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Abstract 
 
Ethereum smart contracts are Turing-complete programs deployed on a blockchain. The 

features of blockchain make smart contracts immutable to change. Like all the other 

computer code, smart contracts also need maintenance. However, the immutability of smart 

contracts makes them much harder to be maintained compared to traditional programs. 

 

This thesis aims to help developers maintain smart contracts developed by Solidity on 

Ethereum. We first conducted an empirical study to investigate what kinds of maintenance 

issues will smart contract developers encounter, and how do developers maintain smart 

contracts? We totally found 13 maintenance issues and divided them into five groups. We 

also found that most developers choose to discard the old contract and redeploy a new 

contract when they need to patch or add new features on contracts. Before redeploying the 

new contract to Ethereum, an important step is checking its robustness and security.  

 

A contract defect is an error, flaw or fault in a contract that causes it to produce an incorrect 

or unexpected result, or to behave in unintended ways. Detecting and removing contract 

defects help increase software robustness and enhance development efficiency, which are 

widely used to maintain smart contracts. Most of the existing works first introduced some 

defects and then developed tools to detect them based on predefined patterns. However, 

smart contracts ecosystem is fast-evolving, and many new kinds of defects might come out 

with the new features of the Solidity. Thus, it is important to propose methods that could be 

used to find contract defects. In this thesis, we introduce two methods that use online posts 

and historical destructed smart contracts to find new smart contract defects.  

 

For the first method, we crawled all 17,128 posts from StackExchange. Then, we used key-

words filtering to select Solidity defects-related posts. Then, we followed the card sorting 

approach to analyze and categorize the filtered contract defects-related posts. We totally 

summarized 20 contract defects from five aspects: security, availability, performance, 

maintainability, and reusability. For the second method, we first collected all the verified 

(open-sourced) smart contracts from Etherscan, and 756 of them are self-destructed. We 

then proposed an approach to find the upgrade version of the self-destructed contracts. By 

analyzing the difference between the self-destructed contracts and their upgrade versions, 

we found five reasons that led to the death of the contracts; two of them (i.e., Unmatched 
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ERC20 Token and Limits of Permission) are contract defects that might affect the life span 

of contracts.  

 

Finally, we proposed DefectChecker, a symbolic execution-based tool to detect the defined 

contract defects. DefectChecker can detect contract defects from contracts bytecode. 

During the symbolic execution, DefectChecker generates the control flow graph (CFG) of 

smart contracts, as well as the “stack event”, and identifies three features, i.e., “Money Call”, 

“Loop Block”, and “Payable Function”. By using the CFG, stack event, and the three features, 

DefectChecker is extendable by designing different rules to detect contract defects. Our 

evaluation results show that DefectChecker obtains 88.8% of F-score in the whole dataset 

and only requires 0.15s on average to analyze one smart contract.   
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Chapter 1

Introduction

1.1 Background

1.1.1 Blockchain and Smart Contracts

With the great success of Bitcoin [141], its underlying blockchain system [18] attracts the

attention of both academia and industry. A blockchain is a decentralized network that

consists of distributed nodes. Each node runs a consensus protocol to maintain a shared

ledger to secure the data on the blockchain. By Oct. 2021, the global market cap of Bitcoin

reached 1.03 trillion dollars [26], which makes it become the most popular cryptocurrency

in the world.

However, Bitcoin only allows users to encode non-Turing-complete scripts to process

simple logic, which limits its usage scenario. In 2015, Ethereum [68] brought a revolution-

ary technology named smart contracts [214]. Smart contracts can be regarded as Turing-

complete programs deployed on the blockchain, in which consensus protocol ensures their

correct execution [32]. By utilizing smart contracts, developers can easily develop their

decentralized applications (DApp), and apply blockchain techniques to different fields like

gaming [53] and finance [72].

Smart contracts are usually developed using a high-level programming language, such

as Solidity [173]. When developers deploy smart contracts to Ethereum, the source code of

contracts will be compiled into bytecode. Since Ethereum is an add-only distributed ledger,
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once smart contracts are deployed to a blockchain, they are immutable to be modified even

when bugs are detected. Each smart contract is identified by a unique 160-bit hexadecimal

string referred to as its contact address. Anyone can invoke this smart contract by sending

transactions to the corresponding contract address. Their bytecode and transactions are all

stored on the blockchain and visible to all users. The Ethereum Virtual Machine (EVM) is

used to run smart contracts. The execution of smart contracts depends on their code. For

example, if a contract does not contain functions that can transfer Ethers, even the creator

can not withdraw the Ethers. Once smart contracts are deployed, they will exist as long as

the whole network exists unless they execute the selfdestruct function [173]. This is the

only way to remove a smart contract from Ethereum.

1.1.2 Smart Contract Example with Defects

1 pragma s o l i d i t y ^ 0 . 4 . 2 5 ;
2 c o n t r a c t Example {
3 a d d r e s s [ ] p a r t i c i p a t o r s ;
4 u i n t p a r t i c i p a t o r I D = 0 ;
5 f u n c t i o n ( ) p a y a b l e {
6 r e q u i r e ( msg . v a l u e == 1 E t h e r ) ;
7 p a r t i c i p a t o r s [ p a r t i c i p a t o r I D ] = msg . s e n d e r ;
8 p a r t i c i p a t o r I D ++;
9 i f ( t h i s . b a l a n c e == 10 E t h e r ) / / S t r i c t Ba l ance E q u a l i t y

10 ge tWinner ( ) ;
11 }
12 f u n c t i o n ge tWinner ( ) {
13 u i n t random = u i n t ( b l o c k . b l o c k h a s h ( b l o c k . number ) ) % p a r t i c i p a n t s

. l e n g t h ; / / Block I n f o Dependency
14 p a r t i c i p a t o r s [ random ] . t r a n s f e r (9 E t h e r ) ;
15 p a r t i c i p a t o r I D = 0 ;
16 }
17 }

Listing 1.1: A simple contract

A contract defect is an error, flaw or fault in a smart contract that causes it to produce

an incorrect or unexpected result, or to behave in unintended ways [209, 46]. Contract

defects are related to not only security issues but also design flaws which might slow down

development or increase the risk of bugs or failures in the future.
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Listing 1.1 is an example of a smart contract with three contract defects in lines 9 and

14. The contract implements a simple gambling game by using Solidity [173], which is the

most popular smart contract programming language on the Ethereum platform. Users can

send 1 Ether to the contract. Once the contract receives 10 Ethers, the contract will choose

1 user as the winner randomly and send 9 Ethers to him/her.

The first line is called the version pragma, which is used to identify the compiler version

of the contract. Lines 3-4 are the global parameters. Function on line 5 named fallback

function, which is the only unnamed function of the smart contract. This function will

be executed automatically when an error function call happens. For example, a user calls

function “�", but there is no function named “�" in the contract. In this situation, a fallback

function will be executed to handle the error call. If the fallback function is marked by a

keyword named payable, the fallback function will also be executed automatically when the

contract receives Ethers. Lines 6 guarantee that each user sends 1 Ether to the contract. If

the user sends other amounts of Ethers, the transaction will be reverted. When the contract

receives 10 Ethers (line 9), the contract will choose one user to send 9 Ethers by using

function getWinner (line 12). The contract generates a random number by using the block

info related functions1 in line 13. Then, the contract sends 9 Ether to the winner in line 14

and clears the storage in line 15.

However, there are two defects in this contract. The first defect is named Strict Balance

Equality. In Ethereum, attackers can send Ethers to any contracts forcibly by utilizing

the selfdestruct function [173]. This method will not trigger the fallback function, which

means the victim contract cannot reject the Ethers. Attackers can send 1 Wei (1 Ether =

1018 Wei) to the contract, and the balance on the contract will never equal to 10 ETH in

line 9. Thus, the logic of an equal balance check will fail to work due to the unexpected

ethers sent by attackers. A possible solution for this defect is using a “range" to replace
1block.blockhash and block.number are methods provided by Solidity to obtain block related information.
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“equal”. Specifically, we can modify the code in line 9 to “if(this.balance) >= 10 Ether

&& this.balance < 11 Ether)"

The second defect is Block Info Dependency in line 13. Ethereum provides a set of

APIs (e.g., block.blockhash, block.timestamp) to help smart contracts obtain block-related

information, like timestamps or hash numbers. Many contracts use these pieces of block

information to execute some operations. However, the miner can influence block infor-

mation; for example, miners can vary block time stamp by roughly 900 seconds. In other

words, block info dependency operation can be controlled by miners to some extent. A

possible solution for this is using the APIs provided by a trusted third-party organization.

For example, Chainlink is a decentralized blockchain oracle network built on Ethereum,

which also provide an API to generate random numbers [27].

1.1.3 Smart Contracts Maintenance

In software engineering, software maintenance are very broad activities that throughout

the whole life cycle of a program. It is not easy to split the process of development and

maintenance in many software development models. For example, Agile software develop-

ment [12] refers to software development methodologies based on iterative development.

In each iteration, new requirements and solutions will be added to improve the software.

While according to the definition of ISO/IEC 14764 [108], there are four kinds of mainte-

nance, i.e., corrective, adaptive, perfective, and preventive maintenance. Perfective mainte-

nance is used to improve the performance or maintainability by adding new requirements

and functionalities newly elicited from users, which is similar to the steps of Agile develop-

ment. Thus, there are many overlaps between the software maintenance and development.

Smart contracts also need maintenance, as they might have errors, or developers want

to extend their features in the future. However, the immutability of smart contracts makes

them almost impossible to be modified after they are deployed to Ethereum. According to
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our empirical study (see Chapter 3) [33], in which we analyzed 131 smart contract related

research papers published from 2014 to 2020, the only method for maintaining smart con-

tracts is discarding the old contract and redeploying a contract. Fortunately, there are still

two special methods that could make this process more smoothly.

The first method is using the Selfdestruct function. Developers could add a Selfdestruct

function in the smart contract. When they want to upgrade the contract, they can call the

Selfdestruct function to destruct the contract and transfer all the balance to another account.

This method is easy to use, as it only needs to add a few lines of code in the contract.

However, after executing the Selfdestruct function, all the data stored on the contract will

be removed, which might lead to serious problems.

Another method named Upgradeable Contracts was also introduced to address this

concern. Ethereum provides a function named DelegateCall, which allows a contract to

use code in other contracts (implementation contract), and all storage changes are made

in the caller’s value (proxy contract). Once the function execution on the implementation

contract is finished, the return value will be transferred back to the proxy contracts. When

bugs are found or some new features need to be added at the implementation contract,

the proxy contract can redirect to a new implementation contract, and the old one will be

discarded.

1.2 Research Questions and Thesis Statement

Like all the other computer codes, smart contracts also need maintenance. In this thesis,

we first give a big picture review of smart contract maintenance in RQ1, which aims to

highlight the key issues of smart contract maintenance and current maintenance methods.

According to the results of RQ1, we found that detecting and removing contract defects is

one of the most popular reasons to maintain a smart contract. However, the revolutionary

features make smart contract defects very different from traditional programs. Thus, we
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aim to find as many defects as possible by using different methods. In RQ2, we introduced

a method that is able to find contract defects from online Q&A posts. Then, we proposed a

tool to detect the defined defects through EVM bytecode in RQ3. In RQ4, we presented a

method to find defects by analyzing historical destructed smart contracts. A tool to detect

the found defects is also introduced in the same RQ. The details of the research questions

are as follows:

RQ1: What kinds of maintenance issues will smart contract developers encounter,

and how do developers maintain smart contracts?

To answer this research question, we conducted a comprehensive empirical study on

smart contract maintenance based on a systematic literature review that covers 131 smart-

contract-related papers selected from a collection of 946 papers to find maintenance-related

challenges and methods for smart contracts. We totally found 13 maintenance issues and

divided them into five groups. We also found that the most effective and popular method to

maintain / upgrade / patch a smart contract is discarding the old contract and redeploying a

new contract. Before redeploying the new smart contract to Ethereum, an important step is

checking its robustness. According to our study, 31 publications proposed tools to analyze

whether a smart contract contains specific contract defects.

Detecting and removing contract defects helps increase software robustness and en-

hance development efficiency [190, 115], which is widely used to maintain smart contracts.

For example, Luu et al. [131] proposed a tool named Oyente to detect four security defects,

i.e., mishandled exception, transaction-ordering dependence, timestamp dependence, and

reentrancy attack. Kalra et al. [113] developed a tool named Zeus to detect seven security

defects of smart contracts. Nikolic et al. [146] designed a tool named Maian, which focused

on defects that lead to a contract not able to release Ethers, can transfer Ethers to arbitrary

addresses, or can be killed by anybody. All of these methods designed tools to detect prede-

fined defects. Developers use these tools to check whether a smart contract contains related
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issues and then remove them to make smart contracts safer and more robust.

All of these tools first give some predefined defects and then develop tools to detect

them. Although detecting and removing predefined defects can make smart contracts safer,

one of the challenge is finding predefined defects. Besides, smart contracts ecosystem is

fast-evolving. For example, Solidity, the most popular programming language for smart

contracts, has 80 versions from Jan. 2016 to Jun. 2020 [172]. Thus, some predefined

patterns might out-of-date, and many new kinds of defects might come out with the new

features of the Solidity. In this case, it is very important to propose methods that can be

used to find smart contract defects. In this thesis, we introduce two methods that use online

posts and historical destructed smart contracts to find new smart contract defects, which

highlight the second and fourth research questions:

RQ2: How to find smart contract defects by analyzing online posts?

To define defects for smart contracts, we need to collect issues that developers encoun-

tered. Developers often collaborate and share experience over question and answer (Q&A)

sites like Ethereum StackExchange [175], the most popular and widely-used Q&A site

for users of Ethereum. By analyzing posts on Ethereum StackExchange, we can identify

and define a set of contract defects on Ethereum. To answer this research question, we

first crawled all 17,128 posts from Ethereum StackExchange. Then, we used key words

filtering to select Solidity defects-related posts. After that, we followed the card sort-

ing [174] approach to analyze and categorize the filtered contract defects-related posts.

We totally summarized 20 contract defects from five aspects: security, availability, perfor-

mance, maintainability, and reusability. To validate the acceptance of our newly defined

smart contract defects, we conducted an online survey and received 138 responses and 84

comments from developers in 32 countries. The feedback and comments show that devel-

opers believe removing the defined contract defects can improve the quality and robustness

of smart contracts.
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RQ3: How to detect the defined contract defects on RQ2 through contract bytecode ?

To answer this research question, we propose DefectChecker, a symbolic execution-

based tool to detect contract defects. DefectChecker can detect contract defects from smart

contracts bytecode without the need for source code. During the symbolic execution, De-

fectChecker generates the control flow graph (CFG) of smart contracts, as well as the “stack

event", and identifies three features, i.e., “Money Call”, “Loop Block”, and “Payable Func-

tion”. By using the CFG, stack event, and the three features, DefectChecker is extendable

by designing different rules to detect contract defects. To increase the speed to analyze

smart contracts, we remove the traditional SMT (satisfiability modulo theories) solver, e.g.,

Z3 [55]. Specifically, when executing a conditional jump, we should determine the satisfi-

ability of the conditional expression by invoking an SMT solver. If the SMT solver cannot

find a solution, we consider the corresponding program path as infeasible. Therefore, sym-

bolic execution can be used to discover dead code. However, there may be little dead code

in EVM bytecode, because the compiler can eliminate dead code during the compilation of

smart contracts. To accelerate our analysis, we consider the conditional expression, which

is equal to “0” as unsatisfiable and all other conditional expressions as satisfiable, without

checking their satisfiability. Our evaluation results show that DefectChecker obtains 88.8%

of F-score in the whole dataset and only requires 0.15s on average to analyze one smart

contract.

RQ4: How to find smart contract defects by analyzing historical destructed smart

contracts?

According to our empirical study (Chapter 2 - Answer for RQ1), many developers

choose to add a selfdestruct function in their smart contracts. In this case, they can eas-

ily destruct the contracts and transfer all the balance to reduce the impact of financial loss

when emergency situations happen, e.g., a contract being attacked. However, destructing

smart contracts is also harmful. For example, Ethers sent to a self-destructed contract will
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be locked forever, which increases the risk of using selfdestruct function. Thus, it is inter-

esting to know why smart contract developers use selfdestruct function to destruct smart

contracts. To find the reason, we conducted an online survey to collect feedback from real-

world smart contract developers and summarize the key reasons. Their feedback shows

that 66.67% of the developers will deploy an updated contract to the Ethereum after de-

structing the old contract. According to this information, we propose a method to find the

self-destructed contracts (also called predecessor contracts) and their updated version (suc-

cessor contracts) by computing the code similarity. By analyzing the difference between

the predecessor contracts and their successor contracts, we found five reasons that led to

the death of the contracts; two of them (i.e., Unmatched ERC20 Token and Limits of Per-

mission) are contract defects that might affect the life span of contracts, and a tool to detect

these two defects are also given in this RQ.

In this thesis, we totally proposed two methods to find contract defects from different

perspectives, i.e., RQ2 (Chapter 3) and RQ4 (Chapter 5). Both of them have related ad-

vantages and limitations. Specifically, RQ2 introduced a breadth-first method by analyzing

online Q&A posts, which could cover a high range of defects from a different aspect of

smart contracts, e.g., security, performance. However, the biggest limitation is that we can-

not dig into much depth for a specific issue. RQ4 focused on a specific feature of smart

contracts, i.e., the Selfdestruct function. Although we only found a limited number of de-

fects in RQ4, we still found many important selfdestruct-related features. For example,

we found that Selfdestruct could be used to design Gastoken, and it was being utilized

to launch a DDoS attack and had other harmful impacts to Ethereum (S5.6.4). Besides,

Proxy contracts, e.g., EIP-2535, 1822, 1967, etc, were better ways to upgrade contracts,

and we could also use a similar method to investigate the proxy contracts to find more de-

fects. (S5.8) 3). Also, we found most of the selfdestructed-ERC20 token contracts will not

return tokens back (S5.6.3), which could lead to a financial loss of users. All the above
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selfdestruct-related features could guide further research on smart contracts.

1.3 Thesis Contribution

Chapter 2 conducts an empirical study on smart contract maintenance-related concerns,

and makes the following key contributions:

1. To the best of our knowledge, this is the first in-depth empirical study that focuses

on the maintenance issues of smart contracts on Ethereum, and we divide the issues

into four categories.

2. Our study identifies the key current maintenance methods used for smart contracts,

which gives guidance for smart contract developers to better maintain their contracts.

3. Our study highlights the limitations and possible future work related to smart con-

tracts on Ethereum. This gives directions for smart contract developers and re-

searchers to develop improved tools and focus future research.

• This work has led to a research paper published on the Empirical Software Engi-

neering (EMSE) in 2021.

Chapter 3 conducts an empirical study to find smart contract defects by analyzing

online posts. We make the following key contributions in this work:

1. We define 20 contract defects for smart contracts considering five aspects: secu-

rity, availability, performance, maintainability and reusability. We list symptoms

and give a code example of each contract defects, which can help developers bet-

ter understand the defined contract defects. To help further researches, we also give

possible solution and possible tools for the contract defects.
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2. We manually identify whether the defined 20 defects exist in real-life smart contracts.

Our dataset2 contains a collection of 587 smart contracts, which can assist future

studies on smart contract analysis and testing. Also, we analyze the impacts of the

defined contract defects and summarize 5 common impacts. These impacts can help

developers decide the priority of defects removal.

3. Our work is the first empirical study on contract defects for smart contracts. We

aim to identify their importance, and gather inputs from practitioners. This work is

a requirement engineering step for a practical contract defects detection tool, which

is an important first step that can lead to the development of practical and impactful

tools to practitioners.

• This work has led to a research paper published on the IEEE Transactions on Soft-

ware Engineering (TSE) in 2020.

Chapter 4 introduces a tool named DEFECTCHECKER, an automated smart contract

defect detection tool by analyzing EVM bytecode. In this work, we make the following

contributions:

1. To the best of our knowledge, DefectChecker is the most accurate and the fastest

symbolic execution-based model for smart contract defects detection.

2. We systematically evaluated our tool using an open source dataset to test its per-

formance. In addition, we crawled all of the bytecode (165,621) on the Ethereum

platform by the time of writing the paper and identified 25,815 smart contracts that

contain at least one contract defect. Using these results, we find some real-world

attacks, and give examples to show the importance of detecting contract defects.

3. Our datasets, tool and analysis results have been released to the community at

https://github.com/Jiachi-Chen/DefectChecker/.
2The dataset can be found at https://github.com/Jiachi-Chen/TSE-ContractDefects
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• This work has led to a research paper published on the IEEE Transactions on Soft-

ware Engineering (TSE) in 2021.

Chapter 5 first uses an online survey to investigate why developers include or exclude

selfdestruct function. Based on the finding, i.e., 66.67% of developers will deploy an up-

dated contract to the Ethereum after destructing the old contract, we propose a method to

find contract defects through historical destructed smart contracts. We make the following

key contributions in this work:

1. To the best of our knowledge, this is the most comprehensive empirical work that

investigates the selfdestruct function of smart contracts in Ethereum. We conduct an

online survey to collect feedback from developers. According to this survey feed-

back, we summarize 6 reasons why developers add selfdestruct functions and 6 rea-

sons why they do not add them to their smart contracts.

2. We design an approach to find 5 reasons why smart contracts self-destructed. These

self-destruct reasons can be used as a guidance when practitioners develop their con-

tracts. Also, our approach gives inspiration for researchers. They can use the same

approach to find more self-destruct reasons and apply the method to other smart con-

tract platforms, e.g., Ethereum Classic3 [206].

3. We propose a tool named LIFESCOPE to detect two problems that might shorten the

life span of smart contracts. LIFESCOPE obtains 100% of F-measure in detecting

Unmatched ERC20 Token. And it achieves an F-measure and AUC of 77.89% and

0.8673, respectively in detecting Limits of Permission.

4. According to the feedback from our survey, there are six common reasons why some

developers do not use selfdestruct function. We give five suggestions for developers
3Ethereum Classic is another popular blockchain platform which support the running of smart contracts.
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to address these issues and to help them better use theselfdestruct function in their

smart contacts.

• This work has led to a research paper published on the ACM Transactions on Soft-

ware Engineering and Methodology (TOSEM) in 2021, as well as a short paper on

the IEEE/ACM International Conference on Automated Software Engineering(ASE’20-

SRC) in 2020.

1.4 Structure of the thesis

In this thesis, we introduce the background and research questions in Chapter 1. In Chapter

2, we conduct an empirical study on investigating the maintenance issues and current main-

tenance methods for smart contracts. In Chapter 3 and 4, we introduce a methods that can

be used to find contract defects by online posts and a related tool named DEFECTCHECKER

to detect the defined smart contract defects, respectively. In Chapter 5, we present a method

to find smart contract defects by analyzing historical destructed smart contracts. Finally,

we give the conclusion and future research directions in Chapter 6.
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Chapter 2

Maintenance-Related Concerns for
Post-deployed Ethereum Smart
Contract Development: Issues,
Techniques, and Future Challenges

Chen, J., Xia, X., Lo, D., Grundy, J.C., Yang X. Maintenance-Related Con-
cerns for Post-deployed Ethereum Smart Contract Development: Issues, Tech-
niques, and Future Challenges, Empirical Software Engineering, 26, 117, 2021.
https://doi.org/10.1007/s10664-021-10018-0

Abstract: Software development is a very broad activity that captures the entire life cycle

of a software, which includes designing, programming, maintenance and so on. In this

study, we focus on the maintenance-related concerns of the post-deployment of smart con-

tracts. Smart contracts are self-executed programs that run on a blockchain. They cannot be

modified once deployed and hence they bring unique maintenance challenges compared to

conventional software. According to the definition of ISO/IEC 14764, there are four kinds

of software maintenance, i.e., corrective, adaptive, perfective, and preventive maintenance.

This study aims to answer (i) What kinds of issues will smart contract developers encounter

for corrective, adaptive, perfective, and preventive maintenance after they are deployed to

the Ethereum? (ii) What are the current maintenance-related methods used for smart con-

tracts? To obtain the answers to these research questions, we first conducted a systematic

literature review to analyze 131 smart contract related research papers published from 2014
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to 2020. Since the Ethereum ecosystem is fast-growing, some results from previous pub-

lications might be out-of-date and there may be a gap between academia and industry. To

address this, we performed an online survey of smart contract developers on Github to

validate our findings and received 165 useful responses. Based on the survey feedback

and literature review, we present the first empirical study on smart contract maintenance-

related concerns. Our study can help smart contract developers better maintain their smart

contract-based projects, and we highlight some key future research directions to improve

the Ethereum ecosystem.

2.1 Introduction

With the great success of Bitcoin [141], considerable attention has been paid to the emerg-

ing concepts of blockchain technology [18]. However, the usage scenario of Bitcoin is

limited, as the main application of Bitcoin is storing and transferring monetary values [62].

The appearance of Ethereum [68] at the end of 2015 removed many of the limitations

of blockchain-based systems. Ethereum leverages a technology named smart contracts,

which are Turing-complete programs that run on the blockchain [212]. Blockchain tech-

nology gives immutable, self-executed, and decentralized features to these smart contracts.

This in turn means that smart contracts cannot be modified once deployed to the blockchain,

and all of their execution depends on this immutable code. Running these smart contracts

across highly distributed servers costs “gas", which in turn costs money. These features

ensure the trustworthiness of smart contracts and make the technology attractive to devel-

opers and users. By utilizing smart contracts, developers can easily develop Decentralized

Applications (DApps) [205], which have been applied to different areas, such as IoT [44],

financial [78], gaming [53], and data security domain [191].

Like all computer code, smart contracts may have errors or developers might want to

extend their features in the future. However, some features of Ethereum – like the gas sys-
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tem and smart contract immutability – make smart contracts much harder to maintain than

conventional software [22]. Ethereum is a permission-less network and sensitive informa-

tion – transactions, bytecode and balance of smart contracts – are visible to everyone, and

everyone can call the contract by sending transactions [212]. These features increase possi-

ble security threats and counter-actions needed. Smart contracts on Ethereum have several

other unique characteristics – the use of the “gas" system to fund running of transactions;

relatively few patterns and standards for structuring smart contract code; lack of source

code available for most deployed smart contracts; and relative lack of tools to check smart

contracts for errors, compared to conventional software. All of these features increase the

difficulty of smart contract maintenance.

In software engineering, the term software maintenance refers to the modification of

a software product after delivery to correct faults and to improve performance or other at-

tributes [160]. It is a very broad activity according to the definition of ISO/IEC 14764 [108].

There are four main kinds of maintenance, i.e., adaptive, perfective, corrective, and pre-

ventive maintenance. In the context of the four categories of maintenance, the following

illustrate the potential impact of such factors on smart contract maintenance:

• Adaptive maintenance aims to keep software usable in a changed or changing en-

vironment. However, the running environment of smart contracts is often unpre-

dictable. For example, smart contracts usually call other contracts. However, the

callee contracts might crash and cannot work anymore. Since the callee contracts

are immutable, the crash of the callee contract can lead to serious consequences of

the caller contract. The unpredictable environment makes it very difficult to conduct

adaptive maintenance for smart contracts.

• Perfective maintenance is used to improve the performance or maintainability by

adding new requirements and functionalities newly elicited from users. However, the

scalability issues and the gas system of Ethereum make smart contracts difficult to
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add too many functionalities, else they become very costly to run and unwieldy.

• Corrective maintenance focuses on fixing discovered bugs and errors in a program.

The lack of tools and community support due to the relative newness of smart con-

tracts makes it hard to detect and remove smart contract bugs.

• Preventive maintenance aims to remove latent faults of programs before they be-

come operational faults. For example, a code smell is a characteristic in the source

code that possibly indicates a deeper problem [85]. Refactoring the code to re-

move code smells to increase software robustness is a typical preventive maintenance

method. However, due to the immature ecosystem of smart contracts, it is not easy

to find appropriate advanced methods to conduct preventive maintenance for smart

contracts.

In this paper, we focus on the maintenance-related concerns of post-deployment smart

contracts. Unlike traditional programs that can be upgraded directly, to maintain a smart

contract, developers usually need to redeploy a smart contract and discard the old

version. Although maintaining smart contracts is not easy, it is still important to find

methods to maintain them. For example, in 2016, attackers found the DAO (Decen-

tralized Autonomous Organization) smart contract contains a vulnerability named Reen-

trancy [32, 131]. This vulnerability was then utilized by attackers and led to the famous

DAO attack [54], which made the DAO lose 3.6 million Ethers (about $20/Ether when the

attack happened). According to recent research [114, 127], a similar vulnerability is preva-

lent in Ethereum smart contracts; all of these contracts can be attacked and lead to financial

loss. Thus, it is important to conduct corrective maintenance for these contracts to remove

issues like the Reentrancy vulnerability to ensure the contracts are bug-free and robust.

Many previous works [224, 156, 22, 124] conduct empirical studies to investigate the

challenges to the entire software development life cycle of smart contracts. This includes
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smart contract design, programming, security, maintenance, documentation and so on.

However, none focus exclusively on smart contract maintenance. To fill this gap, we pro-

vide a comprehensive empirical study on smart contract maintenance based on a systematic

literature review that covers 131 smart-contract-related papers selected from a collection of

946 papers to find maintenance-related challenges, and methods for smart contracts. Our

study aims to answer the following two key research questions:

RQ1: What kinds of maintenance issues will smart contract developers en-

counter?

We identify 9 issues related to corrective, adaptive, perfective, and preventive mainte-

nance, and another 4 issues corresponding to the overall maintenance process for smart con-

tracts. These maintenance issues are extracted from previous publications. Since Ethereum

and smart contracts are fast-evolving, some results from previous works might be outdated.

There might be a gap between academia and industry. For example, Zhou [224] mentioned

that smart contracts miss the support of exception handling, e.g., the try...catch. However,

Solidity adds the exception handling in v6.0 [173]. To make our results more reliable, we

use an online survey to validate our findings. We sent the survey to 1,500 smart contract

developers on Github, and received 165 useful responses. The feedback from the survey

can also be a supplement to our findings. We analyze the reasons for smart contract main-

tenance issues according to the survey results.

RQ2: What are the current maintenance methods for smart contracts?

To help developers maintain smart contracts, we summarize four kinds of current main-

tenance methods from 41 publications. 31 publications introduce offline checking methods

to help developers maintain smart contracts. They can help maintain smart contracts before

they are deployed/redeployed to Ethereum. Seven publications introduced online checking

methods, which can help maintain deployed smart contracts by detecting malicious input

or automatically upgrading smart contracts. Two previous works suggested developers to
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use the Selfdestruct function to undo contracts when emergencies happen. Another work

describes how smart contract can be upgraded by using DELEGATECALL instruction.

The main contributions of this paper are:

• To the best of our knowledge, this is the first in-depth empirical study that focuses

on the maintenance issues of smart contracts on Ethereum, and we divide the issues

into four categories.

• Our study identifies the key current maintenance methods used for smart contracts,

which gives guidance for smart contract developers to better maintain their contracts.

• Our study highlights the limitations and possible future work related to smart con-

tracts on Ethereum. This gives directions for smart contract developers and re-

searchers to develop improved tools and focus future research.

The remainder of this paper is organized as follows. In Section 2.2, we provide back-

ground knowledge of smart contracts and Ethereum. In Section 2.3, we introduce the

methodology to conduct the literature reviews and the survey. After that, we present the an-

swers to the two research questions in Sections 2.4 and 2.5, respectively. In Section 2.6, we

highlight key threats to validity. We discuss what should be done in the future to improve

the Ethereum ecosystem in Section 2.7 and review related work in Section 2.8. Finally, we

conclude the whole study in Section 2.6.

2.2 Background

2.2.1 Ethereum

In 2008, the first blockchain-based cryptocurrency named Bitcoin was introduced and

demonstrated the enormous potential of blockchain to the world. However, the biggest lim-

itation of Bitcoin is that it only allows users to encode non-Turing-complete scripts to pro-

cess transactions, which greatly limits its capability. To address this limitation, Ethereum
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Figure 2.1: An Example of Hard Fork. The blue block called divergence block, where the
blockchain system updates its protocol. The new protocol for hard fork is not backward-
compatible.

was born at the end of 2015 and brought a revolutionary technology named smart con-

tracts. Nowadays, Ethereum has become the second most popular blockchain system and

the most popular platform on which to run smart contracts. Similar to Bitcoin, Ethereum

also provides its cryptocurrency and names it as Ether. In Jan. 2018, Ether reached its

highest value to $1389 / Ether [26]. Unlike Bitcoin, which has a fixed number of coins

(21 million in total), 18 million Ethers are created every year [212] (and 72 million Ether

were generated at its launch). Currently, two new Ethers are created with each block, and

it requires about 14-15s to create a new block; the average Ethereum block size is between

20 to 30 KB, and the biggest Ethereum block size is around 2MB [75]. Ethereum does not

support concurrency, and all transactions need to be executed by all nodes, which leads to

a low throughput of Ethereum. Ethereum only allows about 15 transactions per second on

average [74], which has become one of its biggest limitations. At the end of 2017, there is

a famous smart-contract-based game named CryptoKitties [53] published in the Ethereum.

However, the popularity of the game slowed down all transactions as too many players sent

transactions to the Ethereum blockchain.

2.2.2 Hard Fork and Soft Fork

Any software or operating system needs periodic upgrades to fix errors or add new func-

tionalities. For the blockchain system, those updates are called a “fork". There are two
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Figure 2.2: An Example of Soft Fork. The blue block called divergence block, where
the blockchain system updates its protocol. The new protocol for soft fork is backward-
compatible.

kinds of forks, i.e., hard fork and soft fork.

Hard Fork. Figure 2.1 shows an example of a hard fork. The blockchain system is a

decentralized network. All the nodes on the network need to follow the same rules. The set

of rules is known as the protocol. In Figure 2.1, the blue block is called a divergence block,

where the blockchain system updates its protocol. When a protocol is updated, and the

new protocol is not backwards-compatible. Some nodes on the blockchain do not accept

the new protocol, and they choose to use the old version. Thus, the blockchain forks into 2

incompatible blockchains, which run the new and old protocol, respectively.

Soft Fork. Updates of protocols by soft fork are backwards-compatible. Nodes that did

not upgrade to the new version will still be able to participate in validating and verifying

transactions. In this case, there is only one chain on the blockchain when using a soft fork.

Notice that the functionality of a node with the old protocol is also affected. As the example

in Figure 2.2 shows, the maximum block size allowed by the old protocol is 3MB, and

the new protocol limits the block size to 2MB. The non-upgraded nodes can still process

transactions and push new blocks that are 2MB or less. However, if a non-upgraded node

tries to push a block that is greater than 2MB, the upgraded nodes will reject to broadcast

the block, which encourages the non-upgraded nodes to update the new protocols.
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2.2.3 Smart Contracts

Smart contracts can be regarded as Turing-complete programs that run on the blockchain.

They are usually developed in a high-level language, e.g., Solidity, Vyper [196]. Solid-

ity is the most popular programming language with which to develop smart contracts on

Ethereum. Based on the immutable blockchain technology concept, smart contracts can-

not be modified once added to the blockchain. Once started, all running of the contract

is based on its code. No one can affect it, not even the creator. Ethereum uses EVM

(Ethereum Virtual Machine) to execute smart contracts. When developers deploy a smart

contract to Ethereum, the contract will be compiled into EVM bytecode, and the byte-

code will be stored on the blockchain forever. The only way to remove the bytecode from

Ethereum is by using the Selfdestruct function [173]. There is a unique 40 bytes hexadeci-

mal hash value to identify a contract address. Since Ethereum is a permission-less network;

every one can send a transaction and invoke contract functions if they know the function

signatures, which includes its function id and parameter types [173]. Even worse, all the

transactions, bytecode, invocation parameters are visible to everyone, which makes smart

contracts face major security challenges.

2.2.4 The Gas System

In Ethereum, transactions are executed by miners. To incentivize the execution of smart

contracts by miners, transaction senders need to pay an amount of Ether to the miner, the

so-called gas mechanism. For each transaction, the EVM will calculate its gas cost, and

the transaction sender is required to define a gas price, e.g., 20 Gwei / gas unit (1Ether =

109Gwei). The final transaction fee is calculated by gas_cost ⇥ gas_price. Miners have

the right to decide whether or not execute a transaction. Thus, higher gas prices can lead

to faster execution, and lower gas prices can lead to a transaction that is never added to a

block. According to the ETH Gas Station [91], in May 2020, if the gas price is higher than
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Figure 2.3: An Example of the upgradeable contract.

40 Gwei, the transaction can be executed within 2 minutes. If the gas price is lower than

25 Gwei, the execution time can exceed half an hour.

Another function the “gas" system is to ensure that the execution of smart contracts

can be eventually terminated. In Ethereum, the transaction caller is required to set a gas

limit, which refers to the maximum gas cost of a transaction. If the gas cost of a transaction

exceeds the gas limit, the execution will be terminated with an exception thrown by EVM

named out-of-gas error.

The gas system ensures the normal running of the Ethereum. However, it also increases

the difficulty of smart contract development, as developers need to estimate the maximum

gas cost of the contracts. Ethereum block has a maximum size, which limits the amount of

data that can be included. The current maximum block size limits the maximum gas limit

to 12.5 million gas units [75]. When the maximum gas cost of a transaction exceeds the

12.5 million, it will be reverted forever.

2.2.5 Upgradeable Smart Contracts

Even though smart contracts cannot be changed once deployed to the blockchain, there

is a method to develop “upgradeable" contracts. Ethereum provides a function named

DelegateCall, which allows a contract to use code in other contracts, and all storage

changes are made in the caller’s value. Specifically, DelegateCall can be implemented

by addr.delegatecall(bytes memory). addr is the address of the callee contract (The value

of addr can be changed by sending a transaction to the contract). The function selector
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and input value are encoded as bytes memory, and will be sent to the callee contract when

DelegateCall is executed. Once the execution of the function on the callee contract is

finished, the return value will be transferred back to the caller contracts. When bugs are

found at the callee contract, the proxy contract can redirect the addr to a new contract.

Figure 2.3 is an example of the upgradeable contract, which contains three contracts.

The proxy contract holds the data of a contract, and all the storage changes are made in

the proxy contract. The proxy contract uses DelegateCall to call the functions f() and

g(). These functions are implemented in contract A and B, respectively. Once errors are

found or new functionalities need to be added, contract A and B can be discarded directly.

The proxy contract can call the code of the new contract by using DelegateCall. Based

on this approach, OpenZeppelin, a famous smart contract organization, has provided a

library [153] to help developers develop upgradeable smart contracts in just a few lines.

EIP 2535 [144] (the Diamond Standard) also defines the standard to help developers design

upgradeable smart contracts.

2.2.6 Software Development and Maintenance

Software development refers to a set of activities that throughout the entire life cycle of

software, which includes the process of designing, creating, deploying and supporting soft-

ware [23]. Thus, software maintenance is an important and inevitable part of the software

development life cycle. According to previous work [19], software maintenance can lead

to 60% of software cost. Besides, in many software development models, e.g., Spiral

model [20], Agile development [12], it is not easy to split the process of development and

maintenance. For example, Agile software development refers to software development

methodologies based on iterative development. In each iteration, new requirements and

solutions will be added to improve the software. According to the definition of ISO/IEC

14764 [108], there are four kinds of software maintenance, i.e., corrective, adaptive, perfec-
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tive, and preventive maintenance. Among them, Perfective maintenance is used to improve

the performance or maintainability by adding new requirements and functionalities newly

elicited from users, which is similar to the steps of Agile development. Thus, there are

many overlaps between the software maintenance and development.

2.2.7 Card Sorting

Card sorting is a method to organize data into logical groups [174], which is widely used to

help users organize and structure data. To conduct a card sorting, we first need to identify

the key concepts and write them into labeled cards. A card can be everything that helps the

discussion, e.g., a piece of paper or a virtual card on a laptop. After that, we are required

to group cards into different categories that make sense to them. Due to the low-tech

and inexpensive nature of card sorting, it is usually used to design workflow, architecture,

category tree, or folksonomy.

There are three kinds of card sorting, i.e., open card sorting, closed card sorting, and

hybrid card sorting. Open card sorting is used for organizing data with no predefined

groups. Specifically, each card will be clustered into a group with a certain topic or meaning

first. If there is no appropriate group, a new group will be generated. All the groups are

low-level subcategories and will be evolved into high-level subcategories further. Closed

card sorting is used for organizing data with predefined groups. Each card is required to

be clustered into one of the groups. Hybrid card sorting combines open card sorting and

closed card sorting. Hybrid card sorting has predefined groups but allows to create new

groups during the process.

2.3 Methodology

Figure 2.4 shows the overview of our methodology, which contains two phases, i.e., litera-

ture review and survey. In phase 1, we perform a systematic literature review, which aims
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Figure 2.4: Overview of methodology design

to find the answers to research questions from prior smart contract related papers. After

obtaining the answers, we use an online survey to validate whether smart contract develop-

ers agree with our findings. In the following subsections, we present the detailed steps of

our literature review and survey.

2.3.1 Literature Review

We follow the method provided by Kitchenham et al. [119] to perform the literature review.

There are three steps in phase 1, i.e., literature search, literature selection, and data analysis.

2.3.1.1 Literature Search

Guided by prior works [49, 169, 103], we select five search engines, i.e., ACM Digital

Library, IEEE Xplore Digital Library, Springer Online Library, Elsevier Science Direct,

and Google Scholar. From these search engines, we can find peer reviewed research papers
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Table 2.1: Initial Number of Smart Contract Related Research Papers Returned by Each
Search Engine

Search Engine Papers
ACM Digital Library 73
IEEE Xplore Digital Library 177
Springer Online Library 54
Elsevier Science Direct 11
Google Scholar 631
Total 946

published in journals, conferences, workshops, and symposia.

We used keyword search to obtain 946 initial smart contract related papers. The detailed

numbers of the research papers returned by different search engines are shown in Table 2.1.

(The duplicated papers are removed.) All of these 946 research papers contain at least one

of the keywords “smart contracts" , “smart contract", “Ethereum", “blockchain", “DApps"

in their title. Since there are many other blockchain platforms supporting smart contracts,

and our focus is Ethereum, all the selected papers should contain the keyword "Ethereum"

or “smart contract" in their abstract.

2.3.1.2 Literature Selection

Although all the papers that we find in our literature search contain the keywords “smart

contract" or “Ethereum" in their abstract, some of them are still irrelevant to our study. For

example, some research related to other smart contract platforms might also contain the

keyword “Ethereum" in their abstracts. We applied the following five exclusion criteria to

remove irrelevant papers:

Exclusion Criteria

(1) Studies are not written in English.

(2) Master or Ph.D. theses.

(3) Keynote papers.

(4) Studies not related to Ethereum.

(5) Studies not related to smart contracts.
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In this study we only focus on maintenance-related concerns for post-deployed

Ethereum smart contract development issues. Thus, research based on underlying blockchain

technology, e.g., consensus algorithms, are excluded. We only focus on the following top-

ics:

Inclusion Topics

(1) Smart contract empirical studies.

(2) Smart contract security / reliability Analysis.

(3) Smart contract standards.

(4) Smart contract optimization, e.g., gas optimization.

(5) Other smart contract technologies, e.g, smart contract generation, decompilers.

To reduce errors, we conducted close card sorting [174] to check the collected

data. Card sorting is a common method used to evaluate and derive categories from

the data [117]. There are three types of card sort, i.e., open card sort, closed card sort,

and hybrid card sorting. Among these three kinds of card sort, closed card sort has pre-

defined categories. We apply closed card sort to select relevant papers, as there only two

categories, e.g., relevant or irrelevant. For each card, it has a title (the name of the pa-

per) and description (abstract of the papers). Two experienced researchers with four-year

smart contract related experience (including a non-coauthor) carefully read the abstract

of the initial 946 research papers independently, and then compare their results after fin-

ishing the reading. If there are some differences, they discussed to decide the whether

the papers should be excluded. Finally, 112 relevant papers are selected from initial 946

papers. After that, we followed the prior study [103] to conduct a snowballing step to

enlarge the paper list. We manually checked the references of the identified 112 papers

and from these found another 19 papers. All of these 19 papers are selected from the

reference of the 946 papers with the same selection method. Specifically, we first check

whether the title of the paper on the reference contains the keywords, e.g., “smart con-
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Figure 2.6: The steps of open card sorting.

tracts”, “Ethereum”, “blockchain”. Then, the two researchers use open card sorting to

analyze the abstract of the paper to finally decide whether the paper should be included

or not. Thus, we finally selected 131 papers for analysis. The paper list can be found at:

https://github.com/Jiachi-Chen/Maintenance.

2.3.1.3 Data Analysis

The Ethereum proposal was presented in late 2013, and the system went live at the end

of 2015. All of the 131 selected papers were published between 2014 to 2020 (for de-

tails see Figure 2.5), and the full papers were carefully read by the same two researchers.

Considering our study aims to find answers with categories being unknown in advance (dif-

ferent kinds of maintenance issues and methods), we decided to adopt an open card sorting

approach to help find the answers of these two RQs. The detailed steps used for this are de-
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Table 2.2: Data Collection for Each RQ.

RQs Type of Data We Collected
RQ1 What are the challenges / issues of smart contract maintenance? The data is classified by

corrective, adaptive, perfective, and preventive maintenance.
RQ2 What are the used maintenance methods? e.g., off-line / on-line security checking methods,

other methods.

scribed in Figure 2.6. The two researchers first read the paper carefully and were required

to collect the answers to the two RQs shown in Table 2.2, i.e., (1). What are the reported

challenges / issues of smart contract maintenance? (2). What are the used maintenance

methods? If we could not find any answers from a paper, the paper is omitted from our list.

For the answers of (1), the data collected from papers were first summarized into detailed

maintenance issues. For example, previous works [40, 36] mentioned that “..over 90% of

real smart contracts suffer from gas-costly patterns in Ethereum...", which will be summa-

rized into a detailed maintenance issue, i.e., The Difficulty of Handling the Gas System. The

detailed maintenance issues were then clustered according to their maintenance types, e.g.,

corrective, adaptive, perfective maintenance, and common maintenance. For the answers

of (2), they were first grouped according to the technique they used, e.g., programming

analysis or fuzzing. After that, they will be clustered into a higher level according to their

checking types, e.g., off-line / on-line checking.

2.3.2 Survey
2.3.2.1 Survey Design

Our smart contract developer survey contains three parts, i.e., demographic questions, smart

contract maintenance related questions, and suggestion related questions. We follow the

previous smart contract related work [32] to design the following five demographic ques-

tions in our survey. Since our survey is based on Google Form, and Google cannot be

accessed in China, we also designed a Chinese version to receive responses from Chinese

developers. The translated version was double-checked to ensure consistence with the En-

glish version.
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Demographics:

• Professional smart contract developer? : Yes / No

• Involved in open source software development? : Smart Contract Projects only /

Traditional Projects Only / Both / None

• Main role in developing smart contract.

• Experience in years

• Current country of residence

These questions aim to understand the background and experience of the respondents,

which allows us to remove some feedback that we wish to exclude, e.g., feedback provided

by very inexperienced respondents.

In the second part of the survey, we designed 15 questions to help provide answers to the

same two research questions that we found from the literature survey. The details of the sur-

vey can be found at: https://github.com/Jiachi-Chen/Maintenance. The

list of the questions included in our survey can be found in Table 2.3. For questions 1,

3-6, 8-9, 11, we give the participants several choices that are obtained by literature review.

Besides, for these questions, we give a textbox to allow participants to write comments.

For questions 10 and 12, we follow the previous survey [32] to give five scores to partici-

pants from score 1 (lowest agreement) to score 5 (highest agreement), and score 3 refers to

“neutral".

In the third part of the survey, we give a text box to respondents to allow them to give

us final comments or questions.

2.3.2.2 Survey Design Explanation

In this subsection, we explain how we designed the survey by answering two questions,

i.e., (1). How we obtain the choices for questions 1, 3-6, 8-9, and 11. (2). Where do the
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Table 2.3: List of questions included in the survey.

ID Question
Q1 How do you obtain your required knowledge about smart contracts?
Q2 Do you believe smart contracts have higher security requirements than

traditional, centralized apps, e.g., mobile apps, web apps?
Q3 How do you test / debug your smart contracts for security and scalability?
Q4 How do you maintain smart contracts after deployment?
Q5-6 Have you developed an upgradeable smart contract before? If not, why?
Q7 Do you believe smart contracts are harder to maintain than traditional

centralized apps, e.g., mobile apps, web apps? Why?
Q8 What maintenance issues do your smart contracts have?
Q9 Which features / limitations of Ethereum can increase the difficulty of

maintenance?
Q10 Are you satisfied with the current ecosystem for smart contracts, e.g.,

platforms for sharing data?
Q11 Have you ever used the code of smart contracts from the following plat-

forms, e.g., Github, Stack Overflow, Etherscan?
Q12 Give a score for IDE, testing tools, security audit tools, smart contract

explorer, Q&A site, Comments from Public (Github, DApp Store), com-
munity support, Solidity and Ethereum document, respectively.

Q13 Do you think smart contracts are suitable for developing a large scale
project?

Q14 Do you think it is necessary to have an app store like IOS Store for smart
contracts?

Q15 Currently, there are many technologies that can improve the security of
smart contracts. Do you think it is important to merge them into EVM /
Ethereum / IDE?
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other questions come from?

Below we list how we obtain the choices for questions 1, 3-6, 8-9, and 11.

Question 1: Many previous works have mentioned that smart contract development

lacks appropriate tools / techniques to verify code correctness (See Section 3.4.2.1). How-

ever, our literature review showed that there are many tools to check the vulnerabilities of

smart contracts. Question 1 was included to validate our hypothesis that practitioners do

not consult academic literature. Only asking developers whether they read academic pa-

pers might lead them to make a binary choice. Thus, we added some sources like “Books,

Blogs, Video Tutorials" to make the choices more representative.

Question 3: Previous works [224, 28] investigated how developers test a smart contract.

All the choices are according to the result of their work.

