Model Driven Abstraction of
Enterprise Tasks and Processes for
User Applications

Using Microsoft Domain Specific Language Tools

Ruskin Dantra

This thesis is the entirety to fulfil the requirements to achieve a Masters in (Software) Engineering at
The University of Auckland, New Zealand.

December 2008

© 2008 Ruskin Dantra

Abstract

Enterprise tasks and processes tend to be complicated and consume considerable resources in terms
of time and personnel. They also involve repetitive information with a small amount of user entered
data. Writing a report to extract information from a database is an example of such an enterprise
task. This task can further be made complicated if the report writing language is unique to the
enterprise and if the database in which the information is stored is complicated.

Current practice involves end-users manually creating the report. This manual process is prone to
simple errors such as spelling mistakes and other more complicated errors such as misunderstanding
the language semantics.

This thesis attempts to solve this problem by raising the level of abstraction using a model driven
approach coupled with a Domain Specific Language. Our approach involves designing a meta-model
of the enterprise task and then exposing this meta-model to the end-user via a user interface. As a
basis for the meta-model, we used a propriety report writing language developed by Prism NZ.
Creating this meta-model enabled us to abstract irrelevant details of the task from the user. These
details included language semantics, constraints, database tables and their corresponding
relationships. Our process involved creating the meta-model using Microsoft DSL Tools, adding
custom constraints, exposing this meta-model and eventually generating the required report. The
end-user interface which exposed the meta-model was designed using visual notations further
improving usability and making the report writing process intuitive.

Although this thesis does solve the problem by visually exposing a complicated reporting language it
has a major limitation which is often experienced by most visual languages, it does not cater for
complicated combinations of the reporting constructs which expert users may use. The thesis is
therefore aimed to help novice and intermediate users to quickly start designing reports.

We evaluated our solution using the cognitive dimensions framework and surveying live users. Our
results showed that even though writing a report is usually a complicated task it can be made easier
by increasing the level of abstraction using models and allowing the end-user to create a report
visually as opposed to creating it textually.

Acknowledgements

| would like to pass on my warmest regards to my supervisor Professor John Grundy who spent a lot
of time guiding me before and during the course of the thesis. He helped me with the initial idea
and helped me during the remainder of the thesis by providing sound advice and input.

| would also like to thank my co-supervisor Professor John Hosking for providing valuable input on
the design of the visual elements of the model.

Thank you to the team at Prism New Zealand, Auckland who assisted me during the entire course of
the thesis and were patient and understanding. Would like to thank Grant Davidson and Steve
Pearce for their encouragement and feedback.

Also want to show my appreciation towards UniServices Auckland and The University of Auckland for
providing valuable resources for my use during the year.

Last but not least, would like to thank my family and friends for their support and help in every
aspect during the past year.

People/Organisations Involved

e Professor John Grundy e Prism New Zealand
HOD ECE Unit 3b
University of Auckland Saatchi & Saatchi Building
New Zealand Parnell

john-g@cs.auckland.ac.nz Auckland, New Zealand

e Professor John Hosking e Auckland UniServices

University of Auckland
New Zealand
john@cs.auckland.ac.nz

Grant Davidson

Production Team Leader
Prism New Zealand, Auckland
grant.davidson@prism-nz.com

Steve Pearce

Systems Team Leader

Prism New Zealand, Auckland
steve.pearce@prism-nz.com

Uniservices House, Level 10
Auckland, New Zealand
+64 9373 7522

University of Auckland
Private Bag 92019

Auckland Mail Centre
Auckland 1142, New Zealand

Table of Contents

L«] - T o N i
ACKNOWIEAZEMENTS ...ceeeiiiiiieeiiiiiieiiiiiiiiiitreietreneeistenessstensssstenssssssensssssesnsssssesnsssssasnsssssssnnssssannns ii
B+ L= e300 T = 4 iii
LISt Of FigUI@S...ciiiiiiiiuiiiiiiiiiiiiiiiiiiieeiiiteiinisiieetiteessanssssssestteesssssssssssssssessssssssssssssssssssssssssssssssssnnss ix
LI o I] =P Xiv
Chapter 1 - INtrodUCHION.ccuuuuiiiieeiciirieeeereieceereneeeeerensseeteensseerennssessennsssssnnsssssennssssesnssessennsssssanns 1
1.1 INEFOAUCTION .t et et sbe e st st s et e e e ne e 1
1.2 INErOdUCEION T0 PriSM c.eeiiiiiiiiiiciieee e s s 1
1.2.0 €O BUSINESS ..ceeeieeeiieee ettt ettt e st e e s e e s e e s emn e e e s nne e e e snne e e s aanneeesanneeeesannnnens 1
1.2 2 PriSM WIN Lottt ettt et sttt et et e e be e sbe e sheesheesheesaeesmeeeabeeateeateeneeane 2
1.2.3 BUSINESS DOMAIN w.etiiiiiiiieeiiiiee ettt e ettt e st e e s st e e s st eesaane e e e snreeeesnneeesannneeesannnnens 2

1.3 REPOIT WILEr MOAUIE ...oeeiieieeeecee ettt e e e e e are e e e ebae e e e abae e e eaneeas 5
1.4 Report Writer Language (Prism New Zealand, 2005)ccccieeeriiieeeeiiieeeeciee e eeiee e eeveee e 6
O VA YV 11 oYU = o 1SRRI 7

1.5 Introduction to the Problem DOmainccceeeiiiiiiieiee e 7
1.5.1 Database COMPIEXITY ...uuuiieiieiiiiiiiiee ettt et e e e e e e e ttre e e e e e e e s nbaeaeeeeesesnnteaaeeaaseennnsen 7
1.5.2 Report Writer Language CompPleXity....cccciecuieririiieeeiiee s esiee e esiree e e s eree e s aree e e 8

1.6 MOTIVATION .c..eiiiiiiiiiii s 9
1.6.1 Reduce database COMPIEXITY ...ccccuvieeiiciiiieeiiie et e e e sare e e e re e e e neeas 9
1.6.2 INTUILIVE RWL TOOI c..eiiiiiiieeeee e s s e 9

1.7 Thesis AMDITION.......iiiie e s e 9
1.8 TRESIS OVEIVIEW .uviiiiieeeiee ettt ettt ettt et e st e st e e sate e sabeesabeesabaeesabeesabeesabeesanteesabeesabeean 10
1.9 SUIMIMIAIY it a s s st s bbb sttt st st b enebebebebeeeeeeeeeeaaeaees 11
Chapter 2 - Related WOrK.........eecciiiiieeieeccccrireereeescse s s s srernensssssse s s s e s nansssssssssseennnssssssssssseennnnnnnnns 12
2.1 INEFOAUCTION ..ot s e sne e e smeeesanee s 12
2.2 Development MethodolOgIescccuuiiiiiiiii e e srrre e e 12
2.2. 1 Incremental MOdel... ..o e 12
2.2.2 Agile Development IMOELcooicuiiii ittt e s ebee e e e sbaeeeeans 13

2.3 Model-Driven Software DeveloOpmMENtcccviiiiciiie e 14

B B A [A oo [N ot T o TP P P PRSPPI 14
2.3.2 MDSD Approach and TErMINOIOZY.......cceiiiiciiiiiieeei ettt e e e e e e e e e s e s sanrraeeeeee s 14
2.3.3 Adaptive-0bject MOAEIING ...cccce i e e e e rree e e e e e e nnre e e e e e e an 18

R R Y 1= = g Yoo =] T =PSRRIt 19

2.3.5 Model TransformMationscoceerueereenienie ettt b e b sae e s e e 21
2.3.6 Software Factories (Greenfield, 2005)cccoueeiiiiiiiiiieieee e e 22
2.4 Domain Specific Development and LANGUAEESceveeiiieciriiieee e eciirreee e e eeerrreee e e e e e eaveaeeeas 23
2. 4.1 INTrOAUCTION ettt ettt ettt ettt et ettt ettt e sat e e sabeesabee e sbbe e abeesabeesabteessbeeaabeesabaeeneeenns 23
B A 1=y (AU =Y I) OSSR 27
2.4.3 Graphical DSL (Visual LANGUAEES) .uvveeereriieeiiiiieeciiieeeeitteeesstreeessnteeesssveeeessnsaeessnnsaesssssesanns 28
2.4.4 Advantages/Disadvantages Of DSLSccceeeciieeiuieeiieeeteeecteeeeteeeetreeeteeeeteeeetaeesareesreeereeens 31
2.5 DSL TOOIS ettt ettt ettt ettt sttt ettt et e e b e bt e b e e bt e she e sheeehe e eateeate e bt eateeteeatean 31
2.5.1 MiICroSOft DSL TOOIS ...ceeuniieiiiieiiieee ettt ettt b e s e e sane e sneeesnneens 31
2.5.2 IMIaramMIa.ccc ittt e e e e e s a et e e e e e s a e e e e s st 34
2.5.3 Comparison (MS DSL TOOIS VS Marama).......ccueeeecueeeeiireeeeiiieeeecireeeesireeesssseesssnssssssssseeesns 36
2.5.4 Other DSL TOOIS c..eiitiiiiieriieiite ettt st st sttt sttt et e e e sb e e b e e sbeesneennes 37
2.6 Prism WIN SCHD@ IDEcoouieiiiieeeee et st s 40
2.6. 1 FEATUIES oot e e e e e e 41
2.6.2 LIMItatioNS.ccoeeeee et e e s e e s e e s e e s anre e e e nnee 44
2.7 SUMMIAIY i e e e e e e e s s e s e st ssnssnssssnnnnnn 44
Chapter 3 - OUr APProach ... rreerreessess s e eeenees s ss s s s s e e s naasssssssssseennnssssssssssnesnnnnsnsans 46
3.1 INEFOAUCTION ..ottt sar e s e sne e e smeeesanee s 46
3.2 High Level APProach VIEWceei ittt e s ctree e e e e st rr e e e e s s e snvanaaeeeeean 46
33 Software TechNOlOgies USEd..........uueiiiii ittt e e stree e e e e e s srarae e e e e e e enanes 46
3.3.1 MiICrOSOft DSL TOOIS ...ceeniiieiiiieiiieste ettt sttt ettt s sbe e e st e e sab e e sbeesbeeesaneenas 46
3.3.2 Windows Presentation FrameWOrKc.ceeiiieeiiienieeniee ettt st esbeesiee e 48
3.3.3 Language INtegrated QUEIYINGcueeiiiciiieiieieie e ccieeeeettee e eree e e s ette e e e st e e e esataee s sntaeessnsaeeeaans 48
3.4 Methodologies and Standards.........ccuuveieeiiiiiiiiie e 48
3.4.1 Unified Modeling Language (UML)ccueeiieiiiee ettt et e e e vae e e eeavae e e snteee e 48
3.4.2 Model-Driven Software DevelopmeNnt.........c..uviiieii et e e e et e e e e 48
I V- {] Pl e 1YY= [T o] o =T o P UPPRP: 51
3.5 Gathering REQUITEMENTS......cii ittt e e et e e e sar e e e e rata e e e sntaeeesnreeaan 51
3.5.1 TOOI REQUIMEMENTS .. ceiiiiiieeieiieeeccieee ettt e et e e eetr e e e et e e e e staeeesertaeeesstaeeesnsaeeesansaeessnseaeananes 51
3.5.2 Meta-Model REQUITEMENTS .ccceiieiiiieeee ettt e e e e e et re e e e e e s e ennreaeeeeee s 51
3.6 SUMIMIAIY ttttiiiee e et ettt s e et e ettt e e e e e e e eettae b s e e eeeeeaeaa s b s eseeeeeeesssaaaaeseeesenesssannseseeesenessnnnns 51
Chapter 4 - REQUITEMENTS ...ccuuuuiiieiiiiiimmmiiiiiiiiiieemmmiiiimiiimeessmssiisetiisessssssssissstmsessssssssssssssssssssssssss 52
4.1 INEFOTUCTION ..ottt ettt et st e st e e s bt e e sat e e sabeesabeesabeeesabeesaseeas 52

4.2 FUNCLIONAl REQUITEMENTS ..c.vieie ettt et e e e e te e e e st e e e e abae e e enteeeeenees 52

4.2.1 Report Writer MEeta-IMOdEl....cccce i e e e e e e e e e s anae e e e e e an 52
4.2.2 RWM SHEII HOSL ...ttt st s s s e s e e s 58
4.3 Non-functional REQUIrEMENTSccc.eeiiiiiiee ettt e e ettt e e e e e e e nrraaeeea s 64
4.3.1 Report Writer Meta-IMOGE........uuiiiiiie ettt e e e e e e srae e e sanaee s 64
4.3.2 RWM SHEITHOST c..eeiiiiiieeie ettt sttt sttt et e te et e s beesatesaeesaeesneesatesnsenns 67
4.4 SUIMIMIAIY ceiiiiiiiiiiii ettt ettt bttt b sttt e b et e e e e et e e e e eeeeaeaeeeeeaaaeaees 70
ChapPter 5 - DESIBN.cuuiciiieeiiiiieiiciieeiiiiteneietinneesttnessestenssssstenssssssensssssssnsssssesnsssssssnssssssnnssssssnnsssssnns 72
5.1 Ta i dgeTo [V 4 Te] o PSP R PRSI 72
5.2 SEAKENOIARLS ..ottt e st e e st e e sab e e s b e s bee e sareesreeenne 72
LI A Y 11 R 1Y e T =Y PSRRIt 72
5.2.2 SHEIIHOSE ..ttt 72
53 USE CASES ceiiiiiiiiiiiiiie ittt e a e s a e 72
oI T A D 1LY 11 o T o 1T USSR 72

oI 0 =T o Yo o 1= = T Pt 73
5.4 Object oriented DesiGN/ANGIYSIS........coviiiiueeeeee et et eeeeeeeeeeeteeeeeeeereeeereeeeseeesreeeneeens 74
5.5 OVErall @rCITECLUIE ...eiiiie ettt st st e st sbe e s be e e sabeesbeeesneeenas 86
5.5.1 Class Diagram APProach ...ccccuieieiiiiie e ciiiee ettt e et e e e eette e e e stre e s sente e e e sbtae e senbaeeesenraeaeanes 86
5.5.2 RWIM Shell APPrOaChovviiiiie ettt et e e e e bte e e e ebae e e sentae e e entaeaeanes 87
5.6 APPIrOACH OVEIVIEW......uviiieiiiee ettt e ettt e et e e e ettt e e e e tbe e e e sbteeessaaeeeeeabaeesansteeeeanseeseeanreeesanrens 87
5.7 Class Diagram-Based DESIZNuiiiiieiieeiiiiiieee e e eeecittee e e e e e eeeirae e e e e e e e snaraaeeeeesssansssaeseeaeessnnes 88
5. 7.0 OV BIVIBW ettt bttt ettt bttt bbbt bbbt e e ettt e e et e e et e e et e eeeeaaaees 88
5.7.2 MEta-MOdEl DESIZN ..ccccviiieieiiiee ettt ettt ettt e st e e s ta e e s sbte e e e sabteeesentaeeesstaeananes 88
5.7.3 Shell HOSt DESIZN....uviiiiiiiieecitie ettt ettt e e et e e e eata e e e sbte e e s sabaeeesentaeeessteeeesnseneasanes 98
5.8 RWM Shell APProach DESIZNccceeeeueiiiiieee ettt csctre e e e e s ssveree e e s s e e saaran e e e e s e e ennaaaneeeee s 99
5.8.1 OVEIVIEW ettt ettt e e st e e st et e s s re e e s era e e s nre e e s nnee 99
5.8.2 Meta-Model DESISNcuuiiiiieeeecccitiee ettt e e e e e e e e e e s e ettt e e e e e e e seaabaaaeeeeeeesnnstaeeeaaeans 100
5.8.3 Shell HOSt DESIZN....uviiiiiiiiieicitie ettt ettt ettt e et e e e st e e st ae e e ensbaeesssseeessnsaeeesnnaeeenn 104
5.9 Design for users (non-functional Perspective).........ccoccvveeiecieee i 107
LT TR B B TV FoT =T R 108
oINS B =T o Yo 1= 1= o =T Y 110
5.10 USEer INterface DESIZNuueieiiiieciiiiieee e ettt et e e e e ectree e e e e e e setete e e e e e s s eanbaaaeeaeseesnstsaneaaaseannnnes 111
5.10.1 Class Diagram APProach Ul...........uuiiiiriiicccieiiee ettt eetrere e e e anre e e e e e e e enraaeee e e s 111
5.10.2 RWM Shell Approach User INterfaceoocuueeeiiiiieiciiiie et 113

00 I R T 0 0 T g - [VPP PPPPPPPPPPPPPPPRt 115

Chapter 6 - Implementationcccciiiiieiiiiiieicrerrrerrrserrenesesrenessessenesssssensssssssnssssssnnnsnns 116
6.1 Ta i a oY [V 4T] o TSP PSPPRTOTR 116
6.2 (DY I =T o110 Vo] [=4V SRR 116

5.2.1 THE DSL PrOJECT c.uveeteeiieitieseteste sttt sttt st sttt ettt et et e et e sbeesaeesaeesaeesaeesaeesnnesntesnsenns 116
A 1ol DI Lo 1ol Tl o o = ot SR 117
I - 1 T V1 - D R 117
6.2.4 The TOOIDOX.cc.eiiiiiieiie e s s e s e 117
6.2.5 ElemMent MErge Dir€CtIVES....cccii i iiieeee ettt e e e e e e e e e e ree e e e e e e e s nnnteeeeaaeean 118
6.2.6 The MOl EXPIOIEI eiiiiiiee ettt e e e e et e e e e e e et e e e e e e e s nateaeeeeeesenasnseeeeeaaenan 119
6.2.7 CONNECLION BUIIAEISeeiiiieiieetee ettt ettt et sttt e st e e ate e sabeesans 119
I =T ¥ | B Y/ o 1T 120
6.2.9 SeITAliZATION ..c..eeiieteet e e s 121
Lo O = A =Y 1] o = L TSR 122
6.3 Class Diagram Approach Implementation ... 123
6.3.1 Meta-Meta-Model DEeVEIOPMENTeiiiiiiccieeee e e e e e re e e 123
6.3.2 Meta-Model DEVEIOPMENTuiiieiiie ettt e e e e e sba e e e snaeee s 135
6.3.3 Shell HOSt DEVEIOPMENT....ccccuiiieieiiiee ettt ettt e st e e e seb e e e esata e e e ensaeeesnnneeeas 143
6.4 RWM Shell Approach Implementationcceeecciieeeeciiec e 149
6.4.1 Meta-Model DEVEIOPMENT ...cccii e e e et e e e e e e enntreeeeeee s 149
6.4.2 Shell HOSt DEVEIOPMENT.....coiiiii ettt e e et e e e e e e e ebere e e e e e e e e eanntaaeeaaeean 162
6.5 (0 1 1 =Y g T T T T [P SPP 163
6.5.1 Class Diagram APProach ...coiucueei ittt e s e e et e e e e aba e e e snaaee s 163
6.5.2 RWIM Shell APPrOach c....evviieiiee sttt e st e e e e et e e e e aae e e e anaeee s 163
6.5.3 APProach COMPATISONuiiiieeieiciiiiieeeeeeerectrree e e e e sssrtrreeeeeeessastaaeeeeessanssaneeeessessnntnnneesenns 164
6.6 R U100 o 1 V2Nt 165

Chapter 7 - Case StUAIES....cciieuuiiiiieiciiiiccrteeccrrenncerrennseeerennseestenssesssensssssssnsssssssnssssennssssennnnans 166
7.1 INEFOTUCTION ..ottt ettt e s e st e st e e sab e e sabeesabeesbeeesareesanes 166
7.2 Scenario 1: DesigNiNg @ rePOrt....ccciiiiiiiiiiiee e 166

0 R (= To [U T =] 0 0 1= L OO PP PP P PPPPPPPPRPPPRY 166
7.2.2 ReQUIremMENT @NalYSIS....uuuiiiiieiiecciiieee e e e e e e e e e e e e e e et n e e e e e eean 166
7.2.3 Meeting the reqUIrEMENTS....cccccc e e e e e e et rre e e e e e e e enntaeeeaaeean 167
7.2.4 CONCIUSION ...ttt ettt st s bt e st e e s bt e sme e e sab e e sabeeeneeesmreesaneeennnes 170
7.3 Scenario 2: Adding new model informationccccceeiiriieiiiccie 171

Vi

0 R = To [U1 =] 0 0 1= L PO PPPPPPPPPPRPPPPRY 171

7.3.2 ReQUIrEMENT @NalYSIS...uuueiiiiieiie i e e e e e e et rre e e e e e e re e e e e e eean 171
7.3.3 Meeting the reqUIrEMENES...cccii i e e e et e e e e e e s santreeeeeeean 172
7.3.4 CONCIUSION ..ttt et ettt et e st e e s bt e e mte e sab e e eabeeeneeesmbeesaneeennnes 178
7.4 SUMIMIAIY i e e e e e e e e e e e e s e st sasnssnssnsnnnne 178
Chapter 8 - EVAlUAtioN....c...iiieeeciiieeiciriennieettennieereenseerrnnseeesenssseesensssessensssssssnsssssssnssssssanssssssnnnnnns 179
8.1 INEFOAUCTION .ttt ettt e b e sb e e b e ne 179
8.2 DESIZN EVAIUGLIONceiiiiiiiiieeee e e s e e e e e e st e e e e e e e nnnrareeeas 179
8.2.1 Champagne ProtOtyPiNguueeeeeiiieiiiiiieie ettt e ettt e e e e e e strare e e e e s esnarae e e e e e e ssansreeees 179
I A A @Y -4 a1} VL3 11 0 L=] [0 o Y 180
8.3 N oYY AV | [V 4 oo D PSSP 188
S0 T8 B B T2V o =T PR 188
I B =T o Lo T D 1= 1= o =T PP PP PP PPPPPPPPPPPPPPRY 193
8.4 Cognitive Dimensions V.s. Survey EValuationccccvveeeiiiiiiciiiieec e 198
8.5 CoMPAriSON tO SCIDE ...uviiieie e e e e e e e st ree e e e e e eeannes 200
T8 B o) - 1 o o ORI 201
8.5.2 WIZATAS .eeneiieiiteeite ettt ettt ettt ettt et e st e bt e s bt e st e e s be e e abe e s bee s bt e e hteesabee s baeenans 201
8.5.3 Data DiCTIONAIY oottt — bbbttt et ettt b ettt eaeaeraaaaae 201
N N Y o o] o 1 =Tl (] o = R 201

SR YT =1 | J PR 202
8.5.6 Database ASSISTANCE.cccuuiiiiieiieeeee et s s 202
ST A [o [= PSR 202
TR 3 0o Yo [T afo] (o 1o V- PR 202
8.5.9 SeITAlIZATION ..c..eeeiieteee e s s s 202
8.5.10 Code Libraries (SNIPPEES) ..cccuiieiiciiie ettt et eete e e ctte e e et e e e s ar e e e e araeeeeeanaeeeennaeeens 203
S0 T O A =Y ol oV Vo) o =V PSSR 203
8.6 SUMIMIATY e tttttiiee e et eee ettt e e e e ettt e e e et eeeeetaaa e s eeseeeeaeesaaa s eeesaeeeesaaaaeseeeseeesssasssseseeenenessnnnns 203
Chapter 9 - Conclusions and FULUIre WOTIKccireeeieiiemnceriennieeirenneennenseessenseesesnssesssnnssesssnnnnnns 204
9.1 INEFOAUCTION .ottt ettt e r e sbe e b e enne 204
9.2 Thesis CONTIIBULIONS ...coueiriiiiiieiee et s 204
9.2.1 PriSM SOfEWAIE ..ueeeiieiieiiieiteee ettt ettt e st bt e sae e sae e s e e st e st e et e eaeeenneeas 204
9.2.2 Prism CUStOMErS (ENA-USEIS) ...oeiiuiiiieeiiiee ettt ettt ettt ettt eetae e e e are e e e nae e e ennaee s 205
9.3 CoNCIUSIONS AN FESUILS. ...ceiuiiiiiiieetie ettt st be e e s e s b e e nee s 205
9.4 CUrrent LImMitations ..ot 206

Vi

S I 0 RV =3 = T VoY 1= SRR 206

9.4.2 RWIM SHEIITHOST ...t s e 206
9.5 FULUIE WOTK/ENNaNCEMENTS. ..eiiiiiieteeieeee ettt et e e e e et e et e e e s eeeaaeteeeessesasbereeeeesssasnsseeees 206
9.5.1 Expand and Refine the Meta-MOodel.............euriiiiiii e 206
9.5.2 IMProve Visual NOtAtioNcccuiiiiiciiie ettt e e e e e s e e e s snaeee s 207
9.5.3 Improve Model Layout AIZOrtRMSccuiiiiiiiiei e 207

9. 5.4 VOIS ONINEG ettt bttt bttt et ettt et e eeee e e et et e e e e e aeaeaeaaes 207
9.5.5 Bt POINTS ..eeiiiieiiiieiiie ettt s s e 207

1S B S Va0 o Yo T A AV A Yol '} RN 208
0.5.7 WIZAIAS eeneieeiiie ettt sttt ettt ettt et e st e s b e e s et e e st e e s b et e ne e e s b e e e be e e neeesareesareeennnes 209
TR 0o Yo LI a1 o= £ SRR 209
9.5.9 Debug Generated RWL SCrIPT ..ueiiiiiiie ettt ettt e e e e e saae e e e satae e e ennaee s 209
9.5.10 WYSIWYG OULPUL LAYOUL ...ttt vaveaeenee 209
9.6 R U100 0 o 1 V2Rt 210
3= =T =T T TN 211
APPENAICES ..ceuiiiieiiiiiiiiiittirieiteeeitteeneettennssestenssiestenssessesnssessesnssessesnssesssnnssssssnsssssssnsssssssnssssssnnsanns |
Appendix A Report Writer Factsheet by (Prism Group, 2008)ccccccveevieeerieesiieeeireeeseeeesseesveens I
Appendix B Core RWL CONSEIAINTS ..ucccccuieieiiiiieieiiieeccieeeesireeessiteeesstveeessbaeeesnbaeessnsaeessnsseeesnnsens Il
Appendix C Case StUdy 1 SCre@NSNOLSuuviiiieiiiiiiiiieee et e e e et e e e e e e s rbaareeeeeeeas [}
Appendix D ExpandCollapseBase Hide/Show children..........c.ccoovieieiiiiieccieiccieece e X
Appendix E Compartment Child Orderingoeeeeocciiiiiiie et e e e e nnraeee s XI
Appendix F Automatic Layout of Child Shapesccociveiiiiiiiiicie e Xl
AppendiXx G SUIVEY REQUEST LETLEI ...iiiieiiie ittt e s e e areeeeas Xl
Appendix H Survey Participation Information Sheet.........cccccvviiriiiiiicciie e XV
Appendix | (000 11T o)l oo o o o PP XV
Appendix J SUIVBY e tteeee e ettt e e e e eetttr e e e e e e e s et teaeeeeeseaanbateeaeaeeesassstaaeaeesaaassstanaeesessnnsssnnnaaeseanarens XVI

viii

List of Figures

Figure 1: Prism modules and integration reproduced from (Prism Group, 2008)........c.cccccevervvereennnen. 2
Figure 2: Prism (R & D) - Prism WIN MIS User - Customer relationshipccccoecveeeeccieeiccciee e, 3
Figure 3: Prism WIN and the Report Write MOdUIEoeveeiiiiccee e 6
FIGUIE 41 RWL COUR ..nutiiiiiiiie ettt ettt e st e e st e e e s bt e e e e e bt e e e santeeeesabeaeeeanbeeeeentaeessseaesennseeeennes 7
Figure 5: Incremental Model reproduced from (SOreNnSeN).........cceecieeeiiiiieeeeiiee e et e 12
Figure 6: Agile development model reproduced from (KI€in)coocuveiiiiiieiciie e 14
Figure 7: Abstraction layers of MDSD reproduced from (Brown, Conallen, & Tropeano, 2005) 15
Figure 8: The modeling spectrum reproduced from (Brown, Conallen, & Tropeano, 2005)................ 16
Figure 9: MDSD and application development reproduced from (Stahl, Volter, Bettin, Haase, &
HEISEN, 2003) .oiiiiiieeiitiee ettt eetee ettt e e ettt e e eete e e e eetbeeeesetbeeeeeataeeesasbaeeeeatseeeeanbaeeesassaeeesasseseeateeee raaeennns 17
Figure 10: AOM approach reproduced from (Balaguer & Yoder, 2001).........cccccueeeviieeeencieeeecieee e 19
Figure 11: Meta-model > Model > Real world reproduced from (Stahl, Vélter, Bettin, Haase, &

o L Y= o T 0102) RS 20
Figure 12: OMG metalevels reproduced from (Object Management Group, 2008)cccceeeecuveeeennns 20
Figure 13: MOF specification excerpt reproduced from (Stahl, Volter, Bettin, Haase, & Helsen, 2003)
(Object Management Group, 2008).........ccccueeeiieeeiieeeiieeeireeesieeesreesreeesteeessaeessseessesesasessseesssessnsesenseees 21
Figure 14: Formalism, static/dynamic semantics and conrete/abstract syntax reproduced from
(IMETZEEI, 2005) . .uuiiie ettt ettt ettt e ettt e e ettt e e e e tteeeeetaeeeeaabaeeeeassseeeaasssseeaasaeeesassaeseanssasesansaaeann saann 22
Figure 15: Software factory with a DSL reproduced from (Microsoft, 2007)cccceeveerciveevreesveennnen. 23
Figure 16: Himalia model of a Ul reproduced from (Himalia, 2006)cccceeevieeeeeiireeecriee e 24
Figure 17: Anjuta, an IDE for GNOME reproduced from (Naba kumar, 2007)ccccoeveeeceeeeccrieeennee. 24
Figure 18: Qt C++ GUI designer for Eclipse reproduced from (Alessandro, 2007)ccccveeeveeeerveennee. 25
T (O I R R oI o N Y I o - = 25
T (0TI A 0 Y @ L o1 1'e] o =X N 26
Figure 21: SQL snippet represented VISUAIIY..........eoiiiieriiciiie et 26
FIUIE 22: T@XEUAI DSL....eeetiiieeie ettt re e e e e e ettt e e e e e e e e anb e e e e e e e sannsseeeeeeeeesanssennneeesennas 27
Figure 23: Textual DSL USiNg hOSt |aNGUAEZE........ceviii it e e e e et ae e e e 27
Figure 24: Textual DSL USING XIVIL ...ccicuuiiiiiiiieeecieeeesitee e st e s vae e s etee e st e e e s sabae e e ssbeeeessbaeeesnsaaeeennnes 27
Figure 25: Microsoft DSL Tools overview reproduced from (Microsoft, 2007)cccceeeeecveeeecciveeennns 32
Figure 26: Microsoft DSL 00l WIzZardscocccuiiiiiiee ettt e e e e e e arrae e e e e e e e nnraaneeaee s 32
Figure 27: Microsoft DSL Tools graphical deSigNer.........ccccuveeieiiiie it 33
Figure 28: T4 text template SNIPPEL....cue i e e e e e e e s e e rneeeeeeean 34
Figure 29: Marama architecture reproduced from (Grundy, Hosking, Huh, & Li)...........cccoeeieirinnennns 34
Figure 30: Marama Meta-Model Designer reproduced from (Grundy, Hosking, Huh, & Li)................ 35
Figure 31: Marama Shape Designer reproduced from (Grundy, Hosking, Huh, & Li)cccccccecvveennns 35
Figure 32: Marama View Designer reproduced from (Grundy, Hosking, Huh, & Li)cccceeevevieeanns 36
Figure 33: MetaEdit+ Diagram Editor reproduced from (MetaCase, 2008)ccceecuvreeeeciveeeecineeennns 38
Figure 34: MetaEdit+ Matrix Editor reproduced from (MetaCase, 2008)ccceeeecreeeeecrieeeecieeeeenns 38
Figure 35: MetaEdit+ Table Editor reproduced from (MetaCase, 2008).........cceevveerreercieeecreeesveennnen. 39
Figure 36: MetaEdit+ Browsers reproduced from (MetaCase, 2008)c..cceeevveeeeiireeeniieeeeeveee e 39
Figure 37: BPMN editor designed using GMF reproduced from (Eclipse.org, 2008).........cccccccecuveeeennes 40
FIGUIE 38: SCIIDE WIZATAS cueeviiiiiiieeciiee ettt et e e e e st e e et e e e e sabe e e e ssbaeeeensbaeessnseeeeennseeesenses 41

Figure 39:
Figure 40:
Figure 41:
Figure 42:
Figure 43:
Figure 44
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:

Scribe report PartitioNiNgccveie i e e e e e e e araee s 41
Scribe Meta-data lIrary ... e 42
SCribe fUNCHION [IDIary .cci e e e e s r e e s s aae e e e aaeee s 42
Yo g1 Tl oloTe [V1 o -1 Y AR 43
Scribe syntax colouring/comPpletioncc..ccceeeiiiecie ettt et e 43
Scribe non-context sensitive auto COMPIEtioncceevevieiiicciie e, a4
RWL hard CONSTIAINT c...eiiiiieiieeiiieiiie ettt et e st st e e sate e ssbe e sbeessbaeessbeesabaesnbaeen 47
Class DIiagram APPrOaCh ..cceic ettt e e et re e e e e e e e eaabre e e e e e e e sennraraeeaeeeennnnes 49
RWIM Shell APPIOACh ...uviiiiiiie ettt et eee e et e e e bee e e e atee e s sabae e e enres 50
Meta-model representing RWLcocuiii ittt et e e ate e e e aae e s e ebae e e 52
AT Yo} i ol o Y 4 =1 o PP 53
RWL meta-model and its instantiated Mmodel..........coccveviiiiiiiiciie e 54
Difference in 8eNerated RWL......c..ceiiiiiiii ettt e et e et e e e aae e e 54
Prism meta-data SECHION ...ocviii e e e 55
Ul example showing Prism meta-data information........cccccceeiiiiieeiiciie e 56
Example transformation SEIVICEcocciiiiicciiie et e 57
Tree view representation of RWL SNIPPELuuviiieiiieiiiiiiiee e 58
Example of @ visualized RWL SCIPt.....cuuiiiiiiiiecciie sttt et e s e s sarae e eaees 59
Example of an intuitive RWL CONCEPT ...ueiiiiiiieieeee ettt et e 59
Shell constraint Validation.........cooviiiiiiiie e 60
Shell "lazy" constraint validationccccciiiiiiiiee e e 60
Showing RWL Program flOW..........cccuieiiciiiie ettt et e e e s rae e e e e e e e anaee s 61
RWL composite construct notation eXample........ccceeeeecciiieiee e e 62
Show/Hide child constructs notation eXample........ccccceevieeieeieecie et 63
Intuitive RWL meta-model extension Point........cccccevveciiieiie e 65
RWL MOEl VariatioNnsceeiieiieeiciiee sttt ree e st e s s sbee e s s naee e s sbee e s enanes 66
Simple implementation of the RWL meta-model........ccccveeiiiiiiiiiiiiicee e, 67
SaMPIE SHEI INTEITACE ... it e e e e e e e e e e e e nraee s 68

Sample shell interface with error detection ..., 69
NOTatioN USING STEIEOTYPING wevviiiiiiiiiiiiiiiiiieieieieteee e eeeeeeeeeeeeteeeeeeeeeeeseseeesesesesnsssssnnns 70

Use case developer PErSPECLIVEcuuviiiiee et s e ecrrre e e e e e rrte e e e e e e e e nnbraeeeeee s 73
Use €ase eNd-USEr PEISPECLIVEcccuuiiiiieeeeccccitie e e e e e ettt e e e e e et re e e e e e senrteeeeaeeeenanreaaeeaaeas 74
Class Diagram Approach: Archit@CtUIeuveecuieeeeciee e e 86
RWM Shell Approach: Archit@CtUrEuvevii i e 87
Class Diagram approach: Initial class diagram (meta-meta-model)cccceeevveeecrereennnenn. 89
S TUT T TR =T o o] = PSR 90
Embedding relationship reproduced from (Microsoft, 2007)ccceecveeeeeciieeeeciieee e, 91
Reference relatioNShip e e e 91
Class Diagram Approach: Class Diagram relationship constraint........cccccccceeevcieeeccciiee e, 92
Class Diagram Approach: Class Diagram OVErrideccveeeeeeeeciiiieeeeeeeecciireee e e e seeeneeeee e 92
Class Diagram Approach: Code SeNerator.......cccccvecieieeciiee e e e 93
Class Diagram Approach: Mandatory fields designccccceveeiieiieciiee e, 93
Class diagram approach: Field editors design.........cccuueveieeiiiiiiiiieeee e 94
T gl a1 = e L - T PP 95
Generated mapping from LINQ TOOIcuviiiiiiiieiceee e e 96

Figure 84: Example code to query a given Prism meta-data view or tableccccceecvveeeviveeeccciee e, 96
Figure 85: Class Diagram Approach: VErSiONINGccccuiieeeeii i e e et re e s e svtere e e s s e e saanrneeeeeeenas 97
Figure 86: Class Diagram Approach: Meta-model eXplorer.......ccccviciieeiiiiiii et 97
Figure 87: Class Diagram Approach: Visual designer designcccoecveeiiiiieeieiiee e 98
Figure 88: Class Diagram approach: Shell host validation method calls.........ccccccoeeiiiiieeiiiiiniiiieee 99
Figure 89: RWM Shell Approach: Initial meta-modelcccoeivciiiiicciiei e 100
Figure 90: RWM Shell Approach: Relationship constraint.........cccceeecieeiiciiiii i 101
Figure 91: RWM Shell Approach: Two phase code generator........cccceeeeeeeeciiiieeeeeeeccciieeee e 101
Figure 92: RWM Shell Approach: Mandatory attributes to mark mandatory fieldsccccceeuneen. 102
Figure 93: RWM Shell Approach: Specifying field editorsccoveeeecieiiiiviie e 103
Figure 94: RWM Shell Approach: Model @XPlOreruviiiiee e 104
Figure 95: RWM Shell Approach: Visual notation via shape Mapping.......cccceeeeeveeeiiviieesicvieeeeecieeeenns 104
Figure 96: RWM Shell Approach: Enabling validationccccveiiieiiiiiiiiiie e 105
Figure 97: RWM Shell Approach: Program flOWcccccuiiiiiei ittt 106
Figure 98: RWM Shell Approach: CoNtainmMeNtccueeiiiiiieieciiee et eeree e e e sae e e 106
Figure 99: RWM Shell Approach: Ordering........cueiiiciiieiiiiiee ettt e e rte e e e e e e e evae e e 107
Figure 100: RWM Shell Approach: Show/Hide childrenccoveeeveeeieecceeeeeeeeee e 107
Figure 101: Class Diagram Approach: Automation for inherited elements before.........ccccveevnneen. 108
Figure 102: Class Diagram Approach: Automation for inherited elements after..........ccccccveeeenneee.n. 108
Figure 103: Class Diagram Approach: Method generatorcccccvveeeiei et 109
Figure 104: RWM Shell Approach: Model hierarchycceeeveciieiiiiee e 109
Figure 105: Class Diagram Approach: WPF Ulcoi ittt e e ervtee e e e e svannee e 110
Figure 106: RWM Shell Approach: Shell Ul..........ooi ettt e e e nrreee e e 111
Figure 107: Modern Ul tOO0IDArccocviiii ettt e e et s e e are e e s ree e e e 112
Figure 108: DOCKEA WINAOWSc...eeiiiiieee ettt e e e ttrre e e e e e sttt e e e e e e e e anbaaeeeeeesennnaneneeeaeeans 112
Figure 109: WPF Ul tOOItIPS (HEIP) cooceveeeeeeiiee ettt e ettt e e e earae e et e e e 113
Figure 110: RWM Shell Approach: Property grid.......ccccceeecieiiiiiiie ettt eree e 114
Figure 111: Allowed/Not alloWed CUISOr ICONS........ccciviieiieeeiie et et ettt et eeteeeeteeeereeebeeeeraeenns 114
Figure 112: EXecuting teXt tE€MPIAtes ..ceve i e e e e e e nrra e e e e e e 115
Figure 113: DSL Solution: THe DSL PrOJEC.....ccccciieeeiciiee ettt ettt et e e evee e e ete e e e ebae e e e eavae e e 116
Figure 114: DSL Solution: The DSIPAckage Project.......cccuueeeeeiiiciiiieeee ettt e e e ssvareeee e 117
Figure 115: Path SYNtax @XamIPIeuueeeie ettt e ettt e e e e e e e trre e e e e e e e s sanbaaeeeeeesensnaaneeeaaeeas 117
Figure 116: Toolbox creation @Xamplec..ceiiciiii it e e e ebae e e arae e e 118
T U o 7 Koo | o To =) 1 Y] L= USSR 118
Figure 118: Model Explorer configurationocoooeciiiie et e e 119
Figure 119: EXample Model EXPIOTEr.....ccouiiii ettt et e e e ae e e e sbae e e nrae e e 119
Figure 120: ConNECtion DUIIAETuuviieieiicceee et e e e e e e rre e e e e s e s nanrneeeeeeean 120
= U T R o a T = I Yo SRR 120
Figure 122: EXLErNal tYP@ USAEE...uuiiiicuieeieiiiee e ettt e eettee e eeee e e et e e e e tee e e s atee e e e ateeeesnbaeeeentaeeesnneeeeennses 121
Figure 123: Serialized model informMation..........ccceoeciiie e 121
Figure 124: Serialized model layout information.........cccccueei i 121
Figure 125: Customizable serializationccccuiiiiiciiie it 122
Figure 126: Text template example MOdel ... s 122
FIgUre 127: TeXt temMPIate i e et e e e st e e e e ae e e e s btee e e sabeaeeeaneeas 122
Figure 128: Text template OULPUL......c.ueii it eee e et e e e eare e e e sabae e s earee e eeanes 123

Xi

Figure 129:
Figure 130:
Figure 131:
Figure 132:
Figure 133:
Figure 134:
Figure 135:
Figure 136:
Figure 137:
Figure 138:
Figure 139:
Figure 140:
Figure 141:
Figure 142:
Figure 143:
Figure 144
Figure 145:
Figure 146:
Figure 147:
Figure 148:
Figure 149:
Figure 150:
Figure 151:
Figure 152:
Figure 153:
Figure 154
Figure 155:
Figure 156:
Figure 157:
Figure 158:
Figure 159:
Figure 160:
Figure 161:
Figure 162:
Figure 163:
Figure 164:
Figure 165:
Figure 166:
Figure 167:
Figure 168:
Figure 169:
Figure 170:
Figure 171:
Figure 172:
Figure 173:

Layer support

ModelType inheritance..

Enumerand support

Canvas swimlane support
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:

Class diagram common hierarChy.........ccceeeeciiei e 124
.. 124
.. 125
.. 125

ENUMErandValue PropPerties. ... iiiieee et e et e e e e et e e e e s e e s snbaeee e e e e e eanrnnees 125

.. 126
Validation implementation........cccccovveiiiiiee e 127
Validation resultscoovcieeiiiciieicee e 127
INhEritance CYCle .. 128
Self INNEMTANCE ..oivvieiiie e 128
Multiple iNheritanCes......cccceeeeecciieieeee e 128
Custom field editor implementationccccceevcierivecieen e, 129
Operation signature custom editorcccccvveeevcieeeccieee e, 129
Shape definition......cccceeeeeeciieee e, 130
Shape definition variabilitycccocceeveveiiiniin e, 130
Connector definition.......cccevceeiiiiiiiciiee e 131
Custom coNtEXT-MENU ...ccciiiiiiiiiiiiiiiieeeeeeeeeeeeeeeee e 131
VSCT cOde SNIPPEL .vvveeiiiieeeiiee ettt 132
Method automation example.......ccccceeeeeeecciiieeec e, 133
Method automation helper, step 1ccccovveeeeeiiiiciiiiieeeeeees 133
Method automation helper, Step 2coocvvveivcieeiiciiie e, 134
Meta-meta-model to0lbOXceevvvriiiiiiiiiii e 134
Meta-Model model explorercceeeeeccciiiieeeeeeeciieeeee e, 135
IModelElement interfaceccccvveeieciieeiccieee e 136
ModelElementBase abstract class.......cccocceeiriiiieiiiiieninineenn, 137
CoreModel Class.......cooiuiiieiiiiiiiieiiee e 137
ControlLineModel Classccccevvcieriiiiiee e, 138
Added helper Classescuiivicciiieeeee e 138
Meta-mMOodelueeiiiiiie e 139
Meta-model code generation......cccccceeeeecieeeeccieeecciiee e 141

Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:
Class Diagram Approach:

INotifyPropertyChanged attribute on a ModelClass object ... 142
Automated method generator for CheckMandatoryFields....143

WPF Ul architeCture....uoeeveeiieeieerieeciee e 144

Ul toolbox population.......ccceeeeeiiiieeee e 145

(6] KoTo] 1 oTo) GRS 145

Adding a model element to canvasccccoecveeeecieeececieee e, 146

WPF Ul validation checkcccooviieiiniiiiiinieiie e 147

WPF Ul requesting validation of soft constraints................... 147

WPF Ul validation results........cccoceeveeeinieinieenieeeeeeieesieens 147

Property Editingccooecuiiieeeie e 148

LOIT L o] 0 g =T 1 o] PSRRI 148

GENErated RWL..oocuiiviiieiieeiieesiee ettt 149

Shell Approach: Report sections in the RWL meta-model........ccccceiiviiiiiieeiiiiniciiieeen, 150
Shell Approach: Report sections hierarchy........cccoccveeiiciiie e 150
... 151

RWM Shell Approach: Named element

xii

Figure 174
Figure 175:
Figure 176:
Figure 177:
Figure 178:
Figure 179:
Figure 180:

elements ...

Figure 181:
Figure 182:
Figure 183:
Figure 184:
Figure 185:
Figure 186:
Figure 187:
Figure 188:
Figure 189:
Figure 190:
Figure 191:
Figure 192:
Figure 193:
Figure 194
Figure 195:
Figure 196:
Figure 197:
Figure 198:
Figure 199:
Figure 200:
Figure 201:
Figure 202:
Figure 203:
Figure 204:
Figure 205:
Figure 206:
Figure 207:
Figure 208:

Figure 209:
Figure 210:
Figure 211:
Figure 212:

RWM Shell Approach: Common hierarchyccccoeeeeeiiiiiciiee e e, 152

RWM Shell Approach: Program flow meta-modelcccoecieeieciiiecciiee e, 153
RWM Shell Approach: Scan-Print-Column relationship.......ccccceecieiieriieeicciee e, 154
RWM Shell Approach: ColumnSelectionEditor custom editorcccoeeeevcieeeecieeecnnen. 154
RWM Shell Approach: Scan-Print-Column instantiatedccccccoeeiiiiieeee i 155
RWM Shell Approach: ColumnSelectionEditor for view RMccceevvveiviiieiiiiieeeeeee, 155
RWM Shell Approach: Implementation of containment/ordering and hiding of child

.. 156
RWM Shell Approach: Relationship orderingcccoccveviviiieiiciiee e, 157
RWM Shell Approach: Model constraints........ccccveeeeeiieeeiciiee e 158
RWM Shell Approach: Multiple reference constraints........ccccceeeeecciiiieee e 159
RWM Shell Approach: Instantiated RWM model example......cccccovveiviieeiencieeeccieee e, 160
RWM Shell Approach: ToolboX/EXPIOrer VIEW..........cccueeeueieciieeeiee e et 161
RWM Shell Approach: RWL script enerationcccceeeeciiiieeeeciccciieeee e eeecivree e e 162
Scenario 1 — Initial RWL MOElcccuviiiiiiiiieiciieee ettt e e 167
Scenario 1 — Partial RWM Model with cONNECLOrScccvivviiiirciieiiieieeieesee e 168
Scenario 1 - Joining two Scan model elements..........ccceveieecciiiiee e 169
Scenario 1 - Complete RWL MOdElcccocuiiiiiiiiiiiciiiee et 170
ColumnReferencesFunction relationship........cccoccuieiicciiee i 172
Embedding Select within the ControlLingcceeeie it 172
Select references columns relatioNShip.......ooccveiiiciiie e 173
Select relationship hIErarChy ... 173
Select model elemMent SNAPE........uueiii e e 174
Select model element shape definition ... 174
Select toolbox item definitioN.......ccociiiiir e s 175
Y] =Tt dh o] o To)1 =T o I PSPPI 175
Various RWL fUNCHION Y PES ..cciuiiiii ittt ettt e sstre e st e e s s bee e e s snbaeaeeans 176
Select-Column functions annotated using attributes.........cccccoeeiiciiieicciiee e, 177
Maximum level of abstractionovcuiii e 180
ControlLine construct minimum level of abstractionccoeceerierriiiniiiinieeee e, 181
Scan construct minimum level of abstractionc.cccceevveeriieeicier e 181
lllegal RWL drag and dropPueeeeeceecceiiieee e ettt e e e e e et ee e e e e e esntrae e e e e e e eenstaeeeeeeeennnsnranes 184
Dependencies within the RWL NOtatioNc..ceviciiiiiiciiiee e 185
Variable instantiation/usage hidden dependency........ccccccuveecieeeieiecie e 186
Graph of solution technology familiarityccccoccciiiiiii i 189
Graph of solution technology proficiency and meta-model perception rating after tutorial
.. 190
Developers proficiency With RWL......cccuviiiiiiiiiiciee ettt e 190
Current report design (IDE) t00l USAEEuvevvcuiieiieiieee ettt e e 194
Current report design (IDE) tool satisfaction..........cccceeceeeeeiiiei i 194
End-users familiarity with the new tool after guided demonstration........c.ccccecvevennneen. 195

Figure 213: End-user rating visual notation compared to textual representation and its help in terms
Loy o 1ol o o] ' - SRR 196
Figure 214: Edit points Within RWL.......coiiiiiiiiiiiic ettt et e e e svae e s e sarae e s e e e e e nanes 208

Figure 215:

Sample architecture of RWL Script to Model Handler........ccccveeiiiiieiicciiie e, 208

xiii

Table 1:
Table 2:
Table 3:
Table 4:
Table 5:
Table 6:
tutorial
Table 7:
Table 8:

List of Tables

Microsoft DSL TOOIS VS IMAramacuueieieiiieiiiiiie s eiieeeeeitee s sciteee s svte e e sstaee s ssataeessbeeeessnsneeesnns 36
Microsoft DSL TooIS VS. EClIPSE GIMFcooiuiieiiiiiee ettt e et e e et e e ere e e e ee e e anaee s 40
Class Diagram Approach: Code generation MappPing......ccccveeeeeeeriiiiireeeeeeescrieeee e e e e eevenneeas 140
Class Diagram Approach vs. RWM Shell Approachcoocuveeiiiiiiiisciees e eeciee e 164
Developers familiarity with solution technologyccceoviieiiiiciii i, 188
Developers proficiency with solution technology and meta-model perception rating after

.. 189
Cognitive dimensions convergence tableoocveei i 198
SCribE VS, OUI SOIULION ..eeiiie ittt e st e e seaee e e e sb e e e seabaeessseaeeenans 200

Xiv

Chapter1-Page |1

Chapter 1 - Introduction

1.1 Introduction

Enterprise tasks and processes tend to be complicated and require a fair amount of end-user
training and support. Writing reporting scripts to query databases and display the extracted
information is a good example of this. Industrial databases are complicated and hold huge amounts
of data, the majority of which will never be relevant to the user at hand. The databases also tend to
be unfriendly towards direct data manipulation for end-users in terms of how the tables are named
and implicit relationships and cascading associations.

These complications play a big part while writing queries, report scripts and other general data
extraction tasks. Thus the database generally proves to be the bottleneck of the system and to some
extent also the bottleneck for user interaction.

If we could give the user the ability to easily access data and support them to think of the database
and their reporting tasks in terms of the domain they are familiar with we would potentially increase
the throughput of the data and information coming in and out of the enterprise system. This would
have the additional benefit of improving end-user interaction and aiding their business. This is in
short the goal of this thesis.

The rest of the chapter gives a brief introduction to the company for which this research project was
carried out with a detailed introduction to the core problem, closely followed by the thesis
motivation and ends with an overview of the thesis chapters.

1.2 Introduction to Prism

1.2.1 Core Business

Prism Group offers a fully integrated and configurable business Management Information System
(MIS) for the printing and graphics arts industry. This includes the graphics and arts industry and has
integrated modules for estimating, inventory, production management, shop floor management,
cashbook, general ledger, accounts payable/receivable, sales order processing, facilities
management and sales management. This is shown in Figure 1.

Chapter 1-Page |2

WORKFLOW PRISIM

ry PROCESSING
"

FACILITIES
quote| [plan (actuall [charge ML MANAGEMENT

SALES MANAGEMENT
FCLIENT-END

delivery & invaice || job bag

sassayoad

WIP

T lob
Tratk

H3lildmMmLH0Od3H

PURCHASE
ORDERING

Interfs

DATABASE INDEPENDENT

Figure 1: Prism modules and integration reproduced from (Prism Group, 2008)

Prism group has three main products: Prism WIN, Prism QTMS and Prism WIN SBE. Prism WIN is the
flagship product which encapsulates all of the above modules (and other secondary modules
totalling 20 altogether), although the user can pick and choose which modules they would like
included. Prism QTMS (Quoting and Time Management System) provides a system which monitors
and collects diverse information on machines operating on the shop floor in a print shop. Prism WIN
SBE is the Small Business Edition of the flagship product in which users can select from a range of 14
modules which are designed to provide management and control for most printing processes and
functions.

Prism has two development centres based in New Zealand and the United Kingdom and has three
other business units in Australia, South Africa and the United States of America. The New Zealand
development centre is primarily focussed on working on the flagship product, Prism WIN, whereas
the development in the United Kingdom is centred on the QTMS product.

1.2.2 Prism WIN

Prism Group provides a heavyweight system called Prism WIN. This MIS comprises of 20 modules
which can be enabled as required to meet the customers’ needs. All modules integrate seamlessly
with other Prism products such as the QTMS. Prism WIN fully integrates all processes of the print
trade and allows easy management and control for management and shop floor staff (Prism Group,
2008).

Prism WIN is a Windows-based system written using Microsoft’s .NET technology and can run on
either Microsoft SQL Server or Oracle as its backend database. In the next section we briefly look at
some of the core modules which Prism WIN is comprised of as we elaborate on the business domain
this thesis is based around.

1.2.3 Business Domain

The domain we are concerned about during the course of the thesis will be centred on the Prism
WIN application and its interaction with the printing industry. Below is a description of those
domains with respect to Prism WIN. These domains are reflected in the modules catered for by the
Prism WIN system. The modules outlined in the following subsections are only a subset of all the

Chapter 1-Page |3

modules offered by Prism WIN. The facts and information portrayed in the following sections is
extracted from (Prism Group, 2008).

Each aspect of Prism WIN and its included modules are fully integrated with each other. To assist
readers, Figure 2 demonstrates what the following sections refer to as the Prism WIN user and the
customer relationship. It can be seen from the diagram that Prism (R & D) designs and implements
the Prism WIN MIS which is used by a printing plant which in turn offers printing capabilities to
customers. A Prism WIN MIS consumer (printing plant) consists of several departments; a subset of
these departments is portrayed in the figure below.

i U
/—Prlsm WIN End-U

3Q
i @iﬁ*j@‘%

Manufacturing User Suppliers

o 1l ¢!

Packaging Management Purchasing

Egvel?gn;(egt) Prism WIN MIS Printing Customer
rism
2 2 g
<< 8
Design Accounts Shipping
\ J

Figure 2: Prism (R & D) - Prism WIN MIS User - Customer relationship

1.2.3.1 Finance
The financial aspect of Prism WIN encapsulates four main modules. These modules are briefly
described below:

e Accounts Receivable:
This mainly contains cash flow into the system in the form of invoices, receipts, statements
and historic trial balances. Other facilities include tax return assistance and customer
maintenance.

e Accounts Payable:
The AP module contains information about the cash flow out of the system, in the form of
supplier invoices, transactions and balances.

e Cashbook:
This module gives the Prism WIN MIS user control of their bank balances by tracking
payments and receipts and reconciling them to the actual physical bank statement.

e General Ledger:
General Ledger is responsible to encapsulate all the above modules (AP, AR and CB). The GL
module assists management by providing reports on balance sheets, revenue statements,
trading account and trial balance.

Chapter 1-Page |4

1.2.3.2 Inventory

The inventory modules of Prism WIN ensure that the MIS user always has the right and correct
amount of stock at hand before starting a print job. It also assists the user to reduce inventory levels
thus reducing costs. This is done by storing extensive information about stocks and their suppliers.
The inventory also offers storing price and quantity breaks which allow the user to see when
suppliers are offering stocks at low prices and when various quantities amount to a difference in
price. This improves profit margins and giving MIS users and their customers’ value for their money.

1.2.3.3 Quoting

The QM module is designed for simplicity which allows estimators and sales personnel to respond to
customers request promptly and efficiently. Customised quote templates and screens allow for easy
information entry and minimises the response time. Quotes can also be copied from existing jobs or
other pre-existing quotes, quotes can also be combined into a new quote thus saving time and
increasing the accuracy of the estimates and safeguarding the bottom line of the company. The QM
module can also automatically assign quote numbers according to a user specified formula.

1.2.3.4 Job Costing

Job costing module is at the centre of the Prism WIN MIS system and ensures that each job is
produced exactly to specification. It also records vital statistics which are generated during a job run
which provides the user control over various cost centres during the printing process. The job
costing module is very flexible and is fully configurable for the user’s needs.

1.2.3.5 Production Management

The PM module contains a set of tools which allows the end user to maximise resource utilisation
and production efficiency. The centre piece of the PM module is the Gantt chart which allows the
end user to visualise where each job is scheduled to run. Through this chart schedulers and planners
can plan and effectively utilise a resource to its maximum capabilities, thus maximising profits. The
PM module also has information about the working time of machines (resources) and can calculate
the projected finish date and time of a job at runtime, by doing so the PM module can alert users if a
potential deadline is likely to be exceeded. This allows the user to make appropriate changes to the
plan before any problems escalate.

1.2.3.6 Purchasing

The purchasing module allows quotes to be transferred to purchase orders which can directly be
added to inventory to fulfil stock requirements. The purchasing module also regulates inventory
levels to eliminate excessive stock ordering and maintains stock at its most efficient level. It also
provides a mechanism in which staff members who do not have any purchasing rights to raise
purchase requests which can then be converted to a purchase order.

1.2.3.7 Sales Management

The SM module allows frictionless functioning between the sales process and customer and prospect
relationships. It helps schedule various sales representatives between contacts, sales and
prospective customers. Any interaction can also be recorded via the SM module. The SM module
also allows easy transfer of prospect customer status to a full-fledged customer after a contract has
been won. This change then propagates throughout the entire Prism WIN system. The SM module
user interface is flexible and allows the management to drive the collection and retention of
required information about prospective customers.

