

ASPECT-ORIENTED COMPONENT ENGINEERING

GUOLIANG DING

Aspect-Oriented Component Engineering

By: Guoliang Ding

Supervisor: Professor John Grundy

A thesis submitted in the fulfilment of the requirements

for the degree of Master of Science in Computer Science

The University of Auckland

February 2002

© 2002 Guoliang Ding

 i

Abstract

Software development methodologies have evolved quite fast. Recently, the

Component-Based Development technology has become more and more popular for

large-scale, complex, well structured, plug-and-play, and potentially reusable systems.

A number of component-based development approaches and technologies have

emerged. However, most of current component-based development techniques are only

focused on component provided services i.e. the low-level functional decompositions of

component interfaces. They normally vertically slice system and group components. As

a result, the components lack systemic-level and non-functional properties, are difficult

to understand and reconfigure, and making too many assumptions about other

components to be composed with.

 We develop a new Aspect-Oriented Component Engineering (AOCE) methodology to

address the above concerns and component crosscutting issues, and to characterize

component high-level perspective information by specifying either functional or non-

functional aspect services. The aspect services are “horizontal slices” of an overall

system; they are factored into component provide/required services that can be used to

reason about components.

The concept of component aspects is illustrated using an example system and

represented by using UML notation set through requirements and design. Furthermore,

we implement the example system by using EJB, which are well-mapped aspect

service. Finally, we design and implement component aspects testing agents, and test

the example system’s components with aspect information.

 i

Acknowledgements

I would like to thank my supervisor, Professor John Grundy for his remarkable advice

and guidance during my research throughout the year. Without his enthusiasm, ideas,

experience and knowledge, my thesis would not have reached so far. What I’ve learnt

from my supervisor is far beyond this thesis and will benefit my future career.

Secondly, I would like to thank Aaron Waddington and Paul Chilton – directors of

TMNetworks Limited. They give me great support and encouragement. Their helps

almost extend through my whole research. I really appreciate it.

 Lastly, I would like to thank my wife – Liping Wang for all the encouragement and

support while I was studying and doing the research. She gives me more than a wife can

give. I would like to dedicate this thesis to my wife and my lovely son Simon.

 ii

Contents

Chapter 1 Introduction ... 1

1.1 Motivation and Objectives .. 2
1.2 The Thesis Overview .. 4

Chapter 2 Component-Based Development and EJB Architecture 6

2.1 Component-Based Software Development Methodology 6
2.1.1 The Catalysis Approach™ .. 7
2.1.2 The Select Perspective™ Approach ... 8
2.1.3 COMO Approach .. 10

2.2 EJB Framework Architecture ... 10
2.3 Summary ... 13

Chapter 3 AOP and Aspect-Oriented Component Engineering 15
3.1 Aspect-Oriented programming ... 15
3.1 Adaptive Programming ... 17
3.2 Aspect-Oriented Component Engineering .. 18

3.2.1 Aspect-oriented Component Requirements Engineering 20
3.2.2 Software Component Design with Aspects .. 21
3.2.3 Component Implementation and Run-time with Aspects 22
3.2.4 Component Testing with Aspects ... 22

3.3 Summary ... 23
Chapter 4 The E-Furniture System Component-Based Design 24

4.1 The System Requirements .. 24
4.1.1 Functional Requirement Specifications: ... 25
4.1.2 Non-functional requirements: ... 26

4.2 The System Object-Oriented Analysis - OOA ... 27
4.2.1 E-Furniture system use case modelling .. 28
4.2.2 Class modelling .. 31
4.2.3 Object interaction Sequence modelling .. 33

4.3 The System Design – Component-based design ... 37
4.3.1 Deployment Modelling ... 38
4.3.2 The System Architecture modelling ... 39
4.3.3 Component design. ... 40
4.3.4 Summary ... 48

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design 49

5.1 Class Modelling with Aspects Analysis ... 50
5.2 Dynamic Object interaction modelling with Aspects 52

5.2.1 Search products sequence diagrams with aspects analysis 53
5.2.2 Checkout sequence diagram with aspects analysis 54
5.2.3 Maintain products sequence diagram with aspects analysis 56
5.2.4 Maintain inventory sequence with aspects analysis 57

5.3 Component Design Specification with Aspects .. 58

 iii

5.3.1 Deployment modelling with aspects analysis ... 58
5.3.2 Component design with aspects .. 60

5.4 Summary ... 68

Chapter 6 Component Aspects Representation ... 69
6.1 Sequence diagrams with aspects in Rational Rose ... 69
6.2 Collaboration diagrams with aspects in Rational Rose 71
6.3 Deployment diagrams with aspects in Rational Rose 72
6.4 Component class diagrams with aspects in Rational Rose 74
6.5 Component architecture with aspects in Rational Rose 77
6.6 Comparison of Component with and without Aspects 79
6.7 Summary ... 80

Chapter 7 EJB and JSP Components Design and Implementation 81
7.1 Enterprise Beans – the Server Components Design 81

7.1.1 Session Beans Component .. 81
7.1.2 Entity Beans Component .. 83
7.1.3 Enterprise Bean Implementations ... 85

7.2 Database Design ... 87
7.3 Data Maintenance Application Implementation ... 88

7.3.1 Inventory maintaining sub-component ... 91
7.3.2 Staff maintaining sub-component ... 92

7.4 JSP – Web Components Design and Implementation 93
7.5 Summary ... 99

Chapter 8 Component Aspects Testing Agent ... 101

8.1 Component Aspects Testing Tools Architecture Design 101
8.1.1 Aspects Descriptor DTD ... 102
8.1.2 Staff component Aspects XML Descriptor Example 105

8.2 Server Component Aspects Testing Agent ... 107
8.3 Web Component Aspects Testing Agent .. 111
8.4 Summary ... 115

Chapter 9 Conclusion ... 116
9.1 Contributions of the Thesis ... 116
9.2 Future Research Works ... 117

Bibliography……….. .. 119

Appendix I: E-Furniture system use case description ... 123
Ø Maintain Order .. 123
Ø Leave Message .. 123
Ø Register ... 124
Ø Online Payment .. 124
Ø Maintain Product .. 125
Ø Maintain Staff ... 125

Appendix II: EJB Enterprise Beans design diagrams ... 126

Appendix III: Component Aspect descriptor ... 130
Example of Staff Component Aspect Descriptor ... 130

 iv

List of Figures

Figure 2-1 The Select Perspective models diagram [2] .. 9

Figure 2-2 EJB three tier Architecture .. 11

Figure 3-1 General concept of components vs. component aspects. 18

Figure 3-2 Basic AOCRE process .. 21

Figure 4-1 E-Furniture system main use case diagram ... 28

Figure 4-2 E-Furniture system classes diagram .. 32

Figure 4-3 Search products sequence diagram .. 34

Figure 4-4 Checkout sequence diagram .. 35

Figure 4-5 Maintain Products sequence diagram ... 36

Figure 4-6 Maintain inventory sequence diagram .. 37

Figure 4-7 E-Furniture systems Deployment diagram ... 38

Figure 4-8 Business service package diagram .. 39

Figure 4-9 Customer component diagram .. 41

Figure 4-10 Order component diagram .. 42

Figure 4-11 ShoppingCart and Product component diagram ... 43

Figure 4-12 Staff component diagram .. 44

Figure 4-13 Inventory component diagram .. 45

Figure 4-14 Application UI component diagram .. 46

Figure 4-15 Customer UI component diagram ... 47

Figure 5-1 Some of e-furniture system aspects and some aspect details 50

Figure 5-2 Class diagram with aspect analysis ... 52

Figure 5-3 Search products sequence diagram with aspect analysis 54

Figure 5-4 Checkout sequence with aspect information analysis 56

 v

Figure 5-5 Deployment diagram with aspect information .. 60

Figure 5-6 Customer component with aspect information ... 62

Figure 6-1 Checkout sequence diagram with aspect information 70

Figure 6-2 Sequence diagram with aspects in documentation dialog 71

Figure 6-3 Checkout Collaboration diagram with aspect information 72

Figure 6-4 Deployment diagram with aspect information .. 73

Figure 6-5 Deployment diagrams with aspects in documentation dialog 74

Figure 6-6 Customer Component with aspect information .. 75

Figure 6-7 Customer component with aspects in documentation window 76

Figure 6-8 Component architecture diagram with aspects in notes 77

Figure 6-9 Component architecture with aspects in documentation window 78

Figure 7-1 ShoppingCart and Category component EJB design diagram 83

Figure 7-2 Staff component EJB diagram .. 85

Figure 7-3 E-Furniture System database ERD diagram ... 88

Figure 7-4 Main internal application user interface .. 90

Figure 7-5 Application splash window and login dialog .. 90

Figure 7-6 Inventory Maintain user interface ... 91

Figure 7-7 Staff Maintain user interface ... 92

Figure 7-8 Model-View-Controller Architecture ... 94

Figure 7-9 Web components architecture and aspects information 94

Figure 7-10 Furniture store main page ... 96

Figure 7-11 Product Search result page .. 97

Figure 7-12 Checkout order information form page ... 98

Figure 7-13 Customer information maintain page .. 99

Figure 8-1 Component testers design architecture ... 101

Figure 8-2 Component aspects descriptor DTD ... 103

Figure 8-3 Staff component aspect descriptor .. 106

 vi

Figure 8-4 Aspect tester session bean ... 108

Figure 8-5 Component tester tool ... 109

Figure 8-6 Aspect Testing sequence diagram ... 109

Figure 8-7 Staff component aspects information testing results 110

Figure 8-8 Web component tester class diagram .. 111

Figure 8-9 Web component aspects testing tool sequence diagram 112

Figure 8-10 Part of web components descriptor ... 113

Figure 8-11 Web component testing tool and tested results ... 114
Figure Appendix II – 1 Customer session bean and customer account entity bean…..127

Figure Appendix II – 2 Inventory Entity Bean……………………………………….128

Figure Appendix II – 3 Order Entity Bean……………………………………………129

Figure Appendix II – 4 Staff Entity Bean…………………………………………….130

Chapter 1 Introduction

 1

Chapter 1 Introduction

Modern software systems have become much larger and more complex than a decade

ago. Software engineers continually seek new, more efficient, and cost-effective

software development paradigms to deal with large-scale software systems. The

Component-Based Development (CBD) methodology is the most successful one used

to compose and dynamically reconfigure system applications [8]. Using component-

based approaches develop software from relatively dependent individual “building

blocks” – components by reconfiguring reusable components and assembling them

together.

A number of component-based technologies and development methodologies have

emerged to help component developers and software engineers. For example, Java

Beans, Enterprise JavaBeans™, COM, CORBA, and JViews [3, 27, 28] are component-

based technologies, and The Catalysis™, The Select Perspective™ and COMO [2, 12,

13] are examples of component-based development methodologies. However, most of

these techniques focus on low-level functional identification and specification,

vertically decomposing overall system functionalities into functional service-based

groups. These lead to components with a lack of high-level systemic characteristics.

They especially lack non-functional, cross-cutting perspective information, such as user

interfaces, transaction management, persistency, collaboration and security aspects of

the systems and components.

To enrich components with the above aspect properties, we have developed a new

component-based software development methodology, and called it Aspect-Oriented

Component Engineering (AOCE) [24].

Chapter 1 Introduction

 2

1.1 Motivation and Objectives

 When software engineers and component developers develop sophisticated large-scale

software systems or well-characterized components, some complex engineering issues

arise [22]:

• In order to reuse components in a particular situation, components must be

configured properly.

• To be reused in some situations, a component’s user interface, middleware

capabilities and configuration capabilities have to be appropriately adaptable.

• Both end users and other components sometimes need to access information

about component capabilities and reconfigurations at run-time to utilize plug

and play.

• To well-structure components, the inter-component relationships have to be

reasoned about, and its capabilities have to be identified and described clearly

and completely. The services need to be identified and described including the

component provides to and requires from other components.

• Engineers need to be very careful making assumptions about related

components because those potential reuse situations of components are usually

difficult to know.

• Developers don’t have source code to access and control, when they intend to

reuse 3rd party or commercial off-the-shelf (COTS) components.

• Engineers and developers need to go through the whole software engineering

lifecycle to refine component requirements, designs, implementations, testing

and deployment. It is better to use a consistent methodology to capture

component capabilities, reason about inter-component relationships and

between components interaction.

These issues haven’t been effectively addressed and supported by most current

component-based development methodologies, for example, The Select Perspective™,

The Catalysis™ and COMO. These methods pay more attention to component

functional services/interfaces decomposition and specifications that vertically group

domain specific components. They do not sufficiently characterize high-level systemic

perspectives on component behaviour and constraints, and do not fully support

Chapter 1 Introduction

 3

reasoning about component capabilities. Therefore, we developed a new Aspect-

Oriented Component Engineering (AOCE) technology to overcome these shortcomings.

The concept of component aspects has been utilized in our method to help developers

better categorise component properties and capabilities. It does this by analysing

functional services and non-functional constraints, especially those of “cross-cutting

systemic aspects” service that contribute to or use, i.e. user interfaces, transaction,

persistency and security etc. These system-level aspects are “horizontal-slices” of

overall system functionalities and non-functional constraints. Aspects of components

can further be decomposed into “aspect-details” and detailed “aspect properties” to

characterize component services more explicitly at different software engineering levels

of abstraction.

The main feature of our AOCE technique is that it not only identifies component

provided aspect services for others, but also specifies component-required aspect

services for both end users and other components. Furthermore, the provided/required

aspect information can be used to reason about requirements, inter-component

relationships and component interactions during requirements engineering and system

design. At the run-time component aspect information can be used to introspect

component’s capabilities and support dynamic component reconfiguration. Testing

components with aspect services are also important, as during the testing phase,

developers can actually verify and validate whether the components they have designed

match in aspect services of the requirements.

The Unified Modelling Language (UML) has become a standard for software modelling

and development, although it mainly focuses on object-oriented software development

and lacks component support [12, 29]. The AOCE technology uses an extended UML

and its stereotypes to annotate component aspect services and provide developers more

richness of component characteristics.

The one thing the reader needs to be aware of is that aspect-oriented component

engineering is different from “aspect-oriented programming”, which uses a technique of

“code weaving” and run-time reflection to solve systemic crosscutting issues. AOCE

successfully factors those systemic crosscutting concerns into component interfaces and

Chapter 1 Introduction

 4

carefully documents these issues in requirements, design and implementation to give

developers different views of components. AOCE uses component provided/required

services to successfully avoid “code weaving”.

The main objectives of this thesis are to illustrate how to apply the AOCE methodology

to component-based systems through requirement engineering, design, implementation

and testing by using an e-commerce example system. Firstly, in the requirement and

design stages, we are trying to use standard CASE tools such as Rational Rose™ to

illustrate and document our aspect-oriented component services. Secondly, we use

Enterprise JavaBeans™ technology to implement the example system with aspect

services and deploy it to a J2EE server. Finally, we designed and implemented testing

agents for components with aspects, and tested the example system’s components by

automatically extracting their aspect information.

1.2 The Thesis Overview

The following is the structure of the thesis:

• Chapter 1 briefly introduces the new methodology of Aspect-Oriented

Component Engineering and objectives of this thesis.

• Chapter 2 introduces and discusses several current component-based software

development technologies.

• Chapter 3 introduces the concept of aspect and aspect-oriented technologies

used in the software field, mainly focusing on AOP and AOCE, and brief

comparisons of them.

• Chapter 4 illustrates an e-commerce systems component-based requirements

and design.

• Chapter 5 uses the example system to demonstrate aspect-oriented analysis for

requirement and component design by using AOCE.

• Chapter 6 illustrates how systemic aspect services are annotated in the standard

UML based CASE tool using Rational Rose™ as an example.

• Chapter 7 maps components with aspects into EJB frameworks and illustrates

the implementation of the example system.

Chapter 1 Introduction

 5

• Chapter 8 describes the design and implementation of component aspects testing

agents and shows testing results analysis.

• Chapter 9 summarizes the contributions of the thesis and describes future work

in this AOCE research field.

Chapter 2 Component-Based Software Development and EJB Architecture

 6

Chapter 2 Component-Based Development and
EJB Architecture

Components are well established in all other engineering disciplines, and in recent years

they have been successfully applied in the world of software. Modern software systems

have become larger, more complex and harder to control, resulting in high development

cost, low productivity, unmanageable software quality and high risk to move to new

technology [7]. Consequently, there is an increasing demand for a new efficient and

cost-effective software development paradigm. One of most successful solutions today

is the component-based software development approach [8]. This approach is based on

the idea that software system can be developed by selecting appropriate commercial

off-the-shelf (COTS) components and assembling them with a well-designed software

architecture [9]. Therefore, several component-based development methodologies have

been proposed in recent years. This chapter will briefly discuss three Component-Based

Development (CBD) approaches and their weakness.

2.1 Component-Based Software Development Methodology

Component-based software development has emerged to increase the reusability and

portability of software pieces. Component-based development aims at constructing

software products by assembling components. Generally components have three main

features: 1) a component is an independent and replaceable part of a system that fulfills

a clear function; 2) a component works in the context of a well-defined architecture; 3)

a component communicates with other components through its interfaces [11].

Recently, other component-based technologies have emerged such as EJB, COM+, and

.Net etc. and also new approaches to component-based development have been

proposed. Here, we’ll mainly focus on three of them; they are The Catalysis™

approach, The Select Perspective™, and COMO approach.

Chapter 2 Component-Based Software Development and EJB Architecture

 7

2.1.1 The Catalysis Approach™

Catalysis is based on, and has helped shape, standards in the object modelling and

component world. It has also borrowed many ideas from other technologies, and

reorganized the ways in which software is produced. The techniques and methodology

of Catalysis provide the following [12]:

• For Component-based development: How to precisely define interfaces

independent of implementation, how to construct the component kit architecture

and component connectors, and how to ensure that a component conforms to

connectors.

• For high-integrity design: Precise abstract specifications and unambiguous trace

ability from business goals to program code.

• For reengineering: Techniques for understanding exist software and designing

new software from it.

The Catalysis approach utilizes Unified Modelling Language (UML) to model software

systems. It includes static models (object attributes and invariants modelling, behaviour

models), object type and operation modelling, and interaction models (use case, actions,

and collaborations modelling). Furthermore, it also includes composition models and

specifications, frameworks, and template packages modelling. These models are

presented a number of features in the Catalysis approach [12]:

• Actions are described in terms of their effects on objects. They can be defined

with post conditions and illustrated with snapshots.

• Abstract specifications can be made very precise, avoiding ambiguities.

• Actions and objects can be abstracted and refined – that is, described at different

levels of detail. The relationship can be traced, or retrieved, all the way from

business goals to program code.

• Collaboration-schemes of interaction; these are first-class units of design.

• Component and objects are designed similarly, although with different emphasis

on the way they are chosen and have responsibilities assigned.

• Components with different views and representations of a business concept can

be related to the common business model with retrievals.

Chapter 2 Component-Based Software Development and EJB Architecture

 8

• Components can be designed to plug in to each other and in to frameworks. The

plug-in-points are defined with action specifications.

Using the Catalysis CBD approach, we find that the approach is mainly focused on

component lower-level functional decomposition and component functional interfaces.

Catalysis models basic actions and collaborations, and further vertically slices system to

model components. It’s a very good CBD technology, however, it still lacks some of

the systemic high-level component characteristics such as user interfaces, transaction

management, persistency and security etc. aspect information.

2.1.2 The Select Perspective™ Approach

The Select Perspective™ is a component-based approach for developing enterprise

systems. An enterprise system is one that meets the needs of a large business with

complex business processes. A fundamental characteristic of such systems is that they

need to be delivered rapidly in tight time frame, while facilitating reuse though

component technology. The Select Perspective technology incorporates a component-

based architecture and includes the latest developments in UML. The technology

architecture is aimed at harnessing a service-based approach with effective object-

oriented modelling in order to capitalize on the increasing power of the fast-developing

technology [2].

