

An E-whiteboard Application to Support Early

Design-Stage Sketching of UML Diagrams

Qi Chen

This thesis is submitted in fulfilment of the requirements for the degree of Master of Science in Computer

Science, completed at The University of Auckland

July 2003

Copyright© 2003 Qi Chen

Abstract

The whiteboard is one of the most common tools used for supporting various

activities in many fields. These include its use by software developers for doing

collaborative work, especially at the early design stage. Due to the advancement of the

E-whiteboard technology, much research has been carried out in this area over recent

years attempting to retain the advantages of conventional whiteboards while

mitigating their disadvantages. However, not all related issues have been addressed,

nor sophisticated solutions have been provided in those proposed applications.

In this thesis, we present our investigation of developing an E-whiteboard based

sketching tool to support the early-stage UML design. The prototype tool allows

designers to sketch UML software design diagrams and free-hand annotations. A key

novelty of our approach is the preservation of the sketches and the support of the pen

action based manipulations to the sketches. Recognized UML sketches are formalized

to computer drawn UML diagrams to provide the direct feed-back to the user, and the

formalized UML diagrams can be exported to a 3rd party UML CASE tool.

The design and implementation issues are discussed in detail in the thesis. Some

unique approaches and techniques we adopted in the development to achieve required

tool functionality are illustrated. We also present an evaluation of our tool showing its

advantages and disadvantages comparing to the conventional whiteboard and other

UML CASE tools. Finally we provide our comments on the research and highlight the

potential future work in this area.

Acknowledgement

I am greatly indebted to my thesis supervisor Prof. John Grundy for kindly providing

guidance throughout the development of this study. His comments have been of

greatest help at all times. Gratitude also goes to my second thesis supervisor Prof.

John Hosking, head of the department, for providing me constant encouragement and

various suggestions about the research work.

I extend my sincere gratitude and appreciation to many people who made this thesis

possible. Special thanks are due to all persons participated in the survey, for the time

and energy they spent which have added great values to this thesis.

I am grateful to my wife Xiaoling for the inspiration and moral support she provided

throughout my research work. Without her loving support and understanding I would

never have completed my present work. Particularly, I owe to my daughter Ruyan for

her silent prayer for my work at the time when she needed my company most.

Finally, I would like to thank all whose direct and indirect support helped me

completing my thesis in time.

Table of Contents

CHAPTER 1 – Introduction.………………………………………….……………….1
 1.1 Introduction...........…………………………………………………………………………………....1

 1.2 Motivation…………………………............................……………………………………………….2

 1.3 Goal...........…………………………………………………………………………………................4

 1.4 Research Approach...........…………………………………………………………………………....4

 1.5 Thesis Overview...........……………………………………………………………………………....5

 1.6 Summary...........…………………………………………………………………………………........6

CHAPTER 2 – Background Study.......………………………………....…................7
 2.1 Introduction…..…………………………………………………………………...............................7

 2.2 Basic Concepts…………………………………………………………………………….......…….7

 2.2.1 E-whiteboard and Pen-based Computing…………………………………….......……....7

 2.2.2 UML, CASE Tool and Object-Oriented Software Design.....................................……..14

 2.3 Related Research …………………………………………………………………………………...16

 2.4 Summary..................…………………….............................…………………………………….….20

CHAPTER 3 – Requirements Specification.......………………………………....….22
 3.1 Introduction...........…………………………………………………………………………………..22

 3.2 Basic Tool Functionality...…………………………………………………………………….…….22

 3.3 UML Semantics... ………………………………………………………………………….........….23

 3.4 Survey.................. ……………………………………………………………………………….….28

 3.5 Summary of Detailed Requirements...........…………………………………………………………30

 3.6 Basic Object Structure......................………………………………………………………….....….34

 3.7 Dynamic Behaviours.......................……………………………………………………………...….36

 3.8 Summary..........................……………………………………………………………..................….39

CHAPTER 4 – Design and Implementation...40
 4.1 Introduction...........………………………………………………………………………………….40

 4.2 Architecture...........………………………………………………………………………………….40

 4.3 Recognition Algorithms…………………………………………………………………………….48

 4.4 Mechanisms......... …………………………………………………………………………………..56

 4.5 User Interface........…………………………………………………………………………………..61

 4.6 Implementation Experiences.………………………………………………………………………..62

 4.7 Summary.............. …………………………………………………………………………………..63

CHAPTER 5 – A Case Study…………………………………………………………64
 5.1 Introduction...........…………………………………………………………………………………..64

 5.2 The Case...............…………………………………………………………………………………...64

 5.3 The Use of Our Tool………………………………………………………………………………...68

 5.4 Summary.............. …………………………………………………………………………………..79

CHAPTER 6 – Evaluation... …………………………………………………………80
 6.1 Introduction...........………………………………………………………………………………….80

 6.2 Cognitive Dimensions Evaluation.………………………………………………………………….80

 6.3 User Survey......... …………………………………………………………………………………..85

 6.4 Our Comments........………………………………………………………………………………....89

 6.5 Summary.............. …………………………………………………………………………………..91

CHAPTER 7 – Conclusion...………………………………………………………….92
 7.1 Introduction...........…………………………………………………………………………………..92

 7.2 Contributions of the Thesis...………………………………………………………………………..92

 7.3 Future Work …………………………………………………………………………………...........94

 7.4 General Summary.............. ………………………………………………………………………....96

Appendix A – Drawing Rules for Sketching UML Icons…………………………...97

Appendix B – User Survey…..99

Bibliography …………………………………………………………………………107

Chapter 1. Introduction 1
__

CHAPTER 1 - Introduction

1.1 Introduction

The whiteboard is one of the most common tools used by software developers when

doing collaborative work, especially at the early design stage [Apperley et al 02, Chen

03, Guimbretiere et al 01]. For example, to sketch software requirements and design

ideas, explore architectural solutions, capture high level code fragments, organize

design teams, schedule events, etc [Damm 00]. Notation based modeling languages

like the UML (Universal Modeling Language) [UML 03], are often used to assist

these activities.

Figure 1.1 shows a whiteboard in use by designers (a), and an example of sketched

UML diagrams on a whiteboard (b). Three UML diagram types have been sketched

on the whiteboard – (1) “Use Case” diagram (stick figure and oval), describing actors

(users) interacting with a system; (2) “Class” diagram (box with horizontal lines

inside and arrowed/non-arrowed lines between), describing classes of objects and

their relationships; and (3) “Sequence” diagram (boxes with vertical lines underneath

and horizontal arrowed lines between), denoting message sequence flow between

objects. There are also some secondary notations (in red and green colors) in the

sketch.

Figure 1.1 (a) Designers around a whiteboard; (b) an example of sketched UML diagrams

(1)

(2)

(3)

Chapter 1. Introduction 2
__

Research on developing software tools to support applications using large E-

whiteboards (electronic whiteboards) has emerged over recent years [Damm et al 00,

Landay 96, Perlimmer et al 02]. This is due to the recent advancement of E-

whiteboard technologies [Apperley et al 02, MIMIO 03, SMART 03] and experiences

gained from pilot studies on pen-based computing. The aims of these approaches are

not just to replace common input/output devices (computer monitor, mouse/keyboard,

etc.) with special devices (large display screen, electronic pen, etc.), They also

include many other goals, e.g. providing pen-input retrieval, free hand-

drawing/writing recognition, integration with conventional CASE (Computer Aided

Software Engineering) tools, aspects in human-computer interaction, etc. Neither

‘best solutions’ nor ‘standards’ have been determined to address all of these issues as

yet.

Based on the above facts, this research was undertaken to investigate an E-whiteboard

application to support sketching of UML diagrams for early-stage software designs. In

this thesis, we discuss our thoughts, findings and solutions documented in the

development of a prototype tool for this application.

1.2 Motivation

Some key advantages of using conventional whiteboards for sketching such UML and

other designs include:

• Immediacy: there is very little effort required to make a whiteboard “available”,

and it is very easy to create diagrams, capture text, and delete or extend captured

information

• Versatility: a whiteboard can be used to sketch diagrams of multiple (even mixed)

notations, as well as supporting a variety of secondary notations, such as

comments, arrows, highlighting, and color. Sketches do not have to be precise nor

complete in any formal manner.

Chapter 1. Introduction 3
__

• Flexibility. Users can use their own design style and can adapt conventions, such

as the UML, to suit their own needs.

• Size: a whiteboard is generally big enough to hold several significant sketches and

to allow several people to easily collaborate.

• Collaboration: a whiteboard allows multiple designers to gather around and

discuss evolving designs, including taking turns at sketching and annotating

designs on the whiteboard

However, there are some disadvantages of using conventional whiteboards for such

design tasks:

• A lack of persistency: old sketches will have to be erased when there is no

drawing space left on the whiteboard. There is no support for storing the history of

drawings where previous sketches can be retrieved later to be reviewed or

modified.

• An inability to readily transfer information to electronic design tools: the design

work on the whiteboard has to be repeatedly entered (using keyboard, mouse or

other input devices) to electronic design tools (e.g. CASE tools) for further design

and implementation.

• Very high viscosity for some changes: e.g. repositioning, resizing or copying parts

of diagrams is not possible, which increases the inefficiency when working on the

whiteboard.

• Difficulty in collaborating at a distance: it is difficult for designers to

collaboratively work on more than one whiteboards which are in separated rooms.

Our motivation was to investigate the use of large E-whiteboards to support early

design stage UML sketching. We wanted to retain the advantages of conventional

whiteboards while mitigating their disadvantages. The evolution of large-display

Chapter 1. Introduction 4
__

devices like E-whiteboards and the availability of related mature hardware/software

products in the current market have made this investigation feasible.

1.3 Goal

We have described our goal to build an E-whiteboard based early software design tool.

This tool allows UML diagrams to be sketched, recognized and integrated with

conventional UML CASE tools. During the development of the tool, we investigated

important issues related to this area. We sought answers to questions like: what is the

theoretical basis of pen-based computing? How can an E-whiteboard best be used as a

special input/output device? What are the differences between an E-whiteboard and

conventional input/output devices? What is the best approach for capturing and

recognizing sketches or UML design elements? How can we integrate our tool with

other UML CASE tools? Do we have a better recognition algorithm than others that

have been proposed? What considerations need to be taken in terms of usability which

suits the nature of hand-writing/drawing?

In addition, the UML sketching is an initial experimental example we choose for our

investigation. It is our ambition that, upon the success of this research, we may carry

out future works to extend our tool to other design areas. Thus, it is important for us

to add a high level of extensibility to the tool when designing its architecture and

adopting ‘best’ mechanisms and techniques for implementation.

We hope this thesis is valuable in providing thoughtful ideas, theoretical basis and

practical experiences to other researchers who have similar interests in this area, as

well as to ourselves for doing future works.

1.4 Research Approach

After defining the motivation and goal in the initiation of this research, we first

perform a comprehensive literature review and in-depth background study prior to the

development of the tool to gain solid theoretical basis for our application and to

Chapter 1. Introduction 5
__

prevent us ‘reinventing wheels’. This review and study covers topics like pen-based

computing and E-whiteboard technologies, conventional UML CASE tools, software

design concepts, hand-writing/drawing recognition, and other related research.

The second stage is an investigation through the development of our desired tool. The

tool development follows a typical, but scaled down (due to the time restriction)

SDLC (Software/Systems Development Life Cycle). We first outline essential

requirements and specifications at a conceptual level for building up such a tool. Then

based on the requirements, specifications and knowledge gained from the literature

review and background study, we perform the design and implementation tasks. All

related research issues are investigated during this process.

Finally, we carry out a case study to illustrate the features of our tool, and an

evaluation to assess the achieved functionality and the advantages/disadvantages of

the implementation of our tool. Then, we provide a conclusion to summarize our

research and to state the potential future work.

1.5 Thesis Overview

We have organized this thesis in seven chapters:

• Chapter 1: Introduction – introduces the project initiation and the thesis topic.

States the motivation, goal and approach of this research.

• Chapter 2: Background Study – contains basic concepts and other related

research from the literature study on the subject area.

• Chapter 3: Requirements Specification – defines the requirements specification

and presents a conceptual object model of our tool.

• Chapter 4: Design and Implementation – discusses all design issues (e.g.

architecture, data structure, user interface), the reasons and the

Chapter 1. Introduction 6
__

advantages/disadvantages of adopting mechanisms and techniques to fulfill the

required tool functionality, and the experiences gained in the implementation.

• Chapter 5: A Case Study – illustrates the features of the tool by carrying out a

case study. Some of the design and implementation details are further discussed

here.

• Chapter 6: Evaluation – evaluates the prototype tool by the Cognitive

Dimensions framework [Green et al 96] and a user survey.

• Chapter 7: Conclusion – summarizes the contributions made by this thesis, and

outlines the future work in this research field.

1.6 Summary

In this chapter, we have stated our research topic, the motivation for us to carry out

this research, the goals we want to achieve, and the approach we take. We have also

provided an overview of the structure and contents of this thesis.

Chapter 2. Background Study 7
__

7

CHAPTER 2 - Background Study

2.1 Introduction

This chapter contains a background study prior to our tool development. We divide

materials obtained from the study into two parts: Basic Concepts and Related

Research for the convenience of discussion.

The first part of this chapter covers the theoretical concepts our research is based on,

the research areas our project is related to, and some materials from other research

that we feel are in some levels of ‘classic’, ‘standardized’ or ‘well

recognized/adopted’ and are used in our work. The second part introduces other work

closely related to our research that has lessons and experiences we can learn

something from.

2.2 Basic Concepts

In the previous chapter, we indicated that our research is the development of a

prototype E-whiteboard based sketching tool. Therefore, we discuss concepts and

issues regarding topics of E-whiteboard and pen-based computing. Also, as the UML

has been selected as the software design notation example for our experimental

research, we also discuss basic concepts of the UML, conventional UML CASE tools

and object-oriented software design in general.

2.2.1 E-whiteboard and Pen-based Computing

History

The success of research in human-computer interaction (HCI) has fundamentally

changed the ways of computing. One example is that virtually all software written

today employs graphical user interface toolkits and interfaces builders [Myers 98].

Chapter 2. Background Study 8
__

8

Historically user interfaces evolved from Textural (TUI) to Graphical (GUI), and now

to Pen-based (PUI) [Apte et al 93]. In a TUI, the input is keyboard-based character

streams. The user must know the syntax and semantics of a description language, and

the representation is highly indirect. In a GUI, the mouse has shared a large part of the

role for the user input from the keyboard. Through mouse clicks and drag-and-drops,

the user gets direct feedback of the visual construction so called “What You See Is

What You Get” (WYSIWYG) [Apte et al 93].

The research and development of pen-based computing was started in the early 1960’s

[Myers 98]. Until recently, because of the evolutionary of its devices and related

technologies, the pen-based computing system has emerged and started attracting

more and more users. The PUI promises to be a real alternative to the keyboard and

mouse based one.

Devices

Recently, small screen devices such as PDAs (Personal Digital Assistants), H/PC

(Handheld PC) or cellular phones enjoy enormous popularity [Myers 98]. The

phenomenal growth and rising demand as well as reliance of users to use computers

anywhere at any time have further driven the future of computers towards to mobile

and ubiquitous computing. However, several limitations on the size of the screen and

memory of above devices have restricted their usage in many areas to date.

The Tablet PC from Microsoft, which is one of the newest pen-based computing

devices, has been launched to the market and started to play an important role in those

areas that small devices were unable to [Microsoft 03]. However, it is still not a ‘one-

off’ solution to all needs, e.g. it is hard for a group of developers performing

collaborative design tasks on a Tablet PC due to the limitation of its size.

Recently, there have been increasing interests in large screen computing devices. The

“E-whiteboard” is such a device that has become a popular way of supporting a wide

range of activities. These include: meeting support with collaborative document

display, review and annotation [Voida et al 02]; education [Berque et al 02];

Chapter 2. Background Study 9
__

9

presentation control and annotation [Apperley et al 02]; and (early) design [Lank et al

02]. The input advantages of conventional whiteboards are partially replicated with E-

whiteboard applications, with additional advantages of digital data capture and

display, distributed work support and control via sketching/gesture-based interfaces

[Apperley et al 02, Berque et al 02, SMART 03].

Hand-writing/drawing Recognition

Much work has focused on the recognition of hand-writings and hand-drawings which

is the major issue in pen-based computing. There are mainly two different

mechanisms: Optical Character Recognition (OCR) and Gesture recognition.

• OCR – is often referred as “off-line” handwriting recognition, as it recognizes and

converts scanned handwriting images into a text file which then may be used for

word processing or other forms of data processing. As such, it is mostly used for

office automation and information retrieval and is not quite relevant to our

research. However, the Neural-Network, an important and advanced mechanism

adopted in most OCR tools is a potential alternative may be ‘borrowed’ in this

research area. We did not implement this mechanism due to its complexity and the

need of learning process, which we felt might be inefficient for our application.

However, we still give a brief introduction of it to provide ideas for those who

may read this thesis and also for ourselves in doing the future work.

The original biological term Neural-Network used here refers to a data modeling

tool that is able to capture and represent complex input/output relationships

[OCHRE 03]. The motivation for the development of Neural-Network technology

stemmed from the desire to develop an artificial system that could perform

intelligent tasks similar to those performed by the human brain. It resembles the

human brain in the ways of a) it acquires knowledge through learning, and b) the

gained knowledge is stored within inter-neuron connection strengths known as

synaptic weights.

