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I 

 

Abstract 

Documentation written in natural language and source code are two of the major artifacts of a 

system. Tracking a variety of traceability links between documentation and code assists developers 

in comprehension, efficient development, and effective management of a system. However, 

automated traceability systems to date have faced with three major open research challenges.  

 

The first challenge is how to extract links with both high precision and high recall. We introduce 

an approach that combines three supporting techniques, Regular Expression, Key Phrases, and 

Clustering, with Information Retrieval (IR) models to improve the performance of automated 

traceability recovery between documents and source code. This combination approach takes 

advantage of strengths of the three techniques to ameliorate limitations of IR models. Our 

experimental results show that our approach improves the performance of IR models, increases the 

precision of retrieved links, and recovers more true links than IR alone. 

 

The second challenge is how to establish robust traceability benchmarks to evaluate traceability 

recovery techniques. We describe an approach and guidelines to enable researchers to establish 

affordable and robust traceability benchmarks. We have designed rigorous manual identification 

and verification strategies to determine whether or not a link is correct. We have developed a 

formula to calculate the probability of errors made in created benchmarks. The analysis of error 

probability results shows that our approach can build high quality benchmarks and our strategies 

significantly reduce the error probability in them.  

 

The third challenge is how to efficiently visualize links for complex systems because of scalability 

and visual clutter issues. We present a new approach that combines treemap and hierarchical tree 

techniques to reduce visual clutter and to allow the visualization of the global structure of traces 

and a detailed overview of each trace, while still being highly scalable and interactive. The 

usability evaluation results show that our approach can effectively and efficiently help software 

developers comprehend, browse, and maintain large numbers of links. 
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Chapter 1 -- Introduction 

This chapter provides an overview of this thesis. It starts with the research background and 

motivation from which our research derived its goals and objectives. The key research questions 

are then introduced. Subsequently, our research methodology is outlined, followed by a description 

of the approach employed to fulfill the objectives of this research. Finally, the key research 

contributions are presented and an outline of the thesis structure is provided. 

 

1.1 Research Background and Motivation 

Have you ever struggled to understand a new system and to connect code with corresponding 

documents? Have you ever faced the difficulty of identifying impacted artifacts while making 

changes? Studies of software maintainers have shown that more than 50% of their time is spent on 

the process of program comprehension (Fjeldstad and Hamlen, 1983; Standish, 1984). In practice, 

artifacts produced during the software development life cycle (SDLC), such as source code, 

designs, requirements and documentation, end up being disconnected from each other. They are 

often separated into different documents, file formats and repositories, created and maintained by 

different individuals, and evolve at different rates (Antoniol et al., 2000b; Jin and Cordy 2005; 

Settimi et al., 2004). These disconnected artifacts hinder engineers’ comprehension and 

undertaking effective development, efficient management, and improved maintanance of a system.  

 

Implementing effective traceability support during the SDLC can ameliorate this issue by allowing 

engineers to navigate between and browse more effectively related artifacts (Cleland-Huang et al., 

2007; Gotel and Finkelstein 1994; Rilling et al., 2007; Watkins and Neal 1994). Gotel and 

Finkelstein (1994) define software traceability as the ability to follow the life of a requirement in a 
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forward and backward direction. In other words, traceability is the ability to relate artifacts 

produced during the SDLC. Nevertheless, traceability within the software development process 

has not been employed in many organizations due to high costs, complexity, limited tool support, 

and the need for human intervention in most traceability systems (Cleland-Huang et al., 2011; 

Oliveto et al., 2007; Ramesh and Jarke, 2001). This is even though standards like IEEE Std. 

830-1998, DO-178B, ISO15504, CMMI mandate use of traceability techniques during software 

development (Cleland-Huang et al., 2007; Rilling et al., 2007).  

 

Unfortunately, it is painstaking, error-prone, complex and time-consuming work to manually 

retrieve and maintain traceability relationships, or links, between software artifacts. These efforts 

can be significantly reduced by applying traceability recovery approaches to automatically obtain 

high quality relationships/links between elements in one artifact and elements in another (Penta et 

al., 2002; Settimi et al., 2004; Spanoudakis and Zisman, 2005), and adopting traceability 

visualization techniques to represent these retrieved relationships in a natural and intuitive way 

(Asuncion et al., 2007; Roman & Cox, 1992). High quality relationships represent a link set 

containing as many as possible correct relationships and as few as possible incorrect relationships. 

Moreover, high quality relationships connect elements of different artifacts on a fine-grained level 

of detail e.g. part of a design document description and its related source code elements.  

 

Various traceability recovery techniques (discussed in detail in Chapter 2) have been developed to 

capture traceability links between artifacts. Some need human intervention while others can 

automatically capture links. Unfortunately, no recovery approaches to date have the capability of 

recovering all possible links between artifacts automatically and accurately. Most automatic 

traceability recovery approaches use Information Retrieval (IR) models to extract links between 

artifacts. IR is an area that studies the problem of finding relevant information in text collections 

based on user queries (Hayes et al., 2003; Spanoudakis and Zisman, 2005). In other words, IR 

models determine how relevant a piece of text is to a query that represents a user's interest by 

computing a similarity value according to the frequency and distribution of keywords or terms in 

textual format document collections (Antoniol et al., 2002; Marcus and Maletic, 2003). The 

accuracy rate of the extracted traceability links depends heavily on a cut point that decides which 

links can be recovered. Only links that have a similarity value greater or equal to the cut point are 
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finally retrieved. As a result, many incorrect links are obtained at low cut points and few correct 

links are returned at high cut points. This issue motivated us to develop a new traceability recovery 

approach that can automatically recover high quality links between artifacts in the traced system at 

all cut points. This was the first challenge of our research. 

 

In order to evaluate the performance of a traceability recovery technique, validate the technique, 

and compare its performance with other traceability recovery techniques, traceability benchmarks 

are one of the essential elements in the evaluation process (Cleland-Huang et al., 2011; Dekhtyar et 

al., 2007; Sim et al., 2003). A traceability benchmark serves as a basis for assessing a technique 

and then compares it to others (Cleland-Huang et al., 2011). A benchmark can determine whether a 

retrieved link is correct or incorrect and whether any correct links fail to be retrieved. Without such 

data, the performance of a traceability recovery technique cannot be measured or compared with 

the performance of others. However, it is difficult to obtain or establish such benchmarks 

(Cleland-Huang et al., 2006). Moreover, there has been little research on building generally agreed 

or applied approaches or guidelines to assist researchers in manually creating traceability 

benchmarks. Therefore, we were motivated to propose a new approach and set of operational 

guidelines for the manual establishment of a robust benchmark. This was the second challenge of 

our research. 

 

While traceability links between artifacts are captured by a traceability recovery technique, a 

remaining key issue is how to represent these retrieved links to assist software engineers to 

effectively and efficiently understand, browse, and maintain them. Adopting software visualization 

techniques (e.g. tree-based, graph-based, or 3D-based approaches) is a common way to display 

retrieved links (Asuncion et al., 2007; Roman & Cox, 1992). However, displaying an 

overwhelmingly large number of traceability links effectively and efficiently is a big challenge, 

because a software system with large numbers of artifacts, and thus very large numbers of 

traceability links between artifacts, quickly gives rise to scalability and visual clutter issues 

(Cornelissen et al., 2007; Holten, 2006; Merten et al., 2011). Moreover, the efficient visualization 

of both the structure of the traced system and the enormous number of links between artifacts is far 

from trivial (Cornelissen et al., 2007; Marcus et al., 2005). Many traceability visualization 

techniques (discussed in detail in Chapter 2) have been designed and developed to represent 
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traceability links. To date, however, no traceability visualization techniques can visualize an 

overwhelmingly large number of traceability links effectively and efficiently without scalability 

and visual clutter issues. In order to remedy these issues, we were motivated to design and develop 

a new traceability visualization technique to visualize traceability links in a natural and intuitive 

way. This was the third challenge of our research. 

 

Source code and documents constitute a large number of artifacts produced during the SDLC. 

Typical documents are those written in natural language such as tutorials, handbooks, developer or 

user guides, API documentation, architecture descriptions, design rationale, emails and so on. 

Software developers develop code and documentation artifacts during the lifetime of a system. 

Sometimes this is done concurrently while at other times different developers develop different 

artifacts, and often these artifacts get out of synchronization. Tracing and maintaining 

interrelationships between code and documentation can assist developers to better understand 

systems, better maintenance of systems, and to produce higher quality systems. Our research 

focuses on recovering and displaying relationships between source code and documents generated 

during the SDLC. 

 

Overall, the main motivation of our research lay in the potential to recover traceability links with 

high accuracy at all cut points, to make maintenance of links more efficient and effective, and to 

make manually establishing a robust traceability benchmark easier and more effective. Our 

research targets links between source code and documentation. The aim of our research was to 

provide users with an effective environment enabling them to automatically capture, browse, and 

maintain traceability links between artifacts effectively and efficiently. With this environment, 

users can trace links between various documents and source code, automatically recover links at 

low cost and high accuracy, easily create and modify links as well as conveniently browse and 

maintain links. 
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1.2 Research Questions 

The main research question for our research can be posed as: 

 

Can traceability between artifacts in a system enable software engineers to better understand, 

maintain, and manage the system? 

 

In order to address this main question, we divided it into three smaller research questions. 

1) Can the performance of an IR-based traceability recovery technique be improved to retrieve 

high quality links at all cut points? This question focuses on how to ameliorate the limitations 

of IR-based traceability recovery techniques to produce as many correct links and as few 

incorrect links as possible at any cut point. To answer this question, we proposed a 

combination approach, implemented a prototype of the approach in an automatic traceability 

tool, and conducted a performance evaluation of the technique. This is addressed in Chapter 3 

(Traceability Link Recovery) and Chapter 5 (Evaluation of Traceability Link Recovery). 

2) How can we manually build a robust traceability benchmark to evaluate the performance of a 

traceability recovery technique? This question focuses on the establishment of a robust 

traceability benchmark. To answer it, we proposed a new approach and set of operational 

guidelines to assist users to create such a benchmark manually and of high quality. This is 

addressed in Chapter 4 (Traceability Benchmark). 

3) Can traceability visualization enable users to better understand, browse, and maintain 

traceability links in a system? This question focuses on how to visualize traceability links 

captured by a traceability recovery technique in a natural and intuitive way. To answer this 

research question we designed, prototyped and evaluated a combination visualization 

technique. This is addressed in Chapter 6 (Traceability Link Visualization) and Chapter 7 

(Evaluation of Traceability Link Visualization). 
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1.3 Research Methodology 

Our approach for addressing the research questions was based on the following methodology: 

1) In order to address the first research question, we have adopted the iterative and incremental 

development method (Larman and Basili, 2006; Robey et al., 2001; Zhang et al., 2010) to 

develop our recovery system through repeated cycles and in smaller portions at a time. This 

method explores issues and problems in designing a system (Robey et al., 2001; Zhang et al., 

2010). Moreover, it gives software engineers opportunities to improve the development 

process and the product quality (Cockburn, 2008). The key steps are as follows. 

a. We conducted an extensive literature review of traceability recovery techniques. We 

studied many papers that described traceability recovery techniques to capture links 

between artifacts in a system. This step allowed us to compare and analyze their 

approaches for link recovery, identify common properties in traceability systems, and 

explore valuable ideas that can be incorporated into a new, improved recovery system. The 

aim of this task was to assist us in the development of our own traceability recovery 

system to create high quality links in the system.  

b. From this, we identified a set of key requirements for an improved traceability recovery 

system. The findings from the literature helped us to obtain these requirements. This set of 

requirements helped us to explore what an improved traceability recovery system needs 

and then to design and develop our traceability recovery system.  

c. In light of the set of requirements identified from the literature, we developed a 

combination link recovery approach through the iterative and incremental development 

method, which is a recommended practice widely used in the software development 

processes (Larman and Basili, 2006; Robey et al., 2001; Zhang et al., 2010). We chose this 

because iterative and incremental development is not just about revisiting work but also 

evolutionary advancement (Larman and Basili, 2006). It improves the weaknesses of the 

waterfall method that include no feedback between phases, hard dates on phases, and no 

completion criteria (Martin, 1999). We had developed several prototypes for our recovery 

system (see Figure 1.1). Because prototypes are generally produced quickly and offer 

valuable feedback on the feasibility and usefulness  of  a  system’s  design  and  specifications  
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(Robey et al., 2001). Initially, we attempted to adopt an IR model, Vector Space Model 

(VSM), to retrieve links between artifacts (Prototype 1). The limitations of VSM 

motivated us to add supporting techniques into VSM to improve its performance. We then 

explored adding Text Mining (TM) into VSM (Prototype 2) to seek to recover more 

correct links than VSM alone. The issues we experienced in using TM inspired us to find 

an alternative. We employed Regular Expression (RE) as the alternative supporting 

technique to be integrated with VSM (Prototype 3) to increase the number of correct links. 

The limitations of RE motivated us to add other supporting techniques. In the fourth 

prototype, we used Key Phrases (KP) to capture links that are possibly missed by 

VSM+RE. We adopted Clustering technique to reduce the number of retrieved incorrect 

links in the fifth prototype. In the final prototype, we integrated the three supporting 

techniques with five additional IR models to explore whether they could improve other IR 

models’   performances.   Our   final   traceability   recovery   approach   incorporated three 

enhancement strategies, RE, KP, and Clustering, into IR models to improve the 

performance of automated traceability link recovery to obtain high quality links.  

 

 

 

 

 

 

FIGURE 1.1 DEVELOPMENT PROCESS OF OUR TRACEABILITY RECOVERY TECHNIQUE 

d. After implementing the combination recovery approach, we evaluated it using a case 

studies approach, which is an empirical inquiry that investigates a phenomenon within its 

real-life context to help researchers gain a sharpened understanding of why the 

phenomenon happened as it did and encourages exploration into possible future research 

(Easterbrook et al., 2007; Yin, 2009). We chose this approach as it is feasible to use when 

investigating how or why certain phenomena occur (Easterbrook et al., 2007; Yin, 2009). 

Moreover, it is widely and commonly used for the evaluation of a traceability recovery 

Prototype 1: 
VSM 

Prototype 2: 
Add TM into 
VSM 

Prototype 3: 
Add RE into 
VSM 

Prototype 4: 

Add KP into VSM+RE 

Prototype 6: 

Replace VSM with 
other IR models 

Prototype 5: 

Add Clustering into 
VSM+RE+KP 
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technique (Antoniol et al., 2002; Cleland-Huang et al., 2005; Marcus and Maletic, 2003; 

Settimi et al., 2004; Wang et al., 2009). We applied four different case studies with their 

own benchmarks. We used it with six IR models to investigate whether the three 

supporting strategies could improve the key limitations of IR models. The aim of this 

evaluation was to find out whether our recovery approach could create high quality links at 

all cut points. This evaluation helped us to achieve in-depth understanding of how and why 

our recovery approach could improve the performance of automated link recovery, and 

reveal limitations of our recovery approach. The experimental results for each case study 

were compared with its benchmark to calculate precision, recall, and F-measure. The 

values for the three metrics helped us to measure how the performance of our approach 

was.  

2) In order to conduct the evaluation of the proposed recovery approach, traceability benchmarks 

need to be created. To address the second research question, we first conducted a literature 

review of traceability benchmarks. We studied papers that discussed traceability benchmarks. 

This helped us to identify the properties for benchmarks. We then proposed a new procedure 

and set of guidelines to help the manual establishment of a high quality, robust benchmark. 

The case study approach (Easterbrook et al., 2007; Yin, 2009) was also used to evaluate our 

approach because it is a feasible method to explore how and why our proposed guideline can 

produce a robust and effective benchmark. We created a traceability benchmark for a case 

project following our proposed guidelines. We used a probability formula to calculate the 

probability of errors made in the benchmark. The aim of this formula was to show the 

accuracy of the benchmark that was created using our approach and explore what factors 

could influence the accuracy of the benchmark. The case study approach helped us to gain the 

understanding of how our proposed guidelines would work and reveal the shortcomings of our 

approach. 

3) In order to answer the third research question, we also adopted the iterative and incremental 

development approach (Larman and Basili, 2006; Robey et al., 2001; Zhang et al., 2010) to 

develop our traceability visualization system. The key steps are as follows. 

a. We conducted an extensive literature review of traceability visualization techniques. We 

studied many papers that described traceability visualization techniques as a supporting 
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technique for software engineers in the system comprehension, management, and 

maintenance. We compared and analyzed these approaches for link visualization to 

identify common properties in traceability visualization systems and to explore valuable 

ideas for building a new, improved traceability visualization system. The aim of this task 

was to assist us in the development of our traceability visualization system to effectively 

and efficiently create and visualize links in the system. 

b. From this, we identified a set of key requirements for an improved traceability 

visualization system. The findings from the literature helped us to obtain these 

requirements and thus to understand what an improved traceability visualization system 

needs, and to design and develop our traceability visualization system. 

c. Based on the set of requirements identified from the literature, we designed and developed 

a combination visualization technique applying the iterative and incremental development 

method. We chose this method as it is a highly recommended practice used in the software 

development processes (Larman and Basili, 2006; Robey et al., 2001; Zhang et al., 2010). 

We had developed several prototypes for our visualization system (see Figure 1.2) to 

explore issues and problems occurred in developing our visualization system. Our initial 

attempt was to visualize retrieved links in a tree that could not be expanded or collapsed 

and to store them in a traceability matrix. The difficulties we experienced in browsing and 

maintaining links in this attempt motivated us to develop another prototype. The second 

prototype was to display links in a treemap to effectively use the display space, and apply 

colors to differentiate the link status of each node in the treemap instead of directly 

drawing edges between related nodes on top of the treemap to avoid visual clutter. The 

limitations of treemap in this prototype inspired us to add supporting techniques to 

improve the link visualization. In the third prototype, we additionally visualized links in a 

hierarchical tree that had the ability to expand and collapse to be space-effective and added 

links as children of nodes in the hierarchical tree to avoid visual clutter. Our final 

traceability visualization technique was to visualize retrieved links in the treemap and two 

hierarchical trees to support the efficient visualization of the structure and traceability 

links of the traced system. 
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FIGURE 1.2 DEVELOPMENT PROCESS OF OUR TRACEABILITY VISUALIZATION SYSTEM 

 

d. After the implementation of the new visualization technique we conducted a formal 

usability evaluation, which is the only mechanism that allows researchers to obtain direct, 

detailed  information  on  the  user’s  experience  with  the  system  being  tested  (Nielsen,  1993).  

We chose this because it helps developers to understand barriers to user interface and 

design errors, and then to refine the system (Nielsen, 1993). This study helped us to 

understand whether and how our approach assisted users in comprehension, development, 

and management of the traced system. It also showed whether such link visualizations 

could help users understand, browse, and maintain the recovered links easily and 

efficiently. Moreover, this study revealed the strengths and weaknesses of our system. The 

study was carried out with participants who had computer science or software engineering 

background. There were no requirements for participants to have some knowledge about 

the traced system. The methods we employed in our study were: questionnaires, 

observation, and think aloud.  

 

1.4 Our Approach 

We briefly describe our approach that recovers and visualizes traceability links and our guidelines 

for the manual establishment of robust traceability benchmarks. The detailed descriptions are in 

Chapters 3, 4 and 6. 

 

In order to improve the accuracy of retrieved traceability links to a reasonably high level at all 

levels of cut points, we have been exploring a new approach combining Regular Expressions (RE), 

Key Phrases (KP), and Clustering techniques with IR models to recover links between sections in 

Prototype 1: 

Visualize links 
in a tree 

Prototype 2: 

Visualize links in a 
treemap 

Prototype 3: 

Visualize links in 
treemap and 
hierarchical trees 
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documents and class entities. Our approach is intended to overcome the limitations of IR by taking 

advantage of the strengths of RE, KP, and Clustering. Combining RE with IR models allows 

extraction of more correct links at high cut points. As long as class names are retrieved correctly 

and refined regular expressions are built, RE can retrieve all possible links that are related to these 

class names and return few incorrect links as well. Adding KP enables IR to generate all potential 

links by extending the IR queries to include key phrases from comments in the source code. If 

source code is well documented, KP can extract key phrases from comments closely related to 

classes. The majority of incorrect links at low cut points are discarded by adopting Clustering, 

which takes advantage of the inherent hierarchical structure of documents to cluster links retrieved 

by IR models, RE, and KP. Therefore, our combination approach increases the number of correct 

links at high cut points and reduces the number of incorrect links at any cut point.  

 

In terms of the manual establishment of robust traceability benchmarks, we have defined a 

traceability benchmark to include tasks, dataset, an oracle (or true) traceability link set, and 

measures. We have proposed five steps to establish such a robust traceability benchmark: task 

identification, artifact selection, project selection, oracle/true traceability link set development, and 

evaluation metrics.  

(1) Task identification aims at capturing the set of traceability tasks.  

(2) Artifact selection is to choose which artifacts to collect based on the tasks.  

(3) Project selection is to find appropriate software projects containing artifacts that are chosen 

in the step two.  

(4) Oracle/true traceability link set development is to manually establish correct links between 

selected artifacts. We have designed rigorous manual identification and verification 

strategies to assist researchers to identify and verify links.  

(5) Evaluation metrics are to provide metrics that can be used to measure the performance of 

recovery techniques. 

 

In order to provide effective and efficient traceability visualization, we explored an approach of 

combining enclosure and node-link representations to display the structure of the traced system 

and the overall overview of traceability links, and to provide a detailed overview of each link 
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while still being highly scalable and interactive. We utilize a treemap view to display the structure 

of the system under trace and the overall overview of links. In order to remedy the visual clutter 

issue, we apply colours to differentiate the relationship status of each node in the treemap instead 

of drawing edges directly over the treemap. We adopt two hierarchical trees that can be expanded 

and contracted to visualize links. A hierarchical tree (the whole HT) is to illustrate the whole 

system and links in it to convey the hierarchical structure of the system. When an item is selected 

in the treemap view or the whole HT, the detailed dependency information of the selected item is 

displayed in a new hierarchical tree (the detailed HT), which is treated as the supplement of the 

treemap and the Whole HT. Any changes to links made in the treemap are reflected in the two 

hierarchical trees, and vice versa. 

 

1.5 Research Contributions 

Our research presented and discussed in this thesis contributes to the field of software engineering 

particularly in the area of software traceability. The main contributions from our research are as 

follows. 

1) We invented a new automatic traceability recovery technique, IRETrace, which incorporates 

three supporting techniques, Regular Expression (RE), Key Phrases (KP) and Clustering, into 

IR models to improve the performance of IR models. This technique can increase the number 

of retrieved correct links and decrease the number of retrieved incorrect links at all cut points. 

Papers describing this work include the following. 

a. “Extracting   and   Visualizing   Traceability   Links   between   Documents   and   Source   Code” 

which was published in Proceedings of the 21st Australian Software Engineering 

Conference (ASWEC 2010). 

b. “Extraction   and   Visualization   of Traceability Relationships between Documents and 

Source  Code” which was published in Proceedings of the 25th IEEE/ACM International 

Conference on Automated Software Engineering (ASE 2010). 

c. “Enhancing  Automated  Traceability  via  Combination  of  Multiple  Techniques” which was 

published in Proceedings of the 33rd International Conference on Software Engineering 
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(ICSE 2011). 

d. “Improving   Automated   Documentation   to   Code   Traceability   by   Combining   Retrieval  

Techniques” which was published in Proceedings of the 26th IEEE/ACM International 

Conference on Automated Software Engineering (ASE 2011). 

2) We have proposed a new approach and operational guidelines to assist engineers to manually 

develop their own robust traceability benchmark easily and effectively. We used this approach 

and guidelines while creating a new traceability link benchmark for the JDK1.5-SUBSET 

source code and documentation artifacts. We have made our new JDK1.5-SUBSET 

benchmark public and allow other users to access or download it for free. Our benchmark is 

represented in a spreadsheet format. Anyone can review the data, apply it to evaluate their 

traceability approaches, and probably extend it to better meet their own needs. Users can 

download it from: http://tinyurl.com/7l3ohe4. The development of the JDK1.5-SUBSET 

benchmark is described in the following paper. 

a. “Improving   Automated   Documentation   to   Code   Traceability   by   Combining   Retrieval  

Techniques” which was published in Proceedings of the 26th IEEE/ACM International 

Conference on Automated Software Engineering (ASE 2011). 

3) We have invented a combination traceability visualization technique that combines treemap 

and hierarchical tree techniques to display the structure and traceability links of a system 

effectively and efficiently without scalability and visual clutter issues. We then adopted this 

visualization approach to build a new traceability visualization system, DCTracVis. This 

system includes navigator, search, and filter functions to help engineers locate particular nodes 

and filter out uninteresting links. This research was reported in the following papers: 

a. “Extracting   and   Visualizing   Traceability   Links   between   Documents   and   Source   Code” 

which was published in Proceedings of the 21st Australian Software Engineering 

Conference (ASWEC 2010). 

b. “Extraction   and   Visualization   of Traceability Relationships between Documents and 

Source  Code” which was published in Proceedings of the 25th IEEE/ACM International 

Conference on Automated Software Engineering (ASE 2010). 

c. “Visualizing Traceability Links between Source Code and Documentation” which was 
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published in Proceedings of the 2012 IEEE Symposium on Visual Languages and 

Human-Centric Computing (VL/HCC 2012). 

 

1.6 Thesis Organization 

The remaining chapters are organized as follows. 

 

Chapter 2: Related Work 

This chapter reviews existing traceability recovery techniques and traceability visualization 

systems. These techniques are compared and analyzed to investigate and explore important 

requirements that a successful traceability recovery and visualization system needs to meet. 

 

Chapter 3: Traceability Link Recovery 

This chapter describes the design and implementation of a combination traceability recovery 

technique that we have invented, called IRETrace. This more effectively addresses the first 

challenge we encounter in software traceability - how to go about automatically retrieving 

high quality relationships between software artifacts.  

 

Chapter 4: Traceability Benchmark 

This chapter tackles the second major challenge we face: establishing appropriate traceability 

benchmarks to evaluate a traceability recovery techniques against prior studies and techniques. 

We describe a new approach that we have developed and trialed for researchers to manually 

build robust traceability benchmarks more easily and more effectively. We propose a formula 

to calculate the probability of errors in the created traceability benchmarks. We used our new 

approach to create a benchmark for JDK1.5-SUBSET source code and documentation. 

 

Chapter 5: Evaluation of Traceability Link Recovery 

This chapter presents an evaluation of our combination traceability recovery approach, 

IRETrace. We applied six Information Retrieval (IR) models to four case studies varying in 

size and context. The evaluation results are then analyzed to explore the strengths and 
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weaknesses of IRETrace. 

 

Chapter 6: Traceability Link Visualization 

The third challenge we face in software traceability is to how to efficiently and effectively 

visualize traceability links retrieved by a traceability recovery technique to support the 

comprehension, browsing, and maintenance of links in a system. This chapter describes a 

combination visualization system that we have invented, called DCTracVis. It allows 

software engineers to recover, browse, understand, and maintain links in a natural and 

intuitive way. 

 

Chapter 7: Evaluation of Traceability Link Visualization 

This chapter presents a usability evaluation of our traceability link visualization tool, 

DCTracVis, and discusses the evaluation results to explore its strengths and weaknesses from 

the perspective of several software engineering participants. 

 

Chapter 8: Conclusions 

This final chapter summarizes and concludes the work presented in this thesis, reiterates our 

key research contributions, and suggests some possible future research directions. 
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Chapter 2 -- Related Work 

This chapter presents a literature review. Related work on software traceability link recovery and 

visualization is reviewed to identify key strengths and weaknesses in current approaches. We then 

identify key requirements that any new system must meet in order to achieve successful 

traceability recovery and visualization techniques. Such a system must be able to retrieve links 

with both high precision and recall and must also be able to represent retrieved links in a natural 

and intuitive way.  

2.1 Introduction 

Due to the importance of tracing the relationships between artifacts in a system to assist software 

engineers in software development activities, extensive efforts have been put into improving the 

precision and recall of recovered links between artifacts through various traceability recovery 

techniques. Moreover, many researchers have designed and developed traceability visualization 

systems to provide engineers with an effective visualization environment enabling them to retrieve, 

browse, edit, and maintain retrieved links effectively and efficiently. In this chapter, we analyze 

many existing traceability recovery techniques and traceability visualization systems to determine 

a set of requirements for a successful traceability recovery and visualization system. 

 

We firstly introduce what software traceability is, followed by a description of traceability link 

types. We then discuss representative traceability recovery techniques invented to date to explore 

requirements involved in accomplishing successful link recovery. Next, a variety of traceability 

visualization systems invented to date is discussed to seek feasible functionality in achieving 

effective and efficient link visualization. We also describe some other techniques that can be used 
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to recover links or display links in a system. Finally, a summary is presented. 

 

2.2 Software Traceability 

Traceability in the software engineering area is the ability to relate artifacts in a software system 

(Spanoudakis and Zisman, 2005). Table 2.1 lists some definitions of software traceability found in 

the literature. Definitions in Table 2.1 indicate that traceability generally means the ability to trace 

dependent artifacts produced during the software development life cycle and to capture 

interrelationships among artifacts within the software system.  

TABLE 2.1 DEFINITIONS OF SOFTWARE TRACEABILITY 

Definition Defined by (year) 
“Traceability refers to the ability to allow changes to any artifacts -- 
requirements, specification, implementation -- to be traced throughout 
the system”. 

Greenspan and 
McGowan (1978) 

“Traceability refers to the ability to discover the history of every 
feature  of  a  system”. 

Hamilton and Beeby 
(1991) 

“Traceability is a technique used to provide a relationship between the 
requirements, the design, and the final implementation of  the  system”. 

Edwards and Howell 
(1992) 

“Traceability is a link or definable relationship document between 
entities of a software system”. 

Watkins and Neal (1994) 

“Requirement Traceability refers to the ability to describe and follow 
the life of a requirement, in both a forwards and backwards direction 
(i.e. from its origins, through its development and specification, to its 
subsequent deployment and use, and through all periods of on-going 
refinement and iteration in any of these phases)”. 

Gotel and Finkelstein 
(1994) 

“Traceability gives essential assistance in understanding the 
relationships that exist within and across software requirements, 
design, and implementation”. 

Palmer (1997) 

“Traceability refers to the ability to determine relationships between 
different development artifacts in the software development process”. 

Tempero et al. (2002) 

“Traceability is the ability to record dependencies between artifacts 
and to identify and control changes and assess their impact on the 
various phases of the development process”. 

Pulham and Wills (2008) 

 

These traceability relationships enable software engineers to: detect whether a system meets all 

requirements; perform early recognition of those requirements not satisfied by the system; track and 
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update any artifacts reflecting changes while changes occur; and answer questions about 

completeness, conflict, coverage, or consistency (Antoniol et al., 2002; Egyed et al., 2007; Gotel 

and Finkelstein, 1994; Pfleeger & Bohner 1990; Ramesh et al., 1997; Seacord et al., 2003). They 

also can facilitate the reuse of system components where the components of existing systems are 

used to implement similar requirements of new systems (Conklin and Begeman, 1988). 

Furthermore, they can aid both top-down and bottom-up system comprehension i.e. they allow 

users to map high-level documents, and thus abstract concepts, to low-level artifacts (Oliveto et al., 

2007). In addition, they can support system testing and devise complete and comprehensive test 

cases (Antoniol et al., 2002; Spanoudakis and Zisman, 2005). 

 

Overall, traceability is used to improve the quality of software systems (Spanoudakis and Zisman, 

2005), to make the documentation of the systems clear and consistent, and to make the process of 

maintaining the systems less dependent on individual experts (Lindval and Sandhal, 1996). 

 

2.3 Traceability Link Classifications 

In order to help software engineers comprehend traceability, many traceability link classifications 

have been defined based on different aspects of traceability. Some classifications are based on the 

artifact-centric aspect. Gotel and Finkelstein (1994) introduced two basic types of traceability: 

pre-traceability and post-traceability. Pre-traceability is used to capture relations between 

requirements and the sources that have helped the generation of these requirements, i.e. the views 

and needs of the stakeholders. Post-traceability includes relationships between requirements and 

artifacts produced during the software development life cycle. These two types of traceability 

concentrate on relationships among different artifacts of a system. These are what Pfleeger refers 

to as horizontal traceability (Pfleeger, 1998; Pfleeger & Bohner 1990). Pfleeger (1998) also 

defined vertical traceability as relationships among the different elements of an artifact. 

 

A classification focusing on requirements was proposed by Pohl (1996), who categorized eighteen 

different traceability links into five groups based on the action-centric view: condition links, 
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content links, documents links, evolutionary links, and abstraction links. (1) Condition links refer 

to relations between requirements and restrictions associated with them. (2) Content links indicate 

comparisons, contradictions, and conflicts among requirements. (3) Documents links associate 

software documents to requirements. (4) Evolutionary links are replacement relations between 

requirements, i.e. a requirement A is replaced by a requirement B. (5) Abstraction links represent 

generalization and refinement between requirements.  

 

Ramesh and Jarke (2001) defined four types of traceability links based on a meta-model for 

requirement traceability: satisfaction links, dependency links, evolution links, and rationale links. 

Satisfaction links and dependency links form a product-related group, which describe properties 

and relationships of design objects independent of how they were created. (1) Satisfaction links 

refer to relationships between lower-level objects and constraints/goals defined in high-level 

objects (requirements, standards, policies, complex design objects etc.). (2) Dependency links 

indicate dependency between lower-level objects. Evolution links and rationale links belong to 

another group called process-related. These can only be captured by looking at the history of 

actions taken during the process itself and cannot be recovered from the product relationships 

alone. (3) Evolution links identify the origins of design objects by documenting the relationships of 

actions leading from existing design objects to new or modified design objects. (4) Rationale links 

are captured in design objects based on the history of actions of how design objects are created. 

 

Spanoudakis and Zisman (2005) organized various types of requirement traceability links 

proposed by previous researchers into eight main groups: dependency, generalisation/refinement, 

evolution, satisfaction, overlap, conflicting, rationalisation, and contribution links. (1) 

Dependency links represent the dependency between elements in a system; an element A depends 

on an element B, if the existence of A relies on the existence of B, or if changes in B have to be 

reflected in A. (2) Generalisation/refinement links identify how complex elements of a system can 

be broken down into components, how elements of a system can be combined to form other 

elements, and how an element can be refined by other elements. (3) Evolution links signify the 

evolution of elements of software artifacts e.g. element A evolves-to element B if A has been 

replaced by B during the software development life cycle. (4) Satisfiability links refer to the 
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satisfaction between elements in a system e.g. element A satisfies element B, if A meets the 

constraints, expectation, needs, desires, and goals of B. (5) Overlap links: In this type of links, 

element A overlaps element B, if A and B refer to common features/domain of a system. (6) 

Conflict links indicate conflicts between elements in a system, i.e. when two requirements conflict 

with each other. (7) Rationalisation links are used to represent and maintain the rationale behind 

the creation and evolution of elements, and decisions about the system at different levels of detail. 

(8) Contribution links represent associations between requirements and stakeholders that have 

contributed to the generation of the requirements. 

 

Traceability links retrieved by a traceability recovery technique can be classified into four groups 

based on a recovery method-centric view: lost links, warning links, false positive links, and normal 

links (Lucia et al., 2005). (1) Lost links are those that are recovered by the recovery technique but 

not captured by the user. (2) Warning links are relations that are captured by the user but missed by 

the recovery technique. (3) False positive links refer to links that are retrieved by the recovery 

technique but considered as incorrect by the user. (4) Normal links are recovered by the recovery 

technique and confirmed as correct by the user. For this classification, the verification of the 

retrieved links is totally dependent on the knowledge of the user to determine whether a retrieved 

link is correct or not.  

 

In our research, we focus on tracing relationships between source code and documentation that is 

generated during the software development life cycle and written in natural language, e.g. tutorials, 

handbooks, developer or user guides, API documentation, architecture documentation, design 

rationale, requirements, emails, and so on. These relationships belong to the horizontal traceability 

category. We also adopt a recovery method-centric view to classify traceability links. However, we 

utilize traceability benchmarks (discussed in Chapter 4) to verify links retrieved by a traceability 

recovery technique. The main component of a traceability benchmark of a traced system is the 

oracle traceability link set that consists of all the correct, or true, traceability links for the system. 

We compare the set of retrieved links with the oracle link set to determine whether a retrieved link 

is correct or not. Therefore, we define three types of traceability links: correct/true links, 

incorrect/fault links, and missing links. 
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(1) Correct/true links are relations that are recovered by the recovery technique and also 

included in the benchmark. If a retrieved link L is in the benchmark B, then L is a 

correct/true link.  

(2) Incorrect/fault links are those retrieved links that are not in the benchmark. If retrieved link 

L is not in the benchmark B, then L is an incorrect/fault link.  

(3) Missing links are links that are missed by the recovery technique but included in the 

benchmark. If link L is in the benchmark B but fails to be retrieved by the recovery 

technique, then L is a missing link. 

 

2.4 Traceability Link Recovery 

Many contemporary requirements engineering systems (CORE, 2012; Kaindl, 1992; IBM Rational 

DOORS, 2012; Pinheiro and Goguen, 1996; RTM, 2012) offer limited support for traceability as 

they require users to create traceability links manually. For example, creating traceability with 

IBM Rational DOORS is as simple as drag and drop between items on the screen, i.e. link a 

requirement to a design item, to a test case or to another requirement with the click of a mouse 

(Teleologic, 2012). However, effective traceability is rarely established manually because the 

manual creation of traceability links is difficult, error-prone, time-consuming and complex 

(Spanoudakis and Zisman, 2005).  

 

To alleviate this problem and improve the accuracy of recovered traceability links among different 

artifacts in a system, various traceability recovery techniques have been developed. These 

approaches can be classified into two main groups: semi-automatic recovery and automatic 

recovery. Table 2.2 compares representative traceability recovery techniques to date in detail: 

whether they can automatically retrieve traceability links between artifacts in a system; what 

techniques they utilize to recover links; whether or not they rely on cut points; whether they 

improve precision or recall; whether they support tracing of systems that are written in different 

programming languages (e.g. Java, C++, VB); and what artifacts they are targeted on. In the 

following sections, we discuss these representative traceability recovery techniques in detail. 
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2.4.1 Semi-automatic Traceability Recovery Techniques 

Semi-automatic recovery techniques are those that need human intervention during the traceability 

link extraction process, such as rule-based, scenario-driven, value-based, ontology-based, and 

machine learning approaches. XTraQue developed by Jirapanthong and Zisman (2005; 2009) 

utilizes a rule-based approach to define traceability relations between feature-based object-oriented 

documents (feature model, use cases, class diagram etc.). The rule-based approach uses traceability 

rules to identify links. Traceability rules are created based on the following aspects: (1) the 

semantics of the documents being compared, (2) the various types of traceability relations in the 

product line domain, (3) the grammatical roles of the words in the textual parts of the documents, 

and (4) synonyms and distance of words being compared in a text (Jirapanthong and Zisman, 

2009). The four aspects show that traceability rules are largely dependent on grammatical 

structures present in the natural language sentences. In order to recover all possible links in 

different systems, traceability rules have to be expanded to consider all possible grammatical 

structures. Moreover, building rules is time-consuming. 

 

The scenario-driven technique (Egyed, 2003) combines hypothesized traces and test scenarios to 

generate traceability relations between models, scenarios and code. The hypothesized traces link 

models with test scenarios describing test cases or usage scenarios for these models and are 

executed on a running software system. Traceability relations are then created through analysis of 

the runtime behavior of these test scenarios and the hypothesized traces. The rationale for trace 

generation is simple: the code accessed during the testing of a model must implement that model, 

and multiple model elements sharing some lines of code have a trace dependency among them. 

STRADA (Egyed et al., 2007) is a tool for scenario-based trace detection between features and 

code. However, the correctness and completeness of the hypothesized traces can affect the quality 

of recovered links. 

 

Most current traceability research considers that all artifacts in a system have equal value (Boehm, 

2003). However, the value-based approach (Egyed et al., 2005) does not treat every artifact as 

equally important, so that not all trace relationships between software artifacts and code are 
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equally important in the context of traceability. The value-based approach produces high quality 

trace relationships among high-value artifacts on a finer-grained level of detail: high-value artifacts 

are mapped to the method level. However, the quality of relationships among low-value artifacts is 

undesirable because they are based on a coarser-grained level of detail: low-value artifacts are 

mapped to the class level. Although this approach can save cost due to its focus on artifacts with 

high values, the determination of the value of every artifact is complex and time-consuming. 

 

Yoshikawa et al. (2009) introduced domain ontologies for recovering traceability links between 

sentences and source code. The sentences are those that describe features of a software product. 

Domain ontologies can structurally represent knowledge about concepts and their relationships for 

a specific problem domain of the software. The semantic relationships of the ontologies can detect 

which methods fulfill features described in sentences. Their evaluation results show that both 

precision and recall are improved. The limitation is that domain ontologies are manually created. 

 

Machine learning employs learning algorithms to search for similarity between terms in artifacts 

after being trained (Grechanik et al., 2007). LeanArt (Grechanik et al., 2007) combines program 

analysis, run-time monitoring, and machine learning to recover links between use-case-diagrams 

(UCDs) and source code. LeanArt uses the values of program variables, initial traces, and the 

names of program entities and elements of UCDs to train the learning algorithm to identify entities 

with similar values and names. The values of program variables are collected when the software is 

executed and run-time monitoring of program variables is performed. Initial traces are created by 

programmers to link a small percentage of program entities to elements of UCDs. Then the 

learning algorithm classifies the rest of program entities by matching them with the names of the 

elements of UCDs. Experimental results show that LeanArt recovers 87% links in the best case, 

64% on average, and 34% in the worst case if 6% initial traces are created. Unfortunately, learning 

algorithms that can deliver consistently good results for different types of input data have proved 

difficult to find. Moreover, users are required to manually prepare the initial traces between 

artifacts. In addition, the run time on a program with over 20,000 lines of code is around thirty 

minutes. 
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To sum up, semi-automatic recovery techniques are unable to generate traceability links 

automatically without human intervention. To successfully implement these techniques, some 

initial data needs to be manually prepared, such as rules, domain ontology, initial traces etc. They 

require users to have some knowledge of the traced system. Therefore, it is difficult to adopt these 

techniques to capture links among artifacts in a system for users who are unfamiliar with the 

system. Automatic recovery techniques can alleviate this issue. Most of these techniques can be 

applied to trace links in multi-format software projects. 

 

2.4.2 Automatic Traceability Recovery Techniques 

Automatic traceability recovery techniques include lightweight and heavyweight techniques. 

Lightweight techniques do not require pre-computation of the input and can be directly executed at 

run-time, such as Regular Expressions (Bacchelli et al., 2009). Heavyweight techniques, in 

contrast, require pre-processing of their input. These techniques include Information Retrieval (IR) 

and Text Mining (TM). In the following, we discuss a range of these automatic recovery 

techniques developed to date in detail. 

 

2.4.2.1 IR-based traceability recovery techniques 

The most-studied and often-used techniques in automated traceability link recovery to date are 

Information Retrieval (IR) models. Many traceability recovery techniques (Antoniol et al., 2002; 

Cleland-Huang et al., 2005; Hayes et al., 2003; Lucia et al., 2007; Marcus and Maletic, 2003; 

Settimi et al., 2004; Wang et al., 2009) use a variety of Information Retrieval (IR) approaches to 

automatically recover traceability links between artifacts in a system.  

 

IR models 

Early IR systems were Boolean models which used a complex combination of Boolean ANDs, 

ORs,  and  NOTs   to   specify  users’  needs   (Singhal, 2001). However, Boolean models are not very 

effective as they do not support ranked retrieval. Therefore, current IR models rank documents by 

their estimation of the relevance of a document for a query and assign a similarity value to every 
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document and rank documents by this value (Singhal, 2001). The three most-used IR models to 

date are Probabilistic Model (PM), Vector Space Model (VSM), and Latent Semantic Indexing 

(LSI).  

 

The Probabilistic Model (PM) is based on the general principle that documents in a collection are 

ranked by decreasing probability of their relevance to a query (Singhal, 2001). The probability of a 

link between a query q and a traceable document dj is defined as (Cleland-Huang et al., 2005): 
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pr(dj|ti) and pr(q,ti) represent the dispersion of the term ti within the document dj and query q 

respectively by computing the normalized frequency of terms. pr(dj|ti) is computed by considering 

the frequency with which ti occurs in dj, normalized over the total number of words in dj. This is 

defined as: 
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itqprqpr ),()(  computes the probability of the query q. Then 

the similarity value (pr(dj|q)) between the query q and each document dj is computed. All 

documents are ranked based on their similarity values with q and are filtered by a predetermined 

cut point. This is used to retrieve only documents whose similarity value is higher than this 

specified cut point (Cleland-Huang et al., 2005; Wang et al., 2009). However, PM cannot deal with 

synonym and abbreviation problems (Wang et al., 2009).  

 

Vector Space Model (VSM) is a widely used IR approach for constructing vector representations 

for documents (Marcus and Maletic, 2003). It treats documents and queries as vectors in an 

N-dimensional space, where N is the number of terms/words in the document collection’s 

vocabulary (Antoniol et al., 2002; Hayes et al., 2003). Each document Di is represented as a vector 

[di,1, di,2, ... , di,N] where the jth element di,j is a measure of the weight of the jth term of the 

vocabulary in the document Di. The vector element di,j is defined as: )(idftfd jjiji log,,   where 

tfi,j is the term frequency of the jth term in the document Di, and log(idfj) is the weight for the 

frequency of the jth term in the document collection. idfj is computed as 
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 term  thecontaining documents ofNumber 
documents ofnumber  Total

thj
idf j  . The more frequent the term is in the 

document collection, the more its presence is important to the document, i.e. the higher the weight 

(Antoniol et al., 2002; Hayes et al., 2003). Similarly, a user query Q is also converted into a similar 

vector [q1, q2, ... , qN]. The similarity value between a document Di and a query Q is computed as 

the cosine of the angle between the document vector and the query vector in the N-dimensional 

space (Antoniol et al., 2002; Hayes et al., 2003): 
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All documents are ranked based on their similarity values and filtered by a predetermined cut point. 