There are six core-modelling techniques based on UML in the Select Perspective

approach, and UML notation has been streamlined and minimally enhanced to meet the

practical needs of enterprise systems. The six models of The Select Perspective are:

Business Process Model, Use Case Model, Class Model, Object Interaction Model,

State Model, Component Model, Deployment Model and Logical Data Model [2]. In

these six, the Business Process Modelling (BPM) and Logical Data Modelling are not

found in the general software modelling techniques. Business process modelling is a

notation adapted from the Computer Science Corporation. The main idea used here is

modelling business services and architecture. Logical data modelling employed here is

used for wrapping relational (or other non-OO) databases to store data; obviously a key

area in legacy database wrapping [2]. Obviously, the component model is largely

Chapter 2 Component-Based Software Development and EJB Architecture

 9

geared to component development. However, most of the modelling techniques are

applicable to both the development of specific solutions and to development of reusable

components. The Figure 2-1 shows The Select Perspective approach used in modelling

diagram.

Figure 2-1 The Select Perspective models diagram [2]

As can be seen, The Select Perspective™ methodology mainly focuses on services or

functional properties of a system. Its various modelling techniques are only capturing

low-level systemic characteristics and services. Although, component modelling is

based on system architecture and aimed at developing components that provide

commonly used business and/or data services, it still just focuses on functional

perspectives. Component users can’t find higher-level systemic aspect information from

component services. For example: systemic distribution, persistency, security or

collaboration perspective services of components. This resulted in end-user

comprehension difficulties, and hard to use or reconfigure components.

Chapter 2 Component-Based Software Development and EJB Architecture

 10

2.1.3 COMO Approach

COMO is a practical object-oriented component development methodology that can be

used in developing software components. COMO component modelling technique only

focuses on component development. It proposes modelling workflow between tasks and

defines concrete modelling guidelines. COMO extended the current UML notations to

model component through adding message flows and classes into component diagrams

[13]. The message flows between components are mapped into interfaces of component

diagram. Moreover, the COMO approach also considered reliability of component

modelling. When identifying domain requirement set, the COMO technique only

focuses on functional requirements from many application requirement specifications.

When identifying components, COMO utilized two clustering techniques: use case

clustering, and use case and class clustering technique [13].

The COMO methodology for component modelling only focuses on component lower

level functional decompositions. There are no non-functional constraints addressed. As

mentioned above, the COMO approach identifying components by using use case based

clustering techniques, which is a vertical slice systems technology. System crosscutting

issues are not identified at all such as distribution, transaction and persistency concerns.

Although it classified component interfaces into provided interface and required

interface for each component, it still focuses on component functional services, did not

present any systemic high-level properties of components and non-functional issues.

COMO like most component-based development technologies did not address non-

functional constraints or crosscutting issues such as user interfaces, collaboration and

security perspectives.

2.2 EJB Framework Architecture

Enterprise JavaBeans (EJB) is not a product. It is a specification for a Java server-side

services framework [15]. It is part of a larger framework of the Java 2 Platform,

Enterprise Edition (J2EE) [5]. This platform is architecture for developing, deploying

and executing applications in a distributed environment. EJB server provides system-

level services, such as transaction management, security, and database access

Chapter 2 Component-Based Software Development and EJB Architecture

 11

(persistency) services. The benefit to application developers is that they can focus on

writing the business logic necessary to support their application without having worry

about implementing the surrounding framework.

The EJB server is the high-level process or application that manages EJB containers,

along with providing access to system services. An EJB server is required to provide for

availability of JNDI-accessible naming service and a transaction service [14]. The

Figure 2-2 shows the EJB three tiers architecture.

Figure 2-2 EJB three tier Architecture

The EJB container is an abstraction that manages one or more EJB classes and/or

instances. The container is not visible to the client or to the contained bean. However,

all method invocation made on the bean are intercepted by the container, allowing the

container to provide various services to the bean transparently.

Client EJB Server EJB Container Enterprise
Bean

Enterprise
Bean Database

Server

Home
create()
remove()

EJBObject
(Remote)
business
methods

Web Container JSP Pages Servlet Systemic Services:
• Transaction
• Security
• Persistence
• Naming

Application
Client Browser

Chapter 2 Component-Based Software Development and EJB Architecture

 12

A web container manages the execution of all JSP pages and servlet components for

EJB application. Web components and their container run on the EJB server.

Enterprise bean instances run within an EJB container. The container is runtime

environment that controls the enterprise beans and provides them with important

system-level services. The Container provides the following high-level services to

enterprise beans: [5]

• Transaction management

• Security

• Remote Client Connectivity

• Life Cycle Management

• Database Connection Pooling (Persistence service)

Transaction Management

When a method of an enterprise bean has been invoked, the container intervenes in

order to manage the transaction. Component developers do not have to code transaction

boundaries in the enterprise bean, due to the container manages the transaction. The

program code required to control distributed transaction can be very complicated. The

component developers could just simply declare the enterprise bean’s transactional

properties in the deployment descriptor file, rather than coding and debugging complex

code. The EJB container will load the file and handles the enterprise beans transactions.

Security

In the enterprise bean’s deployment descriptor, developers could declare some specified

roles and methods that may invoke by clients. Then, the container will permit only

authorized clients who belong to a particular role to invoke an enterprise bean’s

method. That means each client belongs to a particular role, and each role is permitted

to invoke certain methods. Therefore, developers do not necessary to code routines that

enforce security, due to this declarative approach.

Chapter 2 Component-Based Software Development and EJB Architecture

 13

Database Connection Pooling (Persistence service)

Setting up a database connection is time-consuming and the number of connections

may be limited. A database connection is a costly resource. To avoid these problems,

the EJB container manages a pool of database connections. An enterprise beans can

quickly obtain a connection from the pool. When the bean releases the connection, it

may be reused by another bean. It increases the persistency services performance.

In general, EJB is a network middleware and application server that provides special

functionalities such as transaction, persistence, location transparency, and security

services [16]. These services can be considered as non-functional aspects and EJB can

be regarded as an Aspect-Oriented Component Engineering (AOCE) ideal

programming environment. The EJB technology successfully reduced domain specific

component developer additional works for struggling on those non-functional aspects.

Therefore, most of component aspects could be mapped to EJB provided aspect

services. However, some of other aspects that EJB did not provided still need

developers to implement in their code.

Both Sun’s J2EE and Microsoft .NET framework include a complex middle tier

infrastructure that supports resources sharing among clients. This infrastructure is

important for supporting great numbers of clients, and thereby achieving high system

performance. In J2EE, this middle tier infrastructure is called Enterprise JavaBeans

(EJB) container. In the .NET framework, it is called COM+ [30]. However, the

.Net/COM+ technology there is limitations on language and platforms. It can only be

run on Microsoft Windows™ platform. And, the EJB server provided more system-

level services such as transaction, persistency and security etc.

2.3 Summary

Component-based software development ideas were introduced into software

engineering in recent several years. Because modern software systems have become

larger and larger, software engineering field emerge crisis for developing large-scale

Chapter 2 Component-Based Software Development and EJB Architecture

 14

software. The CBD technology increases software reusability, scalability and

maintainability, and reduces the software developing cost and time.

Some component-based development techniques were proposed such as The Catalysis,

The Select Perspective and COMO. However, most of these CBD approaches only

focus on functional decomposition, they vertically slice system functionality to model

and group components. Therefore the components developed by applying these

methodologies are lack of non-functional properties and characteristics such as high-

level systematic transaction, persistency and security aspects etc.

Enterprise JavaBeans is a popular component framework middleware and application

server. The EJB technology can provide some system-level services, such as transaction

management, security and persistency. These systemic services benefit component

developers, that they can concentrate on business logic rather than system-level

services. It reduces component development time and cost. Moreover, these services

can be considered as aspects of services, and EJB can be regarded as an aspect-oriented

component development environment.

Chapter 3 AOP and Aspect-Oriented Component Engineering

 15

Chapter 3 AOP and Aspect-Oriented Component
Engineering

The Aspect concept was introduced into software developing fields to address the

problems that not procedural and object-oriented programming technologies can

sufficiently address. There are a number of techniques came up around aspect-oriented

notation in software developing and programming. The most successful one is Aspect-

Oriented Programming (AOP) [17] technique. The others are Adaptive Programming

(AP), Programming with Aspectual Components [18] and our Aspect-Oriented

Component Engineering (AOCE). This chapter will give a briefly introduction of these

methodologies and mainly focus on our Aspect-Oriented Component Engineering

methodology.

3.1 Aspect-Oriented programming

The definition of "aspect" has evolved over time. It is difficult to make terms like cross-

cutting, tangling, intermingling, interleaving and cross-cutting precise. The current

working definition is (May 99, Gregor Kiczales) [19]:

An aspect is a modular unit that cross-cuts the structure of other modular units.

Aspects exist in both design and implementation. A design aspect is a modular unit of

the design that cross-cuts the structure of other parts of the design. A program or code

aspect is a modular unit of the program that cross-cuts other modular units of the

program.

In summary, an aspect is a unit that encapsulates state, behavior, and behavior

enhancements in other units.

Chapter 3 AOP and Aspect-Oriented Component Engineering

 16

Aspect-Oriented Programming was named by Gregor Kiczales and his group [17]. The

main purpose of AOP is to address some issues that neither procedural nor object-

oriented programming techniques are sufficient to clearly capture in software design

and implementation decisions. These issues usually crosscut a system’s basic

functionality and spread out in the implementation code. Moreover, during

implementation they result tangling code that is very difficult to develop and maintain.

The Xerox PARC aspect-oriented programming definition distinguishes components

and aspects. A component is considered a behavioral view. The Xerox PARC definition

of AOP stresses the importance of “crosscutting”. However, the Xerox PARC

definition of AOP has evolved over time. For a while, AOP was meant to be only for

systemic aspects like synchronization, distribution, failure handling, etc. Crosscutting

collaboration issues were not considered as aspects for some time [20].

The aspect-oriented programming methodology initially is intended to clearly express

and solve crosscutting aspect issues, including appropriate isolation, composition and

reuse of the aspect code [17]. Code weaving is the main approach of AOP to solve these

issues. Aspect weavers must be able to handle component and aspect languages,

composing them properly to result the desired total system functionality [17]. The

current aspect-oriented programming technology is mainly focus on controls tangling of

concerns by isolating aspects that cross-cut each other into “building blocks” [18].

AOP clearly separated components and aspects from each other. Gregor Kiczales and

his group defined component and aspect like following in [17]:

A component, if it can be cleanly encapsulated in a generalized procedure. Components

tend to be units of the system’s functional decomposition. For example, in an e-

commerce system customer and shopping cart are functional decomposed components.

An aspect, if it can not be cleanly encapsulated in a generalized procedure. Aspects

tend not to be units of the system’s functional decomposition, but rather to be properties

that affect the performance or semantics of the component in system ways. For example,

object distribution, persistency and collaborations are system aspects.

Chapter 3 AOP and Aspect-Oriented Component Engineering

 17

AOP use these two terms to support the programmer separating components and

aspects from each other clearly, by providing mechanisms that make it possible to

abstract and compose them to produce the overall system [17]. For example, there are

several aspects of concern for a digital library system – include communication,

coordination and failure handling. AOP uses aspect language, component language and

aspect weaver to solve these cross-cutting issues [17].

3.1 Adaptive Programming

Karl J. Lieberherr introduced adaptive Programming (AP) as a name around 1991. In

adaptive programming, programs are decomposed into several crosscutting building

blocks. Initially AP separated out object representation as a separate building block.

Then it added structure-shy behavior and class structure as crosscutting building blocks

[19]. Actually, the adaptive programming is an early instance of aspect-oriented

programming.

AP book [21] stresses the importance of the coexistence of multiple organizations -

views. Those views are composed by referring to each other, but the references may be

to internal parts of other views leading to crosscutting. The referenced internal parts

may be spread over the entire referenced view. Aspect-oriented programs consist of

complementary, collaborating views, each one addressing a different concern of the

application [21]. But Karl used a different terminology to describe AOP.

Adaptive programming methodology described components and aspects as views, not

clearly separate each other. The code-weaving notation was used to describe

enhancements of views. The goal is to separate views by minimizing dependencies

between views so that a large class of modifications in one view has a minimum impact

on the other views [21].

Recently, the Programming with Aspectual Components [18] technique was proposed

by Karl and his group. They try to integrate AOP and component-based programming

by introducing component construct for programming class collaborations, and call it

aspectual component. The aspectual components extend adaptive plug-and-play

Chapter 3 AOP and Aspect-Oriented Component Engineering

 18

components (AP&P) with a modification interface that turns them into an effective tool

for AOP [18]. A key point of aspectual components is that they are programmed in a

generic data model, which is used to ensure the proper development of components.

Other techniques use aspect notation is AspectJ [31] that is an aspect-oriented extension

to the Java™ programming language.

3.2 Aspect-Oriented Component Engineering

Aspect-Oriented Component Engineering (AOCE) is not a programming technology,

unlike Aspect-Oriented Programming and Programming with Aspectual Component.

AOCE is a new software engineering methodology for developing more reusable,

extensible and dynamically adaptable software components. The technique focuses on

the whole software developing lifecycle, like requirement engineering, design,

implementation, testing and deployment. We use the notation of “aspects” to

horizontally slice overall system through vertically decomposed software components,

to characterize crosscutting functional and non-functional properties of components.

Figure 3-1 shows the general concepts of components vs. component aspects [22].

Figure 3-1 General concept of components vs. component aspects.

Common systemic aspects include user interfaces, transaction processing, persistency,

security, distribution, memory management, collaboration and so on. These aspects

may vary with different domain, for example, for real-time control system event

Transaction
related services Security
related services
User Interface

related services
Persistency

related services
Event Flow Event History Process View Process Stage

Examples of
“Horizontal

Slices”
i.e. Aspects,
perspectives

Examples of “Vertical Slices”
i.e. objects, components Overall Software application

Chapter 3 AOP and Aspect-Oriented Component Engineering

 19

response time (performance), memory management and concurrency aspects maybe

important; security-critical systems have various additional security-related aspects;

safety-critical systems have redundancy and high assurance aspects [22].

Normally, each component in a specified system will provide one or more aspect-

oriented functional or non-functional services for other components/end user to use.

Meanwhile, the component may require one or more aspect-oriented functional/non-

functional services from other components in order to well functional working. When

component developer identify aspect-related services, the AOCE methodology will

allow user to reason about components interaction in various systemic aspects and

crosscut the system vertically slicing into software components. Component developers

have to address the important system level crosscutting concerns of their application

components will have, identify proper “aspect details” and detailed “aspect properties”

so that they can be used to exchange component higher-level information or component

properties retrieval and introspection.

Each aspect of a component provided to or required from others has some “aspect

details”, which is used to more precisely describe systemic properties of component

related to the aspect. For example, one component may provide data retrieving and

storage services of persistency aspect; one component may require data encoding or

encrypting services of security aspect. These are aspect-details, which may also have

one or more aspect detail properties that used to further characterize aspect information

[23]. The aspect detail properties will relate to functional and/or non-functional

characteristics of the aspect detail. Fore example, for security aspect we might be

interested data encoding algorithms, encryption algorithm, encryption key length and

key type etc detail properties.

The notion of an aspect in AOCE not only used to capture functional information of

components but also used to capture non-functional constraints of components. For

example, component developer may like to describe persistency functional aspect of

retrieving and storage data, meanwhile, they also like to describe non-functional aspect

of persistency such as performance of retrieving data or maximum data size can be

retrieved and required LAN/WAN bandwidth for a good performance etc. The aspects

of AOCE focus on enriching developers and end users knowledge about components by

Chapter 3 AOP and Aspect-Oriented Component Engineering

 20

applying a more effective characterization and implementation mechanism for

component crosscutting services.

The AOCE methodology has been applied at component and system requirement

engineering, component design, implementation and run-time deployment levels [24,

25, 26]. The following section described how AOCE has been used in these software

engineering stages.

3.2.1 Aspect-oriented Component Requirements Engineering

The Aspect-Oriented Component Requirements Engineering (AOCRE) is a subset of

our aspect-oriented component engineering (AOCE). The AOCRE aims to identify and

specify the functional and non-functional requirements, which related to important

aspects of a system. These key aspects usually are the system components provided or

required crosscutting systemic services. For example, a component or application

developer may want to identify user interface, transaction, persistency and security

related functional and non-functional aspects of a component, and may also want to

document these aspect services of the component provided and required.

During component requirements specification, developers may find that some

components have many aspects services and others may just few aspects. Moreover,

some components may share aspect services, not only the provided aspects are

important to characterize component, but also the required aspects. Sometimes more

than one other component may provide or require a component’s aspects that are

overlapped aspects. These overlapped aspects are the reflection of a component high-

level systemic characterization; they are also very helpful for requirements engineers to

understand related components properties.

The AOCRE process started when general system application requirements or

individual or groups of components requirements analyzed. The process scenario will

refine the requirements iteratively top-down and bottom-up. The basic process flow

shows in Figure 3-2 [24].

Chapter 3 AOP and Aspect-Oriented Component Engineering

 21

Figure 3-2 Basic AOCRE process

3.2.2 Software Component Design with Aspects

During requirement specification, developers have identified a set of functional and

non-functional constraints from systemic aspects. These constraints/aspects can be used

to refine into component design with aspects. Requirements-level aspect details can be

refined into software detailed design-level component aspects, which characterize

design-level component aspect services. For example, the detailed design-level aspect

specifications are user interfaces, component persistency and distribution, security and

transaction models and component configuration.

In the design stage, developers will refine design-level aspects from implementation-

neutral requirements into aspect details and detailed aspect properties that specify

services relevant to selected implementation strategies of software components.

sys requirements comp requirements revise do design
2.1. identify candidate comps

req. engineers
2.2. for each comp. identify aspects

aspect REs

2.3. refine aspects(provide/require)
aspects REs

2.4. analyze aggregate aspects
aspects REs 2.5. verify system reqs met

req engineers
2.3. b

sys reqs comp reqs comp reqs comp reqs basic aspects
detail aspects agg aspects done new/changed comps refine reqs

refine comp
new/changed comps

Chapter 3 AOP and Aspect-Oriented Component Engineering

 22

Requirements-level aspects can be split, merged or refined to define aspect detail types

and aspect detail properties more precisely, and associating these aspect details to

component implementation design technology. At design level component services will

be documented with related aspects, and may also documented aspects that overlapped

with others in order to allow designer to track these perspective links [22]. Chapter 5

illustrated systemic aspect services refined into component design.

3.2.3 Component Implementation and Run-time with Aspects

Using AOCE designed components can be implemented by using any component-based

implementation technology or framework, such as Enterprise JavaBeans™ and JViews

[26] component-based framework. As discussed in chapter 2 of section 2.2, Enterprise

JavaBeans™ provided system-level services that can map onto aspect characterizations

reasonably well.

Component aspects can be implemented via interfaces, language reflection or design

patterns. A component implemented with aspects can provide a mechanism for related

components to access each other’s functionality and to guide inter-component interface

definition. Therefore, the component may invoke other components functionality

indirectly via operation provided by aspect implementation or may invoke component

function directly [24].

Aspect services implemented in a component can be used at run-time by other

components or end-users. They can be used to query the component aspects it provided

or required, meanwhile the component could also query other components aspect

information to perform consistency checks for a configuration and validation of a

component. They can also be used to introspect a component’s capabilities at run-time.

3.2.4 Component Testing with Aspects

Chapter 3 AOP and Aspect-Oriented Component Engineering

 23

Aspect-oriented component engineering has been applied at component requirements

and specification, design, implementation and run-time deployment levels. However,

after components that implemented with aspect services deployed or plugged into other

applications, we need to verify how well the component’s aspects worked and how well

they actually met the specification and design of components. Therefore we need to

generate testing plans and oracles from aspects. The test plan we generated is that by

defining component aspects descriptor and use our special testing agent to test

component with aspect services. The detailed information of component aspects testing

agent please refer to chapter 8.

3.3 Summary

Aspect-oriented programming and adaptive programming are very successful and

popular approaches for handling cross-cutting issues of object-based systems.