Question 4: All the choices were selected from our literature reviews. From the litera-

ture, off-line checking is the most common way to maintain a smart contract. However, this

kind of method only works before deploying smart contracts to blockchain, which refer to

the second choice. Online-Checking cannot be used directly (See Section 3.7.2). Thus, we

didn’t include choices for this method. Besides, the selfdestruct function and upgradeable

function can be used to maintain smart contracts, which refers to the third and the fourth

choices. Also, we added a choice for developers that never maintain a smart contract, as

literature shows that most contracts are never called or used.

Question 5-6: Previous work [30] investigated why developers do not use selfdestruct

function. Based on their results, we design the options to collect the answer “why develop-

ers do not develop upgradeable contracts”.

Question 8-9: All the choices are selected from literature reviews. (All of them can be

found at “Answer to RQ1” , see Section 3.3.1.3)

Question 11: From our literature reviews, we found that the source code used to evalu-

ate smart contract tools are from Q&A websites, Github and Etherscan. Besides, according
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to authors’ experience in developing smart contracts, we also add choices “Solidity Docu-

ments", “Code from Google Search or other search engines” and “Other” to make the result

more reliable.

Below we answer where our other survey questions come from.

Question 2: Literature shows that smart contracts have higher security requirements

than traditional apps (See Section 3.4.1.2). We wanted to investigate whether developers

agree with this opinion.

Question 7: Similar to Q2, the literature mentions that the immutability of smart con-

tracts makes them hard to be modified once deployed, which makes smart contracts hard

to be maintained (See Section 3.4.1.2). We wanted to investigate whether developers agree

with this opinion.

Question 10 and 12: Literature mentions that smart contracts lack tools to check se-

curity (See Section 3.4.2.1), lack community support (See Section 3.4.2.2), high-quality

reference code (See Section 3.4.5.2), standards (See Section 3.4.5.3). We wanted to inves-

tigate the attitude of developers about these findings from the literature, and in question 12,

we wanted developers to give a detailed score about these findings.

Question 13: Literature shows that smart contracts have scalability issues that cannot

support a large-scale project. (See Section 3.4.4.1) We wanted to investigate whether de-

velopers agree with this opinion.

Question 14: In Section 3.7.1, we discussed that having a DApp store and comment

system can help to improve the smart contract system. This question is used to investigate

developers’ attitudes about this.

Question 15: In section 3.7.2, we discussed that merging cutting-edge technologies can

help to improve Ethereum and Solidity. This question is used to investigate developers’

attitudes about this.
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2.3.2.3 Survey Validation

Guided by Kitchenham et al. [120], we utilized an anonymous survey [187] to collect

personal opinions. To increase response rates, we offered a raffle to respondents so that

they can choose to leave an email to take part in the raffle to win two $50 Amazon gift

cards. We first sent our survey to our research partners to conduct a small scale test to refine

the survey. They were asked to tell us (1) Whether the expressions used in the survey are

clear and easy to understand, (2) How many minutes were needed to complete the whole

survey. The only modifications from this survey validation were the expression of some

questions in the survey to make them clearer/more consistent terminology usage. We only

changed their grammar or rephrased the sentence to make it easier to understand without

adding or deleting questions. All of our research partners said that the survey could be

conducted within 15 minutes. Thus, we didn’t make any other modifications to the survey.

2.3.2.4 Recruitment of Respondents

The ideal respondents of our survey are smart contract developers. We aimed to send

our survey to Github developers who contributed to smart contract related projects. We

first searched for projects on Github by using keywords “Smart Contract", “Ethereum",

“Blockchain", and ranked the projects by the most stars. Then, to increase the response

rate and exclude non-smart-contract developers, we manually selected relevant projects by

reading the descriptions of the projects. After that, we crawled the emails and names of

contributors of the selected projects by using Github Developer API1. We finally obtained

1,500 emails of developers and sent an email to invite them to participate in our survey. We

also have some industry partners working in well-known companies, e.g, Alibaba, Face-

book, and sent our survey to them (The number of industry partners is 20). Since some

developers might not be familiar with “software maintenance", we inform the concept in
1https://developer.github.com/v3/
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the email to reduce the misleading.

2.3.2.5 Data Analysis

We received a total of 178 valid responses from 32 different countries (The response rate

is about 11.87%), which is a good response number and rate compared to previous smart

contract related surveys [32, 224, 22, 28, 30]. Among these 178 respondents, 13 of them

claim that they do not have any experience in smart contract development. Thus, we re-

moved them from our dataset and used the remaining 165 for further analysis. The top

three countries in which respondents reside are China (35.76%), USA (15.15%) and UK

(9.09%). The average years of experience in developing smart contracts of our respondents

are 2.31 years. Among these respondents, 106 (64.24%) of them claim their main role

is development, 42 (25.45%) indicate testing/maintenance/evolution, 29 (17.58%) indicate

project management, 6 (3.64%) indicate risk analysis, 4 (2.42%) indicate research. (Some

respondents have multiple job roles; thus the total number exceeds 165.)

2.4 RQ1: What are the maintenance issues of smart con-
tracts?

There are four broad kinds of maintenance, i.e., corrective, adaptive, perfective, and pre-

ventive maintenance. In this section, we identify the key maintenance issues for smart con-

tracts considering these four aspects. We also introduce some common maintenance issues

(CMI), which appear in all kinds of maintenance. All the findings are obtained by literature

reviews (the source are cited), and we give survey results to cross-validate each finding. It

should be noted that software maintenance is a very broad activity. Some kind of mainte-

nance, e.g., perfective maintenance also requires developers to develop new functionalities

as well as change old. Thus, some of the challenges we discuss can be encountered in both

smart contract development and maintenance phases. We use Table 2.4 and 2.5 to help

readers better understand the relation between the survey results and the findings collected
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Table 2.4: Part 1 - The mapping between survey results and our findings collected from the
literature.

Survey
ID

Findings and Related Section Survey Result

Q1 Inconsistent: Previous works reports smart
contract development lacks appropri-
ate tools to verify code correctness v.s.
Academia proposed many tools in recent
years. (S4.2.1)

52.1% respondents obtain knowledge from
journal and conference papers ! The meth-
ods to require knowledge is not the main
reason for the inconsistent.

Q2 Smart contracts have high requirements for
security (S4.1.2)

Smart contracts have higher security re-
quirements (78.18%)

Q3 Inconsistent: Previous works reports smart
contract development lacks appropri-
ate tools to verify code correctness v.s.
Academia proposed many tools in recent
years. (S4.2.1)

Respondents use program analysis
(28.48%), formal verification(9.09% ), unit
testing(80.61%), code reviews(73.94%),
functional and integration testing (70.91%)
to test smart contracts ! Most of tools
proposed by academia are hard to used and
not user friendly

Q4 The immutable of smart contracts lead to
the great difficulty for their modification.
(S4.1.1)

Four methods to maintain a smart contract,
and all of them are imperfect.

Q5-6 Developing upgradeable contracts is also
not a ideal method to maintain smart con-
tracts (S4.1.1)

Developing upgradeable contracts can in-
crease development cost and security risks.
(32.17% and 33.04%)

Q7 Smart contracts have high requirement for
security (S4.1.2)

Smart contracts are harder to maintain com-
pared to traditional apps (64.85%)

Q8

Smart contract development lacks appropri-
ate tools to verify code correctness (S4.2.1)

Lack of tools / techniques to audit code.
(66.2%)

The grammar of Solidity is too simple to
support large projects, which lead to the
scalability issues (S4.4.1)

There are not enough useful libraries and
APIs (49.7%); not easy to handle the mem-
ory and storage in Solidity programming
(38.79%)

Gas system is also not easy to use, espe-
cially when the scale of the project becomes
larger. (S4.4.2)

It is not easy to handle the gas system when
maintaining smart contracts (38.79%)

The qualities of open-source smart con-
tracts are poor in Ethereum (S4.5.2)

Solidity lacks useful reference code.
(38.18%)

There are only limited numbers of smart
contract related standards (S4.5.3)

Ethereum lacks standards (49.7%)
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Table 2.5: Part 2 - The mapping between survey results and our findings collected from the
literature.

Survey
ID

Findings and Related Section Survey Result

Q9

There is more financially attractive for
attacking smart contracts compared to
traditional software, thus leading to
more attack (S4.1.2 )

There is more financially attractive for attacking
smart contracts (49.09%)

Ethereum smart contracts run on a
permission-less network, which lead
to higher requirement for security
(S4.1.2)

The permission-less feature could increase the
difficulty of maintenance. (55.76%)

Making smart contracts readable is a
challenge (S4.1.3)

89.1% respondents use the source code of smart
contracts (Q11), and 57.14% of them said the
poor readability of smart contracts increases the
difficulty of code reuse.

Some unplanned forks can increase
the difficulty of smart contract mainte-
nance.(S4.3.1)

Ethereum might add new functions through hard
fork, which might affect the currents contracts
running on the blockchain. (50.3%)

Many callee contracts on Ethereum
contain vulnerabilities, which might
lead to the crash and make the con-
tracts cannot work anymore.(S4.3.2)

It would make their contracts hard to be main-
tained if the callee contracts crashed or be de-
structed. (62.42%)

Q10 Ethereum lacks advanced software en-
gineering theories to perform preven-
tive maintenance. (S4.5)

Only 7.88% and 16.97% respondents said they
are very satisfied or satisfied with the current
ecosystems of smart contracts.

Q11 Making smart contracts readable is a
challenge (S4.1.3)

89.1% respondents use the source code of smart
contracts, and 57.14% of them said the poor
readability of smart contracts increases the diffi-
culty of code reuse. (Q9)

Q12 Community support is not enough for
smart contract developers. (S4.2.2)

The community support receives an average
score of 3.03

Q13 The Scalability Issues of Smart
contracts cannot support large scale
projects (S4.4.1)

Only 14.55% respondents believe smart con-
tracts are suitable for developing a large scale
project

Q14 DApp Store and Comment System can
improve the smart contract ecosystem.
(S7.1)

Having positive opinions about the need for a
DApp store like the Android Google Play Store
(84.24%)

Q15 Merging Cutting-Edge technologies
can improve the performance of
Ethereum and Solidity (S7.2).

90.9% respondents hold positive opinions about
merging cutting-edge technologies into the
EVM and updated by nodes on Ethereum.
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from literature. The first column of the tables is the survey ID (detailed information can be

found at Table 2.3). The survey results shown in the third column are used to validate the

findings we collected by literature review that are listed in the second column of the table.

For example, many literature mentioned that smart contracts have high requirements for

security. Thus, in Q2 of the survey, we found that 78.18% of the respondents agree with

this result, which shows its correctness.

2.4.1 Common Maintenance Issues
2.4.1.1 No Ideal Deployed Contract Modification Methods

Immutability is an important feature of smart contracts, which makes smart contracts dis-

tinct from traditional apps in their stability. However, this feature also leads – intentionally

– to great difficulty for their modification.

From our survey, we received four answers 2 for the question “How do you maintain

your smart contracts" (Q4 in Table 2.3). The four answers are:

1. I never maintained a contract (18.79%)

2. I discard the old contract directly and deploy a new one (39.39%)

3. I use Selfdestruct function to destroy the old contract and deploy a new one (38.79%)

4. I develop upgradeable contracts. (35.76%).

However, all of these four answers are imperfect and can lead to high financial loss in

some situations.

For answer (1), this method is very inadvisable as some bugs are usually inevitable.

Without maintenance, the usefulness life of the programs will be much shortened and at-

tackers can freely attack existing contracts that contain vulnerabilities.
2The questions are multi-choice. Thus the sum of each options can exceed 100%. The same with the

other questions.
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For answer (2), this method can lead to enormous financial loss for the contract own-

ers, as the Ethers cannot be transferred unless a specific code is included in the contract.

Although the contract owners find there is a bug like the reentrancy [127, 165] in their

smart contracts, there was no way to modify the contract, as the contract did not contain a

Selfdestruct function and was not develop as an upgradeable contract, which might lead to

an enormous financial loss for the organization.

For answer (3), adding a Selfdestruct function can reduce the financial loss when emer-

gencies happen. Using the DAO attack as an example, if the DAO contract had this func-

tion, the DAO organization could use it to destruct the contract and transfer all the Ethers

when the attack was detected. After fixing the bugs, they can deploy a new contract, and

transfer the Ethers to the new contract. However, this method is still harmful to both con-

tract owners and users in some situations. Our previous work [30] investigated the reasons

why developers do not add Selfdestruct functions in their contracts. Developer feedback

showed the following reasons. First, adding a Selfdestruct function also opens an attack

vector to the attackers. Thus, developers need to pay more effort to test smart contract secu-

rity and permissions. The testing can add additional complexity to the development, which

can increase the development cost. Second, adding a Selfdestruct function can also lead

to a trust concern for the smart contract users. This is because many users trust Ethereum

because of the immutability of smart contracts. All the execution of the contract depends

on its code; even the owner cannot transfer Ethers on the contract balance. This feature is

important in financial applications as it ensure the asset safety of contract users. However,

the Selfdestruct function breaks the immutability of the contracts. It gives power to the

contract owners to transfer all the Ethers of the contracts. Thus, this method can lead to

the reduction of the number of users of the smart contract using it. Finally, the Selfdestruct

function can also lead to a financial loss in some situations, as the Ethers that were sent to

the contract after destroying it will be lost. Thus, this method is still not a perfect method
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to maintain smart contracts.

For answer (4), still raises the same trust concern similar to answer (3), as the smart

contract immutability features are also be broken. According to our survey (Q5-6 in Ta-

ble 2.3), we found that only 29.70% of the respondents have developed upgradeable smart

contracts. There are three reasons why developers do not develop upgradeable contracts.

41.74% of the respondents claim that they do not know how to develop upgradeable smart

contracts. Thus, to develop upgradeable smart contracts, they need to pay a learning cost.

32.17% and 33.04% of the respondents said developing upgradeable contracts can increase

the development cost and security risks. Thus, this method still incurs a high cost for

maintenance.

To summarize, all of these four methods have disadvantages or limitations, and can lead

to a high cost of smart contract maintenance.

2.4.1.2 High Requirement for Security

Unlike traditional programs that can be upgraded directly, developers need to redeploy a

new smart contract to the blockchain. Ensuring the security of the contract before redeploy-

ing it to the blockchain is important, as each the modification can cost a lot (see 2.4.1.1).

According to our survey (Q2 and Q7), 129 (78.18%) respondents believe smart contracts

have higher security requirements. 107 (64.85%) respondents said smart contracts are

harder to maintain compared to traditional apps. The reasons introduced below lead to

the high-security requirement of the smart contracts.

1. The immutability Features. All the transactions and the code of smart contracts are

immutable, which means that developers need to ensure the security of the code and each

transaction. Once any bugs are detected, there is no direct way to patch them. Attackers

can utilize the errors / bugs to steal Ethers or lock the balance maliciously [4]. Thus,

immutability raises a high security requirement for the smart contracts.
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2. Financial Attractiveness. Financial profit is an important motivation for attackers.

According to our survey (Q9), about 81 (49.09%) respondents believe that there is more

financially attractive for attacking smart contracts compared to traditional software, thus

leading to more attack [184]. Since many contracts hold Ethers, attackers can earn profits

through their attacks. Even worse, the sensitive information of smart contracts are visible

to anyone, e.g., bytecode, Ethers on the balance. Attackers can launch precision strikes to

the vulnerable contracts. Thus, developers need to pay more efforts to ensure the security

of smart contracts.

3. Permission-less Network. Ethereum smart contracts run on a permission-less network;

everyone can execute the smart contracts by sending a transaction. 92 (55.76%) respon-

dents (Q9) mentioned that the permission-less feature could increase the difficulty of the

maintenance. They need to pay more effort to test the permission of the contracts. Previous

work [30] introduced a security issue named Limits of Permissions. Some contracts do not

check the permission of their sensitive functions. Attackers can utilize the vulnerabilities

of the permission check to steal Ethers.

2.4.1.3 Low Readability

Readability is important to help developers understand the smart contracts and maintain

their smart contracts [224]. According to our survey, 147 (89.1%) respondents (Q11) claim

that they use the source code of other smart contracts from open sourced platforms, e.g.,

Etherscan, Github to help author and maintain their smart contracts. 57.14% of the respon-

dents (Q9) also said the poor readability of smart contracts increases the difficulty of code

reuse. Making smart contracts readable is a challenge, as developers need to balance the

readability with gas consumption. For example, optimizing code is a common method to

reduce gas consumption. The more gas-efficient code usually corresponds to shorter code.

However, this shorter code can lead to poorer readability.
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2.4.1.4 The Lack of Experienced Developers and Researchers.

Experienced developers and researchers are the main inventors of new advanced SE meth-

ods to address the limitation of smart contracts, e.g., developing tools, improving ecosys-

tem. However, our survey results and literature review shows that less experienced people

programming in Ethereum compared to traditional development.

Ethereum is a young system, which was published in 2016. The most experienced

developers and researchers of the respondents of the survey have 4 years experience (22

respondents) in smart contracts development, the minimum, average, and median numbers

are 0.2, 2.31, and 2.5 years, respectively. Compared to the experiences of the respondents

(including developers and researchers) of previous works, e.g., in machine learning [198]

(min: 3, max: 16, median: 6, avg: 7.6 years), in desktop software development [197]

(min: 3, max: 12, avg: 6.5 years), the smart contract developers and researchers seem less

experienced.

2.4.2 Corrective Maintenance Issues

It is not easy to discover all potential bugs before deploying smart contracts to the

blockchain. Some bugs / errors of the contracts might be exposed to the public under

certain situations. Corrective maintenance is the modification of a smart contract after de-

ployment to the blockchain to correct discovered bugs / errors. Diagnosing errors of smart

contracts is the major task in corrective maintenance. However, it is painful and difficult to

diagnose errors in a smart contract. According to our survey, 96 (66.2%) respondents (Q8)

complain that debugging and testing is not easy. There are two main reasons that lead to

the difficulty of the diagnosing errors, i.e., the lack of mature tools and community support.

43



2.4.2.1 The Lack of Mature Tools

Many previous works [224, 149, 22] mentioned that smart contract development lacks ap-

propriate tools / techniques to verify code correctness. Thus, it is not easy to fix bugs in

smart contracts. A similar theme is also received in our survey. 96 (66.2%) respondents

(Q8) claim that they cannot find useful tools to debug / test / audit their contracts. How-

ever, with the development of smart contract ecosystems, a large number of tools have been

developed. For example, tools based on static analysis [131, 127, 181] and formal verifica-

tion [15, 16, 101] have been proposed. Some tools have excellent performance and speed

in detecting common security issues. Thus, “lack of tools" seems to be addressed with the

effort of researchers and developers. There is a gap between academia and industry, as

many tools developed in academia are not yet known about and used in industry.

To find the reason, we asked how developers obtain their required knowledge about

smart contracts. The Solidity documentation, blogs, and Q&A website are the top three

most popular sources to acquire knowledge; the numbers are 149 (90.3%), 114 (69.1%),

and 88 (53.3%), respectively (Q1). The state-of-art tools usually published in academic

journal and conference papers, and 86 (52.1%) respondents (Q1) said journal and confer-

ence papers are an important approach to require knowledge. Thus, the methods to require

knowledge is not the main reason why developers think that there are not enough tools.

We also investigated the usage conditions for different kinds of tools and how devel-

opers test their contracts. We found that only 47 (28.48%) and 15 (9.09%) respondents

(Q3) use static analysis tools and formal verification tools to test their smart contracts. Unit

testing, code reviews, functional and integration testing are still the most popular methods

to test smart contracts. About 80.61%, 73.94%, and 70.91% of respondents (Q3) choose

these methods to test their contracts. Developer comments said that “although there are

many tools that can be chosen, most of them are hard to use and not user friendly". Thus,

although there is a large number of tools that have been developed, developers still com-
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plain there are only a few tools they think can be used in practice.

2.4.2.2 The Lack of Community Support

Community support is a primary source of knowledge for blockchain software projects.

Community support consists of many parts. For example, when developers encounter tech-

nical problems, a Q&A website such as Stack Overflow is an important source to help them

address the problems. Developers can open source their projects to Github. Other devel-

opers can submit issue reports to help them polish the projects. The App store is also an

important place to receive reviews. Reviews might contain feature requests, user feedbacks,

issue reports that can help developers upgrade their software.

However, community support is not enough for smart contract developers. Previous

works [224, 100] found that smart contract developers lack community support as the

blockchain technology is new and there are not enough smart contract developers to answer

their questions. Since more and more developers take part in smart contract development,

we used our survey to investigate whether community support is still lacking in Ethereum.

In our survey, we asked respondents to give a score for the community support (Q12).

Score 1 refers to ‘very unsatisfied’, 3 refers to ‘neutrality’, and 5 means ‘very satisfied’.

The community support receives an average score of 3.03, while the score for other com-

parative items e.g., Solidity document, and Smart contract Explorer receive scores of 3.53

and 3.52, respectively. Thus developers still believe that community support is not suffi-

cient compared to other resources. Surprisingly, the score for the Q&A website, e.g, Stack

Overflow, is 3.43, which can show that the Q&A website is not the culprit for the lack of

community support. We found that the score for the “Comments from public (E.g., DApp,

Github)" is only 2.57, which is the lowest score among all the comparative items.

Previous works [224, 100] claimed that smart contract developers lack community sup-

port because there are not enough smart contract developers to answer technical questions.
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However, our survey shows a different answer. The culprit for the lack of community sup-

port is not the Q&A website, but the comments from the public, e.g., issue reports from

Github, comments from App Store.

2.4.3 Adaptive Maintenance Issues

Adaptive maintenance aims to keep a software product usable in a changed or changing

environment. In traditional software, the environment changes are usually reflected in the

upgrading of the operating systems, the hardware, or software, e.g., database. Conducting

adaptive maintenance for the traditional environment changing is not difficult, as these

kinds of environment changes are predictable. For example, the updated operating systems

usually will give a specific date and detailed API documents.

However, the environment of smart contracts is more unpredictable. In this subsection,

we highlight two challenges, which makes it is not easy to conduct adaptive maintenance

for smart contracts.

2.4.3.1 Unpredictable Fork Problems

Ethereum uses soft forks and hard forks (See Section 2.2.2) to update the blockchain sys-

tem. Some forks are planned, while some are controversial unpredictable forks, which

might result in smart contract maintenance needs.

In a planned fork, developers are informed in advance, and they usually do not need to

update the code of smart contracts. For example, in 2017, a hard fork named “Byzantium"

of Ethereum added a ‘REVERT’ opcode, which permits error handling without consuming

all gas [140]. The function revert() in smart contract code will refer to the new opcode

automatically. Thus, the planned forks are more likely to be accepted by miners and devel-

opers.

However, unplanned forks are also common in Ethereum, which can increase the diffi-

culty of smart contract maintenance. The first unplanned fork happened in July 2016 and
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was the result of the DAO attack [54]. The DAO attack made the DAO (Decentralized

Autonomous Organization) lose 3.6 million Ethers. To retrieve the loss, the DAO appealed

for a hard fork. The hard fork reversed all the transactions to the block before the attack.

This hard fork is controversial, as many miners believe it breaks the law of Ethereum. The

opposition miners did not take part in the fork, and a new blockchain was generated, named

Ethereum Classic (ETC) [206]. After the hard fork, both ETC and Ethereum contain the

same smart contracts. Thus, which contracts to maintain might be a problem for some

developers. The same situation also happened to their callee contracts. For example, con-

tract A has two callee contracts, i.e., contract B and C. Unfortunately, contract B chooses

to maintain the contract on ETC, while contract C chooses to maintain the contract on

Ethereum. Thus, contract A will always have a unmaintained callee contract.

In Oct. 2016 and Nov. 2016, two unpredictable hard forks were launched to address

different problems that have arisen from the DoS attacks. These two hard forks named

“EIP-150 Hard Fork" [64] and “Spurious Dragon" [167], respectively. In “EIP-150 Hard

Fork", Ethereum increased the gas cost of every type of call from 40 to 700 unit. The

“Spurious Dragon" also increases the gas cost of the “EXP" opcode. This increased gas

cost might increase the risk of “out-of-gas error". Thus, some contracts need to refactor

their code to handle these gas cost changes.

According to our survey, 83 (50.30%) respondents (Q9) are afraid that the forks of

Ethereum might result in various potential problems for their smart contracts. Moreover,

the unpredictable forks make it difficult for developers to perform adaptive maintenance.

2.4.3.2 Unpredictable Callee Contracts

Ethereum is a permission-less network; everyone can call the function of the smart contract

by sending a transaction. Michael et al. [86] investigated the call relations of smart con-

tracts on Ethereum by checking the hard code address on their bytecode. They found that
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it is very common for smart contracts to call each other in Ethereum. However, they also

found that many callee contracts on Ethereum contain vulnerabilities. These vulnerabilities

might lead to the crash and make the contracts cannot work anymore. Beside, many callee

contracts also contain selfdestruct function, which allow their contract owners to destruct

the contracts. Once a contract is destructed, the contract cannot be called anymore, and all

the Ethers sent to the destructed contract will be locked forever.

According to our survey (Q9), 103 (62.42%) respondents said it would make their con-

tracts hard to be maintained if the callee contracts crashed or be destructed.

2.4.4 Perfective Maintenance Issues

As long-lived software [130], users are likely to elicit new requirements during the entire

smart contract life cycle. Thus, adding additional functionalities, performance enhance-

ment, and efficiency and maintainability improvements for smart contracts are necessary to

respond to the new requirements. This is called the perfective maintenance of smart con-

tracts. Thus, there is an overlap between perfective maintenance issues with development

issues, as some new functionalities are required to be developed during this maintenance

process.

However, due to the scalability issues of Solidity and EVM, it is not easy to add too

many functionalities to smart contract-based projects. The Gas system also increases the

difficulty of perfective maintenance. Due to these issues, we find that only 24 (14.55%) of

the respondents (Q13) of our survey believe smart contracts are suitable for developing a

large scale project.

2.4.4.1 The Scalability Issues

Solidity. Solidity is the most popular programming language for smart contract develop-

ment, which is an object-oriented language and a bit like JavaScript. However, the gram-

mar of Solidity is too simple to support large projects, which lead to the scalability issues of
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smart contracts [224]. First, 82 (49.70%) respondents (Q8) to our survey said there are not

enough useful libraries and APIs. Thus, developers need to develop various kinds of APIs

and libraries which increases the difficulty of implementing new requirements. Besides, 62

(37.58%) and 64 (38.79%) respondents (Q8) also said it is also not easy to handle the mem-

ory and storage in Solidity programming, respectively. For example, Solidity only allows

creating 16 local variables in a function. Thus, developers have to use storage variables

instead of local variables. Peter et al. [100] investigated more than 40,000 smart contracts

on Ethereum using 16 metrics, e.g., LOC, nesting level. They found the smart contracts are

neither overly complex nor coupled much, and do not rely heavily on inheritance. Their re-

sults also prove that real-world smart contracts are small-scale programs and do not contain

too many functionalities.

EVM. The Ethereum Virtual Machine (EVM) is the runtime environment for smart con-

tracts in Ethereum. Some features of EVM make it scale poorly to support large-scale

projects. First, EVM does not support multi-thread execution, which makes the execution

of smart contracts inefficient. In some large-scale projects, it is important to execute mul-

tiple functionalities in parallel to increase execution speed [224]. Second, EVM limits the

maximum size of stack to 1024 items with 256 bits for each item. The limited stack sizes

can easily lead to vulnerabilities and increase the difficulty of developing complex applica-

tions [131]. Finally, EVM uses a key-value store, which is a very simplistic database and

can lead to low efficiency [95].

Ethereum. Ethereum does not support concurrency. To construct the blockchain and

ensure security, each node on Ethereum stores the entire transaction history and current

state of Ethereum, e.g., account balance, contract variables. Thus, all transactions must

be executed and verified by all the nodes. This mechanism makes Ethereum support only

around 15 transactions per second, leading to serious scalability issues of smart contract

applications. [14]
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2.4.4.2 The Difficulty of Handling the Gas System

Ethereum adopts a unique gas system to execute the computational cost of each transaction.

The gas system ensures the normal running of the Ethereum system, e.g., giving rewards

for miners, avoiding DoS Attack. However, this gas system is also not easy to use, espe-

cially when the scale of the project becomes larger. According to our survey, 64 (38.79%)

respondents (Q8) claim that it is not easy to handle the gas system when maintaining their

smart contracts.

First, users need to pay Ethers for the gas cost, and the gas cost depends on the compu-

tational cost of the code. Thus, it is important for developers to reduce the gas cost. As we

discussed in Section 2.4.1.3, there is a trade-off between the gas cost and the readability,

and readability is very important for maintenance and large-scale projects. According to

previous works [40, 36], over 90% of real smart contracts suffer from gas-costly patterns

in Ethereum. However, fixing these gas-costly patterns reduce the readability of smart

contracts.

2.4.5 Preventive Maintenance Issues

Preventive maintenance aims to lessen the likelihood of a sudden breakdown of the pro-

grams [177]. Guided by advanced software engineering theories, preventive maintenance

usually involves some form of redesign or refactor of a smart contract to remove latent

faults / errors/ bugs. For example, a code smell is not a bug but are any characteristics

in the source code that possibly indicates a deeper problem [85]. Refactoring the code

to remove code smells in software to increase its robustness is a typical preventive main-

tenance method. However, due to the immature ecosystem of smart contracts, it is not

easy to find appropriate advanced software engineering (SE) methods, e.g., code smells for

smart contracts, to perform preventive maintenance. According to our survey (Q15), only

13 (7.88%) and 28 (16.97%) respondents said they are very satisfied or satisfied with the
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current ecosystems of smart contracts.

2.4.5.1 The Lack of Advanced SE Approach and Research Data

During our literature review, we found that there are only a small number of works that pro-

pose advanced SE methods to help conduct the preventive maintenance of smart contracts.

Most of these works aim to improve the reliability of smart contracts, e.g., security check

tools (detailed introduced in Section 2.5). Compared to traditional software, the mainte-

nance methods of smart contracts to remove latent errors are much less, e.g., code smell

removal [83], bug prediction [92], self-admitted technical debt determination [217]. The

lack of research data is an important issue.

In traditional software maintenance, a large number of MSR (Mining Software Reposi-

tory) methods have been developed to help conduct preventive maintenance. For example,

history bug reports can be utilized to predict whether a source code file contains latent

errors [220]. User reviewers can provide feature requests to help developers improve the

programs [133, 94]. Comments in source code can be used to detect self-admitted technical

debate, which can be used to signal future errors [217]. Privacy policies, Stack Overflow

(SO) posts, error messages, and commit messages are wildly used to help maintain tra-

ditional apps. These methods are not difficult to be applied to smart contract projects.

However, the lack of related research data makes it is not easy to develop advanced SE

methods for smart contracts.

2.4.5.2 The Lack of High Quality Reference Code

High-quality reference source code can be a good example when developers conduct pre-

ventive maintenance. However, the qualities of open-source smart contracts are poor in

Ethereum, and 63 (38.18%) respondents (Q8) of our survey mentioned that Solidity lacks

useful reference code.

He et al. [99] found that the copy-paste vulnerabilities were prevalent in Ethereum, and
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over 96% of smart contracts have duplicates, which means the ecosystem of smart contracts

on Ethereum is highly homogeneous. Among these contracts, 9.7% of them have similar

vulnerabilities. Similar findings are reported by Kiffer et al. [116]; they investigated 1.2

million contracts, and they can be reduced to 5,877 contract “clusters" that have highly-

similar bytecode. The highly homogeneous nature of smart contracts show that only a

limited number of contracts can be referenced during maintenance and development.

Kiffer et al. [116] also found that more than 60% of smart contracts are never actually

called. Most of these contracts are useless and hard to be reused. Similar findings were also

reported by [58]. They analyzed the bytecode of smart contracts on Ethereum and found

44,883 are useless and hard to be reused. Only 0.6% of the contracts have more than 1,000

transactions, while most of the active contracts are similar ERC20 contracts [78], which

are used to make tokens. Thus, the active contracts also cannot provide too much reference

value.

Hegedűs et al. [100] analyzed more than 40 thousand Solidity source files. They found

that the open sourced smart contract code either quite well-commented or not commented

at all. Without comments in the source code, it is not easy for developers to understand and

reuse the reference code.

2.4.5.3 The Lack of Standards

Standards can give guidance for developers to increase the maintainability and reliability

of their smart contracts, which is the main motivation for preventive maintenance. For

example, the ERC 20 [78] standard defines some rules for token-related contracts. The

rules contain 9 functions (3 are optional) and 2 events. This standard allows any tokens

on Ethereum to be re-used by other applications, e.g., wallets, decentralized exchanges. At

the end of 2017, the CryptoKitties [53] was published and swept the globe. To help other

developers develop similar applications, ERC 721 was published in Jan. 2018. ERC 721
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Figure 2.7: Distribution of Maintenance Methods

is a standard that describes how to build non-fungible tokens (NFTs) on Ethereum, and a

NFT is a unit of data on blockchain that represents an unique digital asset, e.g., a photo

or a game. Developers can conduct preventive maintenance to make their contracts follow

the ERC 721 standard. Thus, their applications can much more easily interact with other

similar applications.

However, there are only limited numbers of smart contract related standards [63]. Ac-

cording to our survey (Q8), 82 (49.70%) respondents said Ethereum lacks standards, which

increases the difficulty of the maintenance of smart contracts.

2.5 RQ2: What are the current maintenance methods for
smart contracts?

We discuss answers found for our second Research Question, and introduce the current

smart contract maintenance methods identified from 41 analysed research papers.

2.5.1 Distribution

Among our 131 smart contract selected papers, 41 papers proposed methods that can be

used to maintain smart contracts. Unlike traditional software where programs can be up-
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graded directly, smart contracts need to redeploy new versions to the blockchain and discard

old versions. Most maintenance methods check security issues of smart contracts before

redeploying them to the blockchain, which are so-called offline checking methods. There

are 31 papers related to this topic. 7 research papers propose methods that can help main-

tain a deployed smart contracts. This kind of method is called an online checking method.

The final three papers introduce a method that uses DELEGATECALL to upgrade a smart

contract, and a method that redeploys smart contracts by using Selfdestruct function, re-

spectively. The distribution of these methods is shown in Figure 2.7.

2.5.2 Offline Checking Methods

Table 2.6 summarises the 31 publications which use offline checking methods to help main-

tain smart contracts. Developers can use the proposed methods to check for security vulner-

abilities to help them to maintain smart contracts. For example, using the proposed meth-

ods to locate bugs during corrective maintenance, and checking for vulnerabilities of the

update versions before redeploying them to Ethereum. We divide the methods presented

in these papers into five categories – program analysis (PA), fuzzing, formal verification

(FV), machine learning (ML), and others. In the following subsections, we discuss some

key examples.

2.5.2.1 Program Analysis

CFG (Control Flow Graph) Based Tools. In 2016, Luu et al. [131] identified four kinds

of new security issues of smart contracts and proposed the first tool, named Oyente, to de-

tect them through Ethereum bytecode. Although EVM is a stack-based machine, similar to

JVM, Ethereum bytecode has many differences compared to the Java bytecode. For exam-

ple, Java bytecode has a clearly-defined set of targets for every jump, but the jump position

of Ethereum bytecode needs to be calculated during symbolic execution. Thus, Oyente first

splits opcodes into several blocks and then uses symbolic execution to build CFG (Control
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Table 2.6: Literature of Offline Checking Methods

Category Name of Publications Years

PA

OSIRIS: Hunting for Integer Bugs in Ethereum Smart Contracts [183] 2018

The art of the scam: Demystifying honeypots in Ethereum smart contracts [184] 2019

Security Assurance for Smart Contract [223] 2018

Vandal: A Scalable Security Analysis Framework for Smart Contracts [24] 2018

MadMax: surviving out-of-gas conditions in Ethereum smart contracts [96] 2018

Finding The Greedy, Prodigal, and Suicidal Contracts at Scale [147] 2018

sCompile: Critical Path Identification and Analysis for Smart Contracts [29] 2019

teether: Gnawing at Ethereum to Automatically Exploit Smart Contracts [122] 2018

Making Smart Contracts Smarter [131] 2016

Manticore: A User-Friendly Symbolic Execution Framework for Binaries and Smart Con-
tract [139]

2019

SmartCheck: Static Analysis of Ethereum Smart Contracts [181] 2018

TokenScope: Automatically Detecting Inconsistent Behaviors of Cryptocurrency Tokens
in Ethereum [42]

2019

Towards saving money in using smart contracts [40] 2018

GasChecker: Scalable Analysis for Discovering Gas-Inefficient Smart Contracts [36] 2020

Securify: Practical Security Analysis of Smart Contracts [186] 2018

FV

Formal Verification of Smart Contracts [15] 2016

A formal verification tool for Ethereum VM bytecode [158] 2018

Kevm: A complete formal semantics of the Ethereum virtual machine [101] 2018

Towards verifying Ethereum smart contract bytecode in Isabelle/HOL [2] 2018

ZEUS: Analyzing Safety of Smart Contracts [114] 2018

Fuzzing

ContractFuzzer: fuzzing smart contracts for vulnerability detection [110] 2018

ReGuard: Finding Reentrancy Bugs in Smart Contracts [127] 2018

EVMFuzz: Differential Fuzz Testing of Ethereum Virtual Machine [88] 2019

sFuzz: An Efficient Adaptive Fuzzer for Solidity Smart Contracts [142] 2020

Exploiting the Laws of Order in Smart Contracts [121] 2019

ML

S-gram: Towards Semantic-Aware Security Auditing for Ethereum Smart Contracts [128] 2018

Hunting the Ethereum Smart Contract: Color-inspired Inspection of Potential At-
tacks [104]

2018

Towards Safer Smart Contracts: A Sequence Learning Approach to Detecting Security
Threats [178]

2019

Checking Smart Contracts with Structural Code Embedding [90] 2020

Others
Designing Secure Ethereum Smart Contracts: A Finite State Machine Based Ap-
proach [136]

2018

Mutation Testing for Ethereum Smart Contract [125] 2019
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Table 2.7: Literatures of Online Checking Methods.

Methodology Name of Publications Years
Bytecode
Rewriting

Smart Contract Defense through Bytecode Rewriting [5] 2019

Bytecode
Rewriting

Monitoring smart contracts: ContractLarva and open challenges be-
yond [6]

2018

Input Detection Town Crier: An Authenticated Data Feed for Smart Contracts [219] 2016
Input Detection FSFC: An input filter-based secure framework for smart contract [201] 2020
Transactions
Detection

ÆGIS: Smart Shielding of Smart Contracts [81] 2019

Transactions
Detection

VULTRON: Catching Vulnerable Smart Contracts Once and for
All [199]

2019

State Detection Sereum: Protecting Existing Smart Contracts Against Re-Entrancy At-
tacks [165]

2018

Intrusion De-
tection

ContractGuard: Defend Ethereum Smart Contracts with Embedded In-
trusion Detection [200]

2019

Flow Graph). CFG stores the relationship between blocks, e.g., jump, conditional jump.

Based on the CFG, Oyente defines several rules to detect related security issues.

A similar method to that of Oyente has been widely applied by other tools. For in-

stance, GasReducer [40] and GasChecker [36] are tools used to detect some gas-inefficient

patterns. They use the CFG generated by Oyente, and design patterns to detect related se-

curity vulnerability patterns. Besides, Torres et al. [184], Chang [29], Nikolic et al. [147],

Zhou et al. [223], Krupp et al. [122], Mossberg et al. [139] also use similar methods that

design rules based on the CFG to detect other smart contract vulnerabilities.

Some works make optimizations, e.g., Maian [147] validate the results of the symbolic

execution by using a concrete validation step. In the concrete validation, they create a

private fork of Ethereum and then run the result generated by the symbolic execution to

check its correctness. Since the results are generated by symbolic execution, and concrete

validation is used to increase performance, we also classify Maian in this category.

Decompilers. Vandal [24] is a decompiler for smart contract bytecode. Its output includes

a control-flow graph, three-address code for all operations, and function boundaries. Based

on Vandal, developers and researchers can develop other tools to maintain their smart con-
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tracts. For example, MadMax [96] uses logic-based specifications to detect gas-focused

vulnerabilities of smart contracts based on the output of Vandal. Tsankov et al. [186] pro-

posed a tool named Securify, which uses semantic information to detect vulnerabilities of

smart contracts bytecode. Securify first decompiles the EVM bytecode. It then analyzes the

data flow and control flow dependencies. Finally, it uses several patterns to check related

vulnerabilities.

Transaction-based Tools. TokenScope [42] is the first tool that uses transaction histories to

detect inconsistent behaviors of ERC20 Tokens. By using the stored Ethereum transaction

records, TokenScope identifies three key information of contract bytecode, i.e., core data

structures, standard interfaces, and standard events. It then compares the key information

with the standard to find any inconsistent tokens.

Source Code Level Static Analysis. Detecting vulnerabilities through bytecode is not

easy as EVM removes some key information while compiles source code to bytecode.

SmartCheck [181] takes smart contract source code as input, and converts the code to the

AST (abstract syntax tree) [3]. Based on the AST, SmartCheck uses several patterns to

detect 21 kinds of smart contract issues.

2.5.2.2 Formal Verification

Formal verification is a method that uses formal methods of mathematics to prove or dis-

prove the correctness of a system [60]. This method usually uses a formal proof on an

abstract mathematical model to make the verification.

Bhargavan et al. [15] proposed the first formal verification tool for smart contracts

based on the F* proof assistant [176], and Amani et al. [2] presented a tool based on

Isabelle/HOL [148]. However, both of these the tools only use incomplete semantics of

EVM, which might lead to errors. Thus, Park et al. [158] use a complete and thoroughly

tested formal semantics of EVM to enhance the efficacy of their tool.
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Kalra et al. [114] introduced 11 kinds of vulnerabilities of smart contracts and proposed

a tool named Zeus to detect seven of them. Zeus takes source code as input and translates

the Solidity source code to LLVM bytecode [129]. Based on the LLVM bytecode, Zeus

designs several policy violations and uses a verifier to determine assertion violations.

2.5.2.3 Fuzzing

Fuzzing for smart contracts is an automated testing technique which uses random, unex-

pected, or invalid data as the input to the contract. Such input data is expected to lead to

detecting some unwanted behaviors, e.g., crashes, failure of some functions, permission

errors.

Jiang et al. [110] proposed the first fuzzing tool named ContractFuzzer, which applies

fuzzing to detect seven kinds of security issues. ContractFuzzer utilizes smart contract

ABI [173] to generate fuzzing inputs. Then, they define test oracles and use static analysis

to log smart contracts runtime behaviors. Finally, ContractFuzzer analyzes the logs to find

security issues. The following works make some optimization. For example, sFuzz [142]

can cover more branches to find more security issues. EthRacer [121] can run directly on

Ethereum bytecode and without the need of ABI, which enlarges the usage scenario. Re-

Guard [127] provides a web service for developers to make it is easy to use. EVMFuzz [88]

designs a differential fuzz testing framework, which supports different programming lan-

guages for EVM smart contracts.

2.5.2.4 Machine Learning

With the development of the Ethereum ecosystem, some developers have used machine

learning to help maintain smart contracts. Machine learning related methods need a ground

truth to train the model. S-gram [128] uses Oyente to obtain the ground truth and utilizes a

combination of N-gram language modeling and lightweight static semantic labeling to pre-

dict potential vulnerabilities. SmartEmbed [90] uses SmartCheck to label the vulnerabilities
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and utilizes deep-learning to train the model to predict smart contract vulnerabilities. Tann

et al. [178] use MAIAN to label the security issues and use LSTM to predict potential is-

sues. Huang et al. [104] first translate the bytecode into RGB color. Based on a manually

labeled dataset, they use a convolutional neural network to train the model and predict the

security issues.

2.5.2.5 Other Approaches

Mavridou et al. [136] proposed a tool, named FSolidM, to automatically generate smart

contracts. They claim that the generated contracts are bug-free and can reduce develop-

ment efforts. FSolidM regards smart contracts as finite state machines (FSMs). Based on

FSMs, they provide a set of plugins that contain common contract design patterns and a

graphical interface. Developers can add plugins to the contracts to improve security and

functionalities.

Wu et al. [125] use mutation testing to enhance the security of smart contracts. Mutation

testing is a type of white-box software testing technique that changes some statements of

the code and check if the test cases can find some errors. This method is based on well-

defined mutation operators, and the mutation operators only make minor changes to the

programs. Wu et al. designed 15 mutation operators, e.g., variable units, keywords, and

use them to find bugs on smart contracts.

2.5.3 Online Checking Methods

Online checking methods can help smart contract developers defend their contracts against

attacks even after they have been deployed. Table 2.7 introduces seven publications that

use online checking methods to help maintain smart contracts. However, most of the on-

line checking methods cannot be used directly and need to be merged into the EVM if an
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EIP3 [63] adopts any of those in a new version.

Ayoade et al. [5] proposed a method that can automatically detect vulnerable EVM

bytecode segments and uses a guarded bytecode segment to replace it. Their tool is based

on predefined policy rules and can only support a limited number of simple rules. Similarly,

ContractLarva [6] insert protection code into the source code of smart contracts. This

updated bytecode can defend against related attacks.

TownCrier [219] and FSFC [201] provide approaches to detect malicious input to pro-

tect smart contracts. TownCrier can be regarded as a bridge between the smart contracts

and front-end programs, e.g., websites. When a frond-end program sends transactions to

smart contracts, TownCrier uses a combination of Software Guard Extensions [52] and In-

tel’s recently released trusted hardware capability [106] to check whether the input data can

be trusted. FSFC is a filter-based security framework for smart contracts. It uses several

firewall rules and uses a monitor to identify malicious input.

ÆGIS [81] and VULTRON [199] detect and reverse malicious transactions to protect

smart contracts. ÆGIS uses predefined patters to identify malicious transactions. VUL-

TRON compares the actual transferred Ethers and the normal transfered Ethers to find ma-

licious transactions.

Sereum [165] monitors state updates of smart contracts, such as changes to storage

variables, to detect re-entrancy attacks. There are two components of Sereum, i.e., a taint

engine and an attack detector. Sereum focuses on conditional jumps and the data that

influences the conditional jumps. The taint engine is used to detect the change of state

update, which loads to conditional jumps. When a re-entrancy attack happens, the state

will be updated multiple times. Once the attack detector detects such malicious behaviors,

the transaction will be reversed.

ContractGuard [200] is the first intrusion detection system for smart contracts against
3Ethereum Improvement Proposals (EIPs) describe standards for the Ethereum platform, including core

protocol specifications, client APIs, and contract standards.
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attacks. It monitors the network for abnormal behaviors. To detect abnormal behaviors,

ContractGuard deploys smart contracts on a testbed and trains a model. When malicious

activities are detected, ContractGuard will reverse the transactions to recover the contract

states and raise an alarm to the contract owner.

2.5.4 Other Methods

Colombo et al. [48] introduced a specification-driven method that uses the DELEGATE-

CALL instruction to upgrade smart contracts when unwanted behaviors are detected. To

detect unwanted behaviors, they predefined several checkpoints for smart contracts. The

checkpoints monitor the important state of smart contracts, e.g., its balance. When an un-

expected behavior is detected, the checkpoints will revert the transactions to ensure the

safety of the contracts. Finally, developers are required to upgrade contracts by using the

DELEGATECALL instruction.

Marino et al. [135] defined several standards for smart contracts and suggested de-

velopers add a Selfdestruct function in the contracts. When the contract is attacked, the

developers can undo the contracts. A similar suggestion is given by Chen et al. [32]. They

suggest developers add an interrupter in the contracts. Interrupter is a mechanism to stop

the contract when unwanted behaviors are detected, and Selfdestruct function is an easy

way to stop the contract.

2.6 Threats To Validity

2.6.1 Internal Validity

In this paper, we answered two research questions by performing a literature review. Most

of the papers (74.05%) are published between 2017 to 2019, and their findings and studies

may be outdated as the Ethereum ecosystem is fast-evolving. For example, Solidity, the

most popular programming language for smart contracts, has 80 versions from Jan. 2016
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to Jun. 2020 [172]. Thus, it is likely that some findings and results in the publications are

out-of-date. To reduce this threat, we used an online survey to collect the opinion from

many real-world smart contract developers. We compared our literature review findings

with the feedback from developers to help ensure the overall validity of our findings.

It is possible that the respondents to our survey may provide some dishonest or unpro-

fessional answers. To reduce this influence, we first informed developers that we will not

collect personal information when sending the invitation emails. The survey is anonymous

and we cannot trace their information if they do not leave their email address. All ques-

tions are optional, which means developers can choose to answer a part of the questions.

According to Ong et al.’s [150] work, confidentiality and anonymity are useful to obtain

un-biased data from survey respondents.

To collect more responses, we translated our survey into a Chinese version to address

the language barrier and as Google cannot be visited in China. There might be inconsis-

tency between the Chinese and English versions of our surveys. Besides, all the respondents

are written in Chinese, which needs to translate to English when analyzing the data. This

process also might lead to some errors. To reduce this risk, two Chinese authors with good

English skills read the survey and responded several times to ensure the correctness of the

translation.

2.6.2 External Validity

We collected responses to our survey by sending emails to Github developers. However, we

might have missed some other developers who might have different opinions. Fortunately,

the survey results show that the respondents to our survey have a wide variety of back-

grounds in terms of experience in developing smart contracts, job roles, and open source

projects they contribute to. Thus, the diversity of backgrounds help us to trust the survey

results and can reflect real-world situations of Ethereum smart contract development.
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In the future, new functionalities will be added to Ethereum and Solidity. They might

also be updated to help better address some smart contract maintenance issues. Thus, some

findings and results in this paper might be out-of-date in the future. This is an inevitable

trend for smart contract related empirical studies. While the methods we have identified

are still working, our findings can help developers and researchers.

2.7 Discussion

In this section, we discuss some future research directions and give suggestions for both

developers and researchers according to our RQ1 and RQ2 findings presented in Section 2.4

and 2.5.

