi-supervised network for ranking query-code (QC) pairs. Fig 5.7

demonstrates the architecture of our proposed model. The input to CodeSelector are two

QC pairs. CodeSelector then learns to judge the preference relationship between two QC

pairs based on the positive and negative training samples. In other words, we not only

consider the program semantics between a query and a code snippet, but also investigate
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Figure 5.7: CodeSelector Workflow

the relevance preference among different QC pairs.

• BERT Embedding Layer. We use the modeling power of BERT [Devlin et al., 2018],

which is one of the most popular pre-trained models trained using Transform-

ers [Vaswani et al., 2017]. BERT consists of 12-layer transformers, each of the

transformers being composed of a self-attention sub-layer with multiple attention

heads. Since BERT has been proven to be effective for capturing semantics and

context information of sentences in other work, we use BERT as the feature ex-

tractor for our task. The input to the BERT embedding layer are two parallel QC

pairs. Given each QC pair as a sequence of tokens x = {x1, ..., xT} of length T ,

BERT takes the tokens as input and calculate the contextualized representations

H
l = {hl

1, ..., h
l
T} 2 RT⇥D as output, where l denotes the l-th transformer layer

and D denotes the dimension of the representation vector. The underlying sub-

components work in parallel, mapping each QC pair to its distributional vectors

h
(1) and h

(2) respectively, which are then used to perform the predictions for the
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downstream task.

• Multi-Layer Perceptron. After obtaining the BERT representations, we add a

Multi-Layer Perceptron (MLP) on top of BERT embedding layer to calculate the

preference score between the input two QC pairs. Since CodeSelector adopts BERT

to model two QC pairs respectively, it is intuitive to combine the features of two

pathways by concatenating them. This design has been widely adopted in other deep

learning work [He et al., 2017, Gao et al., 2020b]. To further capture the preference

between the latent features of h(1) and h
(2), we add a standard MLP on the concate-

nated vector. In this sense, we can endow the model a large level of flexibility and

non-linearity to learn the interactions between the two QC pairs. The contextualized

representations (i.e., h
(1) and h

(2)) are fed to the MLP layer to predict the final

preference y = {0, 1}. More precisely, the MLP is defined as follows:

z1 = �1(h
(1),h(2)) =


h
(1)

h
(2)

�

z2 = �2(z1) = a2(W
T
2 z1 + b2)

...

zL = �L(zL�1) = aL(W
T
LzL�1 + bL)

P (y = j|x(1),x(2)) = �(zL)

(5.7)

Wx, bx, and ax denote the weight matrix, bias vector, and activation function for the

x-layer’s perceptron respectively. � is the sigmoid function �(x) = 1/(1+ e�x) which will

output the final preference score between 0 and 1. For the preference score, we want this

score to be high if the first QC pair is preferable to the second one (i.e., x(1) � x
(2)), and

to be low if the second QC pair is preferable to the first one (i.e., x(2) � x
(1)).

5.3.4 Experimental Settings

We implemented our system in Python using the Pytorch framework. For the QueryWriter,

we trained the text-to-text transformer on the duplicate question pairs, we follow the param-
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eter settings from [Raffel et al., 2019]t, which has achieved state-of-the-art results on many

benchmarks covering summarization, question answering, text classification, and more.

For the CodeSelector, we use the pre-trained BERT model released by [Devlin et al., 2018]

as our feature extractor. We use the ReLu as the activation function and employ three hid-

den layers for MLP. The size of the first hidden layer in MLP is equal to the size of the

joint vector obtained after concatenating two QC vectors from the BERT model. We fix

the parameters of the BERT model and fine tune the MLP parameters for our task, and the

CodeSelector is learnt by optimizing the log loss of Equation. 5.7.

5.4 Automatic Evaluation

To recommend the code snippets for developers in Stack Overflow, our QUE2CODE is

divided into two stage: semantically-equivalent question retrieval and best code snippet

recommendation. We wanted to evaluate the performance of the proposed QueryRewriter

to address the query mismatch problem in the first stage, and CodeSelector to address the

information overload problem in the second stage. We want to answer the following key

research questions:

• RQ-1: How effective is our QueryRewriter for semantically-equivalent question re-

trieval?

• RQ-2: How effective is our QueryRewriter for capturing the domain-specific contex-

tual information?

• RQ-3: How effective is the paraphrase generation added to our QueryRewriter?

• RQ-4: What are the optimal parameter settings for our QueryRewriter?

• RQ-5: How effective is our CodeSelector for best code snippet selection?

• RQ-6: How effective is the BERT and preference pairs added to our CodeSelector?
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• RQ-7: How robust is our CodeSelector with different parameter settings?

5.4.1 Effectiveness of QueryRewriter

We want to identify the best code snippet from a list of semantically-equivalent questions

for a given query question. If the retrieved questions are not relevant to the query question,

it is unlikely that our tool is able to find the suitable code snippets to solve the target prob-

lem. In this study, we consider the duplicate questions in Stack Overflow as semantically-

equivalent question pairs. After training with the duplicate question pairs archived in Stack

Overflow, QueryRewriter is able to generate paraphrase questions for a given user query

question. By jointly embedding the user query question and the generated paraphrase ques-

tions, QueryRewriter retrieves the most relevant questions in the repository. We want to

investigate the effectiveness of our QueryRewriter for retrieving semantically-equivalent

questions in Stack Overflow.

Data Preparation We first downloaded the official data dump of Stack Overflow from the

StackExchange2 website. The raw data dump contains timestamped information about the

Posts, Comments, Users, Tags, Postlinks etc,. We extracted the duplicate question pairs as

follows: We first parsed the PostLinks and Posts database files. Because duplicate questions

are marked with a special marker in PostLinks database, we can easily identify the PostId

of the source post and the target post if they are duplicate question pairs. After that, we

extracted the question title of the source post and the target post by checking the PostId

in Posts database. We regard the question title of the source post as a duplicate question

and the question title of the target post as a master question. We then paired each master

question qm and duplicate question qd as hqm, qdi pair. After that, these collected hqm, qdi

pairs are fed into the text-to-text Transformer to train our QueryRewriter. In this study,

we only focused on Python and Java programming languages for our experiment. As a

result, we obtained more than 47K hqm, qdi pairs for Python and more than 56K pairs for
2https://archive.org/download/stackexchange
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Table 5.1: Duplicate Questions Statistics

Python

# Duplicate Questions 47,170 # Avg. Tokens (Duplicate) 8.4
# Master Questions 20,430 # Avg. Tokens (Master) 9.0
# hqm, qdi Pairs (Train) 43,170 # Avg. Tokens (Intersect) 1.8
# hqm, qdi Pairs (Val) 2,000 # hqm, qdi Pairs (Test) 2,000

Java

# Duplicate Questions 56,938 # Avg. Tokens (Duplicate) 8.5
# Master Questions 23,889 # Avg. Tokens (Master) 8.6
# hqm, qdi Pairs (Train) 52,938 # Avg. Tokens (Intersect) 1.7
# hqm, qdi Pairs (Val) 2,000 # hqm, qdi Pairs (Test) 2,000

the Java dataset. We further investigated the query mismatch problem between the master

questions and its corresponding duplicate questions. Specifically, we counted the number

of tokens of the master question qm and its duplicate question qd, and then we counted the

common lexical tokens between the master question and the duplicate question. The violin

plot for Python and Java is demonstrated in Fig. 5.8, we can see that the overlap tokens

between the master question and duplicate question are small. For example, for the Python

dataset, the average number of tokens of the master question and duplicate question are

9.0 and 8.4 respectively, while the average number of overlap tokens is 1.8. Even though

the master question and its duplicate question are semantic-equivalent, they only share a

few tokens in common. This also justifies our assumption that the query mismatch problem

frequently occurs when developers submit their search queries. Therefore, it is necessary

to propose a model to address the query mismatch problem. Table 5.1 shows the statistics

of our collected datasets of Python and Java duplicate questions. We randomly sampled

2,000 hqm, qdi pairs for validation and 2,000 hqm, qdi pairs for testing, and kept the rest

for training. We clarify that different duplicate questions can point to the same master

question and this is the reason why the number of duplicate questions is more than the

master questions.

Experimental Setup To determine the effectiveness of our QueryRewriter for retriev-

ing semantic-equivalent questions, we designed the following experiment: we first build
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Figure 5.8: Volinplots of Question Distribution for Python(left) and Java(right) Dataset

an index with Lucene using all the question titles in testing set, the generated index is

later used to retrieve the most relevant questions against a given query. In such a way,

for each duplicate question qd in the testing set, we first obtained a set of top-K similar

questions Q = {qi}(1 6 i 6 k) via the Apache Lucene. We then added its corre-

sponding master question qm to Q, where now Q = {qm, qi}(1 6 i 6 k, qm 6= qi).

For a given testing question qd, we can ensure its corresponding master question qm is

in evaluation candidate pool Q. Since Q includes the semantic-equivalent question qm

for qd. One way to evaluate our approach is to look at how often the master question

qm can be retrieved successfully among other members of Q. Thus we adopted the met-

ric, P@K and DCG@K [Manning et al., 2005] which are widely-used in previous stud-

ies [Xu et al., 2017, Jiang et al., 2016], to measure the ranking performance of the approach

in our study. The evaluation metrics are defined as follows:

• P@K is the precision of the master question in top-K candidate questions. Given

a question, if one of the top-K ranked questions includes the master question, we

consider the recommendation to be successful and set success(qm 2 topK) to 1,

otherwise, we consider the recommendation to be unsuccessful and set success(qm 2
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topK) to 0. The P@K metric is defined as follows:

P@K =
1

N

NX

i=1

[success(qm 2 topK)] (5.8)

• DCG@K is another popular top-K accuracy metric that measures a recommender

system performance based on the graded relevance of the recommended items and

their positions in the candidate set. Different from P@K, the intuition of DCG@K

is that highly-ranked items are more important than low-ranked items. According

to this metric, a recommender system gets a higher reward for ranking the correct

answer at a higher position. The success(qm 2 topK) is same with the previous

definition, while the rankqm is the ranking position of the master question qm. The

DCG@K is defined as follows:

DCG@K =
1

N

NX

i=1

[success(qm 2 topK)]

log2(1 + rankqm)
(5.9)

Experimental Baselines To demonstrate the effectiveness of our proposed method for rel-

evant question retrieval task, we compared it to the following baselines:

• IR stands for the information retrieval baseline. For a given testing question qi, it

retrieves the question that is closest to qi from the testing set. We use the traditional

TF-IDF metric in our experiment, which is often used to calculate the relevance

between a document and a user query in software engineering tasks, such as question

retrieval [Xia et al., 2017, Cao et al., 2010] and code search [Sachdev et al., 2018].