Programming with aspectual components focus on low-level generic data model. AOP

use a technique of “code weaving” to solve systemic crosscutting aspects and avoid

tangling code. However, our AOCE technology avoided the concept of “code weaving”

and use of run-time reflection mechanism.

We use the concept of components providing services for one or more systemic aspects

and requiring one or more aspect services from other components. The AOCE focus on

factoring components’ crosscutting systemic issues into component interfaces so that

components can be run-time reconfigured, dynamically composed and reasoned about.

The main advantages of AOCE are: it makes components provide richness of multiple

perspectives (aspects), structures component requirements and design very well, and

encourages implementing better dynamic configuration and decoupled components

interaction [22].

AOCE allows developers document component more precisely and completely.

Component with aspects gives developer and end user different view of the component

capabilities. Aspect information of component can also aid developers better indexing

and storage components, it also gives developer and end user higher-level systemic

characteristics, which provide end-user better understanding for components.

Chapter 4 The E-Furniture System Component-Based Design

 24

Chapter 4 The E-Furniture System Component-
Based Design

Components and Component-Based Development (CBD) methodologies are a very

important force in the e-business revolution and large-scale software systems. They are

the way to reach enterprise solutions in the Internet age. In recent reports by 2003 most

new software intensive solutions will be constructed with “building blocks” such as

pre-built components [1]. It is clear that over the next few years, enterprise-scale

solutions in the Internet age will mainly focus on components and component-based

approaches [1]. This chapter will briefly illustrate component-based system design by

applying The Select Perspective™ approach [2] using an example system of furniture

online selling and backend enterprise maintenance system. Of course it is impossible to

illustrate the entire process, here we just illustrate main stages of the approach. These

phases are: system requirements (business modelling), system analysis (use case, object

interaction modelling) and system design (architecture modelling).

4.1 The System Requirements

Wanli Furniture Company is one of the biggest furniture manufacturers in China. They

specialise in solid-wood furniture. Current trends of Internet Business are to use

computer software systems to manage products inventory efficiently. Therefore, Wanli

decide to research their products selling online and the management integrated software

system with a view of more scalability, usability and flexibility. They also thinking

about large scale integrated systems for later development, such as raw material

supplier electronic data exchange system and retailer data exchanges via the Internet

(the Virtual Private Network (VPN) system). In the first step, they would like to

prototype an online shopping cart and back-end database maintaining system, which we

Chapter 4 The E-Furniture System Component-Based Design

 25

call the E-Furniture system. The following sections illustrate the system’s requirements

and system modelling.

4.1.1 Functional Requirement Specifications:

Web User requirements:

1. Users via the WWW Internet anywhere in the world can access the system.

2. The system may use different languages to provide friendly user interfaces.

3. The system should allow users to view all the products that the company offers

and their details.

4. The system should also allow users to search any products that the company

offers.

5. The system should allow users to sign up as a member of the company. Then if

the customer wants to place an order later, they can login first so they don’t

need to fill in the detailed information about themselves for each order.

6. The system should allow users to maintain their own information.

7. The system should allow users to pick up more than one item when shopping.

8. The system should also allow users to put back items they don’t want to buy

when they are shopping.

9. The system should allow users to place and cancel orders (within some period)

and view their order list and order deliver information.

10. The system should allow users to submit messages using the company web site

when they are looking for products or doing online shopping as to get feedback

information in order to improve services.

11. The system should allow users to check out when they have finish shopping and

make online payments using credit card.

12. The system must notify users via email (if the user has an email address) when

their orders have been delivered or if they could not be delivered on time.

Chapter 4 The E-Furniture System Component-Based Design

 26

Maintain requirements:

13. The system should only allow specified staff or management, access to the

system database.

14. The system should permit selected staff to view and add/delete/update products

information.

15. The system should allow selected staff to view and maintain product stock

information.

16. The system should permit some staff/management to view customer

information.

17. The system should allow input of single sale details into database for when

customers come to the company to buy products.

18. The system must allow selected staff to view/maintain order information that

customers have placed.

19. The system must keep information of customer-returned products.

20. The system should also allow staff to view the messages that customers have

submitted using the web site.

21. The system should also allow staff to maintain order delivery information.

22. The system should also allow managers to view/maintain staff information.

4.1.2 Non-functional requirements:

Security and Integrity Aspects:

1. Access to the system is via an authentication module. All packets involving

authentication details need to be encrypted.

2. The web server should be secured very carefully covering any known and

popular security holes and exploits.

3. The local unit running the web site is responsible for the security, and care

should be taken to ensure that it doesn’t become a potential point of entry into

the entire system.

4. Only managers can access and change staff information details.

5. Passwords are needed to access all staff functions.

Chapter 4 The E-Furniture System Component-Based Design

 27

6. Customer requests (especially for payment information) should be encrypted.

7. Backups done every night.

Quality Aspects:

8. Reporting is not critical and can be off line for up to 24 hours.

9. Selling is critical – downtime must be less than 10 minutes.

10. On-line access is not very critical, but downtime should be limited to 1 hour.

11. All programs should generate error logs.

12. In case of delays or error, the system should indicate this by some sort of visual

display.

13. Power failure needs to be handled by UPS for the main server machine and

database.

Performance Aspects:

14. Response time should be less than 5 seconds under heavy loading (up to 100

simultaneous customer connections allowed), for retail search and on-line

search (regardless WAN transmission delay)

These functional and non-functional requirements give developers a clear description of

the system to build. The non-functional constraints are also important for the system;

they describe the system from higher-level perspectives.

4.2 The System Object-Oriented Analysis - OOA

In the system analysis phase, Select Perspective approach will mainly focus on use case

modelling, class modelling, and object interaction modelling. These models will

simulate a system from different perspectives giving developers a very good

understanding of a system’s functional properties.

Chapter 4 The E-Furniture System Component-Based Design

 28

4.2.1 E-Furniture system use case modelling

Use case modelling has become a very popular object-oriented analysis technique. The

“non-technical” nature of use case allows users to participate in a way that is seldom

possible using the abstraction of object modelling alone. It also helps the analyst get to

grips with specific user needs before analysing the internal mechanics of a system.

They also provide a means of trace ability for functional requirements upstream in the

process, and for constructing test plans downstream in the process.

Figure 4-1 is the system’s main use case view. It shows the web user (can be either

individual or organizations) who can register as a member in order to easily shopping

on the web site later. When a user is registered as a member of the furniture store,

he/she can directly login to place orders or maintain their personal information.

However, any user visiting the site can view the product’s catalogue to search products

and view detailed information, whilst being able to purchase some products. Any user

would also be able to submit a message to the furniture store using web site.

maintain self-Info

Pay Online

register

signin

signout

Leave Message

Check out

Submit Info

Maintain Order

Maintain Staff Info

View Message

Login

Search Product

Web User

View catalogue

Staff

Only specified
staffs have these
permission

Maintain Inventory

Maintain Products

Figure 4-1 E-Furniture system main use case diagram

Chapter 4 The E-Furniture System Component-Based Design

 29

Staff who have relevant permissions could make sales, view messages from customer

sent through the site, and, could also handle delivery and returned products. Some

authorized staff could login to the maintenance system to maintain products, orders, and

staff information.

Following are two detailed use case descriptions and their event flow. For more use

case details descriptions please refer Appendix I.

Search Product

Actor Customer

Precondition Customer views or searches the products or services on line

Postcondition System shows the search result on the screen

Description Customer searches the company information (products/services)

or individual information

Basic course of

action

Products/Services ID or relevant keywords are entered and

searching results are displayed

Use Case event flow for “Search Product”:

1. Used by customers via Web browser to query for products by product ID,

product Name or show all.

2. Event flows:

2.1 Repeat until customer leaves Web page:

2.1.1 Customer types in Product ID, Product Name or select from

Category list. Customer also can view whole range of product by

category at once. Categories might include “Office furniture”,

“Home furniture”, “Bedroom furniture”, “Lounge furniture” etc.

The system records the following information about furniture: a

unique ID, name, price, description, size, and category.

2.1.2 Customer clicks “Find” button and a list of matching furniture are

returned showing furniture ID and Name. If no furniture found, go

to step 2.2. If error from server, go to 2.3.

Chapter 4 The E-Furniture System Component-Based Design

 30

2.1.3 Customer clicks on furniture ID/Name. More detailed information

about the furniture will display e.g. picture, description, size,

category and prices.

2.2 No furniture found – error message displayed. Go to 2.1.1.

2.3 Server error – error message displayed. Go to 2.1.1.

3 Related Actors/Use cases: Used by Customer actor

4 Special conditions: Uses WWW Http JSP interface

Checkout

Actor Customer

Precondition Customers have selected products in shopping cart

Postcondition System records the detail of the orders, payment and customer

information for further processing.

Description Customers checkout and make payment online

Basic course of

action

System assigns a new order ID and system responds whether the

order is accepted or not. If the order is accepted then the order

information will store into database for further processing,

otherwise, report error back to the customer.

Alternative

courses of action

If the customer is a new customer, then the system will request the

customer registering first.

Use Case event flow for “Checkout”:

1. Used by customer to buy furniture and make payment online.

2. Event flows:

2.1. Repeat until exit:

2.1.1. Customer login as member or register new customer. If login as exist

member, go to 2.1.3.

2.1.2. Register new customer, enter customer detail information and submit

go to 2.1.4.

2.1.3. Input customer ID and password, System looks up customer, if login

fail, go to 2.3. If database or server error, go to 2.4.

Chapter 4 The E-Furniture System Component-Based Design

 31

2.1.4. Show shopping cart items summary, total cost and credit card fill in

form. Enter credit card information and submit. If credit card is not

valid, go to 21.4.

2.1.5. Customer enters billing information and submits or customer can

terminate checkout by clicking sign out. If billing information not

valid to 2.1.5.

2.1.6. Customer enters shipping information and submits or customer can

terminate checkout by clicking sign out.

2.1.7. Show summary of detail order, billing information and shipping

information. Customer could commit or cancel order. If commit go to

2.2.

2.1.8. Show main furniture shop, end checkout use case.

2.2. Insert detailed order information into database. If order create successful, use

case end. If there is server error go to 2.4.

2.3. Login failed – error message shows login failed, go to 2.1.1.

2.4. Server error – error message indicating server error occurred make order failed

go to 2.1.1.

3. Related Actors/Use cases: Customer

4. Special Conditions: Uses Http/JSP interface.

4.2.2 Class modelling

The quality of the building system in component-based development is essentially a

reflection of the quality of the class model. This is because the class model sets the

underlying foundation on which objects will be put to work. A quality class model

should provide a flexible foundation on which systems can be assembled in component-

like fashion.

Class modelling focuses on static system structure in terms of classes and association.

A class is a set of objects that share a common structure and a common behavior. An

object is something you can do things to and it has state, behavior and identity. The

structure and behavior of similar objects are defined in their common class. Similarly

and association between classes is an abstraction of its constituent links between objects

Chapter 4 The E-Furniture System Component-Based Design

 32

[2]. Based on Select Perspective class-modelling principles, E-Furniture system class

modelling structure was built, which is shown in Figure 4-2. As can be seen, the class

diagram figure out main business classes of the system, and also shows the

relationships of these classes. That’ll be very helpful for capturing and extracting

components.

EmailPerson email

ShoppingCartCreditCard

OrderLine
1..*

1

1..*

1

Inventory

Customer

11

Order

+1..1

+1..1

with

1
1..*

1
1..*

1

+0..n

+1..1 1

place

Product Item

1

1..*

1

1..*

use

1

1

1

1

search

+1..n+0..n
has

Category

Product

0..*

1

0..*

1

1

0..*

1

0..*

Staff

maintain

search/maintain

View maintain

maintain

Figure 4-2 E-Furniture system classes diagram

The following tables show briefly descriptions of main classes in figure 4-2:

Classes Descriptions

Customer

Encapsulate all the information of client include personal information

and account detail. Customer shopping need to register an account. A

set of business methods will define to access its information.

Order

Record customer ordered products information include billing

information, shipping information and these information access

methods.

Staff

Back-end maintaining person defined personal information and

permission groups that specify its access scope. It also will specify a

set of business method access its information.

Chapter 4 The E-Furniture System Component-Based Design

 33

Classes Descriptions (continue)

Product Encapsulate all the properties of products and a set of access method

include searching functions etc

Inventory Recording products stock information such as amount and minimum

stock level etc. and its information access methods.

CeditCard Customer order payment information that need very high secure

levels.

4.2.3 Object interaction Sequence modelling

Sequence diagram is used to describe a use case or operation that is named according to

use case name. The required objects declared across the top of the sequence diagram.

This involves reasoning the class diagram in relation to the needs of the use case and

looking for candidate objects [2]. These are illustrated in the following diagrams.

1. Search products Sequence

Figure 4-3 is the sequence diagram of search products, which can allow use to find

some appropriate products according to the key words they want to find. The

diagram shows the scenario how the relevant products been found. A web user

involved with the sequence, and a controller to receive and dispatch web user’s

action. It’s also will use Category and Product class to search for relevant

information. However, the diagram just shows the lower-level functional event

flow, no other information could be found, such as persistency and transaction etc.

Chapter 4 The E-Furniture System Component-Based Design

 34

:Controler :Products
customer : Web

User

:Category

findCategory()

findProd()

A customer enter key
word to search for relevant
products

1. The user enter key
words as precondition.

2.Try to find relevant
information from category
description.

2.1. If find match, then
show all mactched
category

2.2. If not find from
category decription, then
try to find from products
description.
2.2.1 If found in product
description, then show all
matched products.
2.2.1. If not found, then
inform customer not
found.

enterKeywords()

if findCat =
false

if findCat =
ture

if findProd =
t rue

showAllProd()

IF findProd =
false

notFound()

showAllCat()

Figure 4-3 Search products sequence diagram

2. Checkout Sequence diagram

Figure 4-4 shows the scenario once the customer finish shopping invoked the

checkout event. The system will go through the event flow to check credit card,

insert relevant delivery information and order information into databases, and

update inventory. Some of events occur have to satisfy some conditions, such as, if

the customer is registered, and then show the customer information, else the system

will require user register customer information. These constrained conditions

clearly indicated how the whole event flow going. It also shows the objects

involved with the event, may also need create new objects to make the event flow

reasonable.

Chapter 4 The E-Furniture System Component-Based Design

 35

customer : Web
User

Customer : Inventory :OrderLineCreditCard :Order

checkout()

updateInventory()

showCustInfo()

insertOrder()

enterCreditCardInfo()

confirm()

Customer press the
checkout button.

1. Show customer
information.
1.1. If the customers
is egistered, then its
information will be
diplayed.
1.2. If the customer is
not registered, then
need fill in customer
information form.

2.Once ustomer
information submited,
ask for credit card
information. Waiting
the credit card been
confirmed.
2.1. If card valid, then
need to fill in delivey
information. 2.1.1.
Insert order to
database.
2.1.2. Update
inventory.
2.2. if credit card
cornfirm fail, then go
back modify credit.
card information.

fillCustInfo()

if confirm =
true

if registered
= true

if registered
= false

if confirm =
false

modifyCreditCard()

crate()

enterDelivery()

Figure 4-4 Checkout sequence diagram

3. Maintain products sequence

The Maintain products sequence diagram Figure 4-5, shows how staff maintain

products and category information event flows. The staff can add new categories

and products, can also update and delete category and product items. The update

and delete operation will need to find the item first, then do update or delete. The

sequence diagram gives us a clear event flow for the maintain sequence and objects

involved with the event. It’ll help developer figure out more objects the event needs.

Then developer could refine their class diagram from bottom up.

Chapter 4 The E-Furniture System Component-Based Design

 36

productMan :
Staff

:Category :Product:ProductMgr

addC()

updateC()

updateP()

deleteC()

updateP()

addP()

updateP()

deleteP()

Product maintain will add
new product category or
new product, update product
category or product, and
delete product category or
product.

addNewCat()

findCat()

updateCat()

findCat()

deleteCat()

addNewP()

updateProd()

deleteProd()

findProd()

findProd()

If find == true

If find == true

If find == true

If find == true

Figure 4-5 Maintain Products sequence diagram

4. Maintain Inventory sequence

The maintain inventory use cases used by staff to modify and maintain the

inventory database. Figure 4-6 shows the scenario of add new inventory items,

update and delete inventory items. The actor staff will invoke these operations via

user interfaces. Then the function and method calls will go through relevant objects

to fulfil the operation. It also defined the objects that involved with this event.

Chapter 4 The E-Furniture System Component-Based Design

 37

StockMan : Staff

InventoryMgr InventoryData :InventoryItem

add()

update()

delete()

addNew()

updateInv()

deleteInv()

createItem()

updateItem()

deleteItem()

The maintain inventory
will involve add new
items, update existed
item and delete existed
item.
1. add new item will
construct a new Inventory
and a new InventoryItem.

2. update an item will
need locate the Inventory
item firs t, then update
this inventory and its
item.

3. delete an item also
needs locate the item,
then delete the Inventory
and its item.

select() select()

select() select()

Figure 4-6 Maintain inventory sequence diagram

4.3 The System Design – Component-based design

Object modelling has taken a firm position on the software industry transforming the

way of software development. The unified modelling language has been widely used in

software design and modelling. However, object-oriented modelling and design are not

enough for some complex, scalable, reusable and integrate able focused systems. The

Select Perspective component-based approach identifies and groups components from

Chapter 4 The E-Furniture System Component-Based Design

 38

functional dependent perspectives rather than scratch from low-level objects. It

vertically slices overall system.

 The system we are trying to develop is focus on component-based system to increase

the system’s scalability and reusability etc. This section will give the system component

modelling and detailed design.

4.3.1 Deployment Modelling

Deployment modelling explores and defines the configuration of run-time processing

elements and the component packages. Deployment architecture will affect the use of

the system in terms of such as basics cost, response time, convenience of access to the

system, business efficiency, and usability of the system [2]. Figure 4 – 7 shows the e-

furniture system deployment architecture. The application/web server located in the

same centre node, and there is a mirror server to ensure the system highly availability.

The database occupied a dependent node, which will be more easily to manage, backup

data and securing. Enterprise back-end management applications will be located in the

other nodes such as staff desktop or manager desktop. The protocol used for enterprise

application will be CORBA/RMI. The web application user will use standard HTTP

protocol via web browser in the Internet. The deployment diagram will give component

developer a main architecture of a software system.

Application/
Web Server Mirror

Server

Customer
Computer

Database

SQL SQL

WAN(http)Staff
Desktop

Manager
Desktop

LAN(CORBA/RMI)

LAN(CORBA/RMI)

Figure 4-7 E-Furniture systems Deployment diagram

Chapter 4 The E-Furniture System Component-Based Design

 39

4.3.2 The System Architecture modelling

System architecture is the overall organization of domains into service packages [2].

Architecting service packages in the development process will help us to identify

components and set-up the reusable infrastructure. It also allows later incremental

design to focus on specific implementation detail without being overloaded with wider

architectural concerns. The select perspective uses UML packages component

modelling abstract software architecture and component. And component detail

architecture uses UML class diagram like component modelling.

Figure 4-8 illustrates E-furniture system package architecture. User interface act as user

services package, which is the top services level. The middle level are the business

services packages, which are acting the main role utilize the system functional services.

All data have been used data services packages to wrap onto relational databases.

WebGUI
<<GUI Package>>

StaffGUI
<<GUI Package>>

ShoppingCart
<<Service Package>>

Customer
<<Service Package>>

Products
<<Service Package>>

Order
<<Service Package>>

Inventory
<<Service Package>>

Staff
<<Service Package>>

CustomerData
<<Database>>

ProductCategory
<<Database>>

OrderData
<<Database>>

InventoryData
<<Database>>

StaffData
<<Database>>

Databas
<<Database>>

Figure 4-8 Business service package diagram

Chapter 4 The E-Furniture System Component-Based Design

 40

4.3.3 Component design.

Components are very flexible and powerful means of implementing reusable services

through a consistent, published interface that includes an interaction standard. This

section outlined components based on the services architecture and business-oriented

modelling techniques. Detailed components were designed by using UML notations.