Chapter 2. Background Study 10
__

10

The most common Neural-Network model is the Multilayer Perceptron (MLP)

[Fig 2.1]. The goal of this type of network is to create a model that “correctly”

maps the input to the output using historical data so that the model can then be

used to produce the output when the desired output is unknown. The MLP and

many other Neural-Networks learn using an algorithm called Backpropagation.

With backpropagation, the input data is repeatedly presented to the Neural-

Network. With each presentation the output of the Neural-Network is compared to

the desired output and an error is computed. This error is then fed back (back-

propagated) to the Neural-Network and used to adjust the weights such that the

error decreases with each iteration and the neural model gets close and close to

produce the desired output. This process is known as “training”. More details of

its techniques and application examples can be viewed on those articles/books

about this topic [OCHRE 03].

Figure 2.1 Backpropagation Network Architecture

hidden
layer

network input

input
layer

output
layer

network output

Chapter 2. Background Study 11
__

11

• Gesture recognition – as the term used here, refers to deal with the movements

performed with one’s hand with a pen or stylus. The contents for recognition can

be both shapes and texts. Gesture recognition can be seen as the key issue in pen-

based computing. Sometimes it is also referred as “on-line” handwriting

recognition as the recognition is often performed while the gesture is being drawn.

Since the first pen-based input device has been invented, it was quite common in

those systems to include some gesture recognition, for example in the AMBIT/G

system (1968). A gesture-based text editor using proofreading symbols was

developed at CMU by Michael Coleman in 1969. Gesture recognition has been

used in commercial CAD systems since the 1970s and came to universal notice

with the Apple Newton in 1992 [Myers 98]. Teitelman in 1964 developed the first

trainable gesture recognizer. A very early demonstration of gesture recognition

was Tom Ellis’s GRAIL system on the Rand tablet [Myers 98]. More recently,

Microsoft’s Office XP has facilitated a handwriting-recognition engine which is

expected to be used primarily in Tablet PCs for pen-based text input and

recognition [Microsoft 03].

Much research has been carried out on algorithms for gesture recognition.

Relatively few efficient algorithms have been published so far. From our research,

we found two types of suitable algorithms are available currently: the Single-

Stroke Recognition Algorithm and the Multi-Stroke Recognition Algorithm. We

discuss these two types of algorithms in detail below.

Single-Stroke Recognition Algorithm

This type of algorithm is single-stroke and feature analysis based, with adopted

mechanisms of the pattern matching, or the visual language parsing, or the

integration of two [Zhao 93]. Among those proposed algorithms, Rubinee’s

algorithm [Rubine 96] is the most popular one that has been implemented in many

applications.

In Rubinee’s algorithm, a gesture is an array g of P time-stamped sample points:

Chapter 2. Background Study 12
__

12

gp = (xp,yp,tp) 0 <= p < P

A vector of features, which are chosen according to the criteria specified in the

paper, is extracted from the input gesture.

f = [f1…..fn]

The classic linear discriminator is used for pattern recognition. The recognizer is

trained from a number of examples of each gesture.

Gesture class c has weights wci for 0 <= i < F, where F is the number of features.

The training problem is to determine the weights wci from the example gestures. A

well known closed formula is used instead of iterative techniques. The formula is

known to produce optimal classifiers under certain rather strict normality

assumptions on the per-class distributions of feature vectors. The Mahalanobis

distance and other methods are used for rejecting ambiguous gestures and outliers.

An input gesture is evaluated by a linear function over the features. The

evaluations, vc, are calculated as follows:
F

Vc = wc0 + ∑wci fi 0 <= c < C
 i=1

The classification of gesture g is the c which maximizes Vc.

The main features of Rubinee’s algorithm are that: 1) it combines statistical

gesture recognition with direct manipulation techniques; 2) each gesture is

recognized independent of its shape and size, but has to be drawn in a single

stroke.

Multi-Stroke Recognition Algorithm

This type of algorithm is generally applied to shape recognition, such as diagram

components. Most techniques used for the shape recognition in research and

Chapter 2. Background Study 13
__

13

developments are primarily for machine vision and recognition, and are relatively

too complex and beyond the requirements in pen-based recognition systems [Zhao

93]. Apte et al proposed a ‘fast, simple’ algorithm for recognizing hand-drawn

multi-stroke geometric shapes [Apte et al 93].

Their algorithm is based on two ideas. First, because shapes are geometric entities,

they should be recognizable solely by their geometry. No stroke information (i.e.

order of input data points, speed of input) is used for analysis; only data points are

used. Second, recognition can be achieved by filtering. Each filter categorizes

input according to certain criteria. Passing data through filters provides an

increasingly refined description of the data.

Three filters are used in their algorithm: 1) Area-Radio (Ac/Ar) Filter – which

Ac is the area of the convex hull defined by the collected points, and Ar is the area

of the coordinate-oriented bounding rectangle. The ratio for rectangles is close to

100%, the ratio for ellipses is approximately 80%, and the ratios for triangles and

diamonds are both about 50%. 2) Triangle-Diamond Filter – the relation of the

left and right corners to the rest of the shape is checked by averaging the Y value

of those corners. In a triangle, those corners are near the bottom of the shape. In a

diamond, those corners are near the middle of the shape. 3) P2/A Filter – which

P is the perimeter and A is the area of the shape. This ratio is a scalar for any

shape. For instance, P2/A = 16 for squares of any size. Let s = width / height

for the bounding rectangle of a given shape, the P2/A ratio can be extended to

shapes with s ≠ 1 and can be calculated based on the value s. Though the ratio

for lines is theoretically infinite, in practice it is found to be greater than 55.

There are two common difficulties involved in multi-stroke shape recognition.

These are segmentation (to identify which strokes belong to which objects) and

incomplete specification (shape is not closed – every stroke in a multi-stroke

object may not be connected to the other strokes of the object).

The algorithm proposed by Apte et al solves the first problem by introducing a

proportional time-out technique. After the first stroke, consequent strokes are

drawn within a certain time-out period, if the pause is longer than the period, the

Chapter 2. Background Study 14
__

14

recognition procedure is triggered and all previous strokes are recognized together

as one shape object. The formula they used:

time-out = 500 + 4n (ms)

where n the number of data points collected is linearly proportional to the number

of data points collected so that larger objects will have a longer time-out as the

user may have to move the pen some distance to start the next stroke.

To solve the second problem, firstly, the minimum spanning convex hull is

derived from the input data points. Then the Perimeter (P) and Area (A) of the

convex hull are computed for use by some of the filters. Each shape employs

various filters. Each filter is weighted according to its success in recognizing that

shape. For triangles and diamonds, the Ac/Ar and Triangle-Diamond filters are

used. For circles and lines, only the P2/A filter is used. And for rectangles and

ellipses, both Ac/Ar and P2/A ratio filters are used. The weighted outputs are

combined to select the final shape.

The main features of this algorithm are: 1) it provides a natural way for users

drawing geometric objects in multi-strokes; 2) the user needs to pause their

drawings to allow the time-out to trigger recognition; 3) objects are recognized

independent of its size and number of strokes, but are orientation dependent; 4) it

is only used for recognizing geometric shapes.

In the above, we discussed a brief history and the basic concepts about pen-based

computing, E-whiteboard, and mechanisms and algorithms presented in other research.

Next, we will briefly introduce concepts of UML, CASE tool and software design and

their relationships.

2.2.2 UML, CASE Tool and Object-Oriented Software Design

Methodologies for software design have evolved over past decades [Rumbaugh et al

91]. Now, Object-Oriented design is the most widely adopted one in this area. It is a

mapping of real-world phenomena and the concepts of a problem domain to objects,

classes, and their relationships in a solution domain. The process of doing so is called

Chapter 2. Background Study 15
__

15

modeling. Even though the reality of object-oriented design is much more complex,

modeling enjoys a central position in object-orientation [Rumbaugh et al 91]. The

fundamental concept in object-oriented modeling is the object. An object contains

both data and methods that operate on the data. Objects are said to encapsulate their

data by separating their external aspects with which other objects can interact, from

their internal details such as their data and implementation details. An object’s data

can therefore only be accessed via its methods and accessible attributes. Objects are

typically composed of smaller objects. Another concept in object-oriented modeling is

the class. A class is an abstraction of a set of objects with the same behavior

(represented as their method) and/or structure (represented as their data). The

concepts of class and object are closely related. A single object is an instance of a

class. A class defines attributes, pieces of data that instances of the class will have,

and methods, the operations on the data. Classes can inherit (all the attributes and

methods) from other classes, and also override some of the methods after inherited to

provide new implementations. Above is a brief introduction of object-oriented

modeling in software design. Detailed information can be found in [Rumbaugh et al

91].

The UML is the predominant industry standard for object-oriented modeling [UML

03]. It is a large and comprehensive visual modeling language containing a certain set

of diagrams used for different modeling purposes. They are Use Case diagram, Class

diagram, Package diagram, Collaborate diagram, Sequence diagram, Deploy diagram,

Component diagram and State diagram. Each diagram is used to describe a different

aspect of the underlying object model being created. For example, Class Diagrams

describe the static structure of an object model by presenting their properties, methods

and attributes, and inheritance and association relationships between them. Sequence

or Collaboration Diagrams describe the dynamic behaviors in the object model by

showing the series of messages that get passed between objects or the method-calls

that occur in a specific collaboration. Different notations are used in each diagram to

map graphical syntax onto the specifying object models that have an exact semantic

meaning. Examples of UML diagrams will be presented in next chapter. More

detailed explanations of the UML can be found in [Fowler 97].

Chapter 2. Background Study 16
__

16

CASE Tools have been widely adopted among software engineering communities due

to its provision of efficiency in supporting the software development. A variety of

CASE tools have been created to support the developer’s work throughout the

software development process [Damm et al 00]. UML tools [UML Tools 03] are

examples of them, which allow developers to draw different types of diagrams when

they carry out software analysis and design modeling processes. They are commonly

installed on computers and take inputs from the keyboard/mouse and display outputs

on the screen. However, many studies regarding the topic of “Human-Computer

Interaction” have pointed out that developers prefer sketching designs by handwriting

rather than doing it using the keyboard/mouse on the computer screen, especially in

the early stages of the software design [Damm et al 00]. This may be because that

handwriting is more natural for humans to perform creative designs as it is quick and

easy to express ideas with more freedom. Another issue is that in the case of

collaborative work among developers, which is often required in software design, a

computer screen with common size is not suitable as the communication tool. Much

research has focused on using the E-whiteboard technologies to solve the above

issues.

2.3 Related Research

A number of related research projects are summarized here. These address areas of

sketching-based design and sketching-based UML design tools.

SILK [Landay 96]

In their early research on the topic of pen-based computing, Landay and Myers

proposed the Garnet and Amulet toolkits and the training tool for the recognizer -

Agate. Based on this work, they finally developed a more sophisticated tool called

SILK that allows software designers to sketch an interface using an electronic pad and

stylus. SILK tries to recognize user interface widgets and other interface elements as

soon as they are drawn, though it is not intrusive (‘sketchy’ look of the drawn

components are retained) and users will only be made aware of the results when they

choose to exercise the widgets. The recognition uses Rubine’s single stroke gesture

Chapter 2. Background Study 17
__

17

recognition algorithm. When the designer is satisfied with the early prototype, SILK

can transform the sketches into real widgets and graphical objects that can take on a

specified ‘look and feel’ of a standard graphical user interface. At each stage of the

process, the designer can switch the sketch into the run mode to test the interface.

Testing is done by manipulating it with the mouse, keyboard, or stylus, while SILK

stores the history of all drawings for later use. Annotation and editing are also

supported in the tool. By the time of the publishing of their paper, the prototype of

SILK ran under Common Lisp on both UNIX workstations and an Apple Macintosh

with Wacom tablet attached. It supported recognition and operation of several

standard widgets, and transformed sketches to an interface with a Motif look-and-feel.

It could only recognize a few ways of drawing each widget, and did not support the

specification of its behaviors.

We feel that some approaches introduced in SILK are highly useful. These include the

retaining of sketched user interface components; the provision of a standard graphical

form of recognized sketches; the support of annotation and editing.

However, SILK is not designed to be used on E-whiteboards and thus it does not

address the issues relating to the use of the E-whiteboard technologies. Also it is

designed to work with the user interface design, the implementation ideas and

mechanisms can not be generalized to UML design. Another drawback is the single-

stroke recognition algorithm they used for the recognition has the disadvantages

which have been discussed in the previous ‘Gesture recognition’ section of this

chapter.

FreeForm [Perlimmer et al 02]

The FreeForm software was developed by Plimmer et al as a Visual Basic (VB) Add-

In for the design of VB forms. It adopted the same metaphor of the SILK, but utilizes

an electronic whiteboard and pen input to support hand-drawn sketching of Visual

Basic user interface screens. There are five major parts to the software; the sketch

space, storyboard, run mode, recognition engine and conversion of the sketch to a VB

form. The sketch space allows the user to draw multiple sketches each depicting a

Chapter 2. Background Study 18
__

18

different form, while the storyboard shows miniature views of all the form sketches

and allows the user to add links between forms. In the run mode the sketch is shown

but can not be altered. The user can navigate between the forms by touching

‘hotspots’. The recognition of shapes and characters are also based on Rubine’s

algorithm with shape/letter library and rule mapping techniques.

We feel that FreeForm can almost be seen as a refined E-whiteboard version of SILK,

and thus inherited most advantages and disadvantages from SILK. However, issues of

using the E-whiteboard and pen-based input, especially the usability issue, have been

addressed in some degree which are useful to our research (please refer to their paper

for details).

Knight [Damm et al 00]

The project of developing the Knight tool was undertaken by Damm et al at the

University of Aarhus, Denmark. It seems to be the work closest to our research.

Knight supports collaborative UML modeling using gestures on an electronic

whiteboard with pen input. To achieve intuitive interaction, the Knight uses

compound gestures and eager recognition. Compound gestures combine gestures that

are either close in time or space to one drawing element. Eager recognition, again

based on Rubine’s algorithm, tries to classify gestures (shapes) while they are being

drawn. Text input is supported in five ways: normal keyboard, on-screen Virtual

Keyboard, Stylus-based Gestures (as on PDA’s), Cirrin, and Quikwrite. Apart from

the Stylus-based Gestures, none of others are gesture recognition based. To support

the informality, it allows incomplete elements being recognized at a later time; and

also, a separate “freehand” mode can be activated in which allowing the user to make

arbitrary sketches and annotations. However, the association between a “freehand”

element and a “formal” (i.e. recognized) element is not implemented.

We feel that Knight can be seen as a UML version of FreeForm. However, the main

difference of Knight is it converts UML sketches into computer drawn diagrams as

soon as they are recognized. This does not support the ‘look and feel’ of conventional

whiteboard and thus is seen as its major weakness which limits the exploratory and

Chapter 2. Background Study 19
__

19

creative design when working with it. Because of the complexity of the UML

diagrams and because of the single-stroke recognition algorithm they used is not

sophisticated enough to handle them, Knight only support a small range of UML

diagrams which is not seen to be able to generalized to a full functional UML

sketching tool or other modeling tools.

Other related research

We briefly discuss some related research applied in domains other than the software

design.

Guimbretiere et al [Guimbretiere et al 01] developed an “interactive wall” metaphor

implementing FlowMenu. This is a brainstorming tool uses direct pen-based

interaction on a large high resolution display to support both free-hand sketching and

displaying high-resolution materials such as 3D models and GUI application windows.

Their demonstration of the feasibility and appeal of interacting directly with digital

materials on large surfaces is an encouragement to our investigation.

In their paper [Gross et al 96], Gross and Do demonstrated the Electronic Cocktail

Napkin, a pen-based interface to support intelligent design critiquing, retrieval of

relevant items from a case library, and simulation. It uses a simple, trainable-on-the-

fly recognition scheme to identify multi-stroke glyphs drawn using a Wacom

digitizing tablet, mouse, or Newton PDA. They showed applications of the tool in

indexing visual databases for building collection and design and a front end to a local

area network design program. Their recognition scheme is said to be able to recognize

‘multi-stroke glyphs’ and the details of the actual recognition algorithm is not

specified in their paper. However, from the description of the scheme in their paper,

we can see that it is still a training required, pattern matching based algorithm which

is expected to be similar with the single-stroke recognition algorithm we have

introduced.

Igarashi et al described a tool called Flatland [Igarashi et al 00] which intend to

support various activities on personal office whiteboard. Their architecture is

characterized by its use of freeform strokes as the basic primitive for input and output,

Chapter 2. Background Study 20
__

20

flexible screen space segmentation, pluggable applications that can operate on each

segment, and build-in history management mechanisms. The dynamic segmentation

technique is the major strength of this application.

Chatty and Lecoanet reported [Chatty et al 99] the project, IMAGINE, which

represented the second generation of a graphical interface for air traffic control. Their

prototype, GRIGRI, uses a high-resolution touch screen and provides mark-based

input through the screen. They attempted to use gestures and multi-modal techniques

to make interaction faster, and closer to the controllers’ habits. This challenging

application in the high demanding air traffic control field again encouraged us

investigating in this pen sketching based research area

Bailey and Konstan [Bailey et al 03] reported on an evaluation comparing DEMAIS

to pencil and paper and Authorware for the exploration and communication of

behavior in early multimedia design. They claim that DEMAIS is an informal design

tool that helps a multimedia designer explore and communicate temporal and

interactive (behavioral) design ideas better than existing tools. DEMAIS provides

storyboard, voice script, and multi-view editors. There are no recognitions in

DEMAIS. Instead, when a designer sketches an ink stroke that connects rectangular

strokes, text objects, or imported media objects, DEMAIS interprets that stroke as a

behavioral stroke and transforms it into a low-fidelity, functional prototype. All

sketches are remained on the storyboard and can be modified later. Again the

approach of remaining the sketches supports our concept of how an E-whiteboard

based sketching tool should act like.