2.7.1 Improving the Smart Contract Ecosystem

DApp Store and Comment System. Although there are some DApp stores for smart

contracts, none of them have a smart contract verification system. They neither reject

cloned contracts, nor have a rating system. As we discussed in RQ1, many copy-paste

vulnerabilities are prevalent in the Ethereum blockchain’s deployed smart contracts. There

are also many useless smart contracts i.e. “dead" contracts in Ethereum. These contracts

are the noisy data on the blockchain and increase the difficulty of finding useful smart

contracts. According to our survey, 139 (84.24%, Q14) developers have positive opinions

about the need for a DApp store like the Android Google Play Store. Such a DApp store

could regulate the behaviors of smart contracts. For example, rejecting copied contracts,

rating useful contracts, giving various classifications for contracts. Thus, developers could

more easily find high quality contracts for reference or for use as callee contracts. A review

system would allow smart contract users to submit reviews when they find bugs or suggest

features that need to be improved. Such comments can help developers better maintain

their contracts. It could also be a valuable research dataset. Based on such a dataset, many
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traditional MSR methods can be applied to help improve and maintain smart contracts. For

example, as we introduced in the previous section, there are five machine learning-based

methods to help maintain smart contracts. However, four of them use other tools to label

the ground truth, and there are many false positives / negatives of the tools were used to

label the ground truths. Thus, the performance of these tools is not very good. Real-

world produced data, e.g., review comments, could substantially improve the performance

of these machine learning tools, just as it has for many traditional software maintenance

activities and tools.

Call for High-Quality Standards, Libraries and Reference Code. Although Ethereum

has had a rapid improvement in its ecosystem, developers still claim there is a lack of stan-

dards, libraries, and useful reference code. Currently, most of the standards are published

on EIPs [63], and many teams provide libraries and referee code, e.g., OpenZepplelin Con-

tracts [154], Smart contract best practice [50]. However, the number is still small and not

enough for the vast Ethereum ecosystem.

More User Friendly Tools. In previous sections, we introduced 41 works which can help

maintain smart contracts. However, according to our survey, 96 (66.2%, Q8) respondents

claim they cannot find useful tools to debug / test / audit their contracts, or such tools are

too hard to use or deploy in real-world smart contract development. An important reason

for this inconsistency is that most current tools are not easy to use for practitioners. Thus,

making these tools easier to deploy and use is an important task for the future. For example,

merging some tools into smart contract IDEs, or adding a user interface to the tools.

2.7.2 Improving Ethereum and Solidity

Merging Cutting-Edge Technologies. The previous section introduced eight online

checking methods that could improve the security and maintainability of smart contracts

after they have been deployed. However, most of these online checking methods cannot be
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used directly. Specifically, transaction detection methods can revert malicious transactions

only if they were merged into the EVM and updated by nodes on Ethereum. Then, a node

(miner) could revert malicious transactions instead of broadcasting to the whole Ethereum

network. Similar to bytecode rewriting tools, these methods can fix a buggy bytecode

snippet after they are deployed. However, this kind of method requires modification of

the code stored on the blockchain, which cannot be done directly. To use such a method,

there should be a well-thought-out plan to ensure the correctness of smart contracts and

the concerns of breaking the immutability (discussed in Section 2.4.1.1). For example,

there could be a DAO (Decentralized Autonomous Organization) responsible for updating

code periodically by using the bytecode rewriting tools. When the DAO detects a smart

contract needs to modify its bytecode, the DAO should inform the contract users / owners

and allow them to vote to decide whether the code should be updated. According to our

survey (Q15), 150 (90.9%) respondents hold positive opinions about merging cutting-edge

technologies into the EVM and updated by nodes on Ethereum.

Mitigating Scalability Issues. The scalability issue is one of the main challenges for smart

contract maintenance. Several methods have been proposed to help redesign Ethereum

to mitigate this issue. First, the sharding technology is a future direction for Ethereum

to address the scalability issues. Currently, all the nodes on Ethereum need to process

every transaction, which leads to low throughput. By applying sharding to Ethereum, the

whole network can be split into several smaller parts, called shards. A subset of the total

miner nodes would only process transactions on a certain shard. Thus, it can improve the

throughput of Ethereum multiple times. Such sharding technology can also enable a smart

contract to be executed by multiple threads. A contract could then be split into several

parts and executed by different nodes. Enlarging the maximum stack sizes and reduce the

gas cost of the storage can also mitigate the scalability issues. This mechanism aims to

reduce the bulky problems of Ethereum, where all the nodes store the whole blockchain
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data. If the bulky problem is addressed, it is not difficult to make an optimization for

stack size, database performance, and price for storage. Bruce et al. [25] proposed a new

data structure named an account tree. The account tree holds the balance of all non-empty

addresses, which enables us to remove old transactions. Thus, new nodes do not need to

store all transactions and can reduce the total bulk of the blockchain.

Trusted Modification Methods. In Section 2.4.1.1, we introduced four modification meth-

ods for smart contracts. Among them, using the Selfdestruct function and developing up-

gradeable contracts cost the least. However, these two methods can lead to a major trust

concern from the users and other security issues. Previous work [30] introduced a method

to reduce the trust and security concern for the usage of the Selfdestruct function, which

can also be applied to upgradeable contracts. This method suggests that developers should

distribute the rights to the users of the contracts. They could vote to decide whether the

contracts should be destructed or upgraded. Using consensus protocols, such as PoS [211],

DPoS [126] are examples of such voting. For example, if a user invests 100 Ethers to the

contract, the user has 100 score to vote. The more Ethers users invest contracts, the more

rights they have. When the voting process finished, users who do not agree can transfer

their Ethers to other accounts. Also, the delay can reduce the risk of the Ethers locking, as

Ethers transferred to the destructed address will be locked forever. During the voting and

delaying steps, developers should suspend the function of the contracts to prevent attacks

or other unwanted behaviors.

2.8 Related Work

We review previous key empirical studies on smart contracts, and highlight the difference

between our work at the end of the section.
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2.8.1 Survey Based Smart Contract Empirical Studies

Bosu et al. [22] pre-designed some questions and used an online survey to collect the opin-

ions from developers on Github. Their work aimed to answer who contributes to smart

contracts and their motivation for development, what is the difference between smart con-

tract development and traditional software development, the challenges of smart contract

development, and what kinds of tools that developers feel they need.

Chakraborty et al. [28] sent an online survey to 1,604 developers on Github and re-

ceived 145 responses. Their survey aimed to find the best current software development

practices for smart contracts. Their findings suggest that some traditional software engi-

neering practices are still working for blockchain projects. They identified that the smart

contract ecosystem is immature and needs more SE methods, resources, and tools.

Chen et al. [32] defined 20 contract defects by analyzing posts on Stack Exchange.

They divided the defects into five categories, i.e., security, availability, performance, main-

tainability, and reusability defects. They claimed that removing these contract defects can

improve the robustness and enhance development efficiency. To validate whether real-

world developers regard these contracts as harmful, they use an online survey to collect

developers’ opinions. The results show that all the 20 contract defects are potential harm-

ful to smart contracts.

Novelty and Differences of this work: Both our work and Bosu et al.’s work [22]

investigated the challenges of smart contract development. Our work investigated the

maintenance-related challenges for post-deployed Ethereum Smart Contract development,

which is much more comprehensive than Bosu et al.’s work. The only similarity between

the two works is that we both reported a lack of tools as one of the challenges for smart

contract development / maintenance. Our work has a deeper analysis for the reasons why

the academia proposed many tools with excellent performance but the smart contract de-

velopers also feel they lack tools to check smart contract security. (See Section 3.4.2.1).
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There is a big difference between Chakraborty et al.’s work [28] and our work. Both

works used surveys to collect developers’ opinions; their work used surveys to find the

answers of pre-defined research questions, while our survey aimed to validate the findings

that we collected from our literature review. Their work aims to understand the software

development practices of smart contract projects. For example, how smart contract devel-

opers test their code, e.g., using unit testing or code review; what’s the requirement during

the development, e.g., the needs for community discussion, while our work focuses on the

challenges during smart contract maintenance.

Chen et al.’s work [32] reported detailed patterns / code that are harmful for smart

contract development / maintenance, while our work is at a higher level that reports the

challenges of smart contract maintenance instead of specific code patterns.

2.8.2 Literature Review Based Smart Contract Empirical Studies.

Conoscenti et al. [49] proposed an empirical study to help developers understand how to

use smart contracts and blockchain technology to build a decentralized and private-by-

design IoT system. To obtain key related information they conducted a systematic literature

review based on 18 publications. Their work introduced several use cases of blockchain in

the IoT domain and the factors affect integrity, anonymity, and adaptability of blockchain

technology.

Udokwu et al. [188] selected 48 publications from 496 papers. Based on the selected

papers, they described the key current usages of smart contract technology and challenges

in adopting smart contracts to other applications. Their analysis showed that the most

popular applications of smart contracts are supply chain management, finance, healthcare,

information security, smart city, and IoT. They also identified 18 limitations of blockchain

technology that affects the adoption of smart contracts for other applications.

Macrinici et al. [134] pre-defined seven research questions and selected 64 publications
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to find answers. Their results show that the most popular topic in smart contract research

is offering solutions to address related problems, e.g, developing tools, proof-of-concepts,

and designing protocols. They also summarized 16 smart contract related problems and

divided them into three categories, i.e., blockchain mechanism, contract source code, and

EVM problems.

Novelty and Differences of this work: Our work is the most comprehensive literature

review based on smart contract empirical study (our 131 publications v.s. Conoscenti et

al. ’s 18 publications v.s. Udokwu et al. ’s 48 publications v.s. Macrinici et al.’s 64

publications). There might be a gap between academia and industry knowledge, usage,

practices, and desired outcomes. Thus, findings based on previous published literature

might be out-of-date. Ours is the only work that uses an online survey to validate our

findings from the literature review. Also, the fast-growing ecosystem of Ethereum can make

even recent findings quickly out of date. Thus, the findings based exclusively on literature

reviews might not be reliable. For example, Zhou et al. [224] mention that Solidity lacks the

support of try-catch, which increases the difficulty of the development. However, Solidity

added this support from version 0.6.0 [173]. Also, our work is the only one that focuses on

smart contract maintenance issues, while the mentioned three works focus on IoT, adopting

smart contracts to other applications, and the most popular topic in smart contract research,

respectively.

2.8.3 Security Related Smart Contract Empirical Studies.

Li et al. [124] reviewed security issues for the blockchain systems from 2015 to 2017. They

classified these issues into nine categories and introduced the related causes. For example,

one of the categories is the “51% vulnerability" and the cause is the consensus mechanism.

To help developers understand such attacks better, they also gave example real attacks as

case studies and analyzed the vulnerabilities utilized by the attackers.
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Bartoletti [9] found that the infamous Ponzi scheme has migrated to Ethereum. Misbe-

having developers use smart contracts to design a Ponzi scheme to make money. Bartoletti

et al. manually checked real-world smart contracts and summarized four kinds of Ponzi

smart contracts, i.e., tree-shaped, chain-shaped, waterfall, handover Ponzi scheme. To help

further research on Ponzi scheme detection, they manually labeled a dataset that contains

184 schemes. A follow-up work [204, 45] used this dataset to design machine learning

methods to detect Ponzi smart contracts.

Delmolino et al. [56] are the lectures of a university who teach smart contract program-

ming. They documented the pitfalls of smart contracts according to their teaching experi-

ences. The pitfalls include errors in encoding state machines, failing to use cryptography,

misaligned incentives, and Ethereum-specific mistakes.

Atzei et al. [4] studied attacks on smart contracts on Ethereum between 2015 to 2017,

and provided a classification of programming pitfalls which might lead to the security is-

sues of smart contracts. Their work introduced six vulnerabilities in the Solidity level, three

vulnerabilities in the EVM level, and three vulnerabilities in the blockchain level. For most

of the vulnerabilities introduced in the paper, a detailed introduction, code examples, and

attack examples are given to help readers better understand.

Novelty and Differences of this work: The motivation between our work and these

security-related smart contract empirical studies have big differences. Our work aims to

highlight the maintenance-related concerns for post-deployed Ethereum smart contract de-

velopment, and security concerns is only a very small part of our work. These works focus

on only security issues with more detailed information, e.g., the specific code patterns and

attack examples.
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2.8.4 Other Smart Contract Empirical Studies.

Zheng et al. [221] described the challenges of developing smart contracts in the whole

life cycle, including creation challenges, deployment challenges, execution challenges, and

completion challenges. Their work not only focused on the Ethereum platform, but is

also more narrow in other ways. Thus, they also analysed some differences between six

smart contract platforms. Another work [222] discussed the challenges of the blockchain

system, and the opportunities of blockchain technology. For the challenge, they mainly

focused on the architecture of blockchain and consensus algorithms. For the opportunities,

they introduced the applications of blockchain, e.g., IoT, Finance. Reyna et al. [163]

investigated the challenges of applying blockchain technology to the IoT to increase the

security and reliability. Mohanta [138] introduced seven uses cases for smart contracts,

including supply chain, IoT, and healthcare systems. Many empirical studies also focus on

the performance of smart contract tools [159, 156], programming languages [98, 166, 157],

ecosystem [116, 99, 100], permissions [195], design patterns [11], life cycle [58], call

relations [17]. Durieux et al. [61] presented an empirical study of 9 state-of-art smart

contract vulnerability analysis tools. To evaluate these tools, they use two datasets, i.e., a

small-scale dataset consists of 69 vulnerable smart contracts and a large-scale dataset with

all verified smart contracts (47, 518 contracts) on Etherscan. They found that only 42% of

vulnerable smart contracts in small-scale dataset can be detected by all the 9 tools. About

97% of smart contracts are labeled as vulnerable by at least one tool. According to their

analysis result, Mythril [51] has the highest accuracy (27%) in detecting smart contract

vulnerabilities.

Novelty and Differences of this work: In this paper, we summarized the key maintenance

issues and current maintenance methods for smart contracts as evidence from our literature

review, which has a different topic with the smart contract empirical studies mentioned

above. Ours is also the only work to date that has conducted a literature review to collect
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maintenance issues of smart contracts and used an online survey to validate these findings

with practitioners.

2.9 Conclusion

In this paper, we conducted the first empirical study on the Ethereum smart contract mainte-

nance issues. We performed a systematic literature review to obtain related information and

used an online survey to validate our findings with practitioners. Our study contains two

research questions. In RQ1, we identified 9 kinds of issues related to corrective, adaptive,

perfective, and preventive maintenance of smart contacts, and another 4 issues correspond-

ing to the overall maintenance process for smart contracts. In RQ2, we summarized current

maintenance methods used for smart contracts from 41 publications and divided them into

three categories, offline checking methods, online checking methods, and other methods.

We also highlighted two kinds of future research directions and discussed some suggestions

for both smart contract developers and researchers according to the previous RQ answers

and our survey results.
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Chapter 3

Defining Smart Contract Defects on
Ethereum

Chen, J., Xia, X., Lo, D., Grundy, J.C., Luo, X. and Chen, T. Defining Smart
Contract Defects on Ethereum, IEEE Transactions on Software Engineering.
https://doi.org/10.1109/TSE.2020.2989002

Abstract: Smart contracts are programs running on a blockchain. They are immutable

to change, and hence can not be patched for bugs once deployed. Thus it is critical to ensure

they are bug-free and well-designed before deployment. A Contract defect is an error, flaw

or fault in a smart contract that causes it to produce an incorrect or unexpected result, or to

behave in unintended ways. The detection of contract defects is a method to avoid poten-

tial bugs and improve the design of existing code. Since smart contracts contain numerous

distinctive features, such as the gas system. decentralized, it is important to find smart

contract specified defects. To fill this gap, we collected smart-contract-related posts from

Ethereum StackExchange, as well as real-world smart contracts. We manually analyzed

these posts and contracts; using them to define 20 kinds of contract defects. We catego-

rized them into indicating potential security, availability, performance, maintainability and

reusability problems. To validate if practitioners consider these contract as harmful, we

created an online survey and received 138 responses from 32 different countries. Feedback

showed these contract defects are harmful and removing them would improve the quality

and robustness of smart contracts. We manually identified our defined contract defects in

587 real world smart contract and publicly released our dataset. Finally, we summarized 5
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impacts caused by contract defects. These help developers better understand the symptoms

of the defects and removal priority.

3.1 Introduction

The considerable success of decentralized cryptocurrencies has attracted great attention

from both industry and academia. Bitcoin [141] and Ethereum [84, 213] are the two most

popular cryptocurrencies whose global market cap reached $162 billion by April 2018 [26].

A Blockchain is the underlying technology of cryptocurrencies, which runs a consensus

protocol to maintain a shared ledger to secure the data on the blockchain. Both Bitcoin

and Ethereum allow users to encode rules or scripts for processing transactions. However,

scripts on Bitcoin are not Turing-complete, which restrict the scenarios of its usage. Unlike

Bitcoin, Ethereum provides a more advanced technology named Smart Contracts.

Smart contracts are Turing-complete programs that run on the blockchain, in which

consensus protocol ensures their correct execution [84]. With the assistance of smart con-

tracts, developers can apply blockchain techniques to different fields like gaming and fi-

nance. When developers deploy smart contracts to Ethereum, the source code of contracts

will be compiled into bytecode and reside on the blockchain. Once a smart contract is cre-

ated, it is identified by a 160-bit hexadecimal address, and anyone can invoke this smart

contract by sending transactions to the corresponding contract address. Ethereum uses

Ethereum Virtual Machine (EVM) to execute smart contracts and transaction are stored on

its blockchain.

A blockchain ensures that all data on it is immutable, i.e., cannot be modified, which

means that smart contracts cannot be patched when bugs are detected or feature additions

are desired. The only way to remove a smart contract from blockchain is by adding a self-

destruct [173] function in their code. Even worse, smart contracts on Ethereum operate on

a permission-less network. Arbitrary developers, including attackers, can call the methods
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to execute the contracts. For example, the famous DAO attack [54] made the DAO (De-

centralized Autonomous Organization) lose 3.6 million Ethers ($150/Ether on Feb 2019),

which then caused a controversial hard fork [109, 206] of Ethereum.

It is thus critical to ensure that smart contracts are bug-free and well-designed before

deploying them to the blockchain. In software engineering, a software defect is an error,

flaw or fault in a computer program or system that causes it to produce an incorrect or

unexpected result, or to behave in unintended ways [209, 46]. Contract defects are related

to not only security issues but also design flaws which might slow down development or

increase the risk of bugs or failures in the future. Detecting and removing contract defects

helps increase software robustness and enhance development efficiency [190, 115]. Since

the revolutionary changes of smart contracts compared to traditional softwares, e.g., the

gas system, decentralized features, smart contracts contain many specific defects.

In this paper, we conduct an empirical study on defining smart contracts defects on

Ethereum platform, the most popular decentralized platform that runs smart contracts.

Please note that some previous works [131, 146, 114] focus on improving the quality of

smart contracts from the security aspect. However, this is the first paper that aims to pro-

vide a systematic study of contract defects from five aspects: security, availability, per-

formance, maintainability and reusability. These previous works were not comprehensive

and did not validate whether practitioners consider these contract defects as harmful. To

address these limitations, we conducted our results from 17,128 Ethereum.StackExchange1

posts and validated it by an online survey. To help developers better understand the symp-

toms and distribution of smart contract defects, we manually labeled a dataset and released

it publicly to help further study. In this paper, we address the following key research ques-

tions:

RQ1: What are the smart contract defects in Ethereum?
1https://ethereum.stackexchange.com/
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We identified and defined 20 smart contract defects from StackExchange posts and real-

world smart contracts. These 20 contract defects are considered from security, availability,

performance, maintainability and reusability aspects. By removing the defined defects from

the contracts, it is likely to improve the quality and robustness of the programs.

RQ2: How do practitioners perceive the contract defects we identify?

To validate the acceptance of our newly defined smart contract defects, we conducted

an online survey and received 138 responses and 84 comments from developers in 32 coun-

tries. The options in the survey are from ’Very important’ to ’Very unimportant’ and we

give each option a score from 5 to 1, respectively. The average score of each contract defect

is 4.22. The feedbacks and comments show that developers believe removing the defined

contract defects can improve the quality and robustness of smart contracts.

RQ3: What are the distributions and impacts of the defects in real-world smart contracts?

We manually labeled 587 smart contracts and found that more than 99% of smart con-

tracts contain at least one of our defined defects. We then summarized 5 impacts that can

help researchers and developers better understand the symptoms of these contract defects.

The main contributions of this paper are:

• We define 20 contract defects for smart contracts considering five aspects: secu-

rity, availability, performance, maintainability and reusability. We list symptoms

and give a code example of each contract defects, which can help developers bet-

ter understand the defined contract defects. To help further researches, we also give

possible solution and possible tools for the contract defects.

• We manually identify whether the defined 20 defects exist in real-life smart contracts.

Our dataset2 contains a collection of 587 smart contracts, which can assist future

studies on smart contract analysis and testing. Also, we analyze the impacts of the
2The dataset can be found at https://github.com/Jiachi-Chen/TSE-ContractDefects

76



defined contract defects and summarize 5 common impacts. These impacts can help

developers decide the priority of defects removal.

• Our work is the first empirical study on contract defects for smart contracts. We

aim to identify their importance, and gather inputs from practitioners. This work is

a requirement engineering step for a practical contract defects detection tool, which

is an important first step that can lead to the development of practical and impactful

tools to practitioners.

The remainder of this paper is organized as follows. In Section 4.2, we provide back-

ground knowledge of smart contracts. In Sections 4.3-4.5, we present the answers to the

three research questions, respectively. We discuss the implications, and challenge in au-

tomatic contract defects detection in Section 4.6. In Section 4.7, we introduce threats to

validity. Finally, we elaborate the related work in Section 4.8, and conclude the whole

study and mention future work in Section 4.9.

3.2 Background

In this section, we briefly introduce background knowledge about smart contracts as well

as the Solidity programming language for smart contract definition.

3.2.1 Smart Contracts - A Decentralized Program

A smart contract is “a computerized transaction protocol that executes the terms of con-

tract" [179]. Their bytecode and transactions are all stored on the blockchain and visible

to all users. Since Ethereum is an add-only distributed ledger, once smart contracts are

deployed to a blockchain, they are immutable to be modified even when bugs are detected.

Once a smart contract is created, it is identified by a unique 160-bit hexadecimal string re-

ferred to as its contact address. The Ethereum Virtual Machine (EVM) is used to run smart
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contracts. The executions of smart contracts depend on their code. For example, if a con-

tract does not contain functions that can transfer Ethers, even the creator can not withdraw

the Ethers. Once smart contracts are deployed, they will exist as long as the whole network

exists unless they execute selfdestruct function [173]. selfdestruct is a function that if it is

executed, the contract will disappear and its balance will transfer to a specific address. In

this paper, we describe smart contracts developed using Solidity [173], the most popular

smart contract programming language in Ethereum.

3.2.2 Features of Smart Contracts

The Gas System. In Ethereum, miners run smart contracts on their machines. As com-

pensation for miners who contribute their computing resources, the creators and users of

smart contracts will pay a certain amount of Ethers to the miners. The Ethers that are paid

to miners are computed by: gas cost * gas price. Gas cost depends on the computational

resource the transaction will take and gas price is offered by the transaction creators. The

minimum unit of gas price is Wei (1 Ether = 1018 Wei). The miners have the right to choose

which transaction can be executed and broadcasted to the other nodes on the blockchain

[213]. Therefore, if the gas price is too low, the transactions may not be executed. To limit

the gas cost, when a user sends a transaction to invoke a contract, there will be a limit (Gas

Limit) that determines the maximum gas cost. If the gas cost exceeds the Gas Limit, the

execution is terminated with an exception often referred to as out-of-gas error.

Data location. In smart contracts, data can be stored in storage, memory or calldata [173].

storage is a persistent memory area to store data. For each storage variable, EVM will

assign a storage slot ID to identify it. Writing and reading storage variable is the most

expensive operation as compared with reading from the other two locations. The second

memory area is named memory. The data of the memory variables will be released after

their life cycle finished. Writing and reading to memory is cheaper than storage. Calldata
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is only valid for parameters of external contract functions. Reading data from the Calldata

is much cheaper than memory or storage.

3.2.3 Solidity

Solidity is the most popular programming language that is used to program smart con-

tracts on the Ethereum platform. In this subsection, we give a basic overview of Solidity

programming as well as a Solidity example.

Fallback Function. The fallback function [173] is the only unnamed function in Solidity

programming. This function does not have arguments or return values. It is only executed

when an error function call happens. For example, a user calls function “�" but the callee

contract does not contain this function. The fallback function will be executed to handle

the error. Also, if a fallback function is marked by payable3, e.g., line 13 in listing 4.1, it

will be executed automatically when the contract receives Ethers.

Ether Transfer and Receive. Solidity provides three APIs to transfer Ethers between ac-

counts, i.e., address.transfer(amount), address.send(amount), and address.call.value(amount)().

transfer and send will limit the gas of fallback function in callee contracts to 2300 gas [173].

This gas is not enough to write to storage, call functions, or send Ethers. Therefore, transfer

and send functions can only be used to send Ethers to External Owned Accounts (EOA). 4

call will not limit the gas of fallback function. Therefore, call can be used to send Ethers

to either contract or EOA. The difference between transfer and send is that transfer will

throw an exception and terminate the transaction if the Ether fails to send, while send will

return a boolean value instead of throwing an exception.
1 pragma s o l i d i t y ^ 0 . 4 . 2 5 ;
2 c o n t r a c t Gamble{
3 a d d r e s s owner ;
4 a d d r e s s [ ] members ;
5 a d d r e s s [ ] p a r t i c i p a t o r s ;

3If a function wants to receive Ethers, it has to add payable
4There are two types of accounts on Ethereum: externally owned accounts which controlled by private

keys, and contract accounts which controlled by their contract code.
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6 u i n t p a r t i c i p a t o r I D = 0 ;
7 m o d i f i e r onlyOwner { / * T r a n s a c t i o n S t a t e Dependency * /
8 r e q u i r e ( t x . o r i g i n ==owner ) ;
9 _ ; }

10 f u n c t i o n c o n s t r u c t o r ( ) { / / c o n s t r u c t o r _ f u n c t i o n
11 owner = / / t h i s i s t h e a d d r e s s o f t x . o r i g i n
12 0xdCad . . . d1D3AD ; / * Hard Code Address * / }
13 f u n c t i o n ( ) p a y a b l e { / / Execu ted when r e c e i v i n g E t h e r s
14 R e c e i v e E t h ( ) ; }
15 f u n c t i o n R e c e i v e E t h ( ) p a y a b l e {
16 i f ( msg . v a l u e !=1 e t h e r ) {
17 r e v e r t ( ) ; } / / msg . v a l u e i s t h e number o f r e c e i v e d ETHs
18 members . push ( msg . s e n d e r ) ;
19 p a r t i c i p a t o r s [ p a r t i c i p a t o r I D ] = msg . s e n d e r ;
20 p a r t i c i p a t o r I D ++;
21 i f ( t h i s . b a l a n c e ==10 e t h e r ) { / * S t r i c t Ba l ance E q u a l i t y * /
22 ge tWinner ( ) ; } }
23 f u n c t i o n ge tWinner ( ) { / / choose a member t o be t h e winner
24 / * Block I n f o Dependency * /
25 u i n t winnerID = u i n t ( b l o c k . b l o c k h a s h ( b l o c k . number ) ) %

p a r t i c i p a n t s . l e n g t h ;
26 p a r t i c i p a n t s [ winnerID ] . send (8 e t h e r ) ;
27 p a r t i c i p a t o r I D = 0 ; }
28 f u n c t i o n giveBonus ( ) r e t u r n s ( boo l ) { / / send 0 . 1 ETH t o a l l members a s

bonus
29 / * Unmatched Type Assignment , Nes ted C a l l * /
30 f o r ( v a r i = 0 ; i < members . l e n g t h ; i ++) {
31 i f ( t h i s . b a l a n c e > 0 . 1 e t h e r )
32 / * DoS Under E x t e r n a l I n f l u e n c e * /
33 members [ i ] . t r a n s f e r ( 0 . 1 e t h e r ) ; }
34 / * Miss ing R e t u r n S t a t e m e n t * / }
35 f u n c t i o n s u i c i d e ( a d d r e s s add r ) onlyOwner { / / Remove t h e c o n t r a c t from

b l o c k c h a i n
36 s e l f d e s t r u c t ( add r ) ; }
37 f u n c t i o n withDraw ( u i n t amount ) onlyOwner { / / wi thdraw c e r t a i n E t h e r s

t o owner a c c o u n t
38 a d d r e s s r e c e i v e r = 0 x05f4 . . . d27 ;
39 r e c e i v e r . c a l l . v a l u e ( amount ) ; } }

Listing 3.1: A “Gamble" smart contract. However, this contract contains several contract
defects.

Version Controller. Ethereum supports multiple versions of Solidity. When deploying

a smart contract to the Ethereum, developers need to choose a specific Solidity compiler

version to compile the contract. Solidity is a young and evolving programming language.

There are more than 20 versions released up to 2019. Different versions might have several

significant language changes. If developers do not choose the correct version of Solidity,

the smart contract compilation might fail. To make code reuse easier, a contract can be an-

80



notated with version pragma that indicates the version that supported. The version pragma

is used as: “pragma solidity v̂ersion" or “pragma solidity version". For example, “pragma

solidity 0̂.4.1" means that this contract supports compile version 0.4.1 and above (except

for v0.5.0) while “pragma solidity 0.4.1" means that the contract only supports compile

version 0.4.1.

Permission Check. Smart contracts on Ethereum run in a permission-less network; every-

one can call methods to execute the contracts. Developers usually add permission checks

for permission-sensitive functions. For example, the contract will record the owner’s ad-

dress in its constructor function as the constructor function can only be executed once

when deploying the contract to the blockchain. In each transaction, the contract compares

whether the caller’s address is the same as the owner’s address. Solidity provides msg re-

lated APIs to receive caller information. For example, contracts can get the caller address

from msg.sender. Besides, Solidity also provides function modifiers to add prerequisite

checks to a function call. A function with a function modifier can be executed if it passes

the check of the modifier.

Solidity Example. Listing 4.1 is a simple example of a smart contract which is developed

in Solidity. The contract is a gambling contract, each gambler sends 1 Ether to this contract.

When the contract receives 10 Ethers, it will choose one gambler as the winner and sends

8 Ethers to him.

The first line indicates the contract supports compiler version 0.4.25 to 0.5.0 (not in-

cluded). The modifier on line 7 is used to restrict the behavior of functions. For example,

onlyOwner requires the tx.origin equals to the owner, and tx.origin is used to get the orig-

inal address that kicked off the transaction, otherwise, the transaction will be roll back. If

a function contains modifiers the function will first execute the modifiers. Line 10 is the

constructor function of the contract. This function can only be executed once when deploy-

ing the contract to Ethereum. In the constructor function, the contract assigns a hard-coded
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address to the owner variable to restore the owner address. Fallback function (L13) is a spe-

cific feature in smart contract as we introduced in Section 4.2.2. When receiving Ethers,

ReceiveEth will be activated and the contract uses msg.value to check the amount of Ethers

they received (L16). If the amount that they received not equal to 1 Ether, the transaction

will be reverted. Otherwise, the contract records the address of those who send the Ethers

(L18). When the balance equals to 10 Ethers, the contract will execute the getWinner func-

tion and choose one gambler as the winner (L21-22). The function uses block.hash and

block.number to generate a random number. This two block-related APIs is used to obtain

block related information. After getting the winner, the contract uses address.send() to send

Ethers to the winer (L26). address.send() is one method to send Ethers. This method will

return a boolean value to inform the caller whether the money is successfully sent but do

not throw an exception. address.transfer() can also be used to send Ethers, but this function

will throw an exception when errors happen. Note that, these two functions have gas limi-

tation of 2300 if the recipient is a contract account (See Section 4.2.2). address.call.value()

in Line 39 can be used to send Ethers to a smart contract, similar to address.send(). This

method also returns a boolean value to inform the caller whether the money is successfully

sent but does not throw an exception.

3.2.4 ERC-20 Token

In recent years, thousands of cryptocurrencies have been created. However, most of them

are implemented by smart contracts that run on the Ethereum (also called tokens) rather

than having their own blockchain system. Ethereum provides several token standards to

standardize tokens’ behaviors. In this case, different tokens can interact accurately and

be reused by other applications (e.g., wallets and exchange markets). The ERC-20 stan-

dard [78] is the most popular token standard used on Ethereum. It defines 9 standard

interfaces (3 are optional) and 2 standard events. To design ERC-20 compliant tokens, de-
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velopers must strictly follow this standard. For example, the standard method transfer is

declared as “function transfer (address _to, uint256 _value) public returns (bool success)”,

which is used to transfer a number of tokens to address _to. The function should fire the

TRANSFER event to inform whether the tokens are transferred successfully. The func-

tion also should throw an exception if the message caller’s account balance does not have

enough tokens to spend.

3.3 RQ1: Contract defects in Smart Contracts

3.3.1 Motivation

Smart contracts cannot be patched after deploying them to the blockchain. Detecting and

removing contract defects is a good way to ensure contacts’ robustness. Since the revolu-

tionary changes of smart contracts compared to traditional softwares, e.g., the gas system,

decentralized features, smart contracts might contain many specific defects compared to

traditional programs, e.g., Android Apps. To fill this gap, we try to define a set of new

smart contract defects from StackExchange posts in this section. We give definitions, ex-

amples and possible solutions of our defined contract defects specialized for Ethereum

smart contracts.

3.3.2 Approach

3.2.1. StackExchange Posts: To define defects for smart contracts, we need to collect

issues that developers encountered. Programmers often collaborate and share experience

over Q&A site like Ethereum StackExchange [175], the most popular and widely-used

question and answer site for users of Ethereum. By analyzing posts on Ethereum StackEx-

change, we can identify and define a set of contract defects on Ethereum. In this paper, we

crawled 17,128 StackExchange posts and analyzed them further.

3.2.2. Key Words Filtering: It is time-consuming to find important information from thou-
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sands of Q&A posts. Therefore, we utilized keywords to filter important information from

StackExchange posts. To ensure the completeness of our keywords list, two authors of this

paper read the solidity documents [173] carefully and recorded the keywords they think

are important. After that, they merged the keywords list and used these keywords to filter

StackExchange posts. When reading the posts, we added new keywords to enrich our list

and filter new posts. We finally used 66 keywords to filter 4,141 posts.

3.2.3. Manually Filtering: In this paper, we aim to find Solidity-related smart contract

defects. However, the filtered 4,141 posts which contain the keywords might not related

to Solidity-related contract defects. Many posts are about the web3 [203], development

environment (Remix [162], Truffle [185]), wallet or functionality. We need to remove them

from the dataset and only retain posts that are related to contract defects. For example,

the title of a post is “Transfer ERC20 token from one account to another using web3”.

Although the post contains key words “ERC20”, the posts are related to web3, not Solid-

ity related contract defects. Therefore, we emit it from our dataset. Two authors of this

paper, who both have rich experience in smart contract development, manually analysed

all of the posts and finally found that a total of 393 posts are related to Solidity-related

smart contract defects. The detailed analysis results of these 4,141 posts can be found at:

https://github.com/Jiachi-Chen/TSE-ContractDefects

3.2.4. Open Card Sorting: We followed the card sorting [174] approach to analyze and

categorize the filtered contract defects-related posts. We created one card for each post.

The card contains the information of defect title, description, and comments. The same

two authors worked together to determine the labels of each post. The detailed steps are:

Iteration 1: We randomly chose 20% of the cards. The same two authors first read the

title and description of the card to understand the defects that the post discussed. Then,

they read the comments to understand how to solve the defects. After that, they discussed

the root cause of the defect. If the root cause of the card were unclear, we omitted it from
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Table 3.1: Classification scheme.

Category Description
Gas Limitation Bugs caused by gas limitation.
Permission
Check

Bugs caused by permission check failure.

Inappropriate
Logic

There are inappropriate logics inside a contract, which can be
utilized by attackers.

Ethereum Fea-
tures

Ethereum has many new features, e.g., Solidity, Gas System.
Developers do not familiar with the differences which might
lead to mistakes.

Version Gaps Errors due to the update of Ethereum or Solidity.
Inappropriate
Standard

Ethereum provides several standards, but many contracts do
not follow them.

Title

Description

Comments

Figure 3.1: Example of a Card
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our card sort. All of the themes are generated during the sorting. After this iteration, the

first five categories shown in Table 3.1 are found.

Example of categorizing a card: Fig. 3.1 is an example of a card for a defect reporting

post. The card contains three parts, i.e., title, description, and two comments. The two

authors first read the title and description of the card to understand the contract defect(s)

described by the posts. After that, they read the comments. The first comment gives a

link to a previous similar post, and the second comment introduces ideas on how to fix this

particular error. From the link, we can determine that the root cause of the error is because

“throw” is deprecated since Solidity version 0.4.5. Therefore, the defect category for this

card is “Version Gaps”.

Iteration 2: Two authors independently categorized the remaining 80% of the cards

into the initial classification scheme by following the same method, described in iteration

1. During the categorizing process, they found another category named “Inappropriate

Standard", which is common in the remaining cards. After that, they compared their results

and discussed any differences. Finally, they categorized the defects into 6 themes; the

detailed information is shown in Table 3.1. We used Cohen’s Kappa [47] to measure the

agreement between the two authors. Their overall Kappa value is 0.82, indicating a strong

agreement.

3.2.5. Defining Contract Defects From Posts: After categorizing the filtered posts, we

summarized 6 high-level root causes from StackExchange posts. Then, the same two au-

thors read the cards again, with the aim to find more detail behaviors for the definition

of the contract defects. Finally, we summarized 16 contract defects. Following are two

examples:

Example 1. Deprecated APIs: The error described in the Fig. 3.1 is classified into

“Version Gaps", which shows the high-level root cause. It is not difficult to find the reason

of the error as the user has made use of a deprecated API, i.e., throw. We thus conclude
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Title
Description

Comments

Figure 3.2: Example of a Card for "Block Info Dependency"

that we obtain a contract defect category named “Deprecated APIs".

Example 2. Block Info Dependency: Fig. 3.2 is another example that belongs to the

defect category “Ethereum Features". From the post, we can determine that if the profit of

the controlling contract is higher than what a miner earns by mining a single block (5 ETH),

there is a high probability that the contracts will be controlled by the miner. Therefore,

using BLOCKHASH to generate random numbers is not safe. Finally, we infer a contract

defect named “Block Info Dependency" from this card.

3.2.6. Dataset Labeling: In order to assist future studies on smart contract analysis and

testing, we manually identified whether the defined contract defects exist in our dataset,

which consists of 578 real-world smart contracts. To build this dataset, we first crawled

all 17,013 verified smart contracts from Etherscan. Then, for the scalability reasons, we

randomly chose 600 smart contracts from these 17,013 contracts. We filtered out 13 smart

contracts as they do not contain any functions in their contracts. Finally, we obtained 587

smart contracts with 231,098 lines of code. The total amount of Ethers in these accounts

are more than 4 million Ethers.
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3.2.7. Defining Contract Defects From Code: During the process of labeling, we found

some smart contracts have high similarity but also have some small differences. For exam-

ple, there are two functions; the only differences for these two functions is the first function

denotes a return value but does not return anything. The second function denotes the re-

turn value and correctly returns the statement. Therefore, from the difference, we defined

a contract defect named “Missing Return Statement". We totally defined 4 contract defects

from real-world smart contracts. i.e., Missing Return Statement, Strict Balance Equality,

Missing Reminder, and Greedy Contract . Finally, we defined 20 contract defects.

3.3.3 Results

In this part, we define and give examples of each defects. We divide these defects to

five categories according to their consequences, i.e., Security defects, Performance defects,

Availability defects, Maintainability defects, and Reusability defects. We first give a brief

definition of each contract defects in Table 3.2. Then, we give detailed definitions and code

examples in the followed paragraphs:

3.3.3.1 Security Defects

In this subsection, we define 9 contract defects that can lead to security issues. These may

be exploited by attackers to gain financial benefits or attack vulnerable contracts.

(1) Unchecked External Calls: To transfer Ethers or call functions of other smart

contracts, Solidity provides a series of external call functions for raw addresses, i.e., ad-

dress.send(), address.call(), address.delegatecall() [173]. Unfortunately, these methods

may fail due to network errors or out-of-gas error, e.g., the 2300 gas limitation of fall-

back function introduced in Section 3.2. When errors happen, these methods will return a

boolean value (False), but never throw an exception. If callers do not check return values

of external calls, they cannot ensure whether code logic is correct.

Example: An example of this defect is given in Listing 4.1. In function getWinner
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Table 3.2: Definitions of the 20 contract defects.

Contract Defect Definition
Unchecked External
Calls

Do not check the return value of external call functions.

DoS Under External In-
fluence

Throwing exceptions inside a loop which can be influenced by
external users

Strict Balance Equality Using strict balance quality to determine the execute logic.
Unmatched Type Assign-
ment

Assigning unmatched type to a value, which can lead to integer
overflow

Transaction State De-
pendency

Using tx.origin to check the permission.

Re-entrancy The re-entrancy bugs.
Hard Code Address Using hard code address inside smart contracts.
Block Info Dependency Using block information related APIs to determine the execute

logic.
Nested Call Executing CALL instruction inside an unlimited-length loop.
Deprecated APIs Using discarded or unrecommended AIPs or instructions.
Unspecified Compiler
Version

Do not fix the smart contract to a specific version.

Misleading Data Loca-
tion

Do not clarify the reference types of local variables of struct,
array or mapping.

Unused Statement Creating values which never be used.
Unmatched ERC-20
standard

Do not follow the ERC-20 standard for ICO contracts.

Missing Return State-
ment

A function denote the type of return values but do not return
anything.

Missing Interrupter Missing backdoor mechanism in order to handle emergencies.
Missing Reminder Missing events to notify caller whether some functions are suc-

cessfully executed.
Greedy Contract A contract can receive Ethers but can not withdraw Ethers.
High Gas Consumption
Function Type

Using inappropriate function type which can increase gas con-
sumption.

High Gas Consumption
Data Type

Using inappropriate data type which can increase gas con-
sumption.
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(L23), the contract does not check the return value of send (L26), but the array participants

is emptied by assigning participatorID to 0 (L25). In this case, if the send method failed,

the winner will lose 8 Ethers.

Possible Solution: Using address.transfer() to instead address.send() and address.call.value()

if possible, or Checking the return value of send and call.

(2) DoS Under External Influence: When an exception is detected, the smart contract

will rollback the transaction. However, throwing exceptions inside a loop is dangerous.

Example: In line 33 of Listing 4.1, the contract uses transfer to send Ethers. However,

In Solidity, transfer and send will limit the gas of fallback function in callee contracts to

2,300 gas [173]. This gas is not enough to write to storage, call functions or send Ethers.

If one of member[i] is an attacker’s smart contract and the transfer function (L33) can

trigger an out-of-gas exception due to the 2,300 gas limitation. Then, the contract state will

rollback. Since the code cannot be modified, the contract can not remove the attacker from

members list, which means that if the attacker does not stop attacking, no one can get bonus

anymore.

Possible Solution: Avoid throwing exceptions in the body of a loop. We can return a

boolean value instead of throwing an exception. For example, using “if(msg.send(...) ==

false) break;" instead of using “msg.transfer(...)".

(3) Strict Balance Equality: Attackers can send Ethers to any contracts forcibly by

utilizing selfdestruct(victim_address) API [173]. This way will not trigger the fallback

function, meaning the victim contract cannot reject the Ethers. Therefore, the logic of

equal balance check will fail to work due to the unexpected ethers send by attackers.

Example: Attackers can send 1 Wei (1 Ether = 1018 Wei) to Contract Gamble in List-

ing 4.1 by utilizing selfdestruct method. This method will not trigger fallback function

(L13). Thus, the Ethers will not be thrown by ReceiveEth (L16). If this attack happens, the

getWinner() (L23) would never be executed, because the getWinner can only be executed
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when the balance of the contract is strictly equal to 10 Ethers (L21).

Possible Solution: Since the attackers can only add the amount of the balance, we

can use a range to replace “==". In this case, attackers cannot affect the logic of the pro-

grams. Using the defect in Listing 4.1 as an example, we can modify the code in L21 to “if

(this.balance � 10 ether&& this.balance <11 ether)"

(4) Unmatched Type Assignment: Solidity supports different types of integers (e.g.,

uint8, uint256). The default type of integer is uint256 which supports a range from 0 to

2ˆ256. uint8 takes less memory, but only supports numbers from 0 to 2ˆ8. Solidity will

not throw an exception when a value exceeds its maximum value. The progressive increase

is a common operation in programming, and performing an increment operation without

checking the maximum value may lead to overflow.

Example: The variable i in line 30 of Listing 4.1 is assigned to uint8, because 0 is in

range of uint8 (0-255). If the members.length is larger than 255, the value of i after 255 is

0. Thus, the loop will not stop until running out of gas or balance of account is less than

0.1.

Possible Solution: Using uint or uint256 if we are not sure of the maximum number of

loop iterations.

(5) Transaction State Dependency: Contracts need to check whether the caller has

permissions in some functions like suicide (L33 in Listing 4.1). The failure of permission

checks can cause serious consequences. For example, if someone passes the permission

check of suicide function, he/she can destroy the contract and stole all the Ethers. tx.origin

can get the original address that kicked off the transaction, but this method is not reliable

since the address returned by this method depends on the transaction state.

Example: We can find this defect in line 8 of Listing 4.1. The contract uses tx.origin to

check whether the caller has permission to execute function suicide (L35). However, if an

attacker uses function attack in Listing 4.4 to call suicide function (L35 in Listing 4.1), the
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permission check will fail. suicide function will check whether the sender has permission

to execute this function. However, the address obtained by tx.origin is always the address

who creates this contract (0xdCad...d1D3AD L12 in Listing 4.1). Therefore, anyone can

execute the suicide function and withdraw all of the Ethers in the contract.

Possible Solution: Using msg.sender to check the permission instead of using tx.orign.

(6) Block Info Dependency: Ethereum provides a set of APIs (e.g., block.blockhash,

block.timestamp) to help smart contracts obtain block related information, like timestamps

or hash number. Many contracts use these pieces of block information to execute some

operations. However, the miner can influence block information; for example, miners can

vary block time stamp by roughly 900 seconds [71]. In other words, block info dependency

operation can be controlled by miners to some extent.

Example: In Listing 4.1 line 25, the contract uses blockhash to generate which member

is the winner. However, the gamble is not fair because miners can manipulate this operation.

Possible Solution: To generate a safe random number in Solidity, we should ensure

the random number cannot be controlled by a single person, e.g., a miner. We can use the

information of users like their addresses as their input numbers, as their distributions are

completely random. Also, to avoid attacks, we need to hide the values we used from other

players. Since we cannot hide the address of users and their submitted values, a possible

solution to generate a random number without using block related APIs is using a hash

number. The algorithm has three rounds:

Round 1: Users obtain a random number and generate a hash value in their local ma-

chine. The hash value can be obtained by keccak256, which is provided by Solidity. After

obtaining the random number, users submit the hash number.

Round 2: After all users submit their hash number, users are required to submit their

original random number. The contract checks whether the original number can generate

the same hash number.
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Round 3: If all users submit the correct original numbers, the contract can use the

original numbers to generate a random number.

(7) Re-entrancy: Concurrency is an important feature of traditional software. How-

ever, Solidity does not support it, and the functions of a smart contract can be interrupted

while running. Solidity allows parallel external invocations using call method. If the callee

contract does not correctly manage the global state, the callee contract will be attacked –

called a re-entrancy attack.

Example: Listing 4.2 shows an example of re-entrancy. The Attacker contract invokes

Victim contract’s withDraw() function in Line 11. However, Victim contract sends Ethers

to attacker contract (L6) before resetting the balance (L7). Line 6 will invoke the fallback

function (L9) of attacker contract and lead to repeated invocation.

Possible Solution: Using send() or transfer to transfer Ethers. send() and transfer have

gas limitation of 2300 if the recipient is a contract account, which are not enough to transfer

Ethers. Therefore, these two functions will not cause Re-entrancy.
1 c o n t r a c t Vic t im {
2 mapping ( a d d r e s s => u i n t ) p u b l i c u s e r B a l a n n c e ;
3 f u n c t i o n withDraw ( ) {
4 u i n t amount = u s e r B a l a n n c e [ msg . s e n d e r ] ;
5 i f ( amount > 0) {
6 msg . s e n d e r . c a l l . v a l u e ( amount ) ( ) ;
7 u s e r B a l a n n c e [ msg . s e n d e r ] = 0 ; } } . . . }
8 c o n t r a c t A t t a c k e r {
9 f u n c t i o n ( ) p a y a b l e {

10 Vic t im ( msg . s e n d e r ) . withDraw ( ) ; }
11 f u n c t i o n r e e n t r a n c y ( a d d r e s s add r ) {
12 Vic t im ( add r ) . withDraw ( ) ; } . . . }

Listing 3.2: Attacker contract can attack Victim contract by utilizing Re-entrancy

(8) Nested Call: Instruction CALL is very expensive (9000 gas paid for a non-zero

value transfer as part of the CALL operation [213]). If a loop body contains CALL oper-

ation but does not limit the number of times the loop is executed, the total gas cost would

have a high probability of exceeding the gas limitation because the number of iterations

may be high and it is hard to know its upper limit.
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Example: In Listing 4.1, the function giveBonus (line 28) uses transfer (L33) which

generates CALL to send Ethers. Since the members.length (L30) does not limit its size,

giveBonus has a probability to cause out of gas error. When this error happens, this function

can not be called anymore because there is no way to reduce the members.length.

Possible Solution: The developers should estimate the maximum number of loop iter-

ations that can be supported by the contract and limit these loop iterations.

(9) Misleading Data Location: In traditional programming languages like Java or C,

variables created inside a function are local variables. Data is stored in memory and the

memory will be released after the function exits. In Solidity, the data of struct, mapping,

arrays are stored in storage even they are created inside a function. However, since storage

in solidity is not dynamically allocated, storage variables created inside a function will

point to the storage slot5 0 by default [173]. This can cause unpredictable bugs.

Example: Function reAssignArray (L6) in Listing 4.3 creates a local variable tmp.

The default data location of tmp is storage, but EVM cannot allocate storage dynamically.

There is no space for tmp, but instead, it will point to the storage slot 0 (variable in L3

of Listing 4.3). For the result, once function reAssignArray is called, the variable variable

will add 1, which can cause bugs for the contract.