Each component composed by interfaces, which published for others, some services

objects and data objects that are used to wrap relational database in order to

communicate with databases. The followings are the example system’s components

detailed design structure.

1. Customer component structure

Customer component is most e-commerce domain-related reusable component,

which published interfaces are identified from requirements of the system client

actor needed and iterated from use case, dynamic and class model. The

CustomerMgrImp (customer data manager object) is designed to manage all

information of customer in the databases. And, the CustoerData object is designed

to wrap rational database information, its attributes and access methods iteratively

refined from requirements, use case and object dynamic interaction model. The

component also designed data connection facility to connect with relational

databases that customer information stored. The Figure 4 – 9 shows the customer

component detailed architecture and design.

Chapter 4 The E-Furniture System Component-Based Design

 41

Figure 4-9 Customer component diagram

2. Order component

The component is used for handling all the information of associated with customer

orders - include customer ID, delivery, payment information and order item etc.

information. The information was wrapped by object OrderData and OrderLine that

attributes and access methods were refined from requirements, use case and

dynamic models. The component interfaces were also captured from system

requirements and class model. Figure 4-10 shows the component detailed structure

and its services can provide to others. It also shows the component need other

Chapter 4 The E-Furniture System Component-Based Design

 42

component support to fully functional such as Product, Customer, and Inventory

components. The data storage and retrieval are via middleware through SQL

statement.

Figure 4-10 Order component diagram

3. ShoppingCart and Product component

When customer shopping in an e-store such as e-furniture store, most of services

will be provided by a component that need to encapsulate business logics, may also

provide information about products they are selling. Therefore, we designed the

ShoppingCart and Product combined component that provide more interfaces for

others to access. Because most services of the shopping cart depend on product

services. This component combined shopping cart functionality and products

catalog information handling functions together. However, the shopping cart

Chapter 4 The E-Furniture System Component-Based Design

 43

services also need other two components to corporate, they are Order and Inventory

components. Figure 4-11 shows the component structure and detailed services.

The component also designed for handling products catalogue information - include

detailed products information and its category classification. It can provide product

information maintain services via IProductsMgr interface. Users could search

products by calling the component service; it could also used for maintaining

products information that stored in databases.

Figure 4-11 ShoppingCart and Product component diagram

4. Staff component

According to the system requirements, the back-end database information need to

maintain by staffs. And staff personal information and the permission of access

databases need to define as well. So, we designed the staff component to fulfill the

Chapter 4 The E-Furniture System Component-Based Design

 44

functionalities and wrap the information of staff should have. Its interfaces are

iteratively refined from requirements and previous models such as use case and

objects interaction model.

The structure of the Staff component is shown in figure 4-12. This component

provides all the functional services associated with staff information via its

interfaces. The StaffData class extends the PersonData class, which abstract general

person properties. These classes are the wrapper of relational databases. They

communicate with database via middle ware by SQL statements. The component

could provide staff information creation and maintaining services.

Figure 4-12 Staff component diagram

Chapter 4 The E-Furniture System Component-Based Design

 45

5. Inventory component

The system products stock information need to record and manipulate according to

requirements. Hence, we designed the inventory component to dealing with stock

information to insert new inventory item, to update inventory item and to delete

inventory items etc. These functionalities and the inventory attributes are iteratively

refined from requirements and other models i.e. use case and sequence diagrams.

Figure 4-13 gives the component’s detailed structure and its services provided via

its interfaces. The component also has to be supported by ShoppingCart and Product

component to fully functional well. The component will communicate with database

as well to maintain the information stored in database.

Figure 4-13 Inventory component diagram

Chapter 4 The E-Furniture System Component-Based Design

 46

6. Application UI component

To prototype a complete system and according to the system requirements, the e-

furniture system needs an application to manage back-end database information.

Therefore, we designed the component to provide user interface services and hook

user access functions to the component. The functionalities mainly come from use

case and requirements. They were carefully refined iteratively from use case

sequence to component and back to use case again.

Figure 4-14 shows the application user interfaces structure and other components it

will use. The main user interface functionality will different according to user’s

permission, when a user login to the system. Any communication with the server

and database will go though the middleware class.

Figure 4-14 Application UI component diagram

Chapter 4 The E-Furniture System Component-Based Design

 47

7. Customer UI component

The e-furniture system main functionalities are that can provide online shopping

environment for worldwide users. So the ideal way is design a web-based thin client

that will provide any functions of online shopping and browsing products

information for online customers. Therefore, based the system web user

requirements and use cases, we designed the component. Its functionalities are

iteratively refined from requirements, use case to the component and back to

requirements and use cases.

Most of functionalities of customer can do are invoked through this component. The

Figure 4-15 gives the component structure, its main and sub user interfaces, and

detailed functionalities. It also shows the component will interact with other

components, such as Customer, ShoppingCart, Order, and Inventory components.

This component illustrated overall structure of online user interfaces and its

functionality.

Figure 4-15 Customer UI component diagram

Chapter 4 The E-Furniture System Component-Based Design

 48

4.3.4 Summary

From the system requirements, use case diagram, class and dynamic objects interaction

diagrams such as the sequence diagram, we have captured most of the system’s service

functionality. For example: user services, business services and data services.

According to these services, (especially the business services), we designed the system

service and deployment architectures. Furthermore, based on this analysis and

architectural design, we decomposed the system into several components with

functional services. As can be seen that all these components are mainly focused on

functional perspectives by vertical slicing the system. These components provide lower-

level functional information about the system and component itself. They are lacking of

systemic higher-level characteristic properties such as transaction, persistency and

security. We’ll address these issues in the next chapter.

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 49

Chapter 5 Aspect-Oriented Analysis for E-
Furniture System Design

From the previous chapter, we find the whole system analysis and design is mainly

focused on the system’s vertical functional slices used to address components and their

associated data wrapping objects. Like most component-based techniques The Select

Perspective™ approach also focuses on identifying component interfaces to support the

vertical slice and functional decomposition. These approaches will lead components to

encode low-level information about the component interfaces for run time use [22]. In

this chapter, we’ll try to analyze the component design by adding aspect information,

most of which will come from horizontal slices of the overall system including

functional and non-functional constraints. The methodology of Aspect-Oriented

Component Engineering (AOCE) [22] will be applied to analyze the system design in

order to address the issues of crosscutting component services. Identifying aspect-

categorized services by using AOCE will allow us to reason about components

interaction from various systemic aspects.

Aspects are horizontal slices through a system. They typically affect many components

identified by functional decomposition of common system characteristics such as user

interfaces, persistency, transaction, performance and security [22]. Component

developers use aspects to describe different perspectives on systemic component

capabilities during the software engineering lifecycle. The aspects might be very

different in different domains, such as real-time response and memory management

may useful real time control system. In the e-commerce system domain, those aspects

were identified and found useful, especially for the e-furniture system. They are

illustrated in figure 5-1. The following sections will illustrate system analysis and

design with aspects. However, representing these aspects information in UML diagram

is an issue. We’ll discus that in the next chapter.

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 50

Aspect Aspect Details Description

User Interface Views

Frame

Feedback

Extensible parts

Components supporting or

requiring user interfaces,

including extensible and compos

able interfaces for several

components

Performance Speed

Robustness

Components supporting or

requiring performance loading

speed or stable ability

Transaction Rollback

Commit

Locking

Components supporting or

requiring transaction management

capabilities

Persistency Store/retrieve data

Locate data

Lock Data

Components supporting or

requiring data persistency

management facilities

Security Encoding model

Key distribution

Authentication

Access Control

Components supporting or

requiring inter-component security

models, data encoding and

cryptography

Figure 5-1 Some of e-furniture system aspects and some aspect details

5.1 Class Modelling with Aspects Analysis

Class models only give developers a static system structure and associations of classes.

However, the classes diagram lacks cross-cutting higher-level systemic information,

such as transaction, persistency aspect information. Each class may provide/require

various aspects that cross-cut multiple components, but they are not documented in

class diagram and other UML diagrams. Moreover, these aspects information

sometimes better characterize important system structure and associations. The

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 51

following is some detailed aspect information of the e-furniture system class diagram

potentially could be represented.

Aspects Aspect details, detail properties and brief reasoning

<<Security>>

<<– required>> access authentication, detail properties can be

password authentication mask. To vie customer information need

staff login first.

<<– required>> encode/decode data, can be Base 64 encode/decode

or using some cryptography algorithms. The services can be

provided by Encoder/Decoder component or cryptography package

provider, such as, Bouncy Castle [32] JCE provider package.

<<Transaction>>

<<+ provided>> send/receive data, the transaction can use

WAN/LAN connections, CORBA/RMI/COM protocol.

<<+ provided>>lock/rollback data, some class can provide the

service to users when access some information or error occur.

Meanwhile, the class may require database provide same services.

<<Persistency>>

<< + provided >> store/retrieve data, detail properties can be insert,

update, select and delete data. The services will be required by

application or web users.

<< – required>> store/retrieve data, some classes and associations

may require other class or database provide the services as well.

<< – required >> storage media, the detail property could be file or

database.

Figure 5-2 shows some classes with aspects information and associations with aspects

information annotated. From the annotated class diagram, the developers can much

more clearly see that the customer class will provide and require persistency aspects (it

saves data, but needs a component to provide file or database access to do this) to the

system as a whole. It also will provide transaction and security aspects. The association

of staff to view customer information will require security, transaction and persistency

aspects (security as seen that data is exchanged; transaction as result data update; and

persistency to save data). Therefore, developer could reason about the association to see

whether the associated class could provide those aspects.

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 52

EmailPerson email

ShoppingCartCreditCard

OrderLine
1..*

1

1..*

1

Inventory

Customer

11

Order

+1..1

+1..1

with

1
1..*

1
1..*

1

+0..n

+1..1 1

place

Product Item

1

1..*

1

1..*

use

1

1

1

1

search

+1..n+0..n
has

Category

Product

0..*

1

0..*

1

1

0..*

1

0..*

Staff

maintain

search/maintain

View maintain

maintain

Figure 5-2 Class diagram with aspect analysis

By applying AOCE to analysis the class diagram can be found that most of classes

provided persistency and transaction aspect service except ShoppingCart and Email

classes. These two classes provide distribution aspect service and require transaction

and persistency aspect services that we can address from system requirements and

cross-cutting points of view.

5.2 Dynamic Object interaction modelling with Aspects

Objects interaction modelling such as sequence diagrams and collaboration diagrams

can give developers information about dynamic class operations. Although object

interaction modelling are very helpful to find classes, operation, services and group

components, they also lack information about systemic non-functional aspects, for

example, performance, persistency, security, transaction and distribution aspect

<<Persistency>>
± retrieve data
- store data
<<Transaction>>
+ rollback data
<<Security>>
+decode data
- encode data

<<persistency>>
± retrieve data
- store data
<<transaction>>
+ rollback

<<Security>>
- authentication
- encode data
<<Transaction>>
- lock data
<<Persistency>>
- retrieve data

<<Persistency>>
- retrieve data
<<Transaction>>
- lock data

<<Persistency>>
± retrieve data
+ store data
<<transaction>>
+ rollback

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 53

information. The following section illustrates object interaction diagrams extension

with aspect information.

5.2.1 Search products sequence diagrams with aspects analysis

The search products sequence diagram illustrates some function calls and involved

classes. However, it lacks systemic information, for example, user interfaces,

performance and distribution aspect information. Searching performance and search

results user view aspects are very important information for a searching sequence.

When analysis the sequence diagram from systemic perspectives, we found that the

following detailed aspects are very useful to annotate the diagram in order to present

more information. Figure 5-3 shows those aspect information related to function call or

classes.

Aspects Aspect details, detail properties and brief reasoning

<<User Interface>>

<<+ provided>> results views, present search result information

to application or web users. The services required by web users

or inventory maintaining staff, such as online shopping

customer.

<<– required>> frame/form, detailed properties will be GUI

component or HTML tags. That can be provided by HTML and

Swing components.

<<+ provided>> response time, less than 5 seconds. Required

by web users.

<<Distribution>>

<<+ provided>> locate/identify data. The service required by

customers. Some class will also require others to provide same

services, such as database connection JDBC.

<<– required>> send/receive data, need transport services to

transfer data. It will be provided by WAN/LAN connection

through middleware facilities like CORBA/RMI. The transfer

speed maybe limited.

<<Persistency>>

<<– required>> data retrieve, the sequence will required to

retrieve information from other class or database such as

products class. The data size may limit up to 10 MB.

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 54

:Controler :Products
customer : Web

User

:Category

findCategory()

findProd()

A customer enter key
word to search for relevant
products

1. The user enter key
words as precondition.

2.Try to find relevant
information from category
description.

2.1. If find match, then
show all mactched
category

2.2. If not find from
category decription, then
try to find from products
description.
2.2.1 If found in product
description, then show all
matched products.
2.2.1. If not found, then
inform customer not
found.

enterKeywords()

if findCat =
false

if findCat =
ture

if findProd =
t rue

showAllProd()

IF findProd =
false

notFound()

showAllCat()

Figure 5-3 Search products sequence diagram with aspect analysis

5.2.2 Checkout sequence diagram with aspects analysis

Checkout sequence diagram shows to developer lower-level functional event flow and

objects interactions. However, some systemic higher-level information is not clearly

represented, such as user interfaces, transaction, and performance aspect information.

The following aspects details illustrate the systemic aspect information. Figure 5-4

shows these aspects information associated classes and functions.

<<distribution>>
+locate object
- send/receive data

<<user interface>>
+ views
- frame/form
+ response

<<persistency>>
± retrieve data

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 55

Aspects Aspect details, detail properties and brief reasoning

<<User Interface>>

<<+ provided>> customer info/credit card info views, present

process information and feedback information to web users. The

services required by web users, such as online shopping

customer.

<<– required>> frame/form, detailed properties will be HTML

tags or GUI component. That can be provided by HTML, JSP

and swing components.

<<+ provided>> response time, less than 5 seconds. Required

by web users.

<<Transaction>>

<<+ provided>> data transferring/receiving, need transport

services to transfer data. It will be provided by WAN/LAN

connection through middleware facilities like CORBA/RMI.

<<–required>> lock/rollback data, used to avoid concurrent

access and error handling.

<<Persistency>>

<<+ provided>> store/retrieve data, some objects information

need to be persistent and can be retrieve. The data size store or

retrieve once may limit up to 10 MB.

<<– required>> storage media, such as file or database.

<<Security>>

<<+provided>> access authentication, when user checkout need
to login or register to gain access right. The detail properties can
be password masks.
<<– required>> encode/decode data, such as base 64 encoding
scheme or cryptography algorithms, which will be provided by
cryptography packages like JCE Provider.

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 56

customer : Web
User

Customer : Inventory :OrderLineCreditCard :Order

checkout()

updateInventory()

showCustInfo()

insertOrder()

enterCreditCardInfo()

confirm()

Customer press the
checkout button.

1. Show customer
information.
1.1. If the customers
is egistered, then its
information will be
diplayed.
1.2. If the customer is
not registered, then
need fill in customer
information form.

2.Once ustomer
information submited,
ask for credit card
information. Waiting
the credit card been
confirmed.
2.1. If card valid, then
need to fill in delivey
information. 2.1.1.
Insert order to
database.
2.1.2. Update
inventory.
2.2. if credit card
cornfirm fail, then go
back modify credit.
card information.

fillCustInfo()

if confirm =
true

if registered
= true

if registered
= false

if confirm =
false

modifyCreditCard()

crate()

enterDelivery()

Figure 5-4 Checkout sequence with aspect information analysis

5.2.3 Maintain products sequence diagram with aspects analysis

In chapter figure 4-5 shows the maintain products use case functional sequence method

calls and objects involved with, but some systemic perspective information are not

represented in the diagram, for example, persistency aspect, distribution aspect and

performance aspect. The following aspects are detailed aspect information the diagram

potentially should be represented. We did not annotate the following aspects in its

diagram, because they are quite similar with previous sequence diagrams.

<<user interface>>
+ views
+ response
- frame/form

<<transaction>>
+ transfer/receive
- lock data
<<persistency>>
+ store/retrieve data
- storage media

<<security>>
+authenticate
- encode/decode

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 57

Aspects Aspect details, detail properties and brief reasoning

<<Distribution>>

<<+ provided>> locate object, detailed properties can be locating

products object. Application GUI component required the services.

<<– required>> send/receive data, may use LAN connection as

transport. The service provided by middleware component for

example CORBA/RMI.

<<Persistency>>

<<+ provided>> data store/retrieve, like select, update, insert or

delete product item. The services required by application GUI

component to maintain product information. Meanwhile, the

services will require other classes or database to provide same

services as well.

<<– required>> reliability of storage media, the products

information need available at any time to avoid customer couldn’t

find information of the products i.e. need database available in

24hours 7days a week.

The persistency aspect usually provided by data manager like classes, which

communicate with database, so it also required persistency aspect services from

database connection. The distribution aspect provided by middleware, the aspect

involved with some function calls. So developers can specify database and middleware

capabilities from above aspects.

5.2.4 Maintain inventory sequence with aspects analysis

Figure 4-6 of chapter 4 illustrated the information of maintain inventory functional

sequence methods invocation and associated objects. However, some systemic aspects

information is not indicated in the diagram, such as, distribution aspect, persistency

aspect information. The aspect information can be potentially illustrated in the sequence

diagram to annotate the diagram that presents more information for developers and

users. The followings are detailed aspects information that can be represented in the

sequence diagram. We did not annotate the following aspects in the sequence diagram

here, because the idea is same with previous diagram indication.

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 58

Aspects Aspect details, detail properties and brief reasoning

<<Distribution>>

<<+ provided>> locate object, detailed properties can be locating

products object. Application GUI component required the services.

<<– required>> send/receive data, may use LAN connection as

transport, transfer speed may higher. The service provided by

middleware component for example CORBA/RMI.

<<Persistency>>

<<+ provided>> data store/retrieve, like select, update, insert or

delete product item. The services required by application GUI

component to maintain inventory information. Meanwhile, the

services will require other classes or database to provide same

services as well. Data size may limit up to 10MB.

<<– required>> reliability of storage media, the inventory

information need available at any time to avoid customer couldn’t

shopping sometimes i.e. need database available in 24hours 7days

a week.

5.3 Component Design Specification with Aspects

Component specification and design present component’s lower-level vertical

decomposed functional properties. From last chapter component design, we can find

that component published interfaces only give us functional perspective information

and services. Component’s systemic and non-functional aspect information didn’t

identify at all. However, the systemic and non-functional aspect information sometimes

is very useful to better characterizing and indexing components. The aspect information

will slice components horizontally and present higher-level component properties.

5.3.1 Deployment modelling with aspects analysis

System deployment architecture diagram illustrated system runtime processing

elements, component static residential state and protocols a system used. On the other

hand, there isn’t any systemic aspect information captured in the diagram, such as,

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 59

security aspect and persistency aspect information. The following shows the detailed

aspect information could be potentially represented by deployment diagram.

Aspects Aspect details, detail properties and brief reasoning

<<Security>>

<<+provided>> access authentication, detail properties can be

password authentication mask. Web GUI component or

application component required the service to verify customer

or staff login.

<<– required>> encode/decode data, can be Base 64

encode/decode scheme or using some cryptography algorithms.

The services can be provided by Encoder/Decoder component

or cryptography package, such as, JCE provider components.

<<User Interface>>

<<+ provided>> process/feedback views, user information

presentation. Required by application GUI and web customer

GUI components.

<<+ provided>> system response, it could be detailed properties

of user views, it can shared by multiple aspects. Constrained

response time less than 5 seconds.

<<– required >> form/frame, supplied by Html tag or GUI

components such as swing components.

<<Distribution>>

<<+ provided>> object transfer, the distribution can use

WAN/LAN connections, CORBA/RMI/SQL protocol. The

service will be provided by middleware facility.

<<– required>> send/receive data. The data transaction

capabilities can be provided by database connection, such as

JDBC by using SQL statement.

<<Persistency>>

<< + provided >> store/retrieve data. The services maybe used

by GUI component to present or update information.

Meanwhile, the server components will require database provide

same services.