• Word2Vec is a model that embeds words in a high dimensional vector space us-

ing a shallow neural network [Mikolov et al., 2013]. This word embedding tech-

nique has provided a strong baseline for information retrieval tasks. Yang et

al. [Yang et al., 2016] used average word embeddings of words in a document as

the vector representation for a document. The average word embeddings can be used

to calculate the relevance between two question titles in our task.
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• FastText is another word embedding model proposed by [Bojanowski et al., 2017].

Similar to the Word2Vec model, each word is represented as a high dimensional vec-

tor in such a way that similar words have similar vector representations. Same with

the Word2Vec baseline, the average FastText word embeddings are used to estimate

the similarity between different question titles.

• Sent2Vec Sent2Vec method, which is also known as para2vec or sentence embed-

ding [Le and Mikolov, 2014]. This method modifies the Word2Vec algorithm to gen-

erate semantic embeddings of longer pieces of text (e.g., sentences or paragraphs)

via unsupervised learning. The generated sentence embeddings have been applied in

textual similarity tasks [Le and Mikolov, 2014]. With the help of publicly accessi-

ble tool [Řehůřek and Sojka, 2010], we train the Sent2Vec model using the duplicate

question corpus and obtain the sentence embeddings for each question title.

• AnswerBot Xu et al. [Xu et al., 2017] proposed a three-stage framework called An-

swerBot to generate an answer summary for a non-factoid technical question (i.e.,

non-factoid questions are defined as open-ended questions that require complex an-

swers, like descriptions, opinions, or explanations, and technical questions are often

non-factoid questions. [Song et al., 2017, Hashemi et al., 2020, Xu et al., 2017]). In

their first stage, they combined the word embeddings with the traditional traditional

IDF metrics for retrieving relevant questions. Their method has been proven to be

effective in the task of relevant question retrieval compared with a set of baselines.

• CROKAGE More recently, Da et al. [da Silva et al., 2020] proposed a model named

CROKAGE to recommend relevant solutions from Stack Overflow for a searching

query. They aimed to address the lexical gap problem between the query and the

solutions via using a multi-factor relevance mechanism. To be more specific, they
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calculated the final relevance score by combining four types of scores (lexical score,

semantic score, API method score, API class score). We adapt their approach for

our task of retrieving semantically-equivalent questions. Particularly, we only retain

the lexical scores and semantic scores for this research question since question titles

usually don’t contain API classes.

Given a question, we would like to investigate whether an approach can rank its dupli-

cate question higher up among other question candidates. Intuitively, Google search engine

can be considered as a baseline for searching duplicate questions. Nevertheless, we did not

choose Google search engine baseline for this research question because all the duplicate

question pairs have already been seen and recorded by Google search engine. If an existing

question has been manually labeled as duplicate, it is more likely for Google search engine

to retrieve its duplicate question. Therefore, It is not fair to compare Google search engine

with our approach and other baselines, because our approach and other baseline never see

the testing data set while Google search engine does.

Table 5.2: Effectiveness evaluation (Python)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5
IR 32.1± 2.4% 44.6± 2.6% 54.0± 3.6% 64.8± 4.8% 40.0± 2.1% 44.7± 2.5% 49.3± 2.9% 63.0± 1.3%
Word2Vec 23.9± 2.8% 40.6± 1.9% 56.1± 1.9% 72.0± 2.0% 34.4± 1.9% 42.2± 1.8% 49.0± 1.5% 59.9± 1.2%
FastText 28.4± 3.6% 42.1± 2.9% 53.9± 3.1% 66.7± 2.3% 37.0± 2.9% 42.9± 3.0% 48.4± 2.6% 61.3± 1.7%
Sent2Vec 26.0± 2.6% 45.9± 2.5% 61.9± 3.2% 78.6± 3.1% 38.6± 2.1% 46.5± 2.0% 53.7± 2.2% 62.0± 1.2%
AnswerBot 33.9± 2.7% 54.5± 4.2% 68.9± 3.2% 81.4± 2.6% 46.9± 3.4% 54.1± 2.9% 59.5± 2.4% 66.7± 1.7%
CROKAGE 36.7± 2.6% 51.5± 3.1% 64.4± 1.9% 78.4± 2.5% 46.0± 2.7% 52.4± 2.0% 58.5± 1.6% 66.8± 1.3%
Ours 45.8± 3.2% 60.5± 2.5% 72.3± 2.7% 85.1± 2.6% 55.0± 2.6% 61.0± 2.5% 66.5± 2.1% 72.2± 1.6%

Table 5.3: Effectiveness evaluation (Java)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5
IR 31.1± 2.0% 43.1± 2.5% 53.7± 2.4% 62.8± 2.5% 38.6± 2.1% 43.9± 2.1% 47.9± 1.8% 62.3± 1.2%
Word2Vec 26.4± 3.2% 37.7± 4.3% 51.7± 4.1% 66.3± 3.3% 33.6± 3.7% 40.5± 3.6% 46.8± 3.0% 59.9± 2.0%
FastText 29.8± 1.9% 42.7± 2.6% 53.0± 5.2% 65.8± 3.8% 38.0± 2.2% 43.1± 3.5% 48.6± 2.7% 61.9± 1.4%
Sent2Vec 24.8± 2.2% 45.8± 3.4% 62.0± 2.8% 80.8± 2.6% 38.0± 2.9% 46.1± 2.5% 54.2± 1.8% 61.7± 1.4%
AnswerBot 33.3± 3.0% 48.1± 2.4% 61.1± 2.5% 75.0± 2.3% 42.6± 2.4% 49.1± 2.5% 55.1± 2.3% 64.8± 1.6%
CROKAGE 38.9± 4.3% 53.4± 5.5% 65.3± 4.8% 78.0± 2.8% 48.0± 5.0% 54.0± 4.4% 59.4± 3.3% 68.0± 2.6%
Ours 58.6± 4.3% 73.9± 1.4% 84.3± 2.0% 92.9± 1.8% 68.2± 2.3% 73.4± 2.0% 77.1± 1.4% 79.9± 1.7%

Experimental Results The experimental results of our QueryRewriter compared to the

above baselines for Python and Java are summarized in Table 5.2 and Table 5.3 respectively.
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We do not report P@5 and DCG@1 in our tables, since P@5 is always equal to 1 and

DCG@1 is always equal to P@1, both can be easily inferred from the tables. The best

performing system for each column is highlighted in boldface. From the table, several

points stand out:

1. It is a little surprising that the word embedding-based approaches (e.g., Word2Vec,

FastText and Sent2Vec) achieve the worst performance regarding P@1. This

indicates that retrieving semantically-equivalent questions from a set of similar ques-

tions is a non-trivial task. Word2Vec and Sent2Vec map each question to a fixed-

length vector, so the vectors of similar questions are also close together in vector

space. However, due to the reason that all candidate questions in Q are similar to

each other, it is thus very hard for Sent2Vec and Word2Vec approach to distinguish

the duplicate questions from a list of similar questions. This is the reason why their

performance is weak and ineffective for retrieving semantically-equivalent questions.

2. Regarding the P@1 score, the traditional IR method performs better than the word

embedding-based methods (i.e., Word2Vec and Sent2Vec). For the IR based ap-

proach, it relies heavily on how similar the testing question and its duplicate question

are. Considering that many duplicate questions may share same lexical units with

the testing questions, these duplicate questions can be easily retrieved by the IR-

based approach. However, there is still a large number of duplicate questions that

are semantically-equivalent with only a few common words or without at all (e.g., as

shown in Fig. 5.1), the IR-based approach are unable to to retrieve these questions

correctly solely based on the similarity between words or tokens. This may also

explain its surprisingly low score as K increases.

3. AnswerBot and CROKAGE perform better than other baselines excluding our

proposed model. This is because both AnswerBot and CROKAGE combines the
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lexical-based model (i.e., IR) and semantic-based model (e.g, Word2Vec, FastText

and Sent2Vec) for modeling the question titles, which also signals that solely based

on the lexical features or semantic features is not sufficient for our task. It is also no-

table that the performance of CROKAGE is better than the AnswerBot approach. We

attribute this to the different word embedding techniques they employed. Answer-

Bot combines IDF metrics with Word2Vec model, while CROKAGE combines IDF

metrics with FastText model. This signals that the FastText model has its advantage

as compared to Word2Vec model for modeling the duplicate question titles.

4. It is clear that our model outperforms all the other methods by a large margin

in terms of P@K and DCG@K scores of different depth. We attribute this to the

following reasons: Firstly, QueryRewriter generates multiple paraphrase questions

for a given testing question. Adding these paraphrase questions can reduce the lexi-

cal gap between the testing questions and its corresponding duplicate questions and

alleviate the query mismatch problem for different developers. Secondly, all of the

baseline methods including our approach can be viewed as variants of embedding

algorithm(s), which can map the questions into vectors of a high-dimensional space

and then calculate the relevance score between vectors. Hence the key of retrieving

semantically-equivalent questions relies on how good the embeddings are for captur-

ing the semantics of different duplicate questions. Our approach has its advantage

as compared to other baselines because our QueryRewriter trains the historical du-

plicate question pairs in Stack Overflow by using a text-to-text transformer. As a

result, the embeddings generated by our approach are more suitable for identifying

the semantically-equivalent questions. The superior performance of our approach

also verifies the embeddings generated by our approach convey a lot of valuable in-

formation.
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Answer to RQ-1: How effective is our approach for retrieving semantically-
equivalent questions? – we conclude that our approach is highly effective for
semantically-equivalent question retrieval in Stack Overflow.

5.4.2 Context Analysis

As the technical Q&A sites (i.e., Stack Overflow) are used by developers and professional

experts, the questions in these Q&A communities are, more often than not, very profes-

sional with specific domain context. For example, these questions often include software-

specific entities (e.g., software libraries/frameworks, software-specific concepts). To in-

vestigate whether the domain-specific context could influence the performance of our ap-

proach, or in other words, whether our model can learn the domain-specific context features

from the training corpus, we perform a context analysis for this study. Experimental

Setup For the context analysis, we create a training set without domain-specific context

and use the same testing set for evaluation. To do this, we check each token in the train-

ing corpus if the token is a normal English word (using the NLTK package), and we only

keep the English words and remove the other non proper English words. As a result, the

software-specific terms within the master questions and duplicate questions are deleted.

After that, We retrain our QueryRewriter and all the baselines on the non domain-specific

context training corpus and perform the same evaluation as in RQ-1.