Possible Solution: Clarifying the data location of struct, mapping, and arrays if they

are created inside a function.
1 pragma s o l i d i t y ^ 0 . 4 . 2 5 ; / * U n s p e c i f i e d Compi le r V e r s i o n * /
2 c o n t r a c t Defec tExample {
3 u i n t v a r i a b l e ;
4 u i n t [ ] i n v e s t L i s t ;
5 f u n c t i o n ( ) p a y a b l e {}
6 f u n c t i o n r e A s s i g n A r r a y ( ) {
7 / * M i s l e a d i n g Data L o c a t i o n * /
8 u i n t [ ] tmp ;
9 tmp . push ( 0 ) ;

10 i n v e s t L i s t = tmp ; }
11 f u n c t i o n c h a n g e V a r i a b l e ( u i n t va lue1 , u i n t v a l u e 2 ) {
12 / * Unused S t a t e m e n t * /
13 u i n t newValue = v a l u e 1 ;

5Each storage variables has its own storage slot to identify its position.
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14 v a r i a b l e = v a l u e 2 ; }
15 / * High Gas Consumption F u n c t i o n Type * /
16 f u n c t i o n highGas ( u i n t [ 2 0 ] a ) p u b l i c r e t u r n s ( u i n t ) {
17 r e t u r n a [ 1 0 ] * 2 ; }
18 f u n c t i o n lowGas ( u i n t [ 2 0 ] a ) e x t e r n a l r e t u r n s ( u i n t ) {
19 r e t u r n a [ 1 0 ] * 2 ; } }

Listing 3.3: DefectExample

1 c o n t r a c t a t t a c k e r {
2 . . .
3 f u n c t i o n a t t a c k ( a d d r e s s addr , a d d r e s s myAddr ) {
4 Gamble gamble = Gamble ( add r ) ;
5 gamble . s u i c i d e ( myAddr ) ; } }

Listing 3.4: An attacker contract by utilizing Transaction State Dependency.

3.3.3.2 Availability Defects

We define 4 contract defects related to availability. These may not be utilized by attackers

but are bad designs for contracts that can lead to potential errors or financial loss for the

caller.

(1) Unmatched ERC-20 Standard: ERC-20 Token Standard [78] is a technical stan-

dard on Ethereum for implementing tokens of cryptocurrencies. It defines a standard list

of rules for Ethereum tokens to follow within the larger Ethereum ecosystem, allowing de-

velopers to predict the interaction between tokens accurately. These rules include how the

tokens are transferred between addresses and how data within each token is accessed. The

function name, parameter types and return value should strictly follow the ERC20 standard.

ERC-20 defines 9 different functions and 2 events to ensure the tokens based on ERC20 can

easily be exchanged with other ERC20 tokens. However, we find that many smart contracts

miss return values or miss some functions.

Example: transfer and transferFrom are two functions defined by ERC20. They are

used to transfer tokens from one account to another. ERC20 defines that these two functions

have to return a boolean value, but many smart contracts miss this return value, leading to

errors when transferring tokens.
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Possible Solution: Checking that the contract has strictly followed the ERC20 stan-

dard.

(2) Missing Reminder: Other programs can call smart contracts through the contracts’

Application Binary Interface (ABI). ABI is the standard way to interact with contracts in

the Ethereum ecosystem, both from outside the blockchain and for contract-to-contract

interaction. However, the ABIs can only tell the caller what the inputs and outputs of a

function are, but it will not inform them whether the function call is successful or not.

Throwing an event to notify a caller whether the function is successfully executed can

reduce unnecessary errors and gas waste.

Example: A typical scenario of this contract defect is missing reminders when receiv-

ing Ethers. In Listing 4.1, users may not understand the game rules clearly, and send Ethers

which not equal to 1 Ether (line 16-17). However, the smart contract will check whether

the received Ether is equal to 1 Ether, then the Ether will return back. There are several

reasons for invoking failures. For example, the user may mistakenly believe the error is

caused by network and resend the Ethers, which can lead to gas waste. Adding reminders

(throwing events) to notify caller whether some functions are successfully executed can

avoid unnecessary failure.

Possible Solution: Adding reminders for functions that are interacting with the outside.

(3) Missing Return Statement: Some functions denote return values but do not return

anything. For these, EVM will add a default return value when compiling the code to

bytecode. Since the callers may not know the source code of the callee contract, they may

use the return value to handle code execution and lead to unpredictable bugs.

Example: Function giveBonus (L28) in Listing 4.1 declares the return type bool, but

the function does not return true or false. Then, EVM will assign the default return value

as false. If developers call this function, the return value will always be the false and some

functions in the caller contracts may never be executed.

96



Possible Solution: Adding the return statements for each function.

(4) Greedy Contract: A contract can withdraw Ethers by sending Ethers to another

address or using selfdesturct function. Without these withdraw-related functions, Ethers in

contracts can never be withdrawn and will be locked forever. We define a contract to be a

greedy contract if the contract can receive ethers (contains payable fallback function) but

there is no way to withdraw them.

Example: In Listing 4.3, the contract has a payable fallback function in line 5, which

means this contracts can receive Ethers. However, the contracts cannot send Ethers to other

contracts or addresses. Therefore, the Ethers in this contract will be locked forever.

Possible Solution: Adding withdraw method if the contract can receive Ethers.

3.3.3.3 Performance Defects

We define 3 contract defects related to performance. The contracts with these defects can

increase their gas cost.

(1) Unused Statement: If function parameters or local variables do not affect any con-

tract statements nor return a value, it is better to remove these to improve code readability.

Example: function parameter value1 and local variable newValue in function changeVari-

able (L11 of Listing 4.3) are useless, because they never affect contract statements nor

return values. Although the compiler will remove these useless statements when compiling

source code to binary code, these can reduce contract readability.

Possible Solution: Removing all unused statements in the contract to make it easier to

read.

(2) High Gas Consumption Function Type: For public functions, Solidity immedi-

ately copies function arguments (Arrays) to memory, while external functions can read di-

rectly from calldata [213]. Memory allocation is expensive, whereas reading from calldata

is cheap. To lower gas consumption, if there are no internal functions call this function and
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the function parameters contain array, it is recommended to use external instead of public.

Example: In Listing 4.3, function highGas (L16) and function lowGas (L18) have the

same capabilities. The only difference is that highGas is modified by public which can be

called by external and internal functions. lowGas is modified by external which can only

be called by external. Calling function highGas costs 496 gas while calling lowGas only

costs 261 gas.

Possible Solution: Using external instead of public if the function can only be called

by external.

(3) High Gas Consumption Data Type: bytes is dynamically-sized byte array in So-

lidity, byte[] is similar with bytes, but bytes cost less gas than byte[] because it is packed

tightly in calldata. EVM operates on 32 bytes a time, byte[] always occupy multiples of 32

bytes which means great space is wasted but not for bytes. Therefore, bytes takes less stor-

age and costs less gas. To lower gas consumption, it is recommended to use bytes instead

of byte[].

Example: Replacing byte[] by bytes can save a small amount of gas for each function

call. However, as the contract is called more times, a large amount of gas can potentially

be saved.

Possible Solution: Using bytes instead of byte[].

3.3.3.4 Maintainability Defects

We define 2 contract defects related to maintainability. These contract defects can shorten

the life cycle of the contract.

(1) Hard Coded Address: Since we cannot modify smart contracts after deploying

them, hard coded addresses can lead to vulnerabilities.

Example: There are two main kinds of errors this contract defect can lead to. The

first is Illegal Address. Ethereum uses a mixed-case address checksum to verify whether
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an address is legal or not. The rule is defined in EIP-55 [192]. There is an error address in

line 12 of Listing 4.1. The owner address is an illegal address, the last bit of the address

should be ‘F’, but by mistake, it becomes ‘D’. The illegal address makes no one that can

withdraw the amount of this contract. The second is Suicide Address. selfdestruct function

(L36) can remove the code from the blockchain and make the contract become a suicide

contract, but it is potentially dangerous. If someone sends Ether to suicide contracts, the

Ether will forever be lost. receiver (L38) is a smart contract who contains selfdestruct

function. Its address is hardcoded in line 38 of Listing 4.1 and cannot be modified. If

the receiver performed the selfdestruct function, it will become a suicide contract. All the

Ethers sent to receiver will be lost forever.

Possible Solution: Removing the hard coded addresses and inputting the addresses as

function parameters.

(2) Missing Interrupter: When bugs are detected by attackers, they can attack the

contracts and steal their Ethers. The DAO lost $50 million Ethers due to a bug in the

code that allowed an attacker to draw off the Ethers [54] repeatedly. The interrupter is a

mechanism to stop the contract when bugs are detected. We cannot modify contracts after

deploying them to the blockchain. However, if a contract contains interrupter, the owner of

the victim contract can reduce their losses.

Example: When bugs are found in Listing 4.1, the Ethers on the contract can be stolen

by attackers. Fortunately, the contract contains an interrupter on suicide function (L35).

So, the owner of the contract can call suicide. Then, the remain Ethers will be sent to the

given address. After fixing the bugs, the contracts can be redeployed.

Possible Solution: The easiest interrupter is adding a selfdestruct function [173],

Ethers on the contracts can be withdrawn and the contracts destroyed when attacks happen.

Adding an interrupter to the contracts, if the contract holds a large amount of Ethers.
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3.3.3.5 Reusability Defects

We define 2 contract defects related to reusability. These contract defects can increase the

difficulty of code reuse.

(1) Deprecated APIs: Solidity is a young and evolving programming language. Some

APIs will be discarded or updated in the future. In this case, Solidity documentation usually

uses warning to inform developers that some APIs will be deprecated in the future. These

APIs might still be supported by the current compiler version. However, if developers use

these APIs, they might need to refactor the code for the code reuse, which leads to resource

waste.

Example: CALLCODE operation will be discarded in the future [173], throw, suicide,

sha3 are replaced by revert, selfdestruct, keccak256 respectively in the recent version.

Possible Solution: Following the latest Solidity document and using the latest APIs.

(2) Unspecified Compiler Version: Different versions of Solidity may contain dif-

ferent APIs/instructions. In Solidity programming, multiple APIs only be supported in

some specific versions. If a contract do not specify a compiler version, developers might

encounter compile errors in the future code reuse because of the version gap.

Example: In the first line of Listing 4.3, pragma solidityˆ0.4.25 means that this con-

tract supports compile version 0.4.25 and above (except for v0.5.0) while pragma solidity

0.4.25 means that the contract only supports compile version 0.4.25. Since it is hard to

foresee the language constructions in the future version, it is recommended to indicate a

specific compiler version to avoid unnecessary bugs.

Possible Solution: Fixing the compiler version used by the contract.
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Table 3.3: Survey results, distributions, and impacts of the 20 contract defects.

Contract Defect Distribution Score #Defects Impacts
Unchecked External Calls 4.50 25 (4.26%) IP3

DoS Under External Influence 4.31 6 (1.02%) IP2
Strict Balance Equality 4.28 5 (0.85%) IP2

Unmatched Type Assignment 4.42 22 (3.75%) IP2
Transaction State Dependency 4.54 5 (0.85%) IP1

Reentrancy 4.66 12 (2.04%) IP1
Hard Code Address 4.10 84 (14.31%) IP3

Block Info Dependency 4.05 42 (7.16%) IP3
Nested Call 4.45 13 (2.21%) IP2

Deprecated APIs 4.06 247 (42.08%) IP5
Unspecified Compiler Version 3.84 532 (90.63%) IP5

Misleading Data Location 4.28 1 (0.17%) IP2
Unused Statement 4.04 10 (1.70%) IP5

Unmatched ERC-20 standard 4.29 45 (7.67%) IP4
Missing Return Statement 4.16 263 (44.80%) IP4

Missing Interrupter 4.06 523 (89.10%) IP4
Missing Reminder 4.06 27 (4.60%) IP4
Greedy Contract 4.25 6 (1.02%) IP3

High Gas Consumption
Function Type

4.08 422 (71.89%) IP5

High Gas Consumption Data
Type

4.07 0 (0%) IP5

3.4 RQ2: Practitioners’ Perspective

3.4.1 Motivation

To validate whether our defined contract defects are harmful, we created an online survey

to collect opinions from real-world smart contract developers.

3.4.2 Approach
3.4.2.1 Validation Survey

We followed the instructions of Kitchenham et al. [120] for personal opinion surveys and

utilized an anonymous survey [187] to increase response rates. Respondents can choose

to leave an email address, as all respondents could choose to take part in a raffle to win
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two $50 Amazon gift cards. We first conducted a small scale survey to test and refine

our questions. These participants give feedback about: (1) whether the expression of the

contract defects is clear and easy to understand, and (2) whether the length of each question

is suitable. Finally, we modified our survey based on the feedback we collected.

3.4.2.2 Survey Design

To help respondents better understanding the aim of our survey, we explained what is con-

tract defect at the beginning of the survey and gave detailed definitions and examples of the

20 contract defects in related questions. We first captured the following pieces of informa-

tion to collect demographic information about the respondents:

Demographics:

• Professional smart contract developer? : Yes / No

• Involved in open source software development? : Yes / No

• Main role in developing smart contract.

• Experience in years

• Current country of residence

• Highest educational qualification

Examples of Contract Defects: Next, we gave detailed definitions and examples of

the 20 contract defects. We asked respondents to rate the importance of these contract

defects, i.e., removing them can improve the security, reliability, or usability of a project.

Since some of the defined contract defects are not easy to understand, we added an op-

tion “I don’t understand" to ensure results are reliable. Finally, we give each question

six options (i.e., Very important, Important, Neutral, Unimportant, Very unimportant and I

don’t understand). We also give each question a textbox to enable respondents to give their

opinions.
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Other Questions: We give a textbox so respondents can tell us if they have any other

comments, questions, or concerns.

3.4.2.3 Recruitment of Respondents

In order to get a sufficient number of respondents from different backgrounds, we first

sent our survey to our partners who are working or study in world-famous companies or

academic institutions. We sent our email to 1489 practitioners who contribute to open

source smart contract related projects on GitHub. All respondents could enter their email

to take part in a raffle to win two $50 Amazon gift cards.

3.4.3 Results

We totally received 138 responses (The response rate is about 9.27%) from 32 different

countries, and we received 84 comments on our defined contract defects. 113 (81.88%) of

these respondents are involved in open source software development efforts. The top two

countries in which the respondents reside are China (38.41%) and USA (7.97%). The av-

erage years of experience in developing smart contracts are 1.95 years. Since the Ethereum

was published only in late 2015, we believe the average year of 1.95 years shows that

the respondents have good experience in developing smart contracts. We do not remove

the feedback from developers with little experience as their feedback is also very useful

as they might be the ones actually authoring the contracts with defects. Among these re-

spondents, 89 (64.49%), 17 (12.32%), 16 (11.59%), 7 (5.07%) described their job roles as

development, testing, management and security audit respectively. The other 9 responses

said they have multiple roles.

Table 3.3 shows the results of our survey. The first column indicates each contract defect

and the second column illustrates the distribution of respondents’ choice. The distribution

is from “Very unimportant" (left-most red bar) to “Very important" (right-most green bar).

To clearly show the result, we give each option a score and count the weighted average
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score which is shown in the third column. To be specific, we give “very important" a score

5 and give “very unimportant" a score 1.

We received very positive feedback from developers with almost all contract defects’

scores are larger than 4, and the average score is 4.22. The score of “Unspecified Com-

piler Version" is 3.84 but it is also a positive score. To understand the reasons, we reviewed

comments about this defect. We found that many developers who voted “unimportant"

mentioned the difference among different minor versions in the same major version (e.g.,

0.4.19 and 0.4.20) is small. However, they admitted that the difference among different

major versions (e.g., 0.4.0 and 0.5.0) is significant. Some developers gave comments that

removing this contract defect is very important when they want to reuse code in the future.

Besides, we also found many examples from StackExachange posts that many develop-

ers failed to compile the contracts because these contracts do not specify their compiler

versions. Therefore, we believe this defect is important on code reuse.

“Missing Interrupter”, “Missing Reminder”, and “Unspecified Compiler Version” re-

ceived the top three most negative feedbacks (“Unimportant” and “Very unimportant”).

For “Missing Interrupter”, 5 developers mentioned that adding interrupters in smart con-

tracts will ensure the benefits for the smart contract owners. However, such a back-door

mechanism may cause users to distrust the contracts. This worry makes sense, but we be-

lieve it can be fixed if the contract owners add some insurance mechanism to the contracts.

For example, they can define rules to detect abnormal states, and the back-door mechanism

can only be executed when the abnormal state is detected. For “Missing Reminder”, we

did not receive comments from respondents who chose negative options. We sent emails to

the developers who gave their email address and received three feedbacks. All mentioned

that the smart contracts they developed are used inside their companies. They will write a

detailed document of each function. If other developers in their companies have problems,

then they fix the problems using face to face discussion. Therefore, this contract defect is

104



not important for them. However, we believe that if the smart contracts are deployed on

Ethereum and other developers can call the functions, removing this contract defect can

reduce potential problems. For “Unspecified Compiler Version", we found 4 developers

who gave negative feedback mention that there are only very few differences between the

versions under the same large version, e.g., between 0.4.21 and 0.4.22. However, we do

not agree with this observation. As we have mentioned, even if two versions only have

a small difference, but it is hard to foresee language constructions in the future version.

Thus, it is possible that there might be two versions that contain a big difference in the

future. Besides, refuting this feedback, version 0.4.0 (the first version of 0.4+) and 0.4.25

(the latest version of 0.4+) do indeed have big differences, as many APIs like throw have

been deprecated.

We also received 18 negative comments for the other 7 smart contract defects. The neg-

ative comments of “Unmatched type assignment", “Re-entrancy", “Hard Code Ad-

dress", “Misleading Data location", and “High Gas Consumption Function Type" all

mentioned that these contract defects have been removed in the latest version of Solidity.

However, when developers deploy smart contracts to Ethereum, they need to choose a So-

lidity version by themselves. Most developers choose old versions of Solidity instead of the

latest version [73]. This means that these defects are still potentially harmful. “Strict Bal-

ance Equality" received 3 negative comments. Two developers said this is not a common

case, and another developer said receiving Ether cannot be prevented. Thus, it might be

hard to avoid exact balance checks in some situations. We admit that defect is not common

in Ethereum smart contracts. However, this defect is still harmful and can open up another

attack vector to attackers. Developers can use other logic, such as “� && <" to avoid “=="

(see possible solution for this defect introduced in Section 4.3.3.1). “Unmatched ERC-20

standard" received 2 negative comments. These comments mentioned that this contract

defect could only be used for ICO smart contracts, which limits its usage scenario. How-

105



ever, ICO smart contracts are very popular in Ethereum, and they hold a large amount of

Ethers. Thus, we I believe this defect category is still useful.

Certainly, We receive many positive comments. Some positive comments we received

included:

• You provide a very good summary of some very important security checkpoints.

• Those controls and warnings should be integrated into the Solidity compiler, and

displayed in common development tools like Remix and Truffle.

• It is nice to have such a summary of these vulnerabilities among smart contracts,

I think it would be very helpful for the blockchain practitioners as well as the re-

searchers.

• These suggestions above are very useful to avoid various kinds of flaws.

• Generally speaking, all of these contract defects can lead to serious problems. I

learned a lot from this survey.

3.5 RQ3: Distribution and Impact of Contract Defects

3.5.1 Motivation

To help developers and researchers better understand the impacts of our defined smart con-

tract defects, we summarized 5 impacts and manually label 587 smart contracts to show

their distribution in the real-world smart contracts. Our labeling results provided ground

truth for future studies on smart contract defects detection. As it is not easy to remove all

contract defects due to tight project schedules or financial reasons, the impacts and dis-

tributions of different contract defects can help developers decide which defect should be

fixed first.
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3.5.2 Approach

Distribution: We obtained 587 smart contracts from real-world Ethereum accounts. The

first and last authors of this paper independently read these smart contracts and determined

whether the contracts contained our defined contract defects. They each have three-year

experience on smart-contract-based development and have published three smart-contract-

related papers together. Their overall Kappa value was 0.71, which indicates substantial

agreement between them. After completing the labeling process, they discussed their dis-

agreement and gave a final result. Finally, we generate a dataset which shows the distribu-

tion of the contract defects we defined.

Impact Level (IL) Definition: To summarize the impacts of each contract defect, we

consider from three dimensions, i.e., contract dimension (unwanted behavior), attacker

dimension (attack vector), and user dimension (usability), which can be found on Table 3.5.

The contract dimension focuses on the severity level of the contract defect. From our

survey, 27 developers claimed that defects, e.g., Reentrancy, Dos Under External Influence,

might enable attackers to attack the contracts, and 9 of them mentioned that attackers can

utilize defects like Reentrancy to stole all the Ethers on the contract. Also, 16 developers

agree that defects, e.g., High Gas Consumption Function Type, Deprecated APIs, will not

affect the normal running of the contract, but have bad effects for the users or callers.

From the StackExchange posts, we can also find the comments of the posts mentioned that

the defects could lead to the crashing, losing all Ethers, and losing a part of the Ethers.

Finally, we totally find the defects can lead to 5 common consequences to the contracts.

They are crashing, being controlled by attackers, losing all Ethers, losing a part of the

Ethers, normal running but have bad effects for the users or caller. We have split the 5

common consequences into three severity levels, i.e., critical, major, and trivial. Critical

represents contract defects, which can lead to the crashing, being controlled by attackers,

or can lose all Ethers. Major represents the contract defects that can lead to the loss of a

107



part of the Ethers. Contracts with trivial severity level will not affect the normal running of

the contract.

The attacker dimension focuses on attackers’ behaviors. Since financial services are the

most attractive targets for attackers, we believe that if attackers can use the defects to steal

Ethers, the impact level should be higher. Whether the defect can be triggered by attackers

is also an important aspect.

The users dimension focuses on the external influence of the defects. This dimension

contains three aspects, i.e., potential errors for caller, gas waste, and mistakes on code

reuse. Some defects do not affect the normal running of the contracts. However, they can

lead to the errors of the caller programs. Some defects can also increase the gas costs of

the callers and users. As code reuse is important in software engineering, some defects can

make the contracts hard to be understand and reuse.

We only consider the worst-case scenario outcome for each contract defect, even though

some defects will have different impact levels under different application scenario. We use

Hard Code Address as an example. In most situations, Hard Code Address will not lead

to the loss of Ethers. However, if the hard-coded address is a self-destructed contract, a

contract with this defect can lose a part of its Ethers. Thus we consider Hard Code Address

can lead to major unwanted behavior.

After defining the three dimensions, we map each contract defect onto one or more. The

detailed results are shown in Table. We found there are 5 common types of distribution.

According to the distribution, we summarized 5 impact levels and assigned each contract

defect to have one impact level.

3.5.3 Results

We use Table 3.5 to clarify the difference between each impact level. IP1 is the highest,

and IP5 is the lowest. Contract defects with impact level 1-2 can lead to critical unwanted
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Table 3.4: Features of Each Contract Defects

Contract Defects
Unwanted Behavior Attack Vector Usability

Critical Major Trivial Triggered
by

External

Stolen
Ethers

Potential
Errors

for
Callers

Gas
Waste

Mistakes
on Code
Reuse

Unchecked External
Calls

X

Dos Under External
Influence

X X

Strict Balance Equal-
ity

X X

Unmatched Type As-
signment

X X

Transaction State De-
pendency

X X X

Reentrancy X X X
Hard Code Address X
Block Info Depen-
dency

X X

Nested Call X X
Deprecated APIs X X X
Unspecified Compiler
Version

X X X

Misleading Data Lo-
cation

X X

Unused Statement X X X
Unmatched ERC-20
standard

X X

Missing Return State-
ment

X X X

Missing Interrupter X X
Missing Reminder X X
Greedy Contract X
High Gas Consump-
tion Function Type

X X X

High Gas Consump-
tion Data Type

X X X

Table 3.5: Features of Each Impact Level

Impact Level
Unwanted Behavior Attack Vector Usability

Critical Major Trivial Triggered
by

External

Stolen
Ethers

Potential
Errors

for
Callers

Gas
Waste

Mistakes
on Code
Reuse

IP1 X X X
IP2 X X
IP3 T1 T2 T2
IP4 X X
IP5 X X X
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behaviors, like crashing or a contract being controlled by attackers. Contract defects with

impact level 3 can lead to major unwanted behaviors, like lost ethers. Impact level 4-5 can

lead to trivial problems, e.g., low readability, which would not affect the normal running of

the contract.

The detailed definition of the five impact levels are as follows:

Impact 1 (IP1): The smart contracts containing the related contract defects can lead to

critical unwanted behaviors. Unwanted behaviors can be triggered by attackers, and they

can make profits by utilizing the defects.

Impact 2 (IP2): The smart contracts containing the related contract defects can lead to

critical unwanted behaviors. Unwanted behaviors can be triggered by attackers, but they

cannot make profits by utilizing the defects.

Impact 3 (IP3): There are two types of IP3. Type 1: The smart contracts containing the

related contract defects can lead to critical unwanted behaviors, but unwanted behaviors

cannot be triggered externally. Type 2: The smart contracts containing the related contract

defects can lead to major unwanted behaviors. The unwanted behaviors can be triggered

by attackers, but they cannot make profits by utilizing the defects.

Impact 4 (IP4): The smart contracts containing the related contract defects can work nor-

mally. However, the contract defects can lead to potential risks of errors when outside

programs call the contracts.

Impact 5 (IP5): The smart contracts containing the related contract defects can work nor-

mally and will not lead to the errors for the callers. However, the contract defects can lead

to gas waste, and make the contracts hard to understand and reuse.

Table 3.3 lists the detailed distribution of each contract defect (the fourth column) in

our dataset and its related impact (the last column). We find the distribution for Impacts 1 –

5 to be 2.90%, 7.16%, 27.09%, 93.86%, 99.14%, respectively. Note that one smart contract

can have multiple defects of different impacts simultaneously.
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“Unspecified Compiler Version” is the most common contract defect in our dataset

(90.63% contracts contain this defect). We also found that this contract defect is the most

popular one among the 20 defects when we analyze StackExchange posts. Many developers

want to reuse the contracts but encounter compiler errors. These contracts usually do not

specify a compiler version. In this case, developers have to try different compiler versions

or refactor the code, which increases the workload for code reuse.

“Missing Interrupter” is also very popular in our dataset (89.1% contracts contain this

defect). This defect receives the greatest number of comments in our the survey. On the one

hand, developers admit that adding interrupter is important for contracts when emergencies

happen. On the other hand, some developers also worried that the interrupter could lead to

distrust by the contract users. Better understanding attitudes to this defect may need further

research effort. For example, researchers can design a survey for developers to investigate

the reasons why they add or do not add interrupters. By knowing the reason why develop-

ers do not add it, researchers might design a better method to implement interrupter. By

knowing the reason why developers add interrupters, researchers can investigate whether

contracts with interrupters in our dataset are consistent with these reasons, and what are the

most popular reasons.

99.82% of smart contracts in our dataset contain at least one contract defect of the

impact 4 or impact 5. These contract defects will not affect the normal running of the

contracts, but it may have unpredictable impacts to the caller or code reuse. The distribution

may illustrate that the developers focus more on the functionality but do not consider the

code reuse or handle unpredictable behaviors caused by attackers. This finding is similar

to Chen et. al [43]. They found that 96% of smart contracts are involved in no more than

5 transactions, and they are not be used anymore, indicating that many developers do not

consider future reuse of these contracts.

About 32.03% of smart contracts contain contract defects at levels 1-3, which can lead
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to unwanted behaviors. However, we found that only 7.33% of smart contract contains

defects that can lead to critical unwanted behaviors, e.g., crashing or being controlled by

attackers.

We also found that ERC-20 related smart contracts are the most popular (36.11%) in

Ethereum. However, 21.22% of them do not strictly follow the ERC-20 standards. We did

not find any smart contracts which contain High Gas Consumption Data Type. Since the

size of our dataset is limited, and this contract defect has related posts on StackExchange,

this contract defect might exist if we investigate more contracts. In summary, our findings

showed that defined contract defects are very common in real-world smart contracts.

3.6 Discussion

In this section, we first give the implications of our work for researchers, practitioners and

educators. Then, we list three challenges for future research on automatic contract defect

detection.

3.6.1 Implications

For Researchers: Research Guidance. In this paper, we defined 20 contract defects. Sev-

eral previous studies analyzed some of them. We have investigated whether there are exist-

ing tools that can detect some of the contract defects identified by our work. We show the

results in Table 3.6. We first collected the titles of papers which were published at CCS,

S&P, USENIX Security, NDSS, ACSAC, ASE, FSE, ICSE, TSE, TIFS, and TOSEM from

2016 to 2019, since Ethereum went live on July 30, 2015 [208]. Then, we used the key-

words “smart contract", “Ethereum", “blockchain", “Contracts" to search for papers which

are related to the smart contract technology. After that, we read the abstract of each paper

to verify its relevance. Finally, we found a total of 4 related papers (i.e., Oyente [131, 132]

, Zeus [113], Maian [146] and Contractfuzzer [111]). We provide a description of these
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four tools in Section 3.8. We find that 7 contract defects can be detected by these existing

tools and most of them are security related defects. These tools focus more on the security

aspects but do not consider the other two aspects considered as equally important by prac-

titioners. Therefore, researchers can pay more attention to developing tools that can detect

the other 13 contract defects.

Behavior vs. Perception [57]. The belief of whether a contract defect is important or not

may result in prioritizing testing effort. The survey results and contract defect distribution

shown in Table 3.3 can help us investigate whether the practitioners’ perception is con-

sistent with their behavior. We find that the top two most frequent contract defects are

‘Unspecified Compiler Version’ and ‘Missing Interrupter’ (according to the column No.

Defects in Table 3.3). Their survey scores are also the lowest (3.92 and 4.0 according to the

column Score in Table 3.3), indicating that practitioners do not perceive them as important

as other defects, and thus they pay less attention to them in practice which causes them to

appear more than other contract defects. The appearance of these two contract defects is

consistent with practitioners’ perception. However, there are many inconsistent examples.

According to the definition of 5 impacts introduced in Section 4.5.3, it is clear that IP1

can cause the most serious problems compared to other impacts. We find the ‘Unchecked

External Calls’ has the second highest survey score (4.64), which shows that developers

think this defect is very important. However, its impact is IP3, which shows that there is an

inconsistency between the practitioners’ perception (high survey score) and their behavior

(medium impact to the project). Future contract defect detection tools should provide ratio-

nales that explicitly describe the connection between contract defects and its impact. This

could assist developers better prioritize testing efforts, and understand the detection results

well.

Contract Defects in Other Smart Contract Platforms. We propose a method which summa-

rizes contract defects from online posts. Our study focused on defining contract defects for
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Table 3.6: Tools that detect some contract defects identified by our study.

Contract Defects Tools
Unchecked External Calls Oyente, Zeus, Contractfuzzer

Reentrancy Oyente, Zeus, Contractfuzzer
Block Info Dependency Oyente, Zeus, Contractfuzzer

Transaction State Dependency Zeus
DoS Under External Influence Zeus
Unmatched Type Assignment Zeus

Greedy Contract Maian

Ethereum smart contracts, but the same method can be applied to other popular blockchain

platforms, e.g., EOS [65], Hyperledger [105]. These blockchain platforms also support the

running of smart contracts and have their unique features. There are thousands of posts

on StackExchange related to these platforms. Researchers can analyze the related posts

and find specific features and contract defects of these smart contract platforms. Our work

defined 20 contract defects and provide a dataset which identifies these contract defects on

587 contract accounts, which point out a new direction for future research. For example,

researchers can develop automatic contract defect detection tools, and our dataset can be

used as ground truth to validate the performance of these tools.

For Practitioners: We are the first to conduct an empirical study by analyzing many on-

line StackExchange posts to understand and define contract defects for smart contracts, and

utilize an online survey to validate the acceptance of the defined contract defects among

real-world developers. Our results showed that most of the smart contracts in our dataset

contained at least one of the defined contract defects. The results may indicate that de-

velopers do not consider future use and handle unpredictable attacks. However, since the

smart contracts are immutable to patch, the consideration of future use and unpredictable

attacks is very important. We also concluded 5 impacts of the defined contract defects to

help practitioners better understand the consequences. The defined contract defects can

be regarded as a coding guidance for practitioners when they develop smart contracts. By

removing the defined contract defects, they can develop robust and well-designed smart
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contracts.

Developing contract defect detection tools is also a good direction. Our online sur-

vey received many comments from managers of smart-contract-related companies, some

listed in Section 4.4.3. They showed much interest in developing and using related tools

and highlighted that such detection tools should be integrated into Solidity compiler and

development tools.

For Educators: Educators should emphasize the importance of removing contract de-

fects before deploying smart contracts to blockchain. A survey [1] shows that more than

20% of top 50 universities are offering blockchain courses until Oct. 2018. However,

most courses focus on teaching basic grammar rule of Solidity programming or blockchain

related knowledge but ignore other concerns (security, architecture, usability). The distri-

bution of the defined contract defects also indicates that many developers do not realize

the importance for the reuse of smart contracts and handling unpredictable attacks. Edu-

cators can improve such conditions by helping students to better understand the impacts of

the contract defects. Thus, it is highly recommended that educators pay more attention to

teaching contract defect related problems for smart contract development.

3.6.2 Challenge in Detection Contract Defects

We point out three challenges to give a guideline for future research on automatic contract

defect detection.

(1) Program Understanding. Some contract defects do not have a specific pattern, which

increase the difficulty of automatic defection. For example, there are multiple methods to

implement interrupter for the contracts. Developers can use selfdestruct function to kill

the contract. They can also write a method to stop the contract when attack happens. To

detect these kinds of contract defects, we need to understand the smart contracts. However,

automatically understanding code is not easy.
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(2) Bytecode Level Detection. When deploying a smart contract to Ethereum, EVM will

compile the source code to the bytecode and the bytecode will be stored on the blockchain.

Everyone can check the bytecode of the smart contracts, but source code may not visible

to the public. Smart contracts usually call other contracts, but the callee contracts may not

open their source code to inspection. In other words, they do not know whether the smart

contract they called is safe or not. Therefore, detecting contract defects through bytecode

is very important because each smart contract’s bytecode can be found on Ethereum but

only around 0.45% of smart contracts have opened up their source code by Jan. 2019 [74].

However, it is not easy to detect contract defects from bytecode level as it loses the most

semantic information.

(3) EVM Operation. When compiling a smart contract to bytecode, EVM will optimize

the source code, which means some information will be removed or optimized, so it is hard

to know the original information on the source code. For example, detecting whether a

function has return value on source code level is straightforward. However, it is not easy to

detect it at bytecode level as even we do not add a return value for a function, the EVM will

add a default value for it. Therefore, we cannot know whether the return value is added by

EVM or developers.

3.6.3 Possible Detection Methods

In this section, we discuss possible detection methods for each of the contract defects that

we have defined. Since 7 defects shown in Table 3.6 have already been detected by previous

tools, we only discuss the remaining 13 defects.

3.6.3.1 Bytecode Level Detection

Detecting contract defects by bytecode is important for smart contracts in Ethereum, as all

the bytecode of the contracts can be found on the Ethereum, but only less than 1% contracts

have open source code. To detect contract defects by bytecode, the defects should have
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regular patterns. For example, Nested Call can be found in a loop which does not limit its

loop times and contains the CALL instruction. Missing Interrupter does not have a regular

pattern, as there are multiple ways to realize interrupter. To the best of our knowledge, we

have found 6 contract defects that can be detected by bytecode among our 13 smart contract

defects. A common method to detect defects by bytecode is using symbolic execution as

it can statically reason about a program path-by-path [131].. The method usually converts

bytecode to the opcode and splits them into several blocks.6 A basic block is a straight-line

code sequence with no branches in except to the entry and no branches out except at the

exit. Then, we can symbolically execute the instruction and construct a control flow graph

(CFG) for each contract, which can be used to detect the contract defects.

(1) Nested Call: After obtaining the CFG, we can identify which blocks belong to

loops. If the loop body contains CALL instructions and does not limit its loop iterations,

the loop contains a Nested CALL defect.

(2) Strict Balance Equality: To get the balance of the contract, the contract will gener-

ate a BALANCE instruction. We can start from this instruction; If a BALANCE instruction

is read by EQ (the EQ instruction is used to compare whether two values are equal), it

means there is a strict balance equality check. If this check happens at a conditional jump

expression, it means this contract contains a Strict Balance Equality defect.

(3) Hard Code Address: Addresses of Ethereum strictly follow the EIP55 [192] stan-

dard. We need to identify whether the opcode contains a 20-byte-value and follow the

EIP55 standard. The default bytecode stored on Ethereum is called runtime bytecode,

which does not contain the constructor function. However, many hard code addresses are

stored in the constructor function. To obtain the constructor function, we can check the

value of the first transaction of the contract.

(4) Unmatched ERC-20 standard: The ERC-20 standard contains 9 functions (3 are
6A basic block is a straight-line code sequence with no branches in except to the entry and no branches

out except at the exit.
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optional). From bytecode, we can get the hash value of each function. The hash value

is obtained from its function name and parameter types. For example, the hash value of

“transfer (address, uint256)” is “A9059CBB". Therefore, we can identify whether a con-

tract is an ERC20 token contract by comparing the hash value of each function. Then, we

need to check whether each function strictly follows the ERC-20 standard.

(5) High Gas Consumption Function Type: We can identify the public functions

through CFG. If a public function is not be called by any other function this means the

function can be changed to an “external” function.

(6) High Gas Consumption Data Type: To detect this defect, we need to identify the

pattern of byte[] from opcode. byte[] is easy to identify as it always occupies multiples of

32 bytes.

3.6.3.2 Source Code Level Detection

As we introduced in Section 4.6.2 (3), a part of the information will be removed or opti-

mized when compiling the source code to the bytecode. Therefore, the remaining 7 contract

defects need to be detected from smart contract source code.

(1) Deprecated APIs: Solidity document does not suggest using some APIs in the latest

version, as they will be deprecated in the future. However, these APIs can still be compiled.

When compiling to the bytecode, their instructions might be the same as the recommended

APIs. To detect deprecated APIs, we need to use the latest version of Solidity and detect

which APIs are deprecated.

(2) Unused Statement: Since some unused statements will be optimized by the EVM,

this defect should be detected from source code. To detect this defect, we can compile

the contract by using the Solidity compiler [214] and compare it to the original contract.

There might be some unused statements that cannot be optimized by EVM. To detect these

unused statements, we can utilize the CFG and detect whether all the paths can be executed.
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(3) Unspecified Compiler Version: When compiling source code to bytecode, devel-

opers need to choose a specific version of the Solidity compiler. In this case, we cannot

detect the defect from its bytecode. To detect this defect, we need to check its pragma

solidity. [173]

(4) Misleading Data Location: If a smart contract has a Misleading Data Location,

we will find that the contract modified the value on a specific storage position. However,

we cannot know whether this operation is due to the contract defect. In this case, we need

to detect the defect from source code. To detect it, we first need to check whether there

is an array, struct, or mapping created in a function. Then, if the contract pushes a value

before assigning to a storage value, this defect is detected.

(5) Missing Return Statement: The reason for this has been introduced in Section

4.6.2.3. To detect this defect, we can split source code into functions by using AST (abstract

syntax tree), and check whether a function is missing a return statement.

(6) Missing Interrupter: There are multiple ways to realize interrupters, so we cannot

find a method to detect this defect from bytecode. To detect the defect, we first need

to summarize common methods of realizing interrupters. Then, we detect each kind of

interrupter. For example, adding a selfdestructor function is one of the interrupters. In this

case, we just need to detect whether a contract contains a selfdestructor function.

(7) Missing Reminder: There are also many kinds of functions that need to add re-

minders. To detect this defect, we all need to summarize what kind of functions need to

add a reminder, then detect the defect one by one. For example, when receiving Ethers, we

might use a reminder to throw an event to inform the user. In this case, we first need to

locate function that can receiving Ethers. Then, verifying whether the function throws an

event to inform users.
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3.6.4 Code Smells in Ethereum

In software engineering, code smells are the symptoms in the source code that possibly

indicate deeper problems [85]. Code smells are related to not only security issues but

also design flaws, which might slow down development or increase the risk of bugs or

failures in the future. Detecting and refactoring out code smells helps increase software

robustness and enhance development efficiency [190]. In this paper, we defined 20 contract

defects. There are many similarities between code smells and contract defects. According

to Martin Fowler’s book [85], code smells do not directly trigger bugs but can lead to

“potential” program faults. This definition is similar to the definition of Impact level 4

and 5. According to our definition, the contracts containing contract defects with impact

level 4 and 5 can work normally, but they can lead to potential risks of errors when outside

programs call the contracts, or increase the difficulty of code reuse. In this case, the contract

defects with IP4 and IP5, e.g., “Unused Statements”, “Unspecified Compiler Version”, can

also be considered as smart contract code smells.

3.7 Threats to Validity

3.7.1 Internal Validity

We used keywords to filter StackExchange posts. The scale of our keywords dataset de-

termines how much manual effort we need to pay. It is not easy to cover all keywords,

which means we may not cover all contract defects. Due to the time and human resource

limitation, we defined 20 contract defects in this study, but researchers can define more

contract defects by using our methods. To reduce this threat, we manually labeled 587

smart contracts to validate the existing of these contract defects. To provide a more stable

labeling process, we followed the card sorting process, and two authors labeled the smart

contracts independently. However, it is still possible that some errors exist in our dataset

because of misunderstanding of smart contracts. To reduce the errors, we choose the most
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experienced authors to label the contracts. They each have three-year experience on smart

contract based development and have published several smart contract related papers.

The impact of smart contract defects depend on our understanding of each contract

defect. However, different researchers and developers may have different understandings.

To minimize this threat, we read the related posts and real-world examples and discussed

with several smart contracts developers to help improve the correctness. We also considered

feedback and comments from our survey.

It is difficult to ensure that all developers have a good understanding about all of the

contract defects and are indeed paying attention when doing our survey. It is possible that

some feedback might contain incorrect information. For example, some survey respon-

dents give “very important" or “very unimportant" feedback to all defects. To reduce the

influence of this situation, we first added an option “I don’t understand" to each question

and removed these responses when analyzing our survey data. We also made each question

optional. Therefore, if developers find that a question is hard to understand or they lose

their patience, they can skip the question instead of giving incorrect answers. Finally, we

remove feedbacks given by developers whose answers are all the same when analyzing the

survey data, e.g., all “very important", all "very unimportant". In addition, to help Chi-

nese developers better understand our contract defects, three Chinese authors of this paper

translated the survey into Chinese and reviewed the translated version to make sure the

translation is correct.

3.7.2 External Validity

Solidity is a fast-growing programming language. In 2018, 9 versions were updated and re-

leased [69], which means many features may be added or removed in the future. Ethereum

can also be updated through hard fork [109]. The latest hard fork named Constantinople

will happen on the first half of 2019 [68]. Constantinople will add five new Ethereum Im-
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provement Proposals (EIPs) to ensure proof-of-work more energy efficient. Some new op-

codes will be added (e.g., CREATE2) and some opcodes will be modified (e.g., SSTORE).

This means some new contract defects may be created, or existing contract defects will be

modified. Thousands of new smart contracts may quickly be deployed to the blockchain.

The distribution of the contract defects on real-world smart contracts may change with new

developments of smart contract technology. Many new posts are uploaded to the StackEx-

change, and these posts can expose new contract defects. Our method can also be applied

to this situation, but it needs further effort.

3.8 Related Work

Atzei et al. [4] proposed the first systematic exposition survey on attacks on Ethereum

smart contracts. They introduce 12 kinds of security vulnerabilities from Solidity, EVM,

and Blockchain level. Besides, they also introduce some attacks, which can be used by the

attackers to make profits. The work claims that security vulnerabilities introduced in the

paper are obtained from academic literature, Internet blogs, discussion forums, and based

on authors’ practical experience on programming smart contracts. However, the paper does

not introduce the detailed steps of finding the vulnerability and does not validate whether

developers consider these vulnerabilities as harmful. Another difference with our work is

that our work does not only focus on the security aspect. Instead, we consider from security,

availability, performance, maintainability and reusability aspects.

Oyente [131, 132] is the first bug detection tool of smart contracts, which utilizes

symbolic execution to detect four security issues, i.e., mishandled exception, transaction-

ordering dependence, timestamp dependence and reentrancy attack. First, Oyente builds

a skeletal control flow graph for the input contracts. Then, they faithfully simulate EVM

code and execute the instructions to produce a set of symbolic traces. After that, Oyente

defines different patterns to check whether the tested contracts contain the security prob-
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lems or not. Oyente measured 19,366 existing Ethereum contracts and found 8,519 of them

contain the defined security problems.

Kalra et al. [113] found many false positives and false negatives in Oyente’s results.

They developed a tool called Zeus, an upgraded version of Oyente. Their tool feeds So-

lidity source code as input and translates them to LLVM bitcode. Zeus detects 7 security

issues, 4 of them are the same as Oyente and other 3 problems are unchecked send, Failed

send, Integer overflow/underflow. To evaluate their tool, Kalra crawled 1524 distinct smart

contracts from Etherscan [74], Etherchain [67] and EtherCamp [66] explorers. The result

indicates about 94.6% of contracts contain at least one security problem.

Jiang et al. [111] focus on 7 security vulnerabilities, i.e., Gasless Send, Exception Dis-

order, Reentrancy, Timestamp Dependency, Block Number Dependency, Dangerous Dele-

gateCall and Freezing Ether. They also developed a tool named ContractFuzzer to detect

these issues. Their tool consists of an offline EVM instrumentation tool and an online

fuzzing tool. Based on smart contract ABI, ContractFuzzer can automatically generate

fuzzing inputs to test the defined security issues. They tested 6,991 smart contracts and

found that 459 of them have vulnerabilities.

Nikolic [146] et al. focus on security issues that can lead to a contract not able to release

Ethers, can transfer Ethers to arbitrary addresses, or can be killed by anybody. Their tool,

MAIAN, takes as input data either Bytecode or source code. MAIAN contains two major

parts: symbolic analysis and concrete validation. Like Oyente, simulates an Ethereum

Virtual Machine, utilizes symbolic execution, and defines several execution rules to detect

these security issues. Their results were deduced from 970,898 smart contracts and found

that a total of 34,200 (2,365 distinct) contracts contain at least one of these three security

issues.

Gao [89] et al. designed a tool named SMARTEMBED, which detect bugs in smart con-

tracts by using a clone detection method. SMARTEMBED contains a training phase and a
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prediction phase. In the training phase, there are two kinds of dataset, i.e., source code

database and bug database. Source code database contains all the verified (open sourced)

smart contracts in the Etherscan. The bug database records the bugs of each smart contract

in their source code database. To build the prediction modle, SMARTEMBED first converts

each smart contract to an AST(abstract syntax tree). After normalizing the parameters and

irrelevant information on the AST, SMARTEMBED transfers the tree structure to a sequence

representation. Then, they use Fasttext [21] to transfer code to embedding matrices. Fi-

nally, they compute the similarity between the given smart contracts with contracts in their

database to find the clone contracts and clone related bugs.

We defined 20 contract defects from three different aspects. The above four papers

introduce some security problems while we focus on a broader problem coverage. We do

not just focus on security problems but help developers build better smart contracts. We also

define patterns to help developers increase software usability and architecture. While these

works show several security problems, but did not validate whether practitioners consider

these problems as harmful. Our work not only validated our defined defects by an online

survey, but also analysis their impacts and distribution, which can give a clear guidances

for developers.

3.9 Conclusion and Future work

We conducted the first empirical study to understand and characterize smart contract con-

tract defects. We first selected 4,141 warning related StackExchange posts from 17,128

posts. Then we manually analyzed these posts and defined 20 smart contract defects from

five aspects – security, availability, performance, maintainability and reusability problems.

To validate our defined contract defects, we created an online survey. The feedback from

our survey indicates our contract defects are important and addressing them can help de-

velopers improve the quality of their smart contracts. We analyzed the impacts for each
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contract defect and labeled 587 real-world smart contracts from Ethereum platform.

Two groups can benefit from this study. For smart contract developers, they can develop

more robust and better-designed smart contracts. The 5 impacts could help developers de-

cide the priority of removal. For software engineering researchers, our dataset can provide

ground truth for them to develop smart contract defect detection tools. We plan to develop

automated contract defect detection tools to detect these defined contract defects. We also

plan to extend our contract defect list and dataset, when more posts will be published in

StackExchange, and more features will be added into Solidity in the future.
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Chapter 4

DEFECTCHECKER: Automated Smart
Contract Defect Detection by Analyzing
EVM Bytecode

Chen, J., Xia, X., Lo, D., Grundy, J.C., Luo, X., Chen, T. DE-
FECTCHECKER: Automated Smart Contract Defect Detection by Analyzing
EVM Bytecode, to appear in IEEE Transactions on Software Engineering.
https://doi.org/10.1109/TSE.2021.3054928

Abstract: Smart contracts are Turing-complete programs running on the blockchain. They

are immutable and cannot be modified, even when bugs are detected. Therefore, ensuring

smart contracts are bug-free and well-designed before deploying them to the blockchain

is extremely important. A contract defect is an error, flaw or fault in a smart contract that

causes it to produce an incorrect or unexpected result, or to behave in unintended ways. De-

tecting and removing contract defects can avoid potential bugs and make programs more

robust. Our previous work defined 20 contract defects for smart contracts and divided them

into five impact levels. According to our classification, contract defects with seriousness

level between 1-3 can lead to unwanted behaviors, e.g., a contract being controlled by at-

tackers. In this paper, we propose DefectChecker, a symbolic execution-based approach

and tool to detect eight contract defects that can cause unwanted behaviors of smart con-

tracts on the Ethereum blockchain platform. DefectChecker can detect contract defects

from smart contracts’ bytecode. We verify the performance of DefectChecker by apply-

ing it to an open-source dataset. Our evaluation results show that DefectChecker obtains
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a high F-score (88.8% in the whole dataset) and only requires 0.15s to analyze one smart

contract on average. We also applied DefectChecker to 165,621 distinct smart contracts on

the Ethereum platform. We found that 25,815 of these smart contracts contain at least one

of the contract defects that belongs to impact level 1-3, including some real-world attacks.