<< – required >> storage media, the detail property could be file

or database. May require minimum spaces great than 1 GB.

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 60

The figure 5-5 shows deployment diagram with annotated aspects detail analysis

associated with each node.

Application/
Web Server Mirror

Server

Customer
Computer

Database

SQL SQL

WAN(http)Staff
Desktop

Manager
Desktop

LAN(CORBA/RMI)

LAN(CORBA/RMI)

Figure 5-5 Deployment diagram with aspect information

5.3.2 Component design with aspects

Most of component design methodologies focus on lower-level functional

decomposition, the Select Perspective™ approach as well. These approach designed

components lack of systemic-level aspect information. This section we focus on the

systemic aspect information to analyse component design and specification.

1. Customer component

As can be seen from last chapter the component design, the component’s functional

services are decomposed very well. It well specified those functional services and

properties in details. However, systemic aspect information is not indicated, for

example, security aspect, persistency aspect etc.

<<UI>>
+process views
- form/frame <<Security>>

+ authentication
- encode data
- decode data

<<Persistency>>
+ store data
+ retrieve data
- storage media

<<Distribution>>
+ object transfer
- send/receive data

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 61

The following detailed aspects are potentially can be indicated clearly for the customer

component to enrich the component characteristics. Figure 5-6 shows these aspect

information annotated in customer component design diagram.

Aspects Aspect details, detail properties and brief reasoning

<<Security>>

<<+provided>> access authentication, detail properties can be

password authentication mask. Web GUI component may need the

service to verify customer login.

<<– required>> encode/decode data, can be Base 64 encode/decode

or using some cryptography algorithms. The services can be

provided by Encoder/Decoder component or cryptography package

provider, such as, Bouncy Castle [32] JCE provider package.

<<Distribution>>

<<+ provided>> object transfer, the distribution can use

WAN/LAN connections, CORBA/RMI/COM protocol. The service

will be provided by middleware facility.

<<– required>> send/receive data. The data transaction capabilities

can be provided by database connection, such as JDBC.

<< – required>> transaction for update customer info

<<Persistency>>

<< + provided >> store/retrieve data, detail properties can be insert,

update, select and delete data. The services maybe used by web

GUI component to present or update information. Meanwhile, the

customer component will require database provide same services.

The service can also limited data size up to 10MB.

<< – required >> storage media, the detail property could be file or

database. May require minimum spaces great than 1 GB.

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 62

Figure 5-6 Customer component with aspect information

2. Order Component

Although the Order component (figure 4-10 of chapter 4) has been outlined functional

services very well, the systemic cross-cutting issues and non-functional constraints are

not indicated at all. In some point of view, the aspect information can give developers

<<Security>>
+ authentication
- encode data
- decode data

<<Distribution>>
+ object trans
 - send/receive data

<<Persistency>>
+ store data
+ retrieve data
- storage media

<<Distribution>>
- send/receive data
- trans for update cust

<<Persistency>>
+ average search
- data to save

<<Distribution>>
- trans for update cust

Aggregate Aspects <<Security>>
+ authentication
- encode/decode data

<<Distribution>>
- send/receive data
- trans for update

<<Persistency>>
+ store/retrive data
[- storage media]
[- data to save]

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 63

or end user a good understanding of the component, because they are characterized the

component higher-level properties. The followings are the order component detailed

aspect information that could be presented in its design diagram. We are not showing

them in its diagram, but the idea is same with Customer component aspect annotation.

Aspects Aspect details, detail properties and brief reasoning

<<Security>>

<<+provided>> encode/decode data, the service may use Base 64

encoding scheme or cryptographic algorithm. Web user GUI

component may require the service when create orders.

<<– required>> encode/decode data. Meanwhile, the component

may require encoding scheme services as well, they are supported

by cryptography components such as JCE provider components.

<<Distribution>>

<<+ provided>> object transaction, may use WAN/LAN

connection as transport. The service supported by middleware

facility such as CORBA/RMI/COM.

<<– required>> send/receive data, transfer data between storage,

may provided by database connection component such as JDBC.

<<Persistency>>

<<+ provided>> data store/retrieve, detailed functions will be

insert, select, update and delete data. The services required by web

user GUI component and staff component to create order or modify

order information.

<<– required>> data store/retrieve, the component will required the

services as well to find information in storage media such as

database. The services will be supported by database through SQL

protocol.

3. ShoppingCart and Product component

Figure 4-11 of chapter 4 shows the component functional services that can provide to

other components or users. It also shows the component required lower-level functional

services. All functional services have been captured by its published interfaces.

However, the component higher-level systemic aspect information is not presented yet.

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 64

The following detailed aspects were captured for the component by using our AOCE.

These aspects will give developer/user a higher-level various view of the component.

Aspects Aspect details, detail properties and brief reasoning

<<Distribution>>

<<+ provided>> locate object. Detail properties can be search

products or catalog information. Web user GUI component required

the services, which are supported by middleware facility such as

CORBA/RMI/COM.

<<– required>> object transaction, may use WAN/LAN connection

as transport. The service provided by middleware component for

example CORBA/RMI.

<<Persistency>>

<<+ provided>> data store/retrieve, detailed functions will be

insert, select, update and delete data. The services required by web

user GUI component and staff component to create products or

maintain product information.

<<– required>> data store/retrieve, the component will required the

services as well to retrieve information in storage media such as

database. The services will be supported by database and its

connection component through SQL protocol.

4. Staff Component

All functional business services have been well captured for the staff component in

Figure 4-12 of chapter 4. The component’s properties also have been identified

completely and specified clearly. However, its systemic and non-functional aspect

information is not shown in the component design diagram at all. The following aspects

may better characterize staff component higher-level properties.

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 65

Aspects Aspect details, detail properties and brief reasoning

<<Security>>

<<+ provided>> access authentication, details can be password and

permission group authentication. Application GUI component

required the service to verify user and configure application

functionalities according to permission group.

<<– required>> encode/decode data, may use Base 64 encode

scheme and cryptography algorithms. The service can be provided

by cryptography components such as JCE provider components.

<<Distribution>>

<<+ provided>> locate object. Detail properties can be locate and

identify staff object. Application GUI component required the

services.

<<– required>> object transaction, may use WAN/LAN connection

as transport. The service provided by middleware component for

example CORBA/RMI.

<<Persistency>>

<<+ provided>> data store/retrieve, detailed functions will be

insert, select, update and delete data. The services required by

application GUI component to create new staff or maintain staff

personal information.

<<– required>> data store/retrieve, the component will required the

services as well to retrieve information in storage media such as

database. The services will be supported by database and its

connection component through SQL protocol.

5. Inventory Component

In chapter 4 the figure 4-13 has been clearly specified inventory component business

services, which are functional decomposed behaviors. It also has shown the components

encapsulated properties. However, the component system-level cross-cutting properties

are not presented in its design diagram, such as distribution aspect and persistency

aspect etc. The following aspects will be potentially better characterize the component

systemic properties.

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 66

Aspects Aspect details, detail properties and brief reasoning

<<Transaction>>

<<+ provided>> lock data, locking a specified record to avoid

concurrent access. The service required by shopping cart

component when checkout update inventory. The inventory

component will require database or server component provide

locking server.

<<– required>> rollback/commit data, when there are some error

occur will need rollback services or confirm service. The services

will be provided by database or server components.

<<Distribution>>

<<+ provided>> locate object. Detail properties can be search stock

information. Application GUI component required the services

when staff maintains stock records. The services are supported by

middleware facility such as CORBA/RMI/COM.

<<– required>> object transaction, may use WAN/LAN connection

as transport. The service provided by middleware component for

example CORBA/RMI.

<<Persistency>>

<<+ provided>> data store/retrieve, detailed functions will be

insert, select, update and delete data. Data size may limit up to

10MB. The services required by application GUI component when

staff creates inventory items or maintain inventory data.

<<– required>> data store/retrieve, the component will required the

services as well to retrieve information in storage media such as

database. The services will be supported by database and its

connection component through SQL protocol.

5. ApplicationGUI component

The component’s business functional services have been well captured in Figure 4-14

of chapter 4. The figure also shows the component state properties. However, it didn’t

show any information of systemic non-functional properties such as user interface

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 67

aspect information. The following aspect information may illustrate ApplicationGUI

component more clearly from high-level point of views.

Aspects Aspect details, detail properties and brief reasoning

<<User Interface>>

<<+ provided>> process views, present process information and

feedback information to users. The services required by

application user, such as staff or manager.

<<– required>> frame/form/panel, detailed properties can be

GUI component such as JFrame and other swing components or

HTML tag if use web-based interface.

<<Persistency>>

<<– required>> data store/retrieve, the component will required

to retrieve information other components encapsulated such as

inventory component.

6. CustomerGUI Component

Although the CustomerGUI component (figure 4-15 of chapter 4) specified lower-level

business functional services in details, the systemic cross-cutting behaviors and non-

functional constraints are not explicitly indicated at all. There isn’t non-functional

requirements been specified in the diagram such as user interface aspect. The following

detailed aspect information described the component higher-level systemic

characteristics. And, they potentially could be shown in the component design diagram

to document the component higher-level properties.

Aspects Aspect details, detail properties and brief reasoning

<<User Interface>>

<<+ provided>> process views, present process information and

feedback information to web users. The services required by

web users, such as online shopping customer.

<<– required>> frame/form, detailed properties will be HTML

tags. That can be provided by HTML and JSP components.

<<+ provided>> response time, less than 5 seconds. Required

by web users.

Chapter 5 Aspect-Oriented Analysis for E-Furniture System Design

 68

<<Distribution>>

<<+ provided>> locate data, detail can be search products or

locate user information. The service required by online user.

The component will also require other components same

services, such as shopping cart and customer components.

<<– required>> data transferring, need transport services to

transfer data. It will be provided by WAN/LAN connection

through middleware facilities like CORBA/RMI.

<<Persistency>>

<<– required>> data store/retrieve, the component will required

to retrieve information other components encapsulated such as

customer component and shopping cart component.

5.4 Summary

From component analysis and design using aspect information, we can find that each

component has some aspects that may vary from different domains, and each aspect has

several aspect details that are used to more precisely characterise the component

associated with the aspect. Each aspect detail has some aspect “detail properties”. These

particular aspects mainly focus on the systemic, crosscutting issues and non-functional

constraints. These aspect details are very helpful in reasoning components by looking at

its provided and required aspect details. Therefore, after analysing aspect information

for object interaction modelling, deployment modelling and component specification,

we can find that the system’s lower-level functional services, higher-level systemic

information, and non-functional constraints are captured very well.

Moreover, the high-level aspect information will impact on component implementation,

testing and deployment. The component aspects will also impact the end-user

reconfiguration and indexing component repository. Developers and end-users will

greatly benefit from these aspects information in understanding those components that

were documented with aspect information. However, there is a trade-off for this extra

work that has been done to analysis the aspect information. These issues will be

discussed in the next chapter.

Chapter 6 Notation Set of Component Aspects Representation

 69

Chapter 6 Component Aspects Representation

The Rational Rose™ CASE tool is considered as one of the standard tools used for

modelling software during analysis and design, such as use case diagrams, sequence

diagrams, collaboration diagrams, state transition diagrams, class diagrams, deployment

diagrams, and component diagrams etc. These diagrams will give the user a very good

understanding for modelling a software system. Moreover, these diagrams can capture a

software system’s functionality and business logic very well. However, these tools lack

elements used to indicate aspect information with the system’s non-functional

requirements. In this chapter, we’ll illustrate how we can express aspect information in

Rational Rose for sequence diagrams, collaboration diagrams, class diagrams, and

deployment diagrams. These notes will give component designer a good understanding

of designing and documenting components.

6.1 Sequence diagrams with aspects in Rational Rose

Sequence diagrams represent dynamic system behaviors. Most of functional

invocations flow and objects involved with will be captured. Hence, we are not only

can stick aspect information on objects, but also we can show dynamic aspects involved

with function call.

There are two ways to indicate aspect information for objects in sequence diagrams.

One is shown in Figure 6-1 that we use notes to indicate aspects for each object

involved. Every object aspect information details can be found in the notes at the

bottom of the object in the sequence diagrams. Then we could reason about these

objects relationship by analyzing their provided and required aspects.

Chapter 6 Notation Set of Component Aspects Representation

 70

Controler : Web
User

Customer :Inventory :OrderLineCreditCard :Order

<<-distribution>>updateInventory()

showCustInfo()

<<-distribution>>insertOrder()

enterCreditCardInfo()

confirm()

Customer press the
checkout button.

1. Show customer
information.
1.1. If the customers
is egistered, then its
information will be
diplayed.
1.2. If the customer is
not registered, then
need fill in customer
information form.

2.Once ustomer
information submited,
ask for credit card
information. Waiting
the credit card been
confirmed.
2.1. If card valid, then
need to fill in delivey
information. 2.1.1.
Insert order to
database.
2.1.2. Update
inventory.
2.2. if credit card
cornfirm fail, then go
back modify credit.
card information.

fillCustInfo()

if confirm =
true

if registered
= true

if registered
= false

if confirm =
false

modifyCreditCard()

<<-persistency>>create()

enterDelivery()

<<User interface Aspect>>
- view
 - frame
<<Security Aspect>>
- access authentication
- encode/decode data
<<Distribution Aspect>>
- send/receive data

<<Security Aspect>>
+ access authentication
+/- encode/decode data
<<Distribution Aspect>>
+/- transfer/receive data
<<Persistency Aspect>>
+/- store/receive data

<<Security Aspect>>
+/- encode/decode data
<<Persistency Aspect>>
+/- store/retrieve data

<<Transaction Aspect>>
+/- transfer/receive data
<<Persis tency Aspect>>
+/- store/retrieve data

<<Transaction Aspect>>
+ transfer/receive data
- locking data
<<Persistency Aspect>>
+ store/retrieve data
- storage info

<<Persistency Aspect>>
+/- store/retrieve data
- storage info

<<Persistency Aspect>> + retrieve data

Figure 6-1 Checkout sequence diagram with aspect information

Another way to express the aspect information on objects is use object documentation

dialog of the Rational Rose to indicate aspect information of objects. Figure 6-2

illustrated this notation. Developers can select a class and write its aspect information in

the documentation window (1) of figure 6-2. We can also view and write the aspect

information via the class specification dialog by right click the class then select open

specification, the specification dialog will popup (2) of figure 6-2.

The dynamic function call involved aspects usually are transaction, distribution and

persistency aspects, such as checkout sequence function call insertOrder() and

updateInventory(), in which distribution aspect as involved. The create() function call is

required persistency aspect. We can illustrate the information by using stereotype,

which is shown in sequence diagram (1) of Figure 6-1. So, we can use these notations

to well capture system dynamic behaviour aspects information. And we can gain more

high-level understanding of a system.

(1)

Chapter 6 Notation Set of Component Aspects Representation

 71

Figure 6-2 Sequence diagram with aspects in documentation dialog

6.2 Collaboration diagrams with aspects in Rational Rose

The collaboration diagrams are different from sequence diagrams that layout is more

restricted and tidy. In the collaboration diagrams, the objects layout may variety

especially when a collaboration diagram involves many classes. If we use attach notes

to each class, the diagram will look quite messy and hard to understand. Therefore, we

adopted class documentation dialog to indicate the class aspect information and we can

also use stereotypes stick to function calls. For example, when we select customer

object, its detailed aspect information can be written and shown in the documentation

window (1) in Figure 6-3. The user also can right click object and select open

specification to edit or view the detailed aspect information like (2) in figure 6-3. To

indicate dynamic function call required or provided aspects, we can use stereotypes of

function call, such as getCustInfo method call required transaction aspect and create

(2)

(1)

Chapter 6 Notation Set of Component Aspects Representation

 72

order function required persistency aspect that is shown in (3) of Figure 6-3. So, when

aspect information was shown in collaboration diagram, we can find that it will give

user more systemic cross-cutting and non-functional information.

Figure 6-3 Checkout Collaboration diagram with aspect information

6.3 Deployment diagrams with aspects in Rational Rose

The deployment diagrams aspect information is quite important, because deployment

diagram will present system deployment architecture and system connection etc.

properties. So, when aspect information was shown in the diagram, the system’s

properties and non-functional requirements will be quite clear. It’ll be very helpful for

designers to think about system architecture design by considering various constraints

and cross-cutting issues.

There are three ways to illustrate aspect information for deployment diagrams in

Rational Rose. The first approach to express aspect information is by attaching aspect

(2)

(1)

(3)

Chapter 6 Notation Set of Component Aspects Representation

 73

detail notes to each deployment node and attach aspects note on connections as well.

For example, Database will have security aspect and persistency aspect information

stick on it. Moreover, the LAN or WAN connections between deployment nodes are

required security aspects, such as SSL connection tunnel. This notation has been

illustrated in Figure 6-4.

Application/
Web Server

Mirror
Server

Customer
Computer

Database

SQL SQL

WAN(http)

Staff
Desktop

Manager
Desktop

LAN(CORBA/RMI)

LAN(CORBA/RMI)

<<Security Aspect>>
+access authentication
- encode/decode data
<<Persistency Aspect>>
+ store/ret rieve data
+ storage info

<<Security Aspect>>
+ access authentication
+ encode/decode data
<<Distribution Aspect>>
- send/receive data
<<Persistency Aspect>>
+ store/retrieve data
- store/retrieve data

<<User Interface Aspect>>
+ various view
- form/frame
<<Security Aspect>>
- access authentication
- encode/decode data

<<User Interface Aspect>>
+ process views
- frame/form
<<Security Aspect>>
- access authentication
- encode/decode data

<<User Interface Aspect>>
+ process views
- frame/form
<<Security Aspect>>
- access authentication
- encode/decode data

<<Security>>
-access authentic
<<Transaction>>
+ send data

<<Security>>
+ encode data
(SSL)

Figure 6-4 Deployment diagram with aspect information

The other approach is use the documentation window of Rational Rose provided for

each deployment node. When a deployment node is selected, the aspects information

can be written in processor or device documentation widow (1) in Figure 6-5. Designer

could also edit or view aspect information either by selecting the deployment node to

view aspect detail or right click the node selecting open specification use the “General”

tab pane documentation window, which is showed in (2) Figure 6-5.

The last approach to express the aspect information is using specification “detail

Characteristics” windows to show the aspect information, which is illustrated in (3)

figure 6-5. The dialog window invoked by right click a processor or device and select

open specification, then select “Detail” tab-pane.

Chapter 6 Notation Set of Component Aspects Representation

 74

Figure 6-5 Deployment diagrams with aspects in documentation dialog

6.4 Component class diagrams with aspects in Rational Rose

Aspect information is used to capture the component high-level functional and non-

functional information. So the aspect information should be found in component

published interfaces and its implementation. To indicate aspect information for

components class diagrams in Rational Rose tool, there are two approaches will be

illustrated in the paper.

The first approach is using class diagram’s operation stereotype to indicate aspect

information of the component provided or required aspects, and put these stereotyped

aspect information in the component interface. For example, Customer component can

provide persistency aspects and security aspects services, it also require transaction

(1)

(2)

(3)

Chapter 6 Notation Set of Component Aspects Representation

 75

aspects, distribution aspects services. These aspects have been shown by stereotyped

methods, such as <<+Persistency>>insertCustomer(), <<-Security>>

verifyCustomer(), which is shown in Figure 6-6. From the customer component aspects

information diagram, we can find that its non-functional aspects also indicated in its

published interface, for example, required distribution aspect and encode data of

security aspects. In figure 6-6, there are some explanation notes for those aspects in the

component interface at the bottom. This approach is more explicit and easily to reason

about the component relationships and gives component developer a high-level

understanding of these components.

Figure 6-6 Customer Component with aspect information

 Aspect
Information

Chapter 6 Notation Set of Component Aspects Representation

 76

Another approach is using the Rational Rose documentation window of classes and

interfaces in the logical class diagram. When an interface of the component is selected,

its aspects information can be written or edited in its documentation window, which is

shown in (1) of Figure 6-7. And user can also right click the component interface select

open specification to show or modify its aspect information that is illustrated in (2) of

Figure 6-7. These two approaches documented component systemic functional and non-

functional properties more explicit and complete. The component design diagram with

aspects information will be very helpful for component implementation, testing,

component deployment and end user understanding.

