52 Department of Computer Science
The University of Auckland

Te Waananga O Waipapa

Auckland, New Zealand

a

Towards An Efficiency Electronic

Micro-payment System

Xiaoling Dai

This thesis is submitted in partial fulfillment of the requirements for the degree of Doctor
of Philosophy in Computer Science at The University of Auckland.

September 2003

© 2003 Xiaoling Dai

Abstract

Current macro-payment systems used by most E-commerce sites are not suitable for high-
volume, low-cost transactions, such as charging per-page for web site browsing. These
payment technologies suffer from use of heavy-weight encryption technologies and reliance
on always on-line authorisation servers. Micro-payment systems offer an alternative
strategy of pay-as-you-go charging, even for very low cost, very high-volume charging.
However, several different micro-payment schemes exist, not all suitable for all E-

commerce uses.

In this thesis, we develop a new protocol called NetPay which is a lightweight, flexible, oft-
line and secure protocol for electronic commerce over the Internet. NetPay is designed to
support purchases ranging in value from a few cents to several dollars under large numbers
of micro-payments. It is based on decentralized verification of electronic currency at a
vendor’s server with off-line payment capture. This is performed with a touchstone and

index of e-coins that are passed from vendor to vendor.

We describe the NetPay protocol and its properties. We identify a set of requirements for
micro-payment systems that use NetPay and customer/NetPay component interactions. We
then focus on the key issues of designing three kinds of CORBA-based NetPay systems
with an on-line newspaper application and prototyping two of them which include server-
side e-wallet and client-side e-wallet NetPay systems. We also describe design and
implementation of a set of reusable NetPay components, which enable NetPay components
to be seamlessly added to an existing example web application. Various technologies are
used to build these systems including J2EE Enterprise Java Bean, Java Server pages,
CORBA and database. We have carried out three kinds of evaluations of micro-payment
and macro-payment purchasing models for an on-line newspaper application to assess their

relative strengths and weaknesses.

Acknowledgments

It is a pleasure to thank the many people who made this thesis possible.

I would like to thank my Ph.D. supervisor, Professor John Grundy for him remarkable
advice and guidance during my research. Without his enthusiasm, inspiration, ideas and
knowledge, my thesis would not have reached so far. Throughout my thesis-writing period,
he provided encouragement, sound advice, good teaching, and lots of good ideas. I would

have been lost without him.

I would like to thank my previous Ph.D. supervisor, Professor Bruce Lo, who was always
willing to give advice and help guide me to work out the research proposal throughout my

first year study.

I would like to express my gratitude to all my student colleagues who helped and advised

me during my work on this project.

A number of people were used throughout the evaluation of NetPay systems. I would like
to thank those people for giving up their time to participate, and providing useful feedback

about the systems.

Heartfelt thanks go to Leanne and Aaron for correcting the spelling and grammar of this

thesis.

I wish to thank my parents, Tingxuan Dai and Jingzhi Liu. They bore me, raised me,

supported me, taught me, and loved me.

Lastly, and most importantly, I would like to thank my husband — Zhenquan Li for his love,
encouragement and support while I was studying and doing the research. He was first
reader of my thesis and gave me many good advices. I would like to dedicate this thesis to

my husband and my two lovely daughters Leanne and Andrea.

1

Table of Contents

Chapter 1 - Introduction

L1 IMIOTIVALION eevviiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee ettt ettt ettt 1
T2 OUE RESEATCH .o 2
1.3 THESIS OULLINE ..ceeeeiieeeeeieee ettt e e e e et e e e e e e e e e e e e eeeesseasesaaeeeeeeeeas 4

Chapter 2 - Background and Prior Work

2.1 OVEIVIEW ittt ettt ettt ettt et e et e bt e s s e e ate e st e esteenteeseesneesnseenseenseesnseens 5
2.2 Main Properties for Electronic COMMEICE...........eecueruieierieiieniieieniiee et 6
B B 1<To1 13 5 LRSS 6
N A N 110 11 1111 OSSR 6
BN B 1o 1 1031 1 2SR 7
2.3 Classification of Payment SyStemS..........ccceeevierciiiiriiieicireriie e s 7
2.3.1 On-line vs. Off-line OPeration............cceccuerueerierierieeieerie e 7
2.3.2 Software vs. Hardware SOIUtioN.........ccuuuuiiiriiiiiiiiiee e 8
2.3.3 Macro-payment vS. MICIO-PAYIMENLc.ceeveerurereieeieeiieniieeieeeeeneeeseeeneeenneas 9
2.4 Cryptography TechnolOZIesc.ccociiiiiiiiiiiieeie et 9
2.4.1 Symmetric Cryptography ...ccc.eeveeeveeiieerienieeieeieesiee et eseee e eeeenseeseee e 10
2.4.2 Public Key Cryptographyccuuuuieieiieiiiiiiieeeeeeeie e e 10
2.4.3 Cryptographic Hash FUNcCtion............cccooceeriiriiiinieniecieeceeece e 11
2.5 MaCTO-PaAYMENL SYSTEIMISeeeeuvreieeiieeireeerieertteeeteeesseeesseeessseesseeessseeessseesssesessseeennes 12
2.5.1 Credit-card Basedc.occueeiiieiieiieeiieie et 12
2.5.2 Electronic Cash-basedcooeiiiiiiiiiii e 13
2.5.3 AcCOUN-DASEA ...ocuvieiieiieeiiieiieee ettt enes 15
2.5.4 DISCUSSION.c...ieiuiieiiietiesiieeie et rtteste ettt e st e et e et e st e esteeteenaeesaeesnbeebeesaeesnee 17
2.6 MICTO-PAYMENT SYSTEIIIS ...cuvveeevieiiereieeiieeieeseeeeteeteesseesseeseesseessseeseesseesseesssesnseesses 17

111

2001 IMIIICENL . .. eeeeeeeennnnnee 17

2.0.2 IMIPAY ettt a e e e e e e e e e e aeeaes 20
2.6.3 PAYWOTd ..ottt ettt st enes 23
2.6.4 PayWord-based Micro-payment Protocols..............cveeiiiiiiiiiiiiiniiiiiiinnnn. 25
2.6.5 Payment Systems COMPATISONcccveerieerieeiurerieerieeneeesteesseeseeeseesseessneenns 25
2.7 Internet Component ATChITECTUIEccuvirvierierieeieeieesee e 27
2.7.1 OMG’s CORBA AIChItECIUIEccueeieriiiiiriiiieeieie e 27
2.7.2 Sun’s J2EE ENVIrONMENtcccuvuuiiiiiiiiiiiiiie et 29
2.7.3 Microsoft NET ATChiteCture.........c.cccverierieeiiieiiecie et 32
2.8 Web Component TEChNOLOZIEScc.eevviiiierieiiieiieiieee e 34
2.8.1 JAVA SETVIELS ..ceeiiieiieiieieieeee e 34
2.8.2 Java Server Pages........ccooiiiiiiiiiiiii 35
2.9 SUMMATY oottt ettt ettt ettt et esb e e sate e bt enbeesaneeteennees 35

Chapter 3 - The NetPay Protocol

R LY (075 A1 1510) NSRRI 37
3.2 NEtPaY SCEONATIIOeeuviiiiiiieiieitieieeiee ettt ettt ettt sttt et e st et e b eanens 38
3.3 PrEliMINATICS ..cuveeueieiieeiiieiieste ettt ettt ettt et e st e st e e bt e saeesnteeaseeseesnneenseens 40
3.4 NetPay TranSaCtioNSccveeveeiiieriesieeieeteesttesteeteesteesaeeeaeeseessaesssesseesseessnesseens 42
3.4.1 Transaction 1: Customer - Brokercccocceeviiiiiiiiinienieeeeeeeee e 42
3.4.2 Transaction 2: Customer - Vendorcoceevierieiiiienienienieenienie e 44
3.4.3 Transaction 3: Vendor — Vendor Payword Relocation............cccccerieennennne. 47
3.4.4 Transaction 4: Vendor — Broker Off-line Redeem Processing..................... 49
3.4.5 Possible Extension - DiviSibilitycccccoevieriieniiiiiienieceeeee e 50
3.5 The CuStomMer ANONYIMILY ...cccuveierieiriiieeiireeieeeeeesteeesreeetreesseeessseesseeessseesnsseeennes 51
3.6 Differences Between NetPay and Payword............cccoovieiiiiiiiiiiiniinieeeeee e 51
3.5 SUIMIMATYeviiiiiieeiie ettt ee ettt e et e et ee e tte e s teeessbeeasseeesnseessssaesnseeesssesessesnnses 52

v

Chapter 4 — NetPay System Requirements

4.1 Problem DOmMAIN.......cc.covieiieeiieiiesiie ettt e et seeesaeeseesseesnaeenseenneas 53
4.1.1 PractiCal ISSUEScccueeriierieiiieiieciie ettt st 54
4.1.2 An E-newspaper With Two Payment Methodsccccceevieniiiiiiiniennne, 54
4.1.3 Comparing NetPay with Payment Systemsc.ccccccvevevieniieiiieenciee e, 55

4.2 User Requirements and USE CaSeScceerueerieeiiieriienieeieenieeseeseeenseesseesaesseensens 56
4.2.1 Use Case DIagramccocveeeciiiiiiiieiiieeeieeesree e steeesveeeareesreeesereeeseree e 58
4.2.2 Use Case DESCIIPLIONSovieriint ceiieiierieete et esiee e eee e e seeesaeeseesaee e 60

4.3 Non-functional Requirement Specificationscccceeevierieeeciiercrie e 63

4.4 NetPay OOA MOACIING ...ccvveeiiiiieiiecie ettt saaeenseeneeas 65
4.4.1 Class MOAEIIINGcccuiiriiiiieiiieiieie e st 65
4.4.2 Sequence MOdelliNgc.cccveevierieeiieiiesie ettt 67

4.5 SUITIMATY ..ttt ettt ettt et e ettt e e b et e et e s bt e e e bt e e aateesabeeesateesbeeesabeeeaneeeennee 71

Chapter 5 - CORBA-based NetPay

5.1 NetPay ATChiteCtUreccceeviiiiiiiieiieeeeeeeee et s 73
5.1.1 Thin-client vs. Thick-client Architecturecceevverieevieeiierieeieereeneeees 73
5.1.2 NetPay ArChiteCtUIEcccuieiiieiiiiiieiie et 74

5.2 NetPay E-Walletsceeecuiiiieeieeiieieseete ettt s ebeesseesnaeenseen 77

5.3 NetPay Object-oriented DEeSIZNeevueeriiriiiiienieeieeiiesiie ettt 80
5.3.1 Static SyStem DESIZNcouiiiiriirieiiiieriieie et 81

5.3.1.1 Server-side E-wallet NetPay..........cccoocvviiiiiiniiniiiieieeeeeee, 81
5.3.1.2 Client-side E-wallet NetPayccccoocevvieniniiniiiiniiieceeecee 82
5.3.1.3 Multi-tier NetPay Architecture..........ccoeoevvienienieeiienieeieeeeee, 83
5.3.1.4 Broker OOD Class Diagramscccceecveevrieneenieesreeneeneeereenns 84
5.3.1.5 Vendor OOD Class Diagramsccceeeueeveeneeneeenieeneeneeseeennens 91
5.3.2 Dynamic SyStem DeSIZNccceeveiiiiriiiiiiieeiireciee et eee et 96
5.3.2.1 Server-side E-wallet NetPay..........cccoooeviiiiiiiniiniicieieceeeeee, 96

5.3.2.2 Client-side E-wallet NetPaycccccocvvviviiiiiiiiiece e, 98

5.3.2.3 Client-side Cookie-based E-wallet NetPayccccoeevverurennnnne. 100

5.4 Database DESIZNcc.ueeruieriiiiiieiieeieeteete ettt sttt sttt et 101
5.4.1 Broker Databaseccceecuierieiieeiieiieeieeie ettt 101
5.4.2 Vendor Database..........ccccoieiiriiiiniiniiiieicetcsteeese et 102

5.5 NetPay Implementationccveeiieiienienieeie e see e eveesee e s seae e 103
5.5.1 NetPay BIOKETooouiiiiiiiiiiiieiieeeeee sttt 104

5.5.1.1 Server-side NetPay Brokerccccooceeviniininieninienciece 104

5.5.1.2 Client-side NetPay Broker..........cccccoeveeniiniiiiiiniiniieeeeee 107

5.5.2 NetPay VENndorcceeiiieiiiiiecieceeeeste ettt et e 109
5.5.2.1 Server-side NetPay Vendorcccoeveeiiiiiiiiienienieeieeceee 109

5.5.2.2 Client-side NetPay Vendor..........ccceeveeviieiieniienieeiecie e 112

5.5.3 Subscription-based VENdOTcceevuierieriiiiienieeie et 113

5.6 Implementation and EXPEriencecc.eevieriieiiieiiieeieeieeieeeee et 116
5.7 SUIMNIMATY ...ttt ettt et e ettt e et e e st e e e ateesbee e st eeebteesaseeeaneeesseeeanseeeaneeeans 116

Chapter 6 — Component-based NetPay

LT LY (078 A7 1510 NSRS 118
6.2 A Component-based NetPay ArchiteCture............cceecveevveeriienieeiiieieciece e 120
6.3 Enterprise JavaBeans (EJB).......cccoooviiiiiiiiiiieeee e 121
6.3.1 SeSSI0N BRANS ...cuviiiiiiiiiiiiiiieiieceet et 122
6.3.2 ENtity BEANScoccvieiieiiieiieiee e 122

6.4 Component-based NetPay Desi@nccccvieriiiiiiieiciiieiie e 123
6.4.1 Web Components deSIZNeeveeruieriienieeieeieesie ettt esteesee e eseee e eaeens 124
6.4.1.1 E-Journal Main Page Class Diagram.............ccccccevvvrevrencreeennnenns 126

6.4.1.2 Web Component Interaction..........ccecceereereierieeneenieeieeeeeeeees 128

6.4.2 NetPay Integration with E-journal Web Pagecccocoevviiiciiiiciiiinnnns 128
6.4.3 Enterprise Beans Design........ccccueeiiriiieriiiiieiiesieeee et 133
6.4.3.1 E-Journal Enterprise Bean Design..........ccccceeviiiiieeiiiencreeeniens 134

6.4.3.2 Article Pricing Enterprise Bean Design..........ccccccvevvieiivenieennnnnne. 135

6.4.3.3 NetPay Enterprise Beans Design........c.ccccceeveiieiciieeneeescreeenens 136

6.5 Component-based NetPay Vendor Implementationcccceeeveeveenveecieenieennnenne. 142

Vi

6.5.1 Packaging J2EE NetPay Vendorcccoccuieviienieeiieieciece e 142

6.5.2 NetPay Components Plag-in...........cccceeriiniiriiiininniiiieeiesc e 144
6.5.3 IMPIemMENtaAtioNccuveiiieiieiiiecie ettt ettt e seae e e b e saaeenaeens 145
6.5.3.1 E-journal example SYStemccecuervuierieniiniiiniienie e 145

6.5.3.2 NetPay-enabled E-journal example system..........ccccceeevrerveennnnne. 146

0.0 SUIMIMATYiieitieeeiie ettt ee ettt e et e et e e s bte e e beeeaatee s beeesabeeeaneeesabeeeanseeeaneeeans 149

Chapter 7 - Evaluations

7.1 MOIVALION <.ttt ettt et et sb et bt et st ne e 150
7.2 Usability EValUQtionccccoiiiiiiiiiiiiieieiieiceeceese s 151
T.2.1 PrOCEAUIE ..ottt 152
7.2.2 RESUILS coutieiieeiieeie ettt et s ete e beesaa e eabeebaesnaeenneens 153
7.3 Performance Impact Evaluationcccccoeoueriiiiienieiieeeeecceee e 155
7301 DIBSIZN ettt ettt ettt ettt ettt ettt et be et e aeenees 155
7.3.2 RESUILS e e 156
7.3.2 NetPay Case Study Using Argo/MTE Toolccccoceriiiiiiinininieieenne, 159
7.4 Qualitative Comparison t0 Macro-paymentcccueevveerueereerieeerieeneeseeeneeenseennns 164
B 3 R B Tt 4 WP 164
7.4.2 Qualitative ANALYSIS ..ecveeivieiiieriieeieeieecie et 164
7.4.3 Summary of REeSUILS.......ccciiiiiiiiiiiiciie e 166
7.5 SUIMNIMATY ...ttt ettt ettt e ettt et e e e ateeetee e st eeebeeeenseeeaneeesseeeanseeeaneeeans 167

Chapter 8 — Conclusions and Future Work

8.1 CONIIDULIONS ..o 169
8.2 CONCIUSIONS ..ooiiiiiiiiiiiii 171
8.3 FUIUIE WOTK oo 175
Publications during PhD studycccocooooiiie 178
REFETEIICES ... ettt e e e reeae e 179

vii

Appendix A: Questionnaires

A.1 Usability Testing QUEStIONNAITEcccueeruieeieeriienieeieeeeeseeereesieesaeeseenseesseeesseens 188
A.2 Usability TeSting TasKScccviiieiiiiiiieiieeeiie ettt et sveesvee e sree e 192
A3 SUMMATY ...ttt e ettt e st e e st e e tteeesee e nseesseeesnseeeanseesnneeas 198
A.3.1 Three Systems Datacccceevieriiiiienienieeiee e 198
A.3.2 Comparison of Three SYStemS........ccveveerieeiiierienieeie e 200

Appendix B: Usability Testing Forms

B.1 Consent FOTM......coc.uiiiiiiiiiiiie ettt sttt st 201
B.2 Application FOIMc.ccoiieiiiiieiiieie ettt eneeens 202
B.3 Participant Information Sheetccceeiiiiiiiiiiiiiecie e 210
Appendix C: MDS Implementationcccoooeiiiiiiininniiiee 213

viil

List of Figures

Figure 2-1 The CyberCash system model..........c.cociiiriiiniiieniiieciie e 12
Figure 2-2 The DigiCash system model...........cccocuiriiriiiiiiniiiiiiieeeeeee e 14
Figure 2-3 Hierarchy of NetCheque SETVETSccociiiiiiiiiieiiie ettt 15
Figure 2-4 Customer DUYS DIOKET SCIIPuieevieiieiieiieiieieete ettt et ere e ebe e ebeebe e enseenne 17
Figure 2-5 Customer BUYS VENAOT SCTIPveevierieiieiieiieteeie ettt et eie e eteeteeseenbe e eneeenee 18
Figure 2-6 Broker requests VENAOT SCTIPcevevvieiieiieiieieeieeie ettt ettt ettt e 18
Figure 2-7 Customer’s broker creates account with vendorc.ccceevveeriiienciencieesie e, 18
Figure 2-8 Customer’s broker requires vendor scrip with vendorccocceeiiviniiiiinennene 19
Figure 2-9 Broker sends SCIiP t0 CUSEOMET.......ccueeiuiriiiieriieeriieesieeeiee ettt esiteeseeeeseeeeeeeesaaeesaeeas 19
Figure 2-10 CUSTOMET DUYS SEIVICES ..eeuvirviriieiiieiieteeieeteeteeseeseesseessessesssesssesssesnsesssesssesssesnns 19
Figure 2-11 Customer requests daily certificate With TAPcccoeviiiiiiieiiieeee e 20
Figure 2-12 Customer buys services With VENdor..........cocueviiriiiiiiiiiiieece e 21
Figure 2-13 Vendor redeems payment OTAETScc.vevveeeriieervieriienieesieeeireeseneesreesseesssaesssnes 21
Figure 2-14 Customer confirms transactions with TAP..........ccccooiiiiiiiiiiiie 21
Figure 2-15 Customer buys Payword chainccoccoeiiiiiiiiiiii e 23
Figure 2-16 Customer sends commitment t0 VENAOTccueruerierierienienieeieeie e eve e eene e 23
Figure 2-17 Customer buys information 00dS.cccuerverierierienieniesieeee et 23
Figure 2-18 Vendor redeems paywords With BroKer...........cccoevviviiiieriienieeiecie e 24
Figure 2-19 The ORB archit@Cture..............cocvouiieiiiiieiceieeeeceeeeteee e 28
Figure 2-20 J2EE Distributed Multi-tiered applications architecturececeevveerieerieeieennennn 30
Figure 2-21 Developing web services with Microsoft. NETcccccccvveviiiniienciieciie e 32
Figure 3-1 NetPay basic interaction between the partiesccceveeeeriieriieenciieriee e 38
Figure 3-2 Customer buys €-CoOINs tranSactioncceierieerieeriieniiieesiieesiteesieeesieeeeeeeseeeeseeeas 42
Figure 3-3 Customer e-wallet database in the beginning of the transactionccceevenen.ne. 42
Figure 3-4 Customer buys information goods transSactioncceceeeveerveeeeereesieerieeseeeeeeeeenns 43
Figure 3-5 Example of customer e-wallet database after first transaction...........ccccceceeeeeenennene 44
Figure 3-6 Example of redeem database after first transaction..........c.ccoecueeuerierieniieerienieneene 45
Figure 3-7 Example of the e-wallet database after second transactioncc.ccceevveevveeneennnee. 45
Figure 3-8 Example of redeem database after second transactionccecceeereeenieenieenieenne. 46
Figure 3-9 Paywords relocation tranSaction.............cueeveeverieruesieeeiesieseeeeeeaeseesnesaessnessneenns 46
Figure 3-10 Example of the e-wallet database after sending e-coins to the V2..........cccceeneeeee. 47
Figure 3-11 Example of redeem database after first transaction with V2......c..cccecevinininnnnns 48
Figure 3-12 Vendor redeem tranSaCtioN.........c..eccveeeriieeriieerieerreeeiressereesereesseessaesseesssseessseensses 48
Figure 3-13 V| aggregates tWo PAYMIENLSc.ooeieiiiriiieieieeesieeie st 49

X

Figure 4-1 Two on-line newspaper interaction SCENATIOScervierueeerieeerererieeeieeeieeesieeenaeeas 54

Figure 4-2 E-newspaper with NetPay system main use case diagram............cccoeeeevveeieereennenne. 60
Figure 4-3 Example CUStOMET reZISIIatiONeeveevirieeeieieeieeteeieeieeieeae e eee e eee e enee 62
Figure 4-4 Example cuStOMEr DUYS €-COINScccviiiviiiiiieiiieniieiiiesieeeireesireesereesreeesaeesaeessnens 63
Figure 4-5(1) Example e-newspaper Web Site..........ocoeriiririeieieiiirieieieeesesiee e 64
Figure 4-5(2) Example of customer spending E-coins at an E-newspaper site................. 64
Figure 4-6 E-newspaper with NetPay micro-payment system class diagram...............c.ccceene... 66
Figure 4-7 Buy €-coin S€qUeNCe diagrami.........cccueeruiriiiiieniieenieeeieesieeesieeeseteesieeesbeeeeeeeneeeeeeeeas 68
Figure 4-8 Buy article content with E-newspaper] sequence diagram............cceceevveevveereennnnne. 69
Figure 4-9 Buy article content with E-newspaper2 sequence diagram............ccoeceevveeveevennnenne 70
Figure 4-10 Redeem e-coins with the broker sequence diagramccccoecueeveevieriieeieniennene 71
Figure 5-1 Multi-tier Web-based with thin-client architectureccooceveenienienienieniene 75
Figure 5-2 NetPay system deployment dia@ramccoeccueeriiieiiieenieerieeeiee et 76
Figure 5-3 Server-side e-Wallet..........ocuiiiiiiiiiiee e e 78
Figure 5-4 Client-side @-Wallel........cccoeiieiiiiieiieiieieeieeie ettt e 79
Figure 5-5 Client-side cookie-based e-Wallet...........ccoecverierieiieiieiiecie e 80
Figure 5-6 Server-side e-wallet NetPay design feature............ccoocevienienienienienecieceee 82
Figure 5-7 Client-side e-wallet NetPay design featureccceeeeveeeieeriienieeeiie e 83
Figure 5-8 Register class dia@ram..........cocviiiiieiiiieiiie ettt ciee et eite e eetee e enaeesnseeenns 86
Figure 5-9 Buy e-coin class diagrami...........ccccueiiiiiiiiiieiiieiieeciee et 88
Figure 5-10 Redeem e-coin class diagramccceevueeriieiiieniienieeie e 89
Figure 5-11 Transfer e-wallet class diagram...........ccoocierieriieiieniienieceece e 90
Figure 5-12 Transfer Touchstone and Index class diagramccccevveevierienienienienieieeee 91
Figure 5-13 Newspaper homepage class diagram...........ccccveeveveeriiieenirenieenieeeieeeieeeieeesree e 92
Figure 5-14 Buy content class dia@ram..........c.ceecuieriiieeiirenieesiieeiieeiie et seee e eieeeseee e 95
Figure 5-15 Redeem spending class diagram.............ccociieiiieiiiiniiieeiie et 96
Figure 5-16 Buy e-coins with server-side NetPay sequence diagram..........c..ccceeeveeeeeeienrennnnnne. 97
Figure 5-17 Click-buy article content with server-side NetPay sequence diagram.................... 98
Figure 5-18 Redeem spending with server-side NetPay sequence diagramcccoceevvenenne. 99
Figure 5-19 Buy e-coins with client-side NetPay sequence diagram............c.ccccveevevveecrieennneens 100
Figure 5-20 Click-buy article content with client-side NetPay sequence diagram................... 101

Figure 5-21 Click-buy article content with client-side cookie-based e-wallet NetPay sequence

QL E: Ty -1 1 U UR PR 102
Figure 5-22 Broker system database ERD............cccccooooiviiiiiiiniiiccece 103
Figure 5-23 Vendor system database ERD...........cccccooiiiiiiiiinncee 104

Figure 5-24 Server-side NetPay Broker HOmMeccccoovviiiiiiiiniiiceeee e 105

Figure 5-25 Example of HTML customer re@istrationccceccueevveeriiieenieeenieesieesiee e 106

Figure 5-26 Example of HTML registration informationccoeceeiiirenirenieenieesieeeeeene 107
Figure 5-27 Example of HTML cuStomer buy €-COINScovvertierierieniienienieenieenieenieenieeneeens 107
Figure 5-28 Example of HTML customer registration and download e-wallet........................ 108
Figure 5-29 Example of e-wallet application..........c.cccccvveriiiieriieniieiiiecite et 108
Figure 5-30 Example of HTML cuStomer buy €-COINSccveeriieriierieenieenieenieenieenieenieeneeeneeens 109
Figure 5-31 Example of checking balance in e-wallet applicationcccoevevenivenieenieennee. 109

Figure 5-32 Example of HTML customer login and buy article content with Enewspaper] ... 111

Figure 5-33 Example of HTML customer login and buy content with Enewspaper?2 112
Figure 5-34 HTML customer buy content and e-wallet application exampleccccecueeneeens 113
Figure 5-35 Example of HTML customer subscription with Enewspaperlccccocveeinen. 115

Figure 5-36 Example of HTML customer login and read article content with Enewspaper1 ..116

Figure 6-1 Component-based NetPay software architecture...............cccooevvvveecinnininnnnes 120
Figure 6-2 E-journal system with NetPay components...........c.ccccceevevieriieenieenieeniie e 124
Figure 6-3 Model-View-Controller architeCtureooverierienienienienieneeneenieesieeseeieeeens 125
Figure 6-4 E-journal site web page template...........ccoooovvioeiiininicieieceeeee e, 126
Figure 6-5 Journal main page class diagram...........ccceovuvreriiieriieniieniie e e esve e e sree e 127
Figure 6-6 E-journal example system main page class diagram...........cceceeveerieneenieneeneeniens 128
Figure 6-7 E-Journal Web component interactionc.cevveerveerieeniieeenieeesireeseeesveesveeenens 128
Figure 6-8 Ways of integrating NetPay functionality with E-journal web pages 129
Figure 6-9 Web component interaction after modified article.jspcceveeveereeneenienieenienens 130
Figure 6-10 Web component interaction after modified and implement JSP pages................. 131
Figure 6-11 Generating NetPay JSP Pagescccveeiieiiiiiiiiieie ettt 132
Figure 6-12 Generating NetPay proxy JSP Pagescccceeiiiiiiieiiieiieeie e 133
Figure 6-13 Article session bean class diagramccoccvevierieniienienieniesieesieeseesieeseesieeneeens 134
Figure 6-14 Article price session bean class diagramccceeveevienieniienienieenienieeneesieeniens 135
Figure 6-15 E-wallet enterprise beans (server-side) class diagram.............cccoeeveevvrenreennneenne. 137
Figure 6-16 Click-buy article sequence diagram with server-side system............cccceeveerueenenns 139
Figure 6-17 Click-buy article sequence diagram with client-side systemcccccceeeeneennee. 140
Figure 6-18 Redeem enterprise beans class diagramcocccoeieieiiiiiiiieniieeiie e 141
Figure 6-19 Redeem sequence diagram with client-side SyStemccceevveriverieenieenieenieenienns 142
Figure 6-20 J2EE PACKAZESc.oviiieeieiiiisicieee et 143
Figure 6-21 Plugging in the NetPay vendor-side components with a J2EE deployment tool .. 144
Figure 6-22 Example of non-NetPay E-journal Systemccooceevievienieniienienieniieneeneeieans 146
Figure 6-23 Example of NetPay-enabled E-journal system...........cccceveevienienienienienieniieeens 148
Figure 7-1 Three payment systems usability test results.........cccoevererieriieeniieerieeeieeciee e 154
Figure 7-2 NetPay system deployment diagramc.ccccveeriieriieniieniiie e 158

x1

Figure 7-3 The complicated architecture of NetPay software systemccccceeviverciirnieenne. 159

Figure A-1 Xiaoling registers with the brokercccooiiiiiiiiiiiii e 193
Figure A-2 E-coins’ screens are used in Server-NetPay and Client-NetPayccccocveneee. 194
Figure A-3 Example customer buy e-coin with server-side e-wallet NetPayc..cccceevenenn 194
Figure A-4 Example for customer login to the e-newspaper Site...........cceevveervierveenveeeneeenne, 195
Figure A-5 (1) Example e-newspaper Web SILE.........eevierierierieniieniieniienieenieenieenieenteenieeneeeneeens 195
Figure A-5 (2) Example of customer spending E-coins at an E-newspaper site....................... 196

Xii

List of Tables

Table 2-1 Comparison of Computational Speed of Cryptographic and Network

operations on a Typical Workstationcccooeueeirinirieeciniiseeecene 11
Table 2-2 Comparison of E-commerce payment methodsccceevcviienieencirenneenne, 26
Table 4-1 Comparison of payment methods with NetPay...........cccoccevviiiiennniineenen. 55
Table 4-2 ReIStET USE CaASEcccviieeiiieeiieeiiieeiieeereeeteeereeesteesteeessraeesaeessbeeessseesnnns 61
Table 4-3 Buy E-COINS USE CaSE.....ccveruieeiieiieiieeie ettt see et seee e eseensee e enseenneas 62
Table 4-4 Debit E-coIns USE CaSe......cccecueriiiiriiiiniiieiieieeeeteeeenie et 63
Table 4-5 Redeem E-coins Use Case.........coeeiirieniinieniiniieieeiesieeeseeee e 65
Table 7-1 Initial prototype performance...........ccoccueeecieierieeeeiieccie e 156
Table 7-2 Prototype performances after using a temporary file...........ccoeevvevveniennenns 157
Table 7-3 The performance for an article content display process.........ccccccvvveveveeeneen. 161
Table 7-4a Qualitative asseSSMENt SUMMATYccverveerueerreerieesreesseeseeeseesseessnesseens 163
Table 7-4b Continue of qualitative assessment SUMMATYccceeveereeriveenieeneeninens 164
Table A-1 Subscription Macro-payment SYStEMc.cccueerreerveeireerieenieeieenieesaeeneens 197
Table A-2 Client-side NetPay micro-payment SYyStemcevverveerieeneereeenieeneennens 197
Table A-3 Server-side NetPay micro-payment SYStemccceecveevueereeecveeneennennens 198
Table A-4 Preference of three SYStemS........covvieiiiiiieiiieiieiere e 198

xiil

Chapter 1

Introduction

1.1 Motivation

The rapid growth of the Internet has led to the appearance of thousands of different web
sites, which are created to provide information to millions of people around the world.
There is a trend towards charging for site content on the Internet [8] in order for companies to
make direct profit from information they provide, rather than relying on fickle or insufficient on-
line advertising revenue [42, 47]. Macro-payment systems are used by most E-commerce systems
today to allow customer to pay for content. These typically use credit card debiting, digital cash or
real-time bank transfers, where a customer pays for products or services before or at the time of
delivery. Such systems typically use complex encryption technologies and require
communications with an authorisation server to request and confirm payment. Usually
confirmation must be provided before the content or goods are supplied to the customer. This
model suits low-to-medium volume transactions of medium-to-high value e.g. books, food, office

stationary, home appliances, toys and so on.

For example, many sites have become subscription-only access e.g. on-line newspapers,
academic and trade periodicals, help and advice columns, and so on. Subscription has the
disadvantage of locking customers to one site and a “one size fits all” scenario where even if the
customer wants a few items from the site, they have to pay for them all. An alternative model is
where a customer pays as they go from a previously acquired (by macro-payment) E-wallet with
E-coins he/she is charged per-page or per-group or per-download for material, often very low cost
per item [29, 42, 47]. Ideally they can move to other sites and use the same E-money. This is the

micro-payment model of on-line information, product and service purchase.

There are a number of micro-payment systems in various stages of development from
proposals in the academic literature to systems in commercial use [54, 34, 35, 40, 72].
Though micro-payment protocols have received a lot of attention from researchers and
cryptographers, only one micro-payment system which is Millicent [95] exists in general

public use in Japan. All existing protocols for micro-payments have their strengths and

weaknesses in practical applications [23]. In Millicent [54], the third party must be online
whenever the user wishes to interact with a new vendor, i.e., the system places a heavy real-
time burden on the third party. In Mpay [40], customers can pay nothing to access services
for a full day and also the customer’s anonymity is not protected. In PayWord [72], the
payword chain is customer and vendor specific, i.e., the system locks customers to some sites

that they have the payword chains.

There are various ways to build micro-payment systems and embed them in existing web
applications. Using a “hard-coded” CORBA-based style the micro-payment systems are
easy to implement, but there are obvious drawbacks. For example, if we want to add some
micro-payment functions to an existing system, the source code of the existed system must
be changed to suit the new needs. A component-based software architecture is one solution

to plug-in micro-payment components to an existing web application.

Software architecture is concerned with the description of elements from which systems are
built and the interaction among those elements. It is a vehicle for communication among the
elements and captures early design decisions for systems so that software architecture plays
an important role in the system development. NetPay software architecture design should
be scalable, reliable, secure and flexible. A thin-client multi-tier web-based e-commerce

system will be used in NetPay system development.

1.2 Our Research

To overcome the weaknesses of existing micro-payment protocols, we propose a novel
payment protocol, named NetPay. NetPay is a debit-based off-line system. It also addresses
the problem of double spending and overspending by customers, and anonymity of the
customer [22]. The key innovation of NetPay is that it uses Touchstones and Indexes passed
from broker to vendors. The touchstone is used by a vendor to verify the electronic
currency, and an Index is used to prevent double spending from customers. The NetPay
protocol shifts the communication traffic bottleneck from a broker and distributes it among
the vendors, placing some of the micro-payment processing burden on vendors when a

customer wishes to purchase from a new vendor.

We have developed a software architecture for implementing NetPay-based micro-payment
systems for thin-client multi-tier web applications. We focused on designing three kinds of
“E-wallets” for NetPay and ‘“hard-coded” vendor prototypes using a CORBA-based
approach. The three kinds of e-wallets include: (1) A server-side e-wallet held on the
vendor server the customer is currently buying content from; (2) a client-side e-wallet
hosted on the customer PC (an application that stores e-coin information for debit by
vendor servers and credit by the broker server); and (3) a client-side cookie-based e-wallet
is stored in a temporary cookie e-wallet for debiting instead of the e-wallet database. Each
approach has advantages and disadvantages. The first requires uses of e-coin ID and
password to login to a vendor system. The later two require that the customers download an
e-wallet application to their PC and the e-coin debiting time is slower than a server-side e-
wallet system. The two kinds of NetPay broker and “hard-coded” NetPay vendor which are
server-side e-wallet and client-side e-wallet were prototyped in order to carry out an

evaluation of NetPay.

We have designed a new component-based NetPay vendor system for encapsulating micro-
payment support for existing web-based applications. We use an example web-based
application, an E-journal portal system that we have developed independently for a teaching
project. The reusable NetPay components are plugged into the E-journal site to enhance it
with micro-payment support with minimal or no code changes. There are three main ways
to integrate the NetPay user interface facilities: (1) modify the existing system web pages to
incorporate NetPay information; (2) generate web pages that display the existing system
pages in frames and make appropriate interactions with NetPay EJB components; and (3)
generate proxy web pages that interact with NetPay session beans and redirect access to the
original web pages. In this thesis we show examples of the E-journal extended using the
first approach. The NetPay system components are designed, implemented, plugged into

the E-journal example system, and deployed to a J2EE server.

For the NetPay prototypes we designed three types of evaluation: a usability evaluation, to
assess the users perception of NetPay-provided features, and to compare these against
conventional subscription-based payment; a performance impact evaluation, to determine if
adding NetPay micro-payment to typical vendor web servers would be viable for large
transaction loading; a qualitative assessment, to determine how well our model and

prototypes compare using some common assessment criteria. We analyse the results from

these three evaluation approaches to determine if (1) NetPay is usable as far as target users
are concerned; (2) the performance overhead of NetPay micro-payment would be
acceptable to information vendors; and (3) that NetPay meets the requirements for a micro-

payment system for E-tailing applications as outlined above.

1.3 Thesis Outline

This thesis focuses on the details of micro-payment systems and their implementations. The

structure is as follows.

* Chapter 2 presents the requirements for a general Electronic Payment System. It also
presents previously proposed payment protocols in detail and discusses their advantages

and disadvantages.

* Chapter 3 introduces a micro-payment protocol we propose called NetPay. This chapter
contains a detailed description of the protocol, and explanation of the protocol with

illustrations.

* Chapter 4 shows an example scenario of using a micro-payment — an on-line
newspaper. It compares using NetPay approach for e-commerce and several other

electronic payment models.

* Chapter 5 describes three kinds of NetPay-based system designs and implementations.
These include the NetPay broker and “hard-coded” NetPay vendor that are completed in

order to carry out the evaluation of NetPay.

* Chapter 6 describes a component-based NetPay vendor prototype’s architecture and

design and illustrates an E-journal system after plugging in these components.

* The evaluation of usability, performance, and a qualitative comparison of NetPay

prototypes are discussed in Chapter 7.

* Chapter 8 gives a general discussion about micro-payments, describes the contributions

of this research and provides an outline of future work.

Chapter 2

Background and Prior Work

Electronic commerce has been a very active field of study in recent years. World-wide
proliferation of the Internet led to the birth of electronic commerce [6], a business
environment that allows the transfer of electronic payments as well as transactional
information via the Internet. There are many different protocols for electronic payment
systems that can work across the Internet and most likely many thousands of sites using or
trying to use these methods. Despite the differences in implementation, they are all based
on a few important technologies. This chapter will briefly classify electronic payment
systems and outline some cryptographic primitives required for the understanding of
current payment protocols. The typical macro-payment architectures and models and
several different micro-payment models are introduced to discuss their various advantages
and disadvantages. Of course it is impossible to illustrate all the web application
implementation technologies; here we just introduce the main component infrastructure and

development technologies used in our work.

2.1 Overview

Electronic fund transfers have been around before the coming of the World Wide Web
(WWW) [15]. In the early stage, financial institutions used private communication channels
to transfer money orders between one another. This quickly expanded to enable large
commercial partners to transfer fund with a bank as an intermediary among them. The term
“Electronic Data Interexchange (EDI)” emerged and was formalized into a set of clearly
defined standards. EDI defines typical business transactions such as purchase orders,
invoices, account balances etc. [36, 15]. It is suited for business-to-business (B2B)
communication by exchanging standard business data according to agreed formats between
computers. However there were many standards developed for document formats and

protocols for EDI.

With the advent of the WWW, the Internet has become a platform that an increasing

number of companies turn to sell product innovations. Companies could establish virtual

shops to sell products directly to the customer over the web in order to increase their
income. But the supporting electronic payment technologies were not available. The first
approach to address this problem was to send unencrypted credit card numbers to the
vendor across the network via web forms [18]. This is not secure for high-value
transactions. For low-value transactions such as paying for web pages or delivering
electronic content (news, stock quotes, etc.) these methods were not applicable either,
because the value of the transmitted information would be too small to pay by credit card
due to processing fees [82]. So different electronic payment protocols are needed for

different business cases.

2.2 Main Properties for Electronic Payment Systems

Electronic payment solutions can be assessed by the key properties of security, anonymity,

and scalability [49, 63, 77]. The following sections briefly describe these properties.

2.2.1 Security

Security remains one of the important obstacles to the general acceptance of electronic
payment. Since payments involve actual money, payment systems will be a prime target for
criminals. Because Internet services are provided today on networks that relatively open,
the infrastructure supporting electronic commerce must be usable and resistant to attacks in

an environment where eavesdropping and modification of messages is easy [49, 77].

2.2.2 Anonymity

A fundamental property of physical cash is that the relationship between customers and
their purchases is untraceable. This means that cash payment systems do not allow

payments to be traced without compromising the system’s security.

In conventional purchases we have different levels of anonymity based on the purchase and
method of payment. Most of money is spent in ways where there is no anonymity
whatsoever. A lot of the modern day to day purchases are done with charge cards, credit
cards or cheque based payment systems that have usually compromised the security by

giving full anonymity only to the vendors, while the customer has been offered only partial

anonymity [62]. It is still possible to pay for most things with real cash which is very hard
to trace and fully anonymous. However receipts reduce the level of anonymity associated
with cash purchases. Kleiner [48] presents several good arguments both for and against
anonymity of the buyer in electronic commerce. Therefore we can conclude that it is very

likely that payment systems with different levels of anonymity will be wanted [77].