4.1 Introduction

In recent years, decentralized cryptocurrencies have attracted considerable interest. To

ensure these systems are scalable and secure without the governance of a centralized or-

ganization, decentralized cryptocurrencies adopt the blockchain concept as their under-

lying technology. Bitcoin[141] was the first digital currency, and it allows users to en-

code scripts for processing transactions automatically. However, scripts in Bitcoin are not

Turing-complete, which restricts their application to currencies, such as money transfer or

payment. To address this limitation, Ethereum [212] leverages a technology named Smart

Contracts, which are Turing-complete programs that run on the blockchain. By utilizing

this technology, practitioners can develop decentralized applications (DApps) [205] and

apply blockchain techniques to different fields such as gaming [53] and finance [72].

Smart contracts are usually developed using a high-level programming language, such

as Solidity [173]. When developers deploy a smart contract to Ethereum, the contract will

first be compiled into Ethereum Virtual Machine (EVM) bytecode. Then, each node on

the Ethereum system will receive the smart contract bytecode and have a copy in their

ledger. Anyone, even attackers, can invoke the smart contract by sending transactions to

the corresponding contract address.

Key features of smart contracts make them become attractive targets for hackers. On the

one hand, many smart contracts hold valuable Ethers, and they cannot hide their balance,

which gives financial motivation for attacks by hackers [43, 41]. On the other hand, smart

contracts run in a permission-less network, which means hackers can check all the transac-
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tions and bytecode freely, and try to find bugs on the contracts. Even worse, smart contracts

cannot be modified, even when bugs are detected. Therefore, ensuring smart contracts are

bug-free and well-designed before deploying them to Ethereum is extremely important.

A contract defect [107, 31] is an error, flaw, or fault in a smart contract that causes it

to produce an incorrect or unexpected result, or to behave in unintended ways [46]. The

detection and removal of contract defects is a method to avoid potential bugs and improve

the design of existing code. In our previous work [31], we first defined 20 contract defects

by analyzing StackExchange [175] posts. It is also the first work that used an online survey

to validate whether smart contract developers consider these contract defects as harmful,

which make the definitions more persuasive. The work divided the defined 20 contract

defects into five impact levels and showed that smart contracts contain defects with impact

levels 1 to 3 can lead to unwanted behaviors, e.g., contracts being controlled by attackers.

However, our previous work did not propose a suitable tool that could detect these

contract defects. To address this limitation, in this paper, we propose DefectChecker to

detect eight contract defects defined in our previous work that belong to serious impact

level 1 (high) to level 3 (medium), by using the bytecode of smart contracts. DefectChecker

symbolically executes the smart contract through bytecode, and without the needs of source

code. During the symbolic execution, DefectChecker generates the CFG of smart contracts,

as well as the “stack event", and identifies three features, i.e., “Money Call", “Loop Block",

and “Payable Function". By using the CFG, stack event, and the three features, we design

eight rules to detect each contract defect.

We verify the performance of DefectChecker by applying it to an open-source dataset

developed in our previous work [31]. We also compare its results with those of three state-

of-the-art tools, i.e., Oyente, Mythril and Securify. Our evaluation results show that De-

fectChecker obtains the highest F-score (88.8% in the whole dataset) and requires the least

time (0.15s per contract) to analyze one smart contract compared to these other baseline
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tools. We also crawled all of the bytecode of smart contracts deployed on Ethereum by Jan.

2019 and applied DefectChecker to these 165,621 distinct bytecode smart contracts. We

found that 15.9% of smart contracts on Ethereum contain at least one of contract defects

(the severity level 1 to 3 ) using DefectChecker.

The main contributions of this work are:

• To the best of our knowledge, DefectChecker is the most accurate and the fastest

symbolic execution-based model for smart contract defects detection.

• We systematically evaluated our tool using an open source dataset to test its per-

formance. In addition, we crawled all of the bytecode (165,621) on the Ethereum

platform by the time of writing the paper and identified 25,815 smart contracts that

contain at least one contract defect. Using these results, we find some real-world

attacks, and give examples to show the importance of detecting contract defects.

• Our datasets, tool and analysis results have been released to the community at

https://github.com/Jiachi-Chen/DefectChecker/.

The organization of the rest of this paper is as follows. In Section 5.2, we provide back-

ground knowledge of smart contracts and introduce eight contract defects with code exam-

ples. Then, we introduce the architecture of DEFECTCHECKER in Section 5.3 and present

its evaluation in Section 5.4. We conduct a large scale evaluation based on Ethereum smart

contracts in Section 5.5 and give two real-world attacks as case studies. In section 5.6,

we introduce the related works. Finally, we conclude the study and discuss possible future

work in Section 5.7.

4.2 Background and Motivation

In this section, we briefly introduce key background information about smart contracts and

their contract defects.
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4.2.1 Smart Contracts

Contracts. Leveraging blockchain techniques, smart contracts are autonomous protocols

stored on the blockchain. Once started, the running of a contract is automatic and it runs

according to the program logic defined beforehand [40]. When developers deploy a smart

contract to Ethereum, the contract will be compiled to EVM bytecode and identified by a

unique 160-bit hexadecimal hash contract address. The smart contract execution depends

on their code, and even the creator cannot affect its running or state. For example, if a

contract does not contain functions for Ether transfer, even the creator cannot withdraw

the Ethers. Smart contracts run on a permission-less network. Anyone can invoke the

methods of smart contracts through ABI (Application Binary Interface) [173]. The contract

bytecode, transactions, and invocation parameters are visible to everyone.

Gas System. To ensure the security of smart contracts, each transaction of a smart contract

will be run by all miners. Ethereum uses the gas system [84] to measure its computational

effort, and the developers who send transactions to invoke smart contracts need to pay an

execution fee. The execution fee is computed by: gas_cost⇥gas_price. Gas cost depends

on the computational resource that takes by the execution and gas price is offered by the

transaction creators. To limit gas cost, when developers send their transactions to invoke

contracts, they will set the Gas Limit which determines the maximum gas cost. If the gas

cost of a transaction exceeds its Gas Limit, the execution will fail and throw an out-of-gas

error [212]. There are some special operations which will limit the Gas Limit to a specific

value. For example, address.transfer() and address.send() are two methods provided by

Ethereum that are used to send Ethers. If a smart contract uses these methods to send

Ethers to another smart contract, the Gas Limit will be restricted to 2300 gas units [173].

2300 gas units are not enough to write to storage, call functions or send Ethers, which

can lead to the failure of transactions. Therefore, address.transfer() and address.send() can

only be used to send Ethers to external owned accounts (EOA). (There are two types of
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accounts on Ethereum: externally owned accounts which controlled by private keys, and

contract accounts which controlled by their contract code [212].)

Ethereum Virtual Machine (EVM). To deploy a smart contract to Ethereum, its source

code needs to be compiled to bytecode and stored on the blockchain. EVM is a stack-based

machine; when a transaction needs to be executed, EVM will first split bytecode into bytes;

each byte represents a unique instruction called opcode. There are 140 unique opcodes by

April 2019 [212], and each opcode is represented by a hexadecimal number [212]. EVM

uses these opcodes to execute the task. For example, consider a bytecode 0x6070604001.

EVM first splits this bytecode into bytes (0x60, 0x70, 0x60, 0x40, 0x01), and executes

the first byte 0x60, which refers to opcode PUSH1. PUSH1 pushes one byte data to EVM

stack. Therefore, 0x70 is pushed to the stack. Then, EVM reads the next 0x60 and push

0x40 into the stack. Finally, EVM executes 0x01, which refers to opcode ADD. ADD

obtains the next two values from the top of the stack, i.e., 0x70 and 0x40, and put their sum

(B0), a hex result into the stack.

EVM Bytecode v.s. JVM Bytecode in Control Flow Analysis. Control flow analysis

methods have been widely used in other stack-based machines, e.g., JVM [189]. How-

ever, there are many differences in analyzing the control flow of Java bytecode and EVM

bytecode. These differences present some new challenges in analyzing EVM bytecode.

We highlight the key differences between EVM bytecode analysis method we used in this

paper and JVM bytecode analysis. These include:

(1) JVM bytecode has a fixed stack depth under different control-flow paths. The exe-

cution of JVM cannot reach the same program point with different stack sizes [95]. There

are no such constraints for EVM bytecode, which greatly increases the difficulty of iden-

tifying the control-flow constructs in EVM bytecode. For example, for a simple recursive

code “function f(int a)f(a);". The code will be compiled in EVM as:
1 Block 1 :
2 JUMPDEST
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3 PUSH Block1 ’ ID
4 DUP2
5 PUSH Block2 ’ ID
6 JUMP
7 Block 2 :
8 JUMPDEST

There are two blocks; two block identifiers are pushed in the same block (block 1)

and will be read by the same instruction (JUMP). The difference between the JVM and

EVM is that the JVM creates a new frame [155] with a new operand stack for each method

call, whereas the EVM just has one global operand stack. (A frame is used to store data

and partial results, as well as to perform dynamic linking, return values for methods, and

dispatch exceptions.)

(2) JVM bytecode has a clearly defined set of targets for each jump [39]. In contrast,

the jump target for EVM bytecode is read from the EVM stack. When a conditional jump

is used, the target will be affected by the second stack item. For example, in Figure 2,

the jump target of JUMPI (ID 140) is read from previous instruction PUSH and will be

affected by the second stack item, i.e., ISZERO(GT(10, num)) (details see Section 5.3.3). If

the second item refers to a true value. The jump target is 148; otherwise, the target is 141.

The unconditional jump target is also read from the top of the EVM stack. For example,

the jump target of JUMP (ID 147) in Figure 2 is also read from the previous instruction

PUSH. Therefore, we need to symbolically execute the EVM bytecode to construct the

control-flow edges.

(3) JVM bytecode has well-defined method invocation and return instructions [95]. In

contrast, EVM bytecode uses jumps to perform its intra-contract function calls. In this

case, to resolve an intra-contract function call, we need to inspect the top stack element to

determine the jump target. For example, there are two functions A and B. Function A con-

tains three blocks, e.g., A1, A2, A3; function B contains two blocks, e.g., B1, B2. The code

on block A2 calls function B. In EVM bytecode, there is no defined method invocation and
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return instructions. Instead, the code pushes the return address to the stack; the arguments

and jump target (block identifier of B1) need to be identified through bytecode. To return,

the code pops the caller’s block identifier (A3) and jumps to execute the block. Thus, the

execution sequences are A1, A2, B1, B2, A3. The identifiers of B1 and A3 should be

obtained from bytecode through symbolic execution.

The Fallback Function. The fallback function is a unique feature of smart contracts com-

pared to traditional programs. An example can be found at Line 13 of Listing 5.4, which

is the only unnamed function in smart contracts programming [173]. The fallback function

does not have any arguments or return values. It will be executed automatically on a call to

the contract if none of the functions match the given function identifier [173]. For exam-

ple, if a transaction calls function ‘A’ of the contract, and there is no function named ‘A’,

then the fallback function will automatically be executed to handle the erroneous function

invocation. If the function is marked by payable [173], the fallback function will also be

executed automatically when receiving Ethers.

The Call Instruction and Ether Transfer. Ether transfer is an important feature on

Ethereum. In Solidity programming, there are three methods to transfer Ethers, i.e., ad-

dress.call.value(), address.transfer(), and address.send(). Among these three methods,

only address.call.value() allows users to send Ethers to a contract address, as the other two

methods are limited to 2300 gas units, which are not enough to send Ethers. address.send()

returns a boolean value, while address.transfer() throws an exception when errors happen

and returns nothing. All of these three methods can generate a CALL instruction in con-

tract bytecode. Other behaviors, e.g., function call, can also generate CALL instructions.

A CALL instruction reads seven values from the top of EVM stack. They represent the

gas limitation, recipient address, transfer amount, input data start position, size of the input

data, output data start position, size of the output data, respectively.
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4.2.2 Contract Defects in Smart Contracts

Our previous work [31] defined 20 contract defects for smart contracts. We divided these

contract defects into five “impact" levels; among these contract defects, 11 belong to impact

level one (most serious) to three (low seriousness) that might lead to unwanted behaviors.

The definition of these 11 contract defects is given in Table 4.1. In this paper, we propose

DefectChecker, a symbolic execution tool to detect eight of these impact level one to three

contract defects. DefectChecker does not detect contract defects belonging to levels 4 and 5,

as these contract defects will not affect the normal running of the smart contracts according

to the definition. For example, Unspecified Compiler Version is one of the level 5 smart

contract defects. The removal of the contract defects requires the developer of the contract

to use a specific compiler like 0.4.25. This contract defect will not affect the normal running

of the contract and will only pose a threat for code reuse in the future. This kind of contract

defect is also difficult to detect at the bytecode level as much semantic information is lost

after compilation.

However, please note that in this work, we do not consider three of the contract defects

that belong to impact level 1 to 3 – Unmatched Type Assignment, Hard Code Address and

Misleading Data Location, as they are not easy to detect at bytecode level. Our analysis

shows that they appear 22, 84, and 1 times among 587 smart contacts, respectively. EVM

will remove or add some information when compiling smart contracts to bytecode, which

may cover up these taints on the source contract code. For Hard Code Address, the byte-

code we obtain from the blockchain does not contain information on the construct function,

while we found most Hard Code Address errors appear in construct functions. To detect

Unmatched Type Assignment, we need to know the maximum loop iterations, which is

usually read from storage, and is not easy to obtain the value through static analysis. For

example, for a loop “for(uint8 i = 0; i < num; i++)", the data range of uint8 is from 0 to

255. Thus, if num is larger than 255, the loop will overflow. However, num is usually a
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Table 4.1: The Definitions of contract defects with Impact level 1-3. The first eight contract
defects can be detected by DefectChecker.

Contract Defect Definition Impact
Level

Transaction State De-
pendency (TSD)

Using tx.origin to check the permission. IP1

DoS Under External In-
fluence (DuEI)

Throwing exceptions inside a loop which can be in-
fluenced by external users

IP2

Strict Balance Equality
(SBE)

Using strict balance quality to determine the execute
logic.

IP2

Reentrancy (RE) The re-entrancy bugs. IP1
Nested Call (NC) Executing CALL instruction inside an unlimited-

length loop.
IP2

Greedy Contract (GC) A contract can receive Ethers but can not withdraw
Ethers.

IP3

Unchecked External
Calls (UEC)

Do not check the return value of external call func-
tions.

IP3

Block Info Dependency
(BID)

Using block information related functions to deter-
mine the execute logic.

IP3

Unmatched Type Assign-
ment

Assigning unmatched type to a value, which can lead
to integer overflow

IP2

Misleading Data Loca-
tion

The reference types of local variables with struct,
array or mapping do not clarify

IP2

Hard Code Address Using hard code address inside smart contracts. IP3

storage variable which is read from storage or depends on an external input. Thus, it is dif-

ficult to detect this through bytecode analysis. Misleading Data Location is also not easy

to detect from bytecode. In Solidity programming, storage in Solidity is not dynamically

allocated and the type of struct, array or mapping are maintained on the storage. Thus,

these three types created inside a function can point to the storage slot 0 by default, which

can lead to potential bugs. However, we cannot know whether the point on slot 0 is correct

or a mistake made by EVM.
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4.2.2.1 Definition of Impact Levels

Below we give representative concrete examples of each of the eight smart contract defects,

and introduce the definition of impact level one to three according to our previous work.

• Impact 1 (IP1): Smart contracts containing these contract defects can lead to critical

unwanted behaviors. Unwanted behaviors can be triggered by attackers, and they can

make profits by utilizing the defects.

• Impact 2 (IP2): Smart contracts containing these contract defects can lead to critical

unwanted behaviors. Unwanted behaviors can be triggered by attackers, but they

cannot make profits by utilizing the defects.

• Impact 3 (IP3): There are two types of IP3. Type A: Smart contracts containing

these contract defects can lead to critical unwanted behaviors, but unwanted behav-

iors cannot be triggered by attackers. Type B: Smart contracts containing these con-

tract defects can lead to major unwanted behaviors. The unwanted behaviors can be

triggered by attackers, but they cannot make profits by utilizing the defects.

Critical represents contract defects, which can lead to a crash, being controlled by at-

tackers, or can lose all the Ethers. Major represents the contract defects that can lead to the

loss of a part of the Ethers [31].

4.2.2.2 Examples of Smart Contract Defects

1 c o n t r a c t Vic t im { . . .
2 a d d r e s s owner = o w n e r _ a d d r e s s ;
3 f u n c t i o n sendMoney ( a d d r e s s add r ) {
4 r e q u i r e ( t x . o r i g i n == owner ) ;
5 add r . t r a n s f e r (1 E t h e r ) ;
6 }
7 }
8 c o n t r a c t A t t a c k e r { . . .
9 f u n c t i o n a t t a c k ( a d d r e s s vim_addr , a d d r e s s myAddr ) {

10 Vic t im v i c = Vic t im ( vim_addr ) ;
11 v i c . sendMoney ( myAddr ) ;
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12 }
13 }

Listing 4.1: Transaction State Dependency

(1). Transaction State Dependency (TSD): Contracts need to check whether the caller

has the right permission for some permission sensitive functions. The failure of the per-

mission check can cause serious consequences. tx.origin can get the original address of the

transaction, but this method is not reliable as the address returned by this method depends

on the transaction state. Therefore, tx.origin should not be used to check whether the caller

has permission to execute functions.

Example: In Listing 5.1, The Attacker contract can make a permission check fail by

utilizing the attack function (Line 9). By utilizing this method, anyone can execute send-

Money function (Line 3) and withdraw the Ethers in the contract.

Possible Solution: Solidity provides msg.sender to obtain the sender address, which

can be used to check permissions instead of using tx.origin.

(2). DoS under External Influence (DuEI): Smart contracts will rollback a transaction

if exceptions are detected during their running. If the error that leads to the exception cannot

be fixed, the function will give a denial of service (DoS) error perpetually.

Example: Listing 5.2 shows such an example. Here, members is an array which stores

many addresses. However, one of the address is an attacker contract, and the transfer

function can trigger an out-of-gas exception due to the 2300 gas limitation [212]. Then,

the contract state will rollback. Since the code cannot be modified, the contract can not

remove the attack address from members list, which means that if the attacker does not

stop attacking, the following function cannot work anymore.

Possible Solution: Developers can use a boolean value check instead of throwing ex-

ceptions in the loop. For example, using “if(members[i].send(0.1 ether) == false) break;"

instead of line 3 in listing 5.2.
1 f o r ( u i n t i = 0 ; i < members . l e n g t h ; i ++) {
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2 i f ( t h i s . b a l a n c e > 0 . 1 e t h e r )
3 members [ i ] . t r a n s f e r ( 0 . 1 e t h e r ) ;
4 }

Listing 4.2: DoS under External Influence

(3). Strict Balance Equality (SBE): Attackers can send Ethers to any contracts forcibly

by utilizing selfdestruct() [173]. This method will not trigger the fallback function, which

means the victim contract cannot reject the Ethers. Therefore, smart contract logic may fail

to work due to the unexpected Ethers sent by attackers.

Example: The doingSomething() function in listing 5.3 can only be triggered when the

balance strict equal to 1 ETH. However, the attacker can send 1 Wei (1 ETH = 1e18 Wei)

to the contract to make the balance never equal to 1 ETH.

Possible Solution: The contract can use “�" to replace “==" as attackers can only add

to the amount of a balance. In this case, it is difficult for the attackers to affect the logic of

the program.
1 i f ( t h i s . b a l a n c e == 1 e t h ) do ingSometh ing ( ) ;

Listing 4.3: Strict Balance Equality:

(4). Reentrancy (RE): In Ethereum, a function can be executed several times in one

execution by using the Call method. When a contract calls another, the execution waits

for the call to finish [131]. Thus, it can lead to multiple invocations and money transfer in

some situations.

Example: Listing 5.4 shows an example of a reentrancy defect. There are two smart

contracts, i.e., Victim contract and Attacker contract. The Attacker contract is used to trans-

fer Ethers from Victim contract, and the Victim contract can be regarded as a bank, which

stores the Ethers of users. Users can withdraw their Ethers by invoking withdraw() func-

tion, which contains Reentrancy defects.

First, the Attacker contract uses the reentrancy() function (L16) to invoke Victim con-

tract’s withdraw() function in line 3. The addr in line 16 is the address of the Victim con-
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tract. Normally, the Victim contract sends Ethers to the callee in line 6, and resets callee’s

balance to 0 in line 7. However, the Victim contract sends Ethers to the Attacker contract

before resetting the balance to 0. When the Victim contract sends Ethers to the Attacker

contract (L6), the fallback function (L13) of the Attacker contract will be invoked automat-

ically, and then invoking the withdraw() function (L14) again. The invoking sequence in

this example is: L16-17 ! L3-6 ! L13-14 ! L3-6 ! L13-14 · · · , until Ethers run out.

Possible Solution: There are 3 kinds of Call methods that can be used to send Ethers in

Ethereum, i.e., address.send(), address.transfer(), and address.call.value(). address.send()

and address.transfer() will change the maximum gas limitation to 2300 gas units if the

recipient is a contract account. 2300 gas units are not enough to transfer Ethers, which

means address.send() and address.transfer() cannot lead to Reentrancy. Therefore, using

address.send() and address.transfer() instead address.call.value() can avoid Reentrancy.
1 c o n t r a c t Vic t im { . . .
2 mapping ( a d d r e s s => u i n t ) p u b l i c u s e r B a l a n c e ;
3 f u n c t i o n wi thdraw ( ) {
4 u i n t amount = u s e r B a l a n c e [ msg . s e n d e r ] ;
5 i f ( amount > 0) {
6 msg . s e n d e r . c a l l . v a l u e ( amount ) ( ) ;
7 u s e r B a l a n c e [ msg . s e n d e r ] = 0 ;
8 }
9 }

10 . . .
11 }
12 c o n t r a c t A t t a c k e r { . . .
13 f u n c t i o n ( ) p a y a b l e {
14 Vic t im ( msg . s e n d e r ) . wi thdraw ( ) ;
15 }
16 f u n c t i o n r e e n t r a n c y ( a d d r e s s add r ) {
17 Vic t im ( add r ) . wi thdraw ( ) ;
18 }
19 . . .
20 }

Listing 4.4: Reentrancy

1 f o r ( u i n t i = 0 ; i < member . l e n g t h ; i ++) {
2 member [ i ] . send (1 wei ) ;
3 }

Listing 4.5: Nested Call
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(5). Nested Call (NC): Instruction CALL is very expensive (9000 gas paid for a non-

zero value transfer as part of the CALL operation) [212]. If a loop contains the CALL

instruction but does not limit the loop iterations, the total gas cost may have a high risk to

exceed its gas limitation.

Example: In listing 5.5, if we do not limit the loop iterations, attackers can maliciously

increase its size to cause an out-of-gas error. Once the out-of-gas error happens, this func-

tion cannot work anymore, as there is no way to reduce the loop iterations.

Possible Solution: Developers should estimate the maximum loop iterations and limit

the loop iterations.

(6). Greedy Contract (GC): Ethers on smart contracts can only be withdrawn by send-

ing Ethers to other accounts or using selfdestruct function. Otherwise, even the creators of

the smart contracts cannot withdraw the Ethers and Ethers will be locked forever. We de-

fine that a contract is a greedy contract if the contract can receive Ethers (contains payable

functions) but there is no way to withdraw the Ethers.

Example: Listing 5.6 is a greedy contract. The contract is able to receive Ethers as it

contains a payable fallback function in line 2. However, the contract does not contain any

methods to transfer money to others. Therefore, the Ethers on the contract will be locked

forever.

Possible Solution: Adding a function to withdraw Ethers if the contract can receive

Ethers.
1 C o n t r a c t Greedy {
2 f u n c t i o n ( ) p a y a b l e {
3 p r o c e s s ( msg . s e n d e r ) ;
4 }
5 f u n c t i o n p r o c e s s ( a d d r e s s add r ) { . . . }
6 }

Listing 4.6: Greedy Contract

(7). Unchecked External Call (UEC): Solidity provides many functions (address.send(),

address.call()) to transfer Ethers or call functions between contracts. However, these call-
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related methods can fail, e.g., have a network error or run out of gas. When errors happen,

these functions will return a boolean value but never throw an exception. If the callers do

not check the return values of the external calls, they cannot ensure whether the logic of

the following code snippets is correct.

Example: Listing 5.7 shows such an example. Line 1 does not check the return value of

the address.send(). As the Ether transfer can sometimes fail, line 1 cannot ensure whether

the logic of the following code is correct.

Possible Solution: Always checking the return value of the address.send() and ad-

dress.call().
1 a d d r e s s . send ( e t h e r s ) ; do ingSometh ing ( ) ; / / bad
2 i f ( a d d r e s s . send ( e t h e r s ) ) do ingSometh ing ( ) ; / / good

Listing 4.7: Unchecked External Call

(8). Block Info Dependency (BID): Developers can utilize a series of block related

functions to obtain block information. For example, block.blockhash is used to obtain the

hash number of the current block. Many smart contracts rely on these functions to decide

a program’s execution, e.g., generating random numbers. However, miners can influence

block information, e.g, miners can vary the block time stamp by roughly 900 seconds [131].

In this case, the block info dependency operation can be controlled by miners to some

extent.

Example: The contract in listing 5.8 is a code snippet of a roulette contract. The

contract utilizes block hash number to select a winner, and send winner one Ether as bonus.

However, the miner can control the result. So, the miner can always be the winner.

Possible Solution: The precondition of a safe random number is that the random num-

ber cannot be controlled by a single person, e.g., a miner. The completely random infor-

mation we can use in Ethereum includes users’ addresses, users’ input numbers and so on.

Also, it is important to hide the values used by the contract for other players to avoid at-

tacks. Since we cannot hide the address of users and their submitted values on Ethereum,
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a possible solution to generate random numbers without using block related functions is

using a hash number. The algorithm has three rounds:

Round 1: Users obtain a random number and generate a hash value in their local ma-

chine. The hash value can be obtained by keccak256 function, which is a function provided

by Ethereum. After obtaining the random number, users submit the hash number.

Round 2: After all the users submit the hash number, users are required to submit the

original random number. The contract checks whether the original number can generate

the same hash number by using the same keccak256 function.

Round 3: If all users submit correct original numbers, the contract can use the original

numbers to generate a random number.
1 a d d r e s s [ ] p a r t i c i p a t o r s ;
2 u i n t winnerID = u i n t ( b l o c k . b l o c k h a s h ) % p a r t i c i p a t o r s . l e n g t h
3 p a r t i c i p a t o r s [ winnerID ] . t r a n s f e r (1 e t h s ) ;

Listing 4.8: Block Info Dependency:

4.3 The DefectChecker Approach

4.3.1 Design Overview

Figure 4.1 depicts an overview architecture of the DefectChecker approach. There are four

components of DefectChecker, i.e., Inputter, CFG Builder, Feature Detector, and Defect

Identifier.

The left part of the figure is the Inputter, and users can feed bytecode as input. Solidity

source code is also allowed, but it needs to be compiled into bytecode. Bytecode is then

disassembled into opcodes by utilizing API provides by Geth [70]. Then, DefectChecker

splits opcode into several basic blocks and symbolically executes instructions in each block.

After that, DefectChecker generates the CFG (control flow graph) of a smart contract and

records all stack events. During symbolic execution, Feature Detector detects three fea-

tures (i.e., Money Call, Loop Block and Payable Function), all concepts introduced below.
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Figure 4.1: Overview architecture of DefectChecker

Based on this information, Defect Identifier uses eight different rules to identify the contract

defects on smart contracts.

Detecting contract defects by bytecode is very important for smart contracts on

Ethereum. All the bytecode of smart contracts are stored on the blockchain, but only

less than 1% of smart contracts have opened their source code [42]. Smart contracts

usually call other contracts, but the callee contracts may not open their source code for

inspection. In such a case, the caller smart contracts can only detect whether the callee

contract is secure through their bytecode.

4.3.2 Basic Block Builder

A basic block is a straight-line code sequence with no branches in except to the entry and

no branches out except at the exit [37]. We first split the opcode into several blocks and

give a type of the block according to its exit type. The exit type can be determined by the

last instruction on a block. If the last instruction is JUMP or JUMPI, the block type is

unconditional or conditional, respectively. If the last instruction is a terminal instruction

(STOP, REVERT and RETURN), the block type is terminal. Some blocks belong to none
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of these three types, we call their block type as fall. In summary, we consider four types of

blocks: unconditional, conditional, fall, and terminal.

4.3.3 Symbolic Execution

Unlike other stack-based machines, e.g., JVM where Java bytecode has a clearly-defined

set of targets for every jump, the jump position of EVM bytecode needs to be calculated

during symbolic execution. Thus, DefectChecker needs to symbolically execute each single

EVM instruction one at a time to obtain the CFG for smart contracts. EVM is a stack-based

machine – when executing an instruction, it reads several symbolic states from the top of

the EVM stack and put the symbolic result back to the EVM stack. During the symbolic

execution, we can obtain the jump relations between blocks. There are three types of

block according to the jump behaviors, i.e., conditional jump, unconditional jump and fall

execution. Stack Event records all symbolic states on the EVM stack after the execution of

each instruction.
1 f u n c t i o n example ( u i n t num ) r e t u r n s ( u i n t ) {
2 i f ( num > 10)
3 r e t u r n 1 ;
4 e l s e {
5 r e t u r n 0 ;
6 }
7 }

Listing 4.9: Code of Figure 2

Figure 4.2 is an example of the symbolic execution of the code in Listing 5.9. There

are 4 blocks in this figure, and each block contains several instructions. The instructions

in block 1 represent the code if(num >10). The block 2 and block 3 put the value (0 or 1)

to the EVM stack, respectively. The instructions in block 4 are used to return the value(0

or 1) to the environment. The left-most number in each line indicates instructions’ index

ID, and the center part is the instruction that needs to be executed. All the instructions will

execute sequentially according to their index ID. If the instruction is ‘PUSH’, the right-

most part will have a value that pushes into EVM stack. There is a Program Counter (PC)
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Block 1
130 JUMPDEST
131 PUSH1 0
133 PUSH1 10
135 DUP3
136 GT
137 ISZERO

EVM Stack
* num
* num, 0
* num, 0, 10

* num, 0, GT(10, num)
* num, 0, 10, num

* num, 0, ISZERO(GT(10, num))

138 PUSH1 148 * num, 0, ISZERO(GT(10, num))
, 148

140 JUMPI * num, 0

Block 3
141 PUSH1 1
143 SWAP
144 POP
145 PUSH1 153

EVM Stack
* num, 0, 1
* num, 1, 0
* num, 1
* num, 1, 153

147 JUMP * num, 1

Block 2
148 JUMPDEST
149 PUSH1 0
151 SWAP1
152 POP

EVM Stack
* num, 0
* num, 0, 0
* num, 0, 0
* num, 0

Block 4
153 JUMPDEST

…

EVM Stack

158 STOP

* num, 1 or 0

If(ISZERO(GT(10, num))
== 1)

If (ISZERO(GT(10, num)) == 0)Conditional

Fall

Unconditional
Fall

return 0

if(num > 10)

return 1

Figure 4.2: Example of Symbolic Execution
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that records the ID that being executed at the current time. The PC starts from ID 0 in block

1, and EVM executes this instruction.

The example shown in Figure 4.2 is a part of the code of a contract, so the PC starts

from index ID 130 in block 1. Before EVM executes the instruction JUMPDEST, there is a

symbol num in the EVM stack. The symbol num represents the input value of the function

(L1 of Listing 5.9). JUMPDEST marks a valid destination for jumps; it does not read or

push any values. So the PC points to ID 131, and EVM pushes a value 0 to EVM stack.

Then, ‘10’ is pushed into EVM stack and PC point to 135. DUP3 duplicates the 3rd stack

item. Therefore, the symbol num is pushed into EVM stack. GT reads two values from

the EVM stack. If the first value (at the top of the stack) is greater than the second value,

than EVM push 1 into the stack; otherwise, 0 is pushed. We use a symbol GT(a, num) to

represent the result and push the result into the EVM stack. Then, ISZERO reads a value

from the top of the EVM stack. ISZERO reads one value from EVM. If the value equal to

zero, then we push 1 into stack; otherwise, we push 0. We use a symbol ISZERO(GT(a,

num)) to represent the result and push the result into the EVM stack. JUMPI (ID 140)

reads two values from the stack, the first value represents the jump position ‘148’, and the

second value is a conditional expression. If the result of the conditional expression is “1"

(true), the the PC jumps to the index ID 148, which indicates the start position of block

2. Otherwise, if the result is “0" (false), the EVM falls to execute the following index ID

141(the start position of Block 3).

Since the result of ISZERO(GT(a, num)) can be “0" or “1", this symbolic execution can

generate two paths, i.e., Block 1 ! Block 2 and Block 1! Block 3.

We first assume the result of ISZERO(GT(a, num)) is “1" and the path is Block 1 ->Bock

2. In this case, the PC points to the ID 148. The jump type of this path is conditional jump.

After executing the instructions on ID 148-152, the EVM falls to execute block 4. The

jump type from block 2 to block 4 is fall. When executing the first instruction of the block
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Table 4.2: The Information Required to Detect Each Contract Defect

Contract Defect Control Flow Information Symbolic State
Transaction State Dependency (TSD) X
DoS Under External Influence (DuEI) X X

Strict Balance Equality (SBE) X X
Reentrancy (RE) X X
Nested Call (NC) X X

Greedy Contract (GC) X X
Unchecked External Calls (UEC) X

Block Info Dependency (BID) X

4, the EVM stack holds two values, i.e., num and 0. Block 4 then returns the value 0 to the

environment and uses instruction STOP to finish the execution.

We then assume the result of ISZERO(GT(a, num)) is “0" and the path is Block 1 -

>Bock 3. In this case, the PC points to the ID 141. The jump type of this path is fall

execution. JUMP refers to an unconditional jump; it reads one value from the top of the

stack. The value reads by JUMP in ID 147 is ‘153’. After executing the instructions on ID

141-147, the EVM then jumps to execute block 4. The jump type from block 3 to block

4 is an unconditional jump. When executing the first instruction of the block 4, the EVM

stack holds two values, i.e., num and 1. Block 4 then returns the value 1 to the environment

and uses instruction STOP to finish the execution.

When executing a conditional jump, we should determine the satisfiability of the con-

ditional expression, which is typically realized by invoking an SMT (satisfiability modulo

theories) solver [8], e.g., Z3 [55]. If the SMT solver cannot find a solution, we consider the

corresponding program path as infeasible. Therefore, symbolic execution can be used to

discover dead code. However, there may be little dead code in EVM bytecode, because the

compiler can eliminate dead code during the compilation of smart contracts. To accelerate

our analysis, we consider the conditional expression, which is equal to “0” as unsatisfiable

and all other conditional expressions as satisfiable, without checking their satisfiability.

147



4.3.4 Feature Detector

To detect contract defects at the bytecode level, we need to identify some specific behaviors

from their opcodes. In this part, we introduce three features that we use when detecting

contract defects.

4.3.4.1 Money Call

To detect Reentrancy, we need to identify whether a smart contract can transfer Ethers to

other contracts. Ethereum provides three methods to transfer Ethers, i.e., address.send(),

address.transfer(), address.call().value(). All of these three methods generate a CALL in-

struction. However, only detecting the CALL instruction is not enough, as many other

behaviors can also generate CALL instruction, e.g., calling functions on other contracts or

library. In this paper, if a CALL instruction is generated by functions which are used to

transfer Ethers, we call this CALL instruction a Money-CALL. Otherwise, the CALL in-

struction is a No-Money-CALL. CALL reads seven values from EVM stack. The first three

values represent the gas limitation, recipient address, transfer amounts, respectively. If the

transfer amount is larger than 0, the CALL instruction is a Money-CALL.

However, only detecting Money-CALL is still not enough, as address.send() and ad-

dress.transfer() will limit the maximum gas consumption to 2300, which is not enough to

send Ethers. Therefore, these two methods also cannot cause Reentrancy. If the CALL

instruction is generated by address.send() and address.transfer(), a specific number “2300"

will be pushed into EVM stack, which represented the maximum gas consumption. So, if

CALL instruction reads a specific number “2300" from the EVM stack, the CALL instruc-

tion is generated by address.send() and address.transfer(). We call this CALL instruction

a Gas-Limited-Money-CALL. Otherwise, if the first value read by CALL instruction does

not contain a specific value “2300", we assume that the CALL instruction is generated by

address.call().value(). We call this CALL instruction a Gas-Unlimited-Money-CALL.
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4.3.4.2 Loop Block

After constructing the CFG, we need to detect which block is the start of a loop and which

blocks make up the body of the loop. To detect this information, we first traverse the path

of the CFG by utilizing DFS (Depth-first-search) [180] and then flag all blocks we visit.

If there is a block that has been visited, this block is the start of a loop, and other blocks

in this cycle are the loop bodies. Since some smart contracts are very complicated, it may

contain a large number of paths. To reduce the computational effort, we use the strategy

of pruning. For example, block A is the destination of many other blocks, and we find the

path of block A does not contain any cycles. We do not need to visit the remaining paths

when other paths encounter block A.

4.3.4.3 Payable Function

A smart contract can receive Ethers only if it contains payable functions [212]. To detect

whether a function is payable or not, we can inspect the first block of each function. CAL-

LVALUE instruction is used to get the received Ether amount. If a smart contract receives

Ethers, CALLVALUE instruction will get a non-zero value. This value can be checked by

the ISZERO instruction to know whether a transaction contains Ethers. If the function is

not payable, when receiving Ethers, it will throw an exception and terminate the execution.

To find the first block, we first rank all instructions by their index ID. All conditional

jumps positioned before the first JUMPDEST instruction are the start position of each

function. EVM uses a hash value to identity functions; when EVM receives a function

call, it first compares the received value to each function’s hash value. If a function’s hash

value is equal to the received hash value, it will jump to the destination, which indicates a

function’s start position. Otherwise, it will fall to fallback function, whose start position is

the first JUMPDEST instruction.
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4.3.5 DefectChecker

Table 4.2 describes the information required to detect each kind of contract defect. To

detect TSD and UEC, DefectChecker only needs symbolic states computed by symbolic

execution, as we only need to check whether ORIGIN and CALL instructions are read by

EQ and ISZERO instruction, respectively. DefectChecker only needs control flow informa-

tion to detect BID, as we only need to check whether the conditional expression contains

block related instructions, e.g., "BLOCKHASH".

To detect the other 5 contract defects, DefectChecker needs both control flow informa-

tion and symbolic states. In the previous subsection, we introduce three features detected

by the feature detector, i.e., Money Call, Loop Block, and Payable function. Money Call

needs symbolic states, so to detect it, DefectChecker needs check the values on the EVM

stack. Loop Block and Payable function require control flow information, as they both

need CFGs to locate the loop and the start of the function, respectively. NC, DuEI, GC,

and Reentrancy all need to detect Money Call. DuEI and NC also need to detect Loop

Block; GC needs to detect Payable function. To detect Reentrancy, DefectChecker needs

to travel all the paths that contain the Gas-Unlimited-Money Call, which needs the help of

the CFG. To detect SBE, DefectChecker needs to check whether the BALANCE instruction

is read by the EQ instruction in the conditional expressions, which needs both control flow

information and symbolic state.

Below we describe the detailed patterns that we use to determine whether a smart con-

tract contains one or more of the contract defects.

4.3.5.1 Transaction State Dependency

tx.origin generates an ORIGIN instruction. We first locate all ORIGIN instructions. We

then check whether there is an ORIGIN that is read by an EQ instruction. The EQ instruc-

tion reads two values from EVM stack and verifies whether these two values are equal.
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If the contract contains this kind of contract defect ORIGIN instruction will compare to

an address value. Ethereum uses a 40-bit value to indicate an address, and all addresses

conform to the EIP55 standard [192].

4.3.5.2 DoS Under External Influence

If a smart contract contains this contract defect, there will be a part of the instructions that

check the return value of the Money CALL, and then terminate the loop. To detect this

contract defect, we first find loop-related blocks. Then, we check whether there is a block

that contains Money CALL, and the type of the block is conditional, as it needs to check the

return value. Then, this block jumps to a block, which type is terminal.

4.3.5.3 Strict Balance Equality

This kind of contract defect can make a part of the code never be executed. We need to

check whether there is a conditional expression that contains the related pattern. BALANCE

instruction is used to get the balance of a contract. If a BALANCE instruction is read by

EQ, it means there is a strict balance equality check. If this check happens at a conditional

jump expression, it means this contract contains this contract defect.

4.3.5.4 Reentrancy

The SLOAD instruction is used to get a value from storage [212]. It reads a value (named

Slot ID) from the EVM stack and puts the result that reads from storage back onto the

EVM stack. Using listing 5.4 as an example, Victim contracts do not make the balance of

an Attack contract to zero (L7) before sending Ethers (L6), which allows an Attack contract

to withdraw Ethers again. To detect this contract defect, we first need to obtain paths that

contain Gas-Unlimited-Money-Call, because only this kind of CALL can cause Reentrancy.

We then need to obtain all conditional expressions on these paths. The amount that is sent

by the victim contract is usually checked before sending it to attacker contracts, and this
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amount is loaded from storage. In this case, we need to check if the conditional expression

contains SLOAD instructions and get its Slot ID. If this value still holds and does not be

updated when executing CALL instruction, it means CALL instruction can be executed

again and cause Reentrancy. To check whether the storage value is updated, we need to

detect whether the same Slot ID that is read by SLOAD is written by SSTORE instruction.

(SSTORE instruction is used to save data to memory. It reads two values from EVM stack,

i.e., slot id and value that are written to storage.)

4.3.5.5 Nested Call

Using listing 5.5 as an example, array members is a storage variable, all of its value, includ-

ing its length, are stored on storage. To get its length, SLOAD instruction reads its Slot ID �

from EVM stack, and this value is the position that stores the value of members.length. To

detect this contract defect, the first step is to find the start block of a loop and get the Slot

ID. Then, we need to check whether this loop limits its size. If the loop limits its size, the

same Slot ID � will be read in the loop body again, and this value will be compared with

another value. If a smart contract contains a loop that does not limit its size but contains a

Money-Call, Nest Call is detected in this contract.

4.3.5.6 Greedy Contract

A smart contract can transfer money through a Money CALL or selfdestruct function. self-

destruct function generates SELFDESTRUCT instruction. If a smart contract contains

payable functions but does not have either a Money CALL or SELFDESTRUCT instruc-

tion, the contract is a Greedy Contract.

4.3.5.7 Unchecked External Calls

The external call returns a boolean value. If the result is checked by the contract, it will

generate an ISZERO instruction. To detect this contract defect, we first locate CALL in-
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structions. Then, we check whether each CALL instruction is read by ISZERO. If there is a

CALL that is not checked by ISZERO, this contract defect is detected.

4.3.5.8 Block Info Dependency

Detecting this contract defect is similar to Strict Balance Equality. This contract defect

can allow miners to control the contract, as miners can change the value of some block

information, which affects the result of the conditional expression. If the conditional ex-

pression contains block related instructions, i.e., “BLOCKHASH", “COINBASE", “NUM-

BER", “DIFFICULTY", “GASLIMIT", it means the contract contains this contract defect.

4.4 Evaluation

To measure the efficacy of DefectChecker, we present results based on applying it to an

open-sourced dataset and present our experimental results analysis in this section.

4.4.1 Experimental Setup

All experiments were performed on a PC running Mac OS 10.14.4 and equipped with an

Intel i7 6-core CPU and 16 GB of memory. We use Solidity 0.4.25 as the compiler to

compile source code into bytecode, and use EVM 1.8.14 to disassemble the bytecode to its

opcodes.

4.4.2 Dataset

The dataset we used to evaluate DefectChecker was released in our previous work [31]. We

first crawled all 17,013 open sourced smart contracts from Etherscan. Then, we randomly

selected 600 smart contracts from these contracts. We found 13 smart contracts do not

contain any contents. Thus, we removed them from our dataset. Finally, we obtained 587

smart contracts from Etherscan. These contracts have 231,098 lines of the code and more

than 4 million Ethers in their balance.
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Table 4.3: Some Features of Dataset

Features Min Max Mean SD
Lines of Code 5 2,239 393.6 356.8
# of Functions 1 174 30.1 621.6

# of Instructions 7 15,355 3,597.3 2,523.7
CC 1 132 30.3 22.4

Ethers 0 1,500,000 7,844.9 1,704,552.7

Table 4.3 shows some key features of the dataset, i.e., lines of code, number of functions

in the contracts, number of instructions in the contracts, cyclomatic complexity [137] and

Ethers hold by the contracts. Cyclomatic complexity is a software metric that indicates

the complexity of a program, and it is computed by analyzing the control flow graph. The

formulation to compute it is: E - N + 2P. E is the number of edges on CFG; N is the number

of nodes on CFG and P is the number of connected components on CFG. Since CFG is a

connected graph, so P always equal to 1, and the formulation can be simplified as: E - N +

2.

The simplest contract in our dataset only contains one constructor function with 7 in-

structions and a cyclomatic complexity of 1. The contract with the highest cyclomatic

complexity has 11,696 instructions and 2,004 lines of code. The richest contract in our

dataset holds 1.5 million Ethers, while the poorest contract has no Ethers in its balance.

Two authors of our previous work manually labeled the dataset. They both have three

years of experience working on smart-contract-based development and research, and took

part in the process of defining contract defects. Thus, they have a very good understanding

of the smart contract programming and contract defects introduced in this paper. They first

manually labeled the dataset independently. Then, they discussed the disagreements after

completing the labeling process and gave the final results. Their overall Kappa value [47]

was 0.71, which shows a substantial agreement between them.

In this work, we developed a tool named DefectChecker to detect eight contract defects
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with severity impact levels 1-3. The numbers of each type of contract defect in our dataset

are shown in Table 4.4. This shows that Block Info Dependency is the most frequent con-

tract defect in our dataset, while Transaction State Dependency and Strict Balance Equality

are the least popular. Their numbers are 42, 5, and 5, respectively. DefectChecker aims at

Solidity version 0.4.0+, which is the most widely used version at the time of writing this

paper [74]. However, some smart contracts are designed for Solidity version 0.2.0+ and

0.3.0+. Thus, we removed eight smart contracts and used the remaining 579 smart con-

tracts as our ground truth.

Among the six tools we introduced in Table 4.5, only Zeus open sourced their dataset.

However, Zeus still has four kinds of defects which are not included in their dataset. Also,

the Zeus authors did not provide the detail of how to built their dataset. Their paper only

mentioned that “they manually validated each result” without providing any details, e.g.,

the number of people who labeled the dataset, and whether they are professional smart

contract developers or not. Thus, we did not use these datasets.

4.4.3 Evaluation Methods and Metrics

There are seven measurements obtained from our experiments: True Positive (TP), True

Negative (TN), False Positive (FP), False Negative (FN), Precision (P), Recall (R) and F-

Measure (F). TP indicates the results which correctly predict a contract defect in a smart

contract. TN indicates the results which correctly predict a smart contract does not have

a defect. FP and FN indicate the results which incorrectly predict that a smart contract

contains and does not contain a contract defect. Precision, Recall , and F -Measure can be

calculated as:

Precision =
#TP

#TP +#FP
⇥ 100% (4.1)
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Table 4.4: Experimental results for DefectChecker.

Defects #Defects #TP #TN #FP #FN P(%) R(%) F(%)
TSD 5 5 474 0 0 100.0 100.0 100.0
DuEI 6 6 466 7 0 46.2 100.0 63.2
SBE 5 4 474 0 1 100.0 80.0 88.9
RE 12 10 461 6 2 62.5 83.3 71.4
NC 13 9 464 2 4 81.8 69.2 75.0
GC 6 6 473 0 0 100.0 100.0 100.0
UEC 22 20 454 3 2 87.0 90.9 88.9
BID 42 41 437 0 1 100.0 97.6 98.8

Recall =
#TP

#TP +#FN
⇥ 100% (4.2)

F -Measure =
2⇥ Precision⇥Recall

Precision+Recall
⇥ 100% (4.3)

4.4.4 Experimental Results and Analysis

Table 4.4 summarizes the results of applying DefectChecker to our previous work’s dataset.

The first column is the contract defects that need to be detected. The second column is the

number of contract defects in our dataset (ground truth). The remaining seven columns are

used to measure the performance of DefectChecker. Below, we discuss the analysis of each

contract defect.

(1). Transaction State Dependency. DefectChecker detects 5 smart contracts contain-

ing this contract defect among 579 smart contracts with 0 false positives and negatives.

(2). DoS Under External Influence. DefectChecker detects 13 smart contracts that

have this contract defect among 579 smart contracts with 7 false positives and 0 negatives.

The 7 errors are due to the error identification of a loop.

156



In our detection method, we first split the bytecode into several blocks. Then, symbolic

execution is used to find the edge between blocks. We traverse the path of CFG by using

DFS. If there is a block that has been visited, we regard this block as the start of the loop

(See Section 5.3.4.2). Since we regard all the paths are reachable, thus we only flag whether

two blocks have an edge. This mechanism leads to false positives in detecting loops.

In Listing 5.10, all the L9, L10, and L11 hold a single block, respectively, and function

sub() holds several blocks. EVM first executes the block of line 9, then executes the blocks

of function sub() in line 2. After the execution of blocks of line 10, line 11, respectively,

the blocks of function sub() will be executed again. Therefore, when traversing the CFG by

using DFS, we can find that there is a cycle (fun sub()!L10!L11 !fun sub()). Since we

regard all the paths are reachable, we cannot know that the blocks of function sub() cannot

jump the block of L10, after executing the block of L11.

This kind of false positive can be addressed if we execute the loop continuously. Using

a loop “for(int i = 0; i <100; i++)” as an example; we need to record the state of variable

i, and check whether the expression (i <100) is satisfied or not. If we prove the loop can

execute continuously, we can confirm it is a real loop not the error we show in Listing 5.10.