2.4 Summary

In this chapter, we have summarized the material gained from our background study.

Basic concepts and related research have been discussed to some degree.

We feel that some approaches adopted in other research are not good choices to be

implemented in our tool. For example, the single-stroke recognition algorithms

implemented in most current applications may not be sufficient enough for our

Chapter 2. Background Study 21
__

21

application due to its unnatural way of drawing and the need of extra training

processes. The approach of immediate conversion of sketches into a formalized form

as soon as they are recognized is not a nature behavior that an E-whiteboard sketching

tool shall have.

On the other hand, we feel that the multi-stroke algorithm can be a good alternative to

our tool, though more experiments and extra works may be required to make it more

efficient and powerful. We were also influenced by some of other applications e.g.

Plimmer’s observations in her Freeform work that retaining a sketch form encourages

more experimentation with design. Therefore, our approach in developing a new E-

whiteboard based UML sketching tool, is to explore the retention of the hand-drawn

sketch “look and feel” of real whiteboards with UML sketches, while retaining the

ability to recognize and convert the sketches to more formal diagrams.

Chapter 3. Requirement Specification
__

22

CHAPTER 3 - Requirements Specification

3.1 Introduction

The requirements of this project came from three sources: our goal, background study,

and a survey. The former twos are quite usual to research-type applications. However,

it is not our goal to build a tool just in our own interests and in the way of how we

‘feel’ it should be. We intend to make our tool to be able to meet commercial

standards of possible future developments, and as such, the tool has to be made in the

way of how potential users would feel it should be. It is always crucial for the success

of any type of software development to get users involved as early as possible.

Therefore, a survey was carried out to help us analyzing the requirements of this

application.

In this chapter, we determine the requirements by analyzing the basic functionality the

tool will provide; the UML semantic definition and constraints the tool will follow;

and the ideas/suggestions summarized from the survey we have carried out. Then, we

present a conceptual object model we developed for the tool based those requirements.

The UML Class Diagram is used to illustrate the Basic Object Structure (static view)

of the tool, and the Sequence Diagram is used to represent the Dynamic Behaviors

(dynamic view) of the tool. From our previous study, we can see that there are many

possible ways of implementing this tool. We intend to keep the model as simple and

abstractive as possible at this early stage to avoid restricting ourselves from many

potential choices in later design and implementation stages.

3.2 Basic Tool Functionality

From our goal and the background study, we summarize the basic functionality

required by the tool below:

Chapter 3. Requirement Specification
__

23

! The tool will enable users to use a pen-based electronic whiteboard system to

sketch UML diagrams and any other free hand writings/sketches in a similar way

of drawing them on a conventional whiteboard. Those sketches will be captured

and displayed on the E-whiteboard as long as the users desire to provide the

retention of the hand-drawn “look and feel” of real whiteboards. The users will be

able to use pen-based input to manipulate sketches (e.g. to move, copy, replace,

delete sketches) which provides advantages of the tool over conventional

whiteboards.

! The tool will be able to progressively recognize sketched UML diagrams together

with necessary identifying/specifying text. It will also be able to represent them in

a formalized view when desired to provide feedbacks on semantic constraints. The

users will be informed by a proper manner whether a sketched item has been

recognized or not.

! The tool will be able to save sketches as a re-loadable file in a physical storage or

export formalized diagrams to a standard UML CASE tool for the further work.

3.3 UML Semantics

We have chosen to experiment with UML notations in our research for the reasons of:

1) The UML has become a de-facto standard visual modeling language used in the

software analysis and design. It is well understood by us and most software designers,

and thus it may be easer for us to implement it in our tool as well as to perform the

usability evaluation by the users which will be software designers. 2) The richness

and complexity of the notations contained in different types of UML diagrams

challenges us to develop a more sophisticated and extensive tool. More experiences

will be gained from the experiment.

We did not implement all types of UML diagrams due to time restrictions and the fact

that the main purpose of this project is to investigate the interest issues in this area

rather than to produce a commercialized tool supporting the whole range of UML

diagram types. In the reality, it does not always happen that all UML diagrams are

Chapter 3. Requirement Specification
__

24

used in every software development. Some diagrams are more frequently used e.g. the

Use Case diagram, Class diagram, Sequence diagram, etc.; some are less frequently

used e.g. the Component diagram, Package diagram, etc.; and some may never been

used by some developers e.g. the Activity diagram. And yet many conventional UML

CASE tools do not support all UML diagram types [UML Tools 03]. We avoided

experimenting with similar diagram types e.g. the Object diagram is very close to the

Class diagram (in this case, the Class diagram is chosen to be implemented in our tool

as it is more frequently used then the Object diagram). We also avoided implementing

some diagram typess which are not often used e.g. the Activity/State diagram. Table

3.1 below illustrates the semantics definitions and constraints [UML Center 03] of the

five types of UML diagrams (out of the total nine UML diagram types) supported by

our tool:

Use Case Diagram

Use case diagrams model the functionality of

system using actors and use cases. Use cases are

services or functions provided by the system to its

users.

Actor

An actor is the user of a system. It is represented

as a stick figure with a label of its name.

Use Case

The use case is draw using an oval with labeled

name that represent a system's function.

Relationships

Illustrate relationships between an actor and a use

case with a simple line. For relationships among

use cases, use arrows labeled either "uses" or

"extends." A "uses" relationship indicates that one

use case is needed by another in order to perform

a task. An "extends" relationship indicates

alternative options under a certain use case.

Chapter 3. Requirement Specification
__

25

Class Diagram

Class diagrams are the most important UML

diagram for object oriented modeling. They

describe the static structure of a system.

Class

A class is illustrated with a rectangle divided into

compartments. The name of the class is placed in

the first partition (centered, bolded, and

capitalized), the attributes are listed in the second

partition, and the operations are listed in the third.

Association

An association represents a static relationship

between classes. Its name is placed above, on, or

below the association line. A filled arrow is used to

indicate the direction of the relationship. Its role

names are placed near two ends of an association.

Roles represent the way the two classes see each

other.

Generalization

Generalization is another name for inheritance or

an "is a" relationship. It refers to a relationship

between two classes where one class is a

specialized version of another.

Aggregation

Use a hollow diamond to represent a simple

aggregation relationship, in which the "whole" class

plays a more important role than the "part" class,

but the two classes are not dependent on each

other. The diamond end in an aggregation

relationship points toward the "whole" class or the

aggregate.

Chapter 3. Requirement Specification
__

26

Sequence Diagram

Sequence diagrams describe interactions among

classes in terms of an exchange of messages over

time.

Class role

A class role describes the way an object will behave

in context. The UML object symbol with out its

attributes is used to illustrate a class role.

Activation

An activation box represents the time an object

needs to complete a task.

Message

A message is an arrow that represents the

communication between objects.

Lifeline

A lifeline is a vertical dashed line that indicates the

object's presence over time.

Chapter 3. Requirement Specification
__

27

Package Diagram

Package
Name

Package
Name

Package diagrams are a subset of class diagrams,

but developers sometimes treat them as a separate

technique. Package diagrams organize elements of

a system into related groups to minimize

dependencies between packages.

Package

A package is illustrated using a tabbed folder. Its

name is written on the tab or inside the folder.

Dependency

Dependency defines a relationship in which

changes to one package will affect another

package. It is represented as an dashed arrow

between two packages.

Component Diagram

Component diagrams describe the organization of

physical software components, including source

code, run-time (binary) code, and executables.

Component

A component is a physical building block of the

system. It is represented as a rectangle with two

tabs.

Interface

An interface describes a group of operations used

or created by components.

Dependency

A relationship similar with the one in the package

diagram.

<<import>>

Chapter 3. Requirement Specification
__

28

Deployment Diagram

Deployment diagrams depict the physical resources

in a system, including nodes, components, and

connections.

Node

A node is a physical resource that executes code

components.

Association

Association refers to a physical connection between

nodes, such as Ethernet.

Note

A paper-like icon represents the note symbol which

is a place for writing additional descriptions,

explanations or other extra information of those

notations listed above.

Table 3.1 UML diagrams semantics definitions and constraints

The above UML semantics definitions and constraints will be further taken into

account in the design and implementation of the tool development discussed in next

chapter.

3.4 Survey

The survey was carried out among a small number of software designers with

experience using UML and the whiteboard for software design. It was a fairly

informal one which sometimes was rather a ‘brainstorming’ among participants

including ourselves. We felt that this kind of survey had more ‘free spaces’ for us to

Chapter 3. Requirement Specification
__

29

capture useful ideas. A typical process of the survey was: 1) first a brief introduction

on the research we were doing was introduced. 2) After that the designers were asked

to perform an UML analysis/design task on a whiteboard for a real case taken from

their own projects. If they did not have any suitable one, the case introduced in

chapter 5 (‘Case Study’) was used. 3) While they were sketching the UML designs on

the whiteboard, we observed and took notes on how they used a whiteboard for

collaboratively modeling software using UML. Open-ending questions were also

asked like:

- What do you think are important issues in this research?

- What functionality should the tool provide?

- In what ways should our tool differ compared with a conventional whiteboard?

- In what ways should our tool differ compared with a conventional UML CASE

tool?

- What do you expect the tool will look like?

- How do you think the tool will be used?

- What ideas have you got for implementing the tool?

These questions were really examples of the starting points of conversations in the

discussion. Substantial questions were followed accordingly, and the discussions and

their answers were documented.

The result of the survey has been analyzed and summarized below. However, as this

is not a commercial development, we only list those we feel are crucial and also

feasible to us to build a successful tool in our research.

! It should be very close of the ways for a user sketching UML on the E-whiteboard

and on a conventional whiteboard. However, the E-whiteboard based sketching

tool should provide extra features then a conventional whiteboard.

! The users should get as less interruptions as possible while sketching, while they

still expect feedbacks of whether the recognitions to the sketches are successful

Chapter 3. Requirement Specification
__

30

and whether they have been correctly recognized (have a formalized view to

check if they meet the UML semantics constraints).

! The ability of manipulating sketches (moving, copying, replacing, deleting of

drawn sketches) easily and efficiently should be supported to the design work, and

it is preferred they are pen-gesture based rather than other manner based e.g.

clicking on modality buttons. In fact, it is expected we implement as many tool

functions as possible based on pen-gesture then other methods, e.g. the on-screen

keyboard or similar mechanisms for entering text are not ideal. This is seen as one

of the main differences between our tool and the conventional UML CASE tools.

! It is observed that although the whiteboard is usually used for collaborative team

work, cases of more than one pen drawing on the surface of a whiteboard

simultaneously are very rare. Therefore, we do not see it is important in this

project to implement mechanisms for enabling the tool handling simultaneous

inputs from more than one pen.

! It is observed that users often use as much space of the whiteboard as possible,

and they may stand at any site of the whiteboard while working. Different colors

and line style/width are used in the sketching. These issues need to considered

when design the user interface.

! It is important for the tool to have a good performance on the reaction speed and

the recognition accuracy to increase the quality and usability of the tool.

3.5 Summary of Detailed Requirements

Based on the above analysis, we further defined more detailed requirements to be

fulfilled in the development of the tool. We summarize them into six categories: Core

Functionality, UML Implementation, Hardware, Usability, Performance, and

Extensibility. The first one is really an alternative to the Use Case diagram which is

usually used in this context for codifying the requirements for systems. However, we

use our own diagram and description here which we feel are clearer then the Use Case

Chapter 3. Requirement Specification
__

31

diagram for representing high level functional requirements of the tool. The rest ones

can be seen as a non-functional specification of the tool requirements.

Core functionality

We visualize the core functionality of the tool in Figure 3.1.

Figure 3.1: Visualization of Core Functionality of the Tool

There are two views in the tool: Sketch View and Formal View. The Sketch View is

the main working place for users sketching UML diagrams as well as any other

secondary notations using an electronic pen with different colors and line widths. The

sketches in this view are retained as long as users desired. Recognitions of those

sketches are progressively done upon a UML construct or a secondary notation or any

item has been drawn. Users will be informed by a proper manner whether recognition

is successful or not. Only recognized UML constructs will be represented in a

formalized form in the Formal View. However, the Formal View will not be seen

unless users choose to. Two views can be switched easily to provide different ‘look

and feel’ as well as to allow users checking UML semantics constraints. Sketches can

be manipulated (moved, copied, deleted, replaced, etc) via pen-gesture based

techniques. Two views are completely integrated, i.e. manipulations to an item in one

view will reflect the co-related one in another view. Sketches can be saved into files

and may be loaded again for later work. Formalized UML diagrams can be exported

to a third party UML CASE tool for future work.

Formal View

Sketch View

Save/load

Export

CASE
Tool

Chapter 3. Requirement Specification
__

32

UML Implementation

The implementation of UML design in the tool should follow the UML semantics

definitions and constraints summarized in Table 3.1.

Hardware

The hardware refers to the E-whiteboard system used in our tool. The constraint of

this issue is we have to use one that is available in current market or developed by

other research partners, as we dot have time to build up one ourselves. Most E-

whiteboard systems [Apperley et al 02, MIMIO 03, SMART 03] will typically have a

whiteboard-like surface, a set of stylus (electronic inkless pens) and a pen movement

capturing device (e.g. a ultrasonic capturing bar). The captured signals of the pen

movements are then transferred into a connected computer. Normally, an application

will run on the computer to process the inputted signals and produce outputs. A

projector linked to the computer will project the outputs of the application back to the

whiteboard-like surface to simulate the pen movement.

Usability

The requirements regarding the usability of the tool are mostly related to the user

interface issues as it is quite unique in the size and also the way it works when

sketching on an E-whiteboard. Some key points are listed below:

! The user interface should have as much sketching space as possible.

! The user interface should be properly designed and implemented to enable pen-

based input for drawing and manipulating sketches.

! The user interface should have an effective way of providing other basic functions,

e.g. changing color or drawing style/width, navigating history, etc.

! Functional controls in the user interface shall be easily reached from any position.

Chapter 3. Requirement Specification
__

33

! Rich, but not ‘too much’, and less interruptive feedback/indication manner on

recognition results should be well designed and implemented.

Performance

Performance is always a critical fact to the acceptance of the software. The tool

should have reasonable speed, i.e. ‘immediate’ capturing and displaying after

sketching (< 0.5 second) and fast recognition (< 0.25-0.5 second), and accurate

recognition rate (> 50%) to enhance the usability.

Extensibility

One of our ambitions is that following this research, we may further extend our tool to

be used not just for supporting the UML design sketching but also to be used in other

areas. Extensive architecture and mechanisms should be designed and implemented to

the tool to fulfill this goal.

3.6 Basic Object Structure

The basic object structure is presented in Figure 3.2.

Chapter 3. Requirement Specification
__

34

Figure 3.2 Basic Object Structure

The Sketch object represents a class of individual sketches drawn by the user. It is the

basic unit of drawing items which may be a UML constructor, a secondary notation or

anything the user wish to draw on the surface of an E-whiteboard it contains

properties of the color, the width (thickness of the pen point) and a style

(continuousness – solid or dotted/dashed). It can also be moved, copied, replaced and

deleted triggered by pen manipulation events. After a Sketch is drawn, it is passed to

the Recognizer to be recognized.

The Recognizer object carries out the most important function of the tool –

recognition. The details about the recognition algorithms/mechanisms adopted by this

object will be discussed in-depth in next chapter. Upon the successes of the

recognition, it invokes the UmlDefinition object to further check if a recognized

Chapter 3. Requirement Specification
__

35

UML construct meets the UML semantics constraints, and the final result will be

passed back to the Sketch object.

The UmlDefinition object contains the information about those UML

diagram/notation types supported by the tool and a method for checking if a

recognized UML construct meets the UML semantics constraints. If it is the UML

construct will be signed to a proper UML diagram/notation type.

The RecognizedUmlConstruct object is a special type (generalization) of the Sketch

object – a recognized and ‘valid’ sketch of UML construct. After the object is

recognized, the method Indicate is used to inform the user of the success of the

recognition, and the Formalize method to formalize into the

FormalizedUmlConstruct object. Other than all properties inherited from the Sketch

object, it can also have properties of the name/attribute(s)/method(s) according to the

UML definition. These properties are defined by adding the Text object(s) to it.

The FormalizedUmlConstruct object represents a computer generated UML

construct which is formalized from the RecognizedUmlConstruct object. It contains

properties and methods similar to those in the RecognizedUmlConstruct object to

enable integration between two objects in different views. For example, if the move()

method is called in the RecognizedUmlConstruct, the method with the same name

will be triggered to move the FormalizedUmlConstruct object to a new position

accordingly, and vice-versa.

The Text object is another special type (generalization) of the Sketch object, while

also a part of (aggregation) the Recognized UML Constructer object. It inherits all

properties and methods from the Sketch object. When the user adds text

(name/attribute(s)/method(s)) to the Recognized UML Constructer object, the

sketches of the text are recognized by the Recognizer and the results are passed and

stored in the Recognized UML Constructer object’ properties.