2.2.3 Scalability

As commercial use of the Internet grows, the demands placed on payment servers will grow
too. The payment infrastructure as a whole must be able to handle the addition of users and
vendors without suffering a noticeable loss of performance. The existence of central servers
through which all transactions must be processed will limit the scale of the system [49].

The payment infrastructure must support multiple servers, distributed across the network.

Payment systems must be able to handle the addition of users and load in a certain range
without negative impact on performance [5]. Also the cryptographic mechanism used to
detect double spending directly affects scalability. For example a payment system using

public key algorithms there may prove too expensive or too slow for the application.

2.3 Classification of Payment Systems

Currently there are a number of different payment systems at various stages of development
[66]. These range from proposals in the research literature to systems currently on

commercial trial.

2.3.1 On-line vs. Off-line Operation

Payment systems are often classified as either on-line or off-line [77]. Examples of on-line
payment system include DigiCash [16], NetBill [20]. In an on-line payment system, every
payment needs to be authorized by the bank that issued the coin in order to prevent double
spending by the customers. This introduces a central bottleneck. A single point of
transaction processing will raise the risk of system failure, reducing system reliability and

will also cause transaction traffic congestion, increasing payment latency [49]. It also raises

the cost of transactions, and imposes a minimum cost per transaction, as the bank is faced

with the real cost of authorizing each transaction.

Protocols that do not rely on a third party to guard against double spending are called
offline payment protocols, e.g. Agora [34], MPTP [35], Mini-pay [40], PayWord and
MicroMint [72]. Typically, these protocols are credit based, since the purchase is made
available to the customer before the customer is debited with the payment. In a credit-based
offline payment system, there is often no protection mechanism to prevent a customer from
double spending, and spending more than the balance in their account (overspending).
Double spending is usually detected at the time of the clearing process, when the vendor
turns in the received coins to their respective banks. Once double spending is detected,

typical ways to resolve are that the customer is penalized and/or expelled.

2.3.2 Software vs. Hardware Solution

Electronic payment systems prevent double spending and fraud in basically two different
ways: hardware and software. The software approach is to structure the electronic money
and cryptographic protocols to reveal the identity of the double spender by the time the
piece of e-money makes it back to the bank. Most software implementations for payment
systems are developed in the form of digital wallets which allow access to a user’s money
by being a digital repository for credit card numbers, ATM card and digital certificates [72]
[40, 54]. These wallets are typically embedded in web browsers and store private
information, as would a physical wallet. Users can decide what information will be stored
in the wallet and to what parties the information can be released. Millicent has been used in

Japan from 1999 [95].

Some electronic payment systems rely on tamper-proof hardware to enhance software
solution. For example smart card is embedded microchips that record transaction values and
available funds [42, 58]. One key advantage of smart cards is that they allow direct transfer
of electronic cash between private users. The disadvantage is the cost of the card reader

which is $20-$30 plus the cost of installation per customer.

2.3.3 Macro-payment vs. Micro-payment

Macro-payment systems are used by most E-commerce systems today. These typically use
credit card debiting, digital cash or real-time bank transfers, where a customer pays for
products or services before or at the time of delivery [39, 93, 16, 20]. Such systems
typically use complex encryption technologies and require communications with an
authorisation server to request and confirm payment. This model suits low-to-medium
volume transactions of medium-to-high value e.g. books, food, office stationary, home
appliances, toys and so on. The standard macro-payment methods cannot be effectively or
efficiently applied for buying inexpensive information goods, like single articles of an on-

line newspaper, because transaction costs are too high [34, 72].

An Internet micro-payment system would allow small amounts of money to be spent at web
sites in exchange for content or services [3, 22, 40, 72]. Micro-payment system's designs
are usually quite different from the existing "macro-payment" systems, since micro-
payment systems must be very simple, secure, and efficient, with a very low overhead cost
per transaction. This must also be taken into consideration for transaction security: high
security leads to high costs and computation time. For micro-payments lower security may
need to be provided [49]. This means lower security than on-line, “real time” authorisation
of payment i.e. the payments may be off-line, credit-based purchase where the security
level is not compromised by encryption technology. For credit-based, vendors have to
accept on faith that they will be paid by broker, there is no double-spending of the

electronic money used.

2.4 Cryptography Technologies

Cryptography refers to the technologies used for ensuring privacy and security on the
Internet. Both the host server and the user’s PC can use the cryptographical computational
methods to generate the codes used to encrypt data so that it can only be read by a recipient
who has received the correct code or key to decrypt it back into its original form. By using
long numbers and complex mathematical formulae to generate the keys used to secure data
in cryptography technologies, a high level of security can be achieved. We briefly outline

some cryptographic techniques required for the understanding of current payment protocol.

The three common technologies are symmetric cryptography, public key cryptography, and
hash functions [43, 56, 78].

2.4.1 Symmetric Cryptography

In a symmetric cryptography the two parties use a common secret key that is used to
encrypt and decrypt data between them. The information sent could only be read by the
parties that know the key. The most widely used algorithm in this category is the Data
Encryption Standard (DES) which uses a key of 64 bits [59]. The problem with the use of
symmetric cryptography is communication between two parties in a secure network [56].
The real world problem is much more severe in an open network, where parties never had
any kind relationship before they wish to enter into a communication. The public key

approach was proposed in order to solve the problem highlighted above.

2.4.2 Public Key Cryptography

In public key cryptography messages are encrypted using one key, and they can be
decrypted using another [56]. Usually one key, which called the “public key”, is open over
the network and the other which called the “private key” is kept secret. Using these
mechanisms two important facilities can be created that depend on whether the public key
is as the encryption key or decryption key. Let us suppose that a party is Bob. If any party
encrypt the message using Bob’s public key, only Bob can read it by using his private key,
so any party can send a confidential message to Bob. On the other hand, if Bob encrypts the

message using his private key; any party can read it and is assured that it was sent by Bob.

The examples above show how public key systems can be used for two purposes:
encrypting a message with the recipient’s public key to achieve confidentiality or
encrypting a message with the sender’s secret key to achieve message authentication. The
standard algorithm for implementing public key cryptography can be used for both
encryption and authentication and is called RSA algorithm. It is named after its inventors,
Rirest, Shamir, and Adlemen who developed it in 1978 [70]. Its security is based on the
difficulty of factoring very large numbers. Both of these involve applying the public key

algorithm to the whole message. The public key algorithms in use today are

10

computationally intensive they may be too expensive or too slow for micro-payment

applications [72].

2.4.3 Cryptographic Hash Function

One of the fundamental technologies in cryptography is the cryptographic hash function,
also called a one-way hash function. A one way hash function is easy to compute but
difficult to reverse. In mathematical terms, given a value X, it is easy to get y=h(x) where h
is a one-way hash function, but, given y, it is not feasible to compute the corresponding x=A
- (y). The MD5 (Message Digest) algorithm [71] is one of a series (including MD2 and
MD4) of message hash algorithms developed by Ron Rivest. It involves appending a length
field to a message and padding it up to a multiple of 512 bit blocks.

One key factor that must be supported in a micro-payment system is to allow a high number
of low value transactions. Obviously, the transaction mechanism cost needs to be
significantly lower than the value of the transaction if a transaction is to make economical
sense. It depends on which cryptographic technologies and payment protocol are used in
the system. Table 2-1 gives some estimated figures comparing the number of public-key
and hash operations, and network connections that can be performed per second on a

typical workstation [72].

Table 2-1 Comparison of computational speed of cryptographic and network

operations on a typical workstation - From [72]

Operation No. Per Second
Public-key signature generation (1,024-bit RSA) 2
Public-key signature verification (1,024-bit RSA) 200
One-way hash values compute (MD5/SHA) 20,000

Fast hash functions are more suitable for micro-payment systems, where speed is also
important, than the much slower public key cryptography used in most macro-payment

systems. However, some micro-payment schemes require using public key cryptography in

11

order to minimize communication costs such as PayWord and our protocol. It is therefore
important to greatly reduce the number of these operations. A “payword chain” is generated
by using a one way hash function and is going to be used to represent a set of E-coins in the

NetPay system.

2.5 Macro-payment Systems

Within macro-payment systems there are three distinct payment methods: credit card based

digital cash, and electronic checks (account based).

2.5.1 Credit-card Based

Credit based payment systems, such as SET [93] and CyberCash [21], are both online and
post paid payment by credit card. CyberCash (CyberCash Inc., Reston, VA) provides
customer software, vendor software and a gateway to support the secure communication of
credit card transaction over the Internet. Customers download CyberCash Wallets. Vendors
use the Secure Merchant Payment System (SMPS). The system relies on the use of existing
financial networks that are totally independent of the Internet for communicating between

the CyberCash Gateway Server and the banks or credit institutions.

Figure 2-1 represents a model how credit cards can be used in a secure way across the
Internet. The protocol is called CyberCash that provides customer software, vendor
software and a gateway to support the secure communication of credit card transaction over
the Internet.

1. Purchase request

>

2. Payment request

< -
Customer 3. Credit card payment > Vendor 4. Authorization request
< 10. Confirm purchase 9. Response

CyberCash
5. Authorization request Gatewa
Customer’s d y
card 6. Authorization request Vendor's ‘/'
issuing < P acquirer 8. Response

bank 7. Response bank

Figure 2-1 The CyberCash system model

12

The following is an outline of how CyberCash works:

1. The customer browses the home page of the vendor’s online site and adds desired items

to the cart.

2. When the customer wishes to pay, the vendor’s server sends the wallet software a
payment request message that describes the purchase and indicates which credit cards

the vendor accepts.

3. A credit card payment message, including a signed and encrypted description of the

transaction, along with the customer’s credit card number is sent back to the vendor.

4. The vendor forwards the payment message with his signature and encrypted description

of the transaction to the CyberCash gateway.

5. CyberCash decrypts and compares the two messages and their signatures.

6. If they match, it sends an authorization request to the vendor’s bank that forwards the

message to the customer’s bank.

7, 8, and 9. The customer’s bank sends an approval or denial to CyberCash pass through

the vendor’s bank and the CyberCash gateway.

10. The vendor’s software confirms the purchase to the customer’s wallet software when

the vendor receives an approval message.

2.5.2 Electronic Cash-based

There are many payment systems based on e-cash payment, such as DigiCash which is an
online and prepaid payment system [16], and CAFE which is an offline and prepaid
payment system [9]. DigiCash is a fully anonymous electronic cash system using blind
signature techniques which invented by David Chaum. DigiCash is implemented using
RSA public-key cryptography. Every customer in the system has their own public/private

key pair. Special client and vendor software is required to use the DigiCash system. The

13

client software is called a “cyberwallet” and is responsible for withdrawing coins from and

depositing coins into a bank, and paying coins to or receiving coins from a vendor.

Ecash Bank

1. Blinded e- 7. E-coins valid
coins message
2. E-coins .
6. Valida
e-coins
3. Request Vend

. endor
Cyberwallet 5. Send e-coins Software
Software < 4. Payment

8. Goods & receipt

Figure 2-2 The DigiCash system model

The following outline how DigiCash works:

1. To make a withdrawal from the bank, the customer’s cyberwallet software generates
random serial numbers which are used in the blind signature technique [17] for the
e-coins. The blinded e-coins are then packaged into a message, digitally signed with
the customer’s private key, encrypted with the bank’s public key, and sent to the

bank.

2. The bank checks the signature, debits the signature owner’s account, validates the e-
coins, and returns the e-coins to the customer. The customer e-wallet un-blind the e-
coins by dividing out the blinding factor. Since the bank couldn’t see the serial
numbers on the e-coins, the cash is fully anonymous.

3. The customer sends a purchase request to the vendor.

4. The vendor software contacts the customer’s cyberwallet asking for payments.

5. The cyberwallet software encrypts the e-coins with the vendor’s public key and

sends them to the vendor.

14

6. The vendor must verify the e-coins which are valid and have not been double spent

with the bank.

7. The bank validates the e-coins by checking the serial numbers with the large on-line
database of all the serial numbers ever spent and returned to the bank. If the e-coins
are valid, the value of the e-coins is credited to the vendor’s account. The e-coins
are destroyed and the serial numbers added to the database of spent coins.

8. The vendor sends the purchased goods and receipt to the customer.

2.5.3 Account-based

The NetCheque payment system developed at the Information Sciences Institute of the
University of Southern California is a distributed accounting service consisting of a
hierarchy of NetCheque servers (banks) that are used to clear cheques and settle interbank

accounts [62]. Figure 2-3 describes such a hierarchy.

D

Vendor [Customer
<Cheque>

Figure 2-3 Hierarchy of NetCheque servers

A NetCheque account is similar to a conventional bank account against which account
holders can write electronic cheques. An electronic cheque is like a conventional paper
cheque in that it contains the customer’s signature. Unlike a paper cheque, it has to also be
endorsed by the vendor before the cheque is paid. Kerberos tickets [17] were used in the
NetCheque system to create electronic signature and endorse cheques. Kerberos is based on

symmetric key cryptography and is thus more computationally efficient than schemes based

15

on public key algorithms. A NetCheque contains seven parts which are amount, unit of
currency, date, account number, payee(s), customer signature and endorsement(s) by the

vendor and bank(s). To write a cheque, a customer needs to do the following things:

1. The customer generates the cleartext portion of the cheque, specifying an account
against which the cheque is to be drawn, the amount, the currency unit, and the payee.
The account number and date are read from the customer’s chequebook file.

2. The customer obtains a ticket from a Kerberos server that is used to authenticate the
customer to the customer’s bank and allows the customer to share a session key with the
bank.

3. The customer generates a chequesum on the contents of the cheque and places it in an
authenticator.

4. The customer encrypts the authenticator with the session key and appends the ticket and

the authenticator to the cheque.

The cheque can be send to the vendor through electronic mail over an unsecured network.

To deposit the cheque, a vendor and bank(s) need to do following things:

1. On receiving a payment the vendor reads the cleartextparts of the cheque, obtains a
Kerberos ticket to be used with the payer’s bank, generates an authenticator endorsing
the cheque in the name of payee for deposit only into the payee’s account, and appends
the endorsement and the ticket to the cheque. An encrypted connection is opened to the
payee’s bank and the cheque is deposited.

2. If the payee and the payer both use the same bank, the response will indicate whether
the cheque is cleared.

3. If different banks are used, the vendor’s bank sends an indication to the vendor that the
cheque has been for collection.

4. 1If the cheque has to be cleared through multiple banks, each bank attached its own
endorsement to the cheque.

5. Once the cheque has been cleared by the customer’s bank, the attached endorsements
can be used to trace back the path to the vendor’s account and eventually credit

vendor’s account for the same.

16

2.5.4 Discussion

Macro-payment systems provide high level security, because they are generally on-line
systems. They can ensure the money is there and has been transferred to vendor before
transaction performed, but all on-line payment schemes introduce a central bottleneck, a
single point of failure that increases payment latency. It also raises the cost of the
transaction, and imposes a minimum cost per transaction, as the bank is faced with the real
cost of authorizing each transaction. As a result, the macro-payment systems are generally

not suitable for high-volume, low value payment transactions.

2.6 Micro-payment Systems

Unlike macro-payment systems, micro-payment systems focus on supporting low-value
high volume e-payment transactions [88]. We review the key concepts of several micro-

payment systems below, identifying their key strengths and weaknesses.

2.6.1 Millicent

Millicent [54], a micro-payment system implemented by Digital Equipment Corp, now
owned by Compaq, went live in June 1999 in Japan, with wallets starting at 1000 yen and
payments as small 5 yen. Millicent does not fall into either the online or the offline
category, but rather is a distributed allocation of funds to vendors, who locally authorize

payments. Thus it is nearly an automated account based system.

Millicent introduces new kind of currency — a “scrip”, which is digital money that is issued
by a single vendor. Scrip has a value, just as cash does, but it has value only when spent
with specific vendor. Scrip consists of a signed message attesting that a particular serial
number holds a particular value. In addition to the necessary contents of electronic cash the
scrip will also hold an expiration date and information on the particular vendor with whom

the scrip can be redeemed.

The system includes customers (C), vendors (V), and a broker (B) and assumes that the
broker is honest and is trusted by both the customers and the vendors. The following

presents the steps for a complete Millicent session.

17

C buys the broker scrip at start of the day

Customer < > Broker

B returns initial broker scrip and associated secret

Figure 2-4 Customer buys broker scrip

If customers could buy scrip directly from vendor, Millicent would commit large accounts
with vendors and tying customers down to large information providers. To avoid such a
disadvantage, Millicent allows the scrip brokers to buy contracts from vendors to produce
scrip for customers. This means that the customer must in nearly always be able to connect

to the broker in order to be sure of the ability to make payment.

C requests V’s scrip paying with B’s scri
Bl Customer q P payiis :) Broker

Figure 2-5 Customer buys vendor scrip

B2. There are three models in which the broker gets the vender scrip.

* Scrip warehouse model assumes a casual relationship between the broker and vendor.

B requests V’s scrip

Broker < » | Vendor

V’s scrip & associated secret

Figure 2-6 Broker requests vendor scrip

* Licensed scrip production model assumes a substantial and long-lasting relationship
between the broker and vendor. If a broker buys a lot of scrip for a specific vendor, the
vendor sells the right to the broker to generate vendor scrip that the vendor can validate
and accept. This model is more efficient for the vendor and broker than the scrip
warehouse model. There is less communication because the broker does not need to

contact the vendor every time when the customer asks for vendor scrip.

* Multiple brokers’ model assumes a relation between brokers, but requires no

relationship between the vendor and customer’s broker.

18

Set up account with V

Customer’s Broker P » | Vendor

Vendor’s broker name

Figure 2-7 Customer’s broker creates account with vendor

Requires V’s scrip Requires V’s scrip

Customer’s Broker ———®»| Vendor’s Broker —————®| Vendor

V’s scrip & associated secret V’s scrip & associated secret

Figure 2-8 Customer’s broker requires vendor scrip with vendor

B3.
Broker » Customer
V’s scrip, associated secret & “change” B’s scrip
Figure 2-9 Broker sends scrip to customer
C. C buys services with V’s scrip
Customer < > Vendor

V returns information goods & “change”

Figure 2-10 Customer buys services

The customer continues using the change to make more purchases with this particular

vendor. When the customer wants to purchase with another new vendor, he needs to repeat

step B and step C.

Millicent uses no public-key cryptography and is optimized for repeated micro-payments to

the same vendor. Its distributed approach allows a payment to be validated, and double

spending prevented without the overhead of contacting the broker on-line during purchase.

Its main drawbacks include:

19

* The broker must be on-line whenever the customer wishes to interact with the new
vendor.

* The customer must nearly always be able to connect to the broker in order to be sure of
the ability to make payments, so that the system places a heavy real-time burden on the
broker.

* The vendor scrip is vendor-specific and has no value to another vendor.

* The transaction is complex in this system when the customer and the vendor have

different brokers.

2.6.2 Mpay

The Mpay micro-payment system proposal from IBM was previously named Minipay [40].
The system has been in internal tests and is also available to anyone in the Internet for
testing purposes from 1998 [49]. Mpay is very similar to the billing mechanism of the third
party value added services of the phone networks. The customer deals with his issuer, the
vendor deals with his acquirer and the issuer and the acquirer settles the accounts. The
system is suitable for selling inexpensive information and other similar services that are

usually delivered on-line. This is reflected in the protocol.

There are five parties which are the customer, the vendor, the customer’s billing system
(Internet Access Provider--IAP), the vendor’s billing system (ISP or bank), and an
exchange connecting the AP to the ISP or bank which would be a bank or similar financial

institution in Mpay system.

1. Daily certificate request

In the Mpay system, the customer connects every day to his issuer to receive a daily
certificate. This certificate signed by the issuer whose public key is known by all vendors.

The certificate states that the customer has an account and tells the recommended offline

limit for the daily purchases.

20

Request

>

Customer IAP

<
Daily certificate

Figure 2-11 Customer requests daily certificate with IAP

2. Transaction (online)

The customer clicks on a specific type of a tag in his browser. The system encodes the cost,
daily certificate and other necessary information and sends it to the server. This enables the
customer to send the payment at the same time as the query for the vendor. The payment
order is piggybacked on the request. The vendor verifies the signature of the IAP on the
certificate. If the daily limit is not exceeded, the vendor immediately responds to the
request. However if the daily limit is exceeded, the vendor connects to the IAP by sending
an extra spending request. The IAP may or may not send an extra spending reply to the

vendor according to the customer’s record.

Payment Extra spending
o I TR >
Customer Vendor IAP
< A
Respond Extra spending

Figure 2-12 Customer buys services with vendor

3. Daily deposit

At a fixed period the vendor sends all the payment orders from all customers in a single,
signed deposit message to the ISP. The ISP sorts the payment orders based on the IAP of

each of the customers and sends the single signed deposit message to them.

Daily Daily deposit

> |
ISP IAP
Vendor < S <

Balance Money

Figure 2-13 Vendor redeems payment orders

21

4. Daily process

At the end of the day or at the first purchase the next day, the customer contacts the IAP for
their daily process. In this process the customer and the IAP compare their records for the
previous day, all matching records are erased and replace them with a summarized and

signed document of purchases and the balance.

Request process

>
Customer < IAP

Balance

Figure 2-14 Customer confirms transactions with IAP

Mpay is based on a notational model and has off-line capability in its daily certificate.
Mpay only uses one or no public key operation per purchase, so the transaction cost is low.
Mpay system supports multi-currencies from the outset. An item to be bought can have its
price described as a list of currencies and prices in these currencies. There is no extra
communication required in the system, because of the payment order piggybacked on the
information request. It is a real ‘pay per click’ system; the customer can ease to use it

purchasing information goods.

Although Mpay is flexible, convenient and low-overhead payment system, the major
shortcoming is that the customer can pay nothing to the IAP who still needs to pay the ISP
after purchasing goods. The IAP can protect itself by requiring a deposit from the customer,
and by terminating Mpay and other services (e.g. Internet access), but the customer is still
free to spend for a full day. If a worldwide there are millions of online customers to use the
payment system and a lot of IAPs, it seems to be difficult to terminate Mpay and Internet
access to such customers. Even though the termination of Mpay and Internet access is
possible to some customers, this increases initialization cost, thus finally driving up the cost
of the system. There is also the question of who pays in case of fraud. The vendor will not
receive the payment and a high level of fraud will drive up the cost of the system.
Furthermore, the protocol is not fully anonymous due to the after-the-fact policing
requirements. Thus the IAP is able to collect a complete purchase profile of their

customers.

22

2.6.3 PayWord

PayWord is a micro-payment protocol proposed by Ron Rivest (MIT Laboratory for
Computer Science, MA, USA) in 1996 [72]. The protocol aims to reduce the number of
public key operations required per payment by using hash functions, which are faster. In
PayWord customers generate their own “coins,” or paywords, which are sent to vendors

and then verified by brokers.

The model involves three parties, which are customer, vendor, and broker and assumes that
the broker is honest and is trusted by both the customers and the vendors. The following

presents the steps for a complete PayWord protocol session.

1. PayWord certificate request

In the beginning of the transaction, the customer establishes an account with a broker, who
issues a digitally signed PayWord certificate, which contains identity and public key of the
customer and expiration date. The certificate authorizes the customer to make PayWord
chair (e-coins) and ensures vendors that the customer’s paywords are redeemable by the

broker.

Request
Customer > Broker

<

PayWord

Figure 2-15 Customer buys Payword chain

2. Transaction

When a user wishes to make a purchase at a vendor for the first time in a day, he first
randomly picks a payword seed wy, where n is the number of e-coins that a customer would
purchase at a typical vendor in a day. The customer then computes a payword chain by
repeatedly hashing wy: wi.; = h(wy), where i=1, ..., n. The customer then sends the digitally
signed commitment which includes wy the root of the payword chair and the certificate to

the vendor. It is used to show the customer’s intentions of spending paywords there.

23

Commitment to wy

Customer > Vendor

Figure 2-16 Customer sends commitment to vendor

To make m cents payment, the customer sends w; through wy, where m is the number of
paywords the customer wishes to spend and the requirement of the information goods to the
vendor. The vendor can easily verify this chain by hashing wy, m times until he reaches wy.

The vendor sends the information goods to the customer.

Request & Paywords w; to wi,

Customer > Vendor
<

Information goods

Figure 2-17 Customer buys information goods
3. Redeeming

At the end of each day, the vendor sends the customer’s commitment and the highest
payword spent to the broker. The broker verifies the paywords using the root wy and the
customer’s signature. If they are valid, the broker debits the spent amount from the

customer’s account and pays the vendor.

Commitment &
Highest payword spent
Vendor < > Broker

Acknowledgement

Figure 2-18 Vendor redeems paywords with broker

PayWord is an off-line system. The customer system only needs to contact the broker at the
beginning of each certificate lifetime in order to obtain a new-signed certificate. The system
aims to minimize the number of public key operations required per payment using hash
operations instead whenever possible. It is credit-based scheme where a user’s account is
not debited until some time after purchases. This provides more opportunity for fraud since

a large number of purchases can be made against an account with insufficient funds. The e-

24

coin (paywords) in the system is customer and vendor specific and the paywords in the

chain have no value to another vendor.

2.6.4 PayWord-based Micro-payment Protocols

The area of micro-payment on the Internet has attracted much attention recently. There are
several new micro-payment systems that are based on Payword micro-payment protocol.

These systems can be classified as credit-based and debit-based.

PayFair [96] is a debit-based micro-payment system that employs some parts of the
Payword scheme. A payword chain purchased from the broker will be bound to a specific
vendor. Many payword chains can be purchased in advance from the broker and stored in
the customer’s machine. This improves the performance and also the complexity of sending
another new payword chain to any specific vendor. There is no digital-signature required

for witness of the payment promise in the system.

NMP [46] is a credit-based protocol that improves the fairness for customers from the
Payword protocol. In the protocol, the customer generates a payword pair chain (Wi, Wi’)
and sends the first payword Wi to the vendor first. The i-th information goods is sent to the

customer when the payword is valid, then the Wi’ is sent to the vendor.

The Payword-based micro-payment systems described above share a common disadvantage
which is that they are vendor specific. The e-coin (paywords) in the systems is vendor

specific and the paywords in the chain have no value to another vendor.

2.6.5 Payment Systems Comparison

Ten system characteristics have been selected to evaluate micro-payment systems from
different points of views [49]. The characteristics concern with independence, design, trust,
transferability, security, privacy, divisibility, multi currency, ease of use, and on-line/off-
line. We emphasize the last six, since the first four are closely related to the general criteria

and features of the systems.

25

We discussed several micro-payment protocols in the previous sections, which mainly
formed on the strength and weakness of the micro-payment systems. The comparison below
is considered for micro-payment systems from the perspectives of reading the on-line
newspaper (Customers), newspaper vendors, and micro-payment brokers or macro-payment
authorisers. Table 2-2 lists the results of evaluating these various E-commerce payment

system models. The evaluation criteria we used include:

Ease of use — A protocol provides ability for customers to use a certain system smoothly
and easily. It is an important issue in micro-payments world. For maximum score there
should be no login name and password required in a system. Customers only need to click

and buy a web page. Customers should see pricing for articles clearly and seamlessly.

Security - The protocol prevents customers from double spending and any internal and
external adversaries from forging coins. Since high security leads to high costs and

computation time, security is also a key issue for keeping the transaction cost low.

Anonymity - The customer anonymity should be protected from vendors. Ideally it should
not be possible to trace a customer’s preferences and spending patterns just like with “real”

coins and paper money.

Multi currency — A payment system should be able to operate with multiple currencies, by
converting the currencies either inside or outside the system, since customers purchase

services and information via the WWW to all over the world by using a payment system.
Robustness — the protocol is tolerant of network bottlenecks and broker/authoriser down-

time. An on-line payment protocol typically leads to increase communication requirements.

This in turn leads to slower processing and higher transaction cost.

26

Table 2-2 Comparison of E-commerce payment methods

System/ CyberCash Millicent Mpay PayWord

property

Ease ofuse | Low, Customer | Medium, High, Medium,
contacts Broker | Customer nearly | Customer only | Customer
every always contacts | needs to click | generates and
transaction. Broker. and see what | manages e-coins

he pays. for every Vendor.

Security High, the system | Medium+, the | Medium, the | Low, the system is
performs system prevents | criminal is free | credit-based
checking, double spending | to spend | scheme to provide
clearing and | by using Vendor- | money to buy | more
recording of | specific scrip. content for a | opportunity for
transactions. full day. fraud.

Anonymity | Low, the system | Medium, Broker | Low, Low, Broker
records knows who and | Customer’s knows who and
identities, where but not | anonymity is | where but not what
exchanged what. Vendors | not supported. | vendors know
amount and time | know what but what and who.
of a transaction. | not who.

Multi No, only one|No, must be| Yes,converts | Yes, converts

currency currency $. match with scrip.

Robustness | Low, on-line | Low, on-line | High, off-line | High, off-line
payments payments payments payments

2.7 Internet Component Architecture

Building large, multi-tier, web-based applications requires a large number of software
services, from dynamic HTML generation to business domain object persistence [11].
Internet component architecture provides a specification and set of commonly required
system-level services to handle all of the complex details of components coordination. This
in turn lets application developers to concentrate on business logic without concerning the

complex services. Three examples of internet component architectures are: Object

Management Group (OMG)’s CORBA, Sun’s J2EE and Microsoft’s .NET.

2.7.1

The common Object Request Broker Architecture is a standard developed by the OMG to
provide interaction among applications of different systems in heterogeneous environment

[64]. CORBA’s core is Object Request Broker (ORB) which locates on both the server and

27

OMG’s CORBA Architecture

the client. It acts as a central Object Bus over which the CORBA objects can communicate
with each other. ORB creates and manages client/server communications between objects.

ORB is in charge of the following tasks:

* searching object implementations for client requirements;
* Making these implementations prepare to accept requires;

* Transmitting all components of the requiring and answering data.

The CORBA Interface Definition Language (IDL) provides the operating system and the
programming-independent interfaces to all services and components that are linked to the
ORB. IDL defines the modules, interfaces and operations for the application and is not
considered a programming language. Various programming languages, such as Java, C++,
and Ada, supply the implementation of the interface via IDL mapping. CORBA objects can
communicate over many popular networking protocols such as TCP/IP. ORBs
communicate among different vendors over TCP/IP using the Internet Inter-ORB Protocol

(IIOP).

To request a service, a CORBA client creates a remote object and registers it with the ORB.
The generated stub converts the request which is written in the language of implementation
of the client (such as Java or C++) into a remote request encoding using CORBA’s I1OP
Protocol. This encoded request is then sent to an ORB running on the machine where the
remote object reference was obtained from. The ORB then transfers this request to a
generated IDL skeleton which gives the IIOP-encoded remote request. The skeleton
converts the IIOP protocol back into the target language of the remote object
implementation. Finally the skeleton invokes the implementation of the remote object.
When this returns, any return value is converted into IIOP returned via the ORB to the stub,
which converts the value back into the target language of a remote object and return it to

the client. Figure 2-19 shows the main components of the ORB architecture.

28

[Client Object Implementation

)
L L

Stubs Interface Skeleton

Object Request Broker

Figure 2-19 The ORB architecture

2.7.2 Sun’s J2EE Environment

There are a number of Java technologies supporting the development of component-based,

distributed systems [86]. These include:

JavaBeans, which is the component model for Java. It is a set of standards for
packaging Java-implemented services as components. By following this standard, tools

can be built to inspect and control various properties of the component.

Remote Method Invocation (RMI), which allows Java classes on one machine to access

the services of classes on another machine.

Java Naming and Directory Interface (JNDI), which manages the unique identification

of Java classes in a distributed environment.

Enterprise JavaBeans (EJB) is a distributed component based framework. It provides a
standard means of defining server-side components, and specifies a run-time
environment for hosting the components on the server side. The services include:
process and thread dispatching, and scheduling; resource management; naming and

directory services; network transport services; security services; and transaction

29

management services. There are three main types of EJBs: session beans, entity beans

and message driven beans [85, 91].

At the end of 1999, Sun Microsystems announced their new enterprise solution architecture
named Java 2 Enterprise Edition (J2EE) [44] which provides many new features and
expand it scalability in enterprise computing to help enterprises to handle the growing fast
Internet populations. J2EE platform is an architecture for developing, deploying, and
executing applications in a distributed environment. It provides many services such as
transaction management, security, client connectivity, and database access so developer can
concentrate more on business logic rather than architecture design. The J2EE platform is a
3 or 4-tier client/server system which depends on the client being used in the system as

shown in Figure 2-20.

Client Tier
Web Browser Applet Container Application Client Container
Web Tier

Web Container

Servlets and JSP pages

i} Y

Business Tier
EJB Container

Entity Beans, Session Beans and Message-Driven Beans

]

Enterprise Information System Tier

Database ERP Applications Legacy Applications

Figure 2-20 J2EE Distributed Multi-tiered applications architecture

30

The distributed architecture of the J2EE platform consists of the following four parts:

Client Tier - The client tier is responsible for displaying the user interface. Depending
on the actual program, it is a program, written in Java or any other language or a web
browser. The Client tier contains the web clients, the applet container and the
application clients that are executed by the users. The thin client with the web browse
typically is a 4-tier system. The thick client with the standalone Java program running
in an application client container typically is a 3-tier system. The intermediate client
with the applet container (which in fact is most of the time a web browser) can be both
a 3 and a 4-tier system, although most implementations will be a 4-tier system. In case
of the application client container 3-tier system, the client tier connects directly to the
business logic tier. In this case the communication between the client tier and the
business tier will be RMI-IIOP based. In case of a web browser based 4-tier system, the

client tier connects to the web tier using HTTP or HTTPS.

Web Tier — The web tier is responsible for the presentation and application logic. The
web container contains Servlets and Java Server Pages (JSP) pages that generate the
appropriate HTML that can be displayed by the browser based clients. Because of the
nature of web tier the components will be highly application dependent, although it is

possible that presentation or application logic is shared between applications.

Business Tier - The business tier is responsible for the business logic. It is possible to
reuse business logic between applications in the J2EE platform. Enterprise JavaBeans
(EJB) provides a standard server-side distributed component model. These enterprise
beans solve or meet the needs of a particular business domain such as banking, retail

etc., The EJB container of the J2EE server hosts the enterprise beans.

Enterprise Information System (EIS) Tier — The EIS tier contains enterprise
resources, such as database systems, legacy applications and Enterprise Resource

Planning (ERP) applications.

J2EE architecture is composed by many software components. It provides many new

enterprise APIs that are built in the Java 2 Platform Standard Edition. It uses Java Database

connectivity (JDBC) APIs to connect database and retrieve information. All business logic

31

encapsulate in EJBs, reusable components that can be accessed by client program. Java
Naming and Directory Interface (JNDI) provides a unified naming and directory interface
for looking up service components. It also can use RMI-IIOP protocol to connect with

CORBA architecture.

2.7.3 Microsoft’s .NET Architecture

To enable sharing of functionality across desktop applications, Microsoft developed the
Component Object Model (COM) as the basis for inter-application communication. The
NET Platform as a programming model represents the next stage in the evolution of COM,
Microsoft's component platform.

NET is a platform which uses the component as its basic building block to create a
component infrastructure for web middleware [1]. The .NET Framework takes the best
aspects of COM and combines them with the web computing. The developer model for

building web services with Microsoft. NET is shown in Figure 2-21.

Briefly, Figure 2-21 can be explained as follows:

e Client tier — The client tier is either a traditional 'thick' client or a web browser
connect to Active Server Pages (ASP.NET) which renders user interfaces in HTML

or XHTML. Heavyweight user interfaces are built using Windows Forms.

* Web tier - The web tier contains ASP.NET technology that sits upon the Common
Language Runtime (CLR), allowing web page development to any language that
supports the CLR within the enhanced ASP environment.

* Business tier - The business tier of the .NET application is built using .NET
managed components. This tier performs business processing and data logic. It
connects to databases using Active Data Objects (ADO.NET) and existing systems
using services provided by Microsoft Host Integration Server 2000, such as the

COM Transaction Integrator (COM TI).

32

Client Tier

Web Forms Web Services Win Forms

]

Web Tier

ASP.NET

]

Business Tier

.NET Managed Components

]

Back-end System Tier

Database Business Partners

Figure 2-21 Developing web services with Microsoft. NET

* Back-end System Tier - The back-end system tier contains enterprise resources,
such as database systems and business partner which can connect with the .NET
application through web services technologies e.g. Simple Object Access Protocol

(SOAP). .NET uses SQL server 2000 to connect database and retrieve information.

There is a platform limitation for .NET technology on platforms. .NET only runs on

Windows, its supported hardware, and the .NET environment.

The CORBA standard has been widespread in the area of objected-oriented and distributed
systems. It supports independence of the computer architectures and programming
languages to be used. It can be used on different kinds of operating system platforms from

mainframes to UNIX boxes to Windows machines.

J2EE platform provides a simplified approach to developing scalable and high-availability
Internet/Intranet applications. It extends J2SE with many enterprise-related APIs, the Web

33

and the EJB component model, and runtime containers to host Web and EJB components.
One of J2EE's major advantages is that most of the J2EE vendors do offer operating system
portability. One of J2EE's major disadvantages is that the choice of the platform dictates
(demand) the use of a single programming language [79, 80].

CORBA and J2EE are open specifications and are not products. Microsoft's .NET platform
vision is a family of products. The major disadvantage of this approach is that it is limited
to the Windows platform, so applications written for the .NET platform can only be run on
NET platforms. The major advantage of this approach is that the cost of developing
applications is much lower, since standard business languages can be used and device

independent presentation tier logic can be written [30, 92].

2.8 Web Component Technologies

Many software industries expand their business market towards the Internet/Internet
environment. They all belong to web-based business applications that require database
connection, user authentication, session management and dynamic HTML generation.
Several methods are used to implement web application. Traditionally systems were
developed using Common Gateway Interface (CGI). CGI creates a separate process for
each request. When request increase, servers will be loaded with too many simultaneous

process. So that CGI suffers from performance limitations [45].

A few years later, server-side Java technologies, such as Java Servlet and Java Server Pages
(JSP), were proposed. Web applications using these technologies take Java’s natural

advantages of portability, reusability, and flexibly.

2.8.1 Java Servlets

Java Servlet [45] is a Java class that extends a J2EE-compatible Web server. Each servlet
class produces dynamic content in response to service requests to one or more URLs. To
execute a servlet it is necessary to connect the web server to a servlet engine and to
configure the web server in such a way it can recognize which clients' requests are directed
to a servlet. Servlet engine runs a Java Virtual Machine (JVM), manages servlets, and
maintains HTTP session state using cookie and local data stored on the server. Generally a

servlet is invoked by a post operation, executed through an HTML form. Then the servlet

34

executes the requested computation according to the received parameters and sends back to

the client an HTML page containing computation's results.

2.8.2 Java Server Pages

Java Server Pages (JSP) technology is built on top of the Java Servlet API, which can
provide dynamic user interface in platform-independent way ([87]. JSP separates
presentation from dynamic content. This makes it possible for developers to change page

layout without being concerned about any underlying dynamic content.

A JSP page is a text-based document that contains two types of text: static template data
and JSP elements. Static template data can be expressed in any text-based format such as
HTML, XML, and WML. JSP elements contain JSP tags and Java code to construct
dynamic content. During the process, these static data are unchanged and sent to the client
to be rendered as user interfaces in the browser. The dynamic data logic is processed by the

Java code.

The native scripting language for JSP pages is based on the Java programming language
and all JSP pages are compiled into Java Servlets. When receiving a request from the
browser, the JSP engine checks whether the requested JSP is the first request or has been
changed. If yes, the JSP pages are complied into a Servlet by the JSP engine. The JSP
performs Servlet tasks: request processing, forwarding, and communicating with business

objects which may be a remote CORBA object or an Enterprise Java Bean.

As we mentioned in Section 2.7.2, the JSP page can interact with back end resources via an
EJB component in J2EE environment. The EJB component manages access to the back end

resources, which provides scalable performance for high numbers of concurrent users [44].
2.9 Summary

In this chapter, we have introduced background information on electronic payment systems and
several macro-payment and micro-payment systems. Some possible Internet technologies are also

described for their implementation. There is a growing need for an effective, efficient micro-

payment technology for high-volume, low-value E-commerce products and services. Current

35

macro-payment approaches do not scale to such a domain. Most existing micro-payment
technologies proposed or prototyped to date suffer from problems with security, lack of
anonymity and performance. In the next chapter we propose a new micro-payment protocol

called NetPay in order to overcome the problems.

36

Chapter 3

The NetPay Protocol

This chapter proposes a new offline micro-payment protocol — NetPay. The main aim of
this protocol is that it shifts the communication traffic bottleneck from a broker and
distributes it among the vendors, places some of the micro-payment processing burden on
vendors when a customer wishes to purchase from a new vendor. We give a motivation for

the NetPay protocol; describe the protocol and some of its new characteristics.