However, it is difficult for VSM to cope with abbreviations, synonyms, and polysemy problems as 

it does not take into account relations between terms or words, i.e. all terms and words are 

independent (Marcus and Maletic, 2003; Wang et al., 2009). 

 

Latent Semantic Indexing (LSI) is a VSM based method for inducing and representing aspects of 

the meaning of words reflective in their usage (Marcus and Maletic, 2003). The basic concept of 

LSI is that the information about word contexts, in which a particular word appears or not, 

provides a set of mutual constraints that decides the similarity of meaning of sets of words to each 

other (Marcus and Maletic, 2003). Therefore, LSI improves the synonym issue by taking the 

relations among terms into consideration. LSI firstly represents documents and queries in a VSM 

N-dimensional space. Then the VSM N-dimensional space is truncated and transformed to LSI 

subspace by applying Singular Value Decomposition (SVD) (Salton and McGill, 1983). The 

document and query vectors in the VSM N-dimensional space are orthogonally projected onto new 

corresponding vectors in the LSI subspace. Terms that occur less frequently in the document 

collection tend to be precluded from the LSI subspace (Marcus and Maletic, 2003). Finally, LSI 

uses the VSM similarity formula to compute similarity values between documents and queries but 

based on the LSI subspace. All similarity values are sorted decreasingly and filtered by a 

predetermined cut point. 
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Cut points 

The accuracy rate of link recovery by using IR models heavily relies on a cut point; only links that 

have a similarity value greater than or equal to the cut point are shown to users (Antoniol et al., 

2002; Cleland-Huang et al., 2005; Lucia et al., 2007; Marcus and Maletic, 2003; Wang et al., 2009). 

There are two ways to determine the cut point (Lucia et al., 2007; Lucia et al., 2006; Marcus and 

Maletic, 2003).  

 One way is similarity-based, which uses a cut point on the similarity value that identifies 

which documents are linked. Only links that have a similarity value greater than the cut 

point will be captured.  

 The second way is cut-point-based, which cuts the ranked links by imposing a cut point 

on the number of retrieved links, regardless of the actual similarity value. This means that 

the user can decide to retrieve the top ranked links among those that have a similarity 

value greater than the cut point.  

However, both approaches lead to scenarios where: (i) the lower the cut point the much greater the 

number of incorrect links that are retrieved, and (ii) conversely, the higher the cut point the smaller 

the number of correct links retrieved. In other words, using a low cut point retrieves a larger 

number of accurate links than using a high cut point, but more incorrect links are also captured at 

the same time. This means that many potentially useful and important links are missed at high cut 

points. Similarly, many incorrect or unuseful links are extracted at low cut points and may confuse 

developers. Furthermore, the same cut point may or may not be best suited for different systems 

(Marcus and Maletic, 2003). 

 

IR-based traceability recovery techniques 

Cleland-Huang et al. (2007) applied PM to retrieve links between requirements and UML classes 

in the Poirot tool. Their experimental results suggested that 20%-35% precision should be 

achievable at a recall level of 90%. 

 

Antoniol et al. (2002) applied two different IR models, PM and VSM, to extract links between 
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code and documentation. Their experimental results showed that IR provides a practical solution 

for automated traceability recovery. PM achieves 90% of recall with around 20% of precision. 

VSM has 7-20% of precision when reaching 90% of recall. The two IR models have similar 

performance when terms in artifacts perform a preliminary morphological stemming. 

 

Marcus and Maletic (2003) introduced LSI, an extension of the VSM, to recover links between 

documentation and source code. Their experimental results showed that LSI achieves very good 

performance without the need for stemming, as required for PM and VSM. It reaches 20-50% of 

precision while recall is 90%. LSI needs less computation as it requires less processing of code and 

documentation. 

 

Abadi et al. (2008) compared several IR models for retrieving links between source code and 

documentation. These IR models included VSM, LSI, Probabilistic Latent Semantic Indexing 

(PLSI), and Jensen-Shannon (JS) similarity model. PLSI uses the PM for document indexing 

(Abadi et al., 2008; Hofmann, 1999). The JS model is a new IR model and is driven by the PM and 

hypothesis testing techniques. The JS model represents each artifact through a probability 

distribution. In other words, an artifact is represented by a random variable where the probability 

of its states is given by the empirical distribution of terms occurring in the artifact. The empirical 

distribution of a term is based on the weight assigned to the term for the specific artifact. The 

similarity between two artifacts is computed as a distance of their probability distributions 

measured using the Jensen-Shannon Divergence (Cover and Thomas, 1991). As the JS model does 

not take into account relations between terms, it suffers from synonymy and polysemy problems. 

Their experimental comparison results show that VSM and JS have almost equal performance, LSI 

and PLSI have the worst performance, and PLSI is significantly worse than the others. 

 

Capobianco et al. (2009) proposed a novel IR technique, called B-spline, based on numerical 

analysis for recovering links between code and documentation. This approach models the 

information contained in an artifact by particular interpolation curves of plots mapping terms and 

their frequency on the artifact. This mitigates synonymy and polysemy problems because the 

interpolation curves for artifacts can exploit information about co-occurrences of terms. The 
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similarity between artifacts is then computed by calculating the distance of the corresponding 

interpolation curves. Their experimental results demonstrate that this approach significantly 

outperforms both VSM and LSI, and is comparable and sometimes better than the JS model. It 

achieves 20-45% of precision while reaching 90% of recall. Their experimental results also 

revealed that both the artifact types and the language used to write artifacts significantly influence 

the retrieval accuracy of the four IR models.  

 

Enhancement strategies 

In order to improve the performance of IR-based traceability recovery techniques, various 

enhancement strategies have been developed. Gibiec et al. (2010) developed a web-mining 

approach to discover a new set of query terms that can be used to replace or augment the original 

PM query to mitigate the problem of stubborn traces. These new query terms are learned through 

seeding a web-based search with the original query and then processing the results to identify a set 

of domain-specific terms. Their experimental results showed that the stubborn trace queries are 

significantly improved. 

 

Zou et al. (2006, 2008) incorporated the use of phrases detected and constructed from 

requirements using a part-of-speech tagger with PM to improve the precision of traces between 

requirements and UML classes. A project glossary is also used to find additional phrases and 

weight the contributions of all phrases. Phrases that are mentioned in the project glossary are 

weighted more heavily than those that are not in the project glossary. Their experimental results 

showed that combining phrasing and project glossary with PM has a significant improvement in 

precision especially within the top ranked links.  

 

Cleland-Huang et al. (2005) proposed an approach to improve the performance of dynamic 

requirements traceability by incorporating three different strategies into PM, namely hierarchical 

modeling, logical clustering of artifacts, and semi-automated pruning of the probabilistic network. 

(1) Hierarchical enhancement is used to adopt the artifact hierarchical format in which the words 

used to name and describe the higher-level artifacts capture the general meaning of their 
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lower-level components. The ancestral information in artifacts strengthens the probability of true 

links according to their ancestral links. (2) Clustering enhancement is based on sibling artifacts and 

the premise that links tend to occur in clusters. If a link exists between artifact A and artifact B that 

is part of a cluster of artifacts, then there would be a higher probability that additional links should 

exist between the artifact A and other artifacts in the cluster. (3) Pruning enhancement is not 

intended to improve precision across all artifacts but focuses on particular areas in which the 

precision is particularly poor. It creates constraints between groups of artifacts to improve the 

precision of problematic area. Their experimental results indicated that the three strategies 

effectively improve the precision of retrieval traces. 

 

Settimi et al. (2004) investigated the effectiveness of VSM and VSM with a general thesaurus for 

generating links between requirements, code, and UML design models. The comparison results 

showed that precision and recall are not improved by the use of a general thesaurus. Hayes et al. 

(2003) used VSM but with a context-specific thesaurus that is established based on technical terms 

in requirement documents to recover links between requirements. Their experimental results 

showed that improvements in recall and sometimes in precision are achieved.  

 

Wang et al. (2009) presented four enhanced strategies to improve LSI, namely: source code 

clustering, identifier classifying, similarity thesaurus, and hierarchical structure enhancement. (1) 

Source code clustering is implemented based on the inheritance relationships among classes; if one 

class is the ancestor of another class then they are assigned to the same cluster. If there exists a link 

between document d and a class in cluster C, then the similarity between d and all classes in C is 

set to a higher value. (2) Identifier classifying is to classify identifiers in source code into class 

names, various comments, and general identifiers (all identifiers except of class names and 

comments), and to impose different weights on different identifiers. For example, if there exists a 

link between a document and a class such that the document contains the name of the class, then 

the similarity of the link is increased by 20%. (3) A similarity thesaurus is employed to cope with 

synonym and abbreviation problems. This thesaurus is constructed through a data dictionary that 

might exist in documentation and abbreviations in source code. (4) The hierarchical structure of 

documentation is used to divide all documents in a system into high-level conceptual documents 
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(e.g. requirements, summary designs, and manuals) and low-level implementation documents (e.g. 

detailed designs, API, data format specifications). Low-level documents are regarded as a bridge 

between source code and high-level documents. Links between low-level documents and source 

code are used as feedback to retrieve links from high-level documents. Their experimental 

comparison with PM and LSI indicated that this approach has higher precision than LSI and PM, 

but has lower recall.  

 

Hayes et al. (2006) investigated the performance of LSI with the context-specific thesaurus from 

Hayes et al. (2003). Their experimental results showed that this approach improves recall and 

sometimes precision. Lucia et al. (2011) adopted a smoothing filter to improve the performance of 

VSM and LSI. The smoothing filter aims at removing the common information among artifacts of 

the same type (e.g. between use cases, or between source code) that does not help to characterize 

the artifact semantics. Use of the smoothing filter was experimented on different types of artifacts, 

use cases, requirements, UML diagrams, code, and test cases. Their experimental results indicated 

that the usage of the smoothing filter significantly improves the precisions of both VSM and LSI. 

 

To sum up, IR-based traceability recovery techniques rely on a predetermined cut point to filter the 

retrieved links. Using different cut points generates different values of precision and recall. 

IR-based recovery techniques generally achieve low precision but high recall at low cut points and 

generally get high precision with low recall at high cut points (Abadi et al., 2008; Antoniol et al., 

2002; Capobianco et al., 2009; Cleland-Huang et al., 2007; Marcus and Maletic, 2003). In other 

words, a larger number of incorrect links are captured at lower cut points and fewer correct links 

are returned at higher cut points. Although various strategies have been applied to enhance the 

performance of IR-based recovery techniques, no approaches to date can substantially decrease 

incorrect links at low cut points and significantly increase correct links at high cut points (Antoniol 

et al., 2002; Cleland-Huang et al., 2005; Marcus and Maletic, 2003; Settimi et al., 2004; Wang et 

al., 2009). Most of these techniques can retrieve links in multi-format systems. 
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2.4.2.2 Other traceability recovery techniques 

In addition to IR-based recovery techniques, some other techniques have been invented to capture 

links between artifacts. The Text Mining (TM) technique organizes related texts in documents to 

extract domain-specific information from texts (Stranieri and Zeleznikow, 2005; Weiss et al., 

2005). Witte et al. (2008) employed Information Extraction, a subfield of TM, to capture 

traceability links through extracting entities (e.g. methods, classes, packages, etc.) from software 

documents. It achieved a very high precision (90%) for the entity extraction with a recall of 62% 

on average. Its limitation is that it can only extract from documents salient facts about 

pre-specified types of events, entities, or relationships, although it generates these relationships 

with high accuracy (GATE Information Extraction, 2010; Weiss et al., 2005). Types of entities 

have to be pre-defined, and grammar rules have to be built for detecting complex named entities. 

 

Bacchelli et al. (2010) built regular expressions to match class names to words in development 

email archives. The first regular expression is to simply use case sensitive matches between class 

names and words in emails. It achieves low precision (1-40%) but high recall (40-75%). The low 

precision is caused by the high number of class names that belong to common words as it is hard 

to tell whether or not the matched words in emails indicate class names. The second regular 

expression is to solve the issue of class names that are dictionary words. It requires the presence of 

the last part of the package of a class before the class name itself, which must be then followed by 

a source code extension or any kind of separator. This regular expression is defined as:  

(.*) (\s|\.|\\|/) <packageTail> (\.|\\|/) <EntityName> ((\. (java|class|as|php|h|c)) | (\s)) (.*) 

When used alone, this regular expression achieves good precision (59-64%) and recall (59-65%) 

for Java systems. The third regular expression works for non-Java systems:  

(.*) (:punct:|\s) + <EntityName> (:punct:|\s) + (.*)  

It requires that a class name is separated from other words by empty space or connected to it 

through source code tokens (i.e. punctuation). This expression gives high outcomes for non-Java 

systems; around 50% of precision and 72% of recall. These results show that using regular 

expressions achieves good accuracy. However, this approach fails to retrieve links between classes 



36 

 

and emails where class names do not explicitly appear but are mentioned implicitly, such as an 

email that describes tasks that a class should fulfill but does not directly mention its name. 

Moreover, as this approach performs strict matching between class entities and words in 

documents, it is unusable on cases that class entities are rarely mentioned in the documents. In 

addition, this approach returns documents without any ranking. A document either matches or does 

not match the regular expressions. 

 

Dagenais and Robillard (2012) designed a technique that automatically analyzes the 

documentation (e.g. tutorials, reference manuals, mailing lists, or forums) of a system and that 

precisely links code-like terms (e.g. year()) in documents to specific code elements (e.g. 

DateTime.year()) in the API of the documented framework or library. A code-like term is a series 

of characters that matches a pattern associated with a code element kind (e.g., parentheses for 

functions, camel cases for types, anchors for XML elements). This technique first adopts regular 

expressions, as used in Bacchelli et al. (2010), and Partial Program Analysis (PPA), as used in 

Dagenais and Hendren (2008), to identify the code-like terms, the code snippets, and their 

probable kind (e.g. class, method, XML element, Java code snippet, XML code snippet) in the 

documentation of the system. PPA builds a typed intermediate representation (e.g. an abstract 

syntax tree) of incomplete Java program source code, recovers the declared types by performing 

partial type inference, and resolves syntactic ambiguities inherent to incomplete programs using 

heuristics (Dagenais and Hendren, 2008). Next, this technique considers the context in which a 

term is mentioned and applies a set of filtering heuristics to resolve four sources of ambiguity 

(declaration, overload, external reference, and language ambiguities) inherent to linking code-like 

terms in unstructured natural language documents, to ensure that terms referring to external code 

elements are not spuriously linked. Finally, links between code-like terms and code elements are 

created, based on the assumption that code elements mentioned in close vicinity are more likely to 

be related than code elements mentioned further apart. In other words, a code-like term A is closer 

to term B than to term C if B is in a more specific context than C. This technique is implemented 

in a tool called RecoDoc. The experimental results showed that this technique has an average 

precision and recall of 96%. However, this approach suffers from the same drawbacks as the 

approach using regular expressions in Bacchelli et al. (2009; 2010). 
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To sum up, these non-IR-based traceability recovery techniques are able to achieve good precision 

and recall. However, these techniques cannot rank retrieved links to allow users to select the best 

set of links. Moreover, as they all perform strict matching, they are unusable where documents use 

different words to describe the matching entities, or where documents rarely mention these entities. 

Only the approach designed by Bacchelli et al. (2009; 2010) accepts multi-format software 

projects. 

 

2.4.3 Enhancing Discovery Techniques 

Some techniques exist that may enhance the performance of IR-based traceability recovery 

techniques: keyphrase extraction techniques, that can automatically extract key phrases from the 

text; and clustering algorithms, that can group together similar items in a data set.  

 

Key phrases, which can be single words or phrases of two or more words, represent the key ideas 

of the document (Turney, 1999; Witten et al., 1999). Key phrases can serve as a representative 

summary of the document, high quality index terms, and suggestions for refining search queries 

(Kim and Kan, 2009; Turney, 1999). In IR-based traceability recovery techniques, key phrases 

extracted from text can augment the original IR-queries or establish a thesaurus to improve their 

performance. Keyphrase extraction techniques employ lexical and IR techniques to extract phrases 

from the document text that are likely to characterize it (Turney, 1999; Witten et al., 1999). The 

simplest system is KEA (Frank et al., 1999; Witten et al., 1999) that uses the Naïve Bayes machine 

learning algorithm (Domingos and Pazzani, 1997) for training and keyphrase extraction. KEA first 

splits the input text into tokens and removes apostrophes and non-token characters. It then 

determines candidate phrases based on three rules: the length of each candidate phrase is limited to 

three words, candidate phrases cannot be proper names, and they cannot begin or end with a 

stop-word. Next, case-folding and stemming these determined candidate phrases discard any suffix 

and treat different variations on a phrase as the same thing. Two features are calculated for each 

candidate phrase: TF*IDF (i.e. term frequency * inverse document frequency) and first occurrence 

in the document. TF*IDF measures the frequency of a phrase in a document compared to its rarity 

in general use. The first occurrence is the distance into the document of the first appearance of the 
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phrase. Finally, the overall probability of each candidate phrase is calculated based on the two 

feature values. Candidate phrases are ranked according to their probabilities. Their experimental 

results show that KEA can on average match between one and two of the five keyphrases chosen 

by the author of the experimented documents.  

 

Conceptually meaningful groups of artifacts or elements in an artifact that share common 

characteristics (e.g. inheritance relationships among classes in source code, hierarchical 

relationships among sections in documents) play an important role in analyzing and describing a 

system (Tan et al., 2005). In IR-based traceability recovery techniques, clustering can organize 

similar artifacts in a system into groups, and then re-weight the similarity of links that belong to 

the same group, such as the logical clustering of artifact strategy in Cleland-Huang et al. (2005) 

and the code clustering enhancement in Wang et al. (2009). The most common approach to 

clustering is to minimize the sums of the squares of the distances between points in a given data 

set and the centers, or means, of clusters (Gupta and Grossman, 2004). The K-means algorithm is a 

simple and popular heuristic solution to the clustering problem (MacQueen, 1967; Tan et al., 2005). 

This algorithm is composed of four steps: initialization, assignment, update, and re-computation 

(MacQueen, 1967; Tan et al., 2005). (1) Initialization is to select K initial centroids, one for each 

cluster. These centroids should be placed in a cunning way because different locations cause 

different results; place them as far away as possible from each other. (2) The next step, assignment, 

is to assign each point belonging to a given data set to the closest centroid. Each collection of 

points assigned to a centroid is a cluster. (3) The update step is then implemented. The centroid of 

each cluster is updated based on the points assigned to the cluster, as a result of which K new 

centroids are calculated. (4) The final step, re-computation, repeats the assignment and update 

steps until the K centroids remain the same. After K new centroids are re-calculated, a new binding 

has to be done between points in the same data set and the nearest new centroid. A loop of steps 2 

and 3 has been generated. The loop terminates when there are no more changes made to the K 

centroids. 
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2.4.4 Requirements for Successful Traceability Recovery Techniques 

From the above detailed review of traceability recovery techniques to date, we have identified six 

key challenges in developing a successful traceability recovery technique: 

1) Aim for target end users who want to get to know the target system. Do not impose 

requirements that users must have some understanding of the target system.  

Semi-automatic traceability recovery techniques (discussed above) require users to have some 

knowledge of the traced system. It is difficult for users who are unfamiliar with the traced 

system to use semi-automatic recovery techniques to retrieve links in the traced system. The 

Grand Challenges in Traceability (Cleland-Huang et al., 2006) defines that a successful 

traceability recovery technique needs near zero user effort when creating links. 

2) Support the ability to automatically capture traceability links between artifacts. Do not 

require human intervention during the traceability link recovery process.  

Manual traceability link establishment puts a huge burden on users. Traceability recovery 

techniques that need human intervention require users to have some understandings of the 

traced system in order to implement them successfully, such as semi-automatic recovery 

techniques. This can cause difficulties for users who are new to the traced system to retrieve 

links using such techniques. The Grand Challenges in Traceability (Cleland-Huang et al., 

2006) specifies the dream process for traceability creation that is completely automated. 

3) Support the ability to rank the retrieved links to allow end users to select the best set of 

links.  

Retrieved links that are ranked in descending order based on their similarity scores can assist 

users in effectively and efficiently finding the most relevant links (Singhal, 2001).  

4) Retrieve as many correct links as possible and as few incorrect links as possible. Aim to 

support both high precision and high recall at all cut points.  

The dream process defined in the Grand Challenges in Traceability (Cleland-Huang et al., 

2006) automatically retrieves links with 100% precision and recall. However, it is impossible 

for automatic traceability recovery techniques (that have evolved to date) to recover all 
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correct links without capturing incorrect links in practice. Moreover, the quality of links 

retrieved by IR-based recovery techniques depends heavily on a cut point. In general, the 

lower the cut point, the lower precision and the higher recall. Therefore, it is still a major 

challenge for researchers in the software traceability community to develop a traceability 

recovery technique that can achieve reasonably high precision and recall (Oliveto et al., 

2007). 

5) Minimize or mitigate the issue of dependency on cut points. This narrows the gap among 

the precision and recall results generated at different cut points.  

Most automated recovery techniques to date have employed IR models to create links. The 

main limitation for IR models is the reliance on a cut point (Antoniol et al., 2002; 

Cleland-Huang et al., 2005; Lucia et al., 2007; Marcus and Maletic, 2003; Wang et al., 2009). 

At low cut points, low precision and high recall are obtained. At high cut points, high 

precision but low recall are achieved. Many supporting strategies (discussed above) have 

been developed to ameliorate the limitation of IR models. However, no approaches to date 

can largely increase precision at low cut points and significantly increase recall at high cut 

points to reduce the gap among them at different cut points (Antoniol et al., 2002; 

Cleland-Huang et al., 2005; Marcus and Maletic, 2003; Settimi et al., 2004; Wang et al., 

2009).  

6) Provide support for multi-format systems and any kinds of artifacts produced during the 

software development life cycle.  

Most recovery techniques to date have supported retrieval of links in multi-format systems. 

However, no recovery approaches have yet been able to create links between any two artifacts 

produced during the software development life cycle. The Grand Challenges in Traceability 

(Cleland-Huang et al., 2006) specifies the dream process for traceability links anything within 

the traced system without a performance hit. 
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2.5 Traceability Link Visualization 

There are no standard approaches to store or represent traceability links in a system. Software 

engineers traditionally represent traceability links in tabular formats using a spreadsheet, matrix, 

cross-references, or database. Although these traditional approaches are simple and easy to 

understand, they are unsuitable for the representation of links in big systems because they become 

unreadable when the number of artifacts in a system becomes large (Voytek and Nunez, 2011). 

More recently, research has focused on displaying links in a graph or tree due to the convenience 

and the ease of browsing and maintaining links. These methods are discussed in the following 

three sections.  

 

Table 2.3 compares in detail some representative traceability visualization systems. They are 

compared in terms of eleven aspects: IDE support, semi-automatic or automatic link recovery, 

visualization technique, hierarchical structure of the system, overall overview of traces, 

details-on-demand, link edition, navigation, search, filter, and other support functions.  

1. IDE support: Has the traceability visualization system been integrated within an 

Integrated Development Environment (IDE) (e.g. Eclipse or Visual Studio) or other 

software management tools? For example, if a traceability visualization system is 

embedded within Eclipse, then users can use the functionality provided not only within 

Eclipse but also the visualization system as a stand-alone tool.  

2. Semi-/automatic link recovery: Can links between artifacts be generated by the 

traceability visualization system itself i.e. whether the visualization system is integrated 

with a traceability recovery technique?  

3. Visualization technique: the technique used to display the links.  

4. Hierarchical structure of the system: Can the visualization technique illustrate the 

hierarchical structure of the traced system?  

5. Overall overview of traces: Can the visualization technique provide a global overview of 

links in the traced system? The overview of traces provides users with information about 
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the distribution of traces in the system and whether or not an artifact has links. Taking 

traceability links between classes and requirements as our example, the overview of traces 

provides information about how many classes in a package have related requirements, 

how many classes in the package have no links, which class in the package has no links, 

and which requirements have not been implemented (i.e. have no related classes) etc. 

Users don’t need to check one by one to see which artifacts have no links. 

6. Details-on-demand: Can detailed information be shown to users when needed? When an 

artifact is selected, its detailed link information is displayed, or its content is opened. 

7. Link edition: Does the tool allow users to create new links and modify or delete existing 

links, or to allow users to modify existing links’ similarity values? 

8. Navigation: Does the tool allow users to navigate among predefined system artifacts to 

locate a specific item in the visualization view? 

9. Search: Does the tool allow users to search a specific item by using key words or other 

searching methods? 

10. Filter: Does the tool allow users to filter out uninteresting items, prune traces, or display 

links based on specific categories? 

11. Other support functions: other functions the visualization system provides to help users 

to browse and maintain traceability links. 
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2.5.1 Traditional Traceability Visualization Techniques 

Matrix and cross-reference techniques are very common, traditional methods of representing 

traceability links. A traceability matrix (see Figure 2.1a) is a two-dimensional grid that displays 

artifacts in rows and columns and represents traceability links as marks between row artifacts and 

column artifacts. Such a visualization is easy to understand and provides a quick overview of 

relations between two artifacts if the set of artifacts is small (van Ravensteijn, 2011). However, 

such a matrix misses the inherent hierarchical structure in artifacts and becomes unreadable when 

the set of artifacts becomes large (Voytek and Nunez, 2011). The cross-reference pattern (see 

Figure 2.1b) lists each artifact using natural language and gives a list of related links for each 

artifact (van Ravensteijn, 2011). It is easy to understand but cannot provide the overall structure of 

traces. It is difficult to identify individual traceability links as they are lost in this table structure. 

The approach, therefore, does not scale to large numbers of classes and documents. 

 

  
(a) Traceability matrix (b) Cross-reference 

FIGURE 2.1 TRADITIONAL TRACEABILITY VISUALIZATION TECHNIQUES (WINKLER AND PILGRIM, 
2010) 

 

The Trace/Analyzer tool developed by Egyed (2006) uses a traceability matrix to visualize the 

trace links among models, code, and test scenarios. This tool reasons  about   the  model  elements’  

ownership of the source code and infers trace dependencies among the model elements based on 

the ownership information (Egyed, 2006). The matrix depicts artifacts in rows and columns and 

uses colours or symbols to indicate whether two artifacts are related or not. Links between artifacts 

are generated based on the models’ ownership of source code, which is refined from the 

hypotheses on how the various models map to source code that are provided by users.  
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Figure 2.2a shows a matrix between models and code. It shows the models in rows and the code 

elements in columns.  It  uses  “I”  to  represent  that a model owns  a  code  element,  “X”  to  represent  

that a model does  not  own  a  code  element,  or  “i”   to   represent  a  unique  code  and  “.”   for   shared  

code/utility code if a model is not known to own anything but might potentially own a code 

element as unique code or a code element as shared code/utility code (Egyed, 2006). Within the 

matrix, users can select any cell by clicking on it, and details of the corresponding model and code 

element are then displayed underneath. Users also can use a popup menu to add or remove the 

selected model to or from the excluded list of the selected code element. 

 

 

FIGURE 2.2 TRACEABILITY MATRIX IN TRACE/ANALYZER (EGYED, 2006) 

 

Figure 2.2b shows a model-to-model matrix. This matrix depicts the same artifacts in rows and 

columns and uses colours to indicate whether two artifacts have a trace link (yellow), do not have 

a trace link (black), potentially have a trace link (orange), or are unknown to have a trace link 

(gray) (Egyed, 2006). Users can select any cell to show details about the selected model elements 

and to change the degree of trustworthiness. Users also can choose only to visualize overlaps that 

are known to exist (Display Trace Yes/No), to display potential overlaps (Display Trace 

 

a 

b 
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Yes/Maybe/No), or to display undefined overlaps (Display Trace Yes/Maybe/Undefined/No) 

(Egyed, 2006). Although the matrix is an effective and efficient way to represent links, interpreting 

links is difficult and time-consuming. Moreover, it is not suitable for visualizing links in a large set 

of artifacts. 

 

To sum up, traditional traceability visualization techniques are simple and easy to understand. 

However, they do not scale to a large set of artifacts in a big system. They cannot provide an 

overview of the inherent hierarchical structure in the traced system. Although they can provide an 

overview of trace links, the set of artifacts must be small. Furthermore, they cannot support users 

to maintain or interpret links easily and conveniently. The actual task of creating, maintaining, and 

utilizing a trace matrix is arduous and error-prone, and many organizations fail to implement 

consistent and adequate traceability processes (Cleland-Huang and Habrat, 2007).  

 

2.5.2 Graph-based Traceability Visualization Techniques 

Graph-based visualization techniques represent artifacts as nodes and traceability links between 

artifacts as edges to form a graph or tree. Graph-based visualizations can show the overall 

overview of relationships between artifacts and can be used to easily browse links.  

 

Tree visualizations 

ADAMS (Lucia et al., 2004; Lucia et al., 2010) is an Eclipse plug-in and integrates the ADAMS 

Re-Trace recovery tool (Lucia et al., 2008) to retrieve links between artifacts using the LSI IR 

model. It supports specifying links between pairs of artifacts. Users first select the source and the 

target artifacts among pre-defined project artifacts (see Figure 2.3). Filters on the artifact type 

and/or on the name of the artifact can be specified to filter out uninteresting links. Then a list of 

candidate links calculating all the combinations of source and target artifacts is shown. Thus, users 

can select the links to trace specifying for each link and identify the dependence type of the link. 

Traceability links are organized in a traceability graph where nodes are represented by the artifacts 

and edges are the links. After users select a source artifact from the artifact list and define the 

dependence types they want to visualise in the graph, the traceability graph is built starting from 

the source artifact and finding all the dependencies of a specific type that involve the source 
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artifact either as source or target artifact (see Figure 2.4). 

 

 
FIGURE 2.3 TRACEABILITY LINK DEFINITION FORM IN ADAMS (ADAMS 2009) 

 

FIGURE 2.4 TRACEABILITY GRAPH VISUALIZATION IN ADAMS (ADAMS 2009) 

 

Within the graph, users can identify traceability paths, i.e. sets of artefacts connected by 

traceability links. A path indicates the dependency of artifacts in the path; an artifact along a 

traceability path could be affected by each artifact appearing in the part of the path preceding it as 

well as it could affect each artifact appearing in the part of the path following it (Lucia et al., 2010). 
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In order to provide enhanced visual information about the artifacts, tool tips are used to show 

immediate artifact information while the user positions the mouse over a node. Moreover, the 

artifact used as query has been shown in red to point out its position within the traceability graph. 

Each different type of link for compositions and dependencies has been also associated with a 

specific notation. An exclamation mark and/or a lock mark an artifact node if this artifact is out of 

synchronization and/or its content is locked. In addition, the contextual menu shown on a right 

click of the mouse over an artifact of the graph has been customized to directly access to some 

artifact information (see Figure 2.4). This traceability graph performs very well in displaying all 

links of a selected source artifact. However, it fails to support the display of multiple artifacts’  

links. 

 

 
FIGURE 2.5 GUI PROTOTYPE SHOWING LINKS IN A HIERARCHICAL GRAPHICAL STRUCTURE 

(CLELAND-HUANG AND HABRAT, 2007) 

 

Cleland-Huang and Habrat (2007) proposed a visual prototype that graphically depicts the 

dispersion and probabilities of the links generated by the PM IR model in a hierarchical graphical 

structure (see Figure 2.5). In this graph, leaf nodes are represented by requirements while titles and 

other hierarchical information are represented as internal nodes. Nodes can be contracted and 
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expanded according to their depth in the tree. Node size is used to depict the distance from the root, 

meaning that requirements headings are portrayed by larger nodes than lower level requirements. 

Degrees of shading represent the likelihood of each node being linked to the query, i.e. darker 

nodes are more likely to be linked than paler ones, and unshaded nodes are considered very 

unlikely to represent true links. Parts of graph with no candidate links are faded out. When users 

click on a node that is shaded red, they can view related textual information and the level of its 

confidence score. Users can then use this view to accept or reject links. Rejected links are coloured 

white  and  marked  with  “x”,  and  accepted  links  are  shaded  green. This visualization graph provides 

a birds-eye-view of candidate links and their distribution across the set of traceable artifacts, and 

allows  the  user  to  explore  groups  of  candidate  links  that  naturally  occur  together  in  the  document’s  

hierarchy (Cleland-Huang and Habrat, 2007). Unfortunately, this visualization is hard to 

understand due to the lack of description of the nodes. Moreover, it becomes very large as the data 

set gets bigger. In addition, it uses the display space inefficiently.  

 

ENVISION, developed by Zhou et al. (2008), adopts a hyperbolic tree view with the enhancement 

of a “focus+context”  approach to facilitate software traceability understanding (see Figure 2.6). It 

is an Eclipse-based prototype and automatically extracts traceability links between source code and 

UML design or JUnit tests. These extracted links are represented in the hyperbolic tree, in which 

nodes are used to represent artifacts and edges are links. Nodes are coloured based on their status, 

and edges are labeled with the information contained by them. Once a node is selected in the tree 

view, its properties are shown in the property view. Links in the tree view can be manipulated, 

such as adding a new link, deleting out-of-date links, and modifying the properties of a link. There 

are two ways to create a new link. The first is to allow users to directly build a link between the 

source and target artifacts if the two artifacts are shown on the screen. The newly-created link is 

highlighted and users can fill in a more detailed description for it. The second way is to locate the 

source artifact and make it appear on the screen, then use the search function to find the target 

artifact, and finally to drag and drop the target artifact in the search result view to the source 

artifact in the tree view. The search function can help users search and locate a specific node or 

edge by their name and type. The filter function can filter out uninterested nodes or edges from the 

tree view by their name and type. This prototype also provides a historical navigation view to 

capture and record the user’s navigation path in the tree view. The history view assists the user to 
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memorize the navigation process and quickly go back or forward by clicking on nodes in the path. 

The results of their empirical study show that the hyperbolic tree view allows users to have a 

global view of links as well as being able to dive deep into an interesting traceability path. The 

historical navigation makes users not becoming prone to getting lost. Moreover, the seamless 

integration of ENVISION with Eclipse IDE allows users to better understand the details of 

traceability links. However, the hyperbolic tree view is not space-efficient. It becomes too big to be 

shown in the screen as a whole if the number of artifacts becomes large. 

 

 
FIGURE 2.6 ENVISION USER INTERFACE (ZHOU ET AL., 2008) 

 

Graph visualizations 

TBreq (TBreq, 2012), integrated with the LDRA tool suite (LDRA, 2012), supports the tracing of 

requirements through the entire software development life cycle. The LDRA tool suite provides a 

comprehensive range of both static and dynamic software analysis, in addition to unit testing and 

requirements traceability (LDRA, 2012). TBreq provides end-to-end graphical traceability from 

requirements to design, code, and test in a single view. Users can see a complete picture of 



52 

 

traceability from requirements to other artifacts. TBreq captures requirements from any 

management tool or source, creates test specifications and executable test cases directly from 

requirements, and then link requirements to design, code, and test cases. It lists artifacts 

horizontally and draws linear edges between related items of artifacts (see Figure 2.7). It can show 

links between two non-consecutive artifacts by drawing edges under the artifacts. Once an item of 

an artifact is selected, all its related items are highlighted, and its attributes and contents are shown 

underneath. Links between artifacts can be modified. Although this graphical traceability view 

works well for small systems, systems with medium to large numbers of artifacts quickly suffer 

from severe visual clutter (van Ravensteijn, 2011). This view cannot provide the hierarchical 

structure of the traced system, although it shows the inherent hierarchy of each artifact. 

 

 

 
FIGURE 2.7 TBREQ TRACEABILITY LINK VISUALIZATION (LDRA, 2012) 

 

 

Merten et al. (2011) developed the sunburst and netmap visualizations to display traceability links 

between requirements knowledge elements. The implementation of the visualizations is developed 

in conjunction with a requirement plugin for the Redmine project management tool (Lang, 2011). 

Traceability links between requirements are generated by the requirement plugin.  
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(a) Tasks (unfolded) (b) Subtasks (folded) 

FIGURE 2.8 THE SUNBURST VISUALIZATION (MERTEN ET AL., 2011) 

 
FIGURE 2.9 THE NETMAP VISUALIZATION (MERTEN ET AL., 2011) 

 

The sunburst visualizes the hierarchical structure of the project under trace (see Figure 2.8). Nodes 

as requirement elements are arranged in a radial layout and are displayed on adjacent rings 

representing the tree structure. Requirement elements are coloured differently (see Figure 2.8a). In 

order to mitigate readability issue of nodes on the outer circles, the sunburst visualization supports 

folding (see Figure 2.8b) and unfolding (see Figure 2.8a) of nodes. Folded branches that are not of 
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current interest free space for other nodes, which are enlarged. If a certain branch in the sunburst 

needs to be further researched for links between requirement elements, a netmap helps the user to 

gain more insights. The netmap aims to represent links between requirements. The nodes in a 

netmap are in a circle and are segments of exactly one ring in the sunburst. Traceability links are 

drawn by using linear edges in the inner circle, lines with arrows for directed links and 

hyper/curved lines without arrows as undirected links. Links are coloured differently based on 

their types; conflict links are coloured red, dependency links orange, and parent/child links blue. 

When the mouse is over a node, its full name or description is shown. The filter function is 

provided to filter for requirement element types as well as traceability link types to help users 

focus on certain specification parts. Although the two visualization techniques can visualize the 

overall hierarchical structure and can easily browse links, the graph can become very large, leading 

to visual clutter when dealing with a large number of traceability links. 

 

Edge aggregation 

The issue of visual clutter can be mitigated by applying edge aggregation, which is to group edges 

together. The hierarchical edge bundling technique (Holten, 2006) can group edges based on 

visually bundling adjacent edges (i.e. non-hierarchical edges) together. EXTRAVIS (Cornelissen et 

al., 2007) employs the hierarchical edge bundling technique (Holten, 2006) to group edges based 

on the structure of a hierarchy to reduce visual clutter. This tool includes two views: a circular 

bundle view and a massive sequence view (see Figure 2.10). Using the circular bundle view shows 

a detailed visualization of the structural entities of the system under trace and their 

interrelationships. The hierarchies are shown by using an icicle plot based on the mirrored layout. 

Edges that are represented relations between nodes are bundled together. The hierarchical entities 

can be collapsed to enable users to focus on specific parts of the system. When a node is selected, 

its related nodes and their edges are highlighted. The massive sequence view provides an overview 

of (part of) the full trace links set in order to support users in identifying parts of the interested 

traces. Overall, the circular bundle view is aesthetically pleasing and helps users quickly gain 

insight in the adjacency relations in hierarchically organized systems (Holten, 2006). However, 

when considering a large number of traces, it becomes difficult to discern the various colours and 

to prevent bundles overlapping (Holten, 2006). 
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FIGURE 2.10 THE USER INTERFACE OF EXTRAVIS (CORNELISSEN ET AL., 2007) 

 

TraceVis, developed by van Ravensteijn (2011), visualizes a dynamic list of hierarchies and 

adjacency relations that are provided manually (see Figure 2.11). It uses icicle plots and 

hierarchical edge bundling (Holten, 2006) techniques to support the hierarchical structure and to 

reduce visual clutter. Icicle plots are used to represent hierarchies vertically to provide a global 

overview of the connectivity between items and convey the structure of the hierarchies. An icicle 

plot is a space-filling solution and provides a fairly compact visualization of hierarchies (van 

Ravensteijn, 2011). TraceVis allows the connection of adjacency relations to a previous and a next 

hierarchy by horizontally mirroring the icicle plot. Adjacency relations are represented by drawing 

edges between related items. Edges are displayed using splines and are grouped using hierarchical 

edge bundling. When an item is selected, its related items and their edges are highlighted and 

detailed information about itself and/or its links are shown in the detailed information view. In 

order to reduce visual clutter and make the text in the nodes more readable, items of less interest 

and their connected relations can be hidden. Overall, TraceVis supports an overview as well as a 
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detailed insight into inter-related, hierarchically organized data. However, it uses space 

inefficiently and can result in visual clutter if the dataset is large or lateral relations visualized (van 

Ravensteijn, 2011).  

 

 

FIGURE 2.11 THE VISUALIZATION OF TRACEVIS (VAN RAVENSTEIJN, 2011) 

 

3D approach 

UNITI (Pilgrim et al., 2008) is an Eclipse plug-in for transformation chain modeling and execution 

with the support of traceability between UML model elements. Traces are generated by automatic 

model transformations and are represented by a 3D approach (see Figure 2.12). In the 3D approach, 

UML models are projected on layered planes. Traces between different levels of abstraction are 

visualized by using edges between planes. Traces are displayed in different colors depending on 

the level of the connecting elements; links connecting top-level elements (e.g. classes or 

associations) are coloured with red while green is for links connecting nested elements (e.g. 

operations). Uninteresting traces can be filtered out to make the traceability visualization clearer. 

Although presenting more content at once, giving an overview of traces, and grouping related 

information together, the 3D approach adds more complexity to the graph, and still leads to visual 

clutter when the data set becomes large. 
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FIGURE 2.12 THE VISUALIZATION USER INTERFACE OF UNITI (PILGRIM ET AL., 2008) 

 

To sum up, tree visualizations use display space inefficiently. They can grow quickly to an 

enormous size when dealing with large numbers of artifacts and traceability links. Graph 

visualizations can quickly lead to visual clutter when the traced system becomes large. Grouping 

links together using hierarchical edge bundling can ameliorate the visual clutter issue, but large 

systems may still have issues with bundle overlapping. Although showing an overview of traces, 

the 3D approach suffers from visual clutter when dealing with large numbers of artifacts. 

 

2.5.3 Other Traceability Visualization Techniques 

In addition to traditional approaches and the various graph representations similar to those 

reviewed above, there are several other approaches that have been used to visualize traceability 

links. Poirot (Cleland-Huang and Habrat, 2007) displays trace results in a textual format (see 

Figure 2.13). Poirot is a web-based traceability tool and adopts the PM IR model to retrieve links 

between artifacts. Retrieved links are clustered by feature to group links together in a meaningful 

way. Poirot uses confidence levels, user feedback checkboxes, and tabs separating likely and 
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unlikely links to assist the analyst in evaluating candidate links. The confidence score that 

indicates the likelihood of a link is illustrated under the column labelled confidence level. Link 

scores are categorized into 6 different levels by displaying from 0 to 5 bars representing the 

likelihood that the link is a correct one. Users can use the checkboxes to verify the correctness of a 

link and can also search a specific artifact using the ID of the artifact. However, it cannot visualize 

the overall structure of the traced system nor provide an overall view of traces.  

 

 

FIGURE 2.13 SHOWING LINKS IN CLUSTERS IN POIROT (CLELAND-HUANG AND HABRAT, 2007) 

 

TraceViz (Marcus et al., 2005) employs a map consisting of coloured and labeled squares to 

display traceability links for a specific source or target artifact (see Figure 2.14). TraceViz is 

seamlessly integrated into the Eclipse IDE and uses a standard Eclipse view to host its user 

interface. It uses the LSI IR technique to recover traceability links between source code and 

documents. TraceViz is composed of three parts. First, the elements area on the left contains the 

source and target browsers. Second, the link area in the middle displays the links for a specific 

source or target. Links in TraceViz are grouped into categories and are represented by coloured 

squares. Third, the information area on the right shows the link properties and browsing history.  
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FIGURE 2.14 THE TRACEVIZ USER INTERFACE (MARCUS ET AL., 2005) 

 

Users can launch TraceViz while editing any file in the Eclipse project and this edited document 

automatically becomes the source of the traceability links. Users select a file as the source or target 

of traceability links in the elements area. Then all links that have this file as their source or target 

artifact are represented as small squares in the link area. These links are grouped in larger squares 

and coloured to denote whether the link is a normal, lost, warning, or false positive link. Once a 

link in the link area is selected, all attributes and browsing history of the selected link and the time 

will be displayed in the information area. Users can add a new link and delete or modify existing 

links. Once a new link is created, the elements and attributes of the link need to be inserted. Users 

also can search a specific item using query-based artifact/link search or keyword search. Moreover, 

users can filter displayed links based on information about link category or link update time. 

Overall, TraceViz allows users to clearly visualize all links of a selected source artifact or a chosen 

target artifact. Unfortunately, it is unable to display links for multiple artifacts at the same time. 
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FIGURE 2.15 THE USER INTERFACE OF LEANART (GRECHANIK ET AL., 2007) 

 

LeanArt (Grechanik et al., 2007) utilizes an intuitive point-and-click graphical interface to enable 

users to navigate to program entities linked to elements of use case diagrams (UCDs) by selecting 

these elements, and to navigate to elements of UCDs by selecting program entities to which these 

elements are linked (see Figure 2.15). It is an Eclipse plug-in and recovers links between UCDs 

and source code using a machine learning technique.  

 

UCDs are shown in a tab called Use Cases in Eclipse. Users can navigate from elements of some 

UCD to program entities by selecting an element of the UCD and clicking on it. The selected 

element changes its colour and a frame is drawn around it. Then to what program entities this 

element is linked are determined based on the information of recovered links. Finally, LeanArt 

loads all source code that contains program entities linked to selected elements of the UCD, and 

highlights program entities with the selected colour. Conversely, users can navigate from program 

entities to elements of UCDs by right-clicking on the program entity that is highlighted. A context 

menu is presented with a selection of menu items, one of which shows the traceability links. Once 

users select this menu item, a list of relevant UCDs is shown, from which users select a subset of 
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the UCDs. Each selected UCD is loaded into a separate use case tab, and elements of these UCDs 

linked to highlighted program entity are coloured. The characteristic visualization of links in 

LeanArt is to select a source and then display targets linked to this source. It also fails to represent 

all links at the same time. 

 

To sum up, non-graphic link visualizations fail to provide a suitable hierarchical structure of the 

traced system and also fail to provide a suitable overview of trace links.  