The File Manager object is responsible for saving/loading a Sketch or a group of

Sketches into/from a file for later works. The Exporter object is responsible for

exporting the FormalizedUmlConstruct objects to an external UML CASE tool.

Chapter 3. Requirement Specification
__

36

3.7 Dynamic Behaviors

We divide the dynamic behaviors of the tool into four categories: ‘Sketch and

Manipulate’, ‘Recognize’, ‘Formalize and Synchronize’, and ‘Save/Load and Export’.

Sequence diagrams are used to illustrate those dynamic behaviors.

Sketch and Manipulate

This part of behaviors deals with the initial setting of the properties of the Sketch

object when it is sketched by the user at the first time or resetting its properties after

being manipulated, and are illustrated in Figure 3.3. A User object is added to the

sequence diagram to represent the user’s interaction (sketching and manipulation)

with the tool. The manipulations can also be performed to those

FormalizedUmlConstruct object by the user. They are shown in Figure 3.5 under the

‘Formalize and Synchronize’ categories to make the diagrams more readable.

Figure 3.3 Sketch and Manipulate

The Sketch is drawn according to those drawing information (position, color, width

etc.) captured from the pen-inputs after it has been sketched by the User. The Sketch’s

NewSketch (NewPosition)

draw ()

draw ()

draw ()

NewSketch (NewPosition)

NewSketch (NewProperties)

re-draw (…)

draw ()

sketch (…)

copy ()

: User : Sketch

: Sketch

move ()

replace ()

delete ()

Chapter 3. Requirement Specification
__

37

properties are set from the drawing information. When a manipulation occurred, the

existing Sketch object is cleaned up from the drawing space in the user interface.

Then, if it is a copy() or move(), a new Sketch object is generated and drawn with all

same properties except a new position (determined by the pen input). The difference

between them is the original Sketch object is re-drawn if the manipulation is a copy().

The replace() manipulation takes a very similar approach to the move() method. The

difference of the replace() method compare to the move() method is that the new

Sketch object has a close position to the original one but the other properties are very

different with those of the original Sketch object. When the delete() manipulation

occurs, the Sketch object is not re-drawn, i.e. is ‘deleted’.

Recognize

Figure 3.4 illustrates this behavior which involves operations the tool takes when

performing the recognition task.

Figure 3.4 Recognize

As soon as a Sketch is drawn by the User (this part is omitted here, please refer to

Figure 3.3), the Sketch object is passed to the Recognizer and the recognize() method

IsRecognized

recognize ()

checkUml

Constraints ()

addTex ()

: RecognizedUml
Construct

: UmlDefinition

: Sketch

: Recognizer

: Text

recognize ()

isText

indicate ()

Chapter 3. Requirement Specification
__

38

is invoked to perform the recognition. If the Sketch object is recognized by the

Recognizer, it is further passed to the UmlDefinition object for checking the UML

semantics constraints, and the UML notation/diagram type will be define if this is

successful. The RecognizedUmlConstruct object is then generated from the Sketch

object inheriting all properties and methods of the Sketch object. The

RecognizedUmlConstruct object carries out its own operations: 1) to indicate() that it

has been recognized, 2) to addText() of its name/attributes/methods by invoking the

Text object. The Text object, which is also a generalized type of the Sketch object, is

then passed to the Recognizer to be recognized. The result of the recognition of the

Text object will be returned from the Recognizer. 3) to formalize() itself into a

computer drawn FormalizedUmlConstruct object (this will be illustrated in Figure 3.5

under next category).

Formalize and Synchronize

This part is really supplementary to previous two categories which illustrate the

formalization behavior and the integration behavior to keep corresponding objects

synchronized in two different views – the sketch view and the formal view. (Figure

3.5)

Figure 3.5 Formalize and Synchronize

re-draw
()

Synchronization

move/copy/delete ()

move/copy/
replace/delete ()

formalize ()

Synchronization

re-draw ()

: FormalizedUml
Construct

: RecognizedUml
Construct

draw ()

: User

re-draw ()

re-draw ()

Chapter 3. Requirement Specification
__

39

Upon the success of the recognition (this part is omitted her, please refer to Figure

3.4), the FormalizedUmlConstruct object is generated and drawn by invoking the

formalize() method and passing required parameters (position, etc.). The user’s

manipulations of move(), copy(), replace() and delete() to the

RecognizedUmlConstruct object will cause the object being re-drawn, and then the

Synchronization information is passed to the FormalizedUmlConstruct object and the

FormalizedUmlConstruct object is re-drawn accordingly. The user only can move(),

copy() and delete() the FormalizedUmlConstruct object but not the replace (no

sketching is done in the formal view). The consequent operations are exact the same

as to those discussed above.

Save/Load and Export

There are only a single save/load() operation invoked by the Sketch object and

performed by the FileManager object, and a single export() operation invoked by the

FormalizedUmlConstruct object and performed by the Exporter object. These two

behaviors are fairly straightforward, and thus we omit their Sequence diagrams here

but rather leave the underlying technique for implementing them to be discussed

further in next chapter.

3.8 Summary

In this chapter, we analyzed and defined the requirements specification for our tool. A

conceptual object model has been established representing the basic object structure

and dynamic behaviors of the tool. This chapter is then the ‘blue-print’ for further

design and implementation of the tool development.

Chapter 4. Design and Implementation
__

40

CHAPTER 4 - Design and Implementation

4.1 Introduction

After defining the requirements of our tool, we now discuss its design and

implementation. In this prototype application, although decisions on the design and

implementation choices have been carefully made to best meet the specification, some

of them are still not sophisticated enough from the perspective of a commercialized

development. However, this study do prove the validity of our concept in developing

a large e-whiteboard based UML sketching tool, as well as the usefulness of the

design ideas and implementation experiences to other efforts in this research area.

Discussions on the advantages and disadvantages of the design and implementation

choices we have made are provided.

In this chapter, we first present our architecture of the tool. The implementation

details of each ‘building block’ in the architecture are also discussed. Then we present

the recognition algorithms used in our tool. The reason for this issue to be discussed

separately is because that it is the most important and complex part of the application

which influences other design and implementation choices. Next is the presentation

of mechanisms adopted to achieve the functions required by the tool. A detailed

object model is represented to help illustrating those mechanisms. After that, we

discuss issues of the user interface design and implementation which have special

considerations due to the use of the unusual devices. Finally, we provide the

experiences we have gained from the tool implementation.

4.2 Architecture

Figure 4.1 illustrates the architecture designed to fulfill the functionality required by

the tool. It consists of: 1) the E-whiteboard and its input/output, 2) software

components (represented as grey cubes in the figure), 3) data storages (files/database),

Chapter 4. Design and Implementation
__

41

and 4) internal/external communications (represented as arrows in the figure). We

explain this architecture and discuss its implementation details below.

Figure 4.1 Tool architecture

The E-whiteboard System

Figure 4.2 shows our tool in use: a) Designers stand around the e-whiteboard, while

one of them is using a stylus to sketch UML diagrams on the surface of the e-

whiteboard. The vertical bar attached on the left side of the e-whiteboard is the device

which captures the pen inputs. Other devices are contained inside the black box. b)

External UML
CASE tools

Files

Gesture
database

UML Semantics Constraints

Output of computer
screen from projector

Input of digital signal
from pen interaction

E-whiteboard
<<UI Manager>>

• Pen input capture and translation
• Ink simulation
• UI rendering

<<Repository>>

• Sketch data organization
• Pen manipulation handling
• Session control
• History management
• Undo/Redo

<<Utility>>

• Saving/loading sketches to/from file storage
• Exporting formalized UML diagrams

Multi-stroke
Recognition

 Single-stroke
Recognition

<<Training>>

<<Recognition Engine>>

• Text/Shape recognition
• UML constraints checking

Chapter 4. Design and Implementation
__

42

The sketched UML use case diagram (this example will be discussed in next chapter –

‘Case Study’).

(a)

(b)

Figure 4.2 (a) Designers around the e-whiteboard; (b) sketched UML use case diagram on the

surface

The above figure can be compared with Figure 1.1 in the first chapter of the thesis.

We can see that the ‘look and feel’ of the conventional whiteboard and the e-

whiteboard appears very much close. However, the underlying techniques and

supported functions have made the e-whiteboard to be very different with the

Chapter 4. Design and Implementation
__

43

conventional whiteboard. We will further discuss the differences in this and later

chapters.

Figure 4.3 illustrates the hardware structure and the input/output data flow of the E-

whiteboard system. The reason of choosing the particular products used in the system

is just due to their more immediate availabilities at the time of doing this research. It

is very possible that other similar products have higher qualities and better

performances than those have been used in our tool. However, it is not our purpose to

compare the quality and performance of different alternative products. In fact, we did

find that users are not very satisfied with some devices in the usability evaluation.

However, we do not see this as a significant problem at this prototyping stage as it can

be solved by using better products when it is required.

Figure 4.3 Hardware structure and the input/output data flow of the E-whiteboard

From the above figure, we can see that there are two major parts in the E-whiteboard

system: the MIMIO® [MIMIO 03] and the LIDS (Large Image Display Surface)

[Apperley et al 02]. The blue block arrows represent input/output data flows between

each device of them.

MIMIO

LIDS

Capture Bar

E-Pen

Frame

Drawing
Surface

Mirror

Computer

Projector

Cable

Cable

Chapter 4. Design and Implementation
__

44

• MIMIO – is a tool which provides the feedback of what the user draws on a

display surface. It consists of a set of devices and supporting software. The

devices used in our tool are: a capture bar, an electronic pen (inkless stylus) and a

connection cable. The capture bar contains a sensor which captures ultrasonic

signals emitted from the stylus when it is pressed against and moved on a surface.

The signals provide the sensor a means of the positions of the stylus with respect

to the drawing area, and are sent as digital data to a computer via a connected

cable for processing.

According to the specifications of the provided MIMIO software, the minimum

system requirements of the computer should be the following:

- Personal Computer: IBM compatible 100 MHz

- Available Serial Port (DB9) and PS/2 keyboard port

- Operating System: Windows 95 and above

- PC Memory: 16 MB RAM

- Hard Disk Storage: 10 MB (this is for the provided software)

The computer we used was a Compaq® PC with 600MHz Pentium III CPU, 512

MB RAM, Windows XP Operating System, 20GB hard disk storage and the

required ports. It has reasonably high competence of running the MIMIO

software as well as our own application. The software provided by the MIMIO

which is used in our tool is discussed in the next section – ‘Software component’.

The performance of the MIMIO, especially the use of the MIMIO pen is not very

satisfactory, which is discussed in chapter 6 – ‘Evaluation’. We expect more

experiments will be carried out with other similar products to find a better pen-

based input device in the future.

• LIDS – refers to the Large Image Display Surface unit that consists of: 1) a light

metal frame which can be dismantled, with sailcloth surrounded forming a big box

(darkroom) which contains some of other devices; 2) a thin screen on the front top

side of the box as the drawing surface; 3) a personal computer (PC) set inside or

out side the frame which gets digital input from the MIMIO and runs MIMIO

Chapter 4. Design and Implementation
__

45

software and the application of the tool; 4) a projector set insides the frame which

gets digital data form the PC via a connection cable; and 5) a mirror on the back

inside the frame which reflects the image of the PC screen projected from the

projector onto the displaying screen.

The advantages of this structure over other tools’ are the facilitation of the

mobility (the frame can be dismantled and shifted), the saving of the space for

holding a commonly positioned projector (at least double distanced than the

reflected projection), and the elimination of the shadow which will be caused by a

common projection (designers will be at the middle between the projector and the

screen). However, there are also disadvantages of it such as the need of the

relatively complex setup and calibration. The overall usability of the LIDS is quite

satisfactory according to our evaluation of the UML sketching tool. At the time of

writing this thesis, a new version of the LIDS has been made available to our

research. Unfortunately we do not have time to experiment with it and have to

leave it as possible future work.

Software Components

In this section, we discuss the software components which carry out the core

functionalities required by the tool. Here, we only focus on the basic functions they

provided and the interactions between themselves and external components/systems.

The detailed implementations of algorithms/mechanisms adopted to achieve the tool

functionality are presented in next two sections.

• UI Manager – this component deals with all user interface related issues. The

MIMIO Mouse software supplied by the MIMIO is used to turn the MIMIO

stylus acting as a conventional mouse. When the screen of the computer is

projected onto the surface of the E-whiteboard, the user can use the stylus, which

is now the MIMIO Mouse to perform most of the actions of a conventional mouse,

e.g. quickly press twice on an icon on the desktop to start an application which

simulates the ‘double click’; press and hold on an icon on the desktop and then

moving it into the ‘Rubbish Bin’ and then release the stylus which simulates the

‘drag-and-drop’. However, not all mouse actions are supported by the MIMIO

Chapter 4. Design and Implementation
__

46

Mouse, e.g. the ‘right click’. This limits some interaction styles in our interface

design (e.g. use of pen-tap on modality buttons rather than in-context pop-up

menus).

Visual Basic’s UI library is used to process the data of the pen interactions that is

captured and translated by the MIMIO Mouse. A line is drawn on the ‘drawing-

canvas’ of the user interface in a preferred color and drawing width/style which

can be specified by the user prior to the drawing, so that the simulated ink appears

on the screen followed the movement of the pen which the user feels it is drawn

by him/her.

The data of the pen interactions is passed to the Repository component for further

processing. Here we discuss how pen manipulations are handled in our

application.

Each manipulation action is triggered by a special pen interaction with the surface

of the E-whiteboard, and the ‘Time-out’ technique is used here. For Example, the

pen press the surface simulates a ‘Click’. If the first ‘Click’ is within a sketch’s

boundary, the second ‘Click’ will trigger the Copy manipulation– to remove the

sketch and redraw a same one at the new position defined by the second pen

‘Click’. Two immediate ‘Click’s simulating the ‘Double Click’ will trigger the

Delete manipulation. The Move manipulation starts when the pen resides on one

point with a sketch’s boundary for a curtain time period, the sketch is redrawn

along the way when the pen moves, and it stops as soon as the pen leave the

surface of the screen. This process simulates the ‘Drag-and-Drop’ mouse action.

The Replace manipulation is start when the pen resides on the point close enough

to the start point of a sketch for a curtain time period and ten start to draw another

sketch on top of the old one. After the new sketch is drawn, the old one

underneath it will be removed. The implementation of the Replace is somehow

more complex than others and will be illustrated by an example in next chapter.

• Repository – this component takes in the data of the pen interactions and then,

organizes it into a hierarchical structure if the input is a sketch, or hands it back to

the UI Manager to perform an appropriate action if the input is a pen

Chapter 4. Design and Implementation
__

47

manipulation. The structure of the Repository and mechanisms of providing these

functions are discussed in the ‘Mechanisms’ section later in this chapter. This

component also provides functions of: session control, history navigation and

undo/redo facilities. Sketches are passed to the Recognition Engine to be

recognized, or the Utility component to be saved or exported. Saved sketches can

be reloaded by the Utility component and retrieved by the Repository component

to be re-processed.

• Recognition Engine – this component carries out the major function of the tool –

recognition. It contains three sub-components: the ‘Single-stroke Recognition’

which recognizes text, the ‘Multi-stroke Recognition’ which recognizes UML

icons, and the ‘UML Semantics Constraints’ which checks the recognized UML

icons against the UML semantics constraints. The details of algorithms and

mechanisms employed in this component are discussed in next two sections.

• Training – this component provides services required by Rubine’s Single-stroke

Recognition algorithm used in our tool. The algorithm has been introduced in

chapter 2 – ‘Background Study’. The data of example gestures passed from the

UI Manager component is processed by the algorithm contained in this

component, and then saved to the database. The data in the database will be

retrieved by the Single-stroke Recognition component when performing text

recognition. The implementation details will be further discussed in later of this

chapter.

• Utility – this component provides the services of: to save sketches passed from

the Repository into files which are stored in the secondary storage (e.g. the hard

disk of a PC); or to load saved files and then translate back to the Repository for

the modification; or to export formalized UML diagrams to the external UML

CASE tools. The XML encoding technology (please refer to [XML 03] for

information about the XML) is used to achieve these functional requirements.

The implementation details are also discussed in later of this chapter.

Our application was written in Visual Basic 6.0. This was because we felt that the use

of Visual Basic UI library greatly eased the tasks of user interface build-ups and

Chapter 4. Design and Implementation
__

48

image processing/rendering, which enabled us to spend more time on implementing

the algorithms/mechanisms and the data processing. The performance issue will be

addressed in the ‘Evaluation’ chapter.

Data storage

The files saved by the Utility component are in XML formal.

The database is implemented as a Relational database (please refer to [Riordan 00] for

information about the Relational database) which is the most widely adopted database

type in the software development community. Microsoft’s Access® (Office XP®)

[Microsoft 03] was used as the database engine for this small sized database in our

tool.

4.3 Recognition Algorithms

As the recognition of the sketches is the core function required by the tool, adopting

an efficient and suitable algorithm is therefore very important to the success of the

tool development. We need to decide on whether we can use existing algorithms

proposed by other researches, or refine/combine one from existing algorithms, or even

create a new one ourselves. Obviously the first choice is the most efficient one. The

two available algorithms have been discussed in our background study with each has a

different approach of performing the gesture recognition. We summarize the

advantages and disadvantages of them below.