3.1 Motivation

Though offline protocols have received a lot of attention from researchers and
cryptographers, no offline payment systems are currently in general public use. The
experimental system, Millicent [54] uses no public-key cryptography and is optimized for
repeated micro-payments to the same vendor. Its distributed approach allows a payment to
be validated and double spending be prevented without the overhead of contacting a third
party (often called broker) online during purchase from same vendor. However the third
party must be online whenever the user wishes to interact with a new vendor. The system
places a heavy real-time burden on the third party in such circumstances. Mpay [40] is
based on a notational model and has off-line capability in its daily certificate. Although
Mpay is flexible, convenient and a low-overhead payment system, customers can pay
nothing to access services for a full day. Due to the after-the-fact policing requirements,
vendors know customers’ information from daily certificates. Customer’s anonymity is not
supported in Mpay. PayWord [72] is a credit-based off-line protocol. The system aims to
minimize the number of public key operations required per payment using hash operations.
However the payword chain is customer and vendor specific, a customer can generate e-
coins (payword chain) that provides more opportunities for fraud and then spend them to a

specific vendor.
We developed a new protocol called NetPay that allows customers to purchase information

from vendors on the WWW without having to involve a third party in every transaction [22,

23, 24]. At the same time, NetPay protocol minimises the number of expensive public-key

37

operations [72] required per payment. Hash function operations [71] are used, in order to
reduce the transaction overhead. In addition, the NetPay system is capable of preventing

customers from double spending, vendors from double depositing and both from forgery.

The NetPay micro-payment protocol is based on the main approach used on the PayWord
[72] system. However, NetPay is a debit-based system and it also addresses the problem of

double spending and overspending by customers, and protects anonymity of the customer.

3.2 NetPay Scenario

In this section, we describe the transactions and related issues in the NetPay protocol. The
system includes a customer (C), vendor (V), and broker (B). We assume that the broker is
honest and is trusted by both the customers and the vendors. The customers and the vendors
may be dishonest. The vendors and the customers open accounts and deposit funds with the
broker. The payment only involves C and V and B is responsible for the registration of

customers and for crediting the vendor’s account and debiting the customer’s account.

* Broker: The role of the broker is to manage accounts of customers and vendors, and to
store e-coin information. It serves as accounting intermediary between customers and
vendors. A broker produces an e-coin chain which can be bought by the customers. E-
coin chains are used by the customers to pay for on-line content with vendors. A broker
provides a redeem service which can be used to redeem spent e-coins by vendors. A
broker handles real-money transactions which are outside the scope of NetPay to sell e-

coin chain and to redeem spent e-coins for real money.

* Customer: The customer registers and buys a payword chain with the broker. The e-
coin chain stores in his/her e-wallet for further purchases with vendors. The e-wallet of
the customer is responsible for sending e-coins as payment to vendors for buying
information goods. When the e-wallet receives a purchase request from a vendor, it
checks whether it has the appropriate amount of e-coins to pay for the requested
information goods. If not, the customer directly buys more with the broker. Then the e-

coins are sent to the vendor to pay.

38

* Vendor: The vendor offers information goods and sells them to the customers. When it
receives e-coins from a customer’s e-wallet as payment for a purchase, the e-coins are
verified whether it was tampered with, forged or spent doubly. If all checks succeed the

e-coins are stored for later redemption.

Figure 3-1 shows the NetPay payment model. This model works as follows:

1 Broker ay for Payword Chain
. Buy Payword
12. Pay fo s
% 3. Send Payword Chain Bank

Customer 11. Redeem

4 Goods pent Paywords
E-wallet 7. Validat
(Payword 5. hase Request Paywords
Chain)

6. Send P

e Vendorl
9. Change 8. Goods

Vendor

Figure 3-1 NetPay basic interaction between the parties

Initially a customer accesses the broker’s web site to register and buy a number of e-coins
from the broker (1) using a single macro-payment (1). The broker sends an “e-wallet” that

includes the e-coin chain to the customer (3).

When the customer wishes to purchase information goods from Vendorl site (4), the
Vendorl sends a purchase request to the customer’s e-wallet (5) and the e-wallet sends e-
coins to the vendorl (6). Then Vendorl gets validating information from the broker and
verifies the e-coins (7). If the payment is valid, the information goods is sent to the
customer (8). The customer may purchase other information goods, their coins being

debited. If coins run out, the customer is directed to the broker’s site to buy more.

39

When the customer changes to Vendor2 (9), Vendor2 first requests the current e-coin

validating information from the Vendorl. Vendor2 contacts Vendorl to get the e-

validating information and then debits e-coins for further information goods (10).

At the end of each day, the vendors send all the spent e-coins to the broker redeeming them

(11) for real money (12).

3.3 Preliminaries

There are a number of cryptography and micro-payment terminologies used in the NetPay

micro-payment protocol. The details of these terminologies are given as follows.

1.

2.

Hash function - In mathematical terms, a one way function # means that given a value
(real number, or complex number) x, there is one and only one y=/A(x) (y is also a real
number or complex number), but, given y, there are more than one x such that y=h(x). A
one way hash function 4 is a data value, which is easy to compute the data value y=h(x)
but difficult to reverse, i.e., it is difficult to find data value x such that y=h(x) for a given

data value y.

The one way hash function MD5 used in NetPay implementation is an algorithm that
has the two properties. It seems impossible to give an example of hash function used in

hash chain in a form of normal functions in mathematics. The difficulties include:

* The value of a mathematical function is a real or complex number (a data value for

hash function);

* It is always possible to compute the set X = {x‘x =h"(y)} for a given y for a

mathematical function /4 (not satisfying the two properties of the hash function).

Payword Chain — A “payword chain” is generated by using a one way hash function.
Suppose we want to generate a payword chain which contains ten “paywords”. We need
randomly pick a payword seed W;; and then compute a payword chain by repeatedly
hashing

40

Wio=h(Wi1), Wo=h(W),

W] = h(Wz), Wo = h(W])

where h(.) is a hash function such as MD5 and W, is called the root for the chain. The
MDS5 (Message Digest) algorithm [71] is one of the series of messages in hash
algorithms and involves appending a length field to a message and padding it up to a
multiple of 512 bit blocks. This means that every payword W; is stored as a 32 length
string in a database. A payword chain is going to be used to represent a set of E-coins in

the NetPay system.

. E-coin — An “e-coin” is a payword element such as W, or Wy,. The value of a payword

e-coin might be one-cent but could be some other value.

. E-wallet — An “e-wallet” is used to store e-coins and send e-coins to a vendor paying

for information goods, i.e. it shows one or more payword chains

Touchstone — A “touchstone” is a root Wy and is used to verify the paywords W; W, ...
Wio by taking the hash of the paywords in order W, first [h(W;)= W], then W,
[h(h(W))= Wy], and so on. This is used to verify the e-coins are “valid” i.e. have not

been forged.

. Index — An “index” is used to indicate the current spent amount of each e-coin
(payword) chain. For example if you have spent 2cs (W), W;) to buy an information

goods, the current index value is 3 in the previous example of a chain W, Wy,.

The management of the security of e-coins is one of the key issues in micro-payment

systems. NetPay uses a low-cost per transaction but high security method between

customers and vendors to secure the use of e-coins [22, 23]. This method adopts the passing

of “touchstones” used to verify the validity of an e-coin passed to a vendor from a

customer’s e-wallet. When a customer first tries to spend an e-coin the vendor

communicates with the broker to obtain a validating touchstone for the e-coin. Each e-coin

encodes a “payword chain” where a fast hashing function gives the next valid coin in the

chain each time a coin is spent. An index associated with each e-coin indicates the amount

spent so far. When a customer moves to another vendor site, the new vendor obtains the

41

touchstone value and index from the previous vendor. The initial transfer of e-coins from
broker to customer is secured by public key encryption. The index value associated with the
e-coin is used to prevent customer from double spending and ensures no conflicts between
vendors [22]. The vendor does not know the identification of the customer at any stage,
preserving their anonymity. In NetPay, the customer needs to contact the broker to buy e-
coins only when his e-coins run out and thus it is a full off-line system during purchase of

information goods.

3.4 NetPay Transactions

Our micro-payment protocol NetPay [22] aims to provide a secure, cheap to implement,
widely available, debit-based protocol for micro-payments. NetPay differs from previous
protocols in the following aspects: NetPay uses touchstones signed by the broker and
Index’s signed by vendors passed from vendor to vendor. The signed touchstone is used by
a vendor to verify the electronic currency — paywords, and a signed index is used to prevent

double spending from customers and to resolve dispute between vendors.

In a NetPay system, there are four trasactions which are customer-broker, customer-vendor,
vendor-vendor, and vendor-broker transactions. How the NetPay protocol works in each

transaction will now be described in more detail. We adopt the following notations:

IDa --- pseudonymous identity of any party A in the trade community issued by the
broker.

PK-a --- A's public key.

SK-a --- A's digital signature.

{x}SK-a --- x signed by A.

{x}PK-a --- x is encrypted by A's public key.

3.4.1 Transaction 1: Customer — Broker

Before a customer asks for service from the first vendor (V,), she has to register and send
an integer n (M1), the number of paywords in a payword chain the customer applied for, to

the broker (Figure 3-2). The broker completes two actions:

42

* Debits money from the account of C and creates a payword chain Wy, Wi, Wa,...,W,,
Wi which satisfy W; = h(Wiy;), where 1 = n, ..., 0. Root Wy is used to verify the
validity of the paywords Wi, W», ..., W, by vendors and the broker. Seed W, is kept
by the broker to be used to prevent the customer from overspending and forging
paywords in that chain. The customer only receives 1D (e-coin ID) and paywords Wi,
Wa,...,W, that are encrypted by customer’s public key from the broker (M2) as shown
in Figure 3-2.

M2 = { ID., Wy, Wa, ... ,W,, B’s host and port} pk_customer

* Save IDe, Wy, W,41, and amount to the broker database.

M1
Customer » Broker

M2

Figure 3-2 Customer buys e-coins transaction

For example, the customer sends n=50 to the broker who generates the IDe=1 and payword
chain {Wo’ Wl, Wz, ,Wso, WSI}- The e-wallet is thus {IDC, Wl, Wz, ,W50,
”www.sharlene.com”, “1051” (the broker’s port)} as shown in Figure 3-3 and the broker

saves IDe, Wy, Wy+1, and 50 to its database.

e-coinlD 1

oo A -
Host “www.sharlene.com.nz”
Port 710517

Figure 3-3 Customer e-wallet database in the beginning of the transaction

The customer-broker transaction guarantees no overspending and forging. The broker
selects the seed Wy, to create the payword chain which satisfy W, = h(Wp1), Wy =
h(Wh), ..., Wi = h(W,), Wy = h(W)) and keep the seed Wy secretly. It is impossible to

forge the paywords in that chain by customers, vendors and attackers, since they do not

43

have the seed Wy, i.e. it is impossible to generate other paywords in a chain by knowing

some of them in the chain since h() is a truly one-way hash function [71].

3.4.2 Transaction 2: Customer — Vendor

The following sequence of messages describes a transaction between a customer and a
vendor in the course of a purchase. The customer and vendor need to agree on the amount
that C pays. In our scheme, the price of a web page might be one-cent, but could be some

other amount.

When a customer purchases information from V; V; sends a price (e.g. m), host and port
(M3) to the customer’s e-wallet. The e-wallet compares the host and port in M3 with the
previous host and port. If different, the e-wallet sends a message M4 back to Vy;

M4 = { IDe, paywords, B’s host and port};

where paywords = {W;, W», ..., Wy}. For example , to make a 2cs (m=2) payment, the
customer sends the paywords W;, W,: Paywords = {W, W} to the V.

If the customer fist time makes a purchase with a vendor using the e-coin, V; sends the IDe
(M5) to the broker for requesting the touchstone. The broker computes the touchstone for
the payword chain:

M6 =T = {IDe, Wo} sk-broker

and sends it to V1. T is signed by B. The touchstone authorises V; to verify the paywords

using root Wy and redeems the paywords with the broker as shown in Figure 3-4.

First time purchasing with a vendor
M3
< M5)
Customer - » Vendor1 Broker
4.;
< M6
M7

Figure 3-4 Customer buys information goods transaction

44

The paywords are verified by taking the hash of the paywords in the order W, first, then
W, and so on. The paywords W, and W, are valid if the hash matches the root of the chain
(Wo) in the touchstone (h(W)=W,, h(h(W;))=W,). This works because the hash function
with the property Wi ;=h(W;) (i=1, 2, ..., n) and V; gets W, from the broker.

On the other hand, it is hard for V; to create W, even though he knows W, since the
generation of a value that would hash to Wy is computationally infeasible due to the nature
of the one-way hash function [71]. For the same reason, it is also hard for an attacker to
generate valid paywords in the chain even if he knows W, or some paywords except for the

seed Wy [71, 56].

If the paywords are valid, they will be stored for a later offline transaction with the broker.
The customer is supplied with the information goods (M7). Multiple payments can be
charged against the length of the payword chain, until the payword chain is fully spent or

the customer no longer requires information goods on WWW [71].

For example the V| sends M3 = {3cs (the price of the information goods),
“www.enewspaperl.com.nz”, “1053” (V,’s port)} to the customer’s e-wallet, when the
customer requests to buy an information goods which costs 3cs. The e-wallet compares
“www.enewspaperl.com.nz”, and “1053” in M3 with “www.sharlene.com.nz” and “1051”
in the current record of the e-wallet and then sends M4 = {IDe, W;W,;W;3,
“www.sharlene.com.nz”, “1051”} to the V;. The current state of the customer e-wallet

database is shown in Figure 3-5.

e-coinlD 1

N eaccccao?
Host “www.enewspaperl.com.nz”
Port 71053

Figure 3-5 Example of customer e-wallet database after first transaction

45

The V; gets T (M6) from the broker by sending IDe (M5) and then verifies W;, W,, W3 by
using Wy such as h(W;)=W, h(h(W2))=W,_ h(h(h(W3)))=W,_If the paywords are valid, V,
sends the information goods to the customer (M7) and saves IDe=1, index=4, price=3, Wy,

paywords= W;W,Wj in a redeem database as shown in Figure 3-6.

E-coinlD

Index

Price

1
4
3
Touchstone
aas

Figure 3-6 Example of redeem database after first transaction

Paywords

The customer continues to buy other information goods which costs 2cs, the V| sends M3 =
{2, “www.enewspaperl.com.nz”’, “1053”} to the customer’s e-wallet. The e-wallet
compares “www.enewspaperl.com.nz”, and “1053” in M3 with
“www.enewspaperl.com.nz”, and “1053” in the current record of the e-wallet and then
sends M4 = {IDe, W4Ws, 7, “’} to the V,. The current state of the e-wallet database is

shown in Figure 3-7.

e-coinlD 1

S ccaca s
Host “www.enewspaperl.com.nz”
Port ”1053”

Figure 3-7 Example of the e-wallet database after second transaction

46

The V, verifies W4, W5 by using Wy obtained before. If the paywords are valid, V, sends the
information goods to the customer (M7) and saves IDe, index=6, price=2, W, paywords=

W4Ws to the redeem database as shown in Figure 3-8.

E-coinlD

Index

Price

Touchstone

1

6

2
Paywords

Figure 3-8 Example of redeem database after second transaction

3.4.3 Transaction 3: Vendor — Vendor Payword

Relocation

As we described the NetPay scenario in Section 3.2, the vendor2 requests the current e-coin
index and the touchstone from vendorl to verify the e-coins when the customer changes

purchasing from the vendorl to a vendor2 as shown in figure 3-9.

First time purchasing with a new
M8 vendor
M9 > M10 >
Customer Vendor2 Vendor1
< <
M12 Ml11

Figure 3-9 Paywords relocation transaction

When the customer wishes to purchase information goods at V,, V, sends a price, host and
port (M8) to the e-wallet. The e-wallet compares the host and port in M8 with the previous

host and port. If different, the e-wallet sends a message

47

M9 = {IDe, paywords, V,’s host and port}

to V. V; transmits the IDe (M10) to V; requiring touchstone and index. The V; signs the
following transmission message:

Index = {IDV], 1} SK-v1

along with the payword chain touchstone, and transmits them to V2 (M11), where i is the
index of the last payword V; received. The Index may be used for disputes between the
vendors, and the touchstone is used to make future transactions with C and to redeem the
paywords from the broker. After V, verifies the paywords using the touchstone and the

index, the customer receives the information goods (M12).

For example, when the customer requests to buy an information goods which costs 4cs with
V,, Vasends M8 = {4, “www.enewspaper2.com.nz”, “1054” (V,’s port)} to the customer’s
e-wallet. The e-wallet compares the “www.enewspaper2.com.nz” and “1054” in M8 with
the “www.enewspaperl.com.nz” and “1053” in the current record of the e-wallet and then
sends M9 = {IDe, WsW;WgWy “www.enewspaperl.com.nz”, 1053} to the V,. The current

state of the e-wallet database is shown in Figure 3-10.

e-coinlD 1

Paywords coe
Host “www.enewspaper2.com.nz”
Port 710547

Figure 3-10 Example of the e-wallet database after sending e-coins to the V2

The V; gets the touchstone and index (=6) (M11) from the V; by sending IDe (M10) and
then verifies We, W7, Ws. Wy by using W. If the paywords are valid, V, sends the
information goods to the customer (M12) and saves the IDe, index=10, price=4, Wy,

paywords= W¢W7W3sWy to a V,’s redeem database as shown in Figure 3-11.

48

E-coinlD 1

Index 10

Price 4

Touchstone
Ao

Figure 3-11 Example of redeem database after first transaction with V2

The customer can continue to buy other information goods with the V,. This transaction has
two advantages: firstly, the transfer of the message M11 from V1 to V2 does not involve
the broker, it reduces the communication burden of the broker; secondly, the message M11
includes the index of the paywords, it prevents the customer from double spending when

the customer purchases from another vendor.

3.4.4 Transaction 4: Vendor — Broker Offline

Redeem Processing

At the end of each day (or other suitable period), for each payword chain, all vendors need
to send all paywords that they received from customers to the broker and redeem them for
real money. To do this a vendor must aggregate the paywords by each e-coinID and send
the following message to the broker
M13 = {IDv, IDe, Payments}
The broker needs to verify each payword received from the vendor by performing hashes
on it and counting the amount of paywords. If all the paywords are valid, the broker
deposits the amount to the vendor's account, and then sends an acknowledgement
M14 = {Balance Statement of the vendor's account}

to the vendor as shown in Figure 3-12.

MI13
Vendor » Broker

M14

Figure 3-12 Vendor redeem transaction

49

For example, at the end of each day, V; aggregates two payments as shown in Figure3-6
and Figure3-8 for IDe=1 and sends IDv; and IDe along with 6 (index), 5 (price), W, W, ...
W5 (paywords) (M13) shown as Figure 3-13 to the broker. The broker verifies the paywords
(W1W; ... Ws) by using Wy index (6) and price (5). If they are valid, the broker deposits

Scs to the vendorl's account and send the balance to the vendorl (M14).

IDv, 8
E-coinID 1
Index 6
Price >

Nacaco

Figure 3-13 V, aggregates two payments
3.4.5 Possible Extension - Divisibility

The NetPay system introduced so far has only one payword value e.g. 1c per coin. In this
subsection, we describe how to extend the system to paywords with any values. This means
users can extend the system to any number of values as required by simply following the

changes illustrated below.

The broker could generate payword chains that have different values for customer, e.g,
assume 6 values of these chains, $0.01, $0.02, $0.05, $0.10, $0.20, and $0.50 are required

for every customer. Let these payword chains be

Wi, Wig, ... ,\Win

50

Where Wi satisfy Wi = h(W; 1) (j=mn, ... ,0and 1=1, ... ,6) and h() is the hash
function introduced before. Roots W o, W2, ... , W¢ are used to verify the validity of
the paywords by the vendors and broker. Seeds Wi ni1, Wanti, ..., Wens1 are kept by the
broker to prevent the customer from forging and overspending. The messages in NetPay

should be changed as follow.
M2 ={IDe, Wi 1, Wiz, Win, ..., W1, Wea, ..., Wen, B’s host and port } pk-customer
MS5 =T = {IDe, W19, W20, ..., We0 } sk-broker
Paywords = { (W;;) } wherei=1,...,6andj=1,...,n.
Index = {IDy 11,12, ..., 16 } SK-vi
All other procedures in the process remain unchanged.

3.5 Customer Anonymity

A fundamental property of physical cash is that the relationship between customers and
their purchases is untraceable. This means that the payment systems do not allow payments

to be traced without compromising the system’s security.

The payword chain in the NetPay system is sold by a broker and redeemed by different
vendors. The broker cannot determine where the customer is going to spend the paywords
except for the first purchase by the customer, because the payword chain is not vendor-
specific. But the broker knows the vendors that a customer traded with when the vendors

redeem paywords. In other words, NetPay offers partial anonymity.

3.6 Differences between NetPay and PayWord

The basic parts of the NetPay protocol are based on the PayWord protocol [72]. Like
PayWord, NetPay transfers money to vendors in the form of a payword chain. The
difference between PayWord and NetPay is the allocation and distribution of the payword

51

chain. In PayWord, a payword certificate authorises a customer to generate payword chains
and guarantees that a specific broker will honour them. The payword chain is vendor-
specific and customer-specific. Hence the paywords in the chain have no value to another

vendor.

In contrast, NetPay is a debit based scheme, in which the payword chain is generated by the
broker for every customer. The customer spends paywords from one vendor to another
without involving of the broker. The payword chain remains active at only one vendor at a
time, thus preventing customers from double spending. The payword chain in NetPay
system is customer-specific but not vendor-specific. The paywords can be spent with any
vendor. Customers in the NetPay do not need to generate and manage the vendor-specific
payword chains for every vendor, thus the NetPay is easier to use than PayWord for

customers.

3.7 Summary

Vendor specific e-coins and no anonymity for customers are two common disadvantages in
many existing micro-payment systems. Since only the broker knows the mapping between
the pseudonyms (IDc) and the true identity of a customer in NetPay, the protocol protects
the customer’s privacy from vendors. The protocol also prevents customers from double
spending and makes it very difficult and expensive to forge e-coins, so it satisfies the
requirements of security as a micro-payment system should have. The protocol is “cheap”
since it typically involves no public-key operations per purchase. The e-coin (payword
chain) is not vendor specific and can be used to buy information goods from any vendor
using the same broker. We now describe some prototype NetPay-based thin-client web
applications that enable customers to click and buy information goods on the Internet by

using the NetPay protocol.

52

Chapter 4

NetPay System Requirements

In the previous chapter we have described a new micro-payment protocol — NetPay. This chapter
describes the specification of a NetPay-based micro-payment e-commerce system by
capturing the essential user requirements with Object Oriented Analysis (OOA). It starts
with a brief introduction of the problem domains by introducing scenarios where vendors
want to charge on a usage basis and compare the use of several micro-payment models.
This is followed by discussing the NetPay system’s requirements for an on-line newspaper
application. A detailed OOA specification of NetPay is presented, which consists of three

parts: system requirements, use case modelling, and OOA modelling.

A software process model simply includes five phases which are requirements engineering,
design, implementation, testing, and maintenance [83]. The requirements engineering phase
which includes user requirements and use case, non-functional requirements and object
oriented analysis will be introduced in this chapter [14]. The design and implementation
phases which contains software architecture design, object oriented design, database design
and implementation for a CORBA-based and a component-based NetPay will be introduced

in Chapter 5 and 6.

4.1 Problem Domain

Before identifying the user requirements of NetPay, some practical issues are discussed in
detail. These focus on the reasons for developing a NetPay micro-payment system, which
mainly concerns the selling of goods on the Internet. In addition, NetPay’s requirements are
also compared with other micro-payment systems like Millicent, Mpay or PayWord which

are alterative micro-payment models for this purpose.

53

4.1.1 Practical Issues

With the development of Internet businesses, more and more content providers are
switching once free content or services to a paid subscription model or pay-per-click model,
eliminating the revenue relying on only an advertisement market [68, 54]. Today there are
already many newspapers and journals in electronic form. Some of newspapers and journals
allow their regular subscribers to read the articles on the net for free while they also get a
normal paper copy of them. Such a procedure seems to waste resources since the
subscribers can print the articles in which they are interested on net and thus there is no
need to read the paper copy. Micro-payment systems could be used to make things different
for online contents or services [41, 55, 63]. You can read and download an article and only

pay a small amount of money e.g. 10c or 20c.

There are many possible applications of micro-payment systems. They can be used to buy
not only just text-based information but also other goods. One of the non-text-based goods
is online-music [57], where one can download a single song from on-line music sites by
paying a small amount money. There is also a multitude of game sites [12] on which micro-
payment systems could be used. Another candidate for micro-payment is clip-media

services where one can purchase graphics, audio, and video online [53, 51].

4.1.2 An E-newspaper with Two Payment Methods

Assuming a reader wants to read an on-line newspaper. Using subscription-based payment,
they would first have to subscribe to the newspaper by supplying payment details (credit
card etc) and the newspaper system would make an electronic debit to pay for their
subscription, by communicating with an authorisation server. The user would then normally
go to the newspaper’s site where they login with an assigned user name and password. The
newspaper looks up their details and provides them access to the current edition if their
subscription is still current. If the user’s subscription has run out, they must renew this by
authorising a payment from their credit card. Figure 4-1 (a) outlines the key interaction use
cases for this scenario. Problems with this approach are that there is no anonymity for the user
(the newspaper system knows exactly who they are and when and what they read), they can not
browse other newspapers without first subscribing to them too, and they must pay for the whole

newspaper, even if they want just one or two sections or articles.

54

An alternative approach is a micro-payment model [52]. The user first goes to a broker and
purchases “E-coins” using a single macro-payment. These are stored in an E-wallet on the user’s
machine. The user can then visit any newspaper site they wish, with their wallet giving the site an
E-coin. Each time they view an article (or section or page, depending on the item charged for)
their E-coin is debited. The vendor redeems debits with the broker (for “real” money”)
periodically e.g. each night/week. The user can move to another site and unspent money
associated with their E-coin is transferred from the first vendor to the second. If coins run out, the
user communicates with the broker and authorises another macro-payment debit. Figure 4-1 (b)

outlines the key interaction use cases for this scenario.

/Subscribe Make \ Get E-coins
\ Macropayment \ Broker

Customer Authorisation Customer
System Cﬂs»:

Read Article Redgem
Read Article Debit Coin Debit

(a) Typical macro-payment interaction model. (b) Possible micro-payment interaction model.

Figure 4-1 Two on-line newspaper interaction scenarios

Currently many customers rely on credit cards for e-commerce purchases. However the
credit card method cannot be effectively or efficiently applied for buying a large number of
inexpensive information goods with different vendors’ sites, such as single articles of an
on-line newspaper, because transaction costs are too high. Encryption mechanisms used are
slow and each transaction typically “costs” a few cents. An Internet micro-payment system
would allow spending large numbers of small amounts of money at web sites in exchange
for various content or services, as in the E-newspaper scenario above [23]. As noted by

Blankenhorn [8] there is a real need for micro-payment systems.

4.1.3 Comparing NetPay with Payment Systems

We evaluated four of the payment protocols in Section 2.6.5 using the five evaluation
criteria. Table 4-1 lists the results of comparison for NetPay protocol with the four payment

system models.

55

Table 4-1 Comparison of payment methods with NetPay

System/ CyberCa Millicent Mpay PayWord NetPay

property sh

Ease of use Low, Medium, High, Customer | Medium, High, Customer
Customer Customer nearly | only needs to | Customer clicks and gets the
contacts always contacts | click and see what | generates and | content. No login
Broker. every | Broker. he pays for. manages T lsitesils @
transaction. different e-

. wallet.
coins for every
Vendor.

Security High, the | Medium+, the | Medium, but the | Low, the | Medium+, the
system system prevents | criminal is free to | system is | system prevents
performs double spending | spend money to | credit-based double spending
checking, by using Vendor- | buy content for a | scheme to by transferring
clearing and | specific scrip. full day. provide

: touchstones and
recording for more .
every opportunity for indexes between
transaction. fraud. vendors.

Anonymity Low, the | Medium, Broker | Low, Customer’s | Low, Broker | Medium+,
system records | knows who and | anonymity is not | knows who | Customer’s
identities, where but not | supported. and where but anonymity is
exchanged what. Vendors not what protected o
amount and | know what but vendors know
time of a | notwho. what and who. vendor.,
transaction.

Multi No, only one | No, must be | Yes,converts Yes, converts Yes, converts

Currency currency $. match with scrip.

Robustness Low, on-line | Low, on-line | High, off-line | High, off-line | High, off-line
payments payments payments payments payments

The NetPay system, which is an off-line protocol, allows customers to purchase high-
volume, low-cost per item information from vendors on the web without involving the
broker in every transaction. The number of expensive public-key operations required per
payment are minimised by using fast hash function operations to get the next payword
chain coin, in order to minimise the transaction overhead [22, 23]. Customers are prevented
from double spending as the index of the payword chain indicates the balance of the
customer’s e-wallet, and the touchstone can be used to verify the payword chain. NetPay
allows customers to move transparently from one vendor site to another, with a single e-
coin touchstone and index transfer between vendors. Since only the broker knows the

mapping between the pseudonyms (IDc) and the true identity of a customer, the protocol

protects the customer’s privacy.

4.2 User Requirements and Use Cases

The requirements analysis process defines the principles, standards, techniques, activities,
and steps that must be applied to develop requirements for a problem domain.

Requirements define what the system needs to perform rather than how the system is

56

designed, programmed or tested [83]. The basic process we go through to determine the
requirements of NetPay system is to identify and describe users in the system, elicit user
requirements of the system, analyse and document the user perspectives on the system. To do

this, UML Use Case diagrams and use case descriptions are the common ways.

Suppose the e-newspaper sites want to use the NetPay micro-payment system to sell articles
on a per usage basis. The system involves four parties which are NetPay broker site, e-
newspaper sites, customers and a bank macro-payment system. The customers can be
classified as registered customers and unregistered customers. Only registered customers
can buy e-coins from a broker’s site and click-buy-article with any newspaper sites. Both

types of customers can search and view article titles on line.

Initially a customer accesses the broker’s web site to register and acquire a number of e-
coins from the broker (bought using a single macro-payment). The broker sends an “e-

wallet” that includes the e-coin ID, touchstone, and e-coins to the customer.

The customer browses the home page of the newspaper web site and finds a desired news article
to read. Each article will typically have a small cost e.g. 5-10c, and the customer would typically
read a number of these. When wishing to read the details of an article, the customer clicks on the
article heading and the vendor system debits the customer’s e-coins by e.g. 10c (by taking 1, 2 or

more e-coins from their payword chain, up to 10c value).

The newspaper system verifies that the e-coin provided by the customer’s e-wallet is valid by use
of a “touchstone” obtained once only from the broker. If the payment is valid (coin is verified and
sufficient credit remains), the article is displayed on the screen. The customer may browse other
articles, their coins being debited (the index of spent coins incremented) each time an article is

read. If coins run out, the customer is directed to the broker’s site to buy more.

When the customer changes to another online newspaper (or other kind of vendor using the same
e-coin broker currency), the new vendor site first requests the current e-coin touchstone
information from previous vendor’s site. The new vendor contacts the previous vendor to get the

e-coin touchstone and “spent coin” index and then debits coins for further news articles.

57

When the previous vendor system is “down”, a backup server in the system sends the e-coin ID,
the touchstone, and the index to the broker. The new vendor could contacts with the broker to get

the e-coin touchstone and the “spent e-coin’ index.

At the end of each day, the vendors all send the e-coins to the broker redeeming them for real

money (done by macro-payment bank transfer from the broker to vendor accounts).

From above, several stakeholders of the required system can be identified and the main scenarios
of use of the system have been presented. The following sections illustrate functional and non-

functional requirements for the system.

4.2.1 Use Case Diagram

Use Case analysis is one of the first and primary means of gathering requirements in the
behavioural methodology. Use cases are a standard technique for gathering requirements in
many modern software development methodologies. Use cases are included in the Unified
Modeling Language (UML) which is very common software modelling approach [30, 10].
This section focuses on use case modeling to specify the NetPay micro-payment system’s
requirements, so as to get a more comprehensive appreciation of the functional

requirements on the e-newspaper with NetPay systems.

Use case is a requirements capture technique used in this project to identify, clarify, and
organize system requirements. The use case is made up of a set of possible sequences of
interactions between systems and users in a particular environment and related to a
particular goal. The actors interact with the system via each specific use case. Actors are
typically the people who use the system, or the external entities that need to interact with
the system. In the NetPay micro-payment system, actors are customers (e.g. newspaper
customers), macro-payment system (e.g. bank), on-line e-newspapers, and a broker which
is responsible for the registration of customers and for crediting the e-newspaper’s account
and debiting the cystometer’s account via a macro-payment system. We assume that the

broker is honest and is trusted by both the customers and the e-newspapers.

Figure 4-2 illustrates the system’s main use case view. It shows the customer can register

and purchase some e-coins (using macro-payment such as credit card) with the broker site.

58

When a customer wants to buy articles he/she can directly login or go to e-newspaperl site,
then click desired article heading. The vendor system debits and verifies the e-coins. If e-
coins are valid, the customer can view or print or download the content of the article. E-
newspaper?2 requires touchstone and index from e-newspaperl when the customer changes
to e-newspaper2 purchasing articles. At the end of each day, all e-newspaper systems send

redeem messages to the broker system for real money.

%/ Reg|ster

2. Buy E-coins

3. Payment for E coms
Broke
Bank
@ 9. Payment for
Redeeming Coins

6. Get Touchstone 8 Redeem E-coins

Custo er

4. Store E-coins
in e-Wallet
5. Access newspaer %
page
O <<uses>> % E- newspaper 1
10. Visit Other\

. I 7. Debit E-coi
Newspaper/Site \/ 11. Request Touchstone

E-newspaper 2

Figure 4-2 E-newspaper with NetPay system main use case diagram

When a customer first tries to spend an e-coin the vendor communicates with the broker to
obtain a validating touchstone for the coin. Each e-coin encodes a “payword chain” where a
fast hashing function gives the next valid coin in the chain each time a coin is spent. An
index associated with each e-coin indicates the amount spent so far. When a customer
moves to another vendor site, the new vendor obtains the touchstone value and index from
the previous vendor. The transfer of e-coins from broker to customer is secured by public
key encryption. The index value associated with the coin is used to prevent customer from

double spending and ensures no conflicts between vendors [20].

4.2.2 Use Case Descriptions

59

Brief descriptions for register, buy e-coins, debit e-coins and redeem e-coins use cases are
show in this subsection. The tables 4-2 to 4-5 describe the event flow of the use cases and

the screen dumps (Figure 4-3 to 4-5) show the corresponding interfaces of the use cases.

Table 4-2 Register Use Case

Use Case Name: Register
Description: Used by customers to register via broker web page.

1. Customer enters broker’s home page and selects
“register”. Customer fills in registration information
which includes customer name, email address, password,
and credit card details to open an account as shown in
Figure 4-3. Then the customer clicks register button. If

the bank information is not correct, go to step 3.
Event Flows: & P

2. Broker generates a customer ID and creates an account
for customer.

3. Incorrect credit card information — error message
displayed. Go to 1.

Related Actors/Use Cases: Used by customer actor
Special Conditions:

2§ Customer Registration - Microsoft Inl'. — |0l x|
J Fil= Edit %ew Favorites Tools Help ﬁ
J smBack + = - @ b | @Search [35] Faworites 2

J-':'-ddFESS IE http:,I',I'|IIIEE|||‘|DS|::BDBD,I'SFE,I'erkEr,I'EUStDrj G0 JLinks &

Customer Registration

Hm;lxiau:uling cai

Achohodod
Pasmrc-rd:l

wohzAAcA
EeEnter Passwt:u‘d:l

Finail sddrees: [aclingd @hotrmail. com
Credtit caras: |1 234567690

Fegistar I Resetl

|@ Crane I_I_ (B8 Local intranst

[
4

Figure 4-3 Example customer registration

Table 4-3 Buy E-coins Use Case

60

Use Case Name: Buy E-coins
Description: Used by customers to buy E-coins with broker system
1. Customer enters broker’s home page and selects “Buy E-

Event Flows:

coins”. Customer types in customer ID, password, and a e-
coin amount which is number of e-coins required and clicks
“Login&Buy” button.

The system displays the customer ID and amount and
customer click “OK” to confirm the transaction as shown in
Figure 4-4.

Broker debits money from the credit card or the bank
account customer supplied via a macro-payment
transaction. If the account does not exist, go to 5

Broker generates e-coin payword chain which includes
e-coin ID, root, seed, paywords, amount and sends to
customer’s PC.

Incorrect credit card information — error message displayed.
Go to 1.

Related Actors/Use Cases:

Used by customer actor

Special Conditions:

3 Customer Buy Ecoins —

J File Edit Wiew

Fawarites

/7§ Customer Buy Ecoins - | =10 x|

J File Edit Wjew Favorites Toaol **

J#Back***@ﬁj%ﬁackv#*@ﬁl >

J.ﬂ.gl:lress E Uweroins, jsp j ﬁ} J.ﬁ.gdress @ hl:tp:,l',l'll:lcalhl:l:j P/ Go JLinks =

Customer Buy Ecoins

e

Customer Buy Ecoins

Chugtormer IT: 19

Custotmer I I-I 9

| Achchohoh:

Fassword:

Symount of Ecoin:

Login&Buy

i

Buy Ecoms Value: 50

OKl Cancel |

|@ Dane | |

o Local inkrar |§| Doarie | 2 Local inktranet

R

Figure 4-4 Example customer buys e-coins

61

Table 4-4 Debit E-coins Use Case

Use Case Name:

Debit E-coin

Description:

Used by customers to buy news articles via e-newspaper site.

Event Flows:

1.

4.

Customer browses through the homepage of the online
newspaper site and clicks the title of the desired news
article to buy as shown in Figure 4-5(1).

E-newspaper system debits the e-coins from e-wallet
and verifies the e-coins by using touchstone. If the e-
coins are invalid or not enough e-coins left in the e-
wallet, go to 4.

Article content and remain e-coins are left in the e-
wallet displayed on the screen as shown in Figure 4-
5(2).

If not enough e-coins left, direct to broker site.

Related Actors/Use Cases:

Used by customer actor

Special Conditions:

| File Edit view Favorites

/2 frame - Microsoft Internet Explorer provided by Department of Computer Sci 3 =10l x|

Tools Help

J dmBack ~ = - (G 7t | @i search (G Favorites & History ||%v = o

J»\'-\gdress I@ http: fflocalhost: 052 'enewspaperff. jsp

(1 ~| oo |JLinks 22

Blain News

NZ News

World News

Rain News

Road-toll heat on drink drivers 10c

E-Newspaper

Wednesday, 14 Movember 2001

Business
Technoligy
Sporis

Emtertainment

Koy Words: I

Search

Police are widening the scope of their fight againet fatal drinke driving acedents by almost
doubling the iumber of booze buses patrolling roads. Four more buses will be introduced
next month, boosting the national breath-tasting fleet - which ACC provides to police - to
tiite?

Pepper sprasr we played it straizht sa olice 10c

police khow how an intelle ctually disabled man died after being pepper-sprayed in
Hamiltor, bat last night said they were unable to release?

Hackles raized at fur protests 10c

Inner-city Auckland retailers say they are heing targeted by a group of animal right
activists who have issued death threats, cut phone lines?

NZ News

Diouglas Myers, Craig Healey mansions touted to foreigners Sc
Lilan charged over spate of Hamilton fires 5c

World News

Lawyrer rejects political motive in Scott-Serivener killings Sc
Condit takes own lie-detector test Sc

I_I_ (=2 Local intranet

Figure 4-5(1) Example e-newspaper web site

62

=} frame - Microsoft Internet Explorer provided by Department =101 =

J Fil= Edit Wiew Faworites Tools Help (2) ﬁ
J sBack ~ = - () ot | fZ4 Search [Se]Favorites £ #History | Eh~ e
J.ﬁ.gldress IE http: /flocalhost: 8082 enewspaperff.jsp ;I @Go |J Links **
You have got 20cs left!
Home . .
Foad-toll heat on drink drivers
Mlain News
NZ MHews —J1| Police are widening the scope of their fight against fatal drink-driving
accdents by almost doubling the mumber of booze buses patrolling
roads. Four more buses will be introduced next month, hoosting the
World News national breath-tasting fleet - which ACC provides to police - to nine?
Business ;I
- hotte
Fley Words:
Search | =
|@ Crome Local inkranet v

Figure 4-5(2) Example of customer spending E-coins at an E-newspaper site

Table 4-5 Redeem E-coins Use Case

Use Case Name: Debit E-coin
Description: Used by e-newspaper sites to redeem e-coins from broker.

1. At fixed period, the e-newspaper system automatically
Event Flows: sorts all the payments received from all customers
based on the e-coin ID and sends them to the broker.

2. The total redeemed coin value is received from broker.

Related Actors/Use Cases: Used by e-newspaper actor
Special Conditions:

4.3 Non-functional Requirements

Non-functional requirements refer to the restrictions that do not relate directly to the
functions or operations to be performed by the system [79]. They are the constraints on

system operations. In this system, non-functional requirements include:

63

Performance Characteristics

1. Response time should be less than 5 seconds to get information goods under heavy
loading of up to 100 simultaneous customer connections, for article search regardless of
WAN transmission speed.

Quality Issues

2. Online access to either the broker system or the newspaper systems is not very critical,

but downtime should be limited to 1 hour.

3. Selling content is critical — downtime must be less than 10 minutes.

4. In case of delays or error, the system should indicate this by some sort of visual display.

5. Power failure needs to be handled by UPS for the broker’s and vendors’ main server
machine and database.

Security and Integrity Issues

6. Customer requests especially for payment information should be encrypted using PGP
which is standard for Pretty Good Privacy. It can encrypt messages so that an
unintended recipient person cannot read it. When encrypted, the message looks like a
meaningless jumble of random characters.

7. Only broker can generate e-coins and change account data of customer and vendors.

8. The web server should be secured very carefully covering any known and popular

security holes and exploitation points.
9. The local unit running the web site is responsible for the security, and should take care
to ensure that it doesn’t become a potential point of entry into the entire system.

Otherwise adversaries can use the e-wallet to click and buy articles.