Figure 6-7 Customer component with aspects in documentation window

(1)

(2)

Chapter 6 Notation Set of Component Aspects Representation

 77

6.5 Component architecture with aspects in Rational Rose

In Rational Rose, there are not many elements that can be use to annotate components.

The description notes will be the best way to indicate component aspects in component

architecture diagram. Therefore, the first approach we used here to illustrate the aspect

information in the component architecture diagram is using notes to document aspects

information. This approach explicitly illustrated the aspect information provided and

required and also can be very easily reason about components relationships. For

example, the ApplicationGUI component required user interface aspects such as frame

etc. the javax.swing components will provide these aspects for it. Moreover, the

component also required distribution aspects, and middleware component will provide

distribution aspect services. Therefore these components relationship have been

reasoned about from these aspects. The e-furniture system components architecture

detailed aspects information has been shown in Figure 6-7.

Customer
<<Application>>

Inventory
<<Application>>

Staff
<<Application>>

WebGUI
<<JSP>>

MaintainGUI
<<Application>>

ShoopingCart
<<Application>>

Order
<<Application>>

Middleware
javax.swing

HTMLTag/Taglib

<<User Interf ace Aspect>>
+ v arious process v iew
- f orm/f rame
<<Distribution Aspect>>
- transf er data
<<Persistency Aspect>>
- store/retiev e data

<<User Interf ace Aspect>>
+v arious process v iews
-Frame/InternalFrame/panel
<<Distribution Aspect>>
- transf er data
<<Persistency Aspect>>
- store/retriev e data

<<Distribution Aspect>>
+ transf er data/object
+ encode data
+ decode data

<<User Interf ace Aspect>>
+ f orm
+ f rame
+ button
+ input text

<<User Interf ace Aspect>>
+ JFrame
+ JBotton
+ JPanel
+ JTextField

<<Securi ty Aspect >>
+ acc ess aut hentication
- enc ode/dec ode dat a
<<Distr ibut ion Aspec t>>
+ objec t transf er
- send/ receiv e dat a
<<Pers istenc y Aspect >>
+ s tore/retr ieve data

<<Security Aspect>>
+ access authentication
- encode/decode data
<<Distribution Aspect>>
+ object transf er
- send/receiv e data
<<Persistency Aspect>>
+ store/retriev e data
- storage media

<<Distribution Aspect>>
+ locate object
- object transf er
<<Persistency Aspect>>
+ store/retriev e data
- store/retriev e data

<<Security Aspect>>
+ encode/decode data
- decode/encode data
<<Distribution Aspect>>
+ object transaction
- send/receiv e data
<<Persistency Aspect>>
+ store/retriev e data

<<Transact ion Aspec t>>
+ lock data
- rollback/comm it data
<<Dis tr ibut ion As pec t>>
+ locate object
- ob ject t rans fer
<<Persistency Aspect >>
+ store/retr ieve data

Figure 6-8 Component architecture diagram with aspects in notes

Chapter 6 Notation Set of Component Aspects Representation

 78

However, when there are too many components/packages in a system, the diagram will

look not very clear if aspects information attached with each component. In this

circumstance, component designers can also use the other approach, which is

documenting aspect information in the component documentation window (1) in Figure

6-9 illustrated. These aspects information can also be viewed or modified in component

specification window by right click the component and select open specification in the

general tabbed pane, which is shown in (2) of Figure 6-9.

These two approaches illustrated component aspects information in system components

architecture diagram explicitly. The former one will give designer or implement coder a

direct and clearly information of component high-level systemic requirements.

Although the later approach hides the aspects information in documentation window,

designer could also grasp these components high-level information from it.

Figure 6-9 Component architecture with aspects in documentation window

(1)

(2)

Chapter 6 Notation Set of Component Aspects Representation

 79

6.6 Comparison of Component with and without Aspects

Like the paper mentioned in chapter 2, there are many technologies that have illustrated

component based development methods. They mainly focus on functional

decomposition of requirements into objects and components. At the component design

stage, these technologies focus on detailed component interface design and service

implementation. As a result, these components are characterized as low-level

component interfaces and properties. They lack systemic high-level component

properties and non-functional cross-cutting information. This creates difficulties in

understanding components for both components developers and end users. In some

systems, end users themselves may need to extend the system environment. Those

difficulties in understanding and capturing components made the work even hard, and

even more difficult to interact with third-party components when the third-party

components are also lacking high-level characteristics.

By using AOCE technology, the analyzed, designed, and implemented components will

have more systemic high-level properties, and even systemic non-functional constraints

are found in component properties and interfaces. AOCE technology can also present

component characteristics aspect information at different analysis and design level.

More importantly, the aspect information can be documented in different UML

diagrams by using stereotypes and annotations. These notations provide developers

high-level abstractions of components characteristics in documentations, which will

document components more completely and richly. For example, this chapter has

illustrated aspect information with a deployment diagram, which gives user systemic

higher-level aspect information. Whereas, sequential and collaboration diagrams give

developers low-level systemic and crosscutting aspect information. Component class

diagrams can give developers both low-level and high-level component characteristics

whilst presenting non-functional properties. Aspect information can be used to reason

about components inner relationships, and in grouping and indexing components. These

characteristics increase components reusability and reconfiguration.

The main advantages aspect-oriented of component engineering are better

characterization of component requirements and design, providing extra richness of

Chapter 6 Notation Set of Component Aspects Representation

 80

multiple perspectives into components, encouraging implementation of better run-time

configuration and de-coupled components communication, and dynamic access to

detailed component properties. Developers can obtain different viewpoints on

component capabilities by using AOCE. Aspect-based perspectives encourage more

flexible coupling, runtime configuration and dynamic deployment strategies in the

design and implementation stages.

AOCE methodology suggests added components complexity. This requires developers

to design components using various aspects, specifying provided and required aspect

details, and reasoning about component interaction with each aspect. Therefore, there is

a trade-off between this extra work and AOCE benefits. Some complex systems require

enhanced reusable, re-configurable, and understandable components, AOCE is worth

these extra specification and reasoning efforts. In some systems, the technology may be

less effective due to problems identifying suitable aspects and the lack of tools support

[22].

6.7 Summary

Rational Rose™ has become one of the standard CASE tools used for modelling

software system analysis and design. Those modelling diagrams act as critical roles in

software development life cycles. They are also important documentation of software

system developing. Hence, in this chapter we illustrated how aspect information has

been shown in Rational Rose tools. Those notations and approaches are very helpful for

applying AOCE methodology in component-based development (CBD) for software

systems by using standard tools rather than to design special tools support. Although we

could design specific CASE tools to support AOCE, these tools will be quite limited in

other usages and will be hard to use by designers/developers. However, most of

software designers/developers are more familiar with the Rational Rose tool, so they

can use these approaches illustrated in this chapter to capture systemic aspects of

components, and grasp high-level characteristics of components in order to put them in

Rational Rose diagrams. These diagrams documented with aspect information will be

of benefit to component designers and implementation coders. This trade-off of extra

effort for the benefit of using AOCE needs to be considered by component developers.

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 81

Chapter 7 EJB and JSP Components Design and
Implementation

The Enterprise JavaBeans™ (EJB) technology mapped AOCE reasonably well.

Therefore, we choose the technology to implement our example the e-furniture system

with aspect services. This chapter will briefly introduce the EJB technology and map

the e-furniture system components to EJB beans or JSP components. The chapter will

also briefly discuss the system database design, and the whole system’s implementation

and show some screen shots.

7.1 Enterprise Beans – the Server Components Design

Enterprise Java Beans are server components, which are implemented in the Java

programming language. These enterprise beans contain the business logic of the

application. There are three types of enterprise beans in EJB 2.0 specifications [33],

which include session beans, entity beans and message-driven beans. However, in the

E-Furniture system, we just used two types of enterprise beans - Session Beans and

Entity Beans, which are built on Java 2 platform, Enterprise Edition (J2EE 1.2.1). The

tools used for deploy server components are Sun Microsystems J2EE Deploytool comes

with J2EE 1.2.1. The systems implementation, coding and compiling is used Borland

JBuilder 4.0 as the IDE tools. This made the project prototype more quickly and

efficiently.

7.1.1 Session Beans Component

A session bean is a representation of a client in the J2EE server. A client communicates

with J2EE server by invoking the methods that belong to an enterprise session bean. A

session bean communicates with client and can be thought of as an extension of the

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 82

client. Each session bean can have only one client. When the client terminates, its

corresponding session bean also terminates. Therefore, a session bean is transient, or

non-persistent [5]. Session beans can also provide transaction aspects services for other

enterprise beans, and can require transaction aspects from other enterprise beans to

collaborate. For example, in the e-furniture system EJB design ShoppingCart

component will provide transaction aspects for Category component, and it also

requires Category and Inventory beans transaction services as well to finish some

functions such as checkout. For the EJB implementation of the system, EJB container

will manage session bean’s transaction aspects. So, session bean component

implementation is not necessary to add extra code to manage transaction aspects.

By reviewing E-Furniture system component design, we can find that there is several

components can be mapped to session beans, such as, shopping cart, category and email

components. These components can provide transaction aspects for other components,

and also will require transaction aspects from others for some services. Most of client

requests for online shopping will invoke these component business methods to

communicate with other enterprise beans to utilize transaction aspects of the system.

And furthermore, the customer component can also separate its functionality by extract

a customer session bean and a customer account entity bean to map the component in

EJB framework. The customer session bean will mainly provide transaction and

distribution services for account component and order component. The Figure 7-1 is the

example of shopping cart and category (mapped from shopping cart and products

component design of chapter 4) session bean design diagrams in EJB architecture, other

session bean components mapped to EJB design frameworks can be found in Appendix

II.

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 83

Figure 7-1 ShoppingCart and Category component EJB design diagram

7.1.2 Entity Beans Component

An entity bean is a representation of a business object in a persistent storage mechanism

such as a database. An entity bean’s information can be stored as a raw in a relational

database table, but it does not have to store in a relational database. It could be also

stored in an object-oriented database, a legacy system, a file or some other storage

mechanism [5].

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 84

Component persistency aspects are well mapped to entity beans implementation. The

entity bean components will require data storage/retrieving services from storage media

and can also provide storage/retrieving of persistency aspects services for other

components. The persistency aspects of an entity bean can be managed by either the

entity bean itself that provide persistency management, or by the EJB container, then

the bean will require persistency managing. If use bean-managed persistence,

developers have to write data access code in the entity bean to implement persistency

aspects in code, such as use SQL command to access a relational database via JDBC.

However, container-managed persistence is that the EJB container handles data

persistency aspects automatically. This is the EJB container provided aspect services.

In the E-Furniture system, we used Cloudscape relational database as the storage

mechanism for the entity beans data, and we adopted bean-managed persistence, which

means that the system’s entity beans have been designed and implemented using SQL

and JDBC connection to deal with persistency aspects of entity bean components.

From the system component design we can find that most of the e-furniture system

components will be mapped as entity beans. These components are customer account,

order, inventory and staff components. The Figure 7-2 shows an example of staff

component EJB entity bean structure; other components EJB entity beans design

diagrams can be found in Appendix II.

As can be seen in figure 7-2, the staff component defined two interfaces, Staff remote

interface and StaffHome interface, which extends EJBObject and EJBHome interfaces

of EJB library interfaces respectively. The EJBObject and EJBHome will give

distribution aspects service support. StaffEJB class implements EJB EntityBean

interface, and data persistency aspect services were handled by data access object

StaffDAO class to communicate with database via Java SQL command and JDBC

connection. Other helper classes are used for encapsulate relevant staff information in

the database. The component will provide services via Staff remote and StaffHome

interfaces include aspect services.

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 85

Figure 7-2 Staff component EJB diagram

7.1.3 Enterprise Bean Implementations

From the enterprise beans design and services architecture we can find that enterprise

beans are using framework design patterns. Each of bean components has to either

implement EJB SessionBean or EntityBean interfaces, and also have to define all the

business methods in remote interface that client may invoke and bean creation methods

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 86

in home interface that a client may invoke as well. The two interfaces will be published

to provide services to other component and client. Meanwhile, the two interfaces will

encapsulate some aspects services as well, such as transaction aspect services and

persistency services.

A remote interface extends the EJBObject interface and will provide transaction aspects

services for the AOCE design. When the remote interface mapped into EJB bean class,

the component transaction aspects will be implemented in the bean class and managed

by EJB container. The method defined in remote interface must to follow some rules

[5]:

• Each method in the remote interface must match a method implement in the

enterprise bean class. For example, method addItem(CartItem) in ShoppingCart

remote interface, there is a exactly matched method addItem(CartItem) in

ShoppingCartEJB class.

• The signature of the methods in the remote interface must be identical to the

signature of the corresponding methods in the enterprise bean class.

Whereas, home interfaces can provide persistency aspect services in some situation,

such as entity bean home interface creation method. EJB bean home interface has to

extend EJBHome interface of the EJB library, in which defined methods also have to

follow some rules:

• Every methods in the home interface must have a corresponding ejbXXX()

method in enterprise bean class, for example, method findByPrimary() in

StaffHome interface there is a corresponding method ejbFindByPrimary() in

StaffEJB class.

• The number and type of arguments in a create() method must match those of its

corresponding ejbCreate() method.

• A create() method return type of the remote interface of the enterprise bean, but

an ejbCreate() method return void.

The EJB container manages above two interfaces type objects, and it can provide

distribution and security aspect services.

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 87

By applying design framework and these rules, we designed and implemented the

system EJB components and successfully deployed these components onto J2EE server

by using Sun's J2EE server and deploytool. In next chapter we’ll discuss how these

components functionality and some of aspects information have been tested.

7.2 Database Design

In the e-furniture system, we designed a relational database for the systems persistence

information storage, which are some of the system components persistency aspects

required. Although we used MS Access database tool designed the database Entity-

Relationship-Diagram (ERD) that is shown in Figure 7-3, when we implemented the

system we used cloudscape database, which is more compatible with J2EE. From the

ERD diagram we can find that the database table are not formalized, because some of

derived fields are still in the database table, such as, total price of order table. This

design is the consideration of some components performance aspect required. This can

be increasing some entity beans performance. The Customer and Staff tables are linked

to a password table respectively. This is because the two components security aspects

required. Then the two password tables can be stored in different more secure host or

the realm of system.

The following are explanation of the database table two main relationships:

1. Category – Product – Item – Inventory

Category table links to Product table by provide a foreign key constraints cat_id in

the Product table. That means all products belong to certain category. Product table

links to Item table is by put a foreign key constraints product_id in Item table. This

means every item belongs to certain product. So, we can use the item table to

classify same product and different attributes, such as round table with different

color. Inventory table used to record products quantity and stock information. Its

just keep an item_id foreign key constraint link to item table, then we could find any

information about the item and its details.

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 88

2. Customer – LineItem – Order – Item

Customer and Order table are many to many relationships, so we create an

association entity LineItem table, which keeps customer_id and order_id as foreign

key constraints to link these two tables. In the LineItem table has an item_id foreign

key constraint as well to like to item table. So, we could find any information of a

customer ordered products.

Figure 7-3 E-Furniture System database ERD diagram

7.3 Data Maintenance Application Implementation

The E-Furniture systems back-end maintaining sub-system was designed to manage

inventory, order and personal information of staff for the enterprise. The sub-system

designed for administrators/managers of the enterprise using. So, we implemented the

maintaining system as a Java Swing components-based application system, which is

comprised by login component, inventory maintain component, order maintain

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 89

component and staff maintain component. In implementation stage, we also realized

that internationalization (user interface aspects required) is possible and important for

the system. Therefore, we implemented the system as multiple language supported by

utilizing Java resource bundle components. When the system need to be deployed to

non-English users, we can just translate resources bundle properties file to the users

language, there isn’t any works have to be done for the source code. This provided the

application some commercial features and easily to deployed as an international

application. When we analysis these components user interface aspects, we can find

that these components required multi-language supported user interface aspects. And

furthermore, when we use resources bundle properties, these component can provide

different views of user interface aspects.

These data maintenance components all required GUI components to provide user

interface aspects for clients. Therefore, we implement the main application component

by using a JFrame to provide main views and sub-maintenance components by using

JInternalFrame to provide other processing views. And we plugged in those sub-

components into the main application frame. These sub-maintenance components user

interface aspect services can be invoked inside the main frame and displayed as an

internal frame application that is very convenient to use. The Figure 7-4 shows the

application main user interface.

All the functionalities of the application were placed on a menu bar. The tool bar

provided quick access of each application and helps. The menu bar and tool bar provide

user interface aspects that the component required. When users first time launch the

application, the splash window and login dialog will appear in the center of screen,

which are shows in Figure 7-5. The login dialog required authentication of security

aspect services from server component to authenticate the user. If the user provided

correct user name and password, then the main application frame will appear, and the

user could access some of the system functionalities according to its permissions and

some of the functions may be disabled due to the user’s limited permission. If login

failed, the user couldn’t launch main application and has to try login again. If a user

logged into the system later logged out, the system all functionalities are disabled

except login and help. So other users couldn’t do anything if the application not logged

in. This is security aspect of the main application component provided. Therefore, the

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 90

data maintenance application not only required and provided user interface aspects

information, but also required and provided security aspects information.

Figure 7-4 Main internal application user interface

Figure 7-5 Application splash window and login dialog

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 91

In the e-furniture data maintain system include three sub-maintenance components,

staff information maintenance, inventory data maintenance and order information

maintenance. Here we just illustrate inventory data and staff information maintenance

applications.

7.3.1 Inventory maintaining sub-component

The inventory-maintaining component is designed to maintain inventory stock data,

product item, products and product category information. The component required user

interface aspect of frame to present information and also provided UI aspects to main

application component. Figure 7-6 shows the inventory maintenance user interface

screen shot. The left panel lists all the inventory items currently available in databases.

When user selects one item in the left panel, the item detailed information will be

displayed in right side tabbed panes. The user then could manipulate the whole

inventory database information by its functions provide by each tabbed pane, such as

add new item, update item attributes and delete item etc. and could also add, update,

delete products and categories information.

Figure 7-6 Inventory Maintain user interface

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 92

7.3.2 Staff maintaining sub-component

Staff maintenance component required frame UI aspects to present staff information

and meanwhile provided UI aspects to main application component. The Figure 7-7

shows Staff maintenance user interface screen dump. We design and implement these

maintenance user interfaces are in similar layout to keep the application consistency and

convenient to use. Users could add new staff into database, and also could update,

delete staff information via the maintenance tool.

Figure 7-7 Staff Maintain user interface

These maintenance components underlying mechanism is implemented by looking up

the system relevant EJB server components, and then invokes their remote interfaces or

home interfaces methods to communicate with database and do transactions. So these

components are also required transaction aspects, which provided by server components

through middleware. For example, inventory maintenance is looked up inventory home

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 93

server component to create or locate remote inventory objects. Via the server

components transaction aspect service, these maintenance components could complete

its creation, updating and deleting functionalities. So, when user log into the system, the

application will locate all the server components used by the application, and keep them

in memory that will improve the applications performance aspects. If the application

couldn’t find any server components, it will inform user couldn’t launch the

application, server maybe down etc. The user has to try again later. And, some data

loaded from database also have been cached to improve the applications performance.

These are the consideration of components performance aspects required.

From component design and implementation, we can find that some components

required security aspect and some components can also provided security aspects, for

example, customer and staff component can provide security aspects for other

components that try to communicate with them, and also required security aspects for

its information storage such as password storage. So these components have been

implemented by providing password authentication for users. Moreover, these

components confidential information has been implemented by using cryptography

algorithm encrypted then stored in database such as credit card information. All these

are components security aspects consideration.