Experimental Results The experimental results of our QueryRewriter and other baselines

for Python and Java dataset are presented in Table 5.4 and Table 5.5 respectively. From the

tables, we can deduce the following key findings:

1. The performance of all models decreases on the training set without domain-specific

context. This suggests that the domain-specific context has a major influence on the

overall performance. We further counted the unique tokens of the training corpus

with and without the domain-specific context, for Python dataset, only 4,756 out of

19,208 tokens are remained; for Java dataset, only 4,874 out of 22,344 tokens are
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Table 5.4: Context Analysis of P@1 (Python)

Approach Without Context With Context 4 Improve
IR 24.9± 2.2% 32.1± 1.2% 28.9%

Word2Vec 22.2± 2.9% 23.9± 2.8% 7.7%
FastText 24.4± 1.5% 28.4± 3.6% 16.4%
Sent2Vec 24.2± 2.1% 26.0± 2.6% 7.4%

AnswerBot 29.4± 3.8% 33.9± 2.7% 15.3%
CROKAGE 26.9± 2.3% 36.7± 2.6% 36.4%

Ours 31.1± 2.4% 45.8± 3.2% 47.3%

Table 5.5: Context Analysis of P@1 (Java)

Approach Without Context With Context 4 Improve
IR 26.9± 2.1% 31.1± 2.0% 15.6%

Word2Vec 24.5± 2.4% 26.4± 3.2% 7.6%
FastText 25.5± 2.6% 29.8± 1.9% 16.7%
Sent2Vec 23.4± 2.5% 24.8± 2.2% 6.0%

AnswerBot 26.8± 3.3% 33.3± 3.0% 24.3%
CROKAGE 28.2± 2.2% 38.9± 4.3% 37.9%

Ours 37.7± 4.2% 58.6± 4.3% 55.4%

remained. The large proportion of domain-specific context in Stack Overflow may

also explain the performance drop in all baseline methods.

2. It is notable that after adding the domain-specific context, our model achieves the

biggest performance rise among different models. This reveals that our model is

effective in learning the domain-specific features and knowledge. Moreover, the per-

formance of our proposed model still outperforms the other baseline approaches even

under the training corpus without domain-specific context, which justifies the robust-

ness of our model.

Answer to RQ-2: How effective is our approach for capturing contextual informa-
tion? – we conclude that the domain-specific context can influence the model’s per-
formance, and our approach is highly effective for learning domain-specific context
information.

163



Table 5.6: Ablation Analysis

Measure Python Java
Drop-PQ Ours Drop-PQ Ours

P@1 36.9% 45.8% 49.5% 58.6%
P@2 50.0% 60.5% 65.3% 73.9%
P@3 62.1% 72.3% 76.9% 84.3%
P@4 74.5% 85.1% 87.5% 92.9%

DCG@2 45.1% 55.0% 59.4% 68.2%
DCG@3 51.2% 61.0% 65.3% 73.4%
DCG@4 56.5% 66.5% 69.8% 77.1%
DCG@5 66.4% 72.2% 74.7% 79.9%

5.4.3 Ablation Analysis

Ablation analysis is a common method to estimate the contribution of a component to the

overall system [Gao et al., 2020a]. It studies the performance of a system by removing

certain components. Our QueryRewriter learns to encode the duplicate question pairs from

Stack Overflow, so that two semantically-equivalent questions are close in terms of vector

representation. When we perform question retrieval tasks, a main novelty of our approach

is adding paraphrase questions generated by QueryRewriter. In this research question, we

perform an ablation analysis to investigate if the novel aspect that we introduce helps. To

be more specific, we investigate the effectiveness of the added paraphrase question to our

model.

Experimental Setup For the ablation analysis, we compare our approach with one of its

incomplete variants, named Drop-PQ. Different from our proposed model, Drop-PQ re-

moves all the generated paraphrase questions added to our model, and only keeps the em-

bedding of the original testing question. By going through the same steps as our approach

in Section 5.3.2, we can evaluate Drop-PQ model for the semantic-equivalent question

retrieval task.

Experimental Results The comparison results between Drop-PQ and our approach are
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displayed in Table 5.6. We observe the following points from the table:

1. By comparing the results of our approach and Drop-PQ, it is clear that incorporat-

ing the paraphrase questions improves the overall performance. When adding

the paraphrase questions to our model, the P@1 score is improved by 24.1% in

Python and 18.3% in Java dataset. We attribute this to the ability of paraphrase

questions to reduce the lexical gap between the semantically-equivalent questions.

2. By comparing the results of Drop-PQ and our previous baselines in RQ-1, we can see

that even by dropping the paraphrase questions, Drop-PQ still achieves better

or comparable results than other baselines. This is because, even removing the

paraphrase questions, the question embeddings are generated from the same Encoder

of our text-to-text transformer. This further verifies the importance and necessity of

the embeddings of our approach.

Answer to RQ-3: How effective is the paraphrase generation component added to
our QueryRewriter? - We conclude that adding paraphrase questions significantly
improves the overall performance of our model

.

5.4.4 Parameter Tuning Analysis

Considering that paraphrase questions have a major influence on the overall performance

of our model, a key parameter is the number of paraphrase questions added to our ap-

proach, referred to N as shown in Equation 5.4. We perform a parameter tuning analysis

to investigate the optimal parameter settings of N for our QueryRewriter.

Experimental Setup For the parameter tuning analysis, we fine tune N , the number of

paraphrase questions added to our model, on Python and Java dataset respectively. We

vary N from 0 to 20 with step size 1 to select the optimal parameter, where N equals 0

corresponds exactly to the Drop-PQ model in RQ-3. The parameters corresponding to the

best P@1 were used to report the final results.
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Figure 5.9: Parameter Tuning Analysis

Experimental Results Fig. 5.9 illustrates the performance of the model with respect to dif-

ferent values of N on Python and Java dataset. From the figure, we can make the following

observation:

1. The performance of our model rapidly increases as N is increased from 0 to

3. For example, when N is increased from 0 to 3, P@1 is sharply increased from

36.9% to 43.9% on Python dataset, and from 49.5% to 56.5% on Java dataset. This

further justifies our previous conclusion that paraphrasing questions makes an impor-

tant contribution to the overall performance of our approach.

2. We notice that our model achieves its best performance when N reaches around

5. We thus recommend to initialize the N to be around the above value, which is close

to the optimal settings of N in our QueryRewriter.

3. The overall performance of our model reaches a plateau after achieving the

best performance. The possible reason may be that adding too many paraphrase

questions brings in the higher level of noise for question embeddings, hence the

embeddings of the user query question can be contaminated by adding too many

paraphrase questions.

Answer to RQ-4: What is the optimal parameter settings for QueryRewriter? - We
recommend to set the number of generated paraphrase questions to 5, which is close
to the optimal settings of N in our approach.
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5.4.5 Effectiveness of CodeSelector

When trying to solve daily coding problems, developers often formulate their problems as

a question and/or a few keywords to some search engines. The search engine returns a list

of potential posts which may contain useful answers. Due to the complexity of the online

CQA forums and the large volume of information generated from it, software developers

may encounter the information overload problem wherein the massive amounts of infor-

mation makes it hard to be aware of the most relevant resources to meet the information

needs of the developers. To alleviate this information overload problem, we propose a

CodeSelector to rank the code snippets candidates via pairwise comparisons. To evaluate

our approach, we conducted a large-scale automatic evaluation experiment to evaluate the

effectiveness of our approach to identify the best code solution for a technical problem.

Data Preparation To train the CodeSelector, we first constructed positive and negative

training samples in terms of preference pairs. For each Stack Overflow post, we extracted

the code snippets (using hcodei tags) within the post’s question body and corresponding

post question title. In order to avoid being context-specific, numbers and strings within

a code snippet are replaced with special tokens “NUMBER” and “STRING” respectively.

We first adopted the NLTK [Bird and Loper, 2004] toolkit to tokenize the code snippets,

we removed the code snippets that are too long (more than 512 tokens) or too short (less

than 5 tokens). This is because for a given code snippet, it is unable to capture the code

semantics if it is too short. We set the 512 as the maximum number of code snippet to-

kens since the maximum input sequence length of BERT [Devlin et al., 2018] is restricted

to 512 tokens, and this setting is sufficient for most cases of code snippets in Stack Over-

flow [Gao et al., 2020a]. For question titles, we only preserved the “how” related questions

in Stack Overflow. The resulting hquestion, code snippeti pairs are added to our corpus.

Towards this end, we collected 218K QC pairs for Python dataset and 272K QC pairs for

Java dataset.
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Table 5.7: QC Dataset Statistics

Python

# hq, csi Pairs 218,717
# best code snippet 112,447
# non-best code snippet 106,270
# non-relevant code snippet 112,447
# Positive Samples 141,074
# Negative Samples 141,224

Java

# hq, csi Pairs 272,120
# best code snippet 134,993
# non-best code snippet 137,127
# non-relevant code snippet 134,993
# Positive Samples 177,340
# Negative Samples 176,942

For each question in the corpus, we make the code snippet associated with the accepted

answer or the highest-vote answer as the best code snippet, the code snippet associated

with the non-accepted answers as the non-best code snippet, and randomly select the code

snippet from other questions as the non-relevant code snippet. According to our heuristic

rules described above in Section 5.3.3, we constructed our dataset with balanced positive

and negative preference pairs. We randomly sampled 5,000 samples for validation and

5,000 pairs for testing respectively, and kept the rest for training. The details of the statistics

of our collected dataset are summarized in Table 5.7.

Experimental Setup To evaluate our CodeSelector performance for identifying the best

code snippet for a technical question, for each question q in the testing set, we employ the

same KNN strategy in RQ-1 to search its top-K similar questions over the whole dataset.

Undoubtedly, the testing question itself can be found. We then constructed a code snippet

candidates pool C by gathering all the code snippets associated with the returned questions.

In the light of this, we can ensure the ground truth code snippet (best code snippet) is in

the code snippet candidates pool C. Following that, we pair the given question q with each

of the code snippet in C to make a QC pair. Hereafter, by doing a pairwise comparison
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between each two QC pairs, we can generate a ranking list of preference scores for each

code snippet. All the code snippet candidates can be ranked by their preference scores. For

this code selection task, we also employ the same automatic evaluation metric P@K and

DCG@K used in RQ-1. P@K and DCG@K stands for the proportion of the selected

code snippets in the top-K that are the ground truth.

Experimental Baselines To demonstrate the effectiveness of our proposed approach, we

compare it with several competitive baseline approaches. We adapt these approaches

slightly for our specific task, i.e., selecting the best code snippet from a pool of code snippet

candidates. We briefly introduce these approaches and our evaluation experimental settings

below. For each method below, the involved parameters are carefully tuned, and the best

performance of each approach is used to report the final results.

• Traditional Classifiers Considering that our CodeSelector ranks the code snippet

candidates by doing classification between QC pairs, it is hence natural to compare

our approach with traditional classifiers. Recently Calefato et al. [Calefato et al., 2019]

proposed an approach for best answer prediction problem by formulating it as a a

binary-classification task. The binary-classification methods output a score referring

to a probability of relevance. They assessed 26 traditional classifiers for predicting

the best answer in Stack Overflow. We choose the two most effective traditional

classifiers, xgbTree and RandomForest, to apply to our code snippet recommenda-

tion task. In our experiments, we treated the pair of hquestion, best code snippeti

as positive sample and the pair of hquestion, non � best code snippeti as negative

sample, we then train the traditional classifiers with these training samples. There-

after, we rank the code snippet candidates by the relevance scores generated by the

above trained classifiers.