10. Backups should be done every night.

64

4.4 NetPay OOA Modelling

OOA modelling mainly focuses on class modelling which describes static system structure
and sequence modelling that simulates a system from dynamic behaviours. Developers can
gain a very good understanding of a system’s functional properties [83]. In this section, the
static NetPay system structure will be described in a class diagram and sequence diagrams

will be used to describe dynamic behaviours among the objects of NetPay system.

4.4.1 Class Modelling

The class modelling focuses on static system structure in terms of classes and association.
A class diagram describes the classes of the system, their inter-relationships, and the

operations and attributes of the classes [83]. Class diagrams are typically used to:

« Explore domain concepts in the form of a domain model
* Analyze requirements in the form of a conceptual/analysis model

« Depict the detailed design of object-oriented or object-based software

To do this the basic sets of objects that are needed to build these distributed systems should
be found and their relationships are determined. Based on the use cases and scenarios
discussed in Section 4.2 and 4.3, the OOA-level class diagram for an E-newspaper with

NetPay micro-payment system was built, which is shown in Figure 4-6.

65

E-coins e —
e =l fecoin_id : String | Broker 1
2::\::?-1%[&':9: whng 2custoﬁ19r_id : String| :ﬂbroker_isd : String
it seed : Stri ame : String
e-mail : String &root : Stri 4 Generate | &phoneNo : Strin
&password : Stri ng PO LN 1
%p i "9 0..* | &amount : int &e-mail : String
@::;)Illécadrate ‘ ;:t% Qpaywords Sy @balance :int E-wallet
- u Buy e .
% %addEcoins() *debitMoney() Svecoin_id : Stiing
‘addCuslomer() *findE coins() 1 %sendBalance() Spaywords : String
updateCustomer() SdeleteE coins() &amount : String
:ﬁndCustomer() ‘sendEwallet{} 1 &host : Sh’lrg
‘del_eteCus?omer() SverifyEcoins() P &port : String
verlfyCr1ed|tcard() o Send 1 -
/ e addEwallet()
“debitEcoins()
. E-newspaper “updateEwallet()
(Svendor_id : String| 4 Verify| “deleteEwalet()
:zar;nae“:%tﬂmngg TransactionHistory ¥ 1
P e Syvendor_id : String a Send
‘%balance float ; &ecoin id : String vecoin_id : Sting ‘
Saddvendor) . 1-* payment:Sting g?gf:ﬁ%‘f =3ving Debit
:ﬁndVer\),dor{) Update Sredeem_date : date index:i
sggﬁgemdoorzg) “addTransactionHis() :getTandl()
“jinkToBroker() “find TransactionHis() updateTandi()
“displayContent() *deleteTransactionHis() | $verifyEcoins()
' ‘ 0.* 1.
Read Find
Article Redeem ‘| Eacden
&article_id - 17 | ®redeem_id : String
:section_id : String g?:d‘:""_'_d (3 String
title : String index:in
0.1 ®authors : String Sprice :int ‘
Section N Sprice : String Pay . R)paymenl: String
gsection_id:Slring S Scontent: Stiing | 1 0.. soddRedesm)
name : Strin -
s %addArticle() :ﬁndRedeems()
$findArticle() ‘dolRech{eem()
*findArtcles() ’deehe edeem()
“deleteArticle() aggregatePayment()

Figure 4-6 E-newspaper with NetPay micro-payment system class diagram

Customer: This object encapsulates all the information of customer’s personal and

account information. Customer purchasing news articles need to register an account

with the broker. This object includes customer id, name, e-mail address, and password.

It also provides a set of business methods to access the information.

E-coins: This object records bought e-coins information which includes ecoin_id, root,

seed, paywords, amount (the number of e-coins the customer bought for) and the

information access methods.

Broker: This object encapsulates all the information of broker account information.

Broker needs to debit money from customers and deal with redeeming e-coins with

vendors. This object includes broker id, name, phone number, e-mail address, and

balance.

66

E-wallet: This object is generated from e-coins object to record customer’s current e-
wallet information which contains ecoin_id, touchstone, index, and paywords. It has

functions for inserting, updating and deleting e-wallet.

TandlI: This object records the touchstone and index information and is used to verify

e-coins by vendors.

Article: This object contains all the properties of news articles which are an article 1D,
title, price, and content. It also provides the functions for searching, displaying, adding

and deleting article information.

E-newspaper: This object describes E-newspaper information which includes
vendor _id, name, e-mail address, and balance. It also specifies a set of business

methods to access its information.

Redeem: This object contains all the information of e-coin payments by customers
including redeem_id, ecoin_id, index, price, payment. It also provides the functions for

adding, finding, and deleting payment information.

TransactionHistory: This object describes all the redeem information including
history id, vendor id, ecoin id, payment and redeem date. It also provides the

functions for adding, selecting, and deleting redeem information.

4.4.2 Sequence Modelling

A class modelling captures only the static structure of a system. In most cases, a description

in terms of dynamic behaviours is needed. This section describes the interaction among the

objects of NetPay system with four UML sequence diagrams.

1.

Buy E-coins

Figure 4-7 shows the sequence diagram for a registered customer actor who wants to

buy e-coins using a credit card.

67

* Customer logins by entering customer ID, password, and amount of e-coins

before purchasing e-coin. New customers need to register first.

* Customer clicks on Login&Buy button, the broker system displays customer 1D

and amount in order to confirm the purchasing.

* Customer clicks OK button, the broker system debits money from the

customer’s credit card through a macro-payment system.

* Broker system then generates a unique e-coin ID and an e-coin chain, and

records the e-coin data.

* When all done, the broker system sends an e-wallet to the customer.

Customer Broker E-wallet E-coins Customer Macro
Web User Payment

1: login()

: displayAmount(
<

]

U u 4: debitMoney()

§: verify Creditcard(

6: addEcoins() U

7: sendEwallet()

Figure 4-7 Buy e-coin sequence diagram

2. Buy Content

Figure 4-8 shows the sequence diagram for a customer actor who wants to buy article

content with E-newspaper1 using an e-wallet.

68

* Customer clicks on the title of a desired article, the E-newspaper] system debits

e-coins and gets Broker’s host and port from customer’s e-wallet.
e If Enewspaperl has not obtained Tandl, the E-newspaperl system gets the
touchstone and index from an e-coin object in the broker system and verifies the

e-coins.

e If there are no e-coins left, the customer is directed to buy e-coins with the

broker.

* [f the e-coins are valid, the E-newspaper] system generates a unique redeem 1D

and records the redeem data.

* E-newspaperl system then displays article content to the customer.

Customer Enewspaper1 E-wallet Tand | Article Redeem Broker
Web User
1: Click Title ‘
2: debitEcoins(
1
If no e-coin
3: verifyEcoins() left
1]

4 linkToBroker()

5: addRedeem()

///

T 6: displayConte nt(),,/’/

ne;;oins/ﬁ H

valid

Figure 4-8 Buy article content with E-newspaper1 sequence diagram

3. Different Vendor

Figure 4-9 shows the sequence diagram for the customer actor who wants to change to

an E-newspaper?2 site to buy an article content using the same e-wallet.

69

* Customer clicks on the title of a desired article, the E-newspaper2 system debits

e-coins and gets the E-newspaper1’s host and port from the customer’s e-wallet.

* Ifthere is no e-coin left, the customer buys e-coins with the broker.

e If Tandl does not exist, the E-newspaper2 system gets the touchstone and the

index from TandlI object in the E-newspaperl system and verifies the e-coins.

* If the e-coins are valid, the E-newspaper2 system generates a unique redeem 1D

and records the redeem data.

* E-newspaper2 system then displays article content to the customer.

Customer Enewspaper2 | E-wallet Tand | Article Redeem Broker
Web User (Enewspaper1)
1: Click Title_|
2: debitEcoins(
1
If no e-coin
3: verifyEcoins() left

4 IinkTo@,roRér()

5: addRedeem()

T 6: displayContent()

Ife.::oinsf’/ﬁ H

valid

Figure 4-9 Buy article content with E-newspaper2 sequence diagram
4. Redeem E-coins
Figure 4-10 shows the sequence diagram for an E-newspaper actor who wants to

redeem e-coins with the broker.

* E-newspaper staff clicks Redeem item, the system aggregates all redeem data by

using ecoin_id and displays it on the screen.

70

* E-newspaper staff selects an ecoin_id and the system sends all redeem data

related to the ecoin_id to the broker.

* Broker system gets a touchstone of the e-coin from the e-coins object and

verifies the redeem data.

* [f all redeem data are valid, the broker system generates a unique history_id and

records the transaction history data.

* Broker system then sends updated balance to the E-newspaper.

Enewspaper Enewspaper Redeem Broker E-coins Transaction
Staff History

1: clickRedeem() |

21 aggregatePayments()

1

3: displayDetail()

4: clickEcoiniD() |

5: sendRedeem()

6: verinycoinﬁ()

7: addg TransactionHisQ
8: sendBanlance() 1

Figure 4-10 Redeem e-coins with the broker sequence diagram

4.5 Summary

NetPay, as a secure, cheap, widely available, and debit-based protocol of a micro-payment
system, is a novel research work. Compared with the conventional micro-payment systems,
the development requirements of NetPay are rather different. Therefore, a specific

description on these requirements is essential to determine the viability of NetPay system.

71

System requirements define the goal of a system and provide the description of this
system’s behaviours. We applied UML use cases which include use case diagrams and
description to capture functional requirements for the e-newspaper with a NetPay micro-
payment system. UML class diagrams were used to describe the type of the objects and
static relationship among them in the system. Interactions among the objects of NetPay
system are described with UML sequence diagrams. These system requirements are defined
and gathered for the following design phase, and two different concrete designs of the
NetPay system were created based on the results of the analysis. These are described in

detail in the following two chapters.

72

Chapter 5

CORBA-based NetPay

Based on the NetPay system requirements and functional specification from the previous
chapter, we introduce a system design for NetPay to describe how this specification is to be
implemented. This task involves several aspects. Firstly, we describe the software
architecture that we have developed for NetPay for deployment with thin-client vendor
interfaces, i.e. HTML interfaces for customers. Secondly, the design of a NetPay broker
and “hard-Coded” E-newspaper click-pay system are described in detail. Thirdly, the
implementations of two kinds of NetPay prototypes client-side and server-side e-wallets are

introduced and user interactions with these prototypes are explained with examples.

5.1 NetPay Architecture

Software architecture is concerned with how to identify software components, on which
machines these components are going to run and how they are connected. There are two
main distributed system architectures which include thin-client and thick-client for three- or

multi-tier distributed client/server architecture.
5.1.1 Thin-client vs. Thick-client Architecture

Thin-client (server-based) architecture allows a client to exchange data with a server with
minimal processing at the client level. It eliminates any download and installation of user
interface software on the user's machine. Because the client user interface directly runs
from any browser, it avoids the potential problem when any new software is run on a user's
machine. The server side programs are easier to update and revise with a thin-client
architecture. The main disadvantages of thin client architecture are that it limits user
interface capability and the response speed of the system may be slower since the client has

to be always connected to the server.

Thick-client architecture is where the client has local GUI and some business logic on the

client device. Since the client is a program installed on the device, it provides rich screen

73

functionality. The client does not always require being connecting with the server. However
users are required to download and install software on client side. This is the biggest
disadvantage of all thick clients. Client software requires redistribution to user’s PC when a
user interface is updated or introduced new features by a server. Even with the extreme care
used in constructing installation scripts, the variation in users' machines is enough to cause

some problems.

The main purpose of the NetPay micro-payment system is that any registered customer
clicks to buy on-line information. As we identified in the previous chapter, ease of use is an
important criteria for micro-payment systems. We chose to use a thin-client technology to
implement our customer clients — HTML browsers. This allows for a very wide range of
customers using standard web browser software, without the need for separate installation
of browsing and micro-payment clients. Thin-client architecture is faulted for having a
single point of failure that affects the entire system. Modern systems however employ
controller redundancy to reduce the risk of failure. NetPay is an off-line micro-payment
system that allows customers to purchase information from vendors on the WWW without
having to involve a broker in every transaction. So vendor systems can in fact be scaled to

meet system size requirements.

5.1.2 NetPay Architecture

In order to develop NetPay broker and NetPay-based vendor systems, software architecture
should be considered carefully. The architecture should be scalable, reliable, secure and
flexible. The most common software architecture is the client-server architecture [11].
Generally a client-server architecture is divided into 3 tiers which are an interface tier, a
processing tier and a data storage tier. Each tier is responsible for a separate task. The
interface tier processes user interaction. The processing tier handles requests, responses and
other services between client and server. The data storage tier is used to manage shared
data. We can split these tiers into a multi-tier architecture. In the multi-tier architecture, the

processing tier can be split into a presentation tier and a business logic tier.

A thin-client multi-tier web-based e-commerce system usually consists of a client which is

a browser providing the user interface, a Web server which provides the presentation logic,

74

an application server which handles the business logic and a database server which provides

data management as shown in Figure 5-1.

. Web Server App Server Database
Client

ASP CORBA
Browser 0 JSP e EJB

Servlet DCOM C)‘

Figure 5-1 Multi-tier Web-based with thin-client architecture

A multi-tier architecture design has many advantages [11]. Partitioning a design into tiers
allows designers to choose the appropriate technology for a given situation. It allows
development and modifications within one tier without affecting or requiring changes to the
other tiers. The key multi-tier benefit is improved scalability since the application servers
can be deployed on many machines and the database only requires connections from a

smaller number of application servers.

A peer-to-peer network makes it possible for two or more personal computers (PCs) to pool
their resources together. Every PC within the network is able to use shared items such as
cycles and/or storage space or support collaborative environment. The main difference
between peer-to-peer and client-server architectures is that network information is
decentralized in a peer-to-peer architecture and centralized in a client-server architecture.
Peer-to-peer and client-server are both beneficial architectures for the right type of
organization. Peer-to-peer computing has become popular e.g. file-sharing and
decentralized processing [50, 95]. Client-server is the best for large-scale organizations that
need to be able to grow without worrying about whether the network can handle new users,

who need to track tasks in the network for security or other reasons.

From the above discussion, the web-based multi-tier architecture is the most suitable
architecture model that meets both NetPay broker and NetPay-based vendor systems

requirements and constrains.

The UML provides a simple kind of architecture diagram called a deployment diagram that

is made up of machines, machine connections and process names. NetPay micro-payment

75

transactions involve three key parties: the Broker Server, the Vendor Server, and the

Customer browser. This architecture is illustrated in Figure 5-2.

Broker
HTTPS R HTTP Server Staff PCs
Customer PCs ’/ SOL
CORBA Q
Browser+EWallet
Bank
Application
HTTP Server SQL SQL DB Server
HTTP Authorisation
CORBA
Vendorl
Vendor2

HTTP Server
CORBA

J2EE Server ~SaL
socket
CORBA EJB container
e Web Container
Application SQL DB Server

Server T
SQL SQL DB Server

Figure 5-2 NetPay system deployment diagram

In the Broker system, a web browser provides customers with user interfaces and enables
customers to access Register and Buy e-coins facilities. The browser connects to a HTTP
server, which runs JSPs to handle requests and provides presentation logic. The application
server provides business logic and communicating with one or more bank servers to
authorise macro-payments. CORBA is used to connect the web tier and the application tier
via. WAN (Wide Area Network) /LAN (Local Area Network). A WAN is a data
communications network that covers a relatively broad geographic area and that often uses
transmission facilities provided by common carriers, such as telephone companies. A LAN

is a high-speed data network that covers a relatively small geographic area.

The Broker database stores all customer and vendor account information, generated coins
and payments, redeemed coins and macro-payments made which is used to buy coins and
redeem money to vendors. There are staff PCs running customer and vendor data

maintenance applications which connect directly to the database.

A customer runs a web browser that accesses the broker and vendor services, and may also

run a client-side e-wallet implemented by the use of a Java application.

76

Vendors may use quite different architectures. In the Vendor #1 in Figure 5-2, a web
browser enables customers to access Search and Buy content services. The web server runs
JSPs to provide content that needs to be paid through accessing the customers’ e-wallets to
obtain e-coins. The application server provides business logic and communicates with the
broker and other vendors. CORBA is used to connect the web tier and the application tier

via WAN/LAN. A vendor relational database stores vendor data and redeem data.

CORBA is also used to communicate among the broker application server and the vendors’
application servers via WAN/LAN. The broker application server provides a set of CORBA
interfaces with which vendor application servers communicate to request touchstones and
redeem e-coins. A vendor application server communicates with the broker application
server to obtain touchstone information to verify the e-coins being spent and to redeem
spent e-coins and other vendor application servers to pass on e-coin indexes and

touchstones.

Vendor #2 uses a J2EE-based architecture with J2EE server providing Java Server Pages
(web services) and Enterprise Java Beans (application server services), along with a
relational database to hold vendor data [94]. We will describe the more details about the

design and implementation of this vendor application in Chapter 6.

5.2 NetPay E-wallets

Three kinds of e-wallets have been designed in the NetPay systems.

a) Server-side e-wallet: some people prefer to access Internet not only on an individual
computer (e.g. businessmen who often travel around). A Server-side hosted e-wallet is
suitable for these people. The server-side e-wallet is stored on the vendor server and is

transferred from the broker to each vendor when required.

Figure 5-3 shows how a vendor application server debits e-coins from the server-side e-
wallet. When a customer clicks title of an article on his/her browser, the web server sends
the request to the vendor application server which debits e-coins from the customer’s e-

wallet paying for the content.

77

Customer’s PC Vendor System

Web
Server

Customer
Browser

Vendor
Application
Server

3. Debit

(E-wallet)
Database

Figure 5-3 Server-side e-wallet

Customers can buy articles using the server-side e-wallet anywhere in the world and the e-
coin debiting time is fast on the server-side e-wallet system. However customers are
required to remember e-coin IDs and password to log into a newspaper site when they

change vendor.

b) Client-side e-wallet: some people prefer to access the Internet using one machine (e.g.
housewives who stay home most of the time). A Client-side e-wallet is more suitable for
these kinds of people. The client-side e-wallet is an application running on the client PC

which holds e-coin information.

Figure 5-4 shows how a vendor application server debits e-coins from the client-side e-
wallet. When buying an article content a customer clicks the title of the article on the web
browser and then the web server sends the request to the vendor application server. The
vendor application server sends the price of the article to the e-wallet application and then
the e-wallet application returns the e-coins paying for the content to the vendor application
server. The client-side e-wallet avoids need to login. However every click-buy transaction
requires communication from vendor web server to customer e-wallet application across the

internet.

78

Customer’s PC Vendor System

Customer 1. Click
Browser —

Web
Server

2. Request

Vendor
Application
Server

E-wallet 3. Debit
Application |&—

4. Update Database
E-wallet
Database
\ﬁ —

Figure 5-4 Client-side e-wallet

Customers can buy article content using the client-side e-wallet at different newspaper sites
without the need to log in after the e-wallet application is downloaded to their PC. The e-
coin debiting time is slower for a client-side e-wallet than the server-side e-wallet due to the
extra communication between vendor application server and customer PC’s e-wallet

application.

b) Client-side cookie-based e-wallet: To reduce the e-coin debiting time, we created a
temporary cookie e-wallet caching the e-wallet data for debiting instead of the e-wallet

database.

Figure 5-5 shows how a vendor application server debits e-coins from such a client-side
cookie-based e-wallet. When a customer finds a desired article, he/she clicks the article
heading on the web browser. The web server sends the request to the vendor application
server. Only for the first time when the customer buys content from the vendor web site
does the vendor application server need to get the e-coins from the e-wallet application. It
then creates a “cookie” to store the remaining e-coins. Once the cookie is created, the
vendor application server debits e-coins from the cookie directly. The e-wallet application
could read the cookie to know how many e-coins left when the customer wants to check the

balance of the e-wallet. This reduces the need for the vendor application server to

79

communicate with client PC-based e-wallet, caches the e-coins in HTTP request which

holds cookies.

Customer’s PC Vendor System

| Customer Web
| Browser Server 2. Request
4
| E-wallet 5. Debit e-coins Vendor
t Cookie Application
" . : Server
6. Regd Cookie 4. Create cookie (first time)
| E-wallet :
| Application =wallet (first time) T
|

E-wallet

Database

Figure 5-5 Client-side cookie-based e-wallet

When the customer changes to another vendor, the new vendor contacts the previous
vendor to request the touchstone and the index of the e-wallet, and the previous vendor
application server gets the remaining e-coins from the cookie, stores them back into the e-

wallet database and then deletes the cookie.

The e-coin debiting time is medium on client-side cookie-based e-wallet. It is suitable for a
customer performing many purchases from a single vendor, then changing to another

vendor.

5.3 NetPay Object-oriented Design

Extending the OOA objects and software architecture of the NetPay system, a more
detailed OO design will be described in the following sections. Object-oriented design
(OOD) is concerned with developing an object-oriented model of a software system to
implement the identified requirements [83]. There are two parts in OOD which include

static and dynamic OOD.

80

5.3.1 Static System Design

OOD builds on the products developed during OOA by refining OOA candidate objects
into appropriate OOD classes, determining service classes which are based on the software
architecture, and implementing message protocols for all objects presented in the OOA
[83]. In our current NetPay prototype we use two kinds of e-wallet which are a server-side
e-wallet and a client-side e-wallet. The broker application sets the e-wallet which stores the

e-coins in the server-side or client-side.

5.3.1.1 Server-side E-wallet NetPay

The server-side e-wallet should be transferred from the broker to each vendor in turn the
customer is buying content from. Vendor systems need to know the location of the
customer’s e-wallet and to get the e-wallet contents. To do this we designed the broker
application server so that it provides a set of CORBA interfaces with which the vendor
application servers communicate to request an e-wallet location or to get an e-wallet. The
vendor application servers also provide a CORBA interface in order for other vendor
application servers to get the e-wallet if it has been passed to one of them. The e-wallet is
thus passed from vendor to vendor as needed. The problem is that the new vendor can not

get the e-wallet when previous vendor crashes.

When a customer first clicks the Login&Buy button to purchase e-coins on the browser, the
HTTP server runs JSPs handling the request. The Broker application server communicates
with a macro-payment system to debit money from the customer bank account and stores

the e-coins information in the database.

When the customer goes to a vendor site, he/she needs to login by entering the e-coin ID
and the password. A JSP page handles the login request. If the e-wallet does not exist, the
vendor’s application server communicates with broker application server via CORBA to get
the e-wallet location which includes host and port of the broker or previous vendor. Then it
communicates with the broker/previous vendor via CORBA to get the customer’s refreshed
e-wallet which includes ecoinlD, touchstone, index, paywords, and amount. After the

customer clicks the article handle, a JSP page deals with a display content request. The

81

vendor application server debits e-coins from the server-side e-wallet paying for the

content. The server-side e-wallet NetPay design feature as illustrated in Figure 5-6.

BrokerJSPs BrokerAppServer
“register() *maintainCustomer()
*login() *maintainVendor()))
*buyEcoin() *maintainEcoin() buy coins/redeem coins Bank
“updateAccount() *maintainTrsanctionHistory()
*transferEwallet() *macroPayment()

*locateEwallet()

<<uses>>
getEwalletLocation()

Ecoininfo
5 :insartEcoin()
ORBA findEcoin()
CustomerBroswer 1 Vendor1JSPs “deleteEcoin()
| <<uses>>
- *, hi
gotoUML() search()
(oobey | *broswerSite()
Ylogin()
*displayContent() Vendor1AppServer
= . Ewallet
‘gelea[IelLocahon() ®ecoiniD : String
JGetEwallet() ®touchstone : String
spayff:c:;'anle(r)\l() Findex : int
<<uses>> verifyEcoins % . Qtr;
getEwallet() | *redeemSpending() paywords ::String
CORBA

‘ Vendor2JSPs

Vnedor2AppServer

Figure 5-6 Server-side e-wallet NetPay design feature

5.3.1.2 Client-side E-wallet NetPay

The client-side e-wallet is implemented as a Java application runs on the client PC.
According to our protocol in Chapter 3, a touchstone and an index (T&I) of a customer’s e-
coin should be passed from the broker to each vendor. To do this we design that the broker
application server provides a CORBA interface vendor application servers communicate
with to get the T&I to verify e-coins. The vendor application servers also provide a
CORBA interface in order for another vendor application server to communication with it

to pass the T&I, avoiding use of the broker where possible.

When a customer first clicks the Login&Buy button to purchase e-coins on the browser,
JSPs running on the web server handle the request. The Broker application server
communicates with macro-payment system to debit money from the customer bank account

and then sends the e-coins to the customer’s e-wallet on the customer machine.

82

A JSP page deals with a display content request when the customer clicks a title of an

article. The vendor application server connects with the e-wallet application and sends the

price of the content. The customer’s e-wallet returns with the e-coins and the location of the

T&I to the vendor application server. The vendor application server communicates with the

broker or previous vendor via CORBA to obtain the T&I which are used to verify the e-

coins. The client-side e-wallet NetPay design feature as illustrated in Figure 5-7.

BrokerJSPs

*register()
*login()
*buyEcoin()

*updateAccount()

<<uses>>

CustomerBroswer

*gotoUML ()

*getEwallet() S<uses>>

<<uses>>

Ewallet
®ecoinlD : String
®paywords : String
®host : String

BrokerAppServer

*maintainCustomer()
*maintainVendor()
*maintainTrsanctionHistory()
*sendEwallet()

buy coins/redeem coins

getTouchstone&Index()

Bank
Vendor1JSPs | *macroPayment()
| CORBA

*search()
*broswerSite()
*login() 1
“displayContent()| Venaa AppBanver

*sendPrice()

*receiveEcoins()

| *getT&l()

| SverifyEcoins()
| *redeemSpending()

®port : Strin
2 9 getTouchstone&Index()

Vendor2JSPs

|CORBA

Vnedor2AppServer ‘

Figure 5-7 Client-side e-wallet NetPay design feature
5.3.1.3 Multi-tier NetPay Architecture

The NetPay broker and the NetPay-based vendor systems are built on the top of the multi-

tier web-based architecture shown as the following:
* Client tier (HTML Browser): On the client tier, the web browsers provide consistent

and good rendering supports. Nowadays the browsers are almost available on all types

of platforms. The browser communicates with the Web server which runs the JSPs.

83

Web tier (Web Server and JSPs): In the web tier in the systems, Java Server Pages
(JSPs) and JavaBeans are used to service the web browser clients, process request from
the clients and generate dynamic content from them. After receiving the client request,
the JSPs request information from a JavaBean. The JavaBean can in turn request
information from an application server (CORBA). Once the JavaBean generates content

the JSPs can query and display the Bean’s content.

Application Server tier (CORBA): In the NetPay broker and hard-coded vendor
systems, CORBA is used as the middleware for the application server, which is
implemented in the Java language that has a CORBA IDL mapping. We will choose
EJBs in the component-based NetPay vendor system that will be described in the next

chapter.

Database Server tier: On the back-end of the systems we use Ms SQL to implement the
databases accessed with SQL server via a Java Database Connectivity (JDBC) interface.
JDBC, which is a multi-database application programming interface, provides Java
applications with a way to connect to and use relational databases. When a Java
application interacts with a database, JDBC can be used to open a connection to the

database and SQL code is sent to the database.

5.3.1.4 Broker OOD Class Diagrams

The broker system is divided to four parts which are register, buy e-coins, redeem spending
and transfer e-wallet. The following are the example system’s objects detailed design

structure.

Register Objects is a four-tier structure and responsible for new customers and vendors

register with the broker system as shown in Figure 5-8.

84

HTML Browser Register Web

Server Component

HTTP Register JSP

CustomerRegisterBean VendorRegisterBean

Middleware Register Application
‘ SAG:/r\/er/Component
i RemoteClientServer <<Interface>> :
! —creates Register i
! <<Interface>> '
' ClustomerManager | |
. <<Interface>> T i
! VendorManager luses” !
! ~ ——— Registerimp — A !
! uses \ !
: I | :
1 : :
| CustomerManagerimp |
' VendorManagerimp '
| | uses \\\\\\\\\\ // i
5 \ | MySQLConn ses i
: VendorData CustomerData i
DB Server

Figure 5-8 Register class diagram

HTTP register JSP deals with requests from HTML client. The requests incorporate
receiving customer or vendor information; sending reset/cancel/register requests to bean
objects which generate customerID or vendorID when the register action is received;

forwarding customerID or vendorID to HTML client.

Customer/VendorRegisterBean provides the functions to register, reset, and cancel

customer or vendor information.

Register is an interface which provides functions for new customer and vendor to register

or reset.

85

RegisterImp implements the functions of Register interface.

RemoteRegisterServer creates a remote register object running in application server.

CustomerManager and VendorManager are interfaces which provide insert, select,

update and delete functions to manage customer and vendor data.

CustomerManagerImp and VendorManagerImp implement the functions of

CustomerManager and VendorManager interfaces.

CustomerData or VendorData holds the account details for a customer or a vendor.

MySQLConn is used by manager objects to connect to DB.

Buy E-coins Objects is a four-tier structure and is used to deal with registered customers

purchasing e-coins with the broker system as shown in Figure 5-9.

86

HTML Browser Buy E-coin Web

jrver Component

HTTP BuyEcoin JSP

Login BuyEcoinBean

| RemoteEcoinServer | creates ES;?E’::C;: :
: <<Interface>> i
! ClustomerManager | |
i <<Interface>> i /E§@&/’/ i
| EcoinManager | uses | BuyEcoinlmp | A :
| b |
! | CustomerManagerimp | !
i | EcoinManagerimp i
i |uses \\\\\\\\\ / uses !
! \ ~| MySQLConn !
i EcoinData CustomerData i
i DB Server !

Figure 5-9 Buy e-coin class diagram
HTTP BuyEcoins JSP process requests from HTML client. The requests contain login,
logout, sending the customerID, e-coin amount and buy request to bean object, forwarding
the ecoinlD to HTML client (only for server-side NetPay).
Login provides the functions to process login, logout requests.

BuyEcoinBean provides the functions to deal with buy e-coins request.

BuyEcoins is an interface which provides functions for customer to purchase ecoins using

credit card. The functions include login to broker system, debiting amount from customer’s

87

credit card, generating ecoin, and sending ewallet to customer PC (only for client-side

ewallet).

EcoinManager is an interface which provide insert, select and delete functions to manage

customer and vendor data.

EcoinManagerImp implements the functions of EcoinManager interface.

EcoinData contains all attributes of an e-coin.
* Redeem Objects providle a CORBA interface for vendors’ application server

communicating with to redeem e-coins and record transaction histories as shown in

Figure 5-10.

VendorAppServer
Redeem Application
Middleware

e BN :

Interf 1
| RemoteRedeemServer | creates «Rnezea;er: !
' <<Interface>> i
! TransactionHisManager | !
H <<Interface>> uses— :
: VendorManager - Redeem|mp ///// /ﬁl :
' uses | '
1 | !
! N | :
1 1
: TransactionHisManagerimp | 1
! VendorManagerimp !
| — |
1 | \\\\\\ _— 1
! \‘ uses — - uses '
' \‘ MySQLConn !
1 1 . . 1
: VendorData TransactionHisData !
1 1
| |
e e v~~~ lp 8 e v v b b Y

DB Server

Figure 5-10 Redeem e-coin class diagram
Redeem is an interface which provides functions for a vendor to redeem spent e-coins. The

functions include receiving redeem information, verifying spent e-coins, updating vendor

account balance, sending balance to vendor and storing transaction history.

88

TransactionHisManager is an interface which provides insert, select, and delete functions

to manager transaction history data.

TransactionHisManagerImp implements the functions of TransactionHisManager
interface.

TransactionHisData contains all redeem messages.

* Transfer E-wallet Objects provide a CORBA interface with which the vendors’
application server communicates to get e-wallet locations or e-wallets as shown in

Figure 5-11. The objects are used only for server-side e-wallet NetPay broker system.

VendorAppServer
Transfer E-wallet
bilfeeltEn TS Application Server
Component
e R
| RemoteEwalletServer creates <<Interface>>

— TransferEwallet

<<Interface>>
EwalletLocationManager

<<Interface>>
EcoinManager uses—
“uses— TransferEwalletimp

[~
=

5

EcoinManagerimp

EwalletLocationManagerimp

\\\ //4
Uses T _— uses
MySQLConn

EwalletLocatonData

EcoinData

DB Server

Figure 5-11 Transfer e-wallet class diagram

TransferEwallet is an interface which provides functions for a vendor to request e-wallet
information and the e-wallet location including host and port of the previous vendor. The
functions contain transferring e-wallet with ecoinID, receiving host and port of current

vendor and transferring host and port of the previous vendor.

&9

TransferEwalletlmp implements the functions of TransferEwallet interface.

EwalletLocationManager is an interface which provides insert, select, update and delete

functions to manager ewallet location data.

EwalletLocationManagerImp implements the functions of EwalletLocationManager
interface.

EwalletLocationData holds all attributes for describing an e-wallet location.

* Transfer Tandl Objects provide a CORBA interface with which the vendors’
application server communicates to get T&I as shown in Figure 5-12. The objects are

used only for client-side e-wallet NetPay broker system.

VendorAppServer

Middleware Transfer Tandl Application
Server Component

<<Interface>>
TransferTandl

e
T
T
1
1
|
<<Interface>> '
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

creates RemoteTandIServ

EcoinM
coinvanager —— | TransferTandllimp
\

EcoinManagerimp

uses 1 MySQLConn

EcoinData

~

Figure 5-12 Transfer Touchstone and Index class diagram

TransferTandl is an interface which provides functions for a vendor to request Tandl
information including e-coinID, touchstone, and index of an e-coin. The functions contain

transferring e-coinlD, touchstone, and index to the vendor.

90

TransferEwalletlmp implements the functions of TransferEwallet interface.
5.3.1.5 Vendor OOD Class Diagrams

Vendors provide on-line services and contents e.g. in our scenario, an e-newspaper which
includes newspaper home, search articles and buy content objects. The followings are the

objects detailed design structure.

* Newspaper Home Object is a four-tier structure and allows customers to search and

browser articles on newspaper sites as shown in Figure 5-13.

Newspaper Web

HTML Browser S:}vér Component
s I ECEETE——

HTTP Newspaper Home JSP

~ |

SectionBean ArticlesBean SearchBean
b e oo ———.———‘ ----- o> mmmmmmmmm - N ewspaperAppliCatiOIl
Middleware Sepver Component
el

ittty At x' it ettt bbbl :
: <<Interface>> — <<Interface>> <<Interface>> \\\\\ <<Interface>> :
| | SectionDatalterator ArticleDatalterator Display Search i
i 1
! 1
i i Uﬂl‘\ ﬁ‘& A*\ i
: \ | \ ’
H 1
SectionDatalteratorimp QI E SR STRION Displaylmp Searchimp i

1

1 | ‘\‘ \‘ :
! 1
: “ <<_Interface>> ‘\‘ uses useﬁ‘ :
: | SectionManager S <<Interface>> :
: | \‘ 1 ArticleManager ,
| \ |
: \‘ \ — reates '
1 - 1

SectionManagerim i
i germp ArticleManagerimp RemoteArticleManagerServer i
' 1
: uses / \ :
: uses :
i ° 1
1| SectionData MySQLConn ArticleData '
H 1
| l :
DB Server

Figure 5-13 Newspaper homepage class diagram

91

HTTP Newspaper Home JSP handles requests from HTML client which include
displaying section name and the corresponding articles; dispatching these requests to bean

object; deals with and forwarding responses to client.

SectionBean/ArticleBean contains all functions that enable customer to browser e-

newspaper site.

Display is an interface which provides displaying sections and articles functions.

Displaylmp implements the functions of Display interface.

RemoteArticleServer creates display and search objects running in application server.

SectionManager/ArticleManager provides all functions to display, insert, update, and

delete sections/articles.

SectionManagerImp/ArticleManagerImp implements the functions of

SectionManager/ArticleManager interface.

SectionData/ArticleData holds all attributes for sections and articles.

SectionDatalterator/ArticleDatalterator processes section/article data to client.

SectionDatalteratorImp/ArticleDatalteratorImp implements the functions of

SectionDatalterator/ArticleDatalterator interface.

ArticleSearchBean provides all functions that enable customer to search articles by using

key words, authors, and prices.
Search contains all functions of the search articles application server which include
searching articles by key words, searching articles by authors, and searching articles by

prices.

SearchImp implements the functions of Search interface.

92

Buy Content Object is a four-tier structure and is used to debit e-coins from customers’ e-
wallet, to store redeem data and to display article contents on the browser as shown in
Figure 5-14. The buy content application server communicates with the broker application
server to get an e-wallet location and an e-wallet (or a T&I using client-side e-wallet) and
other vendor application server to get an e-wallet (or a T&I). The application server
provides a CORBA interface with which other vendors’ application server communicates.
The e-wallet application is used for the application server debiting e-coins when customers

use a client-side e-wallet NetPay system.

HTTP Article Content JSP deals with article content display request; deliveries the

request to buy content bean object; produces and forwards article content to client.
BuyContentBean provides functions that enable customer to buy article content.
RemoteEwalletServer creates buy content object running in the application server.
BuyContent is an application server-side interface which provides selecting e-wallet,
requesting e-wallet from broker or another vendor, debiting e-coins, verifying e-coins, and
displaying content functions.

BuyContentImp implements the functions of BuyContent interface.

RedeemManager provides functions to insert, select, and delete redeem data.

93

HTML Browser Buy Content Web
Servér Component

R s

HTTP Article Content JSP

ArticleContentDisplayBean
EwalletApplicati on
i Middleware OtherVendorAppServer
BrokerAppServer |
e e e e e e e e e e e e e e e e e e | e m e mmm e e e e e mmmmmmmm e
<<Interface>> Buy Content Application
BuyContent

Server Component

RemoteEwalletManagerServer

1
1 1
! 1
1 1
1 1
| :
1 1
! I !
1 1
i eates !
’ |
1
! BuyContentimp | uses ;:llr]te'\r/lface» i
H <<Interface>> 7//////J——//””// iclelManager !
! RedeemManager | uses !
! uses 4& :
: A <<Interface>> | !
H \ EwalletManager ‘\ !
| ‘ |
1 : 1
! | ArticleManagerimp !
: | R :
! 1
1 L I
' RedeemManagerimp EwalletManagerimp us% !
1 1
! T 1
1 T | :
: \‘ uses/ \ ArticleData i
1 | “ 1
! |Uses EwalletData | | !
1 L | 1
. RedeemData \‘ !
! | 1
1 | |

|
e | =
1 | :
. MySQLConn !
| |
e eemmem—o T _________________________________ !
DB Senver

Figure 5-14 Buy content class diagram

RedeemManagerImp implements the functions of RedeemManager.

RedeemData holds all attributes for describing spending e-coins.
* Redeem Spending Object is a four-tier structure and is used to redeem payments with
the broker system as shown in Figure 5-15. The application server sends all payment

data to the broker application server.

94

Redeem Spending Web
Servgr Component

HTML Browser

HTTP Redeem JSP

RedeemEcoinsBean

BrokerAppServer Middleware Redeem Spending App
Server Component

1

1

! <<lInterface>>
1 Redeem

RemoteRedeemManagerServer

N

~—_

—

creatés—

<<Interface>>
RedeemManager

1

1

1

1

1

1

1

1

1

1

1

1

1

1

—] 1
RedeemImp '
uses '
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

RedeemManagerimp

wes

RedeemData MySQLConn

DB Senver

Figure 5-15 Redeem spending class diagram

HTTP Redeem JSP deals with redeem spending request; deliveries the request to a redeem

bean object; produces and forwards transaction list and balance to client.

RedeemBean provides functions that enable vendor to redeem spending e-coins.
RemoteRedeemServer creates redeem object running in the application server.

Redeem is an application server-side interface providing functions which contain aggregate
payments from all of its e-coins; display them to the vendor; and send payments to the

broker for redeeming.

RedeemImp implements the functions of Redeem interface.

95

5.3.2 Dynamic System Design

The dynamic behaviour of NetPay systems are described using UML sequence diagrams in
this section. One of the advantages of this diagram is displaying the order of the events. It
gives a sense of how interactions occur between various components in the system and
helps developers to determine the system designs that are actually going to work. There are
three kinds of NetPay system that are server-side e-wallet, client-side e-wallet, and client-

side cookie-based e-wallet. These are described in the following.

5.3.2.1 Server-side E-wallet NetPay

* Buy E-coins

The Buy E-coins sequence diagram Figure 5-16, shows how a customer buys e-coins with
broker using server-side NetPay. When buying e-coins the customer enters the amount of e-
coins, and then clicks buy button. The web browser requests the e-coins from the broker
JSP which sends the request to the Java Bean. Java Bean requests the e-coins from Broker
Application Server (BAS) who communicates with the macro-payment to debit the
customer’s credit card. The BAS stores the e-coins in the database for transferring to a

vendor later and sending e-coin ID to the customer.

Customer Web Broker JSP JavaBean BAS E-coins Macro
Browser Payment
‘ 1: Click() ‘
2: Request(
3: Request(
4: sendAmountf

5: debitMoney()

6: storeEcoinE(

<

7: getEcoinid()

1

Figure 5-16 Buy e-coins with server-side NetPay sequence diagram

96

* Buy Content
The buy content sequence diagram Figure 5-17, shows how a customer click-buys
article content with E-newspaper site using server-side NetPay. When buying an article
the customer selects the article for reading e.g. clicking on the URL in a returned article
search page. The web browser requests the article content from the JSP that requests
payment for the content of the article from the e-wallet bean. The e-wallet bean
communicates with Vendor Application Server (VAS) to debit the customer’s e-wallet
to pay for the article. If the e-wallet does not exist, VAS requests e-wallet location from
the BAS and e-wallet from BAS or VAS. VAS then verifies the e-coins by using the
touchstone and the index. If e-coins are valid, VAS stores them in the redeem database

and the news article content is displayed to the customer.