 

2.5.4 Hierarchical Structural Visualization Techniques 

The  most  widespread  technique  to  show  a  system’s  structure  is  the  node-link based layout, which 

represents parent-child relations as lines drawn between items that are nodes in the tree (Graham 

and Kennedy, 2010). The most common layout is the hierarchical tree (see Figure 2.16), which 

generally is drawn from top to bottom or from left to right. A hierarchical tree can convey the 

hierarchical nature of a structure in a graphical form by positioning children nodes below or after 

their common ancestor (Herman et al., 2000). This layout is very effective for small trees, but falls 

short when a large number of items are to be displayed simultaneously. It also is not space-efficient. 

This issue can be remedied to enable the hierarchical tree to collapse branches that are not 

interested and expand them when needed. The ability to expand and collapse can make the use of 

the display space more efficient.   

 

Space filling approaches try to overcome space-inefficiency issues by using enclosure to represent 

structured data. The treemap layout (see Figure 2.17) is one of the most common space filling 

approaches. It indicates parent-child relations by placing child node representations within the 

boundaries of their parent node (Graham and Kennedy, 2010), which make it an ideal approach for 

displaying a large number of items (Shneiderman, 1992). Each branch of the hierarchical tree is 

given a rectangle, which is partitioned into smaller rectangles representing sub-branches. The size 

of each rectangle may represent the proportional significance of a given item (Herman et al., 2000). 

Each rectangle may be coloured to show a separate dimension of the data. The treemap layout can 

reflect the structure of the hierarchical tree as a result of its construction. However, it is difficult to 

perceive hierarchical structure using this layout (Herman et al., 2000). 
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FIGURE 2.16 HIERARCHICAL TREE VISUALIZATION (HOLTEN, 2006) 

 

FIGURE 2.17 TREEMAP LAYOUT (HOLTEN, 2006) 

 

2.5.5 Requirements for Traceability Visualization Systems 

From the above discussion on existing traceability visualization systems, nine main technical 

challenges in developing a successful traceability visualization system have been identified: 

1) Need to seamlessly integrate the link visualization support within an IDE (e.g. Eclipse) 

or other software management tools (Marcus et al., 2005; Zhou et al., 2008).  

This kind of integration allows users to utilize functionality not only in the IDE or the 

management tool but also the link visualization system. For example, if the link visualization 



63 

 

system is integrated with Eclipse, users can change a piece of code in a class and 

simultaneously check what artifacts are impacted by this change through browsing artifacts 

related to this class. Integrating the link visualization system with an IDE or other systems 

can support a common look and feel for the artifacts and links between them (Marcus et al., 

2005). 

2) Ability to integrate with traceability recovery tools to automatically capture traceability 

links between artifacts in the traced system (Marcus et al., 2005; Zhou et al., 2008). 

If links between artifacts in a traced system are created automatically, these retrieved links are 

visualized. 

3) Provide efficient and effective visualization techniques to represent retrieved links. 

Technical challenges for successful visualization techniques are as follows.  

 Use the display space efficiently when representing a large number of artifacts in 

the traced system.  

The link visualization techniques (discussed above) are unable to use display space 

efficiently; they can grow quickly to an enormous size when dealing with large numbers 

of artifacts and traceability links. This issue can reduce the readability of the graph that 

use to display artifacts in the traced system (Kienle and Muller, 2007). 

 Remedy the visual clutter issue when visualizing links in the system. 

Current graph link visualization techniques suffer from the visual clutter issue when 

displaying a large number of artifacts hence a large number of links between them. This 

issue can impede the ability to efficiently browse, analyze, and maintain traceability 

links between artifacts (Holten, 2006; van Ravensteijn, 2011).  

 Show the whole hierarchical structure of the system.  

Displaying the hierarchical structure of a system can assist users in understanding, 

managing, and maintaining the system (Holten, 2006; van Ravensteijn, 2011). 

 Show the overall overview of traces in the system (van Ravensteijn, 2011; Zhou et al., 

2008).  
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An overview of traces provides users with information about the distribution of traces in 

the system and whether or not an artifact has links. It provides users with a fast and 

efficient way to know which artifacts have links. 

 Illustrate detailed dependency information for a specific artifact.  

When an artifact is selected, its detailed dependency information is displayed. This 

information can assist users in comprehending and maintaining each artifact (van 

Ravensteijn, 2011; Zhou et al., 2008). 

4) Provide detailed information about each link or artifact to assist users to understand 

them (Marcus et al., 2005; Merten et al., 2011; van Ravensteijn, 2011; Zhou et al., 2008).  

Additional information concerning a selected artifact (e.g. the name of the artifact, its content, 

or its related artifacts) can assist users in comprehending the artifact and its related artifacts. 

5) Allow end users to add new links, delete or modify existing links and their similarity 

values, and edit the properties of links and their connected artifacts (Marcus et al., 2005; 

Zhou et al., 2008).  

A traceability recovery technique can return incorrect links to users and fail to capture some 

correct links. Support for link editing can allow users to delete incorrect links and add a 

correct link missed by the recovery technique. 

6) Allow end users to browse through artifacts to locate a specific item in the traceability 

visualization view (Marcus et al., 2005; Zhou et al., 2008).  

Navigation support can assist users in locating a particular item easily and efficiently (Marcus 

et al., 2005; Zhou et al., 2008). 

7) Allow end users to search a specific link or artifact through keywords or query (Marcus 

et al., 2005; Zhou et al., 2008).  

Kienle and Muller (2007) indicate that the lack of the searching support in software 

visualization definitely hinders users from finding specific items. 

8) Filter out some uninterested links or artifacts (Marcus et al., 2005; Zhou et al., 2008).  

Filtering information can allow users to reduce the amount of visualized data and to limit the 
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analysis (Kienle and Muller, 2007). 

9) Capture and record browsing history (Marcus et al., 2005; Zhou et al., 2008).  

A browsing history that contains all previously performed steps of graph operations can allow 

users to revert to previous states (Kienle and Muller, 2007).  

 

2.6 Summary 

Traceability helps software engineers to effectively and efficiently develop, manage, update, and 

reuse a software system throughout the software development life cycle. According to the 

literature discussed above, there are two major challenges that need to be addressed in designing a 

successful traceability system: (1) correctly recovering traceability links between software artifacts 

and (2) visualizing these links effectively and efficiently. None of the traceability recovery 

techniques developed so far is able to produce sufficiently consistent and high enough quality 

results   to  meet  developers’  needs.  Semi-automatic techniques are unable to generate traceability 

links automatically without human intervention. Although automatic techniques improve this issue, 

their limitations impede them from capturing all potential correct links and having few incorrect 

links. None of the traceability visualization techniques developed so far can visualize an 

overwhelmingly large number of traceability links effectively and efficiently.  

 

The research presented here concentrates on addressing the two major challenges and in doing so 

aims to design a system that can produce high quality and detailed trace links between artifacts 

(discussed in Chapter 3), and can visualize these links in a natural and intuitive way (discussed in 

Chapter 6) to meet the requirements we have explored. In Chapter 4, we also discuss the challenge 

of creating a robust and effective traceability benchmark to facilitate the evaluation and 

comparison of traceability recovery techniques. 
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Chapter 3 -- Traceability Link Recovery 

The first challenge we encounter in software traceability is to how to go about automatically 

retrieving relationships between artifacts inside a system with both high precision and high recall. 

This chapter describes a new combination traceability link recovery technique that we have 

invented, called IRETrace, to more effectively address this challenge. 

 

3.1 Introduction 

Source code alone is not sufficient to capture all information about a software system. Software 

requirements, architectural decisions, detailed design, tutorials and user documentation and various 

types of technical system documentation (e.g. deployment configuration) are important artifacts 

produced while engineering software systems. Tracing and maintaining interrelationships between 

these various forms of software documentation and source code enables software engineers to 

understand systems better, to undertake improved maintenance of systems, and ultimately to 

produce higher quality systems (Antoniol et al., 2002; Antoniol, Casazza et al., 2000; Seacord et 

al., 2003). However, this relies on retrieving high quality candidate links between elements in one 

artifact (e.g. code constructs) and elements in another (e.g. requirements and detailed design 

documentation). A set of high quality candidate links represents a link set between these artifacts 

that contains as many true/correct links as possible and as few fault/incorrect links as possible. 

Moreover, a high quality candidate link set should connect elements of different artifacts at a 

fine-grained level of detail e.g. part of a design document description and its related source code 

elements. However, it is very challenging to automatically extract high quality candidate links 

among the wide variety of artifacts created during the software development life cycle (Antoniol et 

al., 2002; Gotel et al., 1994; MacQueen, 1967; Wang et al., 2009). 
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Many traceability recovery techniques have been invented to retrieve traceability links among 

artifacts. Some need human intervention while others can automatically generate traceability links. 

Unfortunately, no recovery approaches have the capability of recovering all possible links among 

artifacts automatically and accurately. This is due both to the inherent imprecision when 

expressing things in natural language and inherent information loss or addition when moving 

between software artifacts at different levels of abstraction. Some potentially useful and important 

links are missed by existing techniques. Similarly, some incorrect or unhelpful links are extracted 

and these may confuse developers. However, different link retrieval approaches have different 

strengths and weaknesses. To try to improve the performance of automated traceability link 

retrieval, we have developed an approach called Information Retrieval Enhancement Traceability 

(IRETrace) that combines Information Retrieval (IR) models with three supporting techniques: 

Regular Expression (RE), Key Phrases (KP), and Clustering. These particular techniques have 

quite different strengths and weaknesses and recover different sets of links due to their vastly 

different retrieval approaches. Our approach attempts to take advantage of the strengths of these 

techniques to automatically recover links between artifacts at both high precision and high recall.  

 

Our particular focus is on retrieving links between class entities and sections in documents written 

in natural language, e.g. tutorials, handbooks,   developer   or   user’s   guides,   API   documentation,  

architecture documentation, design rationale and emails. The objective of this research is to 

demonstrate that our new composite traceability link recovery approach can improve the automatic 

recovery of traceability links between these two sources of information with high precision and 

recall. We have conducted a detailed experiment (described in Chapter 5) with four case studies to 

evaluate the strengths and weaknesses of our approach. Analysis of these experimental results 

demonstrates that our approach improves the performance of IR, increases the precision of 

retrieved links, and recovers more true links than IR alone.  

 

In this chapter, we firstly provide the motivation for this approach. Next, we introduce our 

traceability link recovery approach -- IRETrace. We then discuss its overall design and describe 

each technique combined in the approach. Following that, the implementation of our approach is 

described. The evaluation results of our approach are presented in Chapter 5. 
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3.2 Motivation 

Consider manually retrieving relationships between artifacts of a software system. It is not hard 

but still time-consuming for engineers manually to find relationships between artifacts in a small 

system with up to 100 classes and several documents, especially for those who are expert in this 

system. However, it is an extremely arduous, time-consuming, tedious task to recover traceability 

links in a system with hundreds of classes and hundreds of documents. With the purpose of 

evaluating our traceability recovery approach, we manually created a traceability benchmark for a 

system called JDK1.5-SUBSET, which is discussed in Chapter 4. This comprised 294 classes and 

3 PDF documents with 182 sections. The most important part of the traceability benchmark is to 

establish an oracle/true traceability link set, which consists of true/correct links between classes 

and sections. We recruited 11 analysts who have at least six years of Java programming experience. 

They manually identified and verified true links between classes and sections. When building the 

oracle link set, each participant spent one hour to identify related sections of 50 classes on average. 

It would be an enormous workload to capture traceability links if the number of classes and 

documents was significantly larger and to discover relationships not only between classes and 

documents but also between documents and documents. In order to ease the manual workload in 

the recovery of traceability links in a system, various traceability link recovery techniques have 

been invented. 

 

In Chapter 2, we discussed techniques that have so far been developed to retrieve traceability links 

between artifacts of a software system. These techniques fall into two main groups: 

semi-automatic recovery and automatic recovery. Semi-automatic techniques are unable to 

generate traceability links automatically without human intervention. These include rule-based, 

scenario-driven, and value-based approaches. Rule-based approaches build traceability rules using 

the grammatical structures present in natural language sentences (Jirapanthong and Zisman, 2005; 

Jirapanthong and Zisman, 2009). A scenario-driven approach needs to create the hypothesized 

traces first (Egyed, 2003). A value-based approach requires the determination of the value of every 

artifact before starting the traceability link recovery process (Egyed et al., 2005). Semi-automatic 

techniques require engineers to have some knowledge of the system being traced. It is difficult to 

employ these techniques to retrieve traceability links between artifacts in a system for people who 
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are unfamiliar with the system. Automatic recovery techniques address this issue. 

 

Automatic recovery techniques can be further categorized as lightweight and heavyweight 

techniques. Lightweight techniques do not require pre-computation of the input and can be directly 

executed at run-time, such as Regular Expressions. Regular Expressions (Bacchelli et al., 2009; 

Bacchelli et al., 2010) miss links where class names are mentioned only implicitly in documents. 

Heavyweight techniques, by contrast, require pre-processing of their input. These techniques 

include Text Mining (TM) and Information Retrieval (IR) models. The TM technique only extracts 

from documents salient facts about pre-specified types of events, entities, or relationship (GATE 

Information Extraction, 2010; Weiss et al., 2005). Using IR models discussed in Chapter 2 (e.g. 

Probabilistic Model (PM), Vector Space Model (VSM), and Latent Semantic Indexing (LSI)) to 

retrieve traceability links has a significant limitation: the accuracy rate of link recovery heavily 

relies on a cut point; only links that have a similarity value greater than or equal to the cut point 

are recovered (Cleland-Huang et al., 2005; Lucia et al., 2007). In other words, retrieved links 

above the cut point are retained and links below are discarded. Using a low cut point retrieves a 

larger number of true/correct links than using a high cut point. However, more fault/incorrect links 

are captured at the same time. In other words, IR models gain low precision but high recall at low 

cut points, and high precision and low recall at high cut points. Moreover, the same cut point may 

or may not be best suited for different systems. 

 

In order to improve the performance of IR models, many strategies have been invented to 

ameliorate the limitations of IR models. For example, Cleland-Huang et al. (2005) proposed an 

approach to improve the performance of dynamic requirements traceability by incorporating three 

different strategies into PM, namely hierarchical modeling, logical clustering of artifacts, and 

semi-automated pruning of the probabilistic network. Their results indicate that the three strategies 

effectively improve trace retrieval performance. Hayes et al., (2003; 2006) used VSM but with a 

context-specific thesaurus that is established based on technical terms in requirements documents 

to recover links between requirements. This combination approach improves recall and sometimes 

precision. Wang et al., (2009) presented four enhanced strategies to improve LSI, namely, source 

code clustering, identifier classifying, similarity thesaurus, and hierarchical structure enhancement. 

This approach achieves higher precision than LSI and PM, but lower recall. Although various 
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strategies have been applied to enhance the performance of IR techniques, no approaches to date 

can substantially decrease incorrect links at low cut points and significantly increase true links at 

high cut points (Antoniol et al., 2002; Cleland-Huang et al., 2005; Marcus and Maletic, 2003; 

Settimi et al., 2004; Wang et al., 2009).  

 

Semi-automatic recovery techniques need human intervention during the traceability link 

extraction process. Although automatic techniques improve this issue, their limitations impede the 

capture of all potential true links and few incorrect links. To varying degrees, none of the 

traceability recovery techniques developed so far can produce sufficiently consistent and high 

enough quality results to meet developers’ needs (Antoniol et al., 2002; Bacchelli et al., 2010; 

Cleland-Huang et al., 2005; Egyed et al., 2005; Marcus and Maletic, 2003; Settimi et al., 2004; 

Wang et al., 2009). This leads us to the following three main requirements for a more 

comprehensive traceability link recovery technique aimed at target end users who want to get to 

know the traced system (The more detailed requirements are described in Chapter 2): 

 Ability to automatically capture traceability links between artifacts. 

 Ability to retrieve as many true links as possible and as few fault/incorrect links as 

possible; high precision and high recall at all cut points. 

 Ability to minimize/mitigate the issue of dependency on cut points; to narrow the gap 

between the precision and recall results generated at different cut points. 

 

These issues motivated us to invent a new traceability recovery approach that is effortless to 

employ yet retrieves links at a high-level of quality and precision. The discussion in Chapter 2 on 

recovery techniques shows that combining recovery techniques can improve performance. For 

example, adding IR into RE augments the retrieved link set produced by RE alone, as IR can 

capture links that cannot be recovered by RE. Our approach is to combine several existing 

techniques   to   counteract   each   other’s   weaknesses   by   taking   advantage   of   their   strengths.   In  

addition, as change is inevitable during the software development and evolution process, many of 

the original requirements, designs and models usually do not make it to the final release of a 

software system (The Standish Group Report: Chaos, 2007). Larman (2005) stated that only tested 

code demonstrates the true system design. Source code represents the low-level structure, realised 
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design and fulfilled requirements of the system. Relationships anchored on source code are thus 

more stable and less likely to deteriorate than relationships centered on other artifacts. Therefore, 

our research adopts a code-centric approach and employs source code dependency analysis to 

extract relations between documents and source code. 

 

3.3 IRETrace -- Information Retrieval Enhancement 

Traceability 

In order to recover traceability links at a reasonable high-level of precision and recall, we have 

explored an approach incorporating three supporting techniques, Regular Expression (RE), Key 

Phrases (KP), and Clustering, into IR models to recover links between sections in documents and 

class entities. Our approach is intended to overcome the limitations of IR models by taking 

advantage of the strengths of RE, KP, and Clustering. 

 

At first, we use an IR model, a Vector Space Model (VSM), as the fundamental basis of our 

approach. This is because VSM can retrieve all potential links with appropriate queries. However, 

VSM has three main limitations (Antoniol, Canfora et al., 2000; Antoniol, Canfora et al., 2002; 

Cleland-Huang et al., 2005; Hayes et al., 2006; Lucia et al., 2007; Marcus and Maletic, 2003; 

Settimi et al., 2004; Wang et al., 2009).  

 First, very few true links are retrieved at high cut points, i.e. there is low recall at high cut 

points.  

 Second, many fault/incorrect links are captured at low cut points, i.e. there is low precision 

at low cut points.  

 The third limitation is that VSM misses links in two situations: class names that do not 

follow a common naming convention strategy; and documents that use different words to 

describe related classes. Our experience shows these can have significant occurrence in 

some systems. 

 

Combining the first supporting technique, Regular Expression (RE), with VSM allows extraction 
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of more true links at high cut points. As long as class names are retrieved correctly and refined 

regular expressions are built, RE can retrieve all possible links that are related to these class names 

and return few incorrect links as well. The second supporting technique we add to our approach, 

Key Phrases (KP), recovers links missed by VSM. We extend the VSM queries to include key 

phrases of comments in the source code. If code is well commented, KP can extract key phrases 

from code comments closely related to classes. Clustering, the third supporting technique we 

incorporated, aims to eliminate incorrect links at low cut points by refining existing retrieved 

traceability links. As the aim of our approach is to trace useful links between class entities and 

sections in documents, we take advantage of the inherent hierarchical structure of documents to 

cluster links retrieved by VSM, RE, and KP. Therefore, our combination approach increases 

precision at any cut point and retrieves links with a reasonably high recall.  

 

We then extend our approach to employ other IR models to explore whether augmenting IR with 

the three supporting techniques can improve its performance. A well-known problem with IR 

models is their dependency on cut points. This causes all IR models to suffer from the same 

limitations that VSM has. Our hypothesis is that the strengths of the three complementary 

techniques can make up for the inherent weaknesses of IR models to significantly enhance both 

precision and recall. The following four sections describe the four techniques we used in detail.  

 

3.3.1 The Basic Retrieval Technique 

Information Retrieval (IR) is widely used in searching fields such as web search engines and 

library document search. We decided to employ an IR technique as the foundation of our 

traceability links retrieval approach as its query-based approach has potential to recover all types 

of links, if appropriate queries are constructed.  

 

The IR engine we initially employed was Apache Lucene, a full-featured text search engine written 

in Java (Apache Lucene – Overview, 2009). We chose this as it is widely used for IR 

experimentation and practice. Lucene uses VSM to index text and determine how relevant a 

section is to a query (Apache Lucene – Overview, 2009; Konchady, 2008). As many papers have 

extensively discussed VSM (Antoniol, Canfora et al., 2000; Antoniol, Canfora et al., 2002; 
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Antoniol, Casazza et al., 2000; Cleland-Huang et al., 2005; Hayes et al., 2003; Lucia et al., 2007; 

Marcus and Maletic, 2003; Wang et al., 2009), we only briefly describe how queries are built and 

similarity scores of links are calculated. 

 

A class name (or identifier) composed of two or more words is split into separate words. A query 

string for VSM is established by using the OR operator to combine the name and the separated 

words.  For  example,  “DragSource”  is  split  into  the  words  drag  and  source,  then  the  query  string  is  

“DragSource  OR  drag  source  OR  drag  OR  source”.  The  query  is  case-insensitive. 

 

The output of the indexing process is a term-by-document matrix, where term represents all words 

that occur in documents, and document indicates all documents in the VSM corpus. Each entry ai,j 

of this matrix denotes a weight for the frequency of the ith term in the jth document. Each matrix 

column is considered as a vector that describes a document. Queries are represented in a similar 

way by a matrix, where each vector indicates a query. The similarity between a document and a 

query is measured by the cosine of the angle between the corresponding vectors. In other words, a 

matching document may have one or more query terms and is ranked according to the frequency of 

term occurrence and number of query terms present in the document (Antoniol et al., 2002; 

Konchady, 2008; Lucia et al., 2007). In the end, traceability links between documents and classes 

are retrieved. Each link has a similarity score (0 ≤ similarity score ≤ 1) that represents how much 

each document and class match. 

 

There are three main drawbacks to using VSM. The method calculating link similarity values 

results in some true links with a very low similarity score and most retrieved links have low 

similarity values. Therefore, the lower the cut point that is used, the more possible links are 

retrieved but also the more incorrect links are captured as well. This leads to the first limitation 

that very few true links are captured at high cut points. VSM possesses high precision but low 

recall at high cut points. The second limitation is that many incorrect links are extracted at low cut 

points. This leads to low precision but high recall at low cut points. The third limitation is that 

links are missed in two situations: class names not following a naming convention strategy and 

documents using different words to describe related classes. We have found that these are both 

common occurrences in many software documentation artifacts. 
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The second IR engine that we utilized in this research is the Terrier IR platform (Terrier IR 

platform, 2010). We chose to experiment with this engine as it is a comprehensive, flexible, and 

transparent platform for research and experimentation in text retrieval. Terrier is written in Java 

and is a highly flexible, efficient open source search engine for the rapid development and 

evaluation of large-scale retrieval applications. It provides multiple indexing strategies and various 

retrieval approaches to meet different requirements in text retrieval. Table 3.1 shows the five 

additional IR models used in our research that are supported by Terrier: TF-IDF, BM25, DLH, PL2, 

and IFB2 (See Configuring retrieval in Terrier, 2010).  

TABLE 3.1 A DESCRIPTION OF IR RETRIEVAL MODELS IN TERRIER 

IR modles Description 
TF-IDF The tf*idf weighting function, where tf is  given  by  Robertson’s  tf (Robertson, 2004) 

and idf is  given  by  the  standard  Sparck  Jones’  idf (Sparck Jones, 1972).  
BM25 The BM25 probabilistic model. (Robertson and Walker, 1994) 

PL2 Poisson estimation for randomness, Laplace succession for first normalization, and 
Normalization 2 for term frequency normalization. (Amati, 2003; DFR framwork, 
2011) 

IFB2 Inverse   Term   Frequency   model   for   randomness,   the   ratio   of   two   Bernoulli’s  
processes for first normalization, and Normalization 2 for term frequency 
normalization. (Amati, 2003; DFR framwork, 2011) 

DLH The DLH hyper-geometric DFR model. (Amati, 2006) 

 

TF-IDF. Essentially, the TF-IDF weighting approach is to determine the relative frequency of 

words in a specific document compared to the inverse proportion of that word over the entire 

document corpus (Ramos, 2003). In other words, it decides how relevant a given word is in a 

particular document. Given a document collection D and an individual document d є D, and let 

V={k1, ... , kN} be a list of keywords of a given document d. Then the keyword weights (w1, ... , wN) 

of a document d is calculated: wi = tfi(d) * idfi. Where tfi(d), called term frequency, equals the 

frequency of keyword ki in the document d, and idfi, called inverse document frequency, is 

computed as idfi=log2(|D|/dfi), where |D| is the size of documents in the collection, and dfi equals 

the number of documents in which keywords ki appears in D. (Hayes et al., 2006; Ramos, 2003; 

Salton & Buckley, 1988) 

 

BM25. The BM25 is a probabilistic model that incorporates attributes of documents, such as term 

frequencies, document frequencies, and document length (Robertson and Walker, 1994; Sparck 
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Jones et al., 2000). It ranks a set of documents based on the query terms appearing in each 

document, regardless of the inter-relationship between the query terms within a document (e.g., 

their relative proximity) (Amati, 2003; Robertson and Walker, 1994). Moreover, it includes the 

document length as an explicit random variable of the probability space in normalizing the 

term-frequency (Amati, 2003). 

 

PL2 and IFB2. PL2 and IFB2 are two of Divergence From Randomness (DFR) models. In the 

DFR models, the term-weight is inversely related to the probability of term-frequency within the 

document obtained by a model of randomness. PL2 uses the Poisson estimation for randomness in 

combination with the Laplace succession for the computation of the information-gain with a term 

within a document and normalizing the term-frequency by taking the document length into 

consideration. IFB2 uses the Inverse Term Frequency model for randomness in combination with 

the   ratio   of   two   Bernoulli’s   processes   for   computing the information-gain and normalizing the 

term-frequency by considering the document length. (Amati, 2003; DFR framwork, 2011; He and 

Ounis, 2005) 

 

DLH. The DLH model is a generalization of the parameter-free hyper-geometric DFR model in a 

binomial case (Amati, 2006; He and Ounis, 2007). It considers that the occurrences of a query 

term in a document are samples from the whole collection instead of from the document alone. 

Furthermore, it does not contain a term frequency normalization. Neither does it have any 

parameters that require relevance tuning because all the variables of the document weighting 

formula are automatically set from the collection statistics (He and Ounis, 2007). 

 

By adopting different weighting methods, these IR techniques fundamentally extract from a 

collection a subset of sections that are deemed relevant to a given query. They then assign a 

similarity score (0 ≤ similarity score ≤ 1) to each retrieved section based on frequency and 

distribution of key words in the query (Amati, 2003; Antoniol, Canfora et al., 2002; Antoniol, 

Casazza et al., 2000; Cleland-Huang et al., 2005; Hayes et al., 2003; Lucia et al., 2007; Marcus 

and Maletic, 2003; Settimi et al., 2004; Wang et al., 2009). This can result in some accurate links 

having a very low similarity score. The lower the cut point that is used, the more possible links are 

retrieved. However, more incorrect links are captured as well. In other words, at a high cut point, 
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IR captures few links with few positive links. These IR models possess the same limitation as 

VSM in low precision at low cut points and low recall at high cut points. Certain IR models such 

as LSI may solve the synonym issue in text retrieval by producing positive similarity between 

related artifacts sharing no terms (Marcus and Maletic, 2003). Nevertheless, IR models still fail to 

retrieve some links when class names do not follow the naming convention strategy or documents 

use different words to describe related classes. 

 

3.3.2 Regular Expression (RE) 

In order for us to augment the number of retrieved links at high cut points, a RE technique is used. 

A regular expression, which is a pattern of characters that describes a set of strings, is constructed 

and used to find all of the occurrences of this pattern in an input sequence. Here, we use REs to 

find class names in documents. This technique is case sensitive because the first letter of every 

class name is generally capitalized. 

 

Class names can be placed into two groups. One group is class names containing only one word, 

such as Control, Main, Graphics etc. Another is class names formed by compound words, such as 

NamingExceptionEvent, DragSource etc. For the second group, the class names are most likely 

not to be part of common words that can be found in a dictionary. Therefore, once they appear in 

documents, most likely they represent class names. For the first group, class names probably 

belong to common words. Then we need to make sure the same words found in documents 

indicate class names and not other names. 

 

For the second group, simply matching class names against their occurrence in documents suffices. 

From inspection of typical documents, we observe that class names can be surrounded by a wide 

variety of non-word  characters  but  must  exclude  the  hyphen  “-”.  A  hyphen  attached  before  or  after  

a  class  name  can  be  part  of  another  class  name.  For  example,  the  string  “DragSource”  matches  a  

class named “DragSource”,   but   also   a   class   name   is   written   as   “DragSource-Listener”   in  

documents when a class name is separated over two lines and is connected by a hyphen: 

“DragSource-“  is  at  the  end  of  a  line,  “Listener”  is  at  the  beginning  of  the  following  line.  It raises 

another   issue   that  hyphens  may  exist   inside  class  names,  e.g.   “DragSource-Listener”.  Therefore,  



78 

 

we extend the regular expressions developed by Bacchelli et al. (2009; 2010) to the following 

regular  expression  code  (take  the  class  named  “Control”  for the example): 

 

(.*)(^a-zA-Z0-9\-)<C-?o-?n-?t-?r-?o-?l>(^a-zA-Z0-9\-)(.*) 

 

In order to identify class names in the first group, we can additionally match different parts of the 

package name of a class in documents. For example, a package named “javax.naming.event”  has  

three parts: javax, naming, event. It is not feasible to require the package name to be presented 

before the class name, because it is very rare that a package name is cited before the class name in 

documents. If the class name, the last part of the package name, and at least one of other parts of 

the package name are found, then the single word in documents denote a class name. This method 

also can apply to identify classes sharing the same name but belonging to two different packages. 

The regular expression code for matching each part of package names is (take the package named 

“javax.naming.event” for the example): 

 

(.*)(^a-zA-Z0-9\-)<javax>(^a-zA-Z0-9\-)(.*) 

(.*)(^a-zA-Z0-9\-)<naming>(^a-zA-Z0-9\-)(.*) 

(.*)(^a-zA-Z0-9\-)<event>(^a-zA-Z0-9\-)(.*) 

 

These two regular expressions can correctly capture all documents directly containing class names 

and return few unrelated documents. Therefore, links recovered by RE are considered as links that 

are most likely to be true or correct. They are assigned with the highest similarity value (=1). This 

largely expands the retrieved link sets at high cut points but does not change the incorrect links 

recovered by an IR model. This approach still fails to retrieve links that are missed by an IR 

model. 

 

Both TM, discussed in Chapter 2, and RE can fulfill class name entity recognition. We found 

through experimentation that the results obtained from both approaches were the same in the case 

study, JDK1.5-SUBSET (discussed in Chapter 4). Both TM and RE retrieved 665 links for 

JDK1.5-SUBSET. However, TM spent double the time to capture links. Moreover, combining TM 

into our traceability recovery system made the whole system much slower than RE. Therefore, we 
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chose to use RE rather than more sophisticated TM techniques in our current tool. 

 

3.3.3 Key Phrases (KP) 

Key Phrases provide a brief summary of a document’s content (Witten et al., 1999). We use the KP 

technique to extract key words (or key phrases) from comments of code to provide a brief 

summary of each class’s description comment and use these to augment our IR technique’s link 

recovery. 

 

In Section 3.3.1, we discussed that an IR query is built by using the OR operator to combine the 

class name and its separated words if it is formed by compound words. This means that queries 

probably contain unhelpful terms if programmers use unrelated words to name classes, or probably 

miss useful terms if the class name fails to reflect the purpose of the class. We hypothesize that 

extending the IR queries with some helpful terms can assist IR techniques in extracting more 

useful links. Then the question is: where and how to find helpful terms that are related to classes? 

 

There are two situations where IR is unable to retrieve correct links. Firstly, when class names do 

not follow a naming convention strategy, IR struggles to retrieve documents that do not explicitly 

mention the class name. For example, for a class named “RefAddr”, its IR query is “RefAddr OR 

ref addr OR ref OR addr”, IR is unable to retrieve documents not containing “RefAddr” as “ref” 

and “addr” are not common words. Secondly, documents implicitly mentioning a class but not 

explicitly using the same word as the class name or separated words of the compounded class 

name are also problematic. For example, a class is named “Media”, but documents may use 

“medium” to indicate this class. We have found that these two issues can be addressed by taking 

the comments in source code into consideration. 

 

Generally, software developers provide comments to describe the purpose of the class or what 

tasks the class fulfills. Extracting key phrases from comments can help find alternative words to 

the class name or words indicating what tasks the class fulfills. For example, “medium” indicates 

the class “Media”, “reference address” refers to the purpose of the class “RefAddr”. As long as 

comments in each class are well written, KP can extract all possible key phrases that summarize 
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the purpose of each class. We found that adding these extracted key phrases to the IR queries 

enables our approach to work in the above two contexts. However, many incorrect links at low cut 

points are also recovered. 

 

3.3.4 Clustering 

In general, every document has an inherent hierarchical structure. Documents are usually divided 

into sections with headings. Each section has a direct parent or some direct children or some 

siblings. There exist tangled relationships between these sections. For example, in this Chapter, 

“Section 3.3.1 The   Basic   Retrieval   Approach” has a direct parent, “Section 3.3 IRETrace -- 

Information Retrieval enhancement traceability”, and three siblings, “Sections 3.3.2, 3.3.3, and 

3.3.4”. It has no children. Section 3.3.1, 3.3.2, 3.3.3, and 3.3.4 cross-reference each other to some 

extent. We take advantage of these tangled relationships to reduce the number of incorrect links 

retrieved by using Clustering. 

 

Clustering is a division of a set of objects into groups of similar objects: clusters (MacQueen, 

1967). We modified the K-mean clustering algorithm (MacQueen, 1967) to meet our needs. There 

are three main steps in this: initialization, assignment, and removal. Before implementing the 

Clustering technique, all retrieved links are grouped based on classes; that is, links related to the 

same class are grouped together. Clustering is performed on each group that represents sections 

related to the same class. Figure 3.1 illustrates the sequence diagram of clustering links in each 

group.  

 

FIGURE 3.1 THE SEQUENCE DIAGRAM OF CLUSTERING RETRIEVED LINKS OF A CLASS 
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The first step is to create clusters in each group; the algorithm selects k clusters according to the 

number   of   links  with   similarity   values   ≥ s. Each cluster contains one of these related sections. 

When the group contains links with a similarity value that equals 1, the algorithm uses s = 1. 

Otherwise, the algorithm uses s = 0.3 to create clusters. From empirical observation we found 

three reasons to use this latter value when none of the links’ similarity value in the group is equal 

to 1. Firstly, a majority of incorrect links have a similarity score ≤ 0.3. Links with similarity > 0.3 

are more likely to be true. Secondly, if we use s ≤  0.3, our approach retrieves many incorrect links 

and only slightly more true links. Thirdly, if s ≥  0.3, our approach slightly decreases the number of 

incorrect links but does not obtain more true links.  

  

(a) Precision (b) Recall 

 

(c) F-measure 

FIGURE 3.2 PRECISION, RECALL, AND F-MEASURE RESULTS WHEN S = 0.2, 0.3, 0.4, OR 0.5 IN 

JDK1.5-SUBSET 

 

Figure 3.2 shows the precision, recall and F-measure results when using different s values (s=0.2, 
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0.3, 0.4 or 0.5) to create clusters for the JDK1.5-SUBSET case (discussed in Chapter 4). When 

using s = 0.3, 0.4 or 0.5, there is no obvious difference for the precision, recall, and F-measure 

values. However, precision and F-measure are decreased and recall has no obvious improvement if 

using s = 0.2. Empirically, therefore, we found s = 0.3 to be the best choice for groups that do not 

contain links with a similarity score = 1 in our experiment. We need to conduct more experiments, 

however, to validate its suitability for other systems. 

 

Next, in the assignment step, the algorithm assigns the rest of links in each group to the created 

clusters. Before the assignment, the inherent hierarchical information about the direct parent, all 

direct children and all siblings of the initial section in each cluster are required. This information 

can be acquired by looking through the document near where the initial section is. Based on the 

inherent hierarchical information, a remaining link is assigned to a cluster subject to the following: 

(1) only if its related section is a direct parent or a direct child or a sibling of the initial section to 

the cluster, (2) it is not already included in other clusters, and (3) it is in the retrieved link set. 

Finally, the removal step can be implemented by discarding any link that is not assigned to any 

cluster. 

 

We take a group containing links between the class “java.awt.dnd.DragSource”   and   sections in 

documents in the JDK1.5-SUBSET case (discussed in Chapter 4) as an example to illustrate our 

clustering algorithm. Table 3.2 shows 34 sections in the “dnd1.pdf” document (PDF Version of 

JDK Documentation, 2010) are related to “DragSource”. Each line represents a link. The first 15 

links have similarity value =1. Lines coloured blue and italicized refer to true links, i.e. links of No. 

1-15, 17, and 19 are true links. Other links are not correct, i.e. they are fault links.  

 

In the first step, initialization, as this group has links with similarity value = 1, we use s = 1 to 

create clusters. 15 clusters are created because 15 links (from No. 1 to 15) have a similarity score = 

1. Each cluster contains a related section. For example, for link No. 1, as its similarity value is 1, it 

is considered to be a cluster, which contains the related section 2.1. 
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TABLE 3.2 SECTIONS RELATED TO JAVA.AWT.DND.DRAGSOURCE 

No. Similarity Score File Name Section Status 
1 1.0 dnd1.pdf 2.1 Overview  True 

2 1.0 dnd1.pdf 2.2.1 DragGestureRecognizer True 
3 1.0 dnd1.pdf 2.3 Drag Source True 
4 1.0 dnd1.pdf 2.3.1 The DragSource definition True 
5 1.0 dnd1.pdf 2.3.2 The DragSourceContext Definition True 

6 1.0 dnd1.pdf 2.3.5 The DragSourceDragEvent Definition True 
7 1.0 dnd1.pdf 2.3.6 The DragSourceDropEvent Definition True 

8 1.0 dnd1.pdf 2.4.3 The DropTargetContext Definition True 
9 1.0 dnd1.pdf 2.4.4 The DropTargetListener Definition True 

10 1.0 dnd1.pdf 2.4.5  The  DropTargetDragEvent  and  … True 
11 1.0 dnd1.pdf 2.5 Data Transfer Phase True 
12 1.0 dnd1.pdf 2.5.1 FlavorMap and SystemFlavorMap True 
13 1.0 dnd1.pdf 2.5.2  Transferring  Data  across  the  JVM  … True 

14 1.0 dnd1.pdf 3.0.1  What  are  the  implications  of  the  … True 
15 1.0 dnd1.pdf 3.0.3 Lifetime of the Transferable(s)? True 

16 0.0623 dnd1.pdf 3.0.4 Implications of ACTION_... Fault 
17 0.0590 dnd1.pdf 2.3.3 The DragSourceListener Definition True 

18 0.0548 dnd1.pdf 2.5.3  Transferring  lists  of  files  across… Fault 
19 0.0506 dnd1.pdf 2.3.4 The DragSourceEvent Definition True 

20 0.0443 dnd1.pdf 3.0.2 Inter/Intra VM transfers? Fault 
21 0.0418 dnd1.pdf 3.0.5 Semantics of ACTION_... Fault 

22 0.0308 dnd1.pdf 2.4.1  java.awt.Component  additions… Fault 
23 0.0299 dnd1.pdf 2.5.4 Transferring java.rmi.Remote  … Fault 
24 0.0279 dnd1.pdf 3.0 Issues Fault 
25 0.0279 dnd1.pdf 2.0 API Fault 

26 0.0266 dnd1.pdf 2.4.2 The DropTarget Definition Fault 
27 0.0216 dnd1.pdf 1.1 Provision of a platform independent Fault 

28 0.0193 dnd1.pdf 2.2 Drag Gesture Recognition Fault 
29 0.0133 dnd1.pdf 1.2  Integration  with  platform  … Fault 

30 0.0133 dnd1.pdf Appendix A : DropTargetPeer definition Fault 

31 0.0132 dnd1.pdf 1.0 Requirements Fault 

32 0.0097 dnd1.pdf 2.4.6 Autoscrolling support Fault 
33 0.0006 dnd1.pdf Appendix B : DragSourceContextPeer definition Fault 

34 0.0006 dnd1.pdf Appendix C : DropTargetContextPeer definition Fault 
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In the assignment step, we assign the remaining links to the 15 clusters based on the inherent 

hierarchical information about the initial section in each cluster. This information can be obtained 

by  examining  the  “dnd1.pdf”  document. Take the cluster for section 2.1 in Table 3.2 for example 

(i.e. the first line, link No. 1). Section 2.1 in the “dnd1.pdf” document has a parent, section 2.0, no 

direct children, and four siblings, sections 2.2, 2.3, 2.4, and 2.5. As sections 2.3 and 2.5 (link 

Numbers 3 and 11) are initially considered to be clusters, these two sections cannot be assigned to 

this cluster. Sections 2.0 and 2.2 can be assigned to this cluster only if they do not belong to other 

clusters. Section 2.4 is not assigned as it is not in the retrieved link set. After the assignment, 13 

remaining links (No. 16-26, 28, and 32) are assigned to the 15 clusters. These contain 2 true links 

and 11 fault links. Lines coloured red (bold) and blue (italics) indicate links included in the 15 

clusters. 

 

In the final removal step, 6 links out of 34 are discarded in  the  group  for  “DragSource”, i.e. link 

Numbers 27, 29-31, and 33-34 are removed as they are not in any cluster, and so are regarded as 

fault/incorrect links (which, in this case, they are). Thus, after the clustering, 6 fault links are 

discarded. We have found that our clustering approach eliminates many fault links at low cut 

points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.3 CLUSTERING LINKS OF JAVA.AWT.DND.DRAGSOURCE 

 
25 -- 2.0 
28 -- 2.2 

1 -- 2.1 2 -- 2.2.1 

7 -- 2.3.6 12 -- 2.5.1 

13 -- 2.5.2 15 -- 3.0.3  
16 -- 3.0.4 
20 -- 3.0.2 
21 -- 3.0.5 
24 -- 3.0 

14 -- 3.0.1 

 
22 -- 2.4.1 
26 -- 2.4.2 
32 -- 2.4.6 

8 -- 2.4.3 9 -- 2.4.4 

5 -- 2.3.2 6 -- 2.3.5 

10 -- 2.4.5  
18 -- 2.5.3 
23 -- 2.5.4 

11 -- 2.5 

4 -- 2.3.1  
17 -- 2.3.3 
19 -- 2.3.4 

3 -- 2.3 



85 

 

Figure 3.3 illustrates how to cluster links of “DragSource”. Here, each rectangle box represents a 

named cluster and a list of assigned links. Take the first cluster as an example. Its name is “1 -- 

2.1”, “1” referring to the line number in Table 3.2, and “2.1” indicates the related section number. 

Two sections are assigned to this cluster, “25 -- 2.0” and “28 -- 2.2”, “25” and “28” are the line 

numbers in Table 3.2, and “2.0” and“2.2” are the assigned section numbers. It is clear in Figure 3.2 

that 15 clusters are created. The rest of links are assigned to five clusters, “1 -- 2.1”, “3 -- 2.3”, “8 

-- 2.4.3”, “11 -- 2.5”, and “14 -- 3.0.1”. Those links that are not assigned to one of the 15 clusters 

are removed. 

 

3.4 Implementation 

Figure 3.4 illustrates the complete traceability recovery process of our approach. First, if a 

document contains sections, it is partitioned into small sub-documents according to sections or 

headings (1). For example, if a PDF document contains 10 headings, it is split into 10 

sub-documents; the contents of each are the text between its heading and the following one. These 

sub-documents are then preprocessed. 

 

Next, source code is analyzed by a code dependency analysis system in order to extract source 

code identifiers (every class, method, package name), and comments inside code (2). Code 

dependency   analysis   is   based   on   Eclipse’s   JDT   Java   parser   (Eclipse Java Development Tools 

(JDT), 2010). These extracted class names are passed to the Regular Expression (RE) processor. 

Based on the two regular expressions described in Section 3.3.2, the RE processor finds sections 

that directly mention class names (3). Links retrieved by the RE processor are assigned the highest 

similarity score (= 1), and form the RE link set. Hence, the number of retrieved links at high cut 

points is largely increased. 

 

At the same time, extracted comments inside code are passed to the Key phrases extraction system 

(4). This is based on KEA (KEA: keyphrase extraction algorithm, 2010), an automatic keyphrase 

extraction algorithm developed by Witten et al. (1999). KEA extracts candidate key phrases using 

lexical methods, computes feature values for each candidate, and adopts a machine-learning 
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algorithm to predict which candidates are good key phrases (Witten et al., 1999). We employ KEA 

to extract key phrases from comments that are likely to characterize them. IR techniques may 

extract more useful links by including these extracted key phrases because they may contain 

meaningful terms. These extracted key phrases are combined with extracted class names to form 

IR queries (5). A query string for IR is established by using OR operators to combine the class 

name, the separated words if the class name is formed by compound words, and key phrases 

extracted from comments in the class code. 

 

FIGURE 3.4 TRACEABILITY RECOVERY PROCESS OF IRETRACE 

 

Before using an IR engine to capture links between sections and class entities, sections in the 

documents are preprocessed (6). Their preprocessing starts by generating tokens from consecutive 
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letters in the text stream according to token boundaries that are defined at non-letter characters. 

Next, non-textual tokens (i.e. special symbols, numbers etc.) are dropped. A lower case filter 

transforms all capital letters into lower case letters, and a stop-words filter removes common 

words (i.e. articles, adverbs, etc.). Finally, an IR corpus is generated containing all documents and 

words (or tokens) in the documents. The IR engine retrieves traceability links according to queries, 

and computes similarity scores (0 ≤ similarity score ≤ 1) based on the frequency and distribution of 

the key words or phrases (7). We use two IR engines: the Apache Lucene IR engine (Apache 

Lucene – Overview, 2009) and Terrier (Terrier IR platform, 2010). Lucene employs VSM 

capturing traceability links. Terrier provides a number of IR models to satisfy different needs in 

text retrieval: TF-IDF, BM25, PL2, IFB2, DLH and so on. We discuss the experimental results of 

using different IR models in Chapter 5. Recovered links forms the IR link set. The RE link set and 

the IR link set are then merged (8). If a link can be found in both sets, then the one in the IR set is 

removed and we leave the link in the RE set (i.e. with higher rank). Finally, the merged link set 

passes through the Clustering system to refine the link set to produce the final candidate 

traceability links (9). The Clustering system clusters retrieved links based on the inherent 

hierarchical information contained in the traced documents. Many unrelated links can be discarded 

through the Clustering system. 