As we have alreafy introduced in the background study, Rubine’s Single-stroke

Recognition Algorithm has been adopted by most similar applications. Advantages

of this algorithm are: 1) the stroke can be in any shapes 2) has proofs from some

implemented applications. However, it has some significant disadvantages: 1) a

sketch has to be drawn in one stroke which is not natural for performing UML designs

on a whiteboard and is also difficult to handle some complex UML notations, 2)

considerable per-gesture and per-user based training is required to gain recognition

accuracy which is inconvenient and inefficient for using the tool. The Multi-stroke

Chapter 4. Design and Implementation
__

49

Recognition Algorithm proposed by Apte et al has advantages and disadvantages

just opposite to those in Rubine’s algorithm.

Due to the complexity of the UML diagrams, we felt that no single approach is a

complete solution to recognize sketched UML notations. However, during our

research, we found that UML notations could really be categorized into two sub-

elements: the Icon and the Text.

The Icon is the graphical part of an UML notation and can be further abstracted as a

single or combined geometric shape(s), i.e. Line, Circle, Ellipse, Rectangle, Triangle

and Diamond. The Text is a notation’s identifying/specifying text, e.g. Name,

Property, Method, Message, Note, etc.

We feel that the abstraction of UML notions into geometric shapes is a unique

approach in our application. In addition, it can be seen as a generic method which may

suit many other notations in different modeling systems, and thus adds a high

extensibility to our tool for possible future developments. Table 4.1 summarizes the

categorization of notations we implemented in our application.

 Icon Shape(s) Text
Major Notations

Actor 1 Circle + 1 Horizontal Line + 1 Vertical Line + 2 oblique Lines Name (1)

Use Case 1 Ellipse Name (1)

Class

1 Rectangle + 2 inner Horizontal Lines

Name (1)
+

Property (0 to Many)
+

Method (0 to Many)

Object 1 Rectangle (Width > Height) Name (1)

Package

2 Rectangles

Name (1)

Component

3 Rectangles

Name (1)

Node
 1 Rectangle + 5 Lines (forms a cube)

Name (1)

Activation 1 Rectangle (Height > Width) –

Note

1 Rectangle +
1 inner oblique Line at the top right corner

Description

Chapter 4. Design and Implementation
__

50

Relationship Notations
Bi-direction
Association

 1 Line

Name (0 or 1)
+

Multiplicity (0 to 2)

Aggregation 1 Line + 1 Diamond

Dependency 1 dotted Line

Generalization 1 Line + 1 Triangle

Message or
Single-direction
Association

1 Line + 2 short oblique Lines (Arrow) Message or as above

Table 4.1 Notation Categorization

We further discovered (by our own experiments) that the Icon is relatively easier to be

drawn more ‘formally’ than the Text to be written on a whiteboard. For example, the

sketches of the Class icon (a compartmentalized rectangle) from two users can be

closer than the sketches of the name of the Class from the same two users. This

indicates that different recognition algorithms may be chosen to recognize them

separately.

Based on above analysis, we decided to adopt a refined Multi-stroke Recognition

Algorithm for recognize the UML icons, which TWO new parts have been added on

top of the Apte’s algorithm.

• Drawing Rules Based Second-Level Filtering

As introduced in chapter 2, the original Multi-stroke Recognition Algorithm

contains a filtering technique for recognize simple geometric shapes. However, it

is not sufficient for recognize the UML icons which are mostly combinations of

geometric shapes. This is especially more difficult when the user sketch them in

multi-strokes.

For example, in Figure 4.4, the (a) and (b) are the Class icon sketched in different

orders and stroke numbers, and the (c) is a sketched Note icon. The numeric

figures show the ordering and the number of strokes.

Chapter 4. Design and Implementation
__

51

Figure 4.4 Sample sketches: (a) and (b) Class icons, (c) Note icon

If we feed the above three sketches into the filters contained in the original Multi-

stroke Recognition Algorithm, the output will the same – a rectangle shape (the

algorithm ignores any strokes within the boundary of the sketch. We can see then

a Second-Level Filtering method need to be applied to distinguish the Class

icons and the Note icon. The difference between two types of icon is that the

Class icon has two inner horizontal lines and the Note icon has an oblique line at

the inner top right corner. However, we do not know which stroke(s) is(are) the

identifying stroke(s). Initially we plan to implement a complex algorithm which

checks all strokes’ shapes and then analyzes their relationships to each other. This

may be OK to some relatively simple icons like the two in the above example.

However, there is a high cost in terms of the recognition speed if it is applied to

some more complex icons e.g. the Component icon and the Node Icon. And yet

we had the time limitation for developing our tool. Therefore, a Drawing Rule

technique is applied which contains ‘rules’ of how an UML icon has to be drawn

by the user. As this is a temporary solution to ease our implementation which is

expected to be unsatisfactory to the user, we have done our best to set up these

rules which follow the most typical and natural drawing behaviors the users may

have.

Firstly, the Drawing Rule defines the order and the number to complete the

identifying stroke(s) of an icon. For example, the Actor icon must be sketched

starting from a circle – the head, and then a horizontal line – the arms, and then a

vertical line – the body, and then legs which can be draw in one or two line(s).

The Class icon must be sketched starting from the Rectangle which can be drawn

5

6

1

2
3

4

1

2

3

4

1
2

4

3

(a) (b) (c)

Chapter 4. Design and Implementation
__

52

in multiple strokes and then two inner lines. The Package icon must be sketched

starting from the larger rectangle which can be drawn in multiple strokes and then

the small one which must be drawn in one stroke. And so on.

Secondly, the Drawing Rule defines the position of strokes and the size of the

sketch for an icon. The reason of this is explained below.

In Figure 4.5, the user attempts to sketch the Package icons (a) and (b), and the

Component icons (c) and (d). The sketches in (a) and (b) follow the rule of

drawing order (the head square is drawn at the last) and the number of strokes for

the identifying stroke (the head square is drawn in one stroke). However, the

sketch in (b) does not look like the Package icon as the head is at a wrong poison

with a wrong size. The (a) is recognized as a Package icon, but the (b) is not. This

exactly happens to the sketched Component icons in (c) and (d).

Figure 4.5 Sample sketches: (a) Package icon, (c) Component icons, (b) and (d) not recognized

Thirdly, another rule is set to distinguish UML icons with some accidentally

matched non-UML icons. For example, in Figure 4.6, the (a) is intentionally

4

3

5

1

2

3

1
2

3

4

1

2

3

4

(a)

(b)

(c)

1
2

(d)

Chapter 4. Design and Implementation
__

53

sketched by the user and should be recognized as the Use case icon, but (b) is

drawn with no relation to any UML notations but accidentally matched the Use

case shape (Ellipse), and therefore should not be recognized as a Use case icon.

Figure 4.6 Sample sketches: (a) Use case icon (b) not recognized

We used a method which checks whether the total length of the stroke(s) of the

sketch matches the perimeter required to form the shape. If the difference is out

off the acceptable range then the sketch will not be recognized.

A complete list of the drawing rules is specified in Appendix A.

Based on the above Drawing Rule, the Second-Level Filtering technique is

applied for determine the UML icons. This is used in conjunction of the ‘first-

level’ Filtering algorithm of the original Apte’s algorithm. The first-level filtering

algorithm returns the most possible geometric shape and then the second-level

filtering algorithm is used to check if it is likely to be one or a part of the UML

notations defined in Table 4.1. This process goes for several ieterations untile a

UML notation type or a ‘Not Recognized’ result is returned. The Second-Level

Filtering algorithm is shown below.

Drawing-Rule Based Second-Level Filtering Algorithm

1 Is it a Line?

1.1 Yes. Is it in ONE stroke?

1.1.1 Yes. ! Bi-direction Association relationship.

1.1.2 No. ! Dependency relationship.

1.2 No. Is it a Semi-Line (nearly to be a Line)?

1.2.1 Yes. Is it more then TWO strokes in total?

1.2.1.1 Yes. Check strokes other than the first one:

1.2.1.1.1 Two short strokes with proper position and angle against the first stroke.

1.2.1.1.1.1 Is horizontal and in the Sequence diagram. ! Message

1.2.1.1.1.2 Else. ! Single-direction Association relationship.

(a) (b)

Chapter 4. Design and Implementation
__

54

1.2.1.1.2 Three short strokes with proper position and angle against the first stroke.

! Generalization relationship.

1.2.1.1.3 Four short strokes with proper position and angle against the first stroke. !

Aggregation relationship.

1.2.1.1.4 Else. ! Not Recognized.

1.2.2 No. Go to 2.

2 Is it an Ellipse?

2.1 Yes. ! Use Case.

2.2 No. Is it a Semi- Ellipse (nearly to be an Ellipse)?

2.2.1 Yes. Is it drawn in ONE stroke or right after the drawing of an Actor?

2.2.1.1 Yes. ! Use Case.

2.2.1.2 No. ! Go to 3.

2.2.2 No. ! Go to 3.

3 Is it a Rectangle?

3.1 Yes. Is the width two times or more than two times greater than the height?

3.1.1 Yes. Does the Perimeter matches?

3.1.1.1 Yes. ! Object.

3.1.1.2 No. ! Not Recognized.

3.1.2 No. Is the height two times or more than two times greater than the width?

3.1.2.1 Yes. Does the Perimeter matches?

3.1.2.1.1 Yes. ! Activation.

3.1.2.1.2 No. ! Not Recognized.

3.1.3 No. Is the number of strokes greater than one?

3.1.3.1 Yes. Check identifying stroke(s):

3.1.3.1.1 The last one is a short oblique line at a proper position. ! Note.

3.1.3.1.2 The last two are horizontal lines at the proper positions. ! Class.

3.1.3.1.3 Else. Go to 4.

3.1.3.2 No. ! Not Recognized.

3.2 No. Go to 4.

4 Is it a Semi-Rectangle (nearly to be a Rectangle)?

4.1 Yes. Is the number of strokes greater than one?

4.1.1 Yes. Check identifying stroke(s):

4.1.1.1 The last one is a Rectangle or Semi- Rectangle with the proper position and size.

! Package.

4.1.1.2 The last two are Rectangles or Semi- Rectangles with the proper positions and

sizes. ! Component.

4.1.1.3 Else. Go to 5.

4.1.2 No. ! Not Recognized.

4.2 No. Go to 5.

5 Is the number of strokes equal to either three or four?

5.1 Yes. Is it true that the first stroke a Circle or Semi-Circle, and the second stroke a horizontal Line

with proper position and size, and the third stroke a vertical Line with proper position and size,

and the rest stroke(s) is(are) with the proper position(s) and size(s)?

5.1.1 Yes. ! Actor.

5.1.2 No. ! Not Recognized.

5.2 No. ! Not Recognized.

Chapter 4. Design and Implementation
__

55

• UML Semantics Constraints Checking

This is the second part we added on top of the original Apte’s algorithm. The

need of following the UML semantics definition has been discussed in chapter 3-

‘Requirements Specification’. After an UML icon is recognized, it is then

checked against the UML semantics constraints which have also been discussed

in chapter 3. For example, a relationship only exists between two major notations

and as such, a relationship icon will not be recognized if it is drawn prior to any

major notations have been drawn or is floating (not close enough to two major

notations).

However, we modified a few constraints for our own reasons.

1) In conventional UML CASE tools, the relationship icon will disappear if either

of associated notations is deleted, but it will not in our tool (Figure 4.). The

reason for applying this is that we intend to avoid repeating works to the user, as

we have observed that usually the user will sketch another notation to replace the

one just been deleted and will rather want the relationship icon being kept in stead

of having to draw another one.

 (a) (b)

Figure 4.7 The relationship (a) between an Actor and a Use Case; and (b) still exists after the

Use Case has been deleted

2) We allow different UML diagram types to be sketched in one drawing place,

except the Sequence Diagram due to its complexity and the need of significant

sketching space (Figure 4.10). The reason for implementing approach is that we

felt it provided more flexibility to the users during the conceptual design stage

Chapter 4. Design and Implementation
__

56

where they usually want to express their design ideas without too many

restrictions.

Figure 4.8 An sketching example of the mixture of different UML diagram/notation types

In above, we introduced a refined Multi-stroke Recognition Algorithm for recognize

the UML icons. For the Text recognition, we chose to adopt Rubine’s Single-stroke

Recognition Algorithm which has been introduced in chapter 2. The reason for us to

choose this algorithm is due to its immediate availability. From our user evaluation,

we can see it is not ideal. We treat it as a temporarily solution for our prototype. We

plan to adopt more sophisticated solution to the text recognition in our future work. It

is not discussed further here, but some useful notes will be explained in next section.

4.4 Mechanisms

In this section, we present mechanisms implemented in the tool which carry out its

required functions. We first present the detailed object model (Figure 4.7) in a UML

Class diagram refined from the conceptual object model presented in previous chapter.

This object model illustrates the infrastructure of the mechanisms. The following

sections are the discussions of each implemented mechanisms and the reasons and

advantages/disadvantages for adopting each of them. In each section, the properties

and functions of the main objects in the model which serve that particular mechanism

are also discussed in groups.

Chapter 4. Design and Implementation
__

57

Figure 4.8 Detailed Object Model

Repository Implementation

The Repository is one of the most important mechanisms implemented in our tool. It

involves half of the objects in the model (nine out of eighteen). The functions it

services have been discussed in the ‘Architecture’ section of this chapter. Here we

discuss its hierarchical tree structure which starts with: 1) the Repository object – the

Chapter 4. Design and Implementation
__

58

root of the tree which manages the work done within the life of the application (from

the open of the application tile the close of the application). It contains subsets of, 2)

the Session objects which manage the work done within each drawing place. The

history of sessions can be navigated. Pen manipulations to one or all sketches in a

session can be undone or redone. The subsets it contains are, 3) the Group objects

which refer to different UML diagram types plus the Secondary notation type. The

next level is, 4) the Sketch object which is the major object in this structure. It has

special types of, 5) the RecognizedUmlConstruct object representing the recognized

sketch and, 6) the Text object which is also an aggregation type of the

RecognizedUmlConstruct object. The RecognizedUmlConstruct object has an

associated object: 7) the FormalizedUmlConstruct representing the formalized

object of the RecognizedUmlConstruct object. The subsets of the Sketch object are,

8) the Stroke objects which also play important roles in this structure. The Stroke

object consists of the leaf object, 9) the Point object which is the basic element to

store data to be processed.

The Pen Manipulation facility relies on the Repository mechanism. However, the

operation sequences representing how pen manipulations are performed have been

illustrated in previous chapter. There are also other functions supported by this

mechanism e.g. history navigation, undo/redo facilities. However, they are not

significant but rather general to average applications. We thus do not discuss them

here.

Recognition Implementation

The SingleStrokeRecognizer, MultiStrokeRecognizer and UmlSemantics

Constraints objects are involved in the implementation of this mechanism. However,

most implementation details have been discussed in previous section. We here only

discuss the issue of when the recognition should take an action?

In Rubine’s algorithm, the recognition starts as soon as a stroke is finished. There is

another method called ‘Eager’ recognition [Rubine 96] which refers the recognition of

sketches as soon as they are unambiguous. The approach we adopted is the ‘Time-

out’ technique proposed in Apte’s algorithm which has been explained in chapter 2.

Chapter 4. Design and Implementation
__

59

However, we have made it to be adjustable to suit different drawing habits from

different users.

Training and Database Implementation

This mechanism is required solely by the Single-stroke Recognition Algorithm. The

Classifiers contained in the Trainer object refers characters we wish to be recognized.

The Classifier object contains the SampleStroke object which is a generalization

type of the Stroke object. Features of SampleStroke objects supplied per user are

computed by the Trainer to produce a set of weights which are stored in the database

and will be retrieved later to be used for the text recognition. The DatabaseManager

object is responsible for interacting with the database.

We briefly discuss the database structure which is illustrated in Figure 4.8. The

Classifier table contains classifiers, which are characters used for the text recognition

(26 letters and some additional special characters). The User table records the data of

the different users using this application. The Weight table has sets of weights in

which each set relates to a particular Classifier and a particular User. When the

Single-stroke Recognition Algorithm is invoked, corresponding weights are retrieved

to be matched for a newly sketched character for the recognition.

Figure 4.9 The Database Structure

Chapter 4. Design and Implementation
__

60

Saving/Loading and Exporting Implementation

The Utility object is responsible for performing this mechanism. It transforms the data

stored in the Repository structure into the XML DOM (Document Object Model)

component and save them to an XML formatted file. The Loading operation is an

opposite process to the above. The FileManager object interactions with the file

storage system.

The initial implementation plan for the Exporting of UML diagrams is to create a

communication channel/method between our tool and a third part UML CASE tool

and build the plug-in components to each of the tool to enable the exporting. However,

after a few times of review to this approach, we found that could really be

implemented using the same XML technology, which the data of the formalized UML

diagrams is saved as XML files, and then a build-in component in the third party

UML CASE tool will simply read in the data from the file and translates to the UML

diagrams of that tool. Though a protocol of the data structure in the XML needs to be

agreed between two parties, the new approach is much simpler than our initial

implementation plan of this function.

Chapter 4. Design and Implementation
__

61

4.5 User Interface

The design and implementation of the user interface followed the consideration points

discussed in previous chapter. Figure 4.9 illustrates the structure of the implemented

user interface.