Customer Web Enewspaper VAS E-wallet Article Redeem Broker Previous
Browser Article JSP Vendor
1: Click()
2: Request
3: Request() if no E-wallet ﬁ
4 debitEcoins(| [existing
i P
5: getLocation() or getEwallet()
| I
6: getEwallet()
i
%: verifyEcoins()
i
8: addRedeem()
]
T 9: getContent() T
f—/u | if E-coins|
| |are valid

Figure 5-17 Click-buy article content with server-side NetPay sequence diagram

* Redeem spending
The redeem spending sequence diagram Figure 5-18, shows how a vendor redeem spent
e-coins with broker using server-side NetPay. When redeeming spent e-coins the
vendor clicks an e-coinID item button. VAS selects the payments with the e-coinID end
sends all involved information to BAS. The balance for the e-coinlD is displayed to the

vendor.

97

Vendor Web Redeem VAS Redeem BAS
Browser JSP
1: Click()
2: RequestQ

3: Request()

1

4: selectPayments

1]

—~
~

5: sendPayments()

1]

6: getBalance()

1

Figure 5-18 Redeem spending with server-side NetPay sequence diagram

5.3.2.2 Client-side E-wallet NetPay

Buy E-coins

Figure 5-19 shows how a customer buys e-coins using client-side NetPay. When buying
e-coins a customer logins to the system by entering customer ID and password; then
enters the amount of e-coins; and clicks buy button. The web browser requests the e-
coins from the JSP which sends the request to the JavaBean. JavaBean requests the
macro-payment for the e-coins from BAS to debit the customer’s credit card. The BAS
stores e-coins in the database, and sends e-coins to e-wallet java application in

customer’s PC.

98

Customer Web E-wallet Broker JSP JavaBean BAS E-coins Macro
Browser Application Payment
1: Click()
21 Request()
3: Request(|
4: sendAmountf 5: debitMoney()
6: storeEcoins() [
17 sendEwallet()

Figure 5-19 Buy e-coins with client-side NetPay sequence diagram

Buy Content

Figure 5-20 shows how a customer click-buys article content using client-side NetPay.

After reading the abstract of an article the customer wants to read its details. The

customer clicks the title of the article. The web browser requests the article content

from the JSP that requests payment for the content of the article from VAS through e-

wallet bean. VAS debits the customer’s e-wallet to pay for the article. VAS then sends

article price to the e-wallet application and receives corresponding e-coins from it. If

the touchstone and the index of the e-wallet are not existed, the VAS requests them

from pervious VAS or BAS. VAS verifies the e-coins. If the e-coins are valid, VAS

stores them in the redeem database and the news article content is displayed to the

customer.

99

Customer E-wallet || Web Browser | | Vendor JSP VAS Tandl Article Redeem | |Previous Vendor
Application or Broker
1: Click()
2: Requesty()
3: Request() if no Tandl
existing
4: debitEcoins()
[5: verifyEcains() /
1
6: getTaridl()
1]
7: addRedeem(
N]
\\
8: getContent() \\\
J L
~if E-coins
are valid

Figure 5-20 Click-buy article content with client-side NetPay sequence diagram

* Redeem spending is the same as that in server-side e-wallet NetPay.

5.3.2.3 Client-side Cookie-based E-wallet NetPay

* Buy E-coins is the same as that in client-side e-wallet NetPay.

* Buy Content
When a customer finds a desired article, he/she clicks the article heading. The web
browser requests the article content from the JSP that requests payment for the content
of the article from VAS through e-wallet bean. When the customer first time buy
content with the vendor, VAS requests e-wallet information with e-wallet application
and stores the e-wallet to the cookie in customer’s PC in order to decrease the delay of
debiting e-coins. VAS debits the customer’s e-wallet to pay for the article. If the
touchstone and the index of the e-wallet are not existed, the VAS requests them from
pervious VAS or BAS. VAS then debits the e-coins from the cookie e-wallet and
verifies the e-coins. If the e-coins are valid, the news article content is displayed to the
customer. The sequence diagram Figure 5-21, shows how a customer click-buys article

content using client-side cookie-based e-wallet NetPay.

100

Customer || E-wallet Ewallet Web Vendor VAS Tandl Article Redeem ||Previous Vendor
lication| Cookie Browser JSP or Broker
1: Click() ‘
2: Request()
if first time buy
3: Request() ——content
dgetEwalety ||
[i]
5: storeEwallet() if no Tand|
LH eX|§t|ng
[B: debitEcoins()
7: getTand)
g
8: verifyEcoins()
1 9:laddRedeem()
u 10: getGontent() /Lﬁ

—}_ |ifE-coins
are valid

Figure 5-21 Click-buy article content with client-side cookie-based e-wallet NetPay

sequence diagram

* Redeem spending is the same as that in server-side e-wallet NetPay.

5.4 Database Design

A database is an organized collection of related information. A Database Management
System (DBMS) allows a user to store, update and retrieve data in abstract terms and thus
make it easy to access and maintain information from a database. Two relational databases
which include the broker database and the vendor database are designed in NetPay system

in order to persist for the system information storage.

5.4.1 Broker Database

In the broker database, there are eight database tables that can be classified by their purpose

which are describing relationships between business entities and recording the next ID.

101

Describing relationships between business entities: The customer and e-coins tables have
a one-to-many relationship: a customer can buy many e-coins, but each e-coin refers to a
single customer. The e-coin and transaction history tables have a one-to-many relationship:
an e-coin can be involved in many transactions and each transaction only can use one e-
coin. The vendor and the transaction history tables have a one-to-many relationship: a
customer’s e-wallet can make many purchases with a vendor and each transaction only can
involve one vendor. Only server-side e-wallet NetPay broker needs to record e-wallet
locations for vendors to relocating e-wallets in the e-wallet location table. The Figure 5-22
shows broker database Entity Relationship Diagram (ERD). The types of data in the broker

database have been described in Figure 4-6.

customer_id
name
password
e-mail
creditcard
expire_date

Recording the next ID: There are three tables

ecoin_id
customer_id
seed

rook
amount
paywords

Figure 5-22 Broker system database ERD

bank_account

Server-side

which are next customer id,

next_vendor id, and next ecoin_id. Each of these tables has single column named id. The

value of ID is the next primary key of the entities that is used to increment the ID value in

the tables.

5.4.2

Vendor Database

In the vendor database, there are five database tables which are section, article, e-wallet,

redeem and next redeem id. The section and article tables have a one-to-many

relationship: a section may have many articles, but each article refers to a single section.

The Tandl (or e-wallet only for a server-side e-wallet) and redeem tables have a one-to-

many relationship: an e-coin may be debited many times for article content payment and

102

every payment only involves single e-coin. The article and redeem tables have a one-to-
many relationship: an article can be paid many times and every payment only can involve
one article. The next redeem id table has single column named ID. The value of ID is the
next primary key of the redeem table that is used to increment the ID value in the table. The
client-side e-wallet table is stored at the client PC. The Figure 5-23 shows the relationship
between business entities in vendor system. The types of data in the vendor database have

been described in Figure 4-6.

1

section_id ’_L artide_id redeem_id - ecoin_id
name section_id ecoin_id — 1 |touchstone
describe m |title m (index index
authors price
abstract I payment
price
content 1
—* |ecoin_id
paywords
ecoin_id amount
paywords
amount
host
port

Figure 5-23 Vendor system database ERD

In modified versions of the NetPay prototypes, we choose a transaction temporary file to
record the data for redeeming instead of the redeeming database in order to reduce the e-
coin debiting time. At a suitable period, the system moves the data in the temporary file to a
vender database. The number of transaction records in the redeem table could be large but
the records can be deleted after redeeming. This temporary redeem transaction table

approach improves vendor server efficiency and is explained in more detail in Chapter 7.

5.5 NetPay Implementation

In this section we focus on the issues of how to build prototypes of NetPay broker and
vendor systems based on the design mentioned before. The basic user interfaces of NetPay

systems are presented and user interactions are explained with examples.

103

5.5.1 NetPay Broker

The broker manages customer and vendor accounts, e-coin creation and spent redemption,
touchstone supply for e-coin verification, and macro-payment handling for e-coin purchase
by customers and payment to vendors for spent e-coins. Our current broker implementation
provides a database holding this information, an application server providing these business
functions, a CORBA interface for vendor application servers and a JSP-implemented

HTML interface for customers.

The CORBA interface allows vendor systems to request e-coin touchstone information
(allowing vendors to verify a customer’s e-coins) and redeem coins spent at the vendor by
customers. We chose to use CORBA to provide a platform and a language-independent

interface supporting a wide range of possible vendor implementation technologies.

Two kinds of the NetPay prototype have been implemented. In the Client-side NetPay, e-
wallet is hosted on the customer PC and is an application that stores e-coin information for
debit by vendor servers and credit by the broker server. In the server-side NetPay, e-wallet
is held on the vendor server that the customer is currently buying content from. E-coin
information is passed onto a new vendor when the customer moves to that vendor site and

makes their first micro-payment purchase.

5.5.1.1 Server-side NetPay Broker

Initially a new customer accesses the broker’s web site as shown in Figure 5-24 and clicks

registration item to register for opening an account.

104

A Server-side Netpay Broker - Microsoft Internet Explorer

File Edit View Favorites Tools Help .',"“
R - = 2 = >

e Back ~ () 3 = o | J-) Search < . Favorites @ Media 6\ - S

Address | &) http:fflocalhost:8080/src/broker/mainpage. jsp ~ ‘ Go Links >

Server-side NetPay Broker

Welcome to Use Server-side Netpay Micropayment System
Registration
M ew Customer)
Buy Ecoins

Newspaper Sites Link

NEW ZEALAND HERAILD
USA TODAY

&) % Local intranet

Figure 5-24 Server-side NetPay Broker Home

The customer registers by entering the required information and clicks Register button as
shown in Figure 5-25. The system verifies any input data and an error message is displayed
on the screen if the all requirements are not satisfied. For example the customer enters two

different passwords; the customer enters an invalid credit card number; and so on.

2} Customer Registration - Microsoft Internet Explorer @@@

File Edit View Favorites Tools Help o

- — >

@ Back ~ () ® ,‘,‘: o) /-) Search < '(Favorites

Address [@_’] http:filocalhost: 8080/ src/brokerfcustomer_re Go Links >

Customer Registration

Name: |leanne li \

Password: | ®eeess ‘

ReEnter Password: esssesss ‘

Credit Cara#: 0987654321
[Register][Reset J[Cancel J

I.g‘] Done «J Local intranet

Figure 5-25 Example of HTML customer registration

After the customer successfully register with the system, the broker system generates the
customer ID automatically and reminds the customer to remember it for later login to the
system as shown in Figure 5-26. The customer then can clicks Buy Ecoin to purchase some

e-coins.

105

A Customer Registration - Microsoft Internet Explorer g@@

File Edit View Favorites Tools Help 'i,

e Back ~ _/} x .,‘:] ¢ h /,.\ Search ‘\“jl‘(Favorites

Address [@ http:fflocalhost: 8080 srcf/brokerfcustomer_rer v \ Go Links

>>

Customer Registration
“Welcomel

Your Customer ID is: 188
Please remenber vour customer ID!

MName: leanne i
Email Address: lileanne@hotmail com

Youneed to go to Buy Ecoin page and buy some ecoins.

I@ Done «J Local intranet

Figure 5-26 Example of HTML registration information

When needing to buy some e-coins, the customer logs into the system and enters amount of
the e-coins. The HTML interface is used by customer to purchase e-coins as shown in
Figure 5-27. The broker system debits the customer’s supplied credit card to pay for the
coins by communicating with macro-payment system and then generates e-coins which are

stored in the database. The customer needs to remember the e-coinlD e.g. 267 for accessing

a vendor site.

File Edit

Favorites

View

Edit

Back ~ x
S O - [d

Address | 2] hitp:jflocall + | G

Yiew Fawvorites

File 1> o

Qu- © ¥

Address \._@j http:/floc V: Go Links >

Customer Buy Eco1 Edit Wiew Favorites

»

Customer Buy Ecoins

Customer ID: *Jl?

[
Password: |®®

~
Customer Buy Ecoins
e remenber your E-coin ID
anks!

'@j ‘j Local intranet

Figure 5-27 Example of HTML customer buy e-coins

106

5.5.1.2 Client-side NetPay Broker

The HTML interface for client-side NetPay used by customers to register with the broker is
the same as that for server-side NetPay, the difference is that the customer using client-side
NetPay needs to download and run e-wallet software. The HTML interface for client-side
NetPay used by customers to register is shown in Figure 5-28. The customer can register

with the broker and then click E-wallet to download e-wallet application software.

i)

2 Customer Registration - Microsoft Internet Explorer @@@

‘A Customer Registration - Microsoft Internet =

File Edit Yiew Favorites Tools Help ?,
File Edit View Favorites Tools Help .,'
Back - | E @ Y. "__j 5 M =5 A »
@ i < L -«.h P e Back ~ () [ﬂ [EL]) ’~) Search < Favorites
Address |@ http:fflocalhost: GO0 src/brokercustomer _r Address -@j miscreditcard—098765432 1 Baction—Register v‘ Go Links
" " . N
Customer Registration Customer Registration
Matme: |Ieanne li |
Fassword: [snnsse Your Customer ID is: 147
as . . . < - !
B Pt Please remenber yowr customer ID
Email & ddress: |Ii|eanne@h0tmai|.c0m Wame: leanne i
Cradit Cardé: |093? 1] | Email Address: lleanne@hotmail. com
e [realf ol — |
Download E-wallet from here.
v
&] Dore w“ &] Done & Local intranet
-

Figure 5-28 Example of HTML customer registration and download e-wallet

The customer then clicks the icon of the e-wallet application to run the software and login
to it as shown in Figure 5-29(1). The customer can check the balance of the e-wallet from

account menu. As shown in Figure 5-29(2), there is no e-coin in the e-wallet.

@ Login to E-Wallet

FEX [E-wallet Application Q@@

Accourt

Customer D |1-*17‘r

Password |*"""‘"’|

You have got Ocs lefl
Message

(0))

Figure 5-29 Example of e-wallet application

107

The HTML interface for client-side NetPay used by customers to purchase e-coins with the
broker is the same as that for server-side NetPay, but the customers do not need to
remember e-coin ID. After a customer login to the system and enters the amount of the e-
coins, the e-coins are generated by the system and sent to the customer’s e-wallet

application on the customer PC as shown in Figure 5-30.

2} Customer Buy Ecoins - ...
Edit

——

2 Customer Buy Ecoins - ...

File

e Back ~) = —~
- File Edit VYiew Favorites To v.,"

add E':’-Sg' :
e (Bl Qoo - © - [W) [@)

Customer Buy Eco} sddrecs [&] ion=Login ~ [

YView Favorite

Customer Buv Fcoinsl] Fls Edit ¥iew Favorites To T3
i ' - >
Back ~) ,
Customer ID: ﬂ 47 @ > 2
Password: |l Address [&] ction—oK . Go Links >
s

Customer 1D:147

Customer Buy Ecoins

Ecoins have been sent to your E-

Amount of Ecoin: (wallet. Thanlks!

Home

I-él] 1 «J Local intranet

Figure 5-30 Example of HTML customer buy e-coins

Now the customer can check the e-wallet balance from account menu, e.g. there is 50cs in

the e-wallet as shown in figure 5-31.

B3 E-wallet Application @@@

Account

You have got 50cs lefil

Figure 5-31 Example of checking balance in e-wallet application

108

The differences between client-side and server-side NetPay systems are that there is no
need for customer to download the e-wallet but the customer needs to remember the e-
coinlD and the customer needs to login and input their e-coinID and password when

accessing a newspaper site for server-side NetPay E-wallets.

5.5.2 NetPay Vendor

Vendors provide a set of pages implementing on on-line service provider e.g. in our

scenario, an e-newspaper.

5.5.2.1 Server-side NetPay Vendor

Customers are required to login to the newspaper site by entering e-coin ID e.g. 276 and
password before buy the articles as shown in Figure 5-32a. After the customer logs into the
newspaper site, the site obtains the customer’s e-wallet from the broker or another vendor
in order to debit and verify the e-coins which are used to pay for the content. The vendor
Java Server Pages not only provide searching, browsing and newspaper content for the
customer, but also indicate article cost and the amount of e-coins in the e-wallet as shown
in Figure 5-32b. After buying an article, the vendor Java Server Pages indicate the amount

of e-coins are left in the customer’s e-wallet as shown in Figure 5-32c.

The differences to non-NetPay-based newspaper site user interface are logging into the site
by inputting e-coin ID (e.g. 276) and password in order to obtain the customer’s e-wallet,
displaying article cost (e.g. Scs or 10cs) and the balance of the e-wallet (e.g. You have got
50cs left!).

Leanne as a customer goes to Enewspaperl site and enters 276 and the password and then
she clicks Start Buy button (Figure 5-32a). The system gets her e-wallet from the broker
and display “You have got 50cs left!” information. She wants to read the first news which
costs Scs and clicks the title of the news (Figure 5-32b). The system debits e-coin from her
e-wallet and displays “You have got 45cs left!” information and the content of the news

(Figure 5-32c¢).

109

A frame - Microsoft Internet Explorer g@@
Tay
"

File Edit View Favorites Tools Help

| = >» Enewspaperl
Qe - @ - [¥] 7] o) [P
Address]g’] http:/flocalhost: 3082/ st Go/ Links >

Enewspaperl

Ecoin ID: EE?B '

[Ed]

You have got 45¢s left!

Missing teen has police on the lookout

Teen apparently abducted from her home Police say man
entered 14-year-old gitl's home and kidnapped her.

Password; eeeses|] Ee
Start Buy OR
. Other Searched Articles

File Edit View Favorites Tools Help
- — f >
@ Back ~ () \ﬁ 2 u P) search <!> Favarite: e‘ Media e\ =~ _;'.
Address [.g‘l http:fflocalhost: 8082 srcfenewsjecoinid. isp (b) V‘ Go Links >
~
Enewspapel‘l
Natio
aton Wednesday, 9 April 2003
Careers
You hawv t S0cs left! 1
World ouhave got 0cs le Differences to
_—— Nation non-NetPay
Mlissing teen has police on the lookout Se: newspaper Slte
Endeavour flying new crew to space stah'o
Careers A
Foot Hotline: Dr. Phillip War
‘World
Sweden OKs letting same-sex couples adopt kids Scs
Key Words: Israeli forces enter Ramallah Scs
Sporis
U5, has four days to refocus for South Kored 20cs
Lawyer rejects political motive in Scott-Scgfener killings 20cs -
—— L
o
Home N »
‘:ﬁ Local intranet / Media {f?
. Q@@ 8082/srcjenews ecoinid.jsp / V‘ Go Links
]
R

(©)

\3 Local intranet

Ig‘] Done

‘3 Local intranet

Figure 5-32 Example of HTML customer login and buy article content

with Enewspaperl

When the customer moves to another vendor (Enewspaper2), he/she needs to login with
newspaer2 site first. The touchstone and current index value of the e-coins are obtained
from the previous vendor via the vendor’s CORBA interface. After the customer logins to

the e-newspaper2 site, the amount of left e-coins is displayed on the screen. The customer

can continue to purchase article content with the e-newspaper2 as shown in Figure 5-33.

110

A frame - Microsoft Internet Explorer,

File Edit View Favorites Tools Help

@Back - J \ﬂ @ \h /j) Search \;\;(Favorites QMedia e\ L’fv \,;'. ' "‘»

Address

http:fflocalhost:5084/srcfenews/ecoinid. jsp

»

Go Links

(b)

Main News
NZ News
‘World News
. Main News
Business

Technoligy

You have got 45c¢s left!

Gitls tired of waiting for compensation Girls tired of waiting for compensation 10cs
Pepper spray: we played it straight say police 10cs

Enewspaper2

Wednesday, 9 April 2003

Sporis
NZ News
Entertainment

‘World News

Hackles raised at fur protests 10cs

Douglas Myers, Craig Healey mansions touted to foreigners Ses
Man charged over spate of Hamilton fires Scs

Lawryer rejects political motive in Scott-Scrivener killings Scs

Business

Tec! ¥

Key Words:
(o]
A Enewspaper2 - Microsoft Interr... Q@@

File Edit

Q- ©- [4

View Favorites Tool

»

Condit takes own lie-detector test Ses

Oil hopes raised for Anzon relisting 10cs
Global web law a thorny issue 10cs

u wanna cyber-bet? 10cs
nline education firms run into difficuties 10cs

9 A - , A. R \
/- Search DA Favorites eMedm e‘ M =Y E

v‘ Go Links

cainid,jsp

»

Address | httpefflocalhost: 8084 ¥ inks

Enewspaper

Enewspaper2
You have got 35cs left!

Girls tired of waiting for compensation Girls tired of waiting for compensation

EcoinID: 276 ‘
Password: | ®® ...l Three teenage gitls wrongly itprisoned for a crime they did not commit say they have had
; enough of waiting for compensation. The three now want police to pay at least part of the
Start Buy compensation they are due while the final amount is decided.
home (C)
5 - OR
& Done 8 Local intranet Other Searched Aticles
Dﬁlll..ll
@j Done \3 Local intranet

Figure 5-33 Example of HTML customer login and buy content with Enewspaper2

Leanne changes to Enewspaper2 site and login again (Figure 5-33a). Her e-wallet is

obtained from Enewspaperl system and “You have got 45cs left!” information is displayed

on the screen (Figure 5-33b). She clicks

news section and “You have got 35cs left!” information and the content of the news are

displayed on the screen (Figure 5-33c¢).

the title of the first news which costs 10cs in main

111

5.5.2.2 Client-side NetPay Vendor

In the client-side NetPay vendor, customers need to run e-wallet application first as shown

in Figure5-34a and then access Enewspaperl as shown in Figure5-34b. When the customer

clicks the title of the article, Enewspaperl system requests e-coins with e-wallet

application. If the e-coins valid, the content of the article is displayed on the screen as

shown in Figure5-34c. The customer can check the balance from e-wallet application

window as shown in Figure5-34d.

A Enewspaper1 - Microsoft Internet Explo)

@5 E-wallet Application @@@

Account
(a)

File Edit ‘iew Favorites Tools Help
I~ You have got 50cs lefl
Back ~ x 7y O3 g
7 ¥ (o,
Address | @] http:fflocalhost:8082/srcfenews/enewsp
A &
(b) Enewspaperl
e Tuesday, 22 April 2003
NZN
o Main News
World N -
oriaens ~ | Road-toll heat on drink drivers 10cs
Business Hackles raised atfurp_rotes d(cs
Technoligy
Sports 3
- Man charged over spate of Hamilton fires Scs
Key Words: A Enewspaper1 - Microsoft Interne? cxplorer
:} Fle Edt View Favorites Ta w
oz »
@ Back ~ <) [_'] [ﬂ _\ @) Search \\/"\/ Favol (C) idia €‘}
Address @ htl:p:Hlocalhost:SDSZIsrcIenewsI}nwspaperff.jsp *; ‘ Go Links >
~
'@ || 10¢s have been chagged!

B2 E-wallet Application D[E]FS_S]

Account

Main News Road-toll heat on drink drivers

NZ News R

Police are widening the scope of their fight again

Home

—| OR
A1 Other Searched Articles

You have got 40cs leftl

| €

"J Local intranet

Figure 5-34 HTML customer buy content and e-wallet application example

112

Leanne as a customer wants to read news article online using client-side NetPay. She runs
the e-wallet application on her machine and clicks the account menu to check the balance of
her e-wallet (50cs) (Figure 5-34a). She then goes to Enewspaperl site and browsers the
site. She clicks the title of the first main news which costs 10cs (Figure 5-34b). The content
of the article and “10cs have been charged!” information are displayed on the screen
(Figure 5-34c). She goes to the e-wallet application window again and checks the balance

from account menu (Figure 5-34d).

It is easy to change to another vendor site for customers by using client-side NetPay vendor
system. When the customer wants to move Enewspaper?2 site, he/she only need to enter the

site and click-buy articles.

5.5.3 Subscription-based Vendor

In the subscription-based Enewspaperl system, a customer should subscribe with
Enewspaperl site with subscription fee e.g. $6 per week or $20 per month (Figure 5-35a).

Then the customer enters the required information (Figure 5-35b). The system debits

money from the customer’s credit card (Figure 5-35b).

113

aw

File Edit Yiew Favorites Tools Help a
= = = (a) =
P, (= 2 =
@ Back ~ () x = o -/ search = Favorites e Media
Address I.@ http: fflocalhost: 8082 src/newspaperfmainpage. jsp v i Go Links >*

Enewspaperl

Welcome to Use Subscription-Dased Payment System

Subsciibe

(Weekly/$6)
Login
@ ‘rj Local intranet .p
- = S = ﬁe Edit View Favorites Tools Help i
\ 2 - »
Q- O [Qe - © X&) G L[(g
Address @http:ﬁlot:a ST CNEwspap address | @] creditcard=1234567890&action=Register VI inks >
~

Customer Subscription Customer Subscription

Welcome!
Name: ’Xiaoling Dai ‘ Your Customer ID 1s: 121
Password: ’....... ‘ Please remenber your customer ID!
ReEnter Password: |"'..“ Name: Xaoling Dai
Email A ddress: ’xiaolingd@hotmail.com- Email Address: xaclingd@hotmail com
Credit Card#: h 23@28&01/7 J/ $6 has been charged from your credit card for one week

I Subs&ib‘e/” Reset][ém:él’] subscription.

You can read articles after login.

<

I@ Done

@ Done ‘:4 Local intranet

Figure 5-35 Example of HTML customer subscription with Enewspaperl

Sharlene as a customer goes to Enewspaperl site and enters customer ID e.g. 121 and
password and then clicks login button (Figure 5-36a). She browsers the site and clicks the
title of the third main news (Figure 5-36b). The content of the news is displayed on the
screen (Figure 5-36¢).

114

2 Enewspaper1 - Microsoft Internet Explorer [Z]@E]
a

File Edit View Favorites Tools Help ET
Qeack - () [¥] [B] @0 O seach lrravoies @Pmeda €2 3~ L 3) 3B
Address [@ http:/, : cfr _buyecoins.jsp?ID=121&password=liyan11&action=Login (b) 0 | Links >
&
Enewspaperl
Main News Wednesday, 9 April 2003
NZ News i News
World News Road-tofl heat on drink drivers
. Pepper spray: we played it straight say potice
Business Hackles raised at fur probs
Technoligy
Sports
Entertainment
La
B
il hope s - —
B A Enewspaper! - Microsoft Inte: net Explorer
Technolig cio Edt View Favortes Tk Heb :q','
You wand = - e
e eﬁack) \ﬂ < h /‘,WSearch \;i(Favorﬂ:es e‘Mer_ﬁa Q? [/\:v g (c)
Key Words: Sports - N | »
Address | 8] http:focahost:8082/st Jcustomer_buyecains, jsp?ID=1 d=liyan1 1action=Login V‘ Go Links
A
2 Customer Login - Microsoft... ' Enewspaperl
File Edit pvorites Tools Main News
— = = Hackles raised at fur protests
(a) e
@ Back b 4 | ’:l NN
L
- Innet-city Auckland retailers say they are being targeted by a group of animal right
World News

= activists who have issued death threats.
Address |&] http:,u'.flc,‘:alhost e I <
Business home
! - 1 Technoli OR
C ustomer L 9 L o Other Searched Articles
Cnavie !
Key Words: |
f—
@j Done ‘:} Local intranet

[Lcllgin][Cancel]

€] Done %J Local intranet

Figure 5-36 Example of HTML customer login and read article content

with Enewspaperl

The customer pays another subscription fee to subscribe with Enewspaper2 site when

she/he wants to read the article on Enewspaper? site.

115

5.6 Implementation and Experience

We have used Java Server Pages (JSPs) to implement NetPay web services, JavaBeans to
implement the web service components, CORBA to implement our remote application

server objects, and JDBC to implement data management.

It is useful to split the task of generating dynamic content into two parts: the presentation
logic which determines how information is presented to the user and business logic which
control the relationship between input, process, and output. JSPs are used to handle the
presentation logic and JavaBeans are used to handle the business logic. JSPs technology is a
simple but powerful way to dynamically generate HTML on the server side [83]. With
JSPs, Web pages can be created quickly and easily with dynamically generated content. A
JavaBean is Java class that can be easily reused and composed together into application.
One of the main goals of the JavaBeans architecture is to provide a platform neutral

component architecture.

As we mentioned in section 2.7, there are three popular middleware component
technologies which are OMG’s CORBA, Java’s EJB and Microsoft’s .NET. The CORBA
standard has been widespread in the area of objected-oriented and distributed systems. It
supports independence of the computer architectures and programming languages to be
used. It allows users a vendor-independent choice of ORB products and can be used on
different kinds of operating system platforms from mainframes to UNIX boxes to Windows
machines. .NET is primarily implemented on Windows operating system and is not
platform independent. EJBs provide a portable server-side component model and the
development of remote object is more complex than CORBA. EJBs and CORBA provide

basically similar approaches to realize distributed systems.

5.7 Summary

This chapter has described the thin-client, multi-tier architecture for NetPay system for the
requirements specification described in Chapter 4. The static and dynamic designs of three
kinds of NetPay systems have been discussed. Each of NetPay systems has its own
advantages and disadvantages — server-side NetPay requiring customers to remember e-

coinlD, the client-side and cookie-based NetPays requiring customers to download and run

116

e-wallet application. The broker and the “hard-coded” vendor prototypes are implemented
for both server-side and client-side NetPay systems. Using a “hard-coded” style the NetPay
vendor systems are easy to implement, but there are obvious drawbacks. For example, if a
vendor system does exist and we want to add some NetPay functions, the source code of the
existed system must be changed to suit the new needs. The next chapter will present a
component-based NetPay E-journal system in order to plug-in NetPay components to an

existed E-journal system.

117

Chapter 6

Component-based NetPay

In the previous chapter we described the hard-coding of NetPay support into web-based
applications. We now describe a component-based approach for encapsulating micro-
payment support for web-based applications - “vendors” of products, services or
information to be purchased by micro-payments. In this chapter we use an E-journal
example system and then enhance this by adding NetPay components via J2EE Enterprise
JavaBean components and Java Server Page proxies. These reusable NetPay components
are plugged into an existing journal site to enhance it with micro-payment support with
minimal or no code changes. We will describe this new NetPay prototype’s architecture and

design and illustrate the E-journal interface after plugging in these components.

6.1 Motivation

In Chapter 5 an approach of hard-coding NetPay support into web-based applications was

introduced. There are some disadvantages to this approach. The major disadvantages are:

* Difficulty and time consumption to add NetPay support to existing applications. For
example, the source code must be changed to suit the new needs when a vendor wants
to add NetPay micro-payment support to an existing web application. So the developers

need to spend more time to do this and test it.

* Reusability level is lower. The “hard-coded” system from Chapter 5 was developed to
solve a special case. The system is only developed for selling articles on on-line
newspaper site using NetPay support. Some NetPay functions and interfaces are fitted
into E-newspaper system. Therefore, one can’t reuse the NetPay objects into another

existing web application as they are currently implemented.

To overcome these disadvantages, a component-based NetPay vendor system is considered.
One of the characteristics of such a system is that its components can be plugged into an

existing web system. Such a micro-payment system would ideally be easily reusable i.e.

118

* No requirement for extensive redevelopment to integrate it with the web application’s

architecture;

* No requirement to modify the web application itself providing effective and efficient
debiting of customer “E-coins” and redemption of these coins via a broker for “real”

money;

* Integrating seamlessly with both the architecture and user interfaces of the web

application.

The use of component-based approaches to building and extending enterprise and web-
based systems has become popular [2, 4, 7, 31, 19, 75]. Many approaches focus on
enterprise business logic extension [4, 31, 90], rather than a combination of user interface
and logic extensions [19, 38]. We will try to build a component-based NetPay vendor
system based on the “hard-coded” system. The new system to add NetPay to an existing
system uses a similar technique used for adding collaborative work components to an
existing travel-planning application [38]. The new system should match the needs of
existing systems and have NetPay micro-payment support integrated seamlessly with
minimum effort with their existing web application architecture. We need to find out the
general components of a NetPay vendor system, using plug-and-play in the component-
based system to add NetPay components to existing web applications. In the E-journal
example, the journal provider would want to charge small amounts on a per-article basis
(perhaps varying amounts). The main purposes of the component-based NetPay vendor

system are:

* To separate the NetPay EJBs from the particular domain knowledge of the web
application, enabling each enterprise bean to be reused in different EJB-based vendor
systems via plug-and-play with the existing vendor components;

* To plug the NetPay EJBs into the E-journal’s existing application server;

* To annotate the E-journal’s JSPs making the appropriate E-coin balance, article cost,

credit checks and coin debits to the NetPay EJBs.

119

6.2 A Component-based NetPay Architecture

We describe the component-based NetPay architecture in this section and aim to develop
component-based NetPay vendor services, supporting much more easily and seamlessly
reused vendor server-side NetPay functionality. NetPay micro-payment transactions

involve three key parties: the Broker Server, the Vendor Server, and the Customer browser.

The architecture is illustrated in Figure 6-1. The Broker server and the Customer browser
are the same as those described in Chapter 5.2. The Vendor web sites provide a web server
and possibly a separate application server, depending on the web-based system architecture
they use. Vendors may use quite different architectures and implementation technologies.
In Figure 6-1, Vendor #1 uses a web server with Perl-implemented CGI scripts, C++-
implemented application server and relational database. Vendor #2 uses a J2EE-based
architecture with J2EE server providing Java Server Pages (web user interface services) and
Enterprise Java Beans (application server services), along with a relational database to hold

vendor data.

Broker
Customer
HTTP
S Staff PCs
%/ Server

Customer PCs|
\ CORBA SQL
Browser
Bank

Application| | | SQLDB
HTTP Server SQL Server
HTTP |
COIRBA \EDI; CORBA; Custom——| Authorisatign
Vendorl Vendor2

HTTP Servdr

Perl CGlIs

socket CORBA

Web Containgr~{_SQL
] (JSPs)
CORBA EJB containe
Application| (EIBs)

Server - C+H _SQ\L SQL DB I2EE Server
Server

SQL DB
Server

\

Figure 6-1 Component-based NetPay software architecture

As a platform-independent and language-independent distributed object protocol, CORBA

is an ideal choice when integrating systems developed in multiple programming languages

120

[81]. The vendor #1 C++ and the vendor #2 EJB application servers access the broker
application server via CORBA to obtain touchstone information to verify the e-coins being
spent and to redeem spent e-coins. They communicate with other vendor application servers
which may be a C++ vendor #1 or a J2EE vendor #2 or CORBA vendor to pass on e-coin

indexes and touchstones via a CORBA interface.

As described in Chapter 2.10, J2EE platform provides a simplified approach to developing
scalable and high-availability Internet/Intranet applications. It extends J2SE with many
enterprise-related APIs, the Web and the EJB component model, and runtime containers to
host Web and EJB components. The component-based NetPay vendor system is a J2EE-
based application that is partitioned into four layers. Each layer has a different

responsibility in the overall deployment and is described as follows:

* Client layer — Web Browser.

* Web layer contains web components dealing with user interface and user interaction. In
this layer the system uses JSPs to handle the presentation logic and Servlets to process
all requests from URLs. The JSP pages in the system rely on Java-Beans components

for interaction with the Enterprise JavaBeans.

* Business logic layer contains EJB components that work together to solve business
problems. In this project, these components are Enterprise JavaBeans that include

session beans and entity beans.

* Data layer is used by the business logic layer that stores data in a database. Cloudscape
relational database as the storage mechanism for the entity bean will be used in the

system.

6.3 Enterprise JavaBeans (EJB)

As mentioned in Section 6.2, EJB components are used to solve business problems in the
business logic layer. The EJB component model is designed to enable enterprises to build
scalable, secure, multi-platform, business-critical applications as reusable, server-side

components. The EJB model defines components which are called enterprise beans that

121

allow the developer to write business objects using the services provided by the J2EE
platform [44, 73]. There are two main kinds of enterprise beans which are Session Beans
and Entity Beans. The most recent EJB specification added a third kind which is Message-
Driven Beans to help integrate JMS (Java Message Service) message queues with

enterprise beans [85, 91].

6.3.1 Session Beans

A session bean is an object that presents a transient conversation with a client. The session
bean’s methods are invoked when the client needs to access the application that is deployed
on the server. Session beans provide a client's view of the application's business logic. They
implement business logic, business rules and workflow. For example, a session bean
performs debit e-coins, request e-wallet, etc. There are two subtypes of session beans which

are stateful and stateless session beans.

* A stateful session bean contains conversational state on business process with its client.
For example, a client is doing on-line shopping and adding items in their shopping cart,
the contents of the shopping cart are specific to a particular customer session and need
not be saved unless the customer is ready to place an order. So that the system should
keep track the state of shopping cart. In this situation, shopping cart can be a stateful

session bean.

» Stateless session beans are designed to provide server-side business processes and do
not maintain any state information for a specific client. For example, a client calls an
article session bean to get the articles information. Article bean can be designed as a

stateless session bean.

Stateless session beans minimize the resources needed to support a large number of clients,

applications using this approach may scale better than those using stateful session beans.

6.3.2 Entity Beans

An entity bean represents a business data such as a customer or a piece of e-wallet

information stored in a persistent storage. The bean provides the methods to access and

122

manipulate on that data. An entity bean allows shared access from multiple clients. If the
state of the entity bean is being updated by a transaction at the time of a server crash, the
entity bean‘s state is automatically reset to the state of the last committed transaction. There
are two subtypes of entity beans which are Container Managed Persistence (CMP) and

Bean Managed Persistence (BMP).

* CMP contains all data persistence managed by EJB Container. A bean provider should
use some mechanism usually an XML configuration file to define the database table to
object instance variable mappings. Then the EJB container handles saving, loading,

finding database operations for the bean provider.

* BMP means that a bean provider directly implements persistence in the enterprise bean
class. The provider should write the full persistence operations such as saving, loading,

and finding data.

The entity bean is used to represent a business entity, not a procedure. For example, the e-
wallet enterprise bean would be an entity bean, but the debit e-coins enterprise bean would

be a session bean.

6.4 Component-based NetPay Design

The E-Journal example system has a number of customer web browser clients used by
customers to access the journal site and read article contents. Another web client is used by
staff to manage the redemption of spent E-coins with the NetPay broker server. The vendor
J2EE server has a number of web pages e.g. JSPs or Servlets and EJBs providing an
implementation of the E-journal web system. We add to this a number of NetPay
components: EJBs to provide E-wallet management (tracking spending of E-coins by
customers; E-coin exchanges with the client-side E-wallet application or server-side E-
wallet management; and touchstone exchanges with the NetPay broker or other vendors).
We also provide redemption support for the vendor to communicate with the NetPay broker

and redeem customer-spent E-coins for real money [25].

123

Web J2EE Server
Container
Login with
e-coinlD & >
Customer [[L1» = Journal’s Journal’s 3
Web N P Session Entity Journal
0 i / Beans Beans DB
Browsers ™A Display
Article’s title
& left e-coins
NetPay JSP
Display “proxy/wrapper
Article content
& left e-coins \
. Redeem CE_V:alﬁ:t
Staff " e-coins é)n rofier
ession
Web Bean
Browsers >
NetPay
g DB
Redeem
Controller Redeem
Session Entity
Client-side E- Bean Bean
wallets
CORBA < ;
J/ CORBA
N S N N
4 X
Other Broker
Vendor

Figure 6-2 E-journal system with NetPay components

Figure 6-2 shows a high-level view of how these various components interact in the E-
Journal example system. The end-user clients access only the session beans. Within the
enterprise bean tier, the session beans are clients of the entity beans. On the back end of the
system, the entity beans access the database tables that store the entity states. The Session
beans access the client-side e-wallet application, broker server and other NetPay-

implementing vendor servers via CORBA remote object interfaces.

6.4.1 Web Components Design

The one main part of the E-journal system consists of some B2C web components, which
were designed using JSP, Servlet, and JavaBean. The web components manage interactions
between web clients and application business logic, generate contents dynamically, present
data and collect input, and control screen flow. Generally there are two types of architecture
which are JavaBean based architecture and Model-View-Controller (MVC) architecture for

design web components.

124

The JavaBean based architecture includes a web browser directly accessing JSP pages.
The JSP pages access JavaBeans that represent the application model, and the next view to
display is determined by request parameters. This architecture was used in Chapter 5 to
design and implement CORBA-based NetPay-enabled E-newspaper prototypes. It is easy to
implement, debug and quickly achieve some specified goals. However the architecture is

not very flexible, scalable and customisable.

The MVC architecture was originally developed to map the traditional input, processing,
or output tasks to the user interaction model. Each part of an MVC design has an
independent role. The “model” is the business logic and data representation implemented
by the application. The “view” is the component that provides data presentation and user
inputs (JSP). Finally the controller dispatches requests and controls screen flows. Figure 6-
3 shows the architecture of using JSP pages, Enterprise Beans, and controller components.
The MVC architecture separates design concerns, decreases code duplication, centralizes
control, and makes the application more easily modifiable. It provides more flexibility,

scalability, and manageability.

Web Browser Servlet Enterprise
(Web Controller) Bean
(Model)
JSP Pages
(View)

Figure 6-3 Model-View-Controller architecture

The MVC architecture is used in the E-Journal example system. In the application a
controller was introduced between the browser and the JSP pages content being delivered.

The controller consists of two components:

* Template.jsp determines the structure of each screen in order to maintain a common
look across all the JSP pages and defines subcomponents used by each screen. All

screens have the same banner, but different title and body content.

125

* Dispatcher.java, a servlet, processes requests and forwards to template.jsp.