 

We built a system to implement and evaluate our traceability recovery technique, IRETrace, which 

automatically extracts relationships between classes and sections in documents. This system is 

seamlessly integrated with the Eclipse Integrated Development Environment (IDE) to provide 

users with both IDE and traceability support. The current version of this system only traces 

relationships in software projects that are written in Java. The overall architecture of IRETrace is 

shown in Figure 3.5.  

 

Before starting to capture traceability links in a project, the project including source code and 

documents needs to be imported into Eclipse. Source code and documents of the project are 

preprocessed to obtain class identifiers and sections in documents. Candidate traceability links 

between classes and sections are then retrieved through using our recovery approach (the 

traceability recovery process described in Figure 3.4). In order to conduct a comparison of our 

recovery approach with other approaches, we used a filter to support different selections of 
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applying different combination approaches to recover links, e.g. use IR only, the combination of IR 

and RE (IR+RE), the combination of IR, RE, and KP (IR+RE+KP), or the combination of IR, RE, 

KP, and Clustering (IR+RE+KP+Clustering). In other words, candidate traceability links can be 

captured using different combinations. Finally, these candidate traceability links are stored in a 

table-format file and are displayed using a graph, which is implemented using Zest (Zest, 2009), 

and a matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 3.5 ARCHITECTURE OF IRETRACE 

 

Figure 3.6 shows the user interface of the IRETrace prototype. The traceability perspective 

includes three parts. The left part is the navigation view, which displays details of projects, e.g. 

headings inside PDF documents. The top right area is the edit area which shows java files and PDF 

files. The bottom right area is the traceability view that visualizes extracted relationships in a tree. 

We used Zest to visualize extracted links. Zest, the Eclipse Visualization toolkit, is built for Eclipse 

to represent graphs (Zest, 2009). As shown in Figure 3.6, the first column is methods in a class, the 

second column is classes in the project, the third is headings in a PDF file, the fourth is PDF files 

in the project. When a node is selected (for example, “PrintJob.java”), all adjacent nodes are 

highlighted, and the file related to the selected node is opened in the top right edit area. The 

retrieved relationships between classes and documents are also stored in an internal matrix table. 
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The columns of the table are classes in the project, the rows are headings of PDF files. Cells are 

similarity scores generated by IR engine.  

 

 

FIGURE 3.6 THE USER INTERFACE OF IRETRACE 

 

The “Navigator” in the traceability view includes two sections. The “Source Code” section 

includes all java files in the project. The “Documents” section contains all PDF files in the project. 

When a class or a heading is selected, the right graph area shows artifacts related only to the 

selected item. For example, when “PrintJob.java” is selected, all related nodes are displayed. 

Although the “Navigator” assists users in locating a specific node in the graph, the graph view 

cannot fully support users to maintain or interpret links easily and conveniently. Moreover, if the 

number of artifacts in the system becomes large, the graph view easily becomes overcrowded, 

which impedes a user’s ability to browse and maintain links. In addition, links automatically 

retrieved by IRETrace may contain incorrect links or miss some correct links. So these retrieved 

links need to be analyzed to delete incorrect links or to add missing links. A challenge then arises: 

how to visualize retrieved links efficiently and effectively to help users browse, maintain, and 

comprehend links in a system. This challenge is discussed in Chapter 6. 



90 

 

3.5 Summary 

It is a major challenge to design and implement traceability recovery techniques that extract 

relationships among diverse artifacts of a software system at high-levels of precision and recall. 

Many recovery techniques exist but none has so far been able to produce sufficiently consistent 

and high enough quality results that software developers require. We have developed IRETrace, an 

Information Retrieval Enhancement Traceability system for the extraction of traceability links 

between class entities and sections in documents. IRETrace incorporates three supporting 

techniques, RE, KP, and Clustering, with an IR model to recover traceability links. The three 

techniques ameliorate the key limitations of IR by taking advantage of the respective strengths of 

each of the three enhancement techniques.  

 

In order to evaluate the performance of IRETrace, we set up four case studies based on four 

unrelated software systems: JDK1.5-SUBSET, ArgoUML, Freenet, and JMeter. For 

JDK1.5-SUBSET, we manually established its traceability benchmark: this is discussed in Chapter 

4. For the other systems we used established traceability oracle sets. The experimental results are 

presented in Chapter 5. To   make   the   extracted   traceability   links   “useful”   for   maintainers   of  

software systems, our final step is to visualize recovered links allowing users to browse and 

maintain these links in a natural and intuitive way. We use a hierarchical, graphical traceability link 

visualization to enable users to interact with large numbers of extracted relationships. Our 

traceability link visualization tool is discussed in Chapter 6. 
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Chapter 4-- Traceability Benchmark 

Establishing appropriate traceability benchmarks to evaluate a traceability link recovery technique 

against prior studies is the second challenge we face in our software traceability research. This 

chapter describes a new, robust approach that we have developed and trialed for researchers to 

build traceability benchmarks easily and effectively.  

 

4.1 Introduction 

It is well recognized that rigorous software traceability technology plays a critical role in the 

software development process (Antoniol et al, 2002; Antoniol, Casazza et al, 2000; Cleland-Huang 

et al., 2006; Seacord et al, 2003). Such support helps developers to assess the completeness of an 

implementation against all stated requirements, to identify reusable software components, to 

support impact analysis while changes occur, and to comprehend and maintain software systems 

(Antoniol et al., 2002; Antoniol, Casazza et al., 2000; Seacord et al., 2003). In the last decade, 

researchers have put great effort into inventing new traceability recovery techniques (see Chapter 

2), either automatic or semi-automatic, to retrieve traceability links in a software system with as 

many correct links and as few incorrect links as possible. An outstanding research question is how 

to examine the performance of a traceability recovery technique, validate the technique, and 

compare its performance with other recovery techniques. An essential element for the recovery 

technique evaluation process is the use of effective traceability benchmarks (Cleland-Huang et al., 

2011; Dekhtyar et al., 2007; Sim et al., 2003). A traceability benchmark serves as a basis for 

evaluation of one technique and the comparison of multiple techniques (Cleland-Huang et al., 

2011). Without such a benchmark, whether a link generated by the traceability recovery technique 

is correct or not remains uncertain, and whether any correct links are missed is unclear. Without 
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such data, the performance of a traceability recovery technique cannot be measured or compared to 

the performance of others. In addition, improvements to the recovery technique cannot be 

determined or quantified. However, it is a major challenge for researchers to obtain or establish 

meaningful and robust traceability benchmarks to evaluate recovery approaches due to the 

difficulty of obtaining or creating such benchmarks (Cleland-Huang et al., 2006). 

 

Traceability benchmarks can be acquired or developed in three ways. First, a traceability 

benchmark for a project can be built by project developers during the software development 

process. This type of benchmark is the most attractive due to its apparent reliability and accuracy. 

Unfortunately in practice, traceability within the software development process has seldom been 

employed in most organizations. This is due to its high cost, complexity, time-consuming nature, 

and error-proneness (Gotel and Finkelstein, 1994; Ramesh and Jarke, 2001; Rilling et al., 2007). 

This results in there being almost no publicly available projects containing very robust traceability 

benchmarks (Charrada et al., 2011). Second, we can evaluate a new traceability recovery technique 

with benchmarks developed by other researchers and/or applied by them to other software projects. 

However, a major problem with this approach is that different traceability recovery techniques 

often address different issues and are applied to different software artifacts. This results in limited 

ability to adapt or utilize traceability benchmarks from the work of others (Dekhtyar et al., 2007). 

For example, a benchmark that was built to include relationships between requirements and design 

documents, while very useful for testing traceability techniques between these types of software 

artifacts, is not at all suitable to evaluate a traceability technique that captures links between source 

code and documentation or between source code and unit tests. Third, we can establish our own 

benchmarks to meet our specific traceability recovery technique evaluation needs. Due to the 

well-known difficulty of obtaining or using the above two types of traceability benchmarks, 

researchers usually create their own benchmarks to conduct evaluations of their new traceability 

recovery techniques (Charrada et al., 2011; Cleland-Huang et al., 2006; Dekhtyar et al., 2007; 

Hayes et al., 2006). Nevertheless, a major issue arises here: how do we actually go about building 

affordable, meaningful, and robust traceability benchmarks? Most research to date has focused on 

the theory, basic principles, or the establishment of all-inclusive traceability benchmarks (Charrada 

et al., 2011; Dekhtyar et al., 2007). Unfortunately, there are no generally agreed or applied 

approaches or guidelines that have been proposed to assist researchers in manually building robust 
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traceability benchmarks for identifying and verifying links in a system. 

 

In this chapter, we propose a new approach and guidelines to help researchers who want to develop 

their own traceability benchmarks and use these benchmarks to facilitate evaluation and 

comparison of their own and others. The main objective of a traceability recovery technique is to 

trace relationships between artifacts in a software system. A new recovery technique is normally 

evaluated by comparing the set of its retrieved traceability links with an “oracle”  i.e.   the  known,  

true traceability link set of the system, in order to compute its precision, recall, or F-measure. The 

oracle traceability link set of a system consists of all its actual correct, or true, traceability links. 

Hence, the crucial part of the development of traceability benchmarks is manually finding and 

verifying correct links between artifacts. We have designed and tested rigorous, manual 

identification and verification strategies to assist researchers to capture links and verify them. In 

our approach, every link is analyzed by at least two analysts before the determination of its status 

is made i.e. whether it is a correct/true or an incorrect/false link. We propose a formula to calculate 

the probability of errors (e.g. 5% or 10% erroneous links) in the created oracle link set. We have 

employed this approach in our own research in order to create a very robust benchmark for 

JDK1.5-SUBSET. This benchmark includes source code and documents produced during the 

software development process. We employed the formula to compute the probabilities of 5% and 

10% errors in the JDK1.5-SUBSET oracle link set. The result shows that the actual probability of 

there  being  ≥  5%  errors links in this oracle link set is very low, around 0.12%. Moreover, our error 

probability calculation shows that our rigorous manual identification and verification strategies can 

significantly reduce the error probability in the oracle link set. In addition, the visit to the set of 

traceability benchmark requirements identified by Dekhtyar et al. (2007) shows that our approach 

can produce benchmarks that satisfy these requirements.  

 

This chapter is organized as follows. We firstly provide a background to traceability benchmarks 

and the motivation for this research. We introduce our new approach to establishing a traceability 

benchmark and a formula to calculate the probability of errors in a benchmark. Next we describe a 

benchmark that we developed using our new approach. We then carry out an evaluation of it 

against a set of requirements for traceability benchmarks and compute the probability of 5% or 

10% errors in our created JDK1.5-SUBSET oracle link set. We also analyze the cost-quality 
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tradeoffs in establishing a robust benchmark. Finally, we discuss the limitations of our approach. 

 

4.2 Background and Motivation 

Sim et al. (2003) defined a benchmark in software engineering as a standard test or set of tests 

employed to compare the performance of alternative tools or techniques. They claimed that 

successful benchmarks must meet seven requirements: accessibility, affordability, clarity, 

relevance, solvability, portability, and scalability. Oppenheimer et al. (2003) claimed that 

benchmarks provide researchers with an approach to quantify design tradeoffs and a yardstick to 

measure and inspire progress. Because of the importance of benchmarks in the evaluation process, 

Cleland-Huang et al. (2006) identified building traceability benchmarks as one of the key 

challenge areas in their Grand Challenges in Traceability. 

 

Few papers have been published to tackle this challenge in the software traceability area. In the 

Grand Challenges in Traceability, a traceability benchmark is defined in terms of a traceability task, 

a set of data sets on which the task is to be performed, and finally a set of metrics that will be used 

to evaluate the task (Cleland-Huang et al., 2006). Dekhtyar et al. (2007) established the basic 

principle of organization of traceability benchmarks, which comprises five components: dataset, 

tasks, measures, answer sets, and data representation format (the last is optional). To be successful, 

traceability benchmarks need to satisfy five requirements: support for traceability in multiple fields 

of software engineering, independence of methodology, ground truth, accuracy testing, and 

scalability testing (Dekhtyar et al., 2007). According to this principle, Charrada et al. (2011) 

proposed a traceability benchmark that includes nine types of artifacts and with end-to-end 

traceability links. This benchmark is developed based on AquaLush, an irrigation system. A visual 

experimental workbench, named TraceLab, was developed for designing and executing traceability 

experiments to help new researchers to establish research environments or help existing 

researchers to perform more rigorous evaluations and become more productive in their work 

(Cleland-Huang et al., 2011).   

 

Although researchers have put some effort into building meaningful traceability benchmarks, there 
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are three barriers impeding the realization of this challenge. The first barrier is the lack of publicly 

available projects that include traceability links. In general, open source projects exclude 

traceability links between artifacts or contain only partial traceability. In most cases, the 

traceability benchmarks of commercial projects are confidential. Moreover, it is difficult to 

accomplish traceability in practice because tracing and maintaining inter-relationships among 

artifacts is arduous, time-consuming, error-prone, and costly (Gotel and Finkelstein, 1994; Ramesh 

and Jarke, 2001; Rilling et al., 2007). These issues make it difficult to acquire publicly available, 

robust traceability benchmarks (Charrada et al., 2011; Cleland-Huang et al., 2011).  

 

The second challenge is the diversity of traceability issues tackled by traceability recovery 

techniques. Most traceability recovery techniques address specific traceability problems because of 

the researchers’ expertise or project funding (Dekhtyar et al., 2007). For example, Antoniol, 

Canfora et al. (2002) used Probabilistic Model (PM) and Vector Space Model (VSM) approaches 

to recover relationships between code and documentation to assist software maintainers. Marcus 

and Maletic (2003) introduced Latent Semantic Indexing (LSI) to improve the performance of 

Information Retrieval (IR) models. Hayes et al. (2006) aimed to improve the requirements tracing 

process for independent verification and validation analysts. Besides targeting different traceability 

issues, traceability techniques utilize different artifacts to examine and evaluate their performance. 

For instance, Antoniol, Canfora et al. (2002) and Marcus and Maletic (2003) focused on tracing 

links between code and system documentation. Hayes et al. (2006) recovered links between 

requirements and design specifications. Bacchelli et al. (2010) sought relationships between code 

and emails. Moreover, researchers need to build tools implementing their traceability recovery 

techniques in order to perform the evaluation. These tools may accept limited programming 

languages. For example, the tool for our own composite traceability recovery technique, discussed 

in Chapter 3, only traces relationships in software projects that are written in Java. In addition, the 

language used to write comments and documents generated during the software development 

process affects the possibility of the adaptation or employment by other traceability techniques. 

For example, Documents in Albergate utilized by Antoniol, Canfora et al. (2002) and Marcus and 

Maletic (2003) are written in Italian. For researchers who are not familiar with Italian, it is difficult 

to process these documents. These issues lead to difficulty when adapting or applying traceability 

benchmarks from the work of others.  
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The third barrier is the difficulty of manually establishing robust traceability benchmarks 

(Charrada et al., 2011; Hayes et al., 2006). Traceability recovery techniques mainly involve tracing 

relationships between artifacts in a system (Dekhtyar et al., 2007). Hence, the most important part 

of a traceability benchmark during evaluation and comparison of traceability recovery techniques 

is the oracle, or true traceability link set, which is a set of correct/true links between artifacts. 

Nevertheless, manually tracing relationships from one artifact to another is arduous, 

time-consuming, and error-prone. Due to the first two barriers identified above, researchers often 

have to develop their own traceability benchmarks to meet their specific needs. For example, 

Hayes et al. (2006) built a traceability benchmark for the CM-1 data set to evaluate the tracing 

between requirements and design documents. They used a group of analysts to manually verify 

links retrieved by RETRO (Hayes et al., 2007), a special-purpose tool designed exclusively for 

requirements tracing. Bacchelli et al. (2009, 2010) established five traceability benchmarks (using 

ArgoUML, Freenet, JMeter, Mina, and OpenJPA) to target traceability links between code and 

emails. They manually annotated classes mentioned in emails and verified these annotations with a 

group of six participants. There are three key issues that emerge while manually creating 

traceability benchmarks: how to find an appropriate dataset, how to manually identify correct links 

between artifacts, and how to verify links to be correct or incorrect. The three issues have rarely 

been touched on in the software traceability community. Moreover, there are currently no 

guidelines or approaches that have been proposed to assist researchers to develop meaningful and 

robust traceability benchmarks. These challenges motivated us to develop an approach to establish 

affordable, meaningful, and robust traceability benchmarks easily and effectively.  

 

4.3 Traceability Benchmark Development 

As mentioned earlier, Dekhytar et al. (2007) defined a traceability benchmark as consisting of five 

main components: dataset, tasks, answer sets, measures, and (optionally) data representation 

format. The dataset of a traceability benchmark is the collection of artifacts within a project. 

Tracing tasks address objectives of traceability techniques. Tasks determine the selection of 

artifacts. For example, if a task is to retrieve traceability links between documentation and source 

code, then the selected artifacts should be source code and documents, such as development guides, 
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design, requirements etc. Each task has an answer set. For the task of identifying traceability links 

between artifacts, the answer is the set of correct/true links that relate one artifact to another. This 

is also called the oracle/true traceability link set. Measures indicate the metrics used to evaluate the 

effectiveness and efficiency of traceability techniques. For example, precision, recall, and 

F-measure are commonly utilized to measure the accuracy and coverage of traceability link 

recovery techniques. (See Section 4.3.5 for definitions of these.) Time is a standard measure for 

scalability to quantify the time needed to execute a task. Data representation format refers to the 

format used to store the benchmark data. For example, the benchmark data can be stored in a XML 

document, a matrix or a table. 

 

We employ this definition to design our traceability benchmarks. In our research, we are concerned 

with the evaluation of traceability link recovery techniques. These generally deal with the issue of 

the recovery of traceability links between artifacts. Hence, we define a traceability benchmark to 

include tasks, dataset, oracle/true traceability link sets, and measures. We replace answer sets with 

oracle/true traceability link sets to satisfy our concerns. Furthermore, in light of the work of 

Dekhytar et al. (2007), we propose five steps to establish a traceability benchmark: task 

identification, artifact selection, project selection, oracle/true traceability link set development, and 

evaluation metrics. The first step, task identification, identifies the set of traceability tasks. In the 

second step, artifact selection chooses which artifacts to collect based on the tasks. Third, project 

selection finds appropriate projects containing artifacts that are chosen in step two. Fourth, 

oracle/true traceability link set development manually establishes correct links between selected 

artifacts. The final step, evaluation metrics, defines metrics that can measure the performance of a 

traceability recovery technique, which is evaluated by comparing the created oracle link set with 

the link set retrieved by the recovery technique. The following sections describe these five steps in 

detail. 

 

4.3.1 Task Identification 

The first step for building a traceability benchmark is to address what tasks the benchmark has 

been developed to accomplish. This depends upon what issues the traceability recovery technique 

under evaluation is concentrating on. For example, some traceability recovery techniques focus on 
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tracing links between requirements and design documents while others aim to find relationships 

between source code and documents. The tasks must reflect these issues. For instance, if the 

evaluated traceability recovery technique aims to trace links between source code and 

documentation, then the task is to recover traceability links between code and documents. 

 

4.3.2 Artifact Selection 

Based on the tasks, the second step is to choose appropriate artifacts. If one of the tasks is the 

recovery of traceability links between source code and documentation, then the dataset should be 

the collection of source code files and documents produced during the software development 

process. To decide on what kinds of documents to select relies on their availability in the selected 

project. If the selected project provides only requirements and design documents, then we can only 

trace relationships between code and requirements and/or design documents. Furthermore, using a 

particular document detail level e.g. the class or method level for code, and the section or 

paragraph level for documents, is decided by the particular traceability recovery technique that 

needs to be evaluated. If the traceability technique retrieves links between classes and sections in 

documents, then the artifact dataset includes classes and sections of documents. 

 

4.3.3 Project Selection 

The next step is to search for appropriate projects from which to obtain artifacts to analyze. An 

appropriate project possesses four properties.  

 The first property is that the project must include artifacts that are chosen in step two. For 

example, if the artifacts selected in step two are requirements and design documents, then the 

selected project must contain the two types of documents.  

 The second property is that the project should be of a reasonable size. The larger the size of 

the project, the more resources, time, and cost are required to manually build traceability links. 

If the benchmark builder has limited resources, then one of the feasible ways is to choose 

small projects or to use only a part of larger projects. For instance, if a project contains a large 

number of requirements and design documents, a feasible way to build traceability links is to 
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choose a part of the requirements and their corresponding design documents.  

 The third property is that the programming language used for programming the project is 

acceptable to the tool that implements the traceability recovery technique under evaluation. 

Some such tools have no requirements on programming languages. Hence, the chosen projects 

can be written in any programming language. But others may only accept certain 

programming languages, such as Java, C#, or C++ etc. This requires that the chosen projects 

must be written in a language that can be accepted by the tool. For example, our traceability 

tool, IRETrace, currently only accepts projects written in Java. 

 The last property is that the documents and comments in the project must be written in a 

language that can be understood by any participant involved in the benchmark development. 

In other words, if the documents and comments in a project are written in French, participants 

who do not understand French cannot identify links in this project. 

 

4.3.4 Oracle/True Traceability Link Set Development 

After selecting the appropriate projects and artifacts, we can start building the oracle traceability 

link set. From the outset, we need to decide the source artifact and the target artifact. All links are 

bidirectional, so defining the source and target artifacts is principally to help users to more easily 

identify links. The source artifact should be uncomplicated, or one that can be easily divided into 

sets or groups. For example, when recovering links between source code and documents, source 

code is normally used as the source artifact. However, Bacchelli et al. (2009) used emails as the 

source artifact because their source code includes many versions of ArgoUML. For links between 

requirements and design documents, the source artifact is the requirements. Next, traceability rules 

need to be set up to facilitate the identification and verification of traceability links. We apply the 

rule defined by Charrada et al. (2011) as fundamental: an element A and an element B are related if 

B is derived from A or if B provides additional and useful information about A. This rule can be 

extended to satisfy specific concerns. For example, for defining links between code and documents, 

this rule can be changed to: a class A in source code and a section B in documents are related if B 

directly mentions A’s name or identifier, or if B describes tasks that A should fulfill. Then we can 

start manually identifying and verifying links between selected artifacts in the selected project. 
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FIGURE 4.1 THE STRATEGY OF AN ORACLE TRACEABILITY LINK SET DEVELOPMENT 
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Figure 4.1 illustrates our strategy for oracle link set development. Our traceability link 

identification and verification strategies are inspired by the works of Bacchelli et al. (2009) and 

Hayes et al. (2006), who established their own traceability benchmarks through manually verifying 

traceability links by a group of participants. Our rigorous manual identification and verification of 

the true links is designed to remedy any potential bias that could add incorrect links to the oracle 

link set. Our strategies include three stages. We take the traceability between classes and sections 

in documents as our example.  

 

At the first stage, the source artifact is divided into overlapping sets (1). Each element of the 

source artifact is at least assigned to two different sets. The number of sets depends on how much 

workload is assigned to each participant. The less the workload allocated to each participant, the 

smaller number of elements each set contains, and the more participants that need to be used. For 

example, we might use the class artifact as the source artifact and split all collected classes into 6 

groups, each of which contains a certain number of classes. Next, according to the number of the 

sets, a group of participants needs to be recruited. These participants are required to have at least 

some knowledge about the selected project. Then every participant is allocated a set (2). They then 

manually identify traceability links between the artifact in the set and another selected artifact 

based on the traceability rule mentioned above (3). In our example, 6 junior participants might be 

employed; each having a background of Java programming experience. Each is assigned a set and 

is required to find links between classes in the set and sections in the documentation based on the 

traceability rule.  

 

After these participants complete their tasks, another group of participants with good 

understanding of the selected project is recruited to verify these retrieved links based on the 

traceability rule (4). The link verification aims to identify the status of each retrieved link, whether 

or not it is true/correct, and to capture links missed by the previous participants. The number of 

participants still depends on how much workload is needed for each participant. If it is a 

reasonable workload for an analyst to verify all retrieved links, then using one senior analyst is 

enough. Otherwise, these retrieved links are split into overlapping sets. Every participant is 

responsible for one set. If participants all consider a link is true, then this link is in the set of 

agreed links; otherwise it is in the set of conflict links (5). For example, a class is assigned to two 
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participants in the first group and two participants in the second group. If the four participants all 

identify the same link related to the class, then this link is considered as an agreed link and is put 

into the agreed link set. Otherwise, this link is considered as a conflict link and is in the conflict 

link set as it is not unanimously recovered by the four participants. After the first stage, an agreed 

link set is generated. Each link in this set is agreed to be true by all participants who are allocated 

the source artifact of the link. 

 

At the second stage, the set of conflict links generated at the first stage is randomly divided into 

overlapping sets, the number of which is based on how much workload each participant needs to 

undertake. A new group of participants is recruited based on the number of overlapping sets. Each 

participant is assigned a set to verify the conflict links in the set by carefully studying the content 

in the selected artifacts (6). At this stage, every conflict link is analyzed by two participants as each 

conflict link is assigned to two participants. If a link is considered to be a true link by the two 

participants, then this link is added to the set of agreed links, otherwise, it is a conflict link (7). In 

this example, every participant is required to carefully study the text of sections and the comments 

inside code before making the decisions. After the second stage, an agreed link set is produced. 

Each link in this set is agreed to be true by two participants. 

 

At the third stage, a senior analyst is employed to verify the set of conflict links produced at the 

second stage (8). This analyst carefully learns the content of the selected artifacts and also consults 

another senior analyst to determine whether or not a conflict link is correct. In this example, the 

senior analyst needs to carefully learn the content of sections and the comments in classes. Each 

conflict link is analyzed by at least three participants, who have either identified the link at the first 

stage or have verified the link at the second or third stages. When three or more participants agree 

that a conflict link is not correct, this link is considered to be incorrect and is discarded; otherwise 

it is considered to be a true link (9). The third stage creates an agreed link set, in which every link 

is agreed to be true by at least three participants. 

 

Finally, the three agreed link sets produced at the three stages are merged to form the oracle 

traceability link set for the selected artifacts in the selected project. In other words, the oracle link 

set is composed of three parts: the agreed link set produced at the first stage, the agreed link set 
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generated at the second stage, and the agreed link set confirmed at the third stage. At the first stage, 

a link in the agreed link set is simultaneously captured by all participants who are allocated the 

source artifact of the link. At the second stage, a link in the agreed link set is unanimously 

considered to be true by two participants who are assigned to verify this link. At the third stage, a 

link in the agreed link set is agreed to be true by at least three participants who have identified or 

verified it in the three stages. These links should be stored in a file (e.g. a XML document, a table, 

or a matrix) to facilitate researchers to use and interpret them.  

 

Probability of errors 

After the establishment of the oracle link set for a project, an issue arises: what is the probability of 

errors (e.g. 1%, 5%, or 10% errors) in this oracle link set? To analyze this probability, we build a 

formula to calculate the error probability based on the following three assumptions: 

1) We assume that the probability of an error being made is dependent on the type of 

participant and stage. For example, we might make the following assumptions: 

a. Junior analysts have an error probability of 20%, i.e. during link recovery, a junior 

analyst produces 20% incorrect links. 

b. Senior analysts have an error probability of 10%.  

c. If a senior analyst consults with another senior analyst, this senior analyst has an error 

probability of 5%; thus, he/she retrieves 5% incorrect links. 

2) We assume that links are independent. The recovery of a link does not affect the 

probability of the recovery of any other link. Moreover, the status (i.e. correct or incorrect) 

of any individual link does not affect the probability of recovering any other link and the 

probability of the status of any other retrieved link. For the sake of simplicity, we assume 

that every link has the same likelihood of being retrieved. 

3) We assume that errors made on links are independent; so an error made on any individual 

link does not affect the probabilities of errors on other links. Errors here include the errors 

of judging an actual correct link to be an incorrect link, or judging an actual incorrect link 

to be a correct link, or failing to recover an actual correct link. The probability of making 

an error on a link does not influence the probability of an error made on any other link.  
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The oracle link set comprises three parts: the agreed link set produced at the first stage, the agreed 

link set produced at the second stage, and the agreed link set produced at the third stage. These 

agreed link sets are independent. The probability of errors in the oracle link set is defined as: 
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1. N is the size of the oracle link set, i.e. the total number of links in the oracle link set. 

2. k is the total number of stages, here an oracle link set is established through three stages (k=3). 

3. ni is the size of the agreed link set at the ith stage, i.e. the number of agreed links at the ith stage. 

4. Pr[ei] is the probability of errors in the agreed link set of the ith stage. It is defined as: 
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a. mi is the number of participants at the ith stage. 

b. Pr(xj) is the probability of incorrect links captured by the jth participant at the ith stage.  

c. Pr(yi) is the probability of participants simultaneously making the same mistake. For 

example, at the first stage, a class is assigned to three participants, all participants 

generate the same link for this class, and then this link goes to the agreed link set. We 

treat this link as a true link. But if this link is actually an incorrect link, Pr(y1) represents 

the probability of the three participants all making the same mistake in capturing the 

incorrect link at the same time at the first stage.  

d. Errors in Pr(xj) and Pr(yi) are distributed in the binomial distribution. We use the 

following binomial probability formula (Triola, 1997) to compute Pr(xj) and Pr(yi). 
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!)(  for x = 0, 1, 2, ... , n, where 

i. n = number of trials.  

 For Pr(xj), n = the number of agreed links retrieved by jth participant at the ith 

stage; 

 For Pr(yi), n = the number of participants who identify a link in the agreed link 
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set at the ith stage. 

ii. x = number of successes among n trials.  

 For Pr(xj), x = xj = the number of errors (e.g. 5% or 10% errors) in the agreed 

link set retrieved by jth participant at the ith stage;  

 For Pr(yi), x = yi refers to at least x participants who consider a link is true at the 

ith stage. In other words, x = the number of participants who identify or verify a 

link in the agreed link set at the ith stage. 

iii. p = probability of success in any one trial. 

 For Pr(xj), p = 0.2 (20%) for junior analysts, p = 0.1 (10%) for senior analysts, p 

= 0.05 (5%) for a senior analyst consulting another senior analyst. 

 For Pr(yi), p = the average/mean error probability of n participants. 

iv. q = probability of failure in any one trial (q = 1 - p) 

 

The error probability of links (Pr[E]) in the oracle link set depends on the error probability (Pr[ei]) 

of links in each agreed link set generated at each stage. The error probability (Pr[ei]) of links at 

each stage largely relies on each participant’s error probability (Pr(xj)) and the probability of 

several participants ( ≥ yi) making the same mistake (Pr(yi)). In Section 4.5.2, we represent an 

example of calculating the error probability of links in the JDK1.5-SUBSET oracle link set. There, 

we initially use the 20%, 10%, and 5% error probability for the three types of analysts introduced 

as example assumptions above. Having demonstrated the method, we then estimate the actual 

average error rates for the three types of analysts based on our observations and results of the 

establishment of the JDK1.5-SUBSET oracle link set, and then derive more realistic estimates of 

the link set containing errors.  

 

4.3.5 Evaluation Metrics 

After developing the oracle traceability link set, we can perform an evaluation and comparison of 

the traceability recovery technique under study to other techniques. The common metrics used in 

the evaluation of traceability recovery techniques are precision, recall, and F-measure. These three 
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metrics depend on three figures: correct (or true) links retrieved, incorrect (or fault) links retrieved, 

and missing links. 

 

Correct links retrieved are those that are correctly captured by the traceability recovery technique. 

Fault links are those that are wrongly detected by the traceability recovery technique. Total links 

retrieved combines these two kinds of links. Relationships that are not found by the traceability 

recovery technique are called missing links. Total correct links are the sum of correct links 

retrieved and missing links. Precision can be defined as the ratio of the number of correct retrieved 

links over the total number of retrieved links. If precision equals 1, it means that all the recovered 

links are correct, though there could be correct links that were not recovered. 

retrieved links Total
retrieved linksCorrect  Precision   

Recall is the ratio of the number of correct retrieved links over the total number of correct links. 

Recall = 1 indicates that all correct links are recovered, but there may be incorrect recovered links. 

linkscorrect  Total
retrieved linksCorrect  Recall   

The F-measure combines precision and recall based on their weighted harmonic mean to measure 

the  effectiveness  of  retrieval.  β  is  an  adjustable  weight  to  favour  precision  over  recall.  β=1  weights 

precision and recall equally. β=2   weights   recall   twice   as   much   as   precision.   β=0.5   weights  

precision twice as much as recall. 

Recall)Precision(
RecallPrecision)1(

2

2







measureF  

Two sets of traceability links between selected artifacts are prepared in order to compute precision, 

recall, and F-measure. One set is produced by a traceability recovery system under evaluation. The 

other set is the oracle traceability link set for the selected artifacts. The latter is critical as it is a 

crucial factor in determining the number of correct and missing links. Comparison of the two sets 

is then conducted to determine whether a link is correct, incorrect, or missing.  
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4.4 Case Study 

To validate the effectiveness of our approach, we have set up a case study to build a traceability 

benchmark for the evaluation of our traceability recovery technique introduced in Chapter 3. This 

benchmark comprises four components: tasks, dataset, oracle/true traceability link set, and 

measures. 

 

Tasks. Our particular traceability recovery technique aims to capture traceability links between 

source code and documentation. Hence, the task is to trace links between code and documents. 

 

Dataset. According to the task, the dataset is the collection of source code and documents. As our 

traceability recovery technique goes down to the class level in code and section level in documents, 

the dataset consists of classes of source code and sections of documents. The system we used for 

our benchmark is JDK 1.5, a free open source software system for Java developers. We chose to 

use three packages (java.awt, javax.naming, and javax.print) from the JDK1.5 source code and 

their associated documentation. (We call this case as JDK1.5-SUBSET) These three packages were 

chosen because of the availability and detail of corresponding natural language documents 

describing these parts of the system. Three documents (PDF Version of JDK Documentation, 2010) 

explain in detail the structure of packages. For example, JPS_PDF.pdf describes how the Java 

printing support works and which functions are implemented by which Java classes in the 

javax.print package. 

TABLE 4.1 JDK1.5-SUBSET PACKAGES AND DOCUMENTS 

JDK 1.5-SUBSET File size #classes/ 
sections 

Java 
packages 

java.awt, javax.naming, and javax.print packages 2.02 MB 249 

PDF files JPS_PDF.pdf:  Java™  Print  Service  API  User  Guide 505 KB 68 
dnd1.pdf: Drag and Drop subsystem for the Java 
Foundation Classes 

160 KB 41 

jndispi.pdf:  Java  Naming  and  Directory  Interface™  Service  
Provider Interface(JNDI SPI) 

284 KB 73 

Total sections:  182 

 

Table 4.1 describes the packages in JDK1.5-SUBSET and their corresponding PDF documents 
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used in this study, as well as the number of Java classes and the number of sections in them. We 

divided these PDF files into sections based on their headings. For example, if a PDF document 

contains 10 headings, it is split into 10 sections; the contents of each are the text between one 

heading and the following one. We obtained 249 Java classes and 182 sections (or small 

documents). The traceability task becomes that of extracting relationships between these 182 

sections and the 249 Java classes in JDK1.5-SUBSET. 

 

Oracle/true traceability link set. In order to build the oracle traceability link set for 

JDK1.5-SUBSET, we recruited 11 analysts: 9 analysts had at least 6 years of Java programming 

experience, and 2 participants had more than 9 years of Java programming experience. They 

include 6 Females and 5 Males. We set the class artifact as the source artifact because classes are 

easier than sections to group. We also set up our traceability rules to assist participants in finding 

and verifying a link. First, if a section directly mentions a class identifier or name, then this section 

is related to this class. The second rule is that if a section describes tasks that a class should fulfill, 

then they are related.  

 

At the first stage, the classes were divided into 6 sets. Six participants then manually retrieved 

links between sections in documents and classes by following the above two rules. After they 

completed their task, we asked a senior participant to conduct link verification that included 

verifying these retrieved links and capturing links missed by them. At the end of the first stage, 

408 links were identified as conflict links, and 356 links were included in the agreed link set; each 

link was agreed to be true by two participants.  

 

At the second stage, 408 conflict links produced at the first stage were randomly divided into 3 

overlapping sets. Three other participants verified these conflict links by carefully studying the text 

of documents and the comments inside code. At the end of the second stage, 75 conflict links were 

identified, and 333 links were included in the agreed link set; each link was verified to be true by 

two participants.  

 

At the third stage, we asked a senior participant to verify those links still having conflicts. This 

participant carefully studied the text of documents and the comments in code. This participant also 
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consulted another senior participant. Each conflict link was thus analyzed by at least 3 participants. 

When three or more reviewers agreed that the conflict link was a fault, we considered this link to 

be an incorrect link and discarded it. At the end of the third stage, 4 links were considered as 

conflict links, and 71 links were added into the agreed link set; each link was identified to be true 

by at least three participants. The final oracle link set comprised 760 true links, which we then 

stored in a table. 110 out of 249 classes had no sections related to them. 

 
FIGURE 4.2 TIME TAKEN BY THE FIRST SIX PARTICIPANTS IN CAPTURING LINKS AT THE FIRST STAGE 

 
FIGURE 4.3 PERCENTAGES OF LINKS CAPTURED BY THE FIRST SIX PARTICIPANTS AT THE FIRST 

STAGE (DETERMINING CORRECT LINKS VS. CONFLICT LINKS) 

 

Figure 4.2 shows the time taken by the six participants to manually capture links between 249 

classes and 182 sections at the first stage. Participant 3 spent less time than others; 20 minutes 
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taken to retrieve links. Participant 5 took the longest time (120 minutes) to capture links. 

Participant 6 used 90 minutes to perform the link recovery. Participants 1 and 2 each took 50 

minutes, and participant 4, 40 minutes. On average, each participant spent about one hour to 

identify links between 50 classes and 182 sections. 

 

Figure 4.3 shows the link recovery performance of each participant; namely, the percentage of 

links captured by each participant. Participant 3 retrieved the lowest number of links, 7%. 

Participant 5 recovered the highest number of links, 95%. Participant 2 recovered 80% of links. 

Participant 4 is 71%, 66% for participant 6, and 31% for participant 1. In total, the six participants 

retrieved 409 links and identified 136 classes with no related sections. Figures 4.2 and 4.3 show 

that participant 3 used the least amount of time but retrieved the lowest number of links, while 

participant 5 spent the longest time but captured the highest number of links. Table 4.2 describes 

the comments made by the first six participants at the first stage. They commented that it was a 

tedious, boring, and time-consuming task. Moreover, one participant commented that he/she would 

favour automatic tracing technique to recover links. 

TABLE 4.2 COMMENTS OF THE FIRST SIX PARTICIPANTS AT THE FIRST STAGE 

Participant Comments 
1 it was a exhaustive and very tiring to the eyes 
2 It’s  a  very  boring  task  – I would favour your automatic tracing technique  
3 None 
4 None 
5 it hurted my eyes 
6 tedious and time consuming 

 

After the first six participants identified links, these retrieved links needed to be verified. Figure 

4.4 shows the time taken by the remaining five participants to manually verify these retrieved links. 

Table 4.3 describes the number of conflict links generated at the end of each stage. The seventh 

participant verified links retrieved by the first six participants and captured links missed by them. 

This participant took 220 minutes to verify these retrieved links and to capture new links. This 

participant identified 408 conflict links that included 355 new links. Figure 4.3 shows the 

percentage of retrieved links identified as conflict by participant 7. Links retrieved by participant 5 

contained 14% conflict links, 11% for participant 2, 10% for participant 4, 7% for participant 6, 

and 1% for participant 3. 
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FIGURE 4.4 TIME TAKEN BY REST PARTICIPANTS IN VERIFYING RETRIEVED LINKS 

 

TABLE 4.3 NO. OF CONFLICT LINKS PRODUCED AT THE END OF EACH STAGE 

Stage No. of Conflict links produced at the end of each stage 
First stage 408 
Second stage 75 
Third stage 4 

TABLE 4.4 COMMENTS OF THE REST FIVE PARTICIPANTS 

Participant Comments 
1 it is very boringggg, desperately need tools 
2 boring, good to have tools to support 
3 totally  boring,  please  tools  tools…. 
4 it is an absolutely tedious and boring task 
5 tedious task, tools support would be so so good 

 

The next three participants (from 8 to 10 in Figure 4.4) were asked to verify 408 conflict links 

generated during the first stage. Each participant at the second stage took about 87 minutes to 

verify these conflict links on average. They reduced the conflict links to 75 (see Table 4.3). The 

last one (11 in Figure 4.4) verified the 75 conflict links produced at the second stage. This 

participant took 180 minutes to undertake the link verification. At the end of the process, 4 links 

remained in conflict (see Table 4.3). On average, each participant took around two hours to verify 

links. By comparison with Figure 4.2, participants spent more time in the link verification than in 

the link recovery on average. Table 4.4 shows the comments made by the rest five participants 
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when they conducted the link verification. They also commented that it was a tedious and very 

boring task. Four of them commented that it would be helpful to use traceability tools to support 

the link verification. 

 

Measures. We use precision, recall and F-measure to evaluate the effectiveness and efficiency of a 

traceability recovery technique. We used this benchmark to measure our new traceability recovery 

technique (introduced in Chapter 3). We employed six Information Retrieval (IR) models (VSM, 

TF-IDF, BM25, DLH, PL2, and IFB2) to generate traceability links between the 249 classes and 

182 sections in JDK1.5-SUBSET, and then compared the retrieved links with the oracle 

traceability link set. We obtained precision, recall, and F-measure results of six IR models using 

our JDK1.5-SUBSET traceability benchmark. These results form the baselines for the further 

evaluation and comparison. We then compared our evaluation results with the baselines to find out 

whether our new traceability recovery technique outperforms the six IR approaches. The 

evaluation results are detailed in Chapter 5. 

 

4.5 Evaluation 

We have carried out two evaluations: a review of the requirements for traceability benchmarks 

proposed by Dekhtyar et al. (2007), and the probability of errors (5% or 10% link errors) in the 

JDK1.5-SUBSET oracle link set. Furthermore, we discuss the cost-quality tradeoffs when building 

the traceability benchmark for a project. 

 

4.5.1 Requirements Review 

Our first evaluation was to examine to what extent traceability benchmarks developed by using our 

approach meet the five requirements proposed by Dekhtyar et al. (2007). These requirements 

concentrate on the benchmark for software traceability and include: support for traceability in 

multiple fields of software engineering, independence of methodology, ground truth, accuracy 

testing, and scalability testing. 
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Support for traceability in multiple fields of software engineering. The benchmark needs to support 

tracing methods and procedures for tasks from different areas of software engineering. Our 

approach is designed for the development of benchmarks for the evaluation of traceability 

recovery techniques. However, benchmarks built using our approach can be used for evaluating 

tasks from other fields of software engineering such as verification & validation, maintenance, or 

reverse engineering. For example, traceability links between code and other sources of information 

are crucial to the analysis of the impact of changes in order to accomplish any maintenance task 

(Dekhtyar et al., 2007). Thus the JDK1.5-SUBSET benchmark we built is able to assist in the 

evaluation of impact analysis techniques used by software maintenance tasks. 

 

Independence of methodology. The benchmark needs to be independent of any specific tracing tool 

or approach. Our approach does not rely on any tool or traceability recovery technique to produce 

the oracle traceability link set. Hence, benchmarks developed by using our approach can be used to 

evaluate any tracing method and procedure, whether manual, semi-automated, or automated.   

 

Ground truth. The benchmark needs to provide the true answer set for each tasks. Our approach 

requires producing an oracle traceability link set for every task identified within the benchmark 

because different tasks may need different artifacts to accomplish. Our rigorous manual 

identification and verification strategies ameliorate the possibility of including fault links into the 

oracle traceability link set. 

 

Accuracy testing. The benchmark needs to be able to test the performance of tracing techniques. 

Benchmarks produced using our approach provide precision, recall and F-measure to evaluate the 

accuracy and coverage of traceability recovery techniques. 

 

Scalability testing. The benchmark needs to allow assessing the scalability of tracing techniques. 

As our approach suggests using projects of a reasonable size, benchmarks established by using our 

approach are not representative of large systems. However, they can be extended to include more 

artifacts and/or tasks to improve the scalability. For example, our JDK1.5-SUBSET benchmark 

can be extended to include more classes, documents, artifacts, and/or tasks. In our example, we 

recruited 11 analysts to establish links between 249 classes and 182 sections. On average, each of 
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the first six participants took one hour to identify sections related to 50 classes, and each of the 

other five participants used two hours to verify these retrieved links.  

 

4.5.2 Probability of Errors in JDK1.5-SUBSET Benchmark 

We have discussed the development of the traceability benchmark for JDK1.5-SUBSET in Section 

4.4. This benchmark contains an oracle link set that includes all true links in JDK1.5-SUBSET. 

This oracle link set consists of 356 links retrieved at the first stage, 333 links verified at the second 

stage, and 71 links verified at the third stage. In order to compute the probability of errors (5% or 

10% errors) in this link set, we need to calculate the probability of link recovery errors made by 

each participant (Pr(xj)) and the probability of participants simultaneously making the same 

mistake of capturing an incorrect link (Pr(yi)). Initially we used the example error rates for 

different participants/stages introduced in section 4.3.4 (20% for juniors, 10% for seniors and 5% 

for seniors consulting one another) just to demonstrate this method.  