• Answer Ranking Methods The code snippet selection need of our task is similar

to the answer ranking problem in CQA forums. Hence our task is transformed to
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find an optimal ranking order of the code snippet candidates according to the their

relevance to the given query question. Two answer ranking methods, i.e., Answer-

Bot [Xu et al., 2017] and DeepAns [Gao et al., 2020b] are chosen as baselines. Re-

garding the AnswerBot baseline, their user study showed a promising performance

for selecting salient answers in the second stage of their approach. Regarding the

DeepAns baseline, they calculated a matching score via a deep neural network be-

tween each answer and the question title; the experimental results show that DeepAns

is effective for selecting the most relevant answer compared with several state-of-the-

art benchmarks. For both of these answer ranking methods, an overall score is com-

puted to estimate the relevance between each answer and the question title. For our

task, we can replace the answer with the code snippet and thus adapt their answer

ranking methods to our task of ranking code snippets among a set of code snippet

candidates.

• DL-based Code Search Methods Another thread of similar research that is rel-

evant to our work is code search. A plethora of approaches have been investi-

gated for searching code snippet in software repositories, and recent DL (deep

learning) - based approaches have achieved promising results for this task. The

DL-based code search methods advocate the idea of mapping and matching data

in a high-dimensional vector space. Three state-of-the-art DL-based code search

methods, i.e., NCS [Sachdev et al., 2018], DeepCS [Gu et al., 2018] and CROK-

AGE [da Silva et al., 2020] are chosen for our study. NCS is an unsupervised

technique for neural code search proposed by Facebook [Sachdev et al., 2018]. They

combine the word embeddings and TF-IDF weighting derived from a code corpus.

In our experiment, we used all the collected QC pairs as the code corpus for training

the word embeddings and TF-IDF weightings. DeepCS is a supervised technique

which jointly embeds code and natural language description into a high-dimensional
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vector space proposed by Gu et al [Gu et al., 2018]. The author constructed the

hC,D+, D�i triples to train their model for minimizing the ranking loss, where C is

the code snippet, D+ and D� are the correct and incorrect description respectively.

In our experiment, for each code snippet C, we treat the associated question title

as the correct description D+, and treat a randomly selected question title as the

incorrect description D�. CROKAGE [da Silva et al., 2020] is a tool to deliver a

comprehensible solution for a programming task. It chooses the top quality answers

related to the task. To mitigate the lexical gap problem, CROKAGE calculates the

scores for candidate QA pairs using four similarity factors (e.g., lexical score, seman-

tic score, API method score and API class score). Specifically, they use TF-IDF and

fastText embedding to calculate the lexical scores and semantic scores respectively.

They also reward the QA pairs which contain the top API methods and relevant API

classes with API method scores and API class scores. Their final outputs contain

both code examples and code explanations. Because our study mainly focuses on

the code snippet recommendation task, we only retain the code examples part and

remove the code explanation part.

Table 5.8: Effectiveness evaluation of CodeSelector (Python)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5
RandomForest 26.6± 1.6% 49.6± 2.6% 69.7± 2.0% 86.4± 1.4% 41.1± 2.1% 51.1± 1.8% 58.3± 1.5% 63.5± 1.0%
xgbTree 24.3± 1.5% 47.3± 2.4% 69.1± 2.5% 85.8± 1.8% 38.8± 1.9% 49.7± 1.8% 56.9± 1.4% 62.4± 0.9%
AnswerBot 31.0± 1.5% 51.1± 2.3% 70.4± 2.1% 87.4± 1.5% 43.7± 1.8% 53.3± 1.4% 60.6± 1.1% 65.5± 0.8%
DeepAns 29.6± 2.2% 52.3± 1.9% 71.2± 1.2% 88.5± 1.2% 43.9± 1.9% 53.4± 1.5% 60.8± 1.3% 65.3± 1.1%
NCS 29.8± 1.6% 52.7± 2.8% 71.3± 2.0% 88.3± 1.9% 44.2± 2.2% 53.5± 1.6% 60.9± 1.6% 65.3± 1.0%
DeepCS 29.5± 2.2% 51.3± 2.3% 70.3± 1.5% 86.7± 1.4% 43.3± 2.2% 52.8± 1.7% 59.8± 1.4% 64.9± 1.2%
CROKAGE 33.3± 2.3% 55.0± 2.0% 71.9± 1.3% 86.5± 1.1% 47.0± 1.9% 55.4± 1.5% 61.7± 1.2% 66.9± 1.1%
Ours 42.6± 2.5% 64.6± 1.1% 80.0± 1.0% 92.3± 0.9% 56.5± 1.5% 64.2± 1.2% 69.5± 1.0% 72.5± 1.0%

Experimental Results The experimental results of our proposed model and the above

baselines over our Python and Java datasets are summarized in Table 5.8 and Table 5.9

respectively. From the table, we can observe the following points:

1. The performance of traditional classifiers are comparatively suboptimal. This
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Table 5.9: Effectiveness evaluation of CodeSelector (Java)

Model P@1 P@2 P@3 P@4 DCG@2 DCG@3 DCG@4 DCG@5
RandomForest 24.8± 2.9% 47.5± 2.3% 67.8± 2.1% 85.0± 1.4% 39.1± 2.2% 49.2± 1.8% 57.0± 1.7% 62.5± 1.3%
xgbTree 25.8± 1.7% 47.5± 2.6% 68.1± 2.4% 85.0± 1.5% 39.5± 2.1% 49.8± 2.0% 57.1± 1.5% 62.8± 1.1%
AnswerBot 31.4± 2.1% 52.1± 1.3% 70.9± 1.1% 86.9± 1.7% 44.5± 1.4% 53.9± 1.0% 60.7± 0.8% 65.8± 0.8%
DeepAns 29.1± 2.3% 52.5± 2.3% 71.3± 2.3% 86.7± 1.4% 43.9± 2.2% 53.2± 1.9% 59.9± 1.6% 65.1± 1.2%
NCS 30.4± 1.8% 52.1± 1.7% 71.4± 1.5% 86.9± 1.4% 44.1± 1.6% 53.7± 1.3% 60.4± 1.2% 65.5± 0.9%
DeepCS 28.5± 3.9% 48.2± 3.4% 65.8± 4.6% 81.6± 3.5% 40.9± 3.3% 49.7± 3.6% 56.5± 2.9% 63.6± 2.0%
CROKAGE 33.6± 1.8% 54.6± 1.8% 72.3± 1.9% 86.6± 1.1% 46.8± 1.6% 55.7± 1.4% 61.8± 1.1% 67.0± 0.8%
Ours 42.4± 1.9% 66.1± 1.8% 81.6± 1.5% 92.6± 1.6% 57.3± 1.6% 65.1± 1.5% 69.8± 1.5% 72.7± 0.9%

indicates that traditional classifiers are unable to capture the semantics between the

code snippets and the questions.

2. The answer ranking methods and the DL-based code search methods achieve

similar results. The underlying idea of these two kinds of methods is similar, namely

the application of applying the embedding technique to map the raw data (including

the questions and code snippets) into a high-dimensional space and then estimate the

match score between them. This may explain the reason why their performances

are comparable with each other. CROKAGE has its advantage as compared to other

benchmarks. This is caused by several reasons: First, it combines the lexical features

and semantic features (using lexical score and semantic score) that is why it is supe-

rior to the traditional classifiers. Second, in addition to lexical features and semantic

features, it also incorporates the API related features, this results in its superior to the

other answer ranking methods and DL-based code search methods.

3. Our proposed model is substantially better than all of the baseline methods. We

attribute this to the following reasons: First, all of the baseline approach (including

traditional classifiers, answer ranking methods as well as the DL-based code search

methods) can be viewed as pointwise approaches. Pointwise approaches transform

the task of ranking into classification or regression on single QC pairs. They are thus

unable to consider the relative order or preference between different code snippets.

Nevertheless, ranking is more about predicting relative orders rather than precise
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Table 5.10: Component-Wise Evaluation (Python)

Measure Drop-Pairwise Drop-Bert Ours
P@1 36.4± 1.8% 33.9± 1.2% 42.6± 2.5%
P@2 59.7± 2.1% 57.5± 1.1% 64.6± 1.1%
P@3 78.1± 1.7% 76.7± 1.9% 80.0± 1.0%
P@4 91.5± 1.0% 90.5± 1.2% 92.3± 0.9%

DCG@2 51.1± 1.8% 48.8± 1.0% 56.5± 1.5%
DCG@3 60.3± 1.5% 58.4± 1.2% 64.2± 1.2%
DCG@4 66.1± 1.2% 64.4± 0.9% 69.5± 1.0%
DCG@5 69.4± 1.0% 68.0± 0.6% 72.5± 1.0%

relevance scores. In light of this, we propose a pairwise approach to judge the prefer-

ence relationship between any two given QC pairs rather than the absolute relevance

value of a single QC pair. Compared with the pointwise approaches, our model not

only considers the relevance between a query and a code snippet, but also investigates

the relevance preference of two QC pairs. This is why it is superior to other point-

wise baselines. Second, in addition to constructing the preference pairs, our model

also incorporates the BERT model to embed the QC pairs. The attention mechanism

behind BERT makes it possible to express sophisticated functions beyond the simple

weighted average, which results in its superior to the DL-based code search methods.

This also signals that the embeddings produced by BERT convey much valuable in-

formation, which can better capture the semantics between the user query question

and the code snippets.

4. By comparing the evaluation results of the different datasets (i.e., Python and Java),

we can see that our proposed model behaves consistently across different program-

ming languages. This also indicates the generalization ability of our approach.

Answer to RQ-5: How effective is our CodeSelector for best code snippet selection? -
we conclude that our CodeSelector is effective for selecting the correct code snippet
for a given technical question.
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Table 5.11: Component-Wise Evaluation (Java)

Measure Drop-Pairwise Drop-Bert Ours
P@1 36.9± 2.2% 34.6± 1.7% 42.4± 1.9%
P@2 60.9± 2.6% 59.5± 2.6% 66.1± 1.8%
P@3 78.4± 1.8% 78.6± 1.8% 81.6± 1.5%
P@4 91.4± 1.2% 91.1± 1.0% 92.6± 1.6%

DCG@2 52.0± 2.3% 50.3± 2.1% 57.3± 1.6%
DCG@3 60.8± 1.8% 59.8± 1.6% 65.1± 1.5%
DCG@4 66.4± 1.6% 65.3± 1.2% 69.8± 1.5%
DCG@5 69.7± 1.2% 68.7± 0.9% 72.7± 0.9%

5.4.6 Component-Wise Evaluation

Compared with other methods, the key advantages of our CodeSelector are its two sub-

components: incorporating the BERT model and employing the pairwise comparisons. To

verify the effectiveness of both aforementioned components, we conduct a component-wise

evaluation to evaluate their performance one by one.