6.4.1.1 E-Journal Main Page Class Diagram

Figure 6-4 shows the example of E-journal site web page template. The body contains two
parts which are category and search table and contents table. The contents tables provide

journals, publish years, issues, articles and article content information.

Title Banner
Home Login/Logout Help «
< Body
Search Journal Names Table
and Publish Years Table
Category Issues Table
Table Articles Table

Article Content Table

Footer

Figure 6-4 E-journal site web page template

Figure 6-5 shows journal web component main page class diagram. Main page is used as a
home page in on-line journal scenario. A main page contains title and main template. Main

template is composed by banner, body and footer sub-components.

* Banner contains some links such as home, terms, login (if required) and help. Each
link will point to a page.

* Body can be sub-divided into search component, journals table, published years
table, issues table, articles table and article content table. Customers can search
articles by entering an author or a key word or any other related words in the text
field to perform the search function. Journals table displays journals’ name.
Published years table displays the year published for a journal. Issues table displays

the issues in a year for a journal such as published month and year, volume number,

126

and issue number. Articles table displays the details of articles published in a
journal, such as article title, authors, page(s), price and abstract. Article content
table displays an article contents such as title, authors, etc. The body component
may be replaced by other contents such as e-wallet balance information or login
success information.

* Footer component contains relevant links and other information such as copyright,

web master email link, etc.

MainPage

Titte |-
‘ ' - Footer
Banner R o
®home() o - —_ Main Tem!" J
“login() :

%®logout() A
Shelp()
| Aticle Content |
Search | T I
e @showTitle()
T ®showAuthors()
by Author() ‘) \ 3
SoyKeywords()| \ L |=Rshoat ey |
Joumals Articles |
Publish Years Issuses |
%showNames() | SshowTitle()
“ShowYears() “showlssuseNo(} ®showAuthors()
%showPublishedYear() ®showPages()
%showVolumeNof) ®showAbstract()
@showPrice()

Figure 6-5 Journal main page class diagram

For simplicity, in our E-journal example system, the body of the main template can only

have two parts which are articles table and article content table as shown in Figure 6-6.

. MainPage
Titte
/ ‘ R Footer
Banner [i

| —— _

Shome() | 0 Main Template -

*login() A

®logout() JAN

“help()

e
Articles T T ‘| Article Content

@showTitle() ®showTitle()
"showAl.fthOfS(] @showAuthors()
M ®showContent()

Figure 6-6 E-journal example system main page class diagram

127

6.4.1.2 Web Component Interaction

Figure 6-7 shows the flow of a request through E-Journal example Web components.

J2EE Server
Web Container

ArticleDBEJB

Dispatcher
Servlet

=\

TP Reauest
HTTPServlet Reauest

Template
JSP page

4. Refrieve Data

Web
Client
3. Generate Responsg
6H§\Re ponse Articles or

Content
HTTPServlet 5. HTTP Response JSP page

Resnonse

Figure 6-7 E-Journal Web component interaction

A HTTP request (1) is delivered to the dispatcher component which processes and then
forwards the HTTPServlet request (2) to the template.jsp. The template.jsp generates the
response (3) by including the responses from the body subcomponent (Articles or Content
JSP page) which retrieves data (4) from enterprise bean and transmits it (5 and 6) to the

client for presentation.

6.4.2 NetPay Integration with E-journal Web Page

In order to add our NetPay micro-payment facility to the E-journal, or to other 3rd party
J2EE-based applications, we need to be able to add our EJBs to their J2EE server and to
detect when pages are being accessed by customers that need to be paid for. We also need
to ensure that if the customer attempting to access does not have enough e-coins they are
directed to the NetPay broker site to buy some more. If the customer wants a server-side e-

wallet managed by the vendor verses running a client-side e-wallet application, we need to

128

have the vendor to obtain the customer NetPay user-name/password and obtain the e-wallet
from the NetPay broker or the previously-visited NetPay-enabled vendor. In addition the
customer usually wants an idea about the cost of an article or other information/service

before purchase, and accesses to his/her available credit in e-coins.

There are three main ways to integrate the NetPay user interface facilities: (1) modify the
existing system web pages to incorporate NetPay information; (2) generate web pages that
display the existing system pages in frames and make appropriate interactions with NetPay
EJB components; and (3) generate proxy web pages that interact with NetPay session beans

and redirect access to the original web pages. These approaches are illustrated in Figure 6-
8.

3. NetPay proxy

/ JSP Page

3
P /() (redirect)
ustomer E-Journal
Browser —() 2. NetPay|JSP +Frame Session Bean
\ Original

I~ E-Journal JSP]

~
{
\x \ NetPay /@
EWallet
I.Included |, Session Bean

NetPay JSP

Figure 6-8 Ways of integrating NetPay functionality with E-journal web pages

1. Modifying the existing system web pages

The articles.jsp is modified to retrieve price data from ArticlePriceEJB enterprise bean for
displaying article price information or retrieve e-wallet data (for server-side NetPay) from

e-wallet enterprise bean for displaying e-wallet information. Figure 6-9 depicts the

interaction between these Web components.

129

J2EE Server
Web Container

ArticleDBEJB
Enterprise
Bean

Dispatcher
Servlet

TTP Request
2.HTTPServlet Request

4a.

Template
JSP page

Web
Client

ArticlePriceEJB
Enterprise
Bean

6.HTTR Response

Articles
JSP page

HTTP Servlet
Response

EwalletController
EJB

Enterprise
Beay

Figure 6-9 Web component interaction after modified article.jsp

A HTTP request (1) is delivered to the dispatcher component which processes and then
forwards the HTTPServlet request (2) to the template.jsp. The template.jsp generates the
response (3) by including the responses from Articles JSP page. Articles JSP page retrieves
article contents from the article enterprise bean (4a) and article price from the article price
enterprise bean (4b), and e-wallet data from e-wallet enterprise bean (4c). Articles JSP page

transmits responses (5 and 6) to the client for presentation.

The content.jsp is modified to make payment from e-wallet enterprise bean in order to debit
e-coins paying for article content and Login.jsp is implemented (for server-side NetPay) to
retrieve e-wallet data from e-wallet enterprise bean. Figure 6-10 depicts the interaction

between these components.

130

J2EE Server
Web Container

ArticleDBEJB
Enterprise
Bean

Dispatcher
Servlet

LA

P Request
2.HTTPServlet Request

Template
Web JSP page

Client

EwalletController
EJB

Enterprise
Bean

6.HTTR Refponse

Content or
Login
JSP page

HTTP Servlet
Response

Figure 6-10 Web component interaction after modified and implemented JSP pages

A HTTP request (1) is delivered to the dispatcher component which processes and then
forwards the HTTPServlet request (2) to the template.jsp. The template.jsp generates the
response (3) by including the responses from Content or Login JSP page. Content JSP page
retrieves article contents from the article enterprise bean (4a) and Login JSP page retrieves
e-coin ID and password from the e-wallet enterprise bean (4b). Articles or Content JSP

page transmits responses (5 and 6) to the client for presentation.

2. Generating NetPay JSP pages

A HTTP request (1) is delivered to NetPay JSP pages which are generated to display
article.jsp in frames and retrieve article price data from the article price enterprise bean (3)
and e-wallet data from the e-wallet enterprise bean (4). The article.jsp retrieves articles’
title and author data from the article enterprise bean (2). NetPay JSP pages display the
articles and e-wallet information to the client (5). Figure 6-11 depicts the interactions

between these components.

131

ArticleDBEJB

Enterprise
Bean
NetPay JSP+Frame
@,
3) ArticlePriceEJB
Web Journal Enterprise
Client JSP] Bean
pages
5 | h Q)
5) \ EwalletController
EJB
Enterprise

Bean

Figure 6-11 Generating NetPay JSP pages

NetPay JSP pages also display content.jsp in frames and interact with the e-wallet

enterprise bean in order to debit e-coins.

3. Generating NetPay proxy JSP pages

A HTTP request (1) is delivered to NetPay proxy JSP pages which are generated to obtain
article price data from the article price enterprise bean (2) and e-wallet data from the e-
wallet enterprise bean (3) for displaying costs of the articles and e-wallet information.
NetPay proxy JSP pages then redirect to article.jsp accessing the journal home page (4).
When a customer wants to read an article content, NetPay proxy JSP pages interact with the
e-wallet enterprise bean to debit e-coins from customer’s e-wallet (3) and then redirect to
content.jsp which retrieve article content from article enterprise bean (5). Finally NetPay
proxy JSP pages display the article content to the client (6). Figure 6-12 illustrates the

interaction between these components.

132

ArticleDBEJB
Enterprise
Bean

Journal
JSP

pages

ArticlePriceEJB
Enterprise
Bean

(1)

Redirect

Web
Client

2
NetPay Proxy

\ JSP Pages

(6)

EwalletController
EJB
Enterprise
Bean

3)

Figure 6-12 Generating NetPay proxy JSP pages

Each of the above three approaches has advantages and disadvantages:
o The first requires updates to the existing system web page implementations. For
example, in the journal example system, article.jsp was modified to interact with the
price and the e-wallet enterprise beans for displaying the costs of articles and e-
wallet balance. content.jsp was modified to debit e-coin from the e-wallet by
interacting with the e-wallet enterprise bean before displaying an article content.
This can be done easily. However this requires some changes to the code of the
existing system. The first JSP interception approach is used to develop the NetPay

vendor prototype.
o The latter two requires renaming of these pages so the generated pages are passed to

the control at appropriate times. There is no code impact to the existing system’s

infrastructure, but its design and implementation are more complex.

6.4.3 Enterprise Beans Design

All enterprise beans that permit remote access must have a home and a remote interface. To
meet the needs of a specific application, an enterprise bean may also need some helper

classes. All enterprise beans also require an enterprise bean class.

133

Remote Interface extends from EJBobject (RMI distributable object). Remote interface
defines the set of business methods available to clients. The business methods are

implemented in an enterprise bean class.

Home Interface extends from EJBHome. Home interface defines the methods that allow a
client to create, find, or remove an enterprise bean instance. findByPrimaryKey() method
uses primary key (such as: ID) to find a unique object instance, that return the remote

interface to client who may perform business methods and data persistence.

Enterprise Bean Class provides the actual implementation of the business methods for an
enterprise bean. A business method defined in the enterprise bean class is called by the EJB

container when the client calls the corresponding method listed in the remote interface.

6.4.3.1 E-Journal Enterprise Bean Design

In our E-journal example system, the enterprise bean is only responsible to select article
data from a journal database. Stateless session beans can offer better scalability for
applications that require large numbers of clients. We choose stateless session bean
architecture in which the session bean has code of business logic and database access. One
session bean, ArticleDBEJB, represents an interface for the journal article database and is

used to select article records as shown in Figure 6-13.

'<<Interrace>> '<<|merface>>
EJB Object EJB Home

|
<<|nterface>>
ArticleDB

<<Interface>>
ArticleDBHome

‘ .
getArticles() o
®getArticleDetail() ejbCreate()

L s
L S

ArticleDBEJB

_ | %ejbCreate()
SessionBean | YgetArticles()
®getArticleDetail()

Figure 6-13 Article session bean class diagram

134

ArticleDBEJB is a session bean class and is used to get articles and the details of an
article. It extends from the SessionBean and implements business methods defined in the
remote interface. The ArticleDBEJB bean class has several methods that obtain articles and

content of an article from journal database:

o Get articles method obtains articles’ title and authors from the journal database.
o Get Article detail method selects an article title, authors and content by using

article id.

6.4.3.2 Article Pricing Enterprise Bean Design

As we mentioned in Section 6.4.3.1, the article price enterprise bean is also used to select
article price data from the NetPay database. The stateless session bean architecture is used
to represent an interface for the article price database table and to select article price records

as shown in Figure 6-14.

<<Interface>> <<Interface>>
EJB Object EJB Home

4 {

<<Interface>>
i i <<Interface>>
AticlePrice ArticlePriceHome
VgetArticl .
getArticles() ~
QgetArticleDetail() ejbCreate()

ArticlePriceEIB

SessionBean =71 QejbCreate()
QgetArticlePrice()

Figure 6-14 Article price session bean class diagram

ArticlePriceEJB is a session bean class and is used to obtain price of articles. It extends
from the SessionBean and implements business methods defined in the remote interface.
The ArticlePriceEJB bean class has one method to obtain the price of an article from

NetPay database ArticlePrice table:

135

o Get Article price method selects an article price by using article id.

6.4.3.3 NetPay Enterprise Beans Design

The session bean and entity bean architecture is used in NetPay vendor system. The
session beans are used to implement business logic. The system uses the entity beans as a
java object representation of the underlying relational database. There are four NetPay
enterprise beans that have been added to the E-journal system: e-wallet controller session
bean, redeem controller session bean, e-wallet entity bean, and redeem entity bean. To
construct NetPay vendor enterprise beans, the following classes are needed:

Remote interfaces: EwalletController, Ewallet, RedeemController, Redeem

Home interfaces: EwalletControllerHome, EwalletHome, RedeemControllerHome,

RedeemHome

Session bean classes: EwalletControllerEJB, RedeemController

Entity bean classes: EwalletEJB, RedeemEJB

The next two subsections explain these classes in detail and describe interactions between

them.

1) E-wallet Enterprise Beans

E-wallet enterprise beans OOD class diagram is illustrated in Figure 6-15.
EwalletControllerEJB is a session bean class and is used to handle payment transaction. It
extends from the SessionBean and implements business methods defined in the remote

interface. The EwalletControllerEJB bean class has several methods that debit e-coins from

the customer’s e-wallet to pay for article content:

136

o E-wallet (or Tandl for client-side NetPay) request method communicates with the

broker or a vendor to request e-wallet.

o Make payment method gets e-coins from the e-wallet database (or the e-wallet

application for client-side NetPay) and verifies e-coins.

o Verify e-coins method verifies the e-coins by using touchstone and index.

o Update e-wallet method updates the e-wallet (Tandl for client-side NetPay) with
new index, paywords, and amount and accesses a RedeemEJB entity bean to insert

the payments to Redeem database.

o Transfer e-wallet (or Tandl for client-side NetPay) method sends the e-wallet to a

vendor who requests it and then deletes the e-wallet (or Tandl).

<<Interface>>

EJB Home

<<Interface>>

EJB Object |

<<Interface>>)
EwalletController

<<Interface>>
EwalletHome

<<Interface>>

<<Interface>>
Ewallet

EwalletControllerHome

[N
requestEwallet() “gjbCreate()

L
SmakePayment() “cjpCreate() getEwallet()
SverifyEcoins() (| SupdateEwalet() Vs
*updateEwallet() - | e /

“transferEwallet()

\. EwalletControllerEJB | EntityBean |

EwalletE JB [

%ejbCreate()

SessionBean %ejbCreate()
T~ %requestEwallet()
*makePayment()

:ejbRemove()
; : ejbLoad
_ %verifyEcoins() “e]‘bStore(())
<updateEwallet() SelbFindByPrimaryKe 0
<<Interface>> | *transferEwallet() /] Y \W y
Redeem e \
/)

EwalletDataManager

EwalletModel
&ewallet_id : String | .
&touchstone : String create()
Seralizable &index : int *load()
<~ Spaywords : String $store()
“&amount : int *remove()
*findByPrimaryKey()
*getEwalletiD() *selectEwallet()
*getTouchstone() *deleteEwallet()
*getindex() “updateEwallet()
*getPaywords()
*getAmount()

Figure 6-15 E-wallet enterprise beans (server-side) class diagram

EwalletEJB is an Entity bean and is used to represent e-wallet data view. It extends from
EntityBean and implements business methods defined in the remote interface. It provides a
component-based interface to Ewallet database table. For each column in a table, the
corresponding entity bean has an instance variable. Because it uses bean-managed
persistence, the entity beans contain the SQL statements that access the tables. For
example, the Create method of the EwalletEJB entity bean calls the SQL INSERT

command. The actual database access performs in helper class EwalletDataManager.

The NetPay database tables that are used by our entity beans may be added to the existing
E-journal database if this is possible, or may be stored in a separate database of their own if

required.

Helper classes:

EwalletModel is a data model helper class. E-wallet detail information is coded in this
class. The attributes include ewallet id, touchstone, index, paywords, and amount.

Inspecting methods such as get() functions are provided.

EwalletDataManager is a data manager helper class that accesses the database. Database
SQL issues such as insert, delete, update, select and business methods are implemented
here. This class isolates the EJBs from particular database technology and SQL formats

used.

Buy Content Using Server-side NetPay Sequence Diagram

Figure 6-16 shows how a customer buys content with our NetPay-enabled E-Journal
application. For example, after a customer finds a desired article, he/she clicks the title of
the article. The web browser requests the article content from the appropriate JSP, and this
JSP or its generated proxy requests payment for the content of the article from the NetPay
E-wallet session bean. The e-wallet session bean contacts the e-wallet entity bean to debit
the customer’s e-coins to pay for the article. If there is no existing e-wallet, the e-wallet
session bean contacts either broker or previous vendor to get them to verify the e-coins. If
insufficient coins are available, the customer is directed to the broker site to buy more.

Otherwise, the journal article content is displayed to the customer.

138

Customer We NetPay JSP Proxy|| E-wallet E-Journal || Ewallet Broker || Previous

Browser || or E-Journal JSP | |SessionBean| |ArticleBean| |EntityBean Vendor
1: Click()
2: Request() if no E-wallet
3: makePaymeni(iati
" 4: makePayment() /emstmg
L) //
5 requestE-wallet)
//// /L
6: requestE-\/A;aIIet()
1
7: linkToBroker()
[8: getContent) If no E-coins left
J
if E-coins valid j

Figure 6-16 Click-buy article sequence diagram with server-side system

Buy Content Using Client-side NetPay Sequence Diagram

A sequence diagram in Figure 6-17 shows how interactions occur between various
components in our NetPay-enabled E-Journal application. For example, when buying an
article the customer selects the article for reading e.g. clicking on the URL in a returned
article search page or in a journal content page. The web browser requests the article
content from the appropriate JSP, and this JSP or its generated proxy requests payment for
the content of the article from the NetPay E-wallet session bean. The e-wallet session bean
communicates with the client-side E-wallet application to debit the customer’s e-coins to
pay for the article. If there is no touchstone and index existing, the e-wallet session bean
contacts either broker or previous vendor to get them to verify the e-coins. If insufficient
coins are available, the customer is directed to the broker site to buy more. Otherwise, the

journal article content is displayed to the customer.

139

Customer | E-wallet Web NetPay JSP Proxy NetPay E-Journal || Broker || Previous

Application | Browser or E-journal JSP E-walletBean | ArticleBean Vendor
1: Click() _
2: Request() if no Tand| j
3: makePayment §X|st|ng
4: makePayment()
I 5: requesfTandl() /
77
6: raques;t“/randl) i

7: linkToBroker()

~[fno E-coins left j

8: getContent()
if E-coins valid j

Figure 6-17 Click-buy article sequence diagram with client-side system

2) Redeem Enterprise Beans

E-wallet enterprise beans OOD class diagram is illustrated in Figure 6-18.

RedeemCotrollerEJB is a session bean class and represents a client's view of the redeem
business logic. It extends from the SessionBean and implements business methods defined
in the remote interface. The RedeemControllerEJB bean class has several methods that

process spent e-coins and send them to a broker:

o Select payments method selects payments by e-coinlD.

o Send redeem method communicates with the broker to send the selected redeem

data.

RedeemEJB is an entity bean class and represents Redeem database view. It used to record
and maintain redeem records and extends from EntityBean and implement business
methods defined in the remove interface. The actual database access is performed in the

helper class RedeemDataManager.

140

Helper classes:

RedeeModel is a data model helper class. Redeem detail information is coded in this class.

The attributes include redeem id, ewallet id index, price, and paywords. Inspecting

methods such as get() function are provided.

RedeemDataManager is a data manager helper class that accesses to database. Database

SQL issues such as insert, delete, update, select and business methods are implemented

here.

Py

<<Interface>>
RedeemController |

*selectPayments()
*requestRedeem()
*sendRedeem()

RedeemControllerEJB /

SessionBean
<l

Seralizable

<<Interface>>
EJB Object

<<Interface>>
RedeemControllerHome

*ejbCreate()

/

%ejbCreate()
*selectPayments()
*requestRedeem()
$sendRedeem()

RedeemModel
&redeem_id : String
Sewallet_id : String
Sindex : int
&price : int
Spayment : String

*getRedeemiD()
*getEwalletiD()
*getindex()
*getPrice()
*getPayment()

\\

///

y

/

*getRedeem()

RedeemEJB

<<Interface>>
EJB Home

<<Interface>>
Redeem

%ejbCreate()
“ejbRemove()

“ejbFindByPrimaryKey()

\

\

EntityBean

<<[nterface>>

RedeemHome

*ejbCreate()

RedeemDataManager

*create()

*load()

*store()

*remove()
*findByPrimaryKey()
*selectredeem()
*deleteRedeem()

Figure 6-18 Redeem enterprise beans class diagram

Redeem Spending Sequence Diagram

The Figure 6-19 shows how a vendor redeem spent e-coins with broker using client-side

NetPay. When redeeming spent e-coins the vendor clicks an e-coinID item button. The web

browser sends the requests to the redeem JSP which requests redeem from the NetPay E-

141

wallet session bean. E-wallet session bean selects the payments for the ecoinlD and sends

all involved information to BAS. The balance for the ecoinID is displayed to the vendor.

Vendor Web Browser Redeem JSP Redeem Redeem Broker
SessionBean EntityBean

1: Click()

2: requestRedeem()
3: requestRedgem()

4: selectPayments()

1]

5: sendRedeem()

6: Balance() /U

Figure 6-19 Redeem sequence diagram with client-side system

6.5 Component-based NetPay Vendor Implementation

In the previous chapter we implemented a CORBA-based vendor architecture [23].
However, these NetPay components are not optimally reusable and substantial
modifications may need to be made to an existing web-based application to incorporate
them. We implemented these new NetPay J2EE EJBs and JSP includes allowing for much

easier plug-in of NetPay micro-payment facilities into existing J2EE applications.

6.5.1 Packaging J2EE NetPay Vendor

J2EE platform offers five types of components which are enterprise beans, servlets, JSP
pages, applets, application clients, and connectors. Developers can assemble J2EE
applications from these components involving a two-step process: assembling components
into modules which are EJB, Web, Application client and Connector modules, packaging
these modules together to create a J2EE application that is ready to deploy into an
operational environment. Figure 6-20 illustrates the various types of J2EE modules and

how they can be deployed.

142

Client
.jar file
Java App.
J2EE App.
Client DD

Web J2EE
.war file . .
ISP files Application

Sevrlet class
Web DD

One or

more J2EE Deployment
modules P Tool

EJB
.Jjar file

v vy

EJB beans
Helper classes A J2EE
EJB DD application
DD

Connector
.rar file
CAC & RA classes
Help files
RA DD

Figure 6-20 J2EE packages

Each module is formatted in a special type of file. A J2EE application is packaged as a
portable deployment unit called an enterprise archive (EAR) file which is standard JAR file
with an .ear extension. A deployment descriptor (DD) XML file describes the relationships
between components and their external dependencies or assembly information. A client
application jar file may contain java applications, J2EE applications and the deployment
descriptor (DD) XML file. An EJB module formats into a jar file that contains java class
files for the enterprise beans and their remote and home interfaces, helper java class files
that the enterprise beans depend on and an EJB DD file. A Web module is formatted into a
Web archive (WAR) file which is a JAR file with .war extension. It contains JSP files,
Servlet class, static document (HTML, images and so on), applets files, and a Web DD file.
A connector module formats into a resource adapter archive (RAR) file which contains java
class files for implementing both Connector Architecture Contracts (CAC) and the resource
adapter (RA), helper files and a resource adapter DD file. In J2EE NetPay-enabled vendor

system, we will use Web and EJB modules.

143

6.5.2 NetPay Components Plug-in

The Ewallet and Redeem EJB components are plugged into the existing E-journal system
by deploying them into the E-journal system’s J2EE server. The Ewallet component is used
to obtain an e-wallet from the broker or another vendor, make payments by using the client-
side or server-side Ewallet managed e-coins, and generate payments data. The Redeem
component is responsible for selecting payments and sending these to the NetPay broker.
EJB deploytool provides an interface to define relationships between enterprise beans. This
makes it easier to plug-and-play components. Figure 6-21 illustrates the interface and the
relationship between Ewallet component and Redeem component. There is no relationship
among existing journal component (ArticleDBJAR) and NetPay components. The NetPay

components are plugged in the existing system very straightforwardly.

E%'Application Deployment Tool: JournalApp Q@@

PP EEEEEERE

® CIFiles Files.Applications.JournalApp.NetpayJAR.EwalletControllerBean
®] Applications Resource Env. Refs Refs R T
® < Joumaltpp

© (8] journalWaAR
@ (& AtticleDBJAR rEJB's Referenced in Code

@ @ NetpayJAR Coded Name| Type Interfaces |Home Interfa..|LocaliRemot..
@ EwalletBean ejhiewallet |Entity Remote ewallet Ewal.. ewallet Ewa...| (1
@ EwalletCuntroIIerBeaﬂ ejhiredeem |Entity Remote redeern.Red... redeemRe... | [
@ RedeemBean
@ RedeemControllerBe Add

® & servers

® B Iocalhost

Q JournalApp

rDeployment Settings
() Enterprise Bean Name
| M

() JNDI Name:

| M

Figure 6-21 Plugging in the NetPay vendor-side components with a J2EE deployment

tool

144

6.5.3 Implementation

In this section we will use screen dumps to depict the E-journal example component and a
NetPay-enabled E-journal example component. Internet Explorer 5.5 is used to display the
HTML content. We describe the basic user interfaces of the components and explain

interactions with examples.

6.5.3.1 E-journal example system

When a customer uses the web browser to access the E-journal example system, the E-
journal home window will appear. On this window (Figure 6-22a), each article title and the
author are displayed on the screen. The customer could choose a desired article and click
the title of the article. The article content is displayed on the content window (Figure 6-
22b). Consider a case when a user, Leanne, wants to read articles on the E-journal example
site. She accesses the site using her web browser and finds the second article to read as
shown in Figure 6-22a. She then clicks the title of the second article and the content of the

article is displayed on the screen as shown in Figure 6-22b.

145

‘A Book Catalog - Microsofi Internet Cxplorer

Flle Edt Mew Favartes Tools Hep

@ﬂac‘k - __J ‘ﬂ @ ";\E /A) Search *i‘

L

fddress ;@ http:})locahost G000 jjournalfcatalg

T Faverites @} vedin @5 () -) 3%

a: Go Links >

Flease choose fiom om selections:

by Jiz Zhong
Cote JZEE Pattema
by John Crgn

&y Monica Fawian

J2EE Project Dengera!
by Benphrey Sheil

by Beth Stearms

by the MDE feam

Duke's %}' Journal Site

& Java case studyr The pawer of JJEE
Introduction 1a the JIEE Platfo
Reilly Conference on Java--Ente

ehlobile Bnd-to-Bnd Applicati

ite

|®

% Lacal ntranet

N

Core JZEE Patterns

by fohr Crupxy

Legxnm the basies of J2FF degign patierng, inchuding
categoricing patterns, idenifying patterma, axd using a
tiered approach.

@ Dans

%3 Localirkranet
=

Figure 6-22 Example of non-NetPay E-journal system

6.53.2 NetPay-enabled E-journal example system

Figure 6-23 shows the click-buy articles interface for the E-journal after extending the
system via the NetPay components. The Login JSP page is added to the system in order to
get the e-coin ID from a customer when using server-side e-wallet NetPay (Figure 6-23a).
Any input data verification is done locally. An error message will be displayed if there is a

bad data. For example the customer presses the Login button without entering e-wallet ID

146

or password or the customer enters an invalid id. The article and content JSP pages were
modified to include our NetPay micro-payment JSP includes so that e-coin credit and
article prices are displayed on the screen (Figure 6-23b). Article pricing is stored in the
NetPay database and the JSP includes are parameterised with article information (category,

title, URL) to look up the appropriate pricing.

Consider a case when a user, Leanne, goes to the NetPay-enabled E-journal site and enters
e-wallet ID e.g. 345 and password and then clicks Login button as shown in Figure 6-23a.
After Leanne successfully accesses the system, the “You have got 70cs left!” information
and each article price are displayed on the home window. She can start to browser the site
and find an article that she wants to read as shown in Figure 6-23b. She clicks the title of
the second article which costs 20cs and the remaining e-coin credit and the content of the

article are displayed on the content window as shown in Figure 6-23c.

147

2R Duke's Bookstore - Microsoft Internet Explorer

Eile Edit Wi Favorites Tools Help .

- = . s
D sack - | x'"| | z'] 21) search e Favorites (a)
Address | &) htkp: fflocalhost : 8000/ journalf enter s i 2

Duke's &* Journal Site

e E’I@

Ewallet ID [345 |

Passwoerd eesesses| |

P e \ wJ Local intransk

\4 Duke's E“ Journal Site

Logoff

Please choose from owr selections:

2N Book Description - Microsoft Interaet Ex. .. r..... ||ﬁ_”§|
Eile Edit e Fawvorites Tools

ek - 2 - [x] (=

Address | Rkt flocalhost: s fournaliart | Go Links >
e % Local intranet
Duke's f%‘-’!‘ Journal Site
Logoff
C'ove JJZEFE Pa
by Fobre Cregod
Liearn the bagics of JJZEE design paterns,
including categorizing patterns, idenifving
patterns, and using a tHered approach.
Continade Shoppdng
-
4] Dene w.d Local inkranst

Figure 6-23 Example of NetPay-enabled E-journal system

When the customer first tries to read an article, the vendor obtains their e-wallet which

includes the validating touchstone, index and e-coins from the broker, in order to verify that

148

the e-coins are valid [23]. When moving to another vendor, the touchstone and current

index value of the e-coins are obtained from the previous CORBA vendor or EJB vendor.

6.6 Summary

We have built NetPay vendor Enterprise JavaBeans to provide plug-in vendor micro-
payment support components and plugged in EJBs into the E-journal’s existing application
server and annotated the E-journal’s JSPs to make appropriate function calls to the NetPay
EJBs. This allows for minimal or no code impact (none if using proxy JSP pages) to the
existing system’s infrastructure. The NetPay EJBs are completely separated from the
particular domain knowledge of the web application, enabling each enterprise bean to be
reused in different EJB-based vendor systems via plug-and-play with the existing vendor
components. The NetPay vendor system components have been designed, implemented,
plugged into the E-journal example system, and successfully deployed to a J2EE server

running the E-journal web site.

NetPay vendor functions could be integrated into an existing CORBA-based system in a
similar manner and deployed with existing CORBA remote objects i.e. via standard ORB.
However we would have to modify the existing objects or web server pages that call these

objects to invoke the NetPay pay-per-click functions when needed.

149

Chapter 7

Evaluations

In this chapter, we describe three kinds of evaluations we have done on our NetPay
prototypes, to assess micro-payment verses macro-payment usability, performance and
overall qualitative characteristics for E-newspaper systems’ payment methods. We
compared two kinds of NetPay-based micro-payment systems (client-side wallet and

server-side wallet) and a subscription-based macro-payment system.
7.1 Motivation

After having developed a new model of micro-payment for e-commerce applications, and
building a prototype of this system - NetPay, we wanted to assess its worth compared to
macro-payment systems. We had also developed two models for managing electronic coins
(“e-coins”) in our NetPay system — managing e-coins in a client-side electronic wallet (“e-
wallet”), where the encoded coin information resides on a customer’s computer, or in a
server-side e-wallet, where the coin information resides on vendor servers and can be

exchanged from vendor to vendor.

To carry out an evaluation of NetPay and compare its two e-wallet support approaches to
traditional macro-payment based E-newspaper payment methods we assessed the
characteristics of NetPay-based micro-payment systems from several perspectives. We
wanted to assess and understand customer perceptions of using NetPay and the advantages
and disadvantages they saw with the system, as well as gain an understanding of the

usefulness of the approach for information vendors.

The impact on the performance of the vendor system of debiting coins and tracking
payments must be light to make the system practical. Basically a micro-payment system
should provide a lightweight mechanism for paying for on-line content where there are a
large number of payments for quite small units of information [23, 42, 27]. Such a system
needs to support both the buying of coins, and electronic money, by customers and per-

click debiting of coins by vendors [33].

150

To evaluate our prototypes we determined that three types of evaluation would be required:
a usability evaluation, to assess the user’s perception of NetPay-provided features, and to
compare these against conventional macro-payment subscription-based payment models
[60, 69]; a performance analysis of NetPay added to a vendor system; and a qualitative
analysis of NetPay’s functional characteristics [26]. Each of these evaluations only
examines some of the issues to do with usability, performance impact and qualitative

assessment of the NetPay prototypes. In the following sections we report results of:

* Usability evaluation via a survey-based approach with representative target users of
NetPay. We then analyse the results from this evaluation to determine if NetPay is

usable as far as target users were concerned.

* Performance impact evaluation of our NetPay prototype was carried out to
determine if adding it to typical vendor web servers would be viable for large
transaction loading. The results are discussed to determine if the performance

overhead of NetPay micro-payment would be acceptable to information vendors.

* Qualitative assessment of NetPay and conventional macro-payment approaches was
done to determine how well our model and prototype compare using some common
assessment criteria and whether NetPay meets the basic requirements for a micro-

payment system for on-line Web applications.

7.2 Usability Evaluation

Usability evaluation is a process that measures the ease of learning, easy to use, and the
effectiveness of a product [74]. There are a number of methods that may be used to capture
the information to support usability evaluation such as focus group, user testing,
observation, survey/questionnaire, interview, performance measure etc [61]. We choose to
use a task list and post-survey questionnaire rather than other usability evaluation
approaches. A usability evaluation in this section surveyed users of the prototype to assess
their impressions of the approach when carrying out information purchasing tasks using a
micro-payment verses a macro-payment protocol. We focus in this experience on the

usability of the NetPay prototype user interface using several common usability measures.

151

Another measure would be interface suitability i.e. for each user task, does the prototype
provide appropriate support for the user. We have not considered this except via open-

answer comments from our surveyed users.

7.2.1 Procedure

We evaluated participants' user satisfaction, navigational efficiency, effectiveness and
general preference for the three payment systems — subscription-based macro-payment,
server-side and client-side NetPay micro-payment with two newspaper sites [69, 74]. These
measures are the standard ones for determining how “usable” an interactive system is, and
allow us to make judgements on the suitability of the interface for the tasks being carried
out [60]. Efficiency was measured by the degree of ease to change different newspaper sites
and the speed of article content loading. Effectiveness was measured by assessing
operations needed by the customer to complete their purchases. Satisfaction was a

subjective measure assigned by each participant in the experiment.

Ten participants were invited to participate in the usability tests. They are students from
Department of Computer Science and Mechanical Engineering. They were selected
randomly in student labs and were willing to attend the test. They did not know the
researcher. Every participant was required to fill out a pre-test questionnaire (see Appendix
A), which is used to find out his/her computer background and experience of using E-
tailing web sites. Ten participants volunteered for our usability study of NetPay. They were
an equal mix of non-IT specialists and graduate students from the departments of
mechanical engineering and computer science at the University of Auckland, the later who
were frequent users of on-line information portals. All participants were familiar with using

E-tailing web sites, particularly for purchasing books, CDs and clothing.

The tests were done in the Computer Science Department offices at the University of
Auckland. The application servers used are: newspaperl and newspaper2 providing
subscription-based macro-payment; broker, newspaperl, and newspaper2 providing server-
side NetPay micro-payment; and broker, newspaperl, newspaper2 providing client-side
micro-payment. These application servers and web server were deployed for this

experiment on the same host on the Windows XP network. The participants in the

152

experiment used other PCs connected this network to carry out a set of tasks including
registering, subscribing, buying coins, reading articles and reading articles over multiple

sittings.

The participants carried out a set of information purchasing tasks from our three E-
newspaper prototypes, one using subscription-based macro-payment; one using a client-
side NetPay e-wallet and one using a server-side NetPay e-wallet. Participants were asked

to complete five tasks with each system.

* Subscribe to the newspaper site or register and buy e-coins with a broker

* Read 3 articles on newspaperl site

* Change to newspaper?2 site and read 3 articles

* If subscription expired or e-coins run out, the user must renew it

* Read articles on the two vendor sites a second time, subsequently to the first use of the

system

Firstly every participant undertook all these tasks according to the task lists. Then they
could use the three systems across a number of sessions. After completing these
information searching and access tasks with each of these payment systems, participants
were asked to fill out a post-test questionnaire (see Appendix A) that contained a subjective

rating assigned to each tested characteristic for each payment system.

7.2.2 Results

In the post-test questionnaire, we used a 5-point rating scale (1= Strongly Disagree,
5=Strongly Agree) to rate each tested characteristic. We also included open questions to
gain user feedback to help in the qualitative analysis evaluation work. We presented the
average ratings for the tested characteristics in a bar chart form as shown in Figure 7-1. The

tested characteristics are:

a. Ease of use: Payment system is easy to use.

b. Efficiencyl: It is easy to move around different newspaper sites.

c. Efficiency2: The speed of article content loading is fast enough.

d. Efficiency3: It is easy to deal with subscription expired or e-coin run out.

e. Preference: You preferred to use this system widely.

153

We choose to use some common usability criteria [74] so that we could assess the overall
usability characteristics of the NetPay prototype. The usability evaluation involves only a

small user base.

51 45 45 4.5

0 - .
easeof easemove loading toppingup preferred
use sites speed money to use

T -1

B Subscription B Server-side O Client-side

Figure 7-1 Three payment systems usability test results

In this study, ease of use, efficiency, and satisfaction/preference results mainly favoured the
client-side e-wallet NetPay system. However, this approach incurred an extra delay in page
display due to communication from the vendor to the customer PC’s e-wallet application,
which the other systems don’t have. Participants stated the article contents at different
newspaper sites were easy to read without log in and the balance can be checked any time.
The server-side NetPay system allowed users to read articles on different computers, but
customers needed to remember e-coin IDs and had to log into the new newspaper site when
changing vendor. The article content loading was very fast on the subscription-based
system, but the users found that it is not as convenient to change vendor. The users
generally needed to spend more money in order to subscribe to the whole newspaper
provided by each site. Open question results revealed that client-side NetPay was found to
be significantly preferred over a subscription-based system. In addition, server-side NetPay
was more preferred than subscription-based system for this E-newspaper application
domain. The participants did the three systems in the same order, i.e., reading articles first

and then changing sites. This is a weakness of the experiment.

154

7.3 Performance Impact Evaluation

A performance impact evaluation assessed the performance of NetPay-enabled web sites to
determine the overhead of the micro-payment extensions made to the software, particularly

in regard to user response time and additional overhead on server CPU time.

7.3.1 Design

Our three prototypes providing subscription-based payment, server-side and client-side
NetPay micro-payment have been tested for application server performance and client
response time. The key aim was to test how long a newspaper site takes to serve client
requests when extended to use each of the three payment systems, from the time the
customer clicks the title of an article to the time the article is fully displayed on screen. In
order to do this we developed a pseudo-web browser to perform large numbers of requests
to the web server and to time the response time of the web server. The macro-payment
subscription-based approach makes one expensive macro-payment debit for pay for the
initial subscription and then simply checks the whether a customer, after login, has a valid
subscription. The micro-payment systems need to carry out an e-coin debit of the
customer’s e-wallet with each purchase of an article. We measured the CPU time taken by
the vendor’s web server and the overall time taken to action the page display. The longer
the delay to display a page, the more problematic for the customer in terms of vendor
information response time. Users probably want to response in a few seconds. Anything
shorter doesn’t matter e.g. ’2 second to 2 seconds, but longer e.g. greater than 5 seconds
would not be good. The more CPU consumed by the server-side, the less overall client
requests and lower response time overall can be supported. This evaluation is not
considering e.g. amount (total size) of data that the vendor server must store to redeem
coins. It is looking at response time and vendor server loading, but other measures could be
data size impact, cost (e.g. broker fees, macro-payment fees) and so on. We did the tests on
machines on local, high-speed LAN which was unloaded by others at the time. However

the results would be very different if across WAN or heavily loaded network.

155

7.3.2 Results

We set up the performance tests in an office in the Computer Science Department at the
University of Auckland. The application servers are subscription-based macro-payment
newspaper, server-side NetPay micro-payment (broker and newspaper), and client-side
NetPay micro-payment (broker and newspaper). These application servers and web server
were deployed for this experiment on the same host on the Windows XP network. In these
tests, we were concerned about the overhead of the NetPay extensions made to the vendor
system only. The network delay is not considered here but it may be a factor. Customers in

the tests used the same PC to read articles over the three systems.

The diagram Figure 7-2, shows how a customer click-buys article content with E-
newspaper site using server-side NetPay. When buying an article the customer selects the
article for reading e.g. clicking on the URL in a returned article search page. The web
browser requests the article content from the JSP that requests payment for the content of
the article from the e-wallet bean. The e-wallet bean communicates with Vendor
Application Server (VAS) to debit the customer’s e-wallet to pay for the article. If the e-
wallet does not exist, VAS requests e-wallet location from the BAS and e-wallet from BAS
or VAS. VAS then verifies the e-coins by using the touchstone and the index. If e-coins are
valid, VAS stores them in the redeem database and the news article content is displayed to

the customer.

156

Customer Web Enewspaper VAS E-wallet Article Redeem Broker Previous
Browser Article JSP Vendor

1: Click()

2: Request

3: Request() if no E-wallet ﬁ
4: debitEcoins(g}(lstmg
il —

5: getLocation() or getEwélIét)

6: getEwallet()

}: verifyEcoins()
1]
8: addRedeem()

e N T T

are valid

Figure 7-2 Click-buy article content with server-side NetPay sequence diagram

We ran two sets of performance impact tests, one on our original NetPay prototypes and a
comparable macro-payment subscription-based system and one on modified versions of the
NetPay prototypes, optimized to provide lower e-coin management overhead. This was
done due to the large database overhead the original prototypes incurred for debiting e-

coins.