However, we need the assistance of an SMT solver to execute the loop, and executing the

loop continuously is also time consuming. Thus, we believe the advantages of removing

the use of an SMT solver in our approach outweighs the disadvantages.
1 l i b r a r y SafeMath {
2 f u n c t i o n sub ( u i n t 2 5 6 a , u i n t 2 5 6 b ) i n t e r n a l r e t u r n s ( u i n t 2 5 6 ) {
3 a s s e r t ( b <= a ) ;
4 r e t u r n a − b ; } }
5 c o n t r a c t M a i n s a l e {
6 u s i n g SafeMath f o r u i n t 2 5 6 ;
7 u i n t 2 5 6 p u b l i c t o t a l ;
8 f u n c t i o n ( ) p a y a b l e {
9 u i n t amount = t o t a l . sub ( 1 0 0 ) ;

10 msg . s e n d e r . t r a n s f e r ( amount ) ;
11 u i n t c o n t r i = msg . v a l u e . sub ( amount ) ; } }

Listing 4.10: Error Loop Example

(3). Strict Balance Equality. DefectChecker detects 4 smart contracts that contain
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Strict Balance Equality with 0 false positives and 1 false negative. The cause of the error

is that the contract defect related to several functions. For example, the contract in listing

5.11 uses a global variable balance to represent the contract’s balance. Callers first call

function getBalance to obtain the balance. The balance will then be checked in Line 5. To

detect this contract defect, we need to know that the global variable balance represents the

contract balance. Therefore, the contract defect can only be detected when we know users

will first invoke getBalance() and then call DefectFunction(). However, it is not easy to

detect this contract defect at the bytecode level, as the two operations (i.e., balance == 1

eth and balance = this.balance) are in two independent functions, and we do not know the

calling sequence.
1 c o n t r a c t Demo{
2 u i n t b a l a n c e = 0 ;
3 f u n c t i o n g e t B a l a n c e ( ) { b a l a n c e = t h i s . b a l a n c e ; }
4 f u n c t i o n D e f e c t F u n c t i o n ( ) {
5 i f ( b a l a n c e == 1 e t h )
6 doSomthing ; } }

Listing 4.11: Strict Balance Equality - False Negative Example

(4). Reentrancy. DefectChecker detects 16 smart contracts that contain Reentrancy,

with 6 false positives and 2 false negatives. The false positives are because of error-money-

call detection. A smart contract contains Reentrancy must have a Gas-Unlimited-Money-

Call. To detect it, we first need to check whether the gas limits set are larger than 2,300 gas

and the transfer amount is larger than 0. However, in some examples, these two values are

represented by complicated symbolic expressions. Some expressions also contain values

that read from storage (read by SLOAD). Thus their specific values can not be determined

by static analysis. Therefore, DefectChecker failed to detect them. When DefectChecker

encounters complicated symbolic expressions, the default value is larger than 2,300 gas

and larger than 0, this leads to false positives. When detecting this contract defect, we

need to check whether the Slot ID read by SLOAD instruction still holds when executing

CALL instruction. Some Slot IDs are also represented by complicated symbolic expres-
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sions. DefectChecker failed to detect whether they are equal, which leads to reporting false

negatives.

When detecting Money-Call, we use Gas-Limited-Money-Call as default, if we cannot

figure out the exact value of the gas limit symbolically. We also conduct another experi-

ment, which uses Gas-Limited-Money-Call as the default. However, DefectChecker failed

to detect any Reentrancy default. The reason is that the Gas-Limited-Money-Call usually

is easy to detect, as address.transfer(), address.send() will put a specific value “2300" to

the EVM stack. Thus, we just need to detect the specific value. However, the gas limit

of Gas-Unlimited-Call is not easy to detect, as it usually uses a complicated expression

to represent the gas. Since address.call.value() will not change the gas cost. In most sit-

uations, this method will not lead to an out-of-gas error. This is the reason why we use

Gas-Unlimited-Call as our default.

(5). Nested Call. DefectChecker detects that 11 smart contracts contain a Nested Call

defect. Among these 11 smart contracts, we have 2 false positives and 4 false negatives.

The cause of the false positives is also the error identification of the loop, which is the same

with DoS Under External Influence. The false negatives are because of the complicated

data structure. When detecting this contract defect, the first step is to know whether the

loop iterations are related to the array’s length. We use the SLOAD instruction related

pattern to obtain the loop iterations, as described in Section 4.3.5.5. However, as shown

in Listing 5.12, self is a structure and its length is obtained through an external function.

Since external functions can be designed in different ways, it is challenging to design a

pattern to detect it.
1 f o r ( u i n t i ; i < s e l f . keys . l e n g t h ; i ++) {
2 s e l f . d a t a [ s e l f . keys [ i ] ] . t r a n s f e r (1 E t h e r ) ; }

Listing 4.12: Nest Call - False Negative Example

(6). Greedy Contract. DefectChecker detects 6 Greedy Contracts, with 0 false positives

and negatives.
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Table 4.5: Input and Defects Detected of Each Tool

Tools Input TSD DuEI SBE RE NC GC UEC BID # of Other Defects
DefectChecker Bytecode X X X X X X X X 0
Oyente [131] Bytecode X X X 1
Maian [146] Bytecode X 2
Securify [186] Bytecode X X 7
Mythril [51] Bytecode X X X X X X 28
Contractfuzzer [111] Bytecode + ABI X X X 3
Zeus [113] Source Code X X X X 3

1 f u n c t i o n Example ( Address add r ) r e t u r n s ( boo l ) {
2 r e t u r n add r . send ( ) ; }

Listing 4.13: Unchecked External Call - False Positive Example

(7). Unchecked External Call. DefectChecker reports 23 contracts have this kind of

contract defect, with 3 false positives and 2 false negatives. We analyzed the false positive

examples and find that these contracts use the return value of send() as function’s return

value and check the return value in other functions. For example, addr.send() as shown

in listing 5.13 is the return value of function Example, and the value is checked in the

callee programs. The false negatives are because the defect happens in a constructor func-

tion, while the bytecode of the constructor function is not contained in runtime bytecode.

Therefore, we missed it. However, the contract defects in the constructor function will not

harm the deployed contracts, as the constructor function will only be executed once when

deploying the contracts to the blockchain.

(8). Block Info Dependency. DefectChecker detects 41 smart contracts contain this

contract defects, with 0 false positives and 1 false negative. The cause of the false negative

is similar to the one with Strict Balance Equality. The defect contract uses a global variable

to represent block information and uses this global variable in other functions, which causes

the contract defect to be detected.

160



Table 4.6: Experiment result of Oyente.

Defects #Defects #TP #TN #FP #FN P(%) R(%) F(%)
RE 12 2 94 373 10 2.1 16.7 3.7
UEC 22 16 448 9 6 64.0 72.7 68.1
BID 42 11 431 6 31 64.7 26.2 37.3

Table 4.7: Experiment result of Mythril.

Defects #Defects #TP #TN #FP #FN P(%) R(%) F(%)
TSD 5 0 474 0 5 0 0 0
DuEI 6 1 245 228 5 0.4 16.7 0.8
SBE 5 0 474 0 5 0 0 0
RE 12 5 280 187 7 2.6 41.7 4.9
NC 13 2 414 52 11 3.7 15.4 6.0
UEC 22 11 436 21 11 34.4 50.0 40.8

4.4.5 Comparison with state-of-the-art tools

In our previous work, we investigated whether there are existing tools that can detect some

of the contract defects we have defined. We first collected all the papers from top Security

and SE conferences/journals, i.e., CCS, S&P, USENIX Security, NDSS, ACSAC, ASE,

FSE, ICSE, TSE, TIFS, and TOSEM from 2016 to 2019. Then, we only retain the papers

whose titles have the key words “smart contract", “Ethereum" or “blockchain". After that,

we manually read the abstract to verify their relevance. Finally, we found only four papers

that are related to smart contract defects, i.e., Oyente [131], Maian [146], Zeus [113], and

ContractFuzzer [111].

To enlarge our baseline methods, we use the same method as proposed by Kitchenham

et al. [118]. We first read the references of these 4 relevant papers, and tried to find whether

there are existing tools that can detect the defined contract defects. If there is a relevant

paper, we read its references repeatedly, until no new paper can be found. In this way we

also found two other tools, i.e., Securify [186] and Mythril [51].

Table 4.8: Experiment result of Securify.

Defects #Defects #TP #TN #FP #FN P(%) R(%) F(%)
RE 12 1 439 28 11 3.5 8.3 4.9
UEC 22 10 457 0 12 100.0 45.5 62.5
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Table 4.5 shows the input and contract defects that can be detected by these tools. The

last column shows the number of the defects can be detected by these tools except the

mentioned 8 contract defects. As we know, the bytecode of smart contract on Ethereum

are visible to everyone, but only less than 1% of the smart contracts open up their source

code [42]. Therefore, detecting contract defects from the bytecode level is very impor-

tant. To make the comparison fair, we select Oyente, MAIAN, Securify and Mythril as our

baseline tools, since they can detect contract defects at the bytecode level, the same as

DefectChecker. However, we found that Maian has not been updated to support the latest

Ethereum environment and so we could not run MAIAN on our dataset. For example, they

use methods provided by web3 [202] to obtain contracts’ information on Ethereum. How-

ever, the methods they used have been removed and did not support the current version of

Ethereum that we used. In addition, DefectChecker gets 100% F-Measure when detect-

ing Greedy Contract. In this case, we do not compare with MAIAN, and choose Oyente,

Securify and Mythril as our baseline tools.

Table 4.9: Result Comparison(F-Measure) between Four Tools

Tools TSD DuEI SBE RE NC GC UEC BID
DefectChecker 100.0% 63.2% 88.9% 71.4% 75.0% 100.0% 88.9% 98.8%

Oyente / / / 3.7% / / 68.1% 37.3%
Securify / / / 4.9% / / 62.5% /
Mythril 0% 0.8% 0% 4.9% 6.0% / 40.8% /

Oyente detects three kinds of security-related vulnerabilities for smart contracts. These

three kinds of security-related vulnerabilities are the same as our Unchecked External Calls,

Block Info Dependency and Reentrancy. Mythril [51] is a tool developed by ConsenSys,

which is a leading global blockchain technology company. They find security problems

from online posts or news, which is similar to our previous work [31]. Our previous work

analyzed the posts from StackExchange posts and defined 20 contract defects. Mythril

can detect 6 contract defects as shown in Table 4.7. Securify is a smart contract security

analyzer that takes EVM bytecode as input. It first decompiles EVM bytecode and analyzes
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the semantic facts of the decompiled code. In our study, Securify uses several security

patterns to detect related vulnerabilities. Securify can detect Reentrancy and Unchecked

External Call, which can also be detected by DefectChecker.

Table 4.6 shows the results of running Oyente on our previous dataset [31]. The F-score

of Oyente in detecting RE, UEC, and BID are 3.7%, 68.1%, and 37.3%, respectively, while

the numbers for DefectChecker are 71.4%, 88.9%, and 98.8%, respectively. We found

that Oyente only considers BLOCKHASH instructions when detecting Block Info Depen-

dency, while there are many other instructions, e.g. NUMBER (NUMBER instruction is

used to get block’s number), that can lead to this contract defect. Besides, Oyente also

has many false positives when detecting Reentrancy. The reason is that they do not distin-

guish between send(), transfer() and call() functions at the bytecode level, while send() and

transfer() will limit gas to 2300 unit, which cannot cause Reentrancy. In addition, the most

important reason for these errors is code coverage. Code coverage means the percentage of

instructions executed. The average code coverage for Oyente is 18.9%, while the number

for DefectChecker is 77.1%. Low code coverage means only a small part of the code can be

analyzed for contract defect occurrence, which can lead to a large number of false positives

and negatives. There are three reasons that lead to the low coverage of Oyente compared to

DefectChecker. First, Oyente checks whether a path can be reached, while DefectChecker

assumes that all the paths are reachable. Oyente also only optimizes for Solidity Version

0.4.19, but there is a wide version coverage in our dataset. Finally, the jump positions of

some unconditional jump might not be easy to find. To be specific, the jump position might

be a result of a complicated expression. Thus both Oyente and DefectChecker can fail

to detect these unconditional jumps, and it is the reason why DefectChecker misses some

blocks.

Table 4.7 shows the results of Mythril. Mythril fails to detect Transaction State De-

pendency and Strict Balance Equality in our dataset. In addition, its results contain many
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false positives, especially in detecting Reentrancy and DoS Under External Influence. We

found that Mythril is similar to Oyente - it fails to distinguish between call() with transfer()

and send(), which will not lead to Reentrancy. Besides, Mythril failed to distinguish loop

related patterns, which lead to errors when detecting loop related defects, e.g., DoS Under

External Influence or Nest Call.

Table 4.8 presents the results of Securify. Securify can detect two common defects

with DefectChecker, i.e., Reentrancy and Unchecked External Call. All the DefectChecker,

Oyente, Mythril, and Securify can detect these two defects. The performance of Securify in

testing Reentrancy (4.9%) is better than Oyente (3.7%), and similar to Mythril (4.9%), but

much worse than DefectChecker (71.4%). In terms of detecting Unchecked External Call,

the F-score of Securify (62.5%) is a little bit worse than Oyente (68.1%) and much better

than Mythril. DefectChecker still get the best F-score, which receives 88.9% in detecting

Unchecked External Call

To compare the results between all four tools, we add a comparison of F-measure in

Table 4.9, which shows that DefectChecker obtains the best F-measure of all four tools.

Table 4.10: Overall Precision, Recall, and F-Measure of Each Tool

Tools O. P. (%) O. R (%) O. F. (%)
DefectChecker 88.3 90.9 88.8
Oyente 54.6 38.2 40.9
Securify 65.9 32.4 42.2
Mythril 13.3 30.2 16.5

Table 4.11: Time Consumption of Each Tool

Tools Avg. Max Min S.D.
DefectChecker 0.15s 2.42s 0.04s 5.43
Oyente 18.48s 1,096.32s 0.28s 2,877.64
Securify 21.55s 1,203.99s 0.37s 3,384.39
Mythril 103.55s 2,480.26s 1.58s 13,063.80

We also calculate the overall precision, recall, and F-measure of all four tools on the
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whole experimental dataset. Using overall-precision as the example, the overall result is

calculated by
Pn

i=1 pci⇥|ci|Pn
i=1 |ci|

, in which pci is the precision of the contract defect i, |ci| is the

number of contract defect i in the whole dataset. The results are given in Table 4.10, which

clearly shows that DefectChecker obtains the best results in detecting contract defects.

Time Consumption. We calculate the time to analyze one smart contract to evaluate each

tool. To make the evaluation accurate, we kill all the background processes in our machine

when testing the tool to ensure the environment is clean. For each tool, we run it for 10

times and record the average time to test one smart contract in our dataset.

Table 4.11 shows the time consumption results of each tool. The second column of

the table gives the average time consumption to test a smart contract for each tool. The

speed of DefectChecker is the fastest in these four tools. It only needs 0.15s to analyze

one smart contract. Oyente and Securify have similar running times. Oyente needs 18.48s

to analyze one smart contract, and the time for Securify is 21.55s. Mythril is the slowest

tool; it needs 103.55s to analyze one smart contract. The maximum time to analyze a smart

contract of DefectChecker is 2.42s, while the time for Oyente, Securify, and Mythril are

1096.32s, 1203.99s and 2480.26s, respectively. The simplest smart contract in our dataset

only contains 7 lines with a single constructor function. DefectChecker needs 0.04s to

analyze it, while the time for Oyente, Securify, and Mythril are 0.28s, 0.37s and 1.58s,

respectively. DefectChecker also has the smallest Standard Deviation value among these

four tools, which shows that DefectChecker has the most stable speed in analyzing a smart

contract.

In conclusion, the efficiency of these four tools is in order: DefectChecker >Oyente

>Securify >Mythril.
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4.4.6 Threats to Validity

Internal Validity. We used a dataset released in our previous work [31] as the ground truth

to evaluate DefectChecker. Since the people who developed DefectChecker are the same as

the people who labeled the dataset, it is likely that their familiarity with the dataset might

lead to potential optimization or omissions when developing DefectChecker. We tried to

use the datasets of the baseline tools to evaluate DefectChecker. However, we failed to find

the dataset. Luu et al. run Oyente on 19,366 contracts. They only manually check the

correctness of some examples, instead of using a complete dataset to evaluate Oyente. We

can only find some false positive and true positive values on their paper. Securify uses a

complete dataset which consists of 100 smart contracts. However, they do not open their

dataset to the public. Mythril is a tool from industry. They even do not have an evaluation

section in their technical papers. Thus, we had to build our own dataset. To reduce the

influence of our dataset, we first wrote a few demo smart contracts when developing De-

fectChecker and used these to conduct small-scale testing of our proposed tool. Then, we

conducted large-scale testing by using real world bytecode we crawled from the Ethereum

blockchain. The dataset is the same as that we introduced in Section 5.5. During this large-

scale testing, we randomly choose a set of smart contracts that can find their source code.

We use these smart contracts to improve the performance and patterns that are used to de-

tect contract defects. We admit that the familiarity with the ground truth dataset might lead

to a bias, but the methods we used to develop DefectChecker can reduce this influence.

External Validity. The dataset we used to evaluate DefectChecker is based on man-

ual analysis, which may contain false positives and negatives. To address this problem,

we double-checked the results and used them to update the dataset when we found some

mistakes. Another threat is that Solidity is a fast-growing programming language. There

are nine versions released in 2018, which may add or modify any features of the previous

version. DefectChecker is designed based on Solidity version 0.4.0+, which is the most
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popular version in the time of writing the paper [74]. In the future, more smart contracts

may use higher versions, which may make our tool unable to work.

4.5 A Large Scale Evaluation

In the previous section, we showed that DefectChecker has an excellent performance when

applied to a small scale dataset. In this section, to validate DefectChecker is still usable to

find contract defects in real-world smart contracts, we ran DefectChecker on a large scale

dataset that we crawled from Ethereum blockchain, and show the contract defects as found

by DefectChecker. We give two real-world attacks as case studies to show how harmful

these contract defects are.

4.5.1 Dataset

To identify whether contract defects are actually prevalent in a large-scale, real-world

dataset, we crawled bytecode from Ethereum blockchain by 2019.01 and obtained 183,706

distinct bytecode. Since some smart contract versions are not supported by DefectChecker,

and so we removed them from our experimental dataset. Finally, we ran DefectChecker on

165,621 distinct smart contract bytecode. All these bytecode are runtime bytecode. Run-

time bytecode does not contain information on their constructor function. It is the default

bytecode stored on the Ethereum.

4.5.2 Contract Defects on Ethereum

We ran DefectChecker on 165,621 smart contract bytecode. The detailed results are given

in Table 4.12, which aims to show the frequency of each defect on Ethereum. Since De-

fectChecker only identifies whether a contract contains a defect or not, if the same kind

of defects appears multiple times in a smart contract, we only count it once in Table 4.12.

The second column of the table shows how many contracts contain related defects, and the
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Table 4.12: Contract Defects in Ethereum

Contract Defects # Defects # Percentage
Transaction State Dependency 1,669 1.0%
DoS Under External Influence 2,116 1.3%
Strict Balance Equality 390 0.2%
Reentrancy 3,892 2.4%
Nested Call 1,043 0.6%
Greedy Contract 3,139 1.9%
Unchecked External Calls 12,439 7.5%
Block Info Dependency 5,201 3.1%

last column gives the percentage of how many contracts contain the defect. If a contract

contains multiple defects, all of the defects are counted.

Unchecked External Calls is the most frequent contract defect in the Ethereum, and

about 7.5% of real world smart contracts contain this defect. There are about 3.1% of

smart contracts that contain Block Info Dependency, which is the second most popular

contract defect on the blockchain. Strict Balance Equality is the rarest of our contract

defects. DefectChecker only detects 390 smart contracts that have this contract defect. The

percentage of Nested Call is also less than 1%, with 1,043 (0.6%) smart contracts having

this kind of contract defect. The percentage of Transaction State Dependency and DoS

Under External Influence are similar on Ethereum, at about 1.0% and 1.3%, respectively.

There are 3,139 greedy contracts on the Ethereum, and 3,892 smart contracts containing

the Reentrancy problem, which can lead to serious security problems.

We found that there are 16 smart contracts that contain 4 kinds of contract defects,

which are thus the most defective contracts. The number of smart contracts that contain

3 kinds of contract defects is 539, and 3,520 smart contracts contain 2 kinds of contract

defects. About 25,815 smart contracts contain at least one kind of defect, which means that

about 15.9% smart contracts on Ethereum contain some kinds of defects, as reported by

our DefectChecker.

We utilized cyclomatic complexity [137] and the number of instructions to conduct a
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further analysis. We computed the cyclomatic complexity and number of instructions for

contracts in our dataset. We found that the average cyclomatic complexity of smart con-

tracts in Ethereum is 21.3, and the average number of instructions are 2,342.6. Figure 4.3

shows the relationship between the number of the contract defects that contained in smart

contracts and the number of instructions & cyclomatic complexity. The x-axis means the

number of contract defects in a smart contract. The left y-axis is the number of x, and the

right y-axis is the number of cyclomatic complexity. The two lines have a similar trend.

The number of instructions is proportional to the length of a contracts’ code, which can

show the contracts’ complexity at the code level. The number of cyclomatic complexity

indicated the complexity of a program. We performed a generalized linear regression with

the Poisson error distribution model provided by R [93] to analyze the relationship be-

tween the number of defects with instructions, and the number of defects with cyclomatic

complexity. In our model, we use the number of instructions and cyclomatic complexity

to predict the number of defects, respectively. Since both the correlation coefficients are

positive (0.001 with std. error = 0.0009 and 0.023 with std. error = 0.0179, respectively), it

shows that the more complex a contract is, the higher is its probability to contain defects.

We calculated the correlation level between these two complexity measures using the Pear-

son correlation method [13] at a 5% significance level. The statistical test shows that the

correlation coefficient is 0.702 with p� value < 0.05. These correlation results imply that

the number of instructions and cyclomatic complexity is correlated, and we can use only

one of them as a predictor.

4.5.3 Case Study

DefectChecker found some real-world attacks / financial loss from our large-scale testing on

the full Ethereum dataset. In this subsection, we give two examples to show the importance

of detecting such contract defects.
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Figure 4.3: The relationship between the number of contract defects and number of In-
structions & Cyclomatic Complexity

Case Study 1: The first example is shown in Listing 5.14. There are 2,335.8 Ethers in the

contract balance, and it is worth $552,720 by Mar. 2020. Unfortunately, all the Ethers are

locked because of the contract defect, i.e., Nested Call. The buggy function in Listing 5.14

is named sendReward(). We highlight two lines of the code (Line 2 and Line 14), which

are related to two contract defects, i.e., Nested Call and DoS Under External Influence.

There is a loop in the function sendReward(), and the loop iterations are increased with

the length of investors[]. However, the contract does not limit its loop iterations. As we

know, sending Ethers is expensive as it needs a large amount of gas consumption, and

the contract sends Ethers to the contract users in Line 14. So, the gas consumption of

executing sendReward() will increase in the length of investors[]. When we check the

transaction of the contract, we can find that the contract can work normally at first, as the

total gas consumption of sendReward() does not exceed its maximum gas limitation at that

time. However, with the increase of the length of investors[], the total gas cost increases

rapidly. The gas cost then eventually exceeds the gas limitation, and leads to an out of

gas error. Even worse, since the length of investors[] cannot be reduced, once the error
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Figure 4.4: Transaction Detail of Case Study 1

happens, the sendReward() cannot be called anymore, which means all the Ethers in the

balance are locked forever. Figure 4.4 shows the detail of a failed transaction. It is clear

that when a user calls sendReward(), the out-of-gas error happens.
1 f u n c t i o n sendReward ( ) p u b l i c isOwner {
2 f o r ( u i n t i = 0 ; i < i n v e s t o r s . l e n g t h ; i ++) {
3 a d d r e s s _add = i n v e s t o r s [ i ] ;
4 User memory _ u s e r = a d d r e s s T o U s e r [ _add ] ;
5 i f ( _ u s e r . gameOver ) {
6 a u t o R e I n v e s t ( _add ) ;
7 _ u s e r . r e b i r t h = now − ( oneLoop / 2 ) ;
8 a d d r e s s T o U s e r [ _add ] = _ u s e r ;
9 } e l s e {

10 i f ( SafeMath . sub ( now , _ u s e r . r e b i r t h ) >= oneLoop ) {
11 a d d r e s s p a y a b l e needPay = a d d r e s s ( u i n t 1 6 0 ( _add ) ) ;
12 u i n t s t a t i c A m o u n t = g e t S t a t i c ( _add ) ;
13 i f ( s t a t i c A m o u n t > 0) {
14 needPay . t r a n s f e r ( s t a t i c A m o u n t ) ;
15 }
16 . . .
17 }
18 }

Listing 4.14: Case Study 1 - Contract with Nested Call. Code from Contract:
0x41AeB72624f739281b12aDE663791254F32DB669.

It should be noticed that although the financial loss in the real world example is caused

by Nested Call, the contract shown in Listing 5.14 also has another contract defect, namely

DoS Under External Influence. This contract defect can also lead to the lock of Ethers.

Specifically, if the needPay (Line 14) is a contract address, the maximum Gas Limit will
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be restricted to 2300 gas units, which is not enough to transfer Ethers. Thus, an out-of-gas

error will happen in Line 14, and the Ether transfer cannot succeed.

Case Study 2: A second example is a bank contract, which is shown in Listing 5.15. Users

can send Ethers to the Deposit() function, and withdraw its Ethers by calling the CashOut()

function. First, the contract sends Ethers on Line 11 and then reduce the caller’s balance on

Line 12. However, it can lead to the Reentrancy if the caller is an attacking contract. When

the victim contract sends Ethers to the attack contract. The fallback function of the attack

contract can recall the CashOut() function, and steal Ethers of the victim contract. Then,

all of the balance in the contract was stolen by the attackers.

Figure 4.5 shows an attacking transaction which was launched by an attacking contract.

The address of the attacking contract starts with 0xdefbe, and the address of the victim

contract starts with 0xbabfe. The attack happens three times on block 4919015, 4919567,

and 4919662, respectively. First, the attacking contract sent 1 Ether to the victim contract.

Then, the victim contract returned back Ethers to the attack contract. From these 3 attacks,

the attacking contract stole about 5 Ethers from the victim contract, which were worth

about $1,200 at the time of writing the paper. We only show one example in Figure 4.5.

Actually, the victim contract was attacked by multiple attacking contracts, so the financial

loss was far more than 5 Ethers.
1 f u n c t i o n D e p o s i t ( ) p u b l i c p a y a b l e {
2 i f ( msg . v a l u e >= MinDepos i t ) {
3 b a l a n c e s [ msg . s e n d e r ]+=msg . v a l u e ;
4 T r a n s f e r L o g . AddMessage ( msg . sende r , msg . va lue , " D e p o s i t " ) ;
5 }
6 }
7

8 f u n c t i o n CashOut ( u i n t _am )
9 {

10 i f ( _am<= b a l a n c e s [ msg . s e n d e r ] ) {
11 i f ( msg . s e n d e r . c a l l . v a l u e ( _am ) ( ) ) {
12 b a l a n c e s [ msg . s e n d e r ] −=_am ;
13 T r a n s f e r L o g . AddMessage ( msg . s ende r , _am , " CashOut " ) ;
14 }
15 }
16 }
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Figure 4.5: Transaction Lists of Case Study 2

Listing 4.15: Case Study 2 - Contract with Reentrancy. Code from Contract:
0xbABfE0AE175b847543724c386700065137d30e3B.

4.5.4 Threats to Validity

Internal Validity. The dataset we used was crawled from Ethereum, which contains differ-

ent Solidity versions. DefectChecker only supports versions higher than 0.4.0+, and about

20,000 contracts had to be removed from our dataset, which may influence the overall re-

sults. However, the bytecode we removed is from many years ago, since the first version

of 0.4.0+ was released on Sept. 2016. Even though there are many contract defects in the

removed bytecode, these do not represent current smart contract usage.

Another key threat is that we used our DefectChecker to get the results, but De-

fectChecker also reports false positives and negatives, as shown in the previous section.

However, DefectChecker is the most accurate and efficient tool that detects contract de-

fects in the bytecode level, as we also demonstrated in the previous section. Therefore, we

believe the results and our conclusions from it are reasonable.
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External Validity. There are more than 1,000 smart contracts being deployed to

Ethereum every day [38]. Many guidance and security detection tools [132, 146] are re-

leased to the public, which can help to improve the quality of smart contracts. In this case,

the contract defects in smart contracts may decrease, which may lead to different results to

what we found and reported in this section.

4.6 Related Work

Contract Defects on Smart Contracts. Our previous work [31] is the first work that de-

fines 20 smart contract defects on Ethereum by analyzing the post on StackExchange [175].

We first crawl all 17,128 Stack Exchange posts by the time of writing the paper and use

key words to filter solidity related posts. After getting Solidity related posts, two authors

of the paper use Open Card Sorting to find 20 contract defects and divide them into five

categories, i.e., security, availability, performance, maintainability, and reusability defects.

According to their paper, although previous works define several security defects, they did

not consider the practitioners’ perspective. Therefore, we first designed an online survey

to collect feedback from developers to validate whether the developers regard the contract

defects are harmful. This feedback showed that all the defined contract defects are harmful

to smart contracts. We assigned five impact levels to the defined 20 contract defects ac-

cording to our survey results and the symptoms of the defects. According to our definition,

contract defects with impact level 1-3 can lead to unwanted behaviors of contract, e.g., a

contract being controlled by attackers.

Smart Contract Security Problems and Detection Tools. Luu et al. [131] introduced

four security issues in their work, i.e., mishandled exception, transaction-ordering depen-

dence, timestamp dependence, and reentrancy attack. They proposed a tool named Oyente,

which is the first symbolic execution based bug detection tool for smart contracts. They

first split the bytecode into several blocks, and built a skeletal control flow graph for the
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detected contract. Then, they utilized Z3 [55] as their SMT solver and symbolically exe-

cuted each instruction to obtain the full control flow graph. Finally, they designed different

patterns to detect whether the input contracts contain the defined security problems. Oyente

measured 19,366 existing Ethereum contracts and found 8,519 of them contain the defined

security problems.

Kalra et al. [113] developed a tool named Zeus. The tool feeds source code as input and

translates them to LLVM bytecode. Zeus can detect seven kinds of security problems (four

of them are the same with Oyente), and the other three problems are unchecked send, Failed

send, Integer overflow/underflow. They also compared their result to Oyente and found

Oyente contains many false positives and false negatives. Zeus crawled 1,524 distinct smart

contracts from Etherscan [74], Etherchain [67] and EtherCamp [66] explorers to evaluate

their tool. The result illustrates that about 94.6% of contracts contain at least one security

problem. However, the needs of source code limited their usage.

Jiang et al. [111] proposed a tool named ContractFuzzer to test seven security issues.

ContractFuzzer is the first tool that utilizes fuzzing technology to detect security problems

on smart contracts. They tested 6,991 smart contracts and found that 459 of them have

issues. However, only less than 0.5% of smart contracts open their ABI to investigate on

Ethereum [74], while their tool needs smart contract ABI or source code to generate test

case, which limited their usage. In addition, our dataset consisted of 579 bytecode smart

contracts, which are not supported by ContractFuzzer.

Nikolic et al. [146] developed a tool named MAIAN, which contains two major parts:

symbolic analysis and concrete validation. Similar to Oyente, MAIAN utilizes symbolic

execution and defines several execution rules to detect these security issues. Their tool takes

input data as either bytecode or source code. MAIAN has a different concern compared to

our tool. They focus on security issues that can lead to a contract not able to release Ethers,

can transfer Ethers to arbitrary addresses, or can be killed by anybody. Their results were
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deduced from 970,898 smart contracts and they found that a total of 34,200 (2,365 distinct)

contracts contain at least one of these three security issues.

ConsenSys is a leading blockchain technology company. They built a website named

SWC Registry [171] (Smart Contract Weakness Classification and Test Cases) to collect

smart contract security problems from both online posts and news through crowdsourcing.

Mythril [51] is a tool to detect security problems on this SWC Registy, and their first version

was released in May 2018. The method used by Mythril is similar to Oyente. It first builds

a CFG and utilizes Z3 [55] as an SMT solver. Then, it designs several rules to detect related

problems. Mythril is a tool developed by industry; their instruction manual does not contain

any evaluation section on the tool.

Securify [186] is a tool released by Tsankov et al. Securify is the first tool that utilizes

semantic information to detect security problems on smart contracts. It first decompiles

EVM bytecode to and analyzes the semantic facts, including data flow and control flow

dependencies. Finally, it checks several security patterns that are written in a specialized

domain-specific language to detect related security problems. Securify focuses on two

kinds of security problems, i.e., Stealing Ether and Frozen Funds. There are 9 security

issues can that be detected by Securify. Tsankov et al. evaluate their tool based on two

datasets. First, a large-scale evaluation based on 24,594 smart contracts. Their results show

that more than 70% of smart contracts contain at least one of the security problems. Then,

they use a small-scale evaluation based on 100 smart contracts to evaluate their proposed

tool’s effectiveness. To simplify manual inspection, all of these 100 smart contracts are up

to 200 lines of code. According to their paper, Securify can find more security violations

compared to Oyente and Mythril.

In this paper, we propose a tool named DefectChecker, which is the most accurate and

the fastest symbolic execution model of smart contract defect detection tool. DefectChecker

can detect contract defects by analyzing bytecode, while Zeus and ContractFuzzer need
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source code and contract ABI, respectively. The bytecode of smart contracts are visible

to everyone, while only 1% of smart contracts open up their source code and ABI for

the public [42], which restricts their usage. MAIAN uses a dynamic analysis method to

detect security problems, which is different from our static analysis method. However,

we find their tool can not support the current version of Ethereum that we used. Oyente,

Mythril, and Securify use symbolic execution to detect security problems, which are similar

to DefectChecker, but DefectChecker uses Stack Event and Feature Detector to instead the

usage of SMT solver, which makes DefectChecker requires less runtime and yet is more

accurate than these tools.

Oyente, Mythril, and Securify can detect other contract defects that are not supported by

DefectChecker. Especially for Mythril, which can detect 34 kinds of contract defects. We

admit that some tools can detect more contract defects than DefectChecker, but it is not the

main motivation of this paper. Previous works, e.g., Oyente, Securify, only proposed several

security defects of smart contracts without validating they are really harmful. This is not

beneficial for the development of the smart contract ecosystem. In our previous work, we

validated whether smart contract developers consider the contract defects we found from

StackExchange posts are harmful by using an online survey. In this paper, we proposed

DefectChecker, which aims to automatically detect the validated contract defects. We use

Oyente, Mythril, and Securify as baseline methods with the aim to show the method we use

is more accurate and efficient than these state-of-the-art tools.

Our DefectChecker is extensible. As shown in Figure 4.1, there are three components of

DefectChecker, i.e., CFG Builder, Feature Detector, and Defect Identifier. Defect Identifier

uses eight different rules to identify the contract defects, while the other two components

can also be used to detect other defects. When detecting other defects, we can define new

rules that use the data provided by our Feature Detector, CFG, and Stack Event components.

There are many tools built based on the top of Oyente. For example, our previous work
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GasChecker [36] is a tool to detect gas-inefficient Smart Contracts. The tool uses the

CFG generated by Oyente to detect related gas-inefficient issues. DefectChecker has higher

efficiency in generating CFG compared to Oyente. GasChecker can also use the CFG

generated by DefectChecker. Thus, DefectChecker is also extensible to detect other kinds

of issues.

4.7 Conclusion and Future Work

In this paper, we proposed DefectChecker, which utilizes symbolic execution to detect

smart contract defects by analyzing the contracts’ bytecode. DefectChecker uses different

rules to detect 8 contract defects and achieves a very good result when running on our

previous work’s dataset. The scores for our tool are much higher than those of the state

of the art work e.g. (Oyente, Mythril, and Securify). We also crawled 165,621 distinct

bytecode smart contracts from Ethereum and ran DefectChecker on these. Our results

show that about 15.89% of smart contracts on Ethereum contain at least one instance of our

8 identified kinds of contract defects.

Two groups can benefit from this work. For smart contract developers, they can uti-

lize DefectChecker to check their smart contracts and make them more robust. As De-

fectChecker can detect contract defects from bytecode without the need for source code, de-

velopers can utilize DefectChecker to check whether the smart contracts they call are secure

or not, even if the callee contracts are not open sourced. This can also make their contracts

safer. For software engineering researchers, DefectChecker provides a good framework to

help them solve other smart-contract-related research problems as the CFG generated by

DefectChecker can be used for other purposes.

DefectChecker has some false positives / negatives when detecting defects, e.g., NC,

DuEI. As we described in Section 5.4.4, adding a SMT Solver can reduce some error cases,

while it will also increase the time consumption for analyzing a contract. Future work could
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explore how to combine the method used by DefectChecker and a SMT solver, to balance

both efficiency and accuracy. Specifically, researchers could identify which kinds of code

patterns can lead to the errors made by DefectChecker. For example, DefectChecker regards

all paths to be reachable, while some conditional expressions are always evaluated to false,

which can lead to the false positives in detecting loops. Developers can use a SMT solver

to check the conditional expression in the loop related blocks. This method can increase

the accuracy in detecting loop related blocks.
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Chapter 5

Why Do Smart Contracts Self-Destruct?
Investigating the Selfdestruct Function
on Ethereum

Chen, J., Xia, X., Lo, D., Grundy, J.C. Why Do Smart Contracts Self-Destruct?
Investigating the Selfdestruct Function on Ethereum, to appear in ACM Transac-
tions on Software Engineering and Methodology.

Abstract: The selfdestruct function is provided by Ethereum smart contracts to destroy

a contract on the blockchain system. However, it is a double-edged sword for developers.

On the one hand, using selfdestruct function enables developers to remove smart contracts

(SC) from Ethereum and transfers Ethers when emergency situations happen, e.g. being

attacked. On the other hand, this function can increase the complexity for the develop-

ment and open an attack vector for attackers. To better understand the reasons why SC

developers include or exclude the selfdestruct function in their contracts, we conducted an

online survey to collect feedback from them and summarize the key reasons. Their feed-

back shows that 66.67% of the developers will deploy an updated contract to the Ethereum

after destructing the old contract. According to this information, we propose a method to

find the self-destructed contracts (also called predecessor contracts) and their updated ver-

sion (successor contracts) by computing the code similarity. By analyzing the difference

between the predecessor contracts and their successor contracts, we found five reasons that

led to the death of the contracts; two of them (i.e., Unmatched ERC20 Token and Limits of
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Permission) might affect the life span of contracts. We developed a tool named LIFESCOPE

to detect these problems. LIFESCOPE reports 0 false positives or negatives in detecting Un-

matched ERC20 Token. In terms of Limits of Permission, LIFESCOPE achieves 77.89% of

F-measure and 0.8673 of AUC in average. According to the feedback of developers who

exclude selfdestruct functions, we propose suggestions to help developers use selfdestruct

functions in Ethereum smart contracts better.

5.1 Introduction

The great success of Bitcoin [141] shows the enormous potential of blockchain technol-

ogy [18]. People usually regard Bitcoin as a representative of blockchain 1.0 [124], the

first generation of blockchain technology. In blockchain 1.0, the blockchain technology is

usually used to make cryptocurrency [207], e.g., Bitcoin, Ripple Coin [164]. The usage

scenario of cryptocurrencies in blockchain 1.0 is limited, as the main application for them

is storing and transferring values.

The birth of Ethereum [68] changed this situation at the end of 2015. Ethereum lever-

ages a technology named smart contracts, which can be regarded as a program that runs

on the blockchain. Smart contracts are usually developed in a high-level programming lan-

guage, e.g., Solidity [173]. The blockchain technology provides an immutability feature for

smart contracts, which means all of the smart contracts are self-executed and can’t be mod-

ified. Even the creator of the contract cannot modify the code after deploying the contract

to the Ethereum. By utilizing a smart contract, developers can easily design their DApps

(decentralized applications) [205]. The appearance of Ethereum marked the point that

blockchain technology upgraded from blockchain 1.0 to blockchain 2.0. By Sept. 2019,

millions of smart contracts on the Ethereum [74] have been applied to different fields, such

as gaming [53] and monetization [78], with many other application domains under explo-

ration.

181



However, the features of Ethereum also make it easy to be attacked. First, Ethereum is

a permission-less network; smart contracts on Ethereum can be executed by everyone, in-

cluding attackers. Second, all the data stored on the blockchain, transactions, and bytecode

of smart contracts are visible to the public, which makes smart contracts become attrac-

tive targets for attackers. In 2016, attackers utilized a vulnerability (reentrancy [131]) to

attack a smart contract owned by an organization named DAO (Decentralized Autonomous

Organization). This attack made the organization lose 3.6 million Ethers1. People usually

call this attack a DAO attack [54]. Actually, the attack continued for several days and the

organization even noticed that their contract had been attacked at that time. However, they

could not stop the attack or transfer the Ethers because of the immutability feature of smart

contracts.

This DAO attack attracted great attention from both academia and industry. Some pre-

vious works [50, 85] advice contracts add some mechanisms to stop the contracts or transfer

the Ethers when emergency situations happen, e.g., a contract being attacked. In this case,

the owners can reduce the impact of financial loss. Solidity provides a novel selfdestruct

function [173]. By calling this selfdestruct function, a smart contract can be removed from

the blockchain and all the Ethers on the contract will be transfered to a specified address,

which is an unique identification for the account2 on Ethereum.

This selfdestruct function is however a double-edged sword for developers. On the

one hand, the function enables contract owners have the ability to reduce financial loss

when emergency situations happen. On the other hand, this function is also harmful. The

function might open an attack vector for attackers. It may also lead to a trust concern

from the contract users, as the contract owners can transfer user’s Ethers that are stored

on the contract. These conflicting features make the selfdestruct function valuable to be
1Ether is the cryptocurrency generated by the Ethereum platform. An Ether worth $1270 on Jan. 2021.
2There are two types of accounts on Ethereum, i.e., External Owned Account (EOA) and contract account.

EOA is controlled by users. Contract account is controlled by its code.
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investigated. In this paper, we call a smart contract that has executed the selfdestruct

function as a ‘self-destructed contract’. To better understand the developers’ perspective

about this unique Ethereum smart contract selfdestruct function, we designed an online

survey to collect their opinions, and to help us to answer the following research question:

RQ1: Why do smart contract developers include or exclude selfdestruct functions in

their contracts?

We sent our survey to 996 smart contract developers and received 88 responses. Their

feedback shows that there are six reasons why developers exclude the selfdestruct function.

The top two most popular reasons are security concerns and trust concerns. Developers

are worried that the selfdestruct function in their contract will open an attack vector for

attackers. Besides, this function can also reduce users’ confidence of the contract as the

contract owner have ability to transfer users’ Ethers that stored on the contract balance.

To address these concerns of developers, we provide six suggestions in Section 5.6, which

can help developers to better use the selfdestruct function. In terms of why developers

include a selfdestruct function, our survey feedback shows that two thirds of developers

will kill their contracts when security vulnerabilities are found, or if they want to upgrade

their smart contract’s functionalities. After fixing bugs or upgrading the contracts, they will

deploy a new version of the contract. This finding inspired our second research question:

RQ2: Why do smart contracts on Ethereum self-destruct?

We called the self-destructed contract as a ‘Predecessor’ contract, and its upgraded ver-

sion as a ’Successor’ contract. By comparing the difference between Predecessor contract

and Successor contract, we can identify the reasons why contract destructed, e.g., security

reasons. We propose a method that leverages a clone detection tool (SMARTEMBED [89,

90]) to find Predecessor contracts and their Successor contracts. Then, we summarize 5

common reasons why contracts destructed by conducting open card sorting [174].

As a result, we summarize 5 common self-destruct reasons, detailed in Table 5.2. Two
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of them – Unmatched ERC20 Token and Limits of Permission – might affect the life span

of contracts. Therefore, an automatic tool to detect these problems would be helpful to

extend the life span of smart contracts. This motivated us to investigate our third research

question:

RQ3: How can we detect lifespan-based smart contract problems automatically?

We designed a tool named LIFESCOPE, which can be used to detect Unmatched ERC20

Token and Limits of Permission problems. For Unmatched ERC20 Token, LIFESCOPE uses

ASTs (Abstract Syntax Trees) to parse the source code and extract related information.

LIFESCOPE obtains 100% of F-measure for detecting this problem. For Limits of Permis-

sion, LIFESCOPE first transfers code to a TF-IDF representation and utilizes a machine

learning method to predict the permission. LIFESCOPE achieves an F-measure and AUC

of 77.89% and 0.8673 for this task.

The main contributions of this paper are:

• To the best of our knowledge, this is the most comprehensive empirical work that

investigates the selfdestruct function of smart contracts in Ethereum. We conduct an

online survey to collect feedback from developers. According to this survey feed-

back, we summarize 6 reasons why developers add selfdestruct functions and 6 rea-

sons why they do not add them to their smart contracts.

• We design an approach to find 5 reasons why smart contracts self-destructed. These

self-destruct reasons can be used as a guidance when practitioners develop their con-

tracts. Also, our approach gives inspiration for researchers. They can use the same

approach to find more self-destruct reasons and apply the method to other smart con-

tract platforms, e.g., Ethereum Classic3 [206].

• We propose a tool named LIFESCOPE to detect two problems that might shorten the
3Ethereum Classic is another popular blockchain platform which support the running of smart contracts.
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life span of smart contracts. LIFESCOPE obtains 100% of F-measure in detecting

Unmatched ERC20 Token. And it achieves an F-measure and AUC of 77.89% and

0.8673, respectively in detecting Limits of Permission.

• According to the feedback from our survey, there are six common reasons why some

developers do not use selfdestruct function. We give five suggestions for developers

to address these issues and to help them better use theselfdestruct function in their

smart contacts.

The organization of the rest of this paper is as follows. In Section 6.2, we present the

background knowledge of smart contracts. Then, we show the answer to the three research

questions in Section 6.3-6.5, respectively. We discuss the implication, how to better utilize

selfdestruct function and threats to validity in Section 6.6. After that, we introduce related

works in Section 6.7. In Section 6.8, we conclude the whole work and present our future

work.

5.2 Background

In this section, we briefly introduce the background information about smart contracts, the

Ethereum system, and some features and knowledge about smart contract programming.

5.2.1 Smart Contracts

Bitcoin was the first cryptocurrency that utilized blockchain as its underlying technology.

It allows users to encode scripts to process transactions. However, the scripts on Bitcoin

are not Turing-complete, which restricts the usage of Bitcoin [141]. In contrast, Ethereum

leverages a technology named smart contracts. These can be regarded as self-executed

programs that run on the blockchain. When developers deploy smart contracts to Ethereum,

the source code of the contracts will be compiled into bytecode and reside on the blockchain

forever. The storage of Ethereum is very expensive, as all the data stored on the blockchain
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will be copied on each node, a so-called distributed ledger. To minimize the data space, the

source code of the smart contracts will not be stored on the blockchain. Once a contract

is deployed to the blockchain, the contract is identified by a 20-byte hexadecimal address.

Arbitrary users can call the functions of a smart contract by sending transactions to the

contract address.
1 pragma s o l i d i t y ^ 0 . 4 . 2 5 ;
2 c o n t r a c t Example {
3 a d d r e s s owner_addr ;
4 a d d r e s s [ ] p a r t i c i p a t o r s ;
5 u i n t p a r t i c i p a t o r I D = 0 ;
6 f u n c t i o n c o n s t r u c t o r ( ) {
7 owner_addr = msg . s e n d e r ;
8 }
9 f u n c t i o n ( ) p a y a b l e {

10 i f ( msg . v a l u e != 1 E t h e r )
11 r e v e r t ( ) ;
12 p a r t i c i p a t o r s [ p a r t i c i p a t o r I D ] = msg . s e n d e r ;
13 p a r t i c i p a t o r I D ++;
14 i f ( t h i s . b a l a n c e == 10 E t h e r )
15 ge tWinner ( ) ;
16 }
17 f u n c t i o n ge tWinner ( ) {
18 u i n t random = u i n t ( b l o c k . b l o c k h a s h ( b l o c k . number ) ) % p a r t i c i p a n t s

. l e n g t h ;
19 p a r t i c i p a t o r s [ random ] . t r a n s f e r (9 E t h e r ) ;
20 p a r t i c i p a t o r I D = 0 ;
21 }
22 m o d i f i e r onlyOwner {
23 i f ( msg . s e n d e r != owner_addr )
24 _ ;
25 }
26 f u n c t i o n S e l f d e s t r u c t s ( a d d r e s s add r ) onlyOwner ( ) {
27 s e l f d e s t r u c t ( add r ) ;
28 }
29 }

Listing 5.1: A simple contract

Listing 5.1 is an example of a smart contract that implements a simple gambling game

by using Solidity [173]. Solidity is the most popular smart contract programming language

on the Ethereum platform. Users can send 1 Ether to the contract. Once the contract

receives 10 Ethers, the contract will choose 1 user as the winner randomly and send 9

Ethers to him/her.
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The first line is called the version pragma, which is used to identify the compiler version

of the contract. Lines 3-5 are the global parameters, and the function on line 6 is the

constructor function of the smart contract. The constructor function can only be executed

once when deploying the contract to the blockchain. Therefore, this function is usually

used to store the owner’s information. Specifically, line 7 stores the owner’s address by

using msg.sender. (msg.sender is used to obtain the address of the transaction sender. )

Function on line 9 named fallback function, which is the only unnamed function of the

smart contract. This function will be executed automatically when an error function call

happens. For example, a user calls function “�", but there is no function named “�" in the

contract. In this situation, a fallback function will be executed to handle the error call. If the

fallback function is marked by a keyword named payable, the fallback function will also

be executed automatically when the contract receives Ethers. Lines 10 and 11 guarantee

that each user sends 1 Ether to the contract. If the user sends other amounts of Ethers, the

transaction will be rolled backed by executing revert(), which is a function provided by

Solidity. When the contract receives 10 Ethers (line 14), the contract will choose 1 user

to send 9 Ethers by using function getWinner (line 17). The contract generates a random

number by using the block info related functions4 in line 18. Then, the contract sends 9

Ether to the winner in line 19.

5.2.2 Function Modifier

Ethereum is a permission-less network – everyone can call methods to execute smart con-

tracts. Developers usually add permission checks for permission-sensitive functions. For

example, the contract in Listing 5.1 records the owner’s address in its constructor function

(line 7). In this case, the contract can compare whether the caller’s address is the same as

the owner’s address. Solidity provides Function Modifiers which are used to add prerequi-
4(block.blockhash and block.number are the functions provide by Solidity to obtain block related infor-

mation. Since block hash number is random; so it can be used to generate random numbers sometimes.
)
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sites checks to a function call. A function with function modifier can be executed only if it

passes the check of the modifier.