Chapter 1-Page |5

1.2.3.8 Sales Order Processing

The SO module gives the MIS user fully automated control over the entire print process for a job
from the inventory through to the delivery of finished goods to the customer. The module has built-
in validation and audit mechanisms which allow the Prism WIN MIS user to keep the end user
informed at all stages about stock levels and delivery dates. Back orders can also be placed along
with automatic or repeat forward orders for recurring stock. Priorities can also be assigned to stock
via the SO module. The SO module also allows the user to set up a structured and elegant pricing
and discount system for customers. Sales reports and other marketing campaign results can also be
generated via the SO module which gives businesses the edge and allows them to improve their
bottom line and maximises profits.

1.2.3.9 Shop Floor Management

The SFM module provides a process in which data is electronically collected from the shop floor to
feed into the rest of the Prism WIN MIS system to allow real-time tracking and monitoring. The core
of the SFM module is the Virtual Time Manager (VTM) which tracks a creative or production workers
time and also captures what task their time was spent on. The SFM module can also track machine
and material usage, waste, time taken for chargeable and non-chargeable work. This data is then
recorded against the job it was running against thus keeping the MIS user fully informed about its
status and statistics. Monitoring and recording of actual data posted on running jobs allows the user
to give better estimations at the quoting stage of the job thus improving productivity and giving
more accurate estimates to customers.

1.2.3.10 Report Writer (RW)

This thesis is based on the report writer. The RW language (RWL) is a powerful interpreted language
designed by Prism engineers to allow Prism WIN users to write powerful data mining queries. Via
the RW module users can extract data and use Prism WIN’s Meta-Model to combine data from
multiple database tables to give a detailed report with a configurable layout. The RW module and
language also has the ability to invoke action scripts® within Prism WIN. As this is an important sub-
section of this thesis | have included the actual Report Writer Factsheet from (Prism Group, 2008)
with this document as Appendix A.

This subsection is the core of the thesis and we explore further into the module and its
corresponding RW language in the following sections, Section 1.3 and Section 1.4 respectively.

1.3 Report Writer Module

Prism WIN’s Report Writer (RW) module is the interface between the database and the printing
plants’ (end-user) management team. The smooth flow of data in and out of a system is the primary
requirement for any successful business; Prism WIN caters for this by exposing key areas of the
database via the RW module.

End-users can simply write a set of commands (formally known as the Report Writer Language, RWL)
and execute these against the Prism WIN system. The system interprets these commands and if
need be, queries the database to retrieve the information which the user requested. The module

! Action scripts are similar to macros. They allow the user to define a set of legal actions within Prism WIN
which can be run automatically.

Chapter 1-Page |6

and the RWL are flexible and gives users complete control on not only what information they want
extracted but also on how they want this information to be displayed visually.

The figure below demonstrates the above mentioned concepts and shows how the WIN system can
simply import the report script and then utilise it to query the database and give user the required
information in a desired visual form (printer/screen/file).

Prism WIN
interprets the
script at import
time checking for
errors

Prism WIN
Database

RW Engine
Part of Prism
WIN

Report Script Prism WIN MIS

Figure 3: Prism WIN and the Report Write Module

Furthermore the RW module is fully integrated with WIN and is accessible system wide. This allows
the user to invoke action scripts® via the RW. In the following section we look at the syntax of the
RWL and also go through a simple example to give us a feel of how the language works.

1.4 Report Writer Language (Prism New Zealand, 2005)

The Report Writer Language (RWL) is complementary to the RW module. RWL is an interpreted
procedural programming language and to some extent, also object oriented. It is intuitive but like
any programming language takes a fair amount of learning and experience. Below we see a small
RWL example script.

1. Code RW_EXAMPLE

2. Name “Report Writer Example”

3. Type Standard

4. Access STSR

5. Select RM_CUST.Range + RM_BAL_TYPE.Match

6.

7. Clump cust_clump = RM_CUST + RM_NAME + RM_BAL_TYPE + RM_BAL_OWE.SetNDP(2);
8. Clump tran_clump = RT_DATE + RT_TRAN_TYPE + RT_OUR_REF + RT_INCL.SetNDP(2);
9.

10. PageHeader

11. Print StandardPageHeader;

12. Print cust_clump.ColDesc;

13. Print;

14. End

15

16. Scan RM

17. Print cust_clump;

18. Scan RT Choose(RT_CUST, Match, RM_CUST)
19. Print tran_clump AtCol(10);
20. End

21. Print;

22. End

23.

24. Print StandardReportFooter;

Chapter 1-Page |7

Figure 4: RWL code

Figure 4 shows some of the key points of the RWL; it demonstrates a subset of functions such as
SetNDP, ColDesc, Choose etc. It can be seen that these functions are executed on objects such as a
Clump, Scan, Variable etc. In the following sub-section (Section 1.4.1) we go through a simple RWL
example to give us a better understanding on how the language works.

1.4.1 RWL Walkthrough

Let us systematically look through RWL example introduced in Figure 4. This example is not the
simplest example available but gives us a brief introduction into the important concepts we need to
understand the rest of the thesis. Minute irrelevant details will not be examined.

The first five lines (Line 1 — 5) of the report contain the header definition. This is how the Prism WIN
system maintains this report and allows users to find it and execute it. This header information is
called the ControlLine structure of the report.

The next two lines (Line 7 — 8) declare two variables, in this example the variables are of type Clump.
Clumps are a grouping of arbitrary objects like database columns, other variables or numbers. In this
example the clump contains a list of database columns.

The next section (Line 10 — 14) contains the page header. The page header is just a block of code
which can hold other RWL statements. As the name suggests, the page header will be shown on
each page of the report (if the report spans more than one page).

Lines 16 — 22 show the most vital part of the RWL language, a Scan object. A scan object is
inherently a loop, although it loops through a Prism database view. In this example it loops through
the RM view and also has an inner scan which loops through the RT view. RT and RM are joined on
the condition RM_CUST == RT_CUST, this is done by the Choose statement. In short, a Scan is to
RWL what a Select statement is to Structured Query Language (SQL). Therefore, nested scans are
nothing but an inner join defined by the choose condition.

The last line is the report footer.

Other secondary objects of concern in this particular script are functions such as AtCol, ColDesc and
SetNDP. Specific functions can be executed on specific types of objects.

1.5 Introduction to the Problem Domain

This thesis deals with two core problems which are at the heart of improving Prism productivity and
product quality, namely the complexity of the Prism database and the complexity of the Report
Writer language. The following sub-sections look more closely at these two core problems.

1.5.1 Database Complexity

An enterprise database is the heart and soul of a business and it is fair to assume that they are
usually very complex and require constant maintenance and user training. Extracting information
from the database is equally important as putting information into it. Due to this reason, an
interface to the database should be as user friendly as possible.

The Prism database is very complex and has approximately 350 tables and views. The Prism
database initially started on a Velocis server which did not cater particularly well for implicit

Chapter 1-Page |8

referential integrity checks. The naming scheme followed business rules explained further into this
sub-section. Although the Prism system moved apace along with new technology and so did the
database, the way the database was designed never changed and started lagging behind. Due to
this we have the following issues:

1. Foreign key constraints
The Prism database does not have foreign key constraints and due to this, integrity checks

have to be done manually.

2. Meta-Model
The Prism database maintains its own meta-model. Some of the information held by the
meta-model includes table relationships, number of columns, data types, etc. Therefore, the
meta-model is not intuitive and needs users to have in-depth training and at times some
assistance.

3. Naming conventions

Prism database tables and views are named using a two-part convention. For example, in
the RWL Walkthrough (Section 1.4.1) we saw two views, RM and RT. Both these views
belong to the AR (Accounts Receivable) module. RM is the customer master record and RT
holds the transactions. Details about these views are not relevant at this stage. Although
notice that these names are not intuitive and will most likely require a user to know
comprehensive information about the database. Also note that all columns within a given
table are prefixed with the table name as its first two characters, for e.g. view RM (view on
table RM) will only contain columns like RM_*.

4. Views split over multiple tables

View RM and RT were introduced in Section 1.4.1 and further developed in the previous
paragraph. Note that both of these views have underlying database tables. Each view may
have more than one underlying table. This came about as some tables have over 250
columns; this is not allowed as part of the database schema in some database systems.
Therefore, the table was split. For example, the RT view has two underlying tables, RTI1 and
RTI2. Some views are split over as many as five tables. This makes database updates
complicated as it is not always clear in which split section the updated column resides in.

Due to the above mentioned issues a novice end user of the Prism database will thus have many
challenges when trying to understand how to use the tables and their relationships.

1.5.2 Report Writer Language Complexity

Like any programming language there is an obvious learning curve with the Prism RWL. As the RWL
is an interpreted language, it is very easy for a user to make an error and not pick it up until the
report is imported by the Prism WIN system or worse, when the report is actually executed.

The construct which is at the heart of the RWL (Scan) is database dependant, thus all the problems
detailed in the preceding sub-section will be translated and added to the RWL complexity.

Functions in the RWL are also data-type specific thus a user needs to know what data-type a
particular column in a database is to perform any data manipulation on it.

Chapter 1-Page |9

Thus, in order for a user to write an effective Prism report, they need to have intimate knowledge on
how the database is assimilated, what foreign key to do joins on (e.g. RM_CUST==RT_CUST), what
functions are available and what data-types the RWL exposes.

Moreover, there is no dedicated IDE (Integrated Development Environment) for the RWL. This
statement is not entirely true as there is an in-house IDE called Scribe although it is not as
sophisticated as one would expect. We will be looking further into it in Section 2.6.

Thus users do not have a high level support tool for designing, implementing and testing Prism RWL
reports on top of the very complex Prism database.

1.6 Motivation

The motivation for the thesis was to research and develop a model-driven approach to systematic
database object manipulation in terms of the printing reporting domain, thus | decided that if a
framework could be developed which modeled part of the database which was used by the RW
module we could possibly achieve two key goals. These two goals are the main motivation behind
this research and are explained in the following sub-sections:

1.6.1 Reduce database complexity

Personally, | have always found that it makes it simpler to understand the workings of a particular
system if | know how the database integrates together. Due to this reason, the initial motivation
was to make the Prism database user-friendly. Thus, reducing the database complexity to some
level or at least show that it is possible was the main motivation for this thesis.

1.6.2 Intuitive RWL tool

The repercussion of the above motivation was to show that the framework (model) developed to
reduce database complexity does actually assist software development and in-turn make systems
intuitive. This motivated me to design a small scale tool to allow users to design reports using the
RWL which would utilise the framework designed to reduce database complexity.

1.7 Thesis Ambition

The main goal of the research done was to reduce database complexity as mentioned in the
preceding section and also to develop a tool which demonstrates the newly improved database
model. We aim to design a model driven Prism Report Writer Language tool which allows users to
visually create a Prism report using a suitable visual language and support tool. This will allow the
user to work in terms of the domain they are familiar with to perform a task they initially had
difficulty with. The domain in this instance is the Prism Report Writer and the Prism database and
the task (enterprise process) is writing a Prism report.

We achieve these goals by using a model-driven software development (MDSD) approach coupled
with the use of Domain Specific Languages (DSL). The end user can construct reports for the RWL
using visual metaphors for both report components and database elements. The support tool will
check for consistency errors and provide the user a database browser and set of available reporting
elements in a structured and context sensitive way.

The MDSD approach enables us, as system developers, to enjoy some of the inherent advantages.
Basic advantages such as increased development speed thus reducing the time to market for

Chapter 1-Page |10

products, increased software quality and most important of all, improving the manageability of
complex enterprise tasks and processes through abstraction (Stahl, Volter, Bettin, Haase, & Helsen,
2003).

The DSL approach allows us to encapsulate and represent complex enterprise tasks and processes in
terms of a particular domain, in this case, a domain the end-user would be familiar with.

1.8 Thesis Overview

Chapter 1. Introduction
Gives an introduction to the thesis and a background into Prism Group and the
printing industry. Also gives an introduction to the problem domain and describes the
motivation behind the research

Chapter 2. Related Work
A detailed outline of the work and technologies researched to assist the thesis in
terms of requirements gathering, development, testing and evaluation.

Chapter 3. Qur Approach
Outlines the approach taken to arrive at the solution. Also gives a brief introduction
to the succeeding three chapters.

Chapter4. Requirements
Lists all the requirements the solution described in this thesis caters for. The solutions
are grouped by functional and non-functional requirements and further categorized
by their target stakeholder, either the developer or the end-user. The developer is
mainly concerned with the meta-model of the RWL where as the end-user is
concerned with the shell hosting this meta-model assisting them to design RWL
models.

Chapter 5. Design
The design chapter details all the design decisions taken with respect to our two
approaches, The Class Diagram Approach and The RWM Shell Approach. The chapter
also gives us details about the stakeholders and gives us a graphical perspective of the
requirements using use-cases. The chapter eventually details the architecture and
gives details about the user interface design for our Class Diagram Approach.

Chapter 6. Implementation
Expands on the details of the implementation for each of our approaches: Class
Diagram Approach and the RWM Shell Approach.

Chapter 7. Case Study
Incorporates three case studies or tutorials which take us through various aspects of
the solution. Primary case study has a tutorial on how the solution can be used by the
end-user to visually design a RWL script followed by a couple of case studies on how a
developer can expand the given meta-model if need be.

Chapter 8. Evaluation
This chapter evaluates our core approach: RWM Shell Approach (2™ Approach). It
highlights the evaluation process during the design phase using cognitive dimensions
and also through an end-user perspective. The meta-model of the RWL developed as
part of the solution is also evaluated by developers to measure its expressiveness.

Chapter 1-Page |11

The chapter concludes by comparing the designed solution with an existing Prism
reporting tool called Scribe.
Chapter9. Conclusions and Future Work

This chapter concludes the thesis by giving us a list of the contributions made by our
research in terms of the developer and the end-user. It also lists current limitations in
terms of the technology and the solution and gives a set of future enhancements that
can be made to make the solution better.

1.9 Summary

This chapter gave us an introduction to the thesis and the research involved. It also briefly
introduced us to the company this research is based around and gave a detailed introduction to the
problem. The problem introduced here was the inability for end-users to be able to carry out an
enterprise level task such as report writing due to the complexity of the Prism database and the
reporting language. Therefore out motivation for our research was to provide a tool which could
abstract some of these details from the user and allow them to design reports using a higher level
model of the database and the reporting language.

Chapter 2-Page |12

Chapter 2 - Related Work

2.1 Introduction

This chapter gives an introduction to the background research done in order to complete this thesis.
Research work in the fields of software development methodologies, model-driven software
development/engineering, and current state of art of domain specific and visual languages, DSL
Tools and existing reporting tools was examined. The findings for each of these are outlined in the
remainder of this chapter.

2.2 Development Methodologies

This sub-section describes two software development methodologies researched which assists the
development of the solution for the thesis. As we are developing a model based solution it was
important to study how it varies from and in some ways similar to traditional development
methodologies. We examine two orthodox approaches and in the following sub-section examine
the approach taken.

2.2.1 Incremental Model

Incremental software development methodology is described as the process in which each small
section of the system is independently designed, implemented and tested (Sorensen) (Shown in
Figure 5). We looked at this approach as it fits in nicely with the thesis as we planned to develop the
model and the tool using an iterative approach where we add more detail and complexity while
moving forward.

Due to the time constraints it was nearly impossible to model the entire Prism database process and
all constructs of the RWL. Thus, we applied an incremental approach to the problem at hand, in
which we extract small aspects of the database and the RWL and model them.

Requiramant

Implementation

Design

Requiremant

Implemaniation

Implemantation

Figure 5: Incremental Model reproduced from (Sorensen)

The main drawback of the incremental model is the integration aspect in which different sections of
the system have to be integrated together to make the full system. We would not have this problem
during the course of the thesis as we would only build on the existing or previous builds as the
implementation was only done by a single person. Although care had to be taken that this does not
develop into a problem in the future if the development of the product is done on a larger scale.

Chapter 2-Page |13

2.2.2 Agile Development Model
Information for this sub-section is extracted from (Subramaniam & Hunt, 2006).

This thesis relies heavily on the work done and the ideas based around the agile development
model. Agile software development is ideally defined as a process which uses feedback and
analytical results to constantly adjust the development in a team environment. The approach taken
by the thesis is very similar to some of the principles which are the heart of the agile software
development model.

We designed a tool to assist users in enterprise level tasks, thus the first aspect of the agile
development used was the need for constant end user (customer) feedback. The thesis also aimed
at giving the development team a tool which was designed using models to reduce the time to
market new features and increase software quality. Thus, the feedback principle in this case is two-
folds in terms of the thesis: feedback from the end-users and feedback from the developers.

In terms of users, agile development stresses that software, no matter how well written will only be
useful as the users perceive it. It describes ways in which to involve users throughout the
development lifecycle by allowing them to make decisions, informing them about what technology
was used and why, getting frequent feedback using demonstrations and the other obvious pointers
such as prototype evaluations and beta releases.

In terms of implementation, agile development model stresses the need for understandable and
simple code. It promotes the need to write cohesive code which avoids deep coupling.

Agile development promotes the idea of development in small increments, although this is explained
in the previous sub-section (Section 2.2.1) where we examined the incremental model of software
development.

Although the methodology used by the thesis strongly resembles that of the agile model, it is
important to point out the differences. This thesis, as it stands currently, is not a team project
therefore the aspects of collaboration have not been targeted.

The figure below shows concisely the above mentioned principles and is in effect the software
development process used for the course of the thesis.

Chapter 2-Page |14

ORSERVE & ANALYZE
PROJECT

Baseline Contextual User Research
Task/Activity Model User role models
Business Stakeholder Goals

Compatitive A

v Usar Goals

\“C.REMENTAL RE£E45 b ";7,;
e o

5 f'{'.—,

3 Personas Scenatias
g Incremental User Research
Interaction

tP‘-‘URE |TER4??O Model

User Stories Process Flows

Usability Testing

%

Usabiliny Testing
Ul Storyboards

Heurlstic Evaluation Ul Danbgin
Lo Fi Ul Prototyping

Development Suppart Visual Designs

Ul Spacification

Spot User Research

Figure 6: Agile development model reproduced from (Klein)
2.3 Model-Driven Software Development

2.3.1 Introduction

The core of the thesis was to build a model of a reporting language to assist developers add new

functionality and in turn assist the end-users in using this new functionality. Due to this factor, it
was important to research what model-driven software development (MDSD) is all about and the
current state of art.

As described in Section 1.7 MDSD has several advantages over traditional software development
methodologies. MDSD reduces development time by allowing for automation of code generation
from formally defined models (Beydeda, Book, & Gruhn, 2005). It also improves software quality as
a model once designed will maintain a consistent architecture and present that in its
implementation (Beydeda, Book, & Gruhn, 2005). MDSD makes software maintainability easy; a
change can be made in the code generation algorithm which will propagate in all parts of the
implemented system (Beydeda, Book, & Gruhn, 2005). Code generation libraries and patterns can
be reused assisting developers and reducing redundant code (Stahl, Vélter, Bettin, Haase, & Helsen,
2003) (Beydeda, Book, & Gruhn, 2005). Most importantly, MDSD allow the developers to design
high level objects abstracting the irrelevant details away from the core problem. Due to this reason
models are best described in a language suitable for a specific problem, this is where Domain
Specific Languages (Section 2.4) (DSLs) play an important role (Stahl, Volter, Bettin, Haase, & Helsen,
2003).

The following sub-sections outline some of the research done in individual areas of interest during
the course of this thesis.

2.3.2 MDSD Approach and Terminology

2.3.2.1 Terminology
Let us start by looking at the four core keywords in MDSD: CIM, PIM, PSM and ISM (Code), shown

below in Figure 7.

Chapter 2-Page |15

Business and Models Computation Independent Model (CIM)

A
/

Analysis and Design

Models Platform Independent Model (PIM)

A
h J

Detailed Design Models Platform Specific Model (PSM)

A
h J

Implementation and

Runtime Models Implementation Specific Model (ISM)

Figure 7: Abstraction layers of MDSD reproduced from (Brown, Conallen, & Tropeano, 2005)

The definitions of the above principles are extracted from (Afonso, Vogel, & Teixeira, 2006):

e CIM (Computation Independent Model): Concentrates on modeling the business aspects, i.e.
the domain specific nature of the application.

The specification of the RWL we are concerned with during the course of this thesis is an
example of a CIM. It does not involve any details about technology or implementation and
only specifies business constraints and semantics.

e PIM (Platform Independent Model): Shows a model which sits at an abstraction level which
excludes any details on the platform on which it depends.

Going from this RWL specification and representing in a static UML structure is an example
of a PIM. The process via which we go from the business rules (CIM) to UML (PIM) is
detailed in Section 5.4.

e PSM (Platform specific Model): A model which encapsulates details from the PIM into
platform specific implementation constructs.

After the UML (PIM) is established we then translated this into our DSL Tools. Therefore the
model represented via the DSL Tools is essentially a PSM. This is not a “true” PSM as we are
using Microsoft DSL Tools are we are bound by the platform constraints imposed by the
Microsoft CLR Framework.

e |SM (Implementation Specific Model or Code): Final level of the MDSD transformation
process containing executable code.

The Microsoft DSL Tools generate executable code from the model designed (PIM). This

Chapter 2-Page |16

code essentially is the ISM. This executable code is what is used by end-users to instantiate
a given model.

2.3.2.2 Approach

Moving in a tangential aspect from the terminology described before, let us look at different degrees
of MDSD. Paper (Brown, Conallen, & Tropeano, 2005) from (Beydeda, Book, & Gruhn, 2005)
describes this and shows how a model and code can co-exist. These are show in the figure below:

Code only) Co_de . Royndtr}p Model-centric Model only
Visualization Engineering
Model Model Model Model
N | y
v
Code Code Code Code
“What's a “Code is the “Code and “Model is the “Let’s do some
Model? model” model coexist” code” design”

Figure 8: The modeling spectrum reproduced from (Brown, Conallen, & Tropeano, 2005)

Let us use Figure 8 to further explain some common modeling techniques. (Brown, Conallen, &
Tropeano, 2005) claim that majority of the software systems in existence currently have no notion of
model as such (code-centric). They have code which encapsulates business logic and constraints and
will commonly represent this directly in a third-generation programming language (3GL). (Brown,
Conallen, & Tropeano, 2005) rightly points that this is not entirely true as a 3GL is inherently a model
sitting on top of the machine language which abstracts out the details for developer ease. Although
for this discussion we will ignore this. In this scenario models may be exist but at best they are
informal and usually are disparate from the code.

Moving one step further we look at tools which help us visualize application code. This is done by
tools such as IBM WebSphere Studio, Borland Together/J and Visual Studio Class Designers (Brown,
Conallen, & Tropeano, 2005). The code and visual representation are usually kept synchronized and
give developers an alternative perspective on the code. This visualization can at best be defined as a
“diagram” as opposed to a model as it is at the same abstraction level as the code it visualizes.

Roundtrip engineering (RTE) takes code visualization to the next level where developers design an
abstract model and generate the underlying application code from it. Often the generation is
manual but tools like IBM Rationale Rose allow automation. With manual generation any changes in
the code need to be reconciled with the model and this brings us to the potential problem of the
model and code going out of step (Brown, Conallen, & Tropeano, 2005).

In the next flavour, we have a model-centric approach in which the application code is fully
generated from the model. In this case the model may have to represent information about the
persistence, data access, visual representations and business logic. To aid the code generation
process this approach often uses purpose based frameworks and languages which can be realized as
a DSL. These purpose based frameworks thus constrain the code generated for an application thus

Chapter 2-Page |17

making the application purposed based too. For example IBM Rationale Rose has two separate
products for two distinct domains, Technical Developer for real-time embedded system and Rapid
Developer for enterprise IT systems (Brown, Conallen, & Tropeano, 2005).

This brings us to the right-hand side of the spectrum where a model-only approach is used. This is
ideal for business logic communication, meetings and other high level architectural discussions.

The transformations (directional arrows) shown in Figure 8 are further researched and outlined in
Section 2.3.5.

Research was also done on how MDSD relates to application development, Figure 9. This diagram
can also be seen from a MDSD vs. orthodox application development perspective.

[
L DSL
Code of Application or Reference o T
Implementation Application Model
< Transformations
T
[~ ——————=]
I |
i Separate ' i —
[i
Individual Individual Code
Code H
Generic Platform
?(Z}:)ZTE\E: Code Schematic -
Code Repetitive Code
— —_——
Uses Creates

Figure 9: MDSD and application development reproduced from (Stahl, Volter, Bettin, Haase, & Helsen, 2003)

The top left corner of the diagram shows an application in its entirety. After analyzing the
application we can virtually separate out three sections: a generic section which encapsulates all
identical code throughout the application, a generic schematic section which encapsulates code
which follows the same design patterns and a section which is application-specific and cannot be
generalized. This brings us to the right hand part of the diagram, the MDSD approach. MDSD strives
to develop the repetitive schematic section from the application model. Other aspects of MDSD are
DSL and transformations which allow models to lend to other models which may eventually
constitute the schematic section. Note that in MDSD, both, the schematic section and individual
application-specific code section compose the platform (Stahl, Volter, Bettin, Haase, & Helsen,
2003).

A research article written by Afonso M. et al, (Afonso, Vogel, & Teixeira, 2006) follows on from the
above section and describes what is required to traverse from code-centric approach to a model-
centric approach. The findings from that paper are summarized in the remainder of this sub-section.

(Afonso, Vogel, & Teixeira, 2006) claims that the perceived value of MDSD within the organisation
and actors within the organisation determines the success rate of the transition from a code-centric
to a model-centric environment. It further explains that a change management system is mandatory

Chapter 2-Page |18

in order for the organisation to train the actors within it in terms of MDSD. The paper concludes
with some strategies on how to make the flow from a code-centric environment to a model-centric
environment successful. These strategies are outlined in the list below:

e Guidance: Leaders in the organisation should believe in the MDSD approach and provide
guidance and feedback to lead the other actors within the organisation.

e Incremental Approach: As highlighted in Section 2.2.1, an incremental approach will allow
the organisation to start in a place where using MDSD has immediate effects which would
motivate the team.

e Tool Selection: Tool selection should be done in terms of not only cost but also on the
learning curve it would imply and the features that would be vital to improve development
in your organisation.

e Modeling experience: It is mandatory to involve actors with experience in MDSD from the
preliminary phase and slowly train the remainder of the team.

e Analytical and Business skills: As MDSD does not only look at the implementation of a
system but also its business aspects it is important that the team has strong analytical and
business oriented skills.

2.3.3 Adaptive-Object modeling

To understand object modeling we look at a particular technique called Adaptive Object-Modeling.
This is discussed in (Balaguer & Yoder, 2001) and the remainder of the sub-section relies heavily on
the information from it. This sub-section is closely linked with the succeeding Metamodeling sub-

section.

The paper has a concise quote by Ralph Johnson defining metadata. It states that, “If information is
going to vary in a predictable way, store the description of the variation in a database so that it is
easy to change” (reproduced from (Balaguer & Yoder, 2001)). So in short the Adaptive-Object Model
(AOM) follows from that principle and is a model which provides enough information about itself so
that it can be modified at runtime.

AOM solves some of the key modeling problems with a term called reflective-architecture. Some
aspects of the reflective-architecture and the problems it strives to solve are briefly listed below
Figure 10.

Chapter 2-Page |19

VaccineUnit Vaccine
+identification[1] : Long -element type N 1 - Stri
+dueDate[1] : Date n.ame[I: Trmg .
+source[1] : String - 1 +disease[l. 7] : String

1 instance 1 -containerDescriptor
. _variables * -variableSpec
Property -element -type PropertyType
. -name : String
+value : Object
vaie Jec -primType : Object
* 1

Figure 10: AOM approach reproduced from (Balaguer & Yoder, 2001)

e TypeObject: Multiple instances of each kind of relevant element in the domain. This allows a
single kind to represent the actual object and each instance has variations on that object.
Thus, if a new object variation has to be added it can be easily done without changing the
database for example. Shown in Figure 10 by Vaccine and VaccineUnit relationship.

e Properties: Instances of a given object may have different attributes which vary at runtime.
This is solved by having another object represent properties for a given instance of an
object. Shown in Figure 10 by VaccineUnit and Property relationship.

o TypeSquare: Adding properties of different types to an existing system is cumbersome and
will lead to inconsistency between instances linked to a particular object. This can be solved
by having the TypeSquare which contains type information. Thus, each instance linked to a
particular object will have the same properties and with matching types. Shown in Figure 10
by Property and PropertyType relationship.

The paper then follows on by listing some of the advantages and disadvantages of AOM. Some
advantages are that the system can be easily adapted to a changing environment; changes do not
require the entire system to be recompiled, business rules can be easily modified, time-to-market is
reduced and increase in maintainability. Some disadvantages highlighted are that AOM has a steep
learning curve and can be costly, requires skilled developers and may at times have poor
performance. Note that the above advantages and disadvantages are analogous to the advantages
and disadvantages of MDSD as a whole as described in (Afonso, Vogel, & Teixeira, 2006).

2.3.4 Metamodeling
Metamodeling is one of the core concepts of MDSD due to the following reasons (Stahl, Vélter,
Bettin, Haase, & Helsen, 2003):

e Domain Specific Language: A meta-model expresses a DSLs abstract syntax. The abstract
syntax of a language details its structure as opposed to the concrete syntax which details
what a specific language parser accepts.

e Model Validation: Metamodels make it possible for constraint definition, thus a model can
be validated against its meta-model representation.

Chapter 2-Page |20

e Transformations: A model can be successfully transformed into another model by rules
defined in its meta-model.

e (Code generation: Code generation templates refer to the meta-model of a DSL.

e Tool integration: Modeling tools can be adapted to its corresponding domain using the
metamodel.

As defined in the above list, the abstract syntax of a language is defined by its meta-model which in
turn defines the interface between the model and various processing needs. As opposed to the
concrete syntax which defines the interface to the modeler. Due to this separation a meta-model
and the concrete syntaxes defining the model can maintain a 1:n relationship. This allows a meta-
model to be recognized in both, textual and a visual form (Stahl, Volter, Bettin, Haase, & Helsen,
2003). Visual and textual DSLs are explored in Section 2.4.

Let us look at how a meta-model can relate to a model and in turn relate to the real world. This is
shown in the figure below.

Domain Model Metamaodel
Real World ig—describes— Model Elements |4—describes— Meta Model
Elements Elements

Figure 11: Meta-model > Model » Real world reproduced from (Stahl, Vélter, Bettin, Haase, & Helsen, 2003)

The figure above shows how a meta-model describes the model which describes the elements
defined in a given domain. Following on from the above diagram the Object Management Group
(OMG) has a more technical diagram (Figure 12) which shows four metalevels describing the
transition from the meta-model to the real world element.

describesw rinstanceOf

Typ: Classifier
M3: Meta-Metamodel ID: 5346456
Name: Classifier

describes instanceOf

¢ ‘ Typ: Classifier

ID: 764535

M2: Metamodel Name: Class

Features: Attributes, Operations,
‘ Associations...

— — —describes — —instanceOf— — — —

¢ ‘ Typ: Class
ID: 21436456
. Name: Person
M1: Model Attribute: Name, LastName, ...
Operatoin: ...
‘ Association: ...

describes instanceOf

¢ ‘ Typ: Person

. ID: 05034503
MO: Instances Name: Do

LastName: John

Figure 12: OMG metalevels reproduced from (Object Management Group, 2008)

Chapter 2-Page |21

Looking at the above diagram we can clearly see how an instance of an object is realized from a
meta-meta-model. Let us step into familiar domain which is below the dotted line, this domain is
where traditional applications are developed. The figure shows a Class of type Person in level M1,
this is then instantiated in MO which gives attributes defined in M1 specific values, in this example:
Name: John; LastName: Doe. Moving up one level to M2, we can see how the type Class is defined
using a type called Classifier, eventually leading to M3 which defines the type Classifier. M3 denotes
the MOF (Meta Object Facility) layer. It can be quickly seen that this level hierarchy can go on ad
infinitum, although the OMG simply states the MOF defines itself (Stahl, Volter, Bettin, Haase, &
Helsen, 2003). MOF is an OMG endorsed meta-meta model standard. For further clarification on
how MOF defines itself see Figure 13. Notice at the root of the hierarchy where the ModelElement
defines itself.

Model

Element

Import Namepsace Constraint Tag Feature
Limports—+ Z} A
eneralizes Generalizable Behavioural
9 ! Element Feature
Package Classifier Operation Exception
Z} T can throw T
Association Class

Figure 13: MOF specification excerpt reproduced from (Stahl, Vélter, Bettin, Haase, & Helsen, 2003) (Object
Management Group, 2008)

2.3.5 Model Transformations

Model transformations, like Metamodeling, are at the core of MDSD. Transformations make it
possible for a given model at a specific abstraction level to be transformed into another model at a
lower abstraction level. Transformations make the transitions shown in Figure 7 possible.

Model transformation is a vast research topic although as it is not the core topic of this thesis we will
only briefly look at some of its terminology and some transformation classification techniques
according to (Metzger, 2005).

To understand transformations it was necessary to understand some basic terminology such as
formalism, abstract and concrete syntax and dynamic and static semantics. Abstract and concrete
syntax was introduced in the previous section by (Stahl, Volter, Bettin, Haase, & Helsen, 2003).
Although (Metzger, 2005) introduces a concise diagram which clarifies the above mentioned
terminology. This diagram is illustrated in Figure 14.

Chapter 2-Page |22

System(s)

abstracts from/specifies

Model |4 restricts—

bases on

Formalism
assigns > >
Concrete represe”tsr Abstract meamgng to Dynam_lc implies Statlc_
Syntax Syntax Semantics Semantics

Figure 14: Formalism, static/dynamic semantics and conrete/abstract syntax reproduced from (Metzger, 2005)

Looking at Figure 14 formalism can be defined as a language which strictly defines a given model’s
syntax (abstract/concrete) and its semantics (static/dynamic). The concrete syntax defines the
readability of the abstract notational elements. Static semantics defines the well-formedness of a
model and is implied by the dynamic semantics which in turn defines the set of valid models for a
given formalism. Given the above definitions and diagram we can define a transformation (t) as:

t: M1(S1)|p, = M3(S;)|r, Where M is a model of a system S and F is the formalism (language) for M.

M; and M, are shown as the source and target model respectively (Metzger, 2005).

(Metzger, 2005) further describes a series of classification techniques for any given transformation
depending on its degree of automation (fully automated, partially automated or manual), number of
steps it has to undergo (monolithic or composite), the difference between source and target models
(endogenic or exogenic) or the purpose of the transformation (vertical or horizontal). These
classification techniques were briefly looked at although as this thesis does not have any direct
relevance to model transformations we will omit further details.

2.3.6 Software Factories (Greenfield, 2005)

Software factories are like templates which have the ability to customize a given Integrated
Development Environment (IDE) with code libraries, help files, wizards, project types and visual
designers.

The research done around the idea of software factories was their relevance to MDSD. Software
factories use MDSD to model information from a given implementation and also to provide
automation services on that extracted information. These models used by a software factory are
expressed in a DSL which are designed to support a specific given task. We see an example of a web
service software factory below in Figure 15, which uses a DSL to configure and run a given IDE (Visual
Studio in this case). We delve into Domain Specific Development and Languages in the following
section.

Chapter 2-Page |23

QuickStart - Microsoft Visual Studio | @z B =13/ x]

Elle Edit View Project Buld Debug Data Tools Test Window Community Help [3|FullScreen | [£4]Euid Selection Rebuid Solution
-G e % G @ 9™ F-B| b O Debug - | [# dataContract .\Qﬂg@g@@mvi

)| CustomersService.ebxss -~ %
I

Data Access & Service Ag—

MyCompany. ram

Authorization Identifier {inherit from component)
Authorization Scheme (inherit from component)
B Code Generation

.0gic
s/

Jo0[ia prpoig 13 [| o0

(8] soicemertsce 1A Comments Returns the customer df
L B Customization
" 5 service Operations Jr— [4D) Is Customized False
Q 5 Exception Management
(n Exception Policy (inherit from component)
0 O i
Desaription Business Method
q) < Name GetCustomerBylame
Retum Type Customer
= E eon B WorkFlow
- — S Transaction Scope {inherit from component)
192 &l Methads s a Methods e
GetCustomerOrders GetCustomerContacts o sttt

[= Data Contracts
Customerlnfo

Contactinfo =] Business Entities
Addressinfo

Customer S Methods {2) Access Layer (Access Layer)
E1-{%) Business Logic Layer (Business Logic Layer)
- Business Components
= Customers {Business Component)
| 5% Business Methods

[Message Contracts Order

RetrieveOrder
CustomerRequest Lineltem UpdateOrder
CustomerResponse CustomerOrders
B {#) GetCustomerByName (Business M

DeleteOrder -
Custamarcantarts !
»
> [=-& Method Parameters

Type Comments i +-[) name (Method Parameter
[%¢ [customers]- Class Methods [+l Orders (Business Companent)
@ Entity Maps
{) Entity Store
{2] Generator Meta Store
{) service Interface Layer (Service Interface Layer’
@ User Interface Layer (empty)

(- GetCustomerByName Customer Retums the customer details forthe specified customer name
name String Name of the customer

<new parameter>

iz <new method>

Operations and Methods | Confracts and Entities « il
[554 Find Resuts 142 Find Symbol Results| |3 Error List|
Item(s) Saved

Figure 15: Software factory with a DSL reproduced from (Microsoft, 2007)
2.4 Domain Specific Development and Languages

2.4.1 Introduction

Described in Section 2.3, MDSD is at the heart of this thesis, and Domain Specific Development (DSD)
and Domain Specific Languages (DSL) are the brains behind the thesis. Although DSD and DSL are
two separate concepts this sub-section concentrates mainly on DSLs.

DSD is a software development methodology which relies on a DSL to provide high level abstractions
than compared to traditional programming languages. Due to this reason DSD tends to reside on a
higher level of abstraction, one which often facilitates development and improves productivity
(DevSource, 2007).

DSLs are essentially a programming language. Unlike traditional programming languages these are
designed to cater to a specific problem usually for a specific organisation or domain. To better
understand this concept we introduce a few examples of commonly used DSLs before proceeding on
with the rest of the introduction

2.4.1.1 Himalia Navigation Model (Himalia, 2006)
Himalia is a MDSD based user interface builder which uses a DSL to assist developers in designing
high level models of a Ul. An example of the DSL is shown in Figure 16 below.

Chapter 2-Page |24

Categary Menu

Catenjories Pets by &ategary

@80

Search Pet Pet List Pek

Figure 16: Himalia model of a Ul reproduced from (Himalia, 2006)

The above figure shows a conceptual DSL via which a user can design web user interfaces. In this
particular we see two basic functions: Searching for a pet and view pets via their categories. This
DSL hides irrelevant details from the user and allows them to simply concentrate on the conceptual
and business aspects of the user interface.

2.4.1.2 Ul designers

Any graphical user interface designer is essentially a DSL where the domain of interest is the user
interface. Although this is a more general purpose DSL than one described in Section 2.4.1.1 it is still
essentially a DSL. The following figures are examples of various Ul designers.

Ele Edit \ew Goto Pioject Budl Jooks Giade Debug Subversion Settings Help
Byew = Siopmn ~ i # e » 5 *jwizard_activate [49] [
F @ vages 4 M @Designer 3 E Pakte
£ lanuagie :
@ |~ [anjuta preferences window il
= | =[] General Dotk pecjact divactrity T [rowse.
i = L] General Infermation e ieie =
k| = & tablel e =
v ! Usar omad address =) =
\Z T preferences entry fex o 8 [&
) preferences entrytex St — |-
i - el Session b- O @ o
a3 [Da ot oad Last session on startup = Cantral and Display
1 b = fileentryl al [Da et nad st project and files on startup
% o lael2
s = labell
= D
a
| @ el - || g Widgets o
5 |
I msymbok
2 = = T
B [Locaclobal[earcn | rasks || & bocumenss - ||[E] imhertance Graph - | Gesigrar = |
@ |[rriasee .
@ Properies B8
* anjua app odd_value — T =
 anjuta_app_sdd_widget General | Bieking | ommons | Sigmals | & [Gtke Obsolate
* anjuta_app_class i =1 Class: |Gtkvaion 7 GNOME Usar interface
. =
SN = Wame: (General OO0 & w e
* anjuta_app finaize = =
* anjuta app et geometry MERERR: (O B =
 anjuta_app_get_geometry HORIISRROE | s [GMOME Ui Obsalete
* anjuta_app_get_object | Mumbar of kema: |2 i | GMOME Canvas
= 2 - =
L[] &]
| iy Fies - | 5 Symbels = B[] | @ Profect || paiette < |
T][Coi00D Line:0460 Frofect snjuta_Wodel NS Zoom

Figure 17: Anjuta, an IDE for GNOME reproduced from (Naba kumar, 2007)

Chapter 2-Page |25

E C/C-+ - neatkillerapp.ui - Eelipse SOK
Bl [dt Refactor Hawigste Seprch Broject fun QtDesiner Window Heb
= B8 B @ B0 g . £ Rcices | R we
: . L HE T8
c N [Ee = = O G o Ohost Inspoctor 11
= Dem e | 0 Desoner Edeer A
l—"-m,. e S
[vt 1 - . MearBcipoClass | kg
3 e N H Buttenfn QasingEutonBo:
ERT st Mot 1O A Hes | il i s
B Rk SN [s o
= = Conbarers J | i | kB QChach o
=) croam o s i = orocBor 2 OfiBon L
B routex outins | B cevp. 1T Maka ey, | O
Add
Tab Widget
| o o |l Froperty ahis &
B sacked widoet Hey QObsject :
) Fram T oblectrame WertiBerdgolass
3wt Doloks rdonéiodalty GaiNortodsl
] weck wges 0 ol rip s erialied true
B) T i geometry 10, 8, 343, 300)
= : 5
[conboox [ot | [merom][e | siesPuley [Prefemred, _ened, 0, 0]
[Fort combe e - - - > 1.0
f 4 madanScs (WETTTLS, 16777215)
] Lre £t Froperties | Problems | Conscle | ¥ G -+ Signal ok Edtor £ =0 & selnerement [0, 0]
ﬂ] Toot Ede - - T o . ;::::r 0. 0)
3 s e
= & font Fha (Msselnigz, &)
o
ourser [urowe
@Y mees
mouseliading false
Y catr e HoxunPubcy Qoo
[y CotesTine Et = coneatmenuPocy Ot DefauContedMeny
- »* E‘ vt ik,

Figure 18: Qt C++ GUI designer for Eclipse reproduced from (Alessandro, 2007)

The above two figures show a Ul designer, therefore the domain with respect to them is a user
interface. They allow the developer to drag and drop Ul components which abstracts them away
from the details on how each component is instantiated and how their properties are integrated.
This allows quick Ul creation and is at a lower conceptual level than the example in the previous
section (Section 2.4.1.1).

2.4.1.3 Regular Expressions (Regex)

Regex is a general purpose DSL. Itis a textual DSL designed to solve string or text oriented problems.
The domain of interest is any textual information. For e.g. in a given sentence “This is an excellent
example”, regex allows us to search for all words beginning with “ex” by simply searching for “ex*”.
Although regex is powerful it takes a lot to master it fully due to its textual nature and complicated
notation.

2.4.1.4 HTML

Probably the most commonly used DSL would be the Hypertext Mark-up Language or HTML. HTML
is a textual language (Figure 19) but can be argued otherwise as a graphical DSL as its primary use is
to render WebPages on the World Wide Web (WWW). Thus, the specific domain for HTML is WWW.

<IDOCTYPE himl PUBLIC "-//W3C//DTD XHTML 1.2 Transitional//en" “hitp://www.w3.org/TR/xhimli/OTD/xhimll-transitional.dtd">
G <himl =mlns="http:// wew.w3.0re 1999/ xhtml"™ >
<head»
<titlesuntitled Page</title:
</head»
<body>

T s L R

</body>
</html»

oo

=

Figure 19: An HTML page

HTML is an expressive language which tends to make it powerful although difficult to master due to
its verbosity and enormous tag (language) library.

Chapter 2-Page | 26

2.4.1.5 SQL

Structure Query Language is a language (Figure 20) used to query information from a database
which makes it a DSL with databases as its specific domain. As any textual DSLs, SQL is powerful but
hard to master language due to its textual nature and verbosity. In some database clients (Microsoft
SQL Management Studio) SQL can be created visually. Figure 21 visually represents the SQL shown

in Figure 20.
1 gelect * from Taklel
2 imner join TakleZ on Tabklel . Columnl=TakleZ.Columnl
3 where Taklel . Columml='"socme value' and Tabklel Columni=

Figure 20: SQL snippet

Tablel

* (Al Columns)
DCnl.lml
DCDIung

Column Output Sort Type Sort Order Filter
Column1 = N'some value'
Column2

»

4

SELECT Tablel.®
FROM Table1 INNER JOIN
Table2 ON Tablel.Columnl = Table2.Column1
WHERE (Table1.Columni = N'some value’) AND (Table 1. Column2 = 5)|

Figure 21: SQL snippet represented visually

(Cook, Jones, Kent, & Wills, 2007) gives a more in-depth definition of a DSL. It states that a DSL is a
special purpose language which assists in designing the variable part of a given solution. The
variability of a solution arises when several problems occur with the same aspects. A solution could
then comprise of two parts, a fixed part which comprises of the framework, an Application
Programming Interface (API), a platform and/or a compiler (interpreter) and the variable part which
would be created using a DSL.

Further, to make a solution possible the variable part should be fully integrated into the fixed part.
Two approaches are suggested by (Cook, Jones, Kent, & Wills, 2007), one approach involves the fixed
part to expose an interpreter which takes the DSL (variable part) and integrates them together.
Although this approach is flexible it proves problematic during debugging and has an adverse effect
on performance. The second approach allows the DSL to be fully converted to code which could
then be compiled together with the fixed part of the solution. Although a more complex approach it
allows the solution to be scalable and allows debugging.

In the introduction we introduced two types of DSLs: visual and textual. We use a visual DSL
throughout the course of this thesis although some research was done around what a textual DSL
can offer. We look at textual and graphical DSLs in the following two sub-sections.

Chapter 2-Page |27

2.4.2 Textual DSL

A textual language like any programming language will need to be either parsed or interpreted, thus
a custom parser which understands the language is needed. Figure 22 below shows such an
example where we are creating a Rectangle shape object and setting some of its parameters.

1 Define AnnctationShape Rectangle
Width=1_5

Height=0.3

FillCoclor=khaki

OutlineColor=brown

oW R

o

Decorator Comment

oy

Poaition="Center"
End Comment
End AnnotationShape

Figure 22: Textual DSL

Designing a parser from scratch is a major ask although a parser-generator may be used which works
off the grammar of a given textual DSL, such as (University of Geneva). On the whole designing a
textual DSL is more of an expert task, as it may require a text editor, syntax colouring, syntax
checking and other modern IDE features. (Cook, Jones, Kent, & Wills, 2007) introduce two
approaches to solve the aforementioned problems. The first uses the capabilities of an underlying
host language, for e.g. C#. Figure 23 shows the same DSL fragment as introduced in Figure 22 using
a pre-established host language.

Shape AnnotationShape = new Shape (ShapeEind.Rectangle,

Color .Ehaki, Color.Brown);

Decorator Comment = new Decorator {Position.Center);

Mo W R e

AnnotationSheape . AddDecorator {Comment) ;

Figure 23: Textual DSL using host language

The code shown in Figure 23 is better known as configuration code as it provides a configuration for
a specific set of objects and classes already existing within the host language. Another approach is
to use the eXtensible Markup Language (XML). Figure 24 shows the above mentioned code
fragments (Figure 22 and Figure 23) in XML.

1 <?xml wersion="1.0" encoding="utf-8" 2>

(5]

<5Shapesr
E <Shape name="AnnotationShape">
<Find>*Rectangle</Eind>
<Width>1l.5</Width>
<Height>0.3</Height>
<FillColor>*Khaki</FillColor>
<0utlineColor*Brown</0utlineCoclozr>

= <Decorater neme="Comment'>

P L Y

10 <Positicon>Center</Positicon>
11 B </Decocrator>
12 - </Bhape>

13 -</Shapes>

Figure 24: Textual DSL using XML

The XML approach can be made more intuitive by using an XML Schema which can contain rules on
how a shape can be defined. This schema can provide type checking and suggestive help such as
drop downs of potential parameters that can be supplied.

Chapter 2-Page |28

2.4.3 Graphical DSL (Visual Languages)

Any given graphical DSL will have at least one visual component to it thus making it a possible visual
language. Due to this relationship, this sub-section gives a brief overview of the research carried out
on visual languages and then proceeds to narrow it down to graphical DSLs.

A visual (programming) language is a process in which more than one dimension is used to convey
semantics (Grundy, Visual Languages/Notations, 2008). Textual languages are regarded as one
dimensional. A visual language supports the user via visual interaction and allows programming or
programming like tasks using visual expressions. Visual languages can also be referred to as
executable graphics, according to (Mclntyre, 1994) the phrase, visual languages, raises ambiguity as
a visual language could mean something that can be seen, which is trivial or it could mean a
language used to program visual objects. Although for the remainder of this chapter and the thesis
thereof we will be using visual languages as per its definition expressed in the beginning of this sub-
section.

Not all visual languages are used for software or programming oriented tasks. Excel is a popular
example which was designed to be used for financial tasks. As this thesis deals with software tasks,
the research was narrowed down to only include software visual languages, mainly UML and its
counterparts.

UML is a vast graphical modeling language and although it is not directly related to this thesis we still
use it to show static content, therefore it is important we use this sub-section to briefly introduce
what UML is all about.

UML is an approach used to graphically represent a given software system. It was formally
published by the OMG in an effort to unify different diagramming approaches, namely the Booch
method, the Object Modeling Technique and the Object-Oriented Software Engineering method
(Cook, Jones, Kent, & Wills, 2007). The UML specification was primarily designed to express object-
oriented systems, namely Java and it is not suitable for high level analysis although UML does offer
extensibility points called profiles which are a packaged set of stereotypes, tagged values and
constraints (Cook, Jones, Kent, & Wills, 2007). As systems become more distributed with the
emergence of web services, web systems and smart clients they become more difficult to represent
using UML. Although extensions such as profiles can be used to mould UML to these new emerging
domains it becomes quite cumbersome and complicated. Graphical DSLs is a solution to this
problem. Graphical DSLs are a flexible alternative to UML which is a rather fixed and arbitrary
modeling language. They open the UML by allowing us to add extensions which we need and omit
details which have no relevance to our domain.

Graphical DSLs are a major part of this thesis; we have a look at their various aspects in the following
sub-sections according to (Cook, Jones, Kent, & Wills, 2007).

2.4.3.1 Notation

The notation of a graphical DSL is the interface to the real world thus it is important that they are
intuitive and provide a clear meaning. UML has a notation of geometrical shapes, arrows,
connectors and decorators and most graphical DSL Tools tend to inherit this behaviour. For example
the Microsoft DSL Tools and the Marama Eclipse Designer both have a UML like notation. Various
evaluation theories are proposed on how to make the notation of a graphical DSL more end-user

Chapter 2-Page |29

friendly; these theories include cognitive dimensions, attention investment and champagne
prototyping. These theories are further explored in Section 2.4.3.6.

Metaphors are a common practice to use in software user interface design and (Blackwell & Green,
1999) introduces how metaphors if used correctly could prove advantageous for end-users while
using the notation of a particular graphical DSL. Common metaphors include shape nesting to show
containment, arrows and connectors to show relationships and associations and various layout
techniques to show ordering.

2.4.3.2 Domain Model

The domain model for a graphical DSL is the set of domain classes and domain relationships
described by the language (DSL). A domain class represents a concept within a given domain
whereas a domain relationship represents the relationship between two domain classes. The
domain model ties in with the notation mentioned in the previous sub-section as domain classes
usually map to shapes and domain relationships map to connectors. A complete domain model will
also contain a set of constraints against which an instance of the model can be validated.

2.4.3.3 Code Generation

Code generation is an integral part of a graphical DSL as at times that could be the sole reason for
designing a graphical DSL. The word code in this context is used loosely and does not necessarily
refer to program code. Code could represent any artifact, such as a Java/C# class, XML configuration
file, a proprietary language, another diagram or a blend of all of the above.

2.4.3.4 Serialization

Persistence is an important criterion for any programming language. For a graphical DSL it is vital to
save information about the domain concepts, the shapes each concept maps to, the location of
these shapes and any other relevant information. This persistence can be achieved by serialization.
With growing need for interoperability XML is becoming the most popular choice of technology for
persisting information. The flexibility and scalability of XML also aid in the ability to mould it to suit
any domain model.

2.4.3.5 Tool Integration

A graphical DSL can be hosted within its own isolated IDE although it is common practice to use the
capabilities of a well established IDE, for e.g. hosting a graphical DSL within the Visual Studio Shell or
in an Eclipse environment. Considering tool integration of a graphical DSL allows us to realize the
non-vital segments of our model such as its file extension, custom property editors, visual
appearance of the properties of domain concepts, shape repository or toolbox appearance, mouse
and keyboard behaviour, model explorer and menu commands.

2.4.3.6 Evaluation techniques
Evaluation techniques were introduced in Section 2.4.3.1, these sub-section looks further into those
evaluation techniques as per (Grundy, Visual Languages/Notations, 2008).

e Cognitive Dimensions (Green, 1996): Cognitive dimensions are a set (framework) of
dimensions which formally establishes trade-offs made during the design of the notation of
a DSL. The following describes these dimensions and explains briefly what each of them
represent:

Chapter 2-Page |30

Abstraction Gradient:

Quantify the level of abstractions possible, establish the maximum and minimum
and determine whether fragments can be grouped.

Closeness of mapping:

Measures the proximity of a given notation to what it represents in the real world.
Consistency:

If part of a given notation can be learnt, is it possible to assume the rest?
Diffuseness:

The number of symbols required to express a concept.

Error-proneness:

Does the notation help users avoid making mistakes?

Hard mental operations:

Besides the concrete notation, does the user need an external resource to keep
track of what is happening?

Hidden dependencies:

Are relationships explicitly stated in both directions, how is it stated? Perceptually or
by using symbols?

Premature commitment:

Do users have all the information needed before making a decision?

Progressive evaluation:

Is execution of partial models allowed to determine progress and gain feedback?
Role-expressiveness:

From the model can each domain concept be scrutinized independently and its role
within the model determined?

Secondary notation:

Is Layout and colour used effectively to convey extra information beyond the formal
semantics of a given language.

Viscosity:

Effort required bringing about a change in the model.

Visibility:

Caters for the visibility of code and model, whether they can be viewed
simultaneously, if not, is it possible to determine the flow of code while reading it.

Attention Investment (Blackwell & Green, Investment of Attention as an Analytic Approach,

1999): This provides a cost benefit analytical approach to programming and the reason why

people spend time doing programming. Any programming activity can be regarded as

having a cost in terms of attention units, an investment aspect which signifies the attention

units which eventually pay-off a reward, a pay-off aspect which reduces future cost due to

the investment aspect and a risk factor aspect in case there is a negative pay-off.

Champagne Prototyping (Blackwell, Burnett, & Jones, Champagne Prototyping: A Research
Technique for Early Evaluation of Complex End-User Programming Systems): This approach

assists in answering questions at an early stage of notation design. It follows a simple “look

don’t touch” approach where a simple prototype is designed and then evaluated using

cognitive dimensions and attention investment strategies.

244

Chapter 2-Page |31

User Survey/Evaluations: We will be evaluating our visual language using a subset of the
end-user population and getting vital statistics on how effective the language and its
notation are.

Advantages/Disadvantages of DSLs

This section briefly states some of the advantages and disadvantages of DSLs as a whole (Beydeda,
Book, & Gruhn, 2005) (Cook, Jones, Kent, & Wills, 2007) (Wikipedia, 2007).

2.4.4.1 Advantages

DSLs raise the level of abstraction for a particular problem and its corresponding domain,
due to this any user in that domain could potentially understand, validate and develop
solutions.

As DSLs are defined using words specific to a domain they tend to be self-documented.
DSLs enhance productivity, program quality, scalability, maintainability and portability.

As DSLs models are validated against domain level constraints it is safe to assume that any
expression or model designed using that DSL is a valid expression.

2.4.4.2 Disadvantages

2.5

Using DSLs is not currently the norm, due to this reason the cost of designing, implementing
and maintaining a DSL tend to be high.

The domain on which DSLs are designed on have the potential of expanding and changing
constantly, due to this reason it is often difficult to define a fixed scope for a particular DSL
for that domain.

Using DSLs comes hand in hand with code generation. This could potentially be a
performance setback as generated code may not always be as high performing as hand-
written code.

DSLs usually tend to be hard and at times impossible to debug.

DSL Tools

The previous section outlined the research carried out in the textual and graphical DSL area. This

section outlines the experimentation of two popular tools to create graphical DSLs, namely the

Microsoft DSL Tools and Marama.

2.5.1 Microsoft DSL Tools

Microsoft has the DSL Tools as part of its extensibility framework known as the Visual Studio
Software Development Kit (SDK). The DSL Tools provide the user with graphical designers, XML
serializers, set of code generators and a framework for code generators. Figure 25 below shows how

these components integrate together to form the DSL Tools.

Chapter 2-Page |32

Run the Wizard DSL File Create Your Language
. (Modifies DSL file)
J — Generate Code
(Finish) Classes E
— .= = |=
generates Shapes L
DomainModel.tt
E— DomainModel.cs
DomainClass.tt
(> DomainClass.cs
Press F5 Deploy
Compiles .cs files
{generated from .tt files). Close

Launches Visual Studio

Experimental instance of Visual

Experimental hive, Studio. Continue creating your

language in main Visual Studio
until done.

Debugging Solution
B -
|

|

Figure 25: Microsoft DSL Tools overview reproduced from (Microsoft, 2007)

Let us systematically look at each of these components and briefly describe their role within the DSL

Tools.

2.5.1.1 Wizards

The Microsoft DSL Tools ships with four DSL wizards shown in Figure 25.

Domain-Specific Language Designer Wiza

d

ﬁﬁj Select Domain-Specific Language Options

File Extension
Product Settings
Signing

Summary

This wizard will walk you through the steps of creating a domain-specific language solution.
The solution will contain a domain model and a visual designer for the new language.

‘Which template would you like to base your domain-specific language on?

B & 8 &

Class Component Minimalla... Task Flow
Diagrams Models

What do you want to name your domain-specific language?
Languagel

The name of the language must be a valid identifier.

FEinish l [Cancel

Figure 26: Microsoft DSL tool wizards

e (Class Diagrams: The class diagrams wizard creates a UML type DSL model. Aids the userin
creating class diagrams following the traditional UML notation.

e Component Models: Allows the user to create a DSL which can have interconnected ports,
useful for creating circuit diagrams and other embedded DSLs.