The results of the first set of performance impact tests are shown in Table 7-1. The response
time measures how long it takes for a page to be returned from the vendor site. The server
CPU time measures the time spent in the vendor’s server debiting NetPay e-coins. We

didn’t consider caching vendor-to-vendor impact.

157

Table 7-1 Initial prototype performance

System Response Delay Time Server NetPay CPU Time
(average) Usage (average)
Subscription-based 16ms N/A
Server-side NetPay 80ms 64ms
Client-side NetPay 950ms 60ms

From Table 7-1, the server-side NetPay takes 80ms-16ms=64ms for e-coin debiting per
article and Client-side takes 950ms-16ms=934ms total time, though the time to debit coins
is taken by the client’s e-wallet application, not the vendor’s application server. The large
overhead in the server for the server-side NetPay prototype is due to the database
transactions it carries out to record coin updates and debits to redeem to the broker. Note
that multi-threading in the server allows the vendor to serve other clients during NetPay

debits but the server-side e-wallet incurs a heavy duties overhead.

To reduce the e-coin debiting time, we created a transaction temporary file recording the
data for redeeming instead of the redeeming database. Because of the optimized efficiency
of such a temporary file, the e-coin debiting time decreases dramatically especially for
server-side NetPay system. The results are shown in Table 7-2. At the end of each day, the
system redeems the coins or updates the database, and then deletes the records in the
transaction temporary file. From Table 7-2, Server-side NetPay takes 30ms-16ms=14ms for
e-coin debiting per article and Client-side takes 900ms-16ms=884ms after the application
of the temporary file. The impact of the NetPay micro-payments on the vendor application
server are greatly reduced, but the client-side e-wallet still incurs considerable response
time delay due to the need for the vendor to communicate back to the customer’s PC hosted

e-wallet application for each e-coin debit.

158

Table 7-2 Prototype performance after using a temporary file

System Response Delay Time Server NetPay CPU Time
(average) Usage (average)
Subscription-based 16ms N/A
Server-side NetPay 30ms 14ms
Client-side NetPay 900ms 12ms

The e-coins debiting time contains two parts which are debiting e-coin from an e-wallet and
storing spent e-coins to a database for redeeming. Using a temporary file instead a redeem
database to store redeem data decreases the time of storing spent e-coins due to the database
on the server to record redeem data. The server NetPay CPU time for a client-side and a
server-side NetPay are almost the same, because the servers need to update the e-wallet in
server-side NetPay or update the touchstone&index for client-side NetPay, and stores
redeem records in both systems. A client-side cookie-based e-wallet NetPay micro-payment
system described in Section 5.2 could be used to reduce the time of debiting e-coins from
the customer’s e-wallet in the customer’s PC because the vendor application server debits

the e-coins from cookie e-wallet directly.

7.3.3 NetPay Case Study Using Argo/MTE Tool

Argo/MTE is an architecture modeling tool [37]. It provides a methodology to automate the
process of software architecture analysis, design, and evaluation. Argo/MTE can generate
fully functional applications called a performance test bed for any intended system
architecture designs. It also manages a large distributed environment for carrying out the

architecture performance testing [13].

A performance impact evaluation for the NetPay vendor systems was described in previous
sections. However, the evaluation only involved one customer simulated using the NetPay-
enabled vendor systems and purchasing articles at a time, to determine the theoretical
maximum response time of a NetPay-enabled web site. However, the article display time
must be an acceptable time under much heavier, concurrent loading of customer requests
for practical NetPay-enabled applications. In a case study of the NetPay architecture
performance by Yuhong Cai [13], ten customers were simulated as purchasing an article’s

contents simultaneously in a performance evaluation of the server-side NetPay-enabled

159

newspaper system. Note that while this has provided some useful results, we also need to
add NetPay to a real existing web application and carry out a more thorough performance
evaluation to assess if a NetPay-enabled vendor system would be viable for large

transaction loading in the future.

The web-based multi-tier architecture for both NetPay broker and NetPay-based vendor
systems was designed in Chapter 5. NetPay micro-payment transactions involve three key
parties: the Broker Server, the Vendor Server, and the Customer browser. The architecture

is illustrated in Figure 7-3.

Broker
y/ HTTP Server Staff PCs

Customer PCs | — SOL

CORBA Q
Browser+EWallet

Bank
Application
Server SQL SQL DB Server

HTTP

Authorisation

Vendor
HTTP Server
CORBA
socket \
Application
Server T
SQL SQL DB Server

Figure 7-3 NetPay system deployment diagram

A customer runs a web browser that accesses the broker and vendor services, and may also

contain an e-wallet implemented by the use of a Java application.

CORBA is used to communicate among the broker application server and the vendors’
application servers via WAN/LAN. The broker application server provides a set of CORBA
interfaces with which vendor application servers communicate to request touchstones and
redeem e-coins. A vendor application server communicates with the broker application
server to obtain touchstone information to verify the e-coins being spent and to redeem
spent e-coins and other vendor application servers to pass on e-coin indexes and

touchstones.

160

A NetPay architecture performance evaluation case study was carried out by using the
Argo/MTE tool [13] to generate a test bed which represents an architecture of a NetPay real
system, to do a large scale performance evaluation of the generated test bed and the NetPay
real system, and to compare results of the performance evaluations. The main components

were picked up from the NetPay system in order to generate test bed for NetPay system.

<<fppServer>
<<Client>> o
Server
Reader o
|
| e s
accessNetPay Site() | : ¢ - <<fppServerr>
| | <<fppServer>>
| : \ —— C h Server
\l/ | v oenver -
<<RemoteObject>> : <<RemoteObject>> A \"/
Po— | o |
CustomerRegistration Page| \ (CustomerBuy BcoinPage| v <<RemoteObject>>
registerCustomer() : buy Ecoin() <<RemoteObject>> R o s
1 Ecoinht <<DBase Server>>)
| insert Customen()
\I/ N BrokerDB Server
generate Ecoin() - select Customen()
<<Remote Object>>
eT e generateTand|() : update Customer()
Ecoinlnterface celectBsoing) 1
) I
do Generate Ecoin() \,/
doRegister() <<Database>>
Broker
customer
ecoin
handp
vendorhost
<<fppServer>
‘endorServer l
Fmmmm-------z <<fppSenvers> <<fppServer>>
: ro - R Adticleh Server emoteTandIanagerServer
|
! | T T
! | | |
! | | 1
W W i |
<<RemoteObject>>] |<<RemoteObject>>| i !
= W
EcoinPage Adticlelnterface <<Remote Dbject>> .
<<RemaoteObject>>
lecoinLogin() doAdicle Content() Aticleht
Remote Tand IManager]
doDisplay() varify Ecoin() <<DBaseServer>>
generatendex()
selectAdticlelDQ) ‘endorDBSenver
requireTandI()
[select Aicle() :
|
W
<<Database>>
Newspaper
article
redeem
section
tandi
vendorhost

Figure 7-4 The complicated architecture of NetPay software system
Figure 7-4 shows the complicated architecture of NetPay software system. The diagram

was drawn using the Argo/MTE tool developed by Yuhong Cai. There are 20

161

entities/components involved in the architecture. Each entity belongs to a type, and entities
within the same type show similar characteristics and play similar roles in the system. For
example, entities “EcoinPage”, “ArticleInterface”, and “CustomerRegistrationPage” are
within the type of “RemoteObject”, and they all are hosted by application servers and
provide services for remote clients. All components in architecture are connected, and
different connection specifies different relationship between two connected entities. For
example, the connection between entities “Reader” and “AppServer” represents the
association relationship that “Reader” uses “AppServer”. The connection between entities
“AppServer” and “CustomerRegistrationPage” represents the ownership relationship that

“AppServer” owns “CustomerRegistrationPage”.

Entity “Reader” is within the type “Client”. This entity represents users of NetPay system.
By assigning suitable values to the design parameters of this entity the generated test bed
can contain many concurrent users. There are four application servers involved in the
system. Each server hosts one or more remote objects that provide services for remote
clients. The system also uses two database servers: “BrokerDBServer” which hosts

“Broker” database and “VendorDBServer” which hosts “Newspaper” database.

The real NetPay system and its test bed are compared in the case study. The two systems
have very similar structure and consist of same components and same relationships among
components. Even when comparisons were made at method level, the structure of both
systems is close enough. The differences between two systems are: (1) the NetPay real
system contains some simple business logic while its test bed doesn’t contain any; (2) the
NetPay real system has small-sized data passing around while its test bed does not pass

around any data.

The tests were done in the Computer Science Department offices at the University of
Auckland. The application servers used are: “RemoteEcoinManagerServer”,
“RemoteCustomerManagerServer”, “RemoteArticleManagerServer”, and
“RemoteTandIManagerServer” for both the NetPay real system and its test bed providing
server-side micro-payment. These application servers and web server were deployed for
this experiment on the same host on the Windows XP network. Ten threads were set up to

simulate ten customers simultaneous accessing the system.

162

The generated NetPay test bed performance and the NetPay real system component
implementations’ performance were compared and it was found that both the test bed and
prototype NetPay system performance are reasonably close. The systems were tested under
a load of ten customer simultaneous accesses being simulated in the performance
evaluation. In the case study, 15 tests were done in order to analyze the difference in

performance between the performance of NetPay real system and that of its test bed

Table 7-3 gives the results of the performance for the generated test bed code and the
prototype NetPay server-side E-wallet system code for an article content buy and process,
and an average response delay time for both systems. The average display response delay
time for an article content display with the server-side NetPay system is acceptable. These
were “warm-up” values, and ideally could be discarded. These results show that when 10
simultaneous client requests for an article are made to our NetPay-enabled prototype web
site, on average it takes 247ms for a response to be sent back to a client for display by their
browser. The maximum delay encountered was 593ms, which is actually during the first

test run and is an outlying result.

Table 7-3 The performance for an article content display process

Response delay time
Test Response delay time with the prototype
with the generated test server-side NetPay
bed code (ms) system code (ms)
1 407 593
2 172 282
3 187 218
4 157 219
5 172 265
6 157 203
7 188 203
8 172 218
9 187 218
10 188 219
11 203 203
12 203 203
13 187 203
14 188 266
15 203 203
Average 198 247

163

Further performance testing is required of the NetPay prototype and any real deployment of
NetPay to further assess its performance. This would include varying numbers of
simultaneous client requests e.g. 5 to 50; heterogeneous client requests e.g. buying different
articles from same vendor; and varying configurations of the web server e.g. different
thread pool sizes, memory allocation to threads and database connection pools. Comparing
performance of NetPay under high simultaneous loads to non-NetPay, subscription based

E-newspaper would be interesting too.

7.4 Qualitative Comparison to Macro-payment

Our qualitative evaluation assessed factors such as customer effort in using a NetPay-
enhanced web site from a customer’s perspective, along with the cost/benefit of the system

for customers, vendors and brokers.

7.4.1 Design

The qualitative assessment of our three prototype E-newspaper web sites assesses various
factors associated with their costs and benefits for customers, vendors and the broker

organization. The assessment criteria included:

* Number of customer interactions with the web site(s) needed to read articles

* Information retention needed by customers to use web site(s)

* Cost to customers depending on subscription and article pricing and article usage
* Cost to vendors of subscription authorization and e-coin redemption

* Cost to brokers of providing e-coins and redeeming coins with banks

The results for this analysis were obtained from analyzing the performance of each payment

method in order to satisfy a payment scenario.

7.4.2 Qualitative Analysis

With our qualitative assessment we wanted to measure the different characteristics of
macro-payment and micro-payment approaches, and to analyse the differences between our

two NetPay e-wallet models. The results of this assessment are summarized in Table 7-4a

164

and Table 7-4b. In the table 7-4a, “+” means the advantages of the protocols and “-* means

the disadvantages of the protocols.

Table 7-4a: Qualitative assessment summary

browser cookies)

to access server-side
wallet information.

Criteria Macro-payment Server-side Wallet Client-side Wallet
1.Subscribe (customer | 1.Purchase e-coins from | 1.Download wallet software
and credit card details) broker 2.Purchase e-coins
2.Login to web site 2.Login to web-site 3.Article read
3.Article read 3.Article read
4.Subscribe if move to | 4.Login to new vendor
another vendor +don’t need login/password

Customer +after login simply read | for any vendor
interactions +after subscribe/login | articles +simply read articles
simply read articles +only login to new | -must download, install and
-must supply personal | vendor have running client-side e-
details -must recall e-coin ID, | wallet software
-must subscribe for each | password
vendor -must supply for each
vendor
Need to remember | Broker username and | Broker username and
username/password. May | password needed to | password needed to
Information avoid if use same PC | purchase coins. E-coin | purchase coins.
retention always (can store in | ID and password needed

Low — if use moderate
number of articles, more

N/A

N/A

Article cost
Lowe.g. 2c
High e.g. 10c

read more. Vendor needs
more reads to cover
costs.

High — customer likely to
read less. Cost savings to
customers.
Can price
differently.

articles

cost-effective for
Subscription cost | customer.

Lowe.g. $10 | High — need to wuse

High e.g. $50 | substantial amount of
articles for benefit.
No cost savings for
customers if use multiple
vendor sites.
N/A Low — customer likely to | Low — customer likely to

read more. Vendor needs
more read to cover costs.
High — customer likely to
read less. Cost savings to
customers.
Can price
differently.

articles

165

Table 7-4b: Continue of qualitative assessment summary

Criteria Macro-payment Server-side Wallet Client-side Wallet
Low - No cost benefit for | Low — if low cost, vendor | Low — if low cost, vendor
vendor makes little profit. makes little profit.

High - Large number by | High — if high cost to | High — if high cost to
Article requests | many customers effects | customer, may be more | customer, may be more
by customers system performance costly than macro- | costly than macro-payment
Lowe.g. <10 payment approach approach. Has large
High e.g. >20 High numbers impact | response time impact (in

overall vendor server | current implementation).
performance. Very high numbers impact
overall response time of

vendor server.

“Brand capture” of | If large enough vendor | If large enough vendor
customers due to use of | community can | community can encourage
Vendor Benefit subscription to each | encourage = movement, | movement, partnerships. No
vendor site. partnerships. Customers | login for wallet access
need to login to access | needed but need wallet

wallets.

installed on customer PCs.

Vendor cost

Need to buy macro-
payment supporting
software and pay bank for
facility.

Need to price subscription
to adequately cover costs.

Need to allow broker to
take portion of overall
customer payments OR
broker takes costs from
customer direct. Need to
price articles so cost per
article/ and number of
articles used cover costs.
The performance
overhead on the vendor
server is significant.

Need to allow broker to
take portion of overall
customer payments OR
broker takes costs from
customer direct. Need to
price articles so cost per
article/ and number of
articles used cover costs.
There is little performance
overhead on vendor server
but response time reduction
for customer.

Broker cost

N/A

May charge vendors for
each e-wallet request or
portion of redeemed coin
amount.

May charge customer for
each e-coin purchase.
Possibility of high
number of e-coin
requests from vendors.

May charge vendors for
each e-wallet request or
portion of redeemed coin
amount.

May charge customer for
each e-coin purchase.

Low overall e-coin requests
as client-side wallet brokers
these.

7.4.3

Summary of Results

In summary, a macro-payment approach is more beneficial for the customer if they

typically read a large portion of the on-line newspaper articles, or if a comparable micro-

payment approach has a high-cost per article for the user. However, the micro-payment

approach wins out when the customer typically users a small portion of the articles, articles

166

are low-priced and if the customer reads articles from multiple newspapers and can use
their e-coins across any of these vendors. There is a performance cost for the vendor in
providing a micro-payment approach in terms of time taken to track e-coin spends and
redemption. However, there is also normally a high cost to the vendor of providing macro-

payment support for subscription purchase.

One interesting issue is whether vendors would “buy in” to a micro-payment system
approach. By using subscription-based macro-payments to access information, vendors can
lock in customers i.e. achieve “brand capture” and discourage customers from moving to
other information sources e.g. other E-newspapers as they have already made a significant
financial commitment to one newspaper. Similarly, there needs to be sufficient vendors
sharing the same micro-payment system and “currency” to allow useful movement by
customers from vendor to vendor. In addition, the software maintenance overhead of
installing a micro-payment system must be considered by vendors. One approach is to
adopt a portal-based approach to accessing multiple vendors through a single micro-
payment enabled portal which does the debiting and redeeming of spending on behalf of

multiple vendors.

Many existing web sites provide services to users for free but use advertising embedded
within pages or as pop-up windows to generate revenue. However, studies have suggested
that vendors would prefer a payment mechanism which is on a per-usage basis, either
subscription-based or micro-payment-based to provide greater reliability of income [6]. A
key outstanding challenge with micro-payment systems is being able to spend currency (e-
coins) at a wide range of vendors — if the customer must purchase different “currencies” for
different groups of vendors then this will be both inefficient in terms of expenditure and
incur overheads of the customer memorizing different usernames, e-coin Ids and
passwords. One approach is to support inter-broker micro-payment e-coin exchange

transparently when the customer visits a vendor that uses a different broker’s currency.

7.5 Summary

We described three kinds of experiments we have done on our NetPay prototype, to assess
micro-payment versus macro-payment usability, performance impact and overall qualitative

characteristics for e-commerce systems payment. We compared two variants of our micro-

167

payment system deployed with an on-line newspaper web site and a macro-payment,
subscription-based variant of the web site. These evaluations have indicated that for users
the micro-payment approach has some appeal over traditional macro-payment approaches

and that for some usage patterns the micro-payment approach is far more efficient in terms

of cost to the customer.

168

Chapter 8

Conclusion and Future work

This chapter summarizes the work done in this thesis and presents some possible future

work in this area.

8.1 Contributions

There are a number of micro-payment systems such as Millicent, Mpay, and PayWord.

Most existing micro-payment technologies proposed or prototyped to date suffer from problems

with communication, security, lack of anonymity and many are vendor-specific. The main

contributions made by the research described in this thesis include:

Proposing a new protocol called NetPay to address problems with communication,
security, anonymity and many are vendor-specific. The NetPay protocol shifts the
communication traffic bottleneck from a broker and distributes it among the vendors by using
Touchstones and Indexes. Customers are prevented from double spending as the index of
the payword chain indicates the balance of the customer’s e-wallet, and the touchstone
can be used to verify the payword chain has not been tampered with. The protocol
protects the customer’s privacy from vendors because vendors only know customers’
ID. NetPay allows customers purchasing on-line content from multiple vendor sites by

using an e-coin chain which is not vendor-specific.

Developing a software architecture for implementing NetPay-based micro-payment
systems for thin-client multi-tier web applications. There are three kinds of NetPay
systems that have been designed, which include server-side e-wallet, client-side e-
wallet, and client-side cookie-based e-wallet. Each of these NetPay systems has its own

advantages and disadvantages.

Using the server-side e-wallet, customers can buy on-line content anywhere in the

world and content display time is faster than the client-side NetPay systems. However

169

customers need to remember e-coin IDs and password to log into a vendor site when

he/she wants to buy contents.

Using the client-side e-wallet, customers can buy on-line contents at different vendor
sites without log into the site at their PC. Customers need to download the e-wallet
application to their PC when they register with the broker. The content display time is
slower than the server-side e-wallet and cookie-based client-side e-wallet due to the
communication between vendor application server and customer PC’s e-wallet

application.

A cookie-based client-side e-wallet system is suitable for customers performing many
purchases from a single vendor, and then changing to another vendor. The content

display time is faster than a client-side e-wallet but slower than a server-side e-wallet.

Prototyping the broker and an example of “hard-coded” vendor sites - an on-line
newspaper site - for both server-side and client-side e-wallet NetPay systems. The
broker implementation provides a database holding customer and vendor accounts, e-
coin information, an application server providing business functions, a CORBA
interface for vendor application servers to request e-coin touchstone and redeem spent
e-coins, and a JSP-implemented HTML interface for customers. The ‘“hard-coded”
vendor implementation provides a JSP-implemented HTML interface enabling
customers to access Search and Buy content services, a web server runs JSPs to provide
content that needs to be paid to access the customers’ e-wallets, an application server
providing business logic, a CORBA interface communicating with the broker and other
vendor application servers and a relational database storing vendor data and redeem

data.

Implementing several NetPay EJB components. The component-based NetPay vendor
system is developed to support much more easily and seamlessly reused vendor server-
side NetPay functionality. The reusable NetPay EJB components are implemented and
plugged into an existing journal site to enhance it with micro-payment support with

minimal or no code changes.

170

* Designing and running three kinds of evaluation experiments which include usability,
performance impact and qualitative assessment for NetPay-enabled e-newspaper
prototypes. A usability evaluation surveyed users of the prototype to assess their
impressions of the approach when carrying out information purchasing tasks using a
micro-payment versus a macro-payment protocol. The client-side and server-side
NetPay was more preferred over a subscription-based system for the E-newspaper
application domain. A performance evaluation assessed the performance of NetPay-
enabled web sites to determine the overhead of the micro-payment extensions made to
the software, particularly in regard to user response time. Server-side NetPay only takes
14ms for e-coin debiting per article, but the client-side e-wallet still incurs considerable
response time delay due to the additional overhead of the vendor connecting to a
customer PC. A qualitative evaluation assessed factors such as customer effort in using
a NetPay-enhanced web site from a customer’s perspective, along with the cost/benefit

of the system for customers, vendors and brokers.

8.2 Conclusions

In this thesis, some related existing works of macro-payment and micro-payment systems
were studied and the advantages and disadvantages of these systems were investigated. A
new protocol was proposed called NetPay which is suitable for micro-payments in
distribute systems on the WWW. The protocol is “cheap” since it just involves one or no
public-key operations per purchase. NetPay is very suitable for a customer performing
many low-value purchases from a vendor, then changing to purchasing from another

vendor.

The NetPay protocol is based on the PayWord protocol [72]. The PayWord protocol allows
a customer to generate a payword chain and spending the paywords to a specific vendor.
The payword chain is vendor and customer specific. The payword chain in NetPay protocol
is generated by the broker for every customer who spends paywords from one vendor to
another without involving the broker, so the payword chain is not vendor-specific. The
paywords can be spent with any vendor. NetPay is a basic offline protocol. Millicent [54] is
almost an on-line system and places a heavy real-time burden on the broker. A scrip as an

electronic currency in Millicent is also vendor-specific.

171

The NetPay protocol protects the customer’s anonymity from vendors and prevents
customers from double spending and any internal and external adversaries from forging. In
Mpay [40], customer’s anonymity is not supported and customers can pay nothing to access

services for a full day.

The system requirments for a NetPay-based micro-payment e-commerce system were
identified with an on-line newspaper scenario, where the vendor wants to charge on a per-
news article basis. Our NetPay prototype systems provide HTML-based thin-client user
interfaces. Customers are allowed to access the NetPay facilities with HTML browsers.
Micro-payment system can be used to buy not only just news articles but also other goods
e.g. online-music where customers can download a single song by paying 50 cents or more
and a multitude of game sites where customers can play an on-line game by spending small

amounts of money. Our NetPay system should meet the requirements of these systems.

We chose to use a Web-based multi-tier thin-client architecture that meets both NetPay
broker and NetPay-based vendor systems requirements and constrains to implement the
NetPay system. This allows for a very wide range of customers using standard web browser
software, without the need for separate installation of browsing and micro-payment clients.
It also improves scalability of the system since the application servers can be deployed on
many machines and the database only requires connections from a smaller number of

application servers.

We designed server-side and client-side e-wallets for the NetPay system using a CORBA-
based approch. In a server-side e-wallet NetPay system, we designed that the broker
application server provides a set of CORBA interfaces with which the vendor application
servers communicate to request an e-wallet location or to get an e-wallet. The vendor
application servers also provide a CORBA interface in order for other vendor application
servers to get the e-wallet. In a client-side e-wallet NetPay system, a touchstone and an
index (T&I) of a customer’s e-wallet are passed from the broker to each vendor. We
designed the broker application server to provide a CORBA interface vendor application
servers communicate with to get the T&I to verify e-coins. The vendor application servers
also provide a CORBA interface in order for another vendor application server to

communication with it to pass the T&I, without use of the broker. The main problem with

172

this approach is that a vendor system can not get the e-wallet or T&I if a previous vendor
system crashed. Prototypes for a NetPay broker and “hard-coded” vendor were developed.
This incorporates a broker used to generate, verify and redeem e-coins; a customer e-wallet
stored either client or server-side, and vendor application server components. The NetPay
architecture provides for both secure and high transaction volume per item by using fast
hashing functions to validate e-coin unspent indexes. Using a ‘“hard-coded” style the
NetPay vendor systems are easy to implement, but it is hard to add some NetPay functions
to an existing system. CORBA-based architecture was found to be difficult to add to

existing systems whereas EJB one easier.

We designed and developed several NetPay EJB components that can be seamlessly added
to existing J2EE-based web applications. NetPay functionality is embodied in Enterprise
JavaBean software components and JSP includes or proxies, allowing the existing
application to be easily micro-payment enabled. The NetPay EJBs use a CORBA
infrastructure to communicate with customers’ client-side e-wallet applications, with a
broker server, and with other vendor application servers, whether J2EE-based or not. We
have successfully added NetPay components to a separately-developed J2EE-implemented
E-journal application to demonstrate our approach’s feasibility. An article price enterprise
bean is designed to select article price data from the NetPay database. We only generated a
simple pricing database which included article ID and the price of the article in our
prototype. However there are huge numbers of articles, songs, or games in a real web site.
The generation of pricing database for NetPay may need some greater effort for a real web

site.

The NetPay user interface facilities are integrated by modifying the existing E-journal
example system web pages. An implementation of a component-based NetPay vendor
system should consider the possible use of other two integration methods which generate
NetPay JSP pages and NetPay proxy JSP pages in order for no code impact to the existing

system.

We assessed the server-side and the client-side e-wallet NetPay systems deployed with an
on-line newspaper web site and compared these with a macro-payment, subscription-based
variant of the web site. We carried out some usability testing via a survey-based approach

with representative target users of NetPay. A sample potential user group was surveyed.

173

Further analysis is needed on whether familiar or unfamiliar users of E-commerce systems
will prefer it and whether the overall approach is valuable in terms of customer effort and
economic trade-off. A performance impact evaluation was curried out to assess the
overhead of the micro-payment extensions made to the software. We also carried out an
assessment of customer effort and economic trade-off when using these services and

compare the results of this assessment to a survey of customers using each system.

A usability evaluation is good for assessing and understanding customer perceptions of
using two kinds of NetPay systems and the advantages and disadvantages they saw with the
systems, and to gain an understanding of the usefulness of the approach for information
vendors. The article contents at different newspaper sites were easy to read without log-in
in client-side NetPay system, but this approach incurred an extra delay in page display. The
server-side NetPay system allowed users to read articles anywhere in the world, but
customers needed to remember e-coin IDs. The usability evaluation involves only a small

user base.

The idea of the impact performance evaluation in the vendor system was to compare non-
NetPay system with NetPay-enabled systems for a response delay time. The results of
modified NetPay prototypes are that the subscription-based system takes 16ms and the
server-side NetPay takes 30ms for a response delay per article. However these tests run
with only one customer connection to the vendor server at a time. The case study using
Argo/MTE [13] showed that the response delay time is reasonable in the performance of
the server-side NetPay system when simulated 10 concurrent customers buying articles at
the same time. Performance of NetPay prototype under heavy loading was found to be

adequate.

In the qualitative evaluation, a macro-payment approach is more beneficial for the customer
who reads a large portion of the on-line newspaper articles. However, the micro-payment
approach wins out when the customer reads a small portion of the articles, articles are low-
priced and if the customer reads articles from multiple newspapers and can use their e-coins
across any of these vendors. A key outstanding challenge with micro-payment systems is

being able to spend e-coins at a wide range of vendors.

174

8.3 Future Work

This thesis has systemically described the protocol, architecture, design and implementation
of NetPay micro-payment systems. NetPay is superior to other existing micro-payment
protocols on several key issues, making it cheap, safe and practical for many low-cost,

high-volume transactions. However, there is still a lot of research needed in the future.

We have only prototyped the protocol and investigated its feasibilities for some cases. We
need to find the ways to overcome some technical problems occurred in the applications of

the NetPay systems such as if vendor servers crash.

In the component-based NetPay vendor system, we can set pricing of contents with existing
applications in different ways. For example, the pricing of an article content in a newspaper
site can be set by sections e.g. local and world news articles cost 10cs each, sport articles
cost 20cs each and so on. In a music site, we can charge songs by classification of songs
e.g. popular top ten songs cost $1 for each download, other songs for adults cost 50cs, and
the songs for children cost 20cs, and so on. Besides the works improving and
implementations of the current NetPay systems, we have identified the following possible

future research.

Some currently available micro-payment protocols are not only specifically designed for
selling information goods on the Internet, but they can also be used for wireless
communications [76, 28, 90]. The SVP-based micro-payment scheme that uses tamper-
resistant devices was proposed by DongGook Park for wireless communications [28]. The
scheme aims to avoid customers and vendors executing the three-way challenge-response
protocol for every micro-payment. This can be an important issue for mobile
communications where call charges are still large in comparison with Internet based
communications. It also reduces delay and removes the possibility of incomplete payment
protocols due to communications failures. Our NetPay server-side e-wallet could be used to

provide a similar capability.
With the growth of mobile computing technologies, the popularity of mobile devices (e.g.

mobile phone, PDAs) has increased over past a few years [89], different software

applications can be deployed on these mobile terminals and can communicate with other

175

applications or information systems (e.g. Internet) through a wireless network. In general,
WAP (Wireless Application Protocol)/ WML (Wireless Markup Language) or similar
technologies are adopted to provide thin-client solutions. We need to investigate
approaches to using NetPay for mobile information content micro-payment applications
with a server-side e-wallet storage by the mobile device. A NetPay-enabled application
needs to provide HTML (web browser) and WML (mobile) user interfaces and support
multiple input devices. Customers are allowed to access the same NetPay facilities by using

different platforms.

As we mentioned in Chapter 6, NetPay EJB components were designed, implemented and
plugged into existing J2EE-based web applications, but the systems still need some manual
work to develop a NetPay-enabled application. We need to focus on the development of
tools to allow existing component-based applications to be NetPay-enabled without any
manual component programming, deployment and configuration. We also need to apply
these to experimenting with adding NetPay to other 31 party J2EE web applications and
carry out a performance evaluation to assess a NetPay-enabled vendor system would be
viable for large transaction loading. The results will be analysed to determine if the
performance overhead of NetPay micro-payment would be acceptable to information

vendors.

There is not currently a way for some vendors who only want to use NetPay facilities
temporarily. A portal infrastructure [67] could be designed using web services that will
allow a NetPay-enabled vendor to act as a purchasing portal to non-NetPay supporting
vendors by redirecting page accesses to these vendors and charging the customers e-coins
in the process. A portal infrastructure provides the members of a portal a single place to
access NetPay facilities that are used to charge for contents. It also represents the merger of
Internet technology with a vendor’s internal systems and content in such a way as to give
the customers a single point of access to all of the information they need. This approach
will allow for dynamic registration of vendors and support cross-vendor product searching.
A customer registers and buys e-coins with a NetPay broker, than spends the e-coins
through a NetPay portal system to a non-NetPay vendor site for purchasing information
goods. The NetPay portal system redeems the e-coins with the broker and may charge 10%

or more for the NetPay services, to pay for these. Customers could purchase information

176

goods with different vendors in the portal system without transferring his/her e-wallet or

T&I from a broker to vendors.

177

Publications during PhD study

Book Chapter

1.

Xiaoling Dai and John Grundy, Customer Perception of a Thin-client Micro-payment
System Issues and experiences, Advanced Topics in End User Computing, Volume III,
2003. M. Adam Mahmood et al eds, to appear.

Refereed Articles:

2.

Xiaoling Dai and John Grundy, Architecture for a Component-based, Plug-in Micro-

payment System, In Proceedings of APWEB 2003, Lecture Notes in Computer Science,
Springer-Verlag, pp. 251 — 262.
http://link.springer.de/link/service/series/0558/tocs/t2642.htm

. Xiaoling Dai and John Grundy, Customer Perception of a Thin-client Micro-payment

System Issues and experiences, Journal of End User Computing, 15(4), pp 62-77,
(2003).

Xiaoling Dai and John Grundy, Architecture of a Micro-Payment System for Thin-
Client Web Applications, In Proceedings of the 2002 International Conference on
Internet Computing, Las Vegas, CSREA Press, June 24-27, pp. 444-450.

Xiaoling Dai, John Grundy and Bruce Lo, Comparing and contrasting micro-payment
models for E-commerce systems, In Proceedings of the International Conferences of Info-tech
and Info-net (ICII), China, 2001.

. Xiaoling Dai and Bruce Lo, Netpay — An Efficient Protocol for Micropayments on the

WWW, In Proceedings of the Fifth Australian World Wide Web Conference, Ballina,
(1999).
http://ausweb.scu.edu.au/papers/#technical

178

Reference

1. .NET, The Microsoft .NET homepage: http://www .microsoft.com/net/basics/

2. Aleksy, M., Schader, M. and Tapper, C.: “Interoperability and interchangeability of
middleware components in a three-tier CORBA-environment-state of the art”.
Proceedings Third International Enterprise Distributed Object Computing, 1999, IEEE
CS Press, pp. 204—221.

3. Anderson, R., Manifavas, C. and Sutherland, C.: "NetCard - a Practical Electronic Cash

System". In Fourth Cambridge Workshop on Security Protocols. April, 1996.
4. Allen, P.: “Realizing E-Business with Components”. Addison-Wesley, October 2000.

5. Aukia, P. and Lehmann, J-B: “Mechanisms in Electronic Commerce Using

Micropayments”. White paper. http://studwww .eurecom.fr/~lehmann/study/

6. Aukia, P. and Oy, N.: “Models of Electronic Commerce”, White Paper, 1995.
http://www.tcm.hut.fi/Opinnot/Tik-110.501/1995/commerce .html

7. Bichler, M., Segev, A., Zhao, J.L.: “Component-based E-Commerce: Assessment of
Current Practices and Future Directions”. SIGMOD Record 27(4)(1998), pp.7—14.

8. Blankenhorn, D.: “Charging for Content”. E-commerce times. 2001.

http://www.ecommercetimes.com/perl/story/306.html.

9. Boly, J. P., Bosselaers, A., Cramer, R., et al.. “The ESPRIT Project CAFE, High
Security Digital Payment Systems”, Third European Symposium on Research in

Computer Security, LNCS 875, Springer-Verlag, Berlin 1994, pp. 217-230.

10. Booch, b., Rumbaugh, J. and Jacobson, I.: “The Unified Modeling Language User
Guide”. Addison-Wesley, 1998.

179

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Brown, Alan W.:”Large-scale, Component-based Development”, Upper Saddle River,

NI: Prentice Hall PTR, 2000.

Brown, E.: “Micro-payment schemes promise to make the Web profitable — one penny
at a time” 1999.

http://newmedia.com/newmedia/97/08/fea/micropayments_small change.html

Cai, Y., Grundy, J.C., Hosking, J.G., Dai, X. Software Architecture Modelling and
Performance Analysis with Argo/MTE, In Proceedings of the 2004 Conference on
Software Engineering and Knowledge Engineering, Baniff, Canada, June 20-24 2004.

Champeaux, D. D., Lea, D. Object-oriented System Development, Chapter 2:
Introduction to Analysis, Addison-Wesley, 1993.

Chan, S..: “Introduction to FElectronic Data Interchange (EDI)”, 1997.

http://home .hkstar.com/~alanchan/papers/edi/#introduction

Chaum, D.: “DigiCash”. 1995.

http://www.digicash.com/

Chaum, D.: "Blind Signatures for Untraceable Payments". In Advances in Cryptology:
Proceedings of Crypto'82, Plenum Press, 1983, pp. 199 — 203.

Cholesterol Control “Email Credit Card Order Form”.

http://www .cholesterolcheck.org/emailcreditcardform.htm

Chong, N.S.T. and Sakauchi, M.: “e-CoBrowse: co-navigating the Web with chat-
pointers and add-ins - problems and promises”. Parallel and Distributed Computing and

Systems 2(2000), pp. 803—808.

Cox, B., Tygar, J. D. and Sirbu, M.: "NetBill Security and Transaction Protocol", The
First USENIX Workshop on Electronic Commerce, New York, 1995.

180

21.

22.

23.

24.

25.

26.

27.

28.

29.

Cybercash: http://www.cybercash.com/ and

http://www .verisign.com/products/payment.html

Dai, X. and Lo, B.: “NetPay — An Efficient Protocol for Micro-payments on the
WWW?”. Fifth Australian World Wide Web Conference, Australia, 1999.

Dai, X., Grundy, J. and Lo, B.: “Comparing and contrasting micro-payment models for
E-commerce systems”, Proceedings of International Conferences of Info-tech and Info-

net (ICII), China, 2001.

Dai, X. and Grundy, J.: “Architecture of a Micro-Payment System for Thin-Client Web

Applications”. In Proceedings of the 2002 International Conference on Internet

Computing, Las Vegas, CSREA Press, June 24-27, pp. 444—450

Dai X. and Grundy J.: “Architecture for a Component-based, Plug-in Micro-payment
System”, In Proceedings of the Fifth Asia Pacific Web Conference, Lecture Notes in
Computer Science (LNCS 2642), Springer-Verlag, April 2003, pp. 251 — 262.
http://link.springer.de/link/service/series/0558/tocs/t2642 .htm

Dai X. and Grundy J.: “Customer Perception of a Thin-client Micro-payment System

Issues and experiences”, Journal of End User Computing, 15(4)(2003), to appear.

Domingo-Ferrer, J. and Herrera-Joancomarti, J.: “Spending programs: a tool for flexible
micro-payments”. Information Security. Second International Workshop, ISW'99.
Lecture Notes in Computer Science, Vol.1729. Springer-Verlag, Berlin, Germany,
1999, pp. 1—13.

DongGook, P., Boyd, C. and Dawson, E.: “Micro-payments for wireless
communications”. Information Security and Cryptology - ICISC 2000. Third
International Conference. Proceedings (Lecture Notes in Computer Science Vol.2015).

Springer-Verlag, Berlin, Germany, 2001, pp. 192—205.

Ediberidze, A., Nikolashvili, M. and Abuashvili, N.: “Design of electronic payment
systems for using into Internet”. EUROMEDIA '99, pp.247-249.

181

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Farley, J.: “Microsoft .NET vs. J2EE: How Do They Stack Up?”, 2000.
http://java.oreilly.com/news/farley 0800.html

Fingar, P.: “Component-Based Frameworks for E-Commerce”. Communications of the

ACM, 2000.
Fowler, M. and Scott, K.:”"UML Distilled”. Addison-Wesley, 1996.

Furche, A. and Wrightson, G.: “SubScrip — An efficient protocol for pay-per-view
payments on the Internet”. The 5" Annual International Conference on Computer

Communications and Networks, USA, 1996.

Gabber, E. and Silberschatz, A.: "Agora: A Minimal Distributed Protocol for Electronic
Commerce", Proceedings of the Second USENIX Workshop on Electronic Commerce,

Oakland, California, November 18-21, 1996, pp. 223-232.

Gabber, E. and Silberschatz, A.: "Micro Payment Transfer Protocol (MPTP) Version
0.1". W3C Working Draft, 1995.
http:// www.w3.org/pub/WWW/TR/WD-mptp.

GE Information System, Online EDI Service. 1997.

http://www.getradeweb.com

Grundy, J.C., Cai, Y. and Liu, A. Generation of Distributed System Test-beds from
High-level Software Architecture Descriptions, In Proceedings of the 16th International
Conference on Automated Software EngineeringSan Diego, 26-29 Nov 2001, IEEE CS
Press, pp. 193—200

Grundy, J.C., Wang, X. and Hosking, J.G.: “Building Multi-device, Component-based,
Thin-client Groupware: Issues and Experiences”. In Proceedings of the 3™ Australasian

User Interface Conference, Melbourne, Australia, 2002, pp. 28—30.

Hauser, R., Steiner, M. and Waidner, M.: "Micro-Payments based on iKp". 1996.

http://www.zurich.ibm.com/iKP_references.html.

182

40.

41.

42.

43.

44,

45.

46.

47.

48

49.

50.

Herzberg, A. and Yochai, H.: “Mini-pay: Charging per Click on the Web”. 1996.
http://www.ibm.net.il/ibm_il/int-lab/mpay

Herzberg, A.: “Safeguarding Digital Library Contents - Charging for Online Content”.
D-Lib Magazine (1998), ISSN 1082-9873.

Hwang, M-S., Lin, I-C. and Li, L-H.: “A simple micro-payment scheme”. Journal of

Systems & Software, 55(3)(2001), pp. 221—229.

ISO 7498-2: “Information Processing Systems — Part2: Security Architecture”.

International Organization for Standardization, 1989.

Java 2 Platform, Enterprise Edition (J2EE). The J2EE homepage:

http://java.sun.com/j2ee

Java Servlet Technology “The Power Behind the Server”,

http://java.sun.com/products/servlet/index.html

Ji, D-Y. and Wang, Y-M.: “A micro-payment protocol based on PayWord”. Acta
Electronica Sinica, 30(2)(2002), pp. 301—303.

Kirkby, P.: “Business models and system architectures for future QoS guaranteed

Internet services”. IEE Colloquium on Charging for ATM, IEE 1997.

. Kleiner, K. “Banking on electronic money”. New Scientist. 146, 1972, pp 26, 1995.