Figure 4.10 The User Interface

Compared with a conventional whiteboard, the screen which appears on the E-

whiteboard has three extra thin bars: the windows caption bar, the menu bar and the

The Diagram View
contains formalized
UML diagrams

Windows
Caption Bar

Menu Bar

Tool Bar

The Sketch Board
contains sketches of
UML diagrams and
secondary notations

Switch Tabs Navigation Buttons Drawing Width/Color Controls Other Functional Control Buttons

Chapter 4. Design and Implementation
__

62

tool bar. The tool bar can be placed in either top or bottom position of the screen

(showing in Figure 4.10) to ease the reach for different users. The background color

of the ‘Sketch Board’ (a drawing place containing all sketched UML notations and

secondary notations) is white to simulate a real whiteboard. The ‘Diagram View’ (a

view only contains formalized UML notation) is in a different color to be

distinguished from the “Sketch Board’. Two views can be easily switched by clicking

two labeled tabs. More examples of the effect of ‘look and feel’ will be shown

through a case study in next chapter.

Figure 4.11 User Interface

4.6 Implementation Experiences

Reviewing our implementation, we found that the ‘Saving/Loading and Exporting’

part is the easiest one as we used the new XML technology. It could be very hard to

be implemented with other approaches.

We feel the hardest part is to find the appropriate and efficient recognition algorithms.

Many efforts have been spent on this issue. We are very happy with the refined Multi-

stroke Recognition Algorithm for recognizing UML icons. Our own work added on

top of other’s work has been proved. However, the Single-stroke Recognition

Algorithm for the text recognition which almost ‘copied’ from published resources is

not satisfactory. This experience indicates that, while we are trying to use as many

outcomes from others’ work as possible to avoid ‘reinventing the wheel’, to always

(b)

The shift of the tool bar

Chapter 4. Design and Implementation
__

63

seek possible improvements to others’ work is still an important and right manner to a

research.

We are also happy with the Repository management facility we implemented. It

provides unique characteristics to our tool and an effective and efficient structure for

handling the storage of all data being processed for the tool functionality.

We have learned that to design a ‘correct’ architecture will greatly ease and shorten

the implementation process as a clear guide has been provided which can be followed

by the developers to build their desired tools.

We have also learned that the reviews and refines to the initial implementation plans

are necessary for adopting better solutions. This has been proved by the example of

implementing the Exporting facility in our tool development.

4.7 Summary

In this chapter, we discussed details about the design and implementation of the tool

development. The discussion covered aspects of the design of the architecture and

user interface of the tool, the recognition algorithms and other mechanisms

implemented in the tool, the reasons and advantages/disadvantages of the design and

implementation choices we made, and the implementation experiences gained. This

chapter then not only comprehensively explained how and why the tool was

developed which led to the final prototype, but also provided insights of how an E-

whiteboard/pen based sketching tool could be better built.

Chapter 5. A Case Study
__

64

CHAPTER 5 - A Case Study

5.1 Introduction

We carried out a case study to use our tool on a realistic design example after it has

been implemented. It was seen as a part of the testing process in the tool development

life cycle, and was also used in the evaluation survey.

In this chapter, we present the case study to provide a visual impact to readers on how

the tool is used for sketching UML in software design. To achieve this, it is not

necessary to have a comprehensive ‘full’ case study covering all aspects in software

design and all UML diagrams involved. Instead, we focus on three most commonly

used diagrams – Use case diagram, Class diagram and Sequence diagram to illustrate

the differences between our tool and a general UML CASE tool and the features our

tool has over a conventional whiteboard. Some implementation details are also

discussed further in this chapter.

5.2 The Case

The case is from John Grundy’s tutorial of ‘Requirements Engineering, Software

Architecture and Object-Oriented Design Using UML’ in the Software Engineering

course at the University of Auckland [Grundy 00]. It is a simple on-line video rental

system for a video store. We first list its background information and then present the

completed Use case diagram, Class diagram and Sequence diagram as a part of high

level model of the system. The analysis steps which led to those diagrams are not

discussed as they are obviously out of the scope of this thesis. The diagrams were

drawn using a common UML CASE tool: Microsoft Visual Modeler developed by

Rational Software Corporation [Rational 03]. Later in this chapter, designers will

sketch some of these diagrams using our tool, and each of them can be compared

accordingly.

Chapter 5. A Case Study
__

65

The Video Store has an information system to support recording information about

videos the store owns, which is searchable by staff and sometimes customers, and

information about which customer is renting which videos. This forms a basic

‘library’ system for supporting finding videos and recording video rentals/returns.

Customers are assumed to have on-line access to the video library via the WWW (so

they can see what videos are available from home before tuning up at the store), and

staff are able to record video rentals and returns by customers using a bar code

scanner. In addition, staff needs to maintain customer, video and staff information.

Managers of the store need to generate various reports, and some data from the system

needs to be exchanged with accounts and inventory systems that might already exist.

After analysis of the user requirements, the main Use cases for the video library

system are generated to represent the main interactions of Actors (users and other

systems) with the system, and are shown in Figure 5.1.

Chapter 5. A Case Study
__

66

Figure 5.1 The Use case diagram for the video system.

Figure 5.2 is an OOA level Class diagram illustrating the static structure of the system.

Each class with its name, properties (attributes) and/or operations (methods), and

relationships (generalization, association) are presented in the diagram.

Search for Videos

Customer

Login
Write on-line Review

<<uses>>

<<uses>>

Maintain Customers

Rent/Return Video

Maintain Videos

Reports & Fines

Inventory System
Staff Members

Management
Accounts System

Chapter 5. A Case Study
__

67

Figure 5.2 The Class diagram for the video system.

In addition, a Sequence diagram in Figure 5.3 shows some of the dynamic behavior of

the system. The sequence of operation (function) calls between objects (instances of

classes), as well as the arguments to pass and return values are represented in the

diagram.

Chapter 5. A Case Study
__

68

Figure 5.3 The Sequence diagram for the video system.

5.3 The Use of Our Tool

There were two designers – John and Michael who used our tool together to perform

early-phase UML designs for the case introduced above.

John begins by using the tool to sketch out the main Use cases diagram of the video

system requirements. He draws on the E-whiteboard surface with a stylus and the tool

draws connected pixels as John moves the stylus. Figure 5.4, Figure 5.5 and Figure

5.6 show the processes of how the UML icons of an Actor, a Use case and an

interaction relationship between them are sketched respectively. We can notice that

once an icon is recognized, a text entry area (dotted line) is added to indicate the

success of the recognition and also for entering the UML construct’s name.

addRental(…)

findStaff(int id)

findVideo(int id)

setNumCopies(int)

findCustomer(int id)

Rental Object:
Rental

Customer
Object:

Video Object:
Video

Staff Object:
Staff

Chapter 5. A Case Study
__

69

 (1) (2)

 (3) (4)

Figure 5.4 The sketching process of an Actor icon – started with (1) and ended with (4)

 (1) (2)

Figure 5.5 The sketching process of an Use case icon – started with (1) and ended with (2)

Chapter 5. A Case Study
__

70

 (1) (2)

Figure 5.6 The sketching process of an relationship icon – started with (1) and ended with (2)

Figure 5.7 shows the resulting Use case diagram in our tool. Both John and Michael

have added some annotations, e.g. box around Customer actor, cross through unused

use case oval and custom arrow to line, during their discussions of the system

requirements.

Figure 5.7 The sketched Use case diagram

Chapter 5. A Case Study
__

71

The pen-action based technique (discussed in previous chapter) is used to perform the

manipulations of moving, coping, replacing and deleting of the sketches. In Figure 5.8,

(a), (b) and (c) show the manipulations of moving, copying and deleting of sketches

respectively. The replacing of sketches is illustrated later in Figure 5.10.

 (a) (b) (c)

Figure 5.8 Examples of the manipulations (a) moving, (b) copying, (c) deleting

After John has sketched out the Use case diagram, Michael takes over to sketch out

some initial Classes (object types) and their relationships. Class shapes are quite

complex, being rectangles (that a user may sketch as multiple line strokes) and two

horizontal internal lines separating class name (top part), list of class attributes

(middle part) and list of class operations (bottom part). Figure 5.9 illustrates the

process of sketching a Class icon. The multi-stroke recognition algorithm is used to

recognize these and add three text entry areas to the sketched shape, one for each kind

of text item the user can draw.

Chapter 5. A Case Study
__

72

 (1) (2)

 (3) (4)

Figure 5.9 The sketching process of a Class icon – started with (1) and ended with (4)

Figure 5.10 shows the ‘replace’ manipulation in action. While Michael writes the

name, attributes and operations on those text entry areas of the sketched class icon,

the insertion point moves to accommodate additional entries. In this example, it can

be seen that Michael has drawn his class too small for the additional textual data, as

shown in the top view in Figure 5.10. Rather than supporting a conventional resize

operation, a replace paradigm is used, whereby the bounds of a construct are redrawn

by the user to indicate the size of the replacement, and sub-elements of the sketch are

automatically transferred across to the new shape, as shown in the bottom view in

Figure 5.10.

Chapter 5. A Case Study
__

73

Figure 5.10 The ‘replace’ technique used to ‘enlarge’ a class icon

A more complete UML class diagram sketch is shown in Figure 5.11, with several

classes, associations (lines between two classes) and generalizations (lines with a

triangle arrow). In this example, Michael has named the classes and added attributes

and operations to three of them so far. Michael has added an extra use case sketch at

the top left (boxed off using secondary notation). From here, we can see while the

mixing of different type of diagrams are forbidden in conventional CASE tools like

the Microsoft’s Visual Modeler shown previously, it is implemented in our tool to

Chapter 5. A Case Study
__

74

provide high flexibility for the early stage software design. During the design,

Michael and John have also added textual annotation, arrows, and shape highlights

which are not recognized as UML constructs and hence regarded as secondary

notation.

Figure 5.11 Class diagram

After sketching the Class diagram, John and Michael focus on one of the complex

message flows in the proposed video system design. They sketch a UML sequence

diagram in the tool to capture and discuss this dynamic system behavior.

As sequence diagrams are quite complex and require considerable space, other

diagram types are not able to be mixed with a sequence diagram sketch. Initiation of a

sequence diagram sketch is done by drawing a horizontal line across the top of the

sketch board (Figure 5.12 (a)). At that point, any other existing sketches on the

whiteboard are saved or discarded by user choice (Figure 5.12 (b)), and the horizontal

line converted to a solid blue line (Figure 5.12 (c)). No matter of the initial sketched

position, actors or objects drawn in the sketch board will be automatically relocated at

the top of the sequence diagram and a timeline (dotted blue line) added associated

with that component (Figure 5.12 (d)). Calls and timing elements are sketched on

Chapter 5. A Case Study
__

75

these timelines (Figure 5.12 (e)). Copying, moving or deleting an actor or object will

also reposition the timelines, calls, and timing elements as appropriate.

Figure 5.12 shows this sketching, with objects (rectangles plus names), vertical lines

from objects, operation timing (rectangles on vertical lines), and operation invocation

(arrowed lines between operation timing rectangles). In this example John and

Michael have also used Actor shapes instead of object rectangles for two objects,

customer and staff. This violates the standard UML diagramming convention, but is

here useful for John and Michael in discussing their design ideas.

 (1) (2)

 (3) (4)

Figure 5.12 The process of sketching Sequence diagram – started with (1) and ended with (4)

As John and Michael perform their design sketching on the Sketch Board, sketches

are formalized in a background process and rendered into formalized UML diagrams

in the Design View. The results for some of these sketches are shown in Figure 5.13.

Note that all recognized UML construct sketches have been redrawn as computer

generated shapes representing standardized UML diagrams of conventional UML

(a)

(b) Prompt for saving of pervious work

(c)

(d)

(e)

Chapter 5. A Case Study
__

76

CASE tools similar to those diagrams shown in the first part of this chapter. All

secondary notations are discarded.

Figure 5.13 "Formalized' UML diagrams from previously illustrated sketches

(a) Formalized Use case diagram (b) Formalized Class diagram
(c) Formalized Sequence diagram

Chapter 5. A Case Study
__

77

A sketch can only be added (drawn) in the Sketch Board. All sketches including

UML constructs and secondary notations are remained in the Sketch Board as long as

the user desired. This then provides users a least-interruptive environment for

sketching and a rich notation support for exploring of high-level (conceptual level)

design ideas. Recognized UML constructs are formalized (drawn by the computer) at

a corresponding position in the Diagram View. Some information is discarded from

the sketches e.g. informal secondary notation like highlights that have no UML

notation equivalent. Thus, the Diagram View provides a ‘clean’, ‘fine’, ‘formal’ and

direct feedback to the user. The two views can be easily switched in between and are

completely integrated. UML constructs in each view can be moved, copied and

deleted by pen actions and the manipulations will be reflected in another view.

Finally, sketches on the Sketch Board can be saved to a file which can be reloaded

(Figure 5.14 shows the reloading process) for the later work. The formalized UML

diagrams on the Diagram View can be exported to a 3rd party CASE tool. Both of

them are achieved using an XML-based design model encoding XMI. Information of

sketches is encoded with the Repository structure discussed in the previous chapter.

For the first function, our tool reads in the file and translates data back to the

repository. To the second function, a 3rd party CASE tool can load our encoded file

and convert it to UML diagrams following a protocol agreed by both parties. Figure

5.15 is an example of information encoded in a XML file for a sequence diagram.

Chapter 5. A Case Study
__

78

(1)

(2)

(3)

Figure 5.14 The process of reloading a saved Class diagram sketch – started with (1), ended with (3)

Open a saved file
Repository viewer showing the
tree structure of the data

Loaded previous work, click by
the pen to add to the current
session for editing

Chapter 5. A Case Study
__

79

Figure 5.15 A screen shot of an opened XML file encoded for a sequence diagram

5.4 Summary

In this chapter, we illustrated the use of our tool through a case study. Rich pictures

are provided to present the processes of sketching, manipulation, formalization and

saving/loading/exporting of UML designs. We can see that there are significant

differences between our tool and conventional CASE tools as well as conventional

whiteboards. These different will be further discussed in next chapter.

Chapter 6. Evaluation
__

80

CHAPTER 6 - Evaluation

6.1 Introduction

This chapter presents an evaluation of the prototype E-whiteboard and pen-input

based UML sketching tool we have developed in our research. We focus on

evaluating its features and functionality, and aspects of its usability.

First, we apply the Cognitive Dimensions (CD) framework [Green et al 96] to

evaluate the support of our tool for exploratory UML design compared with

conventional UML CASE tools. Then we present a Survey of experienced whiteboard

users and UML designers we carried out to gain subjective feedback on the tool’s

suitability for UML based software design. Finally, we make general comments on

the strengths and weaknesses of the tool from our experiences with it and its

performance characteristics compared to conventional UML CASE tools and

conventional whiteboards.

.

6.2 Cognitive Dimensions Evaluation

The CD framework was developed to provide a broad-brush evaluation technique for

notation and interactive devices. It proposes a small set of terms that describe

different, often competing, aspects of a notation or environment. The terms are meant

as discussion tools, highlighting areas of concern that are commonly identified by

designers when creating their notations and systems. The framework does not seek to

lay down guidelines for the design of cognitive artifacts, but rather attempts to

provide a clear basis for discussion and evaluation by pointing out the characteristics

of cognitive artifacts that should be considered. We introduce each dimension of the

framework and apply them to evaluate our tool below:

• Viscosity: resistance to change.

Chapter 6. Evaluation
__

81

Viscosity is a measure of how difficult it is to perform a local change i.e. how much

work the user has to do to implement a small logic change in a model or structure.

The overall viscosity between our tool and other UML CASE tools are at similar

level. Changes are mainly happened when manipulating UML constructs. The

techniques used in our tool are designed as close to most keyboard/mouse-based

tools as possible to provide efficiency and familiarity to users, e.g. the ‘click-drag-

drop’ method to move a UML element. However, some manipulations of sketches

in our tool require less effort to change e.g. 1) ‘double click’ to delete in our tool vs.

‘click’ and then ‘click’ a button on the screen or the ‘Delete’ key on a keyboard, or

‘right click’ the mouse and then select ‘Delete’ from the pop-up menu in other

conventional UML CASE tools; 2) ‘click’ on an UML element and then ‘click’ on

another place to perform the ‘copy and paste’ task in our tool vs. ‘click’ on a UML

element and then press ‘Ctrl + C’ and then press ‘Ctrl + V’ on a keyboard, or ‘click’

on a UML element and then ‘click’ a ‘Copy’ button and then ‘click’ a ‘Paste’

button on the screen, or ‘right click’ on a UML element and then select ‘Copy’

from the pop-up menu and then ‘right click’ the UML element again and then select

‘Paste’ from the pop-up menu in other conventional UML CASE tools. While

others require more effort e.g. redraw over top to resize in our tool vs. ‘click’ on a

corner and ‘drag’ in other conventional UML CASE tools.

• Visibility: ability to view components easily.

Visibility dimension denotes whether required information is easily available i.e.

whether it is or can be readily made visible. It is a measure of how difficult it is to

discover and display a piece of information. An important part of visibility is

Juxtaposability, which means whether you can display any two separate parts of a

model or structure side by side for comparison purpose.

Multiple views are supported in our tool, both sketched and formalized. Users can

also mix notations within a view and sketch incomplete UML designs, providing

greater modeling flexibility during early design work.

Chapter 6. Evaluation
__

82

• Premature Commitment: constraints on the order of doing things.

Premature Commitment refers to being forced to make a decision or complete a

task before all the information required doing so is available.