Experimental Setup For our component-wise evaluation, we compare our model with two

of its incomplete versions:

• Drop-Pairwise removes the pairwise comparison component from our CodeSelec-

tor. In this experiment, for a given question, we drop the process of constructing the

positive and negative preference pairs. To do this, we reconstruct the best QC pairs

as positive samples, and make the nonbest and nonrelevant QC pairs as negative sam-

ples. The Drop-Pairwise model is then trained as a binary classification model same

as ours.

• Drop-BERT removes the BERT component from our CodeSelector. In this exper-

iment, we keep the preference pairs construction process but drop the BERT em-

bedding process. To to this, we replace the BERT embedding layers (described in

Section 5.3.3) with the traditional Word2Vec embedding layers. The Drop-BERT
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can then be trained with the preference QC pairs in just the same way.

Experimental Results The evaluation results of Drop-Pairwise and Drop-BERT are dis-

played in Table 5.10 and Table 5.11 respectively. In can be seen that:

1. Dropping either component does hurt the performance of CodeSelector. This

justifies the importance and effectiveness of both components.

2. Drop-BERT achieves the worst performance. This indicates that a good embed-

ding technique has a major influence on the overall performance. For example, when

adding BERT component for embedding the QC pairs, the P@1 score is improved

by 20.4% and 18.2% on Python and Java dataset respectively. We attribute this to

the advantage of BERT for capturing the intent of the query question as well as the

program code. This is why our model outperforms other deep learning-based code

searching methods.

3. By comparing the results of Drop-Pairwise and Ours, we can measure the perfor-

mance improvement achieved due to the employment of pairwise comparison com-

ponent. It is clear that by removing the pairwise comparison component, there is

a significant drop with respect to different metrics. This shows that the pairwise

comparison component has a significant contribution to the overall performance of

our model. This is the reason why our model outperforms other pointwise baselines.

Answer to RQ-6: How effective is the BERT component and preference pairs added to
our CodeSelector? - we conclude that both the BERT component and the preference
pairs are effective and helpful to enhance the performance of our CodeSelector.

5.4.7 Robustness Analysis

Considering the complexity and diversity of the CQA sites, there is little chance to find the

past solved questions that exactly match the user query questions. We thus have to enlarge

K - the number of retrieved questions - to improve the recall of the relevant questions as
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Figure 5.10: Robustness Analysis on Python (left) and Java (right)

well as the potential code snippets within these questions. However, a larger K may often

bring more noise into the code snippet candidates pool. This increases the complexity and

difficulty for recommending the potential code snippet. We conduct a robustness analy-

sis to investigate our model’s performance with respect to different number of retrieved

questions.

Experimental Setup To verify the robustness of our proposed model, we set different

thresholds for the number of returned questions. In particular, we increase the number

of returned questions k from 5 to 10 (k=5 corresponds to our model described in RQ-4),

and then evaluate the performance of our CodeSelector with respect to different parameter

settings of K.

Experimental Results The average P@1-5 over Python and Java datasets are shown in

Fig. 5.10. By jointly analyzing these two figures, we can have the following observation:

1. The overall performance trend of our model goes down as k increases. This

justifies our previous concerns that more noise are introduced when enlarging k,

which incurs bigger challenges for our task.

2. The performance of our model on the Java dataset decreases faster than that on

Python dataset. The reason for this phenomenon may be that the Java code snippets

are more complex, and contain more noise compared with Python code snippets even

under the same k settings.

176



3. The performance drop of our model with increasing k is not very large. For

example, when we set k to 10, the performance of our model on P@1 is still better

than or comparable with the best performance on several baselines. This further

shows the robustness of our model.

Answer to RQ-7: How robust is our CodeSelector with different parameter settings? -
we conclude that our approach is robust to noises.

5.5 Human Evaluation

The goal of our tool is to recommend the best code snippets that most closely match a

developer’s intent from past solved questions in Stack Overflow. We perform a user study

to measure how developers actually perceive the results produced by our approach.

5.5.1 Human Evaluation Preliminary

Participants Selection Since we are recommending code snippets for newly posted

queries, we thus sampled 50 unanswered Python posts from Stack overflow for our

human evaluation. We recruited 10 participants to join our human evaluation, which

is larger than or comparable to the size of the user study participants in previous stud-

ies [Liu et al., 2018, Xu et al., 2017, Gao et al., 2020b]. Our user study includes 1 postdoc-

toral fellow and 4 Ph.D. Students majoring in Computer Science and 5 software developers

from industry. All of these selected participants have working experience with Python

development. The years of their working experience on Python range from 3 to 10 years.

In practice, our tool aims to help different levels of practitioners, from novice to senior

developers. The diversity of their background (i.e., from academic and industry) and their

working years can improve the generality of our user study. Our human evaluation includes

two user studies: the user study on question relevance and the user study on code useful-

ness. All the selected evaluators are asked to participate in the above two user studies.
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Human Evaluation Baselines We use the following baselines for our human evaluation:

• Google Search Engine. Considering developers usually search for technical help

using the Google search engine, we employ the Google search engine as one of our

baselines. For the Google search engine, we use the question title of the post as the

search query, we then add the “site:stackoverflow.com” to the end of the search query

so that it only searches on Stack Overflow. We treat the first ranked question returned

by Google search engine as the most relevant question, we treat the code fragment

within its best answer (the accept answer or the highest vote answer) as the most

relevant code snippet.

• Stack Overflow Search Engine. Similar to Google search engine, Stack Overflow

also provide a service to search relevant posts. For the Stack Overflow search engine

engine, we refer to the first ranked related question suggested by the Stack Overflow

as the most relevant question, and the code snippet within its best answer as the

recommended solution.

• CROKAGE. Since CROKAGE outperforms the other baselines in both stage one

(semantically-equivalent question retrieval) and stage two (best code snippet recom-

mendation). Therefore we also employ the CROKAGE to find the relevant questions

and code snippets for a given query in our human evaluation.

• 1stRanked. Given a user query, our approach first retrieves the semantically-

equivalent questions, then it reranks all the code snippets associated with these

questions. Different from our approach, the 1stRanked method drops the second

stage of the code reranking process and simply uses the code snippet from the first

ranked question as the recommended solution.

• QUE2CODE. For our approach, we perform an end-to-end evaluation using our

QUE2CODE tool. In particular, we use the QueryRewriter to retrieve the semantic
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QUESTION RELEVANCE USER STUDY

Scoring Criterion: 
    Score 1: The two questions have no relevance. 
    Score 2: The two questions share some common words but are semantically irrelevant. 
    Score 3: The two questions are semantically similar.  
    Score 4: The two questions are semantically equivalent (they are identical in meaning). 

Recommended Question: How to convert binary file into readable format on linux server

Reference Question: Binary file downloaded is unreadable (57738034)

         Score 1

         Score 2

         Score 3

         Score 4

�2

Figure 5.11: Example of Question Relevance User Study

relevant questions in Stack Overflow, and then use the CodeSelector to select the

best code snippet for the unanswered question. After CodeSelector reranks all the

code snippets, we treat the first ranked code snippet and its associated question as the

recommended solution.

5.5.2 User Study on Question Relevance

Experimental Setup Since we are recommending code snippets from semantically-

equivalent questions, if the retrieved questions are not relevant to the user query question,

it is unlikely that we can select the appropriate code snippet from the answer candidates

pool. Therefore we first conduct a user study to measure how humans perceive the question

retrieval results. To do this, we consider the question relevance modality for this user study.

The question relevance metric measures how relevant is the retrieved question to the user

query question. To be more specific, we asked participants to do a web questionnaire.

For each unanswered question, the evaluator is displayed with this user query question

along with 5 retrieved questions from the above baselines. For each retrieved question, the

participant is asked to give a score between 1 to 4 to measure the relevance between the

user query question and the retrieved question. We define the scoring criterion as follows:

• Score 1: The two questions have no relevance.
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• Score 2: The two questions share some common words but are semantically irrele-

vant.

• Score 3: The two questions are semantically similar.

• Score 4: The two questions are semantically equivalent (they are identical in mean-

ing).

We provide the scoring criterion in the beginning of each questionnaire to guide partici-

pants. Fig. 5.11 shows one example in our survey. It is worth mentioning that the order

of the 5 retrieved questions is randomly decided, so the participants do not know which

question is generated by our approach.

Experimental Results We obtained 500 groups of scores from the above user study. Each

group contains 5 scores for 5 retrieved questions respectively. We regard a score of 0 as

low quality, a score of 1 as medium� quality, a score of 2 as medium+ quality, a score of

4 as high quality. The score distribution and the mean score of question relevance across

baselines are presented in Table 5.12. We also evaluate whether the differences between our

approach and the baselines are statistically significant by performing Wilcoxon signed-rank

test [Wilcoxon, 1992]. From the table, we can see that:

1. The Stack Overflow search engine achieved the worst performance among all

the baselines. The very large proportion of low quality questions reflects that the

Stack Overflow search engine is ineffective for searching relevant questions for newly

posted questions. We manually checked the 50 questions produced by Stack Over-

flow search engine, it recommended the same common question 15 times, which

explains its weak performance in question retrieval tasks.

2. Our approach outperforms the CROKAGE baseline regarding the question rel-

evance metric. The results of human evaluation are consistent with large-scale auto-
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Table 5.12: User Study on Question Relevance

Measure Low Medium- Medium+ High Mean Score P-value
Google 3.20% 31.60% 36.80% 28.40% 2.91 > 0.5

Stack Overflow 58.40% 28.80% 6.80% 6.00% 1.60 < 0.01
CROKAGE 12.80% 40.00% 36.40% 10.80% 2.45 < 0.01
1stRanked 8.00% 33.20% 45.60% 13.20% 2.64 < 0.01

Ours 2.80% 27.20% 47.20% 22.80% 2.90 �

matic evaluation results, which further justifies the effectiveness of our approach for

retrieving relevant questions.

3. The 1stRanked method has its advantages as compared to other baselines (i.e.,

Stack Overflow and CROKAGE). This is reasonable because both the 1stRanked

method and our approach employs QueryRewriter for embedding relevant questions.

The QueryRewriter incorporates historical duplicate question pairs from Stack Over-

flow, such that two semantically-equivalent questions are close in terms of vector

representations.

4. Google search engine performs better than our approach regarding the high

quality questions. Considering Google’s capability, i.e., the larger searching

database and accumulated user searching histories, it is not surprising that the

Google search engine can identify the high quality relevant questions for the user

query. However, our approach still achieves comparable mean score regarding

the question relevance metric, and the difference between our approach and

Google search engine is also not statistically significant. This is because the pro-

portion of relevant questions (including the medium+ and high quality questions)

outnumber those of the Google search engine. This reflects that, for a given unseen

question, our approach is more likely to retrieve relevant questions in general.