Kytojoki, J. and Karpijoki, K.: “Micropayments — Requirements and Solutions”.

http://www.tml.hut.fi/Opinnot/Tik-110.5...paper/micropayments/micropayments.html

Kern EM, Hahn A, Benger A. Peer-to-peer process integration in virtual engineering
organizations. Processes and Foundations for Virtual Organizations. IFIP TC5/ WG5.5
Fourth Working Conference on Virtual Enterprises (PRO-VE'03). Kluwer Academic
Publishers. 2003, pp.433-40. Norwell, MA, USA.

183

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Library ClipArt Site: http://www.libraryclipart.com/news.html

Lipton, R. J. and Ostrovsky, R.: "Micro-Payment via Efficient Coin-Flipping".
Proceedings of Financial Cryptography'98, LNCS Series 1465.

Lowen Color Graphics Site: http://www .lowencg.com/products.html

Manasse, M.: “The Millicent Protocols for Electronic Commerce”. First USENIX
Workshop on Electronic Commerce. New York, 1995.

McGarvey, R.: “Micro-payments enable teensy content purchases”. Econtent, 24(1)

(2001), pp. 18—21.

Menezes, A. J., Oorschot , P. C. and Vanstone, S. A.: "Handbook of Applied
Cryptography". New York, 1997.

MP3 Web Site: http://www.mp3.com

Mondex International Ltd. Mondex electronic cash.

http://www.mondex.com/.

National Institute of Standards and Technology (NIST). Federal Information Processing
standard (FIPS) Publication 46-3: Data Encryption Standard (DES), October 1999.
http://csrc.nist.gov/fips/fips46-3.pdf

Neilsen, J.: “The Usability Engineering Lifecycle”. COMPUTER 25 (3)(1992), pp.
12—24.

Neilsen, J.: “Usability Engineering”. Boston: Academic Press, 1993.

Neumann, B. and Medvinsky, G.: “Requirements for Network Payment: the NetCheque
Perspective”, Proceedings of IEEE Compcon’95, San Fransisco, March 1995.

184

63

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

. O'Mahony, D., Peirce, M. & Tewari, H., “Electronic Payment Systems for E-
Commerce”, 2nd Edition, Artech House, Norwood, MA., August 2001, pp. 342.

OMG’s CORBA, http://www.corba.org/

Peirce, M. and O'Mahony, D., Micropayments for Mobile Networks, in Proceedings of
European Wireless '99, Munich, October 6th-8th, 1999, pp 199-204.

Pilioura, T.: “Electronic Payment Systems on Open Computer Networks: A Survey”

Working paper. 1996.

Portals Community Homepage http://www.portalscommunity.com/library/

Posman, A.: “Would You Pay for Google?”’, 2002.
http://www .clickz.com/media/agency_start/article.php/1013901

Preece, J.: “A Guide to Usability: human factors in computing”. Addison-Wesley, 1993.

Rivest, R., Shamir, A. and Adleman, L.: “A Method for Ontaining Digital Signatures
and Public-Key Cryptosystems.” Communication of ACM 21(2) (1978), pp. 120—126.

Rivest, R.: "The MDS5 Message-Digest Algorithm". RFC 1321, Internet Activities
Board, 1992.

Rivest, R. and Shamir, A.: “PayWord and MicroMint: Two Simple Micro-payment
Schemes”. Proceedings of 1996 International Workshop on Security Protocols, Lecture

Notes in Computer Science, Vol. 1189. Springer, 1997, pp. 69—387.

Roman, E.: “Mastering Enterprise Java Beans”, New York: John Wiley & Sons, Inc.,
1999.

Rubin, J.: “Handbook of Usability Testing: how to plan, design, and conduct effective
tests”, New York: Wiley, 1994.

185

75.

76.

71.

78.

79.

80.

81.

82.

83.

&4.

85.

86.

Ryley, S.: “Corporate portal development: a practical approach ensures real business

benefits”. Business Information Review 18(2)(2001), pp. 28—34.

Sangjin, K., Heekuck, O.: “An atomic micro-payment system for a mobile computing
environment”. IEICE Transactions on Information & Systems. E84-D(6) (2001), pp.
709—716.

Schmidt, C. and Muller, R.: “A Framework for Micropayment Evaluation”. 1997.

http://www.wiwi.hu-berlin.de/IMI/micropayments.html

Schneier, B.: "Applied Cryptography”. Second Edition, New York, 1996

Sessions, R.: “J2EE Versus .NET; The Latest Benchmark”, 2002.

http://www.objectwatch.com/issue_42.htm

Sessions, R.: “Java 2 Enterprise Edition (J2EE) versus .NET Two Visions for
eBusiness”, ObjectWatch, Inc. 2001.
http://www.objectwatch.com/_Toc511347196

Siegel, J. : “Corba 3 Fundamentals and Programming”, New York: John Wiley & Sons,
Inc., 2000.

Smalley, e. and Patch, K. : “Drop a dime on online Micro-payments were declared
DOA a few years ago, but advances in smart cards and software may revive the virtual
penny”, InfoWord, Novemenber, 1998, pp.71—75.

Sommerville, I.: “Software Engineering”, 5t Edition, Addison-Wesley, 1996.

Stern, J., Vaudenay, S.: “SVP: a Flexible Micro-payment Scheme”. Financial Crypto
’97, Springer-Verlag (1997), 161—171.

Sun Enterprise JavaBeans, http://java.sun.com/products/ejb/

Sun home, http://java.sun.com/products/

186

87.

88.

89.

90.

91.

92.

93.

94.

9s5.

96.

Sun Java Server Pages, http://java.sun.com/products/jsp/

Tang, L.: “A Set of Protocols for Micro-payment in Distributed Systems”. First
USENIX Workshop on Electronic Commerce. 1995.

Tewari, H. & O'Mahony, D., Real-Time Payments for Mobile IP, IEEE
Communications, 41(2)(2003), pp 126-136.

Tewari, H. & O'Mahony, D., Multiparty Micropayments for Ad Hoc Networks, in
Proceedings of the IEEE Wireless Communications and Networking Conference

(WCNC) 2003, New Orleans, Louisiana, 16-20 March 2003.

Valesky, T.. “Enterprise JavaBeans: developing Component-based Distributed
Applications”, Addison-Wesley, 1999.

Vawter, C. and Roman, E.: “J2EE vs. Microsoft. NET”
http://www .theserverside.com/resources/article.jsp?I=J2EE-vs-DOTNET

Visa&MasterCard: "Secure Electronic Transactions in Visa and MasterCard", 1996.

www.bofa.com/spare change/

Vogal, A.: “CORBA and Enterprise Java Beans-based Electronic Commerce”. In
International Workshop on Component-based Electronic Commerce, UC Berkeley,

1998.

Wang, J.: “CTFS: a new lightweight, cooperative temporary file system for cluster-
based Web servers” Proceedings. IEEE International Conference on Cluster Computing.

IEEE Comput. Soc. 2003, pp.316-23. Los Alamitos, CA, USA

Yen, S-M.: “PayFair: a prepaid internet ensuring customer fairness micro-payment
scheme”. IEE Proceedings-E Computers & Digital Techniques, 148(6)(2001), pp.207—
213.

187

Appendix A: Usability Testing Information

A.1 Usability Testing Questionnaire

The purpose of this questionnaire is to help us to gain feedback about using these payment
systems to purchase on-line information goods. This feedback will help us to improve our
systems and ensure these systems provide the people who will be using them with sufficient

and efficient supports for their tasks.

All the information you provide is confidential. Your name is not stored with this

questionnaire, and the information you provide will not be used for any other purpose.

A.1l.1 Pre-test Questionnaire

1. Personal information

Gender [] Male [] Female

Age [l Under 18 [] 18-35 []36-45 []146-55 []over55
Education Secondary | Tertiary ! Postgraduate |
Major [J Computer Science [] Engineering

[] Business & Economics [] Other

Job Title

2. How often do you use Internet?
Daily | Weekly | Monthly | Occasionally |
3. Have you ever spent money on the Internet? If yes, please specify what kinds of

goods you purchase from Internet. (e.g. information goods or others).

No[]
Yes[]

4. Have you read any on-line newspaper? If yes, specify which newspapers you read.

No []
Yes []

Where do you prefer to read? Home 1 Anywhere i

188

A.1.2 Post-test Questionnaire

N

@

Subscription Macro-payment System

. Please rate how ease or difficulty to use the system with each of the following

statements by ticking the item that best expresses your opinion.

Statement \]/)eili.'{"lculty ‘];ill;)é
a. Subscribe with a site I'5 14 13 12 1
b. Read articles 15 14 13 12 11
c. Change newspaper site 5 14 13 12 (B
d. Subscription expired i1 15 14 13 12

. This system had all the facilities you needed to effectively support your task(s).

Strongly Disagree Strongly Agree
4 13 T2 11 15 1

The payment system worked very well with the on-line Newspaper system.

Strongly Disagree Strongly Agree
is T4 T3 12 11

. Was it easy to move around different newspapers using the system?

Very difficult Very easy
is T4 i3 T2 11

Do you satisfy the speed of article content loading in this system?

Very unsatisfied Very satisfied
is T4 13 12 11

189

¢ (lient-NetPay Micro-payment System

1. Please rate how ease or difficulty to use the system with each of the following

statements by ticking the item that best expresses your opinion.

Statement]\)Iftfgculty \];(;rs)é

a. Register with broker 14 I3 12 | 15
b. Buy e-coins 5 T4 13 12 (1
c. Read articles 15 14 13 12 Il
d. Change newspaper site 5 14 13 12 i1
e. E-coin run out s 14 13 12 (1

2. This system had all the facilities you needed to effectively support your task(s).

Strongly Disagree Strongly Agree
is T4 T3 12 11

3. The payment system worked very well with the on-line Newspaper system.

Strongly Disagree Strongly Agree
i3 T2 11 is 14

4. Was it easy to move around different newspapers using the system?

Very difficult Very easy

is T4 T3 12 11
5. Do you satisfy the speed of article content loading in this system?

Very unsatisfied Very satisfied

2

is T4 T3 T2 11

190

¢ Server-NetPay Micro-payment System

1. Please rate how ease or difficulty to use the system with each of the following

statements by ticking the item that best expresses your opinion.

Statement]\)Ifigculty \l;(:si
a. Register with broker I'5 14 13 12 I

b. Buy e-coins 5 T4 13 12 i1

c. Read articles 15 14 13 12 Il

d. Change newspaper site 14 13 12 i1 15

e. E-coin run out s 14 13 12 (1

6. This system had all the facilities you needed to effectively support your task(s).

Strongly Disagree Strongly Agree
is T4 T3 12 11

7. The payment system worked very well with the on-line Newspaper system.

Strongly Disagree Strongly Agree
3 J2 §1 5 4 i

8. Was it easy to move around different newspapers using the system?

Very difficult Very easy

is T4 T3 12 11
9. Do you satisfy the speed of article content loading in this system?

Very unsatisfied Very satisfied

P

is T4 T3 12 11

e Comparison Questionnaires

After using three payment systems to read articles, please answer the following questions

by ticking the item that best expresses your opinion.

191

1. Do you consider the systems suitable for wide use?
No T Yes |
If yes, which one do you prefer to use.
Subscription-based | Client-NetPay I Server-NetPay |
2. If you have 20 dollars, you want to purchase useful information on the Internet.
Which payment system would you prefer to spend with?

Subscription-based 1 Client-NetPay | Server-NetPay |

3. If you could, would you spend 6 dollars to subscribe the whole newspaper for one

week?

P

Yes | No!

If No, would you prefer to spend a few cents to buy an article that you are very

interested in?

P

Yes | No'!
If yes, which one do you prefer to use?

Client-NetPay | Server-NetPay |

4. Do you have any other comments about the systems?

A.2 Usability Testing Tasks

The tasks are designed to simulate using three different payment methods to purchase on
line newspaper articles. Also, the tasks are developed to allow each user to use the same

functions for each payment system including:

* Subscribe with the newspaper site or register and buy e-coins with a broker

* Read 3 articles on newspaperl site

192

* Change to newspaper?2 site and read 3 articles

* If subscription or e-coins run out, the user must renew it

A.2.1 Tasks for Subscription-based Payment

Assume that you are a reader. You want to purchase some articles using a subscription-

based payment system on on-line newspaper site. The things you need to do are:

1. Subscribe to the newspaperl site by supplying your information, which includes name,
password, email address and payment details (credit card etc). The newspaper system
makes an electronic debit ($6 weekly) to pay for your subscription and display customer

ID1 that you should remember.

2. Login to the newspaperl site with a customer ID1 and password. The newspaperl

system provides you access to the current edition. You can select to read 3 articles.

3. Change to the newspaper2 site. You need to subscribe to the newspaper2 site and

remember customer [D2.

4. Login to the newspaper2 site with customer ID2 and password. You can select to read

3 articles on this site.

5. If your subscription has expired, you must renew it.

A.2.2 Tasks for Client-side e-wallet

NetPay micro-payment system (Client-NetPay)

Assume that you are a reader. You want to read some articles using a Client-NetPay-based

micro-payment system on on-line newspaper site. The things you need to do are:

193

Open broker’s web site and register by supplying your details that include name, password,

email address and payment details (credit card etc).

. The system displays your customer ID that you need to remember, then download e-

wallet software.

. Run e-wallet server and client software by clicks the icons.

Click Buy E-coins, login to broker site by enter customer ID and password; purchase “E-
coins” by entering the amount of e-coins you required e.g. 50c. The broker sends e-coins to

your e-wallet.

Open newspaper| site and select to read 3 articles (5-15¢) and run e-wallet client program to

check the balance.

Change to newspaper?2 site and select to read 3 articles (5-15¢) and check the balance from e-

wallet window.

. If e-coins run out, go to Broker site to buy more.

A.2.3 Tasks for Server-side e-wallet

NetPay micro-payment system (Server-NetPay)

Assume that you are a reader. You want to read some articles using a Server-NetPay-based

micro-payment system on on-line newspaper site. The things you need to do are:

Open broker’s web site and register by supplying your details that include name, password,
email address and payment details (credit card etc). The system displays your customer

ID that you need to remember.

194

2. Login to broker site by enter customer ID and password; purchase “E-coins” by entering the
amount of e-coins you required e.g. 50c. The system displays your e-coin ID that you have to

remember.

3. Login to newspaper! site by entering e-coin ID and password and select to read 2-3 articles

(5-15¢), then log out.

4. Login to newspaper?2 site by entering e-coin ID and password and select to read 2-3 articles

(5-15¢), and then log out.

5. Ife-coins run out, go to Step 2.

The following screen dumps Fig. A-1 to Fig. A-5 are for both Server-NetPay and Client-

NetPay for Customer Registration, buy e-coins and login.

/3 Customer Registration - Microsoft Internet Exg -[0] x| /3 Customer Registration - Mi CrC .] 2|

J File Edit View Favorites Tools Help | J File Edit View Favorites Tools ”|
J GBack v = - (D ﬁ‘ Qsearch (G Favorites 2 J GBack + = - D 2 I Qsearch
| Address IE] httpflocalhost:8080jsrcfbroker/customer | (@G0 HLinks 2 | Address I@ http:/flocathost:8(7 | @ Go H Links
2l -
Customer Registration Customer Registration —

— . Welcome!
Name: I)aaolmg dai
Passwork | Tour Customer ID is: 108
ReEnter Password: l Please remenber your customer ID!
Email & ddress: [xiaolingd@hatmail. com |
Crecit Cara: [1234567830 =) || Name: xizoling dai

Register | Reset' Cancel |

|&] Done || |8 Local intranet

5 Email Address: miaolingd@hotmail com
Y

=l
&] Done [— [— Local intranet 4

Figure A-1 Xiaoling registers with the broker

195

3 Customer Buy Ecoins - Mi€ =10l x|

| Fle Edt View Favorites 1>>|i

J‘#‘Backv-)v@f§| 3%
JAQdFESS IE http:,f,l’loca:‘ @Go “Links »
I

Customer Buy Ecoins

Customer ID: |1 08
Password: I |

| Loginl Cancel |

=l
&]oone| | |ZE Local intranet 4

’3 Customer Buy Ecoins - Mi -':.cx

J File Edit View Favorites To >’|

J <~ Back ~ = v@ﬁﬂ|

=101 x|

»

Customer Buy Ecoins

Customer ID: 108

Armount of Ecoin: |5Ul
Cancel I

| address [€] http:/locah :I’Eﬁ%g:h_‘ |J Links >

£] Done ,_ ,_ (SE Local intranet

4

Figure A-2 Buy E-coins’ screens are used in Server-NetPay and Client-NetPay

The following screens are used in Server-NetPay system only.

2} Customer Buy Ecoins - Mi ':lf’ =101 =<1
| Eile Edit View Favorites To >>|
| Back - > - @D [o |
JAc_ldress IE'I &action=0l<3 o Go IJLinks 22>
—
Customer Buy Ecoins
Please remenber your E-coin T
215, Thanks!
Home
I
|&] bone | [Local intranet =

Figure A-3 Example customer buy e-coin with server-side e-wallet NetPay

196

Favorites Tools >>

|

= Back ~ =) v@

ﬁl >

JAc_Idress IE http:)’)’localhostLl & Go |JLinks 2%

—
E-Newspaper

Ecoin ID: |215

Password: I

|&] Done [[Local intranet

=1
A

Figure A-4 Example customer login to the e-newspaper site

The following screen is a newspaper site. You can just click to read the articles.

J Eile Edit Wiews Faworites

Tools

/) frame - Microsoft Internet Explorer provided by Department of Computer Science

(=14

J dmBack ~ =k - D ot | i Search [Favorites S History ||%v = o

J Address I@ http: fflocalhost: 8082 fenewspaperff. isp (1) ;I WGD “ Links **

Rain News
NZ MNews
World News
Business
Technoligy
Sports

Entertainment

K esr Wiords: I
Search |

E-Newspaper
Wednesday, 14 Novemhber 2001
hlain News

Foad-toll heat on drink drivers 10c

Police are widening the scope of their fight against fatal drink-driving accdents by almost
doubling the tumber of booze buses patrolling roads. Four more buses will be introduced
next month, boosting the national breath-tasting fleet - which ACC provides to police - to
fiitae?

Pepper spray: we played it straight say police 10c

police know how an intelle ctually disabled man died after heing pepper-sprasred in
Hamilton, bt last night said they were unable to release?

Hackles raised at fur protests 100

Inner-city Auckland retailers say they are being targeted by a group of animal right
activists who have issued death threats, cut phone lines?

NZ MNews

Diouglas Myers, Craig Healey mansions touted to foreigners Sc
Mlan charged owver spate of Hamdltos fires 5o

World News

Lawyrer rejects political motive it Scott-Berivener killings Sc
Condit takes own lie-detector test 5o

rr

Local inkranet

Figure A-5(1) Example e-newspaper web site

197

-

-]

A

=} frame - Microsoft Internet Explorer provided by Department

_|o] x|

J Fil= Edit Wiew Faworites Tools Help

J 2 Back - =p - @ ot | QSEarch [Ge] Favorites @History ||%v

2

- A
=R

J.ﬁ.gldress IE http: /flocalhost: 8082 enewspaperff.jsp

| | P Eo |JLink5 =

You have got 20cs left!
Home . .
Foad-toll heat on drink drivers
Mlain News
NZ MHews —J1| Police are widening the scope of their fight against fatal drink-driving
accdents by almost doubling the mumber of booze buses patrolling
roads. Four more buses will be introduced next month, hoosting the
World News national breath-tasting fleet - which ACC provides to police - to nine?
Business ;I
- hotte
Fley Words:
Search | =

|&] Done [| |EEvLocalintranet v

Figure A-5(2) Example of customer spending E-coins at an E-newspaper site

A.3 Summary

We summarize the results received from the participants in this section. Table A-1 to A-3

show the marks of the items in the questionnaires and Table 4 shows the preference.

A.3.1 Three Systems Data

A participant should run three systems which are subscription-based, server-side NetPay

and client-side NetPay in the usability testing. In following tables, the marks for ease of use

item for each system come from question 1 in the post-test questionnaire, the marks for

change site item come from question 4, and marks for speed of a content display item come

from question 5.

198

Table A-1 Subscription Macro-payment System

Deal With Speed of

Ease of Use Change Site | Subscription Content

Expired Display
Participantl 5 1 3 5
Participant2 5 2 4 5
Participant3 4 1 2 5
Participant4 5 3 3 4
ParticipantS 4 2 3 5
Participant6 4 2 4 5
Participant7 5 2 3 4
Participant8 4 2 2 5
Participant9 4 1 2 5
Participant10 5 3 3 5

Table A-2 Client-side NetPay micro-payment system

Deal With Speed of

Ease of Use Change Site E-coin Run Content

Out Display
Participantl 5 5 5 2
Participant2 5 5 4 3
Participant3 4 5 5 3
Participant4 5 5 5 4
ParticipantS 4 5 4 3
Participant6 5 5 5 2
Participant7 4 4 4 3
Participant8 5 5 5 3
Participant9 5 5 4 4
Participant10 5 4 5 2

199

Table A-3 Server-side NetPay micro-payment system

Deal With Speed of

Ease of Use Change Site E-coin Run Content

Out Display
Participantl 3 4 5 4
Participant2 4 5 4 5
Participant3 4 3 4 5
Participant4 3 5 5 4
Participant5 3 5 5 5
Participant6 2 4 5 5
Participant7 5 4 4 5
Participant8 3 5 5 4
Participant9 4 5 4 4
Participant10 4 4 4 5

A.3.2 Comparison of Three Systems

Table A-4 gives preference of three systems according to the comparison questionnaire in
Section A.1.2. The numbers in Table A-4 indicates that how many participants prefer to use

a system.

Table A-4 Preference of three systems

Widely Use Prefer to Spend
Money with
Subscription-based 1 1
Client-side NetPay 4 5
Server-side NetPay 5 4

200

Appendix B: Usability Testing Forms
B.1 Consent Form
THIS CONSENT FORM WILL BE HELD FOR A PERIOD OF SIX YEARS

Title: Netpay Electronic Micro-payment System

Researcher: Xiaoling (Sharlene) Dai

I have been given and have understood an explanation of this research project. I have had

an opportunity to ask questions and have them answered.
I understand that the usability testing session will not be audio/video taped

I understand that I may withdraw myself or any information traceable to me at any time up

to 01/06/2003 (date or stage of study specified by the researcher) without giving a reason.

I, the undersigned, hereby give my permission for the usability testing session.
Signed:
Name:
(please print clearly)
Date:

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN SUBJECTS
ETHICS COMMITTEE

(1) | F for a period of years, from / / Reference

(This section is to be completed after advice of approval has been received from the

UAHSEC, and before the sheet is given to prospective subjects)

201

B.2 Application Form

University of Auckland Human Subjects Ethics Committee
RESEARCH PROJECT APPLICATION FORM (2002)

Ref NO. et

(This number will be assigned when the application is receipted)

Submit one unstapled copy of the form and all accompanying documentation to the Research Office.
No handwritten forms please.

Note: Applicants may omit Section G and Section H as appropriate.

Please complete this form in reference to the UAHSEC Guidelines (Revised 1999) available on
the University of Auckland website under Research at the University.

SECTION A: GENERAL

1. PROJECT TITLE
Netpay Electronic Micro-payment System

2. APPLICANT/PRINCIPAL INVESTIGATOR
(Use name of Supervisor if a Masters student, PhD students submit in their own name)

Name: Prof. John Grundy
Address: Department of Computer Science, Room 245, Level 2, 70 Symonds St, Auckland
Email address: john-g@cs.auckland.ac.nz
Phone number: 3737599-8761

3. NAME OF STUDENT: (If applicable)
Address: Department of Computer Science, Room 211, Level 2, 70 Symonds St, Auckland
Email address: xdai001@ec.auckland.ac.nz

Phone number: 3737599-2089

Name of degree: PhD

4. OTHERINVESTIGATORS:

Names:

Organisation:

202

5. AUTHORISING SIGNATURES:

Principal Investigator/Supervisor: ... Date:
HEAD OF DEPARTMENT: ..coonrerrerneeee e e Date:
HOD name printed: Professor John Hosking

SECTION B: PROJECT

Use language which is free from jargon and comprehensible to lay people.

1. AIM OF PROJECT:
State concisely the aim/s of the project. State the specific hypothesis, if any, to be
tested.

In this project a prototype of Netpay micro-payment system is developed by using
component-based technology. Customers are allowed to use the Netpay
system to purchase inexpensive information goods through convention web
browser on desktop/laptop, or WML browser on WAP mobile device. There
are two kinds of e-wallets which are server-side and client-side in the system.

2. BACKGROUND:
Provide sufficient information to place the project in perspective and to allow the project's
significance to be assessed.

With the rapid growth of the Internet into mainstream use has led to the creation of
thousands of different web sites providing information service to millions of
people around the world. Producing and maintaining a quality web site takes a
great deal of time, dedication and money. To help offset the monetary costs,
web site producers turn to using their site as a source of revenue through their
information service (advertising and subscription). Therefore, a system to
handle with such a trade is needed. Due to the trade involves small amount of
money, we call the system a micropayment system. We have developed
Netpay prototype for an on-line newspaper to support an efficient, secure and
anonymous micro-payment system.

3. PROCEDURE:
PROJECT DURATION (approximate dates):

From 01/02/2001 to 01/06/2003

(i) State the approach taken to obtaining information and/or testing the hypothesis.

Two prototypes of Netpay micro-payment protocol built in this system will be used for usability testing.

203

(ii) State in practical terms what research procedures will be used, and how
information will be gathered and analysed.
The information will be gathered through interviews, questionnaires and observation.

NB: Please state if the research involves potentially hazardous substances, e.g.
radioactive materials.

4. Does this research involve the use of human tissue,
body fluids, or remains? Y[N[I/

If Y, please complete Section G and Section H as appropriate.

5. Does this research include the use of a questionnaire? YO N[|/
If Y, please attach a copy to this application form.
SECTION C: SUBJECTS

(The term 'subjects’ is taken to mean participants, clients, informants and patients as well as persons
subjected to experimental procedures.)

1. TYPES OF PERSON PARTICIPATING AS SUBJECTS:

Normal Adults YONQO '/
Applicant's students YON[I/
Persons 15 and under YO N[O |/
Persons whose capacity to consent is compromised YON[‘/
Prisoners YO N[I/

Other yg NO o/

(If YES, please explain)

2. a) Who are the subjects? What criteria are to be used for selecting them? State if the
subjects perceive themselves to be in any dependant relationship to the researcher
(for example, students of the researcher).

Auckland University Students

b) How are the subjects to be identified and recruited?
(If by advertisement attach a copy to this Application Form)

The potential subjects will be those students who have basic knowledge of
WWW and will be recruited through verbal invitation.

c) Are there any potential subjects who will be excluded?

No.

d) Ifso, what are the criteria for exclusion?

204

e) How many subjects will be selected?
5-15

3. How will information about the project be given to subjects?

(e.g. in writing, verbally - A copy of information to be given to prospective subjects should be
attached to this application.)

The information will be provided in writing, via Participant Information Form.

4. a) Will the subjects have difficulty giving informed consent on their own
behalf?

(Consider physical or mental condition, age, language, legal status, or other barriers.)

Yl N[
b) If subjects are not competent to give fully informed consent, who will consent on their
behalf?
N/A
5. Will consent be gained in writing? Y [l/ N[O

(If Y, attach a copy of the Consent Form which will be used.
If N, please explain.)

6. Will the subjects be audio-taped or video-taped ? YO N[\/

(If Y, make sure that this is clearly stated in the Participant
Information Sheet and in the Consent Form)

7. Will confidentiality of information be preserved? Y Ill/ N[
(In either case your Participant Information Sheet needs to fully inform your
subjects of this)

8. In the final report will there be any possibility that individuals
or groups could be identified? YO N [l/
(If Y, please explain)

(Make sure this is clearly explained in the Participant Information Sheet)

SECTION D: OTHER PROJECT DETAILS - (Refer to Guidelines)

1. Where will the project be conducted?
University of Auckland
2. a) Who will actually conduct the study?

The student, Xiaoling (Sharlene) Dai

205

b) Who will interact with the subjects?
The student, Xiaoling (Sharlene) Dai

3. How much time will subjects have to give to the project?
(Indicate this in the Participant Information Sheet)

30 minutes
4. State the risks and benefits of the proposed research.

The built Netpay micro-payment system can be used to purchase inexpensive
information goods on the Internet in the future

There is no risk.

5. Is deception involved at any stage of the research? YON lﬁ
(If Y, please explain)

6. a) Are the subjects likely to experience discomfort
(physical, psychological, social) or incapacity as a |/
result of the procedures? YN[
(If Y, please explain)
(Make sure this is clearly explained in the Participant Information Sheet)

b) What qualified personnel will be available to deal with adverse consequences or
physical or psychological risks?

7. Will information on the subjects be obtained from
third parties? Y[IN ﬂ/
(For example - from subject’s employer, teacher, doctor etc.
Indicate this in the Participant Information Sheet)

8. Will any identifiable information on the subjects be given
to third parties? Y[] N[] |/

(If Y, please explain)
(Make sure this is clearly explained in the Participant Information Sheet)

9. Provide details of any compensation and where applicable, level of payment to be
made to subjects.

SECTION E: RETENTION OF CONSENT FORMS AND DATA

1. The Committee recommends that access to Consent Forms be restricted to the
researcher and/or the Principal Investigator. If you wish to do otherwise please
explain:

206

2. The Committee normally requires that the Consent Forms be stored by the principal
investigator, in a locked cabinet preferably on University premises. If you wish to do
otherwise please explain:

3. The Committee recommends that the Consent Forms be stored separately from the data,
and that they be retained for six years. If you wish to do otherwise please explain:
4. Will data be retained for possible future research use beyond this
project? YO N [V
(Please explain)
If Yes, ensure this is clearly stated in the Participant Information and Consent Forms.

5. How and when will the data be destroyed?

All hard copy (e.g. questionnaires) will be shredded and all electronic data will be
deleted before 01/06/2003.

SECTION F: FUNDING

Are funds being applied for or provided for this project? YO N D/

(If Yes complete this section, otherwise proceed to Section G)

1. Is this project a UniServices Ltd. project? YO NQO |/
(IfY, state the Contract reference number)
2. Will/Has an application for funds to support this project be/ been made to a source

external to the University?
Y[N |1_7(
IfY, state the name of the organisation/s.
3. Explain investigator's financial interest, if any, in the outcome of the project.
Nil.

SECTION G: (omit as appropriate)

IS THIS PROJECT A CLINICAL TRIAL? YO N[O
(If Y please attach ACC Form A or B (see Guidelines)

1. Is this project initiated by a Pharmaceutical Company? YO N[O
2. Are there other NZ or International Centres involved? Y[] N[J
3. Isthere a clear statement about indemnity? Y[] N[J

4. Is Standing Committee on Therapeutic Trials (SCOTT)
approval required? YO N[O

207

5. Is National Radiation Laboratory approval required? YO NO

6. Is Gene Therapy Advisory Committee consultation required? Y[N[

7. Is National Advisory Committee on Assisted Human

Reproduction (NACHDSE) approval required? YO N[

SECTION H: HUMAN REMAINS, TISSUE & BODY FLUIDS (omit as appropriate)

1. How will the material be taken? (eg, operation)

Will specimens be taken for possible future use? Y[N[
If yes, please explain.
(Make sure this is clearly stated in Participant Information and Consent Forms.)

2. Is material being recovered at archaeological excavation Y[] N[]
(If Y - Have the wishes of Iwi and Hapu (descent groups),
or similar interested persons, or groups, been respected
with regard to human remains?) YO N[

3. a. Where will the material be stored?
b. How long will the material be stored?

4. a. How will the material be disposed of? (If applicable)

b. Will the material be disposed of in consultation with the relevant cultural
group? Y[NTJ]

5. Is the material being taken at autopsy? YO N[O
(IfY -
a. Provide a copy of the information that will be given to

the Transplant Co-ordinator. (Attach a separate sheet if necessary)

b. State the information that the Transplant Co-ordinator
will provide to those giving consent. (Attach a separate sheet if necessary)

c. Where will the material be stored?

d. How will the material be disposed of (if applicable)?

e. Have the wishes of the whanau (extended family) or similar interested persons,
or groups, been respected with regard to the disposal of human remains? Y

N a

6. If blood is being collected -
a. What volume at each collection?
b. How frequent are the collections?
c. Who will collect it?

208

SECTION I: OTHER INFORMATION

1. The committee treats all applications independently. If you think there is relevant
information from past applications or interaction with the Committee, please indicate and
append.

2. Have you ever made any other related applications? YO N[I/

(Ifyes, give relevant approval reference number/s)

Declaration: The information supplied above is to the best of my knowledge and belief accurate.
I have read the current Guidelines of the University of Auckland Human Subjects
Ethics Committee and clearly understand my obligations and the rights of the
subjects, particularly in regard to obtaining freely-given informed consent.

Signature of ApPliCant: s s
(In the case of student applications the signature should be that of the Supervisor)

Signature of StUdent: ..ooceiiii i If a student
project both the signature of the Supervisor, as the applicant, and the student are required)

Date: ————————

HAVE YOU: - CHECKED ALL DOCUMENTATION FOR SPELLING AND

GRAMMAR AND ATTACHED THE FOLLOWING, (where applicable)

Copies of surveys and questionnaires
Copy of advertisement
List of interview topics
PARTICIPANT INFORMATION SHEET (PIS)
On University letterhead
Title at the top
Indicated for which subjects it is intended
Stated the name of the degree in which you are enrolled
Included a timeframe for withdrawing data. (The Committee recommends to
indicate a specified date if appropriate)
Included contact names and addresses, for example, Supervisor, Head of
Department and address only of Chair of Ethics Committee e.g. (The Chair,
University of Auckland Human Subjects Ethics Committee, University of Auckland,
Private Bag, 92019, Auckland, tel. 373-7599, extn. 7830).
Ensured that the wording is clear and free from jargon.
Included the approval wording at the end of the PIS
or projects in schools
PIS for school, for example, Principal and/or Board of Trustees
PIS for teachers
PIS for student subjects
Is the PIS in language suitable to the age of the students?
PIS for parents (if students are younger than 16)
For projects in organisations
[0 PIS for Management, for example, Chief Executive Officer (where necessary)
[0 PIS for Line Managers
[PIS for employee subjects
= CONSENT FORM (CF)
[0 Provided on University letterhead
[Included the title

by el

[I s |

s s I - o

209

Included explicit consent for audio or video taping
Worded the CF according to the research being conducted, for example, state if it is
for an interview, observation, performance measures, test scores etc.
Included the approval wording at the end of the CF
Provided the written version of oral consent statement given to subjects (if
appropriate)
For projects in schools
[0 CF/ permission for school, e.g.,, Principal and/or Board of Trustees
[0 CF/ permission for teachers
0 CF for student subjects
[0 CF for parents/guardians
[Assent Form if students younger than 16
For projects in organisations
[CF/permission for CEO
[0 CF/permission for line management
[0 CF for employee subjects
= FOR PROJECTS INVOLVING SUBJECTS WHO SPEAK A LANGUAGE OTHER THAN
ENGLISH
[0 Ifinvolving Maori subjects, the PIS and CF to be provided in English and Maori
[l If English is not the mother tongue for the subjects it may be appropriate to provide
the PIS and CF in the language of the subjects

-

-

B.3 Participant Information Sheet

PARTICIPANT INFORMATION SHEET

Title: Netpay Electronic Micro-payment System

To: Subjects

My name is Xiaoling Dai. I am a student at The University of Auckland conducting
enrolled in a PhD Degree in the Department of Computer Science. I am conducting this
research for the purpose of my thesis on benefits of Netpay Electronic Micro-payment

System.

You are invited to participate in my research and I would appreciate any assistance you can
offer me. As part of my thesis I am conducting a case study on utilizing the prototypes of

Netpay Electronic Micro-payment System I have developed.

I would like to observe you as you interact with these prototypes to achieve a set of pre-
defined tasks, as well as ask you to fill out a questionnaire about you experience with these

payment systems, but you are under no obligation at all to be interviewed. The assigned

210

tasks take about half an hour to three quarters of an hour and would be carried out at any

suitable time. You can withdraw information any time up to 01 June 2003.

If you do wish to be interviewed please let me know by filling in a Consent Form and
sending it to me or phoning me on 3737599-2089 during work hours. All information you

provide in an interview is confidential and your name will not be used.

Thank you very much for your time and help in making this study possible. If you have
any queries or wish to know more please phone me at the either of the numbers given above

or write to me at:

Department of Computer Science

The University of Auckland

Private Bag 92019

Auckland. Tel: 373-7599 extn 2089

My supervisor is: Professor John Grundy
Department of Computer Science

The University of Auckland

Private Bag 92019
Auckland. Tel. 373-7599 extn 88761
The Head of Department is: Professor John Hosking

Department of Computer Science

The University of Auckland

Private Bag 92019

Auckland. Tel. 373-7599 extn 88297

For any queries regarding ethical concerns please contact:

The Chair, The University of Auckland Human Subjects Ethics Committee,

The University of Auckland, Research Office - Office of the Vice Chancellor, Private Bag
92019, Auckland. Tel. 373-7999 extn 7830

211

APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN SUBJECTS ETHICS COMMITTEE
Lo 1 T for a period ofccvveine years, from/..../.... Reference

212

Appendix C: MD5 Implementation

Java technology has several packages that provide classes useful for writing secure
applications. In JDK 1.1, three packages, which are java.security, java.security.acl, and
java.security interfaces, are included in the Java Cryptography Architecture (JAC). The
JAC is a framework for providing cryptographic capabilities to Java programs. The
java.security package consists mostly of abstract classes and interfaces that encapsulate
security concepts such as certificates, keys, message digests (such as MDS5, SHA), and

signatures.

To implement MDS5 algorithm using the security package, we need a multi-step process as

follows.

1. Get a seed as a byte[]

String seed=String.valueOf(Math.random());
byte[] msg=seed.getBytes();

2. Get a MessageDiagest for the appropriate algorithm.

MessageDigest md=MessageDigest.getInstance("MD5");
or

MessageDigest md=MessageDigest.getInstance("SHA-1");

3. Ensure the digest’s buffer is empty

md.reset();

4. Fill the digest’s buffer with data to compute a message digest from.
md.update(msg);

5. Generate the digest.
byte[] aMessageDigest=md.digest();

6. Convert the digest bytes to a string.
Stringcc=convert(aMessageDigest);

The following method generates seed, root and e-coin (payword chain) and stores them to a
database.

213

public void generatEcoin(int CID, int necoins) throws ServerError

{ StringBuffer ecoins= new StringBuffer();
String arrayOfStrings[]=new String[necoins+1];
String seed=String.valueOf(Math.random());
byte[] msg=seed.getBytes();

MessageDigest md=null;
try {

md=MessageDigest.getInstance("MD5");
} catch (Exception ex) {
throw new ServerError("Digest Error: "+ex.toString());

}

for(int h=0; h<=necoins;h++){
md.reset();
md.update(msg);
byte[] aMessageDigest=md.digest();
msg=aMessageDigest;
arrayOfStrings[h]=convert(aMessageDigest);
}

String root=arrayOfStrings[necoins];
for (int i=necoins-1; i>=0; i--){
ecoins=ecoins.append(arrayOfStrings[i]);

}

String ecoins1=ecoins.toString();
try {

MySQLConn.getInstance().execute("INSERT INTO ecoin
(cid,seed,root,amount,chain) VALUES ("+
CID+|V,VVi+seed+liV,V|V+r00t+|VV,l|V+necoins+V|V,VV|+eCOins1+Vl|)|¥);
} catch (Exception ex) {
throw new ServerError("SQL Error: "+ex.toString());

}
}

The following method verifies e-coins by using MDS5, and the integer variable hash

indicates the number of times perform hash to an e-coin.

public String VerifyEcoin(String ecoin,int hash) throws ServerError
{

try{

if (ecoin!=null){
byte[] wl=convertHex(ecoin);
MessageDigest md = MessageDigest.getInstance("MDS5");
for (int i=1; i<=hash; i++)
{md.reset();

214

md.update(w1);
wl=md.digest();
}
return(convertByte(w1));
h
return null;

} catch (Exception ex) {

throw new ServerError("MessageDigest:MessageDigest "+ex.toString());

b
b

The following method converts a string of hexadecimal digits into the corresponding byte

array by encoding every two hexadecimal digits as a byte.

public static byte[] convertHex(String hexstring)
{
ByteArrayOutputStream baos=new ByteArrayOutputStream();
for (int i=0; i<hexstring.length(); i+=2)
{
char cl=hexstring.charAt(i);
if((i+1)>=hexstring.length())
System.out.println("bad");
char c2=hexstring.charAt(i+1);
byte b=0;
if ((c1>='0") && (c1<='9"))
b+=((cl1-'0") * 16);
else if ((c1>="a") && (c1<="1"))
b+=((cl -"a"+10) * 16);
else if ((c1>="A") && (c1<="F"))
b+=((cl -'A"+ 10) * 16);
else
System.out.println("bad c1");

if ((c2>='0") && (c2<='9"))
b+=(c2-'0";

else if ((c2>="a") && (c2<='1"))
b+=(c2-'a'+ 10);

else if ((c2>="A") && (c2<='F"))
b+=(cl-'A'"+ 10);

else
System.out.println("bad c2");

baos.write(b);

h
return (baos.toByteArray());

}

The following method converts a type array into a printable format containing a String of
hexadecimal digit characters (two per type).

215

public static String convertByte(byte bytes[])

{
StringBuffer sb = new StringBuffer(bytes.length*2);

for (int i=0;i<bytes.length; i++){
sb.append(convertDigit((int) (bytes[i]>>4)));
sb.append(convertDigit((int) (bytes[i]&0x01)));
}

return (sb.toString());

}

private static char convertDigit(int value)
{
value&=0x0f;
if(value>=10)
return((char)(value-10+'a'));
else
return ((char)(value+'0");
}
}

216