Chapter 2-Page |33

e Minimal Language: Gives the user a basic executable DSL which can be used by advanced
users to create custom DSLs.
e Task Flow: Typically used to create flow chart like DSLs.

2.5.1.2 Graphical Designer

The essence of Microsoft DSL Tools lies within its graphical designer. It allows the DSL designer to
drag-drop domain concepts, relationships, shapes and concept-shape maps to create a custom
model. The designer also provides customization points via which a DSL designer can manipulate
any aspect of the model such as how it is serialized, the shapes toolbox and the model explorer. An
example of the graphical designer is shown below in Figure 27.

gt emach et

Figure 27: Microsoft DSL Tools graphical designer

2.5.1.3 Packaged Code Generators

The packaged code generators create an executable implementation as output by taking the domain
model definition and the designer definition as its inputs. It also allows validation of the domain
model and the designer against set constraints and raises errors and validation warnings if need be.

2.5.1.4 Experimental Hive

The experimental hive simulates the end-user environment by allowing DSL designers to experiment
and test their newly created graphical language without actually deploying it. The experimental hive
loads the model definition and the designer definition into memory off which the DSL designer can
create sample models.

2.5.1.5 Text Templates

Microsoft DSL Tools ship with a powerful templating engine called the T4 Text Template Engine. This
allows the DSL designer to write templates which can run off a model created by an end-user and
output appropriate code. As suggested in Section 2.4.3.3, this code could be anything from an XML
configuration file to another composite domain model. A code snippet of a T4 text template is
shown below in Figure 28.

Chapter 2-Page |34

<#@ template inherits="M

<#@ Languagel processors

Generated material. Gene
= <#

// When you change the

11 {
12i-8>
13 £#= element.Name #>

i

icrosoft.VisualStudio.TextTemplating.VSHost.ModelingTextTransformation™ #>
<#@ output extension=".txt" #>

foreach (ExampleElement element in this.ExampleModel.Elements)

"Language2DirectiveProcessor” requires="fileName='Sample.mydsll'" #>

rating code in C#.

DSL Definition, some of the code below may not work.

2.5.2 Marama

Figure 28: T4 text template snippet

Marama is an Eclipse (a Java IDE) based meta-toolset for constructing multi-view graphical DSLs

(Grundy, Hosking, Huh, & Li). Marama is designed for expert modelers who have experience in

modeling concepts such as EER (Extended Entity Relationship) models, OCL (Object Constraint

Language) and meta-models. Marama aims to provide these users with a quick way to create visual

modelers without concentrating on other DSL tasks such as code-generation or behavioural

constraints.

Marama is a composite tool comprised of a set of Eclipse plug-ins which leverages the GEF

(Graphical Eclipse Framework) and EMF (Eclipse Modeling Framework). It also used Kaitiaki (Liu,

Hosking, & Grundy, 2007) for view level behaviour (Grundy, Hosking, Huh, & Li). Figure 29 below

shows a high level view of the Marama architecture.

1)

Eclipse IDE
Marama Meta-tocl f—
Application —x oy ;
Specification Toaols
Meta-model
Dasigner
[:3} Marama Plug-in
Edlipse IDE Tool |
resource config. ; EMF OCL Plug-
management held in Mararna Plug-in in (OCL
% Doms [(EMF Maodal) Interpreter)
Tool Specifoations
— ¥ML documsnts Adapter AR
) (6)

Tool specification
projects (XML)

ol —

Marama save files - Eclipss
workspace files (XM}

Ewent handler objects

Figure 29: Marama architecture reproduced from (Grundy, Hosking, Huh, & Li)

Marama contains of three core concepts which are defined briefly below:

2.5.2.1 Meta-Model Designer

Figure 30 shows a screen shot of the Marama Meta-Model Designer. The designer is the central

place where a DSL designer can create an EER representation of the system intended. It also couples

with OCL to provide model level constraints which can be added or edited via a custom visual editor.

Chapter 2-Page |35

[ArchitectureDiagram maramaliewType

1 MaramaMTE. maramaToolMocel &3

[s0A.maramabiagram

[select Cpv—
eques
I}, Marquee [RemateObjett | Service 0
- id Stringkey @
I Skekching taol name stringkey id Stringkey (3] ServiceRequests
| requst ViCE name i
|= shapes || | abjectkindStringronkey (T narne Tequeats) N
e HmesTeCalintnonkey remoteServer String nonkeyg)
B ke e committEnd Strinanankey remateChisct tringrenke (D)
[- remoteService String nonkef()
odslEventHand...
O oot . ServerDatabase respanse String nonkey
sequence String nonke
H Formula ApplcationServer |ppseriir 2 il
T ————— d requestkind String nenkey ()
B AssociationShaps oo | host String rorkey
(= Connectors * serverkind String nonkey I Database
| AttrLink name Sting key
| Subtypelink BrplicationClient hast strivg nonkey reaest
} Farmulatink name Sting key s
RelationLink S R
I hest Strivgnonkey L perr— dasapase
kindStringronksy Ga e
Hhreadsint nankey DatataseTables eesibbTae

Exported Properties Froperty Mapping Formula Construction View mm\ Instances | Console | Sormula Debugaer | Outline

DatabaseTable

name String key

evalFormulas

id context

expression

Rlequest.id
Request.requestind
Remotetbject. objectkind
Request.remateChject
Request.remateService
ApplicationClient kind
Request.remateServer
Service.id

@@ 8w o

self requestedService. name. concat(.).concat(nams)

Seb{RMI Call'CORBA Call, HTTP Requsst’, DB Select, DB Lpdate’s

Sek{'RMI Dbject’, 'COREA Object’,'JSP Page'h

if requestKind="DE Select’ or requestkind='D8 Update' then DatabaseTable.allnstances()- »collectiname) else RemoteObjed: allinstancest
if requestKind="DE Select’ or requestKind="D8 Update' then Set{} else RemateCbiect alllnstances()- »select{name=self.remateObject). sei
Seb{RMI','CORBA" HTTP'}

if requestKind="DE Select’ or requestKind="DB Update' then Database, alllnstances(}- >collect(name) else ApplicationServer. allnstances()-
self.object.name. concaty". ") concat({name)

Figure 30: Marama Meta-Model Designer reproduced from (Grundy, Hosking, Huh, & Li)

2.5.2.2 Visual Shape Designer
The Marama Visual Shape Designer, as the name suggests allows the DSL designer to create shapes
which can be used to represent domain concepts. The Visual Shape Designer is shown below in

Figure 31.

[Maramal'TE maramaTaolModel

|=| Architecturediagram.maranatiewType

[ekt
i vagues
[y Sketching kool

= Shepes *

rizme

Fiiane name:

B Lakelthase

W TestFeldshape

B TextA-ezShape

B shapetiewa:

B shapeshape

(= Conneckcrs +
} subshapeLirk

} Connector

} Reltiontinl:

} Connectariiswer

id

Iname: nEme

Iname name

rame

Inamne

Figure 31: Marama Shape Designer reproduced from (Grundy, Hosking, Huh, & Li)

2.5.2.3 View Designer

The Marama View Designer brings the Marama Meta-Model Designer and the Marama Visual Shape
Designer together. It allows the DSL designer to specify how and which domain concepts are
mapped to which shapes. It also allows the specification of additional constraints on the designer
such as various containment rules. An example of the View Designer is shown below in Figure 32.

Chapter 2-Page |36

1 MaramaMTE maramaToolMads O architectureDiagram. maramatiewType 53 =0
[k Select

I:I+ Marquee

= Shapes

B VisualUserHandler. .

Cli tSh po SerVe"EhaD Ohbj tSh R.. Dﬁ baseSha Tahl Sh
B VisualEvertHand.. ‘ ientShape _. ‘ ‘ | jectshape_f | SEW’IEES}\& RequEstShap 5@ P able: ap

[name:name Iname:name [name:name iid:id | fideid narme: ﬁﬁ’“E namE name
B WiewAssociation i

name:name . name:name
B YiewConnector
B v _ _ -
M viewShape _

M ViewMapping

B Focus {CIlentServerCnnn]{RequestTab...] ﬁDBCUnn] [SEWEVOEJECtCOHH] [ServlceCnnn]{Tab\ecunn] [Requestcunn]
H Farmula ; ! ; : i i T

| / i | i | i
= Connectors LS ‘CIientServe...‘ |RequestTa... ‘ ‘DBCnnn_Ssr...‘ |Server0bjactc... | |SErWEECDI‘I... | |TabIeCunn7Da... ‘ |RequestC0nn,m |

l MappingLink. ‘ ‘ | | | | |
| Formulalink } i

H | 4 | i i |
|CIientServer | |ReuuastDBTabIa| |ServerDatabasa | |Server0b]'act | CbjectService ‘DatabaseTabIes| ServiceRequests

Exported Properties | Property Mapping | Model Instances | Console 8 NEEHgt

id conkext Expression
1 enclosesiObjectShape, ServiceShape, ServiceConn)
2 contains{ServiceShape, RequestShape, RequestCann)

Figure 32: Marama View Designer reproduced from (Grundy, Hosking, Huh, & Li)

2.5.3 Comparison (MS DSL Tools Vs Marama)
The table below summarizes some of the core differences between the DSL Tools provided by
Microsoft and Marama.

Table 1: Microsoft DSL Tools Vs Marama

Feature Microsoft DSL Tools Marama

Language CH Java
Provider Microsoft Auckland University

Help Forums/Books Research Papers

Code Generation T4 Templates 3" party plug-ins. E.g. JET
Constraint Specification CH OCL (Object Constraint Language)

2.5.3.1 Language

The Microsoft DSL Tools inherently provide support for the C# programming language and Marama
is designed for Java. | personally have intimate knowledge of the C# programming language and the
.NET CLR framework so was more inclined towards the DSL Tools provided by Microsoft.

2.5.3.2 Provider

The Microsoft DSL Tools is a more established framework when compared to Marama. Due to this
reason it is easier for new DSL designers to start using this framework as opposed to Marama which
may require the developer to go through a learning curve.

2.5.3.3 Help

There is a learning curve involved before using either the Microsoft DSL Tools or Marama although
what differentiates them is the amount of help offered on these technologies. Microsoft DSL Tools
have a dedicated forum (http://forums.microsoft.com/msdn/) and an in-depth book (Cook, Jones,

Kent, & Wills, 2007) outlining its details and how to use this new framework. The help provided for

Chapter 2-Page |37

Marama is either in forms of small tutorials or research papers which do help although fall short
when compared to the resources provided by Microsoft on its DSL Tools framework.

2.5.3.4 Code Generation

The Microsoft DSL Tools allows developers to write script like code using the powerful T4 templating
engine to traverse through a model designed by the end-user to output any textual artefact.
Marama does not inherently provide any code generation frameworks although several 3™ party
tools can be used such as JET (Java Emission Templates).

2.5.3.5 Constraint Specification

Constraint specification within Microsoft DSL Tools can be done via simply writing C# code which
becomes supplementary to the domain model code. This makes it easier for the developer as the
constraints are written in the same language as the rest of the system. Constraint specification
within Marama is done via OCL which requires the developer to learn a new language thus
increasing the learning curve.

2.5.4 Other DSL Tools

Section 2.5.1 and Section 2.5.2 introduced the two main DSL tools researched as part of this thesis.
This section briefly looks at some of the other tools (Grundy, Other Meta Tools, 2008) which provide
similar functionality. Note that these did not form the core of the research as we were strongly
inclined towards the Microsoft DSL Tools due to the reasons described in Section 3.3.1.1.

2.5.4.1 MetaBuilder

MetaBuilder is described as a tool which enables rapid creation of diagram editors for structured
diagrammatic notation using an object-oriented, graphical meta-modeling technique (Ferguson &
Hunter).

2.5.4.2 MetaEdit+

MetaEdit+ is a cross platform modeling framework which allows developers to create graphical
diagrams and expose them to other developers as matrices or table (MetaCase, 2008). MetaEdit+
has four parts to it: Digram Editor, Matrix Editor, Table Editor and various Browsers.

The diagram editor (shown below in Figure 33) allows the creation, management and maintainence
of design information using a visual diagramming notation.

E WatchApplication: Stopwatch, April 4, 2008, 13:70

Chapter 2-Page |38

Graph Edt Yew Types FCormat Help

& bRy w
|T .| ® e
e SR ——l stapTime

sysTime

¥ 8EC N >
running o
— starTime

gy
=i

sysTime

startTime L—EIL\'

EEX

/‘| stanTime
ST
S S

starTime

Z:{ stopTime

sysTime

4

D;ii wapwaich |
stopTime

[‘ Mode i.
=
/! L‘. Jl
(@) !
< >
Active: Stepped: State [Watdh] | Subgraph(s): Nane Grid: 10810 snap [shew (D | 5% v @

stopTime
stariTime

Figure 33: MetaEdit+ Diagram Editor reproduced from (MetaCase, 2008)

The Matrix Editor provides a matrix approach to allow the manipulation of objects and their

relationships. It contains two axis containing objects and corresponding cells showing relationships

as shown below in Figure 34.

| Inventory infa update update
Delivery info create read read update
|_| Reminder order read
< | »

Figure 34: MetaEdit+ Matrix Editor reproduced from (MetaCase, 2008)

The Table Editor is shown below in Figure 35, it allows a tabular or form based interface to the
design information. The Table Editor is described to easily allow for data input into objects.

Chapter 2-Page |39

e WatchApplication: States, November 1, 2006, 15:55

o](=1Ey

Graph Edit Wiew Format Help
& bR -

State name DisplayFn Blinking
AlarmClock Application for an alarm at @ certain time of day. Alarm#
AlarmRang This state is invoked when a system alarm signals tha
Counting counting In this state the countdown is running and the countdo
EditHours editTime |HOUR_OF_DAY
EditMinutes |editTime |MINUTE
EditSeconds |editTime |SECOMD =
Rang This state is invoked when the countdown timer has ru
Running running In this state the stopwatch is running and the current n
Show v
. 4

Figure 35: MetaEdit+ Table Editor reproduced from (MetaCase, 2008)

The MetaEdit+ Browsers allows developers to view DSL families and allows for easy editing via the
Type Browser, Graph Browser and the Metamodel Browser shown below in Figure 36.

3| MetaEdit+

Repository Edit Browsers

v &Y

Graph Browser I Type Browser " Object Browser " Metamodel Browser]

Metamodel Help

WEW B N E

Projects Graphs

Contents: Objects

| 200&Models: WatchFamily

--|__] Simple: WatchApplication

{_) TAST: WatchApplication

| TASTW: WatchApplication

-{__| AlarmClock: Watchapplication
ek topwatch: WatchApplication:
-{__] Time: Watchapplication

i~ Timer: WatchApplication
|_| WorldTime: Watchapplication
| TST: WatchApplication

=7 ; DisplayFn

E‘ Action

E Action

E‘ Action

=3 Down: Button

4 Mode: Button

[Running; State [Watch]

= running: DisplayFn

@ start [watch]

— startTime: Variable

{®) Stop [Watch]

[Stopped: State [Watch]

— stopTime: Variable

= stopwatch: Icon
sysTime: VariableRef

£} Up: Button

Default Filter: |=: =

Filter: | =

Digital Watch || | Tree: | All subgraphs

@

Show: |Objects

Figure 36: MetaEdit+ Browsers reproduced from (MetaCase, 2008)

2.5.4.3 GMF

Eclipse Graphical Modeling Framework (GMF) is a framework comprised of the Eclipse Modeling
Framework (EMF) and Graphical Editor Framework (EMF) to build graphical editors. It allows
developers to create DSLs using their meta-tools to specify the meta-model, graphical shapes and

connectors and their mappings.

The figure below is an example reproduced from (Eclipse.org, 2008), which shows the capability of
GMF to create a graphical editor to be used with the BPMN (Business Process Modeling Notation)

specification.

Chapter 2-Page |40

808 Resource - default.bpd - Eclipse SDK [=)
[mifs JQr | 2@ [Liv Gl 1o Car v =4[
} Lucida Grande B I—:]BI‘A'&'J' H'| ‘fghf*“%'%a"“?dw,/j\/awm
5. Navigator &2 =0 default.bpd2bpel | =0d
2| BB —Palette—
v & bpmn k Select
[d] default.bpd * Zoom
defaultbpd2bpel = Note
Ej defaultbpmn 5end Doctor Request Receive Appt. Send Symptoms P)~
|Z| default.process Fickup < Process
< Pool

< StartEvent

< EndEvent

4 Intermediat...
< Task

< DataExclusi...
< ParallelGate...
< DataObject
= Links *
< SequenceFlow
< MessageFlow
< Association

Receive Doctor Send Appt. Receive Symptoms

Ea

€ Jaln

Tasks | =] Properties 22 15 :=::> =0
|
5% Outline 33 & | — O)| Appearance |
[Advanced Property Value
g 8 gy vy I v EMF m
Activity Type = TASK
Assignments
= - — Categories =
Docume ntation = -
Id 5 =
€ ¥ Dl
o] 4

Figure 37: BPMN editor designed using GMF reproduced from (Eclipse.org, 2008)

(Pelechano, Albert, Mufioz, & Cetina, 2006) shows us an empirical comparison between the Eclipse
GMF framework and the Microsoft DSL Tools and concludes by suggesting that the Eclipse modeling
tools are more promising than its Microsoft equivalent. Although the study was done in early 2006,
Microsoft DSL Tools have matured since then and were used to implement the solution described in
this thesis (further justification in Section 3.3.1.1). (Pelechano, Albert, Mufioz, & Cetina, 2006)
describes a table in which it compares DSL Tools to the Eclipse GMF tools, this is shown below.

Table 2: Microsoft DSL Tools vs. Eclipse GMF

DSL Tools Eclipse GMF
Metamodeling Proprietary Notation EMF (eCore)

|
|
Repository \
|
|
|

XML file XML, XMl
Graphical Notation Direct Manipulation of XML files GMF
Model to Model Lack of Explicit technique ATL, MTF, Viatra2, etc

Model to Text

Proprietary Template Language MOFScript, FreeMaker, Velocity, JET, etc

2.6 Prism WIN Scribe IDE
Prism WIN Scribe is a tool designed to assist users while designing Prism reports. It is basically a text

editor with some helpful features which are highlighted below. We also look at its current
limitations and drawbacks.

Chapter 2-Page |41

2.6.1 Features

2.6.1.1 Report Wizard

Scribe offers wizards, an easy way for user to create new reports and insert header information into
them. These wizards are shown below in Figure 38. The left hand side of the figure shows a wizard
which provides the user to create a new report using commonly established templates and the right

hand side of the figure shows a wizard which allows the user to enter header information for a newly
created report.

~: Nopart Mrosertics I Ll
‘ Ths “he programmer tc keed |
| | Mame g acc_bElAL notes to do with the repert. The

e [Siardand E ;‘J;.‘r.é;;\.tﬂ = storec at the top of i

s =i !
tnk [ApT1+AFTC !!
i Open 'I Access [apTR ii
Caneel NN . ! |i

. Securitv _evel 10 L

Otfer Fies | ii

i Optens H

= Dianc Report | = -

AP_Stmt_Run ARSmtement Default X [~ standardPage Header [~ Fixed Font |I
- | [~ standardReport Faoter 1 o Mardins |i
)) Py T |-
LE) i [~ Perint Ent Reanrt i
LelvUocket Jobbag PU std Lemer - I™ GreyBachground = !!
i

Comments In

! i

! i

! i

I i

i i !!

Cancel I OK |

Figure 38: Scribe wizards

2.6.1.2 Report Partitioning
Scribe allows its users to modularly work on a report script by grouping different aspects of the

script into different partitions. For e.g. all variables will be grouped together in the variable section.
This is done via tabs, shown below in Figure 39.

w3 Prizm WIN Scribe - - !
efé: File Edit View Window About
W= = & & B #h |

Code l Variables] Clumps] Procedures] Page Header] PreSelection Block] Select Code] Sort Code | Compiled Report

Figure 39: Scribe report partitioning

2.6.1.3 Libraries
Scribe provides with the users with three core libraries.

A meta-data library of the Prism WIN database, this contains a list of views, columns, relationships
and indexes contained within the database. This informs the user of the potential information that
can be extracted from the database. The meta-data library is shown below in Figure 40.

Chapter 2-Page |42

#% File Edit View Window About

DEHE & @6 sling I

2 System Files

4

L
- @ [1] Inventory
L 3

%2 [C] Cashbook
%2 [D] Data Dictionary
([) [DA] DD AUDIT NUMEER FILE
() [DB] DD COMMAND BUTTON FIL|
Q
({3 [DD] DD DATA FIELD DEFINITIO
([[OF]DD FILE DEFINITION FILE
~{[] [DH]DD CACHE FILE
(] [OI] DD INCREMENTAL CHANGES
[{) [DS]DDSTRING FILE
([[DU] DD SUMMARY USAGE FILE
({3 [DV]DD LIMITED VALUE FILE
([[DwW] DD WINDOW FILE
({1 [DX]DDSTYLEFILE
([[DZ]DD STYLE PANEL FILE

F] Shopfoor Management
G] General Ledger

1] Q] Master Files

Field Name

| Description

| units

Like Code

DC_ADD_DATE
DC_ADD_OP
DC_ADD_TIME
DC_CHECK_SUM
DC_CODE
DC_DESC

=| | Dc_EDIT_DATE
DC_EDIT_OP
DC_EDIT_TIME
DC_KEY_TYPE
DC_MODULE
DC_PART_CODE
DC_PART_VID
— |ocom

Addition date
Addition operator
Addition time
Check sum

Key code
Description

Last edit date
Last edit operator
Last edit time
Key type

Module

Part data code
Part data vid

Key vid

String (5)
Time

Long
String (24)
String (51)
Date
String (5)
Time
Integer
Integer
String (21)
Data field
Key

YO_OPERATOR

YO_OPERATOR

DF_MODULE
DD_CODE
DD_VID

File Keys

Field Literals

Key Name

‘ Description

DC_CODE_ORDER
DC_VID_ORDER

Key code order
Key vid order

-1 [JA] QI DEPARTMENT MASTER F
-1 [3c]qiconTrOL FILE

(1 [I0]QIPRODUCT FILEZ

([1 [JE]QILAYOUT MASTER FILE

({1 [IF] IR PROOF FILE
111]

29/08/2008 | 2:05 p.m,

Figure 40: Scribe meta-data library

The function library lists the functions that exist within the Prism RWL along with a short description
of what the function does. This is shown below in Figure 41.

~y Prism WIN Scribe - - [Function Lisi]
% File Edit View Window About

DeE & & 2R M e

Keyword [Type
.AsDate Command
.AsDouble Command
JAsk Command
\AsString Command
ClearTotal Command
.ClearValue Command
.ColDesc Command
.DateToEra Command
Command
Command
Command
.FoundAt Command
.From Command
JobActAlloc Command
JobActFinGoods Command
.JobActuals Command
.JobChgAlloc Command

=il

| Description
The "AsDate” function can be used to convert data types into a date
The "AsDeuble” function can be used to convert data types into @ number
Ask for a selection
The "AsString” function can be used to convert data types into a string
Clear the total value
Clear the value
Column Description
Used with a control table to convert a date to a finandial era
Used to extract the Day part of a Date
The function is used to calculate the end date of an era
Force a selection
The "FoundAt™ function returns the position of a substring inside another string
Return the From™ runtime selection value (if any)
Returns the costs allocated (tsken up) from a Job from the RL lines
Returns the Actuals allocated (taken up) from a Job to Finish Goods
Returns the costs assigned to a Job from AP, SFM and PO
Returns the charge allocated (taken up) from a Job from the RL lines
Displays Print in Large font

Printed “This function is very unusual in that it updates and writes to a record in the database
Month Used to extract the Month part of a Date
MNarrLines Used with QF, returns the number of narrative lines
NarrPrompt Used with QF, returns the prompt for this narrative ine
NarrValue Used with QF, returns the data for this narrative line
Displays Print in Normal font
Return the "Not” runtime selection value (if any)
This function extracts the Period from the Era
Range
Used to do a key matching search, returns 0 or 1records
Row Description
Sets the "action script” on the associated object
Set the backaround colour used to draw under text when displaying a variable or a dump
Set the background colour used to draw under text when displaying a variable or a dump
Set the column description
Sets the depth of a pie or bar graph varizble
Set the font family
Set the fant size

SetBackground...
SetBackground...
SetColDesc
SetDepth
SetFontFamily
SetFontSize
23/08/2008| 2.07 pm

Command

Figure 41: Scribe function library

The code library lists a set of commonly used code snippets. The user can also store custom code
snippets here. The code library is shown below in Figure 42.

Chapter 2-Page |43

Ls5 Prism WIN Scribe - - [Code Libran]: Lin i o i]
% File Edit View Window About
DEHE S sl M EHNg I
@ Code Library Files -

[@ Conversion Code Name Pays Difference
m Thousand Separator Description F.emrns The Number Of Days Between 2 Dates

=] & Date /Time Procedure difference_in_days| Date DID_first_date, D ate DID_second_date |
_— Call days_since_1330[DID_first_date |:
Q) Add To Date Number first_days = DSD_answer:

Q2| Day Of Week Numeric
@ Day OF Week String Call days_since_1330(DID_second_date |;

Mumber second_daps = DSD_answer;
- (o

MNumber DID_answer SetNDP[0);
u Days InMonth DID_answer = first_days - second_days;

@ Days Since 1990
Q2| Format Date Qutput
u IsLeap Year

@ Mumber To Date

B R esT

@ Get Tax Rate

p— m GST Changes - Invoices

S u GST Changes - Purchase O

S— @ GST Changes - Quote Lette

@ Job Bag

@ Cutting Sheet

K@ Lines | Boxes
() Add Titled Box

|] Draw Box
((] Horizantal Line
([Fie Graph

- \[]) Vertical Line

3

| 29/08/2008 [206 ./

Figure 42: Scribe code library

2.6.1.4 Syntax colouring/completion

Scribe provides syntax colouring to increase readability of the Prism RWL. It also provides a drop
down list of context sensitive information to the user while typing, helping the user to make
common decisions, such as what functions are available, what column names exist in the database,
what sort key to use on a particular table and so on. An example of this is shown below in Figure 43.

@SEiIe Edit View Window About

DSE e & s R |d sk N

Code | Variables I Clumps I Procedures I Page Header I PreSelection B_Iod(l Select Code | Sort Code | Compiled Report

// Scan GM so that the PL lines are printed sorted in account order
Scan GM
Scan PL Choose (PL_ACCT , Match , GM_ACCT)
tax_amt_lcl =PL TAX[O0]+PLTAX[2]+PLTAX[4]+PLTAX[6]+PLTAX[8];

Print body_clump.va
End .TrimRight
UnitFactar
End Units

Print; .

Print tax_amt_|cl. Total U
PL_INCL .Total

Print StandardReportFooter

/) AR Tax Item Listing
T i

The Code Window Shows The Main Report Code [Linezs CAPS |MUM |INS
| 29/08/2008[208 p.m. |

Figure 43: Scribe syntax colouring/completion

2.6.1.5 Import/Execute
Scribe can import text files and convert them to report scripts separating out individual partitions

which were described in Section 2.6.1.2. Scribe can also execute the current RWL script the user is
working on via the Prism WIN MIS executable.

Chapter 2-Page |44

2.6.2 Limitations

2.6.2.1 Technology

Scribe has been written in native C++ and is currently lagging behind new technology. Due to this
reason Scribe has trouble running on Microsoft Windows Vista. Also bringing about a change in
Scribe to match new RWL semantics and syntax is difficult due to this technological barrier.

2.6.2.2 Non-context sensitive

Even though Scribe provides syntax completion, it is not context sensitive. For e.g. the RWL
specification states that the function Year can only be applied to a variable of type ERA, but from
Figure 43 it can be seen that Year appears as a function for any variable type. Moreover, Scribe does
not offer any database context sensitive help, for e.g. if a Scan (introduced in Section 1.4) is done on
view RM, the user can only print information from that view, although Scribe does not recognise this
and allows the user to print any column. This flaw is shown below in Figure 44.

"+ Prism WIN Scribe - - [Report Code &Iﬁ_
#% File Edit Wiew Window About - & x]

DEeE & & sa My AR

Code]\.l'griables] Clumps] Procedures] Page Header] PreSelection Elock] Select Code] Sort Code] Compiled R_eport]

FIELD: QJ_ADD_DATE = Addition date [Date]
FILE: Q1 QUOTE/JOB SECOND PART FILE

The Code Window Shows The Main Report Code Line# 2 CAPS [NUM |INS
2940872008 | 10:15 p.m.

Figure 44: Scribe non-context sensitive auto completion

2.6.2.3 Executing reports

Section 2.6.1.5 described how Scribe can execute reports, although Scribe can only execute reports
in a specific version of the Prism WIN system. The current version of Prism WIN is not compatible
with Scribe. This limitation is important, as for users of the latest Prism WIN system there is no
possible way of directly testing reports written via Scribe. Note that this is not entirely true as a user
can still manually import a report in via Prism WIN and then execute it.

2.6.2.4 Text based

Scribe is entirely text based which makes it difficult to use for novice and intermediate users. Users
have to learn the RWL syntax and also the semantics of how to put it together (Section 1.5.2).
Moreover, the Prism database structure is complicated as explained in Section 1.5.1 thus, coupled
with the learning curve of the RWL it makes it very cumbersome for a novice user to write a simple
Prism WIN report.

2.7 Summary

This chapter gave a detailed insight into the research involved and the state of the art of some of the
technologies involved in this thesis. We looked at software development methodologies and also
the core areas involved in this thesis like modeling approaches, model-driven software development,

Chapter 2-Page |45

Metamodeling and other MDSD related areas. Finally, we concluded the chapter by giving an
introduction to two current tools involved in DSL and MDSD development and an introduction to
Prism WIN scribe, the in-house reporting IDE.

Chapter 3-Page |46

Chapter 3 - Our Approach

3.1 Introduction
This chapter provides a summary of this research programme which is elaborated upon in the
following chapters.

We start by giving a very high level overview of our approach and then further explain the details of
each process involved in our approach.

It also describes the methodologies and standards used which provides a framework for developing
a prototype solution and outlines the technologies used to achieve it. It also describes how the
requirements were drawn together for the solution.

3.2 High Level Approach View

This section gives the four core steps involved in our approach:

Design the RWL meta-model (using Microsoft DSL Tools)
Specify RWL constraints (using the meta-model or custom code)
Design our code generators (using text templates)

i A

Expose the meta-model to the end-user using a Ul (WPF or the Visual Studio Shell)

3.3 Software Technologies Used
3.3.1 Microsoft DSL Tools

3.3.1.1 Justification

For the thesis we chose to use the tools provided by Microsoft in its Visual Studio SDK. The core
reason for this is related to Prism's business partnership with Microsoft and its strong existing usage
of Microsoft technologies. Using Microsoft DSL Tools would make the integration process easier and
would also reduce the learning curve if the solution suggested by this thesis had to be developed
further by Prism personnel. On a more personal note, | am familiar with Microsoft products and its
software development IDE, Visual Studio 2008, as it closely matches my skill set.

Note that even though we have used Microsoft DSL Tools to implement the solution it is completely
possible to switch to a different technology such as the EMF/GMF Eclipse frameworks as suggested
by (Bézivin, Hillairet, Jouault, Kurtev, & Piers).

3.3.1.2 Model Design

Throughout the course of this thesis the Microsoft DSL Tools model designer was the central point
for starting the implementation phase. Our approach included designing a meta-model of the RWL
language which included model fragments of the Prism WIN database. This meta-model was
represented by domain concepts such as domain classes and domain relationships along with their
corresponding shapes using Microsoft DSL Tools. We systematically and progressively started
depicting each RWL construct within this meta-model. Although it was impossible to represent all
the constructs of the RWL in this meta-model, a proof of concept was designed which showed that
this is possible.

Chapter 3-Page |47

Note the usage of the term meta-model in the above paragraph. Let us take this opportunity to
introduce the concept of the meta-model of the RWL and thus the difference between the meta-
model and the model itself. As the RWL is a programming language, like any programming language,
it has a set syntax and a set of constraints; these are represented by the meta-model of the RWL. A
model of this particular meta-model will be instantiated by the end-user. Therefore, an instantiated
model of the meta-model will essentially be a RWL script which is visually represented using the
newly created meta-model.

3.3.1.3 Constraint Specification

A constraint is basically a condition which should be enforced by a given environment which in this
case is a reporting language. Constraints within the RWL are identified with the use of (Prism New
Zealand, 2005). These constraints were then sub-divided into three sub-groups highlighted below:

e Hard Constraints: Hard constraints are constraints which can be enforced by the meta-model
of the RWL. For e.g. a report has to have one ControlLine structure. The ControlLine
structure was introduced in Figure 4 and further elaborated on in Section 1.4.1. Figure 45
below shows how the meta-model can enforce this constraint. Note the multiplicity on the
ControlLine (1..1) denoting a mandatory element.

“¢ ReportHeader ¥
DomainClass

ReportHeaderHasControlLine

ControlLine

DromainRelationship |3 RepartHeadar ¢ ControlLine
11 11 DomainClass

k)

Figure 45: RWL hard constraint

e Soft Constraints: Soft constraints are defined as restrictions which cannot be enforced by the
meta-model of the RWL. Constraints such as mandatory fields or other parameter values.
For e.g. The parameter Code within the ControlLine structure is a mandatory value, thus the
only way to enforce this by writing custom code. Microsoft DSL Tools exposes extension
points within its generated code which allows DSL designers to design extensive constraint
checking rules.

e Dynamic Constraints: Dynamic constraints are similar to soft constraints and can only be
enforced by custom code. Although they are defined at runtime usually depending on user
input. For e.g. if a Scan is executed on a view called RM, the user can only print information
from the view within the scope of the scan. Therefore, only information contained in
columns like RM_* can be printed (refer to Section 1.5.1).

3.3.1.4 The Experimental Hive

The Experimental Hive was briefly introduced in Section 2.5.1.4 and shown in Figure 25. We use the
Experimental Hive continuously during this thesis to execute our solution. The Hive is essentially an
instance of Visual Studio with our DSL templates pre-loaded within it. It works as a temporary host
for our newly created meta-model and allows us to design RWL models against it. The Hive also
allows us to debug our meta-model and its constraints.

Chapter 3-Page |48

3.3.1.5 Text Templates

Introduced in Section 2.5.1.5, the text templating engine is complementary to the DSL designer.
Microsoft DSL Tools generate the domain model code from the notation using text templates
(Section 2.5.1.3) and use text templates to output text from a model created by the end-user. Our
solution includes a set of text templates, which when run over a created model, outputs RWL script
corresponding to that model.

3.3.2 Windows Presentation Framework

Windows Presentation Framework (WPF) is the next generation of the Windows Forms toolkit
provided by Microsoft. It allows for the creation of rich user interfaces which can run seamlessly on
Microsoft’s new operating system, Windows Vista. We chose to design our solution using the WPF
framework as it fits perfectly with Microsoft DSL Tools and is XML based which gives us the future
capability of generating designers using the DSL Tools.

WPF was used in one of our approaches to provide a Ul which exposed the RWL meta-model to the

end-user.

3.3.3 Language Integrated Querying

Language Integrated Querying (LINQ) is a new technology introduced by Microsoft which allows
developers to write SQL like syntax using C# or VB to query any “LINQ supported” objects. A LINQ
supported object is any object from SQL databases to XML files to even an array.

As introduced in Section 1.5.1, the Prism database stores its own meta-model. LINQ lends itself to
our solution and allows us to query Prism’s database meta-model without writing complex SQL
queries. Moreover, it makes our code easily readable increasing its quality.

3.4 Methodologies and Standards

This thesis builds a solution using a combination of two methodologies, the MDSD approach coupled
together with an agile development approach. To achieve the solution we intend we initially
designed potential models using UML, this is also described in this section.

3.4.1 Unified Modeling Language (UML)

Our central goal was to design a meta-model of the RWL using Microsoft DSL Tools. Prior to that, we
decided to statically model various constructs of the RWL using UML. It allowed us to depict and
analyse potential relationships, hierarchies, types and constraints. Our approach involved analysing
RWL examples from (Prism New Zealand, 2005) and identifying various relationships. We then
progressively modeled these examples using UML. We continued to do this until we had a number
of RWL constructs within the UML model. After modeling all the RWL examples from (Prism New
Zealand, 2005) we noticed that what we potentially have is a meta-model of the RWL as it could
potentially represent any instance (example) of RWL.

3.4.2 Model-Driven Software Development

The core of this thesis aims at increasing the level of abstraction for end-users to give them the
ability to design Prism WIN reports with ease. The way the abstraction level can be elevated is with
the use of models and using MDSD was the obvious choice.

This thesis tries to provide a model-centric approach to solve the problems described in Section 1.5.
Although we do not explicitly deal with MDSD in its true essence as we do not have a CIM or PIM as

Chapter 3-Page |49

these details are abstracted away from us by the Microsoft DSL Tools (described in detail in Section
3.3.1). Two approaches were taken during the course of designing the models for this thesis.
Although the next chapters of the thesis concentrate on the best approach (RWM Shell approach) let
us look at all the approaches in some detail in this section.

3.4.2.1 Class Diagram Approach
It was decided in the earlier phases that the solution would be a five stage process:

Design a meta-meta-model structure using Microsoft DSL Tools
Design our RWL meta-model using the newly created meta-meta-model
Generate code representing our meta-model using text templates

P wnN PR

Design the end-user Ul using WPF which uses the generated code representing the meta-
model as its back-end
5. The WPF Ul generates the required RWL script

| | I
/—RWL Meta-Meta-Model ~

_ Y, Shell

RWL Meta-Mode—Y
DSL Tools

% Text Templates

User Designing Reports

Figure 46: Class Diagram Approach

The figure above shows the five stages of this approach. The essence of this approach is the WPF Ul
layer which gives us customizability and a rich user experience.

The meta-meta-model represented in the Microsoft DSL Tools is a highly customised model very
similar to that of the meta-model of UML. This enabled us to design a UML like model in the shell
which could generate code representing the meta-model of the RWL eventually used by the user via

Chapter 3-Page |50

the WPF Ul. The meta-model of the RWL will then generate the RWL script as per the users request
against the RWL model which they create using the Ul.

3.4.2.2 RWM Shell Approach

After spending some time on the class diagram approach mentioned in the previous sub-section it
became apparent that it would potentially require a lot of resources in terms of programming and
time to create a demonstrable prototype. Therefore it was decided that we cut down on one phase
of the development. The approach was similar to the one shown in Figure 46 although the WPF
layer was omitted. An alternative Ul layer was used instead of the WPF layer. This Ul layer is called
the Visual Studio Isolated Shell, thus the name of the approach.

The Visual Studio Shell is a streamlined version of the Visual Studio IDE which can host Visual Studio
Extensions such as models created using the DSL Tools (Microsoft, 2008). The shell behaves exactly
like the Experimental Hive (Section 2.5.1.4) but the only difference is that end-users do not need
Visual Studio installed. Also, the Visual Studio Shell can be freely redistributed and can be used
royalty free for applications designed to be run on the shell.

Not using the WPF layer essentially meant that all other stages had to be pushed up one level. This
meant we could use the text templates to generate actual RWL script from the models which the
user designed. This is shown below in Figure 47.

| |
/—RWL Meta-Model ~

%:E

_) v Shell
RWL Model
DSL Tools
{ ; Text Templates
. A
* Generates ™.
~._ RWLscript .-~

User Designing Reports

Figure 47: RWM Shell Approach

The RWM Shell Approach can be looked at as a three stage process:

1. Design the RWL meta-model structure using Microsoft DSL Tools
2. End-user designs the RWL model using the meta-model using the shell
3. Use text templates to generate the corresponding RWL script from the RWL model

Chapter 3-Page |51

3.4.3 Agile development

We use an agile development approach throughout the course of the thesis. We design the meta-
model and the models progressively working upwards in terms of complexity. Continuous user
feedback is received from both, the developers who are the potential designers and users of the
meta-models and the end-users who will be designing models of the RWL using the meta-model.
This development processes allows to use a highly iterative development style which involves
designing new meta-model elements, prototyping those into a Ul, evaluating them and refining
them.

3.5 Gathering Requirements

Gathering the requirements for the solution is an ongoing process and as any software system, the
requirements for this thesis may change as the solution is adopted by Prism for further
development. The requirements may also deviate by a trivial amount as we collect and analyze
more information about the RWL. Note that as we adopt MDSD along with an agile development
approach the thesis strives to keep the requirements flexible to allow for slight deviations and other
user requests as the solution grows. The following two sub-sections outline the approach taken to
gather the requirements for the model and the end-user tool.

We have made a distinction in the two different ways of requirement gathering as we concentrate
on two distinct goals in this thesis. The first goal is the obvious one, a tool for end-users to easily
design Prism reports and the second goal is slightly subtle although an important aspect of the
thesis. As we are designing a meta-model for a programming language (RWL) it is important that we
make this meta-model flexible so it can be expanded if need be, this is the our second goal.

3.5.1 Tool Requirements

The requirements for the tool were gathered with the end-user in mind. Even though the primary
users of the tool would be Prism customers, it is safe to assume that the “end-user” set also includes
Prism employees who can potentially design reports. Due to time constraints imposed by the thesis
it was not feasible to involve live Prism customers during the requirements gathering process, thus
the requirements were congregated together with the help of Prism employees.

3.5.2 Meta-Model Requirements

The requirements for the meta-model were gathered from the perspective of future development.
By this we mean that the meta-model should be able to withstand future modifications by new
developers as the RWL expands and changes. Various aspects of the RWL meta-model were
analyzed and requirements were formatted on how to cater for them.

3.6 Summary

We looked at an overview at the approach taken by the thesis to solve an enterprise level problem
like report writing. We established four core steps in our approach which indirectly involved MDSD
and agile software development processes.

We used Microsoft DSL Tools to design the RWL meta-model and the text templating engine to
generate code. The solution also used other secondary technologies such as WPF and LINQ.

The chapter eventually described how the requirements were gathered by sub-dividing them with
respect to the meta-model and the end-user tool.

Chapter 4-Page |52

Chapter 4 - Requirements

4.1 Introduction

This chapter contains a detailed list of requirements for this thesis. How these requirements were
gathered was described in brief in the preceding chapter (Chapter 3). The chapter divides the
requirements up into two major sections: Functional and Non-Functional. Functional requirements
are defined as actions the system needs to perform in order to meet user needs as opposed to non-
functional requirements which support a user while performing those actions.

The requirements are further grouped into two areas: Meta-Model requirements and Shell
requirements. As introduced briefly in Chapter 3 meta-model requirements are developer-centric
whereas the shell requirements are end-user-centric.

4.2 Functional Requirements

The core functional requirement for the thesis is to provide end-users with a tool which gives them
the capability to design Prism reports with ease as opposed to the current practise of textually
designing reports. This sub-section divides this core requirement into subordinate requirements
which give us the ability to examine and cater for them independently.

4.2.1 Report Writer Meta-Model

4.2.1.1 Correctly represent RWL

The meta-model of the RWL should correctly represent the language and all its semantics. Itis
mandatory that the meta-model of the RWL is correctly represented by our visual language so that
the correct RWL script can be generated by the tool. The meta-model would also represent
constraints and should give users assistance while using the RWL models. Correctly representing the
RWL via the meta-model would also mean that Microsoft DSL Tools generate the correct domain
model code and developer intervention is minimized. The correct meta-model would also allow us
to generate the RWL script from a given RWL model without any end-user input.

Example:
1. Code RW_EXAMPLE
2. Name “Report Writer Example”
3. Type Standard
4. Access STSR

The code above shows the ControlLine construct of the RWL. This was examined in Section 1.4.
(Prism New Zealand, 2005) states that a given report should have one ControlLine construct at all
times. Therefore, if a meta-model had to enforce this constraint we would have the following figure:

ReportWriterModel ControlLine

Figure 48: Meta-model representing RWL

The above figure shows us the ReportWriterModel which represents the root of our RWL model and
the ControlLine which represents the control line construct in our RWL. The relationship between

Chapter 4-Page |53

them shows us that the ReportWriterModel contains a ControlLine construct. Moreover it also
states that that the ReportWriterModel should contain one and only one ControlLine construct.

4.2.1.2 Constraint Validation

Constraints required by the semantics of the RWL should be validated by the meta-model. RWL
imposes many constraints on its user; these constraints should be mapped within the meta-model.
Any potential model designed against this meta-model should respect these constraints. If it is not
possible for the meta-model to represent these constraints then custom code needs to be written by
the DSL designer which does the necessary validation.

Constraints can be of three types as explained in Section 3.3.1.3. Hard constraints should be
represented by the meta-model and soft and dynamic constraints should be represented by custom
code. The required constraint validator should be executed on the meta-model when a validation
request is made by the user via the shell.

Section 3.3.1.3 explains why soft and dynamic constraints cannot be represented by the meta-
model. Even if we use custom code to represent these constraints, these constraints are essentially
part of the meta-model we design.

Example:
An example of a hard constraint was already represented by Figure 48. An example of a soft

constraint is shown below in Figure 49.

ControlLine

-Code[1..1] : string
-Name[0..1] : string

Figure 49: RWL soft constraint

(Prism New Zealand, 2005) states that the attribute Code is a mandatory field, thus denoted by the
multiplicity of 1..1. It can be seen that the attribute Name is not mandatory and is denoted by 0..1.

An example of a dynamic constraint is represented by the following RWL code snippet:

1. Scan RM
2. Print RM_NAME;
3. End

A scan is conducted on view RM, thus only columns contained within that view can be printed within
its scope, and this is a dynamic constraint as the view on which the scan is executed on is not known
till runtime (user entered value).

4.2.1.3 Code generator

Any code generator written should output correct code. This is especially important for the RWL
code generator. Itis the responsibility of the code-generator to correctly utilize the meta-model to
generate required code which represents the instantiated models.

The code generator which outputs RWL should output correct RWL which can be interpreted by the
Prism WIN MIS system. Any RWL generated should be readable and formatted in a way which
promotes usability.

Chapter 4-Page |54

Example:
Generated code should be the correct and ideally also be formatted in a way which promotes easy

reading by end-user.

ControlLine

-Code[1..1] : string
-Name[0..1] : string

Control Line
Code: EG_1
Name: Example 1

Figure 50: RWL meta-model and its instantiated model

Figure 50 above shows the meta-model representation of the ControlLine construct and an
instantiated model with some sample values.

Code EG_1 Name Code EG 1

Code EG_1 Name Example 1 “Example 1" Name “Example 1"

Figure 51: Difference in generated RWL

Figure 51 shows the generated RWL code for the instantiated model shown in Figure 50. The left
hand side of this figure shows the wrong generated code, note the missing quotations mark for the
field Name. The centre shows the correct RWL although formatted in a way which makes reading
difficult and the right hand side of the figure shows correct and well-formatted RWL.

4.2.1.4 Mechanism to specify field editors and meta-data access

The RWL is a complex programming language and not all of its fields are trivial user input values.
Some values need to match values within the Prism database meta-data. As this meta-data can
contain a huge amount of data most of it being superfluous to the user it is necessary for us to
provide smart editors for these kind of fields.

It is also required that these smart editors give the user some notion of what the meta-data
represents. For e.g. simply showing the user a list of columns within a table would not be sufficient,
although this list coupled with the description of each column would suffice.

The Prism WIN MIS database maintains its own meta-data as outlined in Section 1.5.1. This meta-
data needs to be accessed by the meta-model of the RWL in order to give users access to
information about the Prism database. Another requirement arises that this data is accessed
atomically and is always kept in a consistent state.

Example:

Chapter 4-Page |55

=))

DF = oW =
= Properties = Properties

sl (7] gl (]

% DF_ADD_OP ' DW_ADD_OP

5 DF_ADD_DATE S DW_ADD_DATE

5 DF_ADD_TIME S DW_ADD_TIME

“SF DF_EDIT_OP S DW_EDIT_OP

5F DF_EDIT_DATE 5 DW_EDIT_DATE

“F DF_EDIT_TIME %# DW_EDIT_TIME

2F DF_MODULE % DW_MODULE

°F DF_CODE 2 DW_WIN_CODE

“f DFVID “# DW_SYS_DESC

4 DF_S¥5 DESC = DW_USER_DESC

' DF_USER_DESC 5 DW_WIN_TYPE

' DF_FIRST A DW_ACTIVE

5 DF_LAST S DW_AUTO_LINK

“F DF_VERSIOM 5 DW_SECURITY

5 DF_ACTIVE = DW_MEMU_TAG

S5F DFIMP ADD = DWW MODS USED

Figure 52: Prism meta-data section

Views DF and DW holds all the tables and the windows? that exist in the Prism database respectively.
These views are shown in Figure 52 along with some of the columns they contain.

Getting information from DF would inform RWL users about the various views that can be scanned.
For e.g. the Scan statement shown in the RWL snippet below shows a scan being executed on view
RM.

1. Scan RM
2. Print RM_NAME;
3. End

Information from the DW is important for the RWL user as it could be used to populate fields like
Access as shown in the code RWL snippet below.

1. Code RW_EXAMPLE

2. Name “Report Writer Example”
3. Type Standard

4. Access STSR

Note that the field Access represents the windows® via which this particular report could be
executed from.

Also, simply showing the user a list of the views or windows that exist within the Prism database will
not suffice. A user interface needs to be developed which provides users with more detailed
information. An interface example is shown below in Figure 53.

> Windows in the Prism WIN MIS system represent various menu combinations which open sub-interfaces
where each of them encapsulates a different printing function. For e.g. window STSR represents the sub-
interface System—>Toolbox—>Scripts—>Reports accessed via ALT+S+T+S+R.

Chapter 4-Page |56

DF_CODE DF_SYS_DESC

i CB Statement file
CB CE Batch file
cC CE Control file
cD CE Dizzection file
CL CE Line file
CM B Bank masterfile
Cs CB Summary figure file
cT CE Transaction file
DA DD Audit number file
DE DD Command button file
DC DD Compound key definition file
DD DD Data field definttion file
DF DD File definition file

Figure 53: Ul example showing Prism meta-data information

In the above figure we see that the meta-data of the Prism database often contains a code and a
description. The code tends to be a system specified combination of letters which often have little
to no meaning to end-users, although if this is coupled with the description, it makes it the code
more meaningful. Therefore, showing the code along with its description is ideal for improving the
usability of the RWL tool.

4.2.1.5 Mechanism to specify mandatory fields

Mandatory fields are fields which always need an input from the user. This is essentially a constraint
although the requirement is that we have a simple and elegant way of specifying which fields in a
given construct are mandatory. The developer working on the meta-model should be able to add
this constraint to any field for any construct.

Some degree of automation should be provided for the developer in terms of validation, for e.g. it
would be best if the developer could mark a given field on a construct as Mandatory and the meta-
model could automatically check if the user had entered a value for this field in the instantiated
model via the shell.

Example:
The ControlLine construct contains three mandatory fields; these are shown in the code snippet
below:

1. Code RW_EXAMPLE

2. Type Standard

3. Access STSR
Note that Code, Type and Access are three mandatory fields within the ControlLine construct.

Therefore, the meta-model could use a similar approach to that shown in Figure 49.

4.2.1.6 Extension Points

The RWL is constantly evolving as end-user requirements change. Due to this reason the meta-
model should be flexible enough to cater for these changes. Therefore, it is the responsibility of the
DSL designer to include extension points within the meta-model which would assist future
development. Itis not required that the DSL designer caters for all future enhancements as it is
impossible to do so, although a framework or a guideline on making these future enhancements is
needed.

Chapter 4-Page |57

Example:
An example of an extension point could be a valid hierarchical architecture of the meta-model which

would allow easy addition or modification of new and old RWL constructs.

4.2.1.7 Versioning

Versioning is a direct consequence of the requirement outlined in 4.2.1.6. If extension points allow
further meta-model development it is required that a versioning scheme is also deployed. The
versioning scheme should guarantee that a model designed with an older version of the meta-model
will function as required with a newer modified version of the meta-model. This may always not be
possible to guarantee, at that juncture the user should be explicitly informed about the changes
within the meta-model and given directions on how to rectify their model.

We could go one step further and provide transformation services at times when the meta-model
changes drastically and it becomes difficult for the end-user to perform the required changes within
their model. The transformation service should be able take as input the old and new meta-model
and the end-user model and transform it to meet the specifications of the new meta-model.

This case may arise when a developer changes the structure of the meta-model by adding new RWL
constructs or modifying existing ones and also when adding or modifying relationships between
meta-model elements.

Example:
An example of a possible transformation service is shown below in Figure 54.

Meta-Model v1

RWL Model v1

T XSLT
.-‘. ;l transformation

,,,,,,,,,,,,,,,, . service
Meta-Model v2

— e/ . e—ouu
—a—~— @/ RWL Model v2

Figure 54: Example transformation service

4.2.1.8 Explorer view

As the RWL is naturally hierarchical it can be easily visualized using a tree-like structure, especially if
it is represented using visual elements. The explorer view should aid the user in seeing an overview
of the report they have designed. The explorer view should be interactive and let the user add
information to the modeled report if required. What information can be added or modified within
the explorer view is dictated by the meta-model. Also, the explorer view should display meaningful
information about each RWL construct which would help the user uniquely identify them on the
design surface.

Example:

Consider the RWL script shown below:

Chapter 4-Page |58

OWOoONOUVLEA WNER

Code RW_EXAMPLE
Type Standard
Access STSR

PageHeader
Print StandardPageHeader;
End

Scan RM
Print RM_CUST;
End

Print StandardReportFooter;

The above code snippet can also be visualized in a tree-form shown below in Figure 55.

ModelRoot

ControlLine
PageHeader

StandardReportFooter

StandardPageHeader

RM_CUST

Figure 55: Tree view representation of RWL snippet

4.2.2 RWM Shell Host

4.2.2.1 Visually design reports

RWL is a language which describes dependencies between RWL constructs and may also contain

nested structures. A visual representation would be able to explicitly show these properties which is

not entirely possible textually. Therefore, the shell should provide users with a set of shapes and

connectors with which they can design RWL scripts. The visual elements provided by the shell

should have the appropriate RWL meta-model elements in the background. Each shape and

connector dragged onto the shell canvas by the end-user should instantiate the appropriate meta-

model element.

Example:

Consider the RWL script shown below:

oONOOTUVThA WNER

9.
10.

// Some comment

Code RW_EXAMPLE_@3
Type Standard
Access STSR

Print StandardPageHeader;
Scan RM

Print RM_CUST + RM_NAME;
End
Print StandardReportFooter;

This script could be represented visually using the notation shown below in Figure 56.

Chapter 4-Page |59

4)

CcommentH Some comment |

ControlLines

Code: RW_EXAMPLE_03
Type: Standard
Access: STSR

g andardPage
Print

RM_CUST

RM_NAME

Pnnt andardRepo

Footer

Figure 56: Example of a visualized RWL script

The sequence number in the above figure maps to the order in which each element occurs in the
textual representation of the script. Note that RM represents a scan construct implicitly. This figure
is simply an example of the various possibilities of representing a RWL script visually.

4.2.2.2 Visual notation

Selecting the appropriate visual notation is a formal requirement. The visual notation should be
consistent and should give users a sense of the underlying RWL construct. Relationships between
constructs should be made clear and if any hidden dependency exists, users should be given an
opportunity to explicitly examine them if need be.

Designing the visual notation is more of an art and usually takes numerous iterations of design and
implementation to develop. We took two approaches to this problem which is explained in the next
chapter.

Example:
Figure 56 shows an example of a consistent visual notation for the RWL model. Note that all items

that are printed are encapsulated within the same shape with the same size and colour. Although
this example does not provide an intuitive notation as the shapes used do not necessarily depict the
underlying RWL construct.

Figure 57 below shows a Scan construct on view RM. Note that a scan is nothing but a select
statement (Section 1.4.1). Therefore a possibly more intuitive way of representing the Scan
construct could be with the use of layering. Layering would suggest that this construct can potential
yield more than one result.

RM_CUST
RM_NAME

& J

Figure 57: Example of an intuitive RWL concept

Chapter 4-Page |60

4.2.2.3 Constraint validation

Any constraints enforced by the RWL semantics should be enforced by the shell via the meta-model.
Users should be informed while dragging and dropping shapes and connectors whether they are
violating these constraints. At any point if this is not possible then a “lazy” constraint validation
should be done. A “lazy” constraint validation may allow a potentially illegal RWL model although it
will inform the users when an explicit validation request is made.

Users should be informed either with an error or a warning depending on the strictness of the
constraint. A validation request should always be executed when the user saves or opens the RWL
model as saving and opening an invalid model may cause system errors if the meta-model cannot
read this file. Constraint validation errors should be meaningful and give users appropriate detail to
rectify them.

Example:

A RWL model can only contain one ControlLine construct. If the user tries to add another
ControlineLine construct to the model, this should be disallowed by the meta-model via the user
interface. A potential way of enforcing this constraint and its corresponding feedback message is
shown below in Figure 58.

ControlLines

Code: RW_EXAMPLE_03
Type: Standard
Access: STSR

ControlLines

i _________________________________ . | Report already contains ControlLine |

J

Figure 58: Shell constraint validation

The user should be informed if a ControlLine construct is missing any of its three mandatory fields,
namely Code, Type and Access as introduced in Section 4.2.1.5. Although this falls under the “lazy”
validation category as the user will only be informed about this if a save is attempted or an explicit
validation request made. This is shown below in Figure 59.

ControlLines

Code:
Type: Standard
Access: STSR

Validate

Errors

1. ControlLine needs a value for field Code

Figure 59: Shell "lazy" constraint validation

A set of RWL constraints is explained in detail in Section 5.4. Note that this section does not include
every possible RWL constraint, only includes the common constraints which we have managed to
implement in the given time period.

Chapter 4-Page |61

4.2.2.4 Show program flow

As RWL is a sequential programming language it is required that any visual language depicting this
behaviour visualizes this sequential program flow. The program flow is governed by the user
designing the report therefore an appropriate mechanism needs to be provided which could allow
them to define and visualize this program flow.

Example:
Consider the RWL script shown below:

Code RW_EXAMPLE_03
Type Standard
Access STSR

A WN R

5. Print StandardPageHeader;
A possible visual representation of the above RWL script is shown below in Figure 60.

-~ : N (7)
ControlLines
ControlLines R

Access: STSR
Code: RW_EXAMPLE_03
Type: Standard
Access: STSR

g andardPage
| (Pt &

Header /)

Figure 60: Showing RWL program flow

Shown in the above figure are two examples of representing program flow within a RWL model. The
left hand side of the figure shows a visual-text numbering scheme to represent flow as opposed to
the right hand side which shows an arrow head in the direction of the flow. The start state in both
model examples is obvious. In the left side of the figure the element with smallest number will be
the first executed element and in the right side of the figure the first element will be the one which
does not have any incoming connections.

4.2.2.5 Containment of child elements

Some constructs in the RWL can contain other constructs. Such composite constructs should be
represented by the visual language using a containment mechanism which will assist the readability
of the models.