Sketching of incomplete UML diagrams/constructs, and mixed UML diagrams

types are supported in our tool to provide higher flexibility during early software

design.

• Hidden dependencies: important links between entities are not visible.

A hidden dependency is a situation when a component is dependent upon another

component but that dependency is not fully visible.

The shape recognition algorithms employed by our tool connect hand-sketched

design elements to “assumed” formal UML elements within diagrams with limited

user feedback.

• Role-Expressiveness: the purpose of an entity is readily inferred.

Role-expressiveness refers to how easy it is to tell what the role of a particular

object in a model is.

Recognized UML constructs are indicated by dotted lines for entering its

name/properties)/methods to support role-expressiveness.

• Error-proneness: the notation invites mistakes and the system gives little protection.

Error-proneness is a measure of how likely it is for a user using the language/tool to

make a syntactic mistake or slip. That is, not how likely it is they make an error in

reasoning but how likely it is they know what the correct thing is to do but simply

make a mistake in carrying out the task.

Chapter 6. Evaluation
__

83

At current stage, for the purpose of simplifying our implementation of the tool, we

require users following some ‘rules’ (time between two strokes, order of drawing,

the total number of strokes, etc.) to sketch UML elements. For example, to sketch a

‘Package’ icon, the bigger square at the lower position must be drawn first with any

numbers of strokes and then the smaller square at the upper left position must be

drawn within a predefined time pause (say 0.5 second) with only one stroke. These

rules increase the error-proneness and should be re-implemented or removed in

future improvements.

• Abstraction Gradient: types and availability of abstraction mechanisms.

Abstraction Gradient refers to the level of abstraction presented in a notation. In

this case an abstraction is a grouping of elements to be treated as one entity.

The notations of UML elements have been further abstracted to a set of simple

geometric shapes, while still organized in a hierarchical structure in our tool. This

may raise initial learning curve to use the tool, but in long run provide higher

flexibilities and extensibilities to the tool.

• Secondary notation: secondary notation in means other than formal syntax.

Secondary notation is the way extra information that can be conveyed to the user

via means other than the formal syntax of the language. The escape from formalism

refers to the possibility for the user to add information to the model being created in

a completely free form way.

Both of them are highly achieved in our tool in that the user has great freedom to

sketch whatever secondary notation they desire and to mix notational elements,

while conventional UML CASE tools are usually lack of supports in these two

aspects.

• Closeness of mapping: closeness of representation to domain.

Chapter 6. Evaluation
__

84

Closeness of mapping refers to how closely the notation or language matches the

real world problem it is attempting to model. Ideally each entity in the problem

domain would map to a single entity in the notation or language, and operations on

those problem entities would similarly be mapped to simple operations on those

entities in the language.

In our tool, sketched diagram elements must have a degree of similarity to

computer-drawn UML elements in order to be recognized. This constrains the user

to a degree and resolving misrecognition can adversely impact on usability.

• Consistency: similar semantics are expressed in similar syntactic forms.

Consistency means that the notation/language/tool represents concepts and

performs tasks in a consistent manner, i.e. similar things are done in a similar way.

In our tool, as the sketching of UML designs are pen gesture based, the

implementation of the manipulations to sketched UML elements are also pen

gesture based instead of using other methods e.g. pen-tap on modality buttons etc.

to provide consistency to the tool.

• Diffuseness: verbosity of language.

A notation is said to be diffuse if it uses many symbols to express a concept, while

terse notation use relatively few symbols to convey more information.

In our tool, an almost infinite range of sketched shapes can be recognized as the

same UML element due to the use of hand-sketching. This allows users to employ a

wider range of symbols than CASE tools with fixed shape computer-drawn models

e.g. the user can use size, variations in slope and minor annotations to distinguish

elements if desired.

• Hard mental operations: high demand on cognitive resources.

Chapter 6. Evaluation
__

85

Hard mental operations are processes that are made difficult to complete or

concepts that are made hard to understand by the language or tool.

Ambiguous sketches cause confusion for our tool and user. The learning curve of

text recognition and some complex shape sketching/recognition make learning to

use the tool in some respects more difficult to (simple) mouse-driven conventional

UML CASE tools.

• Provisionality: degree of commitment to actions or marks.

Progressive evaluation refers to being able to test and evaluate your models during

development to get feedback on how the model is developing. It is essentially the

ability to test partial systems and models as well as completed ones.

The shape recognizers and user-demanded formalization of the tool design sketches

support progressive evaluation within the tool.

• Progressive evaluation: work-to-date can be checked at any time

Progressive evaluation refers to being able to test and evaluate your models during

development to get feedback on how the model is developing. It is essentially the

ability to test partial systems and models as well as completed ones.

The shape recognizers and user-demanded formalization of the tool design sketches

support progressive evaluation within the tool.

6.3 User Survey

To assist us in evaluating our work, we carried out a survey of a small group of

experienced whiteboard users and UML designers. The survey consists of three parts

(see Appendix B for the details):

Chapter 6. Evaluation
__

86

1) A brief introduction to our tool and the purpose and contents of the survey – this

provides the basic background information about the tool and the survey to the

users.

2) Two groups of tasks to be performed by the users – the first is to sketch a number

of UML icons following the drawing rules specified in Appendix A on both our

tool and a conventional whiteboard to assess the reaction speed of our tool

(compared with the conventional whiteboard) and the shape recognition accuracy

of our tool. The results of the tasks in this group are recorded in a table of the

survey to be analyzed. The second is to us our tool to perform part or all of UML

designs introduced in the ‘A Case Study’ chapter. The users are recommended to

take notes on these tasks, where the notes will be useful to assist the users

answering questions in the questionnaire.

The comparison of the speed to complete UML icon sketching is shown in Table

6.1, and the results of the UML icon recognition accuracy are shown in Table 6.2.

We did not carry out any statistical analyses to those results due to our time

restriction and the fact of there is only small amount of data collected.

 Our tool A conventional whiteboard

The average time taken for completing the sketching

of a UML construct without its text part
5.3 sn 2.6 sn

Table 6.1 Comparison of the speed to complete the sketching of UML icons

From Table 6.1, we can see that the overall average time the user takes to

complete a UML icon on our tool is about as twice as the time taken on a

conventional whiteboard. We have found that this is due to the reasons of: 1) the

delay caused by the MIMIO pen movement capturing system; 2) the drawing rules

applied in the tool slows down the sketching speed. We can see from here what

can be improved in the future, though the speed of drawing a UML icon in an

average 5.3 seconds is felt to be acceptable by most users.

Chapter 6. Evaluation
__

87

We are very happy with the recognition speed of less than 0.5 milliseconds. This

speed is calculated by our tool.

Constructs Recognition rate

Actor 89.3%

Use case 73.2%

Class 88.5%

Object 90.1%

Component 83.0%

Node 69.2%

Note 84.3%

Activation 91.7%

Package 86.1%

Association 89.6%

Dependency 87.3%

Generalization 79.0%

Aggregation 80.2%

Message 88.9%

Average 84.3%

Table 6.2 Recognition accuracy of UML constructs

From Table 6.2, we can see that our tool has a high recognition rate with the

average score of 84.3%. This indicates that the shape recognition algorithm we

implemented in the tool is very powerful. The two items having the highest

recognition rates are the Activation (91.7%) and Object (90.1%) icons. The reason

for that is because they are two simply rectangles which are easy to drawn. The

item with the lowest recognition rate is the Node (69.2%) icon. This can be due to

its complexity to be drawn. We may try to find solutions to address this issue in

the future. The second worst recognizable icon is the Use case (73.2%). This is bit

surprised as it is just a simple Ellipse shape. However, we finally observed that the

users are better in drawing straight lines (lines, rectangles, etc.) than curves (circle,

ellipse, etc.). This is an interesting finding and we may also try to find solutions to

address this issue in the future.

3) A questionnaire – the questions contained in the questionnaire mainly focus on

getting the feedback on the tool from the users after they have used the tool by

Chapter 6. Evaluation
__

88

carrying out previous tasks. The feedback should cover aspects of: the proof of

our concept; the usability, performance and usefulness of the prototype tool; and

the features the tool provided which differ from the conventional whiteboards and

conventional UML CASE tools. The questions are not organized under different

categories as some of them may cover several aspects. A comments section is

provided at the last which expects you write down any comments you have on the

tool, where the comments will be a very help for us in reviewing our research and

outlining potential future work.

The result from analyzing feedbacks provided by our users indicates the following

general characteristics of our work:

! The system is easy to learn and pen manipulations of diagrams provide

efficient use of time.

! Good feedback is provided to the users for pen manipulations while in

progress and when finished.

! The GUI follows a user friendly design.

! The ability to annotate sketched diagrams in flexible ways is important.

! The tool encourages collaborative UML design.

! The lack of enforcement during sketching of UML diagram constraints

encourages exploratory design.

! The drawing rules were annoying for some users and they suggested we would

improve this part in our future work.

! The text recognition component was unsatisfactory.

Chapter 6. Evaluation
__

89

6.4 Our Comments

Reflecting back on our work, we are very happy with things we achieved. Our E-

whiteboard UML design tool provides an efficient and effective sketching-based user

interface on a large screen E-whiteboard. It greatly supports the nature of hand-

sketching in which both design sketch elements and text are constructed and

manipulated using pen-based input. The freedom from heavily-enforced modeling

constraints and flexible annotation facility in this environment encourages exploratory

and collaborative UML-based software design.

We summarize a comparison of differences between our tool and conventional UML

CASE tools in Table 6.3, and the differences between our tool and conventional

whiteboards in Table 6.4.

 Conventional CASE Tools Our Tool
Input device Keyboard, mouse Stylus, E-whiteboard

Output device Monitor E-whiteboard

Input method Keyboard/mouse operation Pen-based sketching

Secondary notation Only in UML ‘Note’ construct Yes

Color support Usually not Yes

Computerized view of UML diagrams Yes Yes

Manipulations to UML elements Yes Yes

History navigation Usually yes Yes

File saving/loading Yes Yes

Exporting Usually Yes

Support all UML diagrams A few Not (current)

Mixture of different UML diagram types No Yes

Full UML constraints implementation Mostly yes No

Printing Yes Yes

Copy and paste to external file format Yes No

Table 6.3 General comparison between our tool and conventional UML CASE tools

From Table 6.3, we can see the main differences (advantages) our tool contains

compared with conventional UML CASE tools are: 1) the use of E-whiteboard based

input/output devices to support the sketching based UML design; 2) the support of the

Chapter 6. Evaluation
__

90

mixture of different UML diagram types; 3) the better support of secondary notations

and other facilities like the color. However, conventional UML CASE tools have

some strengths over our tool, e.g.1) full implementation of the UML semantics

constraints; 2) some special facilities like the copying and pasting diagrams to

external file format e.g. the Word document. Some functions have been implemented

in both, e.g. manipulation and formulization of UML diagrams, saving/loading and

exporting, other facilities like history navigation and printing etc.

 Conventional Whiteboard Our Tool
Input/output method Physical Electronic

Availability High Low

Cost Relatively low Relatively high

Learning curve Low Relatively high

Installation Easy Relatively hard

Sketching support Yes Yes

Free annotation support Yes Yes

Speed of completing a UML sketch Relatively fast Relatively slow

Color support Yes Yes

Drawing restriction (rule applied) No Yes

Recognition of drawing No Yes

Formalization of UML diagrams No Yes

Manipulations to UML elements No Yes

History navigation No Yes

Sketch saving/reloading No Yes

Export to CASE tools No Yes

Mixture of different UML diagrams Yes Yes

Printing No Yes

Table 6.4 General comparison between our tool and conventional whiteboard

From Table 6.4, we can see the main differences (advantages) of our tool compared

with conventional whiteboards are: 1) the abilities of recognizing and formalizing

UML sketches into standard computer drawn UML diagrams; 2) the support of

saving/loading sketched work and exporting formalized UML diagrams to external

UML CASE tools; 3) the support of pen action based manipulations of sketches; 4)

the support of other facilities e.g. history navigation, printing etc. However,

conventional whiteboards still have some advantages which can not be replaced by

Chapter 6. Evaluation
__

91

our tool yet: 1) the high availability and the relatively lower cost; 2) the lower

learning curve and easier installation; 3) a faster drawing speed and less drawing rules.

Some characteristics of both are similar, e.g. the support of sketching, free annotation

and the mixture of different UML diagram types etc.

6.5 Summary

In this chapter, we presented an evaluation of our tool and discussed its strengths and

weaknesses compared with the conventional whiteboards and conventional UML

CASE tools. This then leads to the final conclusion of our research and the potential

future work that will be presented in next chapter.

Chapter 7. Conclusion
__

92

CHAPTER 7 - Conclusion

7.1 Introduction

In this concluding chapter, we present a summary of the contributions of the thesis to

the research field and outline the potential future work. A general summary of the

thesis is provided in the end of this chapter.

7.2 Contributions of the Thesis

We feel that this thesis has made several contributions to the research field of

developing the E-whiteboard based sketching tool to support the software design. The

contributions of the thesis are summarized below.

• Designed and prototyped the UML sketching tool using the LIDS E-whiteboard

technology.

This a major part of the work in this research and the main contribution provided

by the thesis. The followings are supplemental points we feel are particularly

important to this work.

• The approach of retaining the sketches as long as the user desired while having

another view with formalized UML diagrams that can be easily switched to.

This approach combined the features from the conventional whiteboard and the

conventional UML CASE tools. The retaining of the sketches provides the ‘look

and feel’ of a common whiteboard encouraging the expression of design ideas in a

natural sketching way without interruptions. The formal view provides the direct

feedbacks on their work and a place for checking the UML semantics constraints.

Chapter 7. Conclusion
__

93

• The provision of facilities for saving/loading sketches as well as exporting

formalized UML diagrams using the XML technology.

This is an effective implementation method which provides an advantage of the

efficiency to the tool over the conventional whiteboard. It also establishes a

communication manner between our sketching tool and conventional UML CASE

tools which can be taken into a further investigation on the issue of integrating of

our tool with other UML CASE tools.

• The investigation of the refined multi-stroke shape recognition algorithm.

The refined multi-stroke recognition algorithm has been proved as an efficient

method for recognizing UML notion shapes. It is more suitable to support the

sketching of UML notations in a natural way (multi-stroke) than other single-

stroke based recognition algorithms, and yet more acceptable by the users as less

work is required (compare with the single-stroke algorithm where a considerable

amount of trainings are required).

• The mechanism of abstracting UML notations into the combinations of simple

geometric shapes.

This mechanism implemented in our tool is in conjunction with the use of the

multi-stroke shape recognition algorithm described above. We feel that this

mechanism added a high extensibility to the tool as we assume that the majority of

notation based modeling tools including those in the fields other than the software

design can apply this abstraction mechanism. Thus the refined multi-stroke shape

recognition algorithm can be potentially adopted to support sketching the design

models in many application areas.

• The implementation of the drawing-rule based filtering technique used in the

multi-stroke recognition algorithm.

Chapter 7. Conclusion
__

94

Although this technique is sometimes considered by the users as a drawback of the

tool, we argue that it provides an alternative method with a main advantage of

enhance the performance of the recognition by adding a ‘little’ amount of well

designed drawing rules with a very low learning curve. This issue can be further

investigated.

• The implementation of the pen interaction based sketch manipulation technique.

This pen interaction based (rather than use other methods e.g. click buttons)

sketch manipulation technique adds another extra function to the tool over the

conventional whiteboard while still keep the characteristics of working with the

conventional whiteboard – using the pen as much as possible.

7.3 Future Work

The future work outlined here are the parts in our tool that we feel need to be

improved or extended, and the possible further investigations/applications which we

see as the consequences of our work.

• To re-develop the text recognition mechanism.

As we have stated out that the text recognition mechanism used in our tool is not

ideal and is only a temporary solution, we plan to re-develop this part by seeking a

more efficient and sophisticated technology to address this problem. A third

parties’ component like the Microsoft’ Tablet® PC Toolkit may be a good start of

the investigation.

• To re-investigate the ‘Drawing-Rule Based Filtering’ technique used in the

refined multi-stroke shape recognition algorithm.

We have pointed out that this technique is an arguable part in our work which may

be good or may be bad. We plan to take this issue to a further investigation.

Chapter 7. Conclusion
__

95

• To develop a generic editing component for the user to define abstractions of the

modeling notations.

We have developed in our tool the mechanism of abstraction of notations into

combinations of simple geometric shapes for the sketch recognition. However,

this pat is currently ‘hard coded’ in the program particularly tailed for working

with the UML notations only. This is then lack of efficiency and flexibility. We

plan to develop a generic editing component which allows the user to define the

abstractions them. For example, to select a ‘circle’ icon (provided by the tool) and

then a ‘horizontal line’ and then a ‘vertical line’ and then two ‘oblique lines’ to the

editing area with each of them in a proper poison and size to define the ‘Actor’

icon of the UML notation. This will potentially work for other modeling

languages and thus provide the flexibility to the tool.

• To investigate a suitable generic XML based protocol as a communication

channel between our tool and other UML CASE tools.

We have used the XML based technology in our tool to perform the task of

exporting UML designs to other UML CASE tools. However, it is not a generic

model to be supported by other tools yet. We plan to investigate on this issue to

design an XML based protocol that is suitable for encoding and transforming the

UML designs.

• To develop a distributed E-whiteboard system to support collaboratively utilizing

multiple e-whiteboards.

This can be seen as a more challenging project, which upon its success will enable

multiple E-whiteboards to be used collaboratively among designers from distances

(different rooms, buildings or cities).

• To investigate the use of our application in other pen based computing systems.

Chapter 7. Conclusion
__

96

Potentially our application can be used in other pen-based computing systems like

the Tablet PC mentioned previously. However, there will be different issues need

to be investigated.

7.4 General Summary

In this thesis, we have investigated issues involved in developing an E-whiteboard

based sketching tool to support early-stage UML design. We first stated out our

motivation and goal for initiating this research. After that, we provided a

comprehensive overview of the background study we have carried out including the

basic concepts and technologies for developing such a tool and other research related

to this area. Then, based on our goal, the background study and a survey form

potential users, we specified the key requirements of the functionality the tool should

provide. Next we discussed in detail the issues involved in the design and

implementation of the tool. A short case study was provided to further illustrate the

use of the prototyped tool. Finally we presented an evaluation of the tool where we

argued that our E-whiteboard based UML sketching tool has unique features and

advantages over the conventional whiteboard as well as the conventional UML CASE

tools.

Appendix A. Drawing Rules for Sketching UML Icons
__

97

Appendix A - Drawing Rules for Sketching UML Icons

Icon Drawing order Position, size and other notes

1. each of the left shapes must be in appropriate
position

2. the horizontal line must be in approximately the
half of the high of the sketch, and its width is the
width of the whole sketch

3. the vertical line must be in approximately the
half of the width of the sketch

 1. The ellipse can be drawn either clockwise or
counter-clockwise in one stroke

1. the rectangle can be drawn by multi-strokes in
any order

2. the upper horizontal inner line must be drawn in
the second last order, and within the upper one
out off three area, and not outside the boundary
of the sketch, and the width is not lass the width
of the sketch too much (within 10 pixel)

3. the lower horizontal inner line must be drawn in
the last order, and within the lower one out off
three area, and not outside the boundary of the
sketch, and the width is not lass the width of the
sketch too much (within 10 pixel)

 1. the rectangle can be drawn by multi-strokes in
any order, its width must be more than two
times greater than its height

1. the lower larger rectangle can be drawn by multi-
strokes in any order

2. the upper smaller rectangle must be drawn in the
last, and must be drawn in a single-stroke, and its
left edge is as same as the left edge of the larger
rectangle, and its bottom touches the top of the
larger rectangle, and its height is less than the
half of the high of the larger rectangle, and its
width is less than the two out off three of the
width of the larger rectangle

1. the largest rectangle can be drawn by multi-
strokes in any order

2. the upper smaller rectangle must be drawn in
the second last, and must be drawn in a single-
stroke, and its width is less than the half of the
width of the larger rectangle, and its height is
less than one out off four of the height of the
height of the larger rectangle, and its vertical
position is at approximate upper one third of the
height of the larger rectangle

3. the lower smaller rectangle must be drawn in
the second last, and must be drawn in a single-
stroke, and its width is less than the half of the
width of the larger rectangle and its height is
less than one out off four of the height of the
height of the larger rectangle, and its vertical
position is at approximate lower one third of the
height of the larger rectangle

4. the left edge of the larger rectangle must pass
through approximately the middle of each
smaller rectangles

1. the rectangle must be drawn first by multi-
strokes in any order

2. the rest one horizontal, one vertical and three
oblique lines can be draw in any order but must
be in one stroke and at proper positions, these
position are not described , but they are easy to
understand if refer to the left diagram

Appendix A. Drawing Rules for Sketching UML Icons
__

98

 1. the rectangle can be drawn by multi-strokes in
any order, its height must be more than two
times greater than its width

1. the rectangle can be drawn by multi-strokes in
any order

2. the oblique line is drawn at last at the upper
corner of the rectangle, its upper end is within
the left half of the rectangle, its lower end is at
the upper half of the rectangle

1. the line is drawn in one stroke

1 the longer line must be drawn in one strokes first
2 the four short lines can be drawn in any order but

each in one stroke and at proper position (please
refer to the left diagram for the positions)

 1 the line is drawn in multi-strokes (dashed)

1 the longer line must be drawn in one stroke first
2 the three short lines can be drawn in any order

but each in one stroke and at proper position to
form a triangle (please refer to the left diagram
for the positions)

1. the longer line must be drawn in one stroke first
2. the two short lines can be drawn in any order

but each in one stroke and at proper position
(please refer to the left diagram for the
positions)

Appendix B. User Survey of an E-whiteboard Based UML Design Sketching Tool
__

99

- Appendix B -

User Survey of an E-whiteboard Based

UML Design Sketching Tool

1 Introduction

First, we give a brief introduction to our tool to be evaluated in this survey. If you

have already known our tool very well, you may skip this section.

The prototype tool we have developed in our recent research is based on the E-

whiteboard technology to support early stage sketching of UML design diagrams.

It uses a large E-whiteboard and an inkless-pen (stylus) as the main input/output

devices. Users draw UML diagrams and secondary annotations of the software

design on the screen of the E-whiteboard using the stylus. The tool reads in the

pen-based input and generates the computer drawn virtual ‘ink’ which is projected

on the screen by a projector as the drawing mark of the stylus. The sketches are

retained on the screen after they have been drawn. Manipulations to the sketches

(to move, copy, replace and delete sketches) can be performed by the pen-based

actions. Text entry areas (indicated as dotted pink lines) are added to inform the

successes of the recognition, and those recognized UML sketches are formalized

into computer drawn standard UML diagrams on the background process and the

formal view can be displayed when the user desired. The sketches can be saved

and loaded to and from files. The formalized UML diagrams can be exported to a

conventional UML CASE tool.

2 Survey Overview

This survey is undertaken to fulfill the requirement of evaluating the tool

introduced above. It contains two major parts: 1) to use our tool by performing

part or all of the tasks which are described in detail below; 2) to complete the

questionnaire.

Appendix B. User Survey of an E-whiteboard Based UML Design Sketching Tool
__

100

The survey is expected to take approximately 1~3 hours depending on how many

tasks and questions you will take and answer. When you are ready for the survey,

you will be guided by one of us to the place where the tool will be already set up

with the application running on it.

3 Tasks

There are two groups of tasks. The guider from us will give you a short

demonstration on how to use the tool before performing each of the tasks.

3.1 Task group one

1. Read the provided document of the ‘Drawing Rules for Sketching UML

Icons in Our Tool’ with the drawing rules you are asked to follow when

sketching.

2. Sketch 5~10 of each UML icon as on the most left column of the table in

the drawing rule document. If you do not have time to sketch all those

icons, you may sketch some of them of your choices. Please record the

total number and the total drawing time of each sketched UML icon, and

the recognition rate for each sketched UML icon in Table 1.

3. Sketch 5~10 of each UML icon as on the most left column of the table in

the drawing rule document. Please do not sketch text for the

name/properties/methods of those recognized UML sketches here. If you

do not have time to sketch all those icons, you may sketch some of them of

your choices. Please record the total number and the total drawing time of

each sketched UML icon, and the recognition rate for each sketched UML

icon in Table 1.

4. Sketch same UML icons on a provided conventional whiteboard. Please

record the total number and the total drawing time of each sketched UML

icon in Table A-1.

Appendix B. User Survey of an E-whiteboard Based UML Design Sketching Tool
__

101

 Use our tool Use a whiteboard

UML Icon Total no. of

sketches

Total sketching

time (min)

No. of recognized

sketches

Total no. of

sketches

Total sketching

time (min)

Actor

Use case

Class

Object

Component

Node

Note

Activation

Package

Association

Dependency

Generalization

Aggregation

Message

Table A-1. Information recorded from task group one

3.2 Task two

1. Read the provided document of the ‘Case Study’.

2. Sketch part or all of the three UML diagrams contained in the document,

the Use case diagram; the Class diagram; and the Sequence diagram.

3. Perform some or all of the manipulations to any sketches you have drawn.

This will be guided by the demonstrator from us.

4. No information is required to be recorded in a formal document. However,

we recommend you to take your own notes regarding issues of the

usability, performance, usefulness of the tool; the differences of it

comparing with conventional whiteboards as well as conventional UML

CASE tools based on you experiences with them; and any other comments

you would like to make. The notes will be very useful to assist you in

answering questions in the following questionnaire.

Appendix B. User Survey of an E-whiteboard Based UML Design Sketching Tool
__

102

4 Questionnaire

We would appreciate if you would take the time to complete this questionnaire.

The questions in this questionnaire mainly focus on getting the feedback on the

tool from you after you have used the tool by carrying out previous tasks. The

feedback should cover aspects of, the proof of our concept; the usability,

performance and usefulness of the prototype tool; and the features the tool

provided which differ from the conventional whiteboards and conventional UML

CASE tools. The questions are not organized under different categories as some of

them may cover several aspects. We provide a comments section at the last

expecting you to write down any comments you have on the tool, where your

comments will always be a great help for us in reviewing our research and

outlining potential future work.

Do you think our concept of developing this kind of tool is in some value?

Why?

__

__

__

__

__

Is it easy or difficult to learn to use the tool? Why?

__

__

__

__

__

Is it easy or difficult to use the tool for sketching UML diagrams? Why

__

__

__

__

__

Appendix B. User Survey of an E-whiteboard Based UML Design Sketching Tool
__

103

Do you think it is a good approach to retain sketches after they have been

drawn? Why?

__

__

__

__

__

Do you think the tool provides good feedbacks on the recognition results to

the user? Why?

__

__

__

__

__

What do you think about the formalization facility supported by the tool and

the provision of a formal view? Why?

__

__

__

__

__

Do you think the support of the secondary annotation is important? Why?

__

__

__

__

__

What do you think about the pen action based manipulation approach in the

tool? Why?

__

__

__

__

__

Appendix B. User Survey of an E-whiteboard Based UML Design Sketching Tool
__

104

What do you think about those ‘drawing rules’? Why?

__

__

__

__

__

What do think about the overall performance of the tool?

__

__

__

__

__

What does the tool do well? Why?

__

__

__

__

__

What does not the tool do well? Why?

__

__

__

__

__

What are the main features the tool has comparing with the conventional

whiteboards?

__

__

__

__

__

__

__

Appendix B. User Survey of an E-whiteboard Based UML Design Sketching Tool
__

105

What are the main features the tool has comparing with the conventional

UML CASE tools?

__

__

__

__

__

__

__

Are there any improvements can be made to the tool in your opinion?

__

__

__

__

__

__

__

Which one would like to use for doing the celebrative UML design when both

our tool and a conventional whiteboard are available to you? Why?

__

__

__

__

__

__

__

Which one would like to use for doing the celebrative UML design when both

our tool and a conventional UML CASE tool are available to you? Why?

__

__

__

__

__

__

Appendix B. User Survey of an E-whiteboard Based UML Design Sketching Tool
__

106

Are there any other comments you would like to make?

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

__

Bibliography
__

107

Bibliography

[Apte et al 93] A. Apte, V. Vo, T.D. Kimura, “Recognizing Multistroke

Geometric Shapes: An Experimental Evaluation”, Proceedings of

the 6th annual ACM symposium (1993) on User interface software

and technology, ACM Press, pp. 121-128. (1993)

[Apperley et al 02] M. D. Apperley, B. G. Dahlberg, A. Y. Jeffries, L. B. Paine, M.

Phillips, W. J. Rogers, “Lightweight capture of presentations for

review”, Proceedings of IHM-HCI, Lille, France, ACM Press,

(2002)

[Bailey et al 03] B. P. Bailey, J. A, Konstan, “Are Informal Tools Better?

Comparing DEMAIS, Pencil and Paper, and Authorware for Early

Multimedia Design”, Paper/short Talks of CHI 2003 on Software

Development, ACM Press, pp. 313-320. (2003)

[Berque et al 02] D. Berque, D.K. Johnson, L. Jovanovic, “Teaching theory of

computation using pen-based computers and an electronic

whiteboard”, ACM SIGCSE. Bulletin, vol. 33, no. 3, September

2001, ACM Press, pp.169-172.

[Chatty et al 99] S. Chatty, P, Lecoanet, “Pen Computing for Air Traffic Control”,

Proceedings of CHI 2000, ACM Press, pp. 51-65. (1999)

[Chen et al 03] Q. Chen, J. Grundy, J. Hosking, “An E-whiteboard Application to

Support Early Design-Stage Sketching of UML Diagrams”,

Proceedings of the VMSE2003: IEEE symposium on

Visual/Multimedia Software Engineering (to be published on

October 2003).

[Damm et al 00] C. H. Damm, K. M. Hansen, M. Thomsen, “Tool Support for

Cooperative Object-Oriented Design: Gesture Based Modeling on

an Electronic Whiteboard”, Proceedings of CHI 2000 on Human

factors in computer systems: the future is here, ACM Press, pp.

518-525. (2000)

Bibliography
__

108

[Fowler 97] M Fowler, “UML Distilled”, Addison Wesley (1997).

[Green et al 96] T.R.G. Green, M. Petre, “Usability analysis of visual programming

environments: a ‘cognitive dimensions’ framework”, Journal of

Visual Languages and Computing 1996 (7), pp. 131-174.

[Gross et al 96] M. D. Gross, E. Y, Do, “Demonstrating the Electronic Cocktail

Napkin: a paper-like interface for early design”, Proceedings of

CHI 1996, ACM Press, pp. 32-37. (1996)

[Grundy 00] J. Grundy, “Requirements Engineering & OOA Tutorial; Software

Architecture & Object-oriented Design Tutorial”, Tutorials of the

Software Engineering lecture at the Department of Computer

Science of The University of Auckland. (2000)

[Guimbretiere et al 01] F. Guimbretiere, M. Stone, T. Winograd, “Fluid Interaction with

High-resolution Wall-size Displays”, Proceedings of UIST 2001,

ACM Press, pp. 21-30. (2001)

[Igarashi et al 00] T. Igarashi, W. K, Edwards, A. LaMarca, E. D. Mynatt, “An

Architecture for Pen-based Interaction on Electronic Whiteboards”,

Proceedings of AVI 2000, ACM Press, pp. 68-75. (2000)

[Landay 96] J. A. Landay, “SILK: sketching interfaces like krazy”, Proceedings

of CHI’96 on Human factors in computer systems: common

ground, ACM Press, pp. 518-525. (1996)

[Landay et al 96] M. D. Gross, E. Y, Do, “Demonstrating the Electronic Cocktail

Napkin: a paper-like interface for early design”, Proceedings of

CHI 1996, ACM Press, pp. 32-37. (1996)

[Lank et al 01] E. Lank, J. Thorley, S. Chen, D. Blostein, “On-line recognition of

UML diagrams”, Proceedings of the Sixth International

Conference on Document Analysis and Recognition, IEEE CS

Press, 2001, pp.356-360. (2001)

Bibliography
__

109

[Microsoft 03] Microsoft® home page: available from http://www.microsoft.com

(Last Visited Friday, July 11, 2003)

[MIMIO 03] MIMIO® home page: available from http://www.mimio.com (Last

Visited Friday, July 11, 2003)

[Myers 98] B.A. Myers, “A Bief History of Human-Computer Interaction

Technology”, Journal of Interaction, March – April, 1998, pp. 44-

54. (1998)

[OCHRE 03] OCHRE – Optical Character Recognition Using Neural Networks

in Java available from

http://www.geocities.com/siliconvalley/2548/ochre.html (Last

Visited Friday, July 11, 2003)

[Perlimmer et al 02] B. Perlimmer, M. Apperley, “Computer-aided sketching to capture

preliminary design”, Proceedings of the Third Australasian

Conference on User interfaces, Australian Computer Society, Inc,

pp. 9-12. (2002)

[Rational 03] Rational Software Coperation home page: available from

http://www.retional.com (Last Visited Friday, July 11, 2003)

[Riordan 00] R. Riordan, “Designing Relational Database Systems”, Microsoft

Press. (2000)

[Rubine 96] D. Rubine, “Specifying Gesture by Examples”, Proceedings of the

18th annual conference(1991) on Computer graphics and

interactive techniques, ACM Press, pp. 329-337. (1991)

[Rumbaugh et al 91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen,

“Object-Oriented Modeling and Design”, Prentice Hall (1991).

[SMART 03] SMART® home page: available from http://www.smarttech.com

(Last Visited Friday, July 11, 2003)

Bibliography
__

110

[UML 03] UML™ Home Page, OMG (Object Management Group),

available from http://www.uml.org/ (Last Visited Friday, July 11,

2003)

[UML Center 03] UML Center: available from

http://www.smartdraw.com/resources/centers/uml/uml/htm (Last

Visited Friday, July 11, 2003)

[UML Tools 03] UML Tools: available from http://www.jeckle.de/umltools.html

(Last Visited Friday, July 11, 2003)

[Voida et al 02] S. Voida, G.M.Corso, E.D.Mynatt, B. MacInt, “Integrating virtual

and physical context to support knowledge workers”, IEEE

Pervasive Computing, vol. 1, no. 3, July-Sept. 2002, IEEE CS

Press, pp.73-79.

[XML 03] Extensible Markup Language (XML) available from

http://www.w3.org/xml (Last Visited Friday, July 11, 2003)

[Zhao 93] R. Zhao, “Incremental Recognition in Gesture-Based and Syntax-

Directed Diagram Editors”, Proceedings of CHI 1993, ACM Press,

pp. 95-100. (1993)