181



CODE USEFULNESS USER STUDY

Scoring Criterion: 
    Score 1: The code snippet is irrelevant and useless for solving the target question  
    Score 2: The code snippet is relevant to the target question but not useful for solving it 
    Score 3: The code snippet is helpful to guide developer’s further searching and learning  
    Score 4: The code snippet can successfully solve the target question

Reference Question: Binary file downloaded is unreadable (57738034)

       Score 1

       Score 2

       Score 3

       Score 4
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Figure 5.12: Example of Code Usefulness User Study

5.5.3 User Study on Code Usefulness

Experimental Setup Our final goal is searching for useful code snippets to help developers

solve unanswered questions. We also conduct a user study to measure the code usefulness

of our recommended code snippets. The code usefulness metric refers to how useful the

recommended code snippet is for solving the user query questions. Similar to our previous

user study, for each unanswered question, we provide 5 code snippets candidates recom-

mended by 5 baselines respectively. After that, each evaluator was asked to rate 5 code

snippets from 1 to 4 according to its code usefulness with respect to the following scoring

criterion:

• Score 1: the code snippet is irrelevant and useless for solving the target question.

• Score 2: the code snippet is relevant to the target question, but not useful for solving

it.
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• Score 3: the code snippet can guide developer’s further searching and learning, which

is useful to solve the target question.

• Score 4: the code snippet can successfully solve the target question.

We provide the scoring criterion in the beginning of the questionnaire to guide the eval-

uators. Fig. 5.12 demonstrates one example of our survey. The evaluators were blinded

to which code snippet is generated by our approach. Experimental Results Same as for

the user study on question relevance, after obtaining the evaluator’s feedback, we regard

a score of 1 as low quality, a score of 2 as medium� quality, a score of 3 as medium+

quality, and a score of 4 as high quality. The score distribution and the mean score of code

usefulness across different baselines are presented in Table 5.13. The Wilcoxon signed-rank

test [Wilcoxon, 1992] is also performed between our approach and each baseline method,

the results are displayed in the last column of Table 5.13. From the table, we can see that:

1. Our model significantly outperforms all the baselines (including the Google

search engine) regarding the code usefulness metric. This suggests that the code

snippets recommended by our approach are considered to be more useful to the given

query question compared with baselines. The reason may be due to the two stages of

our approach, i.e., semantically-equivalent question retrieval and best code snippet

recommendation. The first stage focuses on retrieving as many as possible relevant

questions to construct the candidate set. The more relevant the retrieved question is

to the query, the more likely the code snippet associated with the question is helpful

to solve the problem. The second stage tries to rank the useful code snippet to the

top of the recommendation result.

2. Compared with the 1stRanked method, our approach has its advantages. Even

though the 1stranked method retrieves the same relevant question candidates as ours,

it naively picks the code snippet from the most relevant question. However, consid-
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ering the complexity of the technical queries, it is very hard, if not possible, to find

identical questions to the given query. Therefore it is necessary to consider the cor-

relation between the code snippet and the user query. Different from the 1stRanked

method which is solely based on question relevance, our CodeSelector to rerank all

the code snippet candidates by performing pairwise comparisons. The CodeSelector

not only considers the program semantics between the code snippet and the query

question, but also investigates the relevance preference between different QC pairs.

Thus a useful code snippet can be ranked higher up among other candidates. The

superior performance of our approach regarding the mean score of code usefulness

further supports the ability of our CodeSelector model for recommending useful code

snippet.

3. By comparing the mean score of code usefulness and question relevance, there

is a significant drop overall in every baseline method. This indicates that com-

pared with relevant question retrieval tasks, identifying useful code snippets is more

challenging. Technical questions in Stack Overflow are rather complicated and spe-

cific, even though two technical questions are semantically relevant, the code snippet

is not applicable or reusable for the programming task. We also observe that the

performance drop of our approach is much smaller than other baseline models.

We attribute this to the effectiveness of CodeSelector for putting relevant snippet on

higher positions than the irrelevant ones, this also verifies the importance and neces-

sity of our CodeSelector in the second stage.

5.5.4 Qualitative Analysis

Experimental Setup In this work, we aim to alleviate the query mismatch and informa-

tion overload problems by using the QueryRewriter and CodeSelector respectively. To

vividly demonstrate the workflow details of our model (i.e., from generating paraphrase
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Table 5.13: User Study on Code Usefulness

Measure Low Medium- Medium+ High Mean Score P-value
Google 17.60% 23.60% 32.40% 26.40% 2.68 < 0.01

Stack Overflow 73.60% 18.00% 6.40% 2.00% 1.37 < 0.01
CROKAGE 30.80% 26.00% 28.40% 14.80% 2.27 < 0.01
1stRanked 28.40% 31.60% 23.20% 16.80% 2.28 < 0.01

Ours 12.00% 22.00% 34.00% 32.00% 2.86 �

questions, semantically-equivalent question retrieval and best code snippet selection), we

further conduct a case study to manually investigate some questions used in the previous

user study. Fig. 5.13 shows 5 examples from the previous user studies to demonstrate the

detailed results. For each unanswered question, we present the intermediary results of

the generated paraphrase questions, the top-5 ranked retrieved question, as well as the rec-

ommended code snippets generated by our approach. The words that do not appear in the

original query question, but include both in the generated paraphrase questions and the tar-

get retrieved questions are highlighted in yellow color. We also highlight the question in

boldface which provides the recommended code snippet.

Experimental Results From the cases demonstrated in Fig 5.13, we can see that:

1. The paraphrase questions generated by our QueryRewriter are meaningful for

the given user query question. Note that the QueryRewriter automatically trans-

forms the user query question into different forms of semantically-equivalent user

expressions. For example, in the third case, the original user query question is about

“Diagnose python memory usage”, and our approach generates multiple paraphrase

questions such as “python memory management”, “using a python module to mon-

itor memory usage”, “memory leak on python object”. These generated paraphrase

questions can be viewed as meaningful outputs to capture the developer’s intent and

used as a way of question boosting for the original user query question.
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Table 1

Query Question Generated Paraphrase Question Retrieved Questions Recommend Code Snippet

Ex1. (12702617) 
automatic deletion of 
directory in linux 
(centos)

how to quickly remove directory in python (27700114)  How to delete a python directory effectively?  
 
import shutil  

shutil.rmtree("path_to_dir")  

how to delete files in python with subdirectory (43756284)  How to remove a directory including all its 
files in python?

how to rename a directory with ipython script (51080451)  How do I delete a specified number of files in 
a directory in Python?

setting a directory for deletion in python (36156426)  How rename files in a directory using python?

how to delete a directory in python2.7 on centos? (31223312)  how to rename file in a directory using python

Ex2. (12745563) 
use of plot3d in python

plotting 3d vector using matplotlib (47806784)  how to plot a 3d graph in python using 
matplotlib?

import matplotlib.pyplot as plt
from sklearn.datasets import make_s_curve
from mpl_toolkits.mplot3d import Axes3D  
 
# make and plot 3d  
X, y = make_s_curve(n_samples=1000)  
ax = plt.axes(projection='3d')  
ax.scatter3D(X[:, 0], X[:, 1], X[:, 2], c=y) 
ax.view_init(10, -60) 
plt.show()

how to plot 3d on a computer (4802157)    How to make 3D plots in Python?

use the 3d symbol when plotting with matplotlib (49561740)  How to make a 3D data surface plot using 
matplotlib in python

use of 3d plots in python (25286811)  How to plot a 3D density map in python with 
matplotlib

pyplot 3d plots, variables (36811960)  How do I plot a 2D array graph in Python 
using matplotlib

Ex3. (13090635) 
Diagnose python 
memory usage

python memory management (552744)      How do I profile memory usage in 
Python?

# heaps is quite simple to use  
from guppy import hpy
h = hpy()
print(h.heap()) 
 
# This gives you some output like this: 
… 
Index Count  %       Size      %  Cumulative   %    Kind  
0       25773  53  1612820    49   1612820    49   str  
1       11699  24   483960     15    2096780   64   tuple  
…

using a python module to monitor memory usage (43737948)  How do I determine the memory usage of a 
python type?

memory leak on python object (21701434)  How to manage memory error in python?

python memory error (11596371)  How Does Python Memory Management 
Work?

how can i easily determine memory usage of python 
packages? (55392166)  How to detect memory leak in python code?

Ex4. (3201964) 
merging 2 columns in a 
csv file through python

how to merge dataframe columns? (38049548)  How to merge two columns into one in 
csv format (Python Pandas)?

A, B = [], [] 
with open(your_file) as f: 
    for line in f: 
        if …: A.append( line.split( your_seperator) ) 
        else: B.append( line.split( your_seperator) )  
 
A = pd.DataFrame( A, columns = list_of_columns) 
B = pd.DataFrame( B, columns = list_of_columns_2) 
.drop( columns_to_drop, 1 )  
df = pd.concat([A, B]).reset_index(drop = True)

merging dataframe rows of different lengths (31384177)  How to merge two pandas DataFrames in 
Python?

using pandas to merge two column in a file (37894654)  How to merge dataframes using pandas 
python?

merge text data in csv file using python (37697195)  how to merge two data frames based on 
particular column in pandas python?

pandas merging 101 (50708959)  How to merge two columns from a dataframe

Ex5. (5939210) 
is python faster than 
php?

speed of python vs .php (5497540)    How to call a Python Script from PHP?  
 
$activateScript = $_GET['activeScript']; 
 
exec( "python / path / to / file.py $activateScript” );

python vs php: which is faster ? (36859666)  How run python with html or php? 

python over php (1686192)    How fast is Python?

how php compares to python’s model of program (1060436)    How do I include a PHP script in Python?

are python two times faster than php (16288021)  How to combine php & python code in Python

�1

Figure 5.13: Qualitative Analysis
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2. It is clear that adding the paraphrase questions can reduce the lexical gap be-

tween different user expressions, which increases the likelihood of retrieving the

semantic relevant questions in Stack Overflow. As shown in the second case, the

developer formulate his/her problem as a user query “use of plot3d in python”, the

generated paraphrase question “plotting 3d vector using matplotlib” can add missing

information for the user query question and better link to the target semantically-

equivalent question in Stack Overflow (i.e., “how to plot a 3d graph in python using

matplotlib”), which verify the ability of our QueryRewriter to alleviate the query

mismatch problem.

3. A large number of code snippets recommended by our system are relevant and

useful with respect to the user query question. Some code snippets can well satisfy

the developer’s programming tasks directly. For example, as shown in the first case

of Fig. 5.13, the developer’s query question “automatic deletion of directory in linux

(centos)” can be successfully solved by the code snippets within a relevant question

“How to remove a directory including all its files in python?”. This verifies the

effectiveness and possibility of our approach for recommending code solutions from

the existing historical answers.