Example:
Consider the RWL code snippet shown below:

1. Scan RM
2. Print RM_CUST + RM_NAME;
3. End

From the script it can be seen that the Scan does a select statement (Section 1.4.1) on the view RM
and within that it Prints whatever data occurs in the column RM_CUST and RM_NAME. Therefore it
can be seen that Scan is a composite construct, in this case containing a single child construct Print.
An example of representing this containment using a visual language is shown below in Figure 61.

Chapter 4-Page |62

Sequence: 2

RM

RM_CUST

RM_NAME

Figure 61: RWL composite construct notation example

4.2.2.6 Ordering of child elements

The requirement for containment was introduced in Section 4.2.2.5 which gives rise to the
requirement for ordering child elements. A composite RWL construct can contain other RWL
constructs, although these constructs are ordered due to the sequential nature of the RWL. Due to
this fact, it is required that the sequential nature of the children of composite constructs should be
visualized with some ordering mechanism. This would allow the end-user to visualize the particular
order in which the composite construct will execute its children.

Example:
Consider the RWL code snippet shown below:

1. Scan RM
2. Print RM_CUST + RM_NAME;
3 End

Looking at the above script we can notice how the print statement would initially print data from
column RM_CUST followed by data from column RM_NAME. This ordering needs to be conveyed by
the visual notation. Looking at Figure 61 it can be clearly seen that RM_CUST occurs before
RM_NAME. A general assumption has been made here that the user would be reading from top
going down.

4.2.2.7 Show/hide children (Elision)

This requirement arises as a direct repercussion of the requirements outlined in Section 4.2.2.5 and
4.2.2.6. A mechanism needs to be added to a composite construct which would allow users to show
and hide its children. This would allow the RWL model to be concise and tidy and would also allow
the end-user to concentrate on certain aspects of the report if need be. Showing and hiding children
of a composite construct could potentially raise the level of abstraction for users who do not care
about the details of its children.

Example:
Consider the RWL code snippet shown below:
1 Scan RM
2. Print RM_CUST + RM_NAME;
3. Print “Hello World”;
4. End

It can be seen that the Scan construct now has two child Print constructs. This can be represented
as shown below in Figure 62.

Chapter 4-Page |63

f Sequence: 2 \ f Sequence: 2 \
RM ®v__ D
\ N\ J

Figure 62: Show/Hide child constructs notation example

From the left hand side of the above figure we can see the Scan construct in its expanded form

o on

which exposes all its children. Note the “-” symbol on top-left side of the shape denoting that the
shape can be collapsed. The right hand side of the figure shows the same Scan construct although in
a collapsed position with its children hidden. Note the “+” symbol on the top-left side of the shape

denoting the shape can be expanded.

4.2.2.8 Context sensitive assistance

As the RWL is a complex language it is required that the shell provides some degree of assistance to
users. The assistance provided by the users should be context sensitive so that it does not add more
complexity to the language. Assistance could be provided to the users via tooltips, pre-populated
drop down fields, messages or by any other visually intuitive manner.

Example:
A Scan can essentially be executed on any valid view which exists within the Prism database. There

are approximately 350 views within this database and sorting through them to find the desired view
would be cumbersome and time consuming for a given user. This assumes that the user actually
knows which view they want to execute the Scan on, if the user does not have a clear idea on the
desired view then this task would be extremely difficult.

The above mentioned problem could be solved by simply allowing the user to select a view from a
drop down field which contained all the views within the Prism database. This could be further
refined by showing more detailed information about the view, such as its description. An example of
this is shown in Figure 53.

Note that this example refers to the Scan construct; therefore the context of this view selector
would be the Scan construct. Other constructs could offer similar assistance.

4.2.2.9 Evaluation

The visual language notation represented within the shell needs to be constantly evaluated against
our user needs. This would assist the developer in providing the correct visual cue for various RWL
constructs. Moreover, as new RWL elements are added to the meta-model, new notations will be
added, therefore the evaluation of this notation is an ongoing requirement.

User evaluation could be informal which would encompass basic demonstration and user interaction
or it could be formal using surveys and other evaluation techniques as discussed in Section 2.4.3.6.

Chapter 4-Page | 64

An informal evaluation could be done between minor® releases and formal evaluations could be
done between major releases.

We have included evaluation as a functional requirement because we are creating a visual language
which will be used by end-users to design Prism reports. Due to this evaluation is one of the core
aspects in making a visual language intuitive and user friendly, making it an important functional
requirement.

4.2.2.10 Test cases

The visual language developed as part of the shell has to be run against some set test cases. For the
purpose of this thesis we can extract those test cases from (Prism New Zealand, 2005). A test case
could essentially be a test of basic report scripts which are created using the RWL model. Therefore,
whenever a change is made to the meta-model or to the notation, these tests could be rerun and
their generated RWL analyzed.

Test cases could be further refined and automated as need be although this is not a strict
requirement. A test case could potentially be a RWL model which can be evaluated against the
current meta-model and the generated RWL script could be automatically tested against the Prism
WIN report writer engine as shown in Figure 3.

An infrastructure needs to be implemented which allows for such test cases to be run against the
meta-model to test its validity. This infrastructure should be able to execute single or multiple test
cases and display a result indicating failure or success.

4.3 Non-functional Requirements

The core non-functional requirements for both, the meta-model and the shell are to provide an
intuitive interface to the developers and the end-users respectively. This core non-functional
requirement, like functional requirements, is divided up into two subordinate requirements allowing
us to analyze them independently.

4.3.1 Report Writer Meta-Model

4.3.1.1 Intuitive Extension Points

Extension points provided within the RWL meta-model need to be intuitive. They need to expose a
clear architecture and intent so that future developers can expand the meta-model with newer RWL
constructs if need be.

Example:
Consider the RWL code snippet shown below:

1. Scan RM

2. Print RM_CUST + RM_NAME;
3. Print “Hello World”;

4. End

It can be seen that a Print construct can print column values as well as literals. So a potential
hierarchal architecture would be similar to that shown in below in Figure 63.

3 . . .

A minor release, as opposed to a major release, would essentially mean a meta-model change where a
transformation service (Section 4.2.1.7) is not required. Therefore, the user can safely transfer their models
across different meta-model versions.

Chapter 4-Page |65

- - * 1 Print
«interface»Printableltem

T

Literal Column

Figure 63: Intuitive RWL meta-model extension point

This architecture would make it clear that a Print construct can contain a number of Printableltems.
Therefore in the future if another construct gets added to the RWL which can potentially be printed
then simply inheriting from the Printableitem interface would suffice.

4.3.1.2 Modularity

The meta-model of the RWL needs to be modular and loosely coupled with other parts of the system
so that changes in one part of the system will not affect other parts of the system. This requirement
arises as our RWL meta-model is constantly evolving and constant change is required. Also, each
RWL construct and each relationship between these constructs need to be represented by a single
meta-model element. This would further add modularity to the meta-model and allow any further
development to be isolated to a particular meta-model section of interest.

Example:
The meta-model exposes the Prism database and its meta-data to give users assistance while

designing the RWL model. Therefore it is required that the meta-model and the data access layer be
kept disparate from each other. Moreover, each meta-model element has to be isolated from its
counterparts. This can be seen in Figure 63 where the Print constructs is isolated from the actual
items that can be printed via the Printableltem interface.

4.3.1.3 Scalable
The initial architecture of the meta-model should be designed with scalability in mind. As the RWL
will keep growing, it is essential that the meta-model can sustain these changes.

Moreover the visual representation of the RWL also needs to be scalable. Complex RWL scripts span
hundreds of lines so when these get translated to a visual notation, the meta-model should be able
to clearly represent these and avoid clutter for easy readability. This requirement is detailed further
in Section 4.2.2.7.

Example:

Designing the RWL meta-model like shown in Figure 63 will scale appropriately as the system grows
as explained in Section 4.3.1.2. Any other sub-system, like the data access layer, also needs to be
scalable, as more and more data gets exposed to the user via the meta-model. The meta-model and
all its subordinate sub-systems should work in sync in aiding the user design the RWL model and
should perform at a level where the user is not distracted away from this task.

Chapter 4-Page | 66

4.3.1.4 Maintainable

This thesis essentially provides a framework for a meta-model for the RWL; therefore it is mandatory
that this framework is maintainable by other developers. The meta-model should have a consistent
naming scheme which promotes maintainability. The relationships between RWL constructs should
clearly represent the participating constructs and should have unique distinguishing names.

Example:
Looking at Figure 63 we can notice the naming scheme followed by the meta-model. The names of

the model elements closely match the actual names of the RWL constructs. This allows future
developers to easily notice relationships and other association nested within the meta-model.
Moreover the figure clearly represents via UML the relationship between a Print construct and its
corresponding Printableltems.

4.3.1.5 Robust

The meta-model provides an initiation point for all RWL models created thus it has to be robust
enough to cater for any possible model and also to gracefully reject any end-user error. The meta-
model also provides all the core elements for code generation and RWL script generation thus it has
to be robust enough to cater for variations in the way end-users design RWL models.

Example:
Consider the RWL script shown below:

1. Code RW_EXAMPLE_@3

2. Type Standard

3. Access STSR

4.

5. PageHeader

6. Print StandardPageHeader;
7. End

The above script can be represented visually in two distinct ways, both shown below Figure 64.

4 N
—
(h f
— ControlLines
Contro I LI nes Code: RW_EXAMPLE_03

Type: Standard

Code: RW_EXAMPLE 03 Access: STSR

i
(PageHeader)¢_ Print)
Print andardPage andardPage
L Hoager)

& J

Figure 64: RWL model variations

Note that both these models ultimately represent the same report as the PageHeader construct is a
grouping construct for displaying multiple elements on a report header. Although, in this particular
example, the script only has one Print construct within the PageHeader therefore it can be pushed
out of the grouping. Thus, the user can essentially use either approach and the meta-model should
be able to cater for both and generate the appropriate RWL script.

Chapter 4-Page |67

4.3.1.6 Simplicity

The RWL meta-model has to be designed for simplicity for two main reasons. Firstly, it makes the
code generator and the RWL script generator simple and secondly, it decreases the learning curve
for new developers if the RWL meta-model needs to be expanded.

Example:

Looking at Figure 63 we can see that the way to go from a Print construct to its corresponding
Printableltems is simple and at most one level deep. Therefore, a simple implementation of this
meta-model in an object oriented language is shown below in Figure 65.

() Printableltem) Printableltem

Printableltem ¥
Interface

Literal ¥ |
Class

Column ¥
Class

' Printableltem : List<Printableltem>

| Print ¥ |
Class

Figure 65: Simple implementation of the RWL meta-model

Thus, if the RWL code generator needs to access all Printableltems associated to a particular Print
constructs, this is simply possible via the property Printableltem:List<Printableltem> shown in the
figure above.

4.3.2 RWM Shell Host

4.3.2.1 Intuitive

The shell has to be intuitive to allow users to concentrate on the task at hand which is design a RWL
model. The notation exposed by the meta-model also needs to be intuitive and should be consistent
to allow seamless RWL model design.

Example:
A potential intuitive shell interface is shown below in Figure 66.

Chapter 4-Page | 68

PrasmRvIestelll ‘ .:’ J

File Edit View Wizards Window Help
v 28 £ BB X 9

AP_ALLOC* | RW_EXAMPLE_03 | Reportl* | Repori2*

Standard report wizard

This wizard will help you create a generic standard
report.

Drawing Palette

Modeling Palette

// Some commert

Code RW_EXAMPLE_03
Type Standard
Access STSR

Print StandardPageHeader;
Scan RM Generated report
Print RM_CUST + RM_NAME;
End
Print StandardReportfFootsr; g

ARgeENOVPWNE

Figure 66: Sample shell interface

Note in the above figure how we have separate areas where the user can find the models, a drawing
area (RWL model design surface) and an area where the generated report is shown. This interface is
simple to use as it contains a simple left to right flow where the user starts dragging the model and
drops it on the draw palette. The window at the bottom of the palette shows the generated RWL
script from the corresponding model. This generation can be triggered from the menu items or the
toolbar. Therefore we can safely say that this simple user interface follows the same mental model
as the user would have using modern day interfaces making this example Ul intuitive.

4.3.2.2 Simplicity

Any user interface exposing the meta-model to the user needs to be simple. Because the shell will
be defeating the complexity of the Prism database and that of the RWL it is essential that it does this
with simplicity to lower the learning curve for the end-user as much as possible. Moreover the shell
will have minimal to no documentation so it is vital that each aspect is designed with simplicity in
mind.

Example:
The sample interface in Figure 66 shows a simple approach to designing the shell. It does not have

any extra additions which would be confusing thus it making it simple for the user to design the RWL
model. The interface has a simple left-to-right flow, finding the models on the left hand side and the
RWL modeling surface to its right.

4.3.2.3 Robust
The shell has to be made robust enough to allow for user manipulation, even if it is erroneous. The
shell should allow users to make any possible moves and if an error occurs, either at the meta-model

Chapter 4-Page | 69
or at the Ul level, the shell should inform the users of the error and fail gracefully. If possible and
applicable the shell should also inform the user on how to rectify that error.

Example:
Consider the RWL script shown below:

Code RW_EXAMPLE_@3
Type Standard
Access STSR

A wWNBR

5. Print StandardPageHeader;
The above script is shown visually in the interface introduced in Figure 66. A variation of this
interface is shown below in Figure 67.

Frism /L Snizill E]E]

File Edit View Wizards Window Help

D'l 58 £ BbhX 9 @

f AP_ALLOC* | RW_EXAMPLE Re * [R + |
. Control Line [ap_aLoc | Rw_ - 03 | Report1* | Report2
O Print
O StandardPageHeader ControlLines

Type: Standard

Code: RW_EXAMPLE_03
Access: STSR

/
/
'} There already exists a flow connector from /
S| ControlLines to Print L
[Print)—{StandardPageHeader)
\
1. a
2. Code RW_EXAMPLE_03
3. Type Standard
4. Access STSR
5.
6. Print StandardPageHeader;
o
<l)]

Figure 67: Sample shell interface with error detection

The figure above shows the user adding a flow connector from the Print construct to the ControllLine
construct. This potentially violates the sequential nature of the RWL as there is already a flow
connector existing in the other direction. The interface should gracefully accept this and inform the
user about the violated constraint.

4.3.2.4 Self-explanatory icons (Closeness of Mapping)

Each icon which represents a given RWL construct has to be self-explanatory. This would allow users
to realize what the icon represents and use it effectively and also decreasing the learning curve.
Icons should also be consistent in terms of size and look and feel.

Others icons representing various features on the shell should also be intuitive and follow the user
mental model.

Chapter 4-Page |70

Example:
Looking at Figure 67 we can see that we have the model toolbox on the left hand side of the

interface, although at this stage each RWL construct is only represented by a coloured dot which is
not ideal. These should be replaced with more intuitive icons, for e.g. a potential icon for the Print
construct could be a printer icon.

Figure 67 shows other icons representing secondary shell features such as save, open, undo, redo,
etc. Note how these icons are consistent with an already existing user mental model matching a
modern operating system interface such as that of Microsoft Windows®.

4.3.2.5 Modular

The shell should be modular in terms of the meta-model components it exposes. It should have
separate sections for the toolbox, canvas, property editors, toolbars and menus. Modularising the
shell would allow users to direct their concentration on the task at hand.

Example:

Figure 67 shows an example of such a modular interface where each section or aspect of designing a
RWL model are disparate. The toolbox is on the left hand side of the interface and the canvas to its
right. Toolbars and menus are grouped together on the top of the interface.

4.3.2.6 Metaphors used

Visual notation exposed by the shell should potentially use appealing metaphors where possible.
Metaphors aid users in thinking about the notation in terms of the RWL constructs. It allows the
user to simply look at a given RWL model and know what it represents rather than looking at a
mapping file which maps the notation to the RWL constructs. Care has to be taken that the
metaphors used are not contradictory and do not hamper the users’ perception of what the RWL
model represents.

Example:
An example of a metaphor is given in Figure 57. If a metaphor is not feasible for a given construct

we can use an UML like approach where a stereotype is used. So we could potentially have a
notation like shown below in Figure 68.

<<ControlLines>>

Code: RW_EXAMPLE_03
Type: Standard
Access: STSR

Figure 68: Notation using stereotyping

4.4 Summary

This chapter details the requirements for this thesis in terms of the meta-model which needs to be
developed to represent the RWL and the shell user interface which will potentially host this meta-
model. Therefore, the core requirement is to give end-users the ability to visually design RWL
scripts. Other secondary requirements also highlighted within this chapter are the need to make the
meta-model and the shell user friendly and intuitive for developers and end-users respectively.

Chapter 4-Page |71

Various examples are given to complement the requirements and help elaborate on the
requirements.

Chapter 5-Page |72

Chapter 5 - Design

5.1 Introduction

This chapter details the design and analysis phase of the thesis research. It analyzes the
requirements established in the previous chapter and details the design steps taken to cater for each
of them. Similar to the requirements division, we divide this chapter into two main parts, design of
the meta-model and the design of the shell which hosts this meta-model. The chapter also describes
the architecture of the system along with details about the user interface design.

We use UML and a use-case modeling approach to highlight and justify the key design decisions
made during the course of the meta-model and the RWL shell host design. Also note that we used
two approaches during the course of the thesis which were introduced in Section 3.4.2, namely the
Class Diagram Approach and the RWM Shell Approach. Therefore, in the following sections we will
be analyzing the design decisions for each of these approaches independently.

5.2 Stakeholders

We have identified two main stakeholders which we have to consider while catering for the
requirements outlined in Chapter 4. Each stakeholder has an aspect of the solution which they are
primarily concerned about, therefore we have divided up the stakeholders with respect to the meta-
model of the system and the shell host which will eventually host the meta-model.

5.2.1 Meta-Model

The key stakeholder with respect to the meta-model is the developer. The meta-model essentially
builds a framework for a Prism developer to build future models and evidently improve the already
existing RWL meta-model.

5.2.2 Shell Host

The key stakeholder with respect to the RWL shell host is anyone who designs Prism reports,
essentially Prism customers. The key responsibility of the shell is to expose the meta-model of the
RWL to the end-user.

5.3 Use Cases

Use cases were used to highlight our core functional requirements in terms of its stakeholders using
a graphical notation. We will be using these use cases in Section 5.4 and Section 5.8 to highlight our
design decisions.

5.3.1 Developer
The developer of the meta-model has the obvious function of designing the meta-model, although
other core requirements were also identified. These are showing below in Figure 69.

Chapter 5-Page |73

Add/Modify
eta-Model Element:

Add/Modify
Meta-Model Constraints

Design RWL Code
Generator

Specify Mandatory
Fields

Expansion Points K

«extends» R -
Specify Field

Editors
Meta-Data Access

Developer

Explorer View
Evaluated

Figure 69: Use case developer perspective

Figure 69 identifies eight core functionalities (identified by bold ellipses) we have to cater for in
terms of the developer. Other use cases identify secondary requirements which specializes a given

primary requirement.

5.3.2 Report Designer
Any individual that designs a report will potentially be the end-user of the meta-model as they will

use it to design RWL models using a standalone Ul. Reports will be designed in essentially two ways
depending on our approach. In the first approach the end-user uses a WPF Ul to design RWL models
and in the second approach they use the Visual Studio Shell. The core functions a report designer
will be performing are encapsulated in the use case diagram shown below in Figure 70.

Chapter 5-Page |74

«extends» sually Design
Visual Notation ™ Reports

Constraint
Validation

Show Program Flow

@ «extends»
«extends» hiId Elemen Report Designer (End-User)
. ep -
Ordering > Behaviour
«extends» \/

Figure 70: Use case end-user perspective

Figure 70 identifies six core functionalities (identified by bold ellipses) in terms of the end-user.
Other uses cases shown in the figure are specializations of the core use cases.

In the following sections we examine the design aspects of the approaches taken during the course
of this thesis. The sections are analyzed according to the requirements highlighted in the use cases
shown in Figure 69 and Figure 70.

5.4 Object oriented Design/Analysis

Our main hypothesis was to prove that an enterprise task such as designing a report is possible using
a visual language. The visual language should potentially raise the abstraction level of the reporting
language and other systems which are used in conjunction with it such as an enterprise database. It
is also intended to make it easier to understand and maintain existing reports as well as create new
reports.

One potential way of raising the level of abstraction is with the aid of a model as outlined in Section
2.3. Therefore, it was realized that a possible solution to our hypothesis was to use MDSD and let
users create high level models of reports which abstract irrelevant details of the language and its

Chapter 5-Page |75

conjunctive systems. To give the user capabilities to design models, we needed to base these
models on some semantics and constraints, a valid meta-model (Section 2.3.4).

This section details the steps on how the meta-model evolved from simple Prism reporting scripts
from (Prism New Zealand, 2005) and also details some of the core constructs. It also illustrates the
process via which the meta-model was developed by successively considering more complex and
new RWL constructs and appending them to the meta-model. Along with adding new constructs we
also continuously refactored our existing meta-model as we were using an agile software
development process. This meant that we used an iterative approach to our solution design.

Each step is divided up into three main parts: Script, Meta-Model and Analysis. The script represents
RWL code examples which we look at to develop the meta-model. The meta-model, just as the
name suggests, is the meta-model which caters to the script introduced in the “Script” part and
finally we analyze our meta-model. In our analysis we look at how new structures have been
incorporated into the meta-model and their significance. We also look at any new relationships
formed between new or existing meta-model RWL constructs.

Step 1:

Script:
1. Code RW_EXAMPLE_00
2. Type Standard
3. Access STSR + ARCR

Meta-Model:

ControlLineModel

-Code : string
-Type : ListTypeEnum
-Access : string

Analysis:
This is an example of a simplest valid Prism report script. It contains three fields:

1. Code: Uniquely identifies the report in the Prism WIN MIS system.
Type: The type of the report. Can be any of these six values {List, Summary, Period,
Standard, General, ActionScript}.

3. Access: The windows’ within the Prism WIN MIS system where this report can be accessed

from.
Step 2:
Script:
1. Code RW_EXAMPLE_01
2. Type Standard
3. Access STSR + ARCR
4. Name “Report Writer Example 01”

Chapter 5-Page |76

Meta-Model:

ControlLineModel

-Code : string

-Type : ListTypeEnum
-Access : string
-Name : string

Analysis:
Similar report to that shown in Step 1, although an extra attribute Name, which can be a small
description of the report.

Step 3:
Script:
1. Code RW_EXAMPLE_02
2. Type Standard
3. Access STSR
4. Name “Report Writer Example 02”
5.
6. Print StandardPageHeader;
7. Print “Hello World”;
8. Print StandardReportFooter;

Meta-Model:

ControlLineModel | T eting |

-Code : string
-Name : string WindowSelectionModel
-Type : ListTypeEnum
-Link : string
-Access : string
-File : string /‘r\

|

|

|

|

|

|

|

[cinterface rIRep |

-PeriodEndReport : bool
l ‘ FAction : string

-Sort : string

-Select : string
-Preselection : PreselectionBlockModel -—-——-----'
-NoMargins : bool
-FixedFont : bool

[inter l -BelongsTo

l |

«uses»

«uses»
0.* -Contains

LiteralModel
FValue : string

-Value : string

i
I
|
| |
| |
I I
b

CommentConstructModel } 1
| |
| |
| |
| |
| |
| |
| I
| |
| |

NN/
«utility»
SequenceUtility
-SeqguenceNumber : int

: {ControiStructureModef| ~ <S€5”
-Contains

«interface»
IPrintableModel

- %
‘ StandardReportFooterModel
PrintConstructModel StandardPageHeaderModel

0.1

-BelongsTo

Chapter 5-Page |77

Analysis:
The above meta-model is more complicated than the reporting script it models, although the reason

for this is that we have identified some patterns and denoted them in the meta-model shown above.

Step 4:

Script:

ControlLineModel
Contains other fields (attributes). What each of these attributes mean is irrelevant as the
important attributes were identified in Step 1.
0 WindowSelectionModel
We identified that the field Access is only populated by the user with valid Prism
WIN window? codes. Therefore, we anticipated a pattern and provided the user
with the WindowSelectionModel via which this can be made possible.
IReportStatementModel
A generic interface which all models inherit from to give them the capability of being used in
a more generic way if need be.
IGeneratedCodeModel
Any model which potentially generates RWL script has to inherit from this model. We added
this model as we identified the need that the meta-model will be used to generate RWL
scripts.
IPrintableModel
Any model that can be associated to a potential Print statement should inherit from this
model. As seen in the script and in the meta-model, both StandardPageHeaderModel and
StandardReportFooterModel can be used in a Print statement thus inheriting from this
model. Also note the LiteralModel which inherits from this model as it can be used in a Print
statement.
IControlStructureModel
Introduced this model to provide grouping to child models such as the PrintConstructModel,
StandardPageHeaderModel and StandardReportFooterModel.
SequenceUtility
Any model can use this utility to provide a sequential ordering. This came about due to
sequential nature of the Prism RWL.
Relationships (Contains and BelongsTo)
O PrintConstructModel-IPrintableModel
The meta-model depicts the relationship between a Print statement
(PrintConstructModel) and any printable item (IPrintableModel) via this relationship.
Therefore, it shows it as a PrintConstructModel can contain 0..* IPrintableModel
items and an IPrintableModel item has to belongs to a PrintConstructModel.
0 ControlLineModel-CommentConstructModel
Depicting the fact that the ControlLineModel can contain 0..*
CommentConstructModel items and that a CommentConstructModel item has to
belong to a ControlLineModel.

1.
2.

Code RW_EXAMPLE_03
Type Standard

OV ooNO UV W

Access
Name

Print
Scan RM

End
Print

STSR
“Report Writer Example ©03”

StandardPageHeader;
Print RM_CUST + RM_NAME;

StandardReportFooter;

Chapter 5-Page |78

Chapter 5-Page |79

Meta-Model:

Database
ControlLineModel r;cc_es_s_tn_ng__ T
-Code : string oo
-Name : string WindowSelectionModel
-Type : ListTypeEnum D «interface»
-Link : string IDBModel
-Access : string
cinterface» -BelongsTo -File : string 7N
IReportStatementModel -PeriodEndReport : bool |
1 -Action : string 1
-Sort : string «uses» |
-Select : string |
-Preselection : PreselectionBlockModel - —————-—--— '
«interface» -NoMargins : bool
IGener deModel _FixedFont - bool 1 TableModel
-TableName : string
VAN VAN ; -BelongsTo
I
i
! «uses»
«uses» e N
! 1 -Has
i | |
I
| | |
1 *
| -Contains Q. ! |
| 1 ! ColumnModel
I
LiteralModel ! i | -ColumnName : string | _contains
| CommentConstructModel | |
-Value : string | ! |
! -Value : string ! !
| | 1
| | |
| | |
! | i
| ! |
| y N/
i «uses» «utility»
} {> 1c; SequenceUtility
L
. «interface» | 7]-SequenceNumber : int
0. IPrintableModel | D <
T ___ I
-Contains.
StandardReportFooterModel
-Contains 0.*
-BelongsTa L_|StandardPageHeaderModel L_|ScanConstructModel
PrintC 1
1
-BelongsTa
e 0.1

Chapter 5-Page |80

Analysis:
Only the new constructs added in the above meta-model are analyzed from this point forward.

e ScanConstructModel
A ScanConstructModel represents an SQL select statement as highlighted in Section 1.4.
Therfore, it has a TableModel associated with it.
e TableModel
A TableModel represents a given Prism database table (view) which inherits from a
IDBModel as it is a database concept.
e ColumnModel
Encapsulates a column with a Prism database table (view). It inherits from the
IPrintableModel interface as it can be used in conjunction with a Print statement.
e Relatsionships (Contains and BelongsTo)
0 ScanConstructModel-ScanConstructModel
We have anticipated the necessity of this relationship as a Scan can potentially have
another nested scan within it. This relationship is recursive in nature, thus
represented by a reference to itself.

Also note the swimlane Database on the left hand side of the meta-model. This is introduced so we
can keep the models which are database oriented disparate from the RWL models.

Step 5:
Script:
1. Code RW_EXAMPLE_04
2. Type Standard
3. Access STSR
4. Name “Report Writer Example 04”
5.
6. PageHeader
7. Print StandardPageHeader;
8. Print RM_CUST.ColDesc + RM_NAME.ColDesc;
9. Print;
10. End
11.
12. Scan RM
13. Print RM_CUST + RM_NAME;
14. End
15.
16. Print StandardReportFooter;

Chapter 5-Page |81

MetaModel:

Database

ControlLineModel Acessssting~ 1
Code : string { Accessistring_ _ .
-Name : string WindowSelectionModel
-Type : ListTypeEnum terface»
-Link : string DBModel
-Access : strin L 1
«interface -BelongsTo -File : string ° yaN
eportStatementModel L port : bool |
1 Action : string |
-Sort : string «uses» |
-Select : string }
«interface» -NoMargins : bool
-FixedFont : bool 0.1 TableMode!

-BelongsTo

LiteralModel
Valie sting| | 1———-P-———~

rfaces
leMod.

ter
al

i
|
I i |
| ! |
| ~Contains 0.~ |
H : ! I olumnModel
! I
! ! [ColumnName : siring |
| CommentConstructModel | 1 Contains
| ~Value - string 1 !
= in; 1 AV L . 1 -BelongsTo	
! SequenceUtility	

e SeguenceNmber it

-Contains

-BelongsTo

PageHeaderBlockModel

StandardReportFooterModel

Coptains 0.0]

PrintConstructModel|

[|
1

-BelongsTa

-BelongsTo 0.1

Repoi g
Variable = Variable FunctionModel

+D: = “Parent : FunctionParemEnum
+DataFieldEra = DataFieldEra Value : sting

+Expression = Expression

+Clump = Clump ‘ 0.1

-HasA

Chapter 5-Page | 82

Analysis:
New constructs added:

e FunctionModel
Represents a function, for e.g. ColDesc seen in the RWL script. Note the relationship
between the FunctionModel and the ColumnModel.
O FunctionParentEnum
An enumerated object contain five possible values representing the various
constructs on which a function can be performed. This was a pattern established by
looking further into the RWL semantics using (Prism New Zealand, 2005).
e PageHeaderBlockModel
A grouping statement which allows us to have multiple constructs within the page header of
areport. Also note the relationship between the PageHeaderBlockModel and
IPrintableModel interface. This is due to the fact that a PageHeaderBlockModel can contain
0..* number of IPrinableModel items.

Step 6:
Script:
1. Code RW_EXAMPLE_05
2. Type Standard
3. Access STSR
4. Name “Report Writer Example 04”
5. Select RM_CUST.From + RM_CUST.To + RM_BAL_TYPE.Match
6.
7. Clump cust_clump = RM_CUST + RM_NAME + RM_BAL_TYPE + RM_BAL_OMWE;
8.
9. PageHeader
10. Print StandardPageHeader;
11. Print cust_clump.ColDesc;
12. Print;
13. End
14.
15. Scan RM
16. Print cust_clump;
17. End
18.
19. Print StandardReportFooter;

Chapter 5-Page |83

MetaModel:

ReportWriter Database

ControlLineModel | Accessistring__ |

ﬁg:;’_ss‘:_:‘fg WindowSelectionModel
-Type : ListTypeEnum 4D Tg‘tﬁelclfssz)l)
-Link : string
-BelongsTo -Access : string
-File : string A
-PeriodEndReport : bool |
1 -Action : string }
i
|

«interface»
IReportStatementModel

VAN

PreselectionBlockModel

-Sort : string
-Select : PreselectionBlockModel L —— _________!
-NoMargins : bool
-FixedFont : bool 0.1 TableModel

-Contains 0.1 -TableName : string

? _BelongsTo
1 |_-BelongsTo

«interface»

«uses»

LiteralModel «uses»
-Value : string

— [

-BelongsTo 1 -Has
«uses»____ | c - ~Contains
N -Name : string 0.1 *
ColumnModel

-ColumnName : string

-Contains 0.

-Contains

|
|

I

i

CommentConstructModel }
[Value - sting |
i

|

|

I

i

|

0.1 -BelongsTo

VN 0.1 -BelongsTo
wutility»
SequenceUtility

-SequenceNumber : int
— <

—" -Gontains

. <interface
® IPrintableModel

-Contains -Contains I

> 1 «uses»

-BelongsTo 1

StandardReportFooterModel

PageHeaderBlockModel!

BelongsTo
tains 0.

-BelongsTo L_|standardPageHeaderModel ScanConstructModel
PrintC 1
>
Do
-BelongsTo
BelongsTo 0.1
«enumeration»ReportingP: Je:
+Variable = Variable FunctionModel 0.1
+DataFieldNonEra = DataFieldNonEra -Parent : FunctionParentEnum
+DataFieldEra = DataFieldEra -Value : string
+Expressicn = Expressicn -HasA
+Clump = Clump ‘ 0.1

HasA

Chapter 5-Page | 84

Analysis:
New constructs added:

e ClumpModel
A Clump represents a variable which enables grouping of various values. For e.g. in this
particular step it groups a set of database columns.
e PreselectionBlockModel
Represents the Select field withing the ControlLineModel. It potentially allows the report
designer to input runtime values which can be used by the report.
e Relationships
0 ClumpModel-ColumnModel
A Clump can potentially contain 0..* Columns and a Column can belong to Clump.
0 ClumpModel-FunctionModel
A Clump can have a Function and a Function can belong to a Clump. Also note that
this changes the multiplicity of the relationship ColumnModel-FunctionModel. Now
a given FunctionModel can belong to either a ColumnModel or a ClumpModel.

Note the colour coding of the swimlanes to enable us to distinguish between constructs which
belong to the database side as opposed to the constructs which belong to the report writer.

Step 7:

After these steps it became evident that as new RWL constructs got added the meta-model did not
have to sustain major changes. Therefore we could successfully say that we had designed a partial
meta-model of the RWL which could now be converted from a static UML structure to a DSL.

Step N:

Shows the final (although partial) UML meta-model after which we started the implementation
phase of the thesis. We can continue to refine and add more RWL constructs to this meta-model
although we do not expect many changes to the meta-model as the core constructs and
relationships have already been captured.

Note the new RWL constructs shown in the meta-model, for e.g. IfPredicate, ChooseModel, etc. We
do not analyze these newly added constructs as their details are irrelevant in terms of this thesis
because all we are trying to do is represent these in a DSL. Moreover, as the RWL is always evolving

|II

this thesis focuses on providing a proof of concept prototype rather than catering for “all” possible

RWL constructs.

Meta-Model:

| 85

Reportwiiter

Database

ntertaces
IReportStatementMadel
yAN

oty
Sequenceutility

[SeauenceNmber - it

elsctsiring N

-BstongsTo

Selectmodel
“BelongsTe

ControlLineModel

ntertacen

Select PresetectionBlockMacel | —
|-NoMacgins : boot
|-FixedFon : boot

N

ntertaces
IDEModel

“eemane
“BetongsTe t “BelongsTc
1 |_Betonaste
Cntains.
g “BelongsTc
4
ot o Name suing L a || e
o S -Dowa : boo!)
-BetongsTo ColumnMod
~Comains.
onine , Soumname g | contains.
1 = e L
~Contains| “BetongsTe
i T |
| I
[7aiee - sting | | Foen
1| -BetonpsTo L I] ~BelongsTe
PrintConstructiodel]
0a
IControtstractaretade]
Contains. 1
petonaeTe | 1 I B
ZA -BetongsTo | 0.1
0 1
o | :
o
1 “BetongsTe | I ~Contains. ~BelongsTe:
— — 1 [I -BelongsTe | 1 [MPredicate
? ~Comains. _ [isNegaed boo s
FequateTe : ohject
1 BetofgsTe '3 “BetongsTo
getongsTo
1
< | -comains
~ontains.
i T 1
—n~ I) I
I 11 | I] I] Seurconstruwaorer
[] |] [1 [Fope tEseErum | [Frope - tErsetrom =7 |
N T [] []]
=T
‘Eise = ELSE
+Eisei - ELsEIF
~conti
1 1
< | comains - Ing
-BetongsTo -BelongsTe
-BetongsTo
Feotour it g
FFormat :int
TooseType [FWiaten = atcn
From
ot
0.4 | -ash
“enumeration
Varate - Varis Famctomiase | g
[CataFialdEra = DatarroitEra [Farene: FanioneareaEnm
[+Expressior = Expression < e
04

Chapter 5-Page | 86

5.5 Overall architecture

5.5.1 (Class Diagram Approach

/—RWL meta-meta model—\

Microsoft DSL Tools

- J

Meta-meta Model
elements

Instantiates meta-meta-model elements

| 1.
/—RWL Meta-Model ~

Experiemental Hive Meta-model

N J

Instantiates meta-model elements

—_
Prism
DB

]
/—RWL Model

Generate(...)

-
=
T
M
=
—l1oAe] ss800y aseqele—|
g

RWL
Script

creates

Intent

Figure 71: Class Diagram Approach: Architecture

Figure 71 above shows a high level architecture diagram of the Class Diagram approach. We see in
the centre of the figure the essence of this approach where we create the meta-meta model from
which we create the meta-model and eventually the model. If we look from a different perspective
we can see that the end-user creates a RWL model which instantiates RWL meta-model elements
which in turn instantiates the meta-meta model elements. The architecture diagram also shows at
what level we access the Prism database and the user interaction with the Ul, the model and the
expected RWL script. The figure also depicts how the code is generated from the models with the
final RWL script being generated by the Ul by calling individual Generate(...) methods on model
elements.

Chapter 5-Page |87

5.5.2 RWM Shell Approach

- |
/—RWL Meta-Mode ~N

Microsoft DSL Tools Meta-model

- J

Text- —RWL Model Instantiates meta-model elements
templates ID A
Q
5
o
&%
@ 3
Experimental Hive 2 Prism
3 DB
[}
w
2
Text-templates %
_ T J

Uses
RWL
Script

creates

Intent

Figure 72: RWM Shell Approach: Architecture

Figure 72 above shows a high level architecture diagram of the RWM Shell approach. Although
similar to our Class Diagram approach, we potentially have one less layer in this approach. Our WPF
Ul layer is subtracted and our RWL meta-model is represented in the DSL Tools itself. Also note that
we use text templates to generate our RWL script as opposed to a individual Generate(...) method
like in the Class Diagram approach.

5.6 Approach Overview
This section gives us a very brief overview of the two approaches tried to achieve the goal to
modelise the RWL and provide users with a visual mechanism to design Prism reporting scripts.

Our first approach, Class Diagram Approach, involved the use of UML-like class diagrams. We
decided on this approach as class diagrams provide a generic yet efficient way of modeling systems.
It was also decided that we would append domain specific information into this class diagramming
tool which would allow us to create a potential meta-model of the RWL where each construct would
be represented as a class and relationships represented as associations. Therefore we essentially
used the Microsoft DSL Tools to design this highly customizable Class Diagram Tool which was then
utilized to create a RWL meta-model. At the end of the process we designed a standalone Ul using
WPF which exposed this RWL meta-model to end-users via which they could design RWL models and
generate RWL script from them. It was also realized in the early stages of this approach that
representing RWL constructs and relationships using shapes and lines would involve a heavy

Chapter 5-Page | 88

overhead in terms of programming and time. Therefore we decided to discard this approach and
use a simpler alternative allowing us to quickly develop a prototype for a visual RWL tool. This led us
to our second approach, RWM Shell Approach.

Our second approach was similar to our first approach although we decided to remove the WPF Ul
layer. Therefore what we decided to do was to represent the RWL meta-model using the Microsoft
DSL Tools as opposed to representing it using a highly customized class diagramming tool. This
allowed us to rapidly design the meta-model and expose it using the Visual Studio Shell via which the
end-users could design RWL models. We could then write templates against these models to simply
generate the RWL script. This approach gave us the ability to quickly develop the RWL meta-model
and the prototype needed to allow end-users design Prism reports. One drawback of this approach
was the lack of customization which a WPF Ul would offer. Therefore a trade-off was made and we
chose the path which allowed us to create a functioning prototype within the time period allowed
for our thesis.

5.7 Class Diagram-Based Design

5.7.1 Overview
The Class Diagram Approach was introduced in Section 3.4.2. We look at this approach and the
design aspects in detail in this sub-section.

The Class Diagram approach was primarily taken to provide end-users with a rich Ul to design Prism
reports. This was possible using WPF (introduced in Section 3.3.2). The paradigm behind the
approach was to design a rich UML-like DSL which could be flexible enough to let developers design
a functionally rich meta-model of the RWL. This meta-model could then be exposed by a
sophisticated front-end to users assisting them to design Prism reports. This front-end Ul would also
generate the required RWL script from the model which the end-users created.

A major flaw in this approach was that it would essentially take a lot of time and resources to design
a partially functional front-end which could effectively demonstrate the meta-model. The front-end
had to visualize shapes, relationships and other constraints which were not feasible in the time
period allowed for this thesis. Nonetheless this was realized part way through the design and
implementation stage therefore we include this approach in this thesis.

5.7.2 Meta-Model Design

The meta-model of the RWL in this approach was divided up into two steps. The first step involved
designing a meta-meta-model using the DSL Tools and the second stop involved using this meta-
meta-model to create the RWL meta-model.

Our meta-meta-model as described in previous sub-section is essentially a customized UML meta-
model. The following sub-sections describe the design decisions taken in terms of the use-cases
illustrated in Figure 69.

5.7.2.1 Add/Modify meta-model elements

The DSL Tools provide a Class Diagram model wizard which we used to create an initial model of a
tool which allows us to draw highly customized domain specific class diagrams. The figure below
shows what we initially started with while using this approach.

p—
Bile Buld Debug Dyta ook Test Window Help
A--Gdd A 4 s - b Debug - Ay CBU

- | Layouttieper

[Madermye
Domaca

Chapter 5-Page |89

GFHLRO-;

Diagram Elements

Figure 73: Class Diagram approach: Initial class diagram (meta-meta-model)

Figure 73 essentially shows a meta-model of a UML-like language which we can customize and

configure according to our domain. After refining this model to fit our domain it will became our

meta-meta-model. Via this meta-meta-model we will be able to design a highly domain specific

visual representation of the RWL constructs, i.e. the RWL meta-model. Fore.g. if we need a RWL

construct called ControlLine model, we would be able to instantiate a meta-meta-model element

called ModelClass (shown in Figure 73) and call is ControlLine. This ControlLine RWL meta-model

construct represented by a ModelClass meta-meta-model construct will eventually be instantiated

by the end-user via the standalone UL.

Figure 74 below shows the built-in templates within the DSL Tools which generate the executable

code for the model (executable code for the meta-meta-model) shown in Figure 73.

Chapter 5-Page |90

Solution Explorer - Solution "Languagel’ (2 projects) IE
RIR2EIEA|Q| 83
_: Sclution 'Languagel’ (2 projects) -~
- (= Dsl
- [=d| Properties

3] References
o | GeneratedCode
:]

= .Cnnne(t\nnBuwlders.tt
- ¥ ConnectionBuilders.cs
EN Connectors.tt
- %] Connectors.cs
[EX Diagram tt

- %] Diagram.cs

N e
=) DirectiveProcessor.tt

m

- "ﬁ DirectiveProcessor.cs
EN DomainClasses.tt

" o

[EX Domainhodel tt

- %] DomainModel.cs

=) DomainModelResx.tt

- "ﬁ DomainModelResxresx
EN DomainRelationships.tt

- %] DomainRelationships.cs
[EX HelpKeywordHelper.tt

- %] HelpKeywordHelper.cs
EN Languagel Schema.tt

- '] LanguagelSchema.xsd
E MultiplicityValidation.tt

e %) MultiplicityValidation.cs
[=RNEN PropertiesGrid tt

- %] PropertiesGrid.cs

1 SerializationHelper.tt

Figure 74: Built-in templates

5.7.2.2 Add/Modify meta-model constraints

Microsoft DSL Tools expose various mechanisms to design model constraints. The DSL Tools
provided us with relationships, rules and overrides to cater for hard and soft/dynamic constraints.
We look at what each of these concepts mean and then we analyze them with respect to our
approach to detail how we used these concepts to meet our requirements.

Microsoft DSL Constraint Overview

Relationships
The DSL Tools exposes two types of relationships which we can use to create associations between

model elements and therefore enforce hard constraints. We can also force this constraints to allow
us to propagate deletes and updates if need be.

1. Embedding Relationship (Part-of or aggregation relationship)
An embedding relationship between two model elements means that the target model
element is embedded within the source model element. Every model element has to be
embedded within one source model, this is necessary for the successful serialization of the
model. A target model element can only be in one embedding relationship, this rule ensures
that a model element has only one parent at all times. An example of an embedding
relationship FamilyHasPeople is shown below in Figure 75.

Chapter 5-Page |91

4 Family Y — Roles
DomainClass
— :
FamilyMembers Family
. FamilyHasPeople Y --[i/ Person =
0..% Domain Relationship — 4 4 DomainClass
L Multiplicities

Figure 75: Embedding relationship reproduced from (Microsoft, 2007)

Note in Figure 75 the opposite roles, to read this relationship we state that a Person has to
belong to one and only one Family and a Family can have more none or infinite Person. The
role accessors appear so that to access all the Person objects in a Family we have to go
through the property FamilyMembers and to access the Family which a Person belongs to,
we have to go through the property Family.

Also note that the target model of an embedding relationship appears as a child node of the
source model element in the Explorer View (essentially a tree-view of all the model
elements).

2. Reference Relationship (Has-a/Uses or association relationship)
A reference relationship, as the name states, is when a source model element references a
target model element. The target model element appears as a property within its source
model element. Reference relationships have no strict rules on the multiplicities its source
and target model elements and are read the same way as an embedding relationship. The
only difference is that they are represented using a dashed line as shown below in Figure 76.

“¢ ExampleElement [¥
DomainClass

ExampleElementReferencesTargets
Targets

DamainRzlationship [| Sources f “¢ ExampleElement ¥

[o l DomainClass

Figure 76: Reference relationship

Rules

A rule is created when the DSL designer needs to propagate changes to other parts of the model
when a particular model element is affected (Cook, Jones, Kent, & Wills, 2007). Rules are similar to
events which get triggered on various changes. For e.g. a rule can be triggered when a model
element is added (inherit from AddRule) or changed (inherit from ChangeRule). AddRule and
ChangeRule are built-in classes provided by the DSL Tools framework.

The framework mandates that an attribute is used to specify which model element a particular rule
applies to. This is done by using the RuleOn attribute: [Ruleon(typeof(Person), FireTime =
TimeToFire.TopLevelCommit)]. This adds a rule on the model element called Person. Other details
about the RuleOn attribute are irrelevant.

For e.g. let us have a look at the rule shown below:

[RuleOn(typeof(Person), FireTime = TimeToFire.TopLevelCommit)]
internal sealed class PersonDeleteRule : DeleteRule

{

public override void ElementDeleted(ElementDeletedEventArgs e)

Chapter 5-Page |92

{
if (MessageBoxResult.Yes ==
MessageBox.Show("All children of this person will be deleted, continue?")
{
base.ElementDeleted(e);
}
¥

}

The above rule applies whenever a Person is deleted from the model. It simply allows us to ask the
end-user whether they do want to delete this person and all children it may have.
TimeToFire.TopLevelCommit simply states that this rule will be triggered when the top level
transaction commits its changes. We can also fire rules when either a nested transaction commits
(TimeToFire.LocalCommit) or directly after a change is made (TimeToFire.Inline).

Overrides

The code generated by the templates shipped with the DSL Tools to represent the model is in C#.
The code is structured in a modular and flexible way which allows the user to easily override its
default behaviour. This is very useful when custom logic is needed to do validation and other
constraint checks for a target DSL tool.

For the Class Diagram approach we are essentially writing UML like constraints which force the DSL
user to create a valid class diagram of our RWL meta-model. An example of such a constraint is
demonstrated by a reference relationship shown below in Figure 77.

“Z ModelClass
DomainClass

= Domain Properties
5 Name: String

‘Generalization

Subdasses Domainfelationship (¥ | Superdass ‘4% ModelClass =
0.7 0.1 DemainClass

Figure 77: Class Diagram Approach: Class Diagram relationship constraint

Note in the above figure, model element ModelClass. A constraint seen in Figure 77 is imposed by
the reference relationship Generalization. This shows that a ModelClass may only have one
ModelClass as its SuperClass.

Another possible constraint is on the ModelClass model element which states that its Name
property cannot be empty. This constraint can be enforced by an override shown in Figure 78.

internal sealed partial class MamePropertyHandler

protected override void onvalueChanging(Mod
{
if (5tring.IsNullorEmpty(newvalue))
throw new ArgumentException("Name has to be populated”);
base.onvalueChanging(element, oldvalue, newvalue);

i

';z-z-| element, string oldvalue, string newvalue}

i

Figure 78: Class Diagram Approach: Class Diagram override

5.7.2.3 Design code generator
The code generator for the Class Diagram approach is essentially a three phase process as described
in Section 3.4.2.1 and shown in Figure 79.

Chapter 5-Page |93

1. Automatically’ generate code representing the meta-meta-model of our UML-like DSL.
Create a UML like model representing the RWL meta-model.

2. Generate code representing the meta-model using text templates.
End-user creates RWL models via the WPF Ul which uses this code.

3. Generate RWL script representing the RWL model which the end-user created.

RWL Meta-Meta Model RWL Meta-Model
(UML meta-model) (UML model) RWL Model

Instantiation Instantiation
Meta- 1 Generated Generated
Model Code Code

DSL Tools Shell Ul

Generated
Code

Figure 79: Class Diagram Approach: Code generator

The above process is further explained in Chapter 6 (Section 6.3.2.2) where we look at the
implementation details of the code generator.

5.7.2.4 Extension Points (Mandatory Fields)

Mandatory fields are nothing else except attributes or properties which need a user value present to
make it valid. Therefore, in our class diagram approach we envision each RWL construct being
represented as a Class and each field being represented as an Attribute within that class. Figure 80
represents this Class contains Attribute relationship.

Class Attribute
@ ———-IsMandatory : bool

Figure 80: Class Diagram Approach: Mandatory fields design

Note from the above figure that the Attribute object contains an attribute called IsMandatory which
allows developers to denote either that particular Attribute is a mandatory (true) or not (false). This
approach makes it flexible for future developers to add/modify mandatory attributes when
designing the RWL meta-model using this meta-meta-model.

For example, the ControlLine construct within the RWL would be represented as a Class and one of
its attributes, Code, will be represented by an Attribute. Moreover as previously stated, Code is a
mandatory attribute therefore it will have the IsMandatory property set to true.

5.7.2.5 Extension Points (Field Editors)

The idea of field editors is to allow developers select a specialized window via which a field of a RWL
construct can be edited. We cater for this requirement in a similar fashion to that described in
Section 5.7.2.4. We add another attribute to our Attribute object, introduced in Figure 80, called
EditorType. This is shown below in Figure 81.

* Microsoft DSL tools generate this code using built in text templates.

Chapter 5-Page |94

Attribute

¢ -IsMandatory : bool
-EditorType : EditorType
1 *

Class

«enumeration»
EditorType
+Default=0
+WindowSelectionEditor = 1

Figure 81: Class diagram approach: Field editors design

Note the enumeration type EditorType, this currently contains only two values, namely Default and
WindowSelectionEditor. This enumeration value can be expanded by other values as our meta-
model grows although currently we have only anticipated two values.

Let us look the significance of each enumerand value.

1. Default
The default field editor provided by the system will be used.

2. WindowSelectionEditor
An editor which displays all the Windows? that exist with the Prism WIN MIS system
(illustrated in 4.2.1.4).

5.7.2.6 Extension Points (Prism meta-data access)

For our Class Diagram Approach the Prism meta-data does not need to be accessed unless when
needed by the end-user while designing the RWL model. Meta-data access allows the end-user to
lookup information about the Prism database while using the visual language as opposed to
remember the information. Therefore the design of our meta-data access is important so we can
give users as much information about the structure of the Prism database. This is done by using
LINQ (introduced in Section 3.3.3).

LINQ provides developers to query databases using programming language syntax. LINQ also
provides an ORM (object relational mapping) tool” for database tables and views. We use this
mapping to give us readymade mapping classes for tables and views which contain Prism meta-data
information.

> This tool itself is designed using Microsoft DSL tools.

Chapter 5-Page |95

4

oW oW o)
=)
<«

L N

DA Dw

b

DU

o) () (5 (o)
=
44

LU A S

= Properties
)
% Ds_ADD_OP
%F DS_ADD_DATE
5 DS_ADD_TIME
%f DS_EDIT_OP
55 DS_EDIT_DATE
%5 DS_EDIT_TIME
50 DS_ID
%F Ds_CODE
%5 DS_SYS_VALUE
5 DS_USER_VALUE
5 DS_ACTIVE
%5 DS_CHECK_SUM

DV ¥

Figure 82: Prism meta-data

Figure 82 above shows all the views within the Prism database which contain meta-data information.
We have shown an expanded version of one of these views to display its properties, note these
properties match the columns within the view in the database. Also note the two part naming
convention. This convention does follow certain business rules (for e.g. all system tables as the ones
shown in the above figure are like D*) although it is not user friendly and requires the end-user to
have intimate knowledge about the Prism database.

Chapter 5-Page |96

[Table(Name="dbo.D5"}]
public partial class DS
{
public ps()..
column(Storage="_ID", AutoSync=Autosync.Always, DbType="Decimal({13,8) MNOT NULL IDENTITY", IsDbGenerated=true}]
public decimal 1.
[Column{Storage="_DS_ADD OF", DbType="Char({g) NOT NULL", CanBeNull=false}]
public string DS_ADD O
Column({Storage=" ADD DATE", DbType="SmallDateTime WOT HULL"}]
public System.DateTime DS_ADD_DAT
[Column(Storage="_D5_ADD
public int DS_ADD_TIMI
Column{Sterage="_D5S_EDIT_OP", DbType="Char{g) NOT WULL", CanBeNull=false}]
public string DS_EDIT_OH[:]
public int DS_EDIT_TIME.. |
[Column(Storage="_D5S_ID", DbType="Int MOT HULL"}]
public int ps_irf.. |
[Column(Storage="_D5_CODE", DbType="Char{22} NOT NULL", CanBeNull-false}]
public string DS_EODﬂ[:]
[Column(Storage="_D5_S¥S_VALUE", DbType="Char{82) NOT NULL", CanBeNull-false}]
public string DS_SYS_VALU
[Column(Storage="_05_USER_VALUE", DbType="Char(82)} NOT WULL", CanBeNull=false}]
public string DS_USER_VALUEH. .
[column{Sterage="_DS_ACTIVE", DbType="SmallInt NOT MWULL")]
public shert DS_ACTIVE.. |
[Column({Storage="_DS_CHECK_SUM", DbType="Int NOT HULL"}]
public int DS_cHECK_SUM.. |
}

Figure 83: Generated mapping from LINQ tool

An example of a corresponding mapping file generated from one of the views show in Figure 82 is
shown above in Figure 83. This mapping file allows the developer to write code like that shown in
Figure 84 to query information from the view DS which is part of the Prism database which contains
meta-data information (as described in Section 1.5.1, note the naming scheme, all tables and views
in the Prism database which contain meta-data information are in the format D* where * can be
another alphabet).

|:E|'L”|E|'E|Jlé{3-53- allTuples = from dsTuple in DataContext.DSs select |:|5TIJ|31E_:|

Figure 84: Example code to query a given Prism meta-data view or table

Therefore, it can be seen that using LINQ and a dedicated Data Access Layer (DAL) makes the process
of extracting meta-data information about the Prism database via simpler and straight forward for
the developers. This meta-data can then be displayed to the end-user via an interface similar to that
shown in Figure 169 and Figure 179.

5.7.2.7 Versioning

We cater for version changes by allowing the developer to enter an attribute value corresponding to
the root of the meta-model which represents the current version of that meta-model. This attribute
is shown below in Figure 85.

Chapter 5-Page |97

“¢ ModelRoot x
DomainClass
= Domain Properties
= Mamespace : String
B Version : String

Figure 85: Class Diagram Approach: Versioning

A simple check could be done while opening an existing RWL model file, if the version numbers do
not match the user could be informed or an automatic transformation process can be triggered.

This process can allow the user to transform their RWL model corresponding to an older meta-model
to a RWL model which corresponds to the current meta-model.

This attribute (Version) can be changed by the developer whenever a change is made to the RWL
meta-model. A change may range from a simple attribute change to a complex relationship/entity

change.

5.7.2.8 Explorer View
This approach has to cater for two distinct explorer views, one to allow quick access for developers
to the meta-model they create using our meta-meta model tool and the second to allow end-users

to see the RWL model they create using the meta-model.

It was decided that the best way to represent these was to provide a tree-based approach to the
view of the model. DSL Tools already offered an explorer view (Figure 86) for the developers to see
the meta-model they created using our meta-meta model tool so all we had to do was to provide a
tree-view for the RWL model created by the end-user.

=[] Explorer Behavior
= Custom Mode Settings

-

w— CanvasSwimlane

Enumerand
EnumerandValue
Layer
ModelAttribute
ModelClass
Modellnterface
. ModelRoot

5 5 Operation
-1 Hidden Modes

Figure 86: Class Diagram Approach: Meta-model explorer

5.7.2.9 Evaluation and Testing
The meta-meta-model tool caters for the developer therefore we have to design an easy way of

evaluating it. It was decided that we evaluate and test the meta-meta-model tool by determining its
effectiveness while creating the meta-model, determining the degree of automation and the
correctness of the code generated which depicts the RWL meta-model.

Although this approach was discarded in its early stages, no formal evaluation or testing was carried

out.

Chapter 5-Page |98

5.7.3 Shell Host Design
The Shell Host in our Class Diagram approach is essentially a WPF Ul hosting the generated RWL
meta-model classes.

As we moved on from this approach in the early design and implementation stages we did not cater
for all the requirements via our user interface. The following sub-sections highlight the design
decisions on the subset of requirements we catered for prior to moving on to our refined approach.

5.7.3.1 Visually design reports (Visual Notation)

The main purpose of our shell host is to allow users to utilize the RWL meta-model to visually create
RWL models which will then generate the RWL script. We decided to statically allocate shapes to
some common RWL constructs represented by the meta-model so that we can get our prototype
displaying some shapes and generating code. Although our true intention was to allow developers
to assign shape and notation values to RWL constructs while they design the meta-model.

Figure 87 below shows the relationship between our generated RWL meta-model code and shapes.
Essentially each shape will have an instantiated RWL meta-model object behind it which allows the
report designer to edit its properties and validate any constraints surrounding it.

Modeling canvas

model code / \
s
Scan.cs
¥ﬁ
o | /

Generate

RWL
generated
script

Figure 87: Class Diagram Approach: Visual designer design

5.7.3.2 Constraint validation

Due to the decommissioning of this approach (explained in detail in Section 5.7.1) in the early stages
we only designed how we could implement validating our mandatory field constraints. It was
decided that we allow the user to trigger a validation via a command, either through a menu or a
sequence of keyboard keys. The validation was designed so that it triggers a series of events as
shown in the sequence diagram in Figure 88.