7.4 JSP – Web Components Design and Implementation

The one main part of E-Furniture system is the business to customer (B2C) web

components, which were designed and implemented using Java Server Page (JSP)

technology, that is very compatible with Enterprise Java Beans. JSP technology

provides an easy way to develop servlet-based dynamic content, with the additional

benefit of separating content and display logic. JSP technology is scalable and easy to

write and maintain. The technology can provide dynamic user interface aspects in a

platform-independent way. In the J2EE programming model web components can serve

tow roles: as presentation components and as front components. JSP page acting as

presentation component and front components used for managing other components

and handle HTTP requests. Generally there are two types of architecture for design and

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 94

implement web components – Model-View-Controller (MVC) architecture and just

Java Beans based architecture.

The MVC architecture provides more flexibility, scalability and manageability. It is

easy to customize in order to apply for other types of domain, but its design and

implementation are very complex and very hard to debug. Figure 7-8 shows the

architecture of using JSP page, Enterprise Beans and controller components.

 JSP Pages
 JavaBeans Components

Enterprise Session EJB
Beans and
Controller

Figure 7-8 Model-View-Controller Architecture

Whereas, just Java Beans based JSP architecture are easier implementing, debugging

and quickly achieving some specified goals. However, the architecture is not very

flexible, scalable and customisable. Due to time constraints of the research, we adopt

the second architecture to quickly achieve prototype of the system. Figure 7-9

illustrated aspect information with the architecture.

Figure 7-9 Web components architecture and aspects information

From the above architecture we can find that the web browser required user interface,

transaction and security aspects, JSP will provide user interface, transaction and

security aspects services. The security aspects we implemented using SSL secure

View Model Controller Web
Browser
<<-UI>>
<<-TR>>
<<-Sec>>

JSP
<<+UI>>
<<+TR>>
<<+Sec>>

Java
Beans

<<-TR>>
<<-Per>>
<<-Sec>>

EJB
Beans

<<+TR>>
<<+Per>>
<<+Sec>>

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 95

tunnel via browser and JSP. Java beans required transaction, persistence and security

aspects, and EJB beans will provide these aspects services. The Java beans components

can also provide transaction and distribution aspects for JSP components. Furthermore,

the EJB beans can also require persistency aspects, which are provided by databases. So

the aspects information of a component is relative to the component its serviced for and

required for.

In the e-furniture system, we designed a centralized Java Bean as the front component

to manage and process all the requests and responses to JSP page. The centralized

JavaBean communicates with EJB beans retrieving and updating data, and keeping the

processing status for JSP pages within a session. The central JavaBean provided

transaction aspect to JSP and required transaction aspect from EJB beans. Its like a

bridge between JSP and EJB beans to service both sides.

The Main JSP page is designed to fulfill the whole functionalities of the system, users

can go anywhere from the main page and invoke any functions in any orders. It

required user interface aspects that provided by frame, and provided UI aspects to web

browser. The main page screen dump is shown in Figure 7-10. It shows the left frame

are all functionalities that invoking results will be shown in right frame. Left frame are

the user navigation menus:

1. Users can choose the two main categories of Office Furniture and Home

Furniture to browse any products of the system provided.

2. Users can also use the search engine to find any products by using relevant

keywords, such as “table”.

3. User can sign in to the system at any time by clicking sign in menu and sign out

the system as well by clicking sign out menu if already signed in.

4. The shopping cart content can also be viewed at the any time, however, if

customer haven’t put anything in, it will give you an empty cart message.

5. Use can also maintain their personal information and view orders they placed in

the store by clicking Maintain Information menu.

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 96

Figure 7-10 Furniture store main page

The system web search engine JSP component is implemented not only can provide

transaction aspect services, but also can provide user interface aspects for the search

results. For example, if customer typed in a “table” as keywords in the search field,

then click search button. Any item in the databases related with “table” category or

products will be displayed in the right frame, which screen shot shows in Figure 7-11.

The user can click products name to view its detailed information, which is include item

code, item attributes and item unit prices attribute of the product. Further operations on

product item are select an item added it into shopping cart and view the item more

detailed description etc. Finally, when the user got all needed product in shopping cart,

he/she can checkout to finish the shopping place an order in the store.

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 97

Figure 7-11 Product Search result page

Like most of web components, the checkout JSP component is also can provide user

interface aspect, and required transaction and distribution aspects from Java bean

component to do the order creation etc operation. If a user has already added some

product items in the shopping cart, the cart can be viewed at any time and go to

checkout to make the order. If the user not logged in, user sign in page will prompt to

let the user sign in first or create new user profile. However, if user signed in or new

user created, then credit card fill in form and shipping information form will appear to

ask user fill in these information. The checkout screen shot shows in Figure 7-12.

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 98

Figure 7-12 Checkout order information form page

Another main functional web component is customer information maintenance

component. The component can provide user interface aspect and require transaction,

distribution and persistency aspects. These required aspects are provided by Java bean

component and EJB beans components. The component working scenario is like the

following: If a customer has ever been registered in the store, then it’s information and

orders ever placed will be stored in the system databases. Customers could update itself

information or delete them, and also could view its order lists and processing status

when user has signed in. The customer information maintaining web page interface

shows in Figure 7-13.

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 99

Figure 7-13 Customer information maintain page

7.5 Summary

EJB design and implementation framework provides much more flexible, scaleable,

manageable and aspect-oriented services, which offer more opportunities for developers

to concentrate on business logic, rather then systemic aspects services. These aspects

services provided by EJB container has been illustrated in chapter 2, from which and

the implementation of these components, we can find that the Enterprise JavaBeans

technology is well fitted to our AOCE methodology. Therefore, the system EJB design

and implementation didn't concern too much for aspect services. For example, entity

beans or EJB container have managed persistency aspect, security aspects has been

managed by EJB container etc. However, web component security aspect just used

SSL, for some domains only SSL is not strong enough, some cryptography algorithm

should be applied on it. Those domain web components will require more strong

Chapter 7 E-Furniture System EJB and JSP Component Design and Implementation

 100

security aspects, which can be provided by java security packages and JCE provider

packages.

The whole system components have been well designed, implemented and successfully

deployed to J2EE server. From the e-furniture system components design and

implementation for some specified aspects, we can find that these components aspect

information are actually matched after we deployed the EJB beans and JSP pages to

J2EE server. Aspect-oriented component analysis, design, implementation and

deployment have made us gained high-level understanding for these components.

Chapter 8 Component Aspects Testing Agent

 101

Chapter 8 Component Aspects Testing Agent

When AOCE technology and aspect notation set in UML have been applied to

components specification and design, components with provided and required aspects

information can be mapped to and implemented by EJB technology. However, after

these EJB components deployed to EJB server, there is an issue comes up, how

developers could verify that the EJB implemented components actually meet the

component aspects they designed with aspects specification. To address this, we need

some automatic testing agents to test these deployed components in EJB server by using

their enabled aspects from these components aspects design. The chapter will illustrate

the testing tools design and testing results in details.

8.1 Component Aspects Testing Tools Architecture Design

There are two types of components – EJB beans and JSP web components have been

implemented and deployed to EJB server. Therefore, two testing tools have been

designed to test the components respectively. Figure 8-1 shows the component tester

tools design architecture.

Figure 8-1 Component testers design architecture

Client Web Server JSPs Java
Beans

Application Server EJB
Beans

DB

Component
Aspects

Descriptors
XML

Web
Components

Tester

EJB
Beans
Tester

Chapter 8 Component Aspects Testing Agent

 102

The web components tester used for testing any web components include JSPs,

whereas, EJB beans tester designed only for testing EJB components. Component

aspects information – either web or EJB components will be described by component

aspects descriptor XML documents, which can be loaded by tester tools to test

components and present visual results for developers.

eXtensive Markup Language (XML) is a formalization of rules for marking up

documents with meta-data to convey extra information (the data’s purpose) to the user.

XML has been widely used for data exchanging and storage, the first successful use is

in business-to-business commerce and eventually creating new concepts, opportunities

and extrapolated technologies [6]. So, XML has become the de facto standard for

storing corporate data that can be easily manipulated stored and transformed by any

computer languages. The XML’s structure and easy to retrieve features are well fitted to

describe components aspects for the AOCE technology.

Therefore, XML has been adopted in our testing tools to describe component aspects

that are illustrated in component analysis and design phrase in chapter 4. According to

component aspects analysis, each component can be described in variety aspects, which

were defined in aspect descriptor XML Document Type Definition (DTD). Because,

we are focus on component aspects testing using the descriptor, we are not only

describing component aspects, but also aspects testing methods and parameters required

by the method. Once we described component aspects in very specified detail, then we

can load the component descriptor parsing it and retrieve its aspects and methods to test

the component aspects information. The following two parts illustrated aspects

descriptor DTD and an example of Staff component aspects descriptor and testing

results in details.

8.1.1 Aspects Descriptor DTD

In order to marking up component aspects, we can specify the rules that govern the

component aspect descriptor. These rules will determine whether a component aspects

descriptor is valid. And, these rules can be specified in Document Type Definition

(DTD) document. Therefore, a generic component aspects testing description DTD

Chapter 8 Component Aspects Testing Agent

 103

document has been designed to validate well-formed XML documents of component

aspects. Developers who will apply AOCE to components can formalize component

aspects descriptor instance according to the component aspects DTD. By declaring

document type in component aspects descriptor instance, standard XML parsers then

could validate the well-formed descriptor when parsing it. If there are some elements or

attributes not consistent with DTD in the descriptor, the XML parser will throw

exceptions to inform user what’s the error in it. If no errors parsing successful, the

parsed descriptor can be used to retrieve relevant information and perform the actual

testing. The Figure 8-2 shows the component aspects descriptor DTD.

<?xml version="1.0" encoding="UTF-8"?>

<!ELEMENT Component (MappingName, URL, Aspects)>
<!ATTLIST Component Name CDATA #REQUIRED>

<!ELEMENT MappingName (#PCDATA)>
<!ELEMENT URL (#PCDATA)>
<!ELEMENT Aspects (Aspect)>
<!ELEMENT Aspect (Performance | Persistence |
Transaction | Security)+>
<!ATTLIST Aspect name CDATA #IMPLIED>

<!ELEMENT Performance (Speed|Robustness)+>
<!ELEMENT Speed (Method)+>
<!ATTLIST Speed TestNumber CDATA "1">
<!ELEMENT Robustness (Method)+>

<!ELEMENT Persistence (Retrieve|Store)+>
<!ELEMENT Retrieve (Method)+>
<!ELEMENT Store (Method)+>
<!ATTLIST Persistence
 User_Num CDATA “1”
 Data_Size CDATA “0”>

<!ELEMENT Transaction (Commit|Rollback|Speed)+>
<!ELEMENT Commit (Method)+>
<!ELEMENT Rollback (Method)+>

<!ELEMENT Security (Encryption|Authentication)+>
<!ELEMENT Encryption (Method)+>
<!ELEMENT Authentication (Method)+>

<!ELEMENT Method (Parameter)*>
<!ATTLIST Method name CDATA #REQUIRED>
<!ELEMENT Parameter (#PCDATA)>

Figure 8-2 Component aspects descriptor DTD

Chapter 8 Component Aspects Testing Agent

 104

From above DTD we can find that the high-level element Component will encapsulate

whole information of component and its aspects. The Component element’s children

nodes can be MappingName, URL and Aspects, but it only have one attribute Name that

used indicate which component described, and it is required attribute. The

MappingName element is a convenient tag used to specify some technology’s

component binding name, such as CORBA server component binding name or EJB

enterprise beans JNDI name. It is an optional tag. If a component will be tested don’t

need some binding names, the MappingName element is not necessary. The URL

element used to specify the component universal resource location, mainly designed for

testing web components or components not running in the same testing host. And, the

Aspects element will encapsulate any single specified Aspect information for the

component we would like to describe. The every single Aspect element can have one of

the aspects Performance, Persistence, Transaction, or Security etc. The DTD can also

be extended to include other aspects when some components needed, such as to include

user interface aspect. The following table shows each aspect element brief description.

Table of component aspect DTD element/attribute description:

Element/Attribute Description

Performance
Aspect element performance

 Speed Specified performance aspect to test component perform

speed

 TestNumber Attribute of Speed element to define the number of concurrent

testing for the component, default value 1

 Robustness Specified performance aspect to test component robust ability

Persistence
Aspect element of persistency

 User_Num Attribute of persistence element to simulate the number of

concurrent users to call the function, default value 1

 Data_Size Attribute of persistence to specify data size for persistency

aspect function call, default 0 means can be any size

Chapter 8 Component Aspects Testing Agent

 105

 Retrieve Specified element of persistence aspect to test data retrieve

ability of the component

 Store Specified element of persistence aspect to test data storage

ability of the component

Transaction
Aspect element of transaction

 Commit Specified element of transaction aspect to test transaction

successful or not

 Rollback Specified element of transaction aspect to test rollback ability

of transaction when transaction failed

 Speed Specified element of transaction aspect to describe transaction

performance

Security
Aspect element of security

 Encryption Specified element of security aspect to test secret data

encrypted or not

 Authentication Specified element of security aspect to test access right of the

component

Method
Aspect testing call function element

 Name Attribute of method element to specify aspect testing function

name

 Parameter Nested element of method to define the parameters used by

the tested function

8.1.2 Staff component Aspects XML Descriptor Example

To test e-furniture system’s staff component aspect information, we figured out the

following XML descriptor in Figure 8-3. In the XML descriptor, we defined document

type using component aspects DTD in the second line of the document. The component

name of “Staff” has been specified in top-level element Component and also defined the

component JNDI mapping name of ”java:comp/env/ejb/staff” in the J2EE platform.

The JNDI mapping name will be used for locating staff component in EJB container

when testing, then operate aspects testing methods on the component. All the testing

Chapter 8 Component Aspects Testing Agent

 106

aspects have been nested in Aspects element, for example performance aspect. We just

illustrated performance aspect here, for the Staff component full aspects testing

descriptor please refer to Appendix III.

The Staff component performance will be tested in two aspects, Speed and Robustness,

in which used testing function is "StaffHome.findByPrimaryKey()" and passed in

parameter for the function is a staff user ID “J2ee” and “J2ees” respectively. The

expected result is that for performance speed aspect, we’ll successfully find the staff

information of “J2ee” and the method consumed time, for performance robustness

aspect, we couldn’t find the staff information of “J2ees”. The reason for this is that

there is staff information for “J2ee” in our database, but no information for “J2ees”.

That is we try to pass in a wrong argument to test the component robustness aspect.

Moreover, for the Speed performance aspect, the descriptor specified TestNumber=”3”

which means the speed testing will concurrently test three times and the

AcceptableSpeed=”5” means the minimum acceptable speed for the performance. The

detailed testing results analysis will be discussed in following section of the chapter.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE Component SYSTEM "componentaspects.dtd">
<Component Name="Staff">
 <MappingName>java:comp/env/ejb/staff</MappingName>
 <Aspects>
 <Aspect name="Performance">
 <Performance>
 <Speed TestNumber=”3” AcceptableSpeed=”5”>
 <Method name="StaffHome.findByPrimaryKey()">
 <Parameter>J2ee</Parameter>
 </Method>
 </Speed>
 <Robustness>
 < Method name="StaffHome.findByPrimaryKey()">
 <Parameter>J2ees</Parameter>
 </Method>
 </Robustness>
 </Performance>
 </Aspect>
 </Aspects>

 </Component>

Figure 8-3 Staff component aspect descriptor

Chapter 8 Component Aspects Testing Agent

 107

8.2 Server Component Aspects Testing Agent

Once server components design and implementation have been finished, we can define

some components aspect descriptor to test these components aspects that we are

interested. In the example e-furniture system, when EJB server components have been

deployed to J2EE server, we can invoke its remote and home methods to test their

functionalities. However, we don’t know anything about these components aspect

information, and the aspects information is not easy to test. Therefore, we designed

component aspects testing tool, which can load component aspects descriptor and test

those aspects specified in the descriptor, and also can show the testing results in java

swing GUI components supplied user interface. Based on component aspect descriptor

and the e-furniture system server component implementation technology, we designed

an EJB dependent component aspects testing tool. However, the idea can be applied to

any technologies.

The testing tools we designed composed by two components, one is the tools user

interface GUI components, and the other is an EJB session bean component, which will

do the actual testing task in the J2EE server. Figure 8-4 shows the tester tool EJB

component of session bean design architecture. As we can see, the component remote

interface AspectTester has defined all the business methods corresponded to the aspects

that specified in component aspect DTD. So, developers could get any tested aspect

results via the remote interface. The returned results will be a collection of serialized

AspectData object, which encapsulated an aspect testing results.

Chapter 8 Component Aspects Testing Agent

 108

Figure 8-4 Aspect tester session bean

In the implementation of the testing tool, component aspects descriptor will be passed

to the aspects tester session bean to do the test in J2EE server side. In the tool’s client

side, by retrieving the returned collection of those aspect data, the tested results will be

shown in the testing tool GUI component. Figure 8-5 shows the testing tool’s user

interface that implemented by using java swing components. From the user interface,

we can find that user can select component aspects descriptor by clicking the button

“…” to invoke a file chooser. When descriptor has been selected, user can press the

“Start” button to start the testing. Once testing finished, the relevant results will be

shown in its aspect tabbed-pane respectively. For the performance aspect, user can press

the “Average” button to calculate the average performance of the component. The tool

also provide a reset function used to reset the tool to initial state and to clear the test

results. To invoke the function just press the button of “Reset”. Although there is a

“Visualize” button at the bottom of the tool for showing graph of results the

visualization function not been implemented yet.

Chapter 8 Component Aspects Testing Agent

 109

Figure 8-5 Component tester tool

The underlying aspects testing scenario is shown in Figure 8-6 aspect testing sequence

diagram.

TesterTool AspectTesterHome AspectTesterEJB AspectTesterModel ComponentTesterAspectTester

lookup()

create() ejbCreate()
validateDescriptor()

init(DOM) new()

getSpeedPerformance() getSpeedPerformance()
getSpeedPerformance()

getSpeedPerformance()

showResults

Figure 8-6 Aspect Testing sequence diagram

Chapter 8 Component Aspects Testing Agent

 110

The Figure 8-7 is the tested results of performance aspect for Staff component. The

testing machine used for the testing results is Intel 500MHz processor, 256MB

memory; the platform used is Windows 2000, J2EE server, cloudscape database and all

these are running in the same machine.

Compnent Name: Staff

Testing...
Speed testing...
 Call StaffHome.findByPrimaryKey() once Time used: 40 MilliSeconds
 Call Staff.getDetails() once Time used: 170 MilliSeconds
 Call Staff.changeStaffInfo() once Time used: 170 MilliSeconds
Robustness testing...
 Call StaffHome.create() once : Ok
Another test:
Speed testing...
 Call StaffHome.findByPrimaryKey() once Time used: 40 MilliSeconds
 Call Staff.getDetails() once Time used: 140 MilliSeconds
 Call Staff.changeStaffInfo() once Time used: 110 MilliSeconds
Robustness testing...
 Call StaffHome.create once: Ok
Another test:
Speed testing...
 Call StaffHome.findByPrimaryKey() once Time used: 60 MilliSeconds
 Call Staff.getDetails() once Time used: 130 MilliSeconds
 Call Staff.changeStaffInfo() once Time used: 130 MilliSeconds
Robustness testing...
 Call StaffHome.create() once: Ok

Average speed performance:
 Call StaffHome.findByPrimaryKey() 3 times Average time used: 50 MilliSeconds
 Call Staff.changeStaffInfo() 3 times Average time used: 135 MilliSeconds
 Call Staff.getDetails() 3 times Average time used: 142 MilliSeconds

Figure 8-7 Staff component aspects information testing results

As can be found from the results, the staff component’s main functionality performance

are reasonable well, although when first time loading the component and call its

methods are little bit slower. The average performances we tested are met the

requirements of 5 seconds. If the performances fail to meet the requirements

constraints, the system components designed and implemented are not successful.

Robustness of the component is quite stable as well. Other aspects of the component are

Chapter 8 Component Aspects Testing Agent

 111

also been tested, its results are well reflected the component aspects information, which

gives user a good understanding of the component higher-level systemic and

crosscutting issues.