 

Table 4.5 lists the results of Pr(xj) and Pr(yi) for having ≥ 10% link errors. We use STATDISK 

calculators to produce these results of Pr(xj) and Pr(yi). STATDISK can be free downloaded at 

http://www.statdisk.org. Then the probability of ≥ 10% link errors in the JDK1.5-SUBSET oracle 

link set is calculated as follows: 
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  = 0.027 for E ≥ N*10%, where 

 N = 760 

 ni is the number of links in the agreed link set at the ith stage, here n1 = 356, n2 = 

333, and n3 = 71 
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 Pr[e1] * n1 = 0.88122235 * 0.0225 * 356 = 7.05859 

 Pr[e2] * n2 = 0.9998299 * 0.04 * 333 = 13.31773 

 Pr[e3] * n3 = 0.0641971 * 0.0266119 * 71 = 0.121297 
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TABLE 4.5 PROBABILITY DISTRIBUTION FOR THE JDK1.5-SUBSET ORACLE LINK SET BASED ON 

THE EXAMPLE ERROR RATES OF THE THREE TYPES OF PARTICIPANTS 

Stage Participant Retrieved 
Links  
(R) 

Conflict 
Links 
(C) 

Agreed 
Links 
(n=R-C) 

Example Error 
Probability for  
Participant (p) 

Pr(xj) for  
xj ≥ n * 10% (round 
to the nearest integer) 

1st 
stage 

1 10 1 9 0.2 0.8657823 
2 84 12 72 0.2 0.9940038 
3 18 2 16 0.2 0.8592625 
4 35 5 30 0.2 0.955821 
5 145 21 124 0.2 0.9990852 
6 117 12 105 0.2 0.9969877 
7 764 408 356 0.1 0.497614 
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j xmx  = 0.881222357 

Pr(y1) = 0.0225 for y1≥2, where n=2, p=(0.2+0.1)/2=0.15 

2nd 
stage 

8 272 53 219 0.2 0.9999765 
9 272 123 149 0.2 0.9996381 
10 272 87 185 0.2 0.9998751 

3)Pr()Pr(
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1
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j
j xmx  = 0.9998299 

Pr(y2) = 0.04 for y2≥2, where n=2, p=(0.2+0.2)/2=0.2 

3rd 
stage 

11 75 4 71 0.05 0.0641971 
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m

j
j xmx  = 0.0641971 

Pr(y3) = 0.0266119 for y3≥3, where n=5, p=(0.2+0.1+0.2+0.2+0.05)/5=0.15 

 

We can use the same method to calculate the probability of ≥ 5% link errors in the 

JDK1.5-SUBSET oracle link set:  

Pr[E] = 0.0292 for E ≥ N*5%, where 

 Pr[e1] * n1 = 0.994423843 * 0.0225 * 356 = 7.965335 

 Pr[e2] * n2 = 1.0 * 0.04 * 333 = 13.32 

 Pr[e3] * n3 = 0.4771324 * 0.0266119 * 71 = 0.9015154 

 

Although Pr[E≥N*5%] is slightly larger than Pr[E≥N*10%], their results are very close and very 

small. Therefore, the probability of the oracle link set having ≥ 5% or 10% is very low, 0.0292 for 
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≥ 5% and 0.027 for ≥ 10% (all around 3%). In other words, the probability of building at least 95% 

correct links is very high (around 97%). The above calculation reveals three features: 

1. The more senior a participant, the lower probability of link errors the participant can make. 

For example, at the first stage, the first six participants are junior participants who have an 

error probability of 20%, their probabilities of making  ≥ 10% link errors are larger than 

85.9% (see Table 4.5). But the 7th participant, who is a senior analyst with an error 

probability of 10%, can achieve 49.8% probability of making  ≥ 10% link errors. 

2. The probability of participants simultaneously making the same mistake of identifying an 

incorrect links is very low, Pr(y1) = 0.0225, Pr(y2) = 0.04, and Pr(y3) = 0.0266. This 

indicates that the chance of several participants (≥ 2 or 3) retrieving an incorrect link at 

the same time is very rare. This confirms that our rigorous manual identification and 

verification strategies can largely reduce the probability of errors in the oracle link set. 

3. The more participants allocated to verify a link, the lower the probability of link errors. 

For example, at the first stage, each link in the agreed link set was agreed to be true by 

two participants, Pr(y1) = 0.0225 (see Table 4.5). If we add one more participant to verify 

a link and the third participant is a junior participant, then Pr(y1) = 0.0046 for y1≥3, where 

n=3, p=(0.2+0.2+0.1)/3=0.16667. But if the third participant is a senior participant, then 

Pr(y1) = 0.0024 for y1≥3, where n=3, p=(0.2+0.1+0.1)/3=0.13333.  

 

Instead of using the assumed example error rates for participants we can make use of the 

observations and results obtained from the establishment of the JDK1.5-SUBSET oracle link set to 

calculate the actual average error rates for the three types of participants. Table 4.6 shows the 

actual error rates for participants in the establishment of the JDK1.5-SUBSET oracle link set. The 

actual error probability for a participant is computed as the number of retrieved links / the number 

of incorrect links, where retrieved links are links that are recovered or verified by the participant, 

incorrect links are links that are recovered or verified by the participant but are excluded from the 

final oracle link set. The actual error rate for a participant is an approximation as the number of 

incorrect links is obtained by comparison between links retrieved or verified by the participant and 

links in the final oracle link set hence may not be completely accurate but it is a good 

approximation. 
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TABLE 4.6 ACTUAL ERROR RATES FOR THE THREE TYPES OF PARTICIPANTS DURING THE 

ESTABLISHMENT OF THE JDK1.5-SUBSET ORACLE LINK SET 

Stage Participant Retrieved 
Links  
(R) 

Incorrect 
Links  
(W) 

Actual Error Probability 
for participant  
(p=W/R) 

1st stage 1 10 1 0.1 
2 84 5 0.05952 
3 18 1 0.05556 
4 35 3 0.08571 
5 145 6 0.04138 
6 117 6 0.05128 
7 764 31 0.04058 

2nd stage 8 272 3 0.01103 
9 272 8 0.02941 
10 272 6 0.02206 

3rd stage 11 75 2 0.02667 
 

We used nine junior participants: the first six participants at the first stage and three participants at 

the second stage. The average error probability for junior participants is 0.05066 (5.066%), which 

is much lower than the example error rate (20%) used above. The senior participant (the 7th 

participant in the first stage) has an error probability of 0.04058 (4.058%), which is also lower than 

the corresponding example error rate (10%). The senior participant (the 11th participant in the third 

stage) who consulted another senior participant has an error probability of 0.02667 (2.667%), 

which is lower than the corresponding example error rate (5%). We then apply the three actual 

error rates for participants to recalculate the probability of errors (≥ 5% or 10% errors) in the 

JDK1.5-SUBSET oracle link set. 

 

Table 4.7 lists the results of Pr(xj) and Pr(yi) for having ≥ 10% link errors based on the actual error 

rates for the three types participants. The probability of ≥ 10% link errors in the JDK1.5-SUBSET 

oracle link set is calculated as follows: 

Pr[E] = 1.2689e-4 for E ≥ N*10%, where 

 Pr[e1] * n1 = 0.1247363 * 0.0020812 * 356 = 0.092418 

 Pr[e2] * n2 = 0.004564633 * 0.0025664 * 333 = 0.003901 

 Pr[e3] * n3 = 0.0028728 * 0.0005627 * 71 = 0.000115 
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TABLE 4.7 PROBABILITY DISTRIBUTION FOR THE JDK1.5-SUBSET ORACLE LINK SET BASED ON 

THE ESTIMATED ERROR RATES FOR THE THREE TYPES OF PARTICIPANTS 

Stage Participant Agreed 
Links  
(n) 

Actual Error Probability 
for  Participant  
(p) 

Pr(xj) for  
xj ≥ n * 10%  
(round to the nearest integer) 

1st stage 1 9 0.05066 0.3736804 
2 72 0.05066 0.0720411 
3 16 0.05066 0.1931093 
4 30 0.05066 0.1928713 
5 124 0.05066 0.0238598 
6 105 0.05066 0.0175915 
7 356 0.04058 0.0000007 

7)Pr()Pr(
7

1
1

1

1





j

j

m

j
j xmx  = 0.1247363 

Pr(y1) = 0.0020812 for y1≥2, where n=2, p=(0.05066+0.04058)/2=0.04562 

2nd stage 8 219 0.05066 0.0018757 
9 149 0.05066 0.0089458 
10 185 0.05066 0.0028724 

3)Pr()Pr(
3

1
2

1

2





j

j

m

j
j xmx  = 0.004564633 

Pr(y2) = 0.0025664 for y2≥2, where n=2, p=(0.05066+0.05066)/2=0.05066 

3rd stage 11 71 0.02667 0.0028728 

1)Pr()Pr(
1

1
3

1

3





j

j

m

j
j xmx  = 0.0028728 

Pr(y3) = 0.0005627 for y3≥3, where n=5, 

p=(0.05066+0.04058+0.05066+0.05066+0.0028728)/5=0.03908656 

 

The probability of making ≥ 10% link errors is extremely low. It shows that the probability of 

creating at least 90% accuracy in the JDK1.5-SUBSET oracle link set is extremely close to 100%. 

The probability of ≥ 5% link errors in the JDK1.5-SUBSET oracle link set is computed as follows:  

Pr[E] = 0.0012 for E ≥ N*5%, where 

 Pr[e1] * n1 = 0.563022743 * 0.0020812 * 356 = 0.417148 

 Pr[e2] * n2 = 0.595128333 * 0.0025664 * 333 = 0.508603 

 Pr[e3] * n3 = 0.1216272 * 0.0005627 * 71 = 0.004859 
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This result shows that the probability of making ≥ 5% link errors is 0.0012 (0.12%). In other 

words, the probability of building an oracle link set with accuracy of at least 95% is very high, 

about 99.9%. We thus conclude that our approach produces a high quality oracle link set. 

 

4.5.3 Cost-quality Tradeoffs 

The most important part of establishing a traceability benchmark is to create a high quality oracle 

link set (e.g. the link set with ≤ 5% errors). Building a high quality oracle link set depends on the 

following factors: 

1. The workload allocated to each participant. 

2. The number of participants verifying a link. 

3. The knowledge of the traced project of each participant, i.e. he/she is a junior or senior 

participant. 

4. The time each participant spends to recover links. 

 

In general, each participant at the same stage is allocated a similar workload. For the first stage, 

there are two groups of participants. The first group retrieves links between allocated artifacts. The 

second group verifies links retrieved by the first group and recovers links missed by them. For 

example, when we built the JDK1.5-SUBSET oracle link set, the first six participants at the first 

stage captured links between allocated classes and documents. The 7th participant at the first stage 

verified links retrieved by the first six participants and recovered links missed by them. Every 

participant in the same group was assigned a similar workload at the first stage. The more 

workload that is assigned to a participant, the more effort they are required to make.  

 

From the error probability calculation discussed above, we noticed that using a different number of 

participants to verify a link can affect the results of the probability of errors in the oracle link set. 

Using more participants to verify a link can produce a more accurate oracle link set. Using at least 

three senior participants to verify each link can achieve better results than using at least three 

junior participants or the combination of junior and senior participants, or at least two senior/junior 

participants.  
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The participants’ knowledge of the traced project can significantly affect the probability of errors 

in the agreed link set recovered by them. Based on the error probability calculation discussed 

above, and our observations in practice, we postulated then confirmed that the more senior a 

participant, the lower the probability of link errors the participant will make and that these 

differences have a significant impact on the overall error probability.  

 

From the establishment of the JDK1.5-SUBSET oracle link set, we noticed that the more time a 

participant spends to recover links, the more links the participant identifies. For instance, with the 

first six participants at the first stage, participant 5 spent the longest time (120 minutes) but 

recovered 95% links (see Figures 4.2 and 4.3) and had the lowest error rate (4.138%) (see Table 

4.6). Participant 3 spend only 20 minutes but only recovered 7% links and had the error rate of 

5.556%. Therefore, spending longer time is more likely to recover all links. Otherwise, participants 

are more likely to identify incorrect links or miss retrieving many correct links. This can 

significantly damage the quality of the oracle link set.  

 

Overall, the priority rank for the four factors is as follows. Time is the most important factor. Next 

is the participant’s knowledge, followed by the number of participants verifying a link. The least 

important factor is workload. If the workload assigned to each participant is certain, the best 

solution for building a high quality oracle link set is to recruit all senior participants, to use at least 

three participants to verify a link, and to take as long as possible. Unfortunately, it is very hard to 

recruit senior participants in practice. Moreover, it is not easy to decide how many times are 

appropriate to identify or verify links, which depends on the assigned workload. In our case, we 

assigned approximately 50 classes to each junior participant in the first group at the first stage. On 

average, each took around 60 minutes to identify links between 50 classes and the documents. 

Each link at the first and second stages was verified by only two participants. We still achieved 

99.9% probability of producing at least 95% correct oracle link set based on the actual error rates 

for the three types of participants. Therefore, the alternative solution for building a high quality 

oracle link set is: 

1) To use junior participants for the first group at the first stage and the group at the second 

stage;  
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2) To use senior participants for the second group at the first stage, because they not only 

verify links retrieved by the first group but also recover links missed by them; 

3) To use senior participants for the group at the third stage because they need to verify links 

that are still in the conflict link set after going through the two stages; 

4) To use at least two participants to verify a link at each stage; 

5) To take at least one hour to retrieve links if the workload allows a participant to complete 

in one hour and can produce an acceptable result. 

 

4.6 Discussion 

The review of requirements for traceability benchmarks shows that using our approach can 

develop affordable and robust benchmarks that meet the five requirements. The actual probability 

of  making  ≥  5% link errors in the JDK1.5-SUBSET oracle link set is 0.12%. Our rigorous manual 

identification   and   verification   strategies   significantly   improve   the   accuracy   of   the   each   stage’s  

agreed link set. The two evaluations illustrate that our approach can help researchers to develop a 

robust and high quality traceability benchmark to perform an evaluation and comparison of 

different traceability link recovery approaches. 

 

However, our approach suffers from four problems that occur during the development of a 

traceability benchmark.  

 The first problem is the difficulty of determining whether or not two elements in artifacts 

are in fact related. Although we provide a traceability rule to help in the identification of 

true links, we rely on participants’ knowledge and understanding to capture links. This may 

lead to the capture of incorrect links. To reduce the possibility of including fault links to the 

oracle traceability link set, we designed a rigorous manual verification strategy to verify 

retrieved links, each of which are examined by at least three analysts.  

 The second problem is how much workload is suitable for a participant to undertake. The 

greater the workload allocated to a participant, the more time and energy are required. Too 

much workload may make participants lose interest in participation. When we built the 
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JDK1.5-SUBSET benchmark, every participant took one hour to identify the related 

sections for 50 classes on average. But it took a longer time to do the link verification than 

the link recovery on average.  

 The third issue is the recruitment of participants. It is not easy to recruit a good number of 

participants who have some knowledge of the selected project, especially for recruiting 

senior analysts. If a participant is new to the selected project, he/she might be more likely 

to capture incorrect links than someone who knows the project to some extent.  

 The final problem is the scalability of benchmarks. Our approach is suitable to build 

benchmarks for projects of a reasonable size because of its approach of manually 

identifying and verifying traceability links. But benchmarks produced by using our 

approach can be extended to include more elements, artifacts, tasks, and/or measures. 

 

The first threat to the validity of our approach is the traceability rules we defined to help 

participants find correct links may influence them to capture incorrect links or miss some correct 

links. We encourage traceability researchers to explore how to define traceability rules and how to 

validate their correctness. Second, false positive links may be included in the oracle link set. This 

is because a link agreed to be true by participants at each stage is put in the oracle link set even if it 

is actually incorrect. Third, some correct links may fail to be identified by participants. The above 

three threats can affect the accuracy of the actual error rate for each participant. Thus, it is 

important to expand our approach in the future by exploring how correct links should be defined 

and how to assist participants in identifying them. Fourth, some links may be harder to identify 

than others in practice. In that case, the binominal distribution used in our approach may not be 

suitable. Other probability distributions therefore need to be explored to cover this issue in the 

future. Fifth, the case we used is a small project that contains a small fraction of the source code 

and documents in the JDK1.5 system. It is not representative of large software systems. Finally, 

our approach also may show different probability error results when applied to recover links 

between artifacts in the JDK1.5-SUBSET case by using other groups of participants. 

 

We have made our new JDK1.5-SUBSET benchmark public and we allow users to access or 

download it for free. Our benchmark is represented in a spreadsheet format. Anyone can review 

the data, apply it to evaluate their traceability approaches, and probably extend it to meet their own 
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needs better. Users can download it from: http://tinyurl.com/7l3ohe4.  

 

In future work, we will extend this benchmark to cover more classes and documents. This 

benchmark could then be used to evaluate tracing approaches and procedures for a wide range of 

tasks from different areas of software engineering. We also will look at other probability 

distributions for the probability of incorrect links captured by each participant (Pr(xj)) to cover the 

issue   that   links  may  have  different  probabilities  of  being   retrieved.  Because  a   link’s   recovery   is  

highly dependent on the textual descriptions, some links may be harder than others to find due to 

ambiguous wording issues. This can lead to increased error rates on particular links. The binominal 

distribution we have applied then may become invalid as clustering may occur. However, using 

different probability distribution is unlikely to significantly affect the very low error rates in the 

oracle link set we have come up with. This is because the probability of errors in the created oracle 

link set heavily depends on the probability of participants simultaneously making the same mistake 

(Pr(yi)), which is very low. Moreover, we will look at other traceability benchmarks that have been 

used by other researchers to compare their precision and recall results with ours. We encourage 

researchers to explore how to create general traceability benchmarks and share created benchmarks 

to evaluate the performances of traceability recovery techniques.  

 

4.7 Summary 

In this chapter, we presented an approach and guidelines to help researchers to establish affordable 

and robust traceability benchmarks. Our approach comprises five steps: task identification, artifact 

selection, project selection, oracle/true traceability link set development, and evaluation metrics. 

We designed rigorous identification and verification strategies to decide whether or not a link is 

true; every link is verified by at least two analysts. The visit to requirements for traceability 

benchmarks shows that our approach can develop benchmarks that satisfy these requirements. A 

benchmark for JDK1.5-SUBSET was built by using our approach. We built a formula to compute 

the  probability  of  errors  in  the  created  oracle  link  set.  The  probability  of  making  ≥  5% link errors 

in the JDK1.5-SUBSET oracle link set is around 0.1%. The accuracy of the agreed link set at each 

stage is significantly improved by our rigorous manual identification and verification strategies. 
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The error probability results show that our approach can build a high quality oracle link set for the 

selected project.  

 

In the next chapter, Chapter 5, we employ the JDK1.5-SUBSET benchmark and three additional 

benchmarks provided by Bacchelli et al. (2010) to evaluate our new traceability recovery 

technique and prototype tool. In Chapter 6, we elaborate how to visualize traceability links 

retrieved by the traceability recovery technique. 
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Chapter 5 -- Evaluation of Traceability Link 
Recovery 

This chapter presents an evaluation of our combination traceability recovery approach, IRETrace, 

by applying six Information Retrieval (IR) models to four case studies of varying size and context. 

The evaluation results are then analyzed to explore the strengths and weaknesses of IRETrace and 

to identify some potential future work. 

 

5.1 Case Studies 

To validate the effectiveness of the three enhancement techniques we added to the IR models, 

namely Regular Expression (RE), Key Phrases (KP), and Clustering, we have set up four case 

studies based on four unrelated software systems. The first system we used for an experimental 

case study is JDK1.5-SUBSET, which was described in Chapter 4. We chose this system because it 

is a widely used open source system for Java developers and is well documented, its code is well 

commented and detailed documentation is provided. It contains 249 classes and 182 sections. We 

adopted our rigorous manual identification and verification strategies (discussed in Chapter 4) to 

build the oracle traceability link set for JDK1.5-SUBSET. The systems used for the other three 

case studies are ArgoUML, Freenet, and JMeter. We chose the three systems because they are 

open-source free software systems written in Java, contain different types of documents, and have 

their own traceability benchmarks. Alberto Bacchelli (2010) kindly provided the three systems, 

their email archives, and their oracle traceability link sets containing true links between classes and 

emails. These emails were extracted from the active development mailing list of each project. 

These development mailing lists provide a great deal of information relating to software 

development. The oracle traceability link sets for the three systems were manually built by 
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Bacchelli et al. (2010), who read all the emails and annotated them with the class entities they 

contain. Table 5.1 provides details of the four case studies. Here, “sections” is used for 

JDK1.5-SUBSET and “emails” for other three cases. 

TABLE 5.1 DETAILS OF EACH CASE STUDY 

System Classes Sections/Emails Total true/correct links 

JDK1.5-SUBSET 249 182 760 

ArgoUML 423 378 308 

Freenet 517 372 516 

JMeter 372 348 563 

We evaluated the performance of IRETrace employing two IR engines, Apache Lucene and the 

Terrier IR platform. Apache Lucence uses the Vector Space Model (VSM) to extract traceability 

links between classes and sections/emails. We also recovered links using five additional IR models, 

TF-IDF, BM25, DLH, PL2, and IFB2, supported by the Terrier IR platform. How the two IR 

engines using different retrieval IR models implement the traceability link recovery was described 

in Chapter 3. Their results are discussed in the next section. We applied three metrics - precision, 

recall, and F-measure - to measure the quality of IR models. The three metrics were described in 

Chapter 4. 

 

5.2 Evaluation Results 

To evaluate whether the three supporting techniques, RE, KP, and Clustering, ameliorate 

limitations of IR models, we compared the performances of four different combination techniques: 

an IR model; the combination of IR and RE (IR+RE); the combination of IR, RE and KP 

(IF+RE+KP); and our final approach -- IR, RE, KP and Clustering (IR+RE+KP+Clustering). The 

following sections describe the results produced by the four different combination techniques 

adopting the Lucene and Terrier engines. Every approach recovers links with a similarity score ≥  

the cut point. For example, if the cut point is 0.02, this denotes that all links having a similarity 

score ≥ 0.02 are extracted by these approaches. A cut point < 0.3 is defined to be a low cut point in 

the following discussion. A cut point >= 0.3 is defined to be a high cut point. The factor of using 

the cut-point scale in the following figures is to illustrate changes of precision, recall, or F-measure 
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results in detail between 0 and 0.1 cut points.  

5.2.1 Evaluation Results from Using the Apache Lucene Engine 

The Lucene engine utilizes VSM to index text and determine how relevant an artifact in a system 

is to a given query (Apache Lucene – Overview, 2009; Konchady, 2008). In this section, we 

present the evaluation results of the four combination approaches using VSM as the IR technique 

for the four case studies. Table 5.2 summarizes the precision and recall results of all approaches at 

the 0.02 and 0.9 cut points. In Figure 5.1, we illustrate the precision results of all approaches at all 

cut points from 0 to 0.9. Recall results of all approaches at all cut points are shown in Figure 5.2.  

 

The Basic Retrieval Approach – VSM 

First, we used VSM to recover links between documents and class entities to discover VSM’s 

performance at different cut points. It is obvious from precision results in Figure 5.1 and recall 

results in Figure 5.2 that the lower the cut point is used, the lower the precision value but the 

higher the recall value VSM obtains. Table 5.2 shows that the four cases have low precision values 

(<11%) but high recall values (>81%) at the 0.02 cut point. In other words, although VSM 

retrieves a majority of true links at low cut points from 0 to 0.1, many incorrect links are 

extracted, especially at 0 and 0.02 cut points. VSM gets the highest precision value at the 0.9 cut 

point for JDK1.5-SUBSET and ArgoUML and at 0.7 cut point for Freenet and JMeter but only 

recovers very few true links (see Figures 5.1 and 5.2); the recall values at the 0.9 cut point in all 

cases are less than 4% (see Table 5.2). Therefore, overall VSM has a low precision at low cut 

points and low recall at high cut points. 

TABLE 5.2 PRECISION AND RECALL RESULTS AT CUT POINTS 0.02 AND 0.9 USING VSM 

Approach Cut 
point 

JDK1.5-SUBSET ArgoUML Freenet JMeter 
Precision Recall Precision Recall Precision Recall Precision Recall 

VSM 0.02 10.52% 97.5% 2.34% 90.91% 3.44% 81.59% 4.64% 84.9% 
0.9 87.88% 3.82% 47.62% 3.25% 28.57% 0.78% 40% 0.71% 

VSM+RE 0.02 10.52% 97.5% 2.39% 92.86% 3.58% 85.27% 4.89% 91.83% 
0.9 93.44% 82.5% 56.72% 61.69% 65.97% 67.64% 51.05% 69.27% 

VSM+RE+KP 0.02 11.49% 96.84% 2.46% 92.21% 3.6% 85.27% 5.16% 92.01% 
0.9 93.85% 82.37% 56.72% 61.69% 66.35% 67.64% 51.05% 69.27% 

VSM+RE+KP
+Clustering 

0.02 53.29% 88.55% 53.33% 62.34% 6.82% 80.23% 10.07% 79.4% 
0.9 93.83% 82.11% 57.88% 62.01% 66.98% 68.02% 53.14% 72.11% 



128 

 

  

  
FIGURE 5.1 PRECISION RESULTS FOR THE FOUR CASES USING VSM 

  

  
FIGURE 5.2 RECALL RESULTS FOR THE FOUR CASES USING VSM 

(a) JDK1.5-SUBSET 

(c) Freenet 

(b) ArgoUML 

(d) JMeter 

(a) JDK1.5-SUBSET (b) ArgoUML 

(c) Freenet (d) JMeter 
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VSM and Regular Expressions (RE) – VSM+RE 

We then evaluated the combination of VSM and RE to verify whether RE can increase the number 

of retrieved links at high cut points, namely increase the recall values at high cut points. In Figure 

5.1, precision for JDK1.5-SUBSET, ArgoUML, and Freenet is increased at all cut points especially 

for high cut points after adding RE to VSM. Apart from a decrease at the 0.5 and 0.7 cut points, 

precision for JMeter has a slight increase at all cut points. These results show that adding RE to 

VSM improves precision at all cut points except for  JMeter’s  0.5  and  0.7  cut  points.  

 

In Figure 5.2, we observe that recall is largely increased at all cut points especially for high cut 

points. Table 5.2 shows that the recall values at the 0.9 cut point in all cases reach at least 61%; 

JDK1.5-SUBSET gets the highest recall 82.5%. This indicates that adding RE to VSM can 

increase the recall values and retrieve more true links than VSM alone at high cut points. 

 

VSM, RE, and Key Phrases (KP) -- VSM+RE+KP 

To recover links missed by VSM, we added an additional technique, KP. From Figures 5.1 and 5.2, 

compared with the combination of VSM and RE, we see that after adding KP to VSM and RE, 

precision at all cut points is increased for JDK1.5-SUBSET and ArgoUML, but recall has a 

slight decrease. However, there is no significant improvement in Freenet and JMeter. Precision 

and recall for Freenet and JMeter have no increase or decrease at all cut points (see Figures 5.1 and 

5.2). In Table 5.2, precision for all cases has a 0%-1% increase at the 0.02 and 0.9 cut points. 

Compared with VSM, adding KP increases precision at all cut points apart from JMeter’s 0.5 and 

0.7 cut points (see Figure 5.1). Moreover, recall for all cases is increased at all cut points except 

for a slight decrease at cut points from 0.02 to 0.08 for JDK1.5-SUBSET (see Figure 5.2). This 

indicates that the combination of VSM+RE+KP retrieves more true links and fewer incorrect links 

than VSM alone. 

 

VSM, RE, KP, and Clustering -- VSM+RE+KP+Clustering 

Incorporating Clustering into the last combination aims to reduce the number of incorrect links but 

not to excessively deteriorate recall. After integrating Clustering with VSM+RE+KP, precision for 

all cases is largely increased at all cut points, especially for low cut points (see Figure 5.1). 
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Many incorrect links are discarded at low cut points. Although our approach retrieves fewer 

true links than VSM alone at low cut points for JDK1.5-SUBSET and ArgoUML, at 0 to 0.02 cut 

points for Freenet, and at 0 to 0.04 cut points for JMeter, recall is only slightly reduced and still 

reaches  a  value  ≥  80%  for  JDK1.5-SUBSET, Freenet and JMeter, and > 62% for ArgoUML (see 

Figure 5.2 and Table 5.2). These show that our approach of integrating the three supporting 

techniques with VSM largely reduces the number of fault links without suffering from low recall at 

low cut points. 

  

(a) JDK1.5-SUBSET (b) ArgoUML 

  

(c) Freenet (d) JMeter 

FIGURE 5.3 F-MEASURE (Β=1) RESULTS FOR THE FOUR CASES USING VSM 

 

In summary, precision is gradually improved through incrementally adding techniques into the 

combination approach, and is greatest when incorporating all three techniques with VSM. Adding 

RE to VSM increases precision at high cut points from 0.3 to 0.9 and recall at all cut points. 

Further adding KP increases precision at all cut points for JDK1.5-SUBSET and ArgoUML but 

slightly decreases recall. Freenet and JMeter are unresponsive to the KP technique. Finally, 
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precision at low cut points from 0 to 0.1 is greatly increased by adding Clustering. Our 

combination approach is able to obtain good precision at all cut points. Moreover, recall for our 

approach is much higher than that for VSM at high cut points, but slightly less than that for VSM 

at low cut points for JDK1.5-SUBSET and ArgoUML, at 0 to 0.02 cut points for Freenet, and at 0 

to 0.04 cut points for JMeter. In addition, the F-measure results of all approaches in Figure 5.3 

show that our approach has the biggest F-measure values than other three combination approaches. 

This means that our approach is the most effective among all approaches we evaluated if precision 

and recall are considered equally important (β=1). Even if we weight recall twice as much as 

precision (β=2) or precision twice as much as recall (β=0.5), our combination approach still has 

the best performance. 

 

5.2.2 Evaluation Results from Using the Terrier IR Platform 

Although the above evaluation results show that adding the three supporting techniques (RE, KP, 

and Clustering) to VSM can improve the performance of VSM, can the performance of other IR 

models be improved after incorporating the three techniques? To answer this question, we 

conducted another evaluation using other IR models. We chose the Terrier IR platform as our IR 

engine because it provides multiple IR models to implement indexing and text retrieval. We used 

five additional IR models, TF_IDF, PL2, BM25, DLH, and IFB2, to evaluate whether their 

performances can be ameliorated by the three supporting techniques. In this section, we present the 

evaluation results of the four combination approaches by using the five IR models. 

 

TF_IDF 

First, we show the evaluation results of applying TF_IDF as the basic retrieval approach. Table 5.3 

summarizes the precision and recall values at the 0.02 and 0.9 cut points in the four case studies. 

Figure 5.4 illustrates the precision/recall results at all cut points. This figure shows recall results on 

the x-axis. The y-axis shows precision results and cut points from low to high, the lower a cut 

point is, the closer it is to the x-axis. Figure 5.4 shows that TF_IDF only retrieves many 

incorrect links at low cut points and few true links at high cut points; low precision at low cut 

points and low recall at high cut points. In Table 5.3, the precision values are less than 5.9% at 

the 0.02 cut point, and the recall values at the 0.9 cut point are less than 21.5% in all cases.  
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Adding RE into TF_IDF largely increases the recall values at all cut points especially for high 

cut points. The recall values at the 0.9 cut point reach at least 69% in all four cases (see Table 5.3). 

In other words, TF_IDF+RE recovers 49.3%-74.4% more true links than TF_IDF alone at the 0.9 

cut point in every case. Moreover, there is a slight increase in precision at all cut points except 

that JMeter suffers a decrease at the 0.7 and 0.9 cut points (see Figure 5.4). 

 

TABLE 5.3 PRECISION AND RECALL RESULTS AT CUT POINTS 0.02 AND 0.9 USING TF_IDF 

Approach Cut 
point 

JDK1.5-SUBSET ArgoUML Freenet JMeter 
Precision Recall Precision Recall Precision Recall Precision Recall 

TF_IDF 0.02 5.83% 72.94% 0.76% 80.84% 1.48% 82.75% 1.83% 77.44% 
0.9 86.49% 8.49% 50.38% 21.43% 57.14% 11.63% 70% 14.92% 

TF_IDF+RE 0.02 7.16% 90.85% 0.85% 90.91% 1.59% 88.76% 2.1% 90.05% 
0.9 92.32% 82.89% 52.28% 70.78% 62.57% 68.99% 49.69% 71.67% 

TF_IDF+RE+
KP 

0.02 3.79% 96.95% 0.79% 90.91% 1.5% 88.76% 1.86% 90.41% 
0.9 86.38% 84.08% 50.23% 69.48% 62.24% 68.99% 49.94% 74.07% 

TF_IDF+RE+
KP+Clustering 

0.02 28.52% 89.26% 26.99% 73.7% 46.48% 74.22% 43.26% 76.91% 
0.9 89.86% 83.42% 53.9% 69.48% 64.55% 68.8% 52.84% 74.42% 

 

  

  
FIGURE 5.4 PRECISION/RECALL RESULTS FOR THE FOUR CASES USING TF_IDF 

(a) JDK1.5-SUBSET (b) ArgoUML 

(c) Freenet (d) JMeter 
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FIGURE 5.5 F-MEASURE (Β=1) RESULTS FOR THE FOUR CASES USING TF_IDF 

 

The results change dramatically after adding Clustering into TF_IDF+RE+KP. Precision is 

significantly increased at all cut points especially for low cut points (see Figure 5.4). All cases 

achieve a 24.6%-45% increase at the 0.02 cut point (see Table 5.3): namely, many incorrect links 

are discarded by Clustering. Recall has a slight decrease but still reaches at least 68.8% at all cut 

points.  

 

The F-measure results of all approaches using TF_IDF as the fundamental retrieval approach in 

Figure 5.5 show that TF_IDF+RE+KP+Clustering reaches the highest F-measure values at all cut 

points. It reflects that TF_IDF+RE+KP+Clustering is the most effective among all approaches we 

evaluated  if  β=1. This combination approach still has the best performance even if β=0.5 or 2. 

 

PL2 

Second, we present the evaluation results of adopting PL2 as the basic retrieval approach. Table 

5.4 summarizes the precision and recall values at the 0.02 and 0.9 cut points in the four case 

(a) JDK1.5-SUBSET (b) ArgoUML 

(c) Freenet (d) JMeter 
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studies by using the four combination approaches. In Figure 5.6, we illustrate the precision/recall 

results at all cut points. It is obvious in Figure 5.6 that PL2 has low precision at low cut points 

and low recall at high cut points. The precision values are less than 5.9% at the 0.02 cut point, 

and the recall values at the 0.9 cut point are less than 13% in all cases (see Table 5.4). 

 

TABLE 5.4 PRECISION AND RECALL RESULTS AT CUT POINTS 0.02 AND 0.9 USING PL2 

Approach Cut 
point 

JDK1.5-SUBSET ArgoUML Freenet JMeter 
Precision Recall Precision Recall Precision Recall Precision Recall 

PL2 0.02 5.84% 72.94% 0.76% 80.84% 1.29% 72.29% 1.8% 76.02% 
0.9 85.19% 3.05% 72.73% 12.99% 69.57% 3.1% 91.67% 5.86% 

PL2+RE 0.02 7.17% 90.85% 0.85% 90.91% 1.57% 88.18% 2.11% 90.05 
0.9 92.97% 82.49% 57.89% 67.86% 66.48% 68.02% 52.13% 71.58% 

PL2+RE+KP 0.02 3.79% 96.95% 0.79% 90.91% 1.48% 88.18% 1.87% 90.41% 
0.9 92.05% 82.89% 56.4% 67.21% 66.48% 68.02% 50.9% 70.52% 

PL2+RE+KP+
Clustering 

0.02 39.48% 88.86% 41.23% 71.75% 60.3% 70.93% 50.24% 75.31% 
0.9 92.86% 82.76% 57.85% 68.18% 66.98% 68.02% 53.45% 73% 

 

  

  
FIGURE 5.6 PRECISION/RECALL RESULTS FOR THE FOUR CASES USING PL2 

 

(a) JDK1.5-SUBSET (b) ArgoUML 

(c) Freenet (d) JMeter 
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Integrating RE with PL2 largely improves the recall values at all cut points especially for high 

cut points. The recall values at the 0.9 cut point reach at least 67.8% in the four cases; PL2+RE 

recovers 54.8%-79.4% more true links than PL2 alone at the 0.9 cut point in every case (see Table 

5.4). Moreover, there is a slight increase in precision at all cut points except for a decrease at 

the 0.9 cut point for ArgoUML and Freenet, and at the 0.7 and 0.9 cut points for JMeter (see Figure 

5.6). 

 

  

  
FIGURE 5.7 F-MEASURE (Β=1) RESULTS FOR THE FOUR CASES USING PL2 

 

After combining KP with PL2+RE, JDK1.5-SUBSET obtains a slight increase in the recall at all 

cut points, ArgoUML and JMeter suffer from a decrease, and Freenet remains unchanged (see 

Figure 5.6). However, precision at all cut points decreases slightly in every case.  

 

After adding Clustering into PL2+RE+KP, precision is dramatically increased at all cut points 

especially for low cut points (see Figure 5.6). All cases achieve a 35.7%-58.8% increase at the 

0.02 cut point (see Table 5.4). Recall has a slight decrease but still reaches at least 68% at all cut 

points. This shows that Clustering reduces many incorrect links at low cut points. 

(a) JDK1.5-SUBSET (b) ArgoUML 

(c) Freenet (d) JMeter 
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Figure 5.7 shows the F-measure results of all approaches using PL2 as the basic retrieval approach. 

It is clear that PL2+RE+KP+Clustering obtains the highest F-measure values. In other words, it is 

the most effective among all approaches we  evaluated   if  β=1. This combination approach still 

has the best performance even if β=0.5 or 2. 

 

BM25 

Third, we show the evaluation results of applying BM25 as the basic retrieval approach. Table 5.5 

summarizes the precision and recall values at the 0.02 and 0.9 cut points for the four case studies. 

It shows the precision and recall results using the four combination approaches. Figure 5.8 

illustrates the precision/recall results at all cut points. BM25 possesses the same limitation as VSM, 

TF_IDF, and PL2 in low precision at low cut points and low recall at high cut points (see Figure 

5.8). In Table 5.5, the precision values are less than 6.1% at the 0.02 cut point, and the recall 

values at the 0.9 cut point are less than 11.7% in all cases.  

 

Adding RE into BM25 largely increases the recall values at all cut points, especially for high 

cut points. The four cases obtain high recall values (>67.5%) at the 0.9 cut point (see Table 5.5). In 

other words, BM25+RE recovers 55.8%-80.4% more true links than BM25 alone at the 0.9 cut 

point in every case. Moreover, there is a slight increase in precision at all cut points except that 

JDK1.5-SUBSET and JMeter suffer from a decrease at the 0.7 and 0.9 cut points, and ArgoUML 

and Freenet have a decrease at the 0.9 cut point (see Figure 5.8). 

 

TABLE 5.5 PRECISION AND RECALL RESULTS AT CUT POINTS 0.02 AND 0.9 USING BM25 

Approach Cut 
point 

JDK1.5-SUBSET ArgoUML Freenet JMeter 
Precision Recall Precision Recall Precision Recall Precision Recall 

BM25 0.02 6.04% 72.94% 0.76% 80.84% 1.69% 80.62% 2.02% 76.73% 
0.9 100% 1.99% 80% 11.69% 66.67% 2.71% 96.88% 5.51% 

BM25+RE 0.02 7.41% 90.85% 0.85% 90.91% 1.85% 88.37% 2.33% 89.88% 
0.9 93.52% 82.36% 58.59% 67.53% 66.48% 68.02% 50.52% 69.63% 

BM25+RE+KP 0.02 4.42% 96.68% 0.79% 90.91% 1.77% 88.37% 2.05% 89.88% 
0.9 93.1% 82.36% 58.1% 67.53% 66.48% 68.02% 50.52% 69.63% 

BM25+RE+KP
+Clustering 

0.02 44.66% 88.73% 45.88% 72.4% 62.5% 69.77% 51.53% 74.78% 
0.9 93.1% 82.36% 58.82% 68.18% 66.98% 68.02% 53.51% 73.18% 
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FIGURE 5.8 PRECISION/RECALL RESULTS FOR THE FOUR CASES USING BM25 

  

  

FIGURE 5.9 F-MEASURE (Β=1) RESULTS FOR THE FOUR CASES USING BM25 

(a) JDK1.5-SUBSET 

(d) JMeter (c) Freenet 

(b) ArgoUML 

(a) JDK1.5-SUBSET 

(b) ArgoUML 

(c) Freenet (d) JMeter 
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After combining KP with BM25+RE, JDK1.5-SUBSET has a slight increase in the recall at all 

cut points, ArgoUML and JMeter suffer from a decrease, while Freenet shows no difference to the 

KP enhancement (see Figure 5.8). However, precision at all cut points decreases slightly in 

every case. 

 

Adding Clustering into BM25+RE+KP increases precision significantly at all cut points, 

especially for low cut points; all cases achieve a 40.2%-60.7% increase at the 0.02 cut point (see 

Table 5.5). Recall has a slight decrease but still reaches at least 68% at all cut points (see Figure 

5.8). A large number of incorrect links are discarded after applying Clustering. 

 

The F-measure results of all approaches using BM25 as the basic retrieval approach in Figure 5.9 

show that BM25+RE+KP+Clustering is the most effective among all approaches we evaluated if 

β=1 because it achieves the highest F-measure values at all cut points. This combination approach 

still has the best performance even if β=0.5 or 2. 

 

DLH 

Fourth, we present the evaluation results of adopting DLH as the basic retrieval approach. Table 

5.6 summarizes the precision and recall values at the 0.02 and 0.9 cut points in the four case 

studies by using the four combination approaches. Figure 5.10 illustrates the precision/recall 

results at all cut points. It is obvious in Figure 5.10 that DLH has low precision at low cut points 

and low recall at high cut points. The precision values are less than 7.4% at the 0.02 cut point, 

and the recall values at the 0.9 cut point are less than 17.9% in all cases.  

TABLE 5.6 PRECISION AND RECALL RESULTS AT CUT POINTS 0.02 AND 0.9 USING DLH 

Approach Cut 
point 

JDK1.5-SUBSET ArgoUML Freenet JMeter 
Precision Recall Precision Recall Precision Recall Precision Recall 

DLH 0.02 7.37% 68.3% 0.93% 76.95% 1.65% 71.51% 2.26% 73.36% 
0.9 85% 4.51% 47.41% 17.86% 65.52% 7.36% 72.94% 11.01% 

DLH+RE 0.02 9.48% 90.05% 1.07% 89.29% 1.99% 86.63% 2.7% 88.99% 
0.9 92.7% 82.49% 51.99% 67.86% 65.13% 68.41% 51.51% 72.82% 

DLH+RE+KP 0.02 5.33% 95.89% 0.98% 88.96% 1.89% 86.43% 2.36% 89.52% 
0.9 90.68% 82.63% 51.48% 67.86% 65.13% 68.41% 51.06% 72.82% 

DLH+RE+KP
+Clustering 

0.02 40.82% 88.46% 33.99% 73.05% 55.03% 72.09% 46.21% 75.84% 
0.9 91.89% 82.63% 54.12% 68.18% 66.6% 68.41% 53.12% 74.07% 
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Adding RE into DLH changes recall dramatically: recall is largely increased at all cut points, 

especially for high cut points (see Figure 5.10). The recall values at the 0.9 cut point reach at least 

67.8% in the four cases; DLH+RE recovers 50%-78% more true links than DLH alone at the 0.9 

cut point in every case (see Table 5.6). Moreover, there is a slight increase in precision at all cut 

points except for a decrease at the 0.9 cut point for Freenet, and at the 0.7 and 0.9 cut points for 

JMeter. 

 

  

  
FIGURE 5.10 PRECISION/RECALL RESULTS FOR THE FOUR CASES USING DLH 

 

After combining KP with DLH+RE, JDK1.5-SUBSET performs better than other cases. It 

obtains a slight increase in recall at all cut points, but ArgoUML and JMeter suffer a decrease 

and there is no obvious improvement in Freenet (see Figure 5.10). However, precision at all cut 

points decreases slightly in every case. 

 

After adding Clustering into DLH+RE+KP, precision is dramatically increased at all cut points, 

especially for low cut points (see Figure 5.10). All cases achieve a 33%-53.1% increase at the 0.02 

(a) JDK1.5-SUBSET 

(d) JMeter (c) Freenet 

(b) ArgoUML 
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cut point (see Table 5.6). Recall has a slight decrease but still reaches at least 68.2% at all cut 

points. This indicates that many incorrect links are discarded by Clustering. 

 

In Figure 5.11, the F-measure results of all approaches using DLH as the basic retrieval approach 

show that DLH+RE+KP+Clustering is the most effective among all approaches we evaluated if 

β=1 because it obtains the highest values at all cut points. This combination approach still has the 

best performance even if β=0.5 or 2. 

 

  

  
FIGURE 5.11 F-MEASURE (Β=1) RESULTS FOR THE FOUR CASES USING DLH 

 

IFB2 

Finally, we present the evaluation results of using IFB2 as the basic retrieval approach. Table 5.7 

summarizes the precision and recall values at the 0.02 and 0.9 cut points in the four case studies by 

applying the four combination approaches. Figure 5.12 illustrates the precision/recall results at all 

cut points. IFB2 owns the same traits shared by other IR models discussed above: low precision at 

low cut points and low recall at high cut points. The precision values are less than 5.8% at the 

(a) JDK1.5-SUBSET (b) ArgoUML 

(c) Freenet (d) JMeter 
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0.02 cut point, and the recall values at the 0.9 cut point are less than 38.6% in all cases (see Table 

5.7).  