Listing 5.1 line 22 shows a modifier named onlyOwner. This modifier requires the

transaction creator (msg.sender) should be the owner of the contracts (owner_addr). Func-

tion Selfdestructs on line 26 contains this modifier. Therefore, only the owner of the con-

tract can call selfdestruct function in line 27.

5.2.3 Selfdestruct Function

The selfdestruct function in Listing 6.1 line 27 is the only way to remove the contract from

Ethereum. When executing this method, the caller can transfer all Ethers on balance to a

specific address (addr) (line 27). Then, the contract will be discarded. If others transfer

Ethers to the self-destructed contract address, the Ethers will be locked forever. Calling

selfdestruct function when a contract is no longer needed can help clean up the Ethereum

environment. To motivate this, Ethereum refunds up to half of the gas used by a contract

transaction calling the selfdestruct function to the transaction sender. This mechanism is

also utilized by GasToken [76], which allows users to store gas when the gas price is low

and use the gas when it is expensive. Specifically, a user can create a simple contract

(GasToken) that contains selfdestruct function when the gas price is low. Then, the user

can destruct the GasToken to save the gas when the gas price is high. However, GasTokens

also have the downside to the Ethereum network, as it leads to the creation of millions

of “useless" contracts, which is against the original motivation of the gas refund. EIP-

3529 [194] and EIP-3298 [193] are two Ethereum improvement proposals that suggest

reducing the gas refunds. EIP-3529 recommends reducing the gas refund from up to 1/2

gas used by a transaction to 1/5, and EIP-3298 even recommends removing the gas refund

directly. These two EIPs imply that the GasToken might be nullified in the future.

The selfdestruct function is sometimes harmful as the immutability feature can be bro-
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ken. Immutability is a special and important feature of smart contracts compared to tra-

ditional programs. Once a contract is deployed to the blockchain, none can modify the

contract, even the owner. However, this function can allow the owner to kill the contract

and make the contract disappear from the blockchain. This might reduce the confidence of

the users, as the owner can transfer all the Ethers of the contract. For example, the owner

can transfer all the Ethers by calling the selfdestruct function on contract in Listing 5.1

when the contract receives 9 Ethers. In this case, all the users are losers.
1 c o n t r a c t Vic t im {
2 mapping ( a d d r e s s => u i n t ) p u b l i c u s e r B a l a n n c e ;
3 f u n c t i o n withDraw ( ) {
4 u i n t amount = u s e r B a l a n n c e [ msg . s e n d e r ] ;
5 i f ( amount > 0) {
6 msg . s e n d e r . c a l l . v a l u e ( amount ) ( ) ;
7 u s e r B a l a n n c e [ msg . s e n d e r ] = 0 ;
8 }
9 }

10 . . .
11 }
12 c o n t r a c t A t t a c k e r {
13 f u n c t i o n ( ) p a y a b l e {
14 Vic t im ( msg . s e n d e r ) . withDraw ( ) ;
15 }
16 f u n c t i o n r e e n t r a n c y ( a d d r e s s add r ) {
17 Vic t im ( add r ) . withDraw ( ) ;
18 }
19 . . .
20 }

Listing 5.2: The Demo of the DAO Attack

5.2.4 The DAO Attack - A Motivation Example of the selfdestruct
Function

In 2016, attackers found a vulnerability named Reentrancy [131, 85] in a smart contract

of the Decentralized Autonomous Organization (DAO organization), and this vulnerability

made the DAO organization lost 3.6 million Ethers ($270/Ether on Feb. 2020). People

usually call this infamous attack a DAO attack.

List 5.2 is a demo of the DAO attack. There are two smart contracts, i.e., Victim contract

and Attacker contract. The Attacker contract is used to transfer Ethers from Victim contract,
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and the Victim contract can be regarded as a bank, which stores the Ethers of users. Users

can withdraw their Ethers by invoking withDraw() function. However, withDraw() function

contains the Reentrancy vulnerability in line 6-7.

First, the Attacker contract uses reentrancy() function (line 16) to invokes Victim con-

tract’s withDraw() function in line 3. The addr in line 17 is the address of the Victim

contract. Normally, the Victim contract sends Ethers to the callee in line 6, and resets

callee’s balance to 0 in line 7. However, Ethereum does not support concurrency, which

means Victim contract sends Ethers to Attacker contract before resetting the balance to 0.

When the Victim contract sends Ethers to the Attacker contract, the fallback function (line

13) of the Attacker contract will be invoked automatically, and line 7 is not executed at that

time. So, the Attacker contract can invoke withDraw() function repeatably.

Actually, the DAO attack continued for several days and the organization even noticed

that their contract had been attacked at that time. However, they could not stop the attack

or transfer the Ethers because of the immutability feature of smart contracts. If the contract

contains a selfdestruct function, the DAO organization can transfer all the Ethers easily,

and reduce the financial loss.

5.2.5 ERC20 Standard

Motivated by the great success of Bitcoin, thousands of cryptocurrencies have been created

in recent years. However, most of them do not have their own blockchain system. Instead,

they are usually implemented by smart contracts that run on the Ethereum, also called to-

kens. To ensure different tokens can interact accurately and be reused by other applications

(e.g., wallets and exchange markets), Ethereum provides ways to standardize their behav-

iors. ERC20 [78] is the most popular token standard on Ethereum. It defines 9 standard

interfaces (3 are optional) and 2 standard events. To design ERC20 tokens, developers

should strictly follow the standard. For example, the standard method transfer is declared
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as “function transfer(address _to, uint256 _value) public returns (bool success)”. This

function is used for transferring tokens to a specific address (_to). The ERC20 standard

requires this function to throw an exception if the caller’s account balance does not have

enough tokens to spend. Besides, the function should fire an event named “TRANSFER” to

inform the caller whether the tokens are transferred successfully.

5.2.6 Card Sorting

Card sorting is a research method to organize data into logical groups [174]. Due to the

low-tech and inexpensive nature of card sorting, it is widely used to help users understand

how users would organize and structure the data that makes sense to them. The users who

conduct a card sorting process first need to identify the key concepts and write them into

labeled cards, which can be actual cards or a piece of paper. Then, they are asked to classify

them into groups that they think are appropriate. By utilizing card sorting, users can design

workflow, architecture, category tree, or folksonomy.

There are three kinds of card sorting, i.e., open card sorting, closed card sorting, and

hybrid card sorting. Open card sorting is commonly used for organizing data with no

predefined groups. Specifically, each card will be clustered into a group with a certain

topic or meaning first. If there is no appropriate group, a new group will be generated. All

the groups are low-level subcategories and will be evolved into high-level subcategories

further. Closed card sorting is used for organizing data with predefined groups. Each card

is required to cluster into one of the groups. Hybrid card sorting combines open card sorting

and closed card sorting. Hybrid card sorting has predefined groups but allows the creation

of new groups during the process.
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5.3 RQ1: Developer’s Perspective about selfdestruct Func-
tion

5.3.1 Motivation

Usage of the selfdestruct function can enable developers to destruct their contracts and

transfer Ethers when emergency situations happen, e.g. a contract is being attacked or is

found to be buggy. However, this function is also harmful for both contract users and con-

tract owners. In our analysis, we crawled all of the 54,739 verified smart contracts from

Etherscan [74] by the time of writing (for details see Section 5.4.2.1), and found 2,786

(5.1%) smart contracts contain a selfdestruct function in their source code. In this RQ,

we aim to investigate the developers’ perspective about using the selfdestruct function in

Ethereum smart contracts. By understanding the reason why they include or exclude self-

destruct functions in their contracts, we can better understand the advantages and disadvan-

tages of this function. We then want to design some guidance about using the selfdestruct

function (can be found at Section 5.6.2), which enables developers to design a more robust

smart contract.

5.3.2 Approach
5.3.2.1 Validation Survey

In this paper, we utilize the methods proposed by Kitchenham et al. [120] to design a

survey for collecting the opinions from smart contract developers. To increase the response

rate, we make the survey anonymous [187] and provided a raffle for developers who take

part in our survey. Participation in the raffle is voluntary; we chose two respondents who

provided their email addresses as the winner, and gave them $50 Amazon gift cards as

the reward. We first use a small scale survey to collect feedback about our survey. The

feedback includes: (1). Whether the expression about our question is easy to understand.

(2). Whether the time to finish the survey is reasonable. After the small scale survey, we
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refine our questionnaire based on the feedback we collected. Finally, conduct a large scale

investigation to collect our data. 5

5.3.2.2 Survey Design

To understand the background of the respondents better, we first collect their demographic

information. These five questions can help us have an overall understanding of the respon-

dents.

a. Demographics:

• 1. Professional smart contract developer? : Yes / No

• 2. Involved in open source software development? : Yes / No

• 3. Main role in developing smart contract: Testing / Development / Management /

Other

• 4. Experience in years (decimals ok)?

• 5. Current country of residence ?

After that, the respondents are required to choose yes / no in the question 6. If they

choose yes, they are required to answer question 7; otherwise, they should answer question

8. Both question 7 and 8 contain a textbox, which enables respondents to input their answer.

(There is no length requirement / restriction of their inputs.)

b. Questions about selfdestruct Functions:

• 6. Will you add selfdestruct functions in your future smart contracts? : Yes (Go to

Q7) / No (Go to Q8)

• 7. Why do you add selfdestruct functions?

• 8. Why do you not add selfdestruct functions?
5ETHICS COMMITTEE APPROVAL
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To increase the response rate, we prepare two kinds of survey6, i.e., English Version and

Chinese Version, as Chinese is the most spoken language and English is an international

language in the world. The Chinese version survey is carefully translated to ensure the

contents between the two versions are the same.

5.3.2.3 Recruitment of Respondents

To receive sufficient response from different backgrounds, we first sent our questionnaire to

our contacts who are working in world-famous blockchain companies or doing related re-

search in academic institutions, e.g., Ant Financial, The Hong Kong Polytechnic University,

NUS, The University of Manchester. Then, we also collect developers’ email addresses on

their Github homepage who are contributing to open-sourced blockchain projects. We col-

lected 1,238 email addresses from Github. Due to the scale of the smart contract projects,

1,238 are the numbers of contributors of the top 100 most popular (ranked by stars) smart

contract related projects, which is a good number compared to previous smart contract

related surveys [32, 22, 28] .

5.3.3 Result

Since some email addresses we collected are illegal or abandoned, we successfully sent our

survey to 996 developers, and receive 88 responses from 32 countries (The response rate is

8.84%). The top three countries in which respondents reside are China (29.89%), the USA

(8.05%) and the UK (5.57%). Three of the respondents claim that they are not professional

smart contract developers and have no experience in developing smart contracts. Therefore,

we exclude their responses and use the remaining 85 responses for analysis. The average

years of experience in developing Ethereum smart contracts are 1.96 years (standard devia-

tion is 1.05) for all of our respondents. As the survey was undertaken in Sept. 2019 (about
6The two surveys and related feedback can be found at: https://zenodo.org/record/5518527#.YUl-

bWYzYUE
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4 years since Ethereum was first published), 1.96 average years of experience shows that

they have good experience in developing smart contracts. Among these respondents, 62

(72.94%), 10 (11.76%), 5 (5.88%) described their job roles as development, testing, and

management, respectively. The other 8 respondents said they have multiple roles, such as

security auditor and research.

Guided by previous works [224, 32], we performed open card sorting [174] to ana-

lyze the survey feedback to summarize the reasons why developers include or exclude the

selfdestruct function in their smart contracts. Feedback that we received in Chinese was

first translated into English. After that, we manually converted each feedback into several

separate units with coherent meaning, as some feedbacks contain several reasons. Then, a

card was created for each separate unit with a title (ID) and description (feedback content).

Two experienced smart contract researchers were involved in the card sorting. The detailed

steps are:

Iteration 1: Two researchers randomly chose 20% of the cards. Each card was ana-

lyzed by the two researchers together. They were required to summarize a detailed reason,

e.g, Security concern, Trust concern. If the root concern is unclear, they omit the card from

the card sort.

Iteration 2: The same two researchers analyzed the remaining 80% of the cards inde-

pendently by following a similar method as iteration 1. Some new reasons are found in this

step. After they have gone through the cards independently, they compared their results

and discussed any differences. Finally, 6 reasons for including and 6 reasons for excluding

selfdestruct function were summarized.

There is a threat that what developers told us, i.e., their reasons for adding a self-destruct

function to their smart contracts, may be different from what they do in reality. We do not

claim that our user study is final and complete; rather, we view it as a first step to better

understand the usage of selfdestruct function. We invite others to replicate our study with
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additional surveys and interviews.

5.3.3.1 Reasons for including the selfdestruct function

33 (38.82%) of the respondents claim that they will add the selfdestruct function in their

smart contracts. We analyzed the feedback of these respondents and summarized five key

reasons. As some respondents give more than one reason, the sum of these is higher

than 33.

Reason 1: Security Concerns. 18 (54.55%) respondents claim that they use the

selfdestruct function to stop the contracts when security vulnerabilities are detected in their

contracts. After fixing the vulnerabilities, they can deploy a new contract.

Reason 2: Clean Up Environment. Blockchain is a distributed ledger where each

node stores all the data. After destructing the contracts, the functions of the contracts

cannot be called anymore. 11 (33.33%) respondents mention that when the duty of the

contract is finished, they will call the selfdestruct function to remove the contracts from the

blockchain, which can clean up the blockchain environment.

Reason 3: Quickly Withdraw Ethers. By using the selfdestruct function, the owner

of the contract can remove all the Ethers to a specific address. 9 (27.27%) respondents

claim this function can help them transfer assets quickly.

Reason 4: Upgrade Contracts. 4 (12.12%) respondents said they may need to

upgrade their contracts in the future. Adding a selfdestruct function is the easiest method

to upgrade their contract. This function allows them to remove the old version of the

contract and deploy a new version.

Reason 5: Business Requirement. The business requirement is also a reason why

developers add selfdestruct function. 2 (6.06%) respondents said their business partners

require them to add the selfdestruct function.

Reason 6: Gas Refund. As we introduced in Section 5.2.3, the gas refund feature
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of the selfdestruct function allows the transaction sender to get up to half of the gas back.

1 (3.03%) respondent mentioned that he/she adds the selfdestruct function to get the gas

back.

According to our survey, 22 / 33 respondents claim that they add selfdestruct function

for security concerns or to upgrade contracts. These two motivations can lead to rede-

ployment of smart contracts after developers destruct the contracts. Besides, the survey

feedback also show that selfdestruct function is useful for contract developers to handle

emergency situations, e.g., when serious security issues are found in the contracts.

5.3.3.2 Reasons for excluding the selfdestruct function

52 (61.18%) of the respondents claim that they will not add selfdestruct functions in their

smart contracts. As some respondents give more than one reason, the sum of these is

higher than 52.

Reason 1: Security Concerns. The selfdestruct function can also lead to serious se-

curity problems if the contract does not handle access permissions correctly or the private

keys of owners are leaked. 19 (36.54%) respondents worried that the selfdestruct function

might open an attack vector for adversaries to exploit. Limiting the permission of calling

selfdestruct function is not difficult. For example, a contract can only allow specific ad-

dresses to execute this function. However, it is also possible that the private keys 7 of these

addresses might be stolen. Once the private keys are stolen by attackers, the smart contract

can then be destructed by attackers and all the Ethers will be lost.

Reason 2: Trust Concerns. 16 (30.77%) respondents who give this reason believe

that including a selfdestruct function might lead to trust concerns from the contract users.

To be specific, a selfdestruct function allows the owner to kill the contract and make the

contract disappear from the blockchain. Also, the owner can transfer all the Ethers, which
7There are two kinds of accounts in Ethereum, i.e., externally owned account (EOA) and contract account.

A contract account is controlled by its code, and an EOA is controlled by the private key.
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raises a trust concern for the user.

Reason 3: Requirement Concerns. 16 (30.77%) respondents mention that their

contracts do not use selfdestruct function as their contracts do not have Ethers. Therefore,

they do not need to transfer Ethers. Besides, when they want to add some new functionali-

ties, they said they could deploy a new smart contract and ignore the old one.

Reason 4: Unfamiliarity. 7 (13.46%) respondents claim that they are unfamiliar with

selfdestruct function. They are worried that they might misuse the selfdestruct function,

and lead to the bugs.

Reason 5: Additional Complexity. 4 (7.69%) respondents told us that they need

to add more tests if they add selfdestruct functions in the contracts, which can introduce

additional complexity to their contracts.

Reason 6: Additional Financial Risk. Risk of losing Ether after destroying the con-

tract is also a concern for the developers. 2 (3.85%) respondents worried that people may

send Ethers to the self-destructed contract, and these Ethers will be locked forever.

According to our survey feedback, selfdestruct function might be risky for both contract

developers and contract users. We find six reasons why developers destruct their contracts,

and the reasons “Security concern" and “Upgrade contracts” can lead to the redeployment

of smart contracts. These two reasons are also the most common reasons (66.67%) why

developers destruct their contracts. This finding gives us the motivation of RQ2 that we can

find some security issues by comparing two versions of contracts.

5.4 RQ2: Reasons for Self-destruct

5.4.1 Motivation

According to our survey, 22 out of 33 respondents claim that they add a selfdestruct func-

tion for security concerns or to upgrade contracts. These two motivations can lead to rede-

ployment of smart contracts after developers destruct the contracts. Therefore, by compar-
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Table 5.1: Information for the 756 self-destructed contracts

Max Min Avg. Median
Life Span 879.6 days  1 hour 40.8 days 4.3 days
No. Trans 100582 2 538.8 7
No. Eths 208.6 0 0.44 0

ing the difference between the two versions of the contract, we can find the reasons why

contracts self-destructed. Consider the following scenario.

Bob is a smart contract developer. He developed a smart contract several weeks ago,

and his company uses this contract to receive money from other companies. However, they

find that a function in the smart contract does not limit the caller’s permission, which can

lead to serious security problems. Therefore, Bob has to destroy the contract by involving

selfdestruct function and deploy a new contract to the blockchain. The new contract adds a

permission check to avoid this vulnerability. Bob and his colleagues try their best to inform

other companies not to transfer Ethers to the self-destructed contract anymore. However, it

requires a long time to inform all companies. Many users still transfer Ethers to the self-

destructed contract, and all the Ethers send to the contract are lost forever. It causes a great

financial loss to Bob’s company.

From this scenario, we see that calling the selfdestruct function may lead to great fi-

nancial loss. Therefore, we should try to make contracts robust. If we tell Bob that many

previous contracts are destructed because a function in the smart contract does not limit the

caller’s permission, he might check whether his contract contains the same problem and

can avoid this problem.

In this section, we compare the self-destructed contracts and their successor contracts

to summarize reasons why contracts self-destructed. The reasons we identify can guide

smart contract developers and help them refine their contracts.
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Figure 5.1: Overview architecture of finding the self-destructed reasons

5.4.2 Approach

Figure 5.1 depicts the detailed steps to identify the reasons why some smart contracts have

been destructed. Our method consists of three stages. In the first stage, we crawl all ver-

ified contracts and their transactions from Etherscan. We crawled 54, 739 smart contracts

altogether. We found that 2,786 (5.1%) of these smart contracts among 54,739 contracts

contain a selfdestruct function, and 756 (27.14%) contracts have been destructed. In the

second stage, we first divide crawled contracts into several groups by their creators’ ad-

dresses. In this case, we can find smart contracts that are created by the same authors. We

only use groups that contain self-destructed contracts and rank all the contracts in the same

group by contracts’ creation time. Then, we compute the code similarity of contracts in

each group to find self-destructed contracts (also called predecessor contracts) and their

successor contracts. In the last stage, we compare the difference of predecessor contracts

and their successor contracts by using open card sorting. Finally, we summarized 5 reasons

200



why contracts self-destructed.

5.4.2.1 Stage 1. Data Collection:

Stage 1 is used to collect data for the following two stages. Our data contains three parts,

i.e., verified contracts, self-destructed contracts, and contract transactions.

Verified Contracts: Verified contracts are crawled from Etherscan. To crawl the

source code of verified smart contracts from Etherscan, we first need to know the con-

tract addresses of verified contracts. Figure 5.2 is a smart contract on Etherscan. By ob-

taining the contract address, we can easily download the source code, transactions, and

other information of the contract. The contract address list is provided by Etherscan

(https://etherscan.io/contractsVerified). However, Etherscan only shows the last 500 ver-

ified contract addresses since Jan. 2019. The data used in this paper are crawled before

Jan. 2019 and the lasted 500 verified contracts by the time of the writing. We finally ob-

tained 54, 739 verified contract addresses. After obtaining the contract addresses, we can

crawl the source code from Etherscan directly.

Self-destructed Contracts: Finding whether a verified smart contract has been

self-destructed is straightforward. If a contract has self-destructed, there will be a la-

bel (Self Destruct) given on Etherscan (see Figure 5.2). We found 756 self-destructed

contracts from 54,739 verified smart contracts. The detailed information (creation time,

destructed time, number of transactions / balances ) of each contract can be found

at https://zenodo.org/record/5518527#.YUl-bWYzYUE/Contract_Info_Suicide.csv. Ta-

ble 5.1 shows a brief summary of these 756 contracts. Life span is the time interval

between the transaction of creation and destruction. No. Trans / Eths records the transac-

tions and balance of a contract before its destruction, respectively.

Transactions: Transactions on Ethereum record the information of the external world

interacting with the Ethereum network. All the transactions can be found on Etherscan.
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Figure 5.2: A smart contract on Etherscan
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Figure 5.3: Transactions of a Self-destructed Contract
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We collect all 413,796 transactions of 756 self-destructed smart contracts. Figure 5.3 is the

transactions of a self-destructed contract. In the first transaction, we can find who deployed

the contract (creator) and we can find who destructed the contract (destructor) in the last

transaction.

5.4.2.2 Stage 2. PS Pairs Generation:

A PS (predecessor and successor) pair is denoted as: PS = hP, Si, where P is a smart

contract that has executed the selfdestruct function, named as the predecessor contract. S

represents P’s upgradeable version, that we call a successor contract. P and S are deployed

by the same address and have similar functionalities.

The aim of stage 2 is to find all the PS pairs in our dataset, which helps to reduce the

manual effort when summarizing the reasons for self-destruct in stage 3. For some self-

destructed contracts, it is not easy to find their successor contracts. For example, in our

survey feedback, some developers mentioned that they added the selfdestruct function is

only to quickly transfer Ethers and will not redeploy the contract to Ethereum. For this

kind of contracts, we cannot find their successor ones, and thus we removed them from our

analysis list. Some developers said they would destruct the contracts when bugs are found.

Then, they will redeploy a smart contract after fixing the bug. Thus, we can compare

the difference of two versions of contracts to find the bugs, and the two versions of the

contracts are likely to have high similarity. In this stage, we calculate the similarity to find

the successor contracts of the self-destructed contracts. We found 436 contracts among 756

self-destructed contracts that have successor contracts.

Step 2.1 Cluster: We first find the creator addresses of all the 54,739 verified smart

contracts through their transactions. In this step, we inspect the first transaction of each

smart contract as the first transaction contains the creator address and creation time. Then,

we classify the contracts into several groups according to their creator addresses. If two
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contracts have the same creator address, they will be classified into the same group. We

only choose groups that contain self-destructed contracts.

Step 2.2 Rank by Time: A PL (predecessor and alive) pair is denoted as: PL = hP,Li,

where P is a smart contract that has executed the selfdestruct function. L represents a smart

contract that has been deployed later than P. P and L are deployed by the same address.

In this step, we first rank contracts in each group by their creation time, which can be

obtained from the first transaction. Then, we can obtain several PL pairs. For example, one

group contains five contracts, they are contract a,b,c,d,e and these five contracts are ranked

by creation time. Contract b and d are the self-destructed contacts in these five contracts.

Finally, we output four PL pairs, i.e., (b,c), (b,d), (b,e) and (d,e).

Step 2.3 Text Similarity: We compute the code similarity between two contracts to

identify whether the later created contract is the successor contract of the self-destructed

contract. SMARTEMBED [89, 90] is the only tool that is specialized for calculating the

similarity between smart contracts developed by Solidity at the time of writing this paper.

According to their paper, SMARTEMBED obtains excellent performance in calculating the

similarity of Ethereum smart contracts and outperforms the traditional similarity-checking

/ clone-detection tools, e.g., Deckard [112]. Thus, we use SMARTEMBED to calculate the

code similarity instead of using other similarity checking techniques, e.g., vanilla [216].

SMARTEMBED first converts a smart contract into a code embedding by parsing the

AST of a smart contract (details see Section 5.7) and then calculate the similarity be-

tween two contracts. The similarity metric is calculated as: Similarity(c1, c2) = 1 �
Euclidean(e1,e2)

||e1||+||e2|| , where c1 and c2 are two smart contracts; e1 and e2 are their corresponding

code embeddings, which can be presented as ei = {wi1 , wi2 , ..., win}. Euclidean function

is used to point the distance between e1 and e2, which is calculated by Euclidean(e1, e2) =
p
(w11 � w21)2 + (w12 � w22)2 + ...+ (w1n � w2n)2. Although the tool is aimed at find-

ing bugs, their first step computes code similarity between the given smart contract and
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history contracts. We modified the source code of SMARTEMBED to compute the similar-

ity between two contracts. If their similarity is larger than 0.6, they might be relevant and

we assume the later created contract is the successor of the self-destructed contract. We also

called this self-destructed contract as the predecessor contract of the successor contract. We

found 436 self-destructed contracts have their successor contracts with 1513 <predecessor

contract, successor contract> pairs. We note that 0.6 is a conservative threshold (original

paper assumes similarity 0.95 are cloned); we might include many irrelevant pairs in our

dataset, but it will not influence our result as we conduct a manual analysis in the subse-

quent step. Increasing the threshold can remove some irrelevant pairs to reduce the manual

effort, but it might make us miss some true matching pairs. Besides, some token contracts

might have duplicated code with high similarity, but it still will not affect the results. Be-

cause we will analyze the difference of the similar token contracts manually to identify

whether the later created contracts are the successor contracts of the prior contracts.

5.4.2.3 Stage 3. Reason Generation:

In stage 2, we found 436 contracts among 756 self-destructed contracts that have successor

contracts. Note that the PS pairs we found in stage 2 might contain many false positives.

For example, two contracts can obtain very high code similarity if they use many common

open-source libraries, but they are not the valid PS pairs. Thus, we need manual analysis

to remove these false positives.

It is a time-consuming and error-prone process to analyze the predecessor contract and

successor contract directly. To deal with these issues, we perform two steps. First, to reduce

the manual effort, we use a tool named DiffChecker [182] to help us find the difference

between the predecessor and successor contract. The basic idea of DiffChecker is to use the

Longest Common Substring (LCS) [82] algorithm to find the longest string (or strings) that

is a substring (or are substrings) of two or more strings. We use DiffChecker to highlight
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the difference to reduce manual efforts. Second, to increase the reliability of our results, we

conduct open card sorting to summarize the reason why a smart contract self-destructed.

Guided by previous works [32, 174], we create one card for each PS pair. Each card

highlights the difference between the two contracts.

The detailed steps of the open card sorting we used are:

Iteration 1: We randomly chose 20% of the cards, and two developers with 3 years

of smart contract development analyzed the difference of the code and discussed the reason

why contracts self-destructed. They first quickly read the two contracts to identify whether

they are relevant (The two contracts have similar functionalities). If they are irrelevant,

the card will be discarded. Then, they carefully read the difference between the contracts

and discuss the reason for this difference. For example, Figure 5.4 is a real example of

a predecessor contract (left) and its successor contract (right) in our dataset. The three

differences between the two contracts are highlighted. First, the developer added a Transfer

event in Line 356 of the successor contract. Second, in the predecessor contract, Ethers can

only be sent to an address whose balance is zero. This restriction was removed in the

successor contract. Finally, the selfdestruct function was also removed. According to our

definition, all of these three modifications change the code representation of the contract.

Thus, the reason for the Self-destruct is regarded as Functionality Changes. For some

contracts, it is not easy to find the reason for the self-destruct usage and they were omitted

from our card list. All the reasons are generated during the sorting.

Iteration 2: The same two smart contract developers independently categorized the

remaining 80% of the cards into the initial classification scheme. Then, they compared

their results and discussed disagreements. We used Cohen’s Kappa [47] to measure the

agreement between the two developers. Their overall Kappa value is 0.84, indicating strong

agreement.

We finally identified 5 reasons why contracts have been self-destructed. This informa-
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Figure 5.4: An example considered in our card sort that contain a predeces-
sor contract (0x3b96990a8ef293cdd37c8e1ad3d210a0166f40e1) and successor contract
(0xedd7c94fd7b4971b916d15067bc454b9e1bad980).

tion is shown in Table 1 and the detailed information is shown in the following subsection.

5.4.3 Reasons for Self-destruct

In this subsection, we give detail explanations of the 5 self-destruct reasons and their dis-

tribution in our dataset.

5.4.3.1 Definitions

The short descriptions of 5 self-destruct reasons are given in the first two columns of Ta-

ble 5.2. Below we give a detailed description each reason.

(1) Functionality Changes: Due to the immutability of smart contracts, it is not easy to

upgrade smart contracts. However, during the entire smart contract life cycle, it is neces-

sary for developers to add, remove or change some functionalities to respond to the new

requirements. Functionality changes will change the code representation of a contract,

e.g., Abstract Syntax Tree (AST), Control Flow Graph (CFG). According to our analysis,

we find that functionality changes are the most common reason why smart contracts are
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Table 5.2: Reasons of Self-destruct and their distributions among 340 self-destructed smart
contracts.

Category Description Distribution
Functionality
Changes

Adding, removing or changing Functionalities for
upgrading contracts to respond new requirements.
Functionality changes will change the code repre-
sentation of a contract, e.g., Abstract Syntax Tree
(AST), Control Flow Graph (CFG).

156
(45.88%)

Limits of Permission Adding permission checks for the sensitive func-
tions.

25
(7.35%)

Unsafe Contracts Removing the security problems of the contracts. 95
(27.94%)

Unmatched ERC20
Token

Modifying the contract to make it follows the ERC
20 standard

19
(5.59%)

Setting Changes Changing the variable or function states of the
contracts, such as renaming a contract, and chang-
ing the amount of ERC20 token supplement,
changing a public function to private function.
Setting Changes will not remove or add new code
from a contract.

56
(16.47%)

self-destructed. When new requirements appear or some requirements are changed, some

developers choose to deploy a new smart contract and the old version of the contract will

be destructed.

(2) Limits of Permission: Ethereum is a permission-less network [33] and anyone can call

the functions of the contracts by sending a transaction. Thus, it is important to limit the

access permissions for some sensitive functions. According to our analysis, we find some

predecessor contracts do not check permissions of the callers in some sensitive functions,

e.g., Ether transfer. Thus, everyone can execute the sensitive functions. In the successor

contract, they add permission checks to limit access permissions.

Example: Figure 5.5 is a real example of Limits of Permission. The predecessor con-

tract does not limit the permission of calling the selfdestruct function. In the successor

contract, the function adds a modifier onlyOwner to check the permission. Thus, only the

contract owner can call this function.

(3) Unsafe Contracts: Previous works [131, 113, 146, 186, 32] highlighted several se-

curity problems of smart contracts. For example, Oyente highlighted four security issues,
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Figure 5.5: A real diff example of Limits of permission in our dataset. Prede-
cessor Address: 0xfa1d63b87f40c92d27bfb255419c1ea8c49086de; Successor Address:
0x64b09d1a4b01db659fc36b72de0361f2c6c521b1

Figure 5.6: A real diff example of Unsafe Contract in our dataset. Prede-
cessor Address: 0x8b099bdcfea93faecfac13d0dbc1d08c4e1ec595; Successor Address:
0x17683235257f2089e3e4acc9497f25386a529507

Zeus described four security problems of smart contracts (see Section 5.7). We find many

predecessor contracts contain security problems like reentrancy, which can lead to Ether

loss. Developers usually fix these security issues in the successor contracts.

Example: Figure 5.6 is a real example of Unsafe Contracts. The predecessor contract

does not check the return value of the msg.sender.send(), which might lead to security

issues of the contract. In the successor contract, the function checks whether the Ether

send is successful. If not, the transaction will be thrown.

(4) Unmatched ERC20 token: ERC20 [78] is the most popular standard interface for

tokens in Ethereum. If the implementation of token contracts does not follow the ERC20

standard strictly, the transfer between tokens may lead to errors. We find many predecessor

contracts are token contracts but do not strictly follow the ERC20 standard, while their

successor contracts do follow the standard.

Example: ERC20 requires a transfer function to return a boolean value to identify

Figure 5.7: A real diff example of Unmatched ERC20 token in our dataset. Pre-
decessor Address: 0x848217a9569ca64fffba9d000cda05f9d2fa97f5; Successor Address:
0xf42230a7e21375c29648ae9544f7da394e20ead3
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Figure 5.8: A real diff example of Setting Changes in our dataset. Predeces-
sor Address: 0xa41aa09607ca80ee60d2ce166d4c02a71860e5c5 ; Successor Address:
0x41c6af7b388e80030e63f2686dc2ff9bfd1267c9

whether the transfer is successful. However, the transfer function in the predecessor con-

tract in Figure 5.7 does not return anything. Users usually use third-party tools to manip-

ulate their tokens and these tools capture token transfer behaviors by monitoring standard

ERC20 method [42]. If the contract does not match the ERC20 standard, the token may

fail to be transferred by third-party tools. In the successor contract, the return value of the

transfer() function is added.

(5) Setting Changes: Similar to Functionality Changes, it is likely that developers will

change some settings of smart contracts in response to new requirements. For example, the

token-related contracts usually have some default values, e.g., total token supply, number

of decimals, and token name. Due to immutability, if developers want to change the total

token supply, they have to destruct the contract and deploy a new one. The main difference

between Setting Changes and Functionality Changes is that Setting Changes will not add

or remove code from contracts. Thus, the structure of AST and CFG should be the same

between two contracts, if the reason for their selfdestruct is Setting Changes.

Example: Figure 5.8 is a real example of Setting Changes. The token supplement

in the predecessor contract is too small. Thus, the successor contract changes the token

supplement by multiple a value DECIMALS (DECIMALS equals to 1018 in the successor

contract.)
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5.4.3.2 Distribution

We use SMARTEMBED to find the pair<predecessor contract, successor contract>, and

set the threshold value to 0.6, which might obtain some irrelevant pairs. After manually

removing irrelevant pairs, we found 340 contracts (some contracts have multiple self-

destruct reasons. If multiple changes are found in the successor contract, we regard

all of the changes as contributing to the self-destruction.) for which we can identify

the reason(s) why they are self-destructed and give the distribution of the five self-destruct

reasons in the last column of table 5.2. 96 contracts cannot find the reason why they are

self-destructed, and thus they are omitted from our dataset.

It is clear that Functionality Changes, Unsafe Contract, and Setting Changes are the top

three most popular reasons that lead to contracts destructed; the number are 156, 95 and

56, respectively. The number of the other two reasons are similar, there are 25 contracts

destructed for Limits of Permission and 19 for Unmatched ERC20 Token.

It should be noted that it is not easy to find all the security issues in our dataset. One the

one hand, we only checked the security issues reported by Oyente, Zeus, Mythril, Securify,

Maian [131, 113, 146, 186, 51]. On the other hand, manually checking for security issues

is very error-prone and time-consuming. To reduce the errors, we utilized tools by Oyente,

Zeus, Mythril, Securify, Maian and manually checked each contract it found. We first use

the tools to check smart contracts. Then, two developers with 3 years of smart contract

development experience manually identified whether the results are correct. If the reported

results were different, they discussed to obtain the final result. Note that the code of Oyente,

Mythril, Securify, Maian can be found on Github, and we rerun the tool to get the result.

We did not find the code of Zeus, but Zeus provides their evaluation results which inform

whether a contract address contains vulnerabilities or not. Thus, we use their evaluation

results directly. If the detected contract does not appear in their evaluation results, we

regard Zeus as not finding any vulnerabilities in the contract.
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5.5 RQ3: LifeScope: A Self-destruct Issues Detection Tool
for Smart Contracts

5.5.1 Motivation

In the previous section, we introduced five smart contract self-destructed reasons by com-

paring the difference between predecessor contracts and their successor contracts. Among

these five reasons, Functionality Changes and Change Setting depend subjectively on the

contract owner’s requirements. Specifically, different developers might make different de-

cisions of whether a smart contract should be self-destructed according to their require-

ments, even if the smart contracts are the same. It is thus hard to say these two reasons can

affect the life cycle of smart contracts. However, smart contracts that contain the other three

self-destruct reasons might have a short life span, as they can lead to unwanted behaviors

of the smart contracts. Detecting whether a smart contract contains these self-destruct rea-

sons might increase the life span of the contract. Manual analysis is time-consuming and

error-prone. Therefore, designing a tool to detect whether a contract contains these self-

destructed reasons before deploying them to the Ethereum is important. Security issues is

a big concept. In the last section, we use the security vulnerabilities defined in previous

works, e.g., Oyente, Zeus, Mythril, Security, Maian [131, 113, 146, 186, 51], to find unsafe

contracts. These have already proposed several tools to detect security issues with high

accuracy. The accuracy of Zeus is almost 100% according to their paper, and designing

a more accurate and comprehensive security detecting tool is not the main target of this

paper. In this case, we do not redevelop a tool to detect security issues introduced in these

previous works.

5.5.2 Approach

1 f u n c t i o n t o t a l S u p p l y ( ) p u b l i c r e t u r n s ( u i n t 2 5 6 )
2 f u n c t i o n b a l a n c e O f ( a d d r e s s _owner ) p u b l i c view r e t u r n s ( u i n t 2 5 6 b a l a n c e )
3 f u n c t i o n t r a n s f e r ( a d d r e s s _to , u i n t 2 5 6 _ v a l u e ) p u b l i c r e t u r n s ( boo l

s u c c e s s )
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4 f u n c t i o n t r a n s f e r F r o m ( a d d r e s s _from , a d d r e s s _to , u i n t 2 5 6 _ v a l u e ) p u b l i c
r e t u r n s ( boo l s u c c e s s )

5 f u n c t i o n approve ( a d d r e s s _spender , u i n t 2 5 6 _ v a l u e ) p u b l i c r e t u r n s ( boo l
s u c c e s s )

6 f u n c t i o n a l l o w a n c e ( a d d r e s s _owner , a d d r e s s _ s p e n d e r ) p u b l i c view r e t u r n s
( u i n t 2 5 6 r e m a i n i n g )

7 e v e n t T r a n s f e r ( a d d r e s s _from , a d d r e s s _to , u i n t 2 5 6 _ v a l u e )
8 e v e n t Approva l ( a d d r e s s _owner , a d d r e s s _spender , u i n t 2 5 6 _ v a l u e )

Listing 5.3: ERC20 Functions and Events

We propose a tool named LifeScope to detect the remaining two issues, i.e., Limits of

Permission and Unmatched ERC20 Standard that can lead to contracts being destructed.

Since the aim of LifeScope is extending the life span of a smart contract by finding the

self-destruct reasons, and smart contracts are immutable to be modified after deploying to

the blockchain. Therefore, it is meaningless to detect the two self-destruct reasons through

bytecode, although smart contracts are stored in the form of bytecode.

LifeScope detects the self-destruct issues at source code level, which utilizes AST (ab-

stract syntax tree) to parse the smart contracts and extract related information to detect

Unmatched ERC20 Standard. For Limits of Permission, LifeScope first transfers the con-

tract to a TF-IDF representation and then utilizes machine learning algorithms to predict

this problem. These two problems are not only limited to contracts that contain the self-

destruct function. Any smart contracts can be analyzed with LifeScope to detect these two

problems before deploying them to the Ethereum.

5.5.2.1 Unmatched ERC20 token

The method to detect the Unmatched ERC20 Token is shown in Algorithm 1. The input

is an AST (Abstract Syntax Tree) of a smart contract, which is generated by the Solidity

compiler [214]. AST is a tree structure that contains the syntactic information of source

code. By analyzing the AST, we can generate a list of pairs hfunn, funInfoi. funn

is the name of a function; funInfo contains information about the function funn, i.e.,

parameter types and return types. ERC20 standard defines nine functions and two events.
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Algorithm 1: Algorithm to Detect Unmatched ERC20 Token
Input: AST of a smart contract
Output: Is an Unmatched ERC20 Token

1 Extract hfunn, funInfoi pair list from AST;
2 Extract heventn, eventInfoi pair list from AST;
3 appearedFunc = 0;
4 legalFunc = 0;
5 legalEvent = 0;
6 isMachedERC20 = false;
7 for funi, funInfoi 2 hfun, funInfoi pair list do
8 if funi is one of ERC20 Standard Function then
9 appearedFunc++;

10 if funInfoi is same to ERC20 Standard Function then
11 legalFunc++;
12 end
13 end
14 end
15 for eventi, eventInfoi 2 hevent,eventInfoi pair list do
16 if eventi is one of ERC20 Standard Event then
17 if eventInfoi is same to ERC20 Standard Event then
18 legalEvent++;
19 end
20 end
21 end
22 if appearedFunc < 5 then
23 return not_ERC20_Contract;
24 end
25 if legalFunc == 6 and legalEvent == 2 then
26 isMachedERC20 = true;
27 end
28 return isMachedERC20;
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Figure 5.9: Approach to Check Permissions

Among the nine functions, three are optional, and six are compulsory. The six compulsory

functions and two events are shown in Listing 5.3. We traverse all the functions in the

smart contract. If the function name funn is one of the six compulsory functions, we then

compare whether the input parameter types and return types are the same with the ERC20

standard. For example, if a contract contains a function named transfer, we then check

whether this function contains two parameters and their types are address and uint256,

respectively. Besides, the function should have a return value, and the type of the return

value is bool. We use the same method to check contract events. Finally, if all the six

compulsory functions and two events appear in the contract, this is a matched ERC20 smart

contract. We follow the previous work [87], if less than five ERC20 functions appear in a

smart contract, we regard it as not an ERC20 smart contract. Otherwise, it is an unmatched

ERC20 token. Note that Solidity allows abstract functions or interfaces which do not have

code implementation. We only consider a function as an ERC20 function if it has complete

implementation. Besides, the bytecode of a public storage variable is the same as a view

function without any input parameters and only has one return value. Thus, the function

totalSupply() can also be represented as a global variable, i.e., uint totalSupply = amount;

If a smart contract does not contain a function named totalSupply(), but contains a public

variable named totalSupply, it will also be regarded as a matched ERC20 function.
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5.5.2.2 Limits of Permission

It is hard to prescribe functions need to check their permissions. Therefore, It is not easy

to detect this issue by using programming analysis methods. We utilize a machine learning

method to predict whether a function needs to check for its caller permission. Figure 5.9 de-

scribes the overall architecture that we used. The method contains three parts, i.e., Dataset

Generation, Text Preprocessing and Machine Learning Algorithm Selector.

(a). Dataset Generation: The aim of this step is to extract pairs<func, permission>

from smart contracts. In each pair, func is the source code of a function in the smart

contract, and permission means whether the function needs to check the caller’s permission.

Since security vulnerabilities are ubiquitous in smart contracts on Ethereum [131, 43, 113,

146], some alive contracts might also miss checking the permissions of the functions. This

situation gets even worse in self-destructed contracts, as the reason for the destruct might

be missing permissions. Therefore, it is not reliable to use these contracts as our ground

truth. To ensure the correctness of our dataset, we should use contracts that correctly check

their permissions for the contracts. However, it is not easy to ensure the correctness of

the contract, and manually check whether a function needs to check its permission is also

error-prone and subjective.

To obtain the dataset, we first rank all the alive verified contracts by their transaction

numbers. We then choose all of the contracts whose transaction numbers are larger than

500, as transactions can be regarded as test cases for the contract. Previous works check the

transaction input to detect malicious attacks [81, 199, 35]. The more the number of normal

running transactions a contract has, the less likely the contract has permission problems.

After this step, 5,986 contracts remained. Financial gain is an important motivation behind

the attacks on Ethereum smart contracts [33]. We finally find 1 Ether can get an appropriate

number of the dataset (875 smart contracts with 29,313 functions). Thus, we choose con-

tracts whose balance have more than 1 Ether (1 Ether worths about $1400 at Feb. 2021).
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The sensitive information of smart contracts, e.g., contract bytecode, balance, are visible

to the public. Finally, 875 contracts whose balance has larger than 1 Ether and transaction

numbers larger than 500 transactions remain.

After getting these contracts, we first remove the comments on the contracts and then

split the contracts into functions. We obtain 29,313 functions from these 875 smart con-

tracts. We then need to identify whether these functions contain modifiers, as the per-

mission is usually checked by the modifier. If a function contains modifier, we remove

the modifier from the function. For example, the original function is function transfer-

Money(address addr) onlyOwner{}. We remove the modifier onlyOwner from the func-

tion and only use function transferMoney(address addr){} to training the machine learning

model. In our dataset, we obtain 29,313 functions, with 4,393 of them needing to check

permissions.

(b). Text Preprocessing: Before training the machine learning module, we need to

transfer each processed function into a set of bag-of-words (BoW). The dataset is split

into a training set and a test set. Both of them are first processed by the following steps:

(i) Tokenization: Each processed function is divided into a list of words by punctuation

and space that usually do not contain any information. For example, function transfer-

Money(address addr){} will be transferred into "function", "transferMoney", "address" and

"addr" (ii) Camel Case Splitter: We separate function names, variable names and iden-

tifiers according the rules of Camel Case [210]. For example, "transferMoney" will be

separated into "transfer" and "Money". Then, we transfer all the words to their lower case.

(iii) Stop Words Removal: Stop words means meaningless words (e.g., "to", "as", "is").

We adopt NLTK (a python library) stop words list in this step. We also remove tokens

of less than 3 characters. (iv) Stemming: this step is used to transfer words into their

stem form. For example, "running" is replaced by "run". In this paper, we use Porter’s

stemmer [161] to transfer the words.
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After these four steps, we use TF-IDF (term frequency - inverse document fre-

quency) [7] to represent each processed word in the function. (Noticed that to make

the result more reliable, the BoW model is only built by the training set.) This is described

as:

wi,j = tfi,j ⇤ log(
#offunctions

dfi
) (5.1)

Here, wi,j is the weight of the word i in the function j. tfi,j is the term frequency of

word i in the function j. dfi is the number of functions that contain word i. Finally, each

function is represented as funj = (w1,j, ...wi,j, ..., wn,j).

(c). Machine Learning Algorithms Selection: Checking the permission of functions is

a binary classification problem. We tried five popular machine learning algorithms to find

an appropriate algorithm for predicting the permission and use the algorithm that obtains

the best F-Score for this task. The five algorithms are Decision Tree, KNN, Random Forest,

Logistic Regression, and Naive Bayes. We use a python library named sklearn [170] with

its default configuration to implement these five algorithms.

5.5.3 Evaluation For Unmatched ERC20 Token
5.5.3.1 Dataset

The dataset for Unmatched ERC20 token consists of two parts, i.e., smart contracts with

and without selfdestruct function. The dataset with selfdestruct function has 756 self-

destructed contracts, which is the same dataset introduced in RQ2. Among these contracts,

127 of them are discarded due to the unsupported compiler version. (LifeScope supports

Solidity compiler versions that are equal to or higher than 0.4.25). So, there are finally 629

self-destructed contracts in our dataset. The two researchers manually labeled the dataset

and found 164 of them are ERC 20 token contracts. In these 164 ERC20 token contracts,

70 (11.13%) of them are Unmatched ERC20 tokens.
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For the dataset without selfdestruct function, we use an open source dataset proposed

by our previous work [32]. The dataset contains 587 smart contracts, which has the ground

truth of Unmatched ERC20 tokens. The ground truth is labeled by two experienced re-

searchers. They first analyzed the contracts independently, and then discussed any differ-

ences, which ensured the correctness of the dataset. Since the dataset is randomly selected,

some contracts contain the selfdestruct function and a low compiler version. After remov-

ing the incompatible contracts, 358 contracts remained. Among these 358 smart contracts,

141 are ERC20 token contracts, and 36 (25.53%) of them have an Unmatched ERC20

token.

5.5.3.2 Result

For the dataset with selfdestruct function, LifeScope finds 70 Unmatched ERC20 token,

with 0 false positive and negative. For the dataset without selfdestruct function, LifeScope

finds all 36 Unmatched ERC20 token, with 0 false positives and negatives. The results

show that LIFESCOPE can also detect the Unmatched ERC20 token problem in both smart

contracts with and without selfdestruct functions.

5.5.3.3 Comparison:

TokenScope [42] is a novel transaction based tool to identify the inconsistency of ERC20

tokens. It can identify whether a contract is a legal ERC20 token by investigating its trans-

actions. In this paper, we re-execute TokenScope and use the same dataset to compare with

LifeScope.

The dataset with a selfdestruct function contains 164 ERC20 contracts. Among these

contracts, 94 are legal ERC20 contracts, and 70 have an unmatched ERC20 Token. To-

kenScope correctly predicts 88 contracts are legal ERC20 tokens, and 49 are unmatched

ERC20 tokens. However, it mistakenly predicts 6 contracts are not legal ERC20 tokens,

and 21 are ERC20 tokens.
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The dataset without selfdestruct function contains 141 ERC20 contracts. Among these

contracts, 105 are legal ERC20 contracts, and 36 are unmatched ERC20 Tokens. To-

kenScope correctly predicts 96 contracts are legal ERC20 tokens, and 17 are unmatched

ERC20 tokens. However, it mistakenly predicts 9 contracts are not legal ERC20 tokens,

and 19 are ERC20 tokens.

TokenScope needs transactions to identify whether a contract has legal ERC20 tokens.

However, since some contracts only have a signal transaction, this leads to the false posi-

tives of TokenScope (mistakenly predicting a contract is not an ERC20 token). Besides, we

find TokenScope cannot check the return value of a function. Specifically, ERC20 standard

requires the transfer function to return a boolean value, while TokenScope cannot identify

whether a function has a return value, which leads to false negatives (mistakenly predicting

a contract is an ERC20 token).