In general developers can use the testing tool and component aspects descriptor DTD to

outline any components aspect information and test them. Although the tools now just

support for Enterprise Java Bean technology implemented components, its idea and

design frameworks can be applied to any technologies.

8.3 Web Component Aspects Testing Agent

Web components mainly provide user interfaces aspect services dynamically for users.

There are two ways that can be used to test web component aspects information, one is

grab web components as plain HTML file and parse the HTML file to find relevant

information for the web component loading results. Another is load web components

and displays the loading results in a browser like viewer to give user visual results for

the component aspect testing. We adopted later technology and use the same

component aspects descriptor DTD with server components. The Figure 8-8 shows the

web component tester design class diagram. The WebCompTesterIFrame class shows

the testing tools functionalities and WebCompTestThread class will do the actual testing

work, callback to return results or loading web component and display in

SimpleBrowser.

Figure 8-8 Web component tester class diagram

Chapter 8 Component Aspects Testing Agent

 112

The Web components testing scenario is shown in Figure 8-9 Web component aspects

testing tool sequence diagram.

WebCompTesterIFram e WebCom ponentTester WebCom pTestThread SimpleBrowser WebComp

parseDescriptor()

validateDescriptor()

new(DOM) newThread(url)

start()
loadWebComp()

new()

setContent()
setPerformanceData()

showResults()
getAspects()

HTML/XML
format of the
web comp

Figure 8-9 Web component aspects testing tool sequence diagram

The Figure 8-10 is an example of a partial of web components descriptor XML file, in

which specified some web components performance aspects to be tested. The web

component aspects testing tool parse the component descriptor as different way. For

example, the Method element specifies one of the web pages to be loaded and tested.

And the URL element becomes more important for web components testing. The URL

element defines universal location of these web pages to be loaded and tested.

From figure 8-10 (the part of aspect descriptor), can be seen that there is three web

pages have been specified in Speed element with attribute TestNumber=”10”, which

means that each of the three pages will be concurrently loaded ten times by starting a

thread for each test. If the TestNumber attribute not specified means that the

TestNumber is 1 by default, just test once. For example, the singinsuccess.jsp just tested

once by passing in a username and its password to test whether the user can sing in to

the furniture store. Some aspects of a web component have to examine their loading

Chapter 8 Component Aspects Testing Agent

 113

results by passing some specified parameters, such as robustness aspect, which testing

is by passing correct and incorrect parameters to see its results.

<?xml version="1.0" encoding=”UTF-8”?>

<!DOCTYPE Component SYSTEM "componentaspects.dtd">

<Component Name="JSP">

 <URL>http://localhost:8000</URL>

 <Aspects>

 <Aspect name="Performance">

 <Performance>

 <Speed TestNumber="10">

 <Method name="GET /efurniture/main.jsp HTTP/1.0" />

 <Method name="GET /efurniture/signin.jsp HTTP/1.0" />

 <Method name="GET

/efurniture/search_result.jsp?action=Search+keys=table HTTP/1.0" />

 </Speed>

 <Speed>

 <Method name=

"GET /efurniture/singinsuccess.jsp?username=j2ee+password=j2ee HTTP/1.0" />

 </Speed>

 </Performance>

 </Aspect>

 </Aspects>

</Component>

Figure 8-10 Part of web components descriptor

There is an aspects descriptor of web components in Appendix IV, which tested-results

have been shown in Figure 8-11. As can be seen that the testing tool’s user interface is

almost same with EJB components’ testing tool, the one more function is the tool can

find some web pages loading minimum and maximum loading speed by pressing button

“Min/Max”. The number (1) performance tabbed pane shows performance aspects

Chapter 8 Component Aspects Testing Agent

 114

testing results of four web components and each of them average performance. In the

main desktop pane, there are several web pages browsers have been created to show

some web components tested results. The simple web page browser has been designed

for some web components aspect testing results display, such as for robustness aspect

testing. The number (2) internal frame simple browser shows the web search engine

component transaction aspect tested results. We invoke the search engine web

component by passing in a key word of “table”, and then the component retrieves

databases find relevant results and display them in the internal frame browser. From the

displayed results and databases actual data, we know the component correctly retrieved

data from databases and present right results for us, and furthermore the transaction’s

consumed time can be found in the testing tool’s transaction tabbed pane.

Figure 8-11 Web component testing tool and tested results

More tests have been made for web components. The component descriptor

TestNumber attribute value changed to 20 and 100, to simulate concurrent users of

these numbers. That means the testing tool will simulate 20 and 100 concurrent users to

(1)

(2)

Chapter 8 Component Aspects Testing Agent

 115

load several web pages concurrently. Although the tested results are much slower, it

didn’t crash machine and J2EE server. Due to the testing tools and J2EE server

database running in the same host, the tested results much slower are reasonable.

8.4 Summary

Component aspect information can give developers and component users a higher-level

systemic aspect understanding. However, component aspect information is very hard to

test and simulate, although aspects have been designed and implemented with

components. In the chapter, component aspect descriptor and testing tools have been

designed and implemented, and successfully tested server component – EJB beans and

web component – JSP aspect information. Hence component developers could use the

tools to verify AOCE designed components to see whether the designed aspects

actually met the aspects when components deployed to server.

For application server components, the testing tools just implemented testing EJB

server components, but it can be used for testing any web components and its notation

also can be applied to any technologies implemented components. Component aspect

descriptor could also be used for any technology designed and implemented

components with aspects. The component aspects testing results will give component

developers a good understanding of components systemic crosscutting aspects

information, from which developers will benefit to improve components service

qualities. However, components user interface aspects haven’t been tested in the testing

tool, maybe this can add into the tools in the future works.

Chapter 9 Conclusion

 116

Chapter 9 Conclusion

This chapter is a summary of the thesis. It presents what we have done, the main

contributions, and points out some possible future works we think maybe worth

extending and researching.

9.1 Contributions of the Thesis

This thesis illustrates the use of our new methodology of aspect-oriented component

engineering in the whole software engineering lifecycle. This includes engineering

requirements, designs, implementations and testing. The main contributions made are:

• Showing how to develop components with provided and required aspect

services by using AOCE.

• Suggesting a set of new notation to express the concept of component aspects in

standard UML-based software development tools such as Rational Rose™.

• Proposing a notation of component testing framework – XML based component

aspects descriptor to outline component aspect services.

• Designing and implementing component aspect testing agents, focusing on

Enterprise JavaBeans technology implemented components with aspect

information. This testing framework can be applied to any technologies.

• Prototyping a fully functional e-commerce system by applying our AOCE

approach, and implementing the system using EJB technology.

There are number of component-based development methodologies such as The Select

Perspective™, The Catalysis™ and COMO. Most of these approaches focus on low-

level functionalities vertically slicing overall system and group components. These

resulting components lack systemic crosscutting concerns and non-functional constraint

information. Whereas, our AOCE approach successfully solves these issues by

identifying and specifying provided and required aspect services in component

Chapter 9 Conclusion

 117

interfaces. The aspect services could be used for reasoning about components to

provide good quality.

The concept of component aspects can be indicated in UML-based standard software

development tools. The aspect services of components can be documented in

component requirements and design by using our proposed notation sets. They can be

codified in component implementations to provide high-level multiple perspective

views and run-time dynamic reconfiguration capabilities of components.

To verify component with aspect services actually met the requirements and designs,

our testing framework and agents can give component developers better testing plans

and tested results analysis for components they developed.

We implement the example system very well by using Enterprise JavaBeans. These are

mapped aspect-oriented services can be considered as aspect-oriented component

development environments.

9.2 Future Research Works

AOCE is quite a new methodology for developing more reusable components. There

are a number of different fields, which need to do further research. In this thesis, we

only give some feasible fields and some natural extensions of the thesis.

• Extending the component aspect testing framework and agents to cover the user

interface aspect testing. The user interface aspects are not very easy to test as

it’s usually involved with GUI components plug-in. Therefore, the GUI

component’s detailed aspect description and introspection will be more

important for user interface aspect testing.

• Extending the aspect testing agents to visualize testing results that will give

developers a better results-testing analysis.

Chapter 9 Conclusion

 118

• Designing and implementing a component aspect descriptor generation agent for

combining with the testing agents. Developers could then just specify

component aspects and the agent introspect component aspect services would

generate a component aspect descriptor.

• For tool support of the AOCE methodology, it maybe worth future researchers

integrating AOCE with a standard CASE tool such as Rational Rose™.

• The UML diagrams with aspects in this thesis can be further augmented, maybe

using Object Constraints Language (OCL) in UML to express aspect-based

constraints.

• Furthering dynamic configuration support for AOCE, specifically a relatively

complete aspects repository and details for different domains. These are the

possible researching fields of AOCE.

• Further use of AOCE integration methodology with various other component-

based development technologies is also a possible investigation area.

Bibliography

 119

Bibliography

[1] Alan W. Brown, Large-Scale, Component-based Development, 2000.

[2] Paul Allen, Stuart Frost, Component-Based Development for Enterprise Systems

Applying The Select Perspective™, 1998.

[3] Grundy, J.C., Mugridge, W.B. and Hosking, J.G., Constructing Component-based

Software Engineering Environments: Issues and Experiences, Journal of Information

and Software Technology, Vol.42, No. 2, January 200, pp.117-128.

[4] John Grundy, Storage and Retrieval of Software Components using Aspects

[5] The Java 2 Enterprise Edition Developer’s Guide, May 2000, Sun Microsystems

[6] Michael C. Daconta and AI Saganich, XML Development with Java 2, Oct. 2000

[7] G. Pour, Software Component Technologies: JavaBeans and ActiveX, Proceedings

of Technology of Object-Oriented Language and system, 1999, pp.398-398.

[8] Xia Cai, Michael R. Lyu, Kam-Fai Wong, Roy Ko, Component-baed software

Engineering: Technologies, Development Frameworks, and Quality Assurance

Schemes, IEEE 2000.

[9] G. Pour, Component-based Software Development Approach: New Opportunities

and Challenges, Proceedings Technology of Object-Oriented Laguage, 1998, Tools 26.

[10] C. R. Guareis De Farias, L. Ferreira Pires, M. van Sinderen, D. Quartel, A

combined Component-Based Approach for the Design of Distributed Software

Bibliography

 120

Systems, Proceedings of the Eighth IEEE Workshop on Future Trends of Distributed

Computing System, 2001

[11] A. W. Brown, K.C. Wallnau, The Current State of CBSE, IEEE Software, Volume

155, Sept.-Oct. 1998.

[12] Desmond Francis D’Souza, Alan Cameron Wills, Objects, Components, and

Frameworks with UML, The Catalysis™ Approach, 1999, Addison Wesley Longman,

Inc.

[13] San Duck Lee, Young Jong Yang, Eun Sook Cho, Soo Dong Kim, Sung Yul Rhew,

COMO: A UML-Based Component Development Methodology, Software Engineering

Conference, 1999. (APSEC '99) Proceedings. Sixth Asia Pacific, 1999

Page(s): 54 –61

[14] Chris Crenshaw, The Developer’s Guide to Understanding Enterprise JavaBeans

Applications, NOVA Laboratories, www.nova-labs.com

[15] Sun Mirosystems, Inc., Enterprise JavaBeans (EJB) specification 1.1,

http://www.javasoft.com/products/ejb

[16] Jung Pil Choi, Aspect-Oriented Programming with Enterprise JavaBeans,
Enterprise Distributed Object Computing Conference, 2000. EDOC 2000.

Proceedings. Fourth International , 2000.

[17] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Videira Lopes, Jean-Marc Loingtier, John Irwin. Aspect-Oriented Programming, In

proceedings of the European Conference on Object-Oriented Programming (ECOOP),

Finland. Springer-Verlag LNCS 1241. June 1997.

[18] Karl Lieberherr, David Lorenz, Mira Mezini, Programming with Aspectual

Components, 1999.

Bibliography

 121

[19] Karl Lieberherr, Connections between Demeter/Adaptive Programming and

Aspect-Oriented Programming (AOP), http://www.ccs.neu.edu/home/lieber/connection-

to-aop.html 1999

[20] Karl J. Lieberherr, Early Definition of Aspect-Oriented Programming,

http://www.ccs.neu.edu/research/demeter/AOP/early-def/AP-AOP.html

[21] Karl Lieberherr , Adaptive Object-Oriented Software - The Demeter Method

http://www.ccs.neu.edu/research/demeter/biblio/dem-book.html

[22] John Grundy, Multi-perspective Specification, Design and Implementation of

Software Components Using Aspects, Journal of Software Engineering and Knowledge

Engineering, Vol. 20, No. 6, December 2000, World Scientific

[23] John Grundy, Rakesh Patel, Developing Software Components with UML,

Enterprise Java Beans and Aspects, In Proceedings of the 2001 Australian Software

Engineering Conference, Canberra, Australia, 26-28 August 2001, IEEE CS Press.

[24] John Grundy, Aspect-oriented Requirements Engineering for Component-based

Software System, In Proceedings of the 1999 IEEE Symposium on Requirements

Engineering, Limmerick, Ireland, 7-11 June, 1999, IEEE CS Press, pp. 84-91.

[25] Grundy, J.C. Supporting aspect-oriented component-based systems engineering, In

Proceedings of the 11th International Conference on Software Engineering and

Knowledge Engineering, Kaiserslautern, Germany, 16-19 June 1999, KSI Press, pp.

388-395.

[26] Grundy, J.C., An implementation architecture for aspect-oriented component

engineering, In Proceedings of the 5th International Conference on Parallel and

Distributed Processing Techniques and Applications: Special Session on Aspect-

oriented Programming, Las Vagas, June 26-29 2000, CSREA Press.

[27] Monson-Haefel, R., Enterprise JavaBeas, Oreilly, 1999.

Bibliography

 122

[28] Sessions, R., COM and DCOM: Microsoft’s vision for distributed objects, Wiley,

1998.

[29] Ho, W.M., Pennaneach, F., Jezequel, J.M. and Plouzeau, N., Aspect-Oriented

Design with the UML, InProceedings of the ICSE2000 Workshop on Multi-Dimessional

Separation of Concerns in Software Engineering, Limerick, Ireland, Jun 6 2000.

[30] Roger Sessions, Java 2 Enterprise Edition (J2EE) versus The .NET Platform Two
Visions for eBusiness, ObjectWatch Inc.March 28, 2001,
http://www.objectwatch.com/_Toc511347196.

[31] AspectJ, http://aspectj.org/servlets/AJSite

[32] Legion of the Bouncy Castle, http://www.bouncycastle.org

[33] Sun Microsystems, Inc., Enterprise JavaBeans™ Specification,Version 2.0,
http://java.sun.com/Download5

Appendix I

 123

Appendix I: E-Furniture system use case
description

Ø Maintain Order

Maintain order

Actor Customer

Precondition Customers want to update or cancel orders.

Postcondition Customer’s orders have been updated, cancelled.

Description Customer updates or cancels orders through online system.

Basic course of

action

System shows current orders for Customer. Customer enters order

ID and the screen shows the information of the order. Customer

updates or cancels the order.

Alternative

courses of action

If the customer maintains order via fax, phone or face to face,

staff should record the messages; staff enters the information and

maintains order.

Ø Leave Message

Leave message

Actor Customer

Precondition Customer wants to inform company some information

Postcondition Customers email company, make phone call or face to face to

inform company about products/services, complaint and other

messages.

Description Customers message company through email, phone or face to face

and the messages are recorded for further handling.

Basic action Messages is accepted and recorded in the system.

Appendix I

 124

Alternative

courses of action

If the customer is a new customer, then create new customer

information and a customer ID.

Ø Register

Register

Actor Customer

Precondition New customer come and requires a service.

Postcondition Name, address, and phone numbers are recorded into system and

a customer ID is created

Description New customer supplies their detail information.

Basic action Customer information is stored into the system

Ø Online Payment

Online Payment

Actor Customer

Precondition Customers want to pay online.

Postcondition Payment is accepted or rejected, and information is send to the

customer.

Description Customer use credit card to pay and system response the customer

whether the payment is accepted or not.

Basic course of

action

Customer credit card number is accepted and transferred to

Banking System. Banking System checks the card validation and

response the system whether the payment is accepted or not. The

results send to the customer.

Appendix I

 125

Ø Maintain Product

Maintain Product

Actor Staff

Precondition Staff maintains products’ information by adding, deleting,

updating.

Postcondition Product information is updated.

Description Staff maintains products information.

Basic action Searching product and update products’ information.

Alternative

courses of action

If the product is new then add product information to the system.

Ø Maintain Staff

Maintain Staff

Actor Manager

Precondition Manager maintains staff information.

Postcondition Staff information maintained or updated.

Description Manager wants to add new staff information, update exiting

information or delete it from the system. The information will be

staff ID, name, address, position, salary etc.

Basic action Manager search exiting staff and maintain the information.

Alternative

courses of action

If staff is new then add new staff information to the system.

Appendix II

 126

Appendix II: EJB Enterprise Beans design

diagrams

Figure Appendix II – 5 Customer session bean and customer account entity bean

Appendix II

 127

Figure Appendix II – 6 Inventory Entity Bean

Appendix II

 128

Figure Appendix II – 7 Order Entity Bean

Appendix II

 129

Figure Appendix II – 8 Staff Entity Bean

Appendix III

 130

Appendix III: Component Aspect descriptor

Example of Staff Component Aspect Descriptor

<?xml version="1.0"?>

<!DOCTYPE Component SYSTEM "componentaspects.dtd">

<Component Name="Staff">

 <JNDIName>java:comp/env/ejb/staff</JNDIName>

 <Aspects>

 <Aspect name="Performance">

 <Performance>

 <Speed TestNumber=”3” AcceptableSpeed=”5”>

 <Method name="StaffHome.findByPrimaryKey()">

 <Parameter>J2ee</Parameter>

 </Method>

 </Speed>

 <Robustness>

 < Method name="StaffHome.findByPrimaryKey()">

 <Parameter>J2ees</Parameter>

 </Method>

 </Robustness>

 </Performance>

 <Performance>

 <Robustness>

<Method name="StaffHome.create()">

<Parameter>J2eeSun</Parameter>

 </Method>

<Method name="StaffHome.findByPrimaryKey()">

Appendix III

 131

 <Parameter>J2ee</Parameter>

</Robustness>

 </Performance>

 </Aspect>

 <Aspect name="Persistence">

<Persistence>

 <Retrieve>

<Method name="StaffHome.create()">

<Parameter>J2eeSun</Parameter>

</Method>

<Method name="StaffHome.findByPrimaryKey()">

 <Parameter>J2ee</Parameter>

 </Method>

</Retrieve>

 </Persistence>

 <Persistence>

 <Store>

<Method name="StaffHome.create()">

<Parameter>J2eeSun</Parameter>

</Method>

 <Method name="StaffHome.findByPrimaryKey()">

<Parameter>J2ee</Parameter>

 </Method>

</Store>

 </Persistence>

 </Aspect>

 <Aspect name="Transaction">

 <Transaction>

 <Commit>

<Method name="Staff.changeStaffInfo()">

<Parameter>J2ee</Parameter>

 </Method>

Appendix III

 132

 <Method name="Staff.remove()">

<Parameter>J2eeSun</Parameter>

 </Method>

</Commit>

 <Rollback>

<Method name="Staff.changeStaffInfo()">

 <Parameter>J2ee</Parameter>

</Method>

 <Method name="Staff.remove()">

<Parameter>J2eeSun</Parameter>

 </Method>

 </Rollback>

</Transaction>

 </Aspect>

 <Aspect name="Security">

 <Security>

 <Encryption>

<Method name="Staff.checkPassword()">

<Parameter>********</Parameter>

</Method>

 <Method name="Staff.changePassword()">

 <Parameter>********</Parameter>

 </Method>

</Encryption>

 </Security>

 <Security>

 <Authentication>

<Method name="Staff.checkPassword()">

<Parameter>********</Parameter>

 </Method>

<Method="Staff.changePassword()">

 <Parameter>********</Parameter>

</Method>

Appendix III

 133

</Authentication>

 </Security>

 </Aspect>

 </Aspects>

</Component>