4. We also notice that the recommended code snippets are not always selected from

the first ranked question candidate. Instead of naively choosing the first ranked

code snippet like the Google search engine and Stack Overflow search engine, our

CodeSelector selects best code snippet among a set of code snippet candidates via

pairwise comparisons, which justify the ability of our CodeSelector to alleviate the

information overload problem.

5. However, the recommended code snippets from our system are not always useful.

For example, in the second case, the developer would like to inquire about “use of
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plot3d in python”, our recommended code snippet is about “plot 3d graph using

matplotlib”, which can be viewed as helpful by looking at the intent of the developer.

In the fourth sample, even though the recommended code snippet can not be applied

directly, it can be easily adapted to the user query question with minor modification.

6. Also, the recommended code snippets from our system are not always relevant.

For example, in the last sample, even though the generated paraphrase questions

are meaningful and relevant to the user query question, the final recommended code

snippet is still irrelevant to the problem described in the query question. This is

because some user queries posted by developers are often complex and sophisticated;

there may not exist semantically-equivalent questions that to the given one. It is

thus very hard to search the query-specific code snippet to solve the corresponding

problem.

Overall, our approach is more effective for retrieving relevant questions and search-
ing useful code snippets compared with other baselines under human evaluation.

5.6 Practical Usage

The experiment was conducted on an Nvidia GeForce GTX 2080 GPU with 12GB memory.

The time cost of our approach is mostly for the training process which takes approximately

20 to 24 hours for training Python and Java datasets respectively. However, after finishing

the training process, each question title and code snippet in our data base can be converted

into vector representations, which is highly efficient for later computing and searching pro-

cesses. For example, the searching process on 5,000 examples takes five to eight minutes,

while searching a single code snippet only costs 60 to 80ms.

Considering that searching code snippets in Stack Overflow with our approach is ef-

ficient, we have implemented QUE2CODE as a prototype web-based tool, which can fa-

cilitate developers in using our approach and inspire follow up research. Fig. 5.14 shows
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the web interface of QUE2CODE. Developers can type or paste their query question into

our web application, after that QUE2CODE goes through the question retrieval and code

snippet reranking process, and recommends the top ranked questions and code snippets to

the developers. We below describe the details of the input and output of our tool.

• Input: the input to the QUE2CODE is a user query question, which is a sequence

of tokens. The input box in Fig. 5.14 shows an example of the user query question,

i.e., “how to find the most frequent item in array”. After inputting the user query

question, the developer can click the “Search” button to submit their query.

• Output: the output of the QUE2CODE is two folds: relevant questions and code

snippets. After the developer submits his/her query to the server, the QUE2CODE

searches through the codebase and returns top 5 relevant code snippets with their

associated question titles. The link to these question posts on Stack Overflow are also

provided for user references. For example, the relevant question post “how to find the

most frequent string element in numpy array” and its code snippet are retrieved from

our database to guide developers for solving their problems. Developers can use our

tool to quickly locate the potential solutions to their query programming tasks and

have a better understanding of their problems.

The goal of our tool is helping developers effectively search code snippets from Stack

Overflow to their programming tasks and saving their time to do so. This is by no means

these code snippets can perfectly solve the developers’ problem. After browsing these

code snippets, developers still need to manually modify these code snippets for further

refactoring and testing.
Overall, our approach is efficient enough for practical use and we have implemented
a web service tool, QUE2CODE, to apply our approach for practical use.
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Figure 5.14: Prototype of Que2Code

5.7 Discussion

We discuss the strengths and weaknesses of our approach as well as the threats to validity

for our experiments.

5.7.1 Strengths of Our Approach

To address the query mismatch and information overload problem in the Stack Overflow

community, we proposed a novel query-driven code snippet recommendation model. Its

key strengths are summarised below.

Paraphrase Question Generation A key advantage of our model is training a text-to-

text transformer, named QueryRewriter, for generating paraphrase questions as a way

of question boosting. This greatly improves the likelihood of our approach of retrieving

semantically-equivalent questions for a user query question. By training on the duplicate
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question pairs in Stack Overflow, for a user query question, QueryRewriter is able to gener-

ate different user descriptions for the same problem, which is helpful for our semantically-

equivalent question retrieval tasks. The experimental results in Section 5.4.3 verify the

effectiveness of adding paraphrased questions to our model.

Pairwise Learning to Rank To recommend the most relevant code snippets in Stack Over-

flow, we propose a novel pairwise learning to rank model in our work. Guided by our three

heuristic rules, we can automatically construct the preference QC pairs and transform the

code snippet recommendation task to a binary classification task. Rather than calculating

a precise relevance score for a single QC pair, we estimate the preference relationship be-

tween two QC pairs. Ranking code snippets by pairwise comparison is more suitable for

the code recommendation task in our study.

BERT model for embeddings BERT is designed to pre-train deep bidirectional representa-

tions from unlabeled text. It is conceptually simple and empirically powerful, which obtains

new state-of-the-art results on eleven natural language processing tasks, such as question

answering, language inference, etc. In our research, we investigated the BERT model for

embedding query and code snippet pairs, and the ablation analysis in Section 5.4.6 demon-

strates that it greatly enhanced the performance of our proposed model.

5.7.2 Threats to Validity

We have identified the following threats to validity: Construct Validity Internal validity

relate to potential errors in our code implementation and experimental settings. To reduce

errors in automatic evaluation, we have carefully tuned the parameters of the baseline ap-

proaches and used them in their highest performing settings for comparison, but there may

still exist errors that we did not notice. Considering such cases, we have released the code

and data of our research to facilitate other researchers to repeat our work and verify their

ideas.
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External Validity Threats to external validity are concerned with the generalizability of

our dataset. Our dataset is collected from the official Stack Overflow data dump. We

focus on two popular programming languages, i.e., Python and Java for our experiment.

However, there are still many other programming languages which are not considered in our

study. We believe that our model will generalize to other programming languages due to the

effectiveness and robustness of our approach. We will try to extend our approach to other

programming languages to benefit more developers in future studies. Besides, the data in

our work is up to the release date of the official data dump, we can’t automatically update

the newly added data after the release date. However, this constraint can be supported by

adding the engineering work. We will try to expand our approach to automatically handle

the newly added data in our future work.

Model Validity The model validity relates to model structure that could affect the learn-

ing performance of our approach. In the first stage, we choose an encoder-decoder

architecture for our QueryRewriter. Such an encoder-decoder architecture targets the

sequence-to-sequence learning problem, which requires a large amount of manually la-

beled duplicate question pairs. However, our model may not generalize to other technical

Q&A sites if the training set is limited. In the second stage, we choose the basic

BERT model as our embedding layer due to its promising results on a wide range of

NLP tasks [Devlin et al., 2018]. Recent research has proposed new models, such as

GPT [Radford et al., 2018], RoBERTa [Liu et al., 2019], DistilBERT [Sanh et al., 2019],

ALBERT [Lan et al., 2019] that can achieve better performance than BERT and/or similar

performance with much less parameters. However, our results do not shed light on the

effectiveness of employing other deep learning models with respect to different structures

and new advanced features. We will try to use other deep learning models for our tasks in

future work and compare them to the results that we report in this paper.
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5.8 Related Work

5.8.1 Code Search in Software Engineering

The goal of code search is to find code fragments from a large code repository that most

closely match a developer’s intent. Many code search methods have been proposed in the

literature [Gu et al., 2018, Cambronero et al., 2019, Sachdev et al., 2018, Ye et al., 2016,

Lu et al., 2015, Lv et al., 2015, Moreno et al., 2015, Ponzanelli et al., 2016]. Existing code

search methods can be classified into two mainstreams: Information Retrieval-based meth-

ods and Deep Learning-based methods.

Ye et al. [Ye et al., 2016] proposed a model to fill the gap between natural-language

queries and code snippets by projecting them into the same high dimensional vector space.

Sachdev et al. [Sachdev et al., 2018] proposed a neural code search method which com-

bined the of token-level embeddings and conventional information retrieval techniques TF-

IDF. They found that the basic word embedding techniques can achieve good performance

on code search task. Gu et al. [Gu et al., 2018] proposed a supervised technique, named

DeepCS, for code searching using deep neural networks. They used multiple sequence-

to-sequence-based networks to capture the features of the natural language queries and the

code snippets.

The above code search methods are designed to measure the relevance degree between

an individual QC (natural language query-code snippet) pair. However, in our study, rather

than modeling a single QC pair to predict the precise relevance score, we model the pref-

erence relationship between two QC pairs. In other words, our model not only considers

the relevance between a query and a code fragment, but also investigates the preference

relationship between different QC pairs.

193



5.8.2 Duplicated Questions in Stack Overflow

The quality of the user-generated content is a key factor to attract users to visit the

CQA sites, such as Stack Overflow. Prior work suggests that a quality decay problem

occurs in these CQA community due to the growth in the number of duplicate ques-

tions [Srba and Bielikova, 2016]. This makes finding answers to a question harder and

may dilute quality of answers. To maintain the quality of posts in Stack overflow, many

studies have investigated the duplicate questions in Stack Overflow [Zhang et al., 2015,

Silva et al., 2018, Ahasanuzzaman et al., 2016, Wang et al., 2020a, Mizobuchi and Takayama, 2017,

Zhang et al., 2017].

Zhang et al. [Zhang et al., 2015] proposed an approach, named DupPredictor, to predict

whether a question is duplicate question in Stack Overflow. They considered multiple fac-

tors, such as similarity scores of topics, titles, descriptions and tags for each question pair

and calculated an overall similarity score by combining these features. Followed by their

research, Ahasanuzzaman et al. [Ahasanuzzaman et al., 2016] first manually investigated

why duplicate questions are asked by users in Stack Overflow, then proposed Dupe, which

extracted features from question corpus and then built a binary classifier to judge if a ques-

tion pair is duplicated or not. More recently, Wang et al. [Wang et al., 2020a] presented a

deep-learning based approach to detect duplicate questions in Stack Overflow, which can

capture the document-level and word-level semantic information respectively.

In our work, instead of considering the negative aspect of the duplicated questions

in Stack Overflow, we consider duplicated question as semantically-equivalent questions

pairs. We then train a query rewriting model for retrieving relevant questions in Stack

Overflow.
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5.8.3 Query Reformulation in Software Engineering

The effectiveness of code search heavily relies on the quality of the search query. If

a query performs poorly, searching useful code snippets become increasingly difficult.

Therefore it is necessary to reformulate and/or improve the user query when the query

is poorly expressed. This need has motivated researchers to investigate the query re-

formulation (or expansion) approaches for software engineering tasks [Sirres et al., 2018,

Rahman and Roy, 2018, Rahman et al., 2019, Cao et al., 2021, Shepherd et al., 2007, Haiduc et al., 2013,

Hill et al., 2014, Lu et al., 2015, Nie et al., 2016, Jiang et al., 2016].