 

TABLE 5.7 PRECISION AND RECALL RESULTS AT CUT POINTS 0.02 AND 0.9 USING IFB2 

Approach Cut 
point 

JDK1.5-SUBSET ArgoUML Freenet JMeter 
Precision Recall Precision Recall Precision Recall Precision Recall 

IFB2 0.02 5.75% 39.79% 1% 75% 1.8% 77.91% 2.95% 71.23% 
0.9 60.18% 9.02% 22.75% 38.64% 27.01% 33.91% 38.06% 36.23% 

IFB2+RE 0.02 11.56% 85.54% 1.2% 89.61% 2% 87.02% 3.5% 86.68% 
0.9 88.03% 82.89% 30.57% 76.62% 37.75% 73.45% 39.66% 78.33% 

IFB2+RE+KP 0.02 7.58% 88.33% 1.09% 89.61% 1.93% 87.02% 3.01% 88.1% 
0.9 86.03% 83.29% 29.28% 75% 37.19% 73.45% 37.23% 76.38% 

IFB2+RE+KP
+Clustering 

0.02 42.34% 84.35% 19.64% 74.03% 27.67% 74.42% 32.91% 77.8% 
0.9 87.2% 83.16% 38.5% 73.38% 48.14% 72.67% 45.13% 76.55% 

 

  

  
FIGURE 5.12 PRECISION/RECALL RESULTS FOR THE FOUR CASES USING IFB2 

 

Adding RE into IFB2 significantly changes recall: it is substantially increased at all cut points, 

especially for high cut points (see Figure 5.12). The recall values at the 0.9 cut point reach at least 

(a) JDK1.5-SUBSET 

(d) JMeter (c) Freenet 

(b) ArgoUML 
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73.4% in the four cases. In other words, IFB2+RE recovers 38%-73.9% more true links than IFB2 

alone at the 0.9 cut point in every case (see Table 5.7). Moreover, there is a slight increase in 

precision at all cut points in the four cases. 

 

After combining KP with IFB2+RE, JDK1.5-SUBSET has better performance than other cases; it 

gets a slight increase in recall at all cut points but ArgoUML, Freenet, and JMeter suffer a 

decrease (see Figure 5.12). However, precision at all cut points decreases slightly in every case. 

 

After adding Clustering into IFB2+RE+KP, precision is dramatically increased at all cut points, 

especially for low cut points (see Figure 5.12). All cases achieve an 18.5%-34.8% increase at the 

0.02 cut point (see Table 5.7). In other words, many incorrect links are reduced at low cut points. 

Recall has a slight decrease but still reaches at least 72.6% at all cut points. 

 

  

  

FIGURE 5.13 F-MEASURE (Β=1) RESULTS FOR THE FOUR CASES USING IFB2 

 

It is obvious in Figure 5.13 from the F-measure results of all approaches using IFB2 as the basic 

retrieval approach that IFB2+RE+KP+Clustering gains the highest F-measure values. It shows that 

(a) JDK1.5-SUBSET (b) ArgoUML 

(c) Freenet (d) JMeter 
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IFB2+RE+KP+Clustering is   the  most   effective   among   all   approaches  we  evaluated   if  β=1. This 

combination approach still has the best performance even if β=0.5 or 2. 

 

In summary, the three enhancement techniques demonstrate different capabilities for improving the 

performance of IR models. The clearest conclusions from all case studies are: RE increases recall 

at all cut points, and Clustering improves precision at all cut points. The ArgoUML, Freenet, and 

JMeter cases are nearly unresponsive or have a negative response to the KP enhancement 

technique; only JDK1.5-SUBSET shows an improvement in recall. Nevertheless, the F-measure 

results show that IR+RE+KP+Clustering is more effective than the other three combination 

approaches (IR only, IR+RE, and IR+RE+KP).  

 

5.2.3 Comparison Results 

Figure 5.14 illustrates the comparative results among IR models and among the combination 

approach (IR+RE+KP+Clustering) using different IR models in each case. 

 

Figure 5.14a shows that when using IR only to extract links in JDK1.5-SUBSET, VSM has much 

better performance than other five IR models except that BM25 achieves higher precision than 

VSM at the 0.7 and 0.9 cut points. The other five IR models have very similar results. However, 

after incorporating the three supporting techniques, RE, KP, and Clustering, with the six IR models, 

they produce very similar results. Precision is between 28% and 94% and recall is between 82% 

and 90% at all cut points. Our combination approach using the six different IR models can 

achieve a very high recall (>82%) at all cut points. 

 

In Figure 5.14b, all six IR models have similar results when applying IR only to capture links in 

ArgoUML; low precision at low cut points and low recall at high cut points, but VSM has 

much lower recall than the other five IR models at high cut points. Precision and recall are 

changed dramatically after adding RE, KP, and Clustering to the six IR models. The precision 

values at all cut points are between 19% and 59%, and recall is between 62% and 74%. Although 

VSM+RE+KP+Clustering achieves much better precision results (53%-58% at all cut points), 

it has lower recall (around 62% at all cut points).  
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FIGURE 5.14 COMPARISON RESULTS BETWEEN IR ONLY AND IR+RE+KP+CLUSTERING 

(a) JDK1.5-SUBSET 

(b) ArgoUML 

(c) Freenet 

(d) JMeter 
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For Freenet, the six IR models have similar results when retrieving links (see Figure 5.14c). 

However, VSM gets lower recall than the other five IR models at high cut points. Our 

combination approaches (IR+RE+KP+Clustering) using different basic retrieval IR models 

produce very close results. They improve precision and recall but especially recall; the recall 

values are between 68% and 81% at all cut points. 

 

When using the six IR models to extract links in JMeter, their performances are very similar; low 

precision at low cut points and low recall at high cut points (see Figure 5.14d). After combining 

RE, KP, and Clustering, their performances are very close; precision is between 10% and 54% and 

recall is between 72% and 80% at all cut points. 

 

Overall, our combination approach (IR+RE+KP+Clustering) can improve the performance 

of the six IR models; precision is increased at low cut points and recall is significantly increased 

at high cut points. Moreover, our approach can narrow the gap between the results of applying 

different IR models. 

 

5.3 Performance of Our Approach 

We ran the four combination approaches (IR only, IR+RE, IR+RE+KP, IR+RE+KP+Clustering) on 

an iMac with a 2.4 GHz Intel Core Duo processor and 3GB of RAM. Figure 5.15a shows that our 

combination approach using VSM took up to 5 minutes to execute on each case. For all cases, this 

is 4-9 times more than VSM, 2-6 times more than VSM+RE, and up to 10 seconds more than 

VSM+RE+KP. 80% of the time for JDK1.5-SUBSET and at least 60% of the time for other cases 

are spent on KP extraction.  

 

For the other five IR models, our combination approach took approximately 3-5 minutes to 

execute on each case with different IR models (see Figure 5.15b-f). For all cases, this is up to 

10-25 times more than IR, 3-9 times more than IR+RE, and 1-19 seconds more than IR+RE+KP. 

Around 80% of the time is spent on Key Phrases extraction in every case. 
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Our combination approach took quite a long time in extracting key phrases from comments in 

source code. This is because KEA, the key phrases processor in our approach, uses an expensive 

machine learning algorithm for training and key phrase extraction (Witten et al., 1999). Our 

combination approach (IR+RE+KP+Clustering) thus produces a much better result than the other 

three combination techniques (IR only, IR+RE, and IR+RE+KP) but is slower. It is vastly faster 

than manually extracting links. When building the oracle link set, every participant spent one hour 

on average to identify related sections of 50 classes at the first stage. 

 

  
(a) VSM (b) TF_IDF 

  
(c) PL2 (d) BM25 

  
(e) DLH (f) IFB2 

FIGURE 5.15 EXECUTION TIMES FOR DIFFERENT COMBINATIONS WITH DIFFERENT IR MODELS 
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5.4 Discussion 

The evaluation results of using the Lucene IR engine indicate that our approach 

(VSM+RE+KP+Clustering) improves the precision of retrieved links and achieves high recall by 

utilizing the strengths of RE, KP, and Clustering to mitigate limitations of VSM. Combining RE 

with VSM augments the number of retrieved links at high cut points. Adding KP to this 

combination ameliorates the drawback of links probably missed by VSM. Finally, integrating 

Clustering discards many incorrect links produced by VSM. 

 

According to the evaluation results of using the Terrier IR platform, the five additional IR models 

(TF_IDF, PL2, BM25, DLH, and IFB2) share the same traits as VSM: low precision at low cut 

points and low recall at high cut points. Adding RE largely improves recall at high cut points. 

There is no obvious improvement after combining KP. Nevertheless, the precision values at low 

cut points are significantly increased after integrating Clustering. 

 

The three supporting techniques (RE, KP, and Clustering) demonstrate different capabilities of 

ameliorating the limitations of the six IR models. The most obvious conclusion from the 

evaluation results is that RE increases recall at all cut points. Analysis of the four case studies 

shows that documents/emails contain many class names that enable RE to match classes to 

documents/emails. Table 5.8 describes the percentages of sections/emails   that  don’t  contain  class  

names in the four cases. Only 17.58% sections in JDK1.5-SUBSET mention no class names. For 

JMeter, no class names can be found in 22.41% emails, 56.08% for ArgoUML, and 59.95% for 

Freenet. Although more than half of emails in ArgoUML and Freenet have no class names 

mentioned, each of the remaining emails contains at least one class name.  

TABLE 5.8 PERCENTAGES OF SECTIONS/EMAILS NO CLASS NAMES IN THE FOUR CASES 

Case Sections Sections/emails with no class names Percentage 

JDK1.5-SUBSET 182 32 17.58% 

ArgoUML 378 212 56.08% 

Freenet 372 223 59.95% 

JMeter 348 78 22.41% 
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The second obvious conclusion is that Clustering improves precision at all cut points. Analysis 

of the documents/emails in the four cases shows that documents/emails have inherent hierarchical 

structures that provide useful hierarchical information for Clustering to refine retrieved links. The 

documents in JDK1.5-SUBSET have clear and straight-forward inherent hierarchical structures 

based on the headings information. Although the hierarchical structures in emails are less 

straight-forward than that in JDK1.5-SUBSET’s   documents,   such structures can be established 

based on the reply information, whether an email is original or a reply to another email. 

 

The last key conclusion is that the four case study software systems have various responses to 

the KP enhancement technique. Freenet is nearly unresponsive to KP. ArgoUML and JMeter 

have a negative response to KP; precision and recall suffer a decrease except for precision in 

ArgoUML using VSM and recall in JMeter using TF_IDF. Only JDK1.5-SUBSET shows an 

improvement in precision and recall; for VSM, precision is increased at all cut points, and for the 

other five IR models, recall is improved at all cut points. Analysis of the source code reveals a low 

number of comments in source code of ArgoUML, Freenet, and JMeter. Table 5.9 describes the 

percentages of classes that do not contain comments in the four cases. In JDK1.5-SUBSET, only 

one class has no comments. 12.37% classes in JMeter do not include comments. Freenet has 

33.08% classes without comments. There are no comments provided in 38.53% classes in 

ArgoUML. Comments in the rest of classes in JDK1.5-SUBSET are better documented than those 

in ArgoUML, Freenet, and JMeter.  

TABLE 5.9 PERCENTAGES OF CLASSES WITHOUT COMMENTS IN THE FOUR CASES 

Case Classes Classes with no comments Percentage 

JDK1.5-SUBSET 249 1 0.40% 

ArgoUML 423 163 38.53% 

Freenet 517 171 33.08% 

JMeter 372 46 12.37% 

 

Moreover, there are not many  key  phrases  extracted  from  classes’  comments.  Table  5.10  shows  the  

details  of  key  phrases  extracted  from  classes’  comments  in  the  four  cases.  For  JDK1.5-SUBSET, 

there are no key phrases extracted from comments in 73 classes (29.32%). The number of 

extracted key phrases from comments in classes ranges from 1 to 10. For example, 41 classes in 
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JDK1.5-SUBSET have 2 extracted key phrases. In the other three cases, more than 80% of the 

classes have no extracted key phrases; 86.52% for ArgoUML, 90.52% for Freenet, and 82.99% for 

JMeter. Most of other classes contain only one key phrase; 25 of 57 classes in ArgoUML, 34 of 49 

in  Freenet,  and  41  of  64  in  JMeter.  In  addition,  the  key  phrases  extracted  from  classes’  comments  

contain many key words unrelated to the purpose of classes. Table 5.11 shows how many classes 

contain related key phrases. JDK1.5-SUBSET has the highest number of classes (51.95%) 

containing related key phrases. Freenet has the lowest number of classes (6.12%) with related key 

phrases extracted. ArgoUML is 19.3% and 14.06% in JMeter. These results indicate that 

JDK1.5-SUBSET is better documented than ArgoUML, Freenet, and JMeter, the key phrases 

processor is more likely to extract related key phrases from comments than the other three cases. 

TABLE 5.10 DETAILS OF CLASSES WITH EXTRACTED KEY PHRASES IN THE FOUR CASES 

Case No. of extracted key phrases 

0 1 2 3 4 5 6 7 8 9 10 

JDK1.5-SUBSET 73 44 41 31 15 13 7 8 2 4 11 

ArgoUML 366 25 14 7 4 2 3 2 0 0 0 

Freenet 468 34 7 7 0 1 0 0 0 0 0 

JMeter 308 41 11 4 4 3 0 0 1 0 0 

 

TABLE 5.11 PERCENTAGES OF CLASSES WITH RELATED KEY PHRASES IN THE FOUR CASES 

Case Classes with key phrases Classes with related key phrases Percentage 

JDK1.5-SUBSET 176 93 51.96% 

ArgoUML 57 11 19.3% 

Freenet 49 3 6.12% 

JMeter 64 9 14.06% 

 

The main limitation of our combination approach is that some true links are discarded after 

adding Clustering. This is because the group containing links related to a same class is totally 

removed when no links in the group have a similarity value larger than the threshold s value: this 

leads to no clusters for this group being created. True links in such groups are cut. 
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There are two main threats to validity in these experiments. First, we relied on human judgment to 

build the oracle link set and thus this set might not be 100% correct. To minimize that threat, we 

applied a very rigorous manual verification strategy to analyze every true link, which were verified 

by at least 3 analysts. Second, our traceability recovery technique may show different results when 

applied to other software systems with other types of documents. To alleviate this, we chose 4 

unrelated open-source systems. These systems vary in the sizes of the systems, types of documents, 

structures of documents, and the availability of comments in source code. However, we cannot 

confirm that our results are similar in closed-source systems. 

 

In future work, we will examine other key phrases extraction techniques to accelerate the 

execution time of our approach. We will allow users to edit or delete existing extracted key phrases 

in each class, or add new key phrases related to the purpose of classes. We will also allow users to 

edit the IR queries to delete unwanted key words or add new key words. We will also explore other 

techniques to cope with abbreviation, synonym, and polysemy problems by taking account of 

relations between terms or words. Furthermore, to increase the similarity value between a class 

and a section that are really relevant to each other, we will adjust the similarity score of each 

retrieved   links   based   on   the   frequency   of   the   class’s   occurrence   in   the   section   before   using  

Clustering to refine retrieved links. For example, if the class name is mentioned n times in the 

section, the similarity value of them is increased by 20% + n%. If the class methods/functions are 

mentioned in the section, the similarity between them is further increased by 20%. If the section 

also contains comments in the class, the similarity value takes a further increase of 20% for class 

comments, 10% for method/function comments, 5% for other comments. In addition, we will 

explore the impact of other techniques to refine the extracted links  such  as  our  visual  IDE’s  user  

creation and editing of links and both user and automated ranking of relationship quality. 

 

Finally, according to the experimental results, we examine whether our traceability recovery tool, 

IRETrace, meets the requirements for a successful recovery technique identified in Chapter 2 

1) Aim for target end users who want to get to know the target system. Our recovery tool does 

not require users to have any knowledge about the traced system. Everyone who wants to 

learn a system can use our tool to recover links between artifacts in the system. 

2) Support the ability to automatically capture traceability links between artifacts. Our 
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recovery tool does not require human intervention during the traceability link recovery 

process. It can automatically capture links in the selected system. 

3) Support the ability to rank the retrieved links to allow end users to select the best set of 

links. Our recovery tool ranks links in descending order based on their similarity values. 

4) Retrieve as many correct links as possible and as few incorrect links as possible; aim to 

support both high precision and high recall at all cut points. The experimental results show 

that our recovery tool can achieve reasonably high precision and recall at any cut point for 

the four cases. Integrating the three enhancement techniques, RE, KP, and Clustering, with 

IR models can largely increase the number of correct links retrieved at high cut points and 

significantly reduce the number of incorrect links recovered at low cut points. 

5) Minimize or mitigate the issue of dependency on cut points. The experimental results show 

that our recovery tool significantly narrows the gap between the results of applying 

different IR models to recover links. Moreover, our tool can produce reasonably high 

precision and recall at all cut points and narrows the gaps among the precision and recall 

results generated at different cut points. 

6) Provide support for multi-format systems and any kinds of artifacts produced during the 

software development life cycle. Currently, our recovery tool only supports systems that are 

written in Java and only recovers links between source code and documents. Extension to 

support multi-format systems and recovering links between any two artifacts is to be the 

subject of future work.  

 

Overall, our recovery tool can meet all requirements for a successful traceability recovery 

technique except for failing to support multi-format systems and to capture links between any two 

artifacts.  

 

5.5 Summary 

This chapter described and analyzed the evaluation results of the four combination approaches (IR 

only, IR+RE, IR+RE+KP, and IR+RE+KP+Clustering) by using the six IR models (VSM, TF_IDF, 
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PL2, BM25, DLH, and IFB2) as the basic retrieval approaches in the four case studies. Our 

experimental results demonstrate that our combination recovery approach can effectively eliminate 

some limitations of VSM by taking advantage of the strengths of the three enhancement techniques 

(RE, KP, and Clustering). Adding RE can significantly augment the number of true links at all cut 

points. The KP enhancement can retrieve more true links than IR alone. Combining Clustering 

significantly reduces the incorrect links at all cut points. Furthermore, the F-measure results of all 

approaches show that the combination of IR, RE, KP, and Clustering is the most effective among 

all   approaches  we   evaluated   if   β=0.5,   β=1,   or   β=2.  Our approach improves precision at all cut 

points, reduces incorrect links at low cut points, and increases the number of true links at high cut 

points. Our approach provides reasonable precision and recall at all cut points. 

 

In the next chapter, we elaborate on how we can visualize traceability links retrieved by our 

traceability recovery technique. Our link visualization tool allows users to configure cut points and 

to select some or all techniques to apply to extract links in the traced system. Furthermore, this tool 

allows users to create and edit links to refine extracted links. 
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Chapter 6 -- Traceability Link Visualization 

The third major challenge we face in software traceability research and practice is how to 

efficiently and effectively visualize traceability links retrieved by a traceability recovery technique 

to support the comprehension, browsing, and maintenance of links in a system. This chapter 

describes a combination visualization system that we have invented, called DCTracVis, to support 

software engineers to better recover, browse, understand, and maintain links in a natural and 

intuitive way. 

 

6.1 Introduction 

Many traceability recovery techniques (described in Chapter 2) have been developed to 

automatically or semi-automatically extract high quality traceability links between artifacts in a 

system, that is, to retrieve as many correct links and as few incorrect links as possible. While these 

link recovery techniques are very powerful, a key unsolved issue remains: how do we support 

software engineers to effectively and efficiently understand, browse, and maintain these retrieved 

traceability links? It is commonly believed that software visualization techniques can help 

software engineers understand complex data, support meaningful interaction between engineers, 

and support impact analysis (Asuncion et al., 2007; Roman & Cox, 1992). Visualizing traceability 

links enables users to recover, browse, and maintain inter-relationships between artifacts in a 

natural and intuitive way (Marcus et al., 2005). However, it is a major challenge to visualize an 

overwhelmingly large number of traceability links effectively and efficiently. This is because a 

software system with a large number of artifacts, and thus a very large number of traceability links 

between artifacts, quickly leads to severe scalability and visual clutter issues (Cornelissen et al., 

2007; Holten, 2006; Merten et al., 2011). Moreover, the efficient visualization of both the artifact 
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structures themselves and the enormous number of inter-relationships between artifacts are far 

from trivial (Cornelissen et al., 2007; Marcus et al., 2005). 

 

Our particular focus in this research is on traceability between classes in source code and sections 

in documents that are written in natural language and are produced during the software 

development process, e.g. requirements, design documents, tutorials, developer or user guides, and 

emails. The objective of our research is to provide software engineers with an effective 

visualization environment enabling them to retrieve, create, browse, edit, and maintain traceability 

links between artifacts effectively and efficiently. With this environment, engineers can trace 

relationships between various documents and source code, automatically recover traceability links 

at low cost and high accuracy, easily create and change links as well as conveniently browse and 

maintain links. In terms of size, we are interested in systems with potentially several hundreds to 

even thousands of classes, dozens if not hundreds of documents, and many tens of thousands to 

hundreds of thousands of traceability links between classes and document elements. 

 

Traditionally, traceability links are stored or represented in tabular formats, e.g. a matrix. Despite 

their simplicity, these approaches cannot provide a global overview and they fail to support users 

in maintaining or interpreting links easily and conveniently (van Ravensteijn, 2011; Voytek and 

Nunez, 2011). Although using a graph to display links improves on these shortcomings, graphs 

adopted by most traceability visualization systems to date (described in Chapter 2) have suffered 

from visual clutter (i.e. are overcrowded) when dealing with large numbers of traceability links 

between artifacts. Visual clutter is caused by displaying an overwhelming number of traceability 

links on top of a graph structure, where artifacts are represented as nodes and traceability links as 

edges between related nodes (Holten, 2006). This then impedes the ability to efficiently browse, 

analyze, and maintain traceability links between artifacts (Holten, 2006; van Ravensteijn, 2011). 

These approaches simply cannot scale to the size of systems and number of traceability links we 

are interested in supporting. 

 

In this chapter, we propose a combination visualization approach that combines enclosure and 

node-link representations to reduce visual clutter and to allow the visualization of the global 

structure of traces and a detailed overview of each trace, while still being highly scalable and 
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interactive. We adopt two visualization techniques to achieve these goals: treemap and hierarchical 

tree. A treemap view displays a tree structure by means of enclosure and provides an overview of 

inter-relationships between artifacts. In order to reduce visual clutter, we employ colours to 

represent the relationship status of each node in the treemap, instead of directly drawing edges 

between related nodes on top of the treemap. We use two hierarchical trees that can be expanded 

and contracted to visualize links. One hierarchical tree visualization is used to illustrate detailed 

link information about each trace. The other is used to display the whole project under trace and 

traceability links in it to communicate the hierarchical structure of the project. We adopted this 

general visualization approach to design and construct a traceability visualization system called 

DCTracVis. This system includes navigator, search, and filter functions to help engineers locate 

particular nodes and filter out uninteresting links. We have conducted a usability study to assess 

the usefulness of our traceability visualization system for large traceability visualization problems. 

The results of this evaluation show that our visualization system is both easy to use and can 

effectively and efficiently help software developers recover traceability links and comprehend, 

browse, and maintain large numbers of links. 

 

We firstly present the key motivation for this research. We then describe the design of our 

traceability visualization system, followed by a description of its implementation. We report the 

results of a usability study and outline possible future research in Chapter 7. 

 

6.2 Motivation 

Consider manually verifying traceability links retrieved by a traceability recovery technique 

without the support of any visualization tools. In Chapter 4, we discussed how we managed to 

establish the oracle link set for JDK1.5-SUBSET. At the first stage of the development of the 

oracle link set, six participants manually captured links between 294 classes and 182 sections. 

They identified 545 links. As these retrieved links may contain incorrect links or miss some correct 

links, five more participants manually verified them without the support of traceability 

visualization tools to delete incorrect links and/or to add missing links. Each of them spent at least 

70 minutes in the link verification. They commented that it was a tedious, boring, and 
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time-consuming task and stated that they would greatly favour traceability visualization tools to 

support them to conduct the verification task. For larger systems, it would be an enormous – if not 

an impossible – workload to verify upwards of thousands of links. Given this, what functionality 

should a traceability visualization tool support to ease workload and help engineers maintain 

complex software systems? 

 

Consider the following scenario. You are a software engineer working on a major software 

development project. The project manager asks you to prepare a report about the development 

progress of the project. You need to know what requirements are fully implemented and tested, 

what requirements are fully implemented but not tested, and what requirements have not been 

implemented. You first create links between these artifacts and then work out these data to 

complete the project’s development progress report. The project manager later informs you that 

one of the requirements has been changed. You need to know the impact of such a change: which 

code, supporting documents, and tests will need to be modified? Looking at the previously created 

links between this requirement and other artifacts, you can determine the impacted artifacts. You 

then need to understand those impacted artifacts through reading their documentation and then 

modifying them to meet the changed requirements. 

 

The previous scenario often happens to everyone who works in the software engineering field. 

They can be exposed to similar situations at one point or another. In this scenario, the engineer 

needs to create links between artifacts, find a specific artifact, know the dependency information of 

the selected artifact, and read their documentation to understand and modify them. These needs 

can be met through the support of a suitable traceability visualization tool. Such a visualization 

tool provides the functionality of capturing links between artifacts automatically, editing retrieved 

links to remove incorrect links or add correct links, providing navigator or search to assist users in 

locating a specific artifact, showing the dependency information of the selected artifact, and 

supporting navigation of the system and its documentation to help engineers understand and 

modify artifacts. Then an issue arises: how to effectively and efficiently visualize these retrieved 

links to browse and maintain them? 

 

In Chapter 2, we discussed some representative visualization techniques or systems to date that 
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have been used to display links retrieved by traceability recovery techniques. Software engineers 

traditionally store or represent traceability links in tabular formats using a spread-sheet, matrix, 

cross-references, or a database. Matrix and cross-reference techniques are very common traditional 

methods of representing traceability links. A traceability matrix is easy to understand and provides 

a quick overview of relations between two artifacts if the set of artifacts is small (van Ravensteijn, 

2011). However, the matrix misses the inherent hierarchy and becomes unreadable when the set of 

artifacts becomes large (Voytek & Nunez, 2011). The cross-reference pattern is also easy to 

understand but cannot provide the overall structure of traces (van Ravensteijn, 2011). It is difficult 

to identify individual traceability links as they are lost in this table structure. The approach, 

therefore, does not scale to large numbers of classes and documents. 

 

More recently, research has focused on displaying links in a graph or tree due to the convenience 

and ease of browsing and maintaining the links. Graph-based visualization techniques represent 

artifacts as nodes and traceability links between artifacts as edges to form a graph. Graphs can 

show the overall overview of relationships between artifacts and allows one to easily browse links. 

 

ADAMS (Lucia et al., 2004) supports specifying links between pairs of artifacts. Traceability links 

are organized in a graph where nodes are represented by the artifacts and edges are the traceability 

links. After users select a source artifact, the graph is built starting from a source artifact by finding 

all the dependencies of a specific type that involve the source artifact either as source or target 

artifact (ADAMS, 2009). Within the graph, users can identify traceability paths, i.e. sets of 

artifacts connected by traceability links. This graph performs very well in displaying all links of a 

selected source artifact. However, it fails to support the display of multiple artifacts’   links.  

Cleland-Huang and Habrat (2007) proposed a hierarchical graphical structure to visualize links, in 

which leaf nodes are represented by requirements while titles and other hierarchical information 

are represented as internal nodes. This graph visualization provides a birds-eye-view of the 

candidate links and their distribution across the set of traceable artifacts. It also allows the user to 

explore   groups   of   candidate   links   that   naturally   occur   together   in   the   document’s   hierarchy  

(Cleland-Huang & Habrat, 2007). Unfortunately, this visualization becomes very large as the data 

set gets bigger. Moreover, it uses the display space inefficiently. Zhou et al. (2008) developed 

ENVISION, adopting a hyperbolic tree view with the enhancement of a “focus+context”  approach 
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to facilitate software traceability understanding. The results of their empirical study show that this 

view allows users to maintain a global view of links as well as being able to dive deep into an 

interesting traceability path. However, this view is also not space-efficient. 

 

TBreq (LDRA, 2012), a commercial application, provides end-to-end traceability from 

requirements to design, code, and test. It lists artifacts horizontally and draws linear edges between 

related items of artifacts. It cannot provide the hierarchical structure and can quickly produce 

severe visual clutter for a system with medium to large numbers of artifacts. TraceVis, developed 

by van Ravensteijn (2011), visualizes a dynamic list of hierarchies and adjacency relations. It uses 

icicle plots and hierarchical edge bundling (Holten, 2006) techniques to support the hierarchical 

structure and to reduce visual clutter. Icicle plots are used to represent hierarchies vertically. 

Adjacent relations are represented by drawing edges between related items. Edges are displayed 

using splines and are grouped using hierarchical edge bundling. TraceVis supports an overview of 

as well as a detailed insight into inter-related, hierarchically organized data. However, it uses space 

inefficiently and can result in visual clutter if the dataset is large or lateral relations visualized (van 

Ravensteijn, 2011). 

 

Merten et al. (2011) utilized sunburst and netmap techniques to display traceability links between 

requirements knowledge elements. The sunburst visualizes the hierarchical structure of the project 

under trace. Nodes are arranged in a radial layout and are displayed on adjacent rings representing 

the tree structure. The netmap aims to represent links between requirements. The nodes in a 

netmap are in a circle and are segments of exactly one ring in the sunburst. Traceability links are 

drawn by using linear edges in the inner circle. Although the two techniques can visualize the 

overall hierarchical structure and can easily browse links, the graph can become very large leading 

to visual clutter when dealing with a large number of traceability links. EXTRAVIS, developed by 

Cornelissen et al. (2007) employs a hierarchical edge bundling technique (Holten, 2006) that 

groups edges based on the structure of a hierarchy to reduce the visual clutter. Using a circular 

bundle view shows the structure of the system under trace and represents execution traces. The 

hierarchies are shown by using an icicle plot based on mirrored layout. A global overview of traces 

is provided by a massive sequence view. However, when considering a large number of traces, it 

becomes difficult to discern the various colors and to prevent bundles overlapping. 
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In addition to traditional approaches and the various graph representations similar to those 

reviewed above, there are several other approaches that have been used to visualize traceability 

links. Poirot (Cleland-Huang & Habrat, 2007; Cleland-Huang et al., 2007) displays trace results in 

a textual format. It uses confidence levels, user feedback checkboxes, and tabs separating likely 

and unlikely links to assist the analyst in evaluating candidate links. However, it cannot visualize 

overall structure. TraceViz (Marcus, 2005) employs a map consisting of coloured and labeled 

squares to display traceability links for a specific source or target artifact. It allows users to clearly 

visualize all links of a selected source artifact or a chosen target artifact. Unfortunately, it is unable 

to display links for multiple artifacts at the same time. LeanArt (Grechanik et al., 2007) utilizes an 

intuitive point-and-click graphical interface to enable users to navigate to program entities linked 

to elements of UCDs by selecting these elements, and to navigate to elements of UCDs by 

selecting program entities to which these elements are linked. The characteristic of LeanArt is to 

select a source, and it then displays targets linked to this source. It also fails to present all links at 

the same time. A 3D approach (Pilgrim et al., 2008) is introduced to enhance traceability 

visualization between UML diagrams. Artifacts are projected on layered planes. Traces between 

different levels of abstraction are visualized by using edges between planes. Although presenting 

more content at once and grouping related information together, the 3D approach adds more 

complexity to the graph, and still leads to visual clutter when the data set becomes large. 

 

To varying degrees, none of traceability visualization techniques developed so far can visualize an 

overwhelmingly large number of traceability links effectively and efficiently without scalability 

and visual clutter issues. Users of such link visualizations not only need scalable, effective 

representations, but must also be able to navigate complex software systems and their 

documentation to help them recover, browse, and maintain inter-relationships between artifacts in 

a natural and intuitive way (Cornelissen et al., 2007; Holten, 2006; Kienle & Muller, 2007; Marcus 

et al., 2005; Merten et al., 2011). This leads us to the following set of requirements for a 

traceability visualization technique. (The more detailed requirements for a traceability 

visualization system was described in Chapter 2.) 

 Ability to use the display space efficiently when representing a large number of artifacts 

in the system under trace. 
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 Ability to remedy visual clutter issue when visualizing traceability links in the system. 

 Ability to show the whole structure of the system. 

 Ability to display the global overview of traceability links in the system. 

 Ability to illustrate the detailed dependency information of each link. 

 

These issues motivated us to develop a visualization technique to enable engineers to recover, 

browse, modify, and maintain links effectively and efficiently. The discussion in Chapter 2 on 

visualization techniques showed that combining different visualization approaches can display 

elements efficiently. For example, combining node-link representations and enclosure offers a 

trade-off between an intuitive display and efficient space usage for visualizing large numbers of 

artifacts in a system (Graham & Kennedy, 2010; Holten, 2006; Shneiderman, 1992; van Wijk & 

van de Wetering, 1999); node-link representations (e.g. the hierarchical tree) communicate 

structure readily, and the enclosure layout (e.g. the treemap) is very effective for displaying large 

numbers of elements. Similar to our approach of combining several traceability recovery 

techniques   to   mitigate   each   other’s   weaknesses,   our approach here is to combine several 

visualization techniques to provide efficient visualization.  

 

6.3 DCTracVis -- Traceability Visualization between 

Documents and Source Code 

In order to provide efficient traceability visualization, we have explored an approach of combining 

enclosure and node-link representations to display the overall structure of traceability links and 

provide a detailed overview of each link while still being highly scalable and interactive. We 

utilize two visualization techniques to achieve these goals: treemap and hierarchical tree. The 

treemap view is adopted to display the structure of the system under trace and the overall overview 

of links. We utilize colours to differentiate the relationship status of each node in the treemap 

instead of drawing edges directly over the treemap. The latter approach quickly leads to visual 

clutter. We adopt two hierarchical trees that can be expanded and contracted to visualize links. A 

whole hierarchical tree (the whole HT) is used to display the whole system and links in it to 
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communicate the hierarchical structure of the system. When an item is selected in the treemap 

view or the whole HT, a detail hierarchical tree (the detail HT) is built to provide the detailed 

dependency information of the selected item. The detail HT is treated as a supplement to the 

treemap and the Whole HT. Any change to links made in the treemap is reflected in the two 

hierarchical trees, and vice versa. We then applied this approach to develop a novel traceability 

visualization system, called DCTracVis, to represent links between documents and source code. 

DCTracVis also contains navigation, search, and filter functions to help engineers find particular 

nodes and filter out unwanted links. The following sections describe the two techniques, how we 

support editing of links, and other functionality in detail. 

 

6.3.1 Treemap View 

In Chapter 2, we discussed that the treemap technique adopts a space-filling layout technique to 

represent a tree structure by means of enclosure, which places child nodes within the boundaries of 

their parent nodes and encloses each group of siblings by a margin (Shneiderman, 1992). This 

layout makes it an ideal technique for displaying a large tree and using display space effectively 

(Graham & Kennedy, 2010; Holten, 2006; Shneiderman, 1992; van Wijk & van de Wetering, 

1999). Although the treemap technique cannot communicate the hierarchical structure very well, it 

can convey the high-level, global structure of a system under trace. It is also effective in helping to 

answer questions such as what artifacts the system has, how many items each artifact has, which 

artifact contains the most numbers of items, and how artifacts are organized. 

 

In order to display traceability links between artifacts in a treemap, the straightforward way is to 

add relationships between related nodes as edges over the treemap as in (Holten, 2006) (see Figure 

6.1). Figure 1a shows straight/linear edges between related nodes on top of the treemap. Figure 

6.1b uses curved link edges. These two approaches quickly lead to visual clutter if large numbers 

of edges are displayed. Using a hierarchical edge bundling technique can alleviate this issue. 

Figure 6.1c and d group edges based on the structure of a hierarchy (Holten, 2006). However, 

hierarchical edge bundling can cause bundles to overlap along the collinearity axes (see the 

encircled region in Figure 6.1d) if dealing with a large number of collinear nodes in the treemap. 

All these approaches have difficulty discerning the source and target items of a link if not using 
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other enhancement techniques, e.g. a  “focus+context” technique. For example, it is hard to know 

that edges circled (1 and 2) in Figure 6.1c are from where to where. Moreover, it is hard to discern 

the structure of the system conveyed in the treemap because of the edges drawn on top of the 

treemap. In addition, it is easy for it to become overcrowded when considering large numbers of 

links. 

 

  
(a) Linear edges (b) Curved edges 

  
(c) Bundled edges (d) Bundled edges 

FIGURE 6.1 DISPLAYING TRACEABILITY LINKS BETWEEN NODES USING (A) STRAIGHT/LINEAR EDGES; 
(B) CURVED LINK EDGES; (C) AND (D) EDGES GROUPED BY HIERARCHICAL EDGE BUNDLING. 

(HOLTEN, 2006) 

 

In order to ameliorate these issues, we introduce colours to show the relationship status of each 

node instead of drawing edges over the treemap. The relationship status of each node describes 

whether the node has links and how many links it has. We use three colour ranges to show the 
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status of each node (see Table 6.1). They are arbitrarily chosen. If a node has fewer than six links, 

yellow-based colours are used. If the number of links is fewer than 16 but more than 5, gray-based 

colours are used. Otherwise, we use green-based colours. For each colour range, the shading of the 

colour indicates intermediate values (lighter implies fewer links, darker more links). Based on 

colours on each node without additional edges on top of the treemap, it is easy to discern the 

structure of the traced system and an overall overview of the scale of traceability links.  

 

TABLE 6.1 THREE COLOUR RANGES INDICATING THE NUMBER OF LINKS EACH NODE HAS 

1. 0 ≤ No. of links < 6: Yellow-based    
     

2. 6  ≤  No.  of  links  <  16: Gray-based    
     

3. No.  of  links  ≥  16: Green-based    

 

6.3.2 Hierarchical Tree Views 

The hierarchical tree (discussed in Chapter 2) is an intuitive node-link based representation that 

uses lines to connect parent and child nodes to depict the relationship between them (Graham & 

Kennedy, 2010; Holten, 2006). This representation is easy to understand, even to a lay-person, and 

it communicates hierarchical structure very well (Graham & Kennedy, 2010; Holten, 2006). There 

are two approaches to visualize traceability links using the hierarchical tree view. The first 

approach is to draw edges between related children nodes (see Figure 6.2a). Edges can be grouped 

using the hierarchical edge bundling technique. However, the approach suffers from overlapping 

bundles along the collinearity axes (see the encircled region in Figure 6.2a) and hence visual 

clutter if dealing with rather large numbers of traceability links (Holten, 2006). The second 

approach is to directly add traceability links as children of leaf nodes (see Figure 6.2b). In other 

words, the original leaf nodes (green circle nodes in Figure 6.2b) in the hierarchical tree become 

inner nodes and parents of traceability links (gray rectangle nodes in Figure 6.2b). For example, if 

a child node is related to three other nodes, we additionally add the three nodes under the child 

node. The second approach can ameliorate problems with the first approach. 
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(a) Links as edges between nodes (b) Links as children of nodes 

FIGURE 6.2 SHOWING TRACEABILITY LINKS IN THE HIERARCHICAL TREE LAYOUT: (A) LINKS AS 

EDGES BETWEEN NODES (HOLTEN, 2006), (B) LINKS AS CHILDREN OF NODES 

 

As the hierarchical structure in the treemap is difficult to perceive, we apply a left-to-right 

hierarchical tree (“the whole HT”) that can be expanded and contracted to display the whole 

system under trace. We use the second approach to display traceability links as children of artifacts 

in the system. We also employ the three colour ranges in Table 6.1 to differentiate the relationship 

status of each node; whether the node has links and how many it has. However, for nodes with no 

links (No. of links = 0), they are coloured white to distinguish them from other nodes that have at 

least one link. 

 

We employ a left-to-right hierarchical tree layout (“the detail HT”) to show detailed information of 

a single item once the item is selected in the treemap or the whole HT. This second approach is 

adopted to display traceability links for the selected item. It illustrates two levels of dependency 

information. The first level is artifacts that are related to the selected item. The second level is 

other artifacts that are dependent on the artifacts shown in the first level. This view shows not only 

artifacts related to the item but also dependency information for these artifacts. Moreover, we use 

red-based colours to show the similarity score levels of links. The darker the colour the higher the 

similarity score a link has. In addition, providing the hierarchical tree with an ability to expand and 

contract makes it space-efficient. 

 

Figure 6.3 shows a sequence diagram describing the visualization of links between artifacts in a 

traced project. When a user clicks the traced project, links between artifacts are recovered. A new 
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visualization view is then created to display retrieved links in the treemap and the whole HT. When 

the user clicks a node in the treemap or the whole HT, a new detail view is created to display the 

detailed link information of the selected node in the detail HT. 

 

FIGURE 6.3 THE SEQUENCE DIAGRAM FOR VISUALIZING LINKS IN A PROJECT 

 

6.3.3 Editing Traceability Links 

Initially we use IRETrace (discussed in Chapter 3) to extract a candidate set of traceability links 

from a target system and its documentation. While our combination traceability recovery algorithm 

(discussed in Chapters 3 and 5) has both high precision and high recall compared to other 

techniques, it still suffers from recovering some incorrect trace links and misses some correct links. 

To address this, we allow end users of DCTRacVis to delete incorrect links and to add correct links 

when required. 

 

When a node is selected in the treemap or in the whole HT, its related nodes are highlighted and a 

detail HT is built starting from the selected node and connecting to nodes related to it and all 

dependencies of these nodes. Users are then able to edit links in the treemap, the whole HT, and 

the detail HT views. Our visualization tool provides a popup menu allowing users to delete or 

change existing traceability links, add a new traceability link, and change the similarity scores (0 ≤ 



166 

 

similarity score ≤ 1) of existing links.  

 

A changed link or a newly added link is assigned the highest similarity score (=1). The three views 

are interactive: any change made in one view is reflected in the other two views and is saved. For 

instance, if an existing link is deleted in the treemap, it is deleted in the whole HT and detail HT as 

well, and it is not re-added if the end user runs the link extraction process again. In order to assist 

users in editing traceability links, we provide the full name or the similarity value when users 

hover the mouse over a node and the detailed content of a node when users click “Show Content” 

in the popup menu. 

 

6.3.4 Other Functionality 

The other functionality we provide includes navigation, search, and filter support. All artifacts in 

the traced system are indented when listed in the navigator. This allows users to browse the list to 

find a specific artifact and then to locate this artifact in the treemap and the whole HT and display 

the detailed link information of this artifact in a detail HT. The search function enables users to use 

key words to find a particular node in the treemap and the whole HT. There are three methods to 

filter traceability links. First, users select different traceability recovery techniques to retrieve links. 

Second, retrieved links can be filtered out some unwanted links by using the threshold or cut point 

level. Only retrieved links that have a similarity score greater than or equal to the threshold are 

visualized. Third, our visualization tool allows users to filter out some uninteresting artifacts 

according to the number of links. Only artifacts that have more than or equal to the number of 

links are highlighted.  

 

6.4 Implementation 

A prototype of our traceability visualization system has been developed. This prototype is 

seamlessly embedded within the Eclipse integrated development environment (IDE). It 

automatically extracts relationships between sections in documents and classes in source code and 

visualizes these retrieved links using the treemap and the hierarchical trees. Figure 6.4 illustrates 
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the architecture of our traceability visualization system, DCTracVis. First, a project under trace 

needs to be imported into Eclipse. If documents in the project under trace contain sections, they 

need to be divided into smaller documents based on headings or sections. For example, if a PDF 

document contains 10 headings, it is split into 10 sub-documents; the contents of each are the text 

between its heading and the following one. Next, source code and these smaller documents are 

passed to our automated traceability recovery engine, IRETrace (discussed in detail in Chapter 3) 

(1). This engine retrieves traceability links between classes and sections using a composite set of 

traceability recovery techniques (discussed in detail in Chapter 3) (2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6.4 ARCHITECTURE OF DCTRACVIS 

 

These retrieved traceability links are then input into our traceability visualization system, 

DCTracVis. They are filtered based on: (a) a threshold level, at which only links with a similarity 

score larger than the threshold are shown to users, and (b) the number of links level, at which only 

nodes having more than or equal to the number of links level are shown to users (3). After filtering, 

the candidate traceability links and the structure information of the project are visualized using the 

treemap and hierarchical tree techniques (4). Our visualization is implemented using the Prefuse 

Information Visualization Toolkit (Prefuse, 2011). Prefuse is an open source toolkit written in Java 
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and supports a rich set of features for data modeling, visualization, and interaction (Prefuse, 2011). 

We employ Prefuse to display artifacts and links in the treemap and the hierarchical tree (5). 

Navigator and search functions are provided to assist users in finding a specific node. 

 

6.4.1 User Interface of DCTracVis 

Before tracing relationships between artifacts in a system and visualizing retrieved links, artifacts 

in the system needs to be imported into Eclipse. In  the  “Traceability  perspective”,  users  select  the  

project  in  the  navigation  view  and  click  the  “Start  Traceability”  button  in  the  popup  menu  (see  the  

circled area in Figure 6.5) to start recovering links and then visualizing them.  

 

 
FIGURE 6.5 HOW TO START VISUALIZING LINKS IN A PROJECT UNDER TRACE 

 

Figure 6.6 shows an example of the user interface of our DCTracVis prototype. This screen dump 

shows an example of visualizing traceability links between classes and sections in the 

JDK1.5-SUBSET, as discussed in Chapter 4. This case contains 249 classes and 182 sections. 

Traceability links between them are captured using IRETrace, as discussed in Chapter 3. Our 

traceability perspective includes three parts: navigation view, edit area, and traceability view. The 

left part is the navigation view, which displays details of a project under trace, e.g. headings inside 

PDF documents in the JDK1.5-SUBSET. The top right area is the edit area that shows java files or 

documents and allows users to edit them using functions provided by Eclipse IDE. The bottom 

right area is the traceability view that visualizes extracted links. Our visualization prototype can 

provide software engineers with both IDE and traceability support. 

Navigation view 
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FIGURE 6.6 THE USER INTERFACE OF DCTRACVIS USING THE TREEMAP 

 

 
FIGURE 6.7 THE USER INTERFACE OF DCTRACVIS USING THE WHOLE HT 

 

Edit area Navigation view Traceability view 
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The traceability view includes four parts. The top left area is the Navigator that lists classes and 

documents in the traced project in indented form. The bottom left area is the Function Panel that 

includes Search and Filter functions. The top right area is the treemap view (see Figure 6.6) or the 

whole HT view (see Figure 6.7). The bottom right area is the detail HT view that displays the 

detailed information of the selected node in the treemap or the whole HT. For example, in Figure 

6.6, a node named “Binding”  with  cyan  colour  in  “javax.naming”  package  is  selected.  All related 

nodes are coloured magenta in the treemap. Detailed link information is displayed in a detail HT. 

Simultaneously the node “Binding” in the whole HT (see Figure 6.7) is highlighted. Its links are 

shown as children of this node. 

 

6.4.2 Treemap View 

The treemap in Figure 6.8 is divided into two parts: one for packages and the other for documents. 