In conclusion, LifeScope performs better than TokenScope.

Etherscan also can identify whether a contract is an ERC20 contract. We did not com-

pare the result with Etherscan because we have different standards to define whether a con-

tract is an ERC20 token. ERC20 standard defines nine functions and two events. Among

the nine functions, three are optional, and six are compulsory. For our paper, we use a

definition in previous work [87]: if less than five compulsory ERC20 functions appear in

a smart contract, we regard it as not an ERC20 smart contract. A smart contract is defined

as an unmatched ERC20 contracts only if it has more than or equal to five compulsory

ERC20 functions, and some of these functions do not follow ERC20 standards. However,

Etherscan has a different definition for ERC20 contracts. Etherscan regards a contract that

has ERC20 related transactions as an ERC20 contract even though it only contains one

ERC20 function, e.g., transfer() and has related transactions. Thus, the result of Etherscan

will be very different from our method, and it is the reason why we did not choose it as our

comparison method.
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5.5.4 Evaluation For Limits of Permission
5.5.4.1 Dataset

The method that was used to generate the dataset of Limits of Permission is introduced in

section 5.5.2. To better evaluate the results, we use a cross-validation method of training-

testing sets. First, we divided our dataset into 10 parts of equal sizes. Then, we conduct

the training using 7 parts of the dataset and 3 parts for testing. Specifically, we give an ID

(0 to 9) to each part. In the first round, the parts with ID 0 to 2 are the testing sets, and 3-9

are the training sets. In the last round, the parts with ID 9, 0, 1 are the testing parts, and the

remaining parts are the training set. We continue this process 10 times. Finally, we report

the average results. There are around 20,328 case in our training sets and 8985 cases in our

testing test.

5.5.4.2 Evaluation Methods and Metrics

We use five measurements to evaluate the results, i.e., precision, recall, F1-Measure,

accuracy, and AUC. Precision, Recall, F-measure, and Accuracy can be calculated as:

#TP
#TP+#FP , #TP

#TP+#FN , 2⇥P⇥R
P+R , #TP+#TN

#TP+#TN+#FN+#FP , respectively. TP (true positive) indi-

cates the number which correctly predicts a function needs to add a permission check. TN

(true negative) indicates the number which correctly predicts a function does not need to

add a permission check. FP (false positive) and FN (false negative) indicate the number

which incorrectly predicts that a function needs or does not need to add a permission

check. AUC (area under the curve) is calculated by plotting the ROC curve (receiver

operator characteristic).

5.5.4.3 Result

Table 5.3 shows the result of predicting Limits of Permission by using five machine learning

algorithms. We found that the Decision Tree algorithm obtains the best F-Score for this

task. Therefore, we finally use the Decision Tree to predict whether a function needs to
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Table 5.3: Results of Predicting Limits of Permission by using Five Machine Learning
Algorithms

Precision Recall F-Measure Accuracy AUC
Decision Tree 78.91% 77.09% 77.89% 93.45% 0.8673

KNN 72.75% 50.40% 59.50% 89.71& 0.7352
Random Forest 83.73% 70.82% 76.05% 94.88% 0.8499

Logistic Regression 84.11% 52.78% 64.82% 91.40% 0.7551
Naive Bayes 23.33% 88.43% 35.66% 52.15% 0.6708

Table 5.4: Results of Predicting Limits of Permission for 10-fold cross-validation by using
Decision Tree

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 AVG
Precision 79.92% 79.08% 77.45% 76.76% 77.14% 77.04% 79.20% 77.32% 82.96% 82.19% 78.91%

Recall 69.08% 73.14% 77.28% 88.19% 82.50% 78.40% 81.34% 76.93% 76.84% 73.39% 77.09%
F-Measure 74.10% 76.00% 77.37% 79.29% 79.73% 77.72% 80.26% 77.13% 79.78% 77.54% 77.89%
Accuracy 92.35% 93.16% 93.72% 93.97% 94.01% 93.45% 93.88% 93.33% 93.72% 92.95% 93.45%

AUC 0.8291 0.8489 0.8682 0.8896 0.8921 0.8721 0.8874 0.8653 0.8690 0.8511 0.8673

check for its callers’ permission.

The detailed results of predicting Limits of Permission for 10-fold cross-validation by

using Decision Tree are shown in Table 5.4. Our method obtains 78.91% of precision,

77.09% of recall, 77.89% of F-measure, 93.45% of Accuracy, and 0.8673 of AUC. Prior

works [80, 79] suggest that a classifier performs reasonably well if its AUC is larger than

0.7.

5.5.4.4 Comparison

To evaluate the performance of LifeScope in detecting Limits of Permission, we design

a keywords-based method to identify whether a function needs to check its permission.

Following we describe the details of the comparison method.

Feature Selector: We use decision tree to predict whether a function needs to add a per-

mission check, which enable us to know which words lead to a function being classified as

needing permission check. Guided by previous works [102, 168, 218], we employ a widely

used feature selection technique named Information Gain, to select useful features in our

prediction.

Our dataset can be denoted as F = (F1, L1), (F2, L2), ..., (Fn, Ln), where Fi represents
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the ith function, and Li is the label, which means whether the Fi needs to check its permis-

sion (t) or not (t). The word vector of Fi is represented as Fi = {w1, w2, ..., wn}, where n

represents the number of different words appeared in Fi, and wi represents the ith words.

There are four relationships between the word w and a function Fi.

1. (w, t): function Fi contains the word w, and the function needs to check its permis-

sion.

2. (w, t): function Fi contains the word w, but the function does not need to check its

permission.

3. (w, t): function Fi does not contain the word w, but the function needs to check its

permission.

4. (w, t): function Fi does not contain the word w, and the function does not need to

check its permission.

Based on these relationships, the information gain (IG) of word w0 and label t0 is defined

as:

IG(w, t) =
X

t02{t,t}

X

w02{w,w}

p(w0, t0)⇥ log
p(w0, t0)

p(w0)⇥ p(t0)
(5.2)

In the equation, p(w0, t0) is the probability of the word w0 in a function with label t0.

p(w0) means the probability of word w0 in a function and p(t0) represents the probability of

a function with label t0.

Behaviors of permission check: Information gain reflects the amount of information

required for predicting a label (needs or does not need to check the permission). The

higher IG score a word has, the more important the word to distinguish the label. We rank

the IG score of each word and list the top 50 words with highest information gain score

in Table 5.5. The first line has the highest IG score, and the score decreases from left to

right in each line. Note that a word with a high IG score means it has a high contribution
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to predicting the label, not necessarily mean that it indicates whether a function needs

permission check. Thus, we manually check the word in Table 5.5 to find useful behaviors.

From the words, we then summarize four kinds of behaviors that needs to check func-

tions’ permission:

(1). Ether Transfer. Specifically, the words “msg", “sender", “transfer", and “eth"

are related to Ether transfer methods on Ethereum, i.e., msg.sender.transfer(eth); the word

“withdraw" reflects a behavior related to withdraw balance.

(2). Sensitive states change, e.g., changing permission owners, increasing or decreas-

ing total supply of tokens, stopping or starting the functionalities. Specifically, the words

“ownership", “administr", “mint" and “renounce" are all related to sensitive states of a

contract.

(3). Inline assemble and selfdestruct function. Ethereum provides some function-

alities which need to limit permission. Specifically, the words “mload" and “assemble"

are related to the inline assemble. The word “selfdestruct" is related to the selfdestruct

function.

(4). Emergency Management. Smart contracts are difficult to be modified once de-

ployed. Thus, there are some functions used to handle the emergency situations. Specifi-

cally, the words “emerge", “pause", “stop", "unpause", “selfdestruct" are related to emer-

gency management.

We use the top 50 words with the highest IG score to find four behaviors that need to

check functions’ permission. To prove the completeness of the four behaviors, we also

manually check the top 51-100 words with the highest IG score. We find there are no

additional behaviors that can be found. All the words can be classified into these four

categories.

Result of the Comparison Method: In the last part, we summarize four kinds of be-

haviors that need to check functions’ permission according to the top 50 words with the
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Table 5.5: Top 50 words with highest information gain score.

ownership transfer name oracle pidx gen address pause human round
stop unpause assert online data addr core log compress assemble

withdraw gap event mint mask eth within msg transaction mload
earn emerge spender code sender renounce determine calc sqrt team

propose math divest div selfdestruct filter administr confirm investor sale

highest IG sore. According to these words, we design a simple keywords based method

to identify whether a function needs to check its permission. Specifically, if a function

contains one of the key word “msg.sender.transfer", “ownership", “administr", “mint", “re-

nounce", “mload", “assemble" “emerge", “pause", “stop" and "unpause", we assume the

function needs to check its permission. Notice that we merge some keywords, e.g, “msg",

“sender", “transfer" to “msg.sender.transfer" as “msg.sender" are widely used in Ethereum.

We finally obtain 31.53% precision, 11.41% recall, 16.75% F1-measure, and 83.01% accu-

racy, which are much worse as compared to our machine learning based method (78.91%

precision, 77.09% recall, 77.89% F1-Measure, and 93.45% accuracy).

5.6 Discussion

We first summarize the key implications of our work for researchers, practitioners, and

educators. Then, we give 6 suggestions on how to better use selfdestruct function according

to the feedback of the survey. Finally, we summarize the main threats of validity.

5.6.1 Implications
5.6.1.1 For Researchers

Research Guidance. In this paper, we found 5 reasons why smart contracts destructed

by comparing the difference between self-destructed contracts and their successor con-

tracts. With the increasing number of smart contracts, researchers can apply our methods

to find more problems that can affect the life span of smart contracts. Our study focuses on

Ethereum smart contracts, but many other blockchain platforms also support the running
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of smart contracts, e.g., Ethereum Classic [206], Expanse [77]. Both Ethereum Classic and

Expanse were created by the hard fork of Ethereum, but currently they are independent

blockchain systems with many years of development. Both of them support the running

of smart contracts based on EVM and support the selfdestruct function. There might be

some different reasons for the self-destruct; researchers can use our methods to identify the

reasons on these platforms.

5.6.1.2 For Practitioners

Our work is the first that uses an online survey to collect feedback from smart contract

developers on why they include or exclude selfdestruct function. Their feedback shows

that adding a selfdestruct function can help developers transfer Ethers when emergency

situations happen. However, using this function can also lead to several problems. To

address the drawbacks of adding a selfdestruct function, we give 6 suggestions in the next

section. These can help developers better use the selfdestruct function in their contracts.

Smart contract developers can develop a smart contract according to our suggestions and

open source the code for other developers to use. We also summarized 5 common reasons

why contracts self-destructed and developed the LIFESCOPE tool to detect 2 self-destruct

reasons. Removing these problems might extend the life span of smart contracts.

5.6.1.3 For Educators

selfdestruct is an important feature of smart contracts. However, most blockchain tutorials

focus on teaching how to develop smart contracts and knowledge about blockchain. Edu-

cators should pay more attention to these unique functions of smart contacts. For example,

educators should mention the importance and drawbacks of adding a selfdestruct function

when they introduce this function. The feedbacks of our survey in RQ1 can provide good

materials for them.
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5.6.2 Towards More Secure selfdestruct Functions

In Section 5.3, we summarized six reasons why smart contract developers exclude the

selfdestruct function from their contracts. In this part, we give six suggestions about how

to better use Selfdesturct function according to the summarized worries.

Suggestion 1. Limit Usage Scenario: Adding selfdestruct function can increase the com-

plexity of the development and risk of attacks. Some smart contract developers claim that

the selfdestruct function is mainly used to remove the code and transfer Ethers. However,

they do not need this function if there is no Ether in their contracts. Removing the contracts

from the blockchain is also unattractive to them. Even if their contracts are attacked and

controlled by attackers, they can discard the old contracts and deploy a new version. To

reduce the risk and the workload of development, a selfdestruct function is better to add in

contracts that contain Ethers.

Suggestion 2. Permission Check: Calling a selfdestruct function can lead to irreversible

consequences. The contract has to check the permission of the caller in each transaction. A

common method to check the permission is recording the owner’s address in the constructor

function. Then, checking whether the caller is the owner in each transaction.

Suggestion 3. Distribute the Rights and Modularization: The trust concern is an im-

portant reason why developers exclude a selfdestruct function. The trust concern contains

two parts according to the feedback, i.e., human related and code related concern.

For human related concern, users might worry that the owner of the contract can de-

struct the contract and transfer all the balance if the contract has a selfdestruct function.

For example, the gambling contract shown in Listing 6.1 claims that users can transfer 1

Ether to the contract. When the contract receives 10 Ethers, the contract will choose one

user as the winner and transfer 9 Ethers to the winner as a bonus. However, if the contract

has a selfdestruct function, users might worry that the owner might transfer the money out

at any time.
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To reduce this kind of concern, the owner could build a DAO (Decentralized au-

tonomous organization) for the contracts. In a DAO system, the DAO controls the con-

tracts, and the users of the contracts control the DAO by using digital tokens which give

them voting rights. The users who hold tokens (voting rights) can submit a proposal, e.g.,

executing the selfdestruct function. Then, the proposal will be checked by a group of

volunteers called “curators" to check the legality of the submitted proposal and the identity

of the submitter. Finally, the users who owned the DAO tokens vote to accept or reject the

proposal.

However, adding a DAO pattern to the contract can increase code complexity, which

is also a big concern according to our developer survey feedback. With the increase of

code complexity, the probability of containing security vulnerabilities is also increasing,

which leads to code related trust concerns for developers. To address these two concerns,

we suggest that smart contract developers can open source and modularize this part of their

code (DAO patterns) to a library. Other developers can then help polish the code together,

and can make the code easier to use in the future.

Suggestion 4. Delay Self-destruct Action: The Ethers sent to a self-destructed contract

will be locked forever, which increases the risk of using selfdestruct function. As we

described in Section 5.4.1, the contract owner might find it difficult to inform all the users

in a short time after the contract self-destructed. In this case, some users might send Ethers

to the self-destructed contract and this may lead to financial loss. To address this problem,

we suggest that the contract can delay the self-destruct action and throw an event to inform

the users that the contract will self-destructed in the near future. On the one hand, delaying

self-destruct action can give time for voting (Suggestion 3). On the other hand, it can

provide time to inform users that the contract will be destructed.

Suggestion 5. Pause Functionality: The options in Suggestion 3 and 4 require time to

implement. However, when a contract is being attacked, any delay might lead to enormous
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financial loss. In this case, pausing the functionality when performing the methods de-

scribed in Suggestion 3 and 4 are important. OpenZeppelin provides a Pausable contract

template [151, 152], which can be easily used through inheritance. The three functions and

two modifiers are shown in Listing 5.4. The two modifiers, i.e., whenNotPaused and when-

Paused, can be added to control its states. Specifically, whenNotPaused makes functions

callable only when the contract is not paused, and whenPaused makes a function callable

only when the contract is paused. The state of the contract is obtained by a boolean value

named _paused, which can change its state by the function _pause() and _unpause().
1 m o d i f i e r whenNotPaused ( ) { r e q u i r e ( ! paused ( ) , " P a u s a b l e : paused " ) ; _ ; }
2 m o d i f i e r whenPaused ( ) { r e q u i r e ( paused ( ) , " P a u s a b l e : n o t paused " ) ; _ ; }
3 f u n c t i o n paused ( ) p u b l i c view v i r t u a l r e t u r n s ( boo l ) { r e t u r n _paused ; }
4 f u n c t i o n _pause ( ) i n t e r n a l v i r t u a l whenNotPaused { _paused = t r u e ; }
5 f u n c t i o n _unpause ( ) i n t e r n a l v i r t u a l whenPaused { _paused = f a l s e ; }

Listing 5.4: OpenZeppelin Pausable contract

Suggestion 6. Refund Values: Some smart contracts might store the values of users.

For example, users might hold tokens in ERC20 contracts. Thus, destructing the smart

contracts will lead to financial loss of users. Before executing the selfdestruct function, the

contract owners should refund users’ assets.

5.6.3 Tokens of Destructed Unmatched ERC20 Contracts

Unlike other kinds of contracts, ERC20 contracts usually store values (tokens) of users.

Destructing the contract and transferring the balance is not enough for ERC20 contracts,

as the tokens will be locked with the execution of the selfdestruct function. We investigate

the transaction of 70 destructed unmatched ERC20 tokens introduced in Section 6.5.3 and

find that 53 of them contain transactions that call transfer(), which means there are token

transfers in these contracts. However, only 3 contracts have refund-related transactions.

These three contracts pay back a certain amount of Ethers according to the tokens that

users have. For the other 50 smart contracts, the contract owners destruct the contracts

directly without considering the benefits of users. This situation might suggest that ERC20
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tokens with selfdestruct function might have a high risk for users.

5.6.4 Inconsistency
5.6.4.1 selfdestruct functions on Etherscan vs. Survey Results.

In this paper, we collected 54, 739 open-source smart contracts but only found 5.1% of

them contain the selfdestruct function. However, in our survey, 38.82% of the developers

claim that they will add selfdestruct functions to their contracts. There is an inconsistency

between the practitioner’s perception and their behavior (38.82% vs. 5.1%). The inconsis-

tency might indicate that many developers admit the importance of selfdestruct function but

they give up on adding it during the actual development process. The reasons why devel-

opers do not add the selfdestruct functions in actual developing process might have already

been included in Section 6.3.3.2. Therefore, designing guidelines for using the selfdestruct

function might be helpful. Future work can aim to design guidelines, development models

or tools to address these problems. We also give five suggestions in the Section 5.6.2.

5.6.4.2 Self-destructed Contracts on Blockchain vs. Etherscan.

We summarized 5 reasons why smart contracts were destructed based on 756 self-

destructed contracts collected from Etherscan. However, there are millions of destruc-

ted contracts on Ethereum blockchain. The inconsistency between the number of self-

destructed Contracts on Ethereum blockchain and Etherscan might make our finding

not so reliable. To investigate this inconsistency, we collected all self-destructed-related

traces by Jan. 2019 (The date is the same as the verified contract we collected from

Etherscan.) Table 5.6 shows the self-destructed-related information we collected from

Ethereum blockchain. There are 30,486,241 self-destructed traces which were generated

by 2,084,841 self-destructed contracts. When a contract is destructed, the contract will

transfer its balance to another account; we call these contracts used to receive the balance

as “dest" accounts. We found 19,131,801 dest accounts. Noticed that one transaction can
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have several self-destructed-related traces and one self-destructed-related trace related to

one self-destructed operation. There is a difference between the number of self-destruct

traces and the number of self-destructed contracts because a contract that has been marked

as destructed still exists until the end of the transaction. The contracts can still be called

and may execute further self-destructs. This mechanism was used by attackers to launch

the DDoS attack in block No. 2.3M to 2.7M [97]. 27,560,501 (90.4%) self-destruct traces

and 19,127,397 (99.98%) dest accounts were generated in this DDoS attack. Thus, to make

the analysis more accurate, we removed the self-destructed-related information. generated

on this DDoS attack, and there are 2,925,740 self-destruct traces generated by 2,080,319

self-destructed contracts. An interesting finding is that all the 2,080,319 self-destructed

contracts are related to only 4,404 dest accounts. Among these 4,404 dest accounts, 2,716

are EOAs, 1,263 are self-destructed contracts and 425 are alived contracts (contracts that

can be found on blockchain), while the number of dest accounts of 756 destructed con-

tracts collected from Etherscan is 472 (415 EOA, 16 self-destructed contracts and 41 alived

contracts). It shows that although there are large number of self-destructed contracts on

Ethereum blockchain, most of them were generated by a limited number of accounts.

Previous work [59] also investigated the self-destructed contracts on Ethereum. They

analyzed 7.3 M self-destructed contracts, and 7.2M (98.6%) were short-lived contracts

(4.2M, 57.53%) 8, GasTokens (2.8M, 38.35%), and ENS (Ethereum Name Service) deeds

(0.2M, 2.74%). All these 98.6% self-destructed contracts will not be included in the anal-

ysis of these papers because these contracts usually do not contain much information. For

example, the recommended template of recommended GasToken [76] only contains seven

instructions with two lines of code. Short-lived contracts are usually contract-created sim-

ple contracts that are created and destructed in a single transaction. Thus, there is no need

to open source these contracts on Etherscan and will not be included in our analysis.
8A contract called short-lived when the creation and subsequent selfdestruct is executed in the same

transaction.
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Table 5.6: self-destructed-related Info. on Ethereum blockchain

Trace self-destructed Contracts Dest Accounts Trans.
Total 30,486,241 2,084,841 19,131,801 374,735

Block No. 2.3M - 2.7M 27,560,501 4,522 19,127,397 53,374
Others 2,925,740 2,080,319 4,404 321,361

Table 5.7: Open Interview Questions (Excerpt)

ID Question
1 Do you used selfdestruct function?
2 Do you know the gas refund feature?
3 Do you know selfdestruct function can refund gas?
4 Do you add selfdestruct function for refunding gas? why?
5 Do you know GasToken and how do you think about it?

Our analysis and Di Angelo and Salzer’s [59] finding can show that the self-destructed

contracts we collected from Etherscan have a good coverage of selfdestruct function usages

apart from DDoS attack, GasToken, and ENS deeds. It is also likely that we might miss to

report some usages as the limitation of manual analysis used in this paper. However, this

paper also highlights a new direction and might trigger more studies in the future.

5.6.4.3 GasToken Contracts on Blockchain vs. Survey Results.

Previous work [59] reported that about 38.35% self-destructed contracts on Ethereum

blockchain are GasToken. In our survey, only one respondent mentioned that the motiva-

tion of including the selfdestruct function is refunding gas. To investigate this inconsis-

tency, we performed an interview to collect developers’ perspectives. From our survey,

33 respondents claim that they will add the selfdestruct function in their smart contracts.

18 out of 33 left their emails, and we sent emails to ask them whether they agreed to

have a further interview about the gas refund feature. Finally, 8 respondents accepted the

interview invitations, and all interviews were performed remotely via Skype or WeChat.

We conducted semi-structured interviews followed by Zhou et al.’s method [224]. Specifi-

cally, we first introduced our work and asked the demographic questions shown in Section

6.3.2.2. The interviewees had an average experience of 3.9 years in smart contract devel-
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opments with various roles, including 3 developers, 1 manager, 1 tester and 2 researchers.

Then, we used some open questions listed in Table 5.7 to guide the discussion. The first

question is used to confirm their qualification and all interviewees answered “Yes". For the

second question, 6 interviewees said they did not know it, and the interviews were finished.

For the other 2 interviewees, both said they had a deep understanding of the gas refund

feature and knew the selfdestruct function could refund gas. Thus, we continued to the

fourth and fifth questions to collect their feedback. As our interviews were semi-structured,

we also asked follow-up questions to dig deeper according to their answers. For example,

one interviewee said they have no need to use selfdestruct to return gas back, and we then

asked them why this was the case.

We found the following reasons why they will not include selfdestruct function just

for refunding gas. First, the most important reason is the lack of knowledge about this

feature. Although the interviewees had an average experience of 3.9 years in smart contract

developments, only two of them know this feature. Second, one interviewee said they

focus more on the functionalities and the security of smart contracts. They do not pay for

the gas and thus they do not care how to save gas for the contracts. Besides, both two

interviewees mentioned that adding selfdestruct function will increase development cost.

However, only up to half of the gas used by a transaction that calls the selfdestruct function

will be returned. They believe the loss outweighs the gain.

In terms of the GasToken, the two interviewees gave various views, but all the views

were negative. The first interviewee mentioned that he did not believe GasToken can save

gas or used it to make profits. Developers can only save a little gas fee when the gas

price on free time is several times higher than mint time. If the gas price on free time is

similar or lower than mint time, using GasTokens will even cost more, as the creation of

the GasTokens will also cost gas. Besides, the miner can only receive half of the gas fee

because of the GasToken, and they might refuse to process the transaction. Thus, the usage
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of GasTokens seems narrow. Another interviewee said that GasToken is harmful for the

Ethereum ecosystem, as it will create a large number of useless contracts on Ethereum. All

of these useless contracts will be stored in nodes because of the distributed ledger nature of

Ethereum, which wastes many storage and network resources.

Except from the views we collected from the interview, in the previous subsection (Sec-

tion 5.6.4.2), we found that all the 2,080,319 self-destructed contracts only related to 4,404

dest accounts. This also shows that although there are a large number of GasTokens on

Ethereum, they are only used by a small number of users. It is an interesting topic to con-

duct a comprehensive investigation of the GasTokens, e.g., their main usage scenarios, but

they are out-of-scope to this paper. Thus, we will conduct the investigation in our future

work.

5.6.5 Threats to Validity

Internal Validity. In RQ1, we sent our survey to 996 developers and received 88 responses.

The response rate is 8.84%. We used the feedback of these 88 responses to summarize key

reasons why developers include or exclude selfdestruct function in their contracts. Due to

the limited number of feedback. There might however still be other reasons we did not

cover in our survey. We collected all contributors emails from the top 100 most popular

smart contract related projects. We also tried to make our survey as simple as possible and

give 2 respondents $50 Amazon gift card to increase the response rate. We finally obtained

a 8.84% response rate, which is also acceptable [215].

In RQ2, we use SMARTEMBED to compute the similarity between smart contracts. If

the similarity of two contracts larger than 0.6, we think they are a predecessor contract and

its successor contract. The similarity threshold can influence the manual effort we need

to pay. If the similarity is too large, we might miss some predecessor contracts and their

successor contract. Otherwise, if the similarity is too small, we need to pay more effort
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to distinguishing whether the two contracts are relevant or not. The similarity threshold

used in the paper of SMARTEMBED is 0.95, and it found few contracts are relevant if the

similarity is lower than 0.7. To reduce the number of unidentified relevant contracts, we

conservatively reduce the threshold to 0.6. We used Open Card Sorting to find 5 common

self-destruct reasons. Due to the limitation of our understanding of the smart contracts, we

might miss some self-destruct reasons. To reduce the threat of human factors, we followed

the process of card sorting strictly, and the developers all have rich experience (>3 years)

in smart contract related research. Researchers can also use the same method we proposed

in RQ2 to find other self-destruct reasons in the future.

In RQ3, we use contracts whose number of transactions are larger than 500, and balance

is larger than 1 Ether as the ground truth. We regard these contracts having a low probability

of having permission problems. However, it is still possible we might find some functions

in this group that have permission problems, but we believe the number of these functions

is small.

We performed an interview to collect why developers do not include selfdestruct func-

tion for refunding gas. However, only 8 respondents accepted our interview, and 6 of them

did not provide much information as they do not know the gas refund feature of Ethereum.

Thus, it is likely that some points might be missing. Fortunately, we still obtain many

reasonable feedbacks which can answer the inconsistency. We acknowledge that a compre-

hensive and convincing investigation about the GasTokens is an interesting topic, but it is

not the core focus of this paper and needs further research efforts that we reserve for future

work.

External Validity. The smart contracts used in this paper were up to Jan. 2019. Solidity,

the most popular programming language for the smart contract, is fast-growing. From

Jan. 2019 to the time of writing, there are 11 versions updated and released. Many new

features have been removed and added in these versions. Ethereum also might be updated
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in the future through a hard fork [109]. In this case, the self-destruct reasons might be

changed because of a major update to Ethereum and Solidity. Addressing this threat needs

more research effort, but the method we proposed to find the self-destruct reasons is still

working.

In this paper, we first cluster contracts with their creator addresses. However, it is likely

that some developers may use multiple addresses to deploy smart contracts. In this case,

our method may fail in finding successor contracts of some self-destructed contracts, and

our analysis may miss uncovering some reasons for the use of self-destruct. Because of the

anonymity of Ethereum, it is difficult to cluster contracts with multiple creator addresses,

even if they are owned by the same developer. Fortunately, from the collection of 756

self-destructed contracts that we analyzed, we find that for 436 of them we could find their

successor contracts. In total we found 1513 <predecessor contract, successor contract>

pairs. We use open card sorting to summarize the reasons why contracts self-destructed

(details see Section 6.4.2.3). There are two iterations in the open card sorting. In the

first iteration, we use 20% of the cards (one card is a <predecessor contract, successor

contract> pairs) and get all the reasons. No new reason was found by using the remaining

80% of cards in the second iteration, which means 1513 pairs were enough to support the

analysis work reported in this paper.

5.7 Related Work

SMARTEMBED [89, 90] is the first tool that uses a clone detection method to detect bugs in

smart contracts. The tool contains a training phase and a prediction phase. In the training

phase, their dataset contains two parts, i.e., source code database and bug database. The

source code database consists of the source code of all the open source smart contracts in

the Ethereum. The bug database records the bugs of each smart contract in a source code

database. SMARTEMBED first converts each smart contract to an AST(abstract syntax tree).
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After normalizing the parameters and irrelevant information on the AST, SMARTEMBED

transfers the tree structure to a sequence representation. Then, they use Fasttext [21] to

transfer code to embedding matrices. Finally, they compute the similarity between the

given smart contracts with contracts in their database to find the clone contracts and clone

related bugs. Although the tool is aimed at finding bugs, their first step is computing the

code similarity between the given smart contract and history contracts in their database.

Therefore, we can modify their code to compute the similarity between two given smart

contracts (used in RQ2).

Bartoletti et al. [10] found that the infamous Ponzi schemes migrated to the digital

world. Many frauds use Ethereum to design Ponzi schemes contracts for earning money.

They manually analyzed 1,382 verified smart contracts on Etherscan and find 137 of them

are Ponzi scheme contracts. Then, they divided these Ponzi scheme contracts into four cate-

gories, i.e., array-based pyramid schemes, tree-based pyramid schemes, handover schemes,

and waterfall schemes. Bartoletti et al. opened their dataset to the public but do not provide

a tool to detect whether a contract is a Ponzi scheme contract. To address this limitation,

Chen et al. [204] proposed a method that uses a machine learning algorithm (XGBoost [34])

to distinguish Ponzi scheme contracts. They use account features and code features to train

the module. The account features are extracted from the transactions, e.g., the number

of payment transactions, the balance in the contracts. The code features can be obtained

from contract bytecode. They count the frequency of each opcode in the contract byte-

code. Both account features and code features do not need the source code of contracts.

Therefore, their method can predict arbitrary contracts on the Ethereum.

Oyente [131] is the first tool for security examination for smart contracts based on

symbolic execution. Their work introduces four security issues on smart contracts, i.e.,

mishandled exception, transaction-ordering dependence, timestamps dependence, and re-

entrancy attack. To detect these security issues, Oyente first constructs a CFG (control flow
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graph) based on symbolic execution. After that, they design different rules to detect these

four security issues. Kalra et al. [113] proposed a tool named Zeus, which can detect seven

kinds of security problems; four of them are the same with Oyente; the other three issues

are failed send, interger overflow/underflow and transaction state dependence. Zeus can

detect security issues at the source code level. They use LLVM bytecode to represent the

Solidity source and detect related patterns through LLVM bytecode. ContractFuzzer [111]

is the first fuzzer to detect seven security issues in smart contracts. Four security issues

are the same as Oyente; the other three issues are gasless send, dangerous delegatecall and

freezing ether. ContractFuzzer utilizes ABI (abstract binary interface) of smart contracts to

generate fuzzing inputs and defines test oracles to detect security issues.

Chen et al. [32] define 20 smart contract defects on Ethereum. They first crawl 17,128

Stack Exchange posts and use key words to filter solidity related posts. After getting So-

lidity related posts, they use Open Card Sorting to find 20 contract defects and divide them

into five categories, i.e., security, availability, performance, maintainability, and reusability

defects. According to their paper, although previous works define several security defects,

they did not consider the practitioners’ perspective. Therefore, they design an online survey

to collect feedback from developers. The feedback shows that all the defined contract de-

fects are harmful to smart contracts. They assign five impact levels the defined 20 contract

defects. Defects with impact level 1-3 can lead to unwanted behaviors of contract, e.g.,

crashing or a contract being attacked.

Li et al. [123] proposed a symbolic execution analysis tool named SOLAR to detect

violations of two standards, i.e., ERC20 and ERC721. SOLAR is built on top of Manti-

core [139] which is a well-known symbolic execution framework for smart contracts, and

uses boolector [145] as the SMT solver to check the symbolic constraints. Since Manti-

core does not fully support EVM instructions, SOLAR is extended to fully support EVM

instructions. Their experimental results show that SOLAR is significantly more effective
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than previous tools, e.g, Mythril [51], and can find more errors with fewer false positives.

Di Angelo and Salzer. [59] introduced the usage of smart contracts on Ethereum by

analyzing about 20 million deployed smart contracts. They defined ten kinds of usages of

smart contracts on Ethereum and found that most of the deployed smart contracts remain

unused and tokens are the most popular applications of Ethereum. self-destructed con-

tracts is one important research dimension in their work. They found 7.3M self-destructed

contracts on their dataset. According to their analysis, 4.2 M of them were created and

then self-destructed in the same transaction; 2.8 M were GasTokens, and 0.2 M were ENS

(Ethereum Name Service) deeds. Eight thousand of the remaining nine thousand con-

tracts were self-destructed for unknown reasons and 778 were wallets. Their other work

[58] also investigated the usage of self-destructed contracts and found 48,506 contracts

self-destructed multiple times (some of them up to 10 920 times). They called a contract

a mayfly if the contract was created and self-destructed in the same transaction. They

found 1,856,655 mayflies that were created by just 8,992 distinct addresses, and most of

the mayflies appeared during the DDos period of 2016. All of their work and this work

investigated the usage of selfdestruct function on Ethereum, but our work is more com-

prehensive and has a different focus. Specifically, we first conducted an online survey to

collect developers’ feedback about why they add or do not add selfdestruct function. Then,

we proposed a method to find the reasons why smart contracts self-destructed. Finally, we

propose a tool to detect two problems that might shorten the lifespan of smart contracts.

5.8 Conclusions and Future Work

In this paper, we conducted a comprehensive empirical study on the use of the selfdestruct

function on Ethereum. To understand the smart contract developers’ perspective, in RQ1,

we designed an online survey to collect reasons from developers why they include and

exclude the selfdestruct function in their contracts. We summarized 6 reasons for includ-
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ing and 6 reasons for excluding selfdestruct function in their contracts, respectively. The

feedback also shows that 22 / 33 respondents claim that they add selfdestruct function for

security concerns or to upgrade contracts. These two motivations can lead to redeployment

of smart contracts after developers destruct the contracts. According to this information,

we propose an approach that can find the upgrade version of the self-destructed contracts

in RQ2. After that, we used the open card sorting method and summarized 5 reasons why

contracts might destruct. Two of them – Unmatched ERC20 Token and Limits of Permis-

sion – can affect the life span of smart contracts. To detect these problems, we developed a

new tool named LIFESCOPE in RQ3, which reports 0 false positive / negative in detecting

Unmatched ERC20 Token, and achieves an F-measure and AUC of 77.89% and 0.8673 for

detecting the Limits of Permission issue. Finally, to help developers use the selfdestruct

function better, we give 6 suggestions based on the feedback of our survey and our smart

contract analysis.

Apart from the selfdestruct function, using Delegatecall or Callcode can also be used

to design an upgradeable smart contract [143]. Specifically, we need a proxy contract and

a logic contract to design an upgradeable contract. The proxy contract stores the storage

variables and Ethers, and the logic contract contains the logical code. The proxy contract

uses Delegatecall to call the code of the logic contract. If there are some security issues

found on the logic contract, developers can deploy a new logic contract and discard the

old logic contract. By comparing the difference between the old logic contract and new

logic contract, we can find some reasons why contracts need upgrade. In Section 6.6.3,

we only investigate the transaction of destructed unmatched ERC20 tokens. However, it is

likely that the matched ERC20 tokens also do not transfer values back to the users. Also,

the upgradeable contracts will also lock the tokens of users. In the future, we will conduct

more comprehensive work to investigate the value lock on ERC20 tokens.

We found 2,789 (5.1%) smart contracts in total contain the selfdestruct function, while
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only 199 (0.36%) contracts contain the Delegatecall or Callcode functions. The data size

is one of the main reasons why we choose to investigate selfdestruct function first. In

the future, we plan to conduct an empirical study to investigate the upgradeable smart

contracts on Ethereum when there are more smart contracts that contain Delegatecall or

Callcode function. Specifically, there are many new issues of designing an upgradeable

smart contract. For example, although the old logic contract is discarded, the contract can

still be called by other contracts, which might lead to new security issues; designing an

upgradeable smart contract can also increase the development cost [33]. Thus, we first plan

to investigate developers’ motivation about why they design their contracts as upgradeable.

Then, we plan to design a method to find the <old logic contract, new logic contract> pairs.

Unlike selfdestruct function where we need to compare similarity to find the pair, for the

upgradeable contract, we can check the transaction details of the proxy contract. From the

transactions, we can find the discarded logic contract and new logic contract. After that, we

can compare their differences to find the reasons why developers upgrade a smart contract.

Finally, we will update LIFESCOPE to detect the additional problems.

We analyzed self-destructed contracts with source code and conducted a preliminary

analysis for the self-destructed contracts on Ethereum blockchain. In the future, we

will perform a comprehensive empirical study to analyze the self-destructed contract on

Ethereum. Specifically, we first investigate how many GasTokens on Ethereum; how many

users of the GasTokens, and the usage scenarios of the GasTokens. Besides, it is interesting

to analyze remaining self-destructed contracts. For example, are there any other DDoS

attacks happening; why millions of self-destructed contracts are only related to 4,404 dest

accounts, and why some developers created a large number of self-destructed contracts.

We observed the difference between a PS pair to summarize the reasons why smart con-

tracts were destructed. However, we only stand at a high level to present our observations

instead of digging out a more detailed reason. Specifically, Setting Changes and Function-
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ality Changes are two broad definitions. Developers might change the functionalities for

several reasons, e.g., adding business requirements, fixing bugs, increasing readabilities.

Besides, when multiple changes happen, we regard all of them as the reasons that con-

tributed to the self-destruct. Actually, their importance might be different, and maybe only

one of them was the real reason why smart contracts were destructed. In the future, we

will conduct a more comprehensive empirical study to find more specific reasons that lead

a contract self-destruct.
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Chapter 6

Conclusion and Future Work

Due to the revolutionary features of smart contracts, e.g., immutability, smart contracts are

much harder to be maintained compared to traditional programs. This thesis aims to help

developers maintain their smart contracts by finding and detecting smart contract defects.

6.1 Key Findings and Contributions

To highlight the further studies on smart contract maintenance, we conducted an empirical

study in Chapter 2 to investigate (1). what kinds of issues will developers encounter in

smart contract maintenance? (2). what are the current maintenance methods used for smart

contracts? We found that most developers choose to discard the old contract and redeploy a

new contract when they need to patch or add new features on contracts. Before redeploying

the new smart contract to Ethereum, an important step is checking its robustness and secu-

rity. This finding highlights our further researches in finding and detecting smart contract

defects.

In Chapter 3, we conducted an empirical study to find smart contract defects from

online Q&A posts. Our approach contains four steps: First, we crawled all 17,128 posts

from Ethereum StackExchange, the most popular question and answer (Q&A) sites for

Ethereum smart contracts. Then, we used key words filtering to select Solidity defects-

related posts. After that, we followed the card sorting approach to analyze and categorize
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the filtered contract defects-related posts. We totally summarized 20 contract defects from

five aspects: security, availability, performance, maintainability, and reusability. To vali-

date the acceptance of our newly defined smart contract defects, we conducted an online

survey and received 138 responses and 84 comments from developers in 32 countries. The

feedback and comments show that developers believe removing the defined contract defects

can improve the quality and robustness of smart contracts.

In Chapter 4, we proposed DefectChecker, a symbolic execution-based tool to detect

contract defects defined in Chapter 3. DefectChecker can detect contract defects from

smart contracts bytecode without the need for source code. During the symbolic execution,

DefectChecker generates the control flow graph (CFG) of smart contracts, as well as the

“stack event", and identifies three features, i.e., “Money Call”, “Loop Block”, and “Payable

Function”. By using the CFG, stack event, and the three features, DefectChecker uses

different rules to detect contract defects and achieves very good results (88.8% of F-score

in the whole dataset and only requires 0.15s on average to analyze one smart contract).

In Chapter 5, we presented an approach to find smart contract defects from histor-

ical self-destructed contracts. In this approach, we first collected all the verified (open-

sourced) smart contracts from Etherscan, and 756 of them are self-destructed. Then, we

propose a method to find the self-destructed contracts (also called predecessor contracts)

and their updated version (successor contracts) by computing the code similarity. By an-

alyzing the difference between the predecessor contracts and their successor contracts, we

found five reasons that led to the death of the contracts; two of them (i.e., Unmatched

ERC20 Token and Limits of Permission) are contract defects that might affect the life span

of contracts.

We presented two methods to find defects from different perspectives in Chapter 3 and

5. Both of them have related advantages and limitations. Chapter 3 introduced a method to

find defects from online posts, a breadth-first method and that us to cover a high range of
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defects from a different aspect of smart contracts, e.g., security, performance. However, the

limitation is that we cannot dig too much depth into a specific issue. The method proposed

in Chapter 5 is totally different, which is a depth-first method that enables us to find many

important issues of a specific feature, i.e., the Selfdestruct function. Specifically, a large

number of features of the Selfdestruct function were introduced, which could highlight

further research, and I will give the details in the next section.

6.2 Limitations and Future Works

6.2.1 Limitations and Future Works for Chapter 2

Limitation 1: Errors might be included on the Empirical Study

In this Chapter, we answered two research questions by performing a literature review.

Most of the papers (74.05%) are published between 2017 to 2019, and their findings and

studies may be outdated as the Ethereum ecosystem is fast-evolving. For example, Solidity,

the most popular programming language for smart contracts, has 80 versions from Jan.

2016 to Jun. 2020 [172]. Thus, it is likely that some findings and results in the publications

are out-of-date. Also, some non-peer-reviewed papers were included when we conducted

the empirical studies, which might provided some incorrect answers.

Besides, it is possible that the respondents to our survey may provide some dishonest

or unprofessional answers. One evidence is that not everybody answered all questions,

which might show some respondents only have limited knowledge about the Ethereum

maintenance.

Future works. In the future, we will update our findings if some non-peer-reviewed papers

update their results. Also, a literature review for smart contract papers published after 2019

will be conducted to update our findings and help us figure out the changes of maintenance

issues/methods in recent years.
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6.2.2 Limitations and Future Works for Chapter 3

Limitation 1: Results may need update In Chapter 3, we conducted an empirical study,

which defined 20 contract defects from online Q&A posts and used a survey to collect de-

velopers’ perspectives. However, this is an early smart contract work conducted in 2018.

However, Solidity is a fast-growing programming language. Some defects we found have

been out-of-dated. Also, developers’ perspectives might be changed when some new fea-

tures of Ethereum are added, or some security attacks happen. For example, the survey in

Chapter 3 was conducted at the end of 2018. At that time, most developers said adding self-

destruct function could increase the security as they could destruct contracts and transfer all

the balance when attacks happens. However, according to another survey we conducted in

mid 2019, half of the respondents said adding a selfdestruct function could open an attack

vector for attackers. Thus, the results we reported in Chapter 3, might be out-of-date today.

Future works. In the future, we will collect more Q&A posts to analyze whether there

are new defects on the latest Solidity versions. Also, we will interview more developers to

collect their perspective about the newly defined defects.

6.2.3 Limitations and Future Works for Chapter 4

Limitation 1: Results might be out-of-date. In Chapter 4, we developed a tool named

DefectChecker, which was designed for Solidity v0.4.25 and this is the newest Solidity

version at the time of developing DefectChecker. However, the newest Solidity version at

the time of writing this thesis is v0.8.12, which has many new advanced features, and EVM

also added some new instructions in recent years.

Besides, smart contracts were much simpler at the time that work was carried out. The

contracts we analyzed were deployed before 2019.01. There were no concepts such as

DeFi, NFT at that time. Besides, the smart contracts at that time had high similarities, and

copy-paste errors were very popular, which also increased the accuracy. Specifically, most
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of the vulnerable contracts have similar code. Thus, optimizing a few number of defect

patterns could result to a high detect accuracy.

Also, the defects at that time were relatively simple. For example, most of the Reen-

trancy at that time is led by .call.value(), which is easy to detect. While today’s Reentrancy

attack is much difficult to analyze, some of them could even be used to launch Flash Loan

attacks. It is high probability that DefectChecker will fail to detect this kind of Reentrancy.

Finally, the Ethereum ecosystem was immature at that time. Many defects, e.g.,

unchecking the return value of send, were very popular at that time. However, they were

rare today. One reason is that with the development of the Ethereum ecosystem, many

tools could warn of these simple defects, e.g., Remix.

Thus, DefectChecker as well as many smart contract analysis tools developed at that

time, e.g., Oyente, Securify, may have many false positives/negatives today, and the re-

ported results seems not so applicable today.

Future works. In the future, we will update DefectChecker to make it able to detect var-

ious Solidity versions and more complicated defect patterns. Specifically, we will first

investigate the difference between the different Solidity Versions, e.g, which new features

are added, any difference in the bytecode. Thus, we are able to analyze different versions of

the contracts. Besides, patterns to detect defects need to be updated, and new technologies,

e.g., data flow analyze, taint analyze, could be included to increase the accuracy.

Limitation 2: Errors may exist on the large scale dataset.

In Chapter 4, we conducted a large-scale evaluation based on bytecode crawled from

Ethereum blockchain by 2019.01 to investigate whether the defects were prevalent on

Ethereum. We randomly selected 500 smart contracts with source code to validate the ac-

curacy of DefectChecker. These 500 contracts were also included in the large-scale dataset.

Thus, we think it is a repeat work to double-check the analysis results on the large-scale

evaluation again. However, DefectChecker has false positives/negatives in detecting de-
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fects. Thus, the analysis results of the large-scale dataset may still contain errors.

Future works. In the future, we could use other smart contract analysis tools to validate

the correctness of the large-scale dataset. Specifically, a large amount of smart contract

analysis tools have been presented in recent years. We could run some of them to compare

the results. Also, manual work could be involved to increase the accuracy. By using this

way, we might be able to obtain a more accurate dataset.

Limitation 3: Missing reporting the impact of contracts. We totally found 25,815 smart

contracts have at least one defect during the large-scale evaluation in Chapter 4. How-

ever, we miss reporting the impact of the smart contracts, which might mislead the readers.

For example, 3,892 contracts were detected containing Reentrancy vulnerabilities in their

contracts. However, only 170 contracts whose balance is larger than 0.1 Ethers, and 212

contracts whose number of transactions is larger than 10, and only 7 contracts match these

two requirements simultaneously. The results might show that most of the vulnerable con-

tracts we detected might be toy contracts, and the security of Ethereum might not be such

serious as we reported in Chapter 4.

Future works. In the future, it is worth investigating whether the vulnerable contracts

detected by current smart contract analysis tools are really used or just toy contracts in

the future. Specifically, we will collect all the smart contracts on Ethereum to the latest

block, and use different smart contract analysis tools to detect vulnerabilities. By using

different tools, we could compare the results to ensure correctness. Then, we will analyze

the information of the detected vulnerable contracts, e.g., balance, number of transactions,

to identify whether a contract is a toy contract. We plan to classify smart contracts into

several groups based on their creation times. Thus, we can analyze the security of Ethereum

on different time period.
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6.2.4 Limitations and Future Works for Chapter 5

Limitation 1: Limited knowledge about survey respondents. In Chapter 5, survey

played an important role in our findings. However, although all the developers we re-

cruit claimed they have experience in contributing to open-sourced blockchain projects,

many survey respondents have limited knowledge about Ethereum, and thus we might

miss some important features. For example, almost all the 88 responses for the survey

in Chapter 5 did not mention some advanced features of selfdestruct function. Specifically,

no developers know selfdestruct function can be used to design the metamorphic contract

(https://github.com/0age/metamorphic), which allows a contract to change its bytecode in

the same address. Besides, only one developer knows selfdestruct could return gas and be

used to design gastoken. The reason for this phenomenon was discussed in Section 5.6.4.3,

as they lack knowledge of these advanced features.

Future works. It might be worth reperforming the survey and interviewing some pro-

fessional developers/researchers. Based on the new results, we might obtain new results /

feedbacks, which could lead to new findings. Also, we could present a work to investigate

the evolution of the professional skills of Ethereum developers.

Limitation 2: Manual works to find the defects. In Chapter 5, we first used Diffchecker

to find the difference between two contracts, then we manually analyze the difference to

find the defects. As we admitted in the Threads to Validity section, the manual analysis

might involve some errors and lead us to miss some cases.

Future works. In the future, we plan to design an automatic method to improve this

process. For example, AST and CFG might able to be utilized to analyze the difference

between two contracts. Then, we could design patterns to select some interested contracts.

In this case, we can perform a more large-scale analysis which is not only limited to the

destructed contracts.

Limitation 3: Some advanced Selfdestruct-Related Features need more investigation.
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Considering the length and content consistency of the paper, some advanced Selfdestruct-

related features were not discussed so much in Chapter 5. For example, designing upgrade-

able contracts by using Delegatecall or Callcode is also a good method to maintain smart

contracts. According to our investigation in Chapter 5, we found 2,789 (5.1%) smart con-

tracts in total contain the selfdestruct function, while only 199 (0.36%) contracts contain

the Delegatecall or Callcode functions. The data size is one of the main reasons why we

choose to investigate selfdestruct function first.

Besides, some Selfdestructed-based attacks/scams were found in Chapter 5. For exam-

ple, in section 5.6.3, we introduced that most of the selfdestructed-ERC20 token contracts

will not return tokens back, which leads to the financial loss of the investors. In section

5.6.4, we found that Selfdestruct could be used to design Gastoken, and it was being uti-

lized to launch a DDoS attack and had many harmful impacts on Ethereum, e.g., waste

space. Also, a new opcode named CREATE2 was introduced to the Ethereum virtual ma-

chine in February 2019, which allows a contract to change its bytecode in the same address.

Future works. In the future, we can find contract defects by investigating the upgradeable

smart contracts on Ethereum when there are more smart contracts that contain Delegatecall

or Callcode function. Besides, all of the above Selfdestructed-based attacks/scams were

worth investigating to enhance the security of Ethereum.
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