Chapter 5-Page |99

Canvas ControlLine

! IsModelValid(...)
[}

User Validation ﬂ -

= »

|
|
: CheckMandatoryFields
i
|

True/False

e ____________

|
|
i
: CheckMandatoryFields(...)
|

Figure 88: Class Diagram approach: Shell host validation method calls

The figure above shows an example validation request a user made on an instantiated meta-model
element ControlLine. This request essentially calls a function on the model called IsModelValid
which can call a series of constraint validators, in this case it only calls CheckMandatoryFields
validator. The CheckMandatoryFields validator goes through all the fields marked with the
IsMandatory property (outlined in Section 5.7.2.4) and returns either valid or invalid depending on
whether a user has populated them.

5.7.3.3 Evaluation and Testing

Evaluation and testing of the WPF Ul was done on the fly as we added more functionality to the
interface. Formal evaluation and testing was scheduled to be done when the interface could be
used to design an example report, although as we moved on to a different approach we had no
further need to evaluate and test the interface. We explained why this approach was discarded in
Section 5.7.1.

5.8 RWM Shell Approach Design

5.8.1 Overview
The Class Diagram approach was introduced in Section 3.4.2. We look at this approach and the
design aspects in detail in this sub-section.

The RWL Shell approach was an evolution from our Class Diagram approach. It allowed us to create
a rapid prototype based on the RWL meta-model we created using the Microsoft DSL Tools.

Note the difference between this approach and the Class Diagram Approach. As opposed to our
Class Diagram approach where we offered a meta-meta-model to the developer which could then be
used to create the RWL meta-model, in this approach we essentially design our RWL meta-model
using the DSL Tools itself. Therefore the user interface which would expose this meta-model to the
user would be very similar to the Experimental Hive (outlined in Section 2.5.1.4); this Ul is called the
Visual Studio Shell. This allowed us to concentrate on the RWL meta-model, its semantics and also
allowed us to use the built-in shapes designer (built into the DSL Tools) which allowed us to create a
demonstrable prototype.

Chapter 5-Page | 100

Also note that the built-in shapes did not offer much variety, it is very easy to expand these to create
sophisticated customized shapes. For the remainder of the thesis we have strived to create a
consistent notation using built-in shapes and refrained from doing superfluous work on creating
attractive shapes which could be easily done as a future enhancement.

Moreover the design a “good” visual language is an art and requires extensive usability evaluations
and testing. We tried to keep the visual language as simple and closely mapped to the real world
RWL constructs as possible although more design work is needed to make the visual language a
marketable product.

5.8.2 Meta-Model Design

Creating the meta-model for this approach was essentially transforming our static OOD (detailed in
Section 5.4) to the DSL Tools and representing the semantics using constraints and other tools
provided by the DSL.

5.8.2.1 Add/Modify meta-model elements
In this approach we started off with an empty model as we need to add meta-model elements which
match the RWL constructs. The initial model we started with is shown below in Figure 89.

- | [LayoutHelper e Ne e 1 2 e R

Feady Ln 30 Cell £l INS

Figure 89: RWM Shell Approach: Initial meta-model

Note in the above diagram we have a few model elements pre-added for us by the DSL Tools, this is
because the root model of any model cannot be empty therefore the DSL Tools anticipates this and
adds the root for us. Therefore, when we start we have an executable model as opposed to an
erroneous model. The code generator for the model shown in Figure 89 is the same as the one
shown in Figure 74.

Chapter 5-Page |101

5.8.2.2 Add/Modify meta-model constraints
An overview on the different mechanisms provided by the Microsoft DSL Tools on how to add
constraints was outlined in Section 5.7.2.2.

For this approach we are directly mapping our RWL semantic constraints within our model.
Therefore, an example of a relationship constraint is shown below in Figure 90.

“Z ReportHeader ¥
DomainClass

ReportHeaderHasControlline
ControlLine DomainRelationship (¥ Reportteadsr 4¢ ControlLine ¥
11 11 DomainClass

Figure 90: RWM Shell Approach: Relationship constraint

We can see from the above figure that a ReportHeader model element should have one and only
one ControlLine model element. This is similar to the example shown in Figure 48.

Other constraints can be added in a similar fashion as shown in Figure 78. The core RWL constraints
are attached as Appendix B.

5.8.2.3 Design code generator
This approach is essentially a two phase code generator as described in Section 3.4.2.2 and shown in

Figure 91.

1. Automatically’ generate code representing the RWL meta-model.
Users create the RWL model which uses this code via the Shell.
2. Generate RWL script representing the RWL model using text templates.

RWL Meta-Model RWL Model

Instantiation

Meta- 1 Generated Generated
Model Code Code

DSL Tools Shell

Figure 91: RWM Shell Approach: Two phase code generator

Note that in our RWM Shell Approach we essentially use the T4 Templating Engine to actually
generate the RWL script as opposed to the code generation technique described for the Class
Diagram Approach where we use the T4 Templating Engine to generate C# code representing the
RWL meta-model. This allows us to reduce an entire step of generating code making the RWL Shell
Approach ideal and easy to implement.

The above process is further explained in Chapter 6 (Section 6.4.2.1) where we look at the
implementation details of the code generator.

Chapter 5-Page | 102

5.8.2.4 Extension Points (Mandatory Fields)

In this approach we are essentially representing the RWL meta-model in the DSL Tools therefore we
have to design and implement a mechanism via which we can represent mandatory fields. This
mechanism has to be made flexible so that future developers can easily represent mandatory fields
in new RWL meta-model constructs.

We decided to use .NET CLR attributes. Attributes give us an elegant way of marking code without
changing the meaning of what the code represents. CLR attributes can be seen as meta-data for a
particular code section. This meta-data can be queried at runtime and we as programmers can react
to it accordingly. Moreover, DSL Tools have a flexible way for developers to mark fields with these
attributes as shown in Figure 92.

Properties @

Code Microsoft.VisualStudic.Modeling.DsIDefinition.DomainProperty =

trolLine

»

Customn Attributes
Getter Access Modifier
Is Browsable

Is Ul Read Only

Setter Access Modifier

[Mandatory()]
public
True

False

; ReportHzadsr

3 11

¢ ControlLine
DomainClass
= Domain Properties
% Code: String
57 Access: String

Edit Attributes

Default Value

Elernent Mame Provider flarpe

=44 [Mandatory
() <add parameter>
-8 <add attribute>

Mame Property

Is Elernent Name
Kind
MName
Type
=
Motes
=

Custom Attributes
Used to attribute the code generate l ’

Figure 92: RWM Shell Approach: Mandatory attributes to mark mandatory fields

We added an attribute called Mandatory shown in the above figure. Therefore, any field annotated
by the Mandatory attribute will have a constraint on it which requires the user to populate it to
make that particular construct valid.

5.8.2.5 Extension Points (Field Editors)

Microsoft DSL Tools allow developers to specify customized field editors for any field. This is done
by marking a field with the Microsoft .NET CLR Editor attribute. Details about this attribute are
shown in Figure 93.

Chapter 5-Page | 103

Edit Attributes T[]
Name Mame Property
o % andstor [—

E|"‘i$ System.CompenentModel.Editor
: ----- [typeof(WindowSelectionEditor)
""" , typeof(Systemn.Drawing.Design. UlTypeEditor)
: -] <add parameter>
o “$ <add attribute>

OK] l Cancel

Figure 93: RWM Shell Approach: Specifying field editors

Note in the above figure the Editor attribute has two parameters, the first parameter specifies which
type of editor handles this field (in this case a WindowSelectionEditor) and the second attribute
specifies the base type (usually just system.Drawing.Design.UITypeEditor).

5.8.2.6 Extension Points (Prism meta-data access)
The meta-data access layer for both our approaches is identical. Refer to Section 5.7.2.6.

5.8.2.7 Versioning

This approach has no explicit versioning mechanism although as the meta-model grew we had to
develop a manual process in which we modify existing RWL models to fit the newly developed meta-
model. This manual approach is temporarily feasible as the DSL Tools allow us to serialize the RWL
models into XML although as the RWL models grow in complexity this approach will soon become
cumbersome and time consuming and an automated approach will have to designed.

Versioning is a vast research area and many solutions have been proposed especially in the
databases and software tools area. A possible solution is described in (Roddick, 1995). We have also
looked at a simple versioning and transformation process as a possible future enhancement which is
explained further in Section 9.5.4.

5.8.2.8 Explorer View

We have to provide a tree-view to our RWL model for quick access by end-users. This capability can
be easily catered for using the built-in explorer view provided by the DSL Tools. The figure below
shows how the explorer view can be configured to correctly match the RWL model.

Chapter 5-Page | 104

ENE| Explorer Behavior
|_——_|1__i Custom MNode Settings
---Ja_: Clump
: ~ Column
Comment
— CommentableSwimlane
— ControlLine
— Function
— Literal
PrintStatement
- ReportWriter
Scan
: StandardPageHeader
---‘f: StandardReportFooter
.. 1 Hidden Modes

Figure 94: RWM Shell Approach: Model explorer

5.8.2.9 Evaluation and Testing

The evaluation and testing of the RWL meta-model can be done by designing RWL models against it.
Various examples can be designed and evaluated against the meta-model to determine the
effectiveness and correctness of it. Evaluation and testing has to be thorough enough to exercise all
RWL semantics to determine whether the RWL meta-model correctly allows or restricts RWL
construct creation and modification.

We have done a formal evaluation of this approach which is detailed in Chapter 8.

5.8.3 Shell Host Design

Our shell host is pre-designed for us as it is nothing except the Visual Studio Experimental Hive
therefore it inherits most of the functionality from Visual Studio. Although we still have to cater for
some of the extra functional requirements which the RWL model should exhibit. This functionality
originates from the RWL meta-model but we include them in this section as it is functionality which
is used by the end-user via the shell.

5.8.3.1 Visually design reports (Visual Notation)

The primary requirement of our shell host is to allow end-users to visually create RWL models. For
this approach our visual notation is part of the meta-model as the DSL Tools allow us to represent
each model construct with a corresponding shape. Therefore, it is possible that every time we add a
RWL construct into the meta-model we can add a shape mapping which maps that construct to a
shape. An example of a shape mapping is shown below in Figure 95.

Classes and Relationships Diagram Elements

4 ExampleModel (¥ || ExampleShape ®
DomainClass GeometryShaps

ExampleModelHasElements = —}
— ““ ExampleConnector [¥%)
Elements Domainfziztionship (7] |[EXampleMadel | 4o puampleflement () | Connecor i
o 11 DomainClass 3

ExampleE Targets | &% LanguageiDiagram [3|
Targets Diagram
P

DomzinRelationship [¥) || Sources

Figure 95: RWM Shell Approach: Visual notation via shape mapping

Chapter 5-Page |105

The above figure shows the same model as introduced in Figure 89; note the lines going from the
model elements and relationships to shapes and connectors. These lines denote which shape and
connector will represent which model and relationship on the shell canvas respectively.

5.8.3.2 Constraint validation
Validation is built-in into the shell and all we have to do is enable it for various triggers. Triggers in
this respect are events such as save, load, menu etc. The enabling mechanism is shown in Figure 96.

Properties @

Microsoft VisualStudio.Modeling.DsIDefinition. Validation -

Uses Custom False

Uses Load Falze

Uses Menu False

Uses Open False

Uses Save False (=]
=

Motes
Uses Save

I True, validation methods which execute on save are
employed.

Figure 96: RWM Shell Approach: Enabling validation

The validation mechanism triggers rules on model elements which represent the RWL meta-model.
Rules were introduced as part of the Microsoft DSL Constraint Overview in Section 5.7.2.2.

5.8.3.3 Show program flow

The RWL is inherently a sequential programming language where each RWL construct is followed by
another construct and so on. Therefore it was mandatory to represent this behaviour visually to
allow end-users to easily follow the flow of a given RWL model.

We decided to show this program flow with the use of directional arrows. Directional arrows make
it easy for users to quickly determine the precedence of RWL elements. Arrows also fit well into our
visual notation paradigm.

If a particular RWL model construct could possibly take part in a program flow relationship it could
be represented in the meta-model by a generic program flow model element. Any RWL construct

taking part in such a relationship could inherit from this genertic model element keeping the meta-
model modular and cohesive.

Let us look at a quick example to demonstrate the program flow relationship.

1. Code RW_EXAMPLE

2. Type Standard

3. Access STSR

4. Name “Report Writer Example”
5.

6. Print “Hello World”;

In the above RWL script we can see that the Print occurs after the ControlLine therefore the Print
and the ControllLine statement can take part in a program flow relationship, although the literal

Chapter 5-Page | 106

(“Hello world”) is part of the print statement and cannot take part in that relationship. Figure 97
below graphically represents this program flow relationship.

Flow

«interface»
Commoninterface

L

ControlLine Print Literal

Figure 97: RWM Shell Approach: Program flow

5.8.3.4 Child element behaviour (Containment)

Providing the RWL meta-model via the shell has its advantages in terms of child element behaviour.
The DSL Tools offer four core shapes: a geometrical shape, a compartment shape, an image shape
and a port shape. Most RWL constructs have an inherent part-of (aggregation) structure and
representing this via a containment mechanism is a very suitable visual metaphor. Therefore, to
show the containment metaphor, the compartment shape does an excellent job. An example of a
compartment shape is shown below in Figure 98.

»

ExampleElementl

>

ExampleElement2
=l Ttems

ExampleElement2 =l Ttems

ExampleElement3

~

ExampleElement3 =,

=l Ttems

Figure 98: RWM Shell Approach: Containment

From the above figure we can see that each element is represented by a compartment shape. Note
that the model element ExampleElement1 contains two other elements, this can be shown easily
within a given compartment (called /tems) as demonstrated in Figure 98.

5.8.3.5 Child element behaviour (Ordering)
Let us look at a RWL code snippet to demonstrate the design aspect of ordering child elements.

| 1. Print “Hello World” + “Hello World 2”; |
Looking at the above code snippet we see that a Print construct has two literals which are printed in

a specific ordering. The requirement was to visually depict this ordering so that users can quickly
determine the flow of a construct and therefore the flow of entire RWL script. We decided to depict

Chapter 5-Page | 107

this ordering within our shell by placing each child element on the canvas in their expected order.
Therefore a visual representation of the above script could look like Figure 99.

(Print)

Hello World
Hello World 2

Figure 99: RWM Shell Approach: Ordering

Note that in most visual languages (e.g. UML) ordering of elements is not important as it does not
have any semantic meaning although for the RWL the ordering of the elements represents the order
in which they would be executed thus making it a vital part of the RWL as it represents semantics.

5.8.3.6 Child element behaviour (Show/Hide)

Due to the fact that some of the RWL construct are composite constructs and have children it was
required that we can show/hide these children at command to keep the RWL model concise. The
DSL Tools and the compartment shape lend themselves perfectly for this task. An example of a
compartment shape was shown in Figure 98. Note the icon on the top-right hand side of the
compartment shapes, this icon allows us to collapse and expand that shape. It was decided that if
the user collapses a shape they are potentially asking us to hide its children and all outgoing
relationships and that is what we do. Therefore when ExampleElement1 in Figure 98 is collapsed, its
children get hidden, as shown in Figure 100.

4

ExampleElementl

Figure 100: RWM Shell Approach: Show/Hide children

5.8.3.7 Evaluation and Testing

Evaluation of the shell was done with respect to the visual notation exposed by it which allows the
end-user to create RWM models representing Prism reports. We constantly entertained feedback
from the end-user and analyzed each requirement and incorporated it into our design if it was found
appropriate. A formal survey was also designed which asked a range of questions and compared the
visual designer to more traditional approaches of writing Prism reports. Metaphor analysis, visual
paradigm analysis and cognitive dimensions were also used to evaluate our visual language.

Testing was done with respect to the generated RWL script. It was mandatory that the shell not only
represents the report visually but also generates the correct RWL script corresponding to the model.
We employed a manual process to test the generated RWL script although implementing an
automated testing framework was considered and deemed as future work.

We have done a formal evaluation of this approach which is detailed in Chapter 8.

5.9 Design for users (non-functional perspective)
This section describes how our design caters for the non-functional requirements outlined in
Chapter 4.

Chapter 5-Page | 108

5.9.1 Developer

5.9.1.1 Class Diagram Approach

In this approach we have designed a highly customizable meta-meta-model which allows developers
to create the RWL meta-model therefore it is inherently flexible enough to cater for newer RWL
constructs. This approach is essentially designing a UML tool with some domain specific helper
functions aimed to make the design the RWL meta-model easier. Moreover we have built-in a
degree of automation mechanisms which allows users to easily create new meta-model elements
which inherit from required base classes. We have automated method generation, event
notifications, accessors and the mandatory field constraint checker. An example of this is shown in
Figure 101 and Figure 102.

H << Clgss> >
4 ModelElementBase

T —

i B Attributes
I R Models: List<IModelElement>
E = Operations

E Y4 bool AddModel(IModelElement model, out String reason)
¥4 bool RemoveModel(IModelElement model, out String reason)

"v bocl CanAddModel(IModelElement model, cut String reason)
"v bool CanRemoveModel{IModelElement model, out String reason)

8, String[] PossibleSwimlanes()

“v String Generate()

34, bool CheckMandatoryFields(ref List<InvalidModel > invalid Models)
"v bool sModelValid(ref List<Invalidiodel > invalidModels)

<< (lass>>
CommentModel

= Attributes
*@?Value: String
= Operations

Figure 101: Class Diagram Approach: Automation for inherited elements before

H << Class> > ":
i ModelElementBase i
H H
i [Attributes :
i B Models: List<IModelElement>
ig Operaticns

........

1 Y bool AddModel(IModelElement model, cut String reason)
i ¥4 bool RemoveModel(IModelElement model, out String reason)

“v bool CanAddModel(IModelElement model, cut String reascn)
vw bool CanRemoveModel(IModelElement model, out String reason)

L™ String[] PossibleSwimlanes()

Yo String Generate()

av bool CheckMandatoryFields(ref List<InvalidModel = invalid Mo dels)
¥4 bool [sModelValid(ref List <InvalidModel> invalidModels)

<< Clgss>>

CommentModel
Bl Attributes
C 3'_Er—_?ﬁ\)'alue:String
= Operations

94, String[] PossibleSwimlanes()
uv bool CheckMandatoryFields(ref List<InvalidModel> invalid Models)

Figure 102: Class Diagram Approach: Automation for inherited elements after

Chapter 5-Page | 109

The two figures above demonstrate the automation provided to developers when an inheritance
relationship is added. Figure 101 shows that the developer added the CommentModel and to be
able to demonstrate this as a RWL construct it needs to inherit from ModelElementBase (details of
the inheritance hierarchy will be explained in Chapter 6). Therefore we provide a mechanism which
extracts abstract methods from the parent and automatically implements them for the child, as
shown in Figure 102.

We also have implemented a method generator which generates the CheckMandatoryFields method
according to the mandatory fields indicated by the developer on the model element. For example
we have a field on the CommentModel called Value which is mandatory. Therefore our generator
generates the code shown below in Figure 103.

public override bool CheckMmandateryFields(ref List<Invalidvodesl»> invalidmodels)
{

boel valid = true;

i alidModelReason> reasons = new List<InvalidModelReason>();
tring.IsNullorempty(_value})

reasons.add(new InvaliduodelReason() { PropertyMame = "value", Cause = InvalidCause.Emptyvalue });
valid = false;

b

invalidMedels.Add(new InvalidModel() { Model = this, Reasons = reasons });
return walid;

b

Figure 103: Class Diagram Approach: Method generator

5.9.1.2 RWM Shell Approach

In this approach our RWL meta-model is developed within the Microsoft DSL Tools itself therefore
we do not have to cater for non-functional requirements explicitly. The DSL Tools allow various
hierarchical relationships between model elements which make it flexible enough to be maintained
and scaled if need be. Although we do have to design our meta-model consistently so that future
developers can easily understand the intent and cater for new RWL constructs if need be.

“% Headerftem (¥ |
DomainClass

._ﬂ

4% ControlLine
DomainClass

3

“1{ StandardPageHeader (%)
DomainClazs

“i{ PageHeaderBlock (¥
DomainClass

Figure 104: RWM Shell Approach: Model hierarchy

Figure 104 above shows a hierarchy within our meta-model which assists developers. If in the future
another RWL construct needs to be added to the header section of a report it can simple inherit
from the model element Headerltem.

Chapter 5-Page | 110

5.9.2 Report Designer

5.9.2.1 Class Diagram Approach
The report designer will be interacting with the RWL meta-model via a WPF Ul. This Ul is shown
below in Figure 105.

Prism - Report Writer

— | Home | mnset ' Layout @

B p 2= =]]
53 copy) Bl B =
Paste 2/ 4 2R R3] B poy siver custom | 000
FFormat Painter || Generate Rhcaii Thone Theme
Clipboard {r Project View] Themes &\ Help @
Core Toolbox « Reportl,” Report2 | x [PonaEs —
A Report Header =)l == + = search:

=q

Code =

2 ControllineModel Access =]
: ¥ Name
Type List -
N |

& Link
File
~ | Report Footer Pericd End F False

Action
Sort

Select L |
Preselection

No Margins ~ False - =

Ll

=P |2 Canvas Props.
~ Report Variables | properties canvas Prop
=
|Explorer R x
=
= |
| Error List R Kl‘
| @ 0 Eroris) | £ 0 Waming(s) | (i) 0 Message(s)
Description Source Solution I
3 Test |
it S10utput| Error Lisi]
0 % B | (Eceneratea Code|
Ready Updating

Figure 105: Class Diagram Approach: WPF Ul

Note from the above figure how we have separated each section of the user interface: model
toolbox on the left, canvas designer in the middle and the property editor on the right. Therefore
this interface is simple and modular and is intuitive for a novice user to use without any prior
training.

Each section is grouped within its own panel keeping the interface crisp and modular for cohesive
user interaction. Each panel can be hidden/shown as per user needs to maximize any particular area
of the interface. As per the current organisation we have a simple left to right flow (although this
can be customized via the docked windows capability) where the user starts a drag from the toolbox
on the left, drops it on the canvas in the centre and edits the properties of the model via the
property editor on the right. Any validation errors and other output such as the generated RWL
script is shown in the bottom section of the Ul. We maintain consistency with the user-model for
common interfaces by also providing a simple to use toolbar at the top via which end-users can
perform common Ul functions such as cut, copy, paste, save, etc.

5.9.2.2 RWM Shell Approach
The report designer will be interacting with the RWL meta-model via the Visual Studio Shell. This

interface is shown below in Figure 106.

%8 Debugging - Micrasoft Visuzl Studio (Administrator) - Experimental Hive:

Chapter 5-Page |111

File Edit View Project Build Debug Dasta Test Tools
- o Q 3 A 5
Toolbox

= Report Hements

& Pointer |
"°I5 Report Header

2[5 Report Body

o[> Report Variables

] Control Line

Page Header

=] Page Header

= Report Footer

- | b |Debug

< <Comment >
The s lest
sensible report

"= Comment

A Literal

s PrintStatement

3 Sean

= Column

% Function

, Clump

£ Report Connectors

I Pointer

"3 Sequential Order
Header Block Connectar
Printable ltem Connector
Scan ltem Connector
Column Item Connector
Clump ltem Connector

= General

There are no uszble controls in
this group. Drag an item onto this
text to add it to the toolbox.

le] i

Window Help
| S 3k B

= & X| - RW_EXAMPLE OLrwm | RW_EXAMPLE_00.wm |

<<Headers>

<<ContrblLine>>

- <<Prints>

|2 Find Symbol Results] =] Output] 3} Error List

= Items
Litzral : Hello World

<<Body>>

~ X |Solution Explorer - I x E
Bl e z
(5] Debugging §

- = Properties 2

@1 [References

[[Generated

_ gl ReportWriterDesignerSchema.xsd
4] RW_EXAMPLE_00.rwm

| RW_EXAMPLE 01.rwm

4] RW_EXAMPLE_02.rwm

i 4] RW_EXAMPLE 03.wm

G 4] RW_EXAMPLE_04.wm

G 4] RW_EXAMPLE 05.rwm

<eliteralss ¥
Hello World

r |&RSelution Explorer [A ReportWriterDesig.

Ready

Figure 106: RWM Shell Approach: Shell Ul

This interface is offered by Microsoft therefore it is intuitive, robust and modular to start with.
Although we still have to design the toolbox, its icons and make the shapes intuitive.

This Ul is nothing except a cut down version of the Visual Studio IDE provided by Microsoft. It offers
users with a consistent user-model via which they can interact with our DSL. On top we have the
menu and the toolbars to perform common functions such as cut, copy, paste, save, open, etc. The
rest of the Ul follows a simple left to right flow (although this can be customized via the docked
windows capability) starting with the toolbox on the left which exposes the DSL meta-model
elements, the canvas in the centre where the end-user creates the RWL model and the
explorer/property editors to the right where the end-user can modified the instantiated model
elements. Any validation errors or messages are shown in the “Error List” and “Output” windows
shown in the bottom part (currently minimized) of the UI.

5.10 User Interface Design
This section mainly concentrates on the user interface design aspect of the WPF Ul for our Class
Diagram Approach. We briefly look at the design aspects of the Ul for the RWM Shell Approach, this
is because in this approach, the Ul is basically provided to us by Microsoft in the form of the Visual

Studio Shell (or Experimental H

ive).

5.10.1 Class Diagram Approach Ul
The following sub-sections describe the design decisions behind the WPF Ul. Most of the decisions

were taken with the help of (Spolsky, 2001).

Chapter 5-Page | 112

5.10.1.1 Modern UI

The WPF Ul, as the name suggests was based on WPF and used modern controls such as the ribbon
toolbar and docked windows which our target user is familiar as they are exposed by the Microsoft
Office Suite. A screenshot of the toolbar is shown below in Figure 107.

Prism - Report Writer

— Home Insert
Bl R (]]
— Bacopy P e S el =_|About
Paste _ { __; _Q:Iﬁ: =l "Blue | Black Silver Custom j &
J Format Painter Theme Theme Theme _
lipboard & Project F View r Themes %{| Help &

Figure 107: Modern Ul toolbar

5.10.1.2 Flexible Screen Real Estate

The Ul is used to design RWL models, these models can expand and become very large with time,
due to this reason we needed a mechanism which allowed us to let the user concentrate on only the
model if need be by hiding all the other irrelevant windows. This was done by using docking
windows. A screenshot of this is shown below in Figure 108. Usage of this interface is described in
the following chapter (Chapter 6) where we look at the implementation details.

i BERT

— Home Insert

B =]]
= Baco & o I el =
Paste oo L j =] ‘d & ﬁl‘ ‘j Blue Black Silver Custom
F Format Painter | Generate Theme Theme Theme

=]about

Clipboard = Project = View Themes | Help =

Reportl

~ Report Header

~ Report Footer

seedoig L | sdoxg senven | ioidiain|

~ Report Variables

@
5
o
e
=}
=
o
-
>
i}
z

" | |i#¥iGenerated Code| 5] Output| | 3 Error List

Ready Updating — -

Figure 108: Docked windows

Chapter 5-Page | 113

Note in the above screenshot how all the windows are hidden allowing our user to get a large view
of the modeling canvas.

5.10.1.3 Help Available
The Ul provides help at every instance in the form of tooltips and informative warnings and error
message. An example of a tooltip is shown below in Figure 109.

[} = [|
e o 3= E)

‘iv__..r

Generate

Generate Code (Ctrl+G)
|—— Generate report writer code from the model,

&' Press F1 for more help.

Figure 109: WPF Ul tooltips (Help)

5.10.2 RWM Shell Approach User Interface

5.10.2.1 Usert Interface Overview

In the second approach (RWM Shell Approach) we use the Microsoft Visual Studio Shell to expose
our DSL to the end-user. This potentially meant that we already have basic features such as open,
save, cut, copy, paste, property editing, error windows, etcetera already implemented for us. Figure
106 shows the Visual Studio Shell which has a RWL model loaded into it. Note that it is very similar
to our WPF Ul (user interface from the Class Diagram Approach) where we have the toolbox on the
left hand side where RWL model elements can be dragged from onto the canvas which is at the
centre. To the right we have a property editor (currently hidden), model and file explorer. Note that
the Visual Studio Shell is customizable and the end-user can drag and drop sub-windows and dock
them anywhere within the parent window. Moreover we as developers can also mandate the
appearance by disabling extra menu commands and toolbar buttons within the shell which may not
have any relevance to our DSL.

5.10.2.2 Property Grid

The property grid provided by the Visual Studio Shell forms the integral part of our DSL and is the
primary source of input as far as the end-user is concerned. The property grid always shows the

properties (fields) of a selected model element. In Figure 110 below we see that the ControlLine

model element is selected and therefore we see its properties in the property editor.

Chapter 5-Page | 114

Properties @
Controllinel Control Line -
e |2

Access ARCR+5TSR
Action
Code RW_EXAMPLE_00
<<ControlLines > File
Fixed Font False
Link
MName
Mo Margins False
Period End Report False
Preselection
Sort
Type Standard
Name
Description for Prism.ReportWriterDesigner.Controlline.Name

Figure 110: RWM Shell Approach: Property grid

The property grid exposes all allowable (some fields can be blocked by developer) fields of the
model element and also any custom editors (Section 5.8.2.5) which a field may have.

5.10.2.3 Adding Model Elements and Connectors

The standard paradigm provided by the Visual Studio Shell to add model elements and connectors is
to use a simple drag and drop operation. To add model elements the end-user is simply required to
click on a model element in the toolbox and drag and drop it onto the canvas. If a drop if allowed
(mandated by the constraints on the meta-model) the user sees an addition symbol along with the
mouse cursor and if not allowed the user sees the not allowed symbol (both shown in Figure 111
below).

Figure 111: Allowed/Not allowed cursor icons

Creating connectors between two model elements requires a similar drag and drop operation where
the end-user starts the drag at the source model element and ends the drag at the target. If a
connector is allowed between these two model elements then an addition symbol is shown and if
not then a not allowed symbol is shown (Figure 111).

5.10.2.4 Executing Text Templates

The Visual Studio Shell allows end-users to execute code templates to generate any textual output
from the models they create using the DSL. In our case we want the end-users to be able to
generate the RWL script from the RWL model. Currently we allow this via a manual process where
the user needs to select the core text template file and execute a menu command (shown in Figure
112 below).

Chapter 5-Page | 115

oo M

- %] ReportGenerator [| Open
1, ScanProcessortt Open With...

=} VariableProcessor.tt
Eﬂ ReportWriterDesignerSg
RW_EXAMPLE_00.rwm Run Custom Tool

Exclude From Project

L] RW_EXAMPLE OLrwm | | ¢t
L RWBKAMPLE 02w | (|
|| RW_EXAMPLE_03.rwm

|| RW_EXAMPLE_0d.rwm | % | Delete

| RW_EXAMPLE_05.rwm Rename
|| RW_EXAMPLE_06.rwm

2 Properti
| RW_EXAMPLE 07.rwm |_ = P

Figure 112: Executing text templates

In the above figure we see that for our prototype the core text template file is called
“ReportGenerator.tt”, so the end-user can right click on it and execute the menu command “Run
Custom Tool” which executes the text templating engine and generates the required RWL script. As
we can see that this is process is manual and in the future we envisage this process to be invoked via
a custom menu item or a keyboard command. For e.g. the end-user can right click on the desired
model and execute a menu command called “Generate Script”.

5.11 Summary

This chapter detailed the design of the thesis in terms of our two approaches: The Class Diagram
Approach and The RWM Shell Approach. We defined the core stakeholders as the developers who
are mainly concerned with the meta-model of the RWL and the report designers who are mainly
concerned with designing a Prism report using the Ul provided.

The chapter also provided use case diagrams which gave us a graphical view at our core
requirements which were then analyzed to detail the design decisions involved in the two
approaches.

We also looked at how the meta-model came about from a static version of the RWL meta-model
which was created with the use of simple reporting scripts. We concluded the chapter by analysing
our non-functional requirements and followed by showing a high level architecture of the two
approaches and eventually outlining the user interface design for our Class Diagram and RWM Shell
Approach.

Chapter 6-Page | 116

Chapter 6 - Implementation

6.1 Introduction

This chapter provides a detailed implementation view into the various aspects of the thesis. We look
at the implementation details of each of our approaches and analyze code patterns, implementation
class diagrams and event chains. We also look at details about how we implement business rules
and access the Prism database meta-data.

The prototype visual report writing tools were implemented with C#, one of the .NET CLR languages
and the other technologies involved were WPF: for user interface implementation and LINQ: for the
database access layer.

6.2 DSL Terminology

The implementation of the thesis heavily relies on the terminology unique to the Microsoft DSL
Tools. This section looks at all the relevant terms and tries to give a brief introduction into what
each of these mean. The main rationale for this section is to give the readers enough information to
allow them to recognize the details about the implementation. We also looked at why we used the
Microsoft DSL Tools in Section 3.3.1.1 and also did an empirical comparison with Marama in Section
2.5.3. To reiterate the primary reason behind the use of Microsoft DSL Tools was to ease the
integration of Prism WIN (MIS system) with our newly developed tool as both are implemented in
Microsoft .NET languages.

6.2.1 The DSL Project

Creating a new Visual Studio DSL solution creates two aspects: The DSL Project and the DSL Package
Project. We will be looking into the DSL Package Project in the following sub-section. Let us look at
The DSL Project closely.

The DSL Project defines the actual domain specific language and its specification (Microsoft, 2007).
It encapsulates the actual DSL file (*.dsl) which contains all the necessary information needed to
create an executable domain specific language. Moreover this project provides the developer with
an editable interface to this (*.dsl) file. The figure below shows the organisation of The DSL Project.

Solution Explorer - Dsl i @ DSL Explorer @
=3 E S| QR |27 Languagel
[5 Selution 'Languagel' (2 projects) o[Eoﬂnec:mn Builders
: - onnectors
= :Em 5-Cl

=Y Diagram

+-_ Domain Classes

t-_ Domain Relationships
t-_ Domain Types

o532 Editor

g =] Explorer Behavior

+-{_ Shapes

j—-ff", ¥l Senialization Behavior

[
[
H-- [=d] Properties .
g References g
1 GeneratedCode B
[
[

[

[

[E

e

-- [Resources
------ ﬁ:j CodeAnalysisDictionary.xml

g DslDefinition.dsl

. #] GlobalSuppressions.cs

- E DslPackage

Figure 113: DSL Solution: The DSL Project

Chapter 6-Page | 117

Via The DSL Project we can add/edit domain model elements, relationships, shapes, Element Merge
Directives (EMD), toolbox elements, explorer view behaviour, govern how the model is serialized
and define connection builders. Each of these aspects is also defined in the following sub-sections.

6.2.2 The DslPackage Project

The DslPackage Project is the second aspect of the Visual Studio DSL Solution. The DslPackage
mandates how our newly created DSL Project integrates into the Visual Studio Experimental Hive or
the Visual Studio Shell (Microsoft, 2007). It specifies the menu items, context menu items, toolbar
buttons and the templates which are available to us at runtime via the Hive or the Shell. The
organisation of the DsIPackage Project is shown below in Figure 114.

Solution Explorer - DslPackage @

2| A Q| =
J Solution 'Languagel’ (2 projects)
=1 (5 Dsl
+ =d Properties
+ g References
+ 1 GeneratedCode
+ 3 ProjectltemTemplates
[Resources
EFJ CodeAnalysisDictionaryxml
Commands.vsct

- fp Key.snk
i (2 VSPackageresx

Figure 114: DSL Solution: The DslPackage Project

6.2.3 Path Syntax
Microsoft DSL Tools uses a unique path syntax to help developers navigate their way around the

model. Let us look at an example to best explain it.

“{ ExampleElement ¥
DomainClass

ExampleElementReferencesTargets

Targets DomainRelationship |3 Sources ‘ﬁ: ExampleElement ¥
0.~ [A DomainClazs

Figure 115: Path syntax example

Figure 115 above shows the ExampleElementReferencesTargets relationship between two
ExampleElement model elements. ExampleElementReferencesTargets.Targets/
ExampleElementReferencesTargets!Target is an example of the path syntax matching the above

figure.

Each segment represents a step from either an element to a relationship (Relationship.Property) or
from a relationship to an element (Relationship!Role).

Minute details about the path syntax are not relevant for this thesis.

6.2.4 The Toolbox

The toolbox allows the end-user to drag-drop model elements onto the designer canvas. The
toolbox can contain essentially two items: shapes and connectors. Shapes represent model
elements whereas connectors represent relationships between model elements. Any model
element or a relationship which needs to appear in the toolbox requires a matching tool item. A tool

Chapter 6-Page | 118

item simply maps the toolbox item to its respective model element. An example of a toolbox item is
shown below in Figure 116.

s e &
- [Connectors o ExampleElement Microsoft.VisualStudio.Modeling.DsIDefinition.ElementT ~
o2 Diagram

#-_ Domain Classes
#-_1 Domain Relationships

#-1 Domain Types ExampleElement

—j--@ Editor ExampleElement

51__] Toolbox Tabs

E|$C‘ Languagel =l

=-E3 Tools 3 Caption ExampleElement
E? CursorIcon l:l

+-“I§ ExampleRelationship Help Keyword CreateBxampleClassF1Keyword

i..[] Validation '{Vﬂlidﬂt‘U”) ToolbexIcon E resources\exampleshapetoolbitm
-] Explorer Behavior Tooltip Create an ExampleElement
o-J Shapes
]-EE', Xml Serialization Behavior hd Documentation

Figure 116: Toolbox creation example

In the above example the ExampleElement model element is mapped to the toolbox item. On the
right hand side of the figure we see the various properties of this toolbox item. We can set its
caption, tooltip and the icon which it appears as within the toolbox. The resulting toolbox is shown
below in Figure 117.

Toolbox - 3 X

|E| Languagel |
& Pointer

|C} ExampleElement |

" ExampleRelationshin
ExampleElement

= General

Create an ExampleElement
There are no usabl groap gdn
itern onto this text to add it to the toolbox.

Figure 117: Toolbox example

6.2.5 Element Merge Directives
An Element Merge Directive (EMD) determines what happens if a domain element is merged with
another domain element (Cook, Jones, Kent, & Wills, 2007). A merge in the DSL sense occurs when:

e User drags and drops a shape from the toolbox onto the design surface or onto a shape
already existing on the design surface

e User creates an element using the menu provided via the model explorer

e User adds an item to a compartment shape

e User moves an item from one swimlane to another

e Custom code invoking a merge directive

An example of this within our Class Diagram Approach would be when a ModelClass is dragged and
dropped onto a Modelinterface. This would essentially mean that the DSL user is trying to make the
ModelClass inherit from the Modelinterface so the EMD automatically forms the relationships
needed between them.

An example from the RWM Shell Approach would be when the end-user drags and drops a Column
model element onto a Print model element. We can assume that they are actually trying to

Chapter 6-Page | 119

represent the column being printed, so the EMD forms the appropriate relationships between the
Column and the Print model elements.

6.2.6 The Model Explorer

The Model Explorer provides a tree-view perspective to the model elements. Each node in the
explorer is the result of an embedding relationship which was introduced in Section 5.7.2.2. By
default the name of the model element appears in the explorer although this can be configured to
be any valid property. We see an example of the explorer configuration and then the actual explorer
in figure blah and blah respectively.

osebwoe L (=]

éf Languagel Microsoft.VisualStudic.Modeling,DsIDefinition ExplorerNodeSet -
- Connection Builders

-3 Connectors

{1 Domain Classes
- Domain Relationships

Class ExampleElement

Shows Domain Class False
{1 Domain Types
Notes
=]
Icon Te Display E Resources\ExampleShapeToolBitmz

£ Explorer Behavior
E|1__] Customn MNode Settings

: [Property Displayed (empty)
- 1.[3 Hidden Modes

v Shapes

\;ﬁ' Xml Serialization Behavior

Class
Class of element to which the settings apply.

Figure 118: Model Explorer configuration

Languagel Explorer @
ExampleElementl [0] EamplelMinde]
=3 Elements
O ExampleElementl
.y ExarnpleElement2

ExampleElement2

Figure 119: Example Model Explorer

On the left hand side of Figure 119 we see two model elements which are part of the model and
these are represented in the Model Explorer as two child nodes of the main model (Example Model)
indicating that each of these model elements is embedded within the main model.

6.2.7 Connection Builders

A connection builder is invoked by the connections tools on the toolbox. These builders allow
connecting two model elements depending on where the user started and ended the connection.
For example, the connection we see between ExampleElement1 and ExampleElement2 in Figure 119
is managed by the connection builder shown in Figure 120.

Chapter 6-Page | 120

DSL Details - Connect Directive: creates [=]

= @ ==
-3 Connection Builders . [esTargets -

=
22, ExampleElementReferencesTargetsBuilder =
=-C3 Link Connect Directives B

Source role directives | Target role dimctiu5|

ExampleElementReferencesTargets i Domain Class Path Custom accept Custom connect
¢ Connectors B

ExampleElement
i-o% Diagram

<addvew> | | 0O | O |

i-1 Domain Classes
#-[1 Domain Relationships
#- 0 Domain Types

i-2Z, Editor

- Explorer Behavior
7 Shapes
) é_} Xml Serialization Behavior

Uses custom connect II

Figure 120: Connection builder

From the above figure we can see the connection builder ExampleELementReferencesTargetsBuilder
on the left hand side and its properties on the right hand side. From the properties of the
connection it can be seen that this connection builder creates a relationship of type
ExampleElementReferencesTargets which was introduced in Figure 115. Also note that the
connection builder has a notion of where the connection was started (Source role directives) and
where it was finished (Target role directives).

6.2.8 External Types

External types allow the DSL designer to add custom classes which can be utilized by the domain
model. External types can be either an enumerated value or an object. Both examples are shown in
Figure 121 (ExampleEnumerand and ExampleObject).

i1 Connectors

- Diagram

i-1 Domain Classes

1-_1 Domain Relationships
=-1 Domain Types

.13 Boolean

.23 Byte

.55 Char

1123 DateTime

...[123] Double

H.?F" ExampleEnumerand
=3 Literals
Lz Valuel

1123 Guid
.11z Intlh

Figure 121: External types

After an external type is defined we can use it within any model element. Figure 122 shows a newly
added domain property on model element ExampleElement which is of type ExampleEnumerand.

Chapter 6-Page |121

“¢ ExampleElement Properties @
DomainClass
=1 : . CustomValue Microsoft.VisualStudio.Modeling.DsIDefinition.Do -
Domain Properties
B Name: String
B CustomValue : Exa.. Default Value o
==t Element Mame Provic (none)
Is Element Name False
Kind MNormal
MName CustomValue
ExampleEnumerand E 3
= Boolean - [
Motes Byte
=] Char 18
= DateTime =
Type Double
Type of the property. T e
ExampleObject ——
Guid
Intld
Int32
IntG4 -
NN

Figure 122: External type usage

Within the Class Diagram Approach we use several custom enumerated values. An example of this is
to represent the accessibility of a ModelClass. The DSL designer can select whether a ModelClass is
public, private or internal. These three values are represented via a custom enumerand.

Within the RWM Shell Approach we use enumerands extensively to represent a closed set of values
which the end-user can select from. An example of this is the ReportType field within the
ControlLine. The type of report an end-user can design could be either Standard, List, General,
Period and Summary. These three values are represented via a custom enumerand.

6.2.9 Serialization

The DSL Tools offer an automatic and customizable mechanism for us to serialize a given model and
its corresponding layout information. This allows the end-user to save and load a model file. The
DSL Tools serialize the file using an XML format. The details about the format are irrelevant for this
thesis. The generated serialized files for the model shown on the left hand side of Figure 119 are
shown below in Figure 123 and Figure 124.

1i <?xml version="1.8" encoding="utf-8"2>

2@ <exampleModel dslVersion="1.8.8.8" Id="51912876-9fe4-4fdf-a551-c791e7a719F2" xmlns="http://schemas.microsoft.com/dsltoels/Llanguagel"
3 <elements>

4 <exampleElement name="ExampleElementl™>

5 <targets>

& <exampleElementMoniker name="/51912876-9fed-4fdf-a551-c791e7a719f2/ExampleElement2” />
7 </targets>

8 <fexampleElement>

9 <exampleElement name="ExampleElement2" />

1@ <felements>

11ik ¢« fexampleModel>

Figure 123: Serialized model information

1 k2xml version="1.8" encoding="utf-8"2>

2@ <minimallanguageDiagram dslVersion="1.8.6.6" absoluteBounds="8, B, 11, 8.5" isCompleteView="false" name="Sample">
3| <exampleModelMoniker Id="51912076-9Fe4-4Fdf-a551-c791e7a719F2" />

4% <nestedChildShapes>

s <exampleshape Id="bd7c7@7e-ldcc-48e-alla-600aldd7874F" absoluteBounds="4.75, @.625, 2, 8.75">

6 <exampleElementioniker name="/51912876-9fed-4Fdf-a551- c791e7a719F2/ExampleElement1” />

7F </exampleShape>

8 <exampleShape Id="bef3338d-ad2b-4324-b1b3-2af911c763F2" absoluteBounds="4.875, 2.25, 2, B.75">

9 <exampleElementMoniker name="/51912876-9Fed-4fdF-as551-c791e7a7192/ExampleElement2” />

18 </exampleShape>

11 <exampleConnector edgePoints="[(5.8125 : 1.375); (5.8125 : 2.25)1" fixedFrom="Algorithm" fixedTo="Algorithm" TargetRelationshipDomainClassId="a229ab47-c544-4ael-bcee-3ad5d81533d1">
12! <nodes>

13 <exampleshapetoniker Id="bd7c7@7e-ldcc-48ee-alla-600ald47874F" />

14 <exampleShapetoniker Id="bef333Bd-ad2b-4324-b1b3-2af911c763F2" />

15 </nodes>

16 </exampleConnectars>

171 </nestedChildShapes>

18, </minimallanguageDiagram>

Figure 124: Serialized model layout information

Chapter 6-Page | 122

The way a particular model is serialized can be changed by the DSL developer if need be via the DSL
Tools shown below in Figure 125. For the implementation of the solution for this thesis we have not
customized the serialization behaviour therefore details on how to go about the changes are not

discussed further.

DSL Explorer

[+-23 Domain Classes
773 Domain Relationships
-1 Domain Types
52, Editor
=| Explorer Behavior
-1 Shapes
B--éﬁ Xml Serialization Behavior
-3 Class Data
\f‘f; ExampleConnector
A ociment
=1 Element Data
\ﬁ’:, Name
i, CustomValue

i.22, ExampleElementReferencesTargets

\f‘f; ExampleElementReferencesTargets
%, ExampleModel

7, ExampleModelHasElements

‘fﬁf‘, ExampleShape

-\f?;, Languagel Diagram

5

Microsoft.VisualStudio.Modeling DsIDefinition. XmlClassData -

222}

Is Custom
=
Domain Class

False

ExampleElement
Elernent Name exampleElement
Moniker Attribute Na name

Moniker Element Nar exampleElementMaoniker
Moniker Type Name ExampleElementMaoniker

Serialize Id False

Type Name ExampleElement
=]

Notes
Documentation

Figure 125: Customizable serialization

6.2.10 Text Templates

We introduced the concept of text templates for code generation in Section 2.5.1.5, this sub-section
looks at some of its details. Figure 127 shows a simple text template based on the model shown in

Figure 126.

4 ExampleModel
DomainClass

ExampleModelHasElements

e

Elements o
o

DomainClass

ExampleElementReferencesTargets

Targets Sources
< 0

¢ ExampleElement
0.

DomainClass

Figure 126: Text template example model

<#@ template inherits="Micreosoft.VisualStudio.TextTemplating.VSHost.ModelingTextTransformation™ #»>
<#@ output extension=".txt" #>
<#@ Languagel processor="LanguagelDirectiveProcessor" requires="fileName='Sample.mydsll'" #>

Generated material. Generating code in C#.
o<
// When you change the DSL Definition, some of the code below may not work.

foreach (ExampleElement element in this.ExampleModel.Elements)
{
#>

<#= element.MName #>

Figure 127: Text template

The above text template outputs a file with a .txt extension and requires model file called
Sample.mydsl1. It outputs the Name property of all the ExampleElements in an instantiated

ExampleModel.

The output of the template shown in Figure 127 executed against the model shown in the left hand

side of Figure 119 is shown below

in Figure 128.

Chapter 6-Page | 123

Languagel Report.tt

2 Generated material. Generating code in C#.
4 ExampleElementl
5 ExampleElement2

Figure 128: Text template output

Note the file extension and formatting of the output shown in the figure above. The formatting is
identical to that within the text template.

6.3 Class Diagram Approach Implementation

The Class Diagram Approach was introduced in Section 3.4.2.1. This section looks further into the
details of that approach and the how it was implemented. The Class Diagram Approach created a
meta-meta-model tool using the Microsoft DSL Tools which allowed us to create the RWL meta-
model which was consumed by the WPF Ul to create RWL models, therefore this section will be
divided up into three main sub-sections, each representing a different stage in the implementation
process. The three main stages of implementation (Meta-Meta-Model Development, Meta-Model
Development and Shell Host Development) for the Class Diagram Approach are formed with respect
to the overall high level approach defined in Section 3.4.2.1 (shown below).

Design a meta-meta-model structure using Microsoft DSL Tools
Design our RWL meta-model using the newly created meta-meta-model
Generate code representing our meta-model using text templates

Wb

Design the end-user Ul using WPF which uses the generated code representing the meta-
model as its back-end
5. The WPF Ul generates the required RWL script

The first point (1) in the above list is the meta-meta-model development (Section 6.3.1). Point two
and three form the meta-model development phase (Section 6.3.2). Point four and five form the
shell host development phase (Section 6.3.3).

6.3.1 Meta-Meta-Model Development

The meta-meta-model we implemented was essentially a UML-like meta-model which gave us the
ability to create highly configurable class diagrams which we could then use to create the RWL meta-
model. The DSL Tools allow us to create this UML-like meta-model via its Class Diagram wizard. This
UML-like meta-model is essentially our meta-meta model.

We started with a DSL model as shown in Figure 73. This model already allowed us to create class
diagrams. The following sub-sections detail the steps taken to make this generic class diagram
model into our meta-meta-model.

6.3.1.1 Common Hierarchy

The class diagram wizard is intelligent and had a pre-built hierarchy for us. This hierarchy has an
abstract root called NamedElement which all model elements inherit from, either directly or
indirectly. This model element has a property called Name which holds the name of the model
element when instantiated. Therefore, we can make our new model elements inherit from this
model element and we will automatically have this property. This hierarchy is shown below in
Figure 129.

Chapter 6-Page | 124

7 NamedElement &
DomainClass

! ModelRoot
DomainClass

1% Layer
DomainClass

“Z CanvasSwimlane
DomainClass

| 4 Do = |
{ _ DomainClass j

Figure 129: Class diagram common hierarchy

6.3.1.2 Layer Support

Looking at the static UML meta-model designed in Step N of Section 5.4, we have two distinct
swimlanes. We wanted to depict this in our meta-model therefore we added layer support. We
determined that any meta-model element would belong to one and only one layer and our layer
would in-turn belong to the root of the model. Each layer would be mapped to a swimlane shape so
it appears as a vertical band just like in our static meta-model design. Therefore we have the
following model elements and relationships, shown in Figure 130.

“{ ModelRoot 3
DomainClass

ModelHasLayers

Layers DomainRelationship (%) [|Model 4% Layer ¥
Lr 11 DomainClass
LayerHasTypes
Types DomainRelationship (3] ||Laver i 1§ ModelType ¥ E
0 11 ! DomainClass
rH+

LayerHasEnumerands

DomainRelationship (%) ||Layer ¢ Enumerand ¥
o 11 DomainClass
s

Figure 130: Layer support

Note in the above figure that all relationships are embedding relationships (denoted with a solid line
and introduced in Section 5.7.2.2) meaning that all ModelType and Enumerand elements have to
embedded on one Layer. The Enumerand model element is explained in the following sub-section
(Section 6.3.1.3) although let us look at the ModelType model element.

We have designed the Layer model element so that all elements are embedded within it. In a class
diagram we have three main types of objects. Namely: enumerands, classes and interfaces. We
have already shown how the Enumerand object is embedded within the Layer but have not shown
how classes and interfaces are embedded within it. For this we have to look closer at the ModelType
model element. Note that the surrounding border of the ModelType model element is dashed,
indicating that this is an abstract class. Expanding this, we have the hierarchy as shown in Figure
131.

Chapter 6-Page | 125

i ¢ ModelType @ |
i DomainClass |
H+

47 Modellnterface 53]
DomainClass
¥

“{ ModelClass ¥|
DomainClass
¥

Figure 131: ModelType inheritance

From the above figure we can see that the Modellnterface and ModelClass model elements both
inherit from ModelType meaning that both these elements display the same behaviour as its parent,
ModelType. Thus, all three class diagram objects: enumerands, classes and interfaces have to be
embedded within a Layer model element. This conforms to our static UML diagram specifications.

6.3.1.3 Enumerand Support

We wanted to be able to add enumerated values to our meta-model and our existing class diagram
created by the wizard did not support this. Enumerated values would allow the DSL designer to
easily select a value from a closed set of available values. This means that validation could be made
simpler as there are only a few values to choose and also the DSL designer would not need to know
the valid values which can be used as they are readily available within the enumerated list.

Therefore, we added enumerand support into our model by representing it using the model element
Enumerand, shown in Figure 130. An enumerand also needs a name, although this has already been
taken care of as we inherit from NamedElement as explained in Section 6.3.1.1.

An enumerand needs to be able to represent various enumerated values, we added support for this
by adding another model element called EnumerandValue which is embedded within the Enumerand
model element and the generated relationship is shown below in Figure 132.

Vi; Enumerand ¥
DomainClass

EnumerandHasValues

DomainRelationship (%) [|Enumerand “¢ EnumerandValue (%

0.7 11 DomainClass

Values

= Domain Properties

B Value: Int32
= DisplayMame : Stri...

Figure 132: Enumerand support

From the above figure we can quickly notice that an enumerand can contain 0..* (zero to many)
enumerated values and that an enumerated value has to belong to one and only one (1..1)
enumerand. Note that the EnumerandValue model element has two properties, Value and
DisplayName, Figure 133 below shows what they represent.

public enum Exa
DisplayName
1 Value

Examplevalue = @4
Examplevalue = 1

Figure 133: EnumerandValue properties

Chapter 6-Page | 126

6.3.1.4 Canvas Swimlane Support

The notion of canvas swimlanes was borrowed from Scribe (outlined in Section 2.6). Scribe made
report writing modular by allowing the report designer to divide up a report into various sections
such as the header, variables and body. We attempt to make a similar distinction by dividing up a
given canvas into various sections called canvas swimlanes. We further make a distinction by
allowing our meta-model (which will be designing using this meta-meta-model) to dictate which
classes (ModelClass) can be added to which canvas swimlane (CanvasSwimlane). This relationship
(CanvasSwimlaneMapesClasses) is shown below in Figure 134.

“¢ ModelRoot ¥
DomainClass
ModelHasCanvasSwimlanes

Swimlanes DomainRelationship (3] [[Model “¢ CanvasSwimlane (%
(X 11 DomainClass

= Domain Properties

B IsCoreSwimlane ...
= BackgroundCelor...
P Header : String

CanvasSwimlaneMapsClasses

ModelClasses mainRelationship () J1€ iml... | “i# ModelClass ¥
[N 0.° DomainClass

Figure 134: Canvas swimlane support

Note from the above figure that the CanvasSwimlane model element is embedded within the root of
the model as opposed to within the Layer model element. This is because ModelClass elements
belonging to different Layer model elements could be potentially mapped to a common
CanvasSwimlane.

Also note the properties of the CanvasSwimlane model element. The IsCoreSwimlane property
allows us to indicate in the meta-model whether a given swimlane is the main swimlane so we can
allow for special conditions. BackgroundColor and Header property allow the meta-model to
indicate the colour of the swimlane and its title respectively.

A usage example of this is shown in the meta-model generated in Figure 157 and this meta-model
get translated to the report sections (Report Header, Report Footer, Report Variables and Report
Body) which are shown in Figure 108.

6.3.1.5 UML Constraints

The meta-model which will be mapping the RWL will essentially be a UML like diagram following the
meta-meta-model described here. Therefore it is mandatory that our meta-meta-model enforces
constraints which will mandate the creation of a valid meta-model. These constraints are illustrated
in this sub-section.

e Validations
Like any valid UML diagram, every class which will be part of our meta-model will have to
contain a unique name which is not empty. More so, the unique name should adhere to the
final implementation language constraints. For e.g. the generated code from our meta-
model will be in C#, therefore class names can only start with alphabets and then contain
any alphanumeric character and cannot contain a space.

Chapter 6-Page | 127

Therefore, what we did was design a validation rule on the NamedElement model element
which validates its Name property. We implemented a regular expression validator which
validated the C# requirements and added custom code which guaranteed that a class name
is unique. The event chain for this validation is shown below in Figure 135.

NamedElement ValidationHelper
| |
1 1
Validate
false
e ,,,,,,,,,,,,,
T
false " | > NotEmpty

| > C# requirements

—L

false/true

Figure 135: Class Diagram Approach: Validation implementation

If any of these rules are violated we see intuitive error messages which are shown in Figure
136.

. —
Microsaft Visuzl Swudio S | | Microsoft Visual Srudia]

i ¥ 1 Name cannot be empty or null. i P ! MName (12] has illegal characters,
S Parameter name: Name & Parameter name: Name

Figure 136: Class Diagram Approach: Validation results

Inheritance cycle

In .NET CLR programming languages recursive inheritance hierarchies prove to be a major
problem especially when we have deep inheritance. To avoid this we decided to add a
validation rule which potentially checks for recursive inheritance cycles and informs the
user.

Chapter 6-Page | 128

ModelClass2

<<Clgsss> ™
ModelClass3

Inheritance loop detected.

Figure 137: Class Diagram Approach: Inheritance cycle

In the above figure we are potentially trying to create an inheritance from ModelClass1 to
ModelClass3 (indicated by dotted line), this will to a recursive hierarchy clearly see from the
figure, although when the meta-model gets complicated and with deeper hierarchies this
will not be clear.

e Self inheritance

It is also irrational allowing a class or an interface to inherit from itself (indicated by dotted
line in Figure 138) this is also catered for by a validation rule. The figure below shows this
validation rule in action.

| Reflexive inheritance detected. k

Figure 138: Class Diagram Approach: Self inheritance

e Multiple inheritances

Our intended implementation language, C#, disallows a class to inherit from more than one
class (note that a class can inherit from more than one interface). We have to cater for this
requirement, although this can be done via our meta-meta-model, shown below in Figure
139.