Classes are displayed in the packages part and sections are in the documents part. Each node is 

coloured using the three colour ranges (discussed in Section 3) according to the number of 

traceability links they have.  

 

 

 

 
 

FIGURE 6.8 THE TREEMAP VIEW 

Packages Documents 

Description area Selected node: Binding Nodes related to the selected one 
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When a user hovers the mouse over a node, the name of the node is described in the “Description 

area” at the bottom of the treemap, and all related nodes are highlighted using magenta. If the node 

is clicked, it is highlighted with cyan and a detail HT showing its detailed dependency information 

is built. For example, in Figure 6.8,  the  node  “Binding”  and coloured cyan in the “javax.naming”  

package is selected, and all related nodes are coloured magenta. Detailed link information is 

displayed in a detail HT (see Figure 6.11). 

 

6.4.3 Hierarchical Tree Views 

The whole Hierarchical Tree (HT) shows the whole project under trace and links in it (See Figures 

6.9 and 6.10). Artifacts are displayed based on the hierarchical structure of the traced project. 

Classes and sections are coloured with the three colour ranges (discussed in Section 3) based on 

the number of links they have. Nodes with no links are white, to distinguish them from other nodes. 

The hovered-over  or  selected  node’s name  is  shown  in  the  “Description  area” at the bottom of the 

whole HT. Traceability links of each node become their children nodes. Links are composed of 

two parts: the first part is names of artifacts and the second is names of items in corresponding 

artifacts. For example, in Figure 6.9, a class “Binding”  in  the “javax.naming” package is selected, 

its links are shown directly after this node and are also displayed in a detail HT (see Figure 6.11). 

Each  link  starts  with  the  document’s  name  followed  by  the  section’s  name.  

 
 

FIGURE 6.9 THE WHOLE HT VIEW WHEN A CLASS IS SELECTED 

Description area 

Selected class 

Links of the selected class 
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FIGURE 6.10 THE WHOLE HT VIEW WHEN A SECTION IS SELECTED 

 

Figure 6.10 shows traceability links of a section “Printing and streaming 2D graphics”   in the 

“JPS_PDF.pdf” document. These links display packages first, then classes. 

 

When a node is selected in the treemap or the whole HT, a detail HT is established to display 

detailed link information for this node (see Figure 6.11). The detail HT can be expanded to show 

link information of nodes related to the selected node (see Figure 6.12). Figure 6.12 shows that the 

first  level  is  sections  related  to  the  “Binding”  class,  and  the  second  level  is  other  classes  dependent  

on these sections. These related sections and classes are coloured to differentiate their similarity 

value levels. The lighter the colour the lower the similarity score a node has. When a mouse hovers 

over the node, its similarity score is shown. In Figure 6.11,  the  similarity  value  of  “2.4.1 Reading 

an Object”  is  0.5. In Figure 6.12, the similarity score of “InitialContext” at the second level is 0.8. 

 

 

FIGURE 6.11 THE DETAIL HT CONTRACTED 

Links related to the selected section 

Selected section 
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FIGURE 6.12 THE DETAIL HT EXPANDED 

 

6.4.4 Editing Traceability Links 

The popup menu contains six functions: Edit Name, Add Link, Delete, Edit Similarity Value, Show 

Content, and Exit. “Edit Name” allows users to change the name of an existing link. New links can 

be added using the “Add Link” function. “Delete” can delete an existing link. The similarity value 

of an existing link can be changed using “Edit Similarity Value”. “Show Content” can open a file 

related to the selected node in the edit area or open a content window to display the contents of the 

selected node. “Exit” enables users to exit from the edit model in the treemap.  

 

 

 
 

FIGURE 6.13 POPUP MENU IN THE TREEMAP 

 

First level Second level 
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The popup menu is slightly different in different views. In the treemap view, once a node is clicked, 

this view enters into the edit mode. In this mode, links of the selected node can be deleted or added. 

In the other words, existing related nodes can be deleted and new nodes can be added (see Figure 

6.13). After the completion of editing, users need to exit from the edit mode in order to browse link 

information of other nodes. There are three kinds of the popup menu. First, the popup menu for the 

selected node only allows using “Show Content” and “Exit” (see Figure 6.13a). Second, the popup 

menu at nodes related to the selected node can use “Delete” and “Show Content” (see Figure 

6.13b). Third, “Add Link” and “Show Content” are active in the popup menu at other nodes (see 

Figure 6.13c). For example, a section (see Figure 6.13c) in the “JPS-PDF.pdf” document can be 

added as a new link of the “Binding” class. To prevent unwanted structural changes, names of 

nodes related to the selected node cannot be edited in the treemap.  

 

 

 
FIGURE 6.14 POPUP MENU IN THE WHOLE HT 

 

However, they are editable in the whole HT. The name of an existing related node can be changed 

to become a new related node (see Figure 6.14 c and d). Links in the whole HT are represented as 

two parts: the first part is names of documents or packages and the second is names of sections or 

classes. The popup menu at the first part of a link enables users to edit the name of the document 

or the package, add a new section or class, and delete all existing sections or classes in this 

document or package (see Figure 6.14c). If the name of the document or the package is changed, 

then all existing links are deleted and a combo box containing sections or classes of the new 
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document or package is opened to allow users to add a new link. The popup menu at the second 

part of a link can be used to change the name of an existing link or to delete an existing link (see 

Figure 6.14d). To preserve the hierarchical structure of the traced project untouched, names of 

packages, documents, classes, and sections cannot be edited except names in traceability links. 

Figure 6.14b shows that only “Add Link” is active in the popup menu at the class or section level. 

No functions are active in the popup menu at the package or document level (see Figure 6.14a).  

 

In the detail HT, there are three kinds of the popup menu. First, the popup menu at the selected 

node allows adding new links and showing its contents (see Figure 6.15a). Second, traceability 

links in the detail  HT  are  organized  as  the  same  as  those  in  the  whole  HT.  Only  “Edit  Similarity  

Value”  is  inactive  in  the  popup  menu  at  the  first  part  of  a  link  (see  Figure  6.15b). Third, the popup 

menu at the second part of a link allows editing the name of a link, deleting a link, changing the 

similarity score (see Figure 6.15c). As the detail HT shows two levels of traceability links (see 

Figure 6.12), the popup menu at the first level allows new links to be added related to items at this 

level (see Figure 6.15c). For example, in Figure 6.15c,   new   links   related   to   “2.4.1  Reading   an  

object”  can  be  added. 

 

 

 
 

 

FIGURE 6.15 POPUP MENU IN THE DETAIL HT 

 

Once a node is clicked in the treemap, the node is highlighted in the whole HT at the same time 

and a detail HT is built to display the detail link information of the selected node (see Figures 6.6 

and 6.7). Any change to links made in the detail HT view is reflected in the treemap and the whole 

HT  views,  and  vice  versa.  We  take   the  “Binding”  class  as  an  example   to   illustrate  how to add a 
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new link, change the similarity value of a link, and edit the name of an existing link, and how the 

three views interact with each other. Figure 6.16 shows  how  to  add  the  “2.3  Drag  source”  section  

in   the  “dnd1.pdf”  document  as   the  new   link  of   the  “Binding”  class.   “dnd1.pdf”  has   to  be  added  

first (see Figure 6.16a)  and  then  select  “2.3  Drag  source”  in  the  combo  box  that  contains  sections  

of  “dnd1.pdf”  (see  Figure  6.16b).  A  new  link  “2.3  Drag  source”  related  to  “Binding”  is  added  and  

is assigned the highest similarity value (=1) (see Figure 6.17). At the same time, the new link is 

automatically added in the treemap (see Figure 6.17) and in the whole HT (see Figure 6.18). 

 

 

FIGURE 6.16 ADD A LINK IN THE DETAIL HT VIEW 

 

 
FIGURE 6.17 A NEW LINK IS ADDED TO “BINDING” CLASS SHOWN IN THE TREEMAP 
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A new link is added: “2.3 Drag Source” 



177 

 

 

FIGURE 6.18 A NEW LINK IS ADDED TO “BINDING” CLASS SHOWN IN THE WHOLE HT 

 

If  the  similarity  value  of  an  existing  link  is  low,  it  can  be  changed  using  the  “Edit  Similarity  Value”  

in the popup menu of the detail HT. Figure 6.19 shows  that  the  similarity  value  of  “2.4.1  Reading  

an  object”  is  changed  from  0.5  (see  Figure  6.19a)  to  0.9  (see  Figure  6.19b). 

 

 

 

FIGURE 6.19 CHANGE THE SIMILARITY VALUE IN THE DETAIL HT 

 

 

FIGURE 6.20 EDITING AN EXISTING LINK IN THE DETAIL HT 

A new link is added: “2.3 Drag Source” 

 a 

b 
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FIGURE 6.21 CHANGING AN EXISTING LINK IN THE DETAIL HT IS REFLECTED IN THE TREEMAP 

 

 
FIGURE 6.22 CHANGING AN EXISTING LINK IN THE DETAIL HT IS REFLECTED IN THE WHOLE HT 

 

The  name  of   an   existing   link  can  be   edited  using  “Edit  Name”   in   the  popup menu. Figure 6.20 

shows  that  the  original  link  “2.5.2  Resolving  through  a  context”  of  the  “Binding”  class  is  edited.  It  

is  replaced  with  “1.2.4  State  factories”.  The  new  link  is  assigned  the  highest  similarity  score  (=1)  

After editing the   original   link   “2.5.2  
Resolving   through   a   context”   in   the  
detail HT, it is deleted and a new link 
“1.2.4  State  factories”  is  added. 

After editing the original link 
“2.5.2   Resolving   through   a  
context”  in  the  detail  HT,  it  is  
deleted  and  a  new  link  “1.2.4 
State  factories”  is  added. 
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(see Figure 6.21). In the treemap (see Figure 6.21) and in the whole HT (see Figure 6.22), the 

original  link  “2.5.2  Resolving  through  a  context”  is  deleted  and  the  new  link  “1.2.4  State  factories”  

is added simultaneously.  

 

 
FIGURE 6.23 SHOWING CONTENTS OF A NODE IN THE TREEMAP 

 

In the three views, we provide the contents of nodes to assist comprehension. When   “Show  

Content”  in  the  popup  menu  is  selected,  the  file  related  to  the  node  is  opened  in  the  edit  area.  If  the  

node is a section, a content window is also opened to display the contents of the section (see 

Figure 6.23). 

 

6.4.5 Other Functionality 

In order to assist users to find a specific node and filter out unwanted links, DCTracVis provides 

three additional functions: navigator, search, and filter. Users can find a specific node browsing 

through the list in the navigator. In Figure 6.24,   when   the   node   “DragSource.java”   in   the  

“java.awt.dnd”   package   in   the   navigator   is   selected,   it   is   highlighted   with   cyan   and   its   related  

nodes are highlighted with magenta in the treemap (see Figure 6.24). This node is also highlighted 

in the whole HT (see Figure 6.25). Moreover, the detailed link information of this node is 

displayed in a detail HT (see Figure 6.24). In addition, the file related to this node is opened in the 

edit area. 

Content Window 
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FIGURE 6.24 SELECTING A NODE IN THE NAVIGATOR IS REFLECTED IN THE TREEMAP 

 

 
FIGURE 6.25 SELECTING A NODE IN THE NAVIGATOR IS REFLECTED IN THE WHOLE HT 

 

The other method to find a specific node is to use the search function. Users put key words into the 

search box (see Figure 6.26a), and then a list of nodes matched to the key words is shown in the 

search combo box (see Figure 6.26b). The number of matches is shown (see Figure 6.26c) and 

matched nodes are highlighted in the treemap (see Figure 6.26d). For example, Figure 6.26 shows 

there  are  16  nodes  matched  to  the  “drags”  key  word. 

“DragSource.java”  is  selected  in  the  navigator 
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FIGURE 6.26 USE SEARCH TO FIND A NODE 

 

  

(a) IR Model (b) Combined traceability recovery approach 

  

(c) Similarity score level (d) No. of links level 

FIGURE 6.27 METHODS IN THE FILTER 
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There are four methods used to filter out traceability links in the filter function: IR model, 

combined traceability recovery approach, the similarity score level, and the number of links level. 

First, our visualization system employs IRETrace (discussed in Chapter 3) to recover links 

between artifacts. IRETrace provides six Information Retrieval (IR) models (see Figure 6.27a). 

Users can select an IR model to retrieve links. Second, after the selection of the IR model, users 

can decide whether to use the IR model alone or to combine other techniques (e.g. Regular 

Expression (RE), Key Phrases (KP), and Clustering) with the IR model to capture links (see Figure 

6.27b). These techniques are discussed in Chapter 3. Third, users can select a similarity score level 

to display retrieved links that have the similarity value greater than or equal to the selected level 

(see Figure 6.27c). Fourth, selecting number of links level filters out nodes that have less than the 

selected level (see Figure 6.27d). All examples shown above are using the Vector Space Model 

(VSM) model alone to retrieve links between classes and sections, and only visualizing links that 

have a similarity value greater than or equal to 0.3. The example shown in Figure 6.28 displays 

links that have a similarity value greater than or equal to 0.5 (see Figure 6.28a). Figure 6.28b 

shows  that  the  “DragSource”  class  only  has  one  link  if  using  a  similarity  score  level  0.5,  but  it  has  

seven links if using a similarity score level 0.3 (see Figure 6.24). Six links of this class are filtered 

out. 

 

 

FIGURE 6.28 LINKS VISUALIZATION OF USING DIFFERENT SIMILARITY SCORE LEVEL 

a 

b 
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6.5 Summary 

It is well recognized that visualizing traceability links between software artifacts in a system helps 

developers to recover, browse, and maintain these inter-relationships effectively and efficiently. 

However, it is a major challenge for researchers in the software traceability area to efficiently 

visualize traceability links for big software systems because of scalability and visual clutter issues. 

We have presented a new visualization approach that integrates enclosure and node-link 

visualization representations to support an overview of traceability in the system and the detailed 

overview of each link while still being highly scalable and interactive. The treemap and 

hierarchical tree visualization techniques are applied to display traceability links in a system. The 

treemap view provides the overall structure of the system and the overall overview of traceability 

links. Our approach reduces visual clutter through adopting colours to represent the relationship 

status of each node instead of directly drawing edges between related nodes on top of the treemap. 

Two hierarchical trees are employed to visualize links. The whole HT view is to represent the 

whole system under trace and links in it to communicate the hierarchical structure of the system. 

The detail HT view can be treated as a supplement to the treemap and the whole HT. When a node 

is selected in the treemap or the whole HT, the detail HT view displays all nodes that are related to 

the selected node and other dependency information of these nodes. These traceability links can be 

modified (add, delete, edit) and their similarity scores can also be changed. The three views are 

interactive - changes made in one view can be reflected in the other two views, and vice versa. We 

adopted this visualization approach to build a traceability visualization system, DCTracVis. This 

system provides the support of the navigator, search, and filter functions to assist users in locating 

a specific node or filtering out some uninterested links.  

 

Finally, we examine whether our traceability visualization system, DCTracVis, meets the 

requirements for a successful visualization system identified in Chapter 2. 

1) Need to seamlessly integrate the link visualization support within an IDE (e.g. Eclipse) or 

other software management tools. Our visualization system, DCTracVis, is integrated with 

the Eclipse IDE. Users can enjoy both the Eclipse and DCTracVis support. 

2) Ability to integrate with traceability recovery tools to automatically capture traceability 
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links between artifacts in the traced system. Our traceability recovery tool, IRETrace 

(discussed in Chapter 3), is integrated with DCTracVis automatically retrieving links 

between artifacts in the traced system. 

3) Provide efficient and effective visualization techniques to represent retrieved links. 

Technical challenges for successful visualization techniques are as follows:  

 Use the display space efficiently when representing a large number of artifacts in the 

traced system. In DCTracVis, links are visualized in a treemap and a hierarchical tree 

with the ability to expand and collapse. Treemap is an ideal approach to display a 

large number of items (Shneiderman, 1992). The ability to expand and collapse 

within the hierarchical tree makes the use of the display space more efficient.  

 Remedy the visual clutter issue when visualizing links in the system. We adopted three 

colour ranges to represent link statuses of nodes in the treemap instead of directly 

drawing edges between related nodes on top of the treemap. For the hierarchical tree, 

traceability links are displayed as children of artifacts in the system. 

 Show the whole hierarchical structure of the system. The hierarchical tree is to 

communicate the hierarchical structure of the system in DCTracVis. 

 Show the overall overview of traces in the system. Treemap is to covey the overall 

structure of the system and the overall overview of traces in the system in 

DCTracVis. 

 Illustrate detailed dependency information for a specific artifact. Once a node is in 

the treemap and the hierarchical tree, another hierarchical tree is created to display 

the detailed dependency information of the selected node. 

4) Provide detailed information about each link or artifact to assist users to understand them. 

In DCTracVis, the contents of a selected node can be opened in the content window (for 

documents) or at the top of the edit area (for code) while the “Show  Content” in the popup 

menu is clicked. 

5) Allow end users to add new links, delete or modify existing links and their similarity 

values, and edit the properties of links and their connected artifacts. In DCTracVis, 
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existing links can be deleted or modified and new links can be added. The similarity value 

of each link can be modified. In future work, we can add a property window to show the 

properties of a selected link, such as related artifacts, who created the link, when the link 

is created, the similarity value. 

6) Allow end users to browse through artifacts to locate a specific item in the traceability 

visualization view. In DCTracVis, a navigator is provided to allow users to browse 

through the system and find a specific artifact. 

7) Allow end users to search a specific link or artifact through keywords or query. We 

provide the search function to find a specific item using keywords. 

8) Filter out some uninterested links or artifacts. In DCTracVis, users can apply different 

combination recovery approach to capture links, filter the retrieved links according to the 

similarity score level and/or the number of links level. 

9) Capture and record browsing history. In DCTracVis, no browsing history is recorded. 

This can be among our future works. 

 

Overall, our traceability visualization system, DCTracVis, meets all the requirements for a 

successful visualization system except for capturing and recording browsing history. We have 

conducted a usability study to answer the question: does our visualization system help to support 

and improve the comprehension, browsing, and maintenance of traceability links in a system? The 

results are discussed in Chapter 7. 
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Chapter 7 -- Evaluation of Traceability Link 
Visualization 

This chapter presents a usability evaluation of our traceability link visualization tool, DCTracVis, 

and discusses the evaluation results. Ethics approval was obtained from the University of 

Auckland Human Participants Ethics Committee for this usability evaluation; details can be found 

in Appendix A. 

 

7.1 Introduction 

Usability evaluation is a common technique used in the design and development of a system to 

verify the quality and feasibility of the system and to identify weaknesses by evaluating the 

usability or user-friendliness of the system (Dumas & Redish, 1999; Gena & Weibelzahl, 2007). 

We undertook a usability evaluation to test how natural and intuitive DCTracVis is to recover, 

browse, and maintain traceability links in a system under trace. The main objective of this usability 

evaluation was to obtain qualitative information on user perceptions of DCTracVis and evaluate 

the   tool’s usability and effectiveness in comprehending, recovering, browsing, and maintaining 

traceability links in a traced system. We wanted to learn whether DCTracVis supports and 

improves the comprehension, browsing, and maintenance of traceability links in a system, and 

which visualization view provides the best support for comprehension, browsing, and maintenance 

of links. 

 

To answer these questions a usability evaluation was designed as detailed in the following section. 

First, the evaluation method is described, then followed by an analysis of the evaluation results. 

Finally, we discuss limitations of DCTracVis and propose possible future research to improve it.  
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7.2 Evaluation Design 

This usability evaluation is structured into three parts: tasks, observation, and questionnaire. The 

tasks part lists the tasks to be accomplished by participants. The observation part involves the 

collection of observation data while participants are performing the tasks. The questionnaire part 

provides a questionnaire to be answered after the completion of the tasks. The three parts are 

discussed in detail in the following sections. 

 

7.2.1 Tasks 

In order to understand real user reactions to the functionality of DCTracVis, we designed three 

tasks (the details of which are described in Appendix A). 

 The first task was to understand the traced system; the structure of the system and to get 

an overview of links between artifacts in the system. 

 The second task was to understand how an artifact works; how a class works in order to 

fix a bug related to it, where the documentation of this class can be found, and what other 

classes are related to this class. 

 The third task was to modify traceability links of an artifact. Links for a class retrieved by 

IR recovery techniques may contain incorrect links, or miss correct links, or have low 

similarity score of correct links. These retrieved traceability links of the class need to be 

edited to contain only correct links, delete incorrect links or add missing links. 

 

7.2.2 Observation 

There were two types of observation carried out: unobtrusive observation and obtrusive 

observation. With unobtrusive observation, participants were observed while they were performing 

the tasks based on the following aspects:  

 How participants managed to complete the tasks;  

 How participants explored the tool to browse and locate links;  
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 How participants navigated different functions of the tool;  

 Verbal responses and facial expressions of participants while using the tool. 

 

With obtrusive observation, participants were asked to express aloud what they thought while 

using the tool in order to learn more about the usefulness and the acceptance of the tool. 

Perceptions and comments from participants were collected. The observation data was recorded 

anonymously and no personal information was collected. 

 

7.2.3 Questionnaire 

Our questionnaire is composed of three sections: background information, DCTracVis usability, 

and comparative questions about the visualization views. The first section contains four questions 

to   collect   some   background   information   of   participants’   positions, software development 

experience, frequency of using Eclipse for programming, and frequency of using other traceability 

tools. 

 

Questions in the second section were designed to reflect user perceptions of DCTracVis. This 

section has two parts. The first part has seven questions to gather user perceptions of the 

functionality of DCTracVis; whether link recovery, browsing, maintaining and understanding are 

supported or improved as perceived by the participants. The seven questions ask about user 

opinions and experiences about the following: effective link extraction, easy to extract links, easy 

to maintain links, easy to browse links, easy to find links, support for comprehension, and support 

for maintenance and development. The second part of this section of the questionnaire collects 

user perceptions about the overall performance of DCTracVis; the usefulness, ease of use, ease of 

learning, and satisfaction of this tool. This part contains eight questions: functions well integrated, 

functions all present, user friendly, easy to use, learn quickly, easy to learn, like to use it in future, 

and recommend to friends. All questions we designed for this section were based on the questions 

from the System Usability Scale (SUS) (Brooke, 1996) and the USE questionnaire (Lund, 2001). 

The SUS is a simple, ten-item scale giving a global view of subjective assessments of usability 

(Brooke, 1996). The USE questionnaire stands for usefulness, satisfaction, and ease of use (Lund, 

2001). Each question in this section was recorded using a five point Likert scale: 2=Strongly agree, 
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1=Agree, 0=Neutral, -1=Disagree, -2=Strongly disagree. 

 

The third section contains five questions to obtain user perceptions towards the three traceability 

link visualization views we used to represent links: the treemap view and the whole hierarchical 

tree view (both discussed in Chapter 6) and the tree view (the initial visualization view we used in 

IRETrac discussed in Chapter 3). The aim of these questions was to find out which visualization 

view participants preferred with regard to browsing traceability links, maintaining traceability 

links, supporting them in understanding the system, or to support them in maintaining and 

developing the system. 

 

The answers to the questionnaire were collected anonymously. A sample of our evaluation survey 

appears in Appendix A. 

 

7.3 Evaluation Method 

The example documents and code used in this study is the JDK1.5-SUBSET described in Chapter 

4. We invited potential participants who had a computer science or software engineering 

background. There were no requirements for participants to have some knowledge about 

JDK1.5-SUBSET. Before any participants carried out the study, informal pilot testing was 

conducted to test the suitability of the questions and to make changes as appropriate. We then 

recruited a group of 20 participants for the evaluation of DCTracVis. At the beginning, a brief 

introduction and a demonstration were provided to help participants to gain familiarity with our 

tool. The participants then practiced our tool to familiarize themselves with its interface and 

functionality. Once the participants felt comfortable with our tool, they performed the three tasks. 

How long each participant took to complete each task was recorded. After the completion of the 

tasks, the participants answered a set of questions on our tool, as well as some general questions 

regarding their background. Finally, the participants were requested to provide open-ended 

comments on our tool. During the evaluation, we observed and recorded how participants used our 

tool to complete the tasks and their verbal responses and facial expression. In general, each 

participant in this study took approximately 40 minutes. The results of the study are analyzed in 
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the following section. Consent Forms and Participant Information Sheets are in Appendix A. 

 

7.4 Evaluation Results 

In this section, we present the results and analysis of the usability evaluation. 

7.4.1 Background of Participants 

We recruited 20 participants for the evaluation of DCTracVis. The participants were 13 students 

and 2 academics of the University of Auckland and 5 from industry (see Figure 7.1a). Figure 7.1b 

shows the software development experience each participant had. Among 20 participants, 3 had 

more than 10 years of development experience, 7 had fewer than 10 years but more than 5 years, 8 

had fewer than 5 years but more than 1 year, and 2 had less than 1 year. 

  
(a) Participants position (b) Software development experience 

 
 

(c) Frequency of using Eclipse for programming (d) Frequency of using other traceability tools 

FIGURE 7.1 THE BACKGROUND INFORMATION OF PARTICIPANTS 
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All of the participants were at least a little bit experienced with the use of Eclipse for programming 

Java systems (see Figure 7.1c). Among them, 3 always used Eclipse for software development, 5 

usually used Eclipse, 8 sometimes used it, and 4 rarely used it. Only one participant usually 

applied traceability tools to assist in comprehending or maintaining or programming software 

systems. 4 participants sometimes used traceability tools, 8 rarely used, and 7 never used such 

tools (See Figure 7.1d). 

 

7.4.2 Tasks and Observation 

All 20 participants completed the three tasks with times varying from 5 minutes to 19 minutes. 

Figure 7.2 shows the time taken by each participant to complete each task. Participant 20 spent the 

longest time (19 minutes) to accomplish all tasks. Participant 14 took less time (5 minutes) than 

others to complete the tasks. On average, the first task needed 1.85 minutes to complete, the 

second task required 3.15 minutes, and 4.35 minutes for the third task. 

 

 
FIGURE 7.2 TIMES TAKEN BY PARTICIPANTS IN COMPLETING EACH OF THE THREE TASKS 
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Table 7.1 summarizes what DCTracVis functions were used by participants to complete each task. 

The detail hierarchical tree in this table displays the detailed traceability link information of a node 

selected in the treemap, in the whole hierarchical tree, or in the tree. Branches in the two 

hierarchical trees can be expanded and contrasted, but those in the tree cannot. (The tree is 

discussed in Chapter 3; others are discussed in Chapter 6.) 

 

TABLE 7.1 DCTRACVIS FUNCTIONS USAGE STATISTIC 

Function Task1 Task2 Task3 
Navigator 9 12 12 
Search 0 6 8 
Filter 20 0 0 
Show contents 0 20 12 
Treemap 6 1 4 
Whole hierarchical tree 10 1 3 
Detail hierarchical tree 0 20 18 
Tree 0 0 0 

 

The first interesting result was revealed when performing the first task. 13 of the 20 participants 

completed this in less than 1 minute, 4 spent 2 minutes, 1 for 3 minutes, 1 for 4 minutes, and 1 

took the longest time (9 minutes) to complete this task (see Figure 7.2). Based on our observation, 

the participant who took 9 minutes spent most of their time getting familiar with our tool as he/she 

had done little practice before performing the three tasks. However, they strongly agreed that 

DCTracVis clearly illustrated the hierarchical structure of the system and provided a good 

overview of links in the system. They accomplished this task by using the navigator, filter, treemap, 

and/or whole hierarchical tree functions (See Table 7.1). 

 

All participants completed the second task with times varying from 1 minute to 5 minutes (see 

Figure 7.2). All participants looked relaxed and happy while conducting this task. 12 participants 

used the navigator function to find a specific node, 6 used the search function, 1 directly located 

the node in the treemap, and 1 used the whole hierarchical tree (see Table 7.1). All participants 

used the show content function to help them understand links and utilized the detail hierarchical 

tree to accomplish this task. They agreed that the detailed dependency information provided in the 

detail hierarchical tree view was a good supplement to both the treemap view and the whole 
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hierarchical tree view while performing the second task.  

 

The third task was completed between 2 and 6 minutes (see Figure 7.2). In Table 7.1, 12 

participants located a node using the navigator function, and 8 used the search function. The 

majority of participants (18 of 20) undertook the modification of traceability links of a node using 

the detail hierarchical tree view. Because they thought this view was more intuitive and 

straight-forward for this task. 2 used either the treemap or the whole hierarchical tree to modify 

links of a node. 3 participants edited links of a node in the treemap and the detail hierarchical tree, 

and 2 completed the link modification in the whole hierarchical tree and the detail hierarchical tree. 

12 participants used the show content function to support them in comprehending the modified 

links. 19 participants looked relaxed and happy when editing links. However, one participant 

looked frustrated and stressed while doing the link modification. He/she complained that the edit 

menu was not easy to use. 

 

Most participants used the navigator function to seek a specific node in the second and third tasks 

as they thought it was easier and more natural to browse artifacts in the navigator to find the node 

they were interested in. We also noticed that no one used the tree to complete any task (see Table 

7.1). They commented that it was hard to browse in the tree view as it was too cluttered and messy. 

Moreover, our observations indicated that the participants encountered difficulties in directly 

finding a specific node in the treemap. However, with the support of the navigator and search 

functions, they easily and quickly found an item they were interested in. In addition, three 

participants felt confused after applying the filter. They suggested it would be better to provide a 

summary about how many links recovered and how many links filtered out after using the filter.  

 

7.4.3 DCTracVis Usability Questions 

The main results analysis performed after this evaluation was on the set of questions answered by 

participants based on their experiences of using DCTracVis in comparison to other software tools 

they have used. We start with the analysis of the evaluation in the functionality of DCTracVis. The 

results can be seen in Figure 7.3. The diagram shows the seven questions (effective link recovery, 

easy to extract links, easy to maintain (add, delete, edit) links, easy to browse links, easy to find 
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links, support comprehension, and support maintenance/development) on the x-axis. The y-axis 

shows the number of participants; how much they agreed (strongly agree, agree, or neutral, 

disagree, or strongly disagree) that our tool helped recover, browse, and maintain traceability links 

in a system and supported users in comprehending, maintaining, or developing the system.  

 

 
FIGURE 7.3 RESULTS OF THE EVALUATION IN THE FUNCTIONALITY OF DCTRACVIS 

 

No participants made a negative response to any of the seven questions. All participants strongly 

agreed or agreed that our tool was easy to use to extract traceability links, easy to browse links, 

and easy to find links. 19 participants (strongly) agreed that it helped them more effective in 

extracting links between artifacts within systems. 18 of them (strongly) agreed that our tool was 

easy to maintain links. 18 participants (strongly) agreed that it was useful to support them in the 

comprehension and maintenance/development of a system. Several participants gave a neutral 

answer to questions for effective link recovery, link maintenance, comprehension, and 

maintenance and development. They responded this way because they could not undertake the 

comparison as they had never used other traceability tools. 
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Figure 7.4 shows the average ratings for the seven questions on the functionality of DCTracVis. 

The participants largely agreed that our tool made it easier to find traceability links (1.6) and to 

browse links (1.5). The remaining questions have average scores of at least 1, indicating that the 

participants agreed that our tool could recover links effectively, was easy to extract links and easy 

to  modify   links,   and   supported   the   system’s   comprehension   and  maintenance   and   development. 

Overall, the results clearly show that the participants agreed that our tool could help them to 

recover, understand, browse, and maintain traceability in the system. 

 

 

FIGURE 7.4 AVERAGE RATINGS OF THE FUNCTIONALITY OF DCTRACVIS 

 

Next, we analyzed the evaluation of the overall performance of DCTracVis. Figure 7.5 shows the 

evaluation results. The x-axis displays the eight questions (functions well integrated, functions all 

present, user friendly, easy to use, learn quickly, easy to learn, like to use it in the future, and 

recommend to friends) about our   tool’s   overall   performance. The y-axis shows the number of 

participants; how much they agreed (strongly agree, agree, or neutral, disagree, or strongly 

disagree) that our tool contained all necessary functions, and was ease of use and learning, and 

satisfied the participants.  
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FIGURE 7.5 RESULTS OF THE EVALUATION IN THE OVERALL PERFORMANCE OF DCTRACVIS 

 

One participant disagreed that the various functions in our tool were well integrated and easy to 

find. He/she commented this way because it was a little bit hard to modify links of a node using 

the edit menu. 19 participants (strongly) agreed that they learned to use our tool quickly, it was 

easy to learn how to use it, and they would recommend it to friends. 18 of them (strongly) agreed 

that our tool was user friendly, and they would like to use it in the future. 17 participants (strongly) 

agreed that it was easy to use, and functions in it were well integrated and easy to find. 11 agreed 

that all the functions they expected were all present, but 9 participants gave a neutral answer to this 

question. 5 participants thought that there was room to improve although expected functions were 

all present. 4 participants responded this way because they could not undertake the comparison as 

they had never used other traceability tools. Several participants provided a neutral feedback to 

other seven questions. They commented that they were unable to conduct the comparison because 

they had no experience of using other traceability tools. 

 

Figure 7.6 shows the average ratings of the eight questions in the overall performance of 

DCTracVis. The participants were inclined to agree that expected functions in our tool were well 
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integrated and all present. The average ratings for the two questions are less than 1. The other 

questions have average scores of at least 1. This suggests that the participants agreed that our tool 

was user friendly, easy to use, and easy to learn, and they learned to use it quickly, would like to 

use it in the future, and would recommend it to friends. Overall, the results show that the 

participants agreed that our tool provided all expected functions, was useful, easy to use, easy to 

learn, and satisfied them. 

 

 

FIGURE 7.6 AVERAGE RATINGS OF THE OVERALL PERFORMANCE OF DCTRACVIS 

 

The participants also reported many valuable comments on our tool. Table 7.2 summarizes the 

comments that the participants made to DCTracVis. These comments include the following:  

 One participant pointed out that it was not feasible for colour-blind users to discern nodes 

if we adopted inappropriate colours to represent the number of links that each node has in 

the treemap or the whole hierarchical tree and to differentiate the similarity value level of 

each link in the detail hierarchical tree.  

 Five participants commented that colours used to identify the number of links in the 

treemap might confuse users, and it was hard to remember them. 
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TABLE 7.2 COMMENTS OF PARTICIPANTS MADE TO DCTRACVIS 

Participant Comments 
1 Zooming needs to be improved; Color used may confuse users 
2 None 
3 It is hard to remember colors in treemap; The highlight items are not easy to 

detect. 
4 There are rooms to improve the content window; may use word size to tell the 

similarity score 
5 None 
6 Good tool for traceability; But colors in treemap may confuse users; Change to 

use the size of node in treemap to display the number of links that the node has 
7 Big window would be better to view 
8 The contents of sections should highlight the related words to corresponding 

classes; Make the size of each square in treemap different to represent the number 
of links for each nodes 

9 Each window can be moved around 
10 More user friendly 
11 None 
12 None 
13 None 
14 It will have better visual effects on a bigger screen; Using colors that are not 

friendly/easily comprehensible to color blind/partially color blind people, may use 
different sizes of squares; A system documentation/manual around the system to 
assist learning is usage 

15 None 
16 More user friendly; more fancy 
17 Explore novel method for measuring the similarity between the classes and the 

docs; The treemap uses color to identify the links, which is hard to remember. 
18 The edit menu is a bit hard to use (right click on the node is not easy); Divide the 

treemap into 2 sections (maybe with different colours or divider) 
19 Place a legend; Bigger view; Number of related link in the status 
20 The heatmap coloring for both the map and hierarchical tree could be improved. 

Also the highlight color needs to be different to heatmap colors. Size of classes 
could represent actual lines of code. 

 

 Five participants suggested that it would be helpful to use different sizes of nodes to 

represent the number of links that each node has, or to reflect the sizes of classes and 

sections in the system, or to differentiate the similarity score levels. 

 Two participants commented that it was not easy to quickly notice the selected node and 

its related nodes. 

 Two participants suggested that words related to a selected node should be highlighted 
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when showing the contents of the related node. 

 Five participants commented that it would have better visual effect if it improved the 

zooming, used a big screen or big view windows, or allowed view windows to be editable. 

 Two participants thought that it would be helpful to provide summary documents about 

the   traced   system’s   information,   such   as   how   many   packages,   documents,   classes,  

retrieved links, related links of each node, and so on. 

 One participant suggested that the treemap should be divided into two sections using 

different colours. 

 Two participants commented that it needed to be more user friendly or fancier. 

 

7.4.4 Comparative Questions of Visualization Views 

We initially employed the tree view to display a traced system and traceability links in it 

(discussed in Chapter 3). In order to ameliorate the performance of the initial link visualization 

view, we adopted the treemap view and the whole hierarchical tree view to visualize links in the 

system (discussed in Chapter 6). We wanted to learn which visualization view the participants 

preferred with regard to browsing links, maintaining links, and supporting them in the 

comprehension and maintenance and development of a system. 

 

Figure 7.7 shows the evaluation results of a comparison made between the three visualization 

views. No participants liked to use the tree view. One participant commented that it was hard to 

use the tree view because it was too cluttered and messy. More participants preferred the whole 

hierarchical tree to the treemap in browsing links (12 vs. 8). 11 participants preferred the treemap 

to maintain links and to support them in understanding the traced system, but 9 participants 

preferred the whole hierarchical tree. For the support of maintenance and development of a system, 

10 preferred the treemap and the others preferred the hierarchical tree. Overall, 12 participants 

thought that the treemap was the best one, while the others (8) preferred the hierarchical tree. 
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FIGURE 7.7 RESULTS OF COMPARISON AMONG THE THREE VISUALIZATION VIEWS 

 

Table 7.3 summarizes the reasons given by each participant in their determination of which 

visualization view is the best. The main reasons that the participants thought the treemap was the 

best visualization view included the following. 

 4 participants pointed out that the detail hierarchical tree was a good supplement to the 

treemap, and their combination was easy to use. 

 2 participants reasoned that the treemap was easy to move around and easy to map the 

relationships between documents and classes. 

 2 participants commented that the treemap presented more information than the whole 

hierarchical tree without being as cluttered as the tree view, and that it showed the complete 

system and allowed them to look into details. 

 2 participants ranked the treemap as the best based on colour and overall view, and it was 

more useful for maintaining as well as browsing than the whole hierarchical tree. 

 

The main reasons that the participants disliked the treemap included the following:  
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 1 participant commented that the treemap was compact but classes’  names were not shown 

inside the map, and also the maps for the packages and document were identical, making it 

difficult to remember which map was for packages or documents. 

 1 participant mentioned that the treemap was a quite good-looking, rich-user-experience 

but it was not easy to perform tasks such as navigate to a class, or edit or delete a link. 

 

TABLE 7.3 REASONS GIVEN BY PARTICIPANTS IN DECIDING THE BEST VISUALIZATION VIEW 

Participant Reasons 
1 Treemap and the selected information are good combination. They support to 

each other. 
2 It is more obvious to use hierarchical tree to browse links 
3 It is easy to browse links in hierarchical tree although users have to go through it 

step-by-step. But navigator, search make it easy to find links 
4 None 
5 They are all good, but hierarchical tree is more intuitive 
6 None 
7 Hierarchical tree is also good, but it needs go step by step to find a node 
8 Treemap plus hierarchical tree for details are easy to use 
9 Treemap is easy to move around and the detailed tree is a great support to treemap 
10 Hierarchical tree is easy to browse but the combination of treemap and 

hierarchical tree are very easy to use 
11 Treemap presents more information than the hierarchical tree without being as 

cluttered as the tree view 
12 None 
13 The treemap is compact but the name of the classes are not shown inside the map. 

Also the map for the packages and document are quite identical making it difficult 
to remember which map is for packages, which map is for document. The tree 
view is too clutter and messy. 

14 Both treemap and hierarchical tree are good but treemap is more useful for 
maintaining as well as browsing. 

15 Treemap is easy to map the relationship between doc and classes 
16 The treemap is quite good-looking rich-user-experience but not easy to operate 

tasks such as navigate a class, edit or delete a attribute. The hierarchical tree is 
easy to use & observiable. 

17 The hierarchical tree is more comprehensive. 
18 Hierarchical tree seems to be easier to use, you can see which node (class) you are 

trying to edit and it is more organized than tree. 
19 Tree map is the best based on colour and overall view 
20 Treemap shows the complete system and allows to look into details 
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The reasons that the participants who chose the whole hierarchical tree as the best included:  

 4 participants commented that the whole hierarchical tree was easier to use and easy to 

browse links.  

 2 participant though that the whole hierarchical tree was more intuitive and comprehensive 

than others.  

 

One participant commented that a disadvantage of the whole hierarchical tree was that users had to 

browse through the hierarchical tree step-by-step to find a node. Overall, both the treemap and the 

whole hierarchical tree have their strengths and weaknesses. 

TABLE 7.4 COMMENTS OF PARTICIPANTS MADE TO THE VISUALIZATION VIEWS 

Participant Comments 
1 More fancy, animation would be better 
2 None 
3 None 
4 Animation 
5 None 
6 None 
7 Fancy interface 
8 None 
9 More fancy 
10 None 
11 None 
12 None 
13 None 
14 None 
15 There is room to improve for visualization. 
16 Animations & highlighting item. Class diagram is the traditional way that 

software developer understand the system & easy to make sense what relationship 
between classes 

17 None 
18 None 
19 None 
20 None 

 

Table 7.4 summarizes the suggestions participants gave to the visualization views. 6 participants 

suggested that there was room to improve the visualization view to be fancier and to provide more 

animations. One participant also commented that software developers preferred to use a class 
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diagram as it was the traditional way for developers to understand the system, and it was easy to 

make sense what relationships between classes. 

 

7.5 Discussion 

The usability evaluation obtained positive results. The participants could recover traceability links 

in a traced system effectively and efficiently. The participants also could easily browse links and 

find a specific node. Furthermore, the participants could easily and conveniently modify links of a 

node. In addition, our tool supported the comprehension of links. 

 

The usability evaluation showed that both the treemap and the hierarchical tree have their 

advantages and disadvantages. 12 participants were satisfied with the performance of the treemap. 

8 thought that the hierarchical tree outperformed the treemap. We combined the treemap and the 

hierarchical tree to visualize links in the system and adopted another hierarchical tree to display 

the detailed link information of a node. Our visualization approach took advantage of the strengths 

of each of them to ameliorate limitations of each of them. Our tool provided multiple approaches 

to visualize links to meet different participants’  needs.  Our  tool  allowed  the  participants  to  easily  

gain the structure of the traced system and the overall overview of links in it.  

 

However, the usability evaluation exposed some weaknesses with our tool. We propose some 

possible solutions and improvements for these weaknesses.  

 4 participants experienced difficulty in recognizing/remembering colors used in the detail 

hierarchical tree. It would be more intuitive to employ different font sizes and/or colors of 

nodes in the detail hierarchical tree to display their similarity value levels and to make the 

important links more visible.  

 2 participants felt that the selected node and its related links were not noticeable. It would 

be more noticeable to make the selected node and its related nodes stand out from other 

nodes in the treemap by enlarging these nodes.  

 2 participants felt that contents in the content window were hard to read. In the contents 

window, it would be more readable to highlight words that are related to the selected node.  
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 6 participants encountered difficulty in remembering colors that differentiated the number 

of links level. To apply or combine other methods to represent the relationship status of 

each node in the treemap and the whole hierarchical tree would make the view more 

intuitive.  

 11 participants appeared to have high expectations regarding the ability to edit using the 

windows of the navigator, the filter, the treemap, the whole hierarchical tree, and the detail 

hierarchical tree, and the ability to move them around. It would be more visually effective 

to separate them into different independent and editable view windows. 

 2  participants   appeared   to  be  disappointed   that  our   tool  didn’t  provide   a   summary   report  

about the traced system after adopting the filter. It would be more understandable to supply 

a summary report to briefly introduce the traced system whenever the filter is used. 

 

These propositions all represent potential future work for refining our tool. Some other interesting 

future work includes the following: (1) In order to retrieve more correct links and fewer fault links, 

users are allowed to edit the regular expressions used to match words in documents; (2) Users are 

allowed to add new key phrases or edit/delete existing key phrases to refine extracted key phrases 

to recover more related links; (3) To include a history navigation, which allows users to learn the 

history of their movements and activities and to undo or redo previous activities. (4) Any 

modifications made to traceability links need to be saved.  

 

There are two limitations of our tool. (1) The size of each node in the treemap becomes small in 

order to display a system with large numbers of artifacts in one screen. (2) The three color ranges 

used in the treemap and the whole hierarchical tree may need to be extended to clearly distinguish 

nodes if the range of numbers of links that nodes have becomes large. Allowing user configuration 

of colours and colour gradients may be helpful, especially for colour-blind users. 

 

7.6 Summary 

This chapter described the usability evaluation that assessed the effectiveness of DCTracVis. The 

overall feedback from the evaluation participants was that our tool performed well and was both 
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helpful and useful. Our tool was able to extract traceability links in a system easily and effectively. 

Our tool also allowed users to easily browse links and to quickly locate a specific link. Moreover, 

it allowed users to easily and conveniently maintaining links. In addition, it supported the 

comprehension of links and provided the hierarchical structure of the system and the overall 

overview of links.  

 

The study showed that both the treemap and the hierarchical tree have their strengths and 

weaknesses in visualizing the traced system and traceability links in it. Our combined visualization 

approach took the advantages   to   reduce   the   limitations   of   each   of   them   to  meet   different   users’  

needs. This study explored some weaknesses of our tool. We proposed some solutions and 

improvements to address these deficiencies.  

 

The next chapter presents conclusions together with the contributions of this research. 
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Chapter 8 – Conclusions 

This chapter concludes this thesis by summarizing the presented research in responding to the 

research questions described in Chapter 1, listing the research contributions, discussing the 

limitations of our research, and suggesting some possible future work to extend our research. 

 

8.1 Thesis Summary 

This thesis describes a traceability link recovery and visualization system, DCTracVis. This system 

is intended to provide users with an electronic environment for recovering and visualizing 

traceability links in a traced system in Eclipse. It provides users with both Eclipse IDE and 

traceability support. Users can not only use the functionality provided within the Eclipse IDE but 

can also use our visualization prototype as a stand-alone tool.  