Shepherd et al. [Shepherd et al., 2007] presented an approach, V-DO, that automati-

cally extracts verbs and objects from source code comments for misspelled query terms.

Haiduc et al. [Haiduc et al., 2013] developed a query reformulation strategy by performing

machine learning on a set of historical queries and relevant results. Following that, Hill et

al. [Hill et al., 2014] proposed a query expansion tool, named Conquer, which combines

the V-DO and contextual searching technique to suggest alternative query words. Lu et

al. [Lu et al., 2015] implemented an approach to expand a query by using synonyms with

the help of Wordnet. Nie et al. [Nie et al., 2016] proposed a model, named QECK, to iden-

tify the software-specific expansion words from the high quality pseudo feedback on Stack

Overflow and generate expansion queries. After that, Rahman et al. [Rahman et al., 2019]

proposed a query reformulation approach that suggests a list of relevant API classes for

code search. Most recently, Cao et al. [Cao et al., 2021] proposed an automated deep-

learning based query reformulation approach by using the query logs in Stack Overflow.

Different from the existing query expansion approaches, in this study, we first investi-

gate the possibility of using duplicate question pairs from Stack Overflow for query rewrit-

ing. Our QueryRewriter can capture features between semantically equivalent questions

and address the query mismatch problem.
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5.8.4 Question Answering in CQA Sites

Finding similar questions and/or appropriate answers from historical archives has been

applied in CQA sites. Great effort has been dedicated to various tasks such as question

retrieval [Wang et al., 2009, Cao et al., 2010, Ganguly and Jones, 2015, Ye et al., 2014,

Zou et al., 2015, Xu et al., 2018], answer selection [Xu et al., 2017, Gao et al., 2020b,

Singh and Simperl, 2016], tagging [Zhou et al., 2019, Wang et al., 2015, González et al., 2015],

and expert identification [Pal et al., 2012, Tian et al., 2013b, Kumar and Pedanekar, 2016].

Conventional techniques for retrieving answers primarily focus on complementary fea-

tures of the CQA sites. Calefato et al. [Calefato et al., 2019] transform the answer selec-

tion task to a binary classification problem, they empirically evaluated 26 answer predic-

tion model in Stack Overflow. Xu et al. [Xu et al., 2017] proposed a novel framework for

generating relevant, useful and diverse answer summary for technical questions in Stack

Overflow. Rather than directly ranking community answers, Tian et al. [Tian et al., 2013b]

predicted the best answerer for a technical question in Stack Overflow by assuming that

good respondents will give better answers. More recently, Gao et al. [Gao et al., 2020a]

proposed a model for generating good question titles for developers by mining the code

snippets in Stack Overflow.

Different from the aforementioned studies, we aim to search the best code fragment

from the historical data in CQA database. We frame this task as a query-driven code recom-

mendation task, and we propose a two stage framework to address the semantic-equivalent

question retrieval and best code recommendation task respectively.

5.9 Summary

We have presented a fully data-driven approach, named QUE2CODE, for recommending

the best code snippet in Stack Overflow for a user query question. We formulate this

task as a query-driven code recommendation problem. Our proposed QUE2CODE model
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contains two components: QueryRewriter and CodeSelector. In particular, we proposed

a QueryRewriter for retrieving semantically-equivalent questions (as the first stage) and a

CodeSelector for selecting the best code fragment in Stack Overflow (as the second stage).

We have conducted extensive experiments to evaluate our approach on Stack Overflow

dataset. Compared with several existing baselines, experimental results have comparatively

demonstrated the effectiveness and superiority of our proposed model in both evaluation

and human evaluation.
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Chapter 6

Conclusion and Future Work

6.1 Key Contributions

This PhD project aimed to develop neural network methods for alleviating the answer hun-

gry problem in SQA sites. Particularly, we present three different deep learning models to

solve this problem from three different aspects:

First, we proposed a sequence-to-sequence learning approach, CODE2QUE, which

can help developers in writing higher quality questions for a given code snippet. Stack

Overflow has been heavily used by software developers as a popular way to seek programming-

related information from peers via the internet. The Stack Overflow community recom-

mends users to provide the related code snippet when they are creating a question to help

others better understand it and offer their help. Previous studies have shown that a sig-

nificant number of these questions are of low-quality and not attractive to other potential

experts in Stack Overflow. These poorly asked questions are less likely to receive useful

answers and hinder the overall knowledge generation and sharing process. Considering

one of the reasons for introducing low-quality questions in SO is that many developers

may not be able to clarify and summarize the key problems behind their presented code

snippets due to their lack of knowledge and terminology related to the problem, and/or

their poor writing skills, in this study we propose an approach to assist developers in writ-

ing high-quality questions by automatically generating question titles for a code snippet
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using a deep sequence-to-sequence learning approach. Our approach is fully data-driven

and uses an attention mechanism to perform better content selection, a copy mechanism

to handle the rare-words problem and a coverage mechanism to eliminate word repetition

problem. We evaluate our approach on Stack Overflow datasets over a variety of pro-

gramming languages (e.g., Python, Java, Javascript, C# and SQL) and our experimental

results show that our approach significantly outperforms several state-of-the-art baselines

in both automatic and human evaluation. We summarise the following key contributions

for this work: (i) We first proposed the a novel task to improve the low-quality question

titles in Stack Overflow. (ii) We developed a tool, named CODE2QUE, to assist developers

in writing high-quality question titles from a given code snippet. The human evaluation

results show that our model can improve the Stack Overflow low-quality question titles in

terms of Clearness, Fitness and Willingness.

Second, we proposed a semi-supervised neural network, DEEPANS, which can help

developers identify the most relevant answers among a set of answer candidates. Our ap-

proach follows a three-stage process: question boosting, label establishment, and answer

recommendation. Given a post, we first generate a clarifying question as a way of question

boosting. We automatically establish the positive, neutral+, neutral� and negative train-

ing samples via label establishment. When it comes to answer recommendation, we sort

answer candidates by the matching scores calculated by our neural network-based model.

To evaluate the performance of our proposed model, we conducted a large scale evalua-

tion on four datasets, collected from the real world technical Q&A sites (i.e., Ask Ubuntu,

Super User, Stack Overflow Python and Stack Overflow Java). Our experimental results

show that our approach significantly outperforms several state-of-the-art baselines in auto-

matic evaluation. We also conducted a user study with 50 solved/unanswered/unresolved

questions. The user study results demonstrate that our approach is effective in solving

the answer hungry problem by recommending the most relevant answers from historical
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archives. We summarise the key contributions for this work as follows: (i) We developed a

novel weakly supervised neural network, named DEEPANS, to find the potential solutions

for unanswered/unresolved questions in SQA sites. (ii) We first use the clarifying questions

in SQA sites to fill the gap between questions and answers as a way of question boosting.

Third, we proposed a query-driven code search engine, QUE2CODE, which can

help developers effectively identify the code solutions to their programming tasks. More

and more developers use SQA forums, such as Stack Overflow, to search for code examples

of how to accomplish a certain coding task. This is often considered to be more efficient

than working from source documentation, tutorials or full worked examples. However, due

to the complexity of these online Question and Answer forums and the very large volume of

information they contain, developers can be overwhelmed by the sheer volume of available

information. This makes it hard to find and/or even be aware of the most relevant code

examples to meet their needs. To alleviate this issue, in this work we present a query-driven

code recommendation tool, named QUE2CODE, that identifies the best code snippets for a

user query from Stack Overflow posts. Our approach has two main stages: (i) semantically-

equivalent question retrieval and (ii) best code snippet recommendation. During the first

stage, for a given query question formulated by a developer, we first generate paraphrase

questions for the input query as a way of query boosting, and then retrieve the relevant

Stack Overflow posted questions based on these generated questions. In the second stage,

we collect all of the code snippets within questions retrieved in the first stage and develop

a novel scheme to rank code snippet candidates from Stack Overflow posts via pairwise

comparisons. To evaluate the performance of our proposed model, we conduct a large scale

experiment to evaluate the effectiveness of the semantically-equivalent question retrieval

task and best code snippet recommendation task separately on Python and Java datasets in

Stack Overflow. We also perform a human study to measure how real-world developers

perceive the results generated by our model. Both the automatic and human evaluation
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results demonstrate the promising performance of our model over a set of state-of-the-

art baselines. In this work, we make the following key contributions: (i) We first use

the duplicate question pairs to retrieve the the semantically-equivalent questions in Stack

Overflow. (ii) We developed a neural network based learning to rank model to search code

snippets from Stack Overflow posts, which is able to calculate the matching score between

a query and a code snippet.

6.2 Future Work

As for the future work, we have identified a few key research directions:

For our first task of generating high-quality question titles, a key challenge for our

current work is that the question titles generated by our approach suffered from semantic

drift. This is because it is difficult to judge a questioner’s intent by solely looking at the code

snippet. For example, the developers may provide the same code snippet but ask different

questions from different perspectives. For such cases, more relevant information, e.g.,

question description, question tags could further be incorporated with our model, which

can help our model to generate a question title that is more accurate and precise. One of our

future research direction is to generate more meaningful question titles by considering

extra context information.

For our second task of finding potential answers for unanswered/unresolved questions,

a key challenge for our current work is that we build our training set via four heuristic rules,

there is no guarantee that all the training samples are correct. There still exists outlier cases

distant from our heuristic rules. For example, we label all the accept answers as Positive

samples and all the non-accept answers as Neutral+ samples, which means we assume the

all the accept answers are better than the non-accept answers. According to our observation,

non-accept answers may be better than the accept answers which may conflict our heuristic

rules. These outlier cases will produce a series of wrong training samples and hinder the
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learning performance of our model. Detecting and removing these outlier cases before

building our training samples will benefit the learning performance of our model, we will

focus on this research direction in the future.

For our third research of searching code solutions for a user query, a key challenge for

our current work is that we can only find code solutions if the user query has semantically-

equivalent posts in Stack Overflow. If there are no posts relevant to the user query, a better

way is to identify suitable experts for providing solutions for this problem. Therefore, how

to route a user query to relevant experts is one of our future research direction. We plan

to design models for recommending appropriate domain experts by considering the

semantic of the user query as well as the user profiles of the potential experts.

6.3 Summary

In summary, this Ph.D. thesis focuses on the open issue of “answer hungry” problem in

SQA sites. We developed three models, i.e., CODE2QUE, DEEPANS, QUE2CODE for

improving the quality of question titles, recommending appropriate answers for unan-

swered/unresolved questions, and searching for useful code solutions for newly posted user

queries respectively. We plan to enhance the performance of our existing models and design

new models for identifying appropriate domain experts in our future work.
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