47 ModelClass ¥
DomainClass
—

‘Generalization

Subdasses DomainRelationship (3] || Superdass 47 ModelClass
[o1 DomainClass

4

Figure 139: Class Diagram Approach: Multiple inheritances

Note in the above figure the Generialization relationship denotes a class inheriting from a
class. Also note the multiplicity on the SuperClass role player is 0..1, this means that a class
can have at most one superclass (parent).

6.3.1.6 Custom Field Editors and Mandatory Fields

Section 5.7.2.5 introduced us to the need for custom field editors. We wanted to allow developers
to choose whether a specific field or attribute has a specialized editor attached to it. This allows the
WPF Ul to give end-users a sophisticated interface which they can be used to populate the value for
that field.

Chapter 6-Page | 129

We implemented this by adding an external enumerand (Enumerands were introduced in Section
6.2.8) called EditorType. This enumerand at this point in time (new values can be added if need be)
contained two values: DefaultEditor and WindowSelectionEditor. We then added a property to our
Attribute meta-meta-model element and the type of this attribute was mapped to our newly create
enumerand EditorType (demonstrated below in Figure 140). This allowed the meta-model developer
to indicate whether a given attribute is edited by a specialized editor (currently only the
WindowSelectionEditor).

DSL Explorar =]
g ReportWriterMetaMetaModel
r- Cennection Builders
71 Cennectors

- Diagram

#-d Domain Classes

#-_1d Domain Relationships

»

47 ModelAttribute = Domain Types B

DomainClass -7 AccessModifierComplex 3
= Domain Properties @27 AccessModifierSimple

5 Type: String 5| Eoolean

r 13 Byte

= IsMandatory : Boo..

, ; - 422 Char

= DisplayMame : Stri...

2 Typen A 12| Color

ypeAccess | Acce.. 5 Dashstyle

4 EditorType : Editor.. i3 DateTime

122 DomainColor
133 Double

= GenerateDomainP...
EF InheritanceModifi...

ﬁ) InheritedMember... B EditorType

=-1 Literals

DefaultEditor
WindowSelectionEditor

13 Guid
@-=F InheritanceModifierComplex

Figure 140: Class Diagram Approach: Custom field editor implementation

Whether a given attribute was mandatory or not was easily implemented by adding a field on the
ModelAttribute model element called IsMandatory. This is a Boolean type, true if the field is
mandatory and false otherwise. This field is also shown in the above figure.

6.3.1.7 Custom UML Editors
While creating the meta-model of the RWL the developer will be constantly be adding and modifying
methods (functions/operations). To make this easier for the developer a simple operation signature
editor was provided by the meta-model. This was implemented in WPF and is shown below in Figure
141.

Il Operation Name: CheckMandatoryFislds

Return Type: bool | Add Parameter |

invalidModels
List<InvalidModel>

Parameter Name: invalidModels
Maodifier: | Ref |

Type: List<InvalidModel>

Figure 141: Class Diagram Approach: Operation signature custom editor

The above interface has validation control and enforces simple rules such as disallowing empty
values for parameter and operation names and ensuring they meet the C# language constraints as
explained in Section 6.3.1.5.

Chapter 6-Page | 130

6.3.1.8 Shape/Connector Definition

The shape definition of the meta-meta-model elements was kept consistent with the way the .NET
class diagrams work to reduce the learning curve for new developers. Figure 142 below shows the
shape mappings for the ModelClass and Modelinterface model elements.

ES << (Class> >

ModelClassl

2|

< <Interface>>
Modellnterfacel

=/ Attributes
[#f ModelAttributel : String

= Operations

= Attributes

= Operations

@ void Operationl()

Figure 142: Class Diagram Approach: Shape definition

The rest of the model elements follow a similar shape mapping where on the top left side we have
an expandable/collapsible button following by a stereotype definition and then the name of
instantiated object. Most shapes also have compartments to represent their embedding fields. For
e.g. in the above figure, both the class and the interface have compartments which show their
attributes and operations.

We have also implemented minor variations on how the shape looks depending on some properties.
For e.g. if a class in the meta-model is abstract, it has a dashed border. If a given operation is an
override or virtual operation it has a special icon next to it. If an attribute is marked as mandatory, it
appears with a red asterix. Examples of the aforementioned are shown below in Figure 143.

¥

<= Clgss =

ControlLineModel

yerrmssssssssssssassaan,
W ES ==(lgsss >

= Attributes : AbstractClass .

:Eniﬁl:' Code: String i =l Attributes :
e o openen |
= Operations

0y, String[] PossibleSwimlanes()

vv kool CheckMandatoryFields(ref List<InvalidMedel = invalidMedels)

Figure 143: Class Diagram Approach: Shape definition variability

All relationships (embedded/aggregation and reference/association) were represented using lines.
We use directional arrows for some relationships such as generalization. Figure 144 shows an
example of the CanvasSwimlaneMapsModelClasses relationship; we see four lines going between
CommentModel to the CanvasSwimlanes indicating that this particular class can be successfully
added to these swimlanes.

Chapter 6-Page |131

Header

Report Header

Report Body

ISI
2

Variables

Report Variables

Footer

I Report Footer

[¥) <<Class>>
CommentModel

Figure 144: Class Diagram Approach: Connector definition

6.3.1.9 Custom Context-Menu Support
We introduced the DslPackage project in Section 6.2.2 which specifies the menu items and
commands available to the developer while they are using our meta-meta-model.

CanvasSwimlanes and its relationship with a ModelClass were outlined in Section 6.3.1.4 and
demonstrated in Figure 144. As the meta-model grows the number of instantiated ModelClass
elements will increase and so will the number of relationships it has with the respective canvas
swimlanes. Each of these will be represented by a line which will clutter the meta-model, to get
around this problem we introduced an extra menu item which the meta-model developer can toggle
to hide and show these relationships. This menu item (called Toggle Shape Maps) is shown in the
figure below, notice how the relationships between the class and the swimlanes are not shown.
These relationships still exists on the underlying meta-model only their representation is invisible to
avoid clutter.

Header

Report Header

Report Body

Body

Variables

Report Variables

Footer

5 Report Footer C

- X | Delete

¥ Toggle Shape Maps
Validate

¥ << Class> > Validate All
CommentModel 2| Properties

Figure 145: Class Diagram Approach: Custom context-menu

Chapter 6-Page | 132

We implemented this menu item by simply adding a new value into the Commands.vsct file within
the DslPackage project. The VSCT (Visual Studio Command Table) file allows developers to add
custom commands to the visual studio menu structure. The VSCT is an XML file making it very
intuitive. The code snippet of this file which implements the new menu item shown in Figure 145 is
shown below in Figure 146.

1‘% <Commands package="guidrkg"»

13 <Bitmaps>

13 <Bitmap guid="guidImages" href="Resources‘\swimlaneclassmap.png"”

20 usedList="toogleShapeMaps™/>

1+ </Bitmaps>

2i[] <Buttons>

3 g <Button guid="cmdToggleshowshapemapscuid™ id="cmdToggleshowshapemapsId™ priority="exes@2" type="Button">

<Parent guid="guidCmdSet" id="grpidContextMain”/»

<Icon guid="guidimages™ id="toogleshapemaps™ /»

<CommandFlag»Dynamicvisibility</CommandFrlag>

=] <Strings»
<Canonicaliame>cmdToggleshowsShapeMaps</Canonicaliame>
<ButtonText»Toggle Shape Maps</ButtonTexts
<TeolTipTextsHide/show shape map relationships (Unclutter your model)</ToolTipText>

+ </strings>

+ «/Button>

F «/Buttons>

«</Commands»

I I R I X R R

w

w
. LU R3S @ AD A sl o

[

<Symbolss
<Guidsymbol name="guidImages™ value="{9D4B7380-34E2-428f-B132-DOFEE7F92342}" >
«IDSymbol name="toogleShapeMaps™ value="1" />
«/Guidsymbol>

411 <guidsymbol name="cmdToggleShowshapeMapscuid™ value="{4BB24DAA-B01E-4243-BFD1-838CASDESRFE]" >
42 <IDSymbol name="cmdToggleShowShapeMapsId® value="8x818" /»

43i L </GuidSymbol>

44i L </Symbols>

Figure 146: Class Diagram Approach: VSCT code snippet

6.3.1.10 Method Automation

Automation was added to help the meta-model easily evolve as new classes were added to it by
developers. After adding a few base classes (classes which contain generic methods) and interfaces
we were ready to add specialized classes (class which cater for special cases) which could inherit
from these base classes and interfaces. Therefore, each abstract or interface method
(function/operation) had to be replicated in the specialized class. Manually copying these functions
was possible for the first few specialized class although as more classes get added or even if we
add/modify the functions within the base class, each change has to be manually propagate to its
specialized classes. We implemented a mechanism which automates this synchronization process to
allow the meta-model developer concentrate on the development of the meta-model.

Figure 147 below shows a part of the meta-model we developed as part of the class diagram
approach. Notice the similarities between this figure and the final meta-model shown in Section 5.4.
We will look at the details of this meta-model in the following sub-section.

Chapter 6-Page | 133

¥ <<interface>>
IReportStatementModel

i

% <<interfocess fﬁ < < Interfaces » N
IGenerateCodeMaodel IValidateModel
Attributes Attributes
1= Operations 1=l Operations
@ String Generate() g bool CheckMandatoryFields{ref List<InvalidModel > invalid Models)
iy bool IsMeadelValid(ref List<InvalidMadel > invalidModels)
2
£ : ™

!

< < Interfacer >
IMcdelElement

Attributes

=l Operations
@ bool AddModel(IModelElement model, out Stri..
i bool RemoveModel(IModelElement model, out...
@ bool CanAddModel(IModelElement model, out..
i bool CanRemovelodel(IModelElement model, ...

i@ String[] PossibleSwimlanes()
e -

Figure 147: Class Diagram Approach: Method automation example

Now if we wanted to add a class which inherited from the IModelElement interface shown in the
above figure we would have to manually copy all the methods from IGenerateCodeModel,
IValidatedModel and IModelElement. This would be very time consuming without our automated
helper, although after our helper was implemented, all the developer needed to do was add an
inheritance relationship between the new class and the required interface (Figure 148) and all
functions would be copied over (Figure 149). Note that all functions will be copied over recursively
going up the hierarchy making this a very powerful tool. | made extensive use of this functionality
while designing and developing the RWL meta-model using the Class Diagram Approach.

¥ < <Interface> >
IReportStatementhodel

¥| <<interfoces > ¥ < < interfaces >
IGenerateCodeModel MalidateModel

¥ <<interfacer =
IModelElement

[

<< Class> >

ModelElementBase

= Attributes

= Operations i
H

Figure 148: Class Diagram Approach: Method automation helper, step 1

Chapter 6-Page | 134

< <Interface> >
IReportStatementModel

< < Interfaces > << Interface> >
[GenerateCodeModel IValidateModel
< < Interfaces >
IModelElement

£h

<< Class> >
ModelElementBase

= Atributes

1=/ Operations
@ bool AddMedel(IModelElement model, out String reason)
iy bool RemoveModel(IModelElement model, out String reason)
iy bool CanAddModel(IModelElement model, out String reason)
i@ bool CanRemoveModel(IModelElement model, out String reason)
i String[] PossibleSwimlanes()
i String Generate()
i bool CheckMandatoryFields{ref List<InvalidModel > invalid Models)
i bool IsModelValid(ref List<InvalidModel> invalidModels)

NN RN RN AR N RN NN NN EENEEEENEEINEIEREEERREERERRRRER

T T LT T T ——

Figure 149: Class Diagram Approach: Method automation helper, step 2

Note that in Figure 148 and Figure 149 above we have collapsed our parent interfaces so that we
have a small concise figure.

6.3.1.11 Explorer/Toolbox View

We implemented a simple tree-view explorer for the meta-model developer to easily allow them to
see the meta-model they have created. This explorer was designed using icons matching those from
the toolbox (Figure 150) which the developer used to create the meta-model elements, making it
intuitive. A screenshot of the explorer is shown in Figure 151.

=l Class Diagrams |

Kk Pointer
=] Class

| Interface

[@f Attribute
w Operation

4— Generalization
Uy Layer

[] Enumerand
€ Unidirectional
o[z Swimlane

[#4 Canvas Model Map
€. Embedding Relaticnship
| # General

Figure 150: Class Diagram Approach: Meta-meta-model toolbox

Chapter 6-Page |135

by oo I =

=-d Layers

E|_|j Corelayer

51__] Enumerands

BI:l InvalidCause

--|__] Values

= Types

@[] CommentMaodel

i | CoreMaodel

i | IGenerateCodeModel

=+ | IModelElement

E||__] Attributes

@ Models

E||__] COperations

iy bool AddModel(IModelElement model, out String reason)

iy bool CanAddModel(IModelElement model, out String reason)

iy bool CanRemoveModel(IModelElement model, out String reason)

iy bool RemoveModel(IModelElement model, out String reason)
.y String[] PossibleSwimlanes()

@[] InvalidModel

- InvalidModelReason

£

£

£
£

i1 | IReportStatementMadel
i1 | WalidateModel

-[—] ModelElementBase
-y Databaselayer

-y ReportWriterLayer
- Swimlanes

Figure 151: Class Diagram Approach: Meta-Model model explorer

6.3.2 Meta-Model Development

After developing our meta-meta-model we started implementing the meta-model and putting
together a high level class diagram of the RWL constructs starting from the base. This approach was
abandoned in the early stages of implementation therefore only a small portion of the RWL is
modeled via this meta-model.

We divide this section up into two sub-sections. We look at how the meta-model was developed and
the importance of the base classes and the hierarchy and then proceed onto showing how the code
was generated using this meta-model.

6.3.2.1 Meta-Model

We started creating our meta-model by adding four core interfaces: IReportStatementModel,
IGenerateCodeModel, IValidateModel and IModelElement. IReportStatementModel and
IGenerateCodeModel were demonstrated in Section 5.4.

e |ReportStatementModel - Interface

A simple interface without any functions or attributes. All RWL constructs will inherit from
this so that they have a common base.

e |GenerateCodeModel - Interface

Contains a single function called Generate which returns a string. This function has to be
implemented by any RWL class which can potentially generate RWL script. Gives us the
capability of configuring the RWL script generation process.

Also to make our inheritance hierarchy simpler, IGenerateCodeModel inherits from
IReportStatementModel.

Chapter 6-Page | 136

IValidateModel Interface

Contains two functions IsModelValid and CheckMandatoryFields. Any RWL construct which
needs to provide validation has to inherit from this class and provide implementations for
the two functions. It is intended that IsModelValid will call CheckMandatoryFields which is
automatically implemented against the mandatory fields indicated by the developer.

IModelElement - Interface

Shown below in Figure 152.

¥ < <interface> »

IReportStatementModel

¥ <<interfoces = ¥| <<interface>>
IGenerateCodeModel IValidateModel

i !

3 < < nterfoces >

IMcdelElement

=l Attributes
[#f Models : List<IModelElement>
=l Operaticns
Models iy bool AddModel(IMedelElement medel, cut String reason)
@ bool RemoveMoedel(IModelElement model, cut String reason)
ZeroMany @ bool CanAddModel(IModelElement medel, out String reason)
i bool CanRemoveMoedel{IModelElement model, cut String reasen)
i String[] PossibleSwimlanes()

Figure 152: Class Diagram Approach: IModelElement interface

This interface brings together IGenerateModel and IValidateModel interface and also adds
extra functions.

Models (an Attribute)

We anticipated that a given RWL construct could contain other RWL constructs, for e.g. a
Scan construct could contain Print constructs, this relationship is mapped by this attribute. It
represents all IModelElement objects contained by this IModelElement.

AddModel(...)/RemoveModel(...)

A function to add/remove one IModelElement object to another. It returns true or false
indicating whether the addition/deletion was successful. It is intended that this function will
call CanAddModel(...)/CanRemoveModel(...) to determine if an addition/subtraction is
possible.

PossibleSwimlanes(...)
Returns a list of swimlanes which this IModelElement object can be added to.

ModelElementBase — Abstract class

Shown below in Figure 153.

Chapter 6-Page | 137

Models| ¥ < < Interface> >
IMcdelElement
ZeroMany

odels | ZeroMany

R P T T T

3 << Classs >

ModelElementBase

= Attributes
[#f Models : List<IModelElement>
= Operations
¥4 boel AddMedelIMedelElement medel, cut String reascn)
vly bool RemoveModelIModelElement medel, out String reason)
vy bool CanAddModel(IModelElement medel, out String reason)
vt’ becl CanRemoveModel(IModelElement medel, cut String reascn)
aly String[] PossibleSwimlanes()
L String Generate()
av boel CheckMandatoryFields(ref List<InvalidModel> invalidMaodels)
vy bool IsModelValid(ref List<InvalidModel > invalidhodels)

T ia R EE N AR RS RS ANRAAS AR AR AR

T T T T T T
SRS AR EE SRR e

Figure 153: Class Diagram Approach: ModelElementBase abstract class

This class provides basic implementations to all the functions exposed by the IModelElement
interface (and any interfaces which IModelElement inherits from and so on).

CoreModel - Class
Shown below in Figure 154. Inherits from ModelElementBase and represents the root model

of the meta-model.

ES <= Class> > h
CoreModel

= Attributes

f_«@ﬁ Centrolline: ControlLineModel
= Dperations

O, String[] PossibleSwimlanes()

uty bool CheckMandatoryFields(ref List<InvalidMedel> invalidModels)

S

Figure 154: Class Diagram Approach: CoreModel class

Note in the above figure that the attribute ControlLine is marked as mandatory, this
represents the RWL constraint that every RWL model should have one and only one
ControllLine.

ControlLineModel - Class
Shown above in Figure 154. Inherits from ModelElementBase and represents the RWL

ControllLineModel construct.

Chapter 6-Page | 138

<<Enumerand>>

ReportType

1=/ yalues
List-0
Summary: 1
Period - 2
Standard : 3
General -4

«xClgss=s

ControllineMeodel

Attributes

'.“;r Code : String

B Access : String

A Mame : String

'ﬂ- Type : ReportType

A Link - String

[File - String

4 PericdEndRepert : Boclean
@ Acticn - String

4 Sort: String

B Select: String

[Breselection - String

@ NoMargins - Boolean

| FixedFont: Boclean
‘Operations

0y String[] PossibleSwimlznes)
04 bool Checkh ~yFields(ref List<

Figure 155: Class Diagram Approach: ControlLineModel class

Note in the above figure the three mandatory attributes of the ControlLine construct (Code,
Access and Type). We have also shown an enumerand type in the above figure, the

enumerand represents the possible

Helper classes

Figure 156 shows the remainder of the classes in the meta-model. These classes help us

pass validation information to the u

values that the attribute Type can take.

ser interface.

<-<Enumerand>>
InvalidCause

= Values

EmptyValue: 0
InvalidValue: 1

<< Class>>

InvalidMedelReason

Cause = Attributes

[Sclution : String
[#p Cause : InvalidCause
[#f PropertyMame : String

ZeroOne

Reasons

8 Operations

ZeroMany

<<Class>>
InvalidModel

= Attributes

[l Model : IModelElement
= Operations

[Reasons : List<InvalidMcdelReason>

Figure 156: Class Diagram Approach

: Added helper classes

Chapter 6-Page | 139

The entire meta-model is shown below in Figure 157, note how the ControlLineModel is mapped to the ReportHeader CanvasSwimlane indicating that it can
be only dropped in the header section of the report:

CorelLayer
(2 [¥] = <Enumerand>> Cause
B ol InvalidCause B
IReporiStatementModel ZercCne
T ¥ < < Clgss> >

3 < < Interface s = = < < Interfaces > InvalidModelReascn

IGenerateCodeMadel IValidateModel T Header

Reasons | FZercMany
g | [Report Header]
‘ (] << Classs >
Model InwvalidMaodel Variables
[¥] < <Interfoces >
IMeodelElement Report Variables
ZeroM
] Models | ZeroMany i 4
I [Report Body J
HiE) <= Classs > %
H
i ModelElementBase E Eoatss
¥ < = Class> > w ZF i
CoreModel Report Footer
\
ControlLine ReportWriterLayer
[zl << Cigss> >
Type | EiEE o ControlLineModel
r
[¥] <<Enumerand> >
ReportType
DatabaselLayer

Figure 157: Class Diagram Approach: Meta-model

Chapter 6-Page | 140

6.3.2.2 Code Generation
Table 3 below shows the mapping between the model element and what it gets converted to within
the C# language and which physical file it resides in:

Table 3: Class Diagram Approach: Code generation mapping

Model Element C# Language Construct Physical File Name

ModelClass (incl. Abstract) Class Classes.cs
Modelinterface Interface Interfaces.cs
Enumerands Enum Enumerands.cs
CanvasSwimlanes Class Swimlanes.cs

Other files generated include:

e DomainPropertyHandler.cs
Contains a generic event handler which allows event notification when attributes change

their values.

e ModelToolbox.cs

Exposes a given instantiated ModelClass object to the Ul by adding it to this class. At
runtime, the Ul toolbox reads this information and populates itself accordingly.

e Attributes.cs
Contains .NET CLR attributes which we can set on attributes belonging to ModelClass
elements allowing them to open custom editors if required.

We generated our code from the model using the T4 Text Templating Engine (outlined in Section
5.7.2.3) in a sequential fashion and the flow is shown below in Figure 158:

Chapter 6-Page |141

Ye

layers

Print
Layer

Classes/
Interfaces

las more
classes/
interface:

Process
class/
interface

Print
signature

Print inheritance
list

Fields
(Properties)

Process field Yes

Print editor
attributes

Functions
(Operations)

Print
signature

Can
automate
method,

Process function

as mora
_N

—Ye: Generate Has more —N Print
automated body functions INotifyPropertyChanged

No
y

Print
NotImplemented

Figure 158: Class Diagram Approach: Meta-model code generation

The following points are based on the above figure:

e Print Header
Header information includes items like import statements and information about the

generation process.

e Layer processing
We see in Figure 157 that we have three layers represented as horizontal swimlanes. We
process each layer separately so that each class which is embedded within that layer resides

in a common namespace.

e Class/Interface processing
Each class or interface is processed by initially printing its signature. The signature of a class
or interface includes its accessibility, name and its abstract nature. For e.g. public abstract
partial class ModelElementBase indicates that the class ModelElementBase (class name)
can be accessed by any other class (public) and is abstract. Note this matches the definition
of the class provided by the meta-model which we examined in Section 6.3.2.1.

After the signature the inheritance list of a particular class or interface is printed. This
indicates the implementation chain specific to this class. For e.g. public abstract partial
class ModelElementBase : INotifyPropertyChanged, IModelElement indicates that the class
ModelElementBase inherits from INotifyPropertyChanged and IModelElement. Note that
inheriting from IModelElement matches the meta-model in Section 6.3.2.1 although
inheriting from the INotifyPropertyChanged interface is indicated by a property (Figure 159)

Chapter 6-Page | 142

on a given class. If set to true the interface name is generated. This interface allows us to
trigger events which notify the Ul when a particular property is modified.

ModelElementBase Model Class -
ﬂil
=
Parent Class {none)
=
Has Custom Constructor False
Has INotifyPropertyChanged TS =]
Is Abstract Abstract
Name ModelElementBase

Type Access Public
=

Superclass {none)
=

Is Toolbox Class False
=

Remarks

Summary

[T Oy S ——

Figure 159: Class Diagram Approach: INotifyPropertyChanged attribute on a ModelClass object

Field (properties) processing

Embedded within a class or an interface are its fields (properties). We process each field by
printing the actual field (e.g. private List<IModelElement> _models;)and then printing its
accessor (e.g. public List<IModelElement> Models { get { return _models; } set {
_models = value; } }). Note that if we are printing a field within an interface we only print
its accessor (e.g. List<IModelElement> Models { get; set; }).

Just prior to printing the accessor for a given field we print the editor attribute for that field
(e.g. [EditorAttribute(Editor=EditorType.DefaultEditor)]). This editor attribute indicates if the
user modifies this particular field using a custom editor. This is extracted from the
EditorType property shown in Figure 140.

Function (operation) processing

We process functions (operations) after we finish processing embedding fields within a class
or an interface. We start by printing the signature of the operation which includes its
accessibility, name, abstract nature and its parameters (e.g. public abstract bool
CheckMandatoryFields(ref List<InvalidModel> invalidModels)).

If an operation belongs to an interface then this is all that is required although for a class we
further check if the method signature matches the signature of an automated method. If it
does an implementation is generated else the body is marked as not implemented.

An automated method is a method which we generate the implementation for
automatically. CheckMandatoryFields is an example of such an automated method. Its
implementation solely depends on the mandatory fields marked by the meta-model
designer. For e.g. in Figure 155 we see that the ControllLine object has three mandatory
fields, the code generated by our automated generator is shown below in Figure 160.

Chapter 6-Page | 143

hubli: override bool CheckMandatoryFields(ref List<InvalidMedel> invalidModels)

bool valid = true;

List<InvalidiodelReason> reasons = new List<InvalidiodelReason>();

if (String.IsNullOrEmpty(_code))

{
reasons.Add(new Invalidtodelzason() { PropertyName = "Code”, Cause = InvalidCause.EmptyValue });
valid = false;

¥

if (String.IsNUllOrEmpty(_access))

{
reasons.Add(new Invalidiodelzason() { PropertyName = "Access®, Cause = InvalidCause.EmptyValue })
valid = false;

3

if (String.IsNullOrEmpty(_name))

{
reasons.Add(new InvalidiodelReason() { PropertyName = *Name®, Cause = InvalidCause.EmptyValue });
valid = false;

¥

if (_type == null)

{
reasons.Add(new Invalidiodeldeason() { PropertyName = "Type", Cause = InvalidCause.EmptyValue });
valid = false;

¥

invalidModels.Add(new InvalidModel() { Model = this, Reasons = reasons });
return valid;

Figure 160: Class Diagram Approach: Automated method generator for CheckMandatoryFields

e |NotifyPropertyChanged

The importance of the INotifyPropertyChanged interface was outlined earlier. The last part
of processing a class includes printing an implementation for this interface if one is needed.
This basically means adding an extra function which properties can call to indicate they have
changed.

We have seen how the code gets generated for a class or an interface, code for enumerands and
other objects is done in a similar fashion. So far we have explained the implementation of Step 2 of
Figure 79 (note that Step 1 is an automatic generation process done via the built-in templates
provided by Microsoft DSL Tools which were shown in Figure 74).

Step 3 of Figure 79 involves the generation of the RWL script from the RWL model created by the
end-user. This was not implemented to a great detail although the idea was that each RWL model
element would implement the IGenerateModel interface described in Section 6.3.2.1. With this
inheritance structure we would simply call the Generate(...) function of that particular RWL model
element to give us the corresponding RWL script.

6.3.3 Shell Host Development

6.3.3.1 Detailed Architecture of User Interface (WPF Ul)

The shell host in our Class Diagram Approach is the WPF Ul. The Ul allows the end-user to
instantiate meta-model objects and put them together to model RWL reports. This sub-section
highlights how this Ul was implemented. Figure 161 below shows a high level architecture of the
application.

Chapter 6-Page | 144

Prism
WIN DAL
Database
Generate code
(meta-model)
GeneratedModel UlEditors
GraphingLayer Studio
———
End-user

Figure 161: Class Diagram Approach: WPF Ul architecture

The DAL layer shown in the above figure is written using LINQ and allows us to display Prism meta-
data information to the end-user when required. The DAL layer is instantiated by the UlEditors layer
which creates custom field editors for fields marked with the custom EditorType attribute flag.

The fulcrum of the WPF Ul is the Studio layer which the end-user interacts with. This layer provides
the front end application which then in turn interacts with three other layers: The UlEditors layer
(described in the preceding paragraph), the GraphinglLayer and the GeneratedModel.

The Graphinglayer enables user to draw shapes, connect them thus allowing them to interact with
the meta-model of the RWL. The GraphinglLayer therefore is the only point where the
GeneratedModel is used. Although the Graphinglayer does pass back validation information to the
Studio therefore it is necessary that the Studio has some notion of the GeneratedModel.

6.3.3.2 The User Interface
This sub-section looks at the implementation details of the WPF Ul. We divide the Ul up into smaller
sections for further investigation.

e The Toolbox
The toolbox holds all the RWL constructs exposed by our meta-model. It is populated by
reading the contents of ModelToolbox.cs (introduced in Section 6.3.2.2). The file structure is
shown below in Figure 162.

Chapter 6-Page | 145

ModelToolboxitem B
Abstract Class
,,,,,,,,,,,,,,
=l Fields I ModelToolboxHelper ES
! Static Class
S imageFile

4% _toolboxDisplayName e

~

i

[}

I

[}

)

@ AllToolboxltems |

I
]

I

1

=l Properties 1
5 TmageFile L
2 ModelElement -
B ModelType ModelToolboxltemCallection (%

= " Class
5 ToolboxDisplayM
ooiboxUisplaytiame -+ List<ModelToolboxiem>
= Methods

7% CreateNewModel = Methods
% ModelToolboxltem % ModelToolboxltemCollection
" CommentModelToolboxltem = | ControllineMode Toolboxitem 2 |
Class Class
-+ ModelToolboxtem + ModelToolbox@em
= Fields = Fields
& IMAGE_FILE &% IMAGE_FILE
= Properties = Properties
= ModelType = ModelType
= Methods = Methods
% CommentMedelToolbexltem % ControlLineMedelToolbexltern
7% CreateNewModel 7% CreateNewModel

Figure 162: Class Diagram Approach: Ul toolbox population

Examining the above figure we can see that we have a helper class which is called by the Ul
to give us all the toolbox items. As this approach was abandoned in its early stages we only
had two toolbox items: CommentModelToolboxltem and ControlLineModelToolboxItem. All
toolbox items were generated by inheriting from a base class called ModelToolboxitem. This
class contained fields which gave the Ul information about the image to show (ImagefFile),
the model element which it was mapping (ModelElement), the type of model element
(ModelType) and the displayed name of the model element (ToolboxDisplayName).

This allows our Ul toolbox to be populated as shown below in Figure 163.

Core Toolbox

ImageFIIa\; CommentModel

/l ToolboxDisplayName

=] ControllineModel”]

Figure 163: Class Diagram Approach: Ul Toolbox

When an item from the toolbox is dragged onto the drawing canvas, we grab the mapping
meta-model element by calling its ModelElement field which in turn instantiates an object by
calling the CreateNewModel function. This is how a meta-model element is instantiated by
the end-user.

Toolbar/menu

A modern toolbar/menu structure was implemented as part of the WPF Ul. This is shown in
Figure 107. The end-user could easily interact with the toolbar to create a new RWL model,
save or open an existing RWL model, generate the RWL script along with other common

functionality such as copy/paste and undo/redo. The toolbar also provided help in the form

Chapter 6-Page | 146

of tooltips which informed the end-user of their functionality. An example of a tooltip is
shown in Figure 109.

Docked windows

We provided docked window support to give end-users maximum viewing area of the RWL
model they were designing. Docked windows enable end-users to hide and show windows
when required leaving them to concentrate on the task at hand. Figure 108

Canvas/Shapes

The canvas is the drawing surface provided by the WPF Ul on which model elements are
plotted. These model elements are dragged from the toolbox and dropped onto the canvas.
Each model element which is dropped on the canvas has a shape mapped to it. As this
approach was discarded at an early stage we only have one model element and a matching
shape (ControlLineModel). In Figure 164 below, on the left side we see the model element
during the drag operation and on the right we see the model element on the canvas after it
is dropped.

| Core Toolbox « | Reportl [S ” 1- m

= ~ Report Head S
= CommentModel por oS |= commentModel Report Header

=l ControlLineModel | 15 ControlLineModel
L S S E ‘

~ Report Footer ~ Report Footer

~ Report Variables ~ Report Variables

Figure 164: Class Diagram Approach: Adding a model element to canvas

During drag and before a drop is made, the canvas executes background validation checks
using of the RWL meta-model. These are further explained in the following paragraph.

Error checking/validation

Currently our meta-model only caters for checking whether mandatory fields are populated
(Section 6.3.1.6) and whether dropping a specific model element on a report section is
allowed (Section 6.3.1.4).

When a model element from the toolbox is being dragged by the end-user on top of a report
section it will have a green border if a drop is possible and a red border if a drop is not
possible. We see from the left hand side of Figure 164 that the ControlLineModel can be
dropped on the ReportHeader swimlane as specified by the meta-model (Figure 157)
therefore it has a green border around it. Although if the ControlLineModel is attempted to
be dropped in a different report section we see a red border along with intuitive error
information shown in Figure 165 below.

Chapter 6-Page | 147

Core Toolbox « |, Reportl |
| Report Header

"= CommentModel

5 ControllineModel

~ Report Footer

—
i E

@ 0 errorts) [l wamingtsh] (i) 0 Message(s)
Description Source Solution
A 1 Model cannot be dropped on this swimlane. Canvas Report Footer Try swimlane Report Header Swimlane,

Figure 165: Class Diagram Approach: WPF Ul validation check

After the ControlLineModel is successfully dropped on the canvas we can simply right click
on it and request a validation (will validate soft constraints as explained in Section 3.3.1.3) as

shown below in Figure 166.

" Reportl

~ Repart Header

¥ Ccut
~ Report Footer B3 Copy Ciri+C

@ Paste Ctrl+V

X Delete Del

UI (Grouping/Ordering)

Grouping *
A Report Variables Order N
(@ Validate
1§ Validate All

Figure 166: Class Diagram Approach: WPF Ul requesting validation of soft constraints

This will trigger the IsModelValid function on the model element which currently only checks
the mandatory fields by calling the CheckMandatoryFields function. The result from the
above validation request is shown below in Figure 167. Note the description provided for
each error below, these get populated in the CheckMandatoryFields function shown in
Figure 160 with the help of our meta-model helper classes shown in Figure 156.

IErmrLiSt

Q-3 Erortsd| A\ 0 Waming(s) | (i) 0 Messagels)

Solution

i Description Source
EmptyValue{Code} ReportWriterMetaModel ReportWriterLayer.ControlLineModel
EmptyValue{Access) ReportWriterMetaModel ReportWriterLayer.ControlLineModel

EmptyValue{Name} ReportWriterMetaModel.ReportWriterLayer.ControlLineModel

Figure 167: Class Diagram Approach: WPF Ul validation results

Field editing
After a model element gets added to the canvas the next thing the report designer can do is

edit its fields (properties). The Ul offers this capability by exposing a property grid which

Chapter 6-Page | 148

gets populated whenever a model element is selected with the mouse. The property grid for
the ControlLineModel is shown below in Figure 168.

Properties

Search:

Pericd End |
Action

Sort

Select
Preselection
Mo Margins
Fixed Font
Models

Figure 168: Class Diagram Approach: Property Editing

The Ul is intelligent and recognizes custom editor attributes. In Section 4.2.1.4 we
introduced an example which stated the field Access contained a list of Windows? via which
this report can be executed. The field Access is thus marked with a custom editor tag
(Section 5.7.2.5) in the meta-model. The Ul respects this tag and opens the appropriate
editor, in this case a WindowSelectionEditor to allow the end-user select which Windows?
this report can be accessed from. Therefore, clicking on the “...” button which appears by
the Access field in Figure 168 invokes the window shown below in Figure 169.

s =

e

Code Description

ACAD CB Bank - Diary

ACAF CB Bank - Find

ACAG CB Bank - Graph
ACAM CB Bank - Maintenance
CB Bank - Reports
ACAS CB Bank - Summary
ACAT CB Bank - Transactions
ACAV CB Bank - View

ACBC CB Batch - Copy =l

OoOEEEEEEE
g

Ok Cancel

Figure 169: Class Diagram Approach: Custom editor

RWL generation
After editing properties the end-user can generate RWL script from this model. It was

intended that the RWL script will be generated recursively by calling the Generate method
on the CoreModel which calls the Generate method on its children. As this approach was
discarded in its early stages, we only generated the RWL script from the ControlLineModel.
The generated RWL script is shown in one of the docked windows titled “Generated Code”,
shown below is an example.

Chapter 6-Page | 149

Generated Code ‘_

RW_EXAMPLE
List
ACAD

EXAMPLE_0O

Figure 170: Class Diagram Approach: Generated RWL

6.4 RWM Shell Approach Implementation

The RWM Shell Approach was introduced in Section 3.4.2.2. This section looks further into the
details of that approach and the how it was implemented. In this approach we implemented the
meta-model of the RWL using the Microsoft DSL tool and then used the Visual Studio Shell to host it
and allow users to create RWL models. We start of by showing how the RWL meta-model was
implemented followed by showing a few examples of the RWL models created using this meta-
model and the RWL script generation.

Reiterating on why we chose this approach was to reduce the complexity of designing shapes and
connectors (use ones provided by Microsoft DSL Tools) as compared to with the Class Diagram
Approach (where we had to design them from scratch). As we removed the WPF Ul layer from this
approach we basically removed an entire stage which allowed us to design a prototype of a
reporting tool within the given time frame and allowed us to use the T4 templating engine to directly
output RWL script (this approach) as opposed to outputting meta-model code (Class Diagram
Approach).

The two main stages of implementation for the RWM Shell Approach are formed with respect to the
overall high level approach defined in Section 3.4.2.2 (shown below).

1. Design the RWL meta-model structure using Microsoft DSL Tools
2. End-user designs the RWL model using the meta-model using the shell
3. Use text templates to generate the corresponding RWL script from the RWL model

The first point (1) in the above list is the meta-model development (Section 6.4.1). Point two and
three form the shell host development phase (Section 6.4.2).

6.4.1 Meta-Model Development

As outlined in Section 5.8 we started our implementation from a minimal language project wizard
provided by Visual Studio. This allowed us to start implementing the RWL constructs cleanly from
the base.

6.4.1.1 Reporting sections (Swimlanes)

We wanted to provide a modular reporting interface to the user, an idea borrowed from Scribe
(Section 2.6). This meant providing the user with disparate logical sections. The three initial
sections which developed were header, body and variables. We also realized that these sections will
be mandatory on every new report and that each RWL construct will be embedded in at least one of
these sections. We added these model elements into our model, shown below in Figure 171.

Chapter 6-Page | 150

“¢ ReportWriter ¥
DomainClass

ReportWriterHasReportHeader
ReportHeader DomainRelstionship (3] || Reperiiriar % ReportHeader ¥
1.1 1.1 DomainClass
ReportWriterHasReportBody
ReportBody DomainRelationship (3] [ReportWritzr 04 ReportBody ¥
1.1 1.1 DomainClass

ReportWriterHasReportVariables

ReportVaria... DomainRelationship (3] || Reportiiiriter
1.1 L.l

‘! ReportVariables [
Domain(lass

ReportWriterHasCommentableSwimbne

Commentzbl... DemainRelatonship () | ReportWriter | 4 commentableswimbne (3] |

0.* 1.1 i DomainClass

Figure 171: Shell Approach: Report sections in the RWL meta-model

Note in the above figure that the multiplicity on every report section is 1..1 which indicates that a
report has to have one and only one instance of this model element. Also note the abstract model
element CommentableSwimlane. Each of these sections will enforce certain constraints that will
determine which RWL constructs can be added to them. We also realized that there is one RWL
construct which can potentially be added to any section, this is the Comment construct. Therefore
we implemented an inheritance tree for these sections which makes it easier for us to define which
section can accept which RWL construct. The root of this inheritance tree is the
CommentableSwimlane as shown below in Figure 172.

! 1 commentableswimbne (7] |
DomainCiass i

% ReportVariables (¥
DomainClass

“{ ReportHeader (¥
DomainCiass
i
“7 ReportBody 5]
DomainClass
=l

Figure 172: Shell Approach: Report sections hierarchy

Note in the figure above the model element ReportSwimlane. This works on a similar principle as
that of CommentableSwimlane. There are common RWL constructs between the header and body
section of the report, those constructs will be part of the ReportSwimlane as both, ReportHeader
and ReportBody inherit from it. As for those constructs which are not common, they will be part of
either one of the swimlanes ReportHeader or ReportBody.

6.4.1.2 Common Hierarchy
We wanted to build a hierarchy via which adding new RWL constructs within our meta-model is

made easier. We borrowed the NamedElement concept from our class diagram approach although
we designed our NamedElement with three properties as shown below in Figure 173.

Chapter 6-Page | 151

“{ NamedFlement 3
DomainClass

=l Domain Properties
' ElementMame : St..
B CompartmentDisp...
ey SelfDisplay : String

N
a

Figure 173: RWM Shell Approach: Named element

ElementName field (property) represents an internally represented name property. We made this a
hidden property as it has no relevance to the end-user while designing the RWL model. The
ComparentDisplay field is added to display information about this model element when it is
contained within a parent model element and the SelfDisplay field displays information about this
model element when it is display independently.

After adding the NamedElement we implemented our hierarchical model element structure. We
showed the implementation of the reporting sections in the previous point so the obvious next step
was to add model elements which can be added to these report sections, therefore we added three
core model elements: Variablesltem, Headerltem and Bodyltem. Each model element is named in an
intuitive manner. We can easily see that all Variablesitem model elements will be part of the
ReportVariables report section and so on for Headerltem and Bodyltem. The implemented hierarchy
is shown below in Figure 174.

Chapter 6-Page | 152

4% NamedEtement
DomainClass

e e b

Pl
{ B C 53 |
g DomainClass |
o g n 4 e -
“Z Function ®
DomainClass
H
i 1 G ReportElement (3|

DomainClass

Ik,_.—+

i A7 Variablesitem

DomainClass

4[

‘i Comment

DomainClass

V}[g ReporiElement

DomainClass

DomainClass

F ReportElement
DomainClass

I
L “ Headeritem
| DomainClass {
i

s
| “i{ Printableitem
i DomainClass

Figure 174: RWM Shell Approach: Common hierarchy

We have already looked at the CommentableSwimlane model element, the next two model
elements we examine are the Function model element and the Printableltem model element. The
Function model element represents a RWL function and the Printableltem represents any construct
that can be attached to a Print construct (e.g. Literals). These inherit from the NamedElement model
element only so that they can inherit its properties. The reason why Function and Printableltem do
not inherit from CommentableReportElement is examined in the next sub-section when we look at
our program flow implementation.

The CommentableReportElement represents all model elements that can be added to a
CommentableSwimlane. We then make a distinction between model elements and their specific
report sections, therefore we have: Variablesitem, Bodyltem and Headerltem. Any model element
that can be added to the variables section of the RWL model can inherit from Variablesltem and so
on for the other sections of the RWL.

Note that the Comment model element directly inherits from CommentableReportElement as a
comment can be added to any report section. This principle is also applied to the PrintStatement
and PrintableReportElement which inherit from ReportElement which is the common parent for any
model element that can be added to both, the header and the body report sections.

Chapter 6-Page | 153

6.4.1.3 Program flow support

We implemented flow support by simply allowing the end-user to create a reference relationship
from one model element to the next model element. This relationship was represented in our meta-
model as ElementReferencesNextElement, also shown below in Figure 175.

_.E “¢ CommentableReportElement [i

L_+ T _Dnmain:lass

ElementReferencesMextElemenet
w| | Previous

Next DomainRelationship (3 i 4§ CommentableReportElement [
0.1 0.1 i DomainClass

Figure 175: RWM Shell Approach: Program flow meta-model

The ElementReferencesNextElement relationship is formed between two
CommentableReportElement model elements, therefore any model element which inherits from a
CommentableReportElement can participate in such a relationship. Note the multiplicity on each
role player, it is 0..1, indicating that a given CommentableReportElement can have at most one next
and at most one previous element.

Referring back to Figure 174 we saw that the Function and Printableltem model element do not
inherit from CommentableReportElement. The reason behind this is that these model elements
cannot participate in the ElementReferencesNextElement relationship.

6.4.1.4 Custom Field editors

As illustrated in Section 5.8.2.4, the DSL Tools allow us to annotate fields with special attributes. We
can specify custom field editors using this mechanism, shown in Figure 93. We implemented four
custom field editors: WindowSelectionEditor, FileSelectionEditor, ColumnSelectionEditor and
FunctionSelectionEditor.

WindowSelectionEditor allows the end-user to select a list of Windows” via which a given report
script can be accessed from.

FileSelectionEditor allows the end-user to select views (tables) from the Prism WIN database, used
while creating Scan constructs.

ColumnSelectionEditor allows the end-user to select columns from a given Prism WIN database view,
used to print information from a column. This editor is intelligent as it knows exactly which columns
to show. For e.g. if we are printing information within a Scan on view RM the ColumnSelectionEditor
will show only columns which reside in the RM view.

The FunctionSelectionEditor allows the end-user to select from a list of valid functions to execute on
various RWL constructs. The FunctionSelectionEditor works in a similar fashion to the
ColumnSelectionEditor as it only display functions which are valid for a given RWL construct. The
RWL has constraints that specify which functions can be executed on which RWL constructs, for e.g.
the function Year can only be executed on variables of type ERA.

Let us have a look at the implementation of the ColumnSelectionEditor at is an example of an
intelligent editor so it gives information on how to implement a standard editor and also on how to

Chapter 6-Page | 154

implement a context sensitive (intelligent) editor. Figure 176 below shows the Column model
element and how it fits in with our Scan model element.

“{ Scan
DomainClass
5¢ rints

PrintStateme... DomainRzlationship Scan "}[3 PrintStatement
[o1 DomainClass

| Prints

Columns DomainRelationship PrintStatement “ Column
[i DomainClass

)

= Domain Properties
= Value: String

+

Figure 176: RWM Shell Approach: Scan-Print-Column relationship

The above figure is best explained with the following RWL script snippet:

1. Scan RM
2. Print RM_NAME;
3. End

The code snippet shows the three RWL constructs which take part in the relationships shown in
Figure 176. We can see that a Scan construct can have a Print construct within it and that Print
construct can contain a specific Column construct. This is modeled in our meta-model as two
relationships: ScanReferencesPrintStatements and PrintStatementReferencesColumns. These
relationships allow us to design an intelligent ColumnSelectionEditor.

We start by adding an EditorType attribute to the Value field of the Column model element seen in
Figure 176. Figure 177 below shows this attribute, it is similar to Figure 93 although notice the
different editor type.

Edit Attributes

MName MName Property
0[3 Mandatory
= --0[3|S)rstem.ComponentModeI.Editor _
e typeof(ColumnSelectionEditor)
typeof(System.Drawing.Design. UITypeEditor)

H <add parameter=>
0[3 <add attributex>

OK l ’ Cancel

Figure 177: RWM Shell Approach: ColumnSelectionEditor custom editor

After adding the above attribute we can now start implementing our ColumnSeclectionEditor. Figure
178 below shows what the end-user sees while designing the RWL code snippet shown above.
Notice that the figure below shows an instantiation of the model-elements and relationships shown
in Figure 176.

Chapter 6-Page | 155

Items

<<Print>>

Items

0
5] s=Column==

Figure 178: RWM Shell Approach: Scan-Print-Column instantiated

We now have a Scan, a Print statement within that scan to which the end-user has just added a
Column model element. The next step for the end-user is to select the actual column which they
want to print; this is where the custom editor comes into play. When the end-user tries to edit the
Value field on the Column model element, the custom editor is opened (this is because we added
the editor type attribute shown in Figure 177). We implemented the custom editor so we can
traverse back via the relationships shown in Figure 176 all the way back to the Scan construct. This
allows us to find out the view on which the Scan is being executed on, in this case the RM view,
allowing the custom editor to only show columns which belong to the RM view. The resulting
ColumnSelectionEditor for Figure 178 is shown below in Figure 179. Note that only columns of type
RM_* are shown.

Code Description

| O RM_ADDOP Add.Op

[C] RM_ADD_DATE Add Date

[C] RM_ADD_TIME AddTime

[C] RM_EDIT.OP EditOp

[C] RM_EDIT_DATE Edit,Date

[C] RM_EDIT_TIME EditTime

RM_CUST Customer

] RM_MUMBER Customer,Number -
Ok Cancel

Figure 179: RWM Shell Approach: ColumnSelectionEditor for view RM

6.4.1.5 Mandatory Fields

The mechanism to cater for mandatory fields was done using attributes. Any field which requires a
user input is marked with the Mandatory attribute; this is shown in Figure 93 and Figure 177. After a
field within a model element is marked with this attribute we simply check for whether it has a
value, if not, a validation error is thrown. This validation process is made easier due to our common
hierarchy. As all model elements inherit from the NamedElement model element, we simply add our
implementation code on that class because validating any model element will validate the
NamedElement as it is the base of our hierarchy.

6.4.1.6 Containment, Hiding/Showing Children and Ordering

Section 5.8.3.4 and Section 5.8.3.6 gave an introduction on the design aspect on how we
implemented containment and hiding/showing child elements respectively. This sub-section gives
an insight on how we implemented it via our meta-model.

Chapter 6-Page | 156

We implemented containment and the hiding/showing of children elements by using the
compartment shapes provided by the DSL Tools. This concept is best explained with the help of a
RWL script snippet shown below.

1. Scan RM
2. Print RM_CUST + RM_NAME;
3. End

The Scan construct shown in the above code snippet contains a Print construct which prints out two
Columns in a specific order.

We implemented containment and hiding/showing of child elements by simply mapping the Scan
statement to a compartment shape (more on shape mapping in Section 6.4.1.8) and allowing it to
display its children within a compartment (this was done for any model element that can contain

other model elements, e.g. the Print model element). The result is shown below in Figure 180.

= =<Scan>> S
RM

= Ttems

Print

-y ==Print= = ES

= Items

Column : RM_CUST
Column : RM_MAME

= <=Scan== ¥
RM

0
_‘I ==Column=>= [¥
RM_CUST
1
_‘I ==Column=>= [¥
RM_NAME

Figure 180: RWM Shell Approach: Implementation of containment/ordering and hiding of child elements

The Scan model element on the left side in the above figure shows its children embedded within a
compartment (so does the Print model element). On the right hand side of above figure we see the
same Scan model element but this time it is collapsed, neatly hiding its children (and its indirect
children).

Note that the Scan-Print-Column relationship was shown in Figure 176, what was not shown were
the properties of this relationship. Because any relationship which has a nesting aspect to it can
have an ordering aspect, we made a base relationship which other relationships can inherit from and
this base relationship has a property called Order, signifying the sequential placing of that particular
relationship. This is shown below in Figure 181.

Chapter 6-Page | 157

T N dElementReferencesiN, lernent:
DomainRelationship

>

= Domain Properties

= Order:Int32

Fa)

T PrintStatementReferencesN lements (¥
DomainRelationship

IT % Printstat tReferencesPri

DomainRelationship

o

iy

T Prints tRef Literals [

DomainRelationship

Ty Prints tRef I ¥

DomainRelationship

5S¢ esNamedElement ¥
DiomainRelationship

[——

DiomainRelationship

o

Figure 181: RWM Shell Approach: Relationship ordering

Note that relationship hierarchies are similar to model element hierarchies and in the above figure
we have a hierarchy chain with the base relationship having the property Order meaning that the
relationship we are concerned with, in this case ScanReferencesPrintStatements and
PrintStatementReferencesColumns also has that property. This property is utilized in two places:
showing containment and laying out child elements neatly in an ordered fashion. Both of these are
shown in Figure 180, we can see that the order in which items appear in a compartment are
significant and it maps the order of elements as they appear in the RWL script.

A recursive auto layout algorithm was implemented to modify the layout of child elements (and
children’s child elements and so on) when needed. This algorithm is triggered when:

1. Order property was changed
2. New child element was added
3. Explicit request was made by end-user via a context menu (Section 6.4.1.10)

The pseudo code for the algorithm is outlined below:

LayoutModelElLement(ModelELement element)
{

sortedChildren = Sort children via Order property;
for each (ModelElLement child in sortedChildren)

{
// layout code

LayoutModelELement(child); // recursive call

Chapter 6-Page | 158

6.4.1.7 RWL Constraints

There are several levels of constraints implemented by our meta-model. Most constraints are
enforced directly by our meta-model which are categorized under model constraints and others are
more subtle constraints specific to our RWL visual language.

e Model constraints
Hard constraints such as embedding model elements within report sections, reference

relationships between model elements and multiplicity of these model elements and
relationships are represented using the meta-model. Therefore, these constraints are
naturally enforced for us and require no further code.

For e.g. in Figure 171 we see that in any given RWL model we will need one ReportHeader,
ReportBody and ReportVariables model element (represented as swimlanes).

Other examples of model constraints can be seen in the figure below.

“Z ReportHeader %
DomainClass

ReportHeadertHasHeaderltems

Headerltems Domainfzlationship (%) | ReportHeader EV"LgHeaded!em

[N 11 H DomainClazs
.

ReportHeaderHasControlLine

ControlLine DomainRelationship () || ReportHeadsr | “{ ControlLine ¥ I

11 11 DomainClazs

ReportHeaderHasStandardPageHeader

StandardPageHeader DomainRelationship () || ReportHeadsr I} standardPageHeader ¥
01 11 DomainClazs

ReportHeaderHasPageHeaderBlock

PageHeaderBlock DomainRelstionship || | FepartHeadsr "12 PageHeaderBlock [¥
01 11 DomainClass
+

Figure 182: RWM Shell Approach: Model constraints

In the above figure we see the constraints surrounding the header section of a report. We
introduced the Headerltem in Figure 174 and described it as the base element for any
model element that needs to be part of the ReportHeader section. We see this base
relationship in the above figure, ReportHeaderHasHeaderltems. Note the multiplicity on
this base relationship, indicating that we can have 0..* header items on our ReportHeader.
If we only had this relationship we could do things like add two ControlLine model
elements to our header, which would be wrong thus we further constrain this base
relationship by more specialized relationships involving specialized Headeritem model
elements (model elements that inherit from Headerltem). For e.g. in the above we have a
specialized relationship ReportHeaderHasControlLine with multiplicity 1..1 signifying that a
given ReportHeader section should have one and only one ControlLine construct thus
respecting the RWL specification.

e Flow constraints
Flow constraints are also enforced by our meta-model directly as shown in Figure 175.
Although note that this constraint has a multiplicity of 0..1 on both roles, previous and next,
signifying that an element may have a previous and a next reference although this leads to

Chapter 6-Page | 159

“lost” elements. Lost elements are those elements which do not have a previous reference
element therefore being unreachable and not fitting into the sequential flow of the RWL
which is visibly wrong.

Even if we changed the multiplicity of both role players (next and previous) to be 1..1 we
would have experienced with the first and last element of the RWL script as they would not
have a previous and next reference respectively. We would also have problems with nested
children. Let us consider the RWL script snippet below:

1.

2.

3.

4. Print “Hello”;

5.

6. Scan RM

7. Print RM_CUST + RM_NAME;
8. End

9. ce

10. ...

In the above script snippet we see that the flow moves on from the Print model element
onto the Scan model element which also has a nested Print model element. Note that the
nested Print model element is referenced by the Scan as opposed to being next in the flow.
Therefore, according to our meta-model if we had a multiplicity of 1..1, this would result in
an error as the nested Print statement does not have a next nor a previous.

Therefore we implemented a simple code based solution to the problem of lost elements.
We added a validation trigger on the CommentableReportElement within our meta-model
which gets triggered whenever a save is requested by the end-user. This trigger checks the
previous property of element is null and also checks for special cases. For e.g. from our
above RWL script snippet, if a Print model element has an associated Scan then it is a special
case and does not require a previous element. The validation will fail if the element has no
previous reference and is not a special case and will inform the user that the particular
model element is unreachable.

Multiple reference constraints

Figure 183 below shows us the relationships that a given Print construct can participate in.

“4¢ PageHeaderBlock
DomainClass

DomainClass

ScanReferencesNamedElements
Scan [P NamsdElements = Pagetesdersio.. |
L 01

HamedEleme... DomainRelationship (%)

o o1

ScanReferencesPrintStatements
Scan

Paget

PrintStateme.... PrintStateme_.

‘i PrintStatement ¥

DomainAelstionship (¥

% PrintStatement
o 01 DomainClass 0. o1 DomainClass

Figure 183: RWM Shell Approach: Multiple reference constraints

Note that we can have a Print statement within a Scan and within the PageHeaderBlock.
This would essentially lead to meaning that the same Print statement can be referenced
from multiple model elements. Although this enables the end-user to reuse the same Print
statement it will eventually lead to propagation problems. If the end-user wanted to change
the fields of one of the referenced Print statements they would be essentially changing the
fields for any other model element that references that Print statement which would lead to

Chapter 6-Page | 160

possible propagation problems. We solved this issue with a simple solution. Before any new
reference is made to a model element, in this case the Print statement, we check whether it
has any existing references. If it does we inform the user and reject the new reference.

6.4.1.8 Shape/Connector definition

Each shape and connector associated with our RWL meta-model element was designed and
implemented with simplicity and the end-user in mind. For RWL elements which can contain other
nested elements we used a compartment shape and for others we simply used a geometrical shape
with the exception of the ControlLine model element which we represented using an image shape.

While designing compartment shapes we followed a consistent standard as shown in Figure 180 and
Figure 184. On the top left we have an icon matching the icon of that model element within the
toolbox, in the centre we have a marked stereotype for that shape and under it is the identifying
information if it exists (for e.g. there is no identifying information for a Print statement). Each
compartment shape has a single compartment labelled /tems which contains its children.

Geometrical shapes follow a simple standard and only contain the stereotype in the centre (for e.g.
StandardPageHeader and StandardReportFooter shown in Figure 184).

Relationships are represented by connectors and the core flow relationship is represented by a thick
directional connector indicating the flow (Figure 184). If the connector represents an ordered child
element the order is also indicated as shown in Figure 180 and also shown in Figure 184.

Note that the above mentioned shape mappings are not concrete and can be changed at any time to
reflect new requirements or end-user requests.

Figure 184: RWM Shell Approach: Instantiated RWM model example

6.4.1.9 Toolbox/Explorer View
We exposed our meta-model elements to the end-user with the help of the toolbox. The elements
were divided into two main groups: Elements and Connectors. This made it possible for the end-

Chapter 6-Page | 161

user to quickly navigate their way around different elements and connectors. Each model element
was given a unique icon and the connectors were intuitively named for easy access.

Note that although we have numerous relationships between RWL constructs, for e.g. a relationship
between a Scan and PrintStatement and a PageHeaderBlock and PrintStatement, all these
relationships can be created by the end-user using the “Connect Elements” connector. This
connector is intelligent and knows which RWL construct is the source and which is the target and
automatically creates the appropriate relationship. The “Sequential Order” connector is used when
the end-user wants to represent top level RWL model flow. For e.g. If a Scan follows the ControlLine
construct then the end-user will represent this by using the “Sequential Order” connector by
dragging from the ControlLine (source) to the Scan (target).

The explorer view was also implemented using the same icons as the user saw in the toolbox
keeping the shell consistent. The explorer view named elements according to their identifying
information. For e.g. a Scan would be identified by its underlying database view name.

The toolbox and the explorer are both shown below in Figure 185. Note that the explorer shown
below is for the RWM model shown in Figure 184.

Toolbox ‘ @ ReportWriterDesigner Explorer @
| = Report Elements | ,-;': Report Writer

R Pointer BSE Report Body

2| Report Header EIL_I Columns

[Z] RM_CUST

Report Bod
ole Rep J =] RM_NAME

2o Report Variables

) 1 Comments
=] Control Line [ElseTfs
Page Header Block [Elses
= Page Header | -1 Functions
S Report Footer WP
"= Comment [Literals
A Literal [=+{ Print Statements
p= PrintStatement E = PrintStatementl
= Scan E|L_l Scans
=] Column ©-& RM
= JEE N | | |- S| Standard Report Footer
| iinction {1 Usage Clumps
2, Clump E-of2 Report Header
%_TI ControlLine Select -3 Columns
= Report Connectors = Comments
K Pointer L "= Keywords: Scan
)) Sequential Order ontrol Line
%2, Connect elements < Select (empty)
e ... Functions

.. Literals

----- <+ Page Header Block (empty)
{1 Print Staternents

----- =| Standard Page Header
- Usage Clumps

[-o] Report Variables

Figure 185: RWM Shell Approach: Toolbox/Explorer view

6.4.1.10 Custom Context-Menu Support

How a custom context-menu was implemented was explained in 6.3.1.9. Our current
implementation only has one custom menu item for triggering the auto layout algorithm on user
request. The auto layout algorithm was explained as part of Section 6.4.1.6.

Chapter 6-Page | 162

6.4.2 Shell Host Development

The shell host for our RWM Shell approach was provided by Microsoft in the form of the
experimental hive (while testing) and the Visual Studio Isolated Shell (while deploying). This meant
that we did not have to implement any Ul features within it for our newly created RWL meta-model.
Although we did have to implement a set of text templates which would take an instantiated RWL
model created by the end-user and generate the script from it.

6.4.2.1 Code Generation

The code generation process for the RWL model was a three step process: generate header script,
generate variables and generate body script. Out of these three, two were implemented and we
were slowly incorporating the variables part of the RWL. Note that we are using an Agile
Development process therefore implementation is an iterative process.

We generated the RWL script from the model using the T4 Text Templating Engine (outlined in
Section 5.7.2.3) in a modular fashion and the flow is shown below in Figure 186.

: ~—ve

ControlLine
——No—1
StandardPage D —Ye Process Page
Header

Header Items

A 4
| Process 1 . Variables | N Process
. Variables ° | | “|___Elements

r 3

Process Report
PageHeader)—Ye: Process Block

Process
. ~-Ye

Figure 186: RWM Shell Approach: RWL script generation

Body Items N

A 4

(Finish)

As mentioned earlier each section of the report is processed separately although the processing of
the variables section is not implemented yet and therefore has a dotted border in the figure above.
Each element within that section is then processed. If the element is an element which can contain
other nested children such as a Scan or a PageHeaderBlock we have to process those child elements

Chapter 6-Page | 163

too, shown as a feedback loop within the above figure. These child elements are extracted in a
sorted list according to the Order property of their corresponding relationship with their parent.

Processing individual elements to print RWL script is a trivial process and requires no sophisticated
knowledge allowing future developers to easily modify and add enhancements to the code
generation process. It also allows them to easily add support for new RWL constructs as they get
added to our meta-model.

6.5 Challenges Faced

6.5.1 C(Class Diagram Approach

The most challenging part of the Class Diagram Approach was to represent the model elements and
connectors in WPF and expose them to the end-user via the Ul. Our approach involved providing a
separate shape for each RWL construct and allow them to be connected to each other with the use
of connectors. Because we were new to WPF technology the learning curve was quite steep and it
took a lot of resources in terms of effort and time. This was one of the main reasons why we
discarded this approach.

Other challenging parts of the implementation involved representing meta-model constraints in the
WPF Ul and validating various model elements. We also had trouble representing the meta-model
of the RWL using our meta-meta-model (class diagram). Due to our inexperience with meta-meta-
model and meta-model development we could not design a comprehensive class diagramming tool
(meta-meta-model) which would allow us to create the RWL meta-model.

We presumed that we could have faced other possible challenges with respect to scalability,
robustness and code generation accuracy if we continued with this approach. Although this
approach was discarded in its early stages we do not discuss those challenges further.

6.5.2 RWM Shell Approach

During the implementation of our core solution (RWM Shell Approach) described in Section 6.4, the
most difficult part was to design the common hierarchy. This was made even more difficult as the
DSL Tools could not represent Interfaces therefore classes had to be abstract and the C# language
has a constraint that a given model element can only extend one abstract class, therefore the
hierarchy had to be designed so that it could cater for all possible combinations of the RWL model.

The common hierarchy is explained in Section 6.4.1.2. This structure had to correctly model the
RWL and therefore had to be designed with precision and flexibility. Precision would allow our
meta-model to correctly enforce RWL constraints and flexibility would allow new RWL constructs to
be added seamlessly. After this hierarchy was implemented adding new RWL constructs to our
meta-model was trivial.

Other challenges faced involved finding a point where we could demonstrate the prototype to an
audience and also determining the robustness, scalability and code generation accuracy of the tool.
Because of the time constraints we could not implement all RWL constructs within the meta-model
although extra effort was put in so that the existing RWL constructs within the meta-model are
robust and complete.

Chapter 6-Page | 164

Scalability of the meta-model and the end-user tool were also a concern during the implementation.
As the meta-model grew and new RWL constructs were added it became increasingly evident that
representing a complex structure such as the entire RWL would involve precise design and planning.
Screen area was a major concern while designing the meta-model as we could not fit the entire
meta-model within the given screen area and ended up scrolling up/down and left/right
continuously to see the big picture. These problems were also experience while we were designing
example RWL models using the Visual Studio Shell. We soon noticed that larger RWL models would
encompass a large screen area and may prove to be harder to follow than its textual counterpart.
We get round this problem to a certain extent by allowing end-users to collapse and expand
required model elements to hide and show their children giving us a bigger view of the RWL model.
More sophisticated layout algorithms can also be implemented to maximise screen real estate if
need be. This is discussed further as a future enhancement in Section 9.5.3.

The end goal of the prototype was to generate the corresponding RWL script from the RWL model.
The challenging part of this aspect was to determine the correctness of this output. Due to time
constraints we could not test every possible RWL model combination therefore we cannot say with
certainty that the generated RWL will always be correct. It would be ideal to create test cases where
a variety of RWL models get created and the generated RWL script can be validated. Currently the
only way we can validate a RWL script is to import it back into the Prism WIN MIS system although in
the future it would be ideal if the reporting engine of the MIS system could be separated out and
used explicitly by the RWL model to determine the correctness of the generated RWL.

6.5.3 Approach Comparison

The preceding sections described the implementation of both approaches taken during the course of
this thesis. We use Table 4 below to highlight some of the key differences and similarities between
the two approaches to explain why one was preferred over the other.

Table 4: Class Diagram Approach vs. RWM Shell Approach

Criteria Approach #1 (Class Diagram Approach #2 (RWM Shell Approach)
Approach)
1. Develop meta-meta- 1. Develop meta-model
model 2. Develop code generators

2. Develop meta-model and
code generators

3. Develop Ul
Challenges faced 1. Implementing Ul 1. Common hierarchy
2. Representing constraints 2. Scalability
3. Constraint Validation 3. Ul robustness
4. Representing shapes and 4. Code generation accuracy
connectors in WPF
5. Scalability
6. Ul robustness
7. Code generation accuracy
Database access LINQ LINQ
Ul Technology WPF Visual Studio Shell
e Sophisticated/modern e Provides basic shapes and
e Custom implementations connectors

of everything from menu e Common functionality already

Chapter 6-Page | 165

items to shapes and implemented e.g. load, save,
connectors undo and redo
Constraint Explicitly via the meta-model Implicitly done directly via the meta-
Validation which was designed using the model within the DSL Tools
meta-meta-model
Code generation Developer specified via the T4 text templates

“Generate(...)” method

From the above table we can see that the Class Diagram Approach involved more challenges when
compared to our RWM Shell Approach. Moreover it did not provide us with the tools to implement
a prototype within the time constraints of this thesis therefore we decided that Approach #2 (RWM
Shell Approach) was the ideal solution given the time frame and resources.

6.6 Summary

This chapter gave a detailed look into the implementation details of our solution with respect to the
two individual approaches. It gave us details on how the meta-model was implemented using the
Microsoft DSL Tools, how constraints were specified, how the Ul exposed the meta-model and
eventually how the code was generated was generated.

From this chapter we can clearly see why the RWM Shell Approach was the preferred approach as it
allowed quick development of the meta-model and the prototype using the Microsoft DSL Tools.
Also as seen from this chapter, the Class Diagram Approach offers flexibility in terms of sophisticated
Ul development although making it hard to represent the meta-model elements, relationships and
constraints graphically within the time frame allowed by the thesis.

The biggest challenge faced during the implementations of the Class Diagram Approach and the
RWM Shell Approach were the implementation of the WPF Ul via which the end-user could design
the RWL model and the design of the common hierarchy respectively.

Chapter 7-Page | 166

Chapter 7 - Case Studies

7.1 Introduction
This chapter involves looking at different examples on how the end-user and the developer may
interact with the system.

We start by looking at the primary reason for the thesis which is to assist end-user to visually create
reports. The other two case studies are aimed at future developers who may want to modify the
meta-model which represents the RWL.

Each case study is divided up into four main parts: we initially outline the requirements followed by
our design and analysis of those requirements and then we detail how this requirement can be met
followed by any conclusions reached.

7.2 Scenario 1: Designing a report

Our primary case study is to give a walk through on how an end-user can potentially design a Prism
report. We assume that the specifications of the report have already been established and the end-
user has an idea on what the report script looks like. This assumption is mandatory as our tool only
assists the end-user to design the report and offers no assistance in the specification analysis on the
need for that report.

7.2.1 Requirements

This sub-section describes the requirements of the report we are going to be designing using the
shell. The requirement it to design a report to extract all the customers from the Prism database
and get their corresponding jobs. This should not include quotes.

To make this case study simple, the information can be printed in any layout as long as all jobs for a
given customer are shown.

7.2.2 Requirement analysis

The requirement involves customers and their jobs meaning that we are dealing with the RM and
QM tables respectively. Knowing this is not necessary as we can simply use the intuitive custom field
editors to find out this information. Furthermore, we are only required to show jobs and not quotes,
this is done by a simple conditional check on one of the columns within the QM table. We make
things simpler by making the assumption that the report can be accessed via any suitable Window?
and its unique identifier Code can be any valid string.

We therefore need to represent the following RWL script using the newly developed shell:

Code CASE_STUDY_1
Type Standard
Access STSR

Scan RM
Print RM_CUST + RM_NAME;
Print “All Jobs For ” + RM_NAME;
Scan QM
Choose(QM_CUST_CODE, MATCH, RM_CUST)
Choose(QM_QUOTE_JOB, MATCH, QMM_JOB)

coONOOUVTHA WNE

[aT.)
NP ® -

Print QM_JOB_NUM + QM_TITLE;
End
. End

B
D w

Chapter 7-Page | 167

| 15. Print StandardReportFooter; |
Note that with the above textual script the end-user has to be familiar with the Prism database

structure in order to determine the correct Scan and Choose conditions. Moreover, they also need
to know the semantics and the syntax of each of the RWL constructs shown in the above script to
correctly form the script so that it can be executed by the Prism WIN MIS system.

7.2.3 Meeting the requirements

We show how the visual shell RWL meets these requirements by giving a walkthrough on how to
represent the RWL script using the newly implemented shell. Screenshots corresponding to each
step is attached as Appendix C (some figures are in line to enhance readability).

1. Create a new file of type RWM using the Shell. Give the file a name; in this case we called it
CaseStudyl.rwm.
2. After creating this new RWL model, we have a new designer which automatically has three

predefined swimlanes: Header, Body and Variables shown below in Figure 187.

CaseStudyl Prism ReponriterDesigner Reportid) =
i
a

Publish Location

Figure 187: Scenario 1 — Initial RWL Model

3. We start by adding a ControlLine to our designer. This can be achieved by dragging and
dropping a ControlLine element from the toolbox on the left hand side on to the header
section of the designer.

4. Now we have a ControlLine element on our designer canvas. We now modify its properties.

a. The Code field should hold CASE_STUDY_1

b. The Access field should hold STSR (done by clicking on the “...” next to the field and
selecting the corresponding value as shown in Figure 168)

c. The Type field should hold Standard (done by clicking on the drop down and
selecting the appropriate value)

Chapter 7-Page | 168

5. We can now start adding the bulk of our report to the designer by initially adding a Scan to
the designer. This is done in a similar fashion to how the ControlLine was added although
we add the Scan to the body section.

6. After adding the scan we need do two things, connect the scan up with the rest of the report
and indicate the table on which the scan needs to be on.

a. The scanis after the ControlLine, we show this by connecting the ControlLine and
the scan with a “Sequential Order” connector. Click on this connector, click on the
source (ControlLine) and drag to the target (Scan). This will connect both these
elements and you will see a directional arrow going from the ControlLine to the
scan.

b. The Table field on the scan element can simply be typed in as RM (if we did not
know the table we need, we could click on “...” which opens a window showing us all
the tables in the Prism database).

7. Within the scan we have two print statements. We add two print statements to our body
section by dragging and dropping them from our toolbox. We can then connect them to our
scan using the “Connect elements” connector. The source is the scan (where the drag starts)
and the targets are the print statements (where the drag ends). Note that each scan - print
statement relationship has one connector. Note the number at the end of each connection,
this represent the sequence in which the print statements will be shown in the generated
RWL script. Refer to Figure 188 below.

Figure 188: Scenario 1 — Partial RWM Model with connectors

8. The first print statement prints out RM_CUST + RM_NAME which are two database columns.
These can be added via the toolbox by dragging and dropping them onto the body section.
Connect them to the desired print statement (the first print statement) using the “Connect
elements” connector.

10.

11.

12.

13.

Chapter 7-Page | 169

Now that we have two column elements, we need to add which columns they represent.
This can be done by selecting a column element and changing its “Value” field to represent
the database column it maps to. Click on “...” next to the field, this will open up a window
which lists all the columns belonging to a particular database table, in this case, columns
belonging to table RM (as we have a scan on RM).

Select RM_CUST for the first column element and RM_NAME for the second.

The second print statement prints a literal (All Jobs For) and a column, this can be done by
adding a literal and another column on to the body section and connecting them to our print
statement using the “Connect elements” connector. Change the literal and column by
selecting each element and modifying its fields.

The next element the scan contains is another scan, although this scan is on table QM.
Adding a scan and setting its table is already described in Step 6b. This scan needs to be
connected to its parent scan (Scan RM) using the “Connect elements” connector.

The QM scan has one print statement which prints two columns: QM_JOB_NUM and
QM_TITLE. This is similar to Step 8 and Step 9.

Now we have a nested scan although we do not have a joining condition, this can be done by
selecting both the scans and then right clicking (shown below in Figure 189). This shows a

menu which allows us to join these two scans.

Sort By

escrption for
Prism ReportWriterOesiqner.Scan.Sort By

Figure 189: Scenario 1 - Joining two Scan model elements

14. Clicking on this menu item opens a window via which we can select a join condition. In this

case there is only one join condition which joins RM and QM. After selecting this condition
click on OK. This join condition appears as a Choose statement within the scan.

Chapter 7-Page | 170

15. Note that we also need to add another choose statement as we only want jobs. This is done
by right clicking on the “Choose Items” compartments and selecting “Add new Custom
Choose”. This adds a custom choose item to the scan.

16. Change the fields of this newly added choose item, the inner condition should point to the
column which we want to match, in this case QM_QUOTE_JOB and the outer condition
should contain the value. As QM_QUOTE_JOB contains only three values, these are
automatically populated for you. Select the appropriate one, in this case QMIM_JOB as we
want only jobs.

17. Our final step is to add the report footer. This is done by dragging and dropping the “Report
Footer” element from the toolbox onto the body section. We then have to indicate that the
scan (Scan RM) element flows on this element by using our “Sequential order” connector in

a similar fashion as described in Step 6a. The final model is shown below in Figure 190.

Figure 190: Scenario 1 - Complete RWL Model

18. We now have our required RWM model and are ready to generate the code from it. As we
are working in the Experimental Hive this can be done by clicking on the “Transform all
Templates” button on the solution explorer which will generate the corresponding RWL
script.

7.2.4 Conclusion

It can be seen that if the specification of a report is known it is trivial to represent it using our newly
implemented shell. Complicated aspects such as column selection and joins are made simple using
automation and simple intuitive design with minimal user input. The RWL script generated from
such a model is also neatly formatted and can easily be read by the end-user to determine its
correctness. We do a formal evaluation of our reporting tool using end-users and the results are
analyzed in the following chapter (Chapter 8).

Chapter 7-Page |171

7.3 Scenario 2: Adding new model information

This case study represents a simple developer task which involves adding new a RWL construct into
our existing meta-model. The new construct fits into the meta-model without any major changes as
opposed to doing it traditionally.

Traditionally we would have to change code manually to incorporate this new construct which may
involve writing a toolbox menu item, designing a shape, adding connectors and compiling all the
changed code. Not to mention time and resources to test a small change this would mean retesting
the whole software system if it is strongly integrated. This brings us to the second key idea of the
solution which is to enhance developer experience and allow them to bring about change faster and
improve code quality.

We describe what construct we are going to be adding and then analyze on how it can be done
followed by detailing the steps involved in making this change.

7.3.1 Requirements

The ControlLine construct within our meta-model has a field called Select according to the RWL
specification described by (Prism New Zealand, 2005). This field allows users to specify run-time
selections which can constrain embedded Scan statements within the report. We need to add
functionality so that the Select field can hold columns and specific functions that can be executed on
a column which is within the Select construct. This new meta-model contruct should be exposed to
the end-user via the toolbox and should generate the appropriaye RWL script when used in a RWL
model.

The format of a Select statement is:
Select column_code[.Match/From/To/Range/Ask/Not][.Force][+...].

7.3.2 Requirement analysis

The requirements expect a new domain model element to be added called Select. From the
requirements we can see that this model element is part of the ControlLine model element therefore
we can safely embed it within the ControllLine. After adding this new model element we will need to
reference any other elements that the select can hold. As far as the requirements are concerned,
the Select contains column_codes (Columns) which in turn can have functions performed on them.
We can safely assume that the Column and Function model element are also implemented for us and
that a Column can reference a given Function, shown in Figure 191.

Chapter 7-Page | 172

“{ Column ¥
DomainClass

ColumnReferencesNamedEements

f ~
NamedEleme... DomainRelationship (3 Column E “{gNamedflemm[¥ E

0.s 01 i DomainClass

ColumnReferencesFunctions

Functions DomainRelationship 3] | S2lumn "{3 Function
[B 01 DomainClass

)

= Domain Properties
iy FunctionType : Fu...
iy FunctionTypeStrin...
B Parameter: String
iy ParameterType : F..
5 Force: Boolean

Figure 191: ColumnReferencesFunction relationship

Now that we have both our referenced classes, Column and Function, we need to confirm that the
new function types exists (e.g. Match, From, To, Range, Ask, Not). Another requirement is the Force
value on a function. This value is specific to functions which are on columns which belong to the
Select model element therefore we need some rule which only shows this field depending on
whether we are on a Select model element or not. After implementing the meta-model side we
need to consider the design of the template which would generate code from the Select model
element. We decided that code generation for the Select model element will be done as part of the
ControllLine processor (template which processes the ControlLine model element).

7.3.3 Meeting the requirements
Implementing the given requirements involves a many steps therefore what we show here is a brief
overview of what is required to meet the given requirements.

7.3.3.1 Adding and Connecting the Select Model Element

A new domain model element is added, we change the name of that model element and call it
Select. Because this model element will be embedded within the ControlLine model element it is not
required that we make it inherit from any other model element. Although all our model elements
inherit from NamedElement, so we follow this standard and make the Select model element inherit
from NamedElement. The NamedElement is shown in Figure 173 and detailed in Section 6.4.1.2.

Next step is to connect the Select model element with our ControlLine. We do this by using an
embedding relationship where the Select is embedded within the ControlLine, what we end up with
is shown below in Figure 192.

“{ ControlLine

DomainClass

ControlLineHasSelect

Select DomainRelationship [¥) [JControlLine

01 11

DomainClass
£

Figure 192: Embedding Select within the ControlLine

From the above figure we also note the multiplicity of the newly added Select model element, it is
0..1. This means that a ControlLine can have at most one Select model element because there is only
one “select” field within the ControlLine.

Chapter 7-Page | 173

After embedding the Select model element with the ControlLine we are now ready to actually define
other model elements that the Select could reference. As the requirement stands now, the Select
model only references the Column model element. This means that we simply add a reference
relationship between the Select and the Column model element and we end up with Figure 193.

47 Select ¥
DomainClass
SelectReferencesNamedEements
_— I Y
NamedEleme... DomainRslationship (%] {>2kct i “i{ NamedElement ¥ |
0.7 01 i DomainClass i
SelectReferencesColumns
Columns DomainRslationship (%) || elect “¢ Column ¥
0.7 0.1 DomainClass

Figure 193: Select references columns relationship

Note in the above figure that we have SelectReferencesNamedElements and
SelectReferencesColumns. SelectReferencesNamedElements acts as an abstract base relationship
which we can use in the future in case we need to add more model elements to our Select. The
relationship hierarchy is shown below in Figure 194.

TN

DomainRelationship

3]

= Domain Properties
7 Order: Int32

Py

s Selec esN ¥

DomainRelationship

L Ty SelectReferencesColumns (¥

DomainRelationship

Figure 194: Select relationship hierarchy

Notice in the above figure that we also inherit from NamedElementReferencesNamedElement which
contains an Order property. The significance of this relationship was explained in Section 6.4.1.6 and
because columns within a Select occur in a specific ordering it is clear that our relationship has this
property too.

7.3.3.2 Shape and Toolbox Definition

The next step is to map our new model element to a shape. We adhere to our shape notation
standard which was described in Section 6.4.1.8. Because our new Select model element can
contain other elements such as Columns it was best if we displayed it using a compartment shape.
This would allow us to meet our business requirement of showing containment, ordering and
hiding/showing children (detailed in Section 6.4.1.6). This allows us to end up with a shape as shown
below in Figure 195.

Chapter 7-Page | 174

Q_] <=Select> > %

= Ttems

Column : RM_CUST
Colurmn : RM_BAL_TYPE

1
=] #=Column== ¥
RM_CUST
2
j ==Column == ¥
RM_BAL TYPE

Figure 195: Select model element shape

Note the icon on the top left corner and the <<Select>> stereotype in the centre in the figure above.
Hiding/showing children, correctly ordering child elements within the “Iltems” compartment and
automatic layout of children are implemented in base classes which forms the essence of our visual
notation. All we have to do is inherit from a base compartment shape (shown below in Figure 196)

and invoke some functions.

EI ExpandCollapseBase (%
CompartmentShaps

= Domain Properties
= Decorators

‘é\v ExpandCellapse
= Compartments
=

=l SelectShape
CompartmentShaps

>

= Demain Properties

= Decorators
A, Stereotype

-%, Icon

= Compartments

E=] Items

Figure 196: Select model element shape definition

For code details on how our base shape achieves hiding/showing children refer to Appendix D.

Correctly ordering child elements within the compartment is done via a simple function which takes
an unordered list of child relationships (all relationships inherit from a base which contains the Order
property) and is then returns a sorted list which is sorted on the Order property. The code is
attached to Appendix E.

Automatic layout is also done via a simple function which takes a shape, a start point and returns the
location of the last child. The code is attached to Appendix F.

After implementing the shape definition for our new model element we are now ready to expose it
to the end-user via the toolbox. This is the simple part where we add a new ElementTool to our
editor and map it to our newly added Select model element as shown below in Figure 197.

Chapter 7-Page | 175

DSL Explorar @ Properties @
&5 Editor “|B]| select Microsoft.VisualStudio.Modeling.DsIDefinition.ElementT =
=1 Toolbox Tabs
-1 Report Connectors
Q{Eﬂ Report Elements B Definition
=-[3 Tools Class Select
..... @S' ReportHeader — MName Select
""" @? ReportBody B Documentation
----- @S‘ ReportVariables Motes
----- Controlline R
Bl Resources
----- g Z:Q?E;:erm:‘ckd Caption Controlline Select
----- andardPageHeader
C I

..... @3‘ StandardReportFooter HulrsoKr con d Elct
..... Comment = =P Reywer e
..... Literal Toolb.oxIcon Resources\select.bmp
..... @? PrintStatement Tooltip Add a select statement to the he
..... Scan
..... Column
----- Function
..... 5§ Clump

6] Validat @? i ™ Name

alidation (_VE idation) Mame of the tool, used for reference.
(-] Explorer Behavior
=~ i

Figure 197: Select toolbox item definition

With the above definition we end up with a toolbox item as shown below in Figure 198.

Toalbox =
= Report Elements
& Pointer

ol% Report Header

2l& Report Body

ol Report Variables

=] Control Line

Page Header Block
|Z| Page Header

|5 Report Footer

"= Comment

4. Literal
@ PrintStaternent
] Scan
] Column
4y Function
2, Clump
|k__| Select
Reg
Ge

Select

L5 Add a select statement to the header section

Figure 198: Select toolbox item

7.3.3.3 Select specific Functions on Columns

Figure 199 below shows all the various function types we have currently implemented in our meta-
model. Note that the only functions within this list which can be part of a Column which is
associated to a Select model element are Match, From, To, Range, Ask and Not as outlined in Section

7.3.1.

Chapter 7-Page | 176

o -7 FunctionType
=3 Literals

----- ==f AtCol

----- a0 ClearTotal
----- ar ClearValue
----- = ColDesc
----- &0 CurrCol
----- e CurrPage
----- s CurrRow

..... e SetFontFamily
..... =f SetFontSize
..... s SetMDP

..... &0 SetRowDesc
..... & SetTotal

..... e SetValue

..... =0 SetWidth

----- s Total
----- =0 Units
----- =1 Value
----- = Width

Figure 199: Various RWL function types

We can filter the entire function list using .NET CLR Attributes. We used attributes to define our
custom field editors as described in Section 6.4.1.4 and we use them to annotate each function type
so we can identify them and use them according to the model element which hosts the Column, in
this case, the Select model element. Any Function which can be added to a Column which is on a
Select model element is annotated with the FunctionAllowedOn attribute with
AllowableType.ControlLineSelect as its parameter. AllowableType is simply a custom enumerand
which contains values which indicate whether a given function can be executed on a column which is
hosted by a given model element. For e.g. in Figure 200 below we see that the Match function can
be executed on a Column which is hosted by either three model elements: Variable, DataField and
our newly added Select.

Chapter 7-Page | 177

1
Properties @ Edit Attributes [===

Match Microsoft.VisualStudio.Medeling.DsIDefinition.EnumerationLite =
MName MName Property

=-*+t% FunctionAllowedOn
- [AllowableType.Variable

Custom Attributes [FunctionAllowedOn(AllowableType o) <add parameter>
= =+ FunctionAllowedOn
Mame Match [AllowableType.Datafield
Value] <add parameter>
= =+ FunctionAllowedOn
MNotes - |AII owableType.ControlLineSelect _
= ~) <add parameter>
Description Description for Prism.ReportWriterDes| || | “f§ <add attribute>
Custom Attributes
Used to attribute the code generated from this element. oK l ’ Cancel

Figure 200: Select-Column functions annotated using attributes

After we annotate our function types with the FunctionAllowedOn attribute all we have to do is

extract all function types depending on its corresponding AllowableType value which should match
the corresponding host model element.

7.3.3.4 Implementing the Templates

We have added the model element, its connections, exposed it via the toolbox and added any rules
surrounding it although we have not implemented how this model element will generate the RWL
code. This is done using templates which we look at in this section. Template which caters for the
Select model element is shown below.

public void ProcessSelect(Select select)
{
StringBuilder builder = new StringBuilder();
builder.Append(“Select" + GetTabs(2));
List<NamedElement> namedElements = Select.SortedChildren(select);
for (int i = @; i < namedElements.Count; i++)
{
if (namedElements[i] is COlumn)
{
Column column = namedElements[i];
builder.Append(GetColumnAsString(column));
}

if (i != select.Columns.Count - 1)
builder.Append(" + ");
b
#><#=builder.ToString() + ";" + Environment.NewLine#><#+

i

We assume that we already have templates which generate the RWL script from the Column model
element. The Column templates will take care of functions so this leaves with the template for the
Select model element which is trivial. All we have to do is get our Select model element from the
ControllLine and then extract a sorted list of its children (currently it will only contain Column model
elements). We then iterate through this list and form our Select clause using our already existing
templates which cater for the Column model element.

Chapter 7-Page | 178

7.3.4 Conclusion

From this case we can see that adding new model elements is systematic and comparatively easy
due to our simple implementation using base classes and static helper functions. We can also see
that adding a new model element simply involves five steps:

Adding model element

Connecting model

Defining rules/constraints

Shape definition (Toolbox definition)

us W N e

Template implementation

7.4 Summary

This chapter gave us two case studies, each aimed at a different aspect of the solution. We looked
at a step by step tutorial on how an end-user would design a report and an overview on how a
developer can add new meta-model information. From the case studies we can see that both tasks
can be performed with simplicity and do not need extensive training programmes.

Chapter 8-Page | 179

Chapter 8 - Evaluation

8.1 Introduction

This chapter describes the evaluation techniques and the results of the evaluation of the solution
proposed by this thesis. We evaluated our solution during design time and also after
implementation. This chapter gives an in depth view into both those techniques and also compares
our solution with the current software used to design Prism reports, Scribe, outlined in Section 2.6.

The design evaluation highlights the process and results of evaluating our prototype while it was
being developed and was an ongoing process during the course of this thesis. The design evaluation
was carried out by project mentors, project supervisors and me during weekly meetings as opposed
to our survey evaluation which was done after the implementation stage. The survey was a means
to get feedback from actual end-users and developers who will be using our solution. The survey
was approved by the University of Auckland Human Participants Ethics Committee (UAHPEC Ref.
2008/405) and is included as Appendix J.

This chapter only evaluates our RWM Shell Approach (second approach described in Section 5.8 and
Section 6.4) as we discarded our Class Diagram Approach (first approach described in Section 5.7 and
Section 6.3) in its early stages.

8.2 Design Evaluation

This section highlights the evaluation techniques we used during the design of the solution described
in this thesis. We evaluated our solution at regular intervals during weekly meetings which involved
my supervisors and project mentors and research meetings which involved other postgraduate
students. Evaluation results were constantly integrated into our solution and as soon as new
features were added (meta-model elements added/modified) another evaluation was done. This
formed a cycle and made our design evaluation an iterative process where our solution was driven
by the evaluation results. We look at two specific evaluation techniques in this section.

Note that the design evaluation was only concerned with the Ul via which the end-user would use to
design RWL report models. The meta-model via which our notation was designed is a Microsoft
product (DSL Tools) therefore evaluating it during design time was not necessary although we do
evaluate our meta-model via a survey which is described in Section 8.3.

8.2.1 Champagne Prototyping

Introduced in Section 2.4.3.6, Champagne Prototyping involves designing a simple prototype and
evaluating it on a “look don’t touch” basis. Evaluation of this prototype can be done using Cognitive
Dimensions which is explained in the following sub-section.

During the course of our thesis as we adding new meta-model elements we were potentially
creating new prototypes each time we tested our implementation via the Experimental Hive. These
prototypes helped us with the Champagne Prototyping technique. Also, these prototypes were
partially functional allowing us test the notation as well as some other features such as containment,
ordering and visual layout. We look at our evaluation criteria in the following sub-section as we look
at each cognitive dimension and examine how our implementation caters for it.

Chapter 8-Page | 180

8.2.2 Cognitive Dimensions

Cognitive Dimensions was introduced and explained as an evaluation technique for visual languages
in Section 2.4.3.6, this sub-section looks at the various dimensions of that technique and
demonstrates how the solution described in this thesis caters for those.

8.2.2.1 Abstraction Gradient

This dimension allows us to measure and evaluate the maximum and minimum levels of abstraction
of our visual notation. The aim of our solution was to provide a visual RWL language which abstracts
the users from the textual RWL and also the underlying database. Due to the vast nature of the RWL
we can explain the maximum and minimum level of abstractions using a few RWL construct

examples.

Maximum Level

Whenever we start with a new report canvas using our newly developed DSL it is a representation of
the root of our model. Along with the root we have our report sections, currently three: Header,
Body and Variables. Therefore we can define our maximum level of abstraction as the root model
containing three reporting sections as shown below in Figure 201.

——Higher Level - Lower Level—p

> Header
ReportModel _ . _
Root » ReportSections > Body
> Variables

Figure 201: Maximum level of abstraction

Minimum Level

The minimum level of abstraction depends on which RWL construct we are dealing with. For e.g. if
we are dealing with an independent construct such as the ControlLine, it has field level abstraction
gradient because we are potentially abstracting each field within the ControlLine. This is shown
below in Figure 202.

Chapter 8-Page | 181

Higher Level — Lower Level

Code]—>[SimpleEditor l
Access]—b[WindowSeIection]—b[P\;\]ﬁr}r“jxé\l l
ReportType]—>[EnumerandEditor]—b[Standard, List, l
Name]—>[SimpleEditor l
Select H Columns]—b[ColumnEditor]—b[Pris(r?ozarlﬁizase]
)

v

[Controlline]—>[Fields]—

R R I A

Figure 202: ControlLine construct minimum level of abstraction

In the above figure we see the various abstraction levels we have within our ControlLine construct.
We can have a simple editor which the end-user uses to populate a field such as Code or we could
have a sophisticated custom field editor for fields which abstract some aspect of the Prism database
such as the Access field which contains a list of Windows? that the report can be accessed from. In
that case the minimum level of abstraction would be the WindowSelection editor.

In our second case study which was detailed in Section 7.3, we catered for the Select field within the
ControlLine which can be a combination of Columns. As shown in the above figure, the minimum
level of abstraction for that field is the custom ColumnEditor which shows a list of columns which
exists in the Prism database.

Furthermore, if we are dealing with a nested RWL construct such as the Scan we have a different
minimum level of abstraction as shown below in Figure 203.

Higher Level — Lower Level >

b) s| ravietaror
: Prism Database

Scan H Choocse Join]—>[Table Join]

—b[Literal Arbitrary string]—>[SimpleEditor]

q | | Prism Database
Constructs { ColumnEditor Columns]

Prism Database
Tables

Scan

|

—P[Print]—1-»[Columns
Functions]—b[FunctionEditor]

!

—{

Figure 203: Scan construct minimum level of abstraction

Chapter 8-Page | 182

In the above figure we can see that a Scan construct has a field called Table which can be edited
using a TableEditor which abstracts the end-user from the Prism database tables. We can also see
that a Scan can contain (nest) other constructs such as other Scans, Print statements, etc. This
nesting nature can potentially be quite deep and we only attempt to show a portion of it in the
above figure. For e.g. a Scan contained within another Scan can contain a Choose which abstracts a
database join condition and a Print statement can contain a Literal (edited using a SimpleEditor) or
Columns (edited via the ColumnEditor abstracting the columns within the Prism database).

8.2.2.2 Closeness of Mapping
This dimension measures how close our notation is to the domain we are trying to represent.

The visual notation developed during the implementation is not closely mapped to the domain as
each domain aspect (RWL construct) is represented using a standard rectangular shape. We try to
bring our notation closer to the domain with the use of icons which represent various domain
aspects. For e.g. we represent the Print construct with a rectangular shape which has a printer icon
on its top left corner as seen in Figure 184. Using rectangular shapes has its advantages as it
correctly represents encapsulation and containment which is a key feature of the RWL (domain) we
are mapping.

Other aspects of the RWL (domain) we map are its sequential nature and the order in which child
elements are executed within a parent construct. The sequential nature of the RWL is intuitively
represented using unidirectional arrows and ordering is represented using a numbering scheme,

lower number means it is earlier in the order, both examples can be seen in Figure 184.

An alternate approach of mapping would be to allow a WYSIWYG (What You See Is What You Get)
Prism Report Designer. This designer would actually allow end-users to design the report as they
would expect the resulting report to look like. This approach is currently not possible as the layout
of the end report is determined by complicated logic which lies deep within the Prism WIN MIS
system and cannot be used. Moreover the report will have to be interpreted and executed against a
database for which the Prism WIN MIS system is needed again. Due to this reason we identified the
WYSIWYG designer/layout as a future enhancement which is explored further in Section 9.5.10.

8.2.2.3 Consistency
This dimension checks whether the remaining notation of a given language can be implied after part
of it has been learned.

We believe that the visual notation which represents the RWL (domain) is consistent due to the fact

that we use a similar shape for each construct and lines to represent relationships. If the user knows
how to create one RWL construct by dragging and dropping its represented model element from the
toolbox (shown in Figure 185) they can successfully do that for any other RWL construct.

This also applies to relationships. A relationship between two model elements is created simply by
selecting the appropriate relationship from the toolbox (shown in Figure 185) and selecting the
source and target.

Editing fields for a model element is done simply by selecting the model element and editing its
properties using the Keyboard, if the field has a special editor attached then this field can be edited

“

by simply opening that editor by clicking on the “...” next to the field (shown in Figure 168).

Chapter 8-Page | 183

These are the only three aspects within our RWL notation therefore if the user can create any one of
the RWL constructs from the toolbox, modify its fields and attach nested children to it then the user
has potentially learnt the entire visual language.

8.2.2.4 Diffuseness
This dimension measures how many shapes or space is required for the notation to represent a
required model or notion.

The visual notation representing the RWL is basically constructed from colour coded rectangular
shapes and lines. Therefore we can clearly represent a RWL construct using this shape and its
corresponding relationships using a line which can connect two shapes.

In our opinion the visual notation developed as part of this thesis is less diffused when compared to
its textual counterpart. We come to this conclusion as each shape which represents a RWL construct
is “templatized”. For e.g. if the end-user wants to add a Scan construct, they add a Scan model
element. This model element will potentially expand out to:

Scan

End

Therefore we can say that we use less space to represent a given RWL construct and therefore will
take less space to represent a given RWL model (report).

8.2.2.5 Error-proneness

This dimension indicates whether the design of the notation induces “careless mistakes”. We can
safely say that because our visual notation of the RWL is simple and only contains shapes and lines it
reduces the number of user errors to practically zero.

Trivial errors such as spelling mistakes made while textually designing reports are eliminated by our
visual notation as there is essentially no textual input required by the end-user. Other errors which
may occur due to the end-user not understanding the RWL semantics are also eliminated by our
visual notation as it informs the user and expects them to rectify these errors before a RWL model
can be saved.

Therefore we can safely say that the visual notation developed as part of this thesis has a zero or at
least close to a zero degree of error-proneness when compared to writing RWL textually.

Also if a property of a given RWL construct is not entered and if that property is mandatory the
meta-model will inform the user at validation time. We chose this approach as it reduces the error-
proneness as opposed to providing them with default values.

Note that we are looking at syntactic and semantic errors in this cognitive dimension. Even though
the end-user is not allowed to make syntactic and semantic errors they can still make logical and
data errors. For e.g. the end-user can simply select the wrong database table or column or may even
get the layout (done via functions) wrong. Therefore these errors will not be known till the end-user
actually runs the generated RWL script against an actual database using the Prism WIN MIS system.

Chapter 8-Page | 184

8.2.2.6 Hard Mental Operations
Indicates whether the user has to resort to pencilled annotations to keep track of what is happening.

While designing a RWL model using our visual notation the user needs to have an idea of what the
eventual RWL script would contain. This could be defined as a hard mental operation. Moreover as
the visual RWL model expands the user may need a process via which they can keep track of their

current position.

Nested RWL constructs may also prove to be difficult to interpret by the end-user. Our notation
represents nested structures with a line and a numbering scheme as mentioned in Section 6.4.1.6 to
allow end-users to quickly visualize the order of such a nested structure. We also implemented an
auto layout algorithm detailed in Section 6.4.1.6 which attempts to make nested structures easier to

understand.

RWL constructs which represent a recurring notion may also be difficult to visualize using our
notation. Items such as scans, for loops or while loops are represented using a simple compartment
shape which may not depict its recurring nature correctly (may need something similar to Figure 57).

Other hard mental operation is remembering the RWL syntax. The user will need to have some idea
of how the RWL sits together, although this can be learnt while using the visual notation. Fore.g.ifa
particular shape cannot be dropped onto another shape the visual notation will not allow it. This

can be seen in below in Figure 204.

Toalbox 5]
=I Report Elements o
I Pointer

o Report Header

2 Report Body

2% Report Variables

=] Control Line

Page Header Block

=S| Page Header
|A Report Footer |
= Comment = Items o
A Literal = Choose Items
= PrintStatement
B Scan

=] Column

i Function

l-:,#" Clump

by Select

+ Report Connectors
=] General

= <<Sc@n>>

m

Figure 204: lllegal RWL drag and drop

In the above figure we can see that the user will not be allowed to drag and drop a ReportFooter
model element onto a Scan model element (denoted by a “not allowed” icon).

8.2.2.7 Hidden Dependencies
This dimension measures how dependencies within our notation are indicated, whether they are

overly represented and also whether their representation is perceptual or symbolic.

We show three primary relationships within our notation: Sequential flow, containment and
ordering. We use a symbolic representation for these relationships. The sequential flow
relationship is represented by a directed arrow. It is directed from one RWL construct to the next
RWL construct. The containment relationship is represented by a line which joins the parent RWL

Chapter 8-Page | 185

construct to its children constructs. The ordering relationship is represented by a number on the
containment relationship. A lower number indicating that the RWL construct would occur before a
sibling construct having a higher number. All three primary relationships are shown below in Figure
205.

= =«ControlLine= =

= Choose Items

»);

= = <Print=>

1 = Items

Literal : Cne

1

A =<Literal>> ¥
One

- <=Print>>

= Items

Literal : Two

1
A <<Literal=> ¥
Two

Figure 205: Dependencies within the RWL notation

In the above figure we see the sequential relationship between ControlLine and the Scan, the
containment and the ordering relationship between the Scan and its two children (two Print
statements).

Our notation also has two hidden dependencies: containment and instantiation/usage relationship.
We looked at the containment relationship being represented using a symbolic notation in Figure
205, if we examine closer, the parent also contains a list of its children, this is essentially a hidden
dependency. We attempt to make this relationship perceptual by selecting the child shape when
the child item is selected within its parent. This is also shown in Figure 205, we selected the first
Print item within the Scan and it has put a selection box around its corresponding shape.

The other hidden dependency occurs when we instantiate a RWL Variable construct and then use it.
Figure 206 below shows a Clump variable item instantiated on the right and being using by the Print
statement on the left. We make this relationship explicit when needed by putting a selection box
around every variable usage shape when a particular variable instantiation shape is selected by the
end-user, shown in Figure 206.

Chapter 8-Page | 186

= <<Scan>>
RM

= Items = Items

Print Column ; RM_CUST
Column : RM_NAME
Column ; RM_BAL_TYPE

Column ; RM_BAL_OWE

1= Choose Items

. .)

=] <<Coumn-> (%
RM_CUST

= Items

-)
<Usage Clump>> =] <<Comn=> (A

cust_clump L RIM_MAME
| = Items

-)
s [3 <<coumns> &
RM_BAL_TYPE

= Items

-)
o3 =<<commns> 5
RM_BAL_OWE

= Items

Figure 206: Variable instantiation/usage hidden dependency

8.2.2.8 Premature Commitment

This dimension indicates whether end-users have to make decisions before they have the
information needed. As mentioned in Section 8.2.2.6, one of the hard mental operations is that user
has to have some idea of what the eventual RWL script would look like before designing it visually.
This can be argued to be a premature commitment made by user. Although as the user becomes
familiar and experienced with the visual notation the degree of difficult creating new reports will
decrease which will indirectly mean that the level of premature commitment required will decrease
too.

8.2.2.9 Progressive Evaluation

This dimension indicates whether a partially created program (model) be executed by the user to
obtain feedback on how they are doing. Our notation was developed using the Microsoft DSL Tools
which allows us to validate partially completed models. If a model is valid the user can save it and
successfully execute it if need be thus giving users the essential feedback required. Executing the
model means generating the RWL script from a given RWL model.

The RWL script can be generated from a partially formed RWL model although this means that the
partial model has no validation errors and is successfully saved. We also have to make it clear that
the end-user only sees the RWL script and not the result of the execution of this script using the
Prism WIN MIS system on a database.

8.2.2.10 Role-expressiveness

This dimension measures whether the user can see how each individual model component relates to
the entire model. Within our notation each model element has its place within the RWL model
which may either be directly involved via the sequential flow element (in the main flow of the
report) or indirectly involved as a child of a model element (nested element). Therefore the end-
user can clearly see how each model element relates to the entire model if need be by following the
connectors coming in or going out.

8.2.2.11 Secondary Notation
This dimension indicates whether layout, colour, or other cues can be used to convey extra meaning
above and beyond the official semantics of the language.

Chapter 8-Page | 187

Comments can be added by end-users although these are part of the RWL meta-model and will be
outputted in the generated RWL script therefore is not regarded as secondary notation. The visual
notation can be altered so that we support annotations made by end-users to assist them follow the
RWL model. These annotations will not be used in the generation scheme and will be ignored by the
templating engine.

Layout can also be used to emphasize features and relationships. Currently we use an automatic
layout algorithm which emphasizes the nested structure of the RWL constructs although other
algorithms can be added to accentuate other features. User specific layout algorithms are defined
as a future enhancement and are briefly covered in Section 9.5.3.

8.2.2.12 Viscosity

Measures the effort required to make a change. Our notation does not cater for explicit change
management although it is presumed that because our notation is simple and only includes
rectangular shapes and lines any change can be made with ease. We do offer some degree of
refactoring capabilities, for e.g. we described the variable instantiation/usage relationship in Section
8.2.2.7, we offer end-users a simple way to rename the variable, if the variable name changes within
the instantiation scope, that change will be propagated to every place where that variable is used.

Other changes such as dragging and dropping RWL constructs from one report section to another is
currently not supported although because everything is done using the DSL Tools we can simply add
constraints which regulate that if a RWL construct is moved from one report section to another so
do all its nested elements and their nested elements ad infinitum.

It can be argued that small changes are hard to make using the visual notation as compared to doing
them textually. This is because trivial changes such as adding a space between two print statements
are cumbersome and involves multiple steps. The end-user also needs to make extra room in their
visual model to cater for this which may prove to be difficult and time consuming. We do simplify
this process to some extent by allowing the end-user to do an auto-layout after a change to order
the visual models cleanly. This algorithm is not sophisticated and more layout algorithms are
discussed as future work in Section 9.5.3.

8.2.2.13 Visibility

This dimension gives an indication whether every part of the code is simultaneously visible, if it is
possible to compare two sections side by side and whether it is possible to know the order in which
to read the code. Our notation caters for all of these possibilities. The entire RWL model can be
easily seen at a glance assuming we have a large display. If a large display is not available the user
can expand/collapse RWL constructs which allows them to view a larger area of the report or
concentrate on a particular area of the report.

The order in which the code is meant to be read is apparent as it is indicated by the Sequential Flow
relationship. If RWL constructs are nested within a parent construct then the order is indicated by
our Ordering relationship using numbers therefore making it simple for user to read the reportin a
logical order.

Chapter 8-Page | 188

8.3 Survey Evaluation

We designed a survey as part of the post implementation evaluation process. The survey was
approved by the UAHPEC (Ref. 2008/405) and is included as Appendix J. We evaluate the RWM Shell
Approach design and implementation as that was our primary solution. We approach the evaluation
with the aid of a survey which is designed for the two stakeholders highlighted in Section 5.2,
developers and report designers. One of the requirements of the survey is that the participant is a
Prism employee, either a developer or a report designer as they will need to know some aspects of
the RWL.

We surveyed 11 Prism employees, six RWL developers and five RWL users. RWL users were picked
at random so we did not know their skill levels beforehand. We initially approached a potential
participant with an advertisement informing them about our research (attached as Appendix G).
Following this the participant was given the Participant Information Sheet (attached as Appendix H)
which contained more detailed information about our research followed by a consent form
(attached as Appendix |) which they were required to sign if they wanted to participate in the survey.
Participants were then grouped in fours (developer and report designer groups were separate) and
were given a guided demonstration of either how the meta-model works or the end-user interface.
This demonstration can be viewed as brief tutorial or training programme. After the demonstration,
the participants were requested to finish the survey to the best of their abilities.

The following sub-sections analyze the results of the survey with respect to the two stakeholders:
Developers (evaluate the meta-model) and Report Designers (evaluate the end-user interface which
instantiates the meta-model).

8.3.1 Developer

The developer survey basically evaluated the expressiveness of the RWL meta-model within the
Microsoft DSL Tools. We asked developers some basic close-ended questions where we checked any
prior knowledge they would have of the technologies used to implement the solution. We then
asked them to complete two tasks which involved a minor and a moderate change to the RWL meta-
model. This allowed us to practically determine how easy or difficult it would be for a new
developer to modify the RWL meta-model to cater for changing requirements. Developers were
then asked to comment on how they went about the tasks and also comment on any positives or
negatives about the solution; this was done with the help of some open-ended questions. The
results and suggestions of the developer survey are outlined in the following sub-sections.

8.3.1.1 Technological Preview

In this sub-section we look at how developers react to the new technology which includes the MDSD
approach, the Microsoft DSL Tools, T4 templates and LINQ. We asked developers about any prior
knowledge they had about these technologies and the results are shown in the table and graph
below.

Table 5: Developers familiarity with solution technology

Chapter 8-Page | 189

ErT 5

Technology Familiarity

O R N W & U1 O

_E. . B Technology Familiarity

MDSD MSDSL T4 Text LINQ/WPF
Templates

Figure 207: Graph of solution technology familiarity

It can be seen from the above graph that all Prism developers surveyed are familiar with LINQ/WPF
although less than half were familiar with the other technologies which comprise the solution
described in this thesis. This was the expected result therefore we hoped that the meta-model
designer offered by the DSL Tools and our implementation offers a powerful but easy framework for
developers to use and modify. This brings is to the next two questions in the survey.

We asked the participants to rate their proficiency with these and rate the simplicity of the meta-
model developed using the DSL Tools after their guided demonstration (tutorial). The results are
shown in the table and graph below.

Table 6: Developers proficiency with solution technology and meta-model perception rating after tutorial

Chapter 8-Page | 190

m Technology knowledge
B Meta-model simplicity

O B N W H~» U

Expert/Easy Canfind myway More time
around/More Needed/Not
time needed easy

Figure 208: Graph of solution technology proficiency and meta-model perception rating after tutorial

It can be seen from the above graph that even though none of the developers felt completely
confident in the technologies involved in the solution they did feel that the RWL meta-model
developed using these technologies was simple and could be easily modified.

Developers were also asked to rate their proficiency with respect to the RWL semantics, this is
shown below in Figure 209.

RWL proficiency

I . B RWL proficiency

S B N W b

Expert Average Novice

Figure 209: Developers proficiency with RWL

Note that from the above graph even though there is only one participant who is an expert in the
RWL semantics, all developers (to some extent) perceived the RWL meta-model developed as part of
the solution to be simple and straight forward (shown in Figure 208).

8.3.1.2 Task Effectiveness

This sub-section analyzes how the developer completed the two tasks given to them as part of the
survey. The first task was comparatively easier than the second and the developers were only
required to provide a step by step process on how to complete them, implementation was not
mandatory.

Each task was divided up into two questions, the first required the developer to determine what the
task required (analyze the requirements) in terms of the meta-model and the second required them
to explain how they would use the DSL Tools and the meta-model to cater for those requirements.

All developers completed both tasks. Most developers found the first task (which asked them to add
domain properties to an existing RWL model element) very easy. Developers initially did have

Chapter 8-Page |191

trouble finding the appropriate model element within the meta-model. All developers knew the
basic steps in exposing these properties to the end-user and generating the required RWL. Actual
implementation was not necessary as long they could note the general steps they would take to
achieve this change.

The second task was comparatively harder than the first and it required a deeper change to the
meta-model (adding a new RWL construct and attaching it to the rest of the meta-model). Most
developers could easily go about making this change by looking at the existing meta-model and
seeing how the RWL constructs were combined together. Some developers found it difficult to
distinguish between the two relationships: embedding and reference although they could easily list
the steps required to achieve this task which was all that was required.

Therefore, both tasks were completed by all the developers with reasonable ease. No
implementation details were required as all we were trying to put across was the notion of model
driven development and the idea of representing the RWL using the meta-model.

8.3.1.3 Feedback

This sub-section lists the feedback received from the developers in terms of the meta-model of the
RWL and the solution it provides to the end-users. We list the feedback according to their nature
and separate the positive from the negative. For the negative feedback we also attempt to outline a
possible solution in the next sub-section where we analyze the feedback.

Positives:

1. Changing the meta-model was easy even for developers who had little to no experience with
the RWL semantics.

2. Changing meta-model was easy as a developer could simply learn from the already
implemented contructs and see how they work.

3. Changing the meta-model and the two tasks (part of the survey) helped understand the
meta-model and how the various constructs were held together.

4. The meta-model allows the developers to expose the Prism RWL and the various parameters
each construct may have to the end-user.

5. The meta-model helps end-users avoid making mistakes and also makes it easier for the
developer to define constraints as opposed to defining constraints in an arbitrary text based
form.

6. The framework and methodology can lend itself well to generate other code if need be such
as Prism WIN MIS configuration scripts.

7. The explorer view (flat view) of the RWL model was thought to be quite useful by some
developers as it exposed details to the end-user in a concise form allowing them to see the
big picture.

Negatives:

1. Scalability
a. Navigation will become harder as the model grows in size.
b. With large RWL models, visual representation will be more complicated than
textual representation.

Chapter 8-Page | 192

2. Obvious learning curve involved with Microsoft DSL Tools.

a. Inexperience with MDSD meant that the concept of generating (transforming
templates) code was not always intuitive.

b. Relationships were hard to visualize (which to make as a reference and which to
make as an embedding).

c. Editing templates to generate RWL script within the debugger was counter
intuitive. Users would rather have templates within the source solution which
get installed in the debugger.

3. Tasks would have been easier if done directly after the tutorial (guided demonstration).

The graph below shows a comparison between fixable and non-fixable items which were raised with
the use of the negative feedback (listed above) gained from the developers. Fixable items are
classified as items that can be rectified via design and implementation improvements and non-
fixable items are those which may require the Microsoft DSL Tools be enhanced.

Fixable Nonfixable

Figure 210: Fixable/Non-fixable meta-model issues

From the above graph we can see that three issues can be rectified via better design and
implementation. These issues include readability of the meta-model and lowering the learning curve
for developers using the DSL Tools.

8.3.1.4 Feedback Analysis

Scalability was the main concern with developers while doing the survey. The developers found it
comparatively difficult to navigate the existing meta-model of the RWL due to its sheer size. A large
screen area is ideal in this situation and intuitive organisation of the meta-model would prove to aid
navigation. The Microsoft DSL Tools also made it difficult to add new domain model classes and
relationships due to the fact that everytime you added a new construct it would append it to the
bottom of the diagram and change the scroll and zoom position. These problems are embedded
within the DSL framework provided by Microsoft and we hope they get resolved as the technology
matures. Another solution offered by one of the participants was the use of wizards to add new
RWL constructs to the meta-model. This was an excellent suggestion because adding a new RWL
construct follows five basic steps:

1. Add domain-model class representing construct
2. Add properties to it

Chapter 8-Page | 193

3. Form relationships
4. Add shape representing construct
5. Expose it via the toolbox

If the above mentioned steps could be encapsulated in a wizard like approach it would make
expanding the RWL meta-model comparatively easy. This wizard could be provided in the form of a
Visual Studio add-in, another DSL or an integrated Ul based wizard within the existing DSL.

Developers also expressed scalability issues in the end-users’ report designer. Because the
developer survey is only concerned with the development side of the solution, i.e. the meta-model
we will omit this issue and look at it in the next section where we analyze the results of the report
designer survey.

Another issue expressed by the developers was regarding the learning curve of the Microsoft DSL
Tools. This was an expected issue although there were three main concerns with this learning curve.
The idea of code generation was not easily understood by some developers. | suspect this was due
to the reason that such an approach was not tried before and the idea of executing code generated
from a visual model is foreign. Although developers did quickly learn the idea of how the code was
generated and what the execution of such code meant. The other two aspects which seemed to
steepen the learning curve were domain relationships and text templates. In my opinion knowing
which domain relationship should be a reference and which one should be an embedded one is
purely subjective and developers (including myself) will improve at this with experience.

As far as text templates are concerned they are similar to any programming language which the
developer has to get accustomed to. Although they are much simpler to use than traditional
programming languages as all we are aiming for is to generate text from it (RWL script). The idea of
text templates being part of the debugging solution is a Microsoft standard and again we hope that
they provide an easier and more sophisticated way for developers to embed these templates using
the source solution as opposed to using the debugger.

8.3.2 Report Designer

The survey done by end-users (report designers) was intented to give us an idea of whether the
toold provided assistance to novice and intermediate users to design Prism reports. We were also
looking for whether the visual designer has advantages over textually writing a Prism report.
Usability, visual notation, program flow and RWL script generation were the core items being
evaluated by this survey.

Report designers were asked close ended questions to determine how they currently design Prism
reports and the applications they use to achieve this task. Questions were then aimed at the newly
developed reporting tool and we asked questions to determe the learning curve by simply asking
them to rate their profieciency after the tutorial (guided demonstration). They were also requested
to list five items they would like to have in such a reporting tool or an IDE. These questions were
then followed by asking them to complete two tasks where they design Prism reports. The first
report was comparatively easier than the second. The survey was concluded by asking the report
designers for their suggestions on the positives and negatives of the new tool. The results are
outlined and analyzed in the following sub-sections.

Chapter 8-Page | 194

8.3.2.1 Tool Preview

This sub-section analyzes what end-users currently use to design Prism reports and whether they are
satisfied with the level of functionality it has. We also ask them to list five aspects of functionality
(according to preference) they would like to see in a Prism reporting tool which would aid them and
allow them to design Prism reports with ease.

The graphs below in Figure 211 and Figure 212 show what the end-users currently use to design
Prism reports and whether the IDE provides the features needed to design Prism reports
respectively.

IDE Usage Count
5
4
3
i] B IDE Usage Count
o . M __ , |
Scribe Notepad Other
Figure 211: Current report design (IDE) tool usage
IDE Satisfaction
5
4
3
i M |DE Satisfaction
o | NN . ,
All Some None

Figure 212: Current report design (IDE) tool satisfaction

It can be seen from the above graphs that most end-users do not use Scribe as a dedicated IDE for
Prism report design. | presume this is the case because Scribe does not provide any extra
functionality over a simple text editor like Notepad. Moreover there is a noticeable gap between
the IDE the users use and the functionality which they require to be present in an IDE. We also
asked them to list five features (in order of need) which they would like to see in an IDE to assist
Prism report design. These are combined across the participants and are listed below in an ordered
list according to need.

Wizards or templates to ease the initial process of report design.

Dynamic validation of the report.

Ability to run the report straight from the IDE and see the resulting report.
Database helpers. E.g. automatic joins, table and column selector, key selectors.

vk wnN e

Intuitive Ul to streamline the report writing process. Maybe via a set workflow template.

Chapter 8-Page |195

From the above list the new report writer tool provides dynamic validation (2), database helpers (3)
and an intuitive Ul (5). The other requirements have been identified as future work and are further
elaborated upon in Section 9.5.

We followed on from the above questions and gave the end-users a brief guided demonstration
(tutorial) using the new report writing tool. We then asked them whether they had a clear idea on
how to use this new tool to attempt and measure the potential learning curve it may have on end-
users. Their responses are captured below in the graph:

Tool Familiarity

B Tool Familiarity

OFRLrNWRAUIO

Yes Some more No
time needed

Figure 213: End-users familiarity with the new tool after guided demonstration

From the above graph we can clearly see that the end-users had a clear idea about what the new
reporting writing tool was attempting to achieve and how a new user would go about using it to
design a new Prism report.

In the above questions we determined the tool currently used for Prism report writing and whether
the end-users were satifisfied with the features the IDE provided. We then gave the end-users a
guided demonstration and determined that they had a clear understanding of what this tool was
attempting to achieve. We then gave the end-users two task to complete to determine the usability
of this new tool. The results are analyzed in the next sub-section.

8.3.2.2 Task Effectiveness

This sub-section analyzes the usage of new reporting tool designed and implemented as part of this
thesis. This is done by asking end-users to design two reports using the new tool. The requirements
for the first report are comparatively simpler than the second. The survey requests the end-users to
list the steps they would carry out to design such a report and output the corresponding RWL script
using the text templates already provided. We then asked them to identify whether our new
reporting tool is designed and implemented in a way that would aid these steps and if not how
would we make the interface better.

All participants could complete both tasks using the new report writing tool designed as part of this
thesis. Some participants had forgotten details about the two different connectors: the sequential
connector and the nested connector which made the task a little difficult. This difficulty could have
been avoided if the participants attempted the survey immediately after the guided demonstration
(tutorial) although due to time constraints this was not feasible for some participants due to prior

work commitments at Prism.

Chapter 8-Page | 196

The steps noted in order to achieve each task differed for each participant as the report to meet the
requirements for each task could be designed in several ways. Most participants noted that they
followed the validation errors given by the meta-model to achieve a valid report which helped them
a lot. Database helpers were also used extensively to give users assistance regarding the tables and
columns which existed within the Prism database. Most participants found the Visual Studio Shell
environment overwhelming and had difficulty to use the property and solution editor. This issue can
be easily resolved by customizing the Visual Studio Shell hiding the items (menus/buttons) which are
irrelevant with respect to the report writing DSL.

After the tasks were completed the participants were requested to give us feedback in the form of
comments and were also requested to list the positive and negative aspects of the approach. Their
feedback is detailed in the following sub-section. The end-users were also requested to indicate
whether visually designing Prism reports is better than writing them textually and whether the visual
DSL assisted them in terms of the Prism database. Their response is encapsulated in the graph

below:
5
4
3 . .
M [s visual designer better?
2 M Interface helps user
understand DB
1 .
0 -~ T
Yes Sometimes No

Figure 214: End-user rating visual notation compared to textual representation and its help in terms of the Prism DB

From the above graph we can clearly see that most participants found the visual DSL more useful
while designing Prism reports when compared to writing them textually. We can also see that most
participants (except one) found the DSL useful in terms of the Prism database. We see an equal
amount of participants who feel that the visual notation to design a Prism report is only
“sometimes” better than textually writing it, this arises due to the scalability issue of visual
languages. Visually a large RWL model may be more difficult to interpret than its textual
counterpart therefore some end-users feel that a visual representation is only “sometimes” better.

8.3.2.3 Feedback

This sub-section lists the feedback received from the report designers (end-users) in terms of the
Visual Studio Shell environment which allows them to visually design Prism reports. We list the
feedback according to their nature and separate the positive from the negative. For the negative
feedback we also attempt to outline a possible solution in the next sub-section where we analyze
the feedback.

Chapter 8-Page | 197

Positives:

Design time validation is extremely helpful while designing Prism reports. Saves time and
effort compared to saving the file, importing it into the Prism WIN MIS system and fixing the
errors.

Database helpers which exist within the current tool helped determining the current field or
table to use. They prevented the end-user from making spelling mistakes and allowed them
to get a clear overview about the database and its table without understanding intimate
details of its structure.

Visually designing a Prism report allows end-users to clearly visualize a given report script
and its logical flow. The visual notation also gives the end-users the ability to design a Prism
report without worrying about RWL semantics and syntax spelling.

Negatives:

1.

The visual notation lends itself well to design small to medium size reports although as the
report size increases it becomes difficult to visually represent it as opposed to textually.
Trivial changes are hard to make using the visual notation. A small change such as adding a
space in a print statement requires a number of steps as opposed to doing it textually.
There is no synchronized view between the visual notation and the generated textual RWL
script. A synchronized view would allow end-users to modify the visual model of the RWL
and see the changes reflect in the generated textual RWL script making it easy to the visual
model and lower the learning curve gradient.

The Visual Studio Shell (Experimental Hive) via which the visual notation is exposed is hard
to use for non-developers. The shell contains many sub-windows, toolbars and menu items
most of which are irrelevant to the exposed DSL due to this reason the Ul is overwhelming
for non-developers.

The visual notation is primarily designed for novice and intermediate report designers as it
does not allow a high degree of customization when compared to textually designing a
report. Due to this reason expert report designers will be constrained by the features of the
tool and may hamper their production.

Categorize feedback

Ul improvements

Notation improvement

Code generation improvement
Database helper improvement

8.3.2.4 Feedback Analysis
Scalability was identified as the common issue all report designers experienced. As a RWL model

grows it will become more complicated and therefore harder to represent visually. This issue can be

resolved (not entirely solved) by allowing the visual notation to collapse/expand nested children,

hide/show parts of the model and use screen real estate wisely using sophisticated layout

algorithms. Collapsing/expanding of nested children is already implemented and implementing

sophisticated layout algorithms is identified as future work and further detailed in Section 9.5.3.

Chapter 8-Page | 198

The visual notation allows novice and intermediate users to quickly design Prism reports easily using
the dynamic validation engine and the database helpers. Although this makes the notation hard to
use for expert users as they might not achieve all the flexibility they require. Moreover trivial
changes in the RWL model would be simple to achieve textually as opposed to visually which may
require a number of steps. This can be made easier by implementing wizards which allow end-users
to carry out certain tasks. Wizards are identified as future work and are discussed further in Section
9.5.7.

Most participants found the environment (Visual Studio Shell/Experimental Hive) via which the DSL
was exposed to be complicated and confusing. This was expected as we simply asked the
participants to use the Visual Studio Shell to design Prism reports without any customizations. This
problem can be solved by making the Visual Studio Shell thinner, meaning removing any extra
toolbars, sub-windows and menu items which are not relevant to our DSL. This would make using
the Visual Studio Shell much easier thus improving the usability of the visual notation.

Some participants found it cumbersome to regenerate the RWL script after small changes to the
RWL model to determine how the language worked. Due to this fact some participants
recommended that the RWL visual model and the generated textual script be synchronized to some
degree. Currently this is a manual process as the end-user can run the templates after the visual
model is saved and validated. Although it can be automated to be triggered when the visual model
is saved thus keeping the textual representation synchronized with the visual model.

8.4 Cognitive Dimensions V.s. Survey Evaluation

In this chapter we looked at two different types of evaluations. A qualitative and subjective (authors
perspective) approach using cognitive dimensions and a quantitative approach using developers and
end-users using surveys. In this section we determine whether the results from these two
evaluation techniques converge or diverge. Convergence would indicate that the user-model is
similar to the developer-model and divergence would indicate that work needs to be done to bring
the user and the developer model close together. The table below analyzes each cognitive
dimension and indicates whether it converges or diverges (or cannot be measured) with the
evaluation and gives a reason why.

Table 7: Cognitive dimensions convergence table

Cognitive Converge/ Why

Dimension Diverge/Not

(CD) Applicable

Abstraction Converge End-users were quickly able to adapt themselves to the
Gradient different levels of abstraction within the visual notation.

This can be seen from the surveys as all end-users could
complete the two report design tasks with relative ease.
Closeness of Converge Our CD analysis showed that even though the visual notation
Mapping is not close to domain we are mapping its consistency and
use of icons enables end-users to determine their
representation with ease. This can be seen from the
completion of the two tasks given to the participants.
Consistency Converge Our CD analysis showed that the visual notation was
consistent. Each shape had a consistent look and feel to it

Chapter 8-Page | 199

88 Diffuseness

Error-
proneness

Hard Mental
Operations

Hidden

Dependencies

Premature
Commitment

Progressive
Evaluation

{1} Role-

Converge

Converge

Diverge

Converge

Diverge

Converge

Converge

and relationships between shapes can be created
consistently. This is evident as both report designing tasks
were completed successfully by end-users after the guided
demonstration even though the guided demonstration only
showcased some aspect of the notation.

We determined that our notation is less diffused than its
textual counterpart as end-users only need to care about
shapes as opposed to syntax details. This dimension
converged with our evaluation outcome as most participants
perceived the visually design RWL model to be concise, clear
and easy to understand when compared with the textual
representation.

The visual notation exposed by our DSL abstracts away
semantic information of the RWL from the end-user. This
allows the end-users to create Prism reports without
worrying about spelling mistakes, semantic errors and syntax
errors. We established that this converges with the results
from the evaluation as the steps highlighted by each
participant to meet the reporting requirements highlighted
in the survey did not have any errors. All participants could
successfully complete both tasks creating valid Prism reports.
During our CD analysis we established that visualizing nested
and recurring (i.e. Scan) structures will be difficult for the
users. We also established that the end-user will need to
have some idea of what the end RWL script should look like
before using our tool which may be a hard mental operation.
Although when the end-users completed the tasks outlined
in the survey it was determined that our CD analysis diverged
from the results from the survey. A possible reason for this
could be that the survey did not require the end-user to
generate a complex Prism report.

We analysed this dimension and came to the conclusion that
each dependcy and relationship within the domain are
represented with a simple shape or connector which keeps
the notation simple. This was reflected in the survey as the
end-users could use the notation easily and complete the
two report designing tasks given to them.

Our CD analysis showed us that the visual notation could get
complex and may require some level of premature
commitment from end-users for hard mental operations.
Although the survey demonstrated that end-users could
easily complete the two tasks without commiting to a
concrete report design or structure, thus we established that
our CD analysis diverge from the results of the evaluation.
We determined that our visual DSL allows the end-user to
progressively evaluate their RWL model allowing them to
visualize the generated RWL script as the model is changed.
This converged with the results from the survey as each end-
user progressively generated the RWL script to determine
their model validity and correctness.

Our CD analysis showed that each RWL construct within our

Chapter 8-Page | 200

expressiveness

ikl Secondary Diverge
Notation

1A Viscosity Diverge

12y Visibility Diverge

visual notation can be easily tracked with the help of
connectors representing relationships. This converges with
the results from the survey as the end-users could easily
complete task two in the survey which involved an
enhancement to task one. This indicates that the end-user
could easily see visualize each RWL model element correctly
and determine its place in the whole model allowing them to
modify the required elements to complete the task.

Our CD analysis exposed that our visual notation currently
has no mechanism to allow end-users to add superficial
annotations to the diagram to help them. The RWL meta-
model does expose a Comment construct but that is part of
the RWL and cannot be regarded as secondary-notation. We
exposed automatic layout algorithms to assist users and
reinforce the nested relationship. Although we say that the
results from our evaluation diverge from the CD analysis as
end-users did not use this automatic layout capability to its
full use. An explicit mechanism to annotate the visual RWL
model would have proved helpful in retrospection.

Our CD analysis demonstrated that the visual notation
developed as part of the DSL was viscous to easily allow
accommodate end-user changes. This is because we have a
simple visual notation comprising of simple shapes and
arrows. Although our evaluation showed that end-users may
find it difficult to make small changes to the RWL model
using our visual notation when compared to making the
same change in a textual environment. Due to this reason
we determined that our CD analysis diverge from the results
from the evaluation.

Our CD analysis involved determining the visibility of each
element and whether the notation could represent the
sequential flow of the RWL efficiently. Even though the end-
user could follow the flow of the RWL model we believe that
the CD analysis diverged from the results of the survey as we
did not cater for the visibility of the generated RWL script.
Feedback received from a participant indicated that it would
have been helpful if there was a synchronized view between
the visual RWL model and the text it generated.

8.5 Comparison to Scribe

We looked at Scribe in Section 2.6 and highlighted some of its features and limitations. In this

section we compare our solution with Scribe as it is the primary IDE used to develop Prism reports.

We developed the table below which highlights some of the key differences between Scribe and the

solution developed as part of this thesis.

Table 8: Scribe vs. Our Solution

Feature Scribe

Notation Textual

This solution

Visual

Wizards Common reports -
Data Dictionary Static Dynamic

Chapter 8-Page |201

Error checking - Dynamic validation

Help Non-context sensitive Context sensitive

Database assistance - Joins and limited value matches
Modular Reporting sections (Tabs) Reporting sections (Swimlanes)
Code Folding - Show/Hide children
Serialization Text (Binary) XML (Schema based)

Code Libraries (Snippets) Common code snippets -

Technology VB6 C#, DSL

The following sub-sections describe each aspect listed in the above table. We can see that the
solution developed as part of solution supersedes Scribe although it does lack in some aspects which
we address as future work.

8.5.1 Notation

Scribe relies on the end-user typing the entire report out. This tends to be tedious, error prone and
requires the end-user to have in-depth knowledge of the RWL semantics and not to mention the
Prism database.

Our solution improved this limitation and allowed end-user to visually design Prism reports. This
meant that the end-user did not need to learn RWL or its semantics as they could simply use the
toolbox to drag and drop shapes representing RWL constructs and join them using connectors. The
shapes could then be linked to database objects such as tables and columns to make the report
complete.

8.5.2 Wizards

Scribe provides end-users with a wizard approach to commonly used reports. This is shown in Figure
38. Wizards allow the end-user to start with a piece of skeleton code which they can modify to suit
their needs thus saving time and effort.

Our solution in its current state does not provide wizards although is considered as a future
enhancement and detailed in Section 9.5.7.

8.5.3 Data Dictionary

Scribe exposes a static Prism meta-data dictionary which end-users can use to find more information
about Prism database tables, columns and order keys. This is shown in Figure 40. Therefore, if new
Prism database tables, columns or order keys are added this data dictionary needs to be updated.

The solution described in this process exposes a dynamic data dictionary which links in with a live
database making this solution far more versatile than exposing it statically. The downside of having
a dynamic data dictionary means that database access will hamper performance. There are various
solutions to this problem like caching the Prism database meta-data for a defined interval or
improving data access code.

8.5.4 Error Checking

Scribe provides no real error checking mechanism for end-users while designing reports. The only
time a report can be checked for errors is when the end-user imports the report into the Prism WIN
MIS system. This means that errors within the report will not be known to the end-user until “run
time”.

Chapter 8-Page | 202

Our solution improves this by allowing “run time” error checking and validation. Because our
solution is built on the RWL meta-model dictating its semantics it is impossible for the end-user to
create an erroneous RWL model. Moreover every time the end-user saves the RWL model a
validation check is done to ensure the validity of the RWL model. A validation check can also be
performed at any point in time by the end-user via a menu item.

8.5.5 Help

Scribe provides help in via its syntax completion. Shown in Figure 43, syntax completion does help
to an extent although there is no filtering mechanism provided. Therefore the functionality which
was designed to help eventually ends up hampering usability. This is described further in Section
2.6.2.2.

Our solution improves on this and provides context specific help which does not overwhelm the end-
user by providing them with superfluous information. Our solution provides context specific help in
the form of custom editors, drop down boxes and menu items.

8.5.6 Database Assistance

Scribe provides no database assistance as such and the only assistance it provides in terms of the
database is the data dictionary which was described in Section 8.5.3. The solution described in this
thesis provides innate database assistance in the form of Choose statements (which join two nested
Scan constructs together) and limited value helper for Choose statements (if a column contains a set
of enumerated values, we show these enumerated values). Both examples are given in our first case
study as part of Section 7.2.

8.5.7 Modular
Scribe provides us with a tab based approach to reporting which is shown in Figure 39. This makes
the report modular and allows the end-user to concentrate on any particular section of the report.

We borrowed this approach from Scribe and made our solution modular by dividing the report up
into three sections: Header, Body and Variables. More reporting sections can be easily added via the
meta-model if need be.

8.5.8 Code Folding
Code folding is a mechanism provided by modern IDEs via which code blocks can be collapsed to
save screen real estate and allow end-users to view a larger section of a program or a model.

Scribe does not have any support for code folding although the solution described in this thesis
allows for such a requirement. Our notation allows the end-user to collapse and expand a parent
RWL construct which hides or shows its nested children respectively. This allows the end-user to
concentrate on a particular part of the report. Moreover if the RWL model spans a larger area,
collapsing a part of the model would allow other sections of the model to fit easily in the given
screen area.

8.5.9 Serialization

Scribe saves the Prism report file created by the end-user in a proprietary binary format on the disk.
This format does not lend itself to any kind of external manipulation. Although scribe does offer
limited capability to the end-user to import simple text files and convert them to a Prism report.

Chapter 8-Page | 203

The RWL model created using the solution developed as part of this thesis saves the file in a XML
format which has a standard schema association. This allows other 3" party tools to easily read in
the file, manipulate it, transform it and save it back. Saving a file in XML also means that it is easily
extensible and lends itself well to model transformation techniques such as XSLT transformations.

8.5.10 Code Libraries (Snippets)

Scribe offers a set of common code snippets as shown in Figure 42. This allows the end-user to
simply copy paste code which suits their needs. These snippets are not customizable and there is no
mechanism for end-users to create their own snippets.

Although our solution does not provide any mechanism for code snippets it is considered as a future
requirement and is further explained in Section 9.5.8.

8.5.11 Technology

Scribe is written in VB6 and often requires highly experienced developers to make small simple
changes. VB6 is also no longer supported by Microsoft (Microsoft, 2008). Moreover Scribe is not a
modern application and has trouble running on Microsoft’s latest operating system, Vista.

The solution designed as part of this thesis was entirely written in C# using the DSL Tools making it
extensible and maintainable. The DSL Tools allow developers to make changes and simply
regenerate the code which would incorporate those changes into the end-user interface and allow
end-users to use these changes reducing the time to market for new features. Using DSL Tools also
allows us to create software with comparatively less bugs (as all code is automatically generated),
improve code quality and allow novice developers to make changes.

8.6 Summary

This chapter detailed the evaluation of the solution developed to allow end-users to visually design
Prism reports. It also evaluated the expressiveness of the meta-model by surveying developers to
determine how easy a change can be brought about.

Evaluation was done in two phases, during design phase using cognitive dimensions using
champagne prototypes and during a post implementation period using surveys. Using cognitive
dimensions we determined that our solution met with most of the requirements needed for a user-
friendly graphical DSL which helped end-users achieve a task, in this case designing Prism reports.
The results from the surveys done during the post implementation phase converged with most of
the cognitive dimensions analysis we did. This can be seen from the participants (developers and
report designers) completing the tasks outlined in the survey with ease. The main concern of the
participants in terms of the meta-model and the reporting tool was scalability. Whether the meta-
model is able to sustain a growing number of RWL constructs and whether the visual reporting tool
is able to represent large RWL models were the core issues.

The chapter concluded with an empirical comparison of our solution to Scribe, the current IDE used
to design Prism reports. We noted that our solution was better in some aspects when compared to
Scribe although to make the solution a well rounded product which could be used by Prism we
would have to implement other features which are outlined as future work.

Chapter 9-Page | 204

Chapter 9 - Conclusions and Future Work

9.1 Introduction

This chapter concludes this thesis by highlighting the contributions it has made to Prism Software in
terms of solving its problems of database and the RWL complexity. It highlights some of the
evaluation results and also critics itself by exposing some current and potential issues. The chapter
concludes by highlighting some of the future work that can be carried out with this thesis as its base.

9.2 Thesis Contributions

The contributions of the thesis are highlighted in this sub-section with respect to each stakeholder.
Two core stakeholders were identified in Chapter 5, namely Prism as a company and Prism
customers (end-users).

9.2.1 Prism Software

This thesis provides an empirical study into how MDSD can assist Prism in its long term goals to solve
its core problem of database complexity. The thesis highlights some of the approaches Prism as a
company can take to lower production cost, increase productivity and develop a framework which
be centralized and used by all of its products. We summary these approaches in the following sub-
sections.

9.2.1.1 MDSD methodology

The thesis highlights some of the core properties of MDSD and how it can be advantageous to an
enterprise if used correctly. We showed this in this thesis by developing a rapid prototype of an
application which would have usually taken a lot of resources in terms of developers and time. The
thesis also gave an in-depth account of some of the cutting edge technology which can be utilized to
achieve a model-centric environment. It showed how the Microsoft DSL Tools can provide all the
required resources for Prism to design robust models of any system and expose these to developers
and end-users via the Microsoft VS Shell.

Other technologies were also introduced which would allow Prism to utilize the full power of MDSD.
These technologies were model transformations, software factories and Metamodeling.

9.2.1.2 Modeling framework

The thesis laid the groundwork for Prism software to design further models which could be utilized
by other applications besides the prototype described. The thesis introduced and elaborated on the
core ideas and concepts built within the Microsoft DSL Tools to allow Prism as a company to invest
its resources into it to gain a substantial edge in today’s software market.

We also introduced the T4 templating engine shipped with the Microsoft DSL Tools which would
expose any model and allow developers to potentially output any text file built around this model.
This would assist Prism in numerous ways ranging from trivial configuration scripts to enterprise
level SQL upgrade scripts.

The modeling framework would assist Prism staff in developing models even if they do not
ultimately get used in end-user applications. Developers could generate models which would
eventually be consumed by business analyst. Text templates could be designed around these
models which would output information required by business analyst. Some examples of outputs

Chapter 9-Page | 205

could be a text file showing a developers progress through a particular programming task. This flow
can be expanded further, where business analyst can design models which can be consumed by the
management team.

Therefore, in short the modeling framework has given Prism the ability to abstract any enterprise
level task, such as report writing (shown in this thesis) and ultimately allow respective users to work
in a domain they are most familiar with.

9.2.2 Prism Customers (End-Users)

The thesis provides Prism customers an application which encapsulates a specific model developed
as part of this thesis. This application is described as the RWL shell host and is currently in a
prototype stage.

The thesis developed a prototype which allows end-users to visually design reports. The prototype
was built upon the modeling framework described in the previous sub-section and gave a user the
ability to design RWL models which would output the required RWL script. The prototype developed
introduced Prism to the Microsoft Visual Studio Shell which potentially allows any modeling
language to be hosted within it and also exposes the core functionality surrounding any
sophisticated IDE such as save, open, undo, redo, etc.

The prototype also exposed the meta-model of the RWL and encapsulated all its semantics using
constraints. The prototype proved the ability of the modeling framework to provide a method via
which a particular enterprise task, such as report writing, can be abstracted from the end-user. The
prototype allowed novice end-users to quickly develop Prism reports without the steep learning
curve which hampered their progress prior to the model-centric approach.

The prototype also provided essential context sensitive help to the users in terms of the Prism
database which potentially meant that the end-users did not need to have intimate knowledge of
the its structure to extract information from it.

Therefore, in short the RWL shell host provided end-users to design Prism reports working on an

abstraction level which exposed domain concepts they are most familiar with. The domain in this
respect was the actual Report Writer Language and some Prism database concepts such as views
and relationships.

9.3 Conclusions and results
We have shown that an enterprise task or process, if structured in a consistent way, can be
abstracted using models.

A complicated task such as writing Prism Reports was made comparatively simpler by designing a
meta-model on top and then exposing this meta-model to the end-user via a user interface. This
allowed us to hide details such as semantic constraints of the language, complicated database tables
and views and their corresponding relationships.

We also proved that given a meta-model, if changes are made in the enterprise process or task,
these changes by quickly replicated in the meta-model and released to the end-user thus reducing
the time-to-market of a product, increasing productivity, improving software quality and reducing
the number of problems.

Chapter 9-Page | 206

The above mentioned conclusions were reinforced by the developer and end-user surveys carried
out as part of the evaluation of the solution. We determined that both the meta-model and the
visual notation that exposed the meta-model were easy to use for developers and end-users
respectively. Changes in the meta-model such as implementing new RWL constructs and changing
existing ones were straightforward and simple. The evaluations also led us to the conclusion that it
is comparatively simpler to visually design a small to medium sized report than writing it textually
making it easier for novice users who are new to the Prism RWL. The main issue arising from the
survey was scalability. Both, the meta-model and the visual notation were speculated to become
very complex and large as the solution (meta-model) grew and thus enabled large Prism reports to
be designed. Meta-model scalability can be solved by making the meta-model modular and cohesive
and the visual notation can be designed for scalability by allowing end-users to concentrate on
sections of the report by allowing them to collapse/expand nested constructs, hide certain
constructs and search the visual RWL model. Note that collapsing/expanding of parent constructs is
already implemented in the solution although improvements can be made to it.

9.4 Current Limitations
Limitations mentioned here are only relevant to our RWM Shell Approach. We abandoned the Class
Diagram Approach due to the time constraints imposed.

9.4.1 Meta-Model

The major limitation while designing the meta-model was the lack of representing interfaces. This
made it essentially hard to design a hierarchy of common RWL constructs as we were only allowed
to deal with abstract classes and thus could only extend (inherit) from one parent class. Even though
this limitation was overcome the result was more complicated than a possible solution with
interfaces. The lack of variety of shapes to represent model elements is also a limitation. Also some
simple customizations like changing the display font style do not currently exist within the DSL Tools.

Another obvious limitation is that not all of the RWL constructs are currently implemented in the
meta-model and also that the meta-model offers assistance to novice and intermediate report
designers. Expert report designers may feel slightly constrained by how the meta-model works.

9.4.2 RWM Shell Host

The obvious limitation of the RWM Shell Host is the fact that it is essentially a Visual Studio
Environment. This makes it hard to customize and end-users that are not familiar with the Visual
Studio environment will have to go through a learning curve.

Another limitation is related to the customization issue, adding menu items and other commands
are made complicated via the VSCT which is described in Section 6.4.1.10. Note that although
learning VSCT is not difficult, it does involve a learning curve.

9.5 Future Work/Enhancements

9.5.1 Expand and Refine the Meta-Model

The RWL meta-model developed as part of this thesis only encapsulates part of the RWL therefore
we can invest more time in the future to add more RWL constructs and make the meta-model
complete. We could also refine the meta-model and make it semantically richer by improving Prism

Chapter 9-Page | 207

database meta-data access, allowing the end-user to extract and view detailed information about
each construct within the model.

9.5.2 Improve Visual Notation

The current visual notation as it stands uses most of the built-in shapes provided by the Microsoft
DSL Tools. This can be drastically improved by allowing a graphical or a user interface designer to aid
us in finding the right balance between the end-user mental model and the notation. Icons
representing each of the RWL constructs can also be further elaborated and improved allowing a
richer end-user experience.

9.5.3 Improve Model Layout Algorithms

The RWL shell currently only allows to layout children of a particular RWL construct according to the
order in which it occurs; this can be further expanded by adding richer layout algorithms. Some
examples of layout algorithms include:

e Auto layout algorithm: Spaces all model elements accordingly and fits them within a given

area

e Tree-based layout algorithm: Orders all model elements in a tree like structure

e Program-flow based algorithm: Places each construct depending on where they occur in the
RWL script
e User defined algorithm: User can add handlers which allow them to completely determine

the placement of each model element on the canvas

9.5.4 Versioning

If the meta-model representing the RWL changes in case the developer modifies or adds new
information there is a potential that existing RWL models would not correctly work. This is due to
the fact that the older version of the RWL models was designed against a different meta-model
(schema) which has not undergone change. This flaw needs to be rectified in the future as the meta-
model will change as often as need be to incorporate new RWL constructs.

We envisaged a solution for this problem by using a transformation service as shown in Figure 54.
As explained in Section 4.2.1.7, this transformation service will automatically execute when a given
RWL model version does not match the meta-model version. The transformation service will then
make the necessary model changes which will allow the end-user to successfully load it into the UL.
In case this model transformation cannot be fully automated for a number of reasons, from model
complexity or model error, the user will be asked to intervene in the process at appropriate
junctures.

9.5.5 Edit Points

Edit points would allow advanced RWL users to tweak the generated RWL script. They would also be
capable of detecting where custom RWL code has been added and preserve these changes the next
time the RWL script is generated from the model. Edit points would allow expert users to represent
complex RWL logic within the script which would be difficult to depict in the visual RWL model.

Chapter 9-Page | 208

1: Code RiW_EXAMPLE
2i Type standard
ACcCess STSR

PageHeader
Print standardrageseader;
End

| s

%/ EDIT_FOINT_START {EC3617B5-CE48-4828-8038-9191A29193EF]

1@ J// Custom code goes here

11: // EDIT_POINT_END {EC3E17B5-CB48-4228-8038-9191A29193EF}
12

13: 5can RM

141 Print RM_CUST;

15: End

1&

17: // EDIT_POINT_START {@8E5F7329-BSBEB-4152-B92E-329DD7EDIEEE]
18: J/ Custom code goes here

1% J// EDIT_POINT_END {@8EF7339-B8BE-4152-B92E-9290D7EDIEEE]

21: print standardreportFooter;

Figure 215: Edit points within RWL

The figure above (Figure 215) shows a sample implementation of edit points. We see each edit point
uniquely identified by a GUID (Globally Unique Identifier) which could possibly be read in prior to
regenerating script from the model and then maintained at the right position within the newly
created script.

9.5.6 Import RWL Script

The Prism WIN MIS currently ships with a set of standard RWL scripts. Prism customers also have
hundreds of pre-existing customised RWL scripts. A future application or plug-in could be developed
which an end-user could use to import these scripts into the RWL model designer and visually
represent it using the RWL Shell Host. This would allow an end-user to edit already existing RWL
scripts using our newly developed visual language via the shell.

RWL Meta-Model

Based on
A

RWL Model

uses

Input4>® Output—

RWL Script Prism WIN MIS
(Interpreter)

Figure 216: Sample architecture of RWL Script to Model Handler

Figure 216 above shows the sample architecture of a possible solution. Note the role of the Prism
WIN MIS as a RWL interpreter, this is necessary as the RWL is not XML based and therefore does not
have any schema as such. Thus, a potential RWL script could be written in any format and the only
way to standardize it is by running it through the interpreter and allowing the interpreter to interact
with our newly created meta-model to create the corresponding RWL model.

Chapter 9-Page | 209

9.5.7 Wizards

Our solution has no template or wizard mechanism to allow end-users to create commonly used
reports. This could be easily catered for as a future enhancement in the form of extra XML files
which can be distributed along with the visual designer. Because our RWL model will be XML based
we could potentially load any valid XML model into the designer allowing us to pre-create RWL
models representing common reports and distribute them to the user base.

9.5.8 Code Snippets

The concept of code snippets is similar to that of wizards although it works on a smaller scale. There
are many commonly used groups of RWL constructs, for e.g. if we want to get all the jobs for a given
customer we would have the code snippet as shown below:

1 Scan RM

2 Scan QM

3. Choose(QM_CUST_CODE, MATCH, RM_CUST)
4 Choose(QM_QUOTE_3JOB, MATCH, QMM_JOB)
5. End

6. End

This code block is potentially a code snippet which could be distributed along with the visual
designer. Code snippets would make common repetitive tasks easier for end-users as they simply
drag and drop code snippets which would give them the required visual elements on the canvas.
Taking this one step further we could give users the ability to save commonly used code snippets
which they could reuse at a later time.

Once again this can be implemented using XML as our visual RWL model is XML based.

9.5.9 Debug Generated RWL Script

Currently there is no possible way the end-user could hook into the text templating engine to check
the RWL script generation. Therefore if the end-user finds a generated script which does not match
their specifications they can trace back to the model element which generated the discrepancy and
fix the problem. This trace can be trivial in a simple model although as the RWL models grow in
complexity a simple visual check will not be feasible, this is when a debugger would prove essentially
useful to step through the model to accurately analyze how the generated script is formed.

9.5.10 WYSIWYG Output Layout

The RWL is a reporting language which allows user to not only extract information from the Prism
WIN database but also to perform layout operations on that data to display it using a customizable
layout strategy.

This layout information is entered within the model via functions (like AtCol and AtRow) although it
is not represented visually in any form via the model. A future enhancement could be added in the
form of a layer on top of the visual model which would allow the user to visually see how the
generated RWL script would look like when run by the Prism WIN MIS reporting engine. A potential
problem is that the layout information is not known at compile time and is only determined
dynamically when executed by the Prism WIN MIS reporting engine. Therefore to allow WYSIWYG
output layout via the shell it will have to be tightly integrated with the Prism WIN MIS reporting
engine.

Chapter 9-Page | 210

9.6 Summary

In this chapter we concluded that we made a significant contribution to the software development
processes at Prism by providing a framework which can be used by developers to modelise
enterprise tasks. The primary contribution was the design of a report writer tool for end-users
(Prism customers) allowing them to visually design Prism reports using a simple graphical notation.

The chapter also gave a list of limitations from which the most important one is that this solution is
aimed at novice and intermediate report designers. The chapter finally gave a list of further
enhancements that can be made to the solution of which expanding and refining the meta-model is
of utmost importance.

References - Page |211

References

Afonso, M., Vogel, R., & Teixeira, J. (2006). From Code Centric to Model Centric Software
Engineering: Practical case study of MDD infusion in a Systems Integration Company. Proceedings of
the Fourth Workshop on Model-Based Development of Computer-Base Systems and Third
International Workshop on Model-Based Methodologies for Pervasive and Embedded Software. |EEE
Computer Society.

Alessandro. (2007, July). Retrieved July 2008, from Trolltech Labs:
http://labs.trolltech.com/blogs/2007/07/11/develop-qgt-applications-in-eclipse/

Balaguer, F., & Yoder, J. W. (2001). Adaptive Object Model. Retrieved May 2008, from
http://www.adaptiveobjectmodel.com

Beydeda, S., Book, M., & Gruhn, V. (2005). Model-Driven Software Development. Leipzig, Germany:
Springer.

Bézivin, J., Hillairet, G., Jouault, F., Kurtev, ., & Piers, W. Bridging the MS/DSL Tools and the Eclipse
Modeling Framework. ATLAS Group (INRIA & LINA, University of Nantes).

Blackwell, A. F., & Green, T. R. (1999). Does Metaphor Increase Visual Language Usability? IEEE
Symposium on Visual Languages. Tokyo.

Blackwell, A. F., & Green, T. R. (1999). Investment of Attention as an Analytic Approach . Collected
Papers of the 11th Annual Workshop of the Psychology of Programming Interest Group, (pp. 24-35).
Leeds, UK.

Blackwell, A. F., Burnett, M. M., & Jones, S. P. Champagne Prototyping: A Research Technique for
Early Evaluation of Complex End-User Programming Systems.

Brown, A. W., Conallen, J., & Tropeano, D. (2005). Introduction: Models, Modeling, and Model-
Driven Architecture (MDA). In S. Beydeda, M. Book, & V. Gruhn, Model-Driven Software
Development (pp. 1-16). Leipzig: Springer.

Cook, S., Jones, G, Kent, S., & Wills, A. C. (2007). Domain-Specific Development with Visual Studio
DSL Tools. Boston: Addison-Wesley.

Cook, Steve. (2005, June). Retrieved June 2008, from Steve Cook's Weblog:
http://blogs.msdn.com/stevecook/archive/2005/06/03/424897.aspx

DevSource. (2007). Domain-Specific Modeling. Retrieved March 2008, from DevSource:
http://www.devsource.com/c/a/Using-VS/DomainSpecific-Development-with-Visual-Studio-Part-1/

Eclipse.org. (2008). GMF Gallery. Retrieved October 2008, from Eclipse:
http://www.eclipse.org/modeling/gmf/gallery/index.php

Ferguson, R. I., & Hunter, A. MetaBuilder: The Diagrammer’s Diagrammer. Sunderland, UK:
University of Sunderland, School of Computing, Engineering and Technology.

References - Page | 212

Green, T. (1996). An Introduction to the Cognitive Dimensions Framework. MIRA workshop.
Cambridge, UK.

Greenfield, J. (2005, August). Software Factories. Perspectives of the International Association of
Software Architects , 2-7.

Grundy, J. (2008). Other Meta Tools. Auckland, New Zealand: University of Auckland.

Grundy, J. (2008). Visual Languages/Notations. University of Auckland. Auckland: University of
Auckland.

Grundy, J., Hosking, J., Huh, J., & Li, K. Marama: an Eclipse meta-toolset for generating multi-view
environments. Auckland.

Himalia. (2006). Retrieved March 2008, from Himalia: Model-driven user interfaces:
http://www.himalia.net/

Klein, F. J. (n.d.). Relativity - Business Technology Solutions. Retrieved June 2008, from Basic Features
of the Agile Software Development Model:
http://www.relativitycorp.com/projectmanagement/article5.html

Liu, N., Hosking, J., & Grundy, J. (2007). MaramaTatau: extending a domain specific visual language
meta-tool with a declarative constraint mechanism. VLHCC (pp. 95-103). IEEE CS Press.

Mclintyre, D. (1994, December). Retrieved July 2008, from Visual Languages:
http://www.hypernews.org/~liberte/computing/visual.html

MetaCase. (2008). MetaEdit+ Modeler - Supports your modeling language. Retrieved October 2008,
from MetaCase: http://www.metacase.com/mep/

Metzger, A. (2005). A Systematic Look at Model Transformations. In S. Beydeda, M. Book, & V.
Gruhn, Model-Driven Software Development (pp. 19-33). Leipzig: Springer.

Microsoft. (2007). Retrieved October 2007, from Overview of Domain-Specific Language Tools:
http://msdn.microsoft.com/en-us/library/bb126327(vs.80,printer).aspx

Microsoft. (2007, October). Building Software Factories - Part 1, what are we building and why?
Retrieved September 2008, from MSDN Architecture Centre: http://msdn.microsoft.com/en-
us/architecture/bb871630.aspx

Microsoft. (2008). Product Family Life-Cycle Guidelines for Visual Basic 6.0. Retrieved September
2008, from Visual Basic 6.0 Resource Center: http://msdn.microsoft.com/en-
us/vbrun/ms788707.aspx

Microsoft. (2008). Visual Studio 2008 Extensibility. Retrieved June 2008, from Visual Studio 2008
Extensibility: http://msdn.microsoft.com/en-us/vsx2008/products/bb933751.aspx

Naba kumar. (2007). Retrieved July 2008, from Anjuta DevStudio: http://anjuta.sourceforge.net/

References - Page |213

Object Management Group. (2008, January). Retrieved June 2008, from OMG's MetaObject Facility
(MOF): http://www.omg.org/mof/

Pelechano, V., Albert, M., Mufioz, J., & Cetina, C. (2006). Building Tools for Model Driven
Development. Comparing Microsoft DSL Tools and Eclipse Modeling Plug-ins. VValencia: Technical
University of Valencia.

Prism Group. (2008). Prism - Better information. Better business. Retrieved October 2008, from
Prism - Management Information System (MIS) Software for the Print Industry: http://www.prism-
world.com/

Prism New Zealand. (2005). Prism WIN - Report Writer Handbook. Auckland: Prism Group.

Roddick, J. F. (1995). A survey of schema versioning issues for database systems. University of South
Australia, School of Computer and Information Science. Australia: University of South Australia.

Sorensen, R. (n.d.). Comparison of Software Development Methodologies. Retrieved June 2008, from
A Comparison of Software Development Methodologies:
http://www.stsc.hill.af.mil/crosstalk/1995/01/Comparis.asp

Spolsky, J. (2001). User Interface Design for Programmers. California, United States of America:
Apress.

Stahl, T., Volter, M., Bettin, J., Haase, A., & Helsen, S. (2003). Model-Driven Software Development.
Heidelberg: Wiley.

Subramaniam, V., & Hunt, A. (2006). Practices of an Agile Developer. The Pragmatic Bookshelf.

University of Geneva. (n.d.). Retrieved July 2008, from What is BNF notation?:
http://cui.unige.ch/db-research/Enseignement/analyseinfo/AboutBNF.html

Wikipedia. (2007). Domain-Specific programming language. Retrieved March 2008, from Wikipedia:
http://en.wikipedia.org/wiki/Domain-Specific_programming_language

Appendix A-Page |I

Appendices

Appendix A Report Writer Factsheet by (Prism Group, 2008)
Attached

Appendix B-Page |l

Appendix B Core RWL Constraints
RWL Construct (Model Element) Constraints

HeaderSection

ControlLine

Has to contain on and only one ControlLine
Can contain a PageHeaderBlock and
StandardPageHeader

Can only be added to the header section
Can contain a Select model element

Select e Can only be part of the ControlLine model element

e Can only be dropped on the HeaderSection
StandardPageHeader e Can only be dropped on the HeaderSection
PageHeaderBlock e Can only be dropped on the HeaderSection

e Can contain PrintStatement model element

e (Can contain one and only one StandardPageHeader
PrintStatement e (Can be dropped anywhere on the report

Scan
StandardReportFooter
Literal

Column

Function

Clump

Comment

Can only be dropped on the BodySection

Can only be dropped on the BodySection

Needs a parent PrintStatement model element
Needs a parent PrintStatement or Clump model
element

Can be dropped anywhere on the report

Needs a parent Column or Clump/ClumpUsage or
Literal

Can be dropped anywhere on the report

Can only be dropped on the VariablesSection

If dropped on any other section, an instantiation will
be added in the VariablesSection and a usage will be
added in the specified section

Can be dropped anywhere on the report

Appendix C Case Study 1 Screenshots

Step 1:

Add New Item -

Categories: Templates:
Visual C# Items Sk Interface 51)Script File o
Code | Local Database FLocal Database Cache
zz’im EMDI Parent Form Report
Reporting ,_j Repart Wizard (BaResources File
Web |1 Service-based Database 2] Settings File
Windows Forms AJ Style Shest —
Warldlow £ User Control [ElWindows Form
WPF $5]Windows Seript Host &) Windows Service
2] XML File] XML Schema
' XSLT File E
My Templates
LiA CSharp L& CSharp
|2 ReportWiiterDesigner & TaskFlowExempledl
J Search Online Templates... iy

Adds a ReportWriterDesigner file to the project.

Name: (CaseStudyl

Cancel

Bl [Yoo Pupc Beid Debeg Dgis Tep Josh findes Hep

F-d P kD ey

-azamBa-l

- »
(Tosthar LB o e p—

5] Page Maacke Bicck
3 Page Haader

Thars s 22 vabde comtroh o the g Drag an
e ek et Vet e 430 o sl

21 ot g o Sy Besasts P Pt |

Step 4:

@ aviedons

«+Costrotimes »

2 Lo

PR —

3 Port Statemarty

Standard Fage Hestes (smpty)

23 Ui Chargs
prh—

3 Chrgs

3 Cokmm

3 Commants

4 Fusctm

i Mg
Frrssd Erd apet
Fressteten

Sen

Custsiption fox
=

Fabe

™
Faie

apoThintmrnpoe ot e Hams

Appendix C-Page |1l

Fixed Font
Link
MName

No Margins

Pericd End Report
Preselection
Sort

Type

CASE_STUDY_1

False

Access
Description for

Prism.ReportWriterDesigner.Controlline. Access

Ble ot Wew Droject Buld Debug Dgta

Test ook Window Help

G- Q| ka0 - | b | Debog PR 7 o R

[Tootbox v3ix

= Report Hements
R Pointer

2o Report Heades
2o Report Body

S Report Variables
2 ContrelLine
] Page Hesder Black
3 Page Header
3 Report Footer
T Comment

A Lteal

. PintStatement

[sean

@ Column =
 Function
3, Cmp Scan

&, Controlline Select

& Pointer
3 Sequential Order
=, Connect elements

“Thare are 1o usable controls in this group, Drag an
item £tz this text 3 ad £ the tsciben.

Gre@ome
Rescy

Step 6:

CaseStudylLrwm"

Appendix C-Page |IV

< <ContiolLines »

L3 Print Statements
{28 Scans
5 Standard Report Footer (empty)
£ Usage Clumps

9 Page Header Biack (empy)
£33 Print Statements
5 Standand Page Header empty)
23 Usage Clumps

5 2o Regon Vansbles

28 Clumgs

18 Columns

[Comments

2 Functiens :
[Properties -Ex
Seant Scan #

Sort By
~|| pescrption for
Prism.ReportWiraerDesigner Sean Sart By

Appendix C-Page |V

File Edit View Project Build Debug Data Test Tools Window Help
P A T ST RN R 1 8 =t

[v 3% CaseStudylrwm® - 3¢ [Reporiiiierbesigne Epiarer TEEE
= Hements | | 72 Report Wrter B
& Pointer e Ll Va2l Repont Body
2 Report Heades 3 Columns
2l Report Bady (3 Comments

[Elselfs

2f5 Report Varisbles

e Fom

53 Page Hesder Black R Ba Fs

3 Page Header 3 23 Literals

3 ReportFaoter 123 Prnt Stotements
T Comment @ Seame

A Liteat > Standard Report Foater (empty)

= FrntStatement [Usage Clumps

i 5 2 Report Header E
= "3 Columns
_\. Function o4 [Comments
. 5 0 Control Line
3, Cump (@ Functions
13, Controlline Select B Lierss
Comnectors > Page Hesder Block (empty)
R Peinter £ Print Statements
3, Sequentat Order > Standard Page Header (empiy)

%, Connect elements (23 Usage Clumps

- Genersl Report Variables
(3 Clumgs
There are no usable controls in this group. Drag an 3 Columns
tem onto this text to add it o the toolbex [Comeents
[Funetions -
- 3x
&

Table

- ||| Deseription for
i i b || Prism ReportWeterDesigner.Sean Table

o1 Lst] (1] Output 42 Find Symibol Resuits| 3 Find Resu

Debug Dats Test Tooks MWindow Help

- @ 9 -0 -| b | Debug S g sa-d
[Tootbor e 2] CaneStudyLrwme - x [FepodiieDeigne Erplare TER
S , — = - A, :
cli Report Header i1 [3 Columns E
2[5 Report Bady [Comments
£l Report vanables (2 Biselfs
3 ContealLine i Eles
= £ Functions
] Fage Hesder Block T s A
3 Page Header B2 Likerss
3 ReportFooter 4 Print Satements
= Comment 5 4 Scans
A Liteal > Standard Report Faoter (empty)
= PriniStatement 3 Usage Clumps
O Sean 5 2o Report Header 5
1 Column £ Columns
4 Pomction = 3 Comments
"3 i 41 Control Line
Ty ey 3 Funetions
&, Controlline Select B Uierss
Report Comestors. 5 Page Header Block (empty)
R Pointes 123 Print Statements

3 Sequentol Order
& Connect elements.

3 Standara Page Header (emptyl
24 Usage Clumps

= General 5 2lp Report Variables
[Clumps
There are no usable controls in this group. Drag an 3 Column

tem onto this text o 2dd # to the foofbox

3 Functicas .
Properties T
ReportBodyl Report Bady &

55 seoe st (3] Output |42 Fine Symibol Results| il Find.
Ready

Step 9:

Fle Edit View Drojet Euild Debug Data Tet Took Window Help

£ - 0 - | b | Debog pAE Be ol Y RS

Appendix C-Page | VI

CaseStudyLrwm* = 3 [ReporiiiteDesigne Epiorer A
71| Repentvirker =
=] el hzioty R S 2 Reprt Body
> Report Header 1 [Columns
Sl Report Bady 3 Comments
S Report Variables ~ E::;m
2 ContolLine L3 Functions
Page Header Block R s
Page Header z B Liwiaks
Repert Focter {23 Print Statemerts
Comment -0 Scams
A Uiteat 3 Standard Report Foster (empty)
0 BrintStatement P Usage Clumps
3 S 5 2Jp Repost Header 2
1 Column By Colommns
o r {3 Comments
it 1 4 [Controt Line
%) Chamg 3 Funetions
i, ControlLine Select I Lioersks
Report Connectors Colurn: R4 5 Page Header Block (empty)
R Peinter Column: RM_NAVE 2 Prit Statements
2 Sequential Order 3 Standard Page Header (empty)
%, Connect dements (4 Usage Clumps
i Report Varsbles
[Clumgs
There are no usable contros in this group. Drag an R Cokivans
item onto this text to add i to the toolbex. [Comments
< <Colmn » 13 Functicas -
RM_NAME i 1
U 2 e
Bers —
Columa1 Column .
2
(=
Desenption for
B b || Pram ReportWeterDesgner Colurn alue

(55 rvon Lst| (] Ovtput 423 Fing. Symibol Results| . Find Resulisd]

FEile Edit View Project Bui Debug Data Tet TJooks Window Help
G- @A kAl 9| b Debug G B i1 2 0

e T 3% CaseStudyLowm® - x [Repordiliieiesigne Explorer
~ Report Bements —— 2 Repo irier
. Ropes - <sHesderss <<Body> < <Maria it
R Foinw 515 Repont Body
T Report Header 1 [Columns
2l Repert Badly (3 Comments
g 3 Belfs
o Report variables
Slo Repos [Elses

2 Conteol Line

[Functions
5] Fage Header Black @

3 Page Header 8 Literals
3 ReportFooter 4 Print Satements
= Comment -8 Scoms
i Lt > Standard Report Faster (empty)
= PrintStatement 38 Usage Clumps
3 san 5 2lb Repost Hesder E
1 Column £ Columns

Func L [3 Comments
peg c“"”‘ = 91 2 Control Line
3, Clomp

13 Functioas
&, Controlline Select 3 Literals
Comnectors Column RM_CUST 5 Page Header Block (empty)

R Peintes Column: RM_NAME 123 Print Statements

3 Sequentol Order
& Connect elements.

2 Standard Page Header empty)
24 Usage Clumps

Report Usrisbles

14 Clumgs

4 Columes

3 Comments

3 Functicas o

Thare ase no usable controls in this group. Drag an
tem onto this et o add i o the toolbos.

Properties. .ax
Literall Liters! &
EE

|
e Y A 1ot For

Uiterat : All obs For
Column : RM_NAME

1
<etnezs 3]
Jobe F

T eeCommass &
RM_NAME

|| Deseription for
‘ i b || PrismReportwrterDesigner Liersl Velue

55 se0e ist] (3] Otput |42 Fin Symibo Results| i Find Reswks
Ready

Step 11:

Appendix C-Page |V

Fle Edit View Drojet Euild Debug Data Tet Took Window Help

9 - 0 - | b |Dabog

2P Report Header
Sl Feport Bady

S Report Variables
2 ContolLine
Page Header Block
Page Header
Report Footer
Comment

A Liteat
1 FrintStatement

@ Coumn

@ Fusction

2, Clump

&, Controlline Seiect
Conmectors

Repart
R Peinter
3, Sequential Order
%, Connect dements
= General

There are no usable control in this group. Drag an
item onto this text o add i o the toolbox

(55 rvon Lst| (] Ovtput 423 Fing. Symibol Results| . Find Resulisd]

Bl Edit \View Project Debug Dats Tet Jooks

pAE Be ol Y RS

CaseStudyLowm’

<<ControlLine> >

Window Help

" 0 Y]9 - 0 - | b | Debug pIE Re e SRR
Toolbox 3% CaseStudylrwm®
k_Pointer <ceComrollines>

<o Report Header.

2> Repart Bacty £

£l Report vanables
1 ContralLine

5] Page Hesder Block
3 Page Header

4 Report Footer

Comment

A Liteal
0 PritStatement

4 Function

3, Clump
&, Controlline Select
Connectors

Report
R Peinter

4, Sequentio Order
%, Connect elements

Thare ase no usable controls in this group. Drag an
tem onto this et o add i o the toolbos.

55 se0e ist] (3] Otput |42 Fin Symibo Results| i Find Reswks
Ready

Step 14:

St
Coumn - R0

i RHNAE

<<Bodys>

Column : RM_NAME

Unera: Al Jabs For
Colmn : RM_NAME

-

<<Columns »
RM_NAME

<<Literai- =
A Jobe

<<Catumn:»
RM_NAME

B

- x [N OORre T
7, Report Virter
= 212 Report Body
31 [Columns

L3 Functions
a e
4 8 Liverals
{23 Print Statemerts
-0 Scams
3 Standard Report Foster (empty)
(38 Usage Clumps
5 2Jp Repost Header
3 Columns
[Comments
1] Controt Line
3 Funetions
3 Literals
5 Page Header Block (empty)
2 Prit Statements
» Standard Page Header (empty)
(24 Usage Clumps
Report Varisbles
[Clumps
3 Columns
[Comments
3 Funetions

Properties
ReportBodyl Feport Bodly

- x [Repslieeiane e
—— | A Report Wrter
5 2l Repon Body
i1 (3 Columns
13 Comments

[Functions
=

8 Literals
0 Print Satements
-8 Scoms
> Standard Report Faoter (empty)
[Usage Clumps
|5 2 Report Hesder
£ Columns
[3 Comments
-] Controf Line
13 Functioas
3 Literss
» Page Header Block (empty)
123 Print Statements
2 Standard Page Header (empty)
4 Usage Clumps
Report Usrisbles
14 Clumgs
4 Columes
3 Comments
3 Functions

Properties
ReportBodyl. Report Bady

T

5

Appendix C-Page |V

Outer Table: RM

Inner Table: QM
QM Columns RM Columns. Description
& QM.CUST.CODE RM_CUST Customer

Cancel

| & Choose Ttems

{QM_CUST_CODE. M. | Collapse

Add new Custom Choose

Validate All
Properties

l Column : QM_TITLE I

Step 16:

Properties -1 x
CustomChoosel Prism.ReportWriterDesigner.Cust ~

B Misc
Choose Condition Match
E Report
Inner Condition QM_QUOTE_JOB
Inner Table oM
[Outer Condtion L) B

QMM_QUOTE
QMM_JOB
QMM_PROJECT

=d| Propert{Transfarm All Templates
.3l References

3 Generated
|| CaseStudyl.rvm
I'iﬂ ReportWriterDesignerSchem;

Appendix C-Page |IX

[Setumping croact v e pameeae e e]
Top lsch Rmdow e
w1 e R =] R L

Ge (8 Yow Brec Bud Ouey Ops
Glod @3 kan

e
[R—

in i g, Crg an

There are s s oo
s i bt 45 a4 £32 S boslben.

Crseatyrmm

EAE B T 1 BB

Cotomn : R CUST
Eotumm Bl NAME

Reporttonmsser tat -5 [TEH|
..... s | -
it gereratens -
Tals code sas preerated by a teel Ty
Coangen o Thi File sy couse Incorrect beawvior e slil B 1ae 18
1he fode i3 repersted
Berarated o 13
Tealversion 16,8
e ganeraten rl
oo east_sniow 1
Type standara
scoss SR
Seam W
Print BRCUST + a0 s
Peimt “all Jos fae - - B
sean g
Chaote (QR_CUST_CORE, Patch, A% CUST)
Chasse (QUQVOTE_X0B, maten, OW1_ic8)
Print Q300 WM« QRTITLE;
-
Felrt Stande-dRrpatiote
() ot i

2 s it] Gt 2 ot byt st 3 ot fata |

Fandy

Appendix D -Page |X

Appendix D ExpandCollapseBase Hide /Show children

public partial class ExpandCollapseBase

{

protected override void Expand()

{

}

base.Expand();
if (this.ModelElement is NamedElement)
{

NamedElement namedElement = this.ModelElement as NamedElement;

CollapseExpandHelper.HideShowModels(namedElement.Targets, HideShow.Show);
}

this.Diagram.Invalidate();

protected override void Collapse()

{

base.Collapse();
if (this.ModelElement is NamedElement)
{

NamedElement namedElement = this.ModelElement as NamedElement;

CollapseExpandHelper.HideShowModels(namedElement.Targets, HideShow.Hide);
}

this.Diagram.Invalidate();

Appendix E-Page | Xl

Appendix E Compartment Child Ordering

public static class FilterHelper

{

public static List<NamedElement> OrderedList(ReadOnlylLinkedElementCollection<NamedElement>

{

namedElements)
List<NamedElement> sortedList = new List<NamedElement>();

List<NamedElementReferencesNamedElements> namedElementReferences = new
List<NamedElementReferencesNamedElements>();
foreach (var item in namedElements)
foreach (var innerItem in
NamedElementReferencesNamedElements.GetLinksToSources(item))
namedElementReferences.Add(innerItem);

IOrderedEnumerable<NamedElementReferencesNamedElements> orderedNamedElementReferences
= namedElementReferences.OrderBy(p => p.Order);
foreach (var item in orderedNamedElementReferences)
sortedList.Add(item.Target);

return sortedList;

Appendix F-Page | Xl

Appendix F Automatic Layout of Child Shapes

public static class IlLayoutPolicyHelper

{
public static void LayoutPolicy(NodeShape parentShape, ref PointD startPoint, ref RectangleD
lastChildBounds)
{
// do not do this while undo/redo
if (parentShape.Store.InUndoRedoOrRollback) return;
IOrderedEnumerable<NamedElementReferencesNamedElements> orderedNamedElements =
NamedElementReferencesNamedElements.GetLinksToTargets(parentShape.Subject as
NamedElement).OrderBy(f => f.Order);
foreach (NamedElementReferencesNamedElements namedElementReference in
orderedNamedElements)
{
NamedElement namedElement = namedElementReference.Target;
using (Transaction t = parentShape.Store.TransactionManager.
BeginTransaction("AutoLayoutShapes", true))
{
#region Shape location
LinkedElementCollection<PresentationElement> shapes =
PresentationViewsSubject.GetPresentation(namedElement);
LayoutHelper.LayoutChildShape(ref startPoint, parentShape, shapes,
ref lastChildBounds);
#endregion
t.Commit();
}
using (Transaction t = parentShape.Diagram.Store.TransactionManager.
BeginTransaction("AutoLayoutLinks", true))
{
#region Links location
LinkedElementCollection<PresentationElement> linksShapes =
PresentationViewsSubject.
GetPresentation(namedElementReference);
LayoutHelper.LayoutLinksShapes(false, parentShape, linksShapes);
#endregion
t.Commit();
¥
}
parentShape.Diagram.Invalidate();
}

Appendix G -Page | X

Appendix G Survey Request Letter
Attached

Appendix H-Page | XIV

Appendix H Survey Participation Information Sheet
Attached

Appendix | -Page | XV

Appendix1 Consent Form
Attached

AppendixJ-Page | XV

Appendix] Survey
Attached