 

A traceability recovery tool, IRETrace, is integrated with DCTracVis to automatically retrieve 

links between artifacts in the traced system. IRETrace adopts a combination recovery technique 

that incorporates three enhancement strategies, Regular Expression (RE), Key Phrases (KP), and 

Clustering, into Information Retrieval (IR) models to ameliorate the key limitations of IR by 

taking advantage of the respective strengths of each of the three enhancement techniques. We 

evaluated our combination recovery approach using four case studies and six IR models. Our 

experimental results demonstrated that our recovery approach can effectively eliminate some 

limitations of IR models. Adding RE can significantly augment the number of true links at all cut 

points. The KP enhancement can retrieve more true links than IR alone. Combining Clustering 

significantly reduces the incorrect links at all cut points. Our approach improves precision at all 

cut points, reduces incorrect links at low cut points, and increases the number of true links at high 
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cut points. Furthermore, our approach provides reasonable precision and recall at all cut points. We 

thus conclude that our experimental results clearly answered the first research question: the 

performance of an IR-based traceability recovery technique can be improved to retrieve high 

quality links at all cut points through incorporating supporting strategies with it to remedy the 

limitations of IR.  

 

In order to assist users in manually building affordable and robust traceability benchmarks to 

evaluate a traceability recovery technique, we presented an approach/guideline that comprises five 

steps: task identification, artifact selection, project selection, oracle/true traceability link set 

development, and evaluation metrics. This approach guides users to build their own benchmarks 

efficiently and effectively. We designed rigorous identification and verification strategies to assist 

researchers in the link recovery and verification. Before the determination of whether or not a link 

is true, every link is verified by at least two analysts. A benchmark for JDK1.5-SUBSET was 

created using our proposed guideline. The probability of   ≥   5% link errors made in the 

JDK1.5-SUBSET oracle link set is around 0.1%. The analysis of error probability results show that 

our rigorous identification and verification strategies can help researchers to build a high quality 

oracle link set for the selected project. Moreover, the visit of the set of traceability benchmark 

requirements identified by Dekhtyar et al. (2007) shows that our proposed guideline can produce 

benchmarks that satisfy these requirements. We therefore conclude that the second research 

question was addressed: researchers can manually build a robust, effective traceability 

benchmarks by following the five steps and the rigorous identification and verification strategies.  

 

After being retrieved by IRETrace, links are displayed as well as the structure of the system. 

DCTracVis utilizes a combination traceability visualization approach that integrates treemap and 

hierarchical tree representations to support the overall overview of traceability in the system and 

the detailed overview of each link while still being highly scalable and interactive. The treemap 

view illustrates the overall structure of the system and the overall overview of traceability links. In 

order to reduce visual clutter, colours are adopted to represent the relationship status of each node 

instead of directly drawing edges between related nodes on top of the treemap. Two hierarchical 

trees (HTs) are employed to visualize links. The whole HT view represents the complete system 

under trace and links in it to convey the hierarchical structure of the system. The detail HT view 
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supplements the treemap and the whole HT and displays the detailed dependency information of a 

node selected in the treemap or the whole HT. These traceability links can be modified (add, delete, 

edit). Their similarity scores also can be changed. The three views are interactive; changes made in 

one view can be reflected in the other two views, and vice versa. DCTracVis also provides the 

support of the navigator, search, and filter functions to assist users in locating a specific node or 

filtering out some uninterested links. We conducted a usability evaluation to evaluate DCTracVis. 

The overall feedback from the participants was that our tool performed well and was both helpful 

and useful. Our tool was able to extract traceability links in a system easily and effectively. It also 

allowed users to easily browse links and to quickly locate a specific link. Moreover, it allowed 

users to easily and conveniently maintain links. In addition, our tool supported the comprehension 

of links and provided the hierarchical structure of the system and the overall overview of links. We 

then can reach a conclusion that the third research question was addressed: a traceability 

visualization system that can effectively and efficiently visualize the structure and links of a traced 

system and provide supporting functionality (e.g. navigator, search, or filter) can assist users in 

comprehending, browsing, and maintaining traceability links in the system. 

 

Finally, we can draw a conclusion that effective and efficient traceability between artifacts in a 

system can help software engineers to understand, maintain, and manage the system. 

 

The limitations of our research, as revealed by the evaluations, include the following aspects.  

1) The main limitation of our combination recovery approach in IRETrace is that some true links 

are discarded after adding Clustering. This is because the group containing links related to a 

particular class is totally removed when no clusters for this group are created. True links in 

such groups are cut. 

2) The guideline of manual establishment of traceability benchmarks suffers from four issues. 

a. It is difficult to determine whether or not two elements in artifacts are in fact related 

because we rely on participants’ knowledge and understanding to capture links. 

b. It is not easy to decide how much workload is suitable for a participant to undertake. The 

more workload is allocated to a participant, the more time and energy are required. Too 

much workload may make participants lose interest in participation. 
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c. It is not easy to recruit a good number of participants who have some knowledge of the 

selected project, especially when recruiting senior analysts. If a participant is new to the 

selected project, he/she might be more likely to capture incorrect links than someone who 

knows the project to some extent. 

d. The approach has scalability issues due to the need to manually identify and verify 

traceability links. 

3) Limitations of DCTracVis are as follows: 

a. The size of each node in the treemap shrinks in order to display a system with large 

numbers of artifacts in one screen. 

b. The three colour ranges used in the treemap and the whole hierarchical tree may need to be 

extended to clearly distinguish nodes if the range of numbers of links that nodes have 

becomes large. 

c. Using colour to differentiate the number of links level may cause difficulty in 

recognizing/remembering their corresponding indications. 

d. The selected node and its related links from other nodes are not distinct. 

e. The contents of an artifact in the content window are hard to read. 

f. The windows of the navigator, the filter, the treemap, the whole hierarchical tree, and the 

detail hierarchical tree cannot be edited or moved around. 

g. Our tool fails to provide a summary report about the traced system after applying a filter. 

 

8.2 Research Contributions 

Our research presented and discussed in this thesis contributes to the knowledge on software 

traceability. The main contributions of this thesis include the following: 

1) The traceability recovery tool, IRETrace, which adopts a combination recovery approach to 

improve the automated traceability recovery between artifacts in a system. This combination 

approach integrates IR models with three supporting techniques, RE, KP, and Clustering. This 

tool provides an accessible, easy-to-use environment for automatically recovering links 
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between artifacts using different combination approaches. Due to its ability to automatically 

capturing high quality links, this tool significantly reduces the time and effort needed for users 

to establish links between artifacts. Using four case studies and six IR models, we proved that 

our combination recovery approach can produce high quality links at any cut point. 

2) The guidelines for manually building traceability benchmarks, which provides step by step 

guidelines in manually establishing an affordable and robust benchmark. It adopts rigorous 

strategies to identify and verify links. Using a case study and a formula that calculates the 

probability of errors in created benchmarks, we proved that our guidelines can build high 

quality benchmarks. We believe that our guidelines will be useful to other researchers to build 

their own benchmarks manually. 

3) The benchmark for JDK1.5-SUBSET built by following the guidelines. This can be accessed 

or downloaded free from: http://tinyurl.com/7l3ohe4.  The  probability  of  making  ≥  5%  errors  in  

this benchmark is very low, around 0.1%. We believe that this benchmark will also be useful 

for other researchers to apply when evaluating their traceability approaches, and to extend to 

meet their own needs better.  

4) The traceability visualization system, DCTracVis, which adopts treemap and hierarchical tree 

techniques to represent the structure and traceability links of a traced system without 

scalability and visual clutter issues. It utilizes IRETrace to automatically retrieve links between 

artifacts. This system provides an environment for recovering, browsing, and maintaining links. 

It also provides navigation, filter, and search functions to assist users in locating a specific 

node and filtering out uninterested links. Due to its ability to automatically recover high quality 

links and visualizing links in a natural and intuitive way, this system significantly reduces the 

time and effort for users to maintain links. Using a usability evaluation, we established that 

DCTracVis can assist users in the comprehension, browsing, maintenance of traceability links. 

 

8.3 Future Work 

Several areas for possible further research are as follows: 

1) Some future work for IRETrace: 
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a. Adopting other key phrases extraction techniques to accelerate the execution time of our 

approach. 

b. Allowing users to edit or delete existing extracted key phrases in each class, or add new 

key phrases related to the purpose of classes. 

c. Allowing users to edit the IR queries to delete unwanted key words or add new key words. 

d. Exploring other techniques to cope with abbreviation, synonym, and polysemy problems 

through taking account of relations between terms or words. 

e. Before applying Clustering to refine retrieved links, reweighting the similarity value of 

each retrieved link based on the frequency of the class occurrence in the section to increase 

similarity values of links that are really relevant to each other. For example, if the class 

name is mentioned n times in the section, the similarity value is increased by 20% + n%. If 

the class methods/functions are mentioned in the section, the similarity between them is 

further increased by 20%. If the section also contains comments in the class, the similarity 

value takes a further increase of 20% for class comments, 10% for method/function 

comments, and 5% for other comments. 

f. Exploring the impact of other techniques to refine the extracted links such as our visual 

IDE’s   user   creation   and   editing   of   links   and   both   user   and   automated   ranking   of  

relationship quality. 

2) Some future work for the guidelines in building traceability benchmarks. 

a. Extending the JDK1.5-SUBSET benchmark to cover more classes and documents. This 

benchmark could then be used to evaluate tracing approaches and procedures for a wide 

range of tasks in different areas of software engineering. 

b. Extending the probability formula by applying other probability distributions to cover the 

issue that links may have different probabilities for being retrieved. Retrieving a link highly 

relies on the textual descriptions: some links may be more difficult than others to capture 

due to the way in which they are written and hence a lower or higher probability of being 

in error. The binominal distribution we have applied then may become invalid as clustering 

may occur. However, using different probability distribution is unlikely to significantly 

affect the low error rates computed using the binominal distribution. Because the 
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probability of errors in the created oracle link set depends heavily on the probability of 

participants simultaneously making the same mistake (Pr(yi)), which is very low. 

c. Exploring how correct links should be defined, how to define traceability rules to assist 

participants in identifying correct links, and how to validate rules correctness. 

d. Using other benchmarks that have been used by other researchers to compare their 

precision and recall results with ours. 

e. Exploring how to create general traceability benchmarks and share them with other 

researchers. 

3) Some future work for DCTracVis. 

a. Employing different font sizes and/or colours of nodes in the detail hierarchical tree to 

display their similarity value levels and to make the important links more visible. 

b. Making the selected node and its related nodes stand out from other nodes in the treemap 

by enlarging these nodes. 

c. Highlighting words that are related to the selected node in the contents window. 

d. Applying or combining other methods to represent the relationship status of each node in 

the treemap and the whole hierarchical tree. 

e. Separating the windows of the navigator, the filter, the treemap, the whole hierarchical tree, 

and the detail hierarchical tree into different, independent and editable view windows. 

f. Supplying a summary report to briefly introduce the traced system whenever the filter is 

used. 

g. Allowing the editing of the regular expressions used to match words in documents to 

retrieve more correct links and fewer fault links. 

h. Allowing users to add new key phrases or edit/delete existing key phrases to refine 

extracted key phrases to recover more related links. 

i. Including a history navigation to allow users to learn the history of their movements and 

activities and to undo or redo previous activities. 

j. Any modifications made to traceability links need to be saved. 
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8.4 Summary 

Our research arose from the need to retrieve high quality traceability links between artifacts in a 

system and to visualize these retrieved links for users to understand, browse, and maintain them in 

an effective and easy way. A combination traceability recovery approach that combined RE, KP, 

and Clustering with IR models was developed to ameliorate the limitations of IR and demonstrated 

via four case studies and six IR models. Furthermore, a combination traceability visualization 

technique that uses treemap and hierarchical tree techniques was designed and developed to 

convey the structure and links of a system. A formal usability evaluation was conducted to 

evaluate and proved the usefulness of our traceability system – DCTracVis. In addition, a guideline 

was proposed to provide guidance for manually creating affordable and robust traceability 

benchmark. 
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Appendix A – Surveys 

The following pages include the following: 

 

1. The Participant Information Sheet (Head of Department) 

2. The Consent Form (Head of Department) 

3. The Participant Information Sheet (Researchers) 

4. The Consent Form (Researchers) 

5. The Participant Information Sheet (Management) 

6. The Consent Form (Management) 

8. The Participant Information Sheet (Industries) 

9. The Consent Form (Industries) 

10. The Invitation Email 

11 Survey Questionnaires 
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PARTICIPANT INFORMATION SHEET (HEAD OF DEPARTMENT) 
 

Title:  DCTracVis: Extraction and Visualization of Traceability Links between 
Documents and Source Code 

 
 
My name is Xiaofan Chen and I am a PhD student in the Department of Computer Science at the 
University of Auckland under the supervision of Prof. John Hosking and Prof. John Grundy. I am 
conducting research on automatically extracting traceability links between documents and source 
code inside software systems and visualizing the retrieved links. I am investigating how and 
whether traceability links visualization can support users in browsing and maintaining traceability 
links, and comprehending, programming and managing software systems. I have developed a 
prototype called DCTracVis of such a traceability tool. Part of our research involves including 
potential   users   in   the   design,   usability   testing,   evaluation   of   the   prototype’s   effectiveness   and  
accuracy for traceability links extraction and in providing visualization support for the retrieved 
links.  
 
We are seeking the participation of candidates with a Computer Science or Software Engineering 
background for this evaluation study. As the Head of Department of Computer Science, we would 
like to ask your permission to allow us to have access to students and staff members who have a 
background of software development and/or programming and to support and permit the students 
and staff members to participate voluntarily in our study. Your support is of the utmost importance 
to this research and is highly and deeply appreciated by us.  
 
Participation in this study takes approximately 40 minutes. Participants are given the Participant 
Information Sheet and Consent Form that explain this study and the terms and conditions of 
participation. If they agree to participate, they need to sign the Consent Form. Both documents will 
be collected immediately after they agree to participate in the evaluation and before they start with 
the evaluation. Next they are asked to perform a number of tasks on paper, using a computer. The 
tasks will be fully explained and demonstrated. They will then be asked to fully explore 
DCTracVis by browsing, finding and modifying traceability links. The mouse movements they 
undertake to complete tasks on the compute and the time they spend working on each task will be 
digitally recorded. They will not be audio-taped or recorded by any other electronic means such as 
Digital Voice Recorders. They will be observed based on the following aspects: (a) how they 
manage to complete tasks given to them; (b) how they explore the tool to browse and find links; (c) 
how they navigate different functions of the tool; and (d) their verbal responses while using the 
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tool. The observation data will be recorded anonymously. They will be asked to fill in a short 
questionnaire to note their status, existing experience with the tasks and technology and complete a 
questionnaire on their experience of using DCTracVis. Once they completed the questionnaire, 
they need to submit it in a sealed envelope that will be provided to them after they agree to 
participate. There will be no coding to their questionnaire as it is treated anonymously. 
 
The observation and questionnaire data will be compiled and analysed, and the results will be used 
for a PhD thesis and for other academic publications. The digital recordings, with their specific 
consent, may be used in research reports on this project. The participant consent forms will be held 
in a secure file for 6 years, at the end of this time they will  be  properly  disposed  of.  Participants’  
names will not be used in any reports arising from this study. The information collected during this 
study may be used in future analysis and publications and will be kept indefinitely. When it is no 
longer required all copies of the data will be destroyed. At the conclusion of the study, a summary 
of the findings will be available from the researcher upon request. 
 
If a person we approach do not want to participate,  they  don’t  have  to  give  any  reason  for  their  
decision. If they do decide to participate, they may withdraw at any time during the session without 
explanation and without penalty. Completing the required tasks in the survey and submitting the 
evaluation is an indication of consent but as the evaluation is anonymous, no answers can be 
withdrawn once the evaluation is submitted. If the participant is a student or staff member at The 
University of Auckland choosing not to participate, or to withdraw or their information, their 
grades or relationship with the University or other members of staff will not be affected.  
 
This project is partly supported by funding from the Foundation for Research, Science and 
Technology. 
 
Contact Details: 
 
Thank you very much for your time and help in making this study possible. If you have any 
questions at any time you can contact my supervisor Prof. John Hosking: Department of Computer 
Science, The University of Auckland, Private Bag 92019, Auckland 1142. Email: 
john@cs.auckland.ac.nz. Tel: 3737599 ext 88297.  
 
For any queries regarding ethical concerns, please contact The Chair, The University of Auckland 
Human Participants Ethics Committee, The University of Auckland, Office of the Vice Chancellor, 
Private Bag 92019, Auckland 1142. Tel. 3737599 ext 83711. 
 
APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS 
COMMITTEE on 16 November 2011 for a period of 3 years from 16 November 2011. Reference 
2011/7651. 
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CONSENT FORM (HEAD OF DEPARTMENT) 
This consent form will be held for a period of at least six years 

 
 

Title:  DCTracVis: Extraction and Visualization of Traceability Links between Documents and 
Source Code 
 
 
Researcher:  Xiaofan Chen 
 
 
I have been given and understood an explanation of this research project. I have had an 
opportunity to ask questions and have them answered. I understand that at the conclusion of the 
study, a summary of the findings will be available from the researcher upon request. 
 
I agree to support this evaluation study. 
 
I agree to allow the researcher to have access to the students and staff members who have a 
background of software development and/or programming in my Department. 
 
I agree to permit the students and staff members to participate voluntarily in the study. 
 
I understand that the data collected from the study will be held indefinitely and may be used in 
future analysis.   
 
I understand that the participation for participants in this study will take about 40 minutes. 
 
I understand that participants may withdraw their participations during the session at any time. But 
no answers can be withdrawn once the evaluation is submitted. 
 
I  agree  to  provide  the  assurance  that   the  students  and  staff  members’  grades  and/or  relationships  
with The University of Auckland or members of staff will be unaffected whether or not they 
participate in this study or withdraw their participation during it. 
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I understand that digital recordings are taken while participants manage to complete tasks during 
the session and results from them will be used in research reports on this project. 
 
  
Signed: 
 
Name:  
  (please print clearly) 
 
Date:  
 
APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS 
COMMITTEE on 16 November 2011 for a period of 3 years from 16 November 2011. Reference 
2011/7651 
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PARTICIPANT INFORMATION SHEET (RESEARCHERS) 

 
Title:  DCTracVis: Extraction and Visualization of Traceability Links between 

Documents and Source Code 
 
To participants:  
 
My name is Xiaofan Chen and I am a PhD student in the Department of Computer Science at the 
University of Auckland under the supervision of Prof. John Hosking and Prof. John Grundy. I am 
conducting research on automatically extracting traceability links between documents and source 
code inside software systems and visualizing the retrieved links. I am investigating how and 
whether traceability links visualization can support users in browsing and maintaining traceability 
links, and comprehending, programming and managing the software systems. I have developed a 
prototype called DCTracVis of such traceability tool. Part of our research involves including 
potential   users   in   the   design,   usability   testing,   evaluation   of   the   prototype’s   effectiveness   and  
accuracy for traceability links extraction and in providing visualization support for the retrieved 
links.  
 
You are invited to participate in our research as your computer science or software engineering 
background and we would appreciate any assistance you can offer us, although you are under no 
obligation to do so.  
 
Your participation in this study takes approximately 40 minutes. You are given the Participant 
Information Sheet and Consent Form that explain this study and the terms and conditions of 
participation. If you agree to participate, you need to sign the Consent Form. Both documents will 
be collected immediately after you agree to participate in the evaluation and before you start with 
the evaluation. Next you are asked to perform a number of tasks on paper, using a computer. The 
tasks will be fully explained and demonstrated. You will then be asked to fully explore DCTracVis 
by browsing, finding and modifying traceability links. The mouse movements you undertake to 
complete tasks on the compute and the time you spend working on each task will be digitally 
recorded. You will not be audio-taped or recorded by any other electronic means such as Digital 
Voice Recorders. You will be observed based on the following aspects: (a) how you manage to 
complete tasks given to you; (b) how you explore the tool to browse and find links; (c) how you 
navigate different functions of the tool; and (d) your verbal responses while using the tool. The 
observation data will be recorded anonymously. You will be asked to fill in a short questionnaire to 
note your status, existing experience with the tasks and technology and complete a questionnaire 
on your experience of using DCTracVis. Once you completed the questionnaire, you need to 
submit it in a sealed envelope that will be provided to you after you agree to participate. There will 
be no coding to your questionnaire as it is treated anonymously.  
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The observation and questionnaire data will be compiled and analysed, and the results will be used 
for a PhD thesis and for other academic publications. The digital recordings, with your specific 
consent, may be used in research reports on this project. Your consent form will be held in a secure 
file for 6 years, at the end of this time it will be properly disposed of. Your name will not be used in 
any reports arising from this study. The information collected during this study may be used in 
future analysis and publications and will be kept indefinitely. When it is no longer required all 
copies of the data will be destroyed. At the conclusion of the study, a summary of the findings will 
be available from the researcher upon request. 
 
If  you  don’t  want  to  participate,  you  don’t  have  to  give  any  reason  for  your  decision.  If  you  do  
decide to participate, you may withdraw at any time during the session without explanation and 
without penalty. Completing the required tasks in the survey and submitting the evaluation is an 
indication of consent but as the evaluation is anonymous, no answers can be withdrawn once the 
evaluation is submitted. If you are a student or staff member at The University of Auckland 
choosing not to participate, or to withdraw yourself or your information, your grades or 
relationships with the University or members of staff will not be affected. This assurance is given 
by the Head of Department of Computer Science.   
 
This project is partly supported by funding from the Foundation for Research, Science and 
Technology. 
 
Contact Details: 
 
Thank you very much for your time and help in making this study possible. If you have any 
questions at any time you can contact my supervisor Prof. John Hosking: Department of Computer 
Science, The University of Auckland, Private Bag 92019, Auckland 1142. Email: 
john@cs.auckland.ac.nz. Tel: 3737599 ext 88297.  
 
For any queries regarding ethical concerns, please contact The Chair, The University of Auckland 
Human Participants Ethics Committee, The University of Auckland, Office of the Vice Chancellor, 
Private Bag 92019, Auckland 1142. Tel. 3737599 ext 83711. 
 
APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS 
COMMITTEE on 16 November 2011 for a period of 3 years from 16 November 2011. Reference 
2011/7651. 
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CONSENT FORM (RESEARCHERS) 
This consent form will be held for a period of at least six years 

 
 

Title:  DCTracVis: Extraction and Visualization of Traceability Links between Documents and 
Source Code 
 
Researcher:  Xiaofan Chen 
 
I have been given and understood an explanation of this research project. I have had an 
opportunity to ask questions and have them answered. I understand that at the conclusion of the 
study, a summary of the findings will be available from the researcher upon request. 
 
I understand that the data collected from the study will be held indefinitely and may be used in 
future analysis.  
 
I understand that participation will take about 40 minutes.  
 
I understand that I may withdraw my participation during the session at any time. But no answers 
can be withdrawn once the evaluation is submitted. 
 
I understand that my grades and relationships with The University of Auckland will be unaffected 
whether or not I participate in this study or withdraw my participation during it. This assurance is 
given by the Head of Department of Computer Science. 
 
I understand that digital recordings are taken during the session and results from them will be used 
in research reports on this project. 
 
I agree to take part in this research by completing the session. 
  
Signed: 
 
Name:  
  (please print clearly) 
Date:  
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APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS 
COMMITTEE on 16 November 2011 for a period of 3 years from 16 November 2011. Reference 
2011/7651. 



225 

 

 
 

 
 
 
 
 

 
PARTICIPANT INFORMATION SHEET (MANAGEMENT) 

 
Title:  DCTracVis: Extraction and Visualization of Traceability Links between 

Documents and Source Code 
 
 
My name is Xiaofan Chen and I am a PhD student in the Department of Computer Science at the 
University of Auckland under the supervision of Prof. John Hosking and Prof. John Grundy. I am 
conducting research on automatically extracting traceability links between documents and source 
code inside software systems and visualizing the retrieved links. I am investigating how and 
whether traceability links visualization can support users in browsing and maintaining traceability 
links, and comprehending, programming and managing software systems. I have developed a 
prototype called DCTracVis of such a traceability tool. Part of our research involves including 
potential users in the design, usability testing, evaluation   of   the   prototype’s   effectiveness   and  
accuracy for traceability links extraction and in providing visualization support for the retrieved 
links.  
 
We are seeking the participation of candidates with software programming background for this 
evaluation study. As a manager of the company, we would like to ask your permission to allow us 
to have access to your staff members who have a background of software development and/or 
programming and to support and permit the staff members to participate voluntarily in our study. 
Your support is of utmost important to this research and is highly and deeply appreciated by us.  
 
Participation in this study takes approximately 40 minutes. Participants are given the Participant 
Information Sheet and Consent Form that explain this study and the terms and conditions of 
participation. If they agree to participate, they need to sign the Consent Form. Both documents will 
be collected immediately after they agree to participate in the evaluation and before they start with 
the evaluation. Next they are asked to perform a number of tasks on paper, using a computer. The 
tasks will be fully explained and demonstrated. They will then be asked to fully explore 
DCTracVis by browsing, finding and modifying traceability links. The mouse movements they 
undertake to complete tasks on the compute and the time they spend working on each task will be 
digitally recorded. They will not be audio-taped or recorded by any other electronic means such as 
Digital Voice Recorders. They will be observed based on the following aspects: (a) how they 
manage to complete tasks given to them; (b) how they explore the tool to browse and find links; (c) 
how they navigate different functions of the tool; and (d) their verbal responses while using the 
tool. The observation data will be recorded anonymously. They will be asked to fill in a short 
questionnaire to note their status, existing experience with the tasks and technology and complete a 
questionnaire on their experience of using DCTracVis. Once they completed the questionnaire, 
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they need to submit it in a sealed envelope that will be provided to them after they agree to 
participate. There will be no coding to their questionnaire as it is treated anonymously. 
 
The observation and questionnaire data will be compiled and analysed, and the results will be used 
for a PhD thesis and for other academic publications. The digital recordings, with their specific 
consent, may be used in research reports on this project. The participant consent forms will be held 
in a  secure  file  for  6  years,  at  the  end  of  this  time  they  will  be  properly  disposed  of.  Participants’  
names will not be used in any reports arising from this study. The information collected during this 
study may be used in future analysis and publications and will be kept indefinitely. When it is no 
longer required all copies of the data will be destroyed. At the conclusion of the study, a summary 
of the findings will be available from the researchers upon request. 
 
If a person we approach does not want to participate,  they  don’t  have  to  give  any  reason  for  their  
decision. If they do decide to participate, they may withdraw at any time during the session without 
explanation and without penalty. Completing the required tasks in the survey and submitting the 
evaluation is an indication of consent but as the evaluation is anonymous, no answers can be 
withdrawn once the evaluation is submitted. If they choose not to participate, or to withdraw 
themselves or their information, their relationships with the company or other members of staff 
will not be affected.   
 
This project is partly supported by funding from the Foundation for Research, Science and 
Technology. 
 
Contact Details: 
 
Thank you very much for your time and help in making this study possible. If you have any 
questions at any time you can contact my supervisor Prof. John Hosking: Department of Computer 
Science, The University of Auckland, Private Bag 92019, Auckland 1142. Email: 
john@cs.auckland.ac.nz. Tel: 3737599 ext 88297.  
 
For any queries regarding ethical concerns, please contact The Chair, The University of Auckland 
Human Participants Ethics Committee, The University of Auckland, Office of the Vice Chancellor, 
Private Bag 92019, Auckland 1142. Tel. 3737599 ext 83711. 
 
APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS 
COMMITTEE on 16 November 2011 for a period of 3 years from 16 November 2011. Reference 
2011/7651. 
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CONSENT FORM (MANAGEMENT) 
This consent form will be held for a period of at least six years 

 
 

Title:  DCTracVis: Extraction and Visualization of Traceability Links between Documents and 
Source Code 
 
 
Researcher:  Xiaofan Chen 
 
 
I have been given and understood an explanation of this research project. I have had an 
opportunity to ask questions and have them answered. I understand that at the conclusion of the 
study, a summary of the findings will be available from the researcher upon request. 
 
I agree to support this evaluation study. 
 
I agree to allow the researcher to have access to my staff members who have a background of 
software development and/or programming. 
 
I agree to permit the staff members to participate voluntarily in the study. 
 
I understand that the data collected from the study will be held indefinitely and may be used in 
future analysis.   
 
I understand that the participation for participants in this study will take about 40 minutes. 
 
I understand that participants may withdraw their participations during the session at any time. But 
no answers can be withdrawn once the evaluation is submitted. 
 
I  agree  to  provide  the  assurance  that   the  staff  members’  relationships  with  the  company  or  other  
members of staff will be unaffected whether or not they participate in this study or withdraw their 
participation during it. 
 

 

Department of Computer Science  
The University of Auckland 
Science Centre Building 303S 
38 Princes St 
Auckland 1142 
New Zealand 
Phone: 09 373 7599 ext 88260  
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I understand that digital recordings are taken while participants manage to complete tasks during 
the session and results from them will be used in research reports on this project. 
 
  
Signed: 
 
Name:  
  (please print clearly) 
 
Date:  
 
APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS 
COMMITTEE on 16 November 2011 for a period of 3 years from 16 November 2011. Reference 
2011/7651. 
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PARTICIPANT INFORMATION SHEET (INDUSTRIES) 

 
Title:  DCTracVis: Extraction and Visualization of Traceability Links between 

Documents and Source Code 
 
To participants:  
 
My name is Xiaofan Chen and I am a PhD student in the Department of Computer Science at the 
University of Auckland under the supervision of Prof. John Hosking and Prof. John Grundy. I am 
conducting research on automatically extracting traceability links between documents and source 
code inside software systems and visualizing the retrieved links. I am investigating how and 
whether traceability links visualization can support users in browsing and maintaining traceability 
links, and comprehending, programming and managing the software systems. I have developed a 
prototype called DCTracVis of such traceability tool. Part of our research involves including 
potential users   in   the   design,   usability   testing,   evaluation   of   the   prototype’s   effectiveness   and  
accuracy for traceability links extraction and in providing visualization support for the retrieved 
links.  
 
You are invited to participate in our research as your computer science or software engineering 
background and we would appreciate any assistance you can offer us, although you are under no 
obligation to do so.  
 
Your participation in this study takes approximately 40 minutes. You are given the Participant 
Information Sheet and Consent Form that explain this study and the terms and conditions of 
participation. If you agree to participate, you need to sign the Consent Form. Both documents will 
be collected immediately after you agree to participate in the evaluation and before you start with 
the evaluation.  Next you are asked to perform a number of tasks on paper, using a computer. The 
tasks will be fully explained and demonstrated. You will then be asked to fully explore DCTracVis 
by browsing, finding and modifying traceability links. The mouse movements you undertake to 
complete tasks on the compute and the time you spend working on each task will be digitally 
recorded. You will not be audio-taped or recorded by any other electronic means such as Digital 
Voice Recorders. You will be observed based on the following aspects: (a) how you manage to 
complete tasks given to you; (b) how you explore the tool to browse and find links; (c) how you 
navigate different functions of the tool; and (d) your verbal responses while using the tool. The 
observation data will be recorded anonymously. You will be asked to fill in a short questionnaire to 
note your status, existing experience with the tasks and technology and complete a questionnaire 
on your experience of using DCTracVis. Once you completed the questionnaire, you need to 
submit it in a sealed envelope that will be provided to you after you agree to participate. There will 
be no coding to your questionnaire as it is treated anonymously. 

 

Department of Computer Science  
The University of Auckland 
Science Centre Building 303S 
38 Princes St 
Auckland 1142 
New Zealand 
Phone: 09 373 7599 ext 88260 
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The observation and questionnaire data will be compiled and analysed, and the results will be used 
for a PhD thesis and for other academic publications. The digital recordings, with your specific 
consent, may be used in research reports on this project. Your consent form will be held in a secure 
file for 6 years, at the end of this time it will be properly disposed of. Your name will not be used in 
any reports arising from this study. The information collected during this study may be used in 
future analysis and publications and will be kept indefinitely. When it is no longer required all 
copies of the data will be destroyed. At the conclusion of the study, a summary of the findings will 
be available from the researcher upon request. 
 
If  you  don’t  want  to  participate,  you  don’t  have  to  give  any  reason for your decision. If you do 
decide to participate, you may withdraw at any time during the session without explanation and 
without penalty. Completing the required tasks in the survey and submitting the evaluation is an 
indication of consent but as the evaluation is anonymous, no answers can be withdrawn once the 
evaluation is submitted. If you choose not to participate, or to withdraw yourself or your 
information, your relationships with your company or other members of staff will not be affected. 
This assurance is given by the manager of the company. 
 
This project is partly supported by funding from the Foundation for Research, Science and 
Technology. 
 
Contact Details: 
 
Thank you very much for your time and help in making this study possible. If you have any 
questions at any time you can contact my supervisor Prof. John Hosking: Department of Computer 
Science, The University of Auckland, Private Bag 92019, Auckland 1142. Email: 
john@cs.auckland.ac.nz. Tel: 3737599 ext 88297.  
 
For any queries regarding ethical concerns, please contact The Chair, The University of Auckland 
Human Participants Ethics Committee, The University of Auckland, Office of the Vice Chancellor, 
Private Bag 92019, Auckland 1142. Tel. 3737599 ext 83711. 
 
APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS 
COMMITTEE on 16 November 2011 for a period of 3 years from 16 November 2011. Reference 
2011/7651. 
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CONSENT FORM (INDUSTRIES) 
This consent form will be held for a period of at least six years 

 
 

Title:  DCTracVis: Extraction and Visualization of Traceability Links between Documents and 
Source Code 
 
Researcher:  Xiaofan Chen 
 
I have been given and understood an explanation of this research project. I have had an 
opportunity to ask questions and have them answered. I understand that at the conclusion of the 
study, a summary of the findings will be available from the researcher upon request. 
 
I understand that the data collected from the study will be held indefinitely and may be used in 
future analysis. 
 
I understand that participation will take about 40 minutes.   
 
I understand that I may withdraw my participation during the session at any time. But no answers 
can be withdrawn once the evaluation is submitted. 
 
I understand that my relationships with my company or other members of staff will be unaffected 
whether or not I participate in this study or withdraw my participation during it. This assurance is 
given by the manager of the company. 
 
I understand that digital recordings are taken during the session and results from them will be used 
in research reports on this project. 
 
I agree to take part in this research by completing the session. 
  
Signed: 
 
Name:  
  (please print clearly) 
Date:  
 

 

Department of Computer Science  
The University of Auckland 
Science Centre Building 303S 
38 Princes St 
Auckland 1142 
New Zealand 
Phone: 09 373 7599 ext 88260  
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APPROVED BY THE UNIVERSITY OF AUCKLAND HUMAN PARTICIPANTS ETHICS 
COMMITTEE on 16 November 2011 for a period of 3 years from 16 November 2011. Reference 
2011/7651. 
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Invitation Email 

 
My name is Xiaofan Chen and I am a PhD student in the Department of Computer Science at the 
University of Auckland under the supervision of Prof. John Hosking and Prof. John Grundy. I am 
conducting research on automatically extracting traceability links between documents and source 
code inside software systems and visualizing the retrieved links. I am investigating how and 
whether traceability links visualization can support users in browsing and maintaining traceability 
links, and comprehending, programming and managing software systems. I have developed a 
prototype called DCTracVis of such a traceability tool. Part of our research involves including 
feedback  from  potential  users  in  the  design,  usability  testing  and  evaluation  of  the  prototype’s  
effectiveness and accuracy for traceability links extraction and in providing visualization support 
for the retrieved links. 
 
In this study we are testing the usability of a prototype implementation of DCTracVis. The studies 
are being conducted either in the Computer Science Lab at the University of Auckland or at your 
offices. They will take a maximum of 40 minutes. 
 
You are invited to participate in our research and we would appreciate any assistance you can offer 
us, although you are under no obligation to do so. The studies will take place between 01/10/2011 
and 01/06/2012. If you would like to participate please email/phone me to arrange a time, 
xche044@aucklanduni.ac.nz or 09 3737599 ext 88260  
 
 
Regards 
 
 
 
 
 
Xiaofan Chen 
 
This research has been approved by The University of Auckland Human Participants Ethics 
committee on 16 November 2011 for a period of 3 years from 16 November 2011. Reference 
2011/7651. 
 
 
 
 

 

Department of Computer Science  
The University of Auckland 
Science Centre Building 303S 
38 Princes St 
Auckland 1142 
New Zealand 
Phone: 09 373 7599 ext 88260 
 



234 

 

 



235 

 

 
 
 
 
 
 
 

 

Survey: Evaluation of DCTracVis: Extraction and Visualization of 

Traceability Links between Documents and Source Code  

 
Note: This survey is structured into Three parts. Part one provides brief description of the 
prototype "Documents Code Traceability Visualization Tool" (DCTracVis). Part two is the three 
tasks that participants need to perform. An observation data will be collected by PhD student 
Xiaofan Chen. After completing the tasks, a list of questions in Part three need to be answered. 
 

Part One: Introduction of DCTracVis 
 
Source code alone is not sufficient to capture all information about a software system. Software 
requirements, architectural decisions, detailed design, tutorials and user documentation, and various 
types of technical system documentation (e.g. deployment configuration) are important artifacts 
produced while engineering software systems. Tracing and maintaining interrelationships between 
these various forms of software documentation and source code enables users to better understand 
systems, undertake improved maintenance of systems, and ultimately to produce higher quality 
systems [1, 2, 3].  
 
DCTracVis (Figure 1) we developed is a tool that can automatically retrieve traceability links 
between documents and source code, and visualize the recovered links. Traceability links are 
retrieved by using an approach that combines three supporting techniques, Regular Expression, Key 
Phrases, and Clustering, with Information Retrieval (IR) models. Then the recovered links are 
visualized in the three visualization views in the Eclipse IDE to help users easily browse these 
relationships. The three visualization views include Tree Map (Figure 2), Hierarchical Tree (Figure 
3), and Tree (Figure 4).  
______________________________________________________________________________ 
References: 
 
[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo. “Recovering traceability links 
between code and documentations”. TSE 28 (10), Oct. 2002, pp. 970-983 
 
[2] G. Antoniol, G. Casazza, and A. Cimitile. “Traceability recovery by modelling programmer 
behavior”. 7th WCRE, Queensland, Australia, Nov. 2000, pp. 240-247 
 
[3] R. Seacord, D. Plakosh, and G. Lewis. “Modernizing legacy systems: software technologies, 
engineering processes, and business practices”. 2003, Addison-Wesley 

 

Department of Computer Science  
The University of Auckland 
Private Bag 92019 
Auckland Mail Centre 
Auckland 1142 
New Zealand 
 
Tel: +64 (9) 373 7599 x 88260 

 



236 

 

Figure 1 is the user interface of DCTracVis. It includes four parts: Navigator, Visualization 
window, Function Panel, and Selected Node Information window. 
 
 Navigator allows users to navigate through the tree to find a specific artefact. 
 
 Visualization window includes Tree Map view, Hierarchical Tree view, and Tree view. The 

three views show the structure of the system and allow users to browse and maintain links. 
 
 Function Panel allow users to do Search and filter traceability links 
 
 Once users select a node in Navigator or visualization views, detailed information of the 

specific artefact will be shown in the Selected Node Information window show   
 

Figure 1: the user interface of DCTracVis 
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The following are the three visualization views: Tree Map (Figure 2), Hierarchical Tree (Figure 3), 
and Tree (Figure 4). 
 
Figure 2: Tree Map: 
 

 
 
Figure 3: Hierarchical Tree: 
 

 
 
Figure 4: Tree: 
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The case study we use to evaluate DCTracVis is JDK1.5-SUBSET, a free software system for Java 
developers. The following Table describes the packages in JDK 1.5 and their corresponding PDF 
documents used in this study, as well as the number of Java classes and the number of sections in 
them. We divide these PDF files into sections based on their headings. 
 
JDK 1.5-SUBSET #classes/ 

sections 
Java 
packages 

java.awt, javax.naming, and javax.print packages 249 

PDF files JPS_PDF.pdf:  Java™  Print  Service  API  User  Guide 
 

68 

dnd1.pdf: Drag and Drop subsystem for the Java Foundation 
Classes 
 

41 

jndispi.pdf:   Java   Naming   and   Directory   Interface™   Service  
Provider Interface(JNDI SPI) 
 

73 

Total sections: 182 
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Part Two: Tasks 
 
Please perform the three tasks using the "Documents Code Traceability Visualization Tool" 
(DCTracVis) as described below. 
 
Task 1: Understand the JDK1.5-SUBSET system 
 
Image you are new to the JDK1.5-SUBSET system. You want to get to know how this system is 
organized, how artefacts inside this system are connected to each other. 
 
Start time: ____________ 
 

 How is JDK1.5-SUBSET organized? 
 Use visualization views or Navigator to find out the number of packages, number of 

documents, types of documents, structure of documents, etc. 
 

 How are artefacts inside JDK1.5-SUBSET connected to each other? 
 Use visualization views to browse links between classes and sections in documents 
 Use Filter to find out what links have similarity score ≥0.7,  what  classes/sections  

have more than 1 links etc. 
 
Finish time: ____________ 
 
 
Task 2: Understand how a class works 
 
Image you find a bug related to InitialLdapContext.java in the package of javax.naming.ldap. 
You want to find out how this class works in order to fix it. You need to find out where the 
documentation of this class can be found and what other classes are related to this class. 
 
Start time: ____________ 
 

 Find this class and its links 
 Use Navigator or Search or visualization views to find this class 

 
 Find sections in documents that describe this class 

 Use the right click menu to show the content of related sections 
 

 Find classes that are probably related to this class 
 Use  “Selected  Node  Information”  or  visualization  views to find other classes related 

these sections 
 
Finish time: _____________ 
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Task 3: Modify traceability links of a class 
 
Image you have the five traceability links information of InitialContextFactoryBuilder.java in the 
package of javax.naming.spi. This class is related to the following sections (these links are 
recognized as true/correct links):  
 

1. jndispi.pdf 1.2 Interface overview 
2. jndispi.pdf  1.2.1 Namingmanager and directorymanager 
3. jndispi.pdf  1.2.2 Initial contexts 
4. jndispi.pdf  3 The initial context 
5. jndispi.pdf  3.3.2 Removing all policy 

 
Start time: ___________ 
 

 Find this class and look at links of this class provided by DCTracVis 
 Use Navigator or Search or visualization views to find this class 

 
 If links provided by DCTracVis are not correct, you can simply delete them, or edit them to 

be true links 
 Use the right click menu to delete or edit links 

 
 Add some true links if they are missed by DCTracVis 

 Use the right click menu to add links 
 

 Change the similarity score of some links provided by DCTracVis to 1, if the link is true and 
the score calculated by DCTracVis is very low. 
 Use  the  right  click  menu  to  change  the  similarity  score  of  links  in  “Selected  Node  

Information”. 
 
Finish time: ____________ 
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Part Three: Questionnaire 
 
Please complete the following questions. 
 
Section A: Background Information 
 
Below is a list of questions about your background. 
 
1. I have read the Participant Information Sheet and have understood the nature of the research 
and I agree to take part in this research. 

a. Yes                          b. No 
 
2. I am: 

a. A Student     b. An Academic       c. An Industry Participant 
 
3. How many years of software development experience do you have? 

a. < 1 year    b. 1 -- 5 years    c. 5 -- 10 years    d. > 10 years 
 
4. I use Eclipse for programming Java systems. 

a. Always   b. Usually   c. Sometimes   d. Rarely   e. Never 
 
5. I use traceability tools to aid me in comprehending or maintaining or programming software 
systems. 

a. Always   b. Usually   c. Sometimes   d. Rarely   e. Never 
 

Section B: DCTracVis Usability 

 
Below is a list of questions that describe your perception of the DCTracVis. 
 
1. Do you feel that you successfully completed all tasks on the task sheet? 

a. Yes         b. No 
 

For the following questions, please select the answer you feel most accurately relates to DCTracVis 
in comparison to other software you have used, other approaches/tools that can be used to 
extract/find links e.g. manually extracting/finding links.  

 
 

2. It is easy to use. 
a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 

 
3. It helps me more effective in extracting traceability links between artefacts within systems 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
 
4. It makes it easier to extract traceability links. 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
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5. It makes it easier to maintain traceability links (add, delete, edit). 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
 

6. It makes it easier to browse traceability links. 
a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 

 
7. It makes it easier to find traceability links. 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
 
8. It is useful to support me in comprehending the system. 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
 
9. It is useful to support me in maintaining/developing the system. 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
 
10. The various functions in this tool are well integrated and easy to find. 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
 
11. All the functions I expected are all present. 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
 
12. It is user friendly. 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
 
13. I learned to use it quickly. 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
 
14. It is easy to learn how to use it. 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
 
15. I would like to use it in the future. 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
 
16. I would recommend it to friends. 

a. Strongly agree      b. Agree      c. Neutral        d. Disagree      e. Strongly disagree 
 
17. What other comments or suggestions would you like to make to the DCTracVis?  

 



243 

 

Section C: Comparative Questions of visualization views 
 
Below is a list of questions that describe your perception towards the three link visualization views 
provided in the DCTracVis. 
 
1. Which visualization view do you prefer with regard to browsing traceability links? 

a. Tree Map            b. Hierarchical Tree             c. Tree 
 
2. Which visualization view do you prefer with regard to maintaining traceability links? 

a. Tree Map            b. Hierarchical Tree             c. Tree 
 
3. Which visualization view do you prefer with regard to supporting you in understanding the 
system? 

a. Tree Map            b. Hierarchical Tree             c. Tree 
 
4. Which visualization view do you prefer with regard to supporting you in maintaining/developing 
the system? 

a. Tree Map            b. Hierarchical Tree             c. Tree 
 
5. Overall, which view is the best one? 

a. Tree Map            b. Hierarchical Tree             c. Tree 
 

Why? 

 
 
 

6. What other comments or suggestions would you like to make to visualization views? 